Solutions to B Problems

=
Powpzv::;l.l?r
CHAPTER 2
B-2-1. £(t) =0 t <0
= ¢t 2t t >0
Note that

&[] = L
s

Referring to Equation (2-2), we obtain

F(s) = OC [£(t)] = p(: [t e2t] = 1 ____

(s + 2)2
B-2-2
(a) fl(t) = 0 t <0
= 3 sin(5t + 45°) t =0
Note that
3 sin (5t + 45°) = 3 sin 5t cos 45° + 3 cos 5t sin 45
3 s 3
= —=— sin 5t + —= cos 5t
JZ U2
So we have
3 5 3 s
F_(s) = [E.(t)] = +
1 6’51 7 2+52 [z 82452
=l B F* 5
f2_ 52 + 25
(b) f,(t) =0 <0

0.03(1 - cos 2t) £=0

Fp(s) = [, [£5(t)] = 0.03 1 - 0.03 —& _ - _ 0.12
3 s2 + 22 s(s2 + 4)
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B-2-3. f£(t) =0 t<0

=t%e@t ¢ >0

Note that
g3

Referring to Equation (2-2), we obtain

F(s) = oy [£(¢)] = [ [t%e-3t] = —2
(s + 3)3

B-2-4. £(t) = 0 t <0

]

cos 2wt cos 3wt t >0

cos 2wt cos 3wt = 5(cos 5wt + cose)t)

we have

F(s) = L I£(t)] = [ [5(cos 5wt + cos w't)]

s s \ (52 + 13 Wz)g

1 s - 2 S
: (sz v 25w2 S+ w2 (2 + 25wAEE + @)

B-2-5. The function f(t) can be written as
£(t) = (t - a) 1(t - a)

The Laplace transform of f£(t) is

—as

F(s) = oy [£(£)] =) [(t - a) 1(t - a)] = &

B-2-6. f(t) =c 1(t -a) - c 1(t - b)
The Laplace transform of f(t) is

-as -bs
F(s) =c & —-c -8 _=_C (e - ¢bs)
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B-2-7. The function f(t) can be written as

f(t):—;—‘g—-—-l—:é—s— l(t-"'%—) +—2—;75—1(t-a)

So the Laplace transform of f(t) becomes

Fls) = o5 [£(t)] =20~ L _ 125 1 -(a/5)s , 2.5 1 _-as
a s a S a2 s

L (10 - 12.5 e~ (@/5)s | 5 5 g-as)

325

i

As a approaches zero, the limiting value of F(s) becomes as follows:

lim F(s) = 1im -10=12.5¢7(a/5)s , 55 oas
2

a—=+0 a=»0 a“s

d—g (10 - 12.5 e~(a/5)s ; 3 5 g-as,

= 1lim
a=0 ag_azs
N = 1im 2:5s5e(3/5)s _ 5.5 5 oas
POWEREN.IR a=0 Zas
2 (2.5 e7(a/5)s _ 5 5 o-as,
= lim ——
a—0 d
— 2
da »
= Ttn -0.5 s e‘(a/S)s + 2.5 g e—@sS
a=0 2
= 0.5 58 + 2.5 s - _28 g
2 2

B-2-8. The function £(t) can be written as

£(e) =24 ¢ - 24 (e --24_ 24 (t-a)i(t-a)
a3 a2 2 a3

So the Laplace transform of f(t) becomes
24 1 24 1 -%as 24 738
33 sz a2 s $ 3 2

_2a (1 _ _a ks _ E‘as)
T al s2 5 s?

F(s)
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The limiting value of F(s) as a approaches zero is

24(1 - as e—%3S - e-as)

lim

lim F(s)

a--0 a—+0 a352
'd-g 24(1 - as e~%@S - e—as)
= lim
a—=>0 _d 3352
da
2
24(-s €75 + 25_ s + 5 ¢25)
= lim
a0 3aZs?
4 g(- 78S + BS_ o-4as 4 gm3S)
. da 2
= lim
N T ﬁ &
POWEREN.IR S _-%as S .-%as , as[-s)_.-%as _ ..-as
\ 8 [ > =) & 2 e + 2(-23& se
= 1im
aasl) 2as
32 (4 €5 _ a5 75 - 4 ™)
= lim
a—0 T 3
da
28 e S _ g 7935 , g 5 BS54 45 73S
= 1lim
a—=0 1
=-25 -85 +4s = 5
B-2-9. f(ee) = 1im f(t) = 1im sF(s)
t—>00 s-»0
= 1k s8(s+2) _.5x2 _jo
50 s(s + 1) 1
B30 £(0+) = 1im  £(t) =1m —S28+2 __,
t—0+ S S(s +1)(s +3)
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B-2-11. Define 3
¥ =T&
Then -

y(0+) = x(0+)
The initial value of y can be obtained by use of the initial value theorem
as follows:

y(0+) = 1im sY(s)

S 00
Since .
| ¥(s) = 4 [y(£)] = o, [X(£)] = sX(s) - x(04)
we obtain
y(0+) = lim sY(s) = 1im s[sX(s) - x(0+)]
5> 02 S— 0
= lim [82%X(s) - sx(0+)]
S0

B-2-12. Note that

& [a% f(t)] = sF(s) - £(0)

X (_93 f(t)] = s27(s) - s£(0) - £(0)

at2
Define
a2
t) = — £(t)
g(t) t2
Then
..g..a_f(t) = 4 = - 0
£ [dt3 L | 3¢ 98| = s5(s) - g(0)
= s[s2F(s) - s£(0) - £(0)] - £(0)
= s3F(s) - s2£(0) - sE(O) - ;(O)
' b
B-2-13. T -t |®
S £(t) et gy = S ae®tas =afo
-s
0 0 0
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Referring to Problem A-2Z-12, we have

=
£(t) eSt at

F(s) = -2 -2 —eh®)
1 -eTs s(1 - e7Ts)

B-2-14. T e
S £(t) et gt = g{(t) e St gt =1
'—
o_-
Referring to Problem A-2-12, we obtain
" 1
F(S) 1 S e'Ts
B-2-15.
o . & a
8l s +5 " 1 2
(a) Fl(S) Gerila TS B 1 % ==
where
o B35 - Sl
a1“5+35=-1_T_2
= s + 5 [ _Z_. = =1
s+llg=_3 -2

Fl(s) can thus be written as

2 1

s + 1 s + 3

Fl(s) =

and the inverse Laplace transform of Fl(s) is

fl(t) =2et_e3t
(b)
P (s) = e .t 2
2 s(s +1)(s + 2) s s +1
vhere
g 3(s + 4) = 3%
17 (s+1)(s + 2) 2
S -
3 - 3(s + 4) a e
2 s(s + 2) (-1) x 1
s -
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a=3!s+4[ = 3x2=3
3 s(s +1) (-2)(-1)
= s = =2
Fz(s) can thus be written as
Fo(s)=-2&__9 _,_3
s 8+1 8B+ 2
and the inverse Laplace transform of FZ‘S) is
£,() =6 -9 et + 372t
B-2-16.
Gaxa. 16 .13
The inverse Laplace transform of Flfs) is
f (t) =6 + 3t
i
¥ R B SR 22 =
2 (5+l)(5+2)2 STy (5+2)2 s + 2
where
5g + 2 ==+ 2 = -3
Lo <onmyi- 12
+ 2
(s ) ek
=355 +2 =10 + 2 _
b, EE i i3
= -2
b=_d(53"'2) _5(s+1) - (5s +2)
1 d Bk 2
= g8 = =2 (s +1) s = -2
= 5(-1) - (-10 + 2) _ 3
12
Fz(s) can thus be written as
-3 8 3
FZ(S) = + +
s+1 (g+2)2 s5+2
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and the inverse Laplace transform of szs) is

fz(t) =-3e bt +gre?t 32t

B-2-17.
_ 282 +48 +5 _o,._2 5
F(s) = s(s + 1) s+1+8(5+1)
SF POV S U S T + 2
s +1 s s+1 s+1 s

The inverse Laplace transform of F(s) is

£(t) =2 S(t)-3e 45
B-2-18.
e l:.(S)_s+25+*‘-i =142 . 4
s2 B s2
The inverse Laplace transform of F(s) is
£(t) = S (t) +2+ 4t -
B-2-19. o " L
s2 + 2s + 10 (s +1)2 + 32
= s +1 = 3
(s +1)2+32 (s+1)2+ 32
Hence
£(t) = et cos 3t-—;—e-t sin 3t
B-2-20.
2
F(s) =-S-—*28+5 _.a ,.b , ¢
52(s+l) S s s +1
where
2 s2 + 25 + 5 =5
8 %+ 1 ot il
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p=i28+2)(s+1) - (52 + 25 + 5) 222523

(s + 1)2 1
s=0
2z =
P R RS e S B IR
s2 = &
s = =1
Hence
F(s) = - S 4
s2 s s+ 1

The inverse Laplace transform of F(s) is

f(t) =5t -3+ 4 et

B-2-21.
F(s) = 2s + 10 o a H b " C
(s + 1)2(s + 4) (s + 1)2 s+1 s+4
where
a=-28+10 - -2+10 __8
s + 4 3 3
s =-1
p=-2(s+4)- (2s + 10) - 6=-8 =2
(s + 4)2 32 9
s =-1
c=.28 +10 - L 7 Y
(s+1)2 9 G
s = -4
Hence
F(8) = 8 - i | _ 2 1 dral 1
3 (s+1)2 9 s+1 9 s+4
The inverse Laplace transform of F(s) is
f(t) -] _§_te‘—t ___2_ e"t -} i e"4t
3 9 9

Hiﬂlll"'im

POWEREN.IR
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B-2-22.

1 1 1 1
F(s) = » ( %} )
32(52 +w2) 32 52 +w2 w2

The inverse Laplace transform of F(s) is

£(t) = —— (t - 1= sin cot)
w
B-2-23. 5 3
= — - @—a8Y) _ —m o=d8
F(s) o2 (1 - e™38) ~a a>o0

The inverse Laplace transform of F(s) is

f(t) =ct - c(t - a)i(t - a) - b 1(t - a)

B-2-24. A MATIAB program to obtain partial-fraction expansions of the
given function F(s) is given below.

num=[0 0 0 0 1];
den=[1 3 2 0 0],
[r,p,k] = residue(num,den)

r=

N" | -0.2500
1.0000

POWEREN.IR -0.7500
0.5000

10
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From this computer output we obtain

1 -0-25 .1, -0075 0.5
F(s) = = - + -
54 + 333 + 252 s+ 2 s+ 1 s 82

The inverse Laplace transform of F(s) is

f(t) = -0.25 e—2t + e-t _ 0.75 + 0.5t

B-2-25. A possible MATLAB program to obtain partial-fraction expansions
of the given function F(s) is given below.

mm=[0 0 3 4 1j;
den=[1 2 5 8 10];
[r,p.k] = residue(num,den)

l‘=

0.3661 - 0.4881i
0.3661 + 0.4881i
~0.3661 - 0.0006i
-0.3661 + 0.0006i

p=

0.2758 + 1.9081i
0.2758 - 1.9081i
-1.2758 + 1.0309i
-1.2758 - 1.0309i

From this computer output we obtain

3s2 + 45 + 1

F(s) =
s + 283 + 582 + 8s + 10

11
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0.3661 - j0.4881 3 0.3661 + j0.4881
s - 0.2758 - j1.9081 s - 0,2758 + j1.9081

-0.3661 - j0.0006 4 -0.3661 + j0.0006
s + 1.2758 - j1.0309 s + 1.2758 + j1.0309

Since the poles are complex quantities, we may rewrite F(s) as follows:

P(s) = —0:73225 + 1.6607 + —=0.7322s - 0.9329

(s - 0.2758)2 + 1.90812 (s + 1.2758)2 + 1.03092

_ _0.7322(s - 0.2758) + 1.9081 x 0.9762
(s - 0.2758)2 + 1.90812

+ =0.7322(s + 1.2758) + 1.0309 x 0.001204
(s + 1.2758)2 + 1.03092

Then, the inverse Laplace transform of F(s) is obtained as

0.7322 €0.2758t o5 1.9081t
+ 0.9762 €0-2758t gjin 1.9081t
0.7322 e-1.2758t cos 1.0309t
0.001204 e-1.2758t gin 1.0309t

£(t)

+

B-2-26. X + 4x = 0, x(0) = 5, %(0) = 0
The Laplace transform of the given differential equation is
[s2x(s) - sx(0) - X(0)] + 4X(s) = 0
Substitution of the initial conditions into this last equation gives
(s? + 4)X(s) = 5s

Solving for X(s), we obtain

S5s

X(s) =
s +4

The inverse Laplace transform of X(s) is

x(t) = 5 cos 2t

This is the solution of the given differential equation.

12
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B-2-27. X + mnzx =5 x(0) = 0, x(0) = 0
The Laplace transform of this differential egquation is

$2X(s) + w_2X(s) = _s_lf_

Solving this equation for X(s), we obtain

The inverse Laplace transform of X(s) is

x(t) = - (t - - sina)"t)

This is the solution of the given differential equation.

B-2-28. X+ 2x+x=1, x(0) = 0, x(0) = 2
The Laplace transform of this differential equation is

2[s%xX(s) - sx(0) - %(0)] + 2[sX(s) - x(0)] + X(s) = _i_

Substitution of the initial conditions into this equation gives

2[s%(s) - 2] + 2[sX(s)] + X(s) = =

or

(282 + 25 + 1)X(s) = 4 + %.

Solving this last equation for X(s), we get

4s + 1
5(232 + 25 + 1)

X(s)

4 + |
282 + 2s +1  s(28% + 25 + 1)

n

2 A 0.5

(s + 0.5)2 +0.25 s[(s + 0.5)2 + 0.25]

I

13
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- 4 x 0.5 o 12 (s + 0.5) + 0.5

(s + 0.5)2 + 0.52 8 (s + 0.5)2 + 0.52

The inverse Laplace transform of X(s) gives
x(t) = 4 €793 gip 0.5t +1 - e 03t og 0.5t - e 0+t sin 0.5t

1+ 3 e'O'St sin 0.5t - e’O'St cos 0.5t

B-2-29. 2X + 7% + 3x = 0, x(0) = 3, *%(0) =0
Taking the Laplace transform of this differential equation, we obtain
2[s%X(s) - sx(0) - %(0)] + 7[sX(s) - x(0)] + 3X(s) = 0
By substituting the given initial conditions into this last equation,
2[s2X(s) - 3s] + 7[sX(s) - 3] + 3X(s) = 0
or
{232 + 78 + 3)X(s) = 6s + 21

Solving for X(s) yields

68 +.21 o 6s + 21
252 + 7s + 3 (25 + 1)(s + 3)

X(s) =

7.2 06 __3.6 ' 0.6
282+1 8+3 s+0.5 8+ 3

Finally, taking the inverse Laplace transform of X(s), we obtain

e -

x(E) = 3.6 0.6 e

B-2-30. X + x = sin 3t, x(0) = 0, x(0) =0

The Laplace transform of this differential equation is

s2(s) + X(s) = —>—

o2 4+ 32
Solving this equation for X(s), we get
3 3 1 1 3
% - = ==
(=) 2 2 8 -z 8 2
(s® + 1)(s® + 9) s° + 1 s“+9

14
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The inverse Laplace transform of X(s) gives

x(t) =—3_gint - - gin 3t
8 B

15
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CHAPTER 3

B-3-1. J=%mr? =% x 100 x 0.52 = 12.5 kg-m>

B-3-2. Assume that the body of known moment of inertia J0 is turned
through a small angle 6 about the vertical axis and then released. The
equation of motion for the oscillation is

JDB = - k8

where k is the torsional spring constant of the string. This equation can
be written as

Jo
or
e+ 208=0
n
where
k
&) = [~
n Jo

The period T of this oscillation is

N
R
™
|

(1)

)
]
]

o
>

A

n
J

(=]

Next, we attach a rotating body of unknown moment of inertia J and measure
the period T of oscillation. The equation for the period T is

2% (2)
fL

J
By eliminating the unknown torsional spring constant k from Equations (1) and
(2), we obtain

o=

27 3, _2m T
T T

0

2
J & glte (3)
0( To)

The unknown moment of inertia J can therefore be determined by measuring the
period of oscillation T and substituting it into Equation (3).

16
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q.'l

3-3. Define the vertical displacement of the ball as x(t) with x(0) = 0.
The positive direction is downward. The equation of motion for the system
is

mX = mg
with initial conditions x(0) = O m and %(0) = 20 m/s. So we have

g
x = gt + x(0)

x=%gt2+:::(0)t.+x(0)=95gt2+20t

b
Assume that at t =t the ball reaches the ground. Then
1 /00 m
100 = ¥ x 9.81 t12 +20 t,
from which we obtain
t. = 2.915 s

1

The ball reaches the ground in 2.915 s.

B-3-4. Define the torque applied to the flywheel as T. The equation of
motion for the system is

Je =1, 8(0) =0, 8(0) = 0

from which we obtain

A T
2] = —t
J

By substituting numerical values into this equation, we have

20 x 6.28 = —_x 5

50
Thus
T = 1256 N-m
B-3-5. JE =T (T = braking torque)
Integrating this equation,
0=- _;{'_t + 8(0), 8(0) = 100 rad/s
Substituting the given numerical values,
20 =-—§—x 15 + 100

17
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Solving for T/J, we obtain

e
J - 5-33

Hence, the deceleration given by the brake is 5.33 rad/sz.
The total angle rotated in 15-second period is obtained from

- .
a(t) = - -g—-;'_ + 8(0)t + 8(0), 8(0) = 0, 8(0) = 100

as follows;
2
8(15) = - 5.33:(——1—2—-1- 100 x 15 = 900 rad

B-3-6. Assume that we apply force F to the spring system. Then

F = klx + kz(x -y)
lcz(x -y) = kay

Eliminating y from the preceding equations, we obtain

e E_(kz L k3) + kzka
]{2 + k3

k1+

1
1 1
—— + —

ky K3

Hence the equivalent spring constant lceq is given by

B-3-7. The equations for the system are
F= kz(x -y) % %, &
kz(x -y) = kly ¥

Eliminating y from the two equations gives

18
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The equivalent spring constant k is then obtained as

3

1
=
1 2

Next, consider the figure shown below. Note that A ABD and ACBE are
similar. So we have

or

0C(0B + % OA) = OA(OB - % 0C)

Solving for EC-, we obtain

1

= = =k

+ OB 1 1

oc

]
*ligy
3
—

b ™

= L1
OB kK, Ky

+

B-3-8.
(a) The force f due to the dampers is

£=by(y -X) +by(y - X) = (by + by)(y - X)

In terms of the equivalent viscous friction coefficient beqs force
f is given by

ate £ = beg(¥ - X)
beg = by + b
(b) The force f due to the dampers is
£ =Dby(z - X) = by(y - 2) (1)

where z is the displacement of a point between damper by and damper
by.  (Note that the same force is transmitted through the shaft.)
From Equation (1), we have

(by + bz)é = bz)'r + b]_}:’.

1
by + by

v
z =

(byy + byx) (2)

19
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In terms of the equivalent viscous friction coefficient beq, force £
is given by
b beq(Y 3 32)
By substituting Equation (2) into Equation (1), we have
= ’ ] _ - 1 . "
f =Dby(y - z) = byly - -—bl + by (bZY + b1x)]

blbz . »
= —(y - X)
bl + b2
Thus, . beq(‘ .) N (. .) biby . .
= Y-X)=bily - 2) s————iy=x%)
b; + b
Hence,
b by ]
t@-M+M-_LPL
by by

B-3-9. Since the same force transmits the shaft, we have

f=Db(z - %) = by(y - 2) + b3(y - 2) (1)
where displacement z is defined in the figure below.

5 ey
'-: — L,

In terms of the equivalent viscous friction coefficient, the force f
is given by

£ = bag(y - %) (2)
From Equation (1) we have

or

F ] l Ll .
z = by + by + b3 [blx + (by + b3)y] (3)

By substituting Equation (3) into Equation (1), we have

20
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f=b1(z.‘-—;:)=b1{ [bp'(+(b2+b3)_v}]—;c}

. bz + b3
1 b1+b2+b3

by + by + b3

(y - %) (4)

Hence, by comparing Equations (2) and (4), we obtain

- ( b2+b3 \= 1

g

by + by + b3/ e TR

by + b3 by

B-3-10. The equation for the system is

" = 3 LB

mx (kl kzlx k3x
or

mX + (k +k +k)x=0
(cl 5 3)

The natural frequency of the system is

kK. + k., +k
1] 2 3
W =/-——-—-—

n m

B-3-11. The densityf of the liquid is
m

= e—

LA

where A is the cross-sectional area of the inside of the glass tube. The
mathematical model for the system is

mk = - p Ag 2x
or
X + 29 x=0
L
The natural frequency is

21
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B-3-12. ‘For a small displacement x, the torque balance equation for the
system is

mx(2a) = - k(% x)a
or
o k E .
mx + 2 x=0

= 14.01 rad/sec

&
=]
|
N (o
]
At
N =
JS
§:

9.81
B-3-13.
(a) Jgo - béo + kB, = k6
(b) mlil - bla'cl + (k) + k)% = kx,
mz'a'cz + bzn'cz kX, = kx
(c) ml;{-l - blil < (lcl + 1c2)1|:1 = kX,

I
Gl
"

mx + kX

B-3-14. A modified diagram for the system shown in Figure 3-55 is
given below.

A mathematical model for the system is given by the following two
equations:

J18; = k101 - k2(0; - 83)

k2(8; - 82)

J2';51'

22
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B-3-15. The following two equations describe the motion of the system
and they are a mathematical model of the system.

m15E “k3(x = y) = by(x - y) + p(t)

(0

L 4
Rewriting, we obtain

“koy - ki(y - x) - by(¥ - %)

mX + byk + kix = by + kyy + p(t)

my¥ + by + Ky + kpy = bix + kgx

B-3-16. A mathematical model for the system is
lIlSE = —klx - bl;c - kzx . bz;!
or

mk + (by + by)x + (k; + kp)x = 0

B-3-17. The equations of motion for the system are

Je = (Tl-'I‘z]R
l'l’lx=°—'I'l
L dmigie g T
: _ s ; - %
Noting that x = 2y, R@ =x -y =y, and J = ¥MR*,
the three equations can be rewritten as

1 25 = L wn® = =
—Z——MRQ- 5— MRY (Tl Tz)R

8
1 Ty
g o |
y = \
My +ky =T, + T, 74 Te
Eliminating T, from the preceding equations gives r m 1\7;_
R T 3r = = - 2m%
S-My + MY+ ky = 2T o
T777777777
By changing y into x,
3 M X +k X =-omk
2 2 2

or

(m-l-%ﬂ);"'—}—‘ﬂ(:o

23
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The natural frequency is

- 2k
wn_ 8m + 3M

If mass m is pulled down a distance X, and released with zero initial
velocity, the motion of mass m is

o 2k
x(t) = X, cos = t

B-3-18. Referring to the figure below, we have

mX = -T (1)

where T is the tension in the wire. (Note that since x is measured
from the static equilibrium position, the term mg does not enter the
equation.) For the rotational motion of the pulley, we have

J6

-ka(y + R20)Ry + kp(y - Rp€)Rp + TRy — KjRjix
or ’
Lo
8

~koR2%8- - kRp20 + TRy - kjRix (2)
Eliminating T from Equations (1) and (2), we obtain

J.é - ZI{QRzzB + mR]_;c' + KiRix = 0

Since x = R}, we have W(%’//A/’
J8 + 2kyRp26 + mR128 + kjR;28 = 0 |

or
(3 + mR12)8 + (2kzRp2 + kyR;2)8 = O % ;
or ‘
e + 8 =0 / }
J + mRy2 5
This last equation is a mathematical model i t
of the system. The natural frequency of [ 2 s
the system is s 3h 2
a / 2koRp? + kjR1? 1
n - 2
L 777707727777 7777 2 7

24
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B-3-19. The equation of motion for the system is
mX + bx + kx = 0

Substituting the given numerical values for m, b, and k into this equation,
we obtain

2X + 4% + 20x = 0 (1)
where x(0) = 0.1 and X(0) = 0. The response to the given initial condition
can be obtained by taking the Laplace transform of this equation, solving

the resulting equation for X(s), and finding the inverse Laplace transform of
X(s). The Laplace transform of Equation (1) is

2[s%X(s) - sx(0) - %(0)] + 4[sX(s) - x(0)] + 20 X(s) = O
By substituting the given initial conditions into this last equation, we get
2[s%(s) - 0.1s] + 4[sX(s) - 0.1] + 20 X(s) = 0

Solving this equation for X(s) gives

X(S) = 0523 + 0.4 = 0.1 + 0-1(§_+ 1)

25 +4ds + 20 (s~t-1)2+32

The inverse Laplace transform of this last equation gives

x{t) = 0.1(—;*—- et sin 3t + et cos 3t)

B-3-20. The equation of motion for the system is
mx = F cos 30° - B

where F, = M, (mg - F sin 30°). Rewritting this equation,

mX = 0.866 F - 0.3(mg - 0.5 F)

For a constant speed motion, X = 0 and the F
last equation becomes 30"
Fs | x
1.016 F - 0.3 mg = 0 7777 //1{////////;/”/1/
or mg.
1.016

25
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B-3-21. The equations of motion for the system are — X
. M SR
ME =T - u Mg [
77770777778 1T
m=mg - T T
Elimination of T from these two equations gives
- Ijs - = o
R g "

By substituting M = 2, m = 1, and /tk= 0.2 into this last equation, we get
3x =1 x9.81 - 0.2 x 2 x 9.81 = 5.886
or
X = 1.962
Noting that x(0) = 0, we have
x(t) = 1.962 t + x(0) = 1.962 t

n

2
x(t) = 1.962 -;_ + x(0)

Assume that at t = tl, x(tl) - x(0) = 0.5 m. Then

2
or

tl = 0.7139 s

Thus, the velocity of the block when it has moved 0.5 m can be found as

%(0.7139) = 1.962 x 0.7139 = 1.401 m/s

B-3-22. The equations of motion for the system are
mX = - kx - F
J6 = FR

where x =R and J = % mR%.  So we obtain

rr13§=—lcx--—‘%=-bc—35nﬁ.c
or
S mk+kx =0
2
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The natural frequency of the system is

=/21':
C‘)n 3m

B-3-23. Assume that the direction of the static friction force F is to

the left as shown in the diagram below. The
equations for the system are

mx = F - F (1)
J0 =FR + F R
s

where J = % mRZ.  Since the cylinder rolls without
sliding, we have x = R8. Consequently,

1 20 o

or

mx = 2(F + Fs) (2)

By eliminating mX from Equations (1) and (2), we have

2(F + FS) =F - Fg
or

_ g
< N v

Since Fy is found to be equal to -(1/3)F, the magnitude of Fs is one third
of F and its direction is opposite to that assumed in the solution.

B-3-24. The equation of motion for the system is
mx = F - mg sin m'—/;lelgcos 30°, x(0) =0, x(0) =0
By substituting the given numerical values into this equation, we obtain

F-1x9.81 x0.5-0.2x1zx 9.81 x 0.866

b
L}

or

F - 4.905 - 1.699

"
Il

and

27
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x(t) = (F - 6.604)t
x(t) = (F - 6.604) —

=t,x(tl)=emmi(tl)=5m/s. Then

Assume that at t 1

(F - 6.604) — tz

6 =
5= (F - 6.604) tl
From the last two equations, tl and F are found to be
tl = 2.40 s, F=8.69 N
Therefore,
Work done by force F = F X 6 = 8.69 x 6 = 52.14 N-m
Work done by the gravitational force =-mg sin 30° x 6
=-9.81 x0.5x6 =~ 29.43 N-m
Work done by the sliding friction force
=-0.2xmg cos 30° x 6
= - 1.699 x 6 = - 10.19 N-m
B-3-25. Torque = T = 50 x 0.5 = 25 N-m

Tew = 25 x 100 = 2500 N-m/s = 2500 W

%f

B-3-26. The kinetic energy T is
£

T = 50262 + - S 3% az -
The potential energy U is (
Mgf(l-COSG)*' Sa-%gg(l—cose)dg

U

"

(M +-—g-—)gf(l - cos 8)

Since the system is conservative, we have

28
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T+U =M+ 222 4 4+ g /(1 - cos 6)

= constant

Noting that 4(T + U)/dt = 0, we obtain

(M +%’-)£2§3 + (M +—%—)g!sin 86 =0
or
[(u + L2+ (s Byg /et e] sl

Since 8 is not identically zero, we have

(M + ~‘;—)£25 + (M + —'_,;_'—)gfsin =0
Rewriting,
—?— sin 8 = 0

For small values of 6,

o M+T

4
+
wl=
T

So the natural frequency is

w =

n

e [ofe
3

B-3-27. The kinetic energy T of the system is
7= Jlélz + % 3,8,2

and the potential energy U of the system is
u=% klelz + 5 k(8 - 92)2 + % K,9,2

Using the law of conservation of energy, we have

. * 2

2
+ k 9 =
% ,9," = constant

29
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Noting that d4(T + U)/dt = 0, we obtain
9198 9590, S 08,1 0,000, = 185) w8 0,6, =
or
[Jlal + k191 + ko(el - 82)] 91 - [JZBZ + k292 - ko(el - ezJ] 92 =
Since él and éz are not identically zero, we must have

Jlel + klel + ko(el - 92) =0

L}

J282 + k292 + KO(BZ - 81) 0

B-3-28. At t =0 (the instant the mass M is released to move) the kinetic
energy T1 and the potential energy U1 of the system are

T =10
N

Ul mngx

The potential energy is measured relative to the floor.

At the instant mass m hits the floor the kinetic energy 'I‘2 and the

potential energy U2 of the system are

i

2 412 2 R,
g =B Myt + hmv,2 + % Je,

U2=0

where v, is the velocity of the hanging mass m and 82 is the angle of rota-
tion of "the pulley both at the instant the mass hits“the floor; rez =V,

and J = % mprz.
Using the law of conservation of energy, we obtain
Tl # Ul = ’I‘2 + U2
or
= 1 25 2
mox = % Mvy2 + % mv,2 + & mr28,
By substituting réz =V, into this last equation,

-~ 2 P R 2
mgx %Mvz +’5mv2 +.arnpv2

30
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Solving this equation for v2

2 {mg —_

v, = X
2 VoM + 2m + m /
P
B-3-29. The force F necessary to move the weight is
=0 _ 1000 x 9.81 = 1962 N
5 5
The power P is given by
- dW_
PR
where W = mgx. So we obtain
P=—d%;ﬂ)—=mgi=9810x0.5=4905w

B-3-30. From the figure shown to the right, we obtain

7F

mg + 2
or

mg=7F -2=7x5-2=33N

To keep the bar AB horizontal when pulling the
weight mg, the moment about point P must balance.

Thus,

4Fx - 2F(0.15 - x) - F(0.3 - x)
+ 2(0.15 -x) =0

Solving this equation for x, we obtain

= 2.? -
X = =53~ = 0.0818 m

B-3-31. Note that
T w, = T,W

where

&P
Y

w1=60x27t=1207¢: rad/s
Gear ratio = 1/30
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= -L:
LJ2 60 x 27T x 55 47 rad/s

Since the power Tla)l of the motor is

T &, =1.5 kW = 1500 W

1 il
the torque T, of the driven shaft is
w
& 1 _ 1500 _
T2 T1 P ar 119.4 N-m

B-3-32. Assume that the stiffness of the shafts of the gear train is infi-
nite, that there is neither backlash nor elastic deformation, and that the
number of teeth on each gear is proportional to the radius of gear. Define
the angular displacement of shaft 1 and shaft 2. as Bl and 92, respectively.

By applying Newton's second law to the system, we obtain for the motor
shaft (shaft 1)

3,0, 40, =T (1)
where T is the torque developed by the motor and Ty is the load torque on
gear 1 due to the rest of the gear train. For shaft 2, we have

J,8, = T, (2)
where T, is the torque transmitted to gear 2. Since the work done by gear 1
is equal to that of gear 2,

T8 =T.6

173 22
or
8 n
T =Ty ten,
e n
1 2

Since 62/61 = nl/n2 » Equation (2) can be written as

n - n
7, —1-8, =2 T
n n
2 i
or
2
I'll_ '
(n—) J231 = Tl (3)
2 :
Substituting Equation (3) into Equation (1), we get
- nl 2 '
Jlel + ( nz ) Jzel = 'I‘Itl

32
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or

nl 2 ')
Ji +("2 ) Jz]alzrrm

The equivalent moment of inertia of the gear train referred to the motor

shaft is
n, 2
Jeq=J1+(n ) J2
2

Notice that if the ratio nl/nz is very much smaller than unity, then the

effect of Jz on the equivalent moment of inertia Jeq is negligible.

B-3-33. The equivalent moment of inertia. J of mass m referred to the motor
shaft axis can be obtained from

In X = Torque = mxR
where of is the angular acceleration of the motor shaft and X is the linear

acceleration of mass m. Since or = X, we have

Jmu( =mol rR

or

Jm=er

The equivalent moment of inertia Jb of the belt is obtained from

- o 2
Jbo( -mbxr-mbo(r
or

= mbrz

Since there is no slippage between the belt and the pulleys, the work done
by the belt and the right-side pulley ('rlel) and that by the belt and the

left-side pulley (T292) must be equal, or
T16; = T205

where Tl is the load torque on the motor shaft and 'I'2 is the torque trans-

mitted to the left-side pulley shaft, 8, is the angular displacement of the
motor shaft, and 6, is the angular diaplacement of the left-side pulley
shaft. Since the two pulleys are of the same size, we have 61 = @,. Hence
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For the motor shaft, we have

(Jr + Jp +J, + Jb)Bl + T1'= s

Also, for the left-side pulley shaft, we have

Since Tl = Tz' we have
(Jlr +
Since 81 = 62, this last

(Jr +

The equivalent moment of
shaft axis is

=)
Il

Jpez =T,

Jp + Jm + Jb)el > JPBZ = Tm
equation becomes

23, + dp + 3p)8) = Ty

inertia J eq of the system with respect to the moto:
Jr+2Jp+Jm+Jb

2
Jr+2Jp+er+r%r
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CHAPTER 4

From the right side diagram we obtain the

10 i, + 20(11 - i3)

20 iz

100 13 + 10(12 + 13) = 20(11 -1

35

- 10(5.2 + 13)

B“"4-1. 1
R = = = + = SL
BC IR 5041 , RAC 30 50 80
100 100
E 12
1 =s=—zs-—g (,15 A
Ryc 80
So we obtain
E°=eEC=iRBC=O.15xSO=?.5V
B-4-2.
Lok R) +R3 + Ry
Rap R Ry, + Ry R1(R2 + 23)
3 Rl(Rz B R3)
AB Rl + RZ s R3
Ao A o—
R
R R P |
1 3 R.'I.
B B o R,
R
B-4-3. Figure 4-55 can be redrawn as shown below.
: S TR
< 20 AN A——
20 $e g, 20 D 10 4viy
B
D 10 - E

following equations:

E

E

3)
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which yield

12 :
1 Ay 2 3 11 °2

So we obtain

o ) 12 Y na.
10 11 + 20(11 - 13) =1 12 + 20(T - ——-)12 =E

Solving for :12. we get

1,==3 E
Thus,
SR, (e 4 E_ __340 _
B TT 41, (1—2+1)1 . .a. » SAuEa
11 2 11 %340
B-4-4. . . A - e
| il
2V | I B r2y B
l Rz:f 24y 2 400 j SR, y &
B } C o c

Figure (a) Figure (b) Figure (c)

From Figure (a) above we find Rl = 2R,. Referring to Figure (b) above, we
get

i i x 3T 40 + R,
RBC R2 40 40 RZ
o S 1 W 9.6 _,
REC 40 82 2.4
40 + 17{2
So Rl is obtained as
160 R,
B =R "I TR,

By substituting R, = 2R, into this last equation, we obtain

R = 800 , R, = 40 2
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Then, from Figure (c) above, current i is obtained as

B-4-5. When switch S is open, resistance between points A and B is 160.Q0
and we have

o S
1o = 160

When switch S is closed, resistance between points A and B is

1 L) 100 R
Ot T, L -%9*300 +r
100 R
So we have
LS E
210— —OO
604._.1_._8.__
100 + R
Consequently,
2E__ E
160 ~
60 + —L00 R
100 + R
Solving for R, we obtain
R=251

B-4-6. From the circuit diagram we obtain

di

1
L +Ri +R(1 -1 =e
oty TR )

dt 2

g e L -
R.i +—-—-g:.2dt-.+R2(12 11) 0

20 CZ
or
dil
L 2 - (Rl + R2)11 - 12212 =g

- R, L X3k -
R211+(R2+R3)12+ c2512dt 0
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Each of the preceding two sets of equations constitutes a mathematical model

for the circuit.

B-4-7. From Figure 4-55, we have for t > 0
Rli1 + R2(11 - 12} =0
-—é——S i,dt + Ry, -,)=0
Taking Laplace transforms of Equations (1) and (2), we get
Rlll(s) + RZ[I.L(S) - 12(5)] =0

(5 s

where 12-1(0) is given by

12"1(0) = S i,(t) at

t=0
= q(0) = eOC
From Equation (3) we have
R +R
1 2
12(3) 32 ¥

Then Equation (4) can be rewritten as
e

(—"ég + Rz) 12(5) = Rle(S) - TO

Substituting Equation (5) into Equation (6) we obtain

R. + R e
o’ 1 2 = D
( Cs i RZ) R-Z Il(s) RZIl(S) s

or
eORZC

R1+R2

Eiln) ==
1 + RIRZCS

D 1

R

R, + R
T Gk
R R.C

38

(s) i o)
1 | % 2 =
—[ E: s ]+R2[12(s) -Il(s)]-o

(1)

(2)

(3)

(4)

(5)

(6)
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The inverse Laplace transform of this last equation gives

=
" - 0
1(8) = = —= expl-(R; + RIL/(RRC)] £ >0
3
Referring to Equation (5) we have

(Rl + RZ)EO

12(1:) = - e E!JCP[-(Rl + Rz)t/(Rlec)] t>0
172

B-4-8. At steady state (t <0) we have

gy =k Y- '

0 Rl + R,
and

R POWEREN.IR
eC=LSidt=Ri =—2 _F
c 270 R, +R,

For t 2 0 the equation for the circuit is

Ri+-—l——81dt=E (1)
1 c

By differentiating this last equation, we obtain

di

R
1 dt

1
o—_— o
ci—O

The Laplace transform of this egquation is

R [sI(s) - 1(0)] + —é— I(s) =0

where
d : E
i(0) =i, = ———
0
R1+R2
Hence
(R.s +-2)I{s) = R, —E—
i | C 1R, +R
1 2
or
phij e =
1 Zs+-§]'=-6
1

The inverse Laplace transform of I(s) gives
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B-4-9. The equations for the system are
di

3 a —
Ryi, + L, = te =e, (1)
de
¢! 1
L i
;. 98, M. -, (3)
o —L-7 =,

where Jeq is the equivalent moment of inertia of the system referred to the
motor rotor axis and be%his the equivalent viscous friction coefficient of
the system referred to same axis.
By taking Laplace transforms of Equations (1) and (2), we obtain
(Ra K Las)Ia(s) + Eb(s) = Ea(s)
E (s) =K
b( ) sslts)

b
Elimination of Eb{s) from the above two equations yields

(Ra + Las)Ia(s) + Kbselts) = Ea(s) (4)

The Laplace transform of Equation (3) is

Jeqs:?el(s) + beqselfs) = KI_(s)
Hence

J 52+b s
I(s) = =4 = =d_ o, (s) (5)

By substituting Equation (5) into Equation (4), we obtain

2
[(Ra o Las) Jeqs }': l'-’eqs 5 Kbs] gl{s) = Ea(sJ
or

Sl £ (6)

E,(s) ; (R, + Las)(Jeq52+ beqs) + KK s

The numerical values of the equivalent moment of inertia Jeq and equivalent
viscous friction coefficient beq are, respectively,
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3

1x10™° + (0.1)% x 4.4 x 10”

oy
]

N’12
eq Jr + -ﬁ;) JL

N, \2
eq = Pr ¥ N, By,

Substituting these numerical values into Equation (6), we get

5.4 x 1072 1bf—ft-32

(0.1)2 x 4 x 10~2

o
I

4 x 1074 lbf—ft/rad/s

8,(s) 6 x 107>

Ea(S) 0.2(5.4 x 10"552 +4x 10'45) +6x 10‘5 X T X 10"25

_ 6
1.08s2 + B.33s

= 0.72
s(0.1296s + 1)

Since 82/91= Nl/l\l2 =n = 0.1, we have the transfer function 02(5)/Ea(s) as
follows:

8,(s) n&y(s) 5072
E(s) E/(s) s(0.129s + 1)

B-4-10. From the circuit shown to
the right, we obtain

) € - ey
11 = Rl

» €a

1s =

2 Ry

: €A — €
ity i

-
14 =C at (eA — ED)

ie =
) Ry

41
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Since

iy = ip + ig
we have
ej - § e 2
d _ & 4 0 (1)
Ry R2 Rq
Also, since
ig + i3 = i5
we obtain
d €A - % €
c -2 3 = 2
at (EA ey) + RS Ry (2)

Equation (1) can be written as

Ei e
(L) v 2
Ry Ry Ry R4

Laplace transforming this equation and simplifying, we get

Ej(s) Eo(s) 1 1

Ry By ( Ry Rz)E“{S) )
Laplace transforming Equation (2), we obtain

= = di;
| Cs[Ep(s) - Eg(s)] + =3 [Ea(s) - Eo(s)] = R Ey(s)
from which we obtain
RaRaCs + Rq + R
Ep(s) = —— 2% £.(s) (4)

R4(R3Cs + 1)
By substituting Equation (4) into Equation (3), we have

Ei(s)  Eg(s) =( R; + Ry ) R3R4Cs + R3 + Ry E (s)
Ry Ry RjR2 R4(R3Cs + 1) °
from which the transfer function E,(s)/Ej(s) can be obtained as
Eo(s) RoR4(R3Cs + 1)
E;j(s) [RiRR3 + (R + Rp)R3R4JCs + RyRy + (R; + Rp)(R3 + Ry)

42
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r

Since

we have

Also, since

we get

Thus,

From the circuit diagram shown, we obtain

Ej(s) - Ba(s)

I;(s)
EA(S) _ 1 E' & A- \3‘ “R;ll‘
IZ(S) i Cs o——/J000 £z —~A | “" o
Ea(s) - Eo(s) L 3 ‘,- 3R 0
: Rl ~
I3(5) _L 0
Eg(s) :
——— =&,
I4(s)
il = 12 + 13
E;j(s) - Ea(s) - _
- - = CsEp(s) + Fa(s) - Eg(s)
Ls Ry
L) 1 1 Eg(s)
= — c . _
- (Is +Cs + Ry )EA(s) R (1)

iz = iy

Ea(s) - Eg(s)  E(s)
Ry Rp

81
Ea(s) = {1 + Ry )EO(S)

Substituting Equation (2) into Equation (1) and simplifying, we

E;(s)

Ls

Hence the transfer function Ey(s)/Ej(s) is given by

43
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Eq(s) Ry

Ej(s) L(R; + Rp)Cs? + Ls + Ry + Ry

B-4-12. The transfer function

—

Eq(s)/Ei(s) can be given in terms
of complex impedances Z; and 2, as

follows: o
Eo(s) _ Zp
efn
where o
Z1 =R
Lok cem L rECE2
Zy Ls Ls
Hence
Ls
Eo(s)  1ce2 41
Ei(s) R + _L.s.._—_.
ICs2 + 1
Ls

]

B-4-13.
Z. =R R2
=R, + Z, = R
1 1 34 R2C$ 2 3
Hence
Eo(S) _ Zz

1 1 + RyCs 3

Ra(nﬁ +1)

Rz(Rl + R3)08 + Rl + R2 + R3

44
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0

B-4-14.
= - T _ RCs + 1
%y =48 Z, "R i R
Hence
EO(s) _ Zy
E; (s) % + 2,
R
L. RCs + 1 - 1
Ls + —R Les?2 + s +1
RCs + 1 R
B-4-15.
z = Kkys Z =
1(s) =R 2(s) Cs
Hence
Eo(s) Z7(s) 1
Ei(s)  Zy(s) RCs
B-4-16. Note that Zs .
L cys v L TP FRTL Y
Zl(S) 1 !- _’Ii' l L A'A'A'.lR.l J
Hence ol 4{ _
Rl ' ""v‘v‘ - b, 0
Z1(s) = ——8M8 — e R, J
RIC]_S + 1 (S
Similarly, 3 il
R2 %
Zy(s) =

RoCos + 1

The transfer function E,(s)/Ej(s) can be given by

45
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Eo(s) L 22(5)

Rlcls + 1

Ej(s) Zy(s)

RoCys + 1

B-4-17.
Then

Ep(s) _ 1
Ej(s) RiCs + 1

Define the voltage at point B as eg.
Then
R3

————r—
Ry + R3 o(s)

Eg(s) =

Noting that
[Ep(s) - Eg(s)IK = Ey(s)
and K 3> 1, we must have

Ep(s) = Eg(s)

Define the voltage at point A as ep.

Hence
A RiCs + 1 % e Ry + R3
from which we obtain
Eo(s) Ry + R3 3
Ei(s) RiCs + 1
B-4-18. The voltage at point A is
o dokt
EA = 2 (E. EO)
or
Ep(s) = —2- [E;(s) + E_(s)]
The voltage at point B is
e
Cs 1
(B) = = E.(s
g ‘ R. + <& R,Cs + 1 1( )
2" s
Since
[EB(S) - E(s))K = EO(SJ. R>1

we must have

46
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EA(S) = EB(s)

Thus, equating Equations (1) and (2) we obtain

1 x 2 | :
T [Ei(S) L EO(S)] = g&;ﬁ Ei(S)
or
E_(s) _ ReCs-1

Ei(s) RCs + 1

B-4-19. Define the displacement of midpoint between k3 and b as Xq.
Then the equations for the system are

mx +kx + kz(xl - xzi i k:"_(x1 - x3) = p(t)
myX, + blX, = X3) + ky(x, - X)) = 0

)

b(x -1':)=k3(xl—x

3 2 3

Using the force-voltage analogy, the preceding equations may be converted to
e 1 1 e 1 L b
qul + 'C—' ql + '—'C_ (ql qZ) + —'C';"‘(ql Q3) e(t)
% 2 3
L,a, + R(3, - &) + = (q, - q,) = 0
292 2793 15 9
- = L] - 1 iy

The last three equations can be modified to

Ldil-l-l idt + 2 \(i. -i.)de + L1 \(i. - i )at = e(t)
1 gt —C'I' 1 C, 1 2 Cy 1 3

diz %

0

1]

. = _ ¥ A :
R(l3 - 12) - -C_g S(ll - 13)dt

From these three equations we can obtain
the analogous electrical system as shown
to the right.

47


www.mohandesyar.com

B-4-20. Define the cyclic current in the left loop as i, and that in the
ngnt loop as 12. Then the equations for the circuit are

di
B &
Iy == TS + ZS(i —12) dt+R(11-12)+-—-—-511dt=0
L'cll-z+—l—Si dt+R(i -i)+—- (1 -4 )dE =0
dt C3 2 1
which can be rewritten as
A L S - ) vl
Ta%p = c, (9 - a) +R(G - ) + , kg
e QLS AL,
i L = o —| =
L, el +R(qy - q) + - (@ - q;) =0 |
3 2 £ 3

Using the force-voltage analogy, we can convert the
last two equations as follows:

L - . = . + k
mlxl + k2(x1 x2) + !:;(x1 xz) 1xl

]
o
Al
[ Y]
v
M, -
]

o . . o
M t Xy T Bl SRy G <) F O . }
£
From these equations an analogous mechanical system g %
can be obtained as shown to the right. -
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CHAPTER 5

B-5-1. By substituting the given numerical values into

R, =-dh _ 128~ L
boode g ppf
we obtain
-6
- 128 x 1.004 x 10 2—4 = 3.2594 x 104 s/m2

' 9.81 x 3.14 x (4 x 107°)

B-5-2. We shall solve this problem by using two different approaches:
one based on the exact method and the other based on the use of an average
resistance.

(1) Solution by the exact method. For the liquid-level system we have

CdH = (Qi - Q) dt
By substituting C = 2 m?, Q; = 0.05 m>/s, and Q = 0.02 [H into this last
equation, we obtain

2 an = (0.05 - 0.02 JH) at

or
2

0.05 - 0.02 Ju &

dt

il

let /JH = x. ThenH:xzanddH=2xdx. So we have

ae = —== x'dx
5 - 2x

5 - 2

Assume that at t = t the level reaches 2.5 m. Then, t., is obtained as

1
Sdt-S 200—l+5-2x)dx

= 200x|ﬁ+1000 S————
/ : 5 - 2x

ty

"

5
= - 200( /235 - 1) + 1000 (--3-) 1n(5 - 2x)

!

= - 200 x 0.581 - 500(1n 1.838 - 1n 3)
= - 200 x 0.581 - 500(0.6087 - 1.0986)

= 128.8 s
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(2) Solution by use of an average resistance. Since Q = 0.02 JE, the

average resistance R is obtained from

dH - 2.5 - 100

R =

dQ  0.03162 - 0.02 %

ot i i 9, h/R For the liquid-level

Cdh = (g, - q )dt
i 6]
or

= i) h
at 91 "% 9 TR
which can be rewritten as

dh
CR = +h = q;R
dt W

Substituting C = 2 mz. R = 129 s/m?, and q; = 0.05 - 0.02 = 0.03 m3/s into
this last equation yields :

dh
258 = + h = 3.87 h(0) =0
ac ' (0)

Taking Laplace transforms of both sides of this last equation, we obtain

258[sH(s) - h(0)] + H(s) = 282

or

(258s + 1)H(s) = *3;—‘”

Solving this equation for H(s),

3.87
s(258s + 1)

b 258
3.87 -
( s 258s + 1)

The inverse Laplace transform of this last equation gives

H(s)

h(t) = 3.87(1 - e~ TF b)

Assume that at t = tl' h(tl) = 1.5. The value of tl. can be determined from

/
1.5 = 3.87(1 - e~ 757 1)

Rewriting,
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e~ 757 £1 = 0.6124

or

= 0.49
258 .

So we have

tl = 0.4904 x 258 = 126.5 s

This solution has been obtained by use of an average resistance.

B-5-3. The equations for the liquid-level system are
Cidh, =(Q+g-Q-gqdt .
Cydh, = (Q + g, - Q - q,)dt

Since R, = 111/ql and R, = hz/qz, the system eqguations can be rewritten as

d‘h.]. h.'l.
dh h h
il e f e e
) e T LR (2)

From Equations (1) and (2) we obtain

dh dh h
1 2 2
C p—r + C — = - ——
1 gt Zae R, (3)

By differentiating Equation (2) with respect to t, we get

d2h2+1dh2=1dh1

c (4)
2 ge2 R, dt R, dt

By eliminating dhl/dt from Equations (3) and (4), we obtain
L ¢ 0.y =2 P
_ + —= +
Wl g (&,6, ¥Rl 5 =B

Substitution of h, = Ryq, into this last eqguation yields

2
d q2 dc;r2
R,CyRCo o (RiC} + RC)) = *+ 9,

n

q

Hence the transfer function of the system when g is the input and q; is
the output is given by
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Q2(s) . 1
0(s) (R1C3s + 1)(RpCos + 1)

B-5-4. The equations for the system are

]

Clt:ll'l1 qldt

Cdhy = (q; - q) -qy)at

]

Thus, we have

cl — (1)
dt R,
dh, h,-h h,-h,
2% "4 TR TR =
1 2
o e 2 LN (3)
3d. . R
2 Ry
From Equation (1) we obtain
Cyshy(s) = —%2- [(Hy(s) - Hy(s)]
1
or
Hy(s) = Hy(s) (4)

RiCis + 1
From Equation (3) we get

CaRasHa(s) Ha(s) —-RBH(] -—R3
+ = P
3K3sH3(s 3is Ry 2(s Ry H3(s)
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or
Ho(s) <. (RaC .
g) = — + 1 +
2 R3 3C3s Ry

By adding Equations (1), (2), and (3), and taking the Laplace transform
of the resulting equation, we obtain

)H3(B) (5) »

CysH; (s) + CpsHp(s) + C3sH3(s) = Qj(s) - —;3—- H3(s) (6)

By substituting Equations (4) and (5) into Equation (6), we get

Cqs R
RiCys + 1 R

R3
5 )(R3C3s +1+ Ry ) + (C3s + ;3 )]H3(8) = Qj(s)

Since H3(s) = R3Up(s), this last equation can be written as

[(Cl + Cp)s + RyC;Cps2

RiCys + 1 (R3R2C3s + Rz + R3) + (R3C3s + 1)] Qo(s) = Qj(s)

from which we obtain

Qo(s) RiCys + 1

Qi(s) ~ [(cy + Cy)s + RC1Cps2](R3RC3s + Ry + R3) + (R3C3s + 1)(RyCys + 1)

This is the transfer function relating Qp(s) and Qj(s).

B-5-5. For this system

_ . = p2 = [BY?
CdH = -Q dt, H = 3r, C=réq (3)7c:
Hence
g \2
(—;—)'ﬂ:au:-o.oosﬁdt
or

1.5 9
H dH = -0.005 ——
7 o

Assume that the head moves down from H = 2m to X for the 60 second period.

Then
pa 60

-5 gy = -0.005 —,2_- dat

or

% (x2+5 = 22.5) = -0.01432(60 - 0)
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which can be rewritten as

or

Taking logarithm of both sides of this last equation, we obtain

x2:5 - (1.4142

x2*3 = 5.6569 - 2

13)5 = - 2.1480

.1480 = 3.5089

2:5'1 X =1 3.5089
“0 “10
or
X=1.652 m
B-5-6. From Figure 5-32 we obtain

.
—— —-q
1% 3° 4
szh—2=q - qp
at 1
h
Uy
1
h
q2=_l_
R

(1)

(2)

(3)

(4)

Using the electrical-liquid-level analogy given below, equaticns for
an analogous electrical system can be obtained.

Electrical systems

Liquid-level systems

e (voltage)

q (charge)

i (current)

C (capacitance)
R (resistance)

q (flow rate)
h (head)

dh/dt

R (resistance)
C (capacitance)

Analogous equations for the electrical system are

Rjig = e - e

Roigp = e; - ea

a8y =

S il dt
Cy

(5)
(6)

(7)
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e

C2

a2 = (8)

Based on Equations (5) through (8), we obtain the analogous electrical
system shown below.

x

I

—
l"'---sb —

N")
i

R
NN
)T

B-5-7. The equations for the liquid-level system of Figure 5-20 are
dhy

G el g (1)
CZ 22. - (2)
gt 1-%0
hy - hy
ST (3)
hy
Q2 = S (4)

Using the table of electrical-liquid-level analogy shown in the solution
of Problem B-5-6, we can obtain an analogous electrical system. The
analogous electrical egquations are

Rlil =e - e (5)
Rpipg =e; - e (6)
S(il - ip) dt
e =
1 - (7)
S ip dt
CO S m————— (8)
C2

Based on Equations (5) through (8), we obtzin the analogous electrical
system shown on next page.
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o W-.

. cilwc "
f) T;'qz

B-5-8. PV = mRyi,T

In this problem
7 X 10° + 1.0133 x 105 = 8.0133 x 105 N/m2 abs

ko)
]

273 + 20 = 293 K

The mass m of the air in the tank is

pv 8.0133 x 105 x 10
m= = = 95.29
RairT 287 x 293 kg

If the temperature of compressed air is raised to 40°C, then T =
273 + 40 = 313 K and the pressure p becomes

mR. :,.T
alr

\ 10

7.547 x 105 N/m? gage = 7.695 kge/cm? gage

n

109.4 1bg/ in.2 gage

B-5-9. Note that

Cdp, =qat

where g is the flow rate through the valve and is given by

_Pj = Py
gr= -
Hence
dpo _Pj =B
C -
dat R
from which we obtain
Po(s) 1

Pj(s) RCs +1

For the bellows and spring, we have the following equation:
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Ap, = kx

The transfer function }((s.),&’Pi (s) is then given by

x(s) X(s) Bfs) , - 4
Pl(s) P_(s)p; (s) k RCs +1

B-5-10.  Note that
0.5 x 10° N/m? gage = 1.5133 x 10° N/m? abs

Py

P, 0 l\I/m2 gage = 1.0133 x 105 N/m2 abs

If pp > 0.528p;, the speed of air flow is subsonic. So the flow
throughout the system is subsonic. The flow rate through the inlet valve is

=K
2 2V 2 3

Since both valves have identical flow characteristics, we have K =K 2 K.
The equation for the system is

c <:’.p2 (ql - qz)dt

dp
o~ KPP, ~K[p, -,

At steady state, we have dp2/dt = 0 and this last equation becomes

KJ/Ppy -p, =K[p, -

or

or
P, =Py %P, =P
Hence :
_Pp *P3 5 5133 x 10° + 1.0133 x 10°
i 2

]

1.2633 x 10° N/n abs = 0.25 x 10° N/u° gage

i
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B-5-11. For the toggle joint shown in Figure 5-37, we have

as s,
¥4
Hen
ce o5 llR
)
B-5-12.
Q=U-lﬁ=f(ﬂ)
- i@ & o, g .
= £(H) + v S
o= H=ﬁ(H e 2!‘(}1? __{H—H)z-i....

H=H
Neglecting the higher-order terms, a linearized equation for the system
can be written as

Q - £(H) = a(H - H)
where
£(H) = £(4) = 0.2

& S = 0.1
dHH'-H=4 2J§

Thus, a linearized equation becomes

Q - 0.2 = 0.025(H - 4)

B-5-13. z = 5x% = £(x)
=f(i)+§x§(x—i)+-—;—=—§%(x-i)2+---
A linearized equation for the system is
z-z=a(x-Xx)
where X = 2, z = 20, and
a=g§- phnk x.=2,z=20=2‘:J

x=2,2z=20
Thus, a linearized equation becomes
z =20 = 20(x - 2)

or
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z - 20x = - 20

B-5-14. z =x2 + 2xy + 5y2 = f(x, y)
A linearized mathematical model is

2f o =y, 2fF . =
E,x(x x) +_43y (y - y)

where X =11, y = 5, z = 356, and

zZ-Z=

of ‘
=== 2% + 2 =22+ 10 = 32
ox le=11.y=5

2L & 5% + 20y =22 +50 = 72
2y x=1l,y=5

Thus, the linearized equation is
z - 356 = 32(x - 11) + 72(y - 5)

or

32x + 72y - z = 356

B-5-15. Define the radius and angle of rotation of the pinion as r
and 8, respectively. Then, relative displacement between rack C and

pinion B is re.

—x ¢ palidag
o c ! =
= {

J777;7777/777;é7?/J ot

Relative displacement between rack A and rack C is 2r® and this must
equal displacement x. Therefore, we have

2r6 = x

Since x = r® + y, we obtain
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2 A
Pz——il—Pl, xz..-A_l.l
2

B-5-17. The heat balance equations for the system are

Clde:l (u - q]_)dt‘- (1)

c,a8, = {ql -~ qz)dt. (2)

Noting that

ql = Gcelr Q2 = GCBZ

Equations (1) and (2) can be modified to

o del
— =1u - Gclé
1 3¢ 1 (3)
de2
C2 3¢ = 6@, - Geo, (4)

from which we get

C,s8,(s) = U(s) - Ge®, (s)

C,s8,(s) = Geo, (s) - God,(s)

By eliminating sl(s} from the preceding two equations, we obtain

i e
(CZS + Gc)ez(s) s+ U(s)
or

(Cls + Gc){Czs + Gc)az(s) = Gcl(s)

Thus the transfer function 82(5)/0(5) can be given by

92(5) Ge

u(s) (c;s + Ge)(C,s + Ge)
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CHAPTER 6

B-6-1. Define the current in the circuit as i(t), where t > 0. The
equation for the circuit for t > 0 is

bl
R + + —= =
(1 Rz)i ZSidt E

Since the capacitor is not charged for t < 0, the Laplace transform of this
equation becomes

R, + R.)I(s) + - 1(s) = -E_
oy RN g Tl S
Hence
EC
I(s) = = > :" NTE Rz
R1+R2+cs- 1 ¥ RyICs +1
2
Since
- s
Eo(s) = (R2 + czs)I(s)
we obtain
L RZCZS o EE32
Eols) = =3 (R. +R,)C
2S Rl 2)Cos + 1
sefa . CoRy ]
i 8 (R1+ RZ)CZS 1
R
T 5 - 1 1
s 1t Rz " 1
hi (Rl B RZ)C2

The inverse Laplace transform of Eo(s) gives

R
L. » 1 -t/[(R, + R,)C,]
eo(t) E{l R_l +R2e 1 272 k

B-6-2. The equation for the circuit is

di s 1 - —
L dt+R1+ C Sldt—E

or
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L%*‘RQ'I'L-q:E
dt dt 64

Since q(0) = 0 and i(0) = q(0) = 0, the Laplace transform of this last equa-
tion gives

Ls20(s) + RsQ(s) + —— Q(s) = —E-
C s

or
E

s(Ls? + Rs + _é_)

Q(s) =

Since the current i(t) is dg(t)/dt, we have

I(s) = sQ(s) = E

Is2 + Rs + —1_
C

The current i(t) will be oscillatory if the two roots of the characteristic
equation

I
o

s2+ R 54
L

&l

are complex conjugate. If two roots are real, then the current is not osci-
llatory.

Case 1 (Two roots of the characteristic equation are complex conjugate):

For this case, define

Sfal - Rlc
Wn LC 5 2

wn2
2

2

Gl

I(s) = EC

The inverse Laplace transform of I(s) gives
: Wn -sw. t 2
i(t) = BC ——=——=—= ¢ n” sin(w J1 - ¥4 t)
EWET .

= E—‘E-————l———- e 3%t sin(w_J1 - ¢2t) (t20)
VA Y n
The current i(t) approaches zero as t approaches infinity.

Case 2 (Two roots of the characteristic equation are real):

For this case define
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;A i
B + =2_ g + —=_ = + +b
T (s +a)(s )

=5 1
I(s) = L (s +a)(s +b)

The inverse Laplace transform of I(s) gives

- E 1 -
) = h-2 (™% - o745
Notice that
B B g)’---l_, b=-Bl- [LENZ 1
2L 2L e 2L 2L LC
Hence
A E
L b-a 2
2\/(_13_.) i
2 C
The current i(t) can thus be given by
E 1A
i(t) = ( j( ) = —)t]
—————={exp
2 [[B) - L e
2 ) C
B_ & ks
exp[- ZL ( ) 15 )t) (t20)
B-6-3. Referring to the circuit diagram Z
shown to the right, we have !_R,—I
- =R, +-L M % gy A
Zl Rl ' Z2 R2 + C.s o, Il
2 | R, ]
Hence (it e
. & I [ &g
2 ‘
E(s) 2z, i R,Cs + 1 . 216 o1 &

b

; 2, ¥2
E, (s) 17% (R +R))Cs +1

Next, we shall find the response e, (t) when the input e (t) is the unit step
function of magnitude E: . Since
R2C25 s Ei

E (s)
o
(Rl + RZ)CZS +1 =

1 ’Cy

By (R, +R)C.s +1
" q ¥ Nplias

63


www.mohandesyar.com

the inverse Laplace transform of Eo(s) is

K R _-t/[(R +R,)C,]
eo(t) -Ei[ me 1 2

which gives the response to the step input of magnitude Ei'

B-6-4. The system equations are

k(x5 = y) =Dby(y - X))
bl(i" B io) =%

which can be rewritten as
by¥ + kY = KX + bk,
bx +kx = b1§

Noting that x (0-) = 0 and y(0-) = O, by taking the ,; transform of these
two equations we obtain

(bls + kl)Y(s) = klxi(s) + blsxo(s)
(bls + kz)Xo(s) - ble(S)
By eliminating Y(s) from the preceding two equations, we get

" C bls + k2
(bys + 1) -b_xo(S) = klxi(s) + blsxo(s)

T
Simplifying:
[(k, + ky)bs + kjky] X (s) = kb, SX; (s)
or
by
s
XO(S) klbls '—lq

!
|-

X;(s) (O +kp)bys +kpky (1 bs +1

The response of the system to xi(t) = xiltt) can be obtained by taking the

inverse Laplace transform of

(b, /k,)s X
—— 42— bs+1 °
(kl k2) 1
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- kiXy 1

L ol
—— 4+ ==\ p
as follows:
ky X
%, () = —i—axp foe/1(L + Lm0 £20
ky + ko 1 2 1

B-6-5. The eguations of motion for the system are

L I M A D £,

bZ(xD -Y)

o

Rewriting these equations,

]

L + + .
bzxo klxo klxi bzy

by + kyy = byX,

Noting that x(0-) = 0 and also y(0-) = 0, o _ transforms of these two equations
become

(bzs + kl)xo(s) = klxi(s) + bst(s)
(bzs + kz)Y(s) = bzsxots)

Eliminating Y(s) from the last two equations, we obtain

bzsxo(sl

b.8 + Kk

(bzs + kl)Xo(s) = klxi(s) + b25 : :

which can be simplified as

[(k1 + K, )b,s + klkzlxo(S) =k, (bys + k)X, (s)

X (s) _
xi(S) “{1 + kz)bzs + klkz

kl(bzs + k)

Since the input xi(t.) is given as
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xi(t)=xi 0<t<t1

=10 elsewhere

X
) ¢ 1= e—t]_s)
s

]

X, (s)
i i

The response xo(s) is then obtained as

k. (b,s + k.,) %
X (s) = 1 2 £ L (1 -et5)
o (kl + kz)bzs s ](]kz s
Since by
s D s U i 5
(k; + kp)bys + Kjky s . I
1 2 152 o b,s + 1
1 ko
we have
/ k, (bys + kz} 7 i K, 3 y
A bs + kk, S ‘I‘Wm{‘t’[‘i“*i”bz]}
5 + mlbskE 1t %2 e
Hence
x (t) =X |1 ——ki—exp{-t/[(l— +2- )b ]]'
s 11
- % |1 - ew - = £)/1G= + =m0} face - &)
3 2
B-6-6. First note that
RCs +1
-%"="é—+clsa 22=R2+1 = 22
1 1 CZS C.s
2
Then
E_(s) 1 Z, ) (chzs * 1)(Rlcl_s + 1)
E;(s)
i z1 + Zz Rlczs + (chzs + 1)(R1013 # 1)
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E (s) (R,C;s + 1)(R,C,8 + 1)

E (s) 2 .
i R1C1R2C25 + (Rlcl + R202 + Rlcz)s + 1

Since Rz = 1.5 Rl' 02 = Cl' and Rlcl = 1, we obtain )

RJ.CZ = Rlcl = 1; Rz('.‘2 = 1.5 Rlcl = 1.5

and the transfer function Eo(s)/Ei(s) becomes

EoS) _ (s +1)(1.5s+1) _ (s +1)[s + (2/3)]
E,(s) 3.5.6% = 3.5s + 1 (s + 2)[s + (1/3)]

Since the input e;(t) is given by

ei(t)=Ei i€t < tl
=0 elsewhere
we have
e;(t) = E;[1(t) - 1(t - tl)]

Hence, the response eo(t) can be obtained as follows:

B (s) ={s+lls+ QAN (L___Le-—stl)

(s + 2)[s + (1/3)] s s

Since

oC-’—(E”'HE* (2/3)] =°C—! 0.4 __04 _, 1
(s + 2)[s + (1/3)]s s+2 s+ (1/3) s

=0.4e2t _o.qe /3,

we obtain the response eo(t,) as follows:
e (t) = E; (0.4 7% - 0.4 e7(1/3)t + 1)
- E, [0.4 e 2(t = t)) _ g 4 e-(t - t)/3 1

1(t - tl)
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B-6-7. Xq 1 X,
logarithmic decrement = In — = —=—1In — = @ T
xl n :Kn n
2% 2US
=yw = ==
Ywa 1 -2
Thus
= s
1 ogp o, 25X
L X V1 -32
or

Solving for § ,

b e
am?+ [—;— (m %)]2

By substituting n = 4 and xo/x4 = 4 into this last equation, we obtain

=X in 4
C = = -
2
\/4 T2 + [_1_ (1n 4)]
4 .
1 x1.386
- 4 e 0.3466 = 0.055

\/ 39.48 + 0.12  6-293

Noting that oun =y\/k/m and 2 _S'a)n = b/m, we find

wn=/k = /500 . 23.36 rad/s
m \[ 1

and

b=2 ywnm = 2 x 0.055 x 22.36 x 1 = 2.46 N-s/m

B-6-8. The system equation is
(m+2)5§+h:'c+kx=p
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Substituting the given numerical values m = 20 kgand p=2g = 2 x 9.81 N
into this last equation, we obtain

22X + bX + kx = 2 x 9.81
At steady state

lcx$S =2 x 9.81

From Figure 6-48 (b), x__ = 0.08 m. Thus

sS
Xeg = 2 xk9.81 = 0.08
Solving for k, we obtain
k= 2Z38L = 245 N/m
Since
@ =E3=J%;3.34 rad/s, 28w =-B
we obtain

b=23’a)nx22=2x0.4x3.34x22=58.8N—8/m

B-6-9. For the x direction, the equation of motion is

2 2
ml%x+m2_§2.(x+fsin9) = - 2kx
dt dt

For the rotational motion of the pendulum,

2 2
m, [—9-5 (x +[sin 9)]1(203 8 + m, [.d_z (-f cos 8) fsin 6 = - ng’sin e
dt dt

Rewriting the preceding two equations,

mln'c' +m2(§E - fsin 0 82 +fcos © .8.) = - 2kx
mztii - Lsin 6 82 +{ cos 6 8)f cos 6
+ mzf(cos 6 62 + sin 0 8) £sin 0 = - 2g,{’ssi.n e

Simplifyingf
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mzi cose+m2[c0329§+m2{51n295+m2g sin 8 =0

Thus the equations of motion for the system are

8+—=2 cos0+-9sine=0

£ A

B-6-10. The equation of motion for the system is
mx + kx = p(t)

where m = 1 kg, k = 100 N/m, p(t) = 10 &(t) N, x(0-) = 0.1 m, and x(0-) = 1
m/s. By substituting the given numerical values into the system equation,
we obtain

X +100 x =10 d (t)

Taking the ,C_ transform of this last equation gives

[s%x(s) - sx(0-) - x(0-)] + 100 X(s) = 10
or
(s2 + 100)X(s) = 10 + 0.1s + 1 = 11 + O.1s
Solving for X(s) gives
11 + 0.1s
X(s) = ————
ss::2 + 1(3‘2

The inverse Laplace transform of X(s) gives

xX{t) = i‘é sin 10t + 0.1 cos 10t

B-6-11. When mass m is set into motion by a unit impulse force, the system
equation is

mx + kx = O (t)
Let us define another impulse force to stop the motion as A8 (t - T), where

A is the undetermined magnitude of the impulse force and t = T is the un-
determined instant that this impulse is to be given to the system. Then,
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1.:.he equation of motion for the system when the two impulse forces are given
is

mX +kx= S(t) +Aad(t -T), x(0-) = 0, x(0-) =0
The [ _ transform of this last equation gives

(ms? + kK)X(s) =1 + A ST

Solving for X(s),

X(g) = +

m
Vim s2 + £ im =2 + K

A
4
-

=
3

The inverse Laplace transform of X(s) is
3 | . K A . k
(t) T s:m,/ = sml" (t T)] (t - T)

If the motion of mass m is to be stopped at t = T, then x(t) must be iden-

tically zero for t 2 T.

Note that x(t) can be made identically zero for t 2> T if we choose
v,

t
T = .3 ' & ’ E_.._
[ [ e

m m m

Thus, the motion of mass m can be stopped by another impulse force, such as

A=1,

F =es

. 1 _.3= _.5x
S(t M), d(t N d(t N

B-6-12. The system equation is
0, x(0-) =0

]

mX + bk = 5 (t), x(0-)
The ,[,_ transform of this equation is

(ms2 + bs)X(s) =1
Solving for X(s), we get

X(s) = —2 ] 1 =1(1_1)

msZ + bs m s(s+_%__) b

The response x(t) of the system is
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x(t) = == [1 - e~(M/mlt)

The velocity x(t) is
A(g) = L o~(b/m)t

x(0) =
m

The initial velocity can also be obtained by use of the initial value theorem.

> 2
x(0+) = 1im szx(s} = 1im S =l
S 0o g >00 msZ + bs m

B-G6-13. I'he moment of inertla of the pendulum about

the pivot is J = mf2. The angle of rotation of the

pendulum is @ rad. Define the force that acts on X -
the pendulum at the time of sudden stop as F(t). /
Then, the torque that acts on the pendulum due to the

force F(t) is F(t)£ cos 6. The equation for the YA
pendulum system can be given by 6

m 028 = F(t) £ cos 6 - mg Lsin 8 (1)

angle 6 is small. (Although @ = 20° is not quite

We shall linearize this nonlinear equation by assuming F&)~—

small, the resulting linearized equation will give an l
approximate solution.) By approximating cos 6 = 1
and sin © £ @, Equation (1) can be written as -ﬂg

mp28 = F(t)f - mg /e
or

mf8 + mgd = F(t) (2)

Since the velocity of the car at t = 0- is 10 m/s and the car stops in
0.3 s, the deceleration is 33.3 m/s2.

By assuming a constant acceleration of magnitude 33.3 m/s2 to act
on the mass for 0.3 seconds, F(t) may be given by

F(t) = mx = 33.3 m[1(t) - 1(t - 0.3)]
Then, Equation (2) may be written as

mf0 + mgo = 33.3 m [1(t) - 1(t - 0.3)]
or

4 gL | dsg B

8 + il - [1(t) - 1(t - 0.3)]
since £ = 0.05 m, this last equation becomes
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6 + 196.2 0 = 666 [1(t) - 1(t - 0.3)]

Taking Laplace transforms of both sides of this last equation, we obtain

(s? + 196.2)a(s) = 666 (—é— - e-o.as) (3)

where we used the initial conditions that 6(0-) = 0 and 8(0-) = O.
Solving Equation (3) for @(s),

o(s) = —266 (1 - e-0.3s)
s(s2 + 196.2)
1 s 666
(2 BT
(s 2 + 195.2) 196,2 1 &-s8)

The inverse Laplace transform of @(s) gives
8(t) = 3.394 (1 - cos 14t) - 3.394 {1(¢ - 0.3) - [cos 14(t - 0.3)11(t - 0.3)§
(4)
Note that 1(t - 0.3) = 0 for 0 £ t < 0.3.

Let us assume that at t = t;, 6 = 20° = 0.3491 rad. Then by ten-
tatively assuming that t; occurs before t = 0.3, we solve the following
equation for t,:

0.3491 = 3.394(1 - cos 14t,)
which can be simplified to
cos 14t1 = 0.8971
The result is
t, = 0.0327 s
Since t; = 0.0327 < 0.3, our assumption was correct. The terms involving

1(t - 0.3) in Equation (4) do not affect the value of t;. It takes
approximately 33 ms for the pendulum to swing 20°.

B-6-14. The equation of motion for this system is
(M + 2)X + bx + kx = 29

By substituting the numerical values for M, b, k, and g into this equation,
we obtain

12X + 40X + 400x = 2 x 9.81
By taking the Laplace transform of this last equation assuming zero

initial conditions, we obtain
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1252X(s) + 40sX(s) + 400X(s) = _;gégg_

or

19.62
X)) =
s(12s2 + 40s + 400)
- 1.635
s(s2 + 3.3333s + 33.3333)
. 0.03s + 0.1
2l (0 03 _ s
s s2 + 3.3333s + 33.3333
.6666
= 0.04905 | 1 _ e
2 (s + 1.6666)2 + (5.5277)2
5.5277
- 0.3015
(s + 1.6666)2 + (5.5277)2

The inverse Laplace transform of X(s) gives

x(t) = 0.04905(1 - e~1-6666t cos 5,5277t - 0.3015 e-1-6666t gin 5.5277t)

Next, we shall obtain the response curve x(t) versus t with MATLAB.
Note that X(s) can be written as

1535 1
s2 + 3.3333s + 33.3333 S

X(s)

Now define
nm=[0 0 1.5635]

den = [1 3.3333 33.3333]

A possible MATLAB program to obtain the response curve is given below.

% ***** MATLAB program to solve Problem B-6-14 *#**#*

num=[0 0 1.635];
den=[1 3.3333 33.3333);
step(num,den)

grid

title("Response x(t))

xlabel('t sec')

ylabel("x(t)")
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The resulting response curve x(t) versus t is shown below.

0.07

0.06

0.05

0.04

()

D3 b e B —— i i g brd | S ey

002.._ —_——— —— S— . - - e — -— o e — e -

001~ [——— e e i e AR

B-6-15. The equation of motion for the system is
mX + byX + (k3 + kp)x = 0

By substituting the numerical values of m, kj, kz, and by into this
equation, we obtain

X+ 4% + 16x = 0
Laplace transforming this equation, we get
[s2X(s) - sx(0) - x(0)] + 4[sX(s) - x(0)] + 16X(s) = 0
or
(s2 + 4s + 16)X(s) = sx(0) + x(0) + 4x(0)
Solving this equation for X(s),

sx(0) + x(0) + 4x(0)
s2 + 4s + 16

X(e) =

Since x(0) = 0.05 and x(0)

"

1, X(s) becomes

0.05s + 1.2

X(s) =
sZ + 4s + 16
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0.05(s+2) _ 0.3175x243
(s +2)2+ (23)2 (s +2)2+ (2/3)2

The inverse Laplace transform of X(s) gives

x(t) = 0.05 e=2t cos 2 /3 t + 0.3175 e=2t sin 2 /3 ¢

This equation gives the time response x(t).
The response curve x(t) versus t can be obtained easily by use of
MATLAB. Noting that X(s) can be written as

0.0582 + 1.2s 1

X(s) =
s2 + 4s + 16 s

we may define
num = [0.05 1.2 0]

den=[1 4 16]

and use a step command. The following MATLAB program will generate
the response curve x(t) versus t as shown below.

% **¥*** MATLAB program to solve Problem B-6-15 *****

num = [0.05 1.2 0];
den=[1 4 16];
step(num,den)

grid

title('Response x(t)")
xlabel('t sec')
ylabel("x(t)")

Response x(t)

015

0.1

x(t)

fee

0.05F—-

0 0.5 1 1.5 25 3 35 4
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.B__.B;l..s_' a - ¢ .
X+ 2x + 10x = u + 5u, x(0-) = 0, x(0-) =0

The transfer function of the system is
X(s) _ s+ 5

u(s) s2 + 25 + 10

Since u(t) is a unit-step function, we have U(s) = 1/s. Hence

X(s) = S+ 5 - i
s2 + 2s + 10 s

The following MATLAB program will generate the response curve x(t) versus
t as shown in the figure below.

% *****¥ MATLAB program to solve Problem B-6-16 **#**

num=[0 1 5]
den=[1 2 10];
step(num,den)
grid
title('Response x(t)")
xlabel('t sec')
ylabel(x(t)")
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B-6-17. 1In this system F is the input and x, is the output. From
Figure 6-57, we obtain the following equations:

bl}.[l + kl(xl - Xz) =F
kj(x; - x2) = bz;c2 + kX2

Laplace transforming these two equations, assuming zero initial conditions,
we obtain

(b1s + k1)X;(s) - k3Xp(s) = F(s)
kiXj(s) = (bps + ky + kp)Xa(s)

By eliminating X;(s) from these two equations, we get

(blS + ]{1) sz i kl - }':2 Xz(s) - kl}(Z(S) = F(S)
k1

Simplifying this last equation, we get

[blbzsz + (bjk; + biky + bokj)s + Kijkp]X2(s) = k;F(s)
from which we obtain

X2(s) k1

F(s) b1b252 + (blk]_ + biky + byky)s + kikp

By substituting numerical values for Ky, k2, by, and by into this last
equation, we obtain

Xa(s) 4
F(s)

10s2 + (4 + 20 + 40)s + 4 x 20
0.4

s2 + 6.4s + 8

Since the input F is a step force of 2N, we have F(s) = 2/s. X>(s) can
be obtained from

0.4 2

I

Xs(s)
s2+6.4s + 8 s

= 0.8
(s + 4.6967)(s + 1.7033)s

DL " 0.0569 N -0.1569
s s + 4.6967 s + 1.7033
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The inverse Laplace transform of X»(s) gives
xp(t) = 0.1 + 0.0569 e~4-6967t _g 1569 e-1.7033t
The response curve x;(t) versus t can be obtained with MATLAB as
follows: First note that

0.8 1

Xa(s) =
2 s2 + 6.4 +8 S

Then, define
nm=[0 0 0.8]
den = [1 6.4 8]
and use a step command. The following MATLAB program will yield the

response curve x(t). The resulting response curve is shown in the
figure below.

% ***** MATLAB program to solve Problem B-6-17 ***##*

num=[0 0 0.8];
den=[1 64 8],
step(num,den)

grid

title('Response x(t)"
xlabel('t sec’)
ylabel('x(t)")

0.1 T T I——

\

0.09

0.08f - —

0.07 |-

|
|
1
|
0.06} 1 A B RS
I
]

0.04._ ——— . REESPRRER= T— i -
I

0.03fp -~

L o —
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B-6-18. Referring to the figure shown to the
right, we have

z(s) Rz 2 TR T e ot
Rl i
Hence L- _Cz_/r e
R
Z]_(SJ = 2 .' Zz(s) - RJ_CIS + 1 € ' ! o
RC2s + 1 Cc1s | €
Z, _-p
Thus o— o
Eo(s) Z(s)
Ei(s)  2Z1(s) + Zy(s)

(R1Cys + 1) (RaCos + 1)

R2C1s + (R1C3s + 1)(RoCors + 1)
(RiC3s + 1)(RoCys + 1)
R1CIR2C282 + (RiCy + RyCy + RoCp)s + 1

By substituting the given numerical values for Ry, Ry, C;, and Cp, we
obtain

Fo(s) (0.58 + 1)(0.05s + 1)
Ej(s) 0.025s2 + 0.8s + 1

When ej(t) = 5 V (step input) is applied to the system, we have

0.025s2 + 0.55s + 1 &
0.025s2 + 0.8s +1 S

EQ(S)

552 + 110s + 200 1
s2 + 32s + 40 s

The response curve e,(t) versus t can be obtained by entering the following
MATLAE program into the computer.

% **¥** MATLAB program to solve Problem B-6-18 ***#+*

num=[5 110 200];
den=[1 32 40];
step(num,den);

v=[0 5 0 6]; axis(v);
grid

title(Response eo(t))
xlabel('t Sec")
ylabel('eo(t)")
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The resulting response curve e,(t) versus t is shown below.

e Response eofl)
5 .___,_,_——
////"”
| B |
S
2. - —

1 e ——— e el
00 0.5 1 15 - 25 3 35 4 45 5
t Sec

Note that
% 5s2 + 110s + 200 1
s =
Fo s2 4+ 325 + 40 s
1.7010 x 1.7010 " 5
s + 30.6969 s + 1.3031 s

Hence

eo(t) = 1.7010(9—30-69695 = -1-303115) + 5

Notice that the response curve is a sum of two exponential curves and
a step function of magnitude 5.
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CHAPTER 7

B-7-1.  The equation of motion for the system is
mX + kx = p(t) = P sin wt

where x(0) = 0 and %(0) = 0. The Laplace transform of this equation is

(ms2 + K)X(s) = P ——2
: 2+ wl

By substituting the given numerical values of m, k, P, and &J into this last
equation, we obtain

(s? + 100)x(s) = 3X-2; ’: ;2
S

Solving for X(s),

X(s) = 10 Bl 2 . .3 . 30
(s +100)(s® +4) 95244 962, 100

The inverse Laplace transform of X(s) gives the response x(t).

x(t) = "'E;SE (sin 2t - % sin 10t)

B-7-2. The equation of motion for the system is
mX + bx + kx = p(t) = P sin wt, x(0) =0, x(0) =
By substituting the given numerical values into this equation, we get

2X + 24x + 200x = 5 sin 6t
or

X + 12X + 100x = 2.5 sin 6t
Taking the Laplace transform of this last equation, we obtain

(S + 12s + 100)X(s) = 2.5 ——(;7
5 +

Solving for X(s),

15
(s® + 125 + 100)(s> + 36)

X(s8) =
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9 15 e e
45 *+116  , " 364° " 29

s% + 12 + 100 s? + 36

3
_232x8 3 6

2 |
(s + 6)% + 82 29 %6 g2 4 36

X 8 + 287 (s + 6)

.._9_._2.____5
464 g“ + 36

The inverse Laplace transform of X(s) gives

= —3 o6t i 9 -6t - e
X(E) = 1856 © sin Bt + 264 © cos 8t + 58 sin 6t 764 oS 6t

B-7-3. =

EO(S) - - C8 - 1

Ei(s) R + ___]_E RCs + 1
Hence

E(jw)
3
G =l = —
(jew ) Ei(jw) RCjey +1

Thus

1 i : -1
G(jw =, G = - tan ~ RC&/
l 2 )l RC2w? + 1 o)

For the input ei(t) = E, sin w t, the steady-state output eo(t) is given by

i

E;

—_——— sin(@wt - tan! RCW
R202w2+1 )

eo(t) =

B-7-4.  The equations of motion for the system are

m X, + b(xl - xz) + kxl + k(xl - xz] = p(t)

By Hblig - &) + Kl ) =0
which can be rewritten as

mX +hk +2kx =bx +ke +p(t)
1% 1 1 2 2

mX_ +bX_ + ket =bx +

T2 T 0 T bk
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Since we are interested in the steady state behavior of the system, we can
assume that all initial conditions are zero. Thus, by assuming zero initial
conditions and taking the Laplace transforms of the last two equations, we
obtain

(mlsz +bs + 2K)X, (s) = (bs + k)X,(s) + P(s) (1)

(m292 +bs + K)X,(s) = (bs + k)X (s) (2)

From Equation (2) we have

X(s)=—D8 Kk o (3)
2 ms? + bs + k e

Substituting Equation (3) into Equation (1) and simplifying, we obtain

[(mlsz + k)(m232 +bs + k) + (bs + k)m,s2]X, (s)
= (m252 + bs + k)P(s)

The transfer function Gl(s) between xl(sJ and P(s) can thus be obtained as

X, (s) m252 + bs + k
GI(B) =_l - 2 2 : 2
P(s) (mls + k)(ng + bs + k) + (bs + k)mzs
Hence
- m, w? + jwb + x
Gl(jw) =

(-m e0? + k) (-mya? + jwb + k) + (b + K)m, (- @)

(k - mzw'?) + jWb

. 2
(k - mlcdz)(k - mzmz) - wzkmz + ja) [bk - (m, +m,)bw]

from which we obtain

Jox - myw?)? + cwh?

[(k - mlan)(lc - mzwz) - a)zkmz]2 +w2[blc - (ml + mz)lm.)zl2

2
w([bk -~ (m. +m_)bw*]
G]. (Jw) = t-an—l _‘U__l_)_z_) o tan_l 1 2
L k - m,w (k - maw?)(k - myw?) -wzkmz

The steady-state output xl(t) can, therefore, be given by

xl(t) = IGl(jw)l P sin [wt + fGltjw)]
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Next, referring to Equation (3) we have the transfer function G (s)

between x (s) and P(s) as follows:

( xz(s)
G2 s) = -
X xz(s) xl(s)
Xl(s) P(s)
__bstk X, (s)
m282 + bs + k P(s)
= bs + k
(mls2 + k)(mzas2 +bs + k) + (bs + k)m232
Hence
G,(jw) = B ok
2 2 2 F 2
(k - m W Mk - m,, W ) —wacmz + jw[bk - (x:Ll + mz)bm ]

The magnitude and angle of Gz(jw) are given by

\!k +1::»26"J’2

}Gz(jw‘)|

i 3 = tandt DWW =)
: GZ(JW) tan = tan l

V106 =m0 - my0?) ~aPiemy 12 + 0Pk ~ (ny + m WP T2

w [bk - (my + my)bw?] }

(k - mlwz)(k - mzwz) - wzmz

The steady-state output x2[t) can be given by

x,(t) = le(jw)l P sin [aJt + {Gz(jw)]
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B-7-5. tension = m@W’r = 0.1 x 6.282 x 1 = 3.04 N

The tension in the cord is 3.94 N. The maximum angular speed can be ob-
tained by solving the following equation for & .

10 = 0.1 X w2 X 1
The result is

w= Jlﬂﬂ = 10 rad/s = 1.59 Hz

The maximum angular speed that can be attained without breaking the cord is
1.59 Hz.

B-7-6. From the diagram shown below, we obtain

centrifugal force _ maw?r = _0.15

gravitational force mg 0.2598
or -
0.2598
(02
L = 0.5774
g m w’r
0.15
Solving for &, we obtain
mg
0 = /0 5774 X 9.81 _ ¢ 145 rad/s
0.15
B-7-7. The equations of motion for the system are

M;c.+b:°c+kx=mw2r sinw t
F(t) = bx + kx

If 10 % of the excitation force is to be transmitted to the foundation, the
transmissibility must be equal to 0.1. Thus

f f ' (25#)
o J-pH2+ (2 L9 )2
Since ¥ is desired to be 0.2, we substitute § = 0.2 into this last equation.
1+ (0.48)2
(1 -p4% + (0.ap)?

TR-.-

= 0.1

= 0.01

or

"
(=]

§4-17.a4p2-

Solving forpz, we find
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32 = 22.28 or -4.443

Noting that g >0, ve must have p? = 22.28. Then

_ I x K &) _ 62.8
_f_=}__._ =& 828 _ [5528 = 4.72
e M Y100 i W [x

100
So we obtain
Jx =228 - 133
4.72
or

k=17.7x 10:3 N/m

The amplitude of force Ft transmitted to the foundation is

lFt,= (me?c)(TR) = 0.2 x 62.8% x 0.5 x 0.1 = 39.44 N

B-7-8. The equation of motion for the system is
mx + b(x - y) + k(x -y) =0
Rewriting,
mX - ¥) +b(k - ¥) + k(x-y) =-ny
By substituting x — y = z into this last equation, we obtain
mz + bz + kz = - my

The Laplace transform of this eguation, assuming zero initial conditions, is

(ms? + bs + k)Z(s) = - ms2¥(s)
or
_E(E)_ = _7_" msz -
Y(s) ms + bs + Kk

For the sinusoidal input y = Y sin¢g t,

; 2
2(jw) _ m w2 3 w
Y(jag) - m&ﬁ +bjw +k  -g?+ 2;mnjw + a}nz
The steady-state amplitude ratio of z to y is

' zZ(jw) |= m 2 2 2

Y(3w) Yk - nw?)? + B2w? \/-(.wn2 ~wh? + 23w w)?
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IfWw>» &)n:

Y(Jw) =3

wz
Thus, the amplitude of sinusoidal displacement y of the base is equal to the
amplitude of the relative displacement z.
If w((td » wWe have
n

So the acceleration i; of the base is proportional to z.

B-7-9. Define the displacement of spring k2 as y. Then the equations of
motion for the system are
mx + bz(n'c -y) + k x = p(t) (1]
bz(x -y) = k¥ (2]
The force f(t) transmitted to the foundation is
f(t) = klx + sz (3)

By taking Laplace transforms of Equations (1) and (2), assuming zero initial
conditions, we obtain

(ms? + b,s +k )X(s) = b,s¥(s) + P(s)
bzsx(s} £ (bzs + kz)Y(s)

By eliminating Y(s) from the last two equations and simplifying, we get

X(s) _ bos + kj
P(s) 2
(ms® + kl)(bzs + kz) + b2k23

The Laplace transform of Equation (3) is

bzkzs
F(s) = k X(s) + k., Y(s) = k. X(s) + —=<4— X(s)
1 2 1 bs + k
2 2
k.b.s + kll-: + bzl-:2

b
bys + ky

X(s)

So we have
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B(s) _ UyP, t KBS + kK,

= — ——

X(s) b,s + k,
and
0O S ) S B e
P(s) X(s) P(s)  (mg? 4+ K )(bys + k) + bk,s

The force transmissibility TR is

(kl + kz)sza) + klk}
2

™ =

(- mew® + k) )(k + szw) + bzkzjtd

\[(kl +%3)2b,2 w2 + X, Zk,y2

==

\/(k - mw )2k2+[bk w + (k - mew? )b, w)?

The amplitude of the force transmitted to the foundation is

,F(jw), - \/(kl + kz)zbgw + ki kg -
Yk, - nw’)%,)? + (b, + (k- mw?Ib o)

B-7-10. Define the displacement of the top end of spring k as z. Then
the equations of motion for the system are

m;c'+b2(:7:-é) +|{1(J{-p) =
b2(5c -z) = kz(z - p)

where p = P singy t. Rewriting these equations,
mx + b2:°c +kx = bzi +k,p
bzi +kp =Kz + b2£

Laplace transforming these two equations, assuming zero initial conditions,
we obtain

2 :
(ms< + bzs + kl)).(s) bst(s) + lclP(s)

bzsx(s) + kzp(s) (!cz + bzs)z(s)

Eliminating Z(s) from the last two equations and simplifying gives
2 3 = : + b
[(ms< + kl)(k2 + bzs) + kzbzs]x(s) bzkzsP(s) + H:f’(:a:)(k2 23)

89


www.mohandesyar.com

So the transfer function X(s)/P(s) is obtained as

X(s) _ bikd + kK, * kybs
P(s) 2
(ms< + lcl)(bzs + Kz) + bzkzs

The motion transmissibility TR is

% 2,2 4 2 2
Juc_1+kz)_b2w + %, 2,

=' x(iw)

P(jw) l=
\/kzz(kl - mwz)2 + [bzkzw + bzw(kl - mmz)]2

The vibration amplitude lx(jw)l of the machine is
|xCGw) | = p.m

e R 2

P J(kl + k:zr)zbz w?+ %,

2 2.2 QL2
- b b - mw
\/kz (kl ma ) + [ 2k2w+ zw(kl mo )]

B-7-11. The equations of motion for the system are

mk + bk + kx + k (x -y) =p =P singt
ma.y.+ka(Y-x)=0

Laplace transforming these two equations, assuming zero initial conditions,
we obtain :

(ms2 + bs + k + ky)X(s) = k,¥(s) + P(s)

(mys? + k,)¥(s) = kX(s)

Eliminating Y(s) from the last two equations and simplifying, we obtain

X(s) _ mas® + kg
#(p) (lms2 + bs + k)(ruas2 +3¥y) + makasz
Hence
x(Gw) ky = m, 02
P(jw)

2 y 2 2
(k = m@w™ + bjw)(ky - mye)”) - mak , &

Note that if yk,/m, =@, then X(jw) = 0. Since
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Y(jw) _ Xa
P(jw) (k - majz + bja))(ka - mafdz) - mak, @

2

By substituting l%/n% = w?into this last equation, we get

Y(jo) ___ka ]
PO Cmgew?  mo?

Hence

)| =

|
o
g
W
o
"
Ky I-u

The amplitude of vibration of mass m, is P/ka.

B-7-12. Assuming small angles 6. and 92 the equations of motion for the
system may be obtained as follows:

- _adle. -
mlf e1 mlg_!el kzz‘(a1 62)

29 =- - ka2(e. -
mzj e, ngf 8, - ka (92 61)
Rewriting these equations, we obtain

2a s a2
m, 91+mlg!91+!-cael-k392

2 2
myf 6, + male, + ka‘e, = ka 8,
which can be simplified to
-~ 2 2
el+(—;1_+ﬁé)91 =_1£§_.2.92 (1)
e g kaz k 2
8, +( ’ 2)82 e (2)
4 mzf mzl

To find the natural frequencies of the free vibration, we assume the motion
to be harmonic. That is, we assume
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1 A sindt, 92 =B sinawt

@
L}

1 -sz sing)t, 82 = -Ban sinw t

Substituting the preceding expressions into Equations (1) and (2), we obtain

e

]

-

-Aw2+(—f—+—lz-) ]‘3122 J.e:i.ncf)t;=0
1

2 - i
’-— Bw?+ (_r.[_,‘,___zka B - -ka sinwt =0

m, f m£2AJ

Since these equations must be satisfied at all times and sin«w t cannot be
zero at all times, the quantities in the brackets must be equal to zero.
Thus

2 2
- w?a-12 =0 (3.
( .;! m i “ m f
1 1
2 2
_ﬁ_za+(£_+ﬁ_5_wza= i
For constants A and B to be nonzero, the determinant of the coefficients of
Equations (3) and (4) must be equal to zero, or
g, }:az - 2 s kaz
F wit 12
my i |
=0 (5)
2
_ _ka N i
2 [ 2
mzi mz,f

This determinant equation determines the natural frequencies of the system.
Equation (5) can be rewritten as

2 2 2 2
_q_ 2 i I ka = 2 _ _ka ka =0
(t +m112 “))(z Y ‘”)

LSS

or
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This last equation can be factored as follows:

gy ol R 2_4a)-p
£ ml,! V4
or
i‘:L] =£_, w = +
£ 4 m!Z m2[2
Thus

2 2
=’_9_, = (9 42 , ia
“ £ 2 Jl +m (2+m2[2

The first natural frequency is w, (first mode) and the second natural fre-
quency is u.) (second mode). -

At the flrst natural frequency & = @ =/g/f , we obtain from Equation
(3) the following expression:

ka2
A = _1'12 =CY
B ST
o SRR, e W
7 4 ml,[z L

[Note that we obtain the same result from Equation (4).] Thus, at the first
mode the amplitude ratio A/B becomes unity, or A = B. This means that both
masses move the same amount in the same direction. This mode is depicted in
Figure (a) below.

At the second natural frequency @ = t/, we obtain from Equation (3)

a2
2
A _ m, / 1) B
B g 4 Ka? INREEE I ka2 = kaz m,
2 m1[2 V4 mllz m, £2

[We obtain the same result from Equation (4).] At the second mode, the
amplitude ratio A/B becomes - m /m or A = - (m /m )B. This means that

masses move in the opposite directmn. This mode is depicted in Figure (b)
shown below.

LLLL LA LLLLS s

Figure (b)

Figure (a)
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B-7-13. The equations of motion for the system are

m = - (x +£,sin )k, - (x -12 sin @)k,

1
Je = - (x +Ilsin B)Iclllcos B+ (x -Izsm B)kzlzcos 8
For small angle 8, we have sin 8 + 8 and cos © £ 1 and the preceding two
equations become

mx + (k; + ky)x + (1) = £5k,)0 = 0 (1)
36 + (fy%k) + L5700 + (£yk; - fk,)x = O (2)

Notice that if ¢ J.kl = [21:2, then the coupling terms become zero and two

equations become independent. However, in this problem

=1-5 'l =2 r k = = 4
‘!1 m ,{2 m s kz 4 x 10% N/m

Lk, = £k, == 0.5x4x10% #0

Therefore, coupling exists between Equation (1) and Equation (2).
To find the natural frequencies for the system, assume the following

harmonic motion:
X =Asinwt, 6 =B sinawt
Then, from Equations (1) and (2) we obtain
(ky + %y ~m@W?)A + (Lk; - £k,)B=0 (3)
2\p =
(£yk, =L k0B + (£ 5 +2,%, - 3 w?)B =0 (4)

For amplitudes A and B to be nonzero, the determinant of the coefficients of
Equations (3) and (4) must be equal to zero, or

ky +kp - m@w? hxy - 15%;
=0 (5)

: 2 _ 2
Lk =2 %, L%k + L%, - Jw

This determinant equation determines the natural frequencies of the system.
Equation (5) can be rewritten as

(k1 +k, -m wz)dlzkl +122k2 - Jq)z) - (Ilkl -121:2)2 =0

mie? - [0k, + 1,03 + (L%, +2 %k, )mlw? + Kk, (L +4,)% = 0
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which can be simplified to

- _("1 ks +112"1 *lzzkz)wz +k1k2(!1 +12)2=

m J mJ

0 (6)

Notice that this last equation determines the natural frequencies of the
system. By substituting the given numerical values for ,!1,,(2, k., kz, m,
and J into Equation (6), we obtain 1

w? - 140 w? + 3920 = o

Solving this equation for a)z, we get

w? = 33,695 or  101.305

@, =6.2205, ), = 10.065

The first natural frequency is a)l = 6.2205 rad/s and the second natural
frequency is wz = 10.065 rad/s.

To determine the modes of vibration, notice that from Equations (3) and

(4) we have
2
a Lot L A - aw
— — ——5_———
B k) +k, - mw J ¥y =4 15y

By substituting the given numerical values into this last equation, we obtain

- 0.25 W2 -
A _ 2 2=25 0.25 . )
B 8 - 0.2 W 2

For the first mode of vibration ( w = 6.2205 rad/s) the amplitude ratio A/B
becomes as follows: 1

AL 2 _ 25 - 0.25 x 6.2205>
B 8- 0.2 x 6.22052 2
el AT L

Notice that the ratio of the displacements of springs kl and kz are

x+l,6 A+LB _ _(7.663 + 1.5)B _ 9.163B

The first mode of vibration is shown in Figure (a) on next page.
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Figure (a)

For the second mode of vibration (td
ratio A/B becomes as

n

10.065 rad/s) the ampli-t-.ude

Ao 2 _ 25 - 0.25 x 10,0657
B 8- 0.2 x 10.0652 2
S22 _0.3%625 _ ...
12.261 2

. Hence the ratio of the displacements of springs kl and k,, becomes

2
x+f.6
ly _A+/B - (-0.1631 + 1.5)B _ 1.3369B
x-£,8 a- 1213 (-0.1631 - 2)B -2.1631B

The second mode of vibration is shown in Figure (b) below.

"
—2. 163/ —»

£3365™

Figure (b)
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B-7-14. The system shown in Figure 7-50 is a special case of the system
shown in Figure 7-32 (Problem A-7-14). By defining

ki =k, k=2, k3z=k, m=m mp=m

Equations (7-40) and (7-41) become as follows:

A _ 2K a 2k (1)
B -me? + k + 2%k -mw?2 + 3k

A _ _-mw?+2k+k B -mw?2 + 3k (2)
B 2k 2k

Also, ()2 that satisfies Equations (7-38) and (7-39) becomes as follows:

—
w2_1(k+2}c+2k+k)+jl k+2k_2k+k)+4k2
2 m m “Y 4 m m me
o 3K 50N KL Sk
m ~ m m m
Define X e

By substituting @2 into Equation (1), we obtain

Pl Yot 2k I

By -m(k/m) + 3k 2k

Similarly, by substituting /7% into Equation (1), we get

Ay 2k _ 2k

= = —_— = 2]

By -m(5k/m) + 3k -2k

[We get the same result if we substitute wlz or &)22 into Equation (2).]
Hence we have

A A2
_._1_=1>o, — =-1<£0
By By

which means that in the first mode of vibration (with frequency ¢J;), the
masses move in the same direction by the same amount. In the second
mode of vibration (with frequency w ;), the masses move in opposite
directions by the same amount. Figures (a) and (b) shown on next page
depict the first mode of vibration and second mode of vibration, respect-
ively.
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- ————

4 WL, WD 2
4 k 2k k ;
Y, —VVWVYWVYW— m —\WWW— M AMN—T
4 %
/ 1 /
i i llllirridarmy iy iy v
Figure (a)
—— ————
7 o — 2
7 2% ko
AW m —WWWWWWWAVW—] 7 —AW—
/ 4
PP I77T7P7 7777, il iadiiesaed A
Figure (b)

B-7-15. The equations of motion for the system are
MK + K1(x - y) + kox = 0O
my + ky(y - x) =0

Substituting the given numerical values into these two equations and
simplifying, we have

X+1lx-y=0 (1)
y + 10y - 10x = 0 (2)

To find the natural frequencies of the free vibration, assume that the
motion is harmonic, or

X=Asin&t, Yy =Bsinw t

X = -A w2 sing t, S('=-Bw2 sinw t

If the preceeding expressions are substituted into Equations (1) and
(2), we obtain

(-2 w2 + 11A - B) singyt = 0
(-Bi2 + 10B - 102) sinWt = 0

Since these two equations must be satisfied at all times and sinw t
cannot be zero at all times, we must have

AWw?2+11A-B=0

-BW?2 + 10B - 10A = 0
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Rearranging,
(11 -w?2)A-B=0 (3)
~10A + (10 - wW2)B =0 (4)

For constants A and B to be nonzero, the determinant of the coefficient
matrix must be equal to zero, or

11 - w2 =1
. =i{)
-10 10 -w 2
wvhich yields
(11 - w2)(10 ~w?2) -10=0
or

w4 -21w2+10 =0
which can be rewritten as

(w2 - 7.2985)( w2 - 13.7016) = O
HE!ICE,

W12 = 7.2985, @ o2 = 13.7016

W, = 2.7016, W, = 3.7016

The frequency of the first mode is 2.7016 rad/s and the frequency of the
second mode is 3.7016 rad/s.
From Equations (3) and (4), we obtain

A _ 1 A __10 -w?

B 11 - w2 B 10

By substituting )12 = 7.2985 into A/B, we obtain
A 1 10 - 7.2985

= = = 0.27016 0
B 11 - 7.2985 10 2

Similarly, by substituting &,? = 13.7016 into A/B, we get

K . 1 =20 =13.7016_ . 4.37016 < 0

B 11 - 13.7016 10

Hence, at the first mode of vibration, two masses move in the same direction,
while at the second mode of vibration, two masses move in opposite direc-
tions.
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Next, we shall obtain the vibrations x(t) and y(t) subjected to the
given initial conditions. Laplace transforming Equations (1) and (2),

[s2X%(s) - sx(0) - x(0)] + 11X(s) - Y(s) = 0
[s2¥(s) - sy(0) - y(0)] + 10¥(s) - 10X(s) = 0

Substituting the given initial conditions into the preceeding two equations
we get

(s2 + 11)X(s) = 0.05s + Y(s) (5)

(s2 + 10)¥Y(s)

10X(s) _ (6)

Eliminating Y(s) from Equations (5) and (6),
10

X(s)
s2 + 10

(s? + 11)X(s) = 0.05s +
which can be simplified to
0.05s(s2 + 10)
s4 + 2152 + 100

X(=s) =

Similarly, we can obtain Y(s) as follows:

0.5s
s4 + 2182 + 100

Y(5) =

To obtain the responses x(t) and y(t) to the given initial conditions,
we rewrite X(s) and Y(s) as follows:

0.5s2
X(s) = 0:056% + 0.582 1 | y(g) = o 1
s4 4+ 21s2 + 100 S s4 + 21s2 + 100 s

Possible MATLAB programs to plot x(t) and y(t), respectively, are given
next. The resulting plots x(t) versus t and y(t) versus t are shown on

next page.

% ***** MATLAB program to obtain vibration x(t) *****

num=[005 0 0.5 0 0]

den=[1 0 21 0 100];

t=0:0.05:30;

X = step(num,den,t);

plot(t,x)

grid

title("Vibration x(t) due to initial conditionds’)
xlabel('t sec)

ylabel("x(t)")
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Vibration x(1) due lo inilial condilionds

0.05

0.03(f -

0.02

0.01f] -

x(t)
<

-0.011

0.02

-0.03

-0.04|-

-0.05
0 5 10 15 20 25 30

% ***** MATLAB program to obtain vibration y(t) *****

num=[0 0 05 0 0]

den=[1l 0 21 0 100];

t =0:0.05:30;

y = step(num,den,t);

plot(t,y)

grid

title("Vibration y(t) due to initial conditionds)
xlabel('t sec')

ylabel('y(t))

Vibration y(t) due lo inilial conditionds

02

yl)

"o 5 10 15 20 25 30
tsec
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B-7-16. All necessary derivations of equations for the system are
given in Problem A-7-16. The equations for the system are

(252 + 50)X(s) = 2sx(0) + 10¥(s) (1)
(s? + 10)¥(s) = sy(0) + 10X(s) (2)
Referring to Equation (7-54) we have

(s? + 10)sx(0) + 5sy(0) ' (3)
s4 + 3582 + 200

X(s) =

Case (a): For the initial conditions
x(0) = 0.2807, x(0) =0, y(0) =1, y(0)=0
Equation (3) becomes as follows:

(s2 + 10) x 0.2807s + 5s
s4 + 3552 + 200

X(s) =

0.2807s(s2 + 27.808)
(s2 + 27.808)(s2 + 7.1922)

0.2807s
s2 + 7.1922

0.2807s2 i
s2 + 7.1922 s

(4)

By substituting Equation (4) into Equation (2) and solving for Y(s), we
obtain

2.8078s l
s2 + 7.1922

Y(s) = —1—[sy(0) +
s2 + 10
" substituting y(0) = 1 into the last equation and simplifying, we get

1 s(s2 + 10)
s2 + 10 s2 + 7.1922

]

Y(s)

= S
s2 + 7.1922

52 1
g2 + 7.1922 S

To obtgin plots of x(t) versus t and y(t) versus t, we may enter the
following MATLAB program into the computer. The resulting plots are
shown in Figure (a).
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numl =[0.2807 0 O];
num2=[1 0 0];

den=[1 0 7.1922];

step(numl,den)

hold

Current plot held

step(num2,den)

text(2,-0.5,'x(1)")

text(3,0.3,'y(t)")

title('Responses x(t) and y(t) due to initial conditions (a)")

% ***** MATLAB program to obtain x(t) and y(t), case (a) *****

xlabel ('t sec')
ylabel ('x(t) and y(t)")
Responses x{t) and y(1) due 1o initial condilionds (a)
1 T L T L} T T L
0.8/ i
06

16 18

Case (b): For the initial conditions

20

Figure (a)

x(0) = 1.7808, x(0) =0, y(0)=-1, v(0) =0

we obtain the following expressions for X(s) and Y(s):

X(s) = —1:7808s  _  1.7808s2 1
s2 + 27.808 s2 + 27.808 S
2
Y(s) = - 5 L B s 1
s2 + 27.808 s2 + 27.808 s
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A MATLAB program for obtaining plots of x(t) versus t and y(t) versus
t is shown below. The resulting plots are shown in Figure (b) below.

numl =[1.7808 0 0];
num2=[-1 0 0];
den=[1 0 27.808];
step(num1,den)

hold

Current plot held
step(num?2,den)
text(1.7,1.5,'%(1)")
text(3.5,-1.5,'y(t)")
title(Responses x(t) and y(t) due to initial conditions (b))
xlabel ('t sec')

ylabel ('x(t) and y(t)")

% ***** MATLAB program to obtain x(t) and y(t), case (b) *****

. Responses x(t) and y(t) due to initial conditions (b)

15 x{t) \

x(t) and y(t)
o

-}
o
-‘-\-"‘—-—_

-1.5}¢ yit)

T 1 2 8 a7t
I sec
Case (c): For the initial conditions

x(0) = 0.5, x(0) =0, y(0) = -0.5,

we obtain the following expressions for X(s) and Y(s):
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(s2 + 10)sx(0) + 5sy(0)
s4 + 35s2 + 200

X(s)

(s2 + 10)s(0.5) + 5s(-0.5)
s4 + 3582 + 200

0.5s3 + 2.5s
s4 + 3552 + 200

0.5s4 + 2.582 1
s4 + 3582 + 200 S

sy(0) By 10X(s)
sZ + 10 s2 + 10

Y(s)

0.5 s5 + 2553 + 150s
s2 + 10 s4 + 3582 + 200

0.5s(s2 + 15)
s4 + 35s2 + 200

0.584 + 7.5s2 1
s? + 3582 + 200 S

A MATLAB program to obtain plots of x(t) versus t and y(t) versus t is
shown below. The resulting plots are shown in Figure (c).

% ***** MATLAB program to obtain x(t) and y(t), case (c) *****

numl =[0.5 0 25 0 0]
num2=[-05 0 -75 0 0];
den=[1 0 35 0 200];

t =0:0.02:5;

x = step(num1,den,t);
plot(t,x,'0)

hold

Current plot held

y = step(num2,den,t);
plot(t,y,'x")

text(1.6,0.5,'x(t))
text(1.1,-0.3,'y(1)")
title('Responses x(t) and y(t) due to initial conditions (c))
xlabel ('t sec")

ylabel ('x(t) and y(t)")
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Responses x(t) and y(1) due o inilial conditions (c)

Figure (c)
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CHAPTER 8

B-8-1. Simplified block diagrams
are shown to the right. 'The R

transfer function C(s)/R(s) is

C(s) ~ Gl + G2

R P F:
(s) 1+ (Gl + (;2)(63 G4)

G+@G,

G; "'Gq.

. G +&:

/+ (6: n.: 6:}(4’3"‘6;)

B-8-2. Simplified block diagrams for the system are shown below.

/)
G2
R c
—-—@—— q: +X +X Gg V GJ
y =3
HI
HJ .
G
My
1+ 3—; —‘I G’ E
H3
R ey (G+H,) G, c
— (Sl I+ GgHy + G}GJ”, + Gy M, M,
R GG, (G +H,) c

I4GiN f._@ Wy Gy M Hy "‘G; G tG il
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The transfer function C(s)/R(s) is

c(s) G1G3(G2 + Hl)

-

R(s) B 1 = + +
G2H2 G263H3 G3H1H3 + GIGZG3 4 G].G3H1

B-8-3. Define the input impedance and feedback impedance as Z_ and Z_,
respectively, as shown in the figure below. ¥ F

Rq
—0
eﬂ'
o O
Then o
R-C.8 + L
Zl Rl r 22 RZ 4 CZS = 025

Since e' F 0, Laplace transforms of voltages e,(t) and e(t) are obtained as

Ei(s) = ZII(S) = RlI{s)

RCS + 1

E(s) = - 221(5) = - —Lg.._.__ I{S)
Czs
Hence
RCs + 1
E(s) _  "2%
Ei(s) R,C,s
Also,
EO(s) 3] R,
E(s) Ry
Therefore,
E
c,(s) ) R, chgi+ 1 ; R,R, e o \
Ei(S) Ry R,Cs R,R, chzs

The control action is proportional plus integral.

108


www.mohandesyar.com

1

U(s) _
1 Tis
1+ Tye 1 + Tes
1 2

E(s)
1+K(

K |

K
1 T]_S

K 1
K 1 +T)s 1+ T2s

|| =

Ko(l + Tys)(1 + Tps)

Tls
=Ky |1+ 1 )(1+T2$)
Tis
Tl (i s 2 T T2
= — e 8 o ———
v ;s 20 Ty
Ty + T
1 2 1 T
= Kp 1+ + 1728
Ty (Tl + Tz)s Ty +Ty
Let us define displacements e, X, and y as shown in the figure

B-8-5
below.
I
]’ /.3,1 fo
! 4
i
\
__,_! - 3
JuR

8
£
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From the block diagram we obtain the transfer function Y(s)/@(s) as followws:

b K
¥(s) _ a+b s
@(s) 1+_5.._. el
s a+bhb

Since in such a system |Ka/[s(a + b)]l is designed to be very large compared
to 1, Y(s)/8(s) may be simplified to

¥(s) = Ib a+tb_ b
8(s) "a+b a a

We see that the piston displacement y is proportional to deflection angle ©
of the control lever. Also, from the system diagram we see that for each
small value of y, there is a corresponding value of angle ¢§. Therefore, for
each small angle ® of the control lever, there is a corresponding steady-state
elevator angle d.

B-8-6. If the engine speed increases, the sleeve of the fly-ball governor
moves upward. This movement acts as the input to the hydraulic controller.
A positive error signal (upward motion of the sleeve) causes the power piston
to move downward, reduces the fuel valve opening, and decreases the engine
speed. Referring to Figure (a) shown below, a block diagram for the system
can be drawn as shown in Figure (b) on next page.

a, a;
el
"'-—-ﬁ
Ol under
o presswre |
y Engine
Fuel
Figure (a)
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c [ _a, & &+
4, +a, s

a, bs
q'fal E b.f"'*

Figure (b)

From Figure (b) the transfer function Y(s)/E(s) is obtained as

I(s) _ i —5“

E(s)  a)+a v BB s
s al-i-a.zbs-i-k

Since such a speed controller is usually designed such that

K = | bs
s a1+a2 bs + k » 1

the transfer function Y(s)/E(s) becomes

I%s; 2 at®h wagk . % 1+ K
E(s 3 + 2, &y bs a; bs

Thus, the control action of this speed controller is proportional-plus-integ-
ral.

sli=

B-8-7. For the first-order system

8(s) __1
6. (s) 15 +1

the step response curve is an exponential curve. So the time constant T can
be determined from such an exponential curve easily. From Figure 8-99 the
time constant T is 2 s.

If this thermometer is placed in a bath, the temperature of which is
increasing at a rate of 10°C/min = 1/6°C/s, or

8, =5 t+a

where a is a constant, then the steady-state error can be determined as
follows: Noting that

E(s) = Qb(s) - 8(s) = eb(s) [1 _ _8(s) ]

Ob(s)
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15 2s

=@ (s)(l1 -—=——) =0
h(8)(1 - 54—) = 6, (s) 28
we obtain
2
e, = lim sE(s) = lim 2s Q. (s)
s=+0 g=0 25 +.1 b
where
eb(s)=__1__l_2+_a_=1_+6_a§
6 & s 632
Therefore,
= 252 1 +6as _ 2 1 . S [
s»0 28 +1 6s 1 6 3

Thus, the steady-state error is 1/3°C.
For a second-order system:

8(s) _ 1

ﬂb(S) - (T,s + 1)(T,s + 1)

A typical response curve, when this thermometer is placed in a bath held at
a constant temperature, is shown below.

Temperature response 8(t)

0 t

B-8-8. The closed-loop transfer function of the system is

C(s) _  10(s + 1)
R(s) s2 + 10s + 10
_ 10(s + 1)

(s + 1.1270)(s + 8.8730)

For the unit-step input, we have

10(s + 1)
(s + 1.1270)(s + 8.8730) s

elsl) =
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1 . 0.1455 1.2455
s s + 1.1270 s + 8.8730

Hence
c(t) = 1 + 0.1455 e-1-1270t _ ; 1455 ¢-8.8730t
B-8-9. Since Hp is specified as 0.05, we have
_ =
Mp =e J;-3 = 0,05

or

_ﬂt__ = 2.995

Yi—st
Rewriting,

(7)) = (2.995%@ -2

Solving for the damping ratio § we obtain

5 = 0.69
The settling time ts is specified as 2 seconds. So we have
L= - = 2
=1 swn
or
Sw, =2
Therefore,

Wl NN
Gl)n- - —m-?.gﬁrad/s

B-8-10. The closed-loop transfer function of the system is

C(s) 100
R(s) s3 + 282 + 10s + 100

100

(s + 4.5815)(s - 1.2907 + j4.4901)(s - 1.2907 - j4.4901)

This system is unstable because two complex-conjugate closed-loop poles .
are in the right half plane. To visualize the unstable response, we may
enter the following MATLAB program into the computer. The resulting
unstable response curve is shown in the figure on next page.

To make the system stable, it is necessary to reduce the gain of the
system or add an appropriate compensator.
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num=[0 0 0 100];

den=[1 2 10 100];

t=0:0.1:5;

step(num,den,t)

grid

title("Unit-Step Response of Unstable System’)
xlabel('t sec’)

ylabel('c(t))

Unil-Step Response cf Unslable System

cit)

8
|
|
l
|
|

[

B Sy Tt L U | o

B-8-11. Cc(s) y 16
R(s) sZ + (0.8 + 16k)s + 16

From the characteristic polynomial, we find
W, =4, 25Wp=2x0.5x4=0.8+ 16k

Hence
k = 0.2
The rise timw t, is obtained from
k —
tr = £
g

Since

Wy=Wy 1 -22=4/1-0.25=3.46
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W
ﬁ = gin~1 25t 8 = sin-1 0.866 = —E
W, 3
we have
L
3.46

The peak time tp is obtained as
tp = Z _ 3.14 = 0.907 s
@q

The maximum overshoot Mp is
FR.S O.5X3 ¥
= e- = = o= ————t = o-1.814 _ .
Mp e \//"—;" e 1 =025 e 0.163
The settling time tg is

ts= 4 = 4 =28
Sw, 0.5x4

B-8-12. The closed-loop transfer function for the system is
C(s) _ K 0.5K

R(s) 252 + 5 + KRps + K . s2 + 0.5(1 + KEp)s + 0.5K

From this equation, we obtsin

Wn = 0.5, 23wy = 0.5(1 + Key)
Since the damping ratio ¥ is specified as 0.5, we get
&p = 0.5(1 + KRp)

Therefore, we have
0.5(1 + Kky) =,/0.5K

The settling time is specified as

- < 4 __ 16
S” Zwn  0.25(1 + KKy) 1+ K&, <2
Since the feedforward transfer function G(s) is
B _
G(s) = 25 + 1 : | . K 1
KK s
G e e 28 + 1 + s
28 + 1 “n
the static velocity error constant K, is
! K
Ky = lim sG(s) = 1im s A L e
s20 s>o0 2s +1 +KKy, s 1 + KRp
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This value must be equal to or greater than 50. Hence,

K
50
l+KKh2

Thus, the-conditions to be satisfied can be summarized as follows:

0.5(1 + KKp) =_/0.5K

16 <2
l-!-KKh

b, S
1 + KKy

N

0 <Kp<1

From Equations (1) and (2), we gwt

B$1+mh=ﬁ

or

32< K

From Equation (3) we obtain
or

If we choose K = 5000, then we get

1+KKh=’2K=100
or

Ry =

= 0.0198
5000 2

Thus, we determined a set of values of K and Ky as follows:
K = 5000, Ry = 0.0198

With these values of K and Ky, all specifications are satisfied.

(1)

(2)

(3)

(4)
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B-8-13.
B-8-13 c(s) xp(l + T;s)

2
R(s) Js + Kp(l + Tys)

Since R(s) = 1/s2, the output C(s) is obtained as

S 3.0 N 1
iy J52+KT5+1{ szﬁ 52 2 KTd K
pd o} s + ? s + JE

Since the system is underdamped, C(s) can be written as

c(s) = 12 = 3 * 2
s (E+ hpTd )2+ Kp__ I(P Td
2J J 2
Ly
Lo
K
J ;- s Ta
= Lkl o J ug*
> _
s e 2 2 2_.2\2
K T KT K KT
J__E b d PR e i R () (Y et
J 2 2J J 2
4g ba
The inverse Laplace transform of C(s) gives
= L
_ kT K K. T
c(t) =t - 1 e?f'tsinjf’- p d t
¥ 2p 2 4g?
5. 5%
J 42
The steady-state error €ss for a unit ramp input is
€ss = lim [r(t) - c(t)] = 1im [t - c(t)]
L=+ t>00
" _k%, K K Zrdz
= lim e 27 sin J_p - £ t}|=0
t-+o0 K K 2.1. 2 u"z
B gE '
J P

The steady-state error can also be obtained by use of the final value
theorem. Since the error signal E(s) is

C(S’]_ 2

: 1.
R(s) 2 2
s Js“ + Kp(l + Tys)

Kp(l + Tys)

E(s) = R(s) - C(s) = R(s) [1 -
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we obtain the steady-state error e g as

2
€.s = lim e(t) = lim sE(s) = lim 5 —EB a8 =0
tsee s=0 s=+0 s (Js° + Ky + Tdes)

B-8-14. The characteristic equation is

K
s(s + 1)(s + 5)

+ 31 =0
or
s3+682+55+l{=0

The Routh array for this equation is

1 5

6 K
30 - K

s 0

K

For the system to be stable, there should be no sign changes in the first
colum. This requires

30 - K >0, K>0
Hence, we get the range of gain K for stability to be

30>K >0

B-8-15. Since the system is of higher order (5th order), it is easier
to find the range of gain K for stability by first plotting the root loci
and then finding critical points (for stability) on the root loci.

The open-loop transfer function G(s) can be written as

K(s2 + 25 + 4)
s(s +4)(s+6)(s2 + 1.45 + 1)
K(s? + 2s + 4)
s9 + 11.45% + 3953 + 43.6s2 + 24s

G(s)

The MATLAB program given on next page will generate a plot of the root
loci for the system. The resulting root-locus plot is shown also on next
page.
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mm=[0 0 ¢ 1 2 4]
den=[1 114 39 436 24 0];

rlocus(num,den)

Warning: Divide by zero

v=[-8 2 -5 5], axis(v); axis('square’)
grid

title('Root-Locus Plot (Problem B-8-1 5))

Rool-Locus Piot (Problem B-8-15)

i 7

w
|
|
|
——

-
.
Q

5|

I i \\ \
a1 (7
e

)
|

e =
P

Real Axis
Based on this plot, it can be seen that the system is conditionally stable.
All critical points for stability lie on the j¢ axis.

To determine the crossing points of the root loci with the jaw) axis,
substitute s = jw into the characteristic equation which is

s + 11.45% + 3953 + 43.652 + 245 + K(s2 + 2s +4) = 0

(Gw)> + 11.4(jw)4 + 39(jw)3 + (43.6 + K)(jw)2 + (24 + 2K)jw
+4K =0
This equation can be rewritten as

[11.4 w2 - (43.6 + K)w?2 + 4K] + jlw5 - 3943 + (24 + 2K)@W] = 0

By equating the real part and imaginary part equal to zero, respectively,
we obtain '
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11.4 )4 - (3.6 +K) w2 + 4K =0 (1)
W3 -39w3 + (24 + ZK)W=0 (2)
Equation (2) can be written as
W =0
or
W% -39w2+24+2k=0 (3)
From Equation (3) we obtain
n -4 +3vw2 - 2 (4)

2
By substituting Equation (4) into Equation (1), we get
11.4 w9 - [43.6 + 5(- w4+ 30 w2 - 20)Jw?2 - 24
+ 78?2 - 48 =0
which can be simplified to
WO -20.2w4+92.8wW2_096=0

The roots of this last equation can be easily obtained by use of the MATLAB
program given below.

a=[1 0 -202 0 928 0 -961];
roots(a)

ans =

3.7553
-3.7553
2.1509
-2.1509
1.2130
-1.2130

The root-locus branch in the upper half plane that goes to infinity crosses
the jw axis at w = 1.2130, & = 2.1509, and @ = 3.7553. The gain values
at these crossing points are obtained as follows:

-1.21304 + 39 x 1.21302 - 24
2

K = =15.61  for 4 = 1.2130
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R = —=2:15099 + 39 x 2.15092 - 24 _ ¢ &5, for ) = 2.1509
2

g = —=3.75534 + 39 x 3.75532 - 24
2

= 163.56 for &/ = 3.7553

Based on the K values above, we obtain the range of gain K for stability as
follows: The system is stable if

15.61 2K > 0
163.56 > K> 67.51

B-8-16. A MATLAB program to plot the root loci and asymptotes for the
following system

K
s(s + 0.5)(s2 + 0.6s + 10)

G(s)H(s) =

is given below and the resulting root-locus plot is shown on next page.
Note that the equation for the asymptotes is

K
(s + 0.275)4

Ga(s)Ha(s)

n K
s4 + 1.1s3 + 0.4538s2 + 0.08319s + 0.005719

num=[0 0 0 0 1];

den=[1 1.1 103 5 0]
numa=[0 0 0 0 1]

dena=[1 1.1 04538 008319 0.005719];
r = rlocus(num,den);

plot(r,-")

hold

Current plot held

plot(r,'0")

rlocus(numa,dena);

v=[-5 5 -5 5], axis(v); axis('square)
title('Plot of Root Loci and Asymptotes')
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Plot of Rool Loci and Asymploles

7

Imag Axis
(=]

B-8-17. The open-loop transfer function G(s) is

s+ 1 2
s+ 5 52(5 + 2)

I

G(s) = K

K2(s + 1)
s4 + 783 + 10s2

The following MATLAB program will generate a root-locus plot. The
resulting plot is shown on next page.

num=[0 0 0 1 1J;

den=(1 7 10 0 0];
rlocus(num,den)

v=[-6 4 -5 5];axis(v); axis('square’)
grd

title('Root-Locus Plot (Problem B-8-17))

From the plot we find that the critical value of gain K for stability
corresponds to the crossing point of the root locus branch that goes to
infinity and the imaginary axis. Hence, we first find the crossing
frequency and then find the corresponding gain value.

The characteristic equation for this system is
s+ 753 + 10s2 + 2Rs + 2K = 0
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Rool-Locus Piol (Problem B-8-7)

3,,._. i - R —_— e —

Imag Axis
=}
o
el
D

By substituting s = jw into the characteristic equation, we obtain
(Jew )4+ 7w )3 + 10(j )2 + 2K(jw ) + &K =0
which can be rewritten as
(w?-10W?2+2&K) +jw (-7Tw?2+ 2K) =0

By equating the real part and imaginary part of this last equation to
zero, respectively, we get

Wi -10W24+2k=0 (1)

W(-Tw?2+ 2K) =0 (2)
Equation (2) can be rewritten as

& =0
or

TwW2+ 2k =0 (2)
By substituting Equation (3) into Equation (1), we find

Wi-10w2+7W2=090

or

Wi4-302=90

which yields

4 =0, d‘/:Or M=J_3-a W="J—;
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Since & =/ 3 is the crossing frequency with the j &/ axis, by substituting
w =J3 into Equation (3) we obtain the critical value of gain K for
stability.

K=3.5w2=3.5x 3= 10.5
Hence the stability range for K is

10.5>K >0

B-8-18. The angle deficiency is
180° - 120° - 120° = - 60°

A lead compensator can contribute 60°. ILet us choose the zero of the
lead compensator at s = -1. Then, to obtain phase lead angle of 60°,
the pole of the compensator must be located at s = -4. Thus,

8+ 1

G =K ——
els) =X s+ 4

The gain K can be determined from the magnitude condition.

g4l 1
K “———4——"—2 =1
s + s
8 =-1+ jJ—B
or
2
K= (s + 4)s =8
s+ 1
s==1+j {3
Hence the lead compensator becomes as follows:
G~(s) = 8 —.-5_+__].:_
cls) s+ 4
The feedforward transfer function is
8s + 8
Ga(s)G(s) =
e s3 + 42

The following MATLAB program will generate a root-locus plot. The
resulting plot is shown on next page. :

num=[0 0 8 8],

den=[l 4 0 0];

rlocus(num,den)

v=[-6 2 -4 4], axis(v); axis('square')
grid

title('Root-Locus Plot (Problem B-8-18)")
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Roct-Locus Plot (Problem B-8-18)

L HERE

1

- et e e

2 1S, S

-3t = | e

-4

s " T A B R—_ 1 0 1 2

Real Axis
Note that the closed-loop transfer function isN/

C(s) _ 8s + 8 POWEREN.IR
R(s) s3 +4s2 + 8s + 8

The closed-loop poles are located at s = -1 + jﬁ and s = -2.

B-8-19. The MATLAB program given below generates a root-locus plot
for the given system. The resulting plot is shown on next page.

num=[0 0 0 1IJ;
den=[l 5 4 0];

rlocus(num,den)
v=[-6 4 -5 5], axis(v); axis('square’)
grid

title('Root-Locus Plot (Problem B-8-19))

Note that constant-% points (0< ¥$<1) lie on a straight line having
angle 8 from the j@ axis as shown in the figure below.
From the figure we obtain diw

g“)n MSM =
5 Line BJ/ﬁ)n

sin 8 = -
n

Note also that ¢ = 0.6 line can be defined by

- i

-
s = -0.75a + ja SWa

125


www.mohandesyar.com

Rool-Locus Pilol (Problem B-8-19)

|
30‘— ¥ “-:
E
cali = s —
22 I T (D e )
‘3. - p———- -—
4 : e L RURE O | __\
‘5'5 -4 -2 0 2 4
Real Axis

where a is a variable (0 <a <og). To find the value of K such that the
damping ratio ¥ of the dominant closed-loop poles is 0.6 can be found
by finding the intersection of the line s = -0.75a + ja and the root locus.
The intersection point can be determined by solving the following simul-
taneous equations for a.
s = -0.75a + ja (1)

s(s+1)(s+4)+K=0 . (2)

By substituting Equation (1) into Equation (2),
(-0.75a + ja)(-0.75a + ja + 1)(-0.75a + ja + 4) + K =0

which can be rewritten as

(1.8281a3 - 2.1875a2 - 3a + K) + j(0.6875a3 - 7.5a2 + 4a) = 0

By equating the real part and imaginary part of this last equation to zero,
respectively, we obtain

1.8281a3 -2.1875a2 — 33 + K = 0 (3)
0.6875a3 - 7.5a2 + 4a = 0 C(4)
Equation (4) can be rewritten as
a=20

or
0.6875a2 — 7.5a + 4 = 0
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which can be written as

aZ? - 10.9091a + 5.8182 = 0
or

(a - 0.5623)(a - 10.3468) = 0
Hence

a = 0.5623 or a = 10.3468
From Equation (3) we find

0.5623

K = -1.8281a3 + 2.1875a2 + 3a = 2.0535 for a

K = -1.8281a3 + 2.1875a2 + 3a = -1759.74 for a = 10.3468

Since the K value is positive for a = 0.5623 and negative for é = '10.34-6.8:
we choose a = 0.5623. The required gain K is 2.0535.

Since the characteristic equation with K = 2.0535 is

s(s + 1)(s + 4) + 2.0535 = 0
or
s3 + 582 + 45 + 2.0535 = 0

the closed-loop poles can be obtained by use of the following MATLAB
program.

p=[1 5 4 20535];
roots(p)

ans =

-4.1565
-0.4217 + 0.5623i
-0.4217 - 0.5623i

Thus, the closed-loop poles are located at
s = -0.4217 + jO.5623, s = -4.1565

The unit-step response of the system with K = 2.0535 can be obtained
by entering the following MATLAB program into the computer. The resulting
unit-step response curve is shown on next page.

mum=[0 0 0 2.0535];
den=[l 5 4 2.0535];

step(num,den)

grid

title('Unit-Step Response (Problem B-8-19)")
xlabel('t Sec") h
ylabel('Output')
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Unit-Step Response (Problem B-8-19)

’ |
1 f ;/—\"\-—..__
' |
]
0.8 ! = [ =i
|
2 f
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oaf | —
02 i e L
00 2 4 6 B 10 12 "
I Sec

B-8-20. The closed-loop transfer function of the system is

Cc(s) _ K(s + a)(s + b)
R(s) s(s2 + 1) + K(s + a)(s + b)

K(s2 + as + bs + ab)
s3 + 5 + K(s? + as + bs + ab)

Since the dominant closed-loop poles are located at s = -1 + jl1, the
characteristic equation must be divisible by

(s +1+ jl)(s+1-31) =82+ 25 + 2
Hence
s3+K52+(1+aK+bK)5+abK=(52+25+2)(s+o()

where s = -o¢ is the unknown third pole. By dividing the left side
of this last equation by sZ? + 2s + 2, we obtain

s3 + Ks2 + (1 +aK + bK)s + abk = (s2 + 25 + 2)(s + K - 2)
+ (aK + bK - 2K + 3)s + Kab - 2(K - 2)
The remainder of division must be zZero. Hence we set

ak + bK - 2K + 3 = 0

Kab - 2(K - 2) =0
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Since a is specified as 0.5, by substituting a = 0.5 into these two
equations, we obtain

bK = 1.5K - 3 (1)

0.5kb - 2(K - 2) =0 (2)
By substituting Equation (1) into Equation (2), we have

0.5(1.5K - 3) - 2(K-2) =0
or

K =2

Then, by substituting K = 2 into Equation (1), we get

2b=1.5x2-3=0

Hence
hi=0

The PID controller with K = 2 and b = 0 becomes

(s + a)(s + b) (s + 0.5)s

Gols) = K - =K 5 = K(s + 0.5)

Thus, the controller becomes a PD controller. The open-loop transfer
function becomes

K(s + 0.5)

Ga(s)e(s) =
s2 + 1

The closed-loop transfer function (with b = 0 and K = 2) becomes as
follows:

C(s) 2(s + 0.5)

R(S) g2+ 25+ 2

2s + 1
(s+1+j1)(s +1 - j1)

The root-locus plot for the designed system can be obtained by enterring
the following MATLAB program into the computer.

num=[0 1 0.5];

den=[1 0 1],

rlocus(num,den)

v=[-2 1 -1.5 1.5]; axis(v); axis('square)
grid

title('Root-Locus Plot (Problem B-8-20)")

The resulting root-locus plot is shown on next page.
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Rool-Locus Plot {Problem B-8-20)
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CHAPTER 9

B.g-l -
Bode Diagram (Problem B-9-1)
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B-9-3. A Bode diagram of the PI controller is shown in Figure (a).

Boda Diagram (Problem B-9-3: Pl Conlroller)
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Figure (a)

A Bode diagram of the PD controller is shown in Figure (b).

Bode Diagram (Problem B-8-3: PD Controller)
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B-9-6. The equation of motion for the system is

b(x - £8) = x /8

,(é+—';—,la=i

The ;. transform of this equation, using zero initial conditions, gives

(!s - —';—z)e{s) = sX(s)
Hence

8(s) _ 1
X(s) £ s+ (k)

Notice that this system is a differentiating system.
For the unit-step input X(s) = 1/s, the output ®(s) becomes

8(s) = 1L L
s + (k/b)

The inverse Laplace transform of 8(s) gives

8(t) = 1 ~(k/b)t
(t) 7 ¢

Note that if the value of k/b is large, the response 8(t) approaches a pulse
signal as shown in Figure (a) below.

Since
Gljw) = M e IR
X(3w) £ e+ (k) | P
we obtain ‘T .
W
c(jw) | =
e
( b « 0 '
and Figure (a)
/6(jw) = 90° - tant *QT):Q
The steady-state output Oss(l-,) is therefore given by
o__(t) = 21— @5 sin(w t + 90°- tan~t b,
L L k \2 2 k
i

Next, substituting / = 0.1 m, k = 2 N/m, and b = 0.2 N-s/m into G(j«)
gives
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jw

G(jw) = 10 ————
jw + 10

A Bode diagram of G(j&)) is shown below.

Bode Diagram (Problem B-9.6)
By sy g R
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B-9-7. Noting that
. W2
G(jw) =
(j‘d)z + Zj'a)n(jcd) + &)nz
§ 1
@ )2 &
§ - — +:2%1 §=—1 1
(J q’)n) S(J wn)
we have
. 1 el
G(jw = =
(3@n) -1+2%j+1| g%

B-9-8. A possible MATLAB program for obtaining a Bode diagram of the

—_—

given G(s) is shown on next page. The resulting Bode diagram is shown
also on next page.

135


www.mohandesyar.com

num=[0 0 0 320 640];
den=[l 9 72 64 O]

w = logspace(-2,3,100);
bode(num,den,w)

subplot(2,1,1);

title('Bode Diagram (Problem B-9-8))

Bode Diagram (Problem B-9-8)
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m 0 1 e
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§| -80 = ) —= ““ =
2 T
B 180/ - N —
o
270 = 1l
107 10" 10° 10' 10° 10°
Frequency (rad/sec)

B-9-9. A possible MATLAB program to obtain a Bode diagram of the given
G(s) is shown below. The resulting Bode diagram is shown on next page.

num=[0 20 20 10];

den=[1 11 10 0]

w = logspace(-2,3,100);
bode(num,den,w)

subplot(2,1,1),

title(Bode Diagram (Problem B-9-9)")
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579—10. A possible MATLAB program for obtaining a Nyquist plot of the
given G(s) is shown below. Note that to plot G(j&) locus only for
w > 0, we use the following command:

[re,im,w] = nyquist(num,den,w);

plot(re,im)

The resulting Nyquist plot is shown on next page.

mum=[0 0 0 1];

den=[1 08 1 0]

w=0.1:0.1:100;

[re,im,w] = nyquist(num,den, w);
plot(re,im)

v=[-3 3 -4 2J;axis(v); axis('square")
grid

title('Nyquist Plot (Problem B-9-10)")
xlabel('Real Axis")

ylabel('Imag Axis')
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Nyquist Plol (Problem B-9-10)

Since none of the open-loop poles lie in the right-half s plane and the
G(jW ) locus encircles the -1 + jO point twice clockwise if Gljw)
locus is plotted from & = - 0 to &/ = o, the closed-loop system

is unstable.

B-9-11. A possible MATLAB program for obtaining a Nyquist plot of the
given G(s) is shown below. The resulting Nyquist plot is shown on next
page.  Since none of the open-loop poles lie in the right-half s plane
and from the Nyquist plot it can be seen that the G(jW) locus does not
encircle the -1 + jO point, the system is stable.

num=[0 0 0 20 20]

den=[1 7 20 50 O]

w=0.1:0.1:100;

[re,im,w] = nyquist(num,den,w);

plot(re,im)

v=[-1.5 15 -2.5 0.5]: axis(v); axis('square')
grid

title('Nyquist Plot (Problem B-9-11)")

xlabel('Real Axis')

ylabel('Imag Axis")
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Nygquist Plol (Problem B-9-11)

05—
(] e —~ e
-05 E Y /:1"-- I ——
_ﬂ
E
-1.5 - ; i e
= = e e
'2'35 -1 0.5 0 05 1 15

Real Axis

B-9-12. A possible MATLAB program for obtaining a Nyquist plot of the
given G(s) is shown below. The resulting Nyquist plot is shown on next

page.

num=[0 1 2 1J;

den=[1 02 1 1];

w=0:0.005:10;

[re,im,w] = nyquist(num,den,w);
plot(re,im)

v=[3 3 -3 3] axis(v); axis('square)
grid

title('Nyquist Plot (Problem B-9-12)")
xlabel('Real Axis')

ylabel('Imag Axis")

From the plot, it is seen that the G(jW) locus encircles the -1 + jo
point twice as «! is varied fromw= -o0 to W= 0 to W =00, Refer-
ring to the Nyquist stability criterion (see page 497), we have

N = number of clockwise encirclement of the -1 + jO point = -2

P

"

number of poles of G(s) in the right-half s plane = 2
Note that there are two open-loop poles in the right-half s plane, because
s3 +0.252 + s + 1

= (s + 0.7246)(s - 0.2623 + j1.1451)(s - 0.2623 - j1.1451)
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Z = number of zeros of 1 + G(s) in the right-half s plane

N+P=-2+2=0

Thus, there are no Closed-loop poles in the right-half s plane and the
closed-loop system is stable.

B-9-13. A closed-loop system with the following open-loop transfer
function

JH(s) : (Try >0) (1)
H =
G(s)H(s 22(Tys + 1) 1

is unstable, while a closed-loop system with the following open-loop
transfer function is stable.

R(Tys + 1)
G(s)H(s) sz(T]_s T 2

Nyquist plots of these two systems are shown on next page. Note that
G(jw JH(jew) loci start from negative infinity on the real axis (@ = 0)
and approach the origin (&« =00). The system with the open-1loop
transfer function given by Equation (1) encircles the -1 + jO point
twice clockwise. The system is unstable. The system with open-loop
transfer function given by equation (2) does not encircle the -1 + jo
point. Hence, this system is stable.
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- Im &
H(s) = (Unstable)
G(s)H(s) s2(Tys + 1) \
3¢  —
=1 0 Re
K(Tzs +1)
G(s)B(s) ¥ ———=tL— (Stable)
SZ(TJ_S + 1)
(Tz > Tl > 0) i

B-9-14. For this system
e—j@
ja + 1

Gliw) = K

By setting K = 1, we draw a Nyquist diagram as shown below. Note that

f e-J¥ = — g (rad) = - 57.3%
jw L_!

=) 0.5
=3
! ]
-/ ~asff w=2 0O
Wels
= "j 0.5
LY
N Y

--j"

The Nyquist locus crosses the negative real axis at ("= -0.442. Hence
for stability, we require

1

—=—>K>0
0.442 ° ¢

or

2.262> K >0
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The same result can also be obtained analytically. Since

Ke—Jw - 1 - fw
W) = .e X K(cosw - jsing )( jw)
jw + 1 1+jw)1-ja)
=—K—[(casq)—wsina}) + j(sind + & cos &/ )]
1+ @2 ]

by setting the imaginary part of G(jw) equal to zero, we obtain

sinw+ wcosa =0
or
W = -tanw
Solving this equation for the smallest positive value of w , we obtain
@ = 2.029
Substituting w = 2.029 into G(jw ) yields

K
1+ 2.0292

(cos 2.029 - 2.029 sin 2.029)

I

G(j2.029)

-0.4421 K

The critical value of K for stability can be obtained by letting G(j2.029)
= -1, or

0.4421 K = 1

Thus, the range of gain K for stability is

2.262 > K >0

B-9-15.
K | 0.25K
s(s2 + s + 4) s(0.2582 + 0.25s + 1)

G(s) =

The quadratic term in the denominator has the undamped natural frequency
of 2 rad/s and the damping ratio of 0.25. Define the frequency corres-
ponding to the angle of -130° to be &;.

[GGiwy) = - [jwy - /1 -0.250,2 + j0.254)

0.254/);
1-0.25w,2

= _900 - tan"‘l

= -130"°
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Solving this last equation for W;, we find &/ = 1.491. Thus, the
phase angle becomes equal to -130° at & = 1.491 rad/s. At this fre-
quency, the magnitude must be unity, or IG(ja)l) | = 1. The required
gain K can be determined from

0.25K
(j1.491)(-0.555 + j0.3725 + 1)

|etir.a0m)| = | = 0.2800k

Setting |G(j1.491)| = 0.2890K = 1, we find
K = 3.46

Note that the phase crossover frequency is at W= 2 rad/s, since

/6(32) = - /42 - /-0.25 x 22 + 0.25 x j2 + 1 = -90°- 90°= -180°

The magnitude |G(j2)| with K = 3.46 becomes

0.865
(j2)(-1 + jO.5 + 1)

|G(J‘2)| - = 0.865 = -1.26 dB

Thus, the gain margin is 1.26 dB. The Bode diagram of G(jaw) with
K = 2.46 is shown below.

3 7]

~ 1264

et 1
0 -——‘K

- N

"\%\ \\ F

e
*"-J___ _,?‘o
6.l o2 e+ 04 [/ 2 4+ & 0 2 40 4o o0
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B-9-16. Note that

jw+ 0.1 10 . 2K(10j @w + 1)

jw+ 0.5 W (w+1) & (2@+1)(L+1)
We shall plot the Bode diagram when 2K = 1. That is, we plot the Bode
diagram of

104/ + 1
jed (2j o + 1)(ja)+ 1)

G(jw) =

The diagram is shown below. The phase curve shows that the phase angle
is -130° at @ = 1.438 rad/s. Since we require the phase margin to be
50°, the magnitude of G(j1.438) must be equal to 1 or 0 dB. Since the
Bode diagram indicates that|G(j1.438)| is 5.48 dB, we need to choose 2K =
-5.48 dB, or

K = 0.266

Since the phase curve lies above the -180° 1line for all &/ » the gain
margin is + 0o dB.

40
\'h-.
ey
3
20 o _"‘--._,__:‘.‘
*“,
New 0 dB line - T 458
dB 0 +
RN
! ™\
-20 ' <
:
-40 — 0°
....---"‘.'" ek .E _90,
50° T 80'
0] a2 ©ef o/ o2 of 0é / K 2 4 4« ”-1
& rad/s
B-9-17. Let us use the following lead compensator:
2 Ts + 1 5+ =
Ge(s) = R = K¢
XTs + 1 & 4 =1
T

Since Ky is specified as 4.0 s=1, we have
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Ts + 1
Ry = lim sKq &« B = KoK = 4
S0 XTs +1 s(0.1s+ 1)(s + 1)

A
Let us set K = 1 and define Koo¢ = K. Then

A
K =4
Next, plot a Bode diagram of
4 s 4
s(0.1s + 1)(s + 1) 0.1s3 + 1.1s2 + s

The following MATLAB program produces the Bode diagram shown below.

num=1[0 0 0 4]

den = [0.1 1.1 1 0O}

bode{num,den)

subplot(2,1,1);

title(*"Bode Diagram of Gis) = 4/[s(0.1s+ 1)(s+1)]')

Bode Diegram of G(s) = 48(0.18+1)(s+1)]
x -
"---._.__.__h_--—- 1
T —
g ° 1
c -‘-""-n.-
3 =N
-50 —
'-\.__.\‘
100 -
10" 10° 10' 10°
. Frequency (rad/sec)
0
g -m___-_--—_“""'--
o -‘“‘"--.
'-\\
Eld& 1-“‘."‘"-1-.-.
-\.‘_‘_‘_----‘-‘
=270 y
10" 10° 10' 10°
Frequency (radfsec)

From this plot, the phase and gain margins are 17° and 8.7 dB, respectively.
Since the specifications call for a phase margin of 45° 1let us choose
Bm = 45" - 17° + 12° = 40°

(This means that 12° has been added to compensate for the shift in the gain
crossover frequency.) The maximum phase lead is 40°. Since
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X is determined as 0.2174. Tlet us choose, instead of 0.2174, o¢ to be
0.21, or

(#n = 40°)

& = 0.21

Next step is to determine the corner frequencies &2 = 1/T and <= 1/(X T)
of the lead compensator. Note that the maximum phase-lead angle

occurs at the geometric mean of the two corner freguencies, or cu= 1/(XT).
The amount of the modification in the magnitude curve at /= 1/(J/&T) due
to the inclusion of the term (Ts + 1)/(of/ Ts + 1) is

15 S 1
1+jexT | o 1 Vi
yX T
Note that

1 1
— = ———— = 2.1822 = 6.7778 JB

Yy Jo.z1
We need to find the frequency point where, when the lead compensator is
added, the total magnitude becomes 0 dB. The magnitude IG(jw)| is

-6.7778 dB corresponds to & = 2.81 rad/s. We select this frequency to
be the new gain crossover frequency & - Then we obtain

_é_. =[d e =/0.21 x 2.81 = 1.2877
1 @e 2.81
— = " = 6.1319
o vy Jo.21
Hence
S = s + 1.2877
cis) = Ke =% 1310
and A
K 4
o o 0.21
Thus
s + 1.2877 £ 0.7766s + 1

Gc(s) -

0.21 s + 6.1319 : 0.16308s + 1

The open-loop transfer function becomes as

4 0.7766s + 1 3
0.16308s + 1 s(0.1s + 1)(s + 1)

Ga(s)G(s)

3.1064s + 4
0.01631s4 + 0.2794s3 + 1.2631s2 + s
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The closed-loop transfer function is

c(s) _ 3.1064s + 4
R(s) 0.01631s4 + 0.2794s3 + 1.2631s2 + 4.1064s + 4

The following MATLAB program produces the unit-step response curve as
shown below.

nm=[0 0 0 3.1064 4]
den=[0.01631 02794 12631 4.1064 4];

step(num,den)

grid

title('Unit-Step Response of Compensated System (Problem B-9-17))
xlabel('t sec')

ylabel("Output c(t)")

Unit-Step Response of Compensated System (Problem B-8-17)

1.4

1.2}

-

0.2} -

0
0 05 1 15 2 25 3

I sec

Similarly, the following MATLAB program produces the unit-ramp response
curve as shown on next page.

num=[0 0 0 0 31064 4];

den=[0.01631 02794 12631 4.1064 4 O]

t=0:0.01:5;

¢ = step(num,den,t),

plot(t,c.t,t)

grid

title('Unit-Ramp Response of Compensated System (Problem B-9-17)")
xlabel('t sec') '
ylabel("Unit-Ramp Input and System Output c(t)")
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Unil-Ramp Response of Compensaled Sysiem (Problem B-8-17)
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B-9-18. To satisfy the requirements, try a lead compensator G.(s) of the
form _

1
S Ts + 1 S+
s) = _=
E T s ok
Define T

Gy(s) = KG(s) = —m8 ™ ———
1) s(s + 1)

vhere K = Ko € .  Since the static velocity error constant K, is given as
50 s~1, we have

+
Ky = 1im sGo(s)G(s) = lim s —=* 1 K =k =50
s3>0 s»0 XTs+1 s(s+1)

We shall now plot a Bode diagram of

50

Gy(s) = =G

The following MATLAB program produces the Bode diagram shown on next page.

num=[0 0 50];

den=[l 1 0]

w = logspace(-1,2,100);

bode(num,den,w);

subplot(2,1,1);

title('Bode Diagram of G1(s) (Problem B-9-18)")
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Bode Diagram of G1(s) (Pioblem B-9-18)

100
50— ==l || - - e e [ — g
0 —-HFEHE ==
“\M
b
"1“1,-
50 o 1
10 10 10 10°
Frequency (rad/sec)
B0} - = = s ;
o0} PR—— e ! . !
E ]
-120 T - PRSI U RS ) S
§ i \\
o <150 - = —_— = 8
R"“‘"--....__
-180 = "'“‘r-—— —
10" 10° 10' 10°

Frequency (rad/sec)

From this plot, the phase margin is found to be 7.8°. The gain margin
is +90 dB. Since the specifications call for a phase margin of 50°,
the additional phase lead angle necessary to satisfy the phase margin
requirement is 42.2°  We may assume the maximum phase lead required
to be 48°. This means that 5.8° has been added to compensate for the
shift in the gain crossover frequency. Since

&=%
sinfa = Tow

#m = 48° corresponds to & = 0.14735. (Note that « = 0.15 ‘corresponds
to gy = 47.657°.) Whether we choose &, = 48° or gy = 47.657 ° does not
make much difference in the final solution. Hence, we choose &« = 0.15.

The next step is to determine the corner frequencies @’ = 1/T and
&) = 1/(X T) of the lead compensator. Note that the maximum phase
lead angle gy occurs at the geometric mean of the two corner frequencies,
or w = 1/(VxT). The amount of the modification in the magnitude curve
at @ = 1/(J&T) due to the inclusion of the term (Ts + 1)/(Ts + 1) is

L] 1 + J‘ —
1+ jWT 3 K| _ 1
1+ jewar [, 1 x S o
VX T 3
V&
Note that
1 '}
—_— = = 2.5820 = B.239 @dB
v 4f0.15

We need to find the frequency point where, when the lead compensator
is added, the total magnitude becomes 0 dB. The frequency at which
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the magnitude of G(jw) is equal to -8.239 dB occurs between <¢ = 10
and 100 rad/s. From the Bode diagram we find the frequency point where
|G1(jw )| = -8.239 GB occurs at @ = 11.4 rad/s. Noting that this fre-
quency corresponds to 1/(Jx T), or

1

W =
N

we obtain

i
k- J& = 11.4 0.15 = 4.4152

1 _We _ 114

- - = 29.4347
o« T Jo( J0.15
The lead compensator thus determined is
g+ =i
s : S s + 4.4152
8) = =
& se g s + 29.4347
; X T
where K. is determined as
__K 5 _ 1000
Ke.® o "~ 0.1 3

Thus,

1000 s + 4.4152
3 s + 29.4347

Ge(s)

0.2265s + 1
0.03397s + 1

The following MATLAB program produces the Bode diagram of the lead com-
pensator just designed. It is shown on next page.

num=[11.325 50];
den=[0.03397 1];

w = logspace(-1,3,100);

bode(num,den,w);

subplot(2,1,1);

title(Bode Diagram of Ge(s) = 50(0.2265s + 1)/(0.03397s + 1))

The open-loop transfer function of the designed system is
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Bode Diagram of Gofs) = 50(0.2265s + 1)/(0.03397s + 1)
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The following MATLAB program produces the Bode diagram of G.(s)G(s)
which is shown on next page.

num=[0 0 1000 4415.2];

den=[3 913041 883041 O0J;

w = logspace(-1,3,100);

bode(num,den,w);

subplot(2,1,1);

title('Bode Diagram of Ge(s)G(s)= 1000(s + 4.4152)/[3(s + 29.4347)s(s + 1)])

From this Bode diagram, it is clearly seen that the phase margin is appro-
ximately 52°, the gain margin is + o0 dB, and Ky = 50 s~1; all specifications
are met. Thus, the designed system is satisfactory.

Next, we shall obtain the unit-step and unit-ramp responses of the
original uncompensated system and the compensated system. The original
uncompensated system has the following closed-loop transfer function:

c(s) 1
R(S) ~ g2 4541

The closed-loop transfer function of the compensated system is
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Bode Diagram of Ge(s)G(s) = 1000(s + 4.4152)[3(s + 29.4347)s(s + 11

100
3 T =L
ﬁ & RE o —
() T
""'--.,__“-“‘-‘-‘
-100
10" 10° 10' 10° 10°
Frequency (rad/sec)
_80 aa — - yo—— a—
90k | = 2o Esa
g h‘-“h""-.
5*120" s . i _-‘H —- -
@ -150--- = ‘T‘m‘_h. e Lol
180} - = (===
10" 10° 10' 10° 10’
Frequency (rad/sec)
C(s) 1000(s + 4.4152)
R(s) 3(s + 29.4347)s(s + 1) + 1000(s + 4.4152)

1000s + 4415.2
3s3 + 91.3041s2 + 1088.3041s + 4415.2

The closed-loop poles of the compensated system are as follows:
s = -11.1772 + j7.5636, s = -8.0804

The MATLAB program given below produces the unit-step responses of the
uncompensated and campensated systems. ‘The resulting response curves

are shown on next page.

num=[0 0 1];
den=[1 1 1];

numc=[0 0 1000 4415.2];

denc=[3 91.3041 1088.3041 4415.2];
t=0:0.01:8;

cl = step(num,den,t);

c2 = step(numc,denc,t);

plot(t,cl.t,c2)

title('Unit-Step Responses of Uncompensated and Compensated Systems')
xlabel('t Sec")

ylabel('Outputs")

text(1,1.25,'Compensated system’)
text(2,0.5,'Uncompensated system")
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Unit-Step Responses of Uncompensaled and Compansaled Systems
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The MATLAB program given below produces the unit-ramp response of the
uncompensated system and compensated system. The response curves are

shown on next page.

mum=[0 0 0 1]

den=[1 1 1 0]

numc=[0 O 0 1000 44152]; .
denc=[3 913041 1088.3041 44152 0] : m
t=0:0.01:8;

cl = step(num,den,t),

c2 = step(numc,denc,t);

plot(t,cl,t,c2,t,t)

title("Unit-Ramp Responses of Uncompensated and Compensated Systems’)
xlabel('t Sec")

ylabel('Unit-Ramp Input and System Outputs')

text(1,5,'Compensated system')

text(4,1.5,'Uncompensated system')

Notice from the unit-ramp response curves that the compensated system

follows the input ramp very closely. For the compensated system the
error in following the input can be seen for 0 < t < 0.5, but it is almost
zero for 0.5 < t. (The steady state error in the unit-ramp response is

0.02.)
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Unit-Ramp Responses of Uncompensated and Compensated Syslems
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CHAPTER 10

B-10-1. The differential equation for the system is
mi; + bly' + (kl + kz)y =u
This is a second-order system. Therefore, we need two state variables.

Define state variables Xy and X, as follows:

x1=y
x2=§
Then we obtain
gy Nk
A k. 'k b
x2=-xl_.._n_3:.x2+u

The output y for the system is simply X, . Thus,
Y = xl

The state space representation for this system is given by

Xy 0 1 X, ‘10
= + u
k, + k b
X i chi 4 —
*2 = i X2 1
&

b o]

2

-—

B-10-2. The system equations are

]
{ =1

ml'y' + k(y - z)

[}
o

myz + k(z - y)
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Define

xl-—-y
x2=y
x3-z
X, =z
Then we obtain
*y =85
S a5 K
%y = mlxl+m1
x3=x4

’."‘1 i [ o 1
. k Kk
- it 0 -,
2 - o !
x3 0 0
. k K
“af | Tmp 9 my
v] 1 0 0 0
z 0 0 1 0
-

sy

o@lwo

o

B-10-2. The equations for the system are

ky(u - z) = bl(é -y)

bl(z o .Y) kzy

or

}cu+b1y

7+
1 blz k

b.z =by +k

1 1 2y
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By taking Laplace transforms of these two equations, assuming the zero
initial conditions, we obtain

(bls + kl)z(s)

U}

ble(s) + klU(S)

)

(bls + kz)Y(s) blsz(s) . (1)

By eliminating Z(s) from the last two equations,

bls + kz
(bys + k) =——= Y(s) = b,sY(s) + k,U(s)

bls

or

(bys + k,)(b;s + k,)¥(s) bi s2y(s) + b; sk, U(s)

which can be simplified to

[(I»:1 + kz)bls + klkzlY(s) = klblsU(s)

Hence
=
¥(s) _ i . =2 (2)
U(s) (k1 - k2)bls + l:]_lc2 kl + k
kK P tl
1%2

Using Equations (1) and (2), 2(s)/U(s) can be cbtained as follows:

Z(s) _ Z(s) ¥(s) = 'bys + Xk kib s

U(s) Y(s) U(s) bs (k3 + kp)b;s + kiks

bikys + kjk
(k3 + k2)bys + k1kp

by
g e
k2
kl <+ k2 (3)
bys + 1
kik2
Define
bl — kl + kz
—_—=T, .
where Ky + Xy
a=
S|
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Then, Equations (2) and (3) can be written as

¥(s) Ts Z(s) Ts + 1
Us) ~ aTs+1 " Tu(s) T ams +1
Hence
aTsY(s) - TsU(s) = -Y(s)
aTsZ(s) - TsU(s) = -Z(s) + U(s)
Define
ay(s) - U(s) = X;(s)
az(s) - U(s) = Xp(s)
Then
¥(s) = = [Xy(s) + U(s)]
z(s) = L [xp(s) + U(s)]
Equations (4) and (5) can be written as
TsX)(s) = - ¥(s) = - — [¥;(s) + U(s)]
TsXa(s) = - 2(s) + U(s) = - — [Xp(s) + U(s)] + U(s)
Rewriting,
N e &
TsX1(s) = : 1(s) = U(s)
TsXp(s) = - == Xp(s) - = U(s) + U(s)
a a

from which we get

| W
L= aT 1 aT
. a -
g == .= X9 + X u
aT aT
Hence
Ty . g | 7 (Y (RS i
- — 0 ® —
= + u
' 1 a -1
I.-.xz_ . 9 aT ! _xz_ if aT

This is the state equation.
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From Equation (6) we have

1 1
¥ a + a 2
From Equation (7) we get
1 X
Z = === Xp + —— 1
3 a 2 a
Hence
o 0 ||x L
¥ a 1 a
= + u
1 .
z 0 - 1| x2 5
This is the output equation.
B-10-4. Note that
R Z]_
1 R2C25 1 l-— C' |
W | >
Hence | II_I -
z - — -
E,(s) = 52 r-zk 7
Ei(S) Z, + 72, €, . R,:E C, ¥ i‘o
i
J R,C;§ Zzt—q e
Ry(Cy; + Co)s + 1 ° ~o

which can be rewritten as

Y=
[(chl + R2C2)s ks 1]E:0($J Rz(.‘lsEi(s)
wvhich is equivalent to
(R)C) +RCyle, + e, =R Cre;
or
% 1 cl *

e +—m—m—m—me_ = e
(o) o
Rz(cl + Cz) C, +Cy i

This equation can be written as
vhere
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3 b 1
i | (c, +C,) 0 €, +C,
Define
x=eo—b0u, y =e ., u=ei
Then, Equation (1) becomes
X + bgu + a;(x + byu) = by
or
X=-ax- alqu
from which the state equation can be obtained as
‘ 0
J“"R{cl+c)x_ i z " #
21 2 R2(Cl - cz)

Noting that y = e =% + bou. the output equation can be given by

y=X+———u ) (3)

Equations (2) and (3) give a state space representation for the given system.

B-10-5.

Method 1: The system differential equation can be written as
Y + 18y + 192y + 640 y = 1600 + 640u

Comparing this equation with a standard third-order equation:

y+ay+a2y+a3y bu+bu+bu+b3u

we find
al = 18: az = 192; a3 = 640
bo =0, bl =0, b2 = 160, b3 = 640

Referring to Problem A-10-12, we obtain
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» - oYIPL
|“x1 0 3. 0 x1 Pl
x2 = 0 0 i x2 + ﬁz u
=) % % - is] s
2
y=|:1 0 0] %, +P0u
*3
where -
Bo =1y =0
By =Py~ % pg =0

B2 % Nk Nk .

=pb_-a -a - = 640 - 18 x 160 = - 2240
P3 3 lﬁZ ZFI aBPO
Thus, the state equation and output equation are
1 0 1 0 xl 0
;:2 =| 0 0 1 X, [+]| 160 |u
:‘:3 -640 -192 -18 Xy ~2240
%5
Y = [1 0 0] X,
53
Method 2: Referring to Problem A-10-13, Y(s)/U(s) can be written as
Y(s) . 160(s + 4) - Z(s) ¥(s)
U(s) &3 4 1862 + 1925 + 640  U(s) 2(s)
where
Z(s) _ 3 21 - ;(S) = 160(s + 4)
U(s)  g° + 18s° + 1925 + 640 (s)

Then we have
Z + 18z + 192z + 640z = u

160z + 640z = y
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Define

X =2z
X, =2=%
Xy =2= x1=x2
Then
:'c3=-s40z—192é-13}1+u
=-640)Ll-192x2—18x3+u
Also,

Y = 640z + 160z = 640):1 + 160x2

Hence, the state space representation for the system by this approach is

Xy 0 1 0 * 0
J'cz =| 0 0 ;| X, |[+]0 [u
x3 -640 -192 -18 x3 1
*y
Yy = [640 160 0] x2
i
B-10-6. The equations for the circuit are
di
1 1 1 .
Ryi, +— \i,dt +L, —=—=— \|i, dt
2 7 § € g 1 1 Gt c, g 2
L, L+
2 ) 17L
or
1 . % C, Cz Pz
Rjq, + ey el T e, 92 4 iz
AAAAA—~ L
1 2 * = R
——é—z—qz"'gthl"’qz) =0 ]

Substitution of q =X 61 =Xy q, =X, into the last two equations yields
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Hence we have

e
e L 2 1
X, =i (L x -RX, + - x)
Ll Cl x1 1x2 c2 x3
I 1
X == (--sz2 - —=x_)
3 R2 c2 |
or
il-.‘-l 'l -r' -
X, 0 1 0 Xy
o P AR S T
2|1 " | L.c f. LG
2 o | ;! 372
2 1
0 -1 -t
e | RCa 4l 3.

B-10-7. A partial-fraction expansion of Y(s)/U(s) gives

Yis) 5 5 o5

U(s) (e 1}2 s +1 s + 2

Define

X (8) = U(s)

1 (s + 1)2
) = 7 o)
» SNl

X3(8) = 255 Ule)
Notice that

B oL Y

xz(g) 8 +1

Then, from the preceding equations for xl(s), xz(s). and x3(s) we obtain

sxl(s) = - xl(s) + xz(s)
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sX,(s) = - X,(s) + U(s)

sx3(s) = -2 x3(s) + U(s)

Y(s) =5 xl(s) -5 Xz(s) + 5 x3(s)

By taking the inverse Laplace transforms of the last four equations, we get

X,
*2

*3

=

Sy Ty
-X2+11

-2x +u
3

y=5x1-5x2+5x3

In the standard state space représentation, we have

-1 3 0 )

=] 0 -1 0 X,
0 0 -2 ||x3
o |
[5 = 5] )
23

B-10-8. The equations for the system are

].(1=x2+u

*2

e

3

Y

Notice that from Equations

*3

=X, TH
3

=X = 3%, +3x3+u
=x1
(1) and (2)

EX R A% ~B-D
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Also, from Equation (3)

;(3 X, - 3(331 - u) +3(:'r?—u)_+u

X = 3(%; - u) +3(X -0 -u)+u (5)

Thus, equating Equations (4) and (5) and simplifying, we obtain

x1—3x1+3x1—x1=u-2u+u

Substituting x; = y into this last equation, we get

Y -3y+3 ~y=u-20+u

[The same result can be obtained by use of Equation (10-51).]

B-10-9. The eigenvector X; associated with an eigenvalue )\i is a vector
that satisfies the following equation:

a3 42 || *i1 X1
- =Ai
s 92 11512 Xi2
or
3),%y Y%, T Ay Xy,

Bo1%iy ¥ A% Ag Xy
which can be rewritten as

(@, = Apdxg) = -2,

(g = Ag)xy, = = ayXy,
For A\ i = )\l

a
B 12

e
11 a;; - A 12

An example of eigenvectors corresponding to eigenvalue A 5 is

a
P
T 11" A

X12 i
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For /\i = )\2

a
21
Ky = = ——— x
22 = 21
322 ,\2 :

An example of eigenvectors corresponding to eigenvalue )\ , is

| = N -
.Y
*21 e
21
1
..x22..a . -4
B-10-10. Define
Xy 1 0
E =10 Al 0
! 0 0 )‘1J

The eigenvect{ors for this matrix can be determined by solving the following
equation for X.

BX = A%
or
- EST- = s
)\1 1 0 x]_ *y
0 }\l 0 L0 Ui )\1 %9
! 0 0 Al- anj _x3_

which can be rewritten as
A Xy + X = Agx)
AXp = A%

A3 = A%

which, in turn, gives
X. = arbitrary constant

x2=0

X4 = arbitrary constant
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a
x=/0
b..
vhere a and b are arbitrary nonzero constant. Notice that
e * i
Ol =a |o|l+b|o
i 0} 1
Note that -
1] 0 K
0], 13y 0
0 ; 0 | 1

are linearly independent vectors. The eigenvectors of matrix B involve two
linearly independent eigenvectors. =2

Next, define
Ay 0 0
RS L Ay 008
0 0 Ay

The eigenvectors for this matrix can be determined by solving the following
equation for X.

or

_0 0 Ald x3 -x3d

which can be rewritten as

Arx, = A Xy

A¥o = A%
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A1¥3 = A3

from which we obtain

X, = arbitrary constant
X, = arbitrary constant
X3 = arbitrary constant

Hence,
a
x = b
c

where a, b, and c are arbitrary nonzero constant. Notice that

a I 0 0
bl =23 O]+b J1]+¢c]O
c 0 0 1

Thus, the eigenvectors of matrix C involve three linearly independent eigen-
vectors.

=10~11. -
B-10-11 Y(s) 25.04s + 5.008

U(s) s3 + 5.03247s2 + 25.1026s + 5.008

A MATLIAB program to obtain a state-space representation of this system is
given on next page. Based on the MATLAB output we get the following
state space equations:

X1 -5.0325 -25.1026 -5.008]|| x; 1

xp|=1]1 0 0 xp| +|0|u

x3 0 1 0 x3 0
X1

y=1[0 25.04 5.008] | x7| + [0]u

X3
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num=[0 0 2504 5.008];
den=[1 503247 25.1026 5.008];
[A,B,C,D] = tf2ss(num,den)

A=
-5.0325 -25.1026 -5.0080

1.0000 0 0
0 1.0000 0

0 25.0400 5.0080

B-10-12. Referring to Equation (10-51), we have

X(s) _ s) =c(sI -A)2B +D
U(s) -
s -1 o |-1 o
= [1 0 OJ 0 s -1 10| +0
600 100 s + 10 0
s2+ 10s + 100 s+10 1
= [1 0 OJ - 600 s2+10s s
s3 + 1(}52 + 100s + 600 2
- 600s - 100s - 600 s
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[s2 + 10s + 100 s + 10 1]
3 > 10
s~ + 10s™ + 100s + 600

0
Thus
Y(s) = 10(s + 10)
(s} $34 10s2+100s + 600
B-10-13.
= ¥ s + 2 1 11
et = [, [(s1 - A)71) = [”
-2 s+ 5
5 s+ 5 -1
- % 1 :
sz+75+12
2 s + 2
s +5 =1
(s + 3)(s + 4) (s + 3)(s + 4)
=L‘1
2 g+ 2
(s + 3)(s + 4) (84-3)(s+4).'J
P stk i |
s+3 s+ 4 s+ 3 s +4
- [)‘1
ey T e
s+3 s+ 4 s + 3 s +4
2 &3t 278t = e'3t + 2 e_4t’
B-10-14.

et = I [(s1 - 7]
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-1 3
where
s -1 0 -1
0 s -1
-1 3 s -3
s -1
3 s -3
2 1 i 0 -1
s(s - 3) =1 + 3s| |2 s - 3
0 s
-1 3
s2 -3s + 3 s -3
= 1 3 d: S(S - 3)
(s - 1)
s -(3s8 - 1)
s2-3s + 3 s - 3
(s - 1)° =1
= 1 sgs — 3!
(s - 1)° (s - 1)°
s - 35 + 1
(5-1)3 (8-1)3

171
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-

T (R 3 . a3 1
s-1 (s-1)2 (s-1)3 (s-12 (s-1)3 (s-1)°
= —'l'-—- 1 = 1 - z 1 +-—L..
(s-1)3 s-1 (s-102 (s-1)3 (s-1)2 (s-1)3
e SO | Ll B A leD B P |
(s-12 (s-1)3 (s-102 (s-1)3 s-1 (s-1)2 (s-1)3 J
Noting that
=
=1
0C 3 ]= et
| & = 1
éC -1 [ 3 = tet’
(s - 1)?
=% .
L . ! == Ll 2
(s - 1) 2
we obtain
s -1 0 B
et DC,_I 0 s =%
-1 3 s -3
et - teb 4+ L t2et teb - t2%t 5 t2et
= y tet et - teb - 2t teb + & £2%t
tet + L t2et - 3tet - tZet et + 2te® + 5 tzet‘J

B-10-15. The solution of the state equation is
o =

x(t) = edx(0) + S At =T) py(r) a7

0
Since £(0) =0 and u(t) = 1(t), we obtain

fn
x(t) =5 eAlt -T) B

Note that ¥

172

arT


www.mohandesyar.com

where

Hence

2 = X 7M(s1 -0

(sT - a)~t =
- L)

l

s+ 5

(s + 2)(s +

-6

(s + 2)(s +

0

-2 e

173

=1 s+5
ol ¥
s£+55+6
-6
1 —
3) (s + 2)(s + 3)
s
3) (s + 2)(s + 3)
I i
3 s+2 s+3
L 3
3 s+2+s+3
-2t _ -3t
_2e2t+39_3t

+ 3 e

t t 0
x(t) =‘g ehlt -a) BdAT = eht S AT aT

S
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-
6

Alternate solution Referring to Example 10-9, we have for the unit-step
input the following solution:

x(t) = e2" x(0) + A1ed® - 1)B
Since 5{0) = 0 in the present case, we have

x(t) = aeR - 1B

where
e (R (IR R S
0 1 2 g
At - -
-6 -5 1 0
and
3.2 _ 5 3 o2t _ -3t
et =
B2t g2t 22t 373t
Thus,
(3626 _ 53t Tz g™ 0
(e}—\t - £)B =
setiget B T P
.
o2t _ -3t
et 36
and x(t) is given by
5 1 -2t _ -3t
T T -
x(t) =
1 0 =9 et s 359 _ g
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I _ 1 =2 . 3 =3
i gy e i

B-10-16. The solution to the state eguation when u( 7¥) = T can be given by

t
x(t) = eXfx(0) + 5 eAlt -7) praT
0

t
= eAbtx(0) + eﬁtj e 2T raTs
0
Note that
LG . RER ik S T 10 G e
je-h rdT = (I-—&"(+-2—,-‘A"T ——é—.-é‘T' +——4'&’T +e-)rdT
© :? 2A 3a2 4p3 524 .
=Eog? M3y 4 5,2 64...
2 : 41 51 y E
Hence
22 3p2 4
x(t) =e‘.zitx(0) + At = tz__-t3+Lt4 _Lts_'_,._ B
-~ 3! 4! 51 o
2 3 4 5
A 2A 3A 4aA
= 5"'5(0)+A‘2e“(—r—t2——;~“'—t3+-—:'—t4--—"-"'—t5+...)13

e'x(0) + A7%RHT - (1 - At + 2+ 222 - L= a3:3

5\_41-,4 +ees)(I + AL)] ..B_

-

+

1N

= Aty (0) + a~2eBt1 - e‘ét(i +2at)] B

»

eé.tg_c(O) + &"z[eét -I-2t]lB

e2tx(0) + [5”2(.95"- =7 -{11:] B

e Ay

B-10-17. The equation of motion for the system is
my = b(d - y) - ky

or - - -

my + by + ky = bu

By substituting the given numerical values for m, b, and k into this last
equation, we obtain

2 + 2y +y = 20
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or
y +y+ 0.5y =u (1)

vwhere u is the input and y is the output.
By taking the Laplace transform of Equation (1), assuming the zero
initial conditions, we have

(s2 + s + 0.5)¥(s) = sU(s)
or
Y(s) _ s

U(s) s2+s+ 0.5 (2)

Since the input u(t) is specified as a step displacement of 0.5 m, we have
u = 0.5 1(+&)
With this input, Equation (2) can be rewritten as

Y(s) = s 0.5 . 0.5s 1
s2+s+0.5 S s2+g5+0.5 S

The following MATLAB program will generate the desired response. The
resulting response curve is shown below.

num=[0 05 0]

den=[1 1 0.5];

step(num,den)

grid

title('Step Response (Problem B-10-17)")
xlabel('t Sec')

ylabel('y(t)")

Slep Response (Problem B-10-17)

0.35

a3

0.25)- -

0.2

£ o015}

0.1

0.05)f - -
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Note that the response reaches zero as t increases.

This is because the

transfer function Y(s)/U(s) given by Equation (2) involves s in the nume-

rator.

B-10-18.

Unit-step response:

response of the given system.

shown below.

The following MATLAB program yields the unit-step

A=[-5.03247 -25.1026 -5.008

1 0 0
0 1 0];
B =[1,0;0];,
C=[0 2504 5.008];
D = [0];
[y,x,t] = step(A,B,C,D);
plot(t,y)

grid
title('Unit-Step Response (Problem B-10-18))
xlabel('t sec')

ylabel("Output y(t)")

Unit-Step Response (Problem B-10-18)

The resulting unit-step response curve is

1.4

12

Output y{t)
< o
o @

04|

02

Unit-ramp response:

unit-ramp response of the system by entering a MATLAB P
to MATLAB Program 10-7 into the computer. Note that

10

Referring to pages 596 - 599, we can obtain the
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pe —
-5.03247 -25.1026 -5.008 0
d 0 0 0
AA =
0 1 0 0
0 25.04 5.008 0
- : 0
i
Sl
A I = [A zeros(2,1); C 0]
¥ NP
[0 25.04 5.008 | ©
-l_ =
0 B
BB = =
0 =
l—o—i .Oﬂi

cc = [0 25.04 5.008 0] = [c 0]

DD = [0]

X4 is the output of the system and is the unit-ramp response. The follow-
ing MATLAB program produces the unit-ramp response. The resulting res-
ponse curve is shown on next page.

A=[-5.03247 -25.1026 -5.008

1 0 0
0 1 0],

B =[1;0,0];

C=[0 2504 5.008];

D =[0],

AA=[A zeros(3,1);,C O];

BB = [B:0];

cc=[C 0];

DD = [0];

t=0:0.01:5;

[zx,t] = step(AA,BB,CCDD, 1,¢1),

x4=[0 0 0 I1]*

plot(t,x4,t,t)

grid

title('Unit-Ramp Response (Problem B-10-18))
xlabel('t Sec")

ylabel('Input and Output’)
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Input and Oulput
s N - a
e wm n w w o r, o P

/|

w
aUI
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CHAPTER 11

B-11-1. Since

sin(WkKT + 8) = sinwWkT cos O + cos &l kT sin ©
we obtain

Z[x(k‘l‘)] = cos 0 Z [sin&)kT] + sin @ Z' [cosw kT]

T 2} sinwT .
1 -2z coswT + 2~
1 -2z} coswT

+ sin © ——= 5

1-22" coswT + 2

(cos 8)z" (sinwT) + (sin 8)(1 - 271 coswT)
1 - 2271 coswT + z % '

- _sin 6 + z7! sin(@T - 8)

1-2271 cos&)T + 2"2

B-11-2. =
e x (mz® 2% x,(hr)e
m= 1 h=0 2

xl(z)xz(z)

-]
2 x (ur)x.(hr)z"® + D)
0 h=0 1 2

By defining m = k - h, we obtain

Xl(z)xztz} Z. Z x(k‘I‘ hT)x (h'I‘)z

k=h h=
(-]
Since x (xT - hT) 0 for k< h, the limit of summation in 2 can be
k=h
changed to Z Thus
k=20
X, (2)X(z) = Z. Z’ X (KT - hT)x_(hT)z X (1)
1 2 = 1 2
k=0 hs=
Also,
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X(z) = 21 x(kT)z X
g (2)

Since X(z) = xl(z)xz(z), by comparing Equations (1) and (2), we obtain

oo k
x(kT) = Z X1 (KT - hT)x5(hT) = hz x3 (kT - hT)x(hT)
= =0
B-11-3
Z; [x(k)] = X(2) = 0.2z"1 + 0.4272 + 0.62~3 + 0.8z~4
+22420 4274 ...
=0.2z71 + 0.42“2 + 0.62“3 + 0.82"‘1
+zP1+zl+ 2724 .. .)
=] -2 =3 -4 >
=022 " # 0.427° + 0,627 + 0.827 # ——t
-1 g2
_ (z7! + Zg"z + 3£‘3 + 4274 )(1 - z"l) 2 522
5(1 - z71) 5(1 - z7 1)
. z—l + z-2 ¥ z-3 + z——4 ¥ 3-5
5(1 - z71)
_zia - 2_5[
S(l =5 z-l)z ’
B-11-4.
L Ix(x)) = 7 12X+ Z [3k] + 7 [1]
— 1 & 3§-1 1 1
1-221 (1-2z1)2 1-27
- -2 w7
(1-2z71)(1 - z71)2
B-11-5. =
() 2 %(0)] = 7 (e x0m)] = 25 e Mx(km)z™
k=0
[--J

2, x(KT)(2e3T)~K = x(zeaT)
k=0
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(b) Consider
[--]

x(z) = 2 x(kT)zK
k=0

Differentiating X(z) with respect to z, we obtain

]
Lx@) = 2 (a0x(en)zRl
o k=0

Multiplying both sides of the last equation by -Tz gives
©0

1z 4 x(2) = 2 (kDx(en)z*
= k=0

Thus we have

"

Zo (RDx(kT)z™ = 7 [KT x(k1)] = 7 [t x(t)]

K
= -1z -9 X(2)
dz
B-11-6.
X(z) _ Q-e*)z . 3 | o
% (z-1)(z ~e2T)y z-1 z._g°r
Hence
x(z) = 4 - _E:£Z_
z-1 ,_gaT
- 7 e_aT

1-271 l-e 2

The inverse z transform of X(z) gives

x(k) =1 - e-aTe-ak‘I‘

=1 - e=aT(1 + k)

B-11-7. X(z) can be rewritten as

X(z) = g
(z - 1)z - 2)
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S e — - — 4
8 (z - 1)2(2 - 2) (z - 1)2 z-1 z-2
or
-1
X(z) = - £ = ¢ S 1
1<sx) 1-zt 12272
Hence
X(kJ'—'—k-1+2k k=0'l'2p - e
B-11-8B. Since
=T
X(Z)= (1-—-& ]Z_;I_‘__
(z-1)(z-e ")
we have
T MO 0 ) o (SR
z (z-1)(z-e7) 2zZ-1 5_gT
or
z-1 Z-e 1-—2-1 l-e_Tz—l
Thus
x(k) =1 - e KT K20, 15 25 «se

B-11-9. Referring to Table 11-1, we find

7,0ty - £+ ae )

(1 - az™1)3
By writing el = a, we obtain
X(z) =2t __ __afel _ arlQaeel-apgl)
-1 -1,3 =133 13
(L -e "z ) (1L - az ) (1 -az ")
_2% 1 +az7l)  a%el(azt+1-1)
(1 -az1)3 (1 - az t)3
_ 332—1(1 ‘i__gz“"l) = a3§-1 _ a—3_z"1
(1 - az™1)3 (1 - az™1)? (1= az-l)3
Hence we have
2a3z71 3 a3z'1§; + gg‘l) o gzg_l
(1 — az-l)a (1 " az—l)B (1 - 32—1)2
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Taking the inverse z transform of each term of this last equation, we obtain
2x(k) = a k%1 + adka" -

Hence
ak+2

%
x(k) = 2= (kZaKL 4 kak-1) = k(k + 1)

Since a = e'l, we have

-2
e

2

x(k) = k(k + 1) k = 0' l.r 2: “e

B-11-10. The z transform of the given difference equation becomes

P, Sl
(1.- 2 3)2
Substituting the initial data into this last equation, we get

[2%X(z) - 22x(0) - zx(1)] + 2[zX(z) - zx(0)] + X(z) =

(22 + 2z + 1)X(2) = %

(z - 1)2
or
X(z) = 2
(z + 1)%(z - 1)°
Hence
X(z) _ 1 =_0.25 025 . 0.25 . _0.25
2 2 2 z4+1 2 za=1
= (z +1)%(z -1)° (z+1) (z - 1)
or
0.252 + 0.25 0.252 % 0.25
R e e T iy
(L +27) 1+2 (L -2) 1 =%

" The inverse z transform of X(z) gives

Cx(k) = 0.25 k(1) + 0.25(-1)¥ + 0.25 k - 0.25

= 0.25 [k(-l)k_l + (-1)k + k -1] k=0, 1, 2, ous

B-11~11. If a # 0, then
x(1) =x(0) +1 =1
x(2) =x(1) +a=1+a

x(3)=x(2)+az=1+a+az
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x(4)=x(3)+a3=1+a+a2+a3
) 2 k-1 _1 -aFf
x(k) =1 +a+a“+-.-+a =1 (a #1, a #0)
-a
= (a =%)
If a = 0, then
x(k) =0 K =By 3y 2y sea (a =0)

B-11-12. The pulse transfer function for Gp(s) including the zero-order
hold is obtained as follows:

s (s + 1)(s + 2)
=(1-z71) 5 e
‘ ZJ [s(s +1)(s + 2)
-1 s 2 0.5
A=) EC [ s s+1 i s + 2]

(l = Z-l) 1-5 - 2 + 0-5
1-21 1-eTz1l 3.2 %

2T

_Y@_zc(z)zz[l_e-m 543 ]

_ f1.5:=26°T + 05672 )g = a= (1. 50 0r = Ju - #.058)
(z - e )z - &™)
B-11-13. The pulse transfer function for the system can be rewritten as

Y(z) . z + 2
u(z) 22 + 2z + 0.16

or

(z2 + z + 0.16)Y(2) = (z + 2)U(2)

The inverse z transform of this last equation gives

yk + 2) + y(k + 1) + 0.16 y(k) = u(k + 1) + 2 u(k)
Comparing this difference equation with the standard second-order difference
equation:
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y(k + 2) + aly(k +1) + azy(k) = bou(k +2) + blu(k +1) + bzu(k)

we find

a1=1, az=0.15, b0=0, b, =1, b, = 2

Define state variables as follows:

xl(k) = y(k) - hou(lt)

xsz) = xl(k +1) - hlu(k)

Also, define
Then the state variables become

x, (k) = y(kx)

xZ(k) = xl(k + 1) - u(k)

Referring to Section 11-6, the state equation for the system can be given by

-xltk s [o o -xl(k)- -hl

= + u(k)
_xz(lc + 1)_ e 2 | _x.z(k)“ )
or
[x, (0 + 1) 0 1] [ %00 1

= + ll(l'[)

x.z(k + 1) -0.16 -1 xz(k) 1

— - — - =

The output equation is

y(k) = [1 | 0]
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Note that a number of different state space representations are possible for
the system. :

B-11-14. From the given transfer function we obtain
y=-ay +u
Define a state variable x as
X=Y

(The input variable is u and the output variable is y.) Then we have the
following continuous-time state equation and output equation:

X=-ax+u
¥ =X
The discretized state equation is obtained as

x((k + 1)T) = 6(T)x(xT) + H(T)u(kT)

where
(1) = AT = o2
T T
H(T) =S- At gt B =S eat gt
0 0
-at |T
2 lo

Hence the discrete-time state space representation for the system is given by
x((k + 1)T) = eTx(kT) + ":T' (1 - e"aT)u(kr)

y(kT) = x(kT)

The pulse transfer function for the discretized system is obtained from
Equation (11-58) as follows:

X2) . pez) =clz1 -6) M+ D
u(z)

(1)(z - ™2T)~1 —;-_ (1 -e3T) +0

AT g -e?M)pt
all - e-aTz-lJ

l=e

a(z - e'aT)
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B-11-15. Referring to Equation (11-58), the pulse transfer function F(z)
is given by

e F(z) = (2I - g}"ly" +D

u(z) - »
z-1 -1 +eT T+eT -1
=[1 0] +0
0 z-eT 1—e"TJ
z-eT 1-t=_-"T-I
o LR |
(z-1)(z-e"") 0 .
T+e T -1
X
1= ey
T+eT -1
= 1 - [z S e"T:I
(z -1)(z-e ") 1 -eT
(z-eT)r+eT-1)+ (1-eT?

1]

(z - 1)(z - e 1)

srre e es]s g_T(1_+ T)
(z - 1)(z - eT)

B-11-16. The discretized state equation is

x((k + 1)T) = 6(T)x(kT) + H(T)u(kT)
where oy Wy e =

T
g(m =&, HT) =(S AT dt)g
0
G(T) and ﬂ(T} can be obtained as follows:

-1
- =1 -] s -1
At = Iltst - )M =] l([o ] }
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a| s s2| |1 t
0 L1 |o 1
s
Hence
1] 0.1
G(T) = G(0.1) = e0-1A =
0 1
Since
£2]0.1
et gt = dt =
0 0 |0 1 0 t o
0.1 0.005
0 0.1
we have
0.1 0 0.1 0.005 0
H(T) = H(0.1) = S Mt at -
wa .
0 1 0 0.1 1
0.005
0.1
Thus, the discrete-time state equation is given by
xl((k + 1)T) 1 0.1 xl(k‘l‘) 0.005
- + ]J(RT}
xz((k + 1)T) 0 1 xz(kT) 0.1
where T = 0.1 s. The output equation is
xI(kfI')
y(kT) = [1 o]
x_ (KT,
2( )

Referring to Equation (11-58), the pulse transfer function for this
discretized system is given by

F(z) = C(2I - G)'H + D
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Z - 1 ﬁ 0.005
= [1 0] (z - 1)

0 1
z -1

0.1

_ 0.005(z + 1) _ 0.005(1 +z7h)zt
(z - 1)2 (1 - 3—1)2

B-11-17. The discretized state equation is

x((k + 1)T) = G(T)x(kT) + H(T)u(kT)
where In
G(T) = T
T
H(T) =(S eht dt) B
0

E(T) and E(T) can be obtained as follows: Since

- L -1 -1
At = s -mty = I [s ]
" -y 4

3 s +
- -
s +4 i
-1 (s + 1)(s + 3) (s +1)(s + 3)
-3 s
(s +1)(s +3) (s +1)(s + 3)
[ qiBen s 0.5 _ 0.5 |
4 s + 1 s + 3 s +1 s + 3
-105 + 1-5 _005 + _1-5
_s+1 s +3 s +1 s+3_
1.5 et - 0.5 e~3t 0.5 et - 0.5 e~3t
-1.5et +1.5e3t _0.5et +1.5e3t
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we have

G(0.2) = e0-23,

22y

[1.5 &70+2 _ .5 ¢=0-6 0.5 €02 _ 9.5 ¢~0-6

&(T)

[-1.5e02 41,506 _g.5¢0:2 ;506

[0.9537 0.1350

-0.4049 0.4139

Also,
0.2 0.2 |1.5 et - 0.5 -3t 0.5 et - 0.5 73t
et gt = . dat
0 0 -1.5 et + 1.5 =3t -0.5 e~t + 1.5 -3t
-1.5(e 02 _ 1) +Q;T5- (e0®_3) _0.5(e0-2_1)+ 0—5-51 (e0-6 _ 1)
— - - » -6
1.5(e 02 _ 1) -1—551(9_‘06 -1) 0572 . ) -13—5 (e 06 _ 1)
0.1967 0.01544
-0.04631  0.1350
Hence X
0.2 0
H(T) = H(0.2) = 2t Gt
0 1
0.1967 0.01544 ||o 0.01544

-0.04631 0.1350 1 0.1350

Thus, the discretized state space representation of the system becomes as
follows:

x ((k +1)7) | [o0.9537  o0.1350] x, (k)| [0.01544
+ u(kT)

x,((k + 1)T) -0.4049  0.4139 [ | x, (kT) 0.1350

xl(k'l‘)-

y(kT) _1 0]
xsz'l‘)

vhere T = 0.2 s.
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Referring to Equation (11-58), the pulse transfer function is obtained
as follows:

X=) _ =1
u(z) = F(z) = E{z.l. - E) H+D
z - 0.9537 -0.1350 |t [0.01544
= [1 0] + 0
z - 0.4139 0.1350 y
5 [é o] > 0.01544
2

2" - 1.3675z + 0.4493| -0.4049 z - 0.9537 | | 0.1350

0.01544z + 0.01183

2% — 1.3675z + 0.4493

. _0.015442"" + 0.01183 272

1 -1.3675 271 + 0.4493 -2

B-11-18 The given system has no input function, but is subjected to
initial conditions. It is similar to free vibrations of a mechanical
system consisting of a mass, damper, and spring.
Consider first the following system:
¥(z) by + byzl + byz2
u(z) 1+ a;z~l + apz—2

a state space representation of the system is

x(k + 1) = 6x(k) + Hu(k)

y(k) = tx(k) + pu(k)

where

-

-y -az
G = » H
1 0

=

H

+ C=1[by ~ajby i by - azbg], D= by

o

Notice that the coefficients by, by, and by affect only matrices C and
D.

Next, consider the case where the system has no input (u = 0).

For such a case, MATLAB produces a pulse transfer function of the following
form:
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Y(z) ‘0 + 0z-1 + 0z—2

u(z) 1+ ajz~l + agz-2

If the original system had an input function u such that
Y #2y+10y = u
MATLAB produces the pulse transfer function

Y(2) 1
u(z) 1+ ajz7l + ayz-2

The following MATLAB program will yield a discrete-time state-space
representation when the sampling period T is 0.1 s. This program will
also yield the pulse transfer function.

num=[0 0 0];

den=[1 2 10]:
[A,B,C,D] = tf2ss(num,den);
[G,H] = c2d(A,B,0.1)

G=

0.7753 -0.8913
0.0891 0.9536
H=

0.0891
0.0046

[numz, denz] = ss2t(G,H,C, D)
numz =

0.0 0

denz =

1.0000 -1.7288 0.8187

Based on the MATLAB output, the discrete-time state equation is
x3(k + 1) 0.7753 -0.8913 xl(k)

x2(k + 1) 0.0891 0.9536 ||x2(k)
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The pulse transfer function obtained from the MATLAB output is

X(z) _ 0 + 0z-1 4+ 0z—2
B (1)

u(z) 1 - 1.7288z-1 + 0.8187z-2

If the original system had an input function u, the numerator becomes
nonzero. The difference equation corresponding to Equation (1) is

y(k + 2) - 1.7288 y(k + 1) + 0.8187 y(k) = 0 (2)
The initial data y(0) and y(1) are given by
y(0) = 1, y(1) = 0.9536
Note that the original differential equation system given by
¥+2y+10y=0, y(0) =1, y(0)=0

has the response curve (free vibration curve) as shown in Figure (a).

Conlinuous-Time System with y(0) = 1 and ydol(0) = 0 (Problem B-11-18)

|
|

l
|

i
a

o
N

Output y(t) of Original Continuous-Time System
Qo

oS
N

o5 Tt s 25 3 35 4 45 6 Figure (a)

The MATLAB program used to obtain this curve is given below.

mm=[1 2 0]
den=[1 2 10]:

step(num,den)

grid

title('Continuous-Time System with y(0) = 1 and ydot(0) = 0 (Problem B-11-18))
xlabel('t Sec') '
ylabel(*Output y(t) of Original Continuous-Time System")
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The response curve (free vibration curve) of the discretized version of
the system given by Equation (2) is shown in Figure (b).

Discretised System with y{0) = 1 and y(1)= 0.9536 (Prob B-11-18)

08_ - sews oo .- e e - — ] —

06} = = b

04| J B e e e s

02 -

Cutput y(k) when Sampling Pariod is 0.1 sec

-]
)

04y P Figure (b)

The MATLAB program used to obtain this curve is given below.

numl =[1 -0.7752 0];

denl =[1 -1.7288 0.8187];

u=[1 zeros(1,50)];

k = 0:50;

y = filter(num1,denl,u);

pIOt(k:Ys'o.’ka$‘"')

grid

title('Discretised System with y(0) = 1 and y(1)= 0.9536 (Prob B-11-18))
xlabel(’k")

ylabel('Output y(k) when Sampling Period is 0.1 sec")

B-11-19.
2 . 2

(s + 1)(s + 2)  s2 + 3s + 2

G(s) =

The pulse transfer function for this system may be obtained by use of
the MATLAB program shown on next page.
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mm=[0 0 2]

den=[1 3 2]

[A,B,C,D] = tf2ss(num,den);
[G,H] = c2d(A,B,0.1);
[numz,denz] = ss2tf{G,H,C,D)

numz =

0 0.0091 0.0082

denz =

1.0000 -1.7236 0.7408

The pulse transfer function obtained here is

numz 0.0091z-1 + 0.0082z-2

G(z)
denz 1 - 1.72362~1 + 0.7408z-2

0.0091z-1 + 0.0082z-2
(1 - 0.9048z-1)(1 - 0.8187z"1)

This result is identical with the pulse transfer function obtained in
Problem A-11-12.

B-11-20. x(k + 2) = x(k + 1) + x(k) x(0) =0, x(1) =1

Taking the z transform of this difference equation, we obtain

z2%(z) - 22x(0) - zx(1) = 2X(z) - zx(0) + X(z)

Hence
(22 -z - 1)X(z) =z
or
z
X(z) = ——
22 -z -1 : i

The Fibonacci series can be generated as the response of X(z) to the
Kronecker delta input, where X(z) is given by Equation (1) and the Kro-
necker delta input u(k) is defined by

u(0)

i

q

u(k) 0 k=1' 2; 3; - =w
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The following MATLAB program will generate the Fibonacci series.

num=[0 1 0]
den=[1 -1 -1];
u=[1 zeros(1,30)];
x = filter(num,den,u)
x =
Columns 1 through 6
0 1 1 2 3 5
Columns 7 through 12
8 13 21 34 55 89
Columns 13 through 18
144 233 377 610 987 1597
Columns 19 through 24
2584 4181 6765 10946 17711 28657

Columns 25 through 30
46368 75025 121393 196418 317811 514229
Column 31

832040

Note that column 1 corresponds to k = 0 and column 31 corresponds to k =
30. Thus, the Fibonacci series is given by

x(0) =0
x(1) =1
x(2) =1
x(3) =ll 2
x(29) = 514229
x(30) = 832040
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B-11-21.
e Y(z) 0.3205z-3 - 0.1885z~4

u(z) 1 - 1.3679z-1 + 0.3679z-2 + 0.3205z-3 - 0.1885z-4

The following MATLAB program will generate a plot of the unit-step response
up to k = 50. The resulting unit-step response is shown below.

num=[0 0 0 03205 -0.1885];
den=[1 -1.3679 03679 03205 -0.1885];
u = ones(1,51);

k = 0:50;

y = filter(num,den,u);

plot(k,y,'o")

v=[0 50 0 1.2]; axis(v)

grid

title("Unit-Step Response (Problem B-11-21)")
xlabel('k")

ylabel('y(k))

Unit-Step Response (Problem B-11-21)

- )OOOO('OOOO(LDDDOUO o0 DTOODOGLODGOUODO@Q

08} & F i T T o e g

04} v | e ST (PRI M

021 I T e B A

B-11-22.
Y(z) 0.5151z-1 - 0.1452z-2 - 0.2963z~3 + 0.0528z~4

U(z) 1 - 1.8528z-1 + 1.5006z~2 - 0.6642z-3 + 0.0528z-4

The following MATLAB program will generate a plot of the unit-ramp response
of the system up to k = 16. (The sampling period is 1 s.) The resulting
plot is shown on next page.

198


www.mohandesyar.com

num=[0 05151 -0.1452 -0.2963 0.0528];
den=[1 -18528 |5906 -0.6642 0.0528];
k=0:16;

x=[k]; L
y = filter(num,den,x);

plot(k,y,'o k,y, ' k.k,'-")

grid

title('Unit-Ramp Response (Problem B-11-22)")
xlabel('k")

ylabel('y(k))

Unil-Ramp Response (Problem B-11-22)
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B-11-23. A MATLAB program to discretize the given equation is presented
below. (The sampling period T is 0.05 s.)

A=[0 1 00
20601 0 0 0
0 0 0 1
04905 0 0 0]

B =[0;-1;0,0.5];
[G,H] = c2d(A,B,0.05)

This I%TLAB program produces the output as shown on next page.
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G=

1.0259 0.0504
1.0389 1.0259
-0.0006 0.0000
-0.0247 -0.0006

H=

-0.0013
-0.0504
0.0006
0.0250

0 0

0 0
1.0000 0.0500

0 1.0000

From the MATLAB output, the discrete-time state equation is given below.

J"'ll-.-h

POWEREN.IR
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(%06 + 1) [1.0259  0.0504 0 o0 J[xo)] [~0.0013]
x7(k + 1) 1.0389  1.0259 0 0 x2(k) | |-0.0504
+
x3(k + 1) -0.0006 0.0000 1.0000 0.0500 |[x3(k) 0.0006
x4(k + 1) -0.0247 -0.0006 0 1.0000 ||=x4(k) 0.0250
— A - = - L -
The END
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