
xii Preface

circuits except in Chapters 11 and 12. The practical application of digital design will he en
hanced by doing the suggested experiments in Chapter 11 while studying the theory present

ed in the text.
Each chapter has a list of refereuces and a set of problems. Answers to selected problems

appear iu at the end of the book to aid the student and to help the independent reader. A solu
tions manual is available for the instructor from the publisher.

I would like to thauk Charles Kime for iutroducing me to Verilog. My greatest thanks go to
Jack Levine for guiding me arid checking the sections, examples, and problem solutions to all
Verilog HDL materiaL Thanks go to Tom Robbins for helping me decide to write the third edi
tion and my editor Eric Frauk for his patience throughout the revision. Appreciation goes to Gary
Covington and Donna Mitchell for providing the CD-ROM from SynaptiCad. Thanks also to
those who reviewed the third edition: Thomas G. Johnson, California State University; Umit
Uyar, City University ofNew York; Thomas L. Drake, Clemson University; and Richard Molyet,
University of Toledo. Finally, I am grateful to my wife Sandra for encouraging me to pursue

this project.

M. MORRIS MANa

Binary Systems

1-1 DIGITAL SYSTEMS

Digital systems have such a prominent role in everyday life that we refer to the present tech
nological period as the digital age. Digital systems are used in communication, business trans
actions, traffic control, space guidance, medical treatment, weather monitoring, the Internet, and
many other commercial, industrial, and scientific enterprises. We have digital telephones, dig
ital television, digital versatile discs, digital cameras, and of course, digital computers. The
most striking property of the digital computer is its generality. It can follow a sequence of in
structions, called a program, that operates on given data. The user can specify and change the
program or the data according to the specific need. Because of this flexibility, general-purpose
digital computers can perform a variety of information processing tasks that range over a wide
spectrum of applications.

One characteristic of digital systems is their ability to manipulate discrete elements of in
formation. Any s'etthat is restricted to a finite number of elements contains discrete infonna
tion. Examples of discrete sets are the 10 decimal digits, the 26 letters of the alphabet, the 52
playing cards, and the 64 squares of a chessboard. Early digital computers were used for nu
meric computations. In this case, the discrete elements used were the digits. From this appli
cation, the term digital computer emerged. Discrete elements of information are represented
in a digital system by physical quantities called signals. Electrical siguals such as voltages and
currents are the most common. Electronic devices called transistors predominate in the cir
cuitry that implements these signals. The signals in most present-day electronic digital sys
tems use just two discrete values and are therefore said to be binary. A binary digit, called a
bit, has two values: 0 and 1. Discrete elements of information are represented with groups of
bits called binary codes. For example, the decimal digits 0 through 9 are represented in a dig
ital system with a code of four bits. By p,sing various techniques, groups of bits can be made

1

2 Chapter 1 Binary Systems Section 1-2 Binary Numbers 3

to represent discrete symbols, which are then used to develop the system in a digital format.
Thus, a digital system is a system that manipulates discrete elements of information that is
represented internally in binary form.

Discrete quantities of information either emerge from the nature of the data being processed
or may be quantized from a continuous process. For example, a payroll schedule is an inher
ently cliscrete process that contains employee names, social security numbers, weekly salaries,
income taxes, and so on. An employee's paycheck is processed using discrete data values such
as letters of the alphabet (names), digits (salary), and special symbols (such as $). On the other
hand, a research scientist may observe a continuous process, but record only specific quanti
ties in tabular form. The scientist is thus quantizing his continuous data, making each number
in his table a discrete quantity. In many cases, the quantization of a process can be performed
automatically by an analog-to-digital converter.

The general-purpose digital computer is the best-known example of a digital system. The
major parts of a computer are a memory unit, a central processing unit, and input-output units.
The memory unit stores programs as well as input, output, and intermediate data. The central
processing unit perlonns arithmetic and other data processing operations as specified by the pro
gram. The program and data prepared by a user are transferred into memory by means of an
input device such as a keyboard~ An output device, such as a printer, receives the results of the
computations and the printed results are presented to the user. A digital computer can accom
modate many input and output devices. One very useful device is a communication unit that
provides interaction with other users through the Internet. A digital computer is a powerful in
strument andean penorm not only arithmetic computations, but also logical operations. In ad
dition, it can be programmed to make decisions based on internal and external conditions.

There are fundamental reasons why commercial products are made with digital circuits.
Like a digital computer, most digital devices are programmable. By changing the program in
a programmable device, the same underlying hardware can be' used for many different appli
cations; Dramatic cost reductions in digital devices have come about because of the advances
in digital integrated circuit technology. As the number of transistors that can be put on a piece
of silicon increases to produce complex functions, the cost per unit decreases and digital de
vices can be bought at an increasingly reduced price. Equipment built with digital integrated
circuits can perform at a speed of hundreds of millions of operations per second. Digital sys
tems can be made to operate with extreme reliability by using error-correcting codes. An ex
ample of this is the digital versatile disk (DVD) in which digital information representing video,
audio, and other data is recorded without a loss of a single item. Digital information on a DVD
is recorded in such a way that by examining the code in each digital sample before it is played
back, any error can be automatically identified and corrected.

A digital system is an interconnection of digital modules. To understand the operation of each
digital module, it is necessary to have a basic knowledge of digital circuits and their logical func
tion. The first seven chapters of this book present the basic tools of digital design such as logic
gate structures, combinational and sequential circuits, and programmable logic devices. Chap
ter 8 introduces digital design at the register transfer level (RTL). Chapters 9 and 10 deal with
asynchronous sequential circuits and the various integrated digital logic families. Chapters II
and 12 introduce commercial integrated circuits and show how they can be connected in the
laboratory to perform experiments with digital circuits.

1-2

An important trend in digital design is the use of hardware description language (HDL).
HDL resembles a programming language and is suitable for describing digital circuits in tex
tual form. It is used to simulate a digital system to verify its operation before hardware is built
in. It is also used in conjunction with logic synthesis tools to automate the design. HDL de
scriptions of digital circuits are presented throughout the book.

As previously stated, digital systems manipulate discrete quantities of information that are
represented in binary form. Operands used for calculations may be expressed in the binary
number system. Other discrete elements, including the decimal digits, are represented in binary
codes. Data processing is carried out by means of binary logic elements using binary signals.
Quantities are stored in binary storage elements. The purpose of this chapter is to introduce the
various binary concepts as a frame of reference for further study in the succeeding chapters.

BINARY NUMBERS

A decimal number such as 7,392 represents a quantity equal to 7 thousands plus 3 hundreds,
plus 9 tens, plus 2 units. The thousands, hundreds, etc. are powers of 10 implied by the posi
tion of the coefficients. To be more exact, 7,392 should be written as

7 X 103 + 3 X 10' + 9 X 10' + 2 X 100

However, the convention is to write only the coefficients and from their position deduce the
necessary powers of 10. In general, a number with a decimal point is represented by a series
of coefficients as follows:

The aj coefficients are any of the 10 digits (0, I, 2, ... ,9), and the subscript valuejgives the
place value and, hence, the power of 10 by which the coefficient must be multiplied. This can
be expressed as

10'a, + lO'a, + 103a3 + lO'a, + lO'a, + 100aD + lO- l a_1 + lO-'a_, + 1O-3a_3

The decimal number system is said to be of base, or radix, 10 because it uses 10 digits and
the coefficients are multiplied by powers of 10. The binary system is a different number sys
tem. The coefficients of the binary numbers system have only two possible values: 0 or I. Each
coefficient aj is multiplied by 2J For example, the decimal equivalent of the binary number
IIOlO.11 is 26.75, as shown from the multiplication of the coefficients by powers of2:

I X 24 + I X 23 + 0 X 2' + I X 21 + 0 X 2° + I X T 1 + I X T 2 = 26.75

In general, a number expressed in a base-r system has coefficients multiplied by powers of r:

all· rll + all-I· rll - 1 + ... + a2 . r 2 + al . r + ao + a~l . r- l + a-2 . r~2 + ... + a_m • r-m

The coefficients aj range in value from ato r - 1. To distinguish between numbers of differ
ent bases, we enclose the coefficients in parentheses and write a subscript equal to the base used
(except sometimes for decimal numbers, where the content makes it obvious that it is deci
mal). An example of a base-5 number is

Chapter 1 Binary Systems Section 1-3 Number Base Conversions 5

1-3 NUMBER BASE CONVERSIONS

r-allowable digits. Examples of addition, subtraction, and multiplication of two binary num
bers are as follows:

Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20 and a
remainder of!. The quotient is again divided by 2 to give a new quotient and remainder. This
process is continued until the integer quotient becomes o. The coefficients of the desired bina
ry number are obtained from the remainders as follows:

1011

X 101

1011

0000

1011
110111

multiplicand:

multiplier:

101101

-100111

000110

minuend:

subtrahend:

difference:

101101

+100111

1010100

Integer
Quotient Remainder Coefficient

41/2 = 20 +
,

ao = 1,
20/2 = 10 + 0 al = 0

10/2 = 5 + 0 Q2 = 0

5/2 = 2 +
,

a3 = 1'2

2/2 = 1 + 0 a4 = 0

1/2 = 0 + 1 as = 12

Therefore, the answer is (41) 10 = (a,a4a3aZa,aO)2 = (101001)2

augend:

addend:

sum:

The conversion of a number in base r to decimal is done by expanding the number in a power
series and adding an the terms as shown previously. We now present a general procedure for
the reverse operation of converting a decimal number to a number in base r. If the number in
cludes a radix point, it is necessary to separate the number into an integer part and a fraction
part, since each part must be converted differently. The conversion of a decimal integer to a
number in base r is done by dividing the number and all successive quotients by r and accu
mulating fhe remainders. This procedure is best illustrated by example.

product:

The sum oftwo binary numbers is calculated by the same rules as in decimal, except that
fhe digits of fhe sum in any significant position can be only 0 or 1. Any carry obtained in a given
significant position is used by the pair of digits one significant position higher. The subtraction
is slightly more complicated. The rules are still the same as in decimal, except that the borrow
in a given significant position adds 2 to a minuend digit. (A borrow in the decimal system adds
10 to a minuend digit.) Multiplication is very simple. The multiplier digits are always 1 or O.
Therefore, tbe partial products are equal either to the multiplicand or to O.

Table 1-1
Powers of Two

n 2" n 2" n 2"

0 1 8 256 16 65,536
1 2 9 512 17 131,072
2 4 to 1,024 18 262,144
3 8 11 2,048 19 524,288
4 16 12 4,096 20 1,048,576
5 32 13 8,192 21 2,097,152
6 64 14 16,384 22 4,194,304
7 128 15 32,768 23 8,388,608

(127.4)8 = 1 X 82 + 2 X 8' + 7 X 8° + 4 X 8-' = (87.5)10

Note that the digits 8 and 9 cannot appear in an octal number.
It is customary to borrow the needed r digits for the coefficients from the decimal system

when the base of the number is less than 10. The letters of the alphabet are used to supplement
the 10 decimal digits when the base of the number is greater than 10. For example, in the hexa
decimal (base 16) number system, the first ten digits are borrowed from fhe decimal system.
The letters A, B, C, D, E, and F are used for digits 10, 11, 12, 13, 14, and 15, respectively. An
example of a hexadecimal number is

(B65F)16 = 11 X 163 + 6 X 162 + 5 X 16' + 15 X 16° = (46,687)111

As noted before, the digits in a binary number are called bits. Wheu a bit is equal to 0, it does
not contribute to the sum during the conversion. Therefore, the conversion from binary to dec
imal can be obtained by adding the numbers with powers of two corresponding to the bits that
are equal to 1. For example,

(110101)2 = 32 + 16 + 4 + 1 = (53)10

There are four 1'8 in the binary number. The corresponding decimal number is the sum of the
four powers of two numbers. The first 24 numbers obtained from 2 to the power of n are list
ed in Table 1-1. In computer work, 210 is referred to as K(kilo), 220 as M(mega), 230 as G(giga),
and 240 as T(tera). Thus 4K = 212 = 4096 and 16M, = 224 = 16,777,216. Computer capaci
ty is usually given in bytes. A byte is equal to eight bits and can accommodate one keyboard
character. A computer hard disk with 4 gigabytes of storage has a capacity of 4G = 232 bytes
(approximately 4 billion bytes).

Arithmetic operations with numbers in base r follow the same rules as for decimal numbers.
When a base other than the familiar base lOis used, one must be careful to use only the

(4021.2), = 4 X 53 + 0 X 52 + 2 X 51 + 1 X 5° + 2 X 5-' = (511.4)10

The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal nnmber system is a
base-8 system fhat has eight digits: 0, 1,2,3,4, 5, 6, 7. An example of an octal number is
127.4. To determine its equivalent decimal value, we expand the number in a power series with

a base of 8:

Chapter 1 Binary Systems Section 1-4 Octal arid Hexadecimal Numbers 7

•

•

III 100 000 110 h = (26153.7406)8

7 4 0 6

101 011

5 3

(10 110 001

2 6 1

•

•

0.513 X 8 = 4.104

0.104 X 8 = 0.832

0.832 X 8 = 6.656

0.656 X 8 = 5.248

0.248 X 8 = 1.984

0.984 X 8 = 7.872

To convert a decimal fraction to a number expressed in base r, a similar procedure is used.
Multiplication is by r iustead of 2, and the coefficients found from the integers may range in
value from 0 to r - 1 instead of 0 and 1.

(0.513) 10 = (0.406517 ...)8

The conversion of decimal numbers with both integer and fraction parts is done by con
verting the integer and the fraction separately and then combining the two answers. Using the
results of Examples 1-1 and 1-3, we obtain

Convert (0.513)10 to octal.

The answer, to seven significant figures, is obtained from the integer part of the products

(153.513)10 = (231.406517)8

(41.6875)10 = (101001.1011)2

From Examples 1-2 and 1-4, we have

The conversion from and to binary, octal, aud hexadecimal plays an important role in digital
computers. Since 23 = 8 and 24 = 16, each octal digit corresponds to three binary digits and
each hexadecimal digit corresponds to four binary digits. The fIrst 16 numbers in the decimal,
binary, octal, and hexadecimal number systems are listed in Table 1-2.

The conversion from binary to octal is easily accomplished by partitioning the binary num
ber into groups of three digits each, starting from the binary point and proceeding to the left
and to the right. The corresponding octal digit is then assigned to each group. The following
example illustrates the procedure:

OCTAL AND HEXADECIMAL NUMBERS1-4

1

~ L= (231)8

The conversion of a decimal fraction to binary is accomplished by a method similar to that
used for integers. However, multiplication is used instead of division, and integers are accu
mulated instead of remainders. Again, the method is best explained by example.

Convert (0.6875)10 to binary. First, 0.6875 is multiplied by 2 to give aninteger and a fraction.
The new fraction is multiplied by 2 to give a new integer and a new fraction. This process is
continued until the fraction becomes 0 or until the number of digits have sufficient accuracy.
The coefficients of the binary number are obtained from the integers as follows:

Integer Fraction Coefficient

0.6875 X 2 = 1 + 0.3750 a_1 = 1

0.3750 X 2 = 0 + 0.7500 a-2 = 0

0.7500 X 2 = I + 0.5000 a-3 = 1

0.5000 X 2 = 1 + 0.0000 a_4 = I

Therefore, the answer is (0.6875)10 = (O.a -1 a _2a -3a -4)z = (0.1011)2

The arithmetic process can be manipulated more conveniently as follows:

Integer Remainder

41

20 I

10 0
5 0

2 I

I 0
o 1 101001 = answer

Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give an in
teger quotient of 19 and a remainder of I. Then 19 is divided by 8 to give an integer quotient
of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and a remainder of
2. This process can be conveniently manipulated as follows:

153

19

2

o

The conversion from decimal integers to any base-r system is similar to the example, except
that division is done by r instead of 2.

Conversion from binary to hexadecimal is similar, except that the binary number is divided(
into groups offour digits:

(673.124)8 ~ (110 III 011 001 010 100),

6 7 3 I 2 4

and

(306.D h6 = (0011 0000 0110 1101),

3 0 6 D

The corresponding hexadecimal (or octal) digit for each group of binary digits is easily re
membered after studying the values listed in Table 1-2.

Conversion from octal or hexadecimal to binary is done by reversing the preceding procedure.
Each octal digit is converted to its three-digit binary equivalent. Similarly, each hexadecimal
digit is converted to its four-digit binary equivalent. This is illustrated in the following examples:

Binary numbers are difficult to work with because they require three or four times as many
digits as their decimal equivalent. For example, the binary number Illlllllllll is equiva
lent to decimal 4095. However, digital computers use binary numbers and it is sometimes nec
essary for the human operator or user to communicate directly with the machine by means of
binary numbers. One scheme that retains the binary system in the computer, but reduces the

number of digits the human must consider, utilizes the relationship between the binary num
ber system and the octal or hexadecimal system. By this method, the human thinks in terms of
octal or hexadecimal numbers and performs the required conversion by inspection when direct
communication with the machine is neCessary. Thus the binary number 1lll1l1llll1 has 12
digits and is expressed in octal as 7777 (four digits) or in hexadecimal as FFF (three digits).
During communication between people (about binary numbers in the computer), the octal or
hexadecimal representation is more desirable because it can be expressed more compactly with
a third or a quarter of the number of digits required for the equivalent binary number. Thus, most
computer manuals use either octal or hexadecimal numbers to specify binary quantities. The
choice between them is arbitrary, although hexadecimal tends to win out, since it can represent
a byte with two digits.

1-5 COM P l EMEN TS

Complements are used in digital computers for simplifying the subtraction operation and for
logical manipulation. There are two types of complements for each base-r system: the radix
complement and the diminished radix complement. The first is referred to as the r's comple
ment and the second as the (r - I)'s complement. When the value of the base r is substitut
ed in the name, the two types are referred to as the 2's complement and l's complement for
binary numbers, and the 10's complement and 9's complement for decimal numbers.

Diminished Radix Complement

Given a number N in base r having n digits, the (r - I)'s complement ofN is defined as
(r" - I) - N. For decimal numbers, r = 10 and r - I = 9, so the 9's complement of N is
(10" - I) - N. In this case, 10" represents a number that consists of a single I followed by
nOs. 10" - I is a number represented by n 9s. For example, if n ~ 4, we have 104 = 10,000
and 104

- I = 9999. It follows that the 9's complement of a decimal number is obtained by
subtracting each digit from 9. Some numerical examples follow:

The 9's complement of 546700 is 999999 - 546700 = 453299.

The 9's complement of 012398 is 999999 - 012398 = 987601.

Forbinarynumbers,r = 2andr -1 = I, sathe I's complementofN is (2" -I) - N.
Again, 2" is represented by a binary number that consists of a I followed by nOs. 2" - I is a
binary number represented by n I's. For example, if n = 4, we have 24 ~ (10000), and
24

- I = (llll),. Thus the l's complement of a binary number is obtained by subtracting
each digit from 1. However, when subtracting binary digits from 1, we can have either
I - 0 = I or I - I = 0, which causes the bit to change from 0 to I or from I to O. Therefore,
the I's complement of a binary number is formed by changing I's to O's and O's to I 's. The fol
lowing are some numerical examples:

Section 1-5 Complements 9

The I's complement of 1011000 is 0100111.

The I's complement of 0101101 is 1010010.

0010), = (2C6B.F2)16

2

Illl

F

1011

B

0110

6

1100

C

(10

2

8 Chapter 1 Binary Systems

Table 1-2
Numbers with Different Bases

Decimal Binary Odal Hexadecimal
(base 10) (base 2) (base 8) (base 16)

00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

Chapter 1 Binary Systems Section 1-5 Complements 11

The (r - I)'s complement of octal or hexadecimal numbers is obtained by subtracting each
digit from 7 or F (decimal 15), respectively.

adix Complement

The r's complement of an n-digit number N in base r is defined as rll - N, for N i: 0 and 0
for N = O. Comparing with the (r - I)'s complement, we note that the r's complement is
obtained by adding I to the (r - I)'s complement since r" - N ~ [(r" - I) - N] + 1.
Thus, the lO's complement of decimal 2389 is 7610 + I = 7611 and is obtained by adding I
to the 9's-complement value. The 2's complement of binary 101100 is 010011 + I = 010100
and is obtained by adding I to the I 's-complement value.

Since 10" is a number represented by a I followed by nO's, 10" - N, which is the 10's
complement of N, can be formed also by leaving all least significant O's unchanged, subtract
ing the first nonzero least significant digit from 10, and subtracting all higher significant dig
its from 9.

The lO's complement of 012398 is 987602.

The lO's complement of 246700 is 753300.

The lO's complement of the first number is obtained by snbtracting 8 from 10 in the least sig
nificant position and subtracting all other digits from 9. The lO's complement of the second num
ber is obtained by leaving the two least significant O's unchanged, subtracting 7 from 10, and
snbtracting the other three digits from 9.

Similarly, the 2's complement can be formed by leaving all least significant O's and the first
I unchanged, and replacing I's with O's and O's with I's in all other higher significant digits.

The 2's complement of 1101100 is 0010100.

The 2's complement of 0110111 is 1001001.

The 2's complement of the first nnmber is obtained by leaving the two least significant O's and
the first I unchanged, and then replacing I's with O's and O's with I's in the other four most
significant digits. The 2's complement of the second nnmber is obtained by leaving the least
significant I unchanged and complementing all other digits.

In the previous definitions, it was assumed that the numbers did not have a radix point. If the
original nnmber N contains a radix point, the point should be removed temporarily in order
to form the r's or (r - I)'s complement. The radix point is then restored to the comple
mented number in the same -relative position. It is also worth mentioning that the complement
of the complement restores the number to its original value. The r's complement of N is
rn

- N. The complement of the complement is Til ~ (rn
- N) = N, and is equal to the

original number.

~btraction with Complements

The direct method of snbtraction taught in elementary schools uses the borrow concept. In this
method, we borrow a 1 from a higher significant position when the minuend digit is smaller
than the subtrahend digit. The method works well when people perform subtraction with paper
and pencil. However, when subtraction is implemented with digital hardware, the method is less
efficient than the method that uses complements.

The subtraction of two n-digit unsigned numbers M - N in base r can be done as follows:

1. Add the minuend, M, to the r's complement of the subtrahend, N. This performs
M + (rn

- N) = M - N + r".
2. If M ;0> N, the sum will produce an end cany, r", which can be discarded; what is left is

the result M - N.

3. If M < N, the sum does not produce an end carry and is equal to r" - (N - M), which
is the r's complement of (N - M). To obtain the answer in a familiar form, take the r's
complement of the sum and place a negative sign in front.

The following examples illustrate the procedure:

Using 10's complement, subtract 72532 - 3250.

M = 72532

lO's complement of N = + 96750

Sum = 169282

Discard end carry 105 = -100000

Answer ~ 69282

•
Note that M has 5 digits and N has only 4 digits. Both numbers must have the same number
of digits, so we write N as 03250. Taking the 10's complement of N produces a 9 in the most
significant position. The occurrence of the end carry signifies that M 2 N and that the result
is positive.

Using 10's complement, subtract 3250 - 72532.

M ~ 03250

lO's complement of N ~ + 27468

Sum ~ 30718

There is no end carry.
Therefore, the answer is -(10's complement of 30718) = -69282

•
Note that since 3250 < 72532, the result is negative. Since we are dealing with unsigned

numbers, there is really no way to get an unsigned result for this case. When subtracting with
complements, the negative answer is recognized from the absence of the end carry and the
complemented result. When working with paper and pencil, we can change the answer to a
signed negative number in order-to put itin a familiar form.

. ~

13

10001001

11110110

11110111

Section 1-6 Signed Binary Numbers

signed-magnitude representation:

signed-l 's-complement representation:

signed-2's-complement representation:

In signed-magnitude, -9 is obtained from +9 by changing the sign bit in the leftmost posi
tion from 0 to 1. In signed-I's complement, -9 is obtained by complementing all the bits of

Positive integers (including zero) can be represented as unsigned numbers. However, to rep
resent negative integers, we need a notation for negative values. In ordinary arithmetic, a neg
ative number is indicated by a minus sign and a positive number by a plus sign. Because of
hardware limitations, computers must represent everything with binary digits. It is customary
to represent the sign with a bit placed in the leftmost position of the number. The convention
is to make the sign bit 0 for positive and I for negative.

It is important to realize that both signed and unsigned binary numbers consist of a string of
bits when represented in a computer. The user determines whether the number is signed or un
signed. If the binary number is signed, then the leftmost bit represents the sign and the rest of
the bits represent the number. If the binary number is assumed to be unsigned, then the leftmost
bit is the most significant bit of the number. For example, the string of bits 01001 can be con
sidered as 9 (unsigned binary) or as +9 (signed binary) because the leftmost bit is O. The string
of bit' 1100 I represent the binary equivalent of 25 when considered as an unsigned number or
as -9 when considered as a signed number. This is because the I that is in the leftmost position
designates a negative and the other four bits represent binary 9. Usually, there is no confusion
in identifying the bits if the type of representation for the number is known in advance.

The representation of the signed numbers in the last example is referred to as the signed
magnitude convention. In this notation, the number consists of a magnitude and a symbol (+
or -) or a bit (0 or I) indicating the sign. This is the representation of signed numbers nsed in
ordinary arithmetic. When arithmetic operations are implemented in a computer, .it is more
convenient to use a different system for representing negative numbers, referred to as the signed
complement system. In this system, a negative number is indicated by its complement. Where
as the signed-magnitude system negates a number by changing its sign, the signed-complement
system negates a number by taking its complement. Since positive numbers always start with
o(plus) in the left-most position, the complement will always start with aI, indicating a neg
ative number. The signed-complement system can use either the l's or the 2's complement, but
the 2's complement is the most common.

As an example, consider the number 9 represented in binary with eight bits. +9 is represented
with a sign bit of 0 in the leftmost position, followed by the binary equivalent of9, which gives
00001001. Note that all eight bits must have a value and, therefore, Os are inserted following
the sign bit up to the first 1. Although there is only one way to represent +9, there are three dif
ferent ways to represent -9 with eight bits:

Note that the negative result is obtained by taking the I's complement of the sum since this is
the type of complement used. The procedure with end-around carry is also applicable for sub
tracting unsigned decimal numbers with 9's complement.

SIGNED BINARY NUMBERS1-6

•

•

1000011

0101011

1101110

X=

Y=
I's complement of X = +

Sum =

1010100

I's complement of Y = + 0111100

Sum = 10010000

End-around carry = +__~I

Answer: X - Y = 0010001

(b) Y - X = IQQQQll - 1010100

There is no end carry.
Therefore, the answer is Y - X = -(1's complement of 1101110) = -0010001

There is no end carry.
Therefore, the answer is Y - X = -(2's complement of 1101111) = -0010001

~
Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction
(a) X - Y and (b) Y - X using 2's complements.

(a) X = 1010100

2's complement ofY = + 0111101

Sum = 10010001

Discard end carry 2' = -10000000

Answer: X - Y = 0010001

(b) Y = 1O00011

2's complement of X = + 0101100

Sum = 1101111

Repeat Example 1-7 using I's complement.

(a) X - Y = 1010100 - 1000011

Subtraction with complements is done with binary numbers in a similar manner using the

procedure outlined previously,

Subtraction of unsigned numbers can also be done by means of the (r - I)'s complement.
Remember that the (r - l)'s complement is one less than the r's complement. Because of
this, the result of adding the minuend to the complement of the subtrahend produces a sum that
is 1 less than the correct difference when an end carry occurs. Removing the end carry and
adding 1 to the sum is referred to as an end~around carry.

Chapter 1 Binary Systems

14 Chapter 1 Binary Systems

Table 1-3
Signed Binary Numbers

Signed-2'. Signed-1'. Signed
Decimal complement complement magnitude

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 1111 1000
-1 1111 1110 1001
-2 1110 1101 1010
-3 1101 1100 1011
-4 1100 lOll 1100
-5 1011 1010 1101
-6 1010 1001 1110
-7 1001 1000 1111
-8 1000

+9, including the sign bit. The signed-2's-complement representation of -9 is obtained by tak
ing the 2's complement of the positive number, including the sign bit.

Table 1-3 lists all possible 4-bit signed binary numbers in 1he three representations. The
equivalent decimal number is also shown for reference. Note that the positive numbers in all
three representations are identical and have 0 in the leftmost position. The signed-2's comple
ment system has only one representation for 0, which is always positive. The other two systems
have either a positive 0 or a negative 0, which is something not encountered in ordinary arith
metic. Note that all negative numbers have a I in the leftmost bit position; this is the way we
distinguish them from the positive numbers. With fOUf bits, we can represent 16 binary num
bers. In the signed-magnitude and the 1's complement representations, there are eight positive
numbers and eight negative numbers, including two zeros. In the 2's complement representa
tion, there are eight positive numbers, including one zero and eight negative numbers.

The signed-magnitude system is used in ordinary arithmetic, but is awkward when em
ployed in computer arithmetic because of the separate handling of the sign and the magnitude.
Therefore, the signed-complement is normally used. The l's complement imposes some diffi
culties and is seldom used for arithmetic operations. It is useful as a logical operation since the
change of I to 0 or 0 to I is equivalent to a logical complement operation, as will be shown in
the next chapter. The following discussion of signed binary arithmetic deals exclusively with
the signed-2's-complement representation of negative numbers. The same procedures can be
applied to the signed-I 's-complement system by including the end-around carry as done with
unsigned numbers.

Section 1-6 Signed Binary Numbers 15

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordinary
arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common
sign. If the signs are different, we subtract the smaller magnitude from the larger and give the
result the sign of the larger magnitude. For example, (+25) + (-37) = -(37 - 25) = -12
and is done by subtracting the smaller magnitude 25 from the larger magnitude 37 and using
the sign of 37 for the sign of the result. This is a process that requires the comparison of the signs
and the magnitudes and then performing either addition or subtraction. The same procedure ap
plies to binary numbers in signed-magnitude representation. In contrast, the rule for adding
numbers in the signed-complement system does not require a comparison or subtraction, but
only addition. The procedure is very simple and can be stated as follows for binary nnmbers:

The addition of two signed binary numbers with negative numbers represented in signed
2's-complement form is obtained from the addition of the two numbers, including their sign bits.
A carry out of the sign-bit position is discarded.

Numerical examples for addition follow:

+ 6 00000110 - 6 11111010
+13 00001101 +13 00001101
- -
+19 00010011 + 7 00000111

+ 6 00000110 -6 11111010
-13 llllOOl1 -13 llllOOl1- -
- 7 11111001 -19 11101101

Note that negative numbers must be initially in 2's complement and thatifthe sum obtained
after the addition is negative, it is in 2's-complement form.

In each of the four cases, the operation performed is addition with the sign bit included.
Any carry out of the sign-bit position is discarded, and negative results are automatically in 2's
complement form.

In order to obtain a correct answer, we must ensure that the result has a sufficient number
of bits to accommodate the sum. If we start with two n-bit numbers and the sum occupies
n + I bits, we say that an overflow occurs. When one performs the addition with paper and pen
cil, an overflow is not a problem, becanse we are not limited by the width of the page. We just
add another 0 to a positive number or another 1 to a negative number in the most-significant
position to extend them to n + I bits and then perform the addition. Overflow is a problem in
computers because the number of bits that hold a number is finite, and a result that exceeds the
finite value by I cannot be accommodated.

The complement form of representing negative numbers is unfamiliar to those used to the
signed-magnitude system. To determine the value of a negative number when in signed-2's
complement, it is necessary to convert it to a positive number to place it in a more familiar
form. For example, the signed binary number 11111001 is negative because the leftmost bit is
1. Its 2's complement is 00000111, which is the binary equivalent of +7. We therefore recog
nize the original negative number to be equal to -7.

16 Chapter 1 Binary Systems Section 1-7 Binary Codes 17

Arithmetic Subtraction
Subtraction of two signed binary numbers when negative numbers are in 2's-complement form

is very simple and can be stated as follows: . .
Take the 2's complement of the snhtrahend (including the sign bit) and add It to the mmu-

end (including the sign bit). A cany out of the sign-bit position is discarded. . .
This procedure occurs because a subtraction operation can be changed to a~ additIo~ ope~a

tion if the sign of the subtrahend is changed. This is demonstrated by the followmg relatIOnshIp:

(±A) - (+B) = (±A) + (-B);

(±A) - (-B) = (±A) + (+B).

Bnt chauging a positive number to a negative number is easily done by taking its 2's comple
ment. The reverse is also true because the complement of a negative number in complement form
produces the equivalent positive nnmber. Consider the snbtraction of (-6) - (-:-13) = +7. In
binary with eight bits, this is written as (11111010 - 11110011). The subtractIOn IS changed
to addition by taking the 2's complement of the subtrahend (-13) to gIve (+13). In bmary,
this is 11111010 + 00001101 = 100000111. Removing the end carry, we obtam the correct

answer: 00000111(+7).
It is worth noting that binary numbers in the signed-complement system are added and sub

tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com
puters need only one common hardware circnit to haudle both types of arithmetic. The user or
programmer must interpret the results of such addition or subtraction dIfferently, dependmg on

whether it is assumed that the numbers are signed or unsigned.

1-7 BINARY CODES

Digital systems use signals that have two distinct· values and circuit elements that have tw~

stable states. There is a direct analogy among binary signals, binary circuit elements, and bI
nary digits. A binary number of n digits, for example, may be represented by n binary circuit
elements, each having au output signal equivalent to a or I. Digital systems represent aud ma
nipulate not only binary numbers, but also many other discrete elements of information. A~y
discrete element of information distinct among a group of quantities can be represented WIth
a binary code. The codes must be in binary because computers can only hold I's aud a's. It must
be realized that binary codes merely change the symbols, not the meauing of the elements of
information that they represent. Ifwe inspect the bits of a computer at random, we will find that
most of the time they represent some type of coded information rather than binary numbers.

An n-bit binary code is a group of n bits that assume up to 21ldistinct combinations of 1's
and a's with each combination representing one element of the set that is being coded. A set
of four 'elements cau be coded with two bits, with each element assigned one of the following
bit combinations: 00, 01, 10, II. A set of eight elements requires a 3-bit code aud a set of 16
elements requires a 4-bit code. The bit combination of an n-bit code is determined from the count
in binary from a to 2" ~ 1. Each element must be assigned a unique binary bit combination aud
no two elements can have the same value; otherwise, the code assignment will be ambiguous.

BCD Code

Although the minimum number of bits required to code 2/1 distinct quantities is n, there is
no maximum number of bits that may be used for a binary code. For example, the 10 decimal
digits cau be coded with 10 bits, and each decimal digit cau be assigned a bit combination of
nine a's and a 1. In this particular binary code, the digit 6 is assigned the bit combination
0001000000.

Although the binary number system is the most natural system for a computer, most people are
more accustomed to the decimal system. One way to resolve this difference is to convert the
decimal numbers to binary, perform all arithmetic calculations in binary, and then convert the
binary results back to decimal. This method requires that we store the decimal numbers in the
computer so they can be converted to binary. Since the computer can accept only binary val
ues, we must represent the decimal digits by means of a code that contains.1 's and O's. It is also
possible to perform the arithmetic operations directly with decimal numbers when they are
stored in the computer in coded form.

A binary code will have some unassigned bit combinations if the number of elements in
the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary code that
distinguishes among 10 elements must contain at least four bits, but 6 out of the 16 possible
combinations remain unassigned. Different binary codes can be obtained by arranging four
bits in 10 distinct combinations. The code most commonly used for the decimal digits is the
straight binary assignment as listed in Table 1-4. This is called binary coded decimal aud is com
monly referred to as BCD. Other decimal codes are possible and a few of them are presented
later in this section.

Table 1-4 gives the 4-bit code for one decimal digit. A number with k decimal digits will re
quire 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110,
with each group of 4 bits representing one decimal digit. A decimal number in BCD is the same
as its equivalent binary number only when the number is between 0 and 9. A BCD number

Table 1-4
Binary Caded Decimal (BCD)

Decimal BCD
symbol digit

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

i

18 Chapter 1 Binary Systems Section 1-7 Binary Codes 19

greater than 10 looks different than its equivalent hinary number, even though both contain l's
and D's. Moreover, the binary combinations 1010 through 1111 are not used and have no mean
ing in the BCD code. Consider decimal 185 and its corresponding value in BCD and binary:

(185ho = (00011000 OlO1hco = (1011100l)2

This condition occurs when the sum is greater than or equal to 16. Although the other four bits
are less than 1001, the binary sum requires a correction because of the carry. Adding 0110, we
obtam the required BCD digit sum 0111 (7) and a BCD carry.

The addition of two n-digit unsigned BCD numbers follows the sarne procedure. Consider
the addition of 184 + 576 = 760 in BCD:

Decimal Arithmetic

The 9 in the leftmost position of the second number represents a minus and 9760 is the lO's
complement of 0240. The two numbers are added and the end carry is discarded to obtain

o 375

+9 760

o 135

184

+576

760

1 1

0001 1000 0100
+0101 Olll OllO-- -- --

Olll 10000 1010

OllO OllO
-- --

DIll OllO 0000

Binary sum

Add 6

BCD sum

The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a carry
for the next palr of dIgIts. The second pair of BCD digits plus a previous carry produces a digit
sum of 0110 and a carry for the next pair of digits. The third pair of digits plus a carry produces
a bmary sum of 0111 and does not require a correction.

The repr~sen~ation ofsigned decimal numbers in BCD is similar to the representation of signed
numbers m bmary. We can use either the familiar sign and magnitude system or the signed-com
plement system. The sign of a decimal number is usually represented with four bits to conform
to the 4-bit code of the decimal digits. It is customary to designate a plus with four D's and a
minus with the BCD equivalent of 9, which is 1001.

The s~gned-magnitude system is seldom used in computers. The signed-complement system
can be e!lher the 9's or the 10's complement, but the lO's complement is the one most often
used. To obtain the lO's complement of a BCD number, we first take the 9's complement and
then add one to the least significant digit. The 9's complement is calculated from the subtrac
tion of each digit from 9.

The procedures developed for the signed-2's complement system in the previous section
apply also to the signed-lO's complement system for decimal numbers. Addition is done by
adding all digits, including the sign digit, and discarding the end carry. This assumes that all
negative numbers are in 1O's complement form. Consider the addition (+375) + (-240) =
+135 done in the signed-complement system.

BCD carry

4 0100 4 0100 8 1000

+5 +0101 +8 +1000 +9 1001
- -- - -- - --
9 1001 12 llOO 17 10001

+OllO +OllO-- --
10010 101ll

Consider the addition of two decimal digits in BCD, together with a possible carry from a pre
vious less significant pair of digits. Since each digit does not exceed 9, the sum cannot be
greater than 9 + 9 + 1 = 19, with the 1 in the sum being a previous carry. Suppose we add
the BCD digits as if they were binary numbers. The binary sum will produce a result in the range
from 0 to 19. In binary, this will befrom 0000 to 10011, but in BCD, it is from 0000 to 1 1001;
the first 1 being a carry and the next four bits being the BCD digit sum. When the binary sum
is equal to or less than 1001 (without a carry), the corresponding BCD digit is correct. How
ever, when the binary sum is greater than or equal to 1010, the result is an invalid BCD digit.
The addition of 6 ~ (OllO)2 to the binary sum converts itlo the correct digit and also produces
a carry as required. This is because the difference between a carry in the most significant bit
position of the biuary sum and a decimal carry differ by 16 - 10 ~ 6. Considerthe followiug
three BCD additions:

In each case, the two BCD digits are added as if they were two binary numbers. If the biuary
sum is greater or equal to 1010, we add 0110 to obtain the correct BCD digit sum and a carry.
In the first example, the sum is equal to 9 and is the correct BCD digit sum. In the second ex
ample, the binary sum produces an invalid BCD digit. The addition of 0110 produces the cor
rect BCD digit sum 0010 (2) and a carry. In the third example, the binary sum produces a carry.

The BCD value has 12 bits, but the equivalent binary nnmber needs only 8 bits. It is obvions
that a BCD number needs more bits than its equivalent binary value. However, there is an ad
vantage in the use of decimal numbers because computer input and output data are generated
by people that use the decimal system.

It is important to realize that BCD numbers are decimal numbers and not binary numbers,
although they use bits in their representation. The only difference between a decimal number
and BCD is that decimals are written with the symbols 0, 1,2, ... , 9 and BCD numbers use the
binary code 0000, 0001, 0010, ... , 1001. The decimal value is exactly the same. Decimal 10
is represented in BCD with eight bits as 0001 0000 and decimal 15 as 0001 0101. The corre
sponding binary values are 1010 and 1111 and have only four bits.

BCD Addition

20 Chapter 1 Binary Systems Section 1-7 Binary Codes 21

+135. Of course, the decimal numbers inside the computer must be in BCD, including the sign

digits. The addition is done with BCD digits as described previously.
The subtraction of decimal numbers either unsigned or in the signed-l O's complement sys

tem is the same as in the binary case. Take the lO's complement of the subtrahend and add it
to the minuend. Many computers have special hardware to perform alithmetic calculations di
rectly with decimal numbers in BCD. The user of the computer can specify by programmed in
structions to perform the arithmetic operation with decimal numbers dIrectly WIthout havmg

to convert them to binary.

Other Decimal Codes
Binary codes for decimal digits require a minimum of four bits per digit. Many different codes
cau be formulated by arranging four bits in 10 distinct possible combinations. The BCD and
three other representative codes are shown in Table 1-5. Each code uses only 10 bit combina
tions out of possible 16 combinations that can be alTanged with four bits. The other six unused
combinations in each· case have no meaning and should be avoided.

The BCD and the 2421 codes are examples of weighted codes. In a weighted code. each bit
position is assigned a weighting factor in such a way that each digit can be ~valuatedby adding
the weights of all the I's in the coded combination. The BCD code has weights of 8, 4, 2, and
I, which correspond to the power of two values of each bit. The bit assignmeut 0110 for ex
ample, is interpreted by the weights to represent decimal 6 because 8 X a + 4 X I + 2 X
I + 1 X a = 6. The bit combination 1101 wheu weighted by the respective digits 2421 gives

Gray Code

the decimal equivalent of 2 X I + 4 X I + 2 X a + 1 X I ~ 7. Note that some digits can
be coded in two possible ways in the 2421 code. Decimal 4 can be assigned to bit combina
tions 0100 or 1010 since both combinations add up to a total weight offour.

The 2421 and the excess-3 codes are examples of self-complementing codes. Such codes
have the property that the 9's complement of a decimal number is obtained directly by chang
ing I's to a's and a's to I's in the code. For example, decimal 395 is represented in the excess
3 code as 0110 1100 1000. The 9's complement 604 is represented as 1001 0011 0111, which
is simply obtained by complementing each bit of the code (as with the I's complement of bi
nary numbers).

The excess-3 code has been used in some older computers because of its self-complement
ing property. This is an unweighted code where each coded combination is obtained from the
corresponding binary value plus 3. Note that the BCD code is not self-complementing.

The 8, 4, -2. -I code is an example of assigning both positive and negative weights to a dec
imal code. In this case, the bit combination 0110 is interpreted as a decimal 2 and is calculat
ed from 8 X a + 4 X I + (-2) X I + (-1) X a = 2.

The output data of many physical systems produce quantities that are continuous. These data
must be converted into digital form before they are applied to a digital system. Continuous or
analog information is converted into digital form by means of an analog-to-digital converter.
It is sometimes convenient to use the Gray code shown in Table 1-6 to represent the digital
data when it is converted from analog data. The advantage of the Gray code over the straight

Table 1-5
Four Different Binary Codes for the Decimal Digits Table 1-6

Gray Code
Decimal BCD

digit 8421 2421 Excess-3 B 4-2-1 Gray Decimal
code equivalent

a 0000 0000 0011 a a a a
I 0001 0001 0100 a I I I 0000 a
2 0010 0010 0101 a I I a 0001 I

3 0011 0011 0110 a 101 0011 2

4 0100 0100 0111 a 1 a a 0010 3

5 0101 1011 1000 101 I 0110 4

6 0110 1100 1001 I a I a 0111 5

7 0111 1101 1010 100 I 0101 6

8 1000 1110 1011 100 a 0100 7

9 1001 1111 1100 I I 1 1 1100 8
1101 9

1010 0101 0000 a a a I 1111 10
Unused 1011 0110 0001 a a I a 1110 11
bit 1100 0111 0010 a a I 1 1010 12
combi- 1101 1000 1101 I I a a 1011 13
nations 1110 1001 1110 I 101 1001 14

1111 1010 1111 I I I a 1000 15

22 Chapter 1 Binary Systems

binary number sequence is that only one bit in the code group changes when going from one
number to the next. For example, in going from 7 to 8, the Gray code changes from 01 00 to
1100. Only the first bit changes from 0 to I; the other three bits remain the same. When com
paring this with binary numbers, the change from 7 to 8 will be from 0111 to 1000, which
causes all four bits to change values.

The Gray code is used in applications where the normal sequence of binary numbers may
produce an error or ambiguity during the transition from one number to the next. If binary
numbers are used, a change from 0111 to 1000 may produce an intermediate erroneous num
ber 1001 if the rightmost bit takes longer to change in value than the other three bits. The Gray
code eliminates this problem since only one bit changes in value during any transition between
two numbers.

A typical application of the Gray code occurs when analog data are represented by contin
uous change of a shaft position. The shaft is partitioned into segments, and each segment is as
signed a number. If adjacent segments are made to correspond with the Gray-code sequence,
ambiguity is eliminated when detection is sensed in the line that separates any two segments.

ASCII Character Code

Many applications of digital computers require the handling of data not only of numbers, but
also of letters. For instance, an insurance company with thousands of policy holders will use
a computer to process its files. To represent the names and other pertinent information, it is nec
essary to formulate a binary code for the letters of the alphabet. In addition, the same binary
code must represent numerals and special characters (such as $). An alphanumeric character
set is a set of elements that includes the 10 decimal digits, the 26 letters of the alphabet, and a
number of special characters. Such a set contains between 36 and 64 elements if only capital
letters are included, or between 64 and 128 elements if both. uppercase and lowercase letters
are included. In the first case, we need a binary code of six bit..., and in the second, we need a
binary code of seven bits.

The standard binary code for the alphanumeric characters is ASCII (American Standard
Code for Information Interchange). It uses seven bits to code 128 characters, as shown in
Table 1-7. The seven bits of the code are designated by b l through b" with b, being the most
significant bit. The letter A, for example, is represented in ASCII as 1000001 (column 100,
row 0001). The ASCII code contains 94 graphic characters that can be printed and 34 non
printing characters used for various control functions. The graphic characters consist of the 26
uppercase letters (A through Z), the 26 lowercase letters (a through z), the 10 numerals (0
through 9), and 32 special printable characters such as %, *, and $.

The 34 control characters are designated in the ASCII table with abbreviated names. They
are listed again below the table with their functional names. The control characters are used for
routing data and arranging the printed text into a prescribed format. There are three types of con
trol characters: format effectors, information separators, and communication-control characters.
Format effectors are characters that control the layout of printing. They include the familiar
typewriter controls such as backspace (BS), horizontal tabulation (HT), and carriage return
(CR). Information separators are used to separate the data into divisions such as paragraphs and
pages. They include characters such as record separator (RS) and file separator (FS). The com
munication-control characters are useful during the transmission of text between remote ter-

Section 1-7 Binary Codes 23

Table 1-7
American Standard Code for Information Interchange (ASCII)

,\
b7~jJ5

b.b,b2 b, 000 001 010 011 100 101 110 111

0000 NUL DLE SP 0 @ P P
0001 SOH DCI I A Q a q
0010 STX DC2 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB 7 0 W g w
1000 BS CAN 8 QL) X h x
1001 lIT EM 9 I Y Y
1010 LF SUB * J Z j z
1011 VT ESC + K [k
1100 FF FS < L \ I
1101 CR OS M] m
1Il0 SO RS > N II n
1111 SI US / ? 0 0 DEL

Control characters

NUL Null DLE Data-link escape
SOH Start of heading DCI Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENQ Enquiry NAK Negative acknowledge
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End-of-transmission block
BS Backspace CAN Cancel
HT Horizontal tab EM End of medium
LF Line feed SUB Substitute
VT Vertical tab ESC Escape
FF Form feed FS File separator
CR Carriage return OS Group separator
SO Shift out RS Record separator
SI Shift in US Unit separator
SP Space DEL Delete

minals. Examples of communication-control characters are STX (start of text) and ETX (end
of text), which are used to frame a text message when transmitted through telephone wires.

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a single unit
called a byte. Therefore, ASCII characters most oftep are stored one per byte. The extra bit is

24 Chapter 1 Binary Systems Section 1'8 Binary Storage and Registers 25

sometimes used for other purposes, depending on the application. For example, some printers
recognize 8-bitASCII characters with the most-significant bit set to O. Additional 128 8-bit char
acters with the most-significant bit set to I are used for other symbols such as the Greek alphabet
or italic type font.

Error-Detecting Code

Registers

A register is a group of binary cells. A register with n cells can store any discrete quantity of
information that contains n bits. The state of a register is an n-tup1e number of 1's and O's, with
each bit designating the state of one cell in the register. The content of a register is a function
of the interpretation given to the information stored in it. Consider, for example, a 16-bit reg
ister with the following content:

BINARY STORAGE AND REGISTERS

To detect errors in data communication and processing, an eighth bit is sometimes added to the
ASCII character to indicate its parity. A parity bit is an extra bit included with a message to make
the total number of 1's either even or odd. Consider the following two characters and their
even and odd parity:

The binary information in a digital computer must have a physical existence in some infor
mation-storage medium for storing individual bits. A binary cell is a device that possesses two
stable states and is capable of storing one bit of information. The inputto the cell receives ex
citation signals that set it to one of the two states. The output of the cell is a physical quantity
that distinguishes between theCtwo states. The infonnation stored in a cell is 1 when it is in one
stable state and 0 when in the 9ther stable state.

1100001111001001

A register with 16 cells can be in one of 2 16 possible states. If one assumes that the content of
the register represents a binary integer, then the register can store any binary number from 0
to 216

- I. For the particular example shown, the content of the register is the binary equiva
lent of the decimal number 50121. If it is assumed that the register stores alphanumeric char
acters of an eight-bit code, the content of the register is any two meaningful characters. For the
ASCll code with an even parity placed in the eighth most-significant bit position, the register
contains the two characters C (left eight bits) and I (right eight bits). On the other hand, if one
interprets the content of the register to be four decimal digits represented by a four-bit code,
the content of the register is a four-digit decimal number. In the excess-3 code, the register
holds the decimal number 9096. The content of the register is meaningless in BCD because the
bit combination 1100 is not assigned to any decimal digit. From this example, it is clear that a
register can store discrete elements of information and that the same bit configuration may be
interpreted differently for different types of data.

Register Transfer

A digital system is characterized by its registers and the components that perform data pro
cessing. A register tranifer operation is a basic operation in digital systems. It consists.of a trans
fer of binary information from one set of registers into another set of registers. The transfer may
be direct from one register to another. or may pass through data processing circuits to perform
an operation. Figure 1-1 illustrates the transfer of the information among registers and demon
strates pictorially the transfer of binary information from a keyboard into a register in the mem
ory unit. The input unit is assumed to have a keyboard, a control circuit, and an input register.
Each time a key is struck, the control enters an equivalent eight-bit alphanumeric character
code into the input register. We shall assume that the code used is the ASCll code with an odd
parity bit. The information from the input register is transferred into the eight least significant
cells of a processor register. After every transfer, the input register is cleared to enable the con
trol to insert a new eight-bit code when the keyboard is struck again. Each eight-bit character
transferred to the processor register is preceded by a shift of the previous character to the next
eight cells on its left. When a transfer of four characters is completed, the processor register is
full, and its contents are transferred into a memory register. The content stored in the memory
register shown in Fig. 1-1 came from the transfer of the characters "J," "0," "H," and "N" after
the four appropriate keys were struck.

To process discrete quantities of information in binary form, a computer must be provided
with devices that hold the data to be processed and circuit elements that manipulate individ
ual bits of information. The device most commonly used for holding data is a register.

With odd parity

11000001

01010100

With even parity

01000001

11010100

ASCII A = 1000001

ASCII T = 1010100

In each case, we insert an extra bit in the leftmost position of the code to produce an even num
ber of I's in the character for even parity or an odd number of I's in the character for odd
parity. In general, one or the other parity is adopted, with even parity being more common.

The parity bit is helpful in detecting errors during the transmission of information from one
location to another. This is handled by generating an even parity bit in the sending end for each
character. The 8-bit characters that include parity bits are transmitted to their destination. The
parity of each character is then checked in the receiving end. If the parity of the received char
acter is not even, it means that at least one bit has changed value during the transmission. This
method detects one, three, or any odd combination of errors in each character that is transmit
ted. An even combination of errors is undetected. Additionar error detection codes may be
needed to take care of an even combination of errors.

What is done after an error is detected depends on the particular application. One possibil
ity is to request retransmission of the message on the assumption that the errorwas random and
will not occur again. Thus, if the receiver detects a parity error, it sends back the ASCll NAK
(negative acknowledge) control character consisting of an even parity eight bits 10010101. If
no error is detected, the receiver sends back anACK (acknowledge) control character, 00000110.
The sending end will respond to an NAK by transmitting the message again nntil the correct
parity is received. If, after a number of attempts, the transmission is still in error, a message can
be sent to the operator to check for malfunctions in the transmission path.

1-8

Definition of Binary Logic

Binary logic consists of binary variables and logical operations. The variables are designated by
letters of the alphabet snch as A, B, C, x, y, z, etc., with each variable having two and only two
distinct possible values: I and O. There are three basic logical operations: AND, OR, and NOT.

Binary logic deals with variables that take on two discrete values and operations that assume
logical meaning. The two values the variables take may be called by different names (true and
false, yes and no, etc.), bnt for our purpose, it is convenient to think in terms of bits and assign
the values of I and O. The binary logic introduced in this section is equivalent to an algebra called
Boolean algebra. The formal presentation of Boolean algebra is covered in more detail in Chap
ter 2. The purpose of this section is to introduce Boolean algebra in a heuristic manner and re
late it to digital logic circnits and binary signals.

26 Chapter 1 Binary Systems

MEMORY UNIT

J 0 H N
I' :1 Memory
01001010010011111100100011001110 Register

PROCESSOR UNIT

I 8 cells 8 cells I
Processor

8 cells 8 cells Register

INPUT UNIT Input

I 8 cells I Register

t

~I
Keyboard ®I CONTROL,

®I

FIGURE 1-1
Transfer of information with registers

Manipulation of binary variables is done by means of digital logic circuits. Figure 1-2 illustrates
the process of adding two lO-bit binary numbers. The memory unit, which normally consists
of millions of registers, is shown in the diagram with only three of its registers. The part of the
processor unit shown consists of three registers-RI, R2, and R3-together with digital logic
circuits that manipulate the bits of RI and R2 and transfer into R3 a binary number equal to
their arithmetic sum. Memory registers store information and are incapable of processing the
two operands. However, the information stored in memory can be transferred to processor reg
isters. Results obtained in processor registers can be transferred back into a memory register
for storage until needed again. The diagram shows the contents of two operands transferred from
two memory registers into Rl and R2. The digital logic circuits produce the sum, which is
transferred to register R3. The contents of R3 can now be transferred back to one of the mem
ory registers.

The last two examples demonstrated the information-flow capabilities of a digital system in
a very simple manner. The registers of the system are the basic elements for storing and hold
ing the binary information. Digital logic circuits process the binary information stored in the
registers. Digital logic circuits and registers are covered in Chapters 2 throngh 6. The memo
ry unit is explained in Chapter 7. The register transfer level for describing and designing dig
ital systems is covered in Chapter 8.

Section 1-9 Binary Logic

MEMORY UNIT

. 10000000000
Sum

Operand 1
10011100001

1

Ope~d~IOOOIOOOOIO I

L-~ 10 0 0 1 0000101 R1

1
Digital Logic

circuits for ----+- 0 I 0 0 I 0 0 0 I Il R3
binary addition

1
00 III 0 0 0 0 Il R2

PROCESSOR UNIT

FIGURE 1-2

Example of binary information processing

1-9 BINARY LOGIC

27

, j

28 Chapter 1 Binary Systems Section 1-9 Binary Logic 29

Logic Gates

Logic gates are electronic circuits that operate on one or more input signals to produce an out
put signal. Electrical signals such as voltages or currents exist throughout a digital system in

Range
for logic-l

Range
for logic-O

;~ ;~Y X---[>---X'
(a) Two-input AND gate (b) Two-input OR gate (c) NOT gate or inverter

FIGURE 1-4
Symbols for digital logic circuits

1

FIGURE 1-3
Example of binary signals

o

Transition occurs
between these limits

3

either of two recognizable values. Voltage-operated circuits respond to two separate voltage lev
els that represent a binary variable equal to logic I or logic O. For example, a particular digi
tal system may define logic 0 as a signal equal to 0 volt and logic I as a signal equal to 4 volts.
In practice, each voltage tevel has an acceptable range as shown in Fig. 1-3. The input termi
nals of digital circuits accept binary signals within the allowable range and respond at the out
put terminals with binary signals that fall within the specified range. The intermediate region
between the allowed regions is crossed only during state transition. Any desired information
for computing or control can be operated on by passing binary signals through various com
binations of logic gates with each signal representing a particular binary variable.

The graphic symbols used to designate the three types of gates are shown in Fig. 1-4. The
gates are blocks of hardware that produce the equivalent of logic 1 or logic 0 output signals if
input logic requirements are satisfied. The input signals x and y in the AND and OR gates may
exist in one offom possible states: 00, 10, 11, or 01. These input signals are shown in Fig. 1-5
together with the corresponding output signal for each gate. The timing diagrams illustrate the
response of each gate to the four input signal combinations. The horizontal axis of the timing

4

Volts

NOTORAND

x y X'y x Y x+y

itt0 0 0 0 0 0 o 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 I 1 1 1 1

Table 1-8
Truth Tables of Logical Operations

1. AND: This operation is represented by a dot or by the absence of an operator. For example,
x • y ~ z or xy = z is read "x AND y is equal to z." The logical operation AND is inter
preted to mean that z = I if and only if x = I and y ~ I; otherwise z = O. (Remember
that x, y, and z are binary variables and can be equal either to I or 0, and nothing else.)

2. OR: This operation is represented by a plus sign. For example, x + y = z is read "x
OR y is equal to z," meaning that z ~ I if x = lor if y = lor if both x ~ 1 and y = 1.
If both x ~ 0 and y = 0, then z = O.

3. NOT: This operation is represented by a prime (sometimes by an overbar). For exam
ple, x' ~ z (or ex = z) is read "not x is equal to z," meaning that z is what x is not. In other
words, if x = 1, then z = 0; but if x = 0, then z = 1. The NOT operation is also referred
to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

Binary logic resembles binary arithmetic, and the operations AND and OR have similari
ties to multiplication and addition, respectively. In fact, the symbols used for AND and OR are
the same as those llsed for multiplication and addition. However, binary logic should not be con
fused with binary arithmetic. One should realize that an arithmetic variable designates a num
ber that may consist of many digits. A logic variable is always eitber 1 or O. For example, in
binary arithmetic, we have 1 + I = 10 (read: "one plus one is equal to 2"), whereas in bina
ry logic, we have I + I ~ I (read: "one OR one is equal to one").

For each combination of the values of x and y, there is a value of z specified by tbe defini
tion of the logical operation. These definitions may be listed in a compact form using truth ta
bles. A truth table is a table of all possible combinations of the variables sbowing tbe relation
between the values that the variables may take and tbe result of the operation. The truth tables
for the operations AND and OR with variables x and yare obtained by listing all possible val
ues that the variables may have when combined in pairs. The result of the operation for each
combination is then listed in a separate row. The truth tables for AND, OR, and NOT are list
ed in Table 1-8. These tables clearly demonstrate the definition of the operations.

30 Chapter 1 Binary Systems Problems 31

OR:x+y~

NOT: x' ~ ° ° I 1 1

diagram represents time and the vertical axis shows the signal as it changes between the two
possible voltage levels. The low level represents logic 0 and the high level represents logic 1.
The AND gate responds with a logic I output signal when both input signals are logic 1. The
OR gate responds with logic I output signal if any input signal is logic 1. The NOT gate is
commonly referred to.as an inverter. The reason for this name is apparent from the signal re
sponse in the timing diagram, where it is shown that the output signal inverts the logic sense
of the input signal.

AND and OR gates may have more than two inputs. An AND gate with three inpnts and an
OR gate with four inputs are shown in Fig. 1-6. The three-input AND gate responds with logic
I outpnt if all three inpnts are logic I. The output produces logic 0 if any input is logic O. The
four-input OR gate responds with logic I if any input is logic I; its output becomes logic 0 only
when all inputs are logic O.

List the octal and hexadecimal numbers from 16 to 32. Using A and B for the last two digits, list
the numbers from 10 to 26 in base 12.

What is the exact number of bytes in a system that contains (a) 32K byte, (b) 64M bytes, and
(c) 6.4G byte?

What is the largest binary number that can be expressed with 12 bits? What is the equivalent dec
imal and hexadecimal?

Convert the following numbers with the indicated bases to decimal: (4310)5' and (198)12'

1-9
1-10

1-11

Express tbe following numbers in decimal: (10110.0101)', (16.5)16' and (26.24)g.

Convert the following binary numbers to hexadecimal and to decimal: (a) 1.11010, (b) 1110.10.
Explain why the decimal answer in (b) is 8 times that of (a).

Convert the hexadecimal number 68BE to binary and then from binary convert it to octal.

Convert the decimal number 345 to binary in two ways: (a) convert directly to binary; (b) con
vert first to hexadecimal, then from hexadecimal to binary. Which method is faster?

Do the following conversion problems:
(a) Convert decimal 34.4375 to binary.
(b) Calculate the binary equivalent of 1/3 out to 8 places. Then convert from binary to decimal.

How close is the result to 1/3?
(c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal. Is the

answer the same?

1-12 Add and multiply the following numbers without converting them to decimal.
(a) Binary numbers 1011 and IOJ.
(b) Hexadecimal numbers 2E and 34.

1-13 Perform tbe following division in binary: 1011111 + IOJ.

1-14 Find the 9's- and the 10's-complement of the following decimal numbers:
(a) 98127634 (b) 72049900 (c) 10000000 (d) 00000000.

1-15 (a) Find the 16's-complement ofAF3B.
(b) Convert AF3B to binary.
(c) Find the 2's-complement of the result in (b).
(d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

~ 1-16 Obtain the l's and 2's complements of the following binary numbers:
(a) 11101010 (b) 01111110 (c) 00000001 (d) 10000000 (e) 00000000.

1-7

•1-8

1-17 Perform subtraction on the following unsigned numbers using the 10's-complement of the sub
trahend. Where the result should be negative, lO's complement it and affix a minus sign. Verify
your answers.
(a) 7188 - 3049 (b) 150 - 2100 (c) 2997 - 7992 (d) 1321 - 375

~ 1-18 Perform subtraction on the following unsigned binary numbers using the 2's-complement of the
subtrahend. Where the result should be negative, 2's complement it and affix a minus sign.
(a) 11011 - 11001 (b) 110100 - 10101 (c) 1011 - 110000 (d) 101010 - 101011

1-19 The following decimal numbers are shown in sign-magnitude fonn: +9826 and +801. Convert
them to signed 1O's-complement form and perfOITIl the following operations: (Note that the sum
is + 10627 and requires six digits).
(a) (+9826) + (+801) (b) (+9826) + (-801)
(c) (-9826) + (+801) (d) (-9826) + (-801)

1-20 Convert decimal +61 and +27 to binary using the signed-2's complement representation and
enough digits to accomodate the numbers. Then perform the binary equivalent of (+27) + (-61),
(-27) + (+61) and (-27) + (-61). Convert tbe answers back to decimal and verify that tbey
are correct.

q 1-5 Determine the base of the numbers in each case for the following operations to be correct:
---"'- (a) 14/2 ~ 5; (b) 54/4 ~ 13, (c) 24 + 17 ~ 40.

1-6 The solution to the quadratic equation x2 ~ llx + 22 = 0 is x = 3 and x = 6. What is the base
of the numbers?

1 ~

° 01

1

1

°

f~+B+C+D

(b) Four-input OR gate

°
---",o,-------,o,,---11l ° °

x

AND: x . y

y

~~BC

(a) Three-input AND gate

FIGURE 1-6
Gates with multiple inputs

FIGURE 1-5
Input-output signals for gates

1-4

1-2

1-1

PROBLEMS

33

2-1 BAS leD EFIN I T ION S

Boolean Algebra
and Logic Gates

Boolean algebra, like any other deductive mathematical system, may be defined with a set of
elements, a set of operators, and a number of unproved axioms or postulates. A set of elements
is any collection of objects having a common property. If S is a set, and x and yare certain ob
jects, then XES denotes that x is a member of the set, S, and y <t S denotes that y is not an el
ement of S. A set with a denumerable number of elements is specified by braces:
A = {1, 2, 3, 4}, i.e., the elements of set A are the numbers 1,2,3, and 4. A binary operator
defined on a set S of elements is a rule that assigns to each pair of elements from S a unique
element from S. As an example, consider the relation a * b ~ c. We say that * is a binary op
erator if it specifies a rule for finding c from the pair (a, b) and also if a, b, c E S. However, *
is not a binary operator if a, b E S, when the rule finds c <t S.

The postnlates of a mathematical system form the basic assumptions from which it is pos
sible to deduce the rules, theorems, and properties of the system. The most common postulates
used to formulate various algebraic structures are:

1. Closure. A set S is closed with respect to a binary operator if, for every pair of elements
of S, the binary operator specifies a rule for obtaining a unique element of S. For exam
ple, the set of natural numbers N = {1, 2, 3, 4, ... } is closed with respect to the binary
operator plus (+) by the rules of arithmetic addition, since for any a, bEN we obtain a
unique c E N by the operation a + b =c. The set of natural numbers is not closed with
respect to the bnary operator minus (-) by the rules of arithmetic snbtraction because
2 - 3 = -1 arid 2, 3EN, while (-1) <tN.

2. Associative law. A binary operator * on a set S is said to be associative whenever

(x*y)*z = x*(y*z)forallx,y,z,ES

erties of bistable electlical switching circuits can be represented by this algebra. For the for
mal definition of Booleau algebra, we shall employ the postulates formulated by E. V. Hunt
ington in 1904.

Boolean algebra is an algebraic structure defined by a set of elements, B, together with two
binary operators, + and·, provided that the following (Huntington) postulates are satisfied:

1. (a) Closure with respect to the operator +.
(b) Closure with respect to the operator'.

2. (a) An identity element with respect to +, designated by 0: x + 0 = 0 + x = x.
(b) An identity element with respect to " designated by I: x . I = I· x ~ x.

3. (a) Commutative with respect to +: x + y ~ y + x.
(b) Commutative with respect to • : x . y = y • x.

4. (a) . is distributive over +: x . (y + z) = (x' y) + (x' z).
(b) + is distributive over': x + (Y' z) = (x + y) . (x + z).

5. For every element x E B, there exists an element Xl E B (called the complement of x)
such that (a) x + x' = I and (b) x . x' = O.

6. There exists at least two elements x, y E B such that x '" y.

Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real num
bers), we note the following differences:

1. Huntington postulates do not include the associative law. However, this law holds for
Boolean algebra and can be derived (for both operators) from the other postulates.

2. The distributive law of + over', i.e., x + (Y' z) = (x + y) • (x + z), is valid for
Boolean algebra, but not for ordinary algebra.

3. Boolean algebra does not have additive or multiplicative inverses; therefore, there are
no subtraction or division operations.

4. Postulate 5 defines an operator called complement that is not available iu ordinary algebra.

5. Ordinary algebra deals with the real numbers, whicb consitute an infinite set of elements.
Boolean algebra deals with the as yet undefined set of elements, B, but in the two-val
ued Boolean algebra defined next (and of interest in our subsequent use of this algebra),
B is defined as a set with only two elements, 0 and 1.

Boolean algebra resembles ordinary algebra in some respects. The choice of symbols + and
• is intentional to facilitate Boolean algebraic manipulations by persons already familiar with
ordinary algebra. Although one can use some knowledge from ordinary algebra to deal with
Boolean algebra, the beginner must be careful not to substitute the rules of ordinary algebra
where they are not applicable.

It is important to distinguish between the elements of the set of an algebraic structure and
the variables of an algebraic system. For example, the elements of the field of real numbers are
numbers, whereas variables such as a, b, c, etc., used in ordinary algebra, are symbols that
stand for real numbers. Similarly, in Boolean algebra, one defines the elemeuts of the set B, and
variables such as x, y, and z are merely symbols that represent the elements. At this point, it is
important to realize that in order to have a Boolean algebra, one must show:

34

2-2

Chapter 2 Boolean Algebra and Logic Gates

3. Commutative law. A binary operator * on a set S is said to be commutative whenever

x * y = y * x for all x, yES

4. Identity element. A set S is said to have an identity element with respect to a binary op
eration * on S if there exists an element e E S with the property

e*x = x*e = x for every XES

Example: The element 0 is an identity element with respect to the operation + on the set
of integers I = { ... ,-3,-2,-1,0, 1,2, 3, ... }, since

x + 0 = 0 + x = x for any x E I

The set of natural numbers, N, has no identity element since 0 is excluded from the set.

5. Inverse. A set S having the identity element e with respect to a binary operator * is said
to have an inverse whenever, for every XES, there exists an element yES such that

x * y = e

Example: In the set of integers, I, with e = 0, the inverse of an element a is (-a)

since a + (-a) = O.
6. Distributive law. If * and • are two binary operators on a set S, * is said to be distribu

tive over' whenever

x* (Y' z) = (x*y)· (x*z)

An example of an algebraic structure is afield. A field is a set of elements, together with two
binary operators, each having properties I throngh 5, and both operators combined to give
property 6. The set of real numbers, together with the binary operators + and " form the field
of real numbers. The field of real numbers is the basis for arithmetic and ordinary algebra. The
operators and postulates have the following meanings:

The binary operator + defines addition.

The additive identity is O.
The additive inverse defines subtraction.

The binary operator' defines multiplication.

The multiplicative identity is 1.

The multiplicative inverse of a = I/a defines division, i.e., a • 1/a ~ 1.

The only distributive law applicable is that of . over +:

a' (b + c) = (a' b) + (a' c)

AXIOMATIC DEFINITION
OF BOOLEAN ALGEBRA

In 1854 George Boole introduced a systematic treatment of logic and developed for this pur
pose an algebraic system now called Boolean algebra. In 1938 C. E. Shannon introduced a
two-valued Boolean algebra called switching algebra, iU which he demonstrated that the prop-

Section 2-2 Axiomatic Definition of Boolean Algebra 35

Two-Valued Boolean Algebra
A two-valued Boolean algebra is defined on a set of two elements, B = {O, I}, with rules for
the two binary operators + and, as shown in the following operator tables (the mle for the

complement operator is for verification of postulate 5):

Duality

2-3 BAS leT H EO REM SAN D PRO PER TIE S
OF BOOLEAN ALGEBRA

37

x'Y x,z (x . y) + (x . z)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 1
1 0 1
1 1 1

Section 2-3 Basic Theorems and Properties of Boolean Algebra

x y z y+z x' (y + z)

0 0 0 0 0
0 0 1 I 0
0 I 0 1 0
0 1 I 1 0
1 0 0 0 0
I 0 1 I 1
1 1 0 1 1
1 1 1 1 1

(b) The distributive law of + over' can be shown to hold true by means of a truth table
similar to the one above.

S. From the complement table, it is easily shown that
(a) x + x' ~ I, since 0 + 0' ~ 0 + I = I and I + I' ~ I + 0 = 1.
(b) x . x' = 0, since 0 . 0' = O' I = 0 and I . I' = I . 0 .= 0, which verifies postu

late 5.

6. Postulate 6 is satisfied because the two-valued Boolean algebra has two distinct ele
ments, I and 0, with I '" O.

We have just established a two-valued Boolean algebra having a set of two elements, I and
0, two binary operators with operation rules equivalent to the AND and OR operations, and a
complement operator equivalent to the NOT operator. Thus, Boolean algebra has been defined
in a formal mathematical manner and has been shown to be equivalent to the binary logic pre
sented heuristically in Section 1-9. The heuristic presentation is helpful in understauding the
application of Boolean algebra to gate-type circuits. The formal preseutation is necessary for
developing the theorems and properties of the algebraic system. The two-valued Boolean al
gebra defined in this section is also called "switching algebra" by engineers. To emphasize the
similarities between two-valued Boolean algebra and other binary systems, this algebra was
called "binary logic" in Section 1-9. From here on, we shall drop the adjective "two-valued"
from Boolean algebra in subsequent discussions.

The Huntington postulates have been listed in pairs and designated by part (a) and part (b). One
part may be obtained from the other if the bimuy operators and the identity elements are in
terchanged. This important property of Boolean algebra is called the duality principle. It states
that every algebraic expression deducible from the postulates of Boolean algebra remains valid
if the operators and identity elements are interchanged. In a two-valued Boolean' algebra, the
identity elements and the elemeuts of the set, B, are the same: I and O. The duality principle

x y x'Y x Y x+y x x'

0 0 0 0 0 0 0 I

0 I 0 0 1 1 t 0

1 0 0 1 0 1

1 1 1 1 1 1

These rules are exactly the same as the AND, OR, and NOT operations, respectively, defined
in Table 1-8. We must now show that the Huntington postulates are valid for the set B = {O, I}

and the two binary operators defined before.

1. Closure is obvious from the tables since the result of each operation is either 1 or 0

andl,OEB.

2. From the tables, we see that

(a) 0 + 0 ~ 0 0 + I = I + 0 = I;

(b) I . I = I I . 0 ~ O' I = O.

This establishes the two identity elements, 0 for + and I for ., as defined by postulate 2.

3. The com~utativelaws are obvious from the symmetry of the binary operator tables.

4. (a) Thedistributivelawx'(Y + z) = (x·y) + (x'z)canbeshowntoholdtruefrom
the operator tables by formiug a tmth table of all possible values of x, y, and z· For
each combination, we derive x . (y + z) and show that the value IS the same as

(x·y) + (x·z).

1. the elements of the set B,

2. the rules of operation for the two binary operators, and

3. that the set of elements, B, together with the two operators, satisfies the six Huntington

postulates.

One can formulate many Boolean algebras, depending on the choice of elements of Band
the mles of operation. In our subsequent work, we deal only with a two-valuedBoolean alge
bra, i.e., one with only two elements. Two-valued Boolean algebra has appl~catlOns III ~et t~e
ory (the algebra of classes) and in propositional logic. Our interest here is wlth the apphcatlOn

of Boolean algebra to gate-type circuits.

Chapter 2 Boolean Algebra and Logic Gates36

38 Chapter 2 Boolean Algebra and Logic Gates
Section 2-3 Basic Theorems and Properties of Boolean Algebra 39

has many applications. If the dual of an algebraic expression is desired, we simply interchange
OR and AND operators and replace I's by O's and O's by I's.

. Note that theorem I(b) is the dual of theorem l(a) and that each step of the proof in part (b)
IS the dual of part (a). Any dual theorem can be similarly derived from the proof of its carre.
sponding pair.

Basic Theorems

Table 2-1 lists six theorems of Boolean algebra and four of its postulates. The notation is sim
plified by omitting the binary operator whenever this does not lead to confusion. The theorems
and postulates listed are the most basic relationships in Boolean algebra. The theorems, like the
postulates, are listed in pairs; each relation is the dual of the one paired with it. The posmlates
are basic axioms of the algebraic structure and need no proof. The theorems must be proven
from the postulates. The proofs of the theorems with one variable are presented below. At the
right is listed the number of the postulate that justifies each step of the proof.

=x

by postulate: 2(b)

5(a)

4(b)

2(b)

5(a)

by postulate: 2(b)

4(a)

3(a)

2(a)

2(b)

x V xV x + xV

0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 1

=x

x+xy=x'l+xy

= x(l + y)

= x(y + I)
~ x· I

= 1

THEOREM 2(a): x + 1 = 1.

x + I = I . (x + I)

= (x + x')(x + I)
= x + x'· 1

= x + x'

THEOREM 2(b): x· 0 = 0 by dUality.

THEOREM 3: (x')' = x. From postulate 5, we have x + x' = I and x . x' = 0, which de
fines the complement ofx. The complement ofx' is x and is also (x')'. Therefore, since the Com
plement IS umque, we have that (x')' = x.

The theorems iuvolving two or three variables may be proven algebraically from the postulates
and the theorems that have already been proven. Take, for example, the absorption theorem.

THEOREM 6(a): x + xy = x.

THEOREM 6(b): x(x + y) = xby duality.

The theorems of Boolean algebra can be shown to hold true by means of truth tables. In truth
tables, both sides ofthe relation are checked to yield identical results for all possible combi
natIOns of vanables Involved. The following truth table verifies the first absorption theorem.

I
i
I
I
i
I

Cb) x· 1 -x
Cbl x . x' ~ 0
Cb) x • x = x
Cb) x . 0 ~ 0

(b) xy = yx
Cb) x(yz) ~ (xy)z
Cb) x + yz ~ (x + y)(x + z)
(b) (xy)' = x' + y'
Cb) x(x + y) ~ x

by posmlate: 2(a)

5(b)

4(a)

5(a)

2(b)

by postulate: 2(b)

5(a)

4(b)

5(b)

2(a)

(a) x + 0 = x
Cal x + x' ~ 1
Ca) x + x ~ x
Ca) x + 1 = 1

(x')' ~ x
Cal x + y ~ y + x .
Ca) x + (y + z) = (x +y) + z
Ca) x(y + z) ~ xy + xz
Ca) (x + y)' = x'y'
Ca) x + xy ~ x

=x+O

THEOREM l(b): x· x = x.

x·x=xx+O

=xx+xx'

Postulate 2
Postulate 5
Theorem 1
Theorem 2
Theorem 3, involution
Postulate 3, commutative
Theorem 4, associative
Postulate 4, distributive
Theorem 5, DeMorgan
Theorem 6, absorption

THEOREM 1(a): x + x = x.

x + x = (x + x)· 1

= (x + x)(x + x')

= x + XXi

= x(x + x')

= x· I

Table 2·1
Postulates and Theorems of Boolean Algebra

.1!I!__]I!!!!"o!!!!!!~!!!I!!!!!!!!!!I!!!!!!!!!!!!!!!!!!!!!I!!!!!!I!I _

40 Chapter 2 Boolean Algebra and Logic Gates

The algebraic proofs of the associative law and DeMorgan's theorem are long and will not be
shown here. However, their validity is easily shown with truth tables. For example, the truth table
for the first DeMorgan's theorem (x + y)' = x'y' is shown below.

Section 2-4 Boolean Functions 41

Table 2-2
Truth Tables for F, and F

2

x y z F, F.

0 0 0 0 0
0 0 1 1 1
0 1 0 0 0
0 1 1 0 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 0
1 1 1 1 0

x-- ---\

FIGURE 2-1
Gate implementation of F, ~ x + y'z

y-----) >0----1
z ---_-----''---__-1

tions. The table shows that the function is equal to I when x = 1 or when yz = 01. It is equal
to 0 otherwise.

A Boolean function can be transformed from an algebraic expression into a circuit diagram
composed of logic gates. The logic-circuit diagram for F, is shown in Fig. 2-1. There is an in
verter for input y to generate the complement. There is an AND gate for the term y'z and an OR
gate that combines the two terms. In logic-circuit diagrams, the variables of the function are
taken as the inputs of the circnit and the binary variable FJ is taken as the output of the circuit.

There is only one way that a Boolean function can be represented in a truth table. Howev
er, when the function is in algebraic form, it can be expressed in a variety of ways. The par
ticular expresslOn used to designate the function will also dictate the interconnection of gates
in the logic circuit diagram. By manipulating a Boolean expression according to Boolean al
gebra rules, it is sometimes possible to obtain a simpler expression for the same function and
thus reduce the number of gates in the circuit and the number of inputs to the gate. Consider
for example the following Boolean function:

F2 = x'y'Z + x'YZ + xy'

The implementation of this function with logic gates is shown in Fig. 2-2(a). Input variables x
and yare complemented with inverters to obtain x' and y'. The three terms in the expression
are implemented with three AND gates. The OR gate forms the logical OR of the three terms.
The truth table for F, is listed in Table 2-2. The function is equal to 1 when xyz = 001 or 011

x' y' x'y'

1 1 1
1 0 0
0 1 0
0 0 0

x y x+y (x + y)'

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean
function described by an algebraic expression consists of binary variables, the constants 0 and
1, and the logic operation symbols. For a given value of the binary variables, the function can
be equal to either 1 or O. Consider as an example the following Boolean functlOn:

Fj = x + y'z

The function F, is equal to 1 if x is equal to 1 or if both y' and z are equal to 1. F, is equal to 0
otherwise. The complement operation dictates that when y' = 1 then y = O. Therefore,we
can say that F, = 1 if x = 1 or if y = 0 and z = 1. A Boolean functlOn expresses the 10glCal
relationship between binary variables. lt is evaluated by determining the binary value of the ex-
pression for all possible values of the variables.

A Boolean function can be represented in a truth table. A truth table 1S a Itst of combmal1ons
of l's and O's assigned to the binary variables and a column that shows the value of the func
tion for each binary combination. The number of rows in the truth table is 2n

, where n i~ the
nnmber of variables in the function. The binary combinations for the truth table are obtamed
from the binary numbers by counting from 0 through 2" - 1. Table 2-2 shows the truth table
for the function F,. There are eight possible binary combinations for assigning bits to the three
variables x, y, and z. The column labeled F, contains either 0 or 1 for each of these combma-

BOOLEAN FUNCTIONS2-4

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses, (2) NOT, (3)
AND, and (4) OR. In other words, the expression inside the parentheses must be evaluated be
fore all other operations. The next operation that holds precedence is the complement, then fol
lows the AND, and finally the OR. As an example, consider the truth table for DeMorgan's
theorem. The left side of the expression is (x + y)'. Therefore, the expression inside the paren
theses is evaluated first and the result then complemented. The right side of the expression is x'y'.
Therefore, the complement of x and the complement of yare both evaluated first and the result
is thenANDed. Note that in ordinary arithmetic, the same precedence holds (except for the com
plement) when multiplication and addition are replaced by AND and OR, respectively.

43

letB+C=x

by theorem 5(a) (DeMorgan)

substitute B + C = x

by theorem 5(a) (DeMorgan)

by theorem 4(b) (associative)

Section 2-4 Boolean Functions

= A'(B + C)'
= A'(B'C')

= AlBIC'

(A + B + C)' = (A + x)'

The complement of a function F is P and is obtained from an interchange of O's for 1's and
I's for O's in the value ofF. The complement of a function may be derived algebraically through
DeMorgan's theorem. This pair of theorems is listed in Table 2-1 for two variables. DeMorgan's
theorems can be extended to three or more variables. The three-variable form of the first
DeMorgan's theorem is derived as follows, using postulates and theorems listed in Table 2-1:

Functions I and 2 are the dual of each other and use dual expressions in corresponding steps.
An easier way to simplify function 3 is by means of postulate 4(b) from Table 2-1:
(x + y) (x + y') = x + yl = x. The fourth function illustrates the fact that an increase in
the number of literals sometimes leads to a final simpler expression. Function 5 is not minimized
directly, but can be derived from the dual of the steps used to derive function 4. Functions 4
and 5 are known as the consensus theorem.

Simplify the following Boolean functions to a Iuinimum number of literals.

1. x(x' + y) = xx' + xy = 0 + xy = xy.

2. x + x'y = (x + x')(x + y) = I(x + y) = x + y.

3. (x + y)(x + l) = x + xy + xl + yl = x(1 + Y + l) = x.

4. xy + x'z + yz = xy + x'z + yz(x + x')
= xy + xlz + xyz + xlyz

= xy(1 + z) + x'z(l + y)
= xy + xlz.

5. (x + y)(x' + z)(y + z) = (x + y)(x' + z) by duality from function 4.

•

terms and eight literals, the one in Fig. 2-2(b) has two terms and four literals. By reducing the
number of terms, the number of literals, or both in a Boolean expression, it is often possible to
obtain a simpler circuit. T4e manipulation of Boolean algebra consists mostly of reducing an
expression for the purpose of obtaining a simpler circuit. Functions of up to five variables can
be simplified by the map method described in the next chapter. For complex Boolean functions,
digital designers use computer minimization programs. The only manual method available is
a cut-aod-try procedure employing the basic relations and other manipulations techniques that
become familiar with use. The following examples illustrate the algebraic manipulation of
Boolean algebra.

Complement of a Function

)---F,

___--,D~--F,

(a) F2 = x'y'z + x'yz + xy'

y

z ---"-------\

(b) F2 = xy' + x'z

x-f-----j

z~==\=i==\

x-.--1)>0----,

FIGURE 2-2
Implementation of Boolean function F2 with gates

or when xy = 10 (irrespective ofthe valne of z); it is equal to 0 otherwise. This produces four

I's and four O's for F2 · . f h 'd n
Now consider the possihle simplification of the function hy applymg some 0 tel en lies

of Boolean algebra:
)

f I + I

F = x/y'z + x'yz + xy' = x/z(y' + y + xy = x Z xy
2 .

The function is reduced to only two terms and can be implemented with gales as shown1m

F 2-2(b). It is obvious that the circuit in (b) is simpler than the one m (a), yet both Imp e
~;~t the same function. It is possible to verify by meanS of a truth ta~e that the two ex!r~~~
sians are equivalent. The simplified expressiOn IS equal to 1 when ~z - 01 or when xy
This produces the same four I's in the truth table. Since both expreSSIon produce the same tru~
table, the are said to be equivalent. Therefore, the two circuits have the same outputs for a

ossible input binary combinations of the three variables. Each Implement the same Identlcal
tnction but the one with fewer gates and less inputs to gates would be preferable because It

requires less wires and components.

Chapter 2 Boolean Algebra and Logic Gates

Algebraic Manipulation .
When a Boolean expression is implemented with logic gates, each tenn ~eqUlres a gat~ and

h .able within the term designates an input to the gate. We define a ILteral to be a smgle
eac van Th fu . fF 2 2(a) has three
variable within a term that may be complemented or not. e nctIon 0 19. -

42

Minterms and Maxterms
A binary variable may appear either in its normal form (x) or in its complement form (x'). Now

consider two binary variabes x and y com~ined wi~ an~D op;ra:lOll. ~mcede;Ch~::~~e~:~
appear in either form, there are four possIble combmahons: x Y ,x y, xy ,an y.

A sim ler rocedure for deriving the complement of a function is to take the dual of the, func
tion and ~om~lementeach literal. This method follows from the generahzed DeMorgan s th~

R ber that the dual of a function is obtamed from the mterchange of AND and 0
orem. emem .
operators and 1's and O's.

Table 2-4
Functions of Three Variables

x y z Function f1 Function f2

0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 I 1

four AND terms is called a minterrn, or a standard product. In a similar manner, n variables can
be combined to form 21l minterms. The 211 different minterms may be determined by a method
similar to the one shown in Table 2-3 for three variables. The binary numbers from 0 to 2" - I
are listed under the n variables. Each minterm is obtained from an AND term of the n variables,
with each variable being primed if the corresponding bit of the binary number is a 0 and un
primed if a I. A symbol for each minterm is also shown in the table and is of the form mj,
where j denotes the decimal equivalent of the binary number of the minterm designated.

In a sintilar fasltion, n variables forming an OR term, with each variable being primed or un
primed, provide 2/1 possible combinations, called maxterms, or standard sums. The eight max
terms for three variables, together with their symbolic designation, are listed in Table 2-3. Any
2/1 maxterms for n variables may be determined similarly. Each maxtenn is obtained from an
OR term of the n variables, with each variable being unprimed if the corresponding bit is a 0
and primed if a 1. Note that each maxtenn is the complement of its corresponding minterm, and
vice versa.

A Boolean function can be expressed algebraically from a given truth table by formiug a
minterm for each combination of the variables that produces a 1 in the function, and then tak
ing the OR of all those terms. For example, the function!, in Table 2-4 is determined by ex-

Section 2-5 Canonical and Standard Forms 45

Table 2-3
Minterms and Maxterms for Three Binary Variables

Minterms Maxterms

x y z Term Designation Term Designation

0 0 0 x'y'z' mo x+y+z M o
0 0 1 x'y'z m, x + y + z' M,
0 1 0 X'yz' m2 x + y' + Z M2
0 1 1 x'yz m3 x+y'+z' M 3

I 0 0 xy'z' m4 x'+y+z M4

1 0 1 xy'z m, >::+y+z' M,
1 1 0 xyz' m6 x'+y'+z M 6

1 1 1 xyz m7 X'+y'+Z' M7

I

•

•

CANONICAL AND STANDARD FORMS2-5

- . dF fE I 22bytakingtheirdualsandcom-
Find the complement of the functlOns F, an 20 xamp e - .

plementing each literal.

1. F1 = X'yz' + x'y'z.
The dual of F, is (x' + y + z')(x' + y' + z).
Complement each literal: (x + y' + z)(x + Y + z') = F;.

2. F, = x(y'z' + yz).
The dual of F2 is x + (y' + z')(y + z).
Complement each literal: x' + (y + z)(y' + z') = F;.

~omPlementofthefunctionsF, = x'yz' + x'y'z and F, = x(Y'Z'b+YZ~.B~~i~~~
iog DeMorgan's theorem as many times as necessary, the complements are 0 tame as 0 .

F; = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x + y' + z)(x + Y + z')

F; = [x(y'z' + yz)]' = x' + (y'z' + yz)' = x' + (y'z')'(yz)'
= x' + (y + z)(y' + z')

l4 Chapter 2 Boolean Algebra and Logic Gates

DeMorgan's theorems for any number of variables resemble in form ~e two-variab~ecase'~:a~
can be derived by successive substitutions similar to the method used III the precedmg del

tion. These theorems can be generalized as follows:

(A + B + C + D + ... + F)' = A'B'C'D' ... F'

(ABCD .,. F)' = A' + B' + C' + D' + .. , + F'

The creneralized form of DeMorgan's theorem states that the complement of a function is ob
tained by intercbanging AND and OR operators and complementing each bteral.

&

Sum of Minterms

•

47

Table 2-5
Truth Table for F ~ A + B' C

A B C F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Section 2-S Canonical and Standard Forms

This function is still missing one variable:

A = AB(C + C') + AB'(C + C')

= ABC + ABC' + AB'C + AB'C'

The second term B'G is missing one variable:

B'C = B'C(A + A') = AB'C + A'B'C

Combining all terms, we have

F = A + B'C

= ABC + ABC' + AB'C + AB'C' + A'B'C

But AB'C appears twice, and according to theorem 1 (x + x =).t . 'bl
of them Rearra a' th . X ,1 IS pOSSI e to remove one

. nbmg e mmterms in ascending order, we finally obtain

F = A'B'C + AB'C + AB'C + ABC' + ABC

= ml + m4 + ms + m6 + m7

in t~ei~:l~::~;~~~~:~:t~~~~o express the Boolean function, when in its Sum of rninterms,

F(A, B, C) = ~(l, 4, 5, 6, 7)

The summation symbol ~ stands for the ORing of terms; the numbers followin it are the

:n~~::t~~~e~~:~ttlhon. The
t

letters in parentheses following F form a list of the ;ariables in
e Ill1n erm IS converted to an AND term

tab~:~:~:p~ocedure for deriving the minterms of a Boole"; function is to obtain the truth
the truth t bl ~ onddireChtly from the algebraic expression and then read the minterms from

a e. anSI er t e Boolean functIOn glVen in Example 2-4:

F ~ A + B'C

:e=:;~~~~:~~:~b;~~:~0~~5u~:~~::~~::1,i~,C~dfr~:n~7n:~~~~ait,:~~~::s~~0~~~:~

I
I
I
i

I

pressing the combinations 001,100, and 111 as x'y'z, xy'z', andxyz, respectively. Since each
one of these minterms results in!1 = 1, we have

II = x'y'z + xy'l + xyz = ml + m4 + m7

Similarly, it may be easily verified that

/2 = x'yz + xy'z + xyz' + xyz = m3 + ms + m6 + m7

These examples demonstrate an important property of Boolean algebra: Any Boolean func
tion can be expressed as a sum of minterms (with "sum" meaning the ORing of terms).

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a a in the function and then DRing
those terms. The complement offi is read as

/; = x'y'Z' + X'yzl + x'yz + xy'z + xyz'

If we take the complement of Ii, we obtain the functionII :
II = (x + Y + z)(x + y' + z)(x' + Y + z')(x' + y' + z)

= Mo • M, . M3 • M, . M6

Similarly, it is possible to read the expression for 12 from the table:

12 = (x + Y + z)(x + Y + z')(x + y' + z)(x' + Y + z)
= MoM I M2M4

These examples demonstrate a second property of Boolean algebra: Any Boolean fnnction can
be expressed as a product of maxterms (with "product" meaning the ANDing of terms). The
procedure for obtaining the product of maxterms directly from tbe truth table is as follows.
Form a maxtenn for each combination of the variables that produces a 0 in the function, and
then form the AND of all those maxterms. Boolean functions expressed as a sum of minterrm;
or product of maxterrns are said to be in canonicalfarm.

Express the Boolean function F = A + B'C in a sum of minterms. The function has three
variables, A, B, and C. The first term A is missing two variables; therefore:

A = A(B + B') = AB + AB'

It was previously stated that for n binary variables, one can obtain 211 distinct minterms, and that
any Boolean function can be expressed as a sum of minterms. The minterms whose sum de
fines the Boolean function are those that give the l's of the function in a uuth table. Since the
function can be either 1 or 0 for each minterm, and since there are 2H mintenns, one can cal
culate the possible functions that can be formed with n variables to be 22

/1. It is sometimes con
venient to express the Boolean function in its sum of minterms form. If not in this form, it can
be made so by first expanding the expression into a sum of AND terms. Each term is then in
spected to see if it contains all the variables. If it misses one or more variables, it is ANDed with
an expression such as x + Xl, where x is one of the missing variables. The following example
clarifies this procedure.

Chapter 2 Boolean Algebra and Logic Gates46

•

This has a complement that can be expressed as

F'(A, B, C) ~ 2:(0,2,3) = ma + m, + m3

49Section 2-S Canonical and Standard Forms

x y z F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 I 1

Table 2-6
Truth Table for F ~ xy + x'z

F(x, y, z) = 2:(1,3,6,7)

mj = Mj

That is, the maxterm with subscript j is a complement of the minterm with the same subscript
j, and vice versa.

The last example demonstrates the conversion between a function expressed in sum of
mintenns and its equivalent in product of maxtenns. A similar argument will show that the
conversion between the product of maxterms and the sum of minterms is similar. We now state
a general conversion procedure. To convert from one canonical form to another, interchange the
symbols 2: and IT and list those numbers missing from the original form. In order to find the
missing terms, one must realize that the total number of minterms or maxterms is 2n, where n
is the number of binary variables in the function.

A Boolean function can be convelted from an algebraic expression to a product of max
terms by using a truth table and the canonical conversion procedure. Consider, for example, the
Boolean expression

F(x, y, z) = TI(O, 2, 4, 5)

Now, if we take the complement ofF' by DeMorgan's theorem, we obtain F in a different fonn:

F = (ma + m, + m3)' = ma • m; • m; = MoM,M3 = IT(O, 2, 3)

The last conversion follows from the definition of minterms and maxterms as shown in
Table 2-3. From the table. it is clear that the following relation holds true:

F = xy + x'z

First, we derive the truth table of the function, as shown in Table 2-6. The l's under F in the
table are determined from the combination of the variable where xy = II or xz = 01. The
minterms of the function are read from the truth table to be 1, 3, 6 and 7. The function ex
pressed in sum of rninterms is

Since there are a total of eight rninterms or maxtenns in a function of three variable, we deter
mine the missing terms to be 0, 2, 4, and 5. The function expressed in product of maxtenn is

This is the same answer obtained in Example 2-5.

Chapter 2 Boolean Algebra and Logic Gates

combinations where A = I, and BC = 01. From the truth table, we can then read the five
minterms ofthe fnnction to be I, 4, 5, 6, and 7.

F(x, y, z) ~ TI(O, 2, 4, 5)

The product symbol, TI, denotes the ANDing of maxterms; the numbers are the maxterms of
the function.

Product of Maxterms

Each of the 22n functions of n binary variables can be also expressed as a product of.maxterms.
To express the Boolean fnnction as a product of ~axterms,it must first be!rought mto a10rm
of OR terms. This may be done by usmg the distrIbutive law, x + yz - (x + y) (x z).
Then any missing variable x in each OR term is ORed with xx'. This procedure IS clarIfied by
the following example.

Conversion between Canonical Forms

The complement of a function expressed as the sum of ~~terms eq~als .the sum of minterms
missing from the original function. This is because the ongmal funct~on18 expressed ~Y those
minterms that make the function equal to 1, whereas its complement 18 a 1 for those ffimterms
that the function is a O. As an example, consider the function

F(A, B, C) = 2:(1,4,5,6,7)

48

....
Express the Boolean function F = xy + x'z in a product of maxterrn fonn. First, convert the
function into OR tenns nsing the distributive law:

F ~ xy + x'z = (xy + x')(xy + z)

= (x + x')(y + x')(x + z)(y + z)

= (x' + y)(x + z)(y + z)

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore:

x' + y ~ x' + Y + zz' = (x' + Y + z)(x' + Y + z')

x + z = x + Z + yy' = (x + Y + z)(x + y' + z)

Y + z = y + z + xx' = (x + Y + z)(x' + Y + z)

Combiuing all the tenns and removing those that appear more than once, we finally obtain:

F = (x + Y + z)(x + y' + z)(x' + Y + z)(x' + Y + z')
~ MaM2 M4 Ms

A convenient way to express this function is as follows:

)----F3

(b)AB + CD + CE

C
D

C
E

A

B

(a)AB + C(D + E)

FIGURE 2-4
Three- and Two-level implementation

The sum-of-products expression is implemented in Fig. 2-4(b). In general, a two-level imple
mentation is preferred because it produces the least amount of delay through the gates when
the signal propagates from the inputs to the output.

Section 2-6 Other Logic Operations 51

F3 = AS + C(D + E) = AS + CD + CE

When the binary operators AND and OR are placed between two variables, x and y, they form
two Boolean functions, x • y and x + y, respectively. It was stated previously that there are 22

/1

functions for n binary variables. For two variables, n = 2, and the number of possible Boolean
fuuctions is 16. Therefore, the AND and OR functions are only two of a total of 16 possible
functions formed with two binary variables. It would be instructive to find the other 14 func
tions and investigate their properties.

The truth tables for the 16 functions fonned with two binary variables, x and y, are listed in
Table 2-7. Each of the 16 columns, Fa to F15 , represents a truth table of one possible function
for the two variables, x and y. Note that the functions are determined from the 16 binary com
binations that can be assigned to F. The 16 functions can be expressed algebraically by means
of Boolean functions. This is shown in the first column of Table 2-8. The Boolean expressions
listed are simplified to their minimum number of literals.

Although each function can be expressed in terms of the Boolean operators AND, OR, and
NOT, there is no reason one cannot assign special operator symbols for expressing the other

of OR gates for the sum terms (except for a single literal) followed by an AND gate. This is
shown in Fig. 2-3(b). This standard type of expression results in a two-level gating structure.

A Boolean function may be expressed in a nonstandard fonn. For example, the function

F, = AS + C(D + E)

is neither in sum of products nor in product of sums. The implementation of this expression is
shown in Fig. 2-4(a). This requires two AND gates and two OR gates. There are three levels
of gating in this circuit. It can be changed to a standard fonn by using the distributive law to
remove the parentheses:

OTHER LOGIC OPERATIONS2-6

}---F2

x'-->-'
y
z

(b) Product of Sums

y'

x --------,

(a) Sum of Products

FIGURE 2-3
Two-level implementation

y

x

x'--'--'
y I------j
Z'---L_--'

y'----,

Standard Forms .
. I fonns of Boolean algebra are basic forms that one obtains from readmg a

The two canomca Idom the ones with the least number of
functionbfrom the truhth tanbtele

nn
· T:re:a~~= ~:~e:';n::n, by definition, all the variables either

lIterals, ecause eac nu

c07~~::~~~;~:~~;:s:e;~::::~functions is in standard fonn. In this configuration, the
terms that form the function may contain one, two, or any number of hterals. There are two types

f standard fonns' the sum of products and products of sums.
o The sum ofpr;ducts is a Boolean expression containing AND tenns, called pr~du~ t~~~::
of one or more literals each. The sum denotes the ORing of these terms. An examp eo a

tion expressed in sum of products is

F
j

= Y' + xy + X'yzl

The expression has three product terms of one, two, and three literals. Their sum is in effect an

OR operation. . f of AND gates fol-
The logic diagram of a sum-of-products expression consIsts o. a group h d ct tenn
db' I OR gate This configuration pattern IS shown m FIg. 2-3(a). Eac pro u .

lowe Ya smg e . t for a tenn with a single literal. The logic sum is fonned WIth an
reqUires an:ND ga:e eX:~e outputs of the AND gates and the single literal. It is assumed that

~~~~:t~:::b~~~:r:~irect1y available in their complement, sO in:rerters are n~t included in
the diagram. This circuit configuration isreferred to as a two-level Implementallon'Each tenn

A product ofsums is a Boolean expressIOn contammg OR tenns, called sum terms. A
may have any number of literals. The product denotes the ANDing of these terms. n exam-

ple of a function expressed in product of sums IS

F2 = x(i + z)(x' + Y + z')

f t d three literals The product is an AND op-
This expression has three sum tenns 0 o~e, wo; ans from the similarity of the AND operation
eration. The use of the words product an sum

d
sth

em
. '1 'ty of the OR operation to the arith-

th ·thmetic product (mulllphcallon) an e SImI arl .
:eti~:U (addition). The gate structure of the product of sums expression conSIsts of a group

50 Chapter 2 Boolean Algebra and Logic Gates



52 Chapter 2 Boolean Algebra and Logic Gates

Table 2-7 . . bl
Truth Tables far the 16 Functions of Twa Bmary Varta es

F, F2 F, F. F. F. F7 F. F9 F,O F" F'2 F13 F,. F,.
x Y Fo

a a a a 1 1 1 1 1 1 1 1
a a aa a a a 1 1 1 1
a a a 1 1 1 1 a a aa 1 a a ] 1a 1 1 a a 1 1 a

a a a 1 I a1 1 a 1 a 1
1 a 1 a I a

1 1 a 1 a 1 a

functions. Such operator symbols are listed in the second column of Table 2-8. Ho::~~rd~~:
the neW symbols shown, except for the exclusive-OR symbol, EB, are not III common u,

ita! designers. ..' .n name and a comment that
Each of the functions in Table 2-8 IS llsted WIth an accompanyl g. . . .

. ., ay The 16 functions listed can be snbdlvlded mto three categones.
explams the functIon ill some w .

1. Two functions that produce a constant aor 1.

2. Four functions with unary operations: complement and transfer.

Ten functions with binary operators that define eight different operations: AND, OR,
3, NAND, NOR, exclusive-OR, equivalence, inhlbltlOn, and ImpllcatlOn.

Table 2-8 . bl
Boolean Expressions for the 16 Functions of Two Varia es

Boolean functions Operator Name
symbol

Fa = a Null

F1 = xy X'y AND

F2 = xy' x/y Inhibition

F 3 = x
Transfer

F4 = x'y y/x Inhibition

Transfer
F5 = y

Exclusive-OR
F6 = xy' + x'y xElly

F7 = x + y x+y OR

F8 = (x + y)' x-l-y NOR

F9 = xy + x'y' (x Ell y)' Equivalence

FlO = y' y' Complement

Fll = x +y' xCy Implication

F12 = x' x' Complement

F13 =x'+y XJy Implication

Fl4 ~ (xy)' xty NAND

F15 1
Identity

Comments

Binary constant 0

xandy
x, but not y

x
y, but not x
y
x or y, but not both

xory
Not-OR
x equals y

Noty
If y, then x
Not x
If x, then y
Not-AND
Binary constant 1

2-7

Section 2-7 Digital Logic Gates 53

Constants for binary functions can be equal to only 1 or O. The complement function pro
duces the complement of each of the binary variables. A function that is equal to an input vari
able has been given the name transfer, because the variable x or y is transferred through the gate
that forms the function without changing its value. Of the eight binary operators, two (inhibi
tion and implication) are used by logicians but are seldom used in computer logic. The AND
and OR operators have been mentioned in conjunction with Boolean algebra. The other four
functions are extensively used in the design of digital systems.

The NOR function is the complement of the OR function and its name is an abbreviation
of not-OR. Similarly, NAND is the complemeut of AND and is an abbreviation of not-AND.
The exclusive-OR, abbreviated XOR, is similar to OR, but excludes the combination of both
x and y being equal to 1. The equivalence is a function that is I when the two binary variables
are equal, Le., when both are 0 or both are 1. The exclusive-OR and equivalence functions are
the complements of each other. This can be easily verified by inspecting Table 2-7. The truth
table for the exclusive-OR is F6 and for the equivalence is Fg , and these two functions are the
complements of each other. For this reason, the equivalence function is called exclusive-NOR,
abbreviated XNOR.

Boolean algebra, as defined in Section 2-2, has two binary operators, which we have called
AND and OR, and a unary operator, NOT (complemeut). From the definitions, we have deduced
a number of properties of these operators and now have defined other binary operators in tem1S
of them. There is uothing unique about this procedure. We could have just as well started with
the operator NOR (J.), for example, and later define AND, OR, and NOT in terms of it. There
are, nevertheless, good reasons for introducing Boolean algebra in the way it has been intro
duced. The concepts of "and," "or," and "not" are familiar and are used by people to express
everyday logical ideas. Moreover, the Huntington postulates reflect the dual nature of the al
gebra, emphasizing the symmetry of + and . with respect to each other.

•
DIGITAL LOGIC GATES

Since Boolean functions are expressed in telTI1S of AND, OR, and NOT operations, it is easi
er to implement a Boolean function with these type of gates. The possibility of constructing gates
for the other logic operations is of practical interest. Factors to be weighed when considering
the construction of other types of logic gates are (1) the feasibility and economy of prodncing
the gate with physical components, (2) the possibility of extending the gate to more than two
inputs, (3) the basic properties of the binary operator, such as commutativity and associativi

. ty, and (4) the ability of the gate to implemeut Boolean functions aloue or in conjunction with
other gates.

Of the 16 functions defined iu Table 2-8, two are equal to a constant and four are repeated
twice. There are only ten functions left to be considered as candidates for logic gates. Two
inhibition and implication-"7-are not commutative or associative and thus are impractical to use
as standard logic gates. The other eight: complement, transfer, AND, OR, NAND, NOR, ex
clusive-OR, and equivalence, are used as standard gates in digital design.

The graphic symbols and truth tables of the eight gates are shown in Fig. 2-5. Each gate has
one or two binary input variables designated by x and y and one binary output variable



55

(commutative)

Section 2-7 Digital Logic Gates

aud

(x + y) + z = x + (y + z) = x + Y + z (associative),

which indicates that the gate inputs, can be interchanged and that the OR function can be ex
tended to three or more variables.

The NAND and NOR functions are commutative, and their gates can be extended to have more
than two inpnts, provided that the definition of the operation is slightly modified. The difficul
ty is that the NAND and NOR operators are not associative [I.e., (x,) y) ,} z * x,} (y ,) z)], as
shown in Fig. 2-6 and the following equations:

(x,}y),}z = [(x + y)' + z]' = (x + y)z' = xz' + yz'

x,}(y,}z) = [x + (y + z)']' = x'(y + z) = x'y + x'z

To overcome this difficulty, we deline the multiple NOR (or NAND) gate as a complemented
OR (or AND) gate, Thus, by definition, we have

x,} y ,} z = (x + Y + z)'

x t y t z = (xyz)'

The graphic symbols for the 3-input gates are shown in Fig. 2-7. In writing cascaded NOR and
NAND ope~ations,one must use the correct parentheses to signify the proper sequence of the

designated by F. The AND, OR, and inverter circuits were defined in Fig. 1-6. The inverter cir
cuit inverts the logic sense of a binary variable. It produces the NOT, or complement, function.
The small circle in the output of the graphic symbol of an inverter (referred to as a bubble) des
ignates the logic complement. The triangle symbol by itself designates a buffer circuit. A bnffer
produces the transfer function, but does not produce a logic operation, since the binary value
of the output is equal to the binary value of the input. This circuit is used for power amplifi
cation of the signal and is equivalent to two inverters connected in cascade.

The NAND function is the complement of the AND function, as indicated by a graphic sym
bol that consists of an AND graphic symbol followed by a small circle. The NOR function is the
complement of the OR function and uses an OR graphic symbol followed by a small circle. The
NAND and NOR gates are extensively used as standard logic gates and are in fact far more pop
ular than the AND and OR gates. This is because NAND and NOR gates are easily constructed
with transistor circuits and because digital circuits can be easily implemented with them.

The exclusive-OR gate has a graphic symbol similar to that of the OR gate, except for the ad
ditional curved line on the input side. The equivaleuce, or exclusive-NOR, gate is the complement
of the exclusive-OR, as indicated by the small circle on the output side of the graphic symbol.

Extension to Multiple Inputs

The gates shown in Fig. 2-5-except for the inverter and buffer-can be extended to have more
than two inputs. A gate can be extended to have multiple inputs if the binary operation it rep
resents is commutative and associative. The AND and OR operations, defined in Boolean al
gebra, possess these two properties. For the OR function, we have

Truth
table

x y F

0 0 0
0 1 0
1 0 0
1 1 1

x y F

0 0 0
0 1 1
1 0 1
1 1 1

itto 1
1 0

itto 0
1 1

x y F

0 0 1
0 1 1
1 0 1
1 1 0

x y F

0 0 1
0 1 0
1 0 0
1 1 0

x y F

0 0 0
0 1 1
1 0 1
1 1 0

x y F

0 0 1
0 1 0
1 0 0
1 1 1

F=xy' +x'y
~xElly

F= xy tx'y'
~ (x Ell y)'

F~(x+y)'

Algebraic
function

F=x+y

F=xy

X-C>--F F=x

Graphic
symbol

X---t>o--F F=x'

~=D-FOR

AND

NOR

Inverter

NAND

Buffer

Exclusive-OR
(XOR)

Name

Exclusive-NOR
or

equivalence

FIGURE 2-5
Digital logic gates

Chapter 2 Boolean Algebra and Logic Gates.4



56 Chapter 2 Boolean Algebra and Logic Gates
Section 2-7 Digital Logic Gates 57

y --------J.

x y z F

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(c) Truth table

x

{=D--F=XEBYffiZ
(b) 3-input gate

(a) Using 2-input gates

Y-,,---

z---------H

FIGURE 2-8
3-input exclusive-OR gate

)o---xt (ytz) ~x' (y + z)

)o---(x t y) t z ~ (x + y)z'

y

z

x--------1

Y

x

(c) Cascaded NAND gates

Signal
value

(b) Negative logic

o

1

Logic
value

Logic Signal
value value

1

I
H

0 L

(a) Positive logic

FIGURE 2-9
Signal assignment and logic polarity

input variables have an odd number of I's. The construction of a 3-input exclusive-OR func
tion is shown in Fig. 2-8. It is nonnally implemented by cascading 2-input gates, as shown in
(a). Graphically, it can be represented with a single 3-input gate, as shown in (b). The truth table
in (c) clearly indicates that the output Fis equal to I if only one input is equal to I or if all three
inputs are equal to I, i.e., when the total number of I's in the input variables is odd. Further
discussion of exclusive-OR can be found in Section 3-8.

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except during tran
sition. One signal value represents logic-l and the other logic-D. Since two signal values are
assigned to two logic values, there exist two different assignments of signal level to logic value,
as shown in Fig. 2-9. The higher signal level is designated by H and the lower signal level by
L. Choosing the high-level H to represent logic-I defines a positive logic system. Choosing the
low-level L to represent logic-I defines a negative logic system. The terms positive and nega
tive are somewhat misleading since both signals may be positive or both may be negative. It is
not the actual signal values that determine the type of logic, but rather the assignment of logic
values to the relative amplitudes of the two signal levels.

Hardware digital gates are defined in tenns of signal values such as H and L. It is up to the
user to decide on a positive or negative logic polarity. Consider, for example, the electronic gate

{~(xyZ)'

(b) 3-input NAND gate

F ~ [(ABC)' . (DE')]' ~ ABC + DE

D ---'-""',",--_...J

E----L_-'

A--'--'
B
C----L_-'

{~(x+y+z)'

(a) 3-input NOR gate

FIGURE 2-7
Multiple-input and caseated NOR and NAND gates

gates. To demonstrate this, consider the circuit of Fig. 2-7(c). The Boolean function for the

circuit must be written as

F = [(ABC)'(DE)']' = ABC + DE

The second expression is obtained from DeMorgan's theorem. It also shows that ~n~~~SiO~
in sum of products can be implemented with NAND gates. Further dISCUssIOn 0 an

NOR gates can be found in Section 3-6. . . b
The exclusive-OR and equivalence gates are both commutative ~d assocIatIve and can e

extended to more than two inputs. However, multiple-input e~clu~lVe-OR gates are unco~
mon from the hardware standpoint. In fact, even a 2-input functIOn IS usually constructed W1th
other types of gates. Moreover, the definition of the function must be mod1fied when extend
ed to more than two variables. The exclusive-OR is an odd functIOn, I.e., It 1S equal to I If the

FIGURE 2-6 t t
Demonstrating the nonassociativity of the NOR operator; (x t y) t z '" x (y z)



(b) Gate block diagram

58 Chapter 2 Boolean Algebra and Logic Gates

x y F

L L L
L H L
H L L
H H H

(a) Truth table
withHandL

X-----1

y----I

Digital
gate

f---Z

Section 2-7 Integrated Circuits 59

The conversion from positive logic to negative logic, and vice versa, is essentially an oper
ation that changes I's to O's and O's to I's in both the inputs and the output of a gate. Since this
operation produces the dual of a function, the change of all tenninals from one polarity to the
other results in taking the dual of the function. The result of this conversion is that all AND op
erations are converted to OR operations (or graphic symbols) and vice versa. In addition, one
must not forget to include the polarity-indicator triangle in the graphic symbols when negative
logic is assumed. In this book, we will not use negative logic gates and will assume that all gates
operate with a positive logic assignment.

x y z

0 0 0 x D-z0 1 0

1 0 0 Y

1 1 1

(c) Truth table for (d) Positive logic AND gate

positive logic

2-8 I NTEG RATED CI RCU ITS

An integrated circuit (abbreviated IC) is a silicon semiconductor crystal, called a chip, containing
the electronic components for constructing digital gates. The various gates are interconnected
inside the chip to form the required circuit. The chip is mounted in a ceramic or plastic con
tainer, and connections are welded to external pins to form the integrated circuit. The number
of pins may range from 14 on a smalllC package to several thousands on a larger package. Each
IC has a numeric designation printed on the surface of the package for identification. Vendors
provide data books, catalogs, and Internet websites that contain descriptions and information
about the ICs that they manufacture.

FIGURE 2-10
Demonstration of positive and negative logic

h
. F' 2 10(b) The truth table for this gate is listed in Fig. 2-IO(a). It specifies the phys

sownm Ig. - . h bl fF 21O(c)as
. al b h vior of the gate when H is 3 volts and L is 0 volts. The trut ta . e 0 Ig. -
IC ea.. I' . t with H = I and L = O. This truth table IS the same as the one
sumes posItIve ogle asslgnmen , . h .
for the AND operation. The graphic symbol for a positive logic AND gate IS sown m

Fig.2-IO(d). . I t 'th L - I and
w consider the negative logic assignment for the same physlca ga e WI - .

H ~00 The resnlt is the truth table of Fig. 2-10(e). This table represents the ORO~eratlOn
even thou h the entries are reversed. The graphic symbol for the negallve lOgIC . gate I~
h .~. 2-1O(f) The small triangles in the inputs and output desIgnate a polanty mdl

s ownTm
h

Ig. 'f this polarity indicator along a terminal signifies that negatIve lOgIC IS
cator. e presence 0 . '. 1 . AND

d f th . al Thus the same physical gate can operate eIther as a posll1ve OgICassume or e sIgn. ,
gate or as a negative logic OR gate.

x y z

Levels of Integration

Digital ICs are often categorized according to their circuit complexity as measured by the
number of logic gates in a single package. The differentiation between those chips that have
a few internal gates and those having hundreds of thousands of gates is made by a customary
reference to a package as being either a small-, medium-, large-, or very large-scale integra
tion device.

Small-scale integration (SSI) devices contain several independent gates in a single package.
The inputs and outputs of the gates are connected directly to the pins in the package. The num
ber of gates is usually fewer than 10 and is limited by the number of pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10 to 1,000
gates in a single package. They usually perfonn specific elementary digital operations. MSI dig
ital functions are introduced in Chapter 4 as decoders, adders, and multiplexers and in Chap
ter 6 as registers and counters.

Large-scale integration (LSI) devices contain thousands of gates in a single package. They
include digital systems such as processors, memory chips, and programmable logic devices.
Some LSI components are presented in Chapter 7.

Very large-scale integration (VLSI) devices contain hundred of thousands of gates within
a single package. Examples are large memory arrays and complex microcomputer chips. Be
cause of their small size and low cost, VLSI devices have revolutionized the computer system
design technology, giving the designer the capability to create structures that were previously
uneconomical to build.

:[>-Z
(f) Negative logic'OR gate

y

x1
1
1
o

1 1
1 0
o 1
o 0

(e) Truth table for
negative logic



60 Chapter 2 Boolean Algebra and Logic Gates
Problems 61

Computer-Aided Design (CAD)

The design of digital systems with VLSI circuits containing millions of transistors is a fonni
dab1e task. Systems of this complexity are usually impossible to develop and verify without the
assistance of computer-aided design tools. CAD tools consist of software programs that support
computer-based representation and aid iu the development of digital hardware by automating
the design process. Electronic design automation covers all phases of the design of integrated
circuits. A typical design flow for creating VLSI circuits consists of a sequence of steps begin
ning with design entry and culminating with the generation of the database that contains the pho-

Demonstrate by means of truth tables the validity of the following identities:

(a) DeMorgan's theorem for three variables: (x + y + z)' = x'y'z'and(xyz)' = x' + y' + Z'

(b) The distributive law: x + yz ~ (x + y)(x + z)

Simplify the following Boolean expressions to a minimum number of literals:

(a) xy + xi (b) (x + y)(x + i)

(c) xyz + x'y + xyz' (d) (A + B)'(A' + B')'

Simplify the following Boolean expressions to a minimum number of literals:

(a) ABC + A'B + ABC' (b) x'yz + xz

(c) (x + y)'(x' + i) (d) xy + x(wz + wz')
(e) (BC' + A'D)(AB' + CD')

Reduce the following BOOlean expressions to the indicated number of literals:

(a) A'C' + ABC + AC' to three literals

(b) (x'y' + z)' + z + xy + wz to three literals

(c) A'B(D' + C'D) + B(A + A'CD) toone literal

(d) (A' + C) (A' + C')(A + B + C'D) to four literals

tomask used to fabricate the IC.. There are a variety of options available for creating the physi
cal r~alI~atIOn of a dIgItal circUlt In SIlicon. The designer can choose between an application-
speCific mtegrated circuit (ASIC), a field-programmable gate array (FPGA) a bll' . , programma e
OgiC deVIce (PLD), or a full-custom Ie. With each of these devices comes a set of CAD tools

that proVIde the necessary software to facilitate the hardware fabrication of the unit.
. Some CAD systems include ~n editing program for creating and modifying schematic dia

gIa~S on a computer screen. ThIS process is called schematic capture or schematic entry. With
the aId of ~nenus, keyboard commands, and the mouse, a schematic editor can draw circuit di
agrams .of .digit~l circuit~ in the computer screen. Components can be placed on the screen
from a h,st In an mternal lIbrary and can then be connected with lines that represent wires. The
sc.hematIc entry ~oftware creates and manages a database containing the information created
WIth the schematIc. Primitive gates and functional blocks have associated models that allow the
behaVIOr an~ tin:ing of t~e circuit.to ~e verified. This verification is performed by applying in
puts to ,the CircUlt and usmg a lOgIC SImulator to determine the outputs.

An Important development in the design of digital systems is the use of a hardware de
scnptlon language (HDL). HDL resembles a programming language, but is specifically oriented
to descnbe dIgItal hardware. It represents logic diagrams and other digital information in tex
tu~ fo~m, It IS u~ed to slmu~at~ the system before its construction to check the functionality and
venfy I~S operatIOn be~ore It IS submitted to fabrication. An important application is its logic
syntheSIS software, whIch automates the design of digital systems. HDL has become very im
portant m recent years and IS the best method available for the design of complex digital sys
tem~. ~DL ,IS I~troduced m Sec 3-9 and because of its importance, we include HDL descriptions
of digItal cIrcmts, components, and design procedures throughout the entire book.

2-1

2-2

2-3

2-4

PROBLEMS

transistor-transistor logic;

emitter-coupled logic;

metal-oxide semiconductor;

complementary metal-oxide semiconductor.

TTL

ECL

MOS

CMOS

TTL is a logic family that has been in operation for a long time and is considered as stan
dard. ECL has an advantage in systems requiring high-speed operation. MOS is suitable for cir
cuits that need high component density, and CMOS is preferable in systems requiring low
power consumption. Low power consumption is essential for VLSI design, and therefore,
CMOS has become the dominant logic family, while TTL and ECL are declining in use. The
analysis of the basic electronic digital gate circuit in each logic family is presented in Chapter 10.

The characteristics of digital logic families are usually compared by analyzing the circuit
of the basic gate in each family. The most important parameters that are evaluated and com
pared are discussed in Section 10-2. They are listed here for reference.

Fan-out specifies the number of standard loads that the output of a typical gate can drive with
out impairing its Donna1 operation. A standard load is usually defined as the amount of current
needed by an input of another similar gate of the same family.

Fan-in is the number of inputs available in a gate.
Power dissipation is the power consumed by the gate that must be available from the

power supply.
Propagation delay is the average transition delay time for the signal to propagate from input

to output. The operating speed is inversely proportional to the propagation delay.
Noise margin is the maximum external noise voltage added to an input signal that does not

cause an undesirable change in the circuit output.

Digital logic Families

Digital integrated circuits are classified not only by their complexity or logical operation, but
also by tbe specific circuit tecbnology to wbich they belong. The circuit technology is refen-ed
to as a digital logic family. Each logic family has its own basic electronic circuit upon which
more complex digital circuits and components are developed. The basic circuit in each tech
nology is a NAND, NOR, or inverter gate. The electronic components employed in the con
struction of the basic circuit are usually used to name the technology. Many different logic
families of digital integrated circuits have been introduced commercially. The following are the
most popular:



E.

y

y

(b)

(b) x + y

y
~

0 1

0 1

1 1 1

x

y
0 1

0 x'y' x'y

1 xy' xy

x

y
y
~

x 0 1

0

1 1

(a) xy

FIGURE 3-1

Two-variable Map

FIGURE 3-2

Representation of Functions in the Map

Section 3-1 The Map Method 65

ml + m2 + m3 = x'y + xi + xy = x + y

~he threedsquares could have also been determined from the intersection of variable x in
x ~rs~~on row and vanable y In the second column, which encloses the area belonging to

TWO-Variable Map

The two-variable map is shown in Fig. 3-I(a). There are four minterms for two variables· h .
th~ ~ap ~on~lsts of four squares, One for each minterm. The map is redrawn in (b) to Sho:n~~
re a lOns Ip etween the squares and the two variables x and y. The 0 and I marked in each r

:;0~1~7 d~t11nate the values of variables. Variable x appears primed in row 0 and unprim:~
. urn ar y, y appears pnmed In column 0 and unprimed in column I

If we mark the squares whose minterms belong to a given function, the t~o-variable rna
~ecomes another useful way to represent anyone of the 16 Boolean functions of two v . bl P

s an example, the function xy is shown in Fig 3-2(a) Since x . ana es.

~~s~~; t~~2~~~~e :;t belongs to m3 • Similarl~, ·the fun~tion x ~ ~ ~sq~:~r::U~~~ Inl:h~I:~~
f th

·f . Y ee squares marked WIth I s. These squares are found from the minterrns
o e unctIOn:

Gate-Level
Minimization

The complexity of the digital logic gates that implement a Boolean function is directly relat
ed to the complexity of the algebraic expression from which the function is implemented. Al
though the truth table representation of a function is unique, when expressed algebraically, it
can appear in many different forms. Boolean expressions may be simplified by algebraic means
as discussed in Section 2-4. However, this procedure of minimization is awkward because it
lacks specific rules to predict each succeeding step in the martipulative process. The map method
provides a simple straightforward procedure for minimizing Boolean functions. This method
may be regarded as a pictorial form of a truth table. The map method is also known as the
Karnaugh map or K-map.

The map is a diagram made up of squares, with each square representing one minterm of
the function. Since any Boolean function can be expressed as a sum of minterms, it follows that
a Boolean function is recognized graphically in the map from the area enclosed by those squares
whose minterms are included in the function. In fact, the map presents a visual diagram of all
possible ways a function may be expressed in standard form. By recognizing various patterns,
the user can derive alternative algebraic expressions for the same function, from which the
simplest can be selected.

The simplified expressions produced by the map are always in one of the two standard
forms: sum of products or product of sums. It will be assumed that the simplest algebraic ex
pression is one with a minimum number of terms and with the fewest possible number of lit
erals in each term. This produces a circuit diagram with a minimum number of gates and the
minimum number of inputs to the gate. We will see subsequently that the simplest expression
is not unique. It is sometimes possible to find two or more expressions that satisfy the mini
mization criteria. In that case, either solution would be satisfactory.

3-1 THE MAP MET HOD

64



ms + m, = xy'z + xyz = xz(y' + y) = xz

Here the two squares differ by the variable y, which can be removed when the sum of the two
minterms is formed. Thus, any two minterms in adjacent squares that are ORed together will
cause a removal of the different variable. The following examples explain the procedure for min

imizing a Boolean function with a map.

67

y

z

11 10

Section 3-1 The Map Method

01

11 11

11 11

o

yz
x 00

FIGURE 3-4
Map for Example 3-1; F(x, y, z) ~ 2:(2, 3, 4, 5) ~ x'y + xy'

Simplify the Boolean function

There are cases where two sqnares in the map are considered to be adjacent even though they
d~ not touc~ each other. In Fig. 3-3, rna is adjacent to m2 and m4 is adjacent to m6 because the
nnnterms dIffer by one variable. This can be readily verified algebraically:

ma + m2 = x'y'z' + x'yz' = x'z'(y' + y) = x'z'

m4 + m6 = xy'z' + xyz' = xz' + (y' + y) = xz'

Consequently, we must modify the definition of adjacent squares to include this and other sim
ilar cases. This is done by considering the map as being drawn on a surface where the right and
left edges touch each other to form adjacent squares.

•

F(x, y, z) = ~(3, 4, 6, 7)

The map for this function is shown in Fig. 3-5. There are four squares marked with I's, onefor
each IIlmterm of the function. Two adjacent squares are combined in the third column to give

Simplify the Boolean fnnction

F(x, y, z) = ~(2, 3, 4, 5)

First, a I is marked in each minterm that represents the function. This is shown in Fig. 3-4, where
the squares for mmterms 010, Oil, 100, and 101 are marked with I's. The next step is to find
P?ssible adjacent squares. These are indicated in the map by two rectangles, each enclosing two
1 s. The upper nght rectangle represents the area enclosed closed by x'y. This is determined
by observing that the two-square area is in row 0, corresponding to x', and the last two columns
corresponding to y. Similarly, the lower left rectangle represents the product term xy'. (The sec:
ond row represents x and the two left columns represent y'.) The logical sum of these two prod
uct terms gives the SimplIfied expression:

F = x'y + xy'

~,---~--------

......'-----------

y

z
(b)

yz
x 00 01 11 10

0 X'y'Z' X/y'z x'yz x'yz'

\ 1
xy'Z' xy'z xyz xyz'x

rna rn, rn3 rn2

rn, rns rn, rn6

(o)

FIGURE 3-3
Three-variable Map

Chapter 3 Gate-Level Minimization

Three-Variable Map
A three-variable map is shown in Fig. 3-3. There are eight minterms for three binary variables.
Therefore, the map consists of eight squares. Note that the minterms are not arranged in a bi
nary seqnence, but in a sequence similar to the Gray code (Table 1-6). The characteristic of this
sequence is that only one bit changes in value from oue adjacent column to the next. The map
drawn in part (b) is marked with numbers in each row and each column to show the relation
ship between the squares and the three variables. For example, the square assigned to ms cor
responds to row I and column 01. When these two numbers are concatenated, they give the
binary number 101, whose decimal equivalent is 5. Another wayoflooking at square m, = xiz
is to consider it to be in the row marked x and the column belonging to y'z (column 01). Note
that there are four squares where each variable is equal to 1 and four where each is equal to O.
The variable appears unprimed in those four squares where it is equal to I and primed in those
squares where it is equal to O. For convenience, we write the variable with its letter symbol under

the four squares where it is unprimed.
To understand the usefulness of the map for simplifying Boolean functions, we must rec

ognize the basic property possessed by adjacent squares. Any two adjacent squares in the map
differ by only one variable, which is primed in one square and unprimed in the other. For ex
ample, ms and m7 lie in two adjacent squares. Variable y is primed in ms and unprimed in m7'
whereas the other two variables are the same in both squares. From the postulates of Boolean
algebra, it follows that the sum of two minterms in adjacent squares can be simplified to a sin
gle AND term consisting of only two literals. To clarify this, consider the sum of two adjacent

squares such as ms and m7:

66

$



p_!!!I!!!I!!!!!!!!!!!!I!!!!III!!!!!!!!1!!!1!!!!!!-.........................--------

68 Chapter 3 Gate-Level Minimization
Section 3-1 The Map Method 69

1

JJ 1 L

- ~

1 1

11 1 1
L-

yz
x 00

o

01

y

11 10

yz
x 00

o

+
01

y

11 10

z z

FIGURE 3-5
Map for Example 3-2; F(x, y, z) ~ 2: (3, 4, 6, 7) ~ yz + XI

FIGURE 3-6
Map for Example 3-3; F(x, y, z) ~ 2: (0, 2, 4, 5, 6) ~ I + xV

B

11 10

C

01

1 11 1 I

1 1

BC
A 00

o

+

(a) express it in sum of minterms

(b) and find the minimal sum of products expression.

Three product terms in the expression have two literals and are represented in a three-variable
map by two squares each. The two squares corresponding to the first term, A'C, are found in
Fig. 3-7 from the coincidence of A' (first row) and C (two middle columns) to give squares 001

F = A'C + A'B + AB'C + BC

Given the Boolean function

FIGURE 3-7
Map for Example 3-4; A'C + A'B + AB'C + BC ~ C + A'B

•If a function is not expressed in sum of miuterms, it is possible to use the map to obtain the
minterms of the function and then simplify the function to an expression with a minimum num
ber of terms. It is necessary to make sure that the algebraic expression is in sum of products
form. Each product term can be plotted in the map in one, two, or more squares. The minterms
of the function are then read directly from the map.

permissible, but rather desirable, because the two adjacent squares give the two-literal term
xy' and the single square represents the three-literal minterm xy'z. The simplified functiou is

F=ZI+xy'

•

F(x,y,Z) ~ 2:(0,2,4,5,6)

The map for F is shown in Fig. 3-6. First, we combine the four adjacent squares in the first and
last columns to give the single literal term z'. The remaining single square representmg mmterm
5 is combined with an adjacent square that has already been used once. This is not only

Consider now any combination of four adjacent squares in the three-variable map. Any such
combination represents the logical sum of four minterms and results in an expression of only
one literal. As an example, the logical sum of the four adjacent minterms 0, 2, 4, and 6 reduces

to a single literal term z':
", + / I + " + Irna + rn2 + m4 + 1n6 = X Y z x yz xy Z xyz

= x'z'(y' + y) + xlV + y)

= x'z' + xz' = z'(x' + x) = z'

Simplify the Boolean function

The number of adjacent squares that may be combined must always represent a number
that is a power of two such as l, 2, 4, and 8. As a larger number of adjacent squares are com

bined, we obtain a product term with fewer literals.

One square repre~entsone minterm, giving a term of three literals.

Two adjacent squares represent a term of two literals.

Four adjacent squares represent a term of one literal.

Eight adjacent squares encompass the entire map and produce a function that is always

equal to 1.

a two-literal term yz. The remaining two squares with 1's are also adjacent by the new defini
tion and are shown in the diagram with their values enclosed in half rectangles. These two
squares, when combined, give the two-literal term xz'. The simplified function becomes

F = yz + xz'



•
FOUR-VARIABLE MAP

71

x

y

11 10

z

Section 3-2 Four-Variable Map

01
yz

00

~.

1 1 1

l- I--

el- l c.2...

1 1 1
1-- "----

1 1

01

00

10

11

wx

w

Simplify the Boolean function

The map minimization of four-variable Boolean functions is similar to the method used to
minimize three-variable functions. Adjacent squares are defined to be squares next to each other.
In addition, the map is considered to lie on a surface with the top and bottom edges as well as
the right and left edges, touching each other to form adjacent squares. For example: rna and rn2
form adjacent squares, as do m3 and mIl. The combination of adjacent squares that is useful dur
ing the simplification process is easily determined from inspection of the four-variable map:

One square represents one minterm, giving a term of four literals.

Two adjacent squares represent a term of three literals.

Four adjacent squares represent a term of two literals.

Eight adjacent squares represent a term of one literal.

Sixteen adjacent squares represent the function equal to 1.

No other combination of squares can simplify the function. The following two examples show
the procedure used to simplify four-variable Boolean functions .

F(w, x, y, z) = L(O, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

Since the function has four variables, a four-variable map must be used. The minterms listed
in the sum are marked by 1's in the map of Fig. 3-9. Eight adjacent squares marked with I's
can be combined to form the one literal term y'. The remaining three I 's on the right cannot be
combined to give a simplified term. They must be combined as two or four adjacent squares.
The larger the number of squares combined, the smaller the number of literals in the term. In

FIGURE 3-9
Map for Example 3-5; F(w, x, y, z) ~ 2:(0, 1,2,4,5,6,8,9,12, 13, 14)
~ y' + w'z' + xz'

.....,-------------

yz
y

wx 00 01 11 10

00 w'x'y'z' w'x'y'z w'x'yz w'x'yz'

01 w'xy'z' w'xy'z w'xyz w'xyz'

x

11 wxy'z' wxy'z wxyz wxyzl

W

10 wx'y'z' wx'y'z wx'yz wx'yz'

z
(b)

rna rnl rn, m2

rn4 rn, rn7 rn6

rn12 rn13 rn15 m14

rns rn, rnu mlO

The map for Boolean functions of four binary variables is shown in Fig. 3-8. In (a) are listed
the 16 minterms and the squares assigned to each. In (b) the map is redrawn to show the rela
tionship with the four variables. The rows and columns are numbered in a Gray code sequence,
with only one digit changing value between two adjacent rows or columns. The minterm cor
responding to each square can be obtained from the concatenation of the row number with the
column number. For example, the numbers of the third row (II) and the second column (01),
when concatenated, give the binary number 1101, the binary equivalent of decimal 13. Thus,
the square in the third row and second column represents minterm m13'

(a)

FIGURE 3-8
Four-variable Map

F(A, B, C) = L(l, 2, 3, 5, 7)

The sum of products expression as originally given has too many terms. It can be simplified,

as shown in the map, to an expression with only two terms:

F = C + A'B

Chapter 3 Gate-Level Minimization

and OIl. Note that when marking 1's in the squares, it is possible to find a 1 already placed there
from a preceding term. This happens with the second term, A'B, which has I's insquares 011
and 010. Square 011 is common with the first term, A'C, though, so only one 1 IS marked 1U

it. Continuing in this fashion, we determine that the term AB'C belongs in square 101, corre
sponding to minterm 5, and the term BC has two 1's in squares 011 and 111. The function has
a total of five minterms, as indicated by the five 1's in the map of Fig. 3-7. The minterms are
read directly from the map to be 1, 2, 3, 5, and 7. The function can be expressed in sum of

minterms form:

3-2

70



B

C

11 1001
CD
00

D

(b) Prime implicants CD, B'e
AD,andAB'

1 1 1

1 1

1 1

I 1 1 1 ==ry

01

AB

00

11
A

10

B

C

11 1001
CD
00

D

(a) Essential prime implicants
BD andB'D'

~ ~
1 1

1 1

~ ~

00

01

AB

11
A

10

FIGURE 3-11
Simplification Using Prime Implicants

Section 3-2 Four-Variable Map 73

When choosing adjacent squares in a map, we must ensure that all the minterms of the func
tion are covered when combining the squares. At the same time, it is necessary to minimize the
number of terms in the expression and avoid any redundant tenns whose minterms are already
covered by other terms. Sometimes there may be two or more expressions that satisfy the sim
plification criteria. The procedure for combining squares in the map may be made more sys
tematic if we understand the meaning of the terms referred to as prime implicant and essential
prime implicant. A prime implicant is a product term obtained by combining the maximum
possible number of adjacent squares in the map. If a minterm in a square is covered by only
one prime implicant, that prime implicant is said to be essential.

The prime implicants of a function can he obtained from the map by combining all possi
ble maximum numbers of squares. This means that a single 1 on a map represents a prime im
plicant if it is not adjacent to any other 1's. Two adjacent l's form a prime implicant, provided
that they are not within a group of four adjacent squares. Four adjacent I 's form a prime im
plicant if they are not within a group of eight adjacent squares, and so on. The essential prime
implicants are found by looking at each square marked with a 1 and checking the nnmber of
prime implicants that cover it. The prime implicant is essential if it is the only prime implicant
that covers the minterm.

Consider the following four-variable Boolean function:

F(A, B, C, D) ~ L(O, 2, 3, 5, 7, 8, 9, 10, II, 13, 15)

The minterms of the function are marked with I's in the maps of Fig. 3-11. Part (a) of the fig
ure shows two essential prime implicants. One term is essential because there is only one way
to include minterms ma within four adjacent squares. These four squares define the term B'D'.
Similarly, there is only one way that mintenn ms can be combined with four adjacent squares

Prime Implicants

•

•

CD C

AB 00 01 11 10

00 g ~ 1

01 1

B

11
A

10 ~
D

FIGURE 3-10 , " "
Map for Example 3-6; A'B' C + B' CD' + A'BCD' + AB'C ~ B'D + B C + A CD

Simplify the Boolean function

F = A'B'C' + B'CD' + A'BCD' + AB'C'

The area in the map covered by this function consists of the squares marked with I's in Fig. 3-10.
This function has four variables and, as expressed, consists of three terms, each wIth three !tt
erals, and one term of four literals. Each term of tltree literals is represented m the map hy two

F Ie A'B'C' is represented in squares 0000 and 0001. The funcllOn can be slm-
squares. or examp , I I Th"' "bI
plified in the map by taking the l's in the four corners to give the term B D.. IS IS POSSI e
because these four squares are adjacent when the map is drawn in a surface WIth top and bot
tom or left and right edges touching one another. The two left-hand l's in the toprow are com-

b· d l'th the two l's in the hottom row to give the term B'C'. The remammg I may be
me w . l"fi d fu . .

combined in a two-square area to give the term A/CD'. The SImp lIe nchon 18

F = B'D1 + B'C' + A/CD'·

Chapter 3 Gate-Level Minimization

this exaruple, the top two I's on the right are combined with the top two l's on the left to give
the term Wi z'. Note that it is permissible to use the same square more than once. We are nOW

left with a square marked by I in the third roW and fourth column (squarelllO). Instead oftak
ing this square alone (which will give a term of four literals), we combme It WIth squares al
ready used to form an area of four adjacent sq~ares. These squares make up the two noddle rowS
and the two end columns, giving the term xz . The sImplified functIon IS

F = y' + WIZ' + xl

72



Table 3-1
The Relationship Between the Number ofAdjacent Squares
and the Number of Literals In the Term

75

C

D

11 10

16 17 19 18

20 21 23 22

28 29 31 30

24 25 27 26

01

10

DE

BC 00 01

00

A ~ 1

E

11

B

Section 3-3 Five-Variable Map

C

D

il 10

E

Number
of

Adjacent Number of Literals
Squares in a Term in an n-variable Map

K 2' n=2 n = 3 n - 4 n-5

0 1 2 3 4 5
t 2 1 2 3 4
2 4 0 1 2 3
3 8 0 1 2
4 16 0 1
5 32 0

0 1 3 2

4 5 7 6

12 13 15 14

8 9 11 10

01

DE

BC 00 01

00

10

11

B

FIGURE 3-12
Five-variable Map

computer programs specifically written to facilitate the simplification of Boolean functions
WIth a large number of variables.

. From inspection. and taking into account the new definition of adjacent squares it is pos-
SIble to show that any 2' adjacent squares for k = (0 1 2 ) . . bl ' .. " , , ... , n In an n-vana e map, Will
~epresent an area that gives a term of n - k literals, For the above statement to have any mean-
mg, ~ must be larger than k. When n = k, the entire area of the map is combined to give the
IdentIty functIon. Table 3~ I shows the relationship between the number of adjacent squares
an
h

d the nun:ber of lIterals ,In the term. For example, eight adjacent squares combine an area in
t e five-vanab1e map to gIve a term of two literals.

F = BD + B'D' + CD + AD

= BD + B'D' + CD + AB'

= BD + B'D' + B'C + AD

~ BD + B'D' + B'C + AB'

The previous example has demonstrated that the identification of the prime implicants in the map
helps in determining the a1tematives that are available for obtaining a simplified expression.

The procedure for finding the simplified expression from the map requires that we first de
termine all the essential prime implicants. The simplified expression is obtained from the log
ical sum of all the essential prime implicants plus other prime implicants that may be needed
to cover any remaining minterms not covered by the essential prime implicants. Occasionally,
there may be more than one way of combining squares and each combination may produce an
equally simplified expression.

Maps for more than four variables are not as simple to use. A five-variable map needs 32
squares and a six-variable map needs 64 squares. When the number of variables becomes large,
the number of squares becomes excessively large and the geometry for combining adjacent
squares becomes more involved.

The five-variable map is shown in Fig. 3-12. It consists of 2 four-variable maps with vari
ables A, B, C, D, and E. Variable A distinguishes between the two maps, as indicated on the
top of the diagram. The left-hand four-variable map represents the 16 squares where A = 0,
and the other four-variable map represents the squares where A = 1. Minterms 0 through 15
belong with A = 0 and minterms 16 through 31 with A = 1. Each four-variable map retains
the previously defined adjacency when taken separately. In addition, each square in the A = 0
map is adjacent to the corresponding square in the A = I map. For example, minterm 4 is ad
jacent to minterm 20 and minterm 15 to 31. The best way to visualiie this new rule for adja
cent squares is to consider the two half maps as being one on top of the other. Any two squares
that fall one over the other are considered adjacent.

By following the procedure used for the five-variable map, it is possible to construct a six
variable map with 4 four-variable maps to obtain the required 64 squares. Maps with six or more
variables need too many squares and are impractical to use. The alternative is to employ

and this gives the second term RD. The two essential prime implicants cover eight mintenns.
The remaining three rninterms, m3, mg, and mil' must be considered next.

Figure 3-1l(b) sbows all possible ways that the three minterms can be covered with prime
implicants. Mintenn m3 can be covered with either prime implicant CD or R'C. Minterm mg

can be covered with either AD or AR'. Minterm m, I is covered with anyone of the four prime
implicants. The simplified expression is obtained from the logical sum of the two essential
prime implicants and any two prime implicants that cover minterms m3, mg, and ml J. There
are four possible ways that the function can be expressed with four product terms of two lit
erals each:

FIVE-VARIABLE MAP

Chapter 3 Gate-Level Minimization

3-3

74



..
PRODUCT OF SUMS SIMPLIFICATION

77

..

B

C

11 10

D

01

Section 3-4 Product of Sums Simplification

~

1 1 0 1

0 1 0 0

10 0 0 o 1

1 1 0 1
-

01

CD
AB 00

00

11
A

10

FIGURE 3-14

Map for Example 3-8; F(A, B, C, D) ~ 2: (0, 1, 2, 5, 8, 9, 10)
~ B'D' + B'C' + A'C'D ~ (A' + B')(C' + D')(B' + D)

function. From this we s:e that the complement of a function is represented in the map by the
squares not marked by I s. If we mark the empty squares by O's and combine them into valid
a~Jacent squares, we obtain a simplified expression of the complement of the function, i.e., of
F . The complement of F' gives us back the function F. Because of the generalized DeMoroan's
theorem, the function so obtained is automatically in the product of sums form. The bestway
to show this is by example.

F' = AB + CD + BD'

Applying DeMorgan's theorem (by taking the dual and complementing each literal as de
scnbed m Section 2-4), we obtain the simplified function in product of sums:

(b) F ~ (A' + B')(C' + D')(B' + D)

Simplify the following Boolean function in (a) SUm of products and (b) product of sums:

F(A, B, C, D) ~ L(O, I, 2, 5, 8, 9, 10)

The I's marke~ in the map of Fig. 3-14 represent all the minterms ofthefunction. The squares
marked With 0 S represent the mmterms not mc1uded in F and, therefore, denote the comple
ment of F. Combmmg the squares with I's gives the simplified function in Sum of products:

(a) F = B'D' + B'C' + A'C'D

If the squares marked with O's are combined, as shown in the diagram, we obtain the
slmphfied complemented function:

_r------------C

D

E

01 11 10

1 1

~
1 1

1
l---

01

DE

BC 00

00

11

B

10

C

E

D

01 11 10
DE
00

1 ~
1

1 c2-1-

'1

1
'----

01

BC

00

11

B

10

FIGURE 3-13
Map for Example 3-7; F = A' B' E' + BD'E + ACE

Simplify the Boolean function

F(A, B, C, D, E) = L (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)

The five-variable map for this function is shown in Fig. 3-13. There are six minterms from 0
to 15 that belong to the part of the map with A = O. The other five minterms belong with
A = J. Four adjacent squares in the A = 0 map are combined to give the three-literal term
A'BIE', Note that it is necessary to include A' with the term because all the squares are asso
ciated with A = O. The two squares in column 01 and the last two rows are common to both
parts of the map. Therefore, they constitute four adjacent squares and give the three-literal term
BD'E. Variable A is not included here because the adjacent squares belong to both A = 0 and
A = 1. The term ACE is obtained from the four adjacent squares that are entirely within the
A = I map. The simplified function is the logical sum of the three terms:

F = ABE + BD E + ACE

The minimized Boolean functions derived from the map in all previous examples were ex
pressedin the sum of products form. With a minor modification, the product of sums form can
be obtained.

The procedure for obtaining a minimized function in product of sums follows from the basic
properties of Boolean functions. The I's placed in the squares of the map representthe mintenns
of the function. The minterms uot included in the function denote the complement of the

Chapter 3 Gate-Level Minimization

3-4

76



79Section 3-4 Product of Sums Simplification

yz y

x 00 01 11 10

0 0 1 1 0

+1 0 0

z
FIGURE 3-16

Map for the Function of Table 3-2

F(x,y,z) = 11(0,2,5,7)

In other words, the I's of thefunction represent the minterms, and the D's represent the max
terms. The map for thl,S functlOn IS shown in Fig. 3-16. One can start simplifying this function
by first marJ<.ing the I s for each rnmterm that the function is a 1. The remaining squares are
marked by, 0 s. If, on the other hand, the product of maxterms is initially given, One can start
marking 0 S III those squares hsted m the function; the remaining squares are then marked b
I's. Once the I's and D's are marked, the function can be simplified in either one of the stU:
dard forms. For the sum of products, we combine the I's to obtain

F' = xz + x'z'

F = x'z + xl

For the product of sums, we combine the D's to obtain the simplified complemented function

F(x, y, z) = 2:(1,3,4,6)

In product of maxterms, it is expressed as

Consider, for example, the truth table that defines the function F in Table 3-2. In sum of
nuntenns, this function is expressed as

which shows that the exclusive-OR function is the complement of the equivalence function (Sec
bon 2-6). Takmg the complement of F', we obtain the simplified function in product of sums:

F = (x' + z')(x + z)

~o enter a function expressed in product of sums in the map, take the complement of the func
bon and from it find the squares to be marked by D's. For example, the function

F = (A' + B' + C')(B + D)

can be entered in the map by first taking its complement,

F' = ABC + B'D'

and then marking O's in the squares representing the minterms of F'. The remaining squares
are marked with I's.

}---F

A'

D

B'

C
D'

Table 3-2
Truth Table of Function F

x y z F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

J...---F

The implementation of the simplified expressions obtained in Example 3-8 is shown in
Fig. 3-15. The sum of products expression is implemented in (a) with a group of AND gates,
one for each AND term. The outputs of the AND gates are connected to the inputs of a single
OR gate. The same function is implemented in (b) in its product of sums form with a group of
OR gates, one for each OR term. The outputs of the OR gates are connected to the inputs of a
single AND gate. In each case, it is assumed that the input variables are directly available in
their complement, so inverters are not needed. The configuration pattern established in Fig. 3-15
is the general form by which any Boolean function is implemented when expressed in one of
the standard forms. AND gates are connected to a single OR gate when in sum of products; OR
gates are connected to a single AND gate when in product of sums. Either configuration fOnTIS

two levels of gates. Thus, the implementation of a function in a standard form is said to be a
two-level implementation.

Example 3-8 showed the procedure for obtaining the prodnct of sums simplification when
the function is originally expressed in the sum of mintenns canonical form. The procedure is
also valid when the function is originally expressed in the product of maxterms canonical form.

(a) F ~ B'D' + B'C + A'CD (b) F~ (A' + B') (C + D')(B' + D)

FIGURE 3-15
Gate Implementation of the Function of Example 3-8

Chapter 3 Gate-Level Minimization

C

78

B'

D'

A'
D



80 Chapter 3 Gate-Level Minimization
Section 3-5 Don't-Care Conditions 81

DON'T-CARE CONDITIONS

x

y

11 10

z

01

(b)F~yz+w'z

yz
00

X 1 1 X

0 X 1 0

0 0 1 0

0 0 1 0
-

01

00

wx

11

10

w

x

y

11 1001
yz
00

Ix 1 T X

0 X 1 0

0 0 1 0

0 0 1 0
~

00

01

wx

11

10

w

z
(a)F~ yz + w'x'

FIGURE 3-17

Example with don't-care Conditions

In part (b), don't-care minterm 5 is included with the l's and the simplified function now is

F = yz + w'z

Either one of the preceding two expressions satisfies the conditions stated for this example.

•
. The,rrevious example has shown that the don't-care minterms in the map are initially marked

wIth X s and are considered as being either 0 or 1. The choice between 0 and I is made de
pendmg on the way the mcompletely specified function is simplified. Once the choice is made
the sllllplified function obtained will consist of a sum ofminterms that includes those minterm;
that were Imnally unspecified and have been chosen to be included with the 1's. Consider the
two SimplIfied expresslOns obtamed in Example 3-9:

F( w, x, y, z) = yz + w'x' = 2:(0,1,2,3,7,11, IS)

F(w, x, y, z) = yz + w'z = 2:(1,3,5,7,11,15)

Bot~ expressions include minterms 1, 3, 7, II, and 15 that make the function F equal to 1. The
don t-care nunterms 0, 2, and 5 are tr~ateddifferently in each expression. The first expression
mcludes mmterms 0 and 2 wIth the 1 s and leaves minterm 5 with the O's. The second expres
SIOn I.neludes mmterm 5 With the l's and leaves minterms 0 and 2 with the O's. The two ex
preSSlOns represent two functions that are algebraically unequal. Both Cover the specified
mmterms of. the functl?n, ~ut each covers different don't-care minterms. As far as the incom
pletely speCified funcnon IS concerned, either expression is acceptable because the only dif
ference IS m the value of F for the don't-care minterms.

2:(1,3,7,11, IS)F(w,x,y, z)

which has the don't-care conditions

The minterms of F are the variable combinations that make the function equal to 1. The
minterms of d are the don't-care minterms that may be assigned either 0 or 1. The map sim
plification is shown in Fig. 3-17. The minterms of F are marked by l's, those of d are marked
by X's, and the remaining squares are filled with O's. To get the simplified expression in sum
of products, we must include all five l's in the map, but we mayor may not include any of the
X's, depending on the way the function is simplified. The term yz covers the four minterms in
the third column. The remaining minterm mi can be combined with minterm m3 to give the
three-literal term Wix'z. However, by ineluding one or two adjacent X'swe can combine four
adjacent squares to give a two-literal term. In part (a) of the diagram, don't-care minterms 0
and 2 are included with the I's, which results in the simplified function

F = yz + w'x'

d(w,x,y,z) = 2:(0,2,5)

Simplify the Boolean function

The logical sum of the minterms associated with a Boolean function specifies the conditions
under which the function is equal to I. The function is equal to 0 for the rest of the minterms.
This assumes that all the combinations of the values for the variables of the function are valid.
In practice, there are some applications where the function is not specified for certain combi
nations of the variables. As an example, the four-bit binary code for the decimal digits has six
combinations that are not used and consequently are considered as unspecified. Functions that
have unspecified outputs for some input combinations are called incompletely specified func
tions. In most applications, we simply don't care what value is assumed by the function for the
unspecified minterms. For this reason, it is customary to call the unspecified minterms of a
function don't-care conditions. These don't-care conditions can be used on a map to provide
further simplification of the Boolean expression.

It should be realized that a don't-care minterm is a combination of variables whose logical
value is not specified. It cannot be marked with a 1 in the map because it would require that
the function always be a 1 for such combination. Likewise, putting a 0 on the square requires
the function to be O. To distinguish the don't-care condition from l's and D's, an X is used.
Thus, an X inside a square in the map indicates that we don't care whether the value of 0 or 1
is assigned to F for the particular minterm.

When choosing adjacent squares to simplify the function in a map, the don't-care minterms
may be assumed to be either 0 or 1. When simplifying the function, we can choose to include
each don't-care minterm with either the l's or the O's, depending on which combination gives
the simplest expression.

3-5



82 Chapter 3 Gate-Level Minimization

It is also possible to obtain a simplified product of sums expression for the function of
Fig. 3-17. In this case, the only way to combine the O's is to include don't-care minterms 0 and

2 with the O's to give a simplified complemented function:

Section 3-6 NAND and NOR Implementation

~~ (xyz)' ~v--- x' + y' + z' ~ (xyz)'

(a) AND-invert (b) Invert-OR

83

F

(e)

A-..r-'

B

c----r---.,

D

F

A-..r-,

B

(b)

c----r-,

D

F

FIGURE 3-20
Three Ways to Implement F ~ AB + CD

FIGURE 3-19
Two Graphic Symbols for NAND Gate

F ~ AB + CD

The function is implemented in Ca) with AND and OR gates. In (b), the AND gates are re
placed by NAND gates and the OR gate is replaced by an NAND gate with an OR-invert graph
1C symbol. Remember that a bubble denotes complementation and two bubbles along the same

The implementation of Boolean frmctions with NAND gates requires that the function be in sum
of products ~orm. To see :he relationship between a sum of product expression and its equiva
lent NAND Implementation, consider the logic diagrams drawn in Fig. 3-20. All three dia
grams are equivalent and implement the function

. A convenient way to implement a Boolean function with NAND gates i~ to obtain the sim
plIfied Boolean function in terms of Boolean operators and then convert the function to NAND
logic. The conversion of an algebraic expression from AND, OR, and complement to NAND
can be done by simple circuit manipulation techniques that change AND-OR diagrams to
NAND diagrams. .
. To facilitate the conversion to NAND logic, it is convenient to define an alternative graph
IC symbol for the gate. Two equivalent graphic symbols for the NAND gate are shown in
FIg. 3-19. The AND-invert symbol has been defined previously and consists of an AND graph
IC symbol followed by a small circle negation indicator referred to as a bubble. Alternatively,
It IS possIble to represent a NAND gate by an OR graphic symbol that is preceded by a bubble
in each input. The invert-OR symbol for the NAND gate follows DeMorgan's theorem and the
conventiOn. that the negation indicator denotes complementation. The two graphic symbols'
representations are useful in the analysis and design of NAND circuits. When both symbols are
mIxed m the same diagram, the circuit is said to be in mixed notation.

(a)

Two-Level Implementation

c ~~

D

A-..r-'

B

(x'y')' = x + y

x

y

OR

FIGURE 3-18
Logic Operations with NAND Gates

The NAND gate is said to be a universal gate because any digital system can be implemented
with it. To show that any Boolean function can be implemented with NAND gates, we need
only show that the logical operations of AND, OR, and complement can be obtained with
NAND gates only. This is shown in Fig. 3-18. The complement operation is obtained from a
one-input NAND gate that behaves exactly like an inverter. The AND operation requires two
NAND gates. The first produces the NAND operation and the second inverts the logical sense
of the signal. The OR operation is achieved through a NAND gate with additional inverters in

each input.

Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and
OR gates. NAND and NOR gates are easier to fabricate with electronic components and are
the basic gates used in all Ie digital logic families. Because of the prominence of NAND and
NOR gates in the design of digital circuits, rules and procedures have been developed for the
conversion from Boolean functions given in terms of AND, OR, and NOT into equivalent

NAND and NOR logic diagrams.

AND ~ xy

Inverter x --[>0>--------- x'

F'=z'+wi

Taking the complement of F' gives the simplified expression in product of snms:

F(w, x, y, z) = z(w' + y) = 2:(1,3,5,7,11, IS)

For this case, we inclnde minterms 0 and 2 with the O's and minterm 5 with the I's.

NAND Circuits

3-6 NAN DAN D NOR IMP LE MEN TAT ION



85Section 3-6 NAND and NOR Implementation

•

The standard form of expressing Boolean functions results in a two-level implementation.
There are occasions when the design of digital systems results in gating structures with three
or more levels. The most common procedure in the design of multilevel circuits is to express
the Boolean function in terms ofAND, OR, and complement operations. The function can then
be implemented with AND and OR gates. Then, if necessary, it can be converted into an all
NAND circuit. Consider for example the Boolean function:

The procedure described in the previous example indicates that a Boolean function can be
implemented with two levels of NAND gates. The procedure for obtaining the logic diagram
from a Boolean function is as follows:

1. Simplify the function and express it in sum of products.

2. Draw a NAND gate for each product term of the expression that has at least two literals.
The inputs to each NAND gate are the literals of the te1m. This constitutes a group of first
level gates.

3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the second
level, with inputs coming from outputs of first level gates.

4. A term with a single literal requires an inverter in the first level. However, if the single
literal is complemented, it can be connected directly to an input of the second level
NAND gate.

gate. An alternative way of drawing the logic diagram is shown in Fig. 3-21(c). Here all the
NAND gates are drawn with the same graphic symbol. The inverter with input z has been re
moved, but the input variable is complemented and denoted by z'.

F = A(CD + B) + Be'

Although it is possible to remove the parentheses and reduce the expression into a standard sum
of products form, we choose to implement it as a multilevel circuit for illustration. The AND
OR implementation is shown in Fig. 3-22(a). There are four levels of gating in the circuit. The
first level has two AND gates. The second level has an OR gate followed by an AND gate in
the third level and an OR gate in the fourth level. A logic diagram with a pattern of alternate
levels of AND and OR gates can be easily converted into a NAND circuit by using the mixed
notation. This is shown in Fig. 3-22(b). The procedure is to change every AND gate to an AND
invert graphic symbol and every OR gate to an invert-OR graphic symbol. The NAND circuit
performs the same logic as the AND-OR diagram as long as there are two bubbles along the
same line. The bubble associated with input B causes an extra complementation, which must
be compensated by changing the input literal to B'.

The general procedure for converting a multilevel AND-OR diagram into an a\l-NAND di
agram using mixed notation is as follows:

1. Convert all AND gates to NAND gates with AND-invert graphic symbols.

2. Convert all OR gates to NAND gates with invert~OR graphic symbols.

Multilevel NAND Circuits

b----F

z'-------'

(e)

F = xy' + x'y + z

x'

y' -'-_--./

Y

x

y

11 10

(a)

01

)----F

1 II 1 1 I

I 1 1 I 1

o

yz
00

x

x

Y-,---'

(b)

z

FIGURE 3-21
Solution to Example 3-10

x'

y'-,---,

F = ((AB)'(CD)')' = AB + CD

Chapter 3 Gate-level Minimization

line repre~entdouble complementation so both can be rem~ved.Rer:noving the bubbles o~ the
gates of (b) produces the circuit of (a). Therefore, the two d1agrams 1mplement the same func-

tion and are equivalent. . .
In Fig. 3-20(c), the output NAND gate is redrawn with the AND-mvert graph1c symbol.

When drawing NAND logic diagrams, the circuit shown in either (b) or (c) 1S acceptable. The
one in (b) is in mixed notation and represents a more direct relationship wi~the Boole~n ex
pression it implements. The NAND implementation in Fig. 3-20(c) can be venfied algebraically.
The function it implements can be easily converted to a sum of products form by usmg

DeMorgan's theorem:

- Implement the following Boolean function with NAND gates:

F(x,y,z) = (1,2,3,4,5,7)

The first step is to simplify the function in sum of products. This is done by means of the map
of Fig. 3-21(a) from which the simplified function is obtained:

F = xy' + x'y + Z

The two-level NAND implementation is shown in Fig. 3-21(b) in mixed notation. Note that input
z must have a one-input NAND gate (inverter) to compensate for the bubble in the second level

84



86 Chapter 3 Gate-Level Minimization Section 3-6 NAND and NOR Implementation 87

F

A'---r----,

B ---L.-/

D' ---L.____

F

(a) AND-OR gates

c----r-,

D--j J '>-_'---_,-,
B---------~ /

A----------------L_-./
B-----f

c---I

(a) AND-OR gates

>o--F

B'---L.-/

A ---r----,

B --L.-/
A' ---1-----

c --.q-_____
)---~__---.J

D ---<)

F
A----------------L_--"
B-----f----.,

b--------------

(b) NAND gates

c----r----,
D----< ./

B'------~ >----,------1-------

FIGURE 3-22
Implementing F ~ A(CD + B) + Be

(b) NAND gates

FIGURE 3-23

Implementing F ~ (AB' + A'B)(C + D')

x ----/>c>----- x'

3. Check all the bubbles in the diagram. For every bubble that is not compensated by an
other small circle along the same line, insert an inverter (one-input NAND gate) or com
plement the input literal.

As another example, consider the multilevel Boolean function

F ~ (AB' + A'B)(C + D')

Inverter

OR
x

y )0--------1 ;>0---- x + y

FIGURE 3-24

logic Operations with NOR Gates

The AND-OR implementation is shown in Fig. 3-23(a) with three levels of gating. The con
version into NAND with mixed notation is presented in part (b) of the diagram. The two ad
ditional bubbles associated with inputs C and D' cause these two literals to be complemented
to C' and D. The bubble in the output NAND gate complements the output value, so we need
to insert an inverter gate at the output in order to complement the signal again and get the orig
inal value.

AND

x ---1 ~<)--~

\0--- (x' + y')' ~ xy
~-~ ./

Y ----I '>o--..J

NOR Implementation

The NOR operation is the dual of the NAND operation. Therefore, all procedures and rules for
NOR logic are the dual of the corresponding procedures and rules developed for NAND logic.
The NOR gate is another universal gate that can be used to implement any Boolean function.
The implementation of the complement, OR, and AND operations with NOR gates is shown
in Fig. 3-24. The complement operation is obtained from a one-input NOR gate that behaves

exactly like an inverter. The OR operation requires two NOR gates and the AND operation is
obtamed WIth a NOR gate that has inverters in each input.

The two graphic symbols for the mixed notation are shown in Fig. 3-25. The OR-invert
symbol defines the NOR operation as an OR followed by a complement. The invert-AND sym
bol complements each input and then performs an AND operation. The two symbols designate
the same NOR operation and are logically identical because of DeMorgan's theorem.



F

(OR-AND-INVERT)

1--7---F ~ [(A + B) (C + D)]'

(b) Wired-OR in EeL gates

A
B

C

D

A'

B

A

B'

C ----1
D'---/

FIGURE 3-27

Implementing F ~ (AB' + A'B)(C + 0') with NOR Gates

F = (AE)'. (CD)' = (AB + CD)'

and is called an AND-OR-INVERT function.

Sintilarly, the NOR output of ECL gates can be tied together to perform a wired-OR func
tion. The logic function implemented by the circuit of Fig. 3-28(b) is

F = (A + B)' + (C + D)' ~ [(A + B)(C + D)]'

and is called an OR-AND-INVERT function.

Section 3-7 Other Two-Level Implementations 89

The types of gates most often found in integrated circuits are NAND and NOR. For this rea
son, NAND and NOR logic implementations are the most important from a practical point of
VIew. Some NAND or NOR gates (but not all) allow the possibility of a wire connection be
tween the ontputs of two gates to provide a specific logic function. This type of logic is called
wired logic. Forexample, open-collector TTL NAND gates, when tied together, perform the
WIfed-AND lOgIC. (The open-collector TTL gate is shown in Chapter 10, Fig. 10-11.) The
wired-AND logic perfor~ed with two NAND gates is depicted in Fig. 3-28(a). The AND gate
IS drawn WIth the lInes gOIng through the center of the gate to distingnish it from a conventional
gate. The wired-AND gate is not a physical gate, but only a symbol to designate the function
obtained from the indicated wired connection. The logic function implemented by the circuit
of Fig. 3-28(a) is

(AND-OR-INVERT)

FIGURE 3-28
Wired Logic

t--j--F ~ (AB + CD)'

OTHER TWO-LEVEL IMPLEMENTATIONS

(a) Wired-AND in open-collector
TIL NAND gates.

3-7

A

B

C

D

I
I

(b) Invert-AND

{V--X1y'Z' =(x+y+z)'~~(x+y+z)'

(a) OR-invert

FIGURE 3-25
Two Graphic Symbols for NOR Gate

FIGURE 3-26
Implementing F ~ (A + B)(C + D)E

A __-'~,

B lo--~

F = (A + B)(C + D)E

The OR-AND pattern can be easily detected by the removal of the bubbles along the same
line. Variable E is complemented to compensate for the third bubble at the input of the second
level gate.

The procedure for converting a multilevel AND-OR diagram to an all NOR diagram is sim
ilar to the one presented for NAND gates. For the NOR case, we must convert each OR gate
to an OR- invert symbol and each AND gate to an invert-AND symbol. Any bubble that is not
compensated by another bubble along the same line needs an inverter or the complementation
of the input literal.

The transformation of the AND-OR diagram of Fig. 3-23(a) into a NOR diagram is shown
in Fig. 3-27. The Boolean function for this circuit is

F = (AB' + A'B)(C + D')

The equivalent AND-OR diagram can be recognized from the NOR diagram by removing all
the bubbles. To compensate for the bubbles in four inputs, it is necessary to complement the
corresponding input literals.

A two-level implementation with NOR gates requires that the function be simplified in
product of sums. Remember that the simplified product of sums expression is obtained from
the map by combining the O's and complementing. A product of sums expression is imple
mented with a first level of OR gates that produce the sum terms followed by a second level
AND gate to produce the product. The transformation from the OR-AND diagram to a NOR
diagram is achieved by changing the OR gates to NOR gates with OR-invert graphic symbols
and the AND gate to a NOR gate with an invert-AND graphic symbol. A single literal term going
into the second-level gate must be complemented. Fig. 3-26 shows the NOR implementation
of a function expressed in product of sums:

E'------

Chapter 3 Gate-Level Minimization88



F

(e) NAND-AND

(e) NOR-OR

E---J

E---J

(b) AND-NOR

(b) OR-NAND

E-----l

E---_...J

FIGURE 3-29

AND-OR-INVERT CirCUits; F ~ (AB + CO + E)'

FIGURE 3-30

OR-AND-INVERT Circuits; F ~ [(A + B)(e + OlE]'

removed provided input Eis complemented. The circuit of Fig. 3-29(c) is a NAND-AND form
and was shown in Fig_ 3-28 to implement the AND- OR-INVERT function.

An AND-OR implementation requires an expression in sum of products. The AND-OR
INVERT implementation is similar except for the inversion. Therefore, if the complement of
the function is simpli~ed in sum of products (by combining the O's in the map), it will be pos
SIble to Implement F WIth the AND-OR part of the function. When F' passes through the al
ways present output inversion (the INVERT part), it will generate the output F of the function.
An example for the AND-OR-INVERT implementation will be shown subsequently.

(a) OR-NAND

(a) AND-NOR

E--------1

F = [(A + B)(C + D)Ej'

A A A
B B B

C C C
D F F

D D

OR-AND-INVERT Implementation

The OR-NAND and NOR-OR forms perform the OR-AND-INVERT function. This is shown
in Fig. 3-30. The OR-NAND form resembles the OR-AND form, except for the inversion done
by the bubble in the NAND gate. It implements the function

E--__-.J

Section 3-7 Other TWO-Level Implementations 91

A A A
B B B

C C C
D

F F FD D

OR-AND

NOR-NOR

NAND-AND

AND-NOR

AND-OR

NAND-NAND

NOR-OR

OR-NAND

The first gate listed in each of the forms constitutes a tirst level in the implementation. The sec
ond gate listed is a single gate placed in the second level. Note that any two forms listed in the
same line are the duals of each other.

The AND-OR and OR-AND forms are the basic two-level forms discussed in Section 3-4.
The NAND-NAND and NOR-NOR forms were presented in Section 3-6. The remaining four
forms are investigated in this section.

A wired-logic gate does not produce a physical second-level gate since it is just a wire con
nection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3-28 as
two-level implementations. The first level consists of NAND (or NOR) gates and the second
level has a single AND (or OR) gate. The wired connection in the graphic symbol will be omit
ted in subsequent discussions.

AND-OR-INVERT Implementation

The two forms NAND-AND and AND-NOR are equivalent forms and can be treated togeth
er. Both perform theAND-OR-INVERT function, as shown in Fig. 3-29. The AND-NOR form
resembles the AND-OR form with an inversion done by the bubble in the output of the NOR
gate. It implements the function

F = (AB + CD + E)'

By using the alternate graphic symbol for the NOR gate, we obtain the diagram of
Fig. 3-29(b). Note that the single variable E is not complemented because the only change
made is in the graphic symbol of the NOR gate. Now we move the bubble from the inpnt ter
minal of the second-level gate to the output terminals of the first-level gates. An inverter is
needed for the single variable to compensate for the bubble. Alternatively, the inverter can be

Nondegenerate Forms

It will be instructive from a theoretical point of view to find ant how many two-level combi
nations of gates are possible. We consider four types of gates: AND, OR, NAND, and NOR.
If we assign one type of gate for the first level and one type for the second level, we find that
there are 16 possible combinations of two-Ievelforms. (The sarne type of gate can be in the first
and second levels, as in NAND-NAND implementation.) Eight of these combinations are said
to be degenerate forms because they degenerate to a single operation. This can be seen from a
circnit with AND gates in the first level and an AND gate in the second level. The output of the
circuit is merely the AND function of all input variables. The other eight nandegenerate forms
produce an implementation in sum of products or product of sums. The eight nondegenerate
forms are as follows:

90 Chapter 3 Gate-Level Minimization



93

F

F

F'=x'y+xy'+z

F=x'y'z' +xyz'

x'---.--~

y -'---'

z -~-I

x

Y'-'----'"

x
y
Z ---.J"_~

NAND-AND

x'
y'
Z ---.J---"_-

10

F

F

y

11

(b)F~(x'y+xy'+Z)'

01

Section 3-7 Other Two-Level Implementations

z
(a) Map simplification in sum of products.

1 0 0 0

0 0 0 1

x

o

y -'---'

yz
00

x --r-------

x'--'--~

Z - --.J

y' -'---'

OR-NAND NOR-OR

(e) F ~ [(x + Y + z) (x' + y' + z)]'

AND-NOR

x L----I"~,

Y
Z

x' L---.J-,

y'
Z ---.J! ,--

F' = (x + Y + z)(x' + y' + z)

FIGURE 3-31
Other Two-level Implementations

AND implementation, but not in the AND-NOR case. The inverter can be removed if we apply
the input variable z' instead of z.

The OR-AND-INVERT forms require a simplified expression of the complement of the
function in product of Slims. To obtain this expression, we first combine the·1 's in the map

F = x/iz' + xyz'

Then we take the complement of the function

F

F

To Get
an Output

of

Sum of products
by combining O's
in the map

Product of sums by
combining l's in
the map and then
complementing

Simplify
f'
in

Implements
the

Function

OR-AND-INVERT

AND-DR-INVERT

(b)*

NOR-OR

NAND-AND

Implement the function of Fig. 3-3I(a) with the four two-level forms listed in Table 3-3.
The complement of the function is simplified in sum ofproducts by combining the 0's in the map:

F' = x1y + xy' + Z

The normal output for this function can be expressed as

F ~ (x'y + xy' + z)'

which is in the AND-OR-INVERT form. The AND-NOR and NAND-AND implementations
are shown in Fig. 3-31(b). Note that a one-input NAND or inverter gate is needed in the NAND-

By using the alternate graphic symbol for the NAND gate, we obtain the diagram of
Fig. 3-30(b). The circuit in (c) is obtained by moving the small circles from the inputs of the
second-level gate to the outputs of the first-level gates. The circuit of Fig, 3-30(c) is a NOR
OR form and was shown in Fig. 3-28 to implement the OR-AND-INVERT function.

The OR-AND-INVERT implementation requires an expression in product of sums. If the
complement of the function is simplified in product of sums, we can implement F' with the OR
AND part of the function. When F' passes through the INVERT part, we obtain the comple
ment of F', or F, in the output.

Table 3-3 summarizes the procedures for implementing a Boolean function in anyone of the
four two-level forms. Because of the INVERT part in each case, it is convenient to use the sim
plification of F' (the complement) of the function. When F' is implemented in one of these
fOlTIlS, we obtain the complement of the function in the AND-OR or OR-AND form. The four
two-level forms invert this function, giving an output that is the complement of F'. This is the
normal output F.

Chapter 3 Gate-Level Minimization

Equivalent
Nondegenerate

Form

(a)

AND-NOR

OR-NAND

*Form (b) requires an inverter for a single literal term.

Table 3-3
Implementation with Other Two-Level Forms

Tabular Summary and Example

92



94 Chapter 3 Gate-Level Minimization Section 3-8 Exclusive-OR Function 95

xElly

xEBy

Cb) With NAND gates

Ca) With AND-OR-NOT gates

y --+.-------1

x--,---------I

X-~r---------I

y --+--------1

FIGURE 3-32

Exclusive~ORImplementations

tion is constructed with conventional gates using two inverters, two AND gates, and an OR
gate, as shown in Fig. 3-32(a). Figure 3-32(b) shows the implementation ofthe exclusive-OR
with four NAND gates. The first NAND gate performs the operation (xy l' = (x' + y'). The
other two-level NAND circuit produces the sum of products of its inputs:

(x' + y')x + (x' + y')y = xy' + x'y = x Ell y

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR op
erations. Nevertheless, this function emerges quite often during the design of digital systems.
It is particularly useful in aritlunetic operations and error-detection and correction circuits.

A Ell B Ell C = (AB' + A'B)C' + (AB + A'B')C

= AB'C' + A'BC' + ABC + A'B'C

= L(l, 2, 4, 7)

The Boolean expression clearly indicates that the three-variable exclusive-OR function is equal
to 1 if only one variable is equal to 1 or if all three variables ilfe equal to 1. Contrary to the two-

The exclusive-OR operation with three or more variables can be converted into an ordinary
Boolean function by replacing the Ell symbol with its equivalent Boolean expression. In par
ticular, the three-variable case can be converted to a Boolean expression as follows:

Odd Function

I
1
1

i
.j

I

1

The normal output F can now be expressed in the form

F = [(x + Y + z) (x' + y' + z)]'

(xEllyl' = (xy' + x'yl' = (x' + y)(x + y') = xy + x'y'

The exclusive-OR (XOR), denoted by the symbol Ell, is a logical operation that performs the
following Boolean operation:

The following identities apply to the exclusive-OR operation:

xEllO=x

xEf71 = x'

xEllx=O

xEBx' = 1

xElly' = x'EIly = (xElly)'

Any of these identities can be proven by using a truth table or by replacing the Ell operation by
its equivalent Boolean expression. It can be shown also that the exclusive-OR operation is both
commutative and associative; that is,

(AEIlB)EIlC = A Ell (BEIlC) = AEIlBEIlC

AEIlB = BEllA

This means that the two inputs to an exclusive-OR gate can be interchanged without affecting
the operation. It also means that we can evaluate a three-variable exclusive-OR operation in any
order and for this reason, three or more variables can be expressed without parentheses. This
would imply the possibility of using exclusive-OR gates with three or more inputs. However,
multiple-input exclusive-OR gates are difficult to fabricate with hardware. In fact, even a two
iriput functiou is usually constructed with other types of gates. A two-input exclusive-OR func-

and

•
which is in the OR-AND-INVERT form. From this expression, we can implement the fnnction
in the OR-NAND and NOR-OR forms, as shown in Fig. 3-31(c).

xElly = xy' + x'y

It is equal to 1 if only x is equal to 1 or if only y is equal to I, but not when both are eqnal to
1. The exclusive-NOR, also known as equivalence, performs the following Boolean operation:

(x Ell y)' = xy + x'y'

It is equal to I if both x and y are equal to 1 or if both are equal to O. The exclusive-NOR can
be shown to be the complement of the exclusive-OR by means of a truth table or by algebraic
manipulation:

EXCLUSIVE-OR FUNCTION3-8



96 Chapter 3 Gate-level Minimization Section 3-8 Exclusive-OR Function 97

B

C

11 1001
CD
00

D

(b) Even function
F ~ (A Ell B Ell CEll D)'

1 1

1 1

1 1

1 1

01

AB

00

11
A

10

B

C

11 1001
CD

00

1 1

1 1

1 1

1 1

AB

00

01

11
A

10

D

(a) Odd function
F~AEllBEllCEllD

FIGURE 3-35

Map for a Four-variable Exclusive-OR Function

Consider now the the four-variable exclusive-OR operation. By algebraic manipulation, we
can obtain the sum of minterms for this function:

AEBBEBCEBD ~ (AB' + A'B) EB (CD' + C'D)

= (AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C'D)

= 2:(1,2,4,7,8,11,13,14)

There are 16 minterms for a four-variable Boolean function. Half of the minterms have bi
nary numerical values with an odd number of I 's; the other half of the minterms have binary
numerical values with an even number of 1'so When plotting the function in the map, the bi
nary numerical value for a mintenn is detennined from the row and column numbers of the
square that represents the minterm. The map of Fig. 3-35(a) is a plot of the four-variable ex
clusive-OR function. This is an odd function because the binary values of all the minterms
have an odd number of I 'so The complement of an odd function is an even function. As shown
in Fig. 3-35(b), the four-variable even function is equal to 1 when an even number of variables
is equal to I.

Parity Generation and Checking

Exclusive-OR functions are very useful in systems requiring error-detection and correction
codes. As discussed in Section 1-7, a parity bit is used for the purpose of detecting errors dur
ing transmission of binary infonnation. A parity bit is an extra bit included with a binary mes
sage to make the number of I's either odd or even. The message, including the parity bit, is
transmitted and then checked at the receiving end for errors. An error is detected if the checked
parity does not correspond with the one transmitted. The circuit that generates the parity bit in
the transmitter is called a parity generator. The circuit that checks the parity in the receiver is
called a parity checker.

B

11 1001

C

(a) Even function
F ~ (A Ell B Ell C)'

BC
00

1 1

1 1

A

o

(b) 3-input even function

C------'

A ---\'\___
}---\1

B--LI

B

11 1001

C

(a) Odd function
F~AEIlBEIlC

BC
00

1 1

1 1

A

o

C-----'

A ---\'\___
}---\1

B --fL____

(a) 3-input odd function

FIGURE 3,34
logic Diagram of Odd and Even Functions

FIGURE 3-33
Map for a Three-variable Exclusive-OR Function

variable case, where only one variable must be equal to I, in the three or more variable case,
the requirement is that an odd number of variables be equal to I. As a consequence, the mul
tiple-variable exclusive-OR operation is defined as an oddfunction.

The Boolean function derived from the three-variable exclusive-OR operation is expressed
as the logical sum offourminterms whose binary nnmerical values are 001, 010, 100, and Ill.
Each of these binary numbers has an odd number of I 'so The other four minterms not includ
ed in the function are 000, 011, !OI, and 110, and they have an even number of I 's in their bi
nary numerical values. In general, an n-variable exclusive-OR function is an odd function
defined as the logical sum of the 2"/2 minterms whose binary numerical values have an odd
number of I's.

The definition of an odd function can be clarified by plotting it in a map. Figure 3-33(a)
shows the map for the three-variable exclusive-OR function. The four minterms of the func
tion are a unit distance apart from each other. The odd function is identified from the four
minterms whose binary values have an odd number of I 's. The complement of an odd function
is an even function. As shown in Fig. 3-33(b), the three-variable even function is equal to 1 when
an even number of variables is equal to 1 (including the condition that none of the variables is
equal to 1).

The 3-input odd function is implemented by means of2-input exclusive-OR gates, as shown
in Fig. 3-34(a). The complement of an odd function is obtained by replacing the output gate
with an exclusive-NOR gate, as shown in Fig. 3-34(b).



98 Chapter 3 Gate-Level Minimization

Table 3-4
Even-Parity-Generator Truth Table

Three-Bit Message Parity Bit

x y z P

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

As an example, consider a 3-bit message to be transmitted together with an even parity bit.
Table 3-4 shows the truth table for the parity generator. The three bits-x, y, and z-constitute
the message and are the inputs to the circuit. The parity bit P is the output. For even parity, the
bit P must be generated to make the total number of l's even (including P). From the truth table,
we see that P constitutes an odd function because it is equal to 1 for those mintenns whose nu
merical values have an odd number of l's. Therefore, P can be expressed as a three-variable
exclusive-OR function:

Section 3-9 Hardware Description Language (HDL) 99

Table 3-5
Even-Parity-Checker Truth Table· .

Four Bits Parity Error
Received Check

x y z P C

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

P = xEllyEllz

The logic diagram for the parity generator is shown in Fig. 3-36(a).
The three bits in the message, together with the parity bit, are transmitted to their destina

tion, where they are applied to a parity-checker circuit to check for possible errors in the trans
mission. Since the information was transmitted with even parity, the fOUf bits received must have
an even number of 1'so An error occurs during the transmission if the fouf bits received have
an odd number of 1's, indicating that one bit has changed in value during transmission. The out
put of the parity checker, denoted by C, will be equal to I if an error occurs, that is, if the four
bits received have an odd number of I's. Table 3-5 is the truth table for the even-parity check
er. From it we see that the function C consists of the eight minterms with binary numerical

C = xEllyEllzEilP

The logic diagram of the parity checker is shown in Fig. 3-36(b).
It is worth nothing that the parity generator can be implemented with the circuit of

Fig. 3-36(b) ifthe input P is connected to logic-O and the output is marked with P. This is be
cause z Ell 0 = z, causing the value of z to pass through the gate unchanged. The advantage of
this is that the same circuit can be used for both parity generation and checking.

It is obvious from the foregoing example that parity generation and checking circuits always
have an output function that includes half of the minterms whose numerical values have either
an odd or even number of 1's. As a consequence, they can be implemented with exclusive-OR
gates. A function with an even number of 1's is the complement of an odd function. It is im
plemented with exclusive-OR gates, except that the gate associated with the output must bean
exclusive-NOR to provide the required complementation.

values having an odd number of I's. This corresponds to the map of Fig. 3-35(a), which rep
resents an odd function. The parity checker can be implemented with exclusive-OR gates:

HARDWARE DESCRIPTION LANGUAGE (HDL)3-9

c

x -----In --

z --'t\---

P ----iL..__

p

z----......J

y ----iL..__

(a) 3-bit even parity generator (b) 4-bit even parity checker

FIGURE 3-36
Logic Diagram of a Parity Generator and Checker

A hardware description language is a language that describes the hardware of digital systems
in a textual form. It resembles a programming language, but is specifically oriented to de
scribing hardware structures and behavior. It can be used to represent logic diagrams, Boolean



100 Chapter 3 Gate-Level Minimization Section 3-9 Hardware Description Language (HDL) 101

expressions, and other more complex digital circuits. As a documentation language, HDL is used
to represent and document digital"systems in a form that can be read by both humans and com
puters and is suitable as an exchange language between designers. The language content can
be stored and retrieved easily and processed by computer. softwarein an efficient manner. There
are two applications of HDL processing: simulation and synthesis.

Logic simulation is therepresentation of the structure and behavior of a digital logic system
through the use of a computer. A simulator interprets the HDL description and produces read
able output, such as a timing diagram, that predicts how the hardware will behave before it is
actually fabricated. Simulation allows the detection of functional elTors in a design without
having to physically create the circuit. EITors that are detected during the simulation can be cor
rected by modifying the appropriate HDL statements. The stimulus that tests the functionali
ty of the design is called a test bench. Thus, to simulate a digital system, the design is first
described in HDL and then verified by simulating the design and checking it with a test bench,
which is also written in HDL.

Logic synthesis is the process of deriving a list of components and their interconnections
(called a netlist) from the model of a digital system described in HDL. The gate-level netlist can
be used to fab11cate an integrated circuit or to layout a printed circuit board. Logic synthesis is
simibr to compiling a program in a conventional high-level language. The difference is that, in
stead of producing an object code, logic synthesis produces a database with instmctions on how
to fabricate a physical piece of digital hardware that implements the statements described by
the HDL code. Logic synthesis is based on formal exact procedures that implement digital cir
cuits and consists of that part of a digital design that can be automated with computer software.

There are many proprietary HDLs in industry developed by companies that design, or
help in the design of integrated circuits. There are two standard HDLs that are supported by
IEEE (Institute of Electrical and Electronics Engineers): VHDL and Verilog HDL. VHDL is
a Department of Defense-mandated language. (The V in VHDL stands for the first letter in
VHSIC, an acronym for Very High Speed Integrated Circuits.) Verilog began as a propri
etary HDL promoted by a company called Cadence Data Systems, but Cadence transferred
control ofVerilog to a consortium of companies and universities known as Open Veri log In
ternational (OVI). VHDL is a harder language to learn than Verilog. Because Verilog is an
easier language to learn and use, we have chosen it for this book. However, the Verilog HDL
descriptions listed throughout the book are not just about Verilog, but rather to introduce the
concept of computer-aided representation of digital systems by means of a typical hardware
description language.

is declared by the keyword module and is always terminated by the keyword endmodule. We
will show now a simple example to illustrate Some-aspects of the language.

The HDL description of the circuit of Fig. 3-37 is shown in HDL Example 3-1. The line with
two-slashes is a·commenUhat explains the function of the circuit. The second line declares the
module together with a name and a port list. The name (smpl....:.,:e-i-rcuit·in this case) is an
identifier that is used to reference the module. Identifiers are names given to variables so that
they can be referenced in the design. They are made up of alphanumeric characters and the un
derscore L) and are case sensitive. Identifiers must start with an alphabetic character or an un
derscore. They cannot start with a number. The port list provides the interface by which the
module communicates with the environment. In this example, the ports are the inputs and out
puts of the circuit. The port list is enclosed in parentheses and commas are used to separate el
ements of a list. The statement is terminated with a semicolon (;). All keywords (which must
be in lowercase) are printed in bold for clarity, blit this is not a requirement of the language.
Next, the input and output declarations define which of the ports are inputs and which are out
puts. Internal connections are declared as wires. The circuit has one internal connection at ter
minal e and is declared with the keyword wire. The structure of the circuit is specified with the
predefined primitive gates as keywords. Each gate declaration consists of an optional name
(such as gl, g2, etc.) followed by the gate output and inputs separated with commas and enclosed
in parentheses. The outpot is always listed first, followed by the inputs. For example, the OR
gate is named g3, has output x, and inputs e and y. The module description ends with the key
word endmodule. Note that each statement is terminated with a<semicolon, but there is no
semicolon after endmodule.

HDL Example 3-1

//Description of simple circuit Fig. 3~37

module smpl_circuit(A,B,C,x,y);
input A,B,C;
output x,y;
wire e;
and gl (e, A, B) i

not g2 (y, C);

or g3 (x,e,y);
endmodule

FIGURE 3-37
Circuit to Demonstrate HDL

g2>c>-------..----------y

Module Representation

Verilog HDL has a syntax that describes precisely the legal constructs that can be used in the
language. In particular, Verilog uses about roo keywords-predefined, lowercase, identifiers that
define the language constructs. Examples of keywords are module, endmodule, input, output,
wire, and, or, not, etc. Any text between two slashes (//) and the end of the line is interpreted
as a comment. Blank spaces are ignored and names are case sensitive, which means that up
percase and lowercase letters are distinguishable. A module is the building block in Verilog. It

A-----'---., e
gl }------'-----;::==JB

c

g3 )-------x



102 Chapter 3 Gate-Level Minimization Section 3-9 Hardware Description Language (HDL) 103

Gate Delays J..lJ~"~ J\.)

When HDL is used during simulation, it is sometimes necessary to specify the amount aI-delay
from the input to the output of gates. In Verilog, the delay ~s specified in terms of time units
and the symbol #. The association of a time unit with physical time is made using the 'timescale
compiler directive. (Compiler directives start with the' (backquote) symbol.) Such a directive
is specified before a module declaration. An example of a timescale directive is:

'timescale Ins/lOOps

l'bl;

l'bO;

1 'bl; C

1 'bO; C1 'bO; B

1 'b1; B
$finish;

//Description of circuit with delay
module circuit_with_delay (A,B,C,x,y) i

input A,B,C;
output x,y;
wire e;

and #(30) gl(e,A,B);
or #(20) g3(x,e,Y);
not #(10) g2(y,C);

endmodule

HDL Example 3-3

x changes from I to aat t = 30 ns, and then changes back to I at t = 50 ns. In both cases, the
change in OR gate output results from a change in its inputs 20 ns earlier. It is clear from this
result that although output x eventually returns to I after the input changes, the gate delays
produce a 20 ns negative spike before that happens.

In order to simulate a circuit with HDL, it is necessary to apply inputs to the circuit for th~
simulator to generate an output response. An HDL description that provides the stimulusr.:;;,
design is called a test bench. The writing of test benches is expIamed at th,e end of Section 4-11.
Here we demonstrate the procedure with a simple example without d\teni~g on too many de
tails. HDL Example 3-3 shows a test bench for simulating the circuit with delay. Two modules
are included: a stimulus module and the circuit description module. The stimulus module
stimcrct has no ports. The ineuts to the circujt are declared with a reg keyword and th':.?,ut
puts with a wire keyword. The circui t_wi th_delay is instantiated with the name cwd.
(The inIeractIon between the stimulus module and the circuit module is demonstrated in
Fig. 4-33.) The initial statement specifies the inputs between the keywords begin and end.
Initially, ABC - ODD. (A, B, and C ar~ach set to l'bO't~hich signifies one binary digit with
a value of 0.) After 100 ns, the inputs change to ABC - ··i'll. After another 100 ns, the simu
lation terminates. ($finish is a system task.) The timing diagram that results from the simula
tion is shown in Figure 3-38. The total simulation takes 200 ns. The inputs A, B, and C change
from ato I after 100 ns. Output y is unknown for the first 10 ns, and output x is unknown for

IIStimulus for simple circuit
module stimcrc0\NhCl..T i') ~"'-vVb~ V:>'-.-!\

'\~\\\\. \'j/\\;\/1---') reg A,B,C; , ,_/,,~>:; U

lj\.-~oJl'; O\..[\fJ():"~ wire x,y; ,1"1\\J~V5('')'
circuit_with_delay cwd(A,B,C,x,y);
initial

begin
A

#100
A

#100
end

endmodule

.l.-

HDL Example 3-2

//Description of circuit with delay
module circuit_with_delay (A,B,C,x,Y);

inputA,B, C i

output x,y;
wire e;

and #(30) gl(e,A,B);
or # (20) g3 lx, e,Y);
not #(10) g2(y,C);

endmodule

Table 3-6
Output of Gates After Delay

Time Units Input Output

(ns) ABC ye x

Initial 000 1 0 1
Change 111 101

10 111 o 0 1
20 111 001

30 111 010

40 111 o 1 0
50 111 011

"'The first n=b~, specifies the unit of measurem'Cl1.fgr time delays. The second number spec-

U'fies the pr~,sfon for which the del.ays are rou.Medoff, m this case to 0.1 ~s. I~~o umescale
is specified, the simulator defaults to a certam Ume umt, usually I ns. (I ns - 10 sec). In this

oak, we will assume the default time unit.
HDL Example 3-2 repeats the description of the simple circuit with delays specified for

each gate. The AND, gR, and Nor gates have a time delay of 30, 20, and IOns, respectively.
If the circuit is sGlii.{r~ted and the inputs change from 000 to III, the outputs change as shown
in Table 3-6. The output of the inverter at y changes from I to 0 after a 10 ns delay. The out
put of the AND gate at e changes from ato I after a 30 ns delay. The output of the OR gate at

~ "-1\,,'0 )"



104 Chapter 3 Gate-level Minimization Section 3-9 Hardware Description language (HDl) 105

HDL Example 3-5

U$er-Defined Primitives (UDP)

~(0,2,4,6,7)
\~.~~

(Note that this is only a comment)x

0;

1;
O·. ,
1·
0;
1·

1;
1·

C

O·
1
o
1
o
1
o
1

II

IIUser defin~ primitive (UDP)
, • • \l-'<V{l,. )\1I,<t. <..yr~m1t1ve ~ \f,A,B'1 ;

~l?d'v\R output Xi '-0'"~..:::;~i, " \
input A,B,C;v(,n \~5\

IITruth table for x(A,B,C) =

table
A B
o 0
o 0
o 1
o 1

1 0
1 0
1 1
1 1

endtable
endprimi-tive

l/Instantiate primitive
module declare_crctp;

reg x,y,z;
wire W;

crctp (w,x,y,z);
endmodule

The logic gates used in HDL descriptions with keywords and, or, etc., are defined by the sys
tem and are referred to as system primitives. The user can create addItIonal pnmitives by defin
ing them in a tabular fmID. These types of circuits~ referred to as user-defined primitivt:s.
One way of specifying a digital circuit in tabular form is by means of a truth table. UDP de
scriptions do not use the keyword module, Instead they are declared with the keyword prim
itive. The best way to demonstrate th~ primitive declarations is by means-of all exarn:pre~~--

~L Example 3-5 defines a UDP with a truth table. It proceeds according to the following
general rules:

l Itis declared with the keyword primitive followed by a name and port list. .

• There can be only one output and it must be listed first in the port list and declared with
an outpnt keyword.

The circuit has two outputs x and y and four inputs A, B, C, and-D. The two assign statements
describe the Boolean equations.

We have shown that a digital circnit cau be described with HDL statements just as it can be
drawn ~n a circ~}t diagram, o'r specified with a Boolean expression. The advantage ofHDL is
that it is suitable for processing with a computer.

FIGURE 3-38
Simulation Output of HDL Example 3-3

HDL Example 3-4

x;:;;A+BC+B'D

Y = B'C + BC'D'

//Circuit specified with Boolean expressions
module circuit_bIn (x,Y,A,B,C;D);

input A,B,C,D;
output x,y;
assign x A I (B & C) I (-B & D);

assign y = (-B & C) I (B & -C & -D);
endmodule

the frrst 30 ns. Output y goes from I to 0 at 110 ns. Output x goes from I to 0 at 130 ns and
back to I at 150 ns, just as we predicted in Table 3-6.

Boolean Expressions

Boolean ex ressions are specified in Verilog HDL with a continuous assignment st~nt
consisting of the keyword assign 0 owe y l~nuleaH~e:cpre's'~~~'~!oCliSfmguiS11llie arith
metic plus from logical OR, Verilog HDL uses the symbols (&), IlL and tJ for AND,~,
and NOT (complement), respectively. Thus, to describe the simple circuit of Fig. 3-37 with a
B~ expression we use the statement

assign x = (A & B) I -c;
HDL Example 3-4 shows the description of a circuit that is specified with the following two
Boolean expressions:

Dos I , 1

20ns
I 140n~ 1600s

1
80ns

I 11~Ons l1200s 11400s 1160~s 1180~s

stimcrct.A I
stimcrct.B I

I ,
stimcrct.C

\ Istimcrct.x

stimcrct.~ . \



106 Chapter 3 Gate-Level Minimization Problems 107

3-10

3-12

3-11

3-13

3-6 Simplify the following Boolean expressions, using four-variable maps:
(a) A'B'C'D' + AC'D' + B'CD' + A'BCD + BC'D
(b) x'z + w'xy' + w(x'y + xy')

3-7 Simplify the following Boolean expressions, using four-variable maps:
(a) w'z + xz + x'y + wx'z (b) B'D + A'BC' + AB'C + ABC'
(e) AB'C + B'C'D' + BCD + ACD' + A'B'C + A'BC'D
(d) wxy + yz + xy'z + x'y

3-8 Find the mintenns of the following Boolean expressions by first plotting each function in a map:
(a) xy + yz + xy'z (b) C'D + ABC' + ABD' + A'B'D
(c) wxy + x'z' + w'xz

3-9 Find all the prime implicants for the following Boolean functions, and detennine which are essential:
(a) F( w, x, y, z) ~ L(O, 2, 4, 5, 6, 7, 8, 10, 13, 15)
(b) F(A, B, C, D) ~ L(O, 2, 3, 5, 7, 8, 10, II, 14, 15)
(e) F(A, B, C, D) ~ L(I, 3, 4, 5, 10, II, 12, 13, 14, 15)

Simplify the following Boolean functions by first finding the essential prime implicants:
(a) F(w, x, y, z) = L(O, 2, 4, 5, 6, 7, 8, 10, 13, 15)
(b) F(A, B, C, D) = L(O, 2, 3, 5, 7, 8, 10, II, 14, 15)
(e) F(A, B, C, D) = L(I, 3, 4, 5, 10, II, 12, 13, 14, 15)

Simplify the following Boolean functions, using five-variable maps:
(a) F(A, B, C, D, E) ~ L(O, I, 4, 5, 16, 17, 21, 25, 29)
(b) F = A'B'CE' + A'B'C'D' + B'D'E' + B'CD' + CDE' + BD£'

Simplify the following Boolean functions in product of sums:
(a) F( w, x, y, z) ~ L (0,2,5,6,7,8,10) (b) F(A, B, C, D) ~ IT(I, 3, 5, 7, 13, 15)

. •. ' .. I
Simplify the following expressions in (1) sum of products and (2) products of SUfiS:

(a) x'z' + y'z' + yz' + xy (b) AC' + B'D + A'CD + ABCD
(e) (A' + B' + D')(A + B' + C')(A' + B + D')(B + C' + D')

3-14 Give three possible ways to express the fOllowing Boolean function with eight or fewer literals:

F ~ A'B'D' + AB'CD' + A'BD + ABC'D

3-15 Simplify the following Boolean function F, together with the don't-care conditions d, and then
express the simplified function in sum of minteTIlls:
(a) F(x, y, z) = L (0, 1,2,4,5) (b) F(A, lJ, C, D) = L(O, 6, 8,13, 14)

d(x, y, z) ~ L (3,6,7) dCA, B, C,D) = L(2, 4, to)
(e) F(A, B, C, D) ~ L(I, 3, 5, 7, 9,15)

d(A,B,C,D) = L(4,6,12,13)

3-16 Simplify the following expressions, and implement them with:two-Ievel NAND gate circuits:
(a) AB' + ABD + ABD' + A'C'D' + A'BC'
(b) BD + BCD' + AB'C'D'

3-17 Draw a NAND logic diagram that implements the complement of the following function:

F(A, B, C, D) = L(O, I, 2, 3, 4, 8, 9, 12)

(AB + A'B')(CD' + C'D)

3-18 Draw a logic diagram using only two-input NAND gates to implement the following expression:

with inputs x, y, Z and output w.
Although Verilog HDL uses this kind of description for OOPs only, other proprietary HDLs

and computer-aided design (CAD) systems use other procedures to specify digital circuits in
tabular form. The tables can be processed by CAD software to derive an efficient gate struc
ture of the design.

In this section, we introduced HDL and presented simple examples of structural modeling.
A more detailed presentation ofVerilog HDL can be found in the next chapter. The reader fa
miliar with combinational circuits can go directly to Sec. 4-11 to continue with this subject.

There can be any number of inputs. The order in which they are listed in the input dec
laration must conform to the order in which they are given values in the table that follows.

• The truth table is enclosed within the keywords table and endtable.

• The values of the inputs are listed in order ending with a colon (:). The output is always
the last entry in a row followed by a semicolon (;).

• It ends with the keyword endprimitive.

Note that the variables listed on top of the table are part of a comment and are shown only for
clarity. The system recognizes the variables by the order that they are listed in the input dec
laration. A user-defined primitive can be employed in the construction of other digital circuits
just as the system primitives are used. For example, the declaration

crctp (w,x,y,z)

will produce a circuit that implements

w (x, y, z) = 2:(0,2,4,6,7)

3-1 Simplify the following Boolean functions, using three-variable maps:
(a) F(x, y, z) = L (0,2,6,7) (b) F(A, B, C) = L(O, 2, 3, 4, 6)
(e) F(a, b, c) ~ L (0, 1, 2, 3, 7) (d) F(x, y, z) ~ L (3,5,6,7)

3-2 Simplify the following Boolean functions, using three-variable maps:
(a) F(x, y, z) = L (0, I, 5, 7) (b) F(x, y, z) = L(I, 2, 3, 6, 7)

3-3 Simplify the following Boolean expressions, using three-variable maps:
(a) xy + X/y'Z' + X'yz' (b) x'y' + yz + x'yz'
(e) A'B + BC' + B'C'

3-4 Simplify the following Boolean functions, using x maps:
(a) F(x, y, z) = L (2,3,6,7) (b) F(AiR, C, D) ~ L(4,6,7,15)
(e) F(A,B,C,D) =L (3,7,11,13,14,15) (d) F(w,x,y,z) = L(2,3,12, 13,14, 15)

3-5 Simplify the following Boolean functions, using four-variable maps:
(a) F(W, x, y, z)~ L(1, 4, 5, 6, 12, 14, 15)
(b) F(A, B, C, D) = L(O, 1, 2, 4, 5, 7, 11, 15)
(e) F( w, x, y, z) ~ L(2, 3,10, II, 12, 13, 14, 15)
(d) F(A, B, C, D) = L(O, 2, 4, 5, 6, 7, 8, 10, 13, 15)

PROBLEMS

l



110 Chapter 3 Gate-Level Minimization

3.

4.

5.
6.

7.
8.

IEEE Standard Hardware Description Language Based on the Verilog Hardware Description Lan
guage (IEEE Std 1364-1995). 1995. NewYork: The Institute ofElectrical and Electronics Engineers.

KARNAUGH, M. A Map Method for Synthesis of Combinational Logic Circuits. Transactions of
AlEE, Communication and Electronics. 72, part I (Nov. 1953): 593-99.

KOHAVI, Z. 1978. Switching and Automata Theory, 2nd ed. New York: McGraw-Hill.

MANO, M. M. and C. R. KlME. 2000. Logic and Computer Design Fundamentals, 2nd ed. Upper

Saddle River, NJ: Prentice Hall.

MCCLUSKEY, E. J. 1986. Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall.

PALNITKAR, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. SunSoft Press (A

Prentice Hall Title).
I

:if'A:J'}f,.JOj

Combinational
Logic

4-1 COMBINATIONAL CIRCUITS
'''''J::~v,

Logic circuits for digital systems may be combinational or sequential. A combinational circuit
consists of logic gates whose outputs at any time are detennined from the present combination
of inputs. A combiuational circuit performs an operation that can be specified logically by a set
of Boolean functions. Sequential circuits employ storage elements in addition to logic gates.
Their outputs are a function of the inputs and the state of the storage elements. The state of stor
age elements, in turn, is a function of previous inputs. As a consequence, the outputs of a
sequential circuit depend not only on present values of inputs, but also on past inputs, aud the
circuit behavior must be specified by a time sequence of inputs and internal states. Sequential
circuits are discussed in Chapter 5 and 9.

A combinational circuit consists of input variables, logic gates, and output variables. The
logic gates accept signals from the inputs and generate signals to the outputs. This process
transfonns biuary information from the given input data to a required ontput data. A block
diagram of a combinational circuit is shown in Fig. 4-1. The n input binary variables come
from an external source; the m output variables go to an external destination. Each input and

n inputs
Combinational

circuit
m outputs

FIGURE 4-1
Block Diagram of Combinational Circuit

111



r--~--------------F2
I-'-~~

A--r-.....
C f----1

A _....r-_____

B

B-....r-----

C-~_ __'

FIGURE 4-2
Logic Diagram for Analysis Example

A _-.r---.. T
1B )-"------- ----,

C-~_~

Section 4-2 Analysis Procedure 113

or truth table. The success of such investigation is enhitced if one has previous experience
and fallllharlty WIth a WIde variety of digital circuits.

To obtain the outpnt Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols.
Determine the Boolean functions for each gate output.

2. Label the gates that are a function of input variables and previously labeled gates with
other arbitrary symbols. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean func
tions in terms of input variables.

The analysis of the combinational circuit of Fig. 4-2 illustrates the proposed procedure. We
note that the circuit has three binary inputs-A, B, and C-and two binary outputs-F

J
and F

2
.

The outputs of vanous gates are labeled with intermediate symbols. The outputs of gates that
are a funcl10n of mput vanables only are T1 and T2 • Output F, can be easily derived from the
mput varIables. The Boolean functions for these three outputs are:

F, = AB + AC + BC

TJ=A+B+C

To = ABC

A _....r-_____
B
C

Chapter 4 Combinational Logic

The analysis of a combinational circuit requires that we determine the function that the circuit
implements. This starts with a given logic diagram and culminates with a set of Boolean func
tions, a truth table, or a possible explanation of the circuit operation. If the logic diagram to be
analyzed is accompanied by a function name or an eXP!~V~Rtion of what it is assumed to
accomplish, then the analysis problem reduces to a veritfc'afibn of the stated function. The
analysis can be performed manually by finding the Boolean functions or truth table, or by using
a computer simulation program. .J, \.J,,\ /" ~

The first step in the analysis is to make sure that the given circuit is combinatio~al and not
sequential. The diagram of a combinational circuit has logic gates with n6'l'iedb'~ck paths or
memory elements. A feedback path is a connection from the output of one gate to the input of
a second gate that forms part of the input to the first gate. Feedback paths in a digital circuit
define a sequential circuit and must be analyzed according to procedures outlined in Chapter 9.

Once the logic diagram is verified as a combinational circuit, one can proceed to obtain th~ __ '>
output Boolean functions or the truth table. If the function of the circuit is under investigation~,~/. 9
then it is necessary to interpret the operation of the circuit from the derived Boolean functions fl

output variable exists physically as a binary signal that Jl;'iVlesents logic I and logic O. In many
applications, the source and destination are storage reWsters. If the registers are included with
the combinational gates, then the total circuit must be considered as a sequential circuit.

Foen input variables, there are 2n possible binary input combinations. For each possible
input combination, there is one possible output value. Thus, a combinational circuit can be
specified with a truth table that lists the output values for each combination of input variables.
A combinational circuit also can be described by m Boolean functions, one for each output
variable. Each output function is expressed in terms of the n input vadables.

In Chapter I, we learned about binary numbers and binary codes that represent discrete
quantities of information. The binary variables are represented physically by electric voltages
or some other type of signal. The signals can be manipulated in digital logic gates to perform
required functions. In Chapter 2, we introduced Boolean algebra as a way to express logic
functions algebraically. In Chapter 3, we learned how to simplify Boolean functions to achieve
economical gate implementations. The purpose of this chapter is to use the knowledge acquired
in previous chapters and formulate systematic analysis and design procedures of combinational
circuits. The solution of some typical examples will provide a useful catalog of elementary
functions important for the understanding of digital systems.

There are several combinational circuits that are employed extensively in the design of dig
ital systems. These circuits are available .in integrated circuits and are classified as standard
components. They perform specific digital functions commonly needed in the design of digi
tal systems. In this chapter, we introduce the most important standard combinational circuits
such as adders, subtractors, comparators, decoders, encoders, and multiplexers. These com
ponents are available in integrated circuits as MSI (medium scale integration) circuits. They are
also used as standard cells in complex VLSI circuits such as application specific integrated
circuits (ASIC). The standard cell functions are interconnected within the VLSI circuit in the
same way as they are used in multiple-IC MSl design.

""--J\ "J\
A N A LY SI Si>.RQ_CED U R~ "1)4-2

112



114 Chapter 4 Combinational Logic Section 4-3 Design Procedure 115

DESIGN PROCEDURE

The design of combinational circuits starts .from the specification of the problem and culmi
nates in a logic circuit diagram or a set of Boolean functions from which the logic diagram can
be obtained. The procedure involves the following steps:

1. From the specifications of the circuit, determine the required number of inputs and out-
puts and assign a symbol to each.

2. Derive the truth tabl~ that defines the required relationship between inputs and outputs.

3. Obtain the simplified Boolean functions for each output as a function of the input variables.

4. Draw the logic diagram and verify the correctness of the design.

A truth table for a combinational circuit consists of input columns and output columns. The
input columns are obtained from the 211 binary numbers for the n input variables. The binary
values for the outputs are determined from the stated specifications. The output functions spec
ified in the truth table give the exact definition of the combinational circuit. It is important that
the verbal specifications be interpreted correctly in the truth table. Word specifications are
often incomplete and any wrong interpretation may result in an incorrect truth table.

The output binary functions listed in the truth table are simplified by any available method
such as algebraic manipulation, the map method, or by means of computer-based simplifica
tion program. Frequently, ther~),s, ~,~ety of simplified expressions from which to choose.
~ a particul~ applicatio~, cert'rn.':i cfiterftt. will ~erve as a ~~~~\1~,W~he process of choosing an
ImplementatIon. A practIcal deSIgn must consIder such cnnsttamts as the number of gates,
number of inputs to a gate, propagation time of the signal through the gates, number of
interconnections, limitations of the driving capability of each gate, and various other criteria
that must be taken into consideration when designing with integrated circuits. Since the
importance of each constraint is dictated by the particular application, it is difficult to make
a general statement about what constitutes an acceptable implementation. In most cases the
simplification hegins by satisfying an elementary objective, such as producing the simplified
Boolean functions in a standard form, and then proceed with further steps to meet other
performance criteria.

from the values of A, B, and C, with F2 equal to I for any combination that has two or three
inputs equal to I. The truth table for F; is the complement of F2 • The truth tables for TI and T2

are the OR and AND functions of the input variables, respectively. The values for T3 are derived
from TI and F,: T, is equal to 1 when both TI and F, are equal to I, and T3 is equal to 0 other
wise. Finally, FI is equal to I for those combinations in which either T, or T, or both are equal
to 1. Inspection of the truth table combinations for A, B, C, FI , and F2 shows that it is identi
cal to the truth table of the full adder given in Section 4-4 for x, y, z, S, and C, respectively.

Another way of analyzing a combinational circuif'is by means of logic simulation. In
Sec. 4-11 we demonstrate the logic simulation and verification of the circuit of Fig. 4-2 using
Verilog HDL. (See HDL Example 4-10.)

4-3

Next, we consider outputs of gates that are a function of already defined symbols:

T3 = F,TI

FI =T3 +T2

To obtain FI as a function of A, B, and C, form a series of substitutions as follows:

F
I
= T

3
+ T, = F,TI + ABC = (AB + AC + BC)'(A + B + C) + ABC

= (A' + B')(A' + C)(B' + C)(A + B + C) + ABC

= (A' + B'C')(AB' + AC' + BC + B'C) + ABC

= A'BC + A'B'C + AB'C + ABC

If we want to pursue the investigation and determine the information-transformation task
achieved by this circuit, we can draw the circuit from the derived Boolean expressions and try

to recognize a familiar operation. The Boolean functions for F1 and F2 implement the circuit
shown in Fig. 4-7 (Section 4-4) and is equivalent to a full adder circuit.

The derivation of the truth table for the circuit is a straightforward process once the output
Boolean functions are known. To obtain the truth table directly from the logic diagram with
out going through the derivations of the Boolean functions, proceed as follows:

1. Determine the number of input variables in the circuit. For n inputs, form the 2" possi
ble input combinations and list the binary numbers from 0 to 2" - I in a table.

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates that are .function of the input vari

ables only.

4. Proceed to obtain the truth table for the outputs of those gates that are a functioR.of pre
viously defined values until the columns for all outputs are determined:

This process is illustrated using the circuit of Fig. 4-2. In Table 4-1, we form the eight pos
sible combinations for the three input variables. The truth table for F, is determined directly

Table 4-1
Truth Table for the Logic Diagram of Fig. 4-2

A B C F2 F2 T, T2 T3 F,

0 0 0 0 1 0 0 0 0 . 1\ \
0 0 1 0 1 1 0 1 1 \ ~».-!~

) I

0 1 0 0 1 1 0 1 1

0 1 1 1 0 1 0 0 0
~i

0 0 1 1 0 1 1, J 1 0

ID 1 0 1 1 0 1 0 0 0

1 1 0 1 0 1 0 0 0

1 1 1 1 0 1 1 0 1



116 Chapter 4 Combinational Logic Section 4-3 Design Procedure 117

the output equalto 1. The I's are obtained from the truth table by going over the output columns
one a~ a hme. For example, the column under output Z has five I 's; therefore, the map for z has
five,I s, each bemg m a square corresponding to the minterm that makes z equal to 1. The six
don t-care mmterms 10 through 15 are marked with an X. One possible way to simplify the func
hons m sum of products IS lIsted under the map of each variable.

A two-level logic diagram may be obtained directly from the Boolean expressions derived
bythe maps. There are vanous ?ther possibilities for a logic diagram that implements this cir
CUlt. The expreSSIOns obtamed m FIg. 4-3 may be manipulated algebraically for the purpose

CD C

AB 00 01 11 1.0

00 1 1

OJ 1

B

11 X X X X

A

10 1 X X

D

x = B'C+ B'D + BCD'

FIGURE 4-3
Maps for BCD to Excess-3 Code Converter

B

B

10

10

C

1101

D

y=CD+C'D'

D

w ~A + BC+BD

CD
00

CD C

00 01 11

1 1 1

X X X X

1 1 X X

- r--
0 1 1

1 1

X X X X

1 X X
-

10

01

11

01

AB

o

AB

00

11
A

A

10

B 1

10

C

11

D

z =D'

01
CD
00

-
0 1 1

1 1

X X X X

1 X X

11
A

10

AB

o

\ 01
<J

Table 4-2
Truth Table for Code-Conversion Example

Input BCD Output Excess-3 Code

A B C D w x y z

\\ .0 .0 .0 .0 .0 .0 1 CY
\ .0 .0 .0 1 .0 1 .0 Q"- .0 .0 1 .0 .0 1 .0

3 .0 .0 1 1 .0 1 1 epi.T 0 1 .0 .0 .0 1 1

Sa 1 .0 1 1 .0 .0

6° 1 1 .0 1 .0 .0 G3
-.1-.0 1 1 1 1 .0 1

Cbf} 1 .0 .0 .0 1 .0 1

91 .0 .0 1 1 1 .0 .0

The availability of a large variety of codes for the same discrete elements of information
results in the use of different codes by different digital systems. It is sometimes necessary
to use the output of one system as the input to another. A conversion circuit must be insert
ed between the two systems ,f each uses different codes for the same information. Thus, a
code converter is a circuit that makes the two systems compatible even though each uses a

different binary code.
To convert from binary code A to binary code B, the input lines must supply the bit combi

nation of elements as specified by code A and the output lines must generate the corresponding
bit combination of code B. A combinational circuit performs this transformation by means of
logic gates. The design procedure will be illustrated by an example that converts the binary
coded decimal (BCD) to the excess-3 code for the decimal digits.

The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1-5 (Sec
tion 1-7). Since each code uses four bits to represent a decimal digit, there must be four input
variables and four output variables. Designate the four input binary variables by the symbols
A, E, C, D, and the four output variables by w, x, y, and z. The truth table relating the input
and output variables is shown in Table 4-2. The bit combinations for the inputs and their cor
responding outputs are obtained directly from Section 1-7. Note that four binary variables may
have 16 bit combinations, but only 10 are listed in the truth table. The 6 bit combinations not
listed for the input variables are don't-care combinations. These values have no meaning in
BCD and we·assume that they will never occur. Therefore, we are at liberty to assign to the out

put variables either a 1 ora 0, whichever gives a simpler circuit.
The maps in Fig. 4-3 are plotted to obtain simplified Boolean functions for the outputs.

Each one of the fOUf maps represents one of the fOUf outputs of the circuit as a function of the
four input variables. The l's marked inside the squares are obtained from the minterms that make

Code Conversion Example



Digital computers perform a variety of information processing tasks. Among the functions
encountered are the various arithmetic operations. The most basic arithmetic operation is the
addition oftwo binary digits. This simple addition consists of four possible elementary operations:
o+ 0 = 0,0 + 1 = 1, 1 + 0 = I, and 1 + 1 = 10. The first three operations produce a sum
of one digit, but when both augend and addend bits are equal to 1, the binary sum consists of
two digits. The higher significant bit of this result is called a carry. When the augend and ad
dend numbers contain more significant digits, the carry obtained from the addition of two bits
is added to the next higher order pair of significant bits. A combinational circuit that performs
the addition of two bits is called a halfadder. One that performs the addition of three bits (two
significant bits and a previous carry) is afull adder. The names of the circuits stem from the
fact that two half adders can be employed to implement a full adder. Y .p'-'

A binary adder-subtractor is a combinational circuit that performs the arithmetic operations
of addition and subtraction with binary numbers. We will develop this circuit by means of a

~, z· )':>; hierarchical design. The half adder design is carried out first, from which we develop the full
adder. Connecting n full adders in cascade produces a binary adder for two n-bit numbers. The
subtraction circuit is included by providing a complementing circuit.

118 Chapter 4 Combinational Logic

of using common gates for two or more outputs. This manipulation, shown next, illustrates the
flexibility obtained with multiple-output systems when implemented with three or more lev

els of gates:

z = D1

Y = CD + C'D' = CD + (C + D)' ~
x = B'C + B'D + BC'D' = B'(C + D) + BC'D'

= B'(C + D) + B(C + D)'

"-"w = A + BC + BD = A + B(C + D)

The logic diagram that implements these expressions is shown in Fig. 4-4. Note that the OR
gate whose output is C + D has been used to implement partially each of thr~e outputs.

Not counting input inverters, the implementation in sum of products reqUIres seven AND
gates and three OR gates. The implementation of Fig. 4-4 requires four AND gates, four OR
gates, and one inverter. If only the normal inputs are available, the first lmplementatIOn wlll
require inverters for variables B, C, and D, and the second ImplementatIOn reqUITes mverters

for variables B and D.

Section 4-4 Binary Adder Subtractor

4-4 BINARY ADDER-SUBTRACTOR

119

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs and
two binary outputs. The input variables designate the augend and addend bits; the output variables
produce the sum and carry. We assign symbols x and y to the two iaputs and S (for sum) and C
(for carry) to the outputs. The truth table for the half adder is listed in Table 4-3. The C output is
1 only when both iaputs are 1. The S output represents the least significant bit of the sum.

The simplified Boolean functions for the two outputs can be obtained directly from the truth
table. The simplified sum of products expressions are

S = x'y + xy'

C = xy

The logic diagram of the half adder implemented ia sum of products is shown in Fig. 4-5(a).
It can be also implemented with an exclusive-OR and an AND gate as shown in Fig. 4-5(b).
This form is used to show that two half adders can be used to construct a full adder.

Half Adder
'>o---!::.D~' z

D CD y

C

(C +D)'

C+D

B
x

A~---------------,

FIGURE 4-4
Logic Diagram for BCD to Excess-3 Code Converter

)------ w

Table 4-3
HalfAdder

x y C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0



120 Chapter 4 Combinational Logic Section 4-4 Binary Adder Subtractor 121

y

11 1001

z
c= xy +xz + yz

= xy + xy'z + x'yz

yz
00

~

I

III 1 I

x

o

y

y

11 1001
yz
00

z
S = x'y'z + x'yz'+ xy'z' + xyz

I 1

I I

o
x

FIGURE 4-6
Maps for Full Adder

x'
y'
z

x

x' y

y
z'

x
5 C

x z
y'
z'

truth table or when the circuit is implemented with logic gates. The maps for the outputs of the
full adder are shown III Fig. 4-6. The simplified expressions are

s= x'y'z + x'yZ' + xy'l + xyz

C = xy + xz + yz

The logic diagram for the full adder implemented in sum ofproducts is shown in Fig. 4-7. It can
be also 1lllplemented WIth two half adders and one OR gate, as shown in Fig. 4-8. The S output from
the second half adder is the exclusive-OR of z and the output of the first half adder, giving

S = zEll (xElly)

= z'(xy' + x'y) + z(xy' + x'y)'

= z'(xy' + x'y) + z(xy + x'y')

= Xy'ZI + X'yzl + xyz + x'y'z

C = z(xy' + x'y) + xy = xy'z + x'yz + xy

x
y
Z --t_~

FIGURE 4-7

Implementation of Full Adder in Sum of Products

The carry output is

c

5

(b) 5 ~ x Ell y
C=xy

x ----,-----1'
y ----.------jf---h

)-----5

Table 4-4
Full Adder

x y z C 5

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
I 0 I 1 0
1 I 0 1 0
1 1 1 1 1

(a) 5 ~ xy' + x'y
C=xy

y'

y

x'

x

:=01---------- c

FIGURE 4-5
Implementation of Half-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three bits. It consists
of three inputs and two outputs. Two of the input vatiables, denoted by x and y, represent the
two significant bits to be added. The third input, z, represents the carry from the previous lower
significant position. Two outputs are necessary because the atithmetic sum of three binary dig
its ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two outputs are desig
nated by the symbols S for sum and C for carry. The binary vatiable S gives the value of the
least significant bit of the sum. The binary vatiable C gives the output carry. The truth table of
the full adder is listed in Table 4-4. The eight rows under the input variables designate all pos
sible combinations of the three vatiables. The output vatiables are determined from the atith
metic sum of the input bits. When all input bits are 0, the output is O. The S output is equal to
I when only one input is equal to 1 or when all three inputs are equal to 1. The C output has a
carry of 1 if two or three inputs are equal to 1.

The input and output bits of the combinational circuit have different interpretations at var
ious stages of the problem. Physically, the binary signals of the inputs are considered binary
digits to be added atithmetically to form a two-digit sum at the output. On the other hand, the
same binary values are considered as variables of Boolean functions when expressed in the

Full-Adder



123Section 4-4 Binary Adder Subtractor

The bits are added with full adders, ~tarting from the least sigrnficant position (subscript 0), to
form the sum bit and carry bit. The mput carry Co in the least significant position must be O.
The value of C'+l in a given significant position is the output carry of the full adder. This value
IS transferred into the input carry of the full adder that adds the bits one higher significant
POSltlO~ to the left. The sum bits are thus generated starting from the rightmost position and
are avmlable as Soon as the corresponding previous carry bit is generated. All the carries must
be generated for the correct sum bits to appear at the outputs.

The 4-bit adder is a typical example of a standard component. It can be used in many
applIcatIOns mvolvmg arithmetic operations. Observe that the design of this circuit by the clas
Sicalmethod would require a truth table with 29 = 512 entries, since there are nine inputs to
the CircUit. By uSI.ng an Iterative method of cascading a standard function, it is possible to obtain
a Simple and strmghtforward implementation.

Carry Propagation

The addition of two binary numbers in parallel implies that all the bits of the augend and ad
dend are available for computation at the same time. As in any combinational circrnt, the sig
nal must propagate through the gates before the correct output sum is available in the output
termmals. The total propagation time is equal to the propagation delay of a typical gate times
the number of gate levels in the circuit. The longest propagation delay time in an adder is the
time it takes the carry to propagate through the full adders. Since each bit of the sum output
depends ou the value of the input carry, the value of S, in any given stage in the adder will be
m Its steady state final value only after the input carry to that stage has been propagated. Con
SIder output S, in Fig. 4-9. Iuputs A3 and B, are available as soon as input signals are applied
to the adder. However, mput carry C, does not settle to its final value until C, is available from
the previous stage. Similarly, C2 has to wait for C j and so on down to Co. Thus, only after the
carry propagates and ripples through all stages will the last output S3 and carry C

4
settle to

therr final correct value.

The number of gate levels for the carry propagation can be found from the circuit of the full
adder. The circuit is redrawn iu Fig. 4-10 for couvernence. The input and output variables use
the subscript i to denote a typical stage in the adder. The signals at P; aud G, settle to their

)---c

FAFA
C2

)---------s
r--HI_/

FA
C3

FA

Subscript i: 3 2 1 0

Input carry a 1 1 a c,
Augend p a 1 1 A, ( \Addend a a 1 1 B,

J

Stun 1 1 1 a s· \Output carry a a 1 1 ' 7 /,
CHI ~. \)

I

B3 A3 B, A2 B, A, Bo Ao
! \

y~..-+--+I

x ---r----\1

z-------------'
FIGURE 4-8
Implementation of Full Adder with Two Half Adders and an OR Gate

Chapter 4 Combinational Logic

Binary Adder

A binary adder is a digital circuit that produces the arithmetic sum of two biuary uumbers. It
can be coustructed with full adders connected in cascade. with the output carry from each full
adder connected to the input carry of the next full adder in the chain. Figure 4-9 shows the
interconnection of four full adder (FA) circuits to provide a 4-bit binary ripple carry adder.
The augend bits ofA and the addend bits of B are designated by subscript numbers from right
to left, with subscript adenoting the least significant bit. The carries are connected in a chain
through the full adders. The input carry to the adder is Co and it ripples through the full adders
to the output carry C4 • The S outputs generate the required sum bits. An n-bit adder requires n
full adders with each output carry connected to the input carry of the uext higher-order full adder.

To demonstrate with a specific example, cousider the two binary numbers, A = 1011 aud
B = 0011. Their sum S = IlIO is formed with the four-bit adder as follows:

122

S3 s, S, So
c, --'

FIGURE 4-9
4-Bit Adder

FIGURE 4-10
Full Adder with P and G Shown



head generator shown in Fig. 4-11. Note that C3 does not have to wait for C2 and C, to propa
gate; in fact, C3 is propagated at the same time as CI and C,.

The construction of a 4-bit adder with a carry lookahead scheme is shown in Fig. 4-12.
Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate
generates the p, variable, and the AND gate generates the G, variable. The carries are prop
agated through the carry lookahead generator (similar to that in Fig. 4-11) and applied as
inputs to the second exclusive-OR gate. All output carries are generated after a delay through
two levels of gates. Thus, outputs SI through S3 have equal propagation delay times. The
two-level circuit for the output carry C, is not shown. This circuit can be easily derived by
the equation-substitution method. .

i\1
III

124 Chapter 4 Combinational Logic

steady state values after they propagate through their respective gates. These two signals are
common to all full adders and depend only on the input augend and addend bits. The signal from
the input carry C, to the outpnt carry Ci+I' propagates through an AND gate and an OR gate,
which constitute two gate levels. If there are four full adders in the adder, the output carry C,
would have 2 X 4 = 8 gate levels from Co to C,. For an n-bit adder, there are 2n gate levels
for the carry to propagate from input to output.

The carry propagation time is a limiting factor on the speed with which two numbers are
added. Although the adder, or any combinational circuit, will always have some value at its
output terminals, the outputs will not be correct unless the signals are given enough time to
propagate through the gates connected from the inputs to the outputs. Since all other arith
metic operations are implemented by successive additions, the time consumed during the
addition process is very critical. An obvious solution for reducing the carry propagation
delay time is to employ faster gates with reduced delays. However, physical circuits have a
limit to their capability. Another solution is to increase the equipment complexity in such a
way that the carry delay time is reduced. There are several techniques for reducing the carry
propagation time in a parallel adder. The most widely used technique employs the principle
of carry lookahead.

Consider the circuit ofthe full adder shown in Fig. 4-10. Ifwe define two new binary variables

~ = AjEBBi

OJ = AiB;

the output sum and carry can be expressed as

Si = liEB Cj

C i+1 = 0i + lie;

G, is called a carry generate and it produces a carry of I when both A, and B, are I, regardless
of the input carry Ci' li is called a carry propagate because it is the term associated with the
propagation of tbe carry from C, to C,+I'

We now write the Boolean functions for the carry outputs of each stage and substitute for
each Cj its value from the previous equations:

Co = iuput carry

CI = Go + PoCo

C, = GI + P,CI = G, + p,(Go + poCo) = GI + PIGO + PIPOCO

C3 = G, + P,C, = G, + P,GI + P,P,Go + P,PIPOCO

Since the Boolean function for each output carry is expressed in sum of products, each func
tion can be implemented with one level ofAND gates folIowed by an OR gate (or by two-level
NAND). The three Boolean functions for CI , C" and C3 are implemented in the carry looka-

Section 4-4 Binary Adder Subtractor

~

"\
)

,----L/

I
_J ,

-

~
)

~ I rL/l "\

f----f1-
Go

Co

FIGURE 4-11
Logic Diagram of Carry Lookahead Generator

C3

C,

C,

125



127

FAFA
C2

Section 4-4 Binary Adder Subtractor

52

FA

B2

C3

53

FA

.--+----f--<.-+----+---.-----1----+--.--+--.---- M

B3

When two numbers of n digits each are added and the sum occupies n + I digits, we say that an
overflow occurred. This is true for binary or decimal numbers whether signed or unsigned. When
the addition is performed with paper and pencil, an overflow is not a problem, since there is no
limit by the width of the page to write down the sum. Overflow is a problem in digital computers

this gives A - E if A '" E or the 2's complement of (E - A) if A < E. For signed numbers,
, the 'result is A - E, provided that there is no overflow. (See Section 1-6.)

"The addition and subtraction operations can be combined into one circuit wi"th one common
binary adder. This is done by including an exclusive-OR gate with each full adder. A 4-bit
adder-subtractor circuit is shown in Fig. 4-13. The mode input M controls the operation. When
M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor. Each
exclusive-OR gate receives input M and one of the inputs of E. When M = 0, we have
E EEl 0 = E. The full adders receive the value of E, the input carry is 0, and the circuit performs
A plus E. When M = I, we have E EEl I = E' and Co = 1. The E inputs are all complemented
and a 1 is added through the input carry. The circuit performs the operation A plus the 2's
complement of E. (The exclusive-OR with output V is for detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added and sub
tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com
puters need only one common hardware circuit to handle both types of arithmetic. The user or
programmer must interpret the results of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned

FIGURE 4-13
4-Bit Adder Subtractor

v

C,
C-------o--.....,

Overflow

52

50

P2
P2

C2

G,
Carry

Look ahead

PI
generator

p[

C1

G[

f---,---_j Go

)----iPo

Co---------.~-_j Co

Bo----,----+\
Ao,-.-~H

B2-~'-\-\

A 2 ---.-+-H

C4 C4

B3
P3A 3 P3

C3
53

G 3

Bl-~'-\-\

A 1-.-f--H

FIGURE 4-12
4-Bit Adder with Carry Lookahead

Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR gate
generates the Pi variable, and tbe AND gate generates the Gi variable. The carries are prop
agated through the carry lookahead generator (similar to that in Fig. 4-11) and applied as
inputs to the second exclusive-OR gate. All output carries are generated after a delay through
two levels of gates. Thus, outputs SI through S3 have equal propagation delay times. The
two-level circuit for the output carry C. is not shown. This circuit can be easily derived by
the equation-substitution method.

Chapter 4 Combinational logic126



B3 A3 B,

Section 4-4 Binary Adder Subtractor 127

r-+-~~---+----'~+-~~-+--T-I-~~~+-~+~----.-M

C4
C~~~~~~~-----j FA

C3
FA

C,
FA

Cj

FA

v
S3 S,

FIGURE 4-13
4-Bit Adder Subtractor

this gives A - B ifA ". B or the 2's complement of (B - A) if A < B. For signed numbers,
the 'result is A - B, provided that there is no overflow. (See Section 1-6.)

'The addition and subtraction operations can be combined into one circuit wi'th one common
binary adder. This is done by including an exclusive-OR gate with each full adder. A 4-bit
adder-subtractor circuit is shown in Fig. 4-13. The mode inputM controls the operation. When
M = 0, the circuit is an adder, and when M = I, the circuit becomes a subtractor. Each
exclusive-OR gate receives input M and one of the inputs of B. When M = 0, we have
BEllO = B. The full adders receive the value ofB, the input carry is 0, and the circuit performs
A plus B. When M = I, we have BEllI = B' and Co = l. The B inputs are all complemented
and a 1 is added through the input carry. The circuit performs the operation A plus the 2's
complement of B. (The exclusive-OR with output V is for detecting an overflow.)

It is worth noting that binary numbers in the signed-complement system are added and sub
tracted by the same basic addition and subtraction rules as unsigned numbers. Therefore, com
puters need only one common hardware circuit to handle both types of arithmetic. The user or
progranuner must interpret the results of such addition or subtraction differently, depending on
whether it is assumed that the numbers are signed or unsigned

Overflow

When two numbers of n digits each are added and the sum occupies n + 1 digits, we say that an
overflow occurred. This is true for binary or decimal numbers whether signed or unsigned. When
the addition is performed with paper and pencil, an overflow is not a problem, since there is no
limit by the width of the page to write down the sum. Overflow is a problem in digital computers



4-5 DEC I MAL ADD ER

Computers or calculators that perform arithmetic operations directly in the decimal number
system represent decimal numbers in binary coded foun. An adder for such a computer must
employ arithmetic circuits that accept coded decimal numbers and present results in the same
code. For binary addition, it is sufficient to consider a pair of significant bits together with a
previous carry. A decimal adder requires a minimum of niue inputs and five outputs, since four
bits are required to code each decimal digit and the circuit must have an input and output carry.
There is a wide variety of possible decimal adder circuits, depending upon the code used to rep
resent the decimal digits. Here we consider a decimal adder for the BCD code. (See Section 1-7.)

BCD Adder

Consider the arithmetic addition oftwo decimal digits in BCD, together with an input carry from
a previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than
9 + 9 + 1 = 19, the I iu the sum being au input carry. Suppose we apply two BCD digits to
a 4-bit binary adder. The adder will form the sum in binary and produce a result that ranges from
othrough 19. These binary numbers are listed in Table 4-5 and are labeled by symbols K, Z"
Z4, Z;" and Z,. K is the carry, and the subscripts under the letter Z represent the weights 8,4,
2, and 1 that can be assigned to the four bits in the BCD code. The columns under the binary
sum list the binary value that appears in the outputs of the 4-bit binary adder. The output sum

Table 4-5
Derivation of BCD Adder

Binary Sum BCD Sum Decimal

K Z8 Z. Zz Z, C S8 S. Sz S,

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19



adder to produce the binary sum. When,the output carry is equal to zero, nothing is added to
the binary sum. When it is equal to one, binary 0110 is added to the binary sum through the
bottom 4-bit adder. The output carry generated from the bottom adder can be ignored, since it
supplies information already available at the output carry terminal. A decimal parallel adder that
adds n decimal digits needs n BCD adder stages. The output carry from one stage must be con
nected to the input carry of the next higher-order stage.

4-6 BINARY MULTIPLIER

Multiplication of binary numbers is performed in the same way as in decimal numbers. The mul
tiplicand is multiplied by each bit of the multiplier starting from the least significant bit. Each
such multiplication forms a partial product. Successive partial products are shifted one posi
tion to the left. The final product is obtained from the sum of the partial products.

To see how a binary multiplier can be implemented with a combinational circuit, consider
the multiplication oftwo 2-bit numbers as shown in Fig. 4-15. The multiplicand bits are B j and
Bo, the multiplier bits areAl andAo, and the product is C,C, Cj Co. The first partial product is
formed by multiplying Aoby BIBo. The multiplication of two bits such asAoand Boproduces
a I if both bits are I; otherwise, it produces a O. This is identical to an AND operation. There
fore, the partial product can be implemented with AND gates as shown in the diagram. The sec
ond partial product is formed by multiplying A j by BjBoand shifted one position to the left.
The two partial products are added with two half adder (HA) circuits. Usually there are more
bits in the partial products and it is necessary to use full adders to produce the sum of the par
tial products. Note that the least significant bit of the product does not have to go through an
adder since it is formed by the output of the first AND gate.

A o--------,---,
B j

A 1 A o

C, C, Co

Co

FIGURE 4-15
2-Bit by 2-Bit Binary Multiplier



4-7 MAGNITUDE COMPARATOR

The comparison of two numbers is an operation that detennines if one number is greater than,
less than, or equal to the other number. A magnitude comparator is a combinational circuit that
compares two numbers, A and B, and detennines their relative magnit~des.~p~e, out~ol?_eoftpe

comparison is specified by three binary variables that indicate whether If > B,A '= B, or A < -B,
The circuit for comparing two n-bit numbers has2;n.entries in)he trUth table and becomes too

cumbersome even with n = 3. On'the other hand, as one may suspect, a comparator CirCllt pos
sess a certain amount of regularity, Digital functions that possess an inherent well-defined regu
larity can usually be desigued by means of an algorithmic procedure, An algorithm is a procedure
that specifies a finite set of steps that, if followed, give the solution to a problem. We illustrate this
method h6re by deriving an algorithm for the design of a4-bit magnitude comparator.

The algorithm is a direct application of the procedure a person uses to compare the relative
magnitudes of two nurubers. Consider two numbers, A and B, with four digits each. Write the
coefficients of the numbers with descending significance

A = A3A2A,Ao

B = B3B2B,Bo
Each subscripted letter represents one of the digits in the number. The two numbers are equal
if all pairs of significant digits are equal: A 3 = B3 and A, = B, and A, = B j and Ao = Bo'.
When the numbers are binary, the digits are either lori), apd the eguaJilx,r!'latid.!!tof each ]Ji\ir
of b.il§ can be expressed logically with an eXclusive-(NQR).mction~- X,""c',,/

::.L.. - .., , .......-.""-._- \

Xi = AIBi + A;B; for i = 0,1,2,3 \

where Xi = I only if the pairof bits in positior1i,1re equal (i.e., if both are I.or both are 0).
The equality of the two nurubers, A and B, is displayed in a cqWwnatipnaJ,circuit by ali out

put binary variable that we designaie by thesymbol (A = B). This binary variable'is equal to
I if the input numbers, A and B, are equ,;ra;;-d'it is eilu;J to 0 otIierwis6. For the eqmility con
dition to exist, all Xi variables must be equal to'l. This dictates an AND operation of all variables:

~-, '., - .
(A,= B) = x3X2XJXO

The binary variable (A = B) is equal to I only if all pairs of digits of the two numbers are equal.
To detennine ifA is greater than or less than B, we ,inspect the relative magnitudes of pairs

of significant digits starting from the most significant position. If the two digits are equal, we
compare the next lower significant pair of digits. This comparison continues until a pair of
unequal digits is reached. If the corresponding digit of A is I and that of B isO, we conclude
that A> B. !fthe corresponding digit of A is 0 and that of B is 1, we have that A < B. The
sequential comparisoI?can be expressed logically by the two Boolean functions

~~~l~:t~:~,;:~;~::;:;:1;~,;: :::::,'1:::_j
The symbols (A > B) and (A < B) are binary output variables that are equal to I when
A > B or A < B, respectively.

The gate implementation of the three output variables iust derived is simpler than it seems
because it involves a certain ~ount ofrepetition. The unequal outputs can use the same gates

z

y

x

~ J

~)

~)

---1

)

--1)

I---l.)

\
-l-J

Do = x'y'z'

D1 = x'y'z

D2= x'yz'

D3 = x'yz

D 4 = xy'Z'

Ds=xy'z

D 6 = xYZI

FIGURE 4-18
3-to-8-line Decoder

The decoders presented here are called n-to-m-line decoders, where m oS 2". Their purpose
is to generate the 2n (or fewer) mintenns of n input variables. The name decoder is also used
in conjunction with other code converters such as a BCD-to-seven-segment decoder.

As an example, consider the 3-to-8-line decoder circuit of Fig. 4-18. The three inputs are
decoded into eight outputs, each representing one of the minterms of the three input variables.
The three inverters provide the complement of the inputs, and each one of the eight AND gates
generates one of the mintenns. A particular application of this decoder is binary-to-octal con
version. The input variables represent a binary number, and the outputs represent the eight dig
its in the octal number system. However, a 3-to-8-line decoder can be used for decoding any
3-bit code to provide eight outputs, one for each element of the code.

The operation of the decoder may be clarified by the truth table listed in Table 4-6. For each
possible input combination, there are seven outputs that are equal to 0 and only one that is
equal to I, The output whose value is equal to I represents the mintenn equivalent of the binary
number presently available in the input lines.

---"-"----,- -------------- --

136 Chapter 4 Combinational Logic

Table 4-6
Truth Table of a 3-ta-8-Line Decader

Inputs Outputs

x y z Do 0, O2 0, D. Os D. 07

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

Some decoders are constructed with NAND gates. Since a NAND gate produces the AND
operation with an inverted output, it becomes more economical to ge:qerate the decoder
minterms in their complemented form. Furthermore, decodersjnclude one or more enable
inputs to control the circuit-operation. A 2-to-4-line decoder with an enable input constructed
with NAND gates is shown in Fig. 4-19. The circuit operates with complemeuted outputs and
a complement enable input. The decoder is enabled when E is equal to O. As indicated by the
truth table, only one output can be equal to 0 at auy given time, all other outputs are\equal
to I. The output whose value is equal to 0 represents the minterm selected by inputs A and
B. The circuit is disabled when E is equal to I, regardless of the values of the other two

Do, vJU\ O.J- rr- 0 ' ·.0'-1-- ., ~J, 1) ~~((,,-d:;d

E A B Do D1 D2 D3

\
~ D,

1 X xl 1 1 1 1,
0 0 0 0 1 1 1A

\ 0 0 1 1 O· 1 1

"D, 0 1 0 1 1 0 1
0 1 1 1 1 1 0

B

, ,\ D,
'..,j

E

(a) Logic diagram

FIGURE 4-19
2-to-4-Line Decoder with Enable Input

(b) Truth table

134 Chapter 4 Combinational Logic

:'3 '

B,

Bo-+---1:>O---L~

,(A < B)

\
(A>B\, \

\,

"I

4-8

FIGURE 4-17
4-Bit Magnitude Comparator

that are needed to generate the equal output. The logic diagram of the 4-l:1it lllagni\udecom
parator is shown in Fig. 4-17. Thefour x outputs are generated witlj exc!usive.NQR:ilIcuits and
applied to an AND gate to giYeiileOutPUtbi~~(A~ . e othef'iwo ()~tPuts nse
the x variables to generate the Boolean funstions listed previously. This is a multilevel imple-

! mentation and has a regular pattern. The procedurefor obtainin~magni~de comparator ~lfcuits
i for binary numbers wiJh more than four bits i~.Q.1)vious from thi~~xample. 7\! <" '. ",_.;;0""_ .. ""-~,;;;:.""'=' .__~::"" •.n,,=-,-

\,'/ .

'DECODERS
Olillk

~~ Discrete quantities of information are represented in digital systems by binary codes. A bina
ry code of n bits is capable of representing up to2n distinct elements of coded infoi'jnation. A
decoder 18 acombmatlonal ClIcwt that converts bmary rnfonnatlOll from n mput hnesko a max
imum of 2n unique output lines. If the n-hit coded infonnation has unused combinations, the
decoder may have fewer than 2n outputs.

132 Chapter4 Combinational Logic
,

A combinational circnit binary mnltiplier with more bits can be constrncted in a similar
fashion. A bit of the mnltiplier is ANDed with each bit of the multiplicand in as mauy levels
as there are bits in the multiplier. The binary output in each level of AND gates is added with
the partial product of the previous level to form a new partial product. The last level produces
the product. For J multiplier bits aud K multiplicaud bits we need (J X K) AND gates aud
(J - I) K-bit adders to produce a product off + K bits.

As a second example, consider a multiplier circuit that multiplies a binary number of four
bits by a number of three bits. Let the multiplicand be represented by B,B,B,Boand the mul
tiplierby A,A,Ao. Since K = 4 audJ = 3, we need 12 AND gates aud two 4-bit adders to pro
duce a product of seven bits. Thelogic diagram of the multiplier is shown in Fig. 4-16.

B, B, B, Bo

'---I [--" -----'- LJ
.

'---' '---'B, B,

LL; "
'-c-" '-c-"

[--" '------l

Y Y Y Y 1
Addend Augend"

4¥bit adder

Sum and output carry

B, B, B, Bo

-----'- U~I
Y Y yJ

Addend Augend

4~bit adder

. Sum and output carry

t t t t t
c,

FIGURE 4-16
4-Bit by 3_Bit Binary Multiplier

c, c, c,

130 Chapter 4 Combinational Logic

of two decimal digits must be represented in BCD and should appear in the form listed in the
columns under BCD sum. The problem is to find a rule by which the binary sum is be converted
to the correct BCD digit representation of the number in the BCD sum.

In examining the contents of the table, it is apparent that when the binary sum is equal to or
less than IDOl, the corresponding BCD number is identical, and therefore no conversion is
needed. When the binary sum is greater than 1001, we obtain a non-valid BCD representation.
The addition of binary 6 (0110) to the biuary sum converts it to the correct BCD representa
tion and also produces an output carry as required.

The logic circuit that detects the necessary correction can be derived from the table entries.
It is obvious that a correction is needed when the binary sum has an output carry K = 1. The
other six combinations from 1010 through 1111 that need a correction have a I in position Z8'
To distinguish them from binary 1000 aud 1001, Which also have a I in position Z8' we spec
ify further that either Z4 or Z2 must have a I. The condition for a correction and an output carry
can be expressed by the Boolean function

C = K + Z8Z4 + ZsZ2

When C = I, it is necessary to add 0II0 to the binary sum and provide an output carry for the
next stage.

A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in
Fig. 4-14. The two decimal digits, together with the input carry, are first added iri the top 4-bit

Addend Augend

Carry
out K 4- bit binary adder

2 8 2 4 2 2 Zl

Carry
ill

Output _...--(
carry

o --~-+--t-.

4- bit binary adder

FIGURE 4-14
Block Diagram of a BCD Adder

128 Chapter 4 Combinational Logic

because the uumber ofbits that hold the uumber is finite and a result that contains n + 1 bits can-
I' ._ not be accommodated. For this reason, many computers detect the occurrence of an overflow, and

Jc:? Le-1I~.J when it occurs, a corresponding flip-flop is set that can then be checked by the user.
- The detection of an overflow after the addition of two binary numbers depends on whether

the numbers are considered to be signed or unsigned. When two unsigned numbers are added,
an overflow is detected from the end carry out of the most significant position. In the case of
signed numbers, the leftmost bit always represents the sign and negative numbers are in 2's com
plement form. When two signed numbers are added, the sign bit is treated as part of the num
ber and the end carry does not indicate an overflow.

-g;, \..» An overflow cannot occur after an addition if one number is positive and the other is nega-- .---tive, since adding a positive number to a negative number produces a result which is smaller
than the larger of the two original numbers. An overflow may occur if the two numbers added
are both positive or both negative. To see how this can happen, consider the following exam
ple. Two signed binary numbers, +70 and +80, are stored in two 8-bit registers. The range of
numbers that each register can accommodate is from binary + 127 to binary -128. Since the
sum of the two numbers is + 150, it exceeds the capacity of an 8-bit register. This is true if the
numbers are both positive or both negative. The two additions in binary are shown next, together
with the last two carries;

carries: 0 carries: I 0

+70 0 1000110 -70 I

JmuJ+80 0 1010000 -80 I

r
+150 I 0010110 -150 0 (1,01010

Note that the 8-bit result that should have been positive has a negative sign bit and the 8-bit result
that shonld have been negative has a positive sign bit. If, however, the carry out of the sign bit po
sition is taken as the sign bit of the result, then the 9-bit answer so obtained will be correct. Since
the answer cannot be accommodated within 8-bits, we say that an overflow has occurred.

An overflow condition can be detected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries are not equal, an overflow has occurred.
This is indicated in the examples where the two carries are explicitly shown. If the two carries
are applied to an exclusive-OR gate, an overflow is detected when the output of the gate is
equal to 1. For this method to work correctly the 2's complement must be computed by taking
the l's complement and adding one. This takes care of the condition when the maximum neg
ative number is complemented.

The binary adder-subtractor circuit with outputs C and V is shown in Fig. 4-13. If the two
binary numbers are considered to be unsigned, theu the C bit detects a carry after addition or
a borrow after subtraction. If the numbers are cousidered to be signed, then the V bit detects
an overllow. If V = 0 after an addition or subtraction, it indicates that no overflow occurred
aud the n-bit result is correct. IfV = I, then the result of the operation contains n + I bits, but
only the rightmost n bits of the number fit in the space available, so an overflow has occurred.
The (n + I)th bit is the actual sign and has been shifted out of position.

Section 4-8 Decoders 137

x

y

z

w

3X8
f--decoder

E \v
I

\

'--

3x8
f--decoder

E

I f)

inputs. When the circuit is disable<,l,_none of the outputs ~ual to 0 and none of the" : : , :.-, .. ,',.':,.......•, ,••..-- .•..•.--",. ,-' '-·''''',,_e_.",_,,~,_~ ~_.

minterms are·selected. In general, a decoder may operate with complemented or uncomple_
mented outputs. The enable input may be activated with a 0 or with a I signal. Some decoders
have two or more enable inputs that must satisfy a given logic condition in order to enablethe circuit.

A decoder with enable input can function as a demultiplexer. A demultiplexer is a circuit that
receives information from a single line and directs it to one of 2" possible ontput lines. The
selection ofa specific output is controlled by the bit combination ofn selection lines. The decoder
of Fig. 4-19 can function as a l-to-4-line demUltiplexer when Eis taken as a data input line and
A and B are taken as the selection inputs. The single inpnt vatiable E has a path to all four out
puts, but the input information is directed to only one of the output lines, as .specified by the
binary combination of the two selection lines A and B. This can be verified from the trnth table
of the circuit. For example, if the selection lines AB = 10, output D

2

will be the same as the
input value E, while all other outputs are maintained at L Because decoder and demultiplexer
operations are obtained from the same circuit, a decoder with an enable input is referred to asa decoder/demultiplexer.

Decoders with enable inputs can be connected together to form a larger deCoder circuit.
Figure 4-20 shows two 3-to-8-1ine decoders with enable inputs connected to form a 4-to-16_
line decoder. When w = 0, the top decoder is enabled and the other is disabled. The bottom
decoderoutputs~ and the top eight outputs generate minterms 0000 to 011 L When
w = I, the enable conditions are reversed; the bottom decoder outputs generate minterms
1000 to 1111, while the outputs of the top decoder are all O's. This example demonstrates
the usefulness of enable inputs in decoders and other combinational logic components. In
general, enable inputs are a converuent feature for interconnecting two or more standard Com
ponents for the purpose of expanding the component into a similar function with more inputsand outputs.

FIGURE4,20,

4 X 16 Decoder Constructed with Two 3 X 8 Decoders

(b) Truth table

FIGURE 4-19

2-to-4-line Decoder with Enable Input

(a) Logic diagram

. Dates Since a NAND gate produces the ANDSom
e decoders are constructed w,th NAN g . conomical to geuerate the decoder

t .t becomes more e . hioperation with an inverted outpu , 1 urth e decoders .include one or more ena e
minterms in their complemented form. F -4~~~~rd~coder with an enable input constructed
inputs to control the c,rcUIt operahon. A 2-to. 't operates with complemented outputs and

. . F' 4-19 The c'rcUI . d' db thewith NAND gates ,s shown m 'g. '. abled when E is equal to O. As m leate ,y
a complement enable input. The decode~l~:~ at any given time, all other outputs are equal
truth table, only one output can be equ re resents the minterm selected by mputs A and
to I The output whose value ,s equal to 0 p I dless of the values of the other two. '" bl d huE is equal to , regarB.. The cirCUIt IS dlsa ewe

.'-_.

136 Chapter 4 Combinational Logic

Table 4-6 . d
Truth Table ofa 3-to-8-Lme Deco er

OutputsInputs

0, 0, D. D. 0 7
Do 0, O2

X Y z

00 0 0 0 00 1 0
0 0 0 0

0 0

0 00 1

0 0

0 0 1

0 0 00 0 1

0 0

0 1 0

0 1 0 01 1 0 0
1 0 0 0

0

0 00 0 0 0
0 1 0 0

1

0 00 1 0 0
0 0 1 0

1

0 0 0 0
0 1

1 1 0

0 0 0 00 01 1 1

Combinational Logic Implementation
A decoder provides the 2/1 minterms of n input variables. Since any Bo~lean function can be
expressed in sum of mintenns, one can use a decoder to ge~er~te the ~m:er~s an~ an exter
nal OR gate to form the logical sum. In this way, any combmallonal clrcUlt WIth n mputs and
m outputs cau be implemented with an n-to-2"-line decoder and m OR gates.

The procedure for implementing a combinatioual circuit by means of a decod~r and OR
gates requires that the Boolean function for the circuit is exp~essed III .sum of mlll~erms.A
decoder is then chosen that generates all the minterms of the mput vanables:. The mputs to
each OR gate are selected from the decoder outputs according to the hst of mmterm of each
function. This procedure will be illustrated by an example that implements a full adder ClrcUlt.

From the truth table of the full adder (see Table 4-4), we obtam the functlOns for the com-

binational circuit in sum of minterms:

S(x,y,z) = 2:(1,2,4,7)

C(x,y,z) = 2:(3,5,6,7)

Since there are three inputs and a total of eight ntinterms, we need a 3-to-8-line decoder. The
implementation is shown in Fig.4-21.Thedecoder g'merates the eight minterms for x, y, z. The
OR gate for outputS forms the logical sum of minterms1, 2,4, and 7. The OR gate for output

C forms the logical sum of ntinterms 3, 5, 6, and 7. . .
A function with a long list of ntinterms requires an OR gate WIth a large number of ,~putS.

A function having a list of k mintenus can be expressed in its complemented fonu F WIth
2" - k ntinterms. If the number of minterms in a function is greater than 2"/2, then F' can be
expressed with fewer minterms. In such a case, it is advantageo~s to use a NOR gate to sum
the minterms of F'. The output of the NOR gate complements thIS sum and generates the nor
mal output F. If NAND gates are used for the decoder as in Fig. 4-19, then the external gates
must be NAND gates instead of OR gates. This is because a two-level NAND gate CITCUlt Im
plements a sum of minterms function and is equivalent to a two-level AND-OR CIrCUit.

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder
has 2" (or fewer) input lines and n output lines. The output lines generate the binary code cor
responding to the input value. An example of an encoder is the octal-to-binary encoder whose
truth table is given in Table 4-7. It has eight inputs (one for each of the octal digits) and three
outputs that generate the corresponding binary number. It is assumed that only one input has
a value of 1 at any given time.

The encoder can be implemented with OR gates whose inputs are detennined directly from
the truth table. Output z is equal to I when the input octal digit is 1, 3, 5, or 7. Output Y is 1 for
octal digits 2, 3, 6, or 7 and output x is 1 for digits 4, 5, 6, or 7. These conditions can be
expressed by the following output Boolean functions:

139Section 4-9 Encoders

z = D] + D, + Ds + D7

Y = D2 + D, + D6 + D7

X = D4 + Ds + D6 + D7

The encoder can be implemented with three OR gates_
The encoder defined in Table 4-7 hasthe lintitation thatonly one input can be active at any

given time. If two inputs are active simultaneously, the output produces an undefined combi
nation. For example, if D, and D6 are 1 simultaneously, the output of the encoder will be III
because all three outputs are equal to 1. This does not represent~i1Jl~binary 3 or binary 6. To
resolve this ambiguity, encoder circuits must establish an input priofIty to ensure that only one
input is encoded. Ifwe establish a higher priority for inputsWinrltigher subscriptnumbers, and
if both D, and D 6 are 1 at the same time, the output will be 110 because D6 has higher priority
than D,.

Another ambiguity in the octal-to-binary encoder is that an outputwitjl ajl O's is ~,nerated

when all the inputs are 0; this output is the same as when Do is equal toS\"TJ1e diSftepai}cy cau
be resolved by providing one more output to indicate that at least one input is equal to 1.

~~pJJj ,yoyl Jf2;J \0
ENCODERS4-9

!
Chapter 4 Combinational Logic138

FIGURE 4-21
Implementation of a Full Adder with a Decoder

0

1

x 2' 2

3 x 8 3
Y 2' decoder 4

z 2° 5

6

7

s

c

Table 4-7
Truth Table of Octal-to-Binary Encoder

Inputs Outputs

Do D] D, D, D4 Ds D6 D7 X Y z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

f" . r

Section 4-10 Multiplexers 141

y

}-------v

D 3 -----...,...-----------,

D, ----,.-+---1

D , _-,._+_+- r---..-..../

Do ---'==========J

140 Chapter 4 Combinational Logic

Table 4-8
Truth Table of a Priority Encoder

Inputs Outputs

Do D, D2 D, x Y V

a a a a x x a
1 a a a a a 1

x 1 a a a 1 1

X X 1 a 1 a 1

x X X 1 1 1 1

FIGURE 4-23
4-lnput Priority Encoder

A multiplexer is a combinational circuit that selects binary information from one of many input
lines and directs it to a single output line. The selection of a particular input line is controlled
by a set of selection lines. Nonually, there are 2" input lines and n selection lines whose bit com
binations determine which input is selected.

A 2-to-l-line multiplexer connects one of two I-bit sources to a common destination as
shown in Fig. 4-24. The circuit has two data input lines, one output liue, and one selection line
S. When S = 0, the upper AND gate is enabled and 10 has a path to the output. When S = 1,
the lower AND gate is enabled and I, has a path to the output. The multiplexer acts like an
electronic switch that selects one of two sources. The block diagram of a multiplexer is some
times depicted using a wedge-shaped symbol as shown in Fig 4-24(h). It suggests visually how
a selected one~ofmultiple data sources is directed into a single destination. The multiplexer is
often labeled as MUX in block diagrams.

A 4-to-l-line multiplexer is shown in Fig. 4-25. Each of the four inputs, 10 through 13 , is ap
plied to one input of an AND gate. Selection lines SI and So are decoded to select a particular
AND gate. The outputs of the AND gates are applied to a single OR gate that provides the
I-line output. The function table lists the input that is passed to the output for each combina
tion of the binary selection values. To demonstrate the circuit operation, consider the case when
SI So=lO. The AND gate associated with inputI, has two of its inputs equal to 1 and the third
input connected to 1,. The other three AND gates have at least one input equal to 0, which

row is replaced first by 0 and then by 1, we obtain all 16 possible input combinations. For
example, the fourth row iu the table with XX10 represeuts the four miutenus 0010, 01l0, 1010,
and 11l0. The simplified Boolean expressions for the priority encoder are obtained from the
maps. The coudition for output V is an OR function of all the input variables. The priority
encoder is implemented in Fig. 4-23 according to the following Boolean functions:

x=D,+D3

y = D3 + DIDo

V=Do +DI +D,+D3

M U LTIP LEX ER S.;,w:;,'-;;(..~~4-10

10

X 1 1

1 1 1

1 1 1

1 110

11

01

00

0100

X 1 1 1

1 1 1

1 1 1

1 1 1

11

10

01

00

FIGURE 4-22
.Maps for a Priority Encoder

Priority Encoder .
A priority encoder is an encoder circuit that includes the priority function. The operatlOu of th~
priority encoder is such that if two or more iuputs are equal to 1 at the same lime, the mput hav
ing the highest priority will take precede~e.The llUth table of afour-mput pnonty encoder IS gIVen
in Table 4-8 In addition to the two outputs x and y, the mcmt has~~d output desIgnated by
V; this is a v~lid bitindi@torthat is set to 1 when one or more in utSare e ual to 1. If all mputs
are 0, there is no valid input and IS equal to O. The other two outputs a:e not mspected when ~
equals 0 and are specified as don't-care conditions. Note that whereas X s m output columns rep
resent don't-care conditions, the X's in the input columns are use~l for representmg a truth table
in condensed fonu. Instead of listing all 16 mintenus offour "anables, the truth table uses an X
to represent either 1 or O. For example, X100 represents the two mmtenus 0100 and 1100:

According to Table 4-8, the higher the subscript number, the hIgher the pnonty of the mput.
Input D

3
has the highest priority, so regardless of the values of the other mputs, when .thls lI~ut

is I, the output for xy is 11 (binary 3). D, has the next priority level. The output IS 10 IfD, - 1
rovided that D

3
= 0, regardless of the values of the other two lower pnonty mputs: The out

~ut forD is generated only if higher priority inputs are 0, and so on downthe pnonty levels.
The m~ps for simplifying outputs x and y are shown in Fig. 4-22. The mmtenus for the two

functions are derived from Table 4-8. Although the table has only five rows, when each X m a

D
2

D2

11 10 00 01 11

. al to 0 The OR gate output is uow equal to the value of 12 , providing
:p~~::~ ::e~::~~~~ input ;0 the output. A multiplexer is also called a dalta selector, since

. d th b'nary information to the output me.
it selects one O:t:~dl::~e~ i:::r~Ul~p{exer resemble a decoder c~cuit and, indeed, they

de~~:~e~ection input lines. In general, a 2""to-l-line multiplexer IS construcled from an

Y,

tion table

Output Y

X all D's
select A
select B

"\ ~

~ , .J)

"\ ~

-J Ii ./)

\ ~

~\ .J)

\

;=D--
1

f----L--.J

~

-L.-)-
Fune

E S
\

1--l '\ ./
0 0
0 1

"\
~ I. ./

"\
>---I' .J

(~ 0

et)
~

~ "

S
(sele

Section 4-10 Multiplexers 143

B,

Az

E
(enable)

FIGURE 4-26
Quadruple 2-to-1-Line Multiplexer

n-to-2" decoder by adding to it 2" input lines, one to each AND gate. The outputs of the AND
gates are applied to a single OR gate. The size of a multiplexer is specified by the number 2"
of its data input lines and the single output line. The n selection lines are implied from the 2"
data lines. As in decoders, multiplexers may have an enable input to control the operation of
the unit. When the enable input is in the inactive state, Ihe outputs are disabled, and when it is
in the active state, the circuit functions as a nonnal mu~!iplt:~xerqLC;\lj\ <..~J<~ .j Jc..

Multiplexer circuits can be combined with comrnorf!sgie·cti~n·inputs to provide multiple
bit selection logic. As an illustration, a quadruple 2-to-l-line multiplexers are shown in
Fig. 4-26. The circuit has four multiplexers, each capable of selecting one of two input lines.

FIGURE 4-25
4-to-1-Line Multiplexer

(a) Logic diagram

142 Chapter 4 Combinational Logic

10
10 0

MUX Y
Y

I) 1

I)

C
SS

(a) Logic diagram
(b) Block diagram

FIGURE 4-24
2-to-1-Line Multiplexer

S) So Y10
0 0 10
0 1 I)
1 0 I,

h 1 1 13

Y

(b) Function table
I,

13

F

8X1MUX

So
SI
S,

0

" L 1
-

V 2

L~
5

L~

o

1

C

B

A

D

A B C D F

0 0 0 0 0
F~D0 0 0 1 1

0 0 1 0 0
F~D0 0 1 1 1

0 1 0 0 1
F=D'0 1 0 1 0

0 1 1 0 0
F~O0 1 1 1 0

1 0 0 0 0
F~O1 0 0 1 0

1 0 1 0 0
F~D1 0 1 1 1

1 1 0 0 1
F~l1 1 0 1 1

1 1 1 0 1
F~l1 1 1 1 1

FIGURE 4-28

Implementing a 4-lnput Function with a Multiplexer

F(A, B, C, D) = L(l, 3, 4, ll, 12, 13, 14, 15).

and y to the So input. The values for the data input lines are determined from the truth table of
the function. When xy = 00, output F is equal to z because F = 0 when z = 0 and F = 1
when z = 1. This requires that variable z be applied to data input O. The operation of the mul
tiplexer is such that when xy = 00, data input 0 has a path to the output and that makes F
equal to z. In a similar fashion we can detemtine the required input to data lines 1,2, and 3 from
the value ofF when xy = 01, 10, and 11, respectively. This particular example shows all four
possibilities that can be obtained for the data inputs.

The general procedure for implementing any Boolean function of n variables with a multi
plexer with n - 1 selection inputs and 2"-1 data inputs follows from the previous example.
The Boolean function is fIrst listed in a truth table. The first n - 1 variables in the table are
applied to the selection inputs of the multiplexer. For each combination of the selection vari
ables, we evaluate the output as a function of the last variable. This function can be 0, 1, the
variable, or the complement of the variable. These values are then applied to the data inputs in
the proper order. As a second example, consider the implementation of the Boolean function.

Section 4-10 Multiplexers 145

This function is implemented with a multiplexer with three selection inputs as shown in
Fig. 4-28. Note that the fIrst)'ariable A must be connected to selection input S, so that A, B,
and C correspond to selection inputs S" SI, So, respectively. The values for the data inputs are
determined from the truth table listed in the figure. The corresponding data line nnmber is
determined from the binary combination of ABC. For example, when ABC = 101 the table
shows that F = D, so the input variable D is applied to data input 5. The binary constants 0
and 1 correspond to two fIxed signal values. When integrated circuits are used, logic 0 corre
sponds to signal ground and logic 1 is equivalent to the power signal-usually 5 volts.

F

2

3

o

o

1

z

z' 1

x

x y z F

0 0 0 0 F=z
0 0 1 1
0 1 0 1

F=z'
0 1 1 0
1 0 0 0

F~O
1 0 1 0
1 1 0 1

F~l1 1 1 1

B I an Function Implementation .
00 e d be used to implement Boolean functIOns by

It was &hown in Sec. 4-8 that a deco ercan fth logic diagram of a multiplexer reveals that
employing external OR gates. An examma:o~~ at: within the unit. The minterms of a func
it is essentially a decoder th~t mcludes :e circ~it associated with the selection inputs. The
tion are generated m a multiplexer by d . t This provides a method of implementmg
individual minterms can be sdected byththe a~:iux:~ that has n selection inputs and 2" data
a Boolean function of n vanables WI a mu p e

inputs, one for each minterm. . th d for implementing a Boolean function of n vari-
We will now show a more effiCIent me o. . t The fIrst n _ 1 variables of the func-

abIes with a multiplexer that has n ~ 1 selefc~~n~:i~ ;~xer. The remaining single variable of
tion are connected to the selectIOn mputs °th sin Ie ~ariable is denoted by z, each data input
the function is used for the da~a mputs. ~ demo~strate this procedure, consider the Boolean
of the multiplexer WIll be z, z, 1, or O. 0 e
function of three variables:

4xlMUX

F(x, y, z) = L(I, 2, 6, 7)

. . ·th a 4-to-l-line multiplexer as shown in Fig. 4-27. The two
ThefunctlOn can be Implemented WI . r . that order x is connected to the S, mput
variables x and y are applied to the selection mes m ,

y So

144 ~hapter 4 Combinational Logic

. h in utA or Bo. Similarly, output Y, may have
Output Yo can be selected to come from el't er IP e SOselects one of the lines in each of the

I f A B and so on Input se ectlOn m h .
the va ue 0 ,or " .' E b tive for normal operation. Although t e clr
four multiplexers. The enable mput must e ac re likely to view it as a circuit that
cuit contains four 2-to-l-line multiPlexers~::0:: :~he function table, the unit is enabled
selects one of two 4-blt sets of data Imes .. A h ath to the four outputs. On the other

O Th 'f S - 0 the four A mputs ave a p , h
when E = . en, I - . ' r d t the outputs. The outputs have all 0 s w enhand, if S = 1, the four B mputs are app ,e 0

E = 1, regardless of the value of S.

Ii ii!

~I
FIGURE 4-27 (a) Truth table (b) ~UltiPleXer implementalion ~I

Ii Implementing a Boolean Function with a MultIplexer il.

•tai-llliiililil.-U.' _

146 Chapter 4 Combinational Logic

FIGURE 4-29
Graphic Symbol for a Three-State Buffer

Normal in utA~OutPutY=Ai.fC= 1
p ~ High-impedance ,f C ~ 0

Control input C

and an inverter. The two outputs are connected together to form a single output line (It must
be realized that this type of connection cannot be done with gates that do not have three-state
outputs). When the select input is 0, the upper buffer is enabled by its control input, and the lower
buffer is disabled. Output Y is then equal to input A. When the select input is I, the lower buffer
is enabled and Y is equal to B.

The construction of a 4-to-l-line multiplexer is shown in Fig. 4-30(b). The outputs of four
three-state buffers are connected together to fonn a single output line. The control inputs to the
buffers deterntine which one of the four normal inputs 10 through 13 will be connected to the
output line. No more than one buffer may be in the active state at any given time. The connected
buffers must be controlled so that only one three-state buffer has access to the output, while all
other buffers are maintained in a high-impedance state. One way to ensure that no more than
one control input is active at any given time is to use a decoder as shown inthe-diagram. When
the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a high
impedance state because all four buffers are disabled. When the enable input is active, one
of the three-state buffers will be active depending on the binary value in the select inputs of
the decoder. Careful investigation will reveal that this circuit is another way of constructing a
4-to-l-line multiplexer..

Section 4-11 HDL for Combinational Circuits 147

The Verilog hardware description language (HDL) was introduced in Section 3-9. In this sec-
, .. ,,,.tjQ)J,, ,w.q)resentthe, ,alternatives available for describing combinational circuits in HDL.

Sequential circuits are presented in the next chapter. As mentioned previously, the module is
the basic building block of Verilog HDL. A module can be described in anyone (or a combi
nation) of the following modeling techniques:

Gate-level modeling using instantiation of printitive gates and user-defined modules.

Dataflow modeling using continuous assignment statements with keyword assign.

• Behavioral modeling using procedural assignment statements with keyword always.

Gate-level modeling describes the circuit by specifying the gates and how they are connected
with each other. Dataflow modeling is mostly used for describing combinational circuits.
Behavioral modeling is used to describe digital systems at a higher level of abstraction. There
is one other modeling style called switch-level modeling. This type of modeling provides the
ability to design at the MOS transistor level and is considered in section 10-10.

HDL FOR COMBINATIONALCIRCUITS4-11

Gate-Level Modeling

Gate-level modeling was introduced in Section 3-9 with a simple example. In this type of repre
sentation, a cir~~t}~"s:pecified by its logic gates and their interconnection. It provides a textual
description o'5l-§(;l'ieihJttic diagram. Verilog recognizes 12 basic gates as predefined primitives.
Four primitive gates are of the three-state type. The other eight are the same as the ones listed in
Section 2-7. They are declared with the lowercase keywords: and, nand, Of, nOf, XOf, xnOf, not,
buf. When the gates are simulated, the system assigns a four-valued logic set to each gate. In(b)4-to-llinemux

"I .

~
~
-~>--3

OC-
- S,

t 2x4 1
- So decoder 2

le- EN
3

/0

/

Selec

Enab

(a) 2-to-1- line mux

FIGURE 4-30
Multiplexers with Three-State Gates

s--+---

A ------'>---.- Y

Select

Three-State Gates
A multiplexer can be constructed with three-state gates. A three-state gate IS a dIgItal CI~CO~~
that exhibits three states. Two of the states are signals eqUlvaient to logIC I and 0:s:n a lik
ventional gate The third state is a high-impedance state. The high-impedance state. eaves e

. :t h· ch means that the output appears to be disconnected and the ClrcUlt has no
an open C!rCUl ,WI. I I . such as AND or
logic significance. Three-state gates may perform any conventlOna ogle
NAND However the one most commonly used is the buffer gate.

The·graphic s~mbol of a three-state buffer gate is shown in Fig. 4-29. It IS dIStl;~1S~~~
from a normal buffer by an input controllme entenng the bottom of the gate syu;- ~ . t
buffer has a nonnal input, an output, and a control input that determmes the state 0 e ou
put When the control input is equal to I, the output is enabled and the gate behlaves I~e ~c:~

ve~tional buffer, with the output equal to the nonnal input. When the contr~~;~~I~~ i~ the
ut is disabled and the gate goes toa high-impedance state, regardless 0 .

ontp al input The high-impedance state of a three-state gate proVIdes a speCIal feature not
~~:able in oilier gates. Because of this feature, a large number of three-sMe ga; outputs can
be connected with wires to form a common 1inewithouten~angenngJoadm.~e,eets.

The construction of multiplexers with three-state buffers IS demonstrated m FIg. 4-3~.;art
(a) of the figure shows the construction of a 2-to-l-line muillplexer WIth two three-state u ers

y

~Drl\\J\Ql\'\t'\\\- D\:-' \\~
'\\\)VvTS

Section 4-11 HDL for Combinational Circuits 149

HDL Example 4-1

liGate-level description of a 2-to-4-1ine decoder
/ /Figure 4-19 /,,\t\\,<:os,')Ct (
module decoder_gl (A,B,E,D);

input A, B, E, \', \) i) I)
output [O,3ID, ,)0, I} '\-.J.3
:~~e Anot, Bnot 'rE:wtt~~< \:\\j

nl (Anot,A)Y1\\O~\.\.~
n2 (Bnot, B) J l..J
n3 (Enot J E) ;

nand

and do not have to be repeated for each gate, hut commas must be inserted at the end of each of
the series of gates except for the last statement, which must be terminated with a semicolon.

Two or more modules can be combined to build a hierarchical description of a design. There
are two baSIC types of deSIgn methodologies: top-down and bottom-up. In a top-down design,
the top-level block IS defined and then the sub-blocks necessary to build the top-level block are
IdentIfied. In a bottom-up design, the building blocks are first identified and then combined to
build the top-level block. Take for example the binary adder of Fig. 4-9. It can be considered
as a top-block component built with four full adder blocks, while each full adder is built with
two half adder blocks. In a top-down design, the 4-bit adder is defined first, and then the two
adders desctibed. In a bottom-up design, the half adder is defined, then the full adder is con
structed and then the 4-bit adder is built from the full adders.

A bottom-up hierarchical description of a 4-bit adder is shown in HDL Example 4-2. The
half adder IS defined by instantiating primitive gates. The next module describes the full adder
by instantiating two half adders. The third module describes the 4-bit adder by instantiating four
full adders. (Note that Identifiers cannot start with a number but can start with an underscore
so the module name is: _ 4bi tadder.) The instantiation is done by using the name of the
module that is instantiated with a new (or the same) set of port names. For example, the half
adder HAl mSIde the full adder module is instantiated with ports SI, DI, x, y. This produces
a half adder WIth outputs SI, DI, and inputs x, y.

Note that in Verilog, one module definition cannot be placed within another module
description, In other words, a module cannot be inserted within the module and endmodule
keywords of another module. The only way one module.definition can be incorporated in

",,_ another module is by instantiating it. Thus, modules are instantiated within other modules to
.<",,"~.)...v create a hierarchical description of a design. Also, note that names must be specified when
\.." .' defined modUles are mstantllitea(1ike FAO for the first full adder in the third module), hut using

a name IS optIOnal when instantiating primitive gates.

addition to the two logic valnes of 0 and I, there are two other valnes: unknown and high im
,,,,,~;j() pedonce. An nnknown value is denoted by x anda high impeda~ce by z·.~fnknown value is

c. /e~}o assigned dunng SImulatIon for the case when an lll~~JfutputIS ~lligti6us, ~or Instance If It
v . has not yet been assigned a value of 0 or I. A high-Impedi&i'te condItIOn occurs ill the output of

three-state gates or if a wire is lfhh:2r~€rt~ntly left unconnected. The truth table for the and, or,
xor, and not are shown in Table 4-9. The truth table for the other four gates is the same except
that the outputs are complemented. Note that for the and gate, the output is I only when both
inputs are 1, the output is 0 if any input is 0:.c.-Qtat~~De~I)JluJ is_2LQr~Z;,.Jp~_~~_mw~..:2~,,,~:
The output of the or gate is 0 if both inputs are 0, IS rlf any lllput IS I, and IS x otherwIse.

When a primitive gate is inc6rpo~ed into a module, we say it is instantiated in the module.
In general, component instantiations are statements that reference lower-level components in the
design, essentially creating unique copies (or instances) of those components in the higher-level
module. Thus, a module that uses a gate in its description is said to instantiate the gate.

We now present two examples of gate-level modeling. Both examples use multiple bit widths
called vectors. A vector is specified within square brac~ets ~Ed t~o numbers separated with a
colon. The following code specifies two vectors:

output [O,3ID,

wire [7,O]SUM,

The first declares an output vector D with four bits 0 through 3. The second declares a wire vec
tor SUM with eight bits numbered 7 through O. The first number listed is the most significant
bit of the vector. The individual bits are specified within square brackets, thus D [2] specifies
bit 2 of D. It is also possible to address parts of vectors. For example, SUM [2: 0] specifies the

three least significant bits of vector SUM.
HDL Example 4-1 shows the gate-level description of a 2-to-4-line decoder. It has two data

inputs A and B and an enable input E. The four outputs are specified with the vector D. The wire
declaration is for internal connections. Three not gates produce the complement of the inputs
and four nand gates provide the outputs for D. Remember that the output is always listed first in
a gate list, followed by the inputs. This example describes the decoder of Fig. 4-19 and follows
the procedures established in Sec. 3-9. Note that the keywordsn~and are written only once----_.,.

n4 (D[O] ,Anot,Bnot,Enot),
n5 (Dill ,Anot,B,Enot),
n6 (D[2] ,A,Bnot;Enot) J

n7 (D[31 ,A,B,Enot),
endmodule

'i(0 vldQ ~~(~'-At oS;

\)

first XOR and two AND gates

//Intermediate carries

fulladder
(S[O] ,Cl,A[O] ,B[O] ,CO),

(S[l] ,C2,A[1] ,B[l] ,ell,

(8[2] ,C3,A[2] ,B[2] ,C21,

(S[3] ,C4,A[3] ,B[3] ,C3);

Combinational Logic..... , _ T"(\
/i\, -'S (J'\I. 0'\\ "N \\~\ .

HDL Example 4-2 \ \\\ \..b-

151

notifO

bufifO

in==:r-0ut

control

in~out

control

HDL for Combinational CircuitsSection 4-11

bufifl

in~out

control

notifl

in Tout

control

{OUT,A, control) ;
(Y,B,enable) ;

FIGURE 4-31
Three-State Gates

bufifl
notifO

two not gates operate in a similar manner except that the output is the complement of the input
when the gate is not in a high-impedance state_ The gates are instantiated with the statement

gate name (output, input, control);
. ,

The gate name can be anyone of the four three-state gates. The output can result m 0, I, or z.
Two examples of gate instantiation are

In the fIrst example, input A is transferred to OUT when control = I. OUT goes to z when
control = 0_ In the second example, ontput Y = z when enable = I and output Y = B'
when enable ~ 0,

The ontpnts of three-state gates can be connected together to form a common output line.
To identify such a connection, HDL uses the keyword tri (for tristate) to indicate that the out
put has multiple drivers, As an example, consider the 2-to-l-line multiplexer with three-state
gates shown in Fig. 4-32. .

Fig 4-9)I/Description of 4-bit adder (see
module _4bit_adder (S,C4,A,B,COl i

input [3:0] A/Bi

input CO;

output [3,0] S;
output C4;
wire Cl,C2,C3;

//Instantiate the
fulladder FAD

FAl

FA2

FA3

//Description of full adder (see Fig 4-8)

module fulladder (S,C,x,y,z);
input x,y,z;

output SiC;

wire Sl,Dl,D2; I/Outputs of
//Instantiate the halfadder

halfadder HAl (Sl,Dl,x,Y),
HA2 (S,D2,Sl,z);

or gl(C,D2,Dl);

endmodule

liGate-level hierarchical description of 4-bit adder
/1 Description of half adder (see Fig 4-5b)

module halfadder (S,C,x,y);

input X,Yi

output S,C;
IIInstantiate primitive gates

xor (S,XtY);

and (C,x,Y) ;

endmodule

Chapter 4150

endmodule

A ---------1 >-,-- out

Three State Gates

As mention<;J;l ill.~on 4-10, three-state gates have ~ control i~put that ~an place the gate
into a high-~dance state. The high-impedance state IS symbolized by z m HDL There are
four types of three-state gates as shown in Fig, 4-3 I. The bnfifl gate behaves like a normal buffer
if control = I. The output goes to a high-impedance state z when control = 0, The bufifO gate
behaves in a similar fashion except that the high-impedance state occurs when control = 1, The

B ---+-~---1

select _-+ -.J

FIGURE 4-32
2-to-l-line Multiplexer with Three-State Buffers

152 Chapter 4 Combinational Logic Section 4-11 HDL for Combinational Circuits 153

The HDL description must use a tri data type for the output.

module muxtri (A/B,select,OUT);
input A,B,select;
output OUT;
tri OUT;
bufifl (OUT,A,select);
bufifO (OUT,B,select);

endmodule

The two three-state bnffers have the same output. In order to show that they have a common
connection, it is necessary to declare OUT with the keyword trio

Keywords wire and tri are examples of net data type. Nets represent connections between
hardware elements. Their value is continuously driven by the ontput of the device that they
represent. The word net is not a keyword, but represents a class of data types such as wire,
wor, wand, tri, supply1, and supplyO. The wire declaration is used most frequently. The net wor
models the hardware implementation ofthe wired-OR configuration. The wand models the wired
AND configuration.(See Fig. 3-28). The nets supply1 and supplyO represent power supply and
ground. They are used in the description of switch-level modeling (see Section 10-10).

Dataflow Modeling
Dataflow modeling uses a number of operators that act on operands to produce desired results. Ver
ilog HDL provides about 30 operator types. Table 4-10 lists some of these operators, their sym
bols, and the operation that they perform. (A complete list of operators can be found in Table 8-1,
Section 8-2.) It is necessary to distinguish between arithmetic and logic operations, so different
symbols are used for each. The plus symbol (+) is used for arithmetic addition and logic AND
uses the symbol &. There are special symbols for OR, NOT, and XOR. The equality symbol uses
two equal signs (without spaces between them) to distinguish it from the equal sign used with the
assign statement. The concatenation operator provides a mechanism for appending multiple
operands. For example, two operands with two bits each can be concatenated to form an operand
with four bits. The conditional operator is explained later in conjunction with HDL Example 4-6.

Table 4-10
Verilog HDL Operators

Symbol Operation

HDL Example 4-3

IIDa~aflow description of a 2-to-4-1ine decoder
/ /See Fig. 4-19
module decoder_df (A/B/E,D) i

input A,B,E;

output [0,3] D;
assign D[OJ -(-A & -B & -Ej,

D[l] -(-A & B & -Ej,
D[2] -(A & -B & -E),
D[3] -(A & B & -E);

endmodule

~ataflow.modeling uses continuous assignments and the keyword assign. A continuous
aSSIgnment 18 a statement that assigns a value to a net. The data type net is used in Verilog
HDL to represent a physical ~onnectionbetween circuit elements. A net defines a gate output
declared by an output or WIre statement. The value assigned to the net is specified by an
expreSSIOn that uses operands and operators. As an example. assuming that the variables were
declared, a 2-to-l- line multiplexer with data inputs A and B, select input S, and output Y is
descnbed WIth the continuous assignment

assign Y = (A & S) (B & -S);

It starts with the keyword assign followed by the target output Y and an equal sign. Following
the equal sign IS a Boolean expressIOn. In hardware terms, this would be equivalent to connecting
the output of the OR (I) gate to wire Y.

The next two examples show the dataflow models of the two previous gate"]evel exam
p]es. The dataflow description of a 2-to-4-line decoder is shown in HDL Example 4-3. The
CIfCllit IS defined WIth four continuous assignment statements using Boolean expressions,
one for each output. The dataflow description of tbe 4-bit adder is shown in HDL
EXamPle 4-4. The addition logic is described by a single statement using the operators of
additIOn and concatenation. The plus symbol (+) specifies the binary addition of the four bits
ofA with the four bits of B and the one bit of Cin. The target output is the concatenation of

+

&

I
/\

>
<

{ }
?:

binary addition
binary subtraction
bit-wise AND
bit-wise OR
bit-wise XOR
bit-wise NOT
equality
greater than
less than
concatenation
conditional

HDL Example 4-4

//Dataflow description of 4-bit adder
module binary_adder (A,B,Cin,SUM,Cout) j

input [3,0] A,B;
input Cini
output [3,0] SUM;
output Cout;
ass;gn {Cout,SUM} A + B + Cini

endmodule

154 Chapter 4 Combinational Logic

HDL Example 4-5

//Dataflow description of a 4-bit comparator.
module magcomp (A,B,ALSB,AGTB,AEQB) i

input [3:0J A,B;
output ALTB,AGTB,AEQB;
assign ALTB=(A < B) I

AGTB (A > B),
AEQB = (A == B);

endmodule

Section 4-11 HDL for Combinational Circuits

HDL Example 4-7

//Behavio~al description of 2-to-l-line multiplexer
module mux2xl_bh(A,B,select,OUT);

input A,B,selectj
output OUT;
reg OUT;
always @ (select or A or B)

if (select 1) OUT = Aj
else OUT = B'

endmodule

155

the output carry Cout and the four bits of SUM. Concatenation of operands is expressed
within braces and a comma separating the operands. Thus, {Cout, SUM} represents the

five-bit result of the additio,n operation.
Dataflow modeling provides the means of describing combinational circuits by their func

tion rather than by their gate structure. To show how dataflow descriptions faclhtate digItal
design consider the 4-bit magnitude comparator described in HDL Example 4-5. The module
specifi~s two 4-bit inputs A and E and three outpnts. One output (ALTB) is logic I if A is le~s
than E, a second output (AGTB) is logic 1 if A is greater than E, and a third output (AEQB) If
A is equal to E. (Note that equality is symbolized with two equal sIgns.) A Venlog HDL syn
thesis compiler can accept as input this module description and provide an output nethst of a

circuit equivalent to Fig. 4-17.
The next example uses the conditional operator (? :). This operator takes three operands:

condition? true-expression: false-expression;

The condition is evaluated. If the result is logic 1, the true expression is evaluated. 1f the result
is logic 0, the false expression is evaluated. This is equivalent t~ an if-else condition. HDL
Example 4-6 shows the description of a 2-to-1-line multiplexer usmg the condltlOnal operator.

The continuous assignment

assign OUT ::: select? A : B ;

specifies the condition that OUT = A if select = 1, else OUT = E if select = O.

HDL Example 4-6

IIDataflow description of 2-to-l-line multiplexer
module mux2xl_df (A/B/select,OUT);

input A,B/select;
output OUT;
assign OUT = select ? A B;

endmodule

~1ioralModelingV - Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used
mostly to describe sequential circuits, but can be used also to describe combinational circuits.
Here we present two simple combinational circuit examples to introduce the subject. Behav
ioral modeling is presented in more detail in Section 5-5 after the study of sequential circuits.

Behavioral descriptions use the keyword always followed by a list of procedural assign
ment statements. The target output of procedural assignment statements must be of the reg
data type. Contrary to the wire data type, where the target output of an assignment may be
continuously updated, a reg data type retains its value until a new value is assigned.

HDL Example 4-7 shows the behavioral description of a 2-to-l-line multiplexer (compare
it with HDL Example 4-6). Since variable OUT is a target output, it must be declared as reg
data (in addition to the output declaration). The procedural assignment statements inside the

~ always block are executed every time there is a change in any of the variables listed after the
@ symbol. (Note that there is no (;) at the end of the always statement.) In this case, they are
the input variables A, E, and select. Note that the keyword or is used between variables instead
of the logical OR operator "I". The conditional statement if-else provides a decision based upon
the value of the select input. The if statement can be written without the equality symbol:

if (select) OUT = A ;

The statement implies that select is checked for logic 1.
HDL Example 4-8 describes the function of a 4-to-1-line multiplexer. The select input is

defined as a 2-bit vector and output y is declared as reg data. The always statement has a
sequential block enclosed between the keywords case and eudcase. The block is executed
whenever any of the inputs listed after the @ symbol changes in value. The case statement is
a multiway conditional branch condition. The case expression (select) is evaluated and com
pared with the values in the list of statements that follow. The first valne that matches the true
condition is executed. Since select is a 2-bit number, it can be equal to 00, 01, 10, or 11. Bi
nary numbers are specified with the letter b preceded by a prime. The size of the number is writ
ten first and then its value. Thus, 2'bOl specifies a two-digit binary number whose value is 01.
Numbers can be specified also in decimal, octal, or hexadecimal with the letters 'd, '0, and 'h,
respectively. If the base of the number is not specified, it defaults to decimal. If the size of the
number is not specified, the system assumes that the size of the number is 32 bits.

156 Chapter 4 Combinational Logic 5ection 4-11 HDL for Combinational Circuits 157

HDL Example 4-8 initial
begin

endmodule

We have shown here simple examples of behavioral descriptions of combinational circuits.
Behavioral modeling and procedural assignment statements require knowledge of sequential
circuits and are covered in more detail in Section 5-5.

Design module

D = 3 'bOOO,
repeat (7)

#10 D = D + 3'b001,
end

Stimulus module

FIGURE 4-33

Stimulus and Design Modules Interaction

The 3-bit vector D is initialized to 000 at time = O. The keyword repeat specifies a looping
s~atement. one IS added to D seven tImes, once every 10 time units. The result is a sequence of
bmary nnmbers from 000 to III.

A stimulns module is an HDL program that has the following form:

module testname.

Declare local reg and wire identifiers.

Instantiate the design module under test.

Generate stimulus using initial and always statements.

Display the output response.

endmodule

A test module typically has no inputs or outpnts. The signals that are applied as inpnts to the
desIgn module for SImulatIOn are declared in the stimulus module as local reg data type. The
ontputs of the.desIgn module that are dIsplayed for testing are declared in the stimulus mod
ule as local wIre data type. The module nnder test is then instantiated using the local identi
fiers. FIgnre 4-33 clarifies this relationship. The stimulns module generates inputs for the design
module by.declaring identifiers TA and TB as reg type, and checks the output of the design ~nit
wIth the WIre IdentIfier Te. The local identifiers are then nsed to instantiate the design mod
ule under test.

The response to the stimulus generated by the initial and always blocks will appear at the
output of the SImulator as tImmg dIagrams. It is also possible to display numerical outputs

module testcircuit module circuit (A, B, C);

regTA, TB; input A, B;

wire TC; output C;

circuit cr (TA, TB, TC);

0, B= 0,
1·
Oi B=l;

//Behavioral description of 4~to-l- line multiplexer
IIDescribes the function table of Fig. 4-25{bl.
module mux4xl_bh (iO,il,i2,i3,select,y);

input iO,il,i2,i3;
input [1:0] select;
output y;
reg y;
always @ (iO or il or i2 or i3 or select)

case (select)
2'bOO, y iO,
2'bOl, Y 11,
2'bl0, Y i2,
2'bll, Y i3,

endcase

A

#10 A

#20 A
end

initial
begin

The block is enclosed between the keywords begin and end. At time ~ 0, A and B are set to
O. 10 time units later, A is changed to I. 20 time nnits later (att = 30) A is changed to 0 and
B to I. Inpnts to a 3-bit truth table can be generated with the initial block:

Writing A Simple Test Bench

A test bench is an HDL program used for applying stimulus to au HDL desigu in order to test
it and observe its response during simulation. Test benches can be quite complex and lengthy
and may take longer to develop than the design that is tested. However, the ones considered here
are relatively simple, since all we want to test is combinational circuits. The examples are pre
sented to demonstrate typical descriptions of HDL stimulus modnles.

In addition to the always statement, test benches use the initial statement to provide stim
ulus to the circuit under test. The always statement execntes repeatedly in a loop. The initial
statement executes only once starting from simulation time=O and may continue with any
operations that are delayed by a given number of time units as specified by the symboi #. For
example, consider the initial block

158 Chapter 4 Combinational Logic
Section 4-11 HDL for Combinational Circuits 159.

Ilinputs for mux
Iioutput from mux

(TA,TB,T$,Y); II instantiate

= %b A = %b. B = %b OUT
TB , Y I $time);

0;
0; TB

1- TA
1; TB

%Od" ,%b time

mux

1 ;0; TB

0;

1;

TS
#10 TA

#10 TS
#10 TA

end
initial

$monitor ("select
TS , TA,

HDL Example 4-9

endmodule

//Stimulus for mux2xl_df.
module testmux;

reg TA,TB,TS;

wire Y;

rnux2xl_df rnx
initial

begin

using Verilog system tasks. These are built in system functions that are recognized by key
words that begin with the symbol $. Some of the system tasks useful for display are

$display-display one-time value of variables or strings with end-of-line return,

$write-same as $display but without going to next line,

$monitor-displays variables whenever a value changes during simulation run,

$time---displays simulation time,

$finish-terminates the simulation.

The syntax for $display, $write, and $monitor is of the form

Task-name (format specification, argument list);

The format specification includes the radix of the numbers that are displayed using the sym
bol (%) and may have a string enclosed in quotes ("). The base may be binary, decimal, hexa
decimal, or octal, identified with the symbols %b, %d, %h, and %0, respectively. For example,

the statement

$display (%d %b %b, C,A,B);

specifies the display of C in decimal, and of A and B in binary. Note that there are no commas.
in the format specification, that the format specification and argument list are separated by a
comma, and that the argument list has commas between the variables. An example that speci
fies a string enclosed in quotes may look like the statement

$display ("time = %OdA = %b B = %b", $time,A,B);

and will produce the display

time = 3 A = 10 B = 1

where (time =), (A =), and (B =) are part of the string to be displayed. The format
%Od, %b, and %b specify the base for $time, A, and E, respectively. When displaying time val
ues, it is better to use the format %Od instead of %d. This provides a display of the significant dig
its without the leading spaces that %d will include. (%d will display about 10 leading spaces
because time is calculated as a 32-bit number.)

An example ofa stimulus module is shown in HDL Example 4-9. The circuit to be tested is
the 2 X I multiplexer described in Example 4-6. The tes tmux module h~ no ports. The inputs
for the mux are declared with a reg keyword and the outputs with a wire keyword. The mux is
instantiated with the local variables. The initial block specifies a sequence of binary values to
be applied during the simulation. The output response is checked with the $monitor system task.
Every time a variable changes value, the simulator displays the inputs, output, and time. The re
sult of the simulation is listed under the simulation log in the example. It shows that OUT = A
when S = I and OUT = B when S = 0, verifying the operation of the multiplexer.

Logic simulation is a fast, accurate method of analyzing combinational circuits to verify
that they operate properly. There are two types of verification: functional and timing. InjUnc
tional verification, we study the circuit logical operation independent of timing considerations.
This can be done by deriving the truth table of the combinational circuit. In timing verification,
we study the circuit operation by including the effect of delays through the gates. This can be
done by observing the waveforms at the outputs of the gates when they respond to a given input.

IIDataflow description of 2-to-l-line multiplexer
Ilfrom Example 4-6
module mux2xl_df (A,B,select,OUT);

input A,B,select;
output OUT;
assign OUT = select? A B'

endmodule

Simulation log:

select 1 A 0 B 1 OUT 0 time 0
select 1 A 1 B 0 OUT 1 time 10
select 0 A 1 B 0 OUT 0 time 20
select 0 A 0 B 1 OUT 1 time 30

An example of a circuit with gate delays was presented in Section 3-9 with HDL Example 3-3.
We now show an HDL example that produces the truth table of a combinational circuit.

The analysis of combinational circuits was covered in Section 4-2. A multilevel circuit of a
full adder was analyzed and its truth table was derived by inspection. The gate-level descrip
tIOn of thIS CIrCUIt IS shown in HDL Example 4-10. The circuit has three inputs, two outputs
and nme gates. The description of the circuit follows the interconnections between the gates
according to the schematic diagram of Fig. 4-2. The stimulus for the circuit is listed in the sec
ond module. The inputs for simulating the circuit are specified with a 3-bit reg vector D. D[2]
is equivalent to input A, D[l] to input B, and D[O] to input C. The outputs of the circuit FI and
F, are declared as wire. This procedure follows the steps outlined in Fig. 4-33. The repeat
loop provides the seven binary numbers after 000 for the truth table. The result of the simula
tion generates the output truth table displayed with the example. The listed truth table shows
that the circuit is a full adder.

G

F

A

B

C
FI

D

F2

FIGURE P4-1

~Consider the combinational circuit shown in Fig. P4-1.

(a) Derive the Boolean expressions for T, through T4 . Evaluate the outputs F
j

and F
2

as a nmc
tion of the four inputs.

(b) List the truth table with 16 binary combinations of the four input variables. Then list the
binary values for 1] through T4 and outputs FI and F2 in the table.

(c) Plot the output Boolean functions obtained in part (b) on maps and show that the simplified
Boolean expressions are equivalent to the ones obtained in part (a).

B--r--,

C }---+-----+--L~

D-------L-J

FIGURE P4-2

A

4-2 Obtain the simplified Boolean expressions for output F and G in tenus of the input variables in
the circuit of Fig. P4-2.

Problems 161

4-3 For the circuit showu in Fig. 4-26 (Sectiou 4-10),

(a) Write the Boolean functions for the four outputs in terms of the input variables.
(b) If the circuit is listed in a truth table, how many rows and columns would there be in the table?

4~4De ign a combinational circuit with three inputs and one output. The output is 1 when the binary
alue of the inputs is less than 3. The output is 0 otherwise.

4 Design a combinational circuit with three inputs, x, y, and z, and three outputs, A, B, and C.
When the binary input is 0, 1,2, or 3, the binary output is one greater than the input. When the
binary input is 4, 5, 6, or 7, the binary output is one less than the input.

PROBLEMS /

//Stimulus to analyze the circuit
module test_circuit;

reg [2,0]D;
wire Fl,F2;

analysis fig42 (D[2] ,D[l] ,D[O] ,F1,F21;
initial

begin
D = 3'bOOO;
repeat (7)

#10 D = D + l'b1;
end

initial
$monitor ("ABC %b F1 %b F2 =%b ",D, F1, F21;

endmodule

Simulation log:

ABC 000 F1 0 F2 =0
ABC 001 F1 1 F2 =0
ABC 010 F1 1 F2 =0
ABC 011 F1 0 F2 =1
ABC 100 F1 1 F2 =0
ABC 101 F1 0 F2 =1
ABC 110 F1 0 F2 =1
ABC 111 Fl 1 F2 =1

160 Chapter 4 Combinational logic

HDL Example 4·10

liGate-level description of circuit of Fig. 4-2
module analysis (A,B,C,Fl,F2) ;

input A,B,C;
output Fl,F2;
wire T1,T2,T3,F2not,E1,E2,E3;
or gl (T1,A,B,C) ;
and g2 (T2,A,B,C) ;

and g3 (El/A,B) ;

and g4 (E2,A,C) ;
and g5 (E3,B,C) ;
or g6 '(F2,El,E2,E3l i

not g7 (F2not, F2) ;
and g8 (T3,T1,F2notl;
or g9 (Fl, T2, T3) i

endmodule

,.
/

s-~ SEQUENTIAL CIRCUITS

167

Outputs

. '.. ~ l-jJ (j4J 1jKJ

"Synchronous
S~uential Logic

Combinational
circuit

Memory~

Ilelements

Inputs

FIGURE 5-1
Block Diagram of Sequential Circuit

The digital circuits cousidered thus far have been combiuatioual, where the outputs are eutirely
depeudent on the current inputs. Although every digital system is likely to have combinational
circuits, most systems encountered in practice also include storage elements, which require
that the system be described in terms of sequential logic.

A block diagram of a seqnential circnit is shown in Fi!\~tt consists of a combinational
circuit to which storage elements are connected to form a reeoback path. The storage elements
are devices capable of storing binary information. The binary information stored in these ele
ments at any given time defines the state of the sequential circuit at that time. The sequential
circuit receives binary infonnation from external inputs. These inputs, together with the pres
ent state of the storage elements, determine the binary value of the outputs, They also deter
mine the condition for changing the state in the storage elements. The block diagram
demonstrates that the outputs' in a sequential circuit are a function not only of the inputs, but
also o(the present state of the storage elements. The next state of the storage elements is also

1. DIETMEYER, D. L. 1988. Logic Design ofDigital Systems, 3rd ed. Boston: Allyn Bacon.

2. GAJSKI, D. D. 1997. Principles ofDigital Design. Upper Saddle River, NJ: Prentice Hall.

3. HAYES, J. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

4. KATZ, R. H. 1994. Conteporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

5. MANO, M. M. and C. R. K!ME. 2000. Logic and Computer Design Fundamentals, 2nd ed. Upper
Saddle River, NJ: Prentice Hall.

6. NELSON V. P., H. T. NAGLE, 1. D. IRWIN, and B. D. CARROLL. 1995. Digital Logic Circuit Analy

sis and Design. Upper Saddle River, NJ: Prentice Hall.

7. ROTH, C. H. 1992. Fundamentals ofLogic Design, 4th ed. 51. Paul: West.

8. WAKERLY, J. F. 2000. Digital Des-ign: Principles and Practices, 3ed ed. Upper Saddle River, NJ:

Prentice Hall.

9. BHASKER, J. 1997.A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

10. BHASKER, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

11. CllBTI1, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL. Upper Sad

dle River, NJ: Prentice Hall.

12. PALNITKAR, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. SunSoft Press (A

Prentice Hall Title).
13. THOMAS, D. E., and P. R. MOORBY. 1998. The Verilog Hardware Description Language 4th ed.

Boston: Kluwer Academic Publishers.

REFERENCES

166 Chapter 4 Combinational Logic

168 Chapter 5 Synchronous Sequential logic
Section 5-2 latches 169

i\),: D (b) Function table

S R Q Q'

1 0 1 0 ,
'--0 0 1 0 (after S'" 1, R ~ 0)

o 1 0 1
)Cr-4-,"r;c.'_Q' 0 0 0 1 (alterS~O,R~I)

_1_1 0 0

l IL n

o R (r~set)

In
~ LAo S (set)

(a) Logic diagram

FIGURE 5-3

SR latch with NOR Gates

"'/i;,IA>~
A. 'p-flop circuit can maintain a binary state indefiuitely (as long as power is delivered to the cir
CUlt) until dITect~d by an input signal to swi_es. The major differences among various types
of flip-flops are m the number ofmputs they possess and in the manner in which the inputs affect
the bmary state. The most basic types of flip-flops operate with signal levels and are referred to
as latches. The latches introduced here are the basic circuits from which all flip-flops are Con
structed. Although latches are useful for storing binary information and for the design of asyn
chronous sequenlial CITCUltS (see Sec. 9-3), they are not practical for use in synchronous sequential
CITCUlts. The types of flIp-flops employed in sequential circuits are presented in the next section.

c~it or from the flip-flops or both, The flip-flops receive their inputs from the combinational
CITCUlt and also from a clock signal with pulses that occur at fixed intervals of time as shown
m the tmung diagram. The state ofthe flip-flops can change only during a clock pulse transi
lion. When a clock pulse. IS not aclive, the feedback loop is broken because the flip-flop out
puts can t chan e even If the outputs of the combinational circuit driving their inputs change
~n value. ~hus, the tranSItIOn from e S a e 0 e ext occurs only at predetermined time
mtervals dIctated by the clock pulses.

The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates
It has two inputs labeled S for set and R for reset. The SR latch constructed with two cross-cou~
pl~d NOR gates is shown in Fig. 5-3. The latch has two useful states. When output Q = I and
Q = 0, It IS, SaId to be In the sf'tslG.!e. When Q= 0 and Q' = I, it is in the resel slale. Out
put Q and Q are normally the complement of each other. However, when both inputs are equal
to I at the same lime, an undefined state with both outputs equal to 0 occurs.

Under normal conditions, both inputs of the latch remain at 0 unless the state has to be
chang~d.The application of a momentary I to the S input causes the latch to go to the set state.
The S mput must go back to 0 before any other changes to avoid the occurrence of the undefined
state. As shown in the function table of Fig, 5-3(b), two input conditions cause the circuit to

SR Latch

~TCHES

Outputs
Combinational

-... circuit

Flip-flops -

I
,

Clock pulses

(b) Timing diagram of clock pulses

(a) Block diagram

Inputs

FIGURE 5-2
Synchronous Clocked Sequential Circuit

a function of external inputs and the present state. Thus, a sequential circuit is specified by a
time sequence of inputs, outputs, and internal states.

There are two main types of sequential circuits and their classification depends on the timing
of their signals. A synchronous sequential circuit is a system whose behavior can be defined from
the knowledge of its signals at discrete instants of time. The behavior of an asynchronous sequential
circuit depends upon the input signals at any instant of time and the o"i1ier in whia. the inputs
change. The storage elern~nts.commo111y llsedjI!_~sYDs:hron01.!~~eq~~.f1:tial circuits are time-delay
dl'Yice.s. Thes!orage C~l>abilityof a time:dejaj'-device:isdti~to the tim"'ltiakes for the signal to
propagate through the device\ In practice, the internal propagation delay oflogic gates is of suf
ficient duration to produce the needed delay so that actual delay units may not be-necessary, In
gate-type asynchronous systems, the storage elements consist of logic gates whose propagation
delay provides the required storage. Thus, an asynchronous sequential circuit may be regarded
as a combinational circuit wIiIdee(Jback. Because of the feedback among logic gates, an asyn
chronous sequential circuit may become unstable at times. The instability problem imposes many
difficulties on the designer. Asynchronous sequential circuits are presented in Chapter 9.

A synchronous sequential circuit employs signals that affect the storage elem onl at dis-
crete instants of time. Synchronization is achieved by a timing device called' aOC;~ generato
that provides a periodic train o'(clock pulsel The clock pnlses are distributed thr~ug ~u s
tem in such a way that storage elements are affected only with the arrival of each pulse. In prac
tice, the clock ulses are appliedwith other signals that s ecify the required change in the storage
elements. nchronous se uentia CITcmts at us clock pulse in the inputs of storage elements
are called cl eked se uenlial,,eirC;utIS Clocked sequential CITcuits are the type most frequently
encountered in practice. They e (Jom manifest instability problems and their timing is easily bro
ken down into independent discrete steps, each of which can be considered se ar"!'"'"T-__;---'

The storage elements used in clocked sequential circuits are calle, flip-flop.
a binary storage device capable of storing one bit of information. A sequenti cir·~itT~;M1',se

many flip-flopsto store as many bits as necessary. The block diagram of a synchronous clocked
sequential circuit is shown in Fig. 5-2. The outputs can come either from the-combinational cir-

L.:J\~
!"J6\ yO

Next state of Q

No change
Q = 0; Reset state
Q = 1; Set state

Next state of Q

Latches 171

(b) Function table

CD

C S R

o X
1 0
1 l

(b) Function table

° X X No change
.L..._Q.. "0; t-J0 changelL °,-- 'i-~iX~~'i~
1 -r--n'''''"-~ 1; set state"",·j
1 1 1 Indeterminate

Section 5-2

Jo----.--Q

»--4__ Q'

)o\--~--Q'P"----I to
(a) LO~ic diagram

(a) Logic diagram

FIGURE 5-5

SR Latch with Control Input

FIGURE 5-6
D Latch

when C = 1and both the Sand R inputs are equal to 0, the state of the circuit does not change.
These condItiOns are lIsted in the function table accompanying the diagram. .

, An tndet~ffilinate conditi~n occurs when all three inputs are equal to 1. This condition places
Os on both Inputs of the baSIC SR latch, which places it in the undefined state. When the con
trol input goes bac~ to 0, one cannot conclusively determine the next state as it depends on
whether the S or R ~n?ut J{Q.e,s to °fi.rst. Thi.s indeterminate condition makes this circuit diffi
cult to manage and It IS si~lf(om used III practIce. Nevertheless, it is an important circuit because
other latches and flip-flops are constructed from it.

-One way to eliminate the undesirablecondition ofthe indeterminate state in the SR latch is to ensure
that inputs Sand R are never equal to 1 at the same time. This is done in the D latch shown in
Fig. 5-6. This latch has only two inputs: D (data) and C (control). TheD input goes directly to the
S Input and lts complement is applied to the R input. As long as the control input is at 0, the cross
coupled SR latch has both inputs at the 1 level and the circuit cannot change state regardless of
the value of D, The D input is sampled when C = 1. If D = 1, the Q output goes to 1, placing
the ClrcUlt In the set state. If D = 0, output Q goes to 0, placing the circuit in the reset state,

R----j

D Latch

c-T -----+
o

D-,-- -j

,'--.-

rl
g

;1

- !

Ig
:J
:::I
1::;(.

;y~

I

~
~
~
~

Iiii!l
it

S R Q Q'

1 0 0 1
1 1 0 1 (after S ~ I, R ~ 0)

0 1 1 0
ej 1 1 0 (afterS ~ O,R ~ 1)

1 l'

(b) Function table

P-<-~Q'

(a) Logic diagram

:LJR (reset)

:LJ S(set)

FIGURE 5-4
SR Latch with NAND Gates

be in the set state. The first condition (S = 1, R = 0) is the action that must be taken by input
S to bring the circuit to the set state. Removing the active input from S leaves the circuit in the
same state, After both inputs return to 0, it is then possible to shift to the reset state by momentary
applying a 1to the R input. The I can then be removed from R and the circuit remains in the
reset state. Thus, when both inputs S and R are equal to 0, the latch can be in either the set or
the reset state, depending on which input was most recently aI,

If a 1 is applied to both the S and R inputs of the latch, both outputs go to O. This produces an
undefined state because it results in an unpredictable next state when both inputs return to O. It
also violates the requirement that outputs be the complement of each other. In normal operation
this condition is avoided by making sure that l's are not applied to both inputs simultaneously.

TheSR latch with two cross-coupled NAND gates is shown in Fig. 5-4. It operates with both
inputs normally at I unless the state of the latcb has to be changed. The ~]Jplicationof 0 to the S
input causes output Q to go to 1, putting the latch in the set state. When the S input goes back to
1, the circuit remains in the set state. After both inputs go back to 1, we are allowed to change the
state of the latch by placing a 0 in the R input. This causes the circuit to go to the reset state and
stay there even after both inputs return to 1. The condition that is undefined for the NAND latch
is when both inppts are equal to 0 at the same time, an ip.put combination that should be avoided.

Comparing the NAND with the NOR latch note that the input signals for the NAND require
the complement of those values used for the NOR latch. Because the NAND latch requires a 0 sig
nal to change its state, it is sometimes ref~!re£l to as an S'-R' latch. The primes (or bars over the
letters) designate the fact that the inputs must be in their complement form to activate the circuit.

The operation of the basic SR latch can be modified by providing an additional control input
that determines when the state of the latch can be changed. An SR latch with a control input is
shown in Fig. 5S It consists of the basic SR latch and two additional NAND gat,,-s. The con
trol input C acts as an enable signal for the other two inputs. The output of the NAND gates
stay at the logic 1 level as long as the control input remains atO. This is the quiescent condi
tion for the SR latch. When the control input goes to 1, information from the S or R input is al
lowed to affectthe SR latch. The set state is reached with S = 1, R = 0, and C =,1. To change
to the reset state, the inputs must be S = 0, R = 1, and C = 1. In either case, when C returns
to 0, the circuit remains in its current state. Control input disables the circuit by applying 0 to
C, so that the state of the output does not chauge regardless of the values ofSaud R. Moreover,

Chapter 5 Synchronous Sequential Logic170

i'

ii
Ii
I. !

!i
Ii
Ii
I'

III,
I. :
L··'! .

I!
I!
I:
I!
I!
II

r ",~h,,"

rrt,"'YF'

1

172 Chapter S Synchronous Sequential Logic Section S-3 Flip-Flops 173

----Is s

(a) Response to positive level

----1R R ----Ie

The state of a lat£lj or. flip-flop is switched by a change in the control input. This momentary
change is called9~er and the transition it causes is said to trigger the flip- flop. The D
latch with pulses in its control input is essentially a flip-flop that is triggered every time the pulse
goes to the logic I level. As long as the pulse input remains in this level, any changes in the data
input will change the output and the state of the latch.

As seen from the block diagram of Fig. 5-2, a sequential circuit has a feedback path from
the outputs of the flip-flops to the input of the combinational circuit. Consequently, the inputs of
the fli -flo s are derived iu part from the outputs of the same and other fli -flops. When latches
are use r the storage e ements, a serious difficu s. e state transitions of the aces
start as soon as the clock pulse changes to the logic I level. The new s a e a a atc appears at
the output while the pulse is still active. This output is connected to the inputs of the latches
through the combinational circuit. If the inputs applied to the latches change while the clock
pulse is still in the logic I level, the latches will respoud to new values and a new output state
may occur. The result is an unpredictable situation since the state of latches may keep chang
ing for as long as the clock pulse stays in the active level. Because of this unreliable operation,

..>

(b) Positive-edge response

(c) Negative-edge response

FIGURE 5-8
Clock Response in Latch and Flip-Flop

the output of a latch cannot be applied directly or through combinational logic to the input of
the same or another latch when all the latches are triggered by a common dock source.

Flip-flop circuits are constructed in such a way as to make them operate properly when they are
part of a sequential circuit that employs a common clock. The problem with the latch is that it
responds to a change in the level of a clock pulse. As shown in Fig. 5-8(a) a positive level response
in the control jnput alIQws changes. in the output when the D iopln changes while the clock pulse
St~giG 1. The key to the proper operation of a flip-flop is to trigger it only during a Signal
transition. A clock pulse goes through two transitions from 0 to I and the return from I to O. As
shown in Fig. 5-8, the positive transition is defined as the positive-edge and the negative transition
as the negative-edge. There are two ways that a latch can be modified to form a flip-flop. One way
is to employ two latches in a special configuration that isolates the output of the flip-flop from being
affected while its input is changing. Another way is to produce a flip-flop that triggers only dur
ing a signal transition (from 0 to I or from 1 to 0), and is disabled during the rest of the clock pulse
duration. We will now proceed to show the implemeutation of both types of flip-flops.

~ 1~.JtJjEdge-Triggered D Flip-Flop. -L

The construction of aD flip-flop with two D latches and an inverter is shown in Fig. 5-9. The first
latch is called the master and the second the slave. The circuit samples the D input and changes
its output Q only at the negative-edge of the &;;;;;:;-lling clock (desi8nated as CLK). When the clock
is 0, the output of the inverter is I. The slave latch is enabled and its output Q is equal to the mas
ter output Y. The master latch is disabled because CLK = O. When the input pulse changes to
the logic I level, the data from the external D input is transferred to the master. The slave, however,

DSRSR

FIGURE 5-7
Graphic Symbols for Latches

4\¥t,Vl The D latch receives the designation from its ability to hold data in its internal storage. It is
t) suited for use as a temporary storage for bmary mformatIOn between a umt and Its envIronment.

! The binary information present at the data input of the D latch is transferred to the Q output
when the control input is enabled. The output follows changes in the data input as long as the
control input is enabled. This situation provides a path from input D to the output and for this
reason, the circuit is often called a transparent latch. When the control input is disabled, the
binary information that was present at the data input at the time the transition Declined is
retained at the Q output until the control input is enabled again.

The graphic symbols for the various latches are shown in Fig. 5-7. A latch is designated by a
rectangular block with inputs on the left and outputs on the right. One output designates the nor
mal output, and the other (with the bubble designation) designates the complement output. The
graphic symbol for the SR latch has inputs Sand R indicted inside the block. In the case of a
NAND gate latch, bubbles are added to the inputs to indicate that setting and resetting occur with
logic 0 signal. The graphic symbol for the D latch has inputs D and C indicated inside the block.

5~FLI P-FLOPS

,L",~,,';'fCC'§C'~.o;,c'.''''--!iIII--------------------------
174 Chapter 5 Synchronous Sequential Logic Section 5-3 Flip-Flops 175

The third latch provides the outputs for the flip-flop. The Sand R inputs of the output latch are
maintained at 10gic'IIevel when CLK= O. This causes the output to remain in its present
state. Input D may be equal to 0 or 1. If D = 0 when CLK becomes I, R changes to O. This
canses the flip-flop to go to the reset state, making Q = O. If there is a change in the D input
while CLK = I, terminal R remains at O. Thus, the flip-flop is locked out and is unresponsive
to further changes in the input. When the clock returns to 0, R goes to I, placing the output latch
in the quiescent condition without changing the outpnt. Similarly, if D = I when CLK goes
from 0 to 1, S changes to O. This canses the circuit to go to the set state making Q ~ 1. Any
change in D while CLK = 1 does not affect the output.

In summary, when the inpnt clock in the positive-edge-triggered flip-flop makes a positive
transition, the value of D is transferred to Q. A negative transition from 1 to 0 does not affect
the output, nor does it when CLK is in the steady logic I level or the logic 0 level. Hence, this
type of flip-flop responds to the transition from 0 to 1 and nothing else.

The timing of the response of a flip-flop to input data and clock must be taken into consid
eration when using edge-triggered flip-flops. There is a minimum time, called setup time, for
which the D input must be maintained at a constant value prior to the occurrence of the clock
transition. Similarly, there is a minimum time, called the hold time, for which the D input must
not change after the application of the positive transition of the clock. The propagation delay
time of the flip-flop is defined as the time interval between the trigger edge and the stabiliza
tion of the output to.a new state. These and other parameters are specified in manufacturer's
data books for specific logic families.

The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 5-11. It is similar to the
symbol used for the D latch except forthe arrowhead-like symbol in front of the letter C designating
a dynamic input. The dynamic indicator denotes the fact that the flip-flop responds to the edge tran
sition of the clock. A bubble outside the block adjacent to the dynamic indicator designates a neg
ative edge for triggering the circuit. The absence of a bubble designates a positive-edge response.

Other Flip-Flops

D latch
(slave)

e

y
I-'----D

D latch
(master)

e

D----D

eLK ---+--------1 >c~---

FIGURE 5-9
Master-Slave D Flip-Flop

is disabled as long as the clock remains in the I level because its C input is equal to 0, Any change
in the input cbanges the master output at Y, but cannot affect the slave output. When the pulse
returns to 0, the master is disabled and is isolated from the D input. At the same time, the slave
is enabled and the value of Y is transferred to the output of the flip flop at Q. Thus, the output of
the flip-flop can change only during the transition of the clock from 1 to 0,

The behavior of the master-slave flip-flop just described dictates that the output may change
only during the negative edge of the clock. It is also possible to design the circuit so that the flip
flop output changes on the positive edge of the clock. This happens in a flip-flop that has an
additional inverter between the CLK terminal and the jnnction between the other inverter and input
C of the master latch. Such flip-flop is triggered with a negative pnlse, so that the negative edge
of the clock affects the master and the positive edge affects the slave and the output terminal.

Another more efficient construction of an edge-triggered D flip-flop nses three SR latches
as shown in Fig. 5-10. Two latches respond to the external D (data) and CLK (clock) inputs.

Very large scale integration circuits contain thousands of gates within one package. Circuits are
constructed by interconnecting the various gates to provide a digital system. Each flip-flop is
constructed from an interconnection of gates. The most economical and efficient flip-flop con
structed in this manner is the edge-triggered D flip-flop because it requires the smallest number

CLK-~~

s

R

b--.---Q

\o-<---Q'
D D

D----+--

----"- C -----q[> e

(a) Positive-edge (a) Negative-edge

FIGURE 5-10
D-Type Positive-Edge-Triggered Flip-Flop

FIGURE 5-11

Graphic Symbol for Edge-Triggered D Flip-Flop

177

(c) Graphic symbol

--I'>e

----IT

Section 5-3 Flip-Flops

----t'-,e

'l---..jD

(b) From D flip-flop

T---IJ

J K Q(t + t)

0 0 Q(t) No change
- ---~._ 0 1 0 Reset

cj-I 0 1 Set
1 1 Q'(t) Complement

D Flip-Flop T Flip-Flop

D Q(t + I) T Q(t + I)

0 0 Reset 0 Q(t) No change
1 t Set 1 Q'(t) Complement

IN Flip-Flop

Table 5-1
Flip-Flop Characteristic Tables

A characteristic table defines the logical properties of a flip-flop by describing its operation in
tabular form. The characteristic tables of three types of flip-flops are presented in Table 5-1.
They define the next state as a function of the inputs and present state. Q(t) refers to the pres
ent state prior to the application of a clock edge. Q(t + I) is the next state one clock period
later. Note that the clock edge input is not included in the characteristic table, hut is implied to
occur between time t and t + I.

The characteristic table for the JK flip-flop shows that the next state is eq~al to the present
state when inputs J and K are both equal to O. This can be expressed as Q(t + I) = Q(t),
indicating that the clock produces no change of state. When K = 1 and J = 0, the clock resets

FIGURE 5-13
T Flip-Flop

-be

(a) From JK flip-flop

'--K

Characteristic Tables

(b) Graphic symbol

K

----t'-, e

----1Jf--.--I-- Q

b-+---+-- Q'e

D

(a) Circuit diagram

D = JQ' + K'Q

When J = I and K = 0, D = Q' + Q = I, so the next clock edge sets the output to 1. When
J = 0 and K = 1, D = 0, so the uext clock edge resets the outputto O. When both J = K = I,
D = Q', the next clock edge complements the output. When both J = K = 0, D = Q, the
clock edge leaves the output unchanged. The graphic symbol for the JK flip-flop is shown in
Fig. 5-12(b). It is similar to the graphic symbol of the D flip-flop, except that now the inputs
are marked J and K.

The T (toggle) flip-flop is a complementing flip-flop and can be obtained from a J K flip
flop when inputs J and K are tied together. This is shown in Fig. 5-13(a). When T = 0
(J = K = 0) a clock edge does not change the output. When T = I (J = K = 1) a clock edge
complements the output. The complementing flip-flop is useful for designing binary counters.

The Tflip-flop can be constructed with aD flip-flop and an exclusive-OR gate as shown in
Fig. 5-13(b). The expression for the D input is

D = TElJQ = TQ' + T'Q

When T = 0, then D = Q, and there is no change in the output. When T ~ 1, then D = Q'
and the output complements. The graphic symbol for this flip-flop has a T symbol in the input.

of gates. Other types of flip-flops can be constructed by using the D flip-flop and external
logic. Two flip-flops widely used in the design of digital systems are the JK and Tflip-flops.

There are three operations that can be performed with a flip-flop: set it to 1, reset it to
0, or complement its output. The JK flip-flop performs all three operations. The circuit
diagram of a J K flip-flop constructed with a D flip-flop and gates is shown in Fig. 5-12(a).
The J input sets the flip-flop to 1, the K input resets it to 0, and when both inputs are enabled,
the output is complemented. This can be verified by investigating the circuit applied to the
D input:

FIGURE 5-12
]K Flip-Flop

J-----L.-/

K

Chapter 5 Synchronous Sequential Logic176

179

}:>--<---Q'

}:>--.---Q

R CD Q Q'

o X X 0 1
1 too 1
1 tIl 0

(b) Function table

Section 5-3 Flip-Flops

s

}:>--Q'

I---Q

D -j===l===j

CLK

(a) Circuit diagram

Reset ---L--'======== J

(b) Graphic symbol

FIGURE 5-14
D Flip-Flop with Asynchronous Reset

Data D

eLK C

R

Resyt
y

The function table specifies the operation of the circuit. When R = 0, the output is reset to
O. This state is independent of the values ofD or C. Normal clock operation can proceed only
after the reset input goes to logic 1. The clock at C is shown with an upward arrow to indicate
that the flip-flop triggers on the positive-edge of the clock. The valne in D is transferred to Q
with every positive-edge clock signal, provided that R = 1.

the flip-flop and Q(t + I) = O. With J = I and K = 0, the flip-flop sets and Q(t + I) = 1.
When both J and K are equal to I, the next state changes to the complement of the present
state, which can be expressed as Q (t + I) = Q' (t).

The next state of a D flip-flop is dependent only on the D input and independent of the pres
ent state. This can be expressed as Q(t + I) = D. It means that the next-state value is equal
to the value of D. Note that the D flip-flop does nothave a "no-change" condition. This con
dition can be accomplished either by disabling the clock or by leaving the clock and connect
ing the output back into the D input when the state of the flip-flop must remain the same.

The characteristic table of the T flip-flop has only two conditions. When T = 0, the clock edge
does not change the state. When T = I, the clock edge complements the state of the flip-flop.

Chapter 5 Synchronous Sequential Logic

Q(t + I) = JQ' + K'Q

Q(t + I) = D

It states that the next state of the output will be equal to the value of input D in the present state.
The characteristic equation for the JK flip-flop can be derived from the characteristic table or
from the circuit of Fig. 5-12. We obtain

where Qis the value of the flip-flop output prior to the application of a clock edge. The char
acteristic equation for the T flip-flop is obtained from the circuit of Fig. 5-13:

Q(t + I) = T EB Q = TQ' + T'Q

Direct Inputs

Some flip-flops have asynchronous inputs that are used to force the flip-flop to a particular
state independent of the clock. The input that sets the flip-flop to I is called preset or direct set.
The input that clears the flip-flop to 0 is called clear or direct reset. When power is turned on
in a digital system, the state ofthe flip-flops is unknown. The direct inputs are useful for bring
ing all flip-flops in the system to a known starting state prior to the clocked operation.

A positive-edge-triggered D flip-flop with asynchronous reset is shown in Fig. 5-14. The cir
cuit diagram is the same as the one of Fig. 5-10, except for the additional reset input connec
tions to three NAND gates. When the reset input is 0, it forces output Q' to stay at I, which, in
turn, clears output Q to 0, thus resetting the flip-flop. Two other connections from the reset input
ensure that the S input of the third SR latch stays at logic I while the reset input is at 0 regardless
of the values of D and CLK.

The graphic symbol for the D flip-flop with a direct reset has an additional input marked with
R. The bubble along the input indicates that the reset is active at the logic 0 level. Flip-flops
with a direct set use the symbol S for the asynchronous set input.

Characteristic Equations

The logical properties of a flip-flop as described in the characteristic table can be expressed
also algebraically with a characteristic equation. For the D flip-flop, we have the characteris
tic equation

178

Analysis of CI()cked Sequential Circuits
-~

181

A'

A

B

C

C

/ ,D

Section 5-4
111,-1

r-..+--+----1----,

t

Chapter 5 Synchronous Sequential Logic

ANALYSIS OF CLOCKED SEQUENTIAL
CIRCUITS

The behavior of a clocked sequeutial circuit is determiued from the inputs, the outputs, and the
state of its flip-flops. The outputs aud the next state are both a function of the inputs and the
PIesent state. The analysis of a sequential circuit consists ~f obtainin~ a table 0: a diagram for
the time se uenee of inputs, outputs, and internal states. It IS also osslble to WrIte Boolean ex
pressions that describe t e be aVlOf of the sequential circuit. These expressions must inc u
the necessary time sequence, either directly or mdiieetly. --

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops with
clock inputs. The flip-flops may be of any type and the logic diagram mayor may not include
combinational circuit gates. In this section, we introduce an algebraic representation for spec
ifying the next-state condition in terms of the present state and inputs. A state table and sta~e

diagram are tben presented to describe the behavior of the sequential circuit. Another algebrmc
representation is presented for specifying the logic diagram of sequential circuits. Specific
examples are used to illustrate the various procedures.

State Equations

The behavior of a clocked sequential circuit can be described algebraically by means of state equa
tions. A state equation (also called transition equation) specifies the next state as a function of
the present state and inputs. Consider the sequential circuit shown in Fig. 5-15. It consists of two
D flip-flops A and B, an input x and an outputy. Since the D input of a flip-flop determines the
value of the next state, it is possible to write a set of state equations for the circuit:

A(t + I) ~ A(t)x(t) + B(t)x(t)

B(t + I) ~ A'(t)x(t)

A state equation is an algebraic expression that specifies the condition for a flip-flop state tran
sition. The left side of the equation with (t + I) denotes the next state of the flip-flop one
clock edge later. The right side of the equation is a Boolean expression that specifies the pres
ent state and input conditions that make the next state equal to I. Since all the variables in the
Boolean expressions are a function of the present state, we can omit the designation (t) after
each variable for convenience and can express the state equations in the more compact form:

A(t + I) = Ax + Bx
B(t + I) ~ A'x

The Boolean expressions for the state equations can be derived directly from the gates that
form the combinational circuit part of the sequential circuit, since the D values of the combi
national circuit determine the next state. Similarly, the present state value of the output can be
expressed algebraically as

y(t) ~ [A(t) + B(t)]x'(t)

By removing tbe symbol (t) for the present state, we obtain the output Boolean equation:

y = (A + B)x'

B'

CLK

J-----~--y

FIGURE 5-15

Example of Sequential Circuit

State Table

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table
(sometimes called transition table). The state table for the circuit of Fig. 5-15 is shown in
Table 5-2. The table consists of four sections Ia.beled present state, input, next state, and out
put. The present state section shows the states of flip-flops A and B at any given time t. The input
section gives a value of x for each possible present state. The next-state section shows the states
of the flip-flops one clock cycle later at time t + 1. The output section gives the value of y at
time t for each present state and input condition.

The derivation of a state table requires listing all possible binm'y combinations of present
state and inputs. In this case, we have eight binary combinations from 000 to 111. The next
state values are then determined from the logic diagram or from the state equations. The next
state of flip-flop A must satisfy the state equation

A(t+l) =Ax+Bx

The next-state section in the state table under column A has three l's where the present state
and input value satisfy the conditions that the present state of A and input x are both equal to

Section 5-4 Analysis of Clocked Sequential Circuits 183

1100/1
0/1 .

@\-'__.:::.l/,::O_----».(l1

010

110

The logic diagram of a sequential circuit consists of flip-flops and gates. The interconnections
among the gates form a combinational circuit and may be specified algebraically with Boolean
expressions. The knowledge of the type of flip-flops and a list of the Boolean expressions of the
combinational circuit provide the information needed to draw the logic diagram of the sequential
circuit. The part of the combinational circuit that generates external outputs is described alge
braically by a set of Boolean functions called output equations. The part of the circuit that gen
erates the inputs to flip-flops is described algebraically by a set ofBoolean functions called flip-flop

00_-+--ocO/.c.I @I/O

FIGURE 5-16
State Diagram of the Circuit of Fig. 5-15

Flip-Flop Input Equations

State Diagram

The information available in a state table can be represented graphically in the form of a state dia
gram. In this type of diagram, a state is represented by a circle, and the transitions between states
are indicated by directed lines connecting the circles. The state diagram of the sequential circuit of
Fig. 5-15 is shown in Fig. 5-16. The state diagram provides the same information as the state table
and is obtained directly from Table 5-2 or 5-3. The binary number inside each circle identifies the
state of the flip-flops. The directed lines are labeled with two binary numbers separated by a slash.
The input value during the present state is labeled first and the number after the slash gives the out
put during the present state with the given input.. (It isimpof!ant to rememberthatthebit value listed
for th"O~lf>ut al0I!&-cthe.illf@cted-lineoc~ursduring the present state and thOindicated ifiput;and has
'hothing to do with the transition to the next stat<!.) For example, the directed lii£fiollstate 00 10
01 is labeled liO,'meaning that when the sequential cirCnit is in the present state 00 and the input is
I, the output is O. After the next clock cycle, the circuit goes to the next state, 01.lf the input changes
to 0, then the output becomes I, but if the input remains at I, the output stays at O. This information
is obtained from the state diagram along the two directed lines emanating from the circle with stale
01. A directed line connecting a circle with itself indicates that no change of state occurs.

There is no difference between a state table and a state diagram except in the manner of
representation. The state table is easier to derive from a given logic diagram and the state equa
tion. The state diagram follows directly from the state table. The state diagram gives a picto
rial view of state transitions and is the fonn more suitable for human interpretation of the circuit
operation. For example, the state diagram of Fig. 5-16 clearly shows that, starting from state
00, the output is 0 as long as the input stays at I. The first 0 input after a string of I's gives an
output of I and transfers the circuit back to the initial state 00.

Table 5-3
Second Form of the State Tab/e

Present

?1State Next State Output

x~O x ~ 1 x~O x=l / .

AB AB AB y y
It

00 00 01
. \<,'

0 0
01 00 11

;)
1 0

10 00 10 I 0
11 00 10 I 0

y = Ax' + Ex'
~'---",.- .-

The state table of a sequential circuit with D-type flip-flops is obtained by the same proce
dure outlined in the previous example. In general, a sequential circuit with m flip-flops and n
inputs needs zm+n rows in the state table. The binary numbers from 0 through zm+n - 1 are list
ed under the present-state and input columns. The ne;o;.t-state section has m columns, one for
each flip-flop. The binary values for the next state are derived directly from the state eqna
tions. The output section has as many columns as there are output variables. Its binary value
is derived from the circuit or from the Boolean function in the same manner as in a truth table.

It is sometimes convenient to express the state table in a slightly different form. In the other
configuration the state table has only three sections: present state, next state, and output. The

, -"---<1 • I f
input conditions are .~~~d under the next-state and output sections. The state tab e 0

Table 5-2 is repeated in Table 5-3 using the second form. For each present state, there are two
possible next states and outpnts, depending on the value of the input. One form may be prefer
able over the other, depending on the application.

I or the present state of Band inpnt x are both equal to 1. Similarly, the next state of flip-flop
B is derived from the state equation

B(t + I) = A'x

and is equal to I when the present state of A is 0 and input x is equal to 1. The output column
is derived from the output equation

182 Chapter 5 Synchronous Sequential Logic

Table 5-2
State Table far the Circuit of Fig. S-1~~

Present Next <C "
State Input State Output

A B x A B Y

0 0 0 0 0 0
0 0 I 0 I 0
0 I 0 0 0 I
0 I I I I 0
I 0 0 0 0 I
I 0 1 I 0 0
I I 0 0 0 1
I I I I 0 0

00,11

(c) State diagram

01,10

~ ---,:,01, 10
00,11

FIGURE 5-17
Sequential Circuit with D Flip-Flop

Section 5-4 Analysis of Clocked Sequential Circuits 185

Present Next
state Inputs state

A Ax y

0 0 0 0
x D A 0 0 1 1

Y
0 1 0 1

C
0 1 1 0
1 0 0 1
1 0 1 0

CLK
1 1 0 0
1 1 1 1

(a) Circuit diagram (b) State table

Analysis with JK Flip-Flops
A state table consists of four sections: present state, inputs, next state, and outputs. The first two
are obtained by listing all binary combinations. The output section is determined from the out
put equations. The next-state values are evaluated from the state equations. For a D type flip
flop, the state equation is the same as the input equation. When other than the D type of flip-flop
is used, such as JK or T, it is necessary to refer to the corresponding characteristic table or char
acteristic equation to obtain the next state values. We will illustrate the procedure first by using
the characteristic table and again by using the characteristic equation.

The next-state values of a sequential circuit that uses flip-flops such as JK or T type can be
derived using the following procedure:

1. Determine the flip-flop input equations in terms of the present state aud input variables.

2. List the binary values of each input equation.

3. Use the corresponding flip-flop characteristic table to determine the next state values in
the state table.

As an example, consider the sequential circuit with two JK flip-flops A and B and one input
x, as shown in Fig. 5-18. The circuit has no outputs and, therefore, the state table does not need
an output column. (The outputs ofthe flip-flops may be considered as the outputs in this case.)

input equations (sometimes called excitation equations). We will adopt the convention of using
the flip-flop input symbol to denote the input equation variable and a subscript to designate the
name of the flip-flop output. For example, the following input equation specifies an OR gate wltb
inputs x and y connected to the D input of a flip-flop whose output is labeled with the symbol Q:

DQ = x + y

The sequential circuit of Fig. 5-15 consists of two D flip-flops A and B, an input x, and an
output y. The logic diagram of the circuit can be expressed algebraically with two flip-flop

input equations and an output equation:

D A = Ax + Bx
DB = A/x

Y = (A + B)x'

The three equations provide the necessary information for drawing the logic diagram of the
sequential circuit. The symbol DA specifies aD flip-flop labeledA. DB specifies a second D flip
flop labeled B. The Boolean expressions associated with these two variables and the expres
sion for output y specify the combinational circuit part of the sequential circuit.

The flip-flop input equations constitute a convenient algebraic form for specifying the logic
diagram of a sequential circuit. They imply the type of flip-flop from the letter symbol, and they
fully specify the combinational circuit that drives the flip-flops. Note that the expression for the
input equation for a D flip-flop is identical to the expression for the corresponding state equa
tion. This is because of the characteristic equation that equates the next state to the value of the

D input: Q(t + 1) = DQ•

Analysis with D Flip-Flops
We will summarize the procedure for analyzing a clocked sequential circuitwithD flip-flops by
means of a simple example. The circuit we want to analyze is described by the input equation

DA = AEBxEBy

The D A symbolimplies a D flip-flop with output A. The x and y variables are the inputs to the
circuit. No output equations are given, so the output is implied to come from the output of the
flip-flop. The logic diagram is obtained from the input equation and is drawn in Fig. 5-17(a).

The state table has one column for the present state for flip-flop A, two columns for the two
inputs and one column for the next state ofA. The binary numbers under Axy are listed from 000
through 111 as shown in Fig. 5-17(b). The next state values are obtained from the state equation

A(t + 1) = AEBxEBy

The expressiOllspecifies an odd function and is equal to 1 when only one variable is 1 or when
all three variables are 1. This is indicated in the column of the next state of A.

The circuit has one flip-flop and two states. The state diagram consists of two circles-one
for each siate as shown in Fig. 5-17(c). The present state and the output can be either 0 or 1 as
indicated in the number inside the circles. A slash on the directed lines is not needed because
there is no output from a combinational circuit. The two inputs can have four possible combi
nations for each state. Two input combinations during each state transition are separated by a

cqmma to simplify the notation.

184 Chapter 5 Synchronous Sequential Logic

CLK

187

o

1

1o

o

01/-__c;-_-/-10
1

00

1

o

Section 5-4 Analysis of Clocked Sequential Circuits

FIGURE 5-19
State Diagram of the Circuit of Fig. 5-18

is O. When I = K = 0, there is no change of state and the next-state value is the same as the
present state. When I = K = 1, the next-state bit is the complement of the present-state bit.
Examples of the last two cases o-':cur in the table when the present state A.B.is jOand input x
is O. I A and K A are both eqmll to 0 and the present state of A ~J. Therefore, the next state of
A remains the'same and is equaI to 1. In the same row of thetable, I Band KB are both equal
to I. Since the present state of B is 9, the next state of B is complemented and changes to I.

The next-state values can be obtained also by evaluating the state equations from the char
acteristic equation. This is done by using the following procedure:

1. Determine the flip-flop input equations in terms of the present state and input variables.

2. Substitute the input equations'into'the flip-flop characteristic equation to obtain the
state equations.

3. Use the corresponding state equations to determine the next state values in the state table.

The input equations for the two I Kflip-flops of Fig. 5-18 are listed on the previous page. The
characteristic equations for the flip-flops are obtained by substitutingA orB for the name of the flip-

flop instead of Q: _, /Q .

A(t + I) = ..(A;5'+ K'A

B(t + I) = IB' + K'B

Substituting the values of I A andKA from the input equations, we obtain the state equation for A:
, '

A(t + I) = BA' + (Bx')'A = A'B + AB' + Ax
~-

The state equation provides the bit values for the column under next state ofA in the state table.
Similarly, the state equation for flip-flop B can be derived from the characteristic equation by
snbstituting the values of IE and KB:

B(t + 1) = x'B' + (A ffi xl'B = B'x' + ABx + A'Bx'

The state eqnation providesthe bit valnes for the"olll!!lllJ11dE'next state ofB in thestate table. Note
that the columns in Tabi" 5-4under rup:flop inputs are not needed when state-equations are used:

Tliestate"diagra~ ~lti;e'sequential circuit is shown in Fig. 5-19. Note that since the circuit
has no outputs, the directed lines out of the circles are marked with one binary number only to
designate the value of input x.

B

AJ

~ >C

~
K

J

r-- I>C

1\ ./ K

Table 5-4
State Table for Sequential Circuit with IK Flip-Flops

Present Next Flip-Flop
State Input State Inputs

A B x A B IA KA 18 KB
/

0 0 0 0 I /0 - _po I 0I·,·
0 0 I 0 0 ,/ ~O 0 0 I..
0 I 0 I ' I I I I 0

0 I I I 0 I I 0 0 I

I I
I 0 0 I II 0 0 \

I 0 I I 0 I, 0 0 0 0

I I 0 0 0). L I I

I 1 I 1 1 t- O 0 0

FIGURE 5-18
Sequential Circuit with IK Flip-Flop

The circuit can be specified by the flip-flop input equations

I A = B KA = Bx'

JB=x' KB=A'x+Axl=AEBx

The state table of the sequential circuit is shown in Table 5-4. The present-state and input
columns list the eight binary combinations. The binary values listed under the columns labeled
flip-flop inputs.are not part of the state table, but they are needed for the purpose of evaluating
the next state as specified iilstep20f theprocedure. These binary values are obtained directly
from the four input equations in a manner similar to that for obtaining a truth table from a
Boolean expression. The next state of each flip-flop is evaluated from the corresponding J and
K inputs and the characteristic table of the IK flip-flop listed in Table 5-1. There are four cases
to consider. When I = I and K = 0, the next state is I. When I ~ 0 and K = I, the next state

x

Chapter 5 Synchronous Sequential Logic1861

11/1 1010

o 0

Analysis With T Flip-Flops
The analysis of a sequential circuit with T flip-flops follows the same procedure outlined for
JK flip-flops. The next state values in the state table can be obtained either by using the char
acteristic table listed in Table 5-1 or the characteristic equation

Q(t + I) = TEllQ = T'Q + TQ'

Consider the sequential circuit shown in Fig. 5-20. It has two flip-flops A and B, one input x, and
one output y. It can be described algebraically by two input equations and an output equation:

TA = Bx

TB = X

Y = AB

The state table for the circuit is listed in Table 5-5. The values for yare obtained from the out
put equation. The values for the next state can be derived from the state equations by substi
tuting TA and TB in the characteristic equations, yielding

A(t + I) ~ (Bx)'A + (Bx)A' = AB' + Ax' + A'Bx

B(t + I) ~ xEllB

The next state values for A and B in the state table are obtained from the expressions of the two

state equations.

Section 5-4 Analysis of Clocked Sequential Circuits 189

Table 5-5
State Table for Sequential Circuit with T Flip-Flops

Present Next
State Input State Output

A B x A B Y

0 0 0 0 0 0
0 0] 0] 0
0 I 0 0 I 0
0 I I I 0 0
] 0 0] 0 0
] 0 I]] 0
]] 0]] I
] I I 0 0 I

The most general model of a sequential circuit has inputs, outputs, and internal states. It is cus
tomary to distinguish between two models of sequential circuits: the Mealy model and the
Moore model. They differ in the way the output is generated. In the Mealy model, the output
is a function of both the present state and input. In the Moore model, the output is a function
of the present state only. When dealing with the two models, some books and other technical
sources refer to a sequential circuit as a finite state machine abbreviated FSM. The Mealy
model of a sequential circuit is referred to as a Mealy FSM or Mealy machine. The Moore
model is refereed to as a Moore FSM or Moore machine.

An example of a Mealy model is shown in Fig. 5-15. Output y is a function of both input x
and the present state of A and B. The corresponding state diagram in Fig. 5-16 shows both the
input and output values separated by a slash along the directed lines between the states.

An example of a Moore model is shown in Fig. 5-18. Here the output is a function of the pres
ent state only, The corresponding state diagram in Fig. 5-19 has only inputs marked along the
directed lines. The outputs are the flip-flop states marked inside the circles. Another example of a
Moore model is the sequential circuit ofFig. 5-20. The output depends only on flip-flop values and
that makes it a function of the present state only. The input value in the state diagram is labeled along
the directed line, but the output value is indicated inside the circle together with the present state.

In a Moore model, the outpnts of the sequential circuit are synchronized with the clock
because they depend on only flip-flop outputs that are synchronized with the clock. In a Mealy
model, the outputs may change if the inputs change during the clock cycle. Moreover, the out
pnts may have momentary false values because of the delay encountered from the time that the

The state diagram of the circui] is shown in Fig. 5-20(b). As long as input x is equal to I,
the circuit behaves as a binary counter with a sequence of states 00, 01, 10, II, and back to 00.
When x = 0, the circuit remains in the same state. Output y is equal to I when the present
state is II. Here the output depends on the present state only and is independent of the input.
The two values inside each circle separated by a slash are for the present state and output.

Mealy and Moore Models

(b) State diagram

1

o 0

00/0 0110

--y

(a) Circuit diagram

eLK Reset

A

J)---J J T

C
R

'(

T B

c
R

'(

FIGURE 5-20
Sequential Circuit with T Flip-Flops

Chapter 5 Synchronous Sequential Logic

x

1881

5-5 H D l FOR SEQ U EN T IAle IRe U IT S

The event control expression specifies the condition that must occur to activate the execution
of the procedural assignment statements. The variables in the left-hand side ofthe procedural

191Section 5-5 HDL For Sequential Circuits

always @(posedge clock or negedge reset)

The first statement transfers A into B. The second statement increments the new value of Band
transfers it to C. At the completion, C contains the value of A + 1.

Now consider the two statements as non-blocking assignments:

B<=A

C <= B + I

will cause the execntion of the procedural statements only if the clock goes through a positive
transition or if reset goes through a negative transition.

A procedural assignment is an assignment within an initial or always statement. This is in
contrast to a continuous assignment discussed in Sec. 4-11 with dataflow modeling where the
statement is continuously evaluated. There are two kinds of procedural assignments: blocking
and non-blocking. The two are distinguished by the symbols that they use. Blocking assignments
use the symbol (=) as the assignment operator and non-blocking assignments use the (<=) as
the operator. Blocking assignment statements are executed sequentially in the order they are
listed in a sequential block. Non-blocking assignments evaluate the expressions on the right
hand side, but do not make the assignment to the left-hand side until all expressions are eval
uated. The two types of assignments may be better understood by means of an illustration.
Consider these two procedural blocking assignments:

will cause the execution of the procedural statements in the always block if a change occurs in
A or B or Reset. In synchronous sequential circuits, changes in flip-flops must occur only in
response to a transition of a clock pulse. The transition may be either a positive-edge or a
negative-edge trigger. Verilog HDL takes care of these conditions by providing two keywords:
posedge and negedge. For example,

statements must be of the reg data type and must be declared as such. The right-hand side can
be any expression that produces a value using Verilog-defined operators.

The event control expression (also called the sensitivity list) specifies the events that must
occur to initiate the execution of the procedural statements in the always block. Statements
within the block execute sequentially and the execution suspends after the last statement has
executed. Then, the always statement waits again for an event to occur. We will consider here
two kinds of events: level-sensitive and edge-triggered events. Level-sensitive events occur in
combinational circuits and in latches. For example, the statement

always @ (A or B or Reset)

B A
C B + I

When the statements are executed, the right-hand side expressions are evaluated and stored in
a temporary location. The value of A is kept in one storage location and the value of B + I in
another. After all the expressions in the sequential block are evaluated and stored, the assign
ment to the left-hand-side targets is made. In this case, C will contain the original value of B
plus one. Most of the examples in this and the next chapter can use blocking assignments. Non
blocking assignments are imperative when dealing with register transfer level design as shown
in Chapter 8.

;::; l'bOi
$finishi

clock ;::; -clock;

initial
begin

clock
#300

end
always

#10

initial
begin

clock = !'bO ;
repeat (30)

#10 clock = - clock;
end

inputs change and the time that the fli!,-flop outputs change. In order to synchronize a Mealy
type circuit, the inputs of the sequential circuit must be syuchrouized with the clock and the
outputs must be sampled only during the clock edge.

Chapter 5 Synchronous Sequential Logic

The Verilog hardware description language (HDL) is introduced in Section 3-9. The descrip
tion of combinational circuits and an introduction to behavioral modeling is presented in Sec
tion 4-11. In this section, we continue the discussion of the behavioral modeling and present
description examples of flip-flo!,s and sequential circuits.

In the first version, the initial block is enclosed within the begin and end keywords. Clock is
set to 0 at time = O. Clock is complemented every 10 time units and is repeated 30 times. This
produces 15 clock cycles, each with a cycle time of 20 time units. In the second version, the
initial block sets clock to 0 at time = o. After 10 time units, the always statement repeatedly
complements clock every 10 time units, providing a clock with a cycle time of 20 time units.
The simulation terminates in response to the $finish system task at time 300.

The always statement can be controlled by delays that wait for a certain time or by certain
conditions to become true or by events to occur. Here we will explain only the event control
condition. This type of statement is of the form

IDways @ (event control expression)

Procedural assignment statements.

Behavioral Modeling

There are two kinds of behavioral statements in Verilog HDL: initial and always. The initial be
havior executes once beginning at time = O. The always behavior executes repeatedly and re
executes until the simulation terminates. A behavior is declared within a module by using the
keywords initial or always, followed by a statement or a block of statements enclosed by the
keywords begin and end. A module may contain an arbitrary number of initial or always state
ments. These statements execute concurrently with respect to each other starting at time O.

An initial statement executes only once. It begins its execution at the start of simulation
and ends after all the statements have completed execution. As mentioned at the end of Sec
tion 4-11, the initial statement is useful for generating input signals to simulate a design. In sim
ulating a sequential circuit, it is necessary to generate a clock source for triggering the flip-flops.
The following are two possible ways to provide a free-running clock:

1901

Flip-Flops and Latches

HDL Examples 5-1 through 5-4 show descriptions of various flip-flops and a D latch. The D
latch is transparent and responds to a change in data input with a change in output as long as
the control input is enabled. The module description of a D latch is shown in HDL Exam
ple 5-1. It has two inputs, D and control, and one output Q. Since Q is evaluated in a proce
dural statement, it must be declared as reg type. Latches respond to input signal levels so the
two inputs are listed without edge qualifiers in the event control expression following the @

symbol in the always statement. There is only one blocking procedural assigmnent statement
and it specifies the transfer ofinputD to output Q if control is true (logic 1). Note that this state
ment is executed every time there is a change in D if control is 1.

HDL Example 5-2 describes two positive-edge D flip-flops in two modules. The first responds
only to the clock, the second includes an asynchronous reset input. Output Q must be declared as a
reg data type in addition to being listed as an output. This is because it is a target output in a proce
dural assignment statement. The keyword posedge ensures that the transfer ofinput D into Q occurs
only during the positive-edge transition of CLK. A change in D at any other time does not change Q.

/ /D flip-flop
module DFF (Q,D,CLK,RST);

output Qi

input D,CLK,RSTi
reg Qi

always @ (posedge CLK or negedge RST)
if (-RST) Q = l'bO;
else Q = D;

endmodule

193Section 5-5 HDL For Sequential Circuits

liT flip-flop from D flip-flop and gates
module TFF (Q,T,CLK,RST);

output Q;

input T,CLK,RST;
wire DT;
assign DT = QAT

IIInstantiate the D flip-flop
DFF TF1 (Q,DT,CLK,RST);

endmodule

The second module includes an asynchronous reset input in addition to the synchronous
clock. A special form of if statement is used to generate such a flip-flop. The event expression
after the @ symbol in the always statement may have any number of edge events, either posedge
or negedge. One of the events must be a clock event. The remaining specify conditions under
which asynchronous logic is to be executed. Each if or else if statement in the procedural
assignment statements correspond to an asynchronous event. The last else statement corre
sponds to the clock event. There are two edge events in the second modnle of Example 5-2. The
negedge RST (reset) event is asynchronous since it matches the if (~RST) statement. As long
as RST is 0, Q is cleared to O. If CLK has a positive transition, its effect is blocked. Only if
RST = 1, can the posedge clock event synchronously transfer D into Q.

It is usually necessary that flip-flops include a reset (or preset) input signal, otherwise, the
initial state of the sequential circuit cannot be detennined. A sequential circuit cannot be tested
with HDL simulation unless an initial state can be assigned with an input signal.

HDL Example 5-3 describes the construction of a Tor J K flip-flop from a D flip-flop and
gates. The circuit is described by using the characteristic equations of the flip-flops:

Q(t + 1) = QfJBT for aT flip-flop

Q(t + 1) = JQ' + K'Q for aJK flip-flop

HDL Example 5-3

IIJK flip-flop from D flip-flop and gates
module JKFF (Q,J,K,CLK,RST);

output Qi

input J,K,CLK,RST;
wire JKi
assign JK = (J & -Q) I (-K & Q);

IIInstantiate D flipflop
DFF JK1 (Q,JK,CLK,RST);

endmodule

1)

0)

liD flip-flop
module D_FF (Q,D,CLK);

output Q;
input D,CLK;
reg Q;
always @ (pasedge eLK)

Q = D;
endmodule

liD flip-flop with asynchronous reset.
module DFF (Q,D,CLK,RST);

output Q;

input D,CLK,RST;
reg Q;
always @(posedge eLK or negedge RST)

if (-RST) Q = l'bO; II Same as; if (RST
else Q = D;

endmodule

HDL Example 5-2

HDL Example 5-1

jjDescription of D latch (See Fig. 5-6)
module D_latch (Q,D,control);

output Qi

input D, control;
reg Q;
always @ (control or D)
if (control) Q = D; IISame as: if (control

endmodule

Chapter 5 Synchronous Sequential Logic192

1 194 Chapter 5 Synchronous Sequential Logic

HDL Example 5·4

Section 5-5 HDL For Sequential Circuits

HDL Example 5-5

195

IIMealy sta~e diagram (Fig. 5-16)
module Mealy_rod! (x,Y,CLK,R5T):

input X,CLK,R5T;
output y;

reg Y:
reg (1:0] Prstate, Nxtstate;
parameter 80 = 2'bOO, 81 = 2'b01, 82 = 2'b10, 83 = 2'b11;

always @ (posedge CLK or negedge R5Tl
if (-R5T) Prstate = SO; IIInitialize to state SO
else Prstate = Nxtstate: /IClock operations

always @ (Prstate or x) IIDetermine next state
case (Prstate)

SO: if (x) Nxtstate 51;
else Nxtstate 50;

51: if (x) Nxtstate 53;
else Nxtstate SO:

52: if (-x)Nxtstate SO;
else Nxtstate 52;

83: if (xl Nxtstate 82;
else Nxtstate 50;

IIEvaluate output

/1 Functional description of JK flip-flop
module JK_FF (J,K,CLK,Q,Qnot);

output Q, Qnat;
input J, K, eLK;

reg Q;
assign Qnat = - Q ;
always @ (posedge eLK)

case ({J,K)

2'bOO, Q Q;

2 ' bO1, Q 1 ' bO ;
2'b10, Q l'b1;
2'bU'Q -Q;

endcase
endmodule

The first module TFF describes a Tflip-flop by instantiating DFF (iustantiation is explained in
Sec. 4-11). The wire declaration DT is assigned the exclusive-OR of Q and T, as required for
converting a D flip-flop to a Tflip-flop. The instantiation with the value ofDT replacing the D
in module DFF produces the required Tflip-flop. The JK flip-flop is specified in a siutilar man
ner by using its characteristic equation to define a replacement for D in the instantiated DFF.

HDL Example 5-4 shows another way to describe a JK flip-flop. Here we choose to describe
the flip-flop using the characteristic table rather than the characteristic equation. The case mul
tiway branch condition checks the 2-bit nnmber obtained by concatenating the bits ofJ and K.
The case value ({1,K}) is evaluated and compared with the values in the list of statements that
follow. The first value that matches the true condition is executed. Since the concatenation of
J and K produces a two-bit number, it can be eqnal to 00, 01, 10, or II. The first bit gives the
value ofJ and the second the value of K. The four possible conditions specify the value of the
next state of Q after the application of a positive-edge clock.

endcase
always @ (Prstate or xl

case (Prstate)
80, y = 0;
810 if (x) Y

82, if (x) Y
83, if (x) y

endcase
endmodule

l'bO; else y

1 'bO; else y
l'bO: else y

l'b1;
l'bl;
l'b1;

State Diagram

The operation of sequential circuits is described in HDL in the same format as a state diagram. A
Mealy model state diagram is presented in HDL Example 5-5. The input, output, clock, and reset
are declared in the usual manner. The state of the flip-flops is declared with identifiers Prs tate
and Nxts tateo These variables hold the state value of the seqnential circuit. The state binary
assignment is done by using a parameter statement. (Verilog allows constants to be defined in a
module by the keyword parameter). The four states SO throngh S3 are assigned binary 00 throngh
II. The notation S2 = 2' blO is preferable to the alternative S2 = 2. The former uses two bits to
store the constant. The second notation results in a binary number with 32 (or 64) bits.

The HDL description uses three always blocks that execute concurrently and interact through
common variables. The first always statement resets the circuit to the initial state SO = 00 and
specifies the synchronous clocked operation. The statement Prstate :::: Nxtstate is
executed only in response to a positive-edge transition of the clock. This means that any change

that occurs in the Nxtsta te value in the second always block is transferred to Prstate as
a result of a posedge event. The second always block detennines the next state transition as a
function of the present state and input. The multiway branch condition follows the sequence
specified in the state diagram of Fig. 5-16. The third always block evaluates the output as a func
tion of the present state and input. Although it is listed separately for clarity, it could be com
bined with the secoud block. Note that the value of output y may change if the valne of input
x changes while the circuit is at any given state.

An example of a Moore model state diagram is described in HDL Example 5-6. This example
shows that it is possible to specify the state transitions with only one always block. The pres
ent state of the circuit is identified by the variable s tateo The state transitions occur with the
posedge eLK according to the conditions listed in the case statements. The ontput of the cir
cuit is independent of the input and is taken directly from the outputs of the flip-flops. The 2-bit
output AB is specified with an assign statement and is equal to the value of the present state.

1 196 Chapter 5 Synchronous Sequential logic

HDL Example 5-6
197

HDL Example 5-7

IIStructural description of sequential circuit
118ee Fig. 5-20(a)

module Tcircuit (x,y,A,B,CLK,RST);
input x,CLK,RST;
output y,A,B;
wire TA,TB;

IIFlip-flop input equations
assign TB == x,

TA == x & B;
IIOutput equation

assign y == A & B;
IIInstantiate T flip-flops

T_FF BF (B,TB,CLK,R8T),
T_FF AF (A,TA,CLK,RST),

endmodule

liT flip-flop

module T_FF (Q,T,CLK,R8T),
output Q;

input T,CLK,RST;
reg Q;

always @ (posedge CLK or negedge RST)
if (-R8T) Q" l'bO,
else Q == QAT;

endmodule

Section 5-5 HDl For Sequential Circuits

IIStimulus for testing sequential circuit
module testTcircuit;

reg x,CLK,RST; Ilinputs for circuit
wire y,A,B; Iioutput from circuit

Tcircuit TC (x,y,A,B,CLK,RST); II instantiate circuit
initial

begin

RST 0,
CLK 0,

#5 RST I,
repeat (16)

#5 CLK " -CLK,
end

initial
begin

x == 0;
#15 x " 1;

repeat (8)

#10 x == - x;
end

endmodule

80,
83;

82,
83,

state
state
state
state

else
else
else
else

81,
82,
83,
80,

IIOutput of flip-flops

state
state
state
state

//Moore state diagram (Fig. 5-19)
module Moore_mdl (X,AB,CLK,RST) i

input X, eLK, RST j

output [1, OJAB,
reg [1:0] state;

parameter 80 " 2'bOO, 81 " 2'b01, 82 " 2'b10, 83 " 2'b11,
always @ (posedge eLK Or negedge RST)

if (-RST) state = SO; IIInitialize to state SO
else

case (state)

80, if (-x)

81, if (x)
82, if (-x)

83, if (-x)

endcase
assign AB = state;

endmodule

Structural Description

Combinational circuits can be described in HDL by using gate-level or dataflow statements.
Sequential circuits use behavioral statements to describe the flip-flop operation. Since a sequential
circuit is made up of flip-flops and gates, its structure can be described by a combination of
dataflow and behavioral statements. The flip-flops are described with an always statement. The
combinational part can be described with assign statements and Boolean equations. The sepa-
rate modules can be combined by instantiation. .

The structural description ofa sequential circuit is shown in HDL Example 5-7. There are two mod
ules in the example. The first describes the circuit ofFig. 5-20(a). The second describes a Tflip-flop.
Another module provides a stimulus for testing the circuit operation. The sequential circuit is a 2-bit
binary counter controlled by inpntx. Ontputy is enabled wheu the count reaches binary II. Flip-flops
A and B are included as outputs in order to check their operation. The flip-flop input equations and
the output equation are evaluated with assign statements haVing the corresponding Boolean expres
sions. The Tflip-flop is then instantiated using TA and TB defined by the input equations.

The second module describes the T flip-flop. The RST input resets the flip-flop to 0 with a
negative signal. The operation of the flip-flop is specified by its characteristic equation
Q(t + 1) = Q$T.

The stimulus module provides inputs to the circuit to check the output response. The first
initial block provides eight clock cycles with period of IOns. The second initial block speci
fies an alternate change of input x that occurs at the negative edge transition of the clock. The
result of the simulation is shown in Fig. 5-21. Output A and B go through the binary sequence
00,01, 10, ll, and back to 00. The change in the count occurs during a positive edge of the clock
provided x = 1. If x = 0, the count does not change. Output y is equal to I when both A and
B are equal to I. This verifies the operation of the circuit.

199

ag

o
o

f
o
o

g

1

1

f
o
o

f
I

1

e

1

1

d

o
o

c

I

o

b

o
o

Section 5-6 State Reduction and Assignment

1

o

a

o
o

astate

input

output

FIGURE 5-22
State Diagram

In each column, we have the p~~s~I!!_.~~~~e, inQutY~J.!:!~...!_~I!~__~~~put ~~llJe. l::h~lleJ~_t.:.§.tate is writ
ten on top of the next column. It is important to realize that in this circuit, the states themselves
are of secondary importance because we are interested only in output sequences caused by
input sequences.

Now let us assume that we have found a sequential circuit whose state diagram has less
than seven states and we ~wishto c9mpare-it with the ~ircuit whose state diagram is given by
Fig. 5-2~. If identical input sequences are applied to the two circuits and identical outputs occur
for hIjjnRuLse<Jll"llf~, then the two circuits are said to be equivalent (as far as the input--Dutput
is, concerned) and one may be replaced by the other. The problem of state reduction is to find
ways of reducing the number of states in a sequential circuit without altering the input-output
relationships.

We now proceed to reduce the number of states for this example. First, we need the state
table; it is more convenient to apply procedures for state reduction using a table rather than a
diagram. The state table of the circuit is listed in Table 5-6 and is obtained directly from the
state diagram.

G, an input of 0 produces an output of 0 and the circuit remains in state a. With present state
a and inpptof I," the output is 0 and the next state is b. With present state b and input of 0,

--fili~ output -i~ 0 ;ndnext state IS c. Continuing this pr·ocess, we find the complete sequence
to be as follows:

FIGURE 5-21
Simulation Output of HDl Example S-7

The reduction of the number of flip-flops in a sequential circuit is referred to as the state
reduction problem. State-reduction algorithms are concerned with procedures for reducing the
number of states in a state table, while keeping the external input-output requirements
unchanged. Since m flip-flops produce 2m states, a reduction in the number of states may
(or may not) result in a reduction in the number of flip-flops. An unpredictable effect in reducing
the number of flip-flops is that sometimes the equivalent circuit (with fewer flip-flops) may
require more combinational gates.

We will illustrate the state reduction procedure with an example. We start with a sequential
circuit whose specification is given in the state diagram of Fig. 5-22. In this example, only the
input-output sequences are important; the internal states are used merely to provide the required
sequences. For this reason, the states marked inside the circles are denoted by letter symbols
instead of their binary values. This is in contrast to a binary counter, where the binary value
sequence of the states themselves is taken as the outputs. J

There are an infinite number of input sequences that may be applied to the circuit; each
results in a unique output sequence. As an example, consider the input sequence
010 lOll01 00 starting from the initial state a. Each input of 0 or I produces an output of 0
or 1 and causes the circuit to go to the next state. From the staty diagram, we obtain the out
put and state sequence for the given input sequence as follows:-With the circuit in initial state

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table
or diagram. The design of a sequential circuit starts from a set of specifications and culminates
in a logic diagram. Design procedures are presented starting from Section 5-7. This section
discusses certain properties of sequential circuits that may be used to reduce the number of
gates and flip-flops during the design.

Chapter 5 Synchronous Sequential Logic

Ons lIons 120n~
1
3005

1
400S

1
50ns 1600S

1
70ns

1

80ns
1
90ns, ,

testTcircuit.x { \ I \ I \ I \
testTcircuitCLK~
testTcircuit.RST LJ

testTcircuit.y I \

testcircuit.A I \

testcircuit.B I \ I \

5-6 STAT ERE DUe T ION AND ASS I G N MEN T

State Reduction

19817(

201

ae
o
o

d

o
o

e

1

1

d

o
o

d

1

1

e

1

1

d

o
o

c

1

o

b

o
o

a
1

o

Next State Output

Present State x= 0 x = 1 x=O x = 1

a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

Table 5-8
Reduced State Table

Section 5-6 State Reduction and Assignment

a

o
o

state

input

output

0/0

FIGURE 5-23
Reduced State Diagram

e 0'--'O£-"/O->{ c

O/O~I/ldI/O

d I/O

1/1

0/0

states and is shown in Fig. 5-23. This state diagram satisfies the original input-output specifi
cations and will produce the required output sequence for any given input sequence. The fol
lowing list derived from the state diagram of Fig. 5-23 is for the input sequence used previously
(note that the same output sequence results, although the state sequence is different):

In fact, this sequence is exactly the same as that obtained for Fig. 5-21, if we replace g by e
andfby d.

Checking each pair of states for possible equivalency can be done systematically by means
of a procedure that employs an implication table. The implication table consists of squares,
one for every suspected pair of possible equivalent states. By judicious use of the table, it is pos
sible to determine all pairs of equivalent states in a state table. The use of the implication table
for reducing the number of states in a state table is demonstrated in Section 9-5.

o
o
o
1
1
1
1

Output

o
o
o

__ 0

o
o
o

Next State

@) b
c d

c9 d
--"---.---1_.

® f
g L __

c§ f

c
d
e

a
b

Present State

f
--?g

Table 5-7
Reducing the State Table

Next State Output

Present State x = 0 x=l x = 0 x=l

a a b 0 0
b c d 0 0
c a d 0 0
d e f 0 1
e a f 0 1

f e f 0 1

Table 5-6
State Table

An algorithm for the state reduction of a completely specified state table is given here with
out proof: "TwJzg~!es are said to be equivalent jf for each member of the set of inputs, they
give exactlylhe same output and send the cjrcujt either to the same state or to an eguivalent
\state." When two states are equivalent, one of them can be removed without altering the
i~t-output relationships.

Now apply this algorithm to Table 5-6. Going through the state table, we look for two pres
ent states that go to the same next state and have the same output for both input cOlllbin~tions.
States g imde are iwo suclLs.lates: they both go to states ~!l,d.L'm<!.!lID'.Uiiili>uts of 0and 1
for x "" 0 anl1-x-~-l,-respectively. Therefore, s!atesg and e are equivalent and one of these
states can be removed. The procedure of removing a state and replacing it by itseqnivalent is
demonstrated in Table 5c7. The row with present state g is removedand stateg is replaced by
state eeach time it occur~in,!be next",stateG9~umns: . -------.------.~

fu;~~t-Sl~tef--;;;;;ha;~ext states e~ndfand outputs 0 and 1 for x = 0 and x = 1,
respectively. The same next states and outputs appear in the row with present state d. There
fore, states f and d are equivalent and state f can be removed and replaced by d. The final re
duced table is shown in Table 5-8. The state diagram for the reduced table consists of only five

Chapter 5 5ynchronous 5equential Logic200

171
202 Chapter 5 Synchronous Sequential Logic Section 5"7 Design Procedure 203

Table 5-10
Reduced State Table with Binary Assignment 1

Next State Output
Present State x ~ 0 x~l x = 0 x~l

000 000 001 0 0
001 010 011 0 0
010 000 011 0 0
011 100 011 0 1
100 000 011 0 1

The design of a clocked sequential circuit starts from a set of specifications and culminates in
a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.
In contrast to a combinational circuit, which is fully specified by a truth table, a sequential cir
cuit requires a~tate table for its specification. The first step in the design of sequential circuits
is to obtain a state table or an equivalent representation, such as a state diagram.

A synchronous sequential circuit is made up of flip-flops and ~ombinationalgates. The
design of the circuit consists of choosing the flip-flops and then finding a combinational gate
structure that, together with the flip-flops, produces a circuit that fulfills the stated specifica
tions.~numJI~f flip-flops is determined from the number of states needed in the cit:cuit.

The combinational circuit is derived from the state table by evaluating the flip-flop input equa
tions and output equations. In fact, once the type and number of flip-flops are detennined, the
design process involves a transfonnation from a sequential circuit problem into a combinational
circuit problem. In this way, the techniques of combinational circuit design can be applied.

The procedure for designing synchronous sequential circuits can be summarized by a list of
recommended steps.

1. From the word description and specifications of the desired operation, derive a state
diagram for the circuit.

2. Reduce the number of states if necessary.

3. Assign binary values to the states.

4. Obtain the binary-coded state table.

5. Choose the type of flip-flops to be used.

6. Derive the simplified flip-flop input equations and output equations.

7. Draw the logic diagram.

The word specification of the circuit behavior usually assumes that the reader is familiar with
digital logic tenuinology. It is necessary that the designer use intuition and experience to arrive at
the correct interpretation of the circuit specifications, because word descriptions may be incom
plete and inexact. Once such a specification has been set down and the state diagram obtained, it
is possible to use known synthesis procedures to complete the design. Although there are formal
procedures for state reduction and assignment, they are seldom used by experienced designers.

5"1DESIGN PROCEDURE

Table 5-9
Three Possible Binary State Assignments

State Assignment 1 Assignment 2 Assignment 3
Binary Gray code One-hot

a 000 000 00001
b 001 001 00010
c 010 011 00100
d 011 010 01000
e 100 110 10000

In order to design a sequential circuit with physical components, it is necessary to assign coded
binary values to the states. For a circuit with m states, the codes must contain n bits where
211 = "2:.m. For example, with three bits it is possible to assign codes to eight states denoted
by binary numbers 000 through III. If the state table of Table 5-6 is used, we must assign
binary values to seven states; the remaining state is unused. lithe state table of Table 5-8 is used,
only five states n~_t;:~lbi.I!~Y_9:~_~igl1ment, and we are left with three unused states. Unused states
are treated as don't-care conditions during the design. Since don't-care conditions usually help
in obtaining a simpler circuit, it is more likely that the"circuit with five states will require fewer
combinational gates than the one with seven states.

The simplest way to code five states is to use the first five integers in binary counting order,
as shown in the first assignment of Table 5-9. Another similar assignment is the Gray code
shown in assignment 2. Here only one bit in the code group changes when going from one
number to the next. This code makes it easier for the Boolean functions to be placed in the
map for simplification. Another possible assignment often used in control design is the one-hot
assignment. This configuration uses as many bits as there are states in the circuit. At any given
time, only one bit is equal to I while all others are kept at O. This type of assignment uses one
flip-flop per state.

Table 5-10 is the reduced state table with binary assignment I substituted for the letter sym
bols of the states. A different assignment will result in a state table with different binary val
ues for the states. The binary form of the state table is used to derive the combinational circuit
part of the sequential circuit. The complexity of the combinational circuit depends on the binary
state assignment chosen.

Sometimes, the name transition table is used for a state table with a binary assignment.
This distinguishes it from a state table with symbolic names for the states. In this book, we use
the same name for both types of state tables.

The sequential circuit of this example was reduced from seven to five states. In general,
reducing the number of states in a state table may result in a circuit with less equipment. How
ever, the fact that a state table has been reduced to fewer states does not guarantee a saving in
the number of flip-flops or the number of gates.

State Assignment

II 1 1

DB=Ax+B'x

1

1 1

E

Section 5-7 Design Procedure 205

Table 5-11
State Table for Sequence Detector

Present Next
State Input State Output

A B x A B Y

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 1 0 0
I 0 0 0 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 1 1 1

11 10

x

01
Ex
00

DA =Ax + Ex

~

1

II 1 1

FIGURE 5-25
Maps for Sequence Detector

where A and B are the present-state values oftlip-flops A and B, x is the input, and DA and DB
are the input equations. The minterms for output y are obtained from the output column in the
state table.

The Boolean equations are simplified by means of the maps plotted in Fig. 5-25. The sim
plified equations are

DA = Ax + Bx

DB ~ Ax + B'x

y = AB

The logic diagram of the sequential circnit is drawn in Fig. 5-26.

The design of a sequential circuit with flip-tlops other than the D type is complicated by the
fact that the input equations for the circuit must be derived indirectly from the state table.
When-D type tlip-tlops are employed, the input equations are obtained directly from the next

Excitation Tables

1

2: (3,5,7)
2:(1,5,7)
2:(6,7)

o
o

A(t + I) = DAA, B, x)
B(t + I) = DB(A, B, x)

yeA, B, x)

Once the state diagram has been derived, the rest of the design follows a straightforward syn
thesis procedure. In fact, we can design the circuit by using an HDL description of the state
diagram and the proper HDL synthesis tools to obtain a synthesized net list. (The HDL de
scription of the state diagram will be similar to HDL Example 5-6 in Section 5-5.) To design
the circuit by hand, we need to assign binary codes to the states and list the state table. This is
done in Table 5-11. The table is derived from the state diagram of Fig. 5-24 with a straight
binary assignment. We choose two D tlip-tlops to represent the four states and label their out
puts A and B. There is one input x and one output y. The characteristic equation of the D llip
tlop is Q(t + I) = DQ, which means that the next-state values in the state table specify the D
input condition for the tlip-tlop. The tlip-tlop input equations can be obtained directly from the
next-state columns of A and B and expressed in sum of minterms as

FIGURE 5-24
State Diagram for Sequence Detector

1
S,/l\+--=----{Sz/O

1

o

Steps 4 through 7 in the design can be implemented by exact algorithms and therefore can be
automated. The part of the design that follows a well-defined procedure is refered to as.synthesis.

The first step is the most challenging part of the design. We will show here one ~simple

example to demonstrate how a state diagram is obtained from the word specification.
We wish to design a circuit that detects !hra~9LIllore-consecut~l's in a string of bits com

ing through an input line. The state diagram for the circuit is shown-i"DFig. 5-24. It is derived
by starting with state So. If the input is 0, the circuit stays in the same state, but if the input is
I, it goes to state Sj to indicate that a I was detected. Ifthe next input is I, the change is to state
Sz to indicate the arrival of two consecutive I 's, but if the input is 0, we go back to state So. The
third consecutive 1 sends the circuit to stateS3 . If mote 1'8_are detected, the circuit.$tays at 53'
Any 0 input sends the circuit back to So. In this way, the circuit stays at S, as long as there are
three or more consecutive l's received. This is a Moore model sequential circll,itsince the out-
put is 1 when the circuit is in state 8

3
and 0 otherwlse~---------- ------ - - --- ---- -----

/ --_/ '- ,.......__ / '-

Chapter 5 Synchronous Sequential Logic204

Synthesis Using D Flip-Flops

17C

1
206 Chapter 5 Synchronous Sequential Logic Section 5-7 Design Procedure 207

FIGURE 5-26
logic Diagram of Sequence Detector

state. This is not the case for the I K and T types of flip-flops. In order to determine the input
equations for these flip-flOps, it is necessary to derive a functional relationship between the state
table and the input equations.

The flip-flop characteristic tables presented in Table 5-1 provide the value of the next state
when the inputs and present state are known. These tables are useful for the analysis of sequential
circuits and for defining the operation of the flip-flops. During the design process we usually
know the transition from present state to next state and wish to find the flip-flop input condi
tions that will cause the required transition. For this reason, we need a table that lists the required
inputs for a given change of state. Such a table is called an excitation table.

Table 5-12 presents the excitation tahles for the two flip-flops. Each table has a column for
the present state Q(t), the next state Q(t + I), and a column for each input to show how the
required transition is achieved. There are four possible transitions from present state to next state.
The required input conditions for each of the four transitions are derived from the information
available in the characteristic table. The symbol X in the tables represents a don't-care condi
tion, which means that it does not matter whether the input is 1 or O.

The excitation table for the I K flip-flop is shown in part (a). When both present state and
next state are a, the I input must remain at aand the K input can be either aor 1. Similarly, when

r·<

Q(t) Q(t + 1) J K Q(t) Q(t + 1) T

a D a x a a a
a I I X a I L
1 a x I I a I
1 1 X a I I a

(b)T

Table 5-12
Flip-Flop Excitation Tables

(a)lK

both present state and next state are 1, the K input must remain at a, while the I input can be
aor I. If the flip-flop is to have a transition from the a-state to the I-state, I must be equal to
I, since the I input sets t.h~flip-flop. However, input K may be either aor a L If K = a, the
I = I condition~~ts -the flip-flop as required; if K = I and I = 1, the flip-flop is comple
mented and goes from the a-state to the I-state as required. Therefore the K input is marked
with a don't-care condition for the O-to-l transition. For a transition from the I-state to the
a-state, we must have K = I, since the K input clears the flip-flop. However, the I input may
be either aor I, since I = ahas no effect, and I = I together with K = I complements the
flip-flop with a resultant transition from the I-state to the a-state.

The excitation table for the Tflip-flop is shown in part (b). From the~\;hilfUcJerisJiclable,wefind
that when input T = I, the state ofthe flip-flop is complemented; whenT = a, the state of the flip
flop remains unchanged. Therefore, when the state of the flip-flop must remain the same, the
requiiement is that T = a. When the state of the flip:flop has to be complemented, Tmustequal!.

Synthesis Using}K Flip-Flops

The synthesis procedure for sequential circuits with I K flip-flops is the sarne as with D flip
flops, except that the input equations must be evaluated from the present-state to next- state
transition derived from the excitation table. To illustrate the procedure, we will synthesize the
sequential circuit specified by Table 5-1). In addition to having columns for the present state,
input, and next state as in a conventional state table, the table also shows the flip-flop input
conditions from which the input equations are derived. These flip-flop inputs are derived from
the state table in conjunction with the excitatioflt'lbl"ior~theJK-flip-fiop.For example, in the
first row of Table 5-13 we have a transitlon~for flip-flop A from ain the present state to ain the
next state. InTabl"S::] 2 for the IK flip-flop, we find that a transition of states from present state
ato next state arequires that input I be aand iuput Kbe a don't-care. So a~andX are entered
in the fIrst row under JA and KA . Since the fIrs~ row also shows a transition for flip-flop B from
oin the present state to 0 in the next state, 0 and X are inserted in the fIrst row under JBand K n.
The second row of the table shows a transition for flip-flop B from ain the present state to I in
the next state. From the excitation table, we find tliat a transition from ato I requires that' I be
I and Kbe a don't-care, so I and X are copied in the second row under IE and KB . This process
is continued for each row in the table and for each flip-flop, with the input conditions from the
excitation table copied into the proper row of the particular flip-flop being considered.

The flip-flop inputs in Table 5-13 specify the truth table for the input equations as a func
tion of present state A and B and input x. The input equations are simplified in the maps of
Fig. 5-27. The next-state values are not used during the simplification since the input equations

y

J)-
t-=J) D I---'-A

f-)-U ~p,c

D 1--'- B

J V C

~r--B'

CLK

J-
J .

x

Section 5-7 Design Procedure 209

-J. '\
} J

C

J '\
K

}

J

C
.~

I K,

A

A'

B

B'

FIGURE 5-29
State Diagram of 3-Bit Binary Counter

CLK

~
001 ~

~
yJ

100

The four input equations for thetwoJK flip-flops are listed nnder the maps of Fig. 5-27.
The logic diagram ofthe sequential circuit is drawn in Fig. 5-28.

FIGURE 5-28
logic Diagram for Sequential Circuit with]K Flip-Flops

Synth(!si~JJsing !_~.!fJ.:Flops

The synthesis using T flip-flops will be demonstrated by designing a binary counter. An n-bit
binary counter consists of n flip-flops that can count in binary from 0 to 2n - LThe state
diagram of a 3-bit counter is shown in Fig. 5-29. As seen from the binary states indicated in
side the circles, the flip-flop outputs repeat the binary count sequence with a return to 000 after
III. The directed lines between circles are not marked with input and output values as in other
state diagrams. Remember that state transitions in clocked sequential circuits occur during a
clock edge; the flip-flops remain in their present states if no clock is applied. For this reason,
the clock does not appear explicitly as an input variable in a state diagram or state table. From

10

B

B

11 10

x

x

01 11

01

Bx
00

Bx
00

3 X E
X X 1

X X X X

1
L-

10

B

B

11 10

x

x

01 11

01

Bx
00

Bx
00

1 X X

1 1 X X

1

1 X X X X
L-

FIGURE 5-27
Maps for] and K Input Equations

are a function of the present state and inpnt only. Note the advantage of using JK type flip-flops
when designing sequential drcuits. The fact that there are so many don't care entries indicates
that the combinational circuit for the input equations are likely to be simpler, because don't
care minterms usually help in obtaining simpler expressions. If there are unused states in the
state table, there will be additional don't-care conditions in the map.

Problems 211

A,

CLK

I
I I
I T

C C ;;/\ T /\ T T
1 I I

D 1

FIGURE 5-31
Logic Diagram of 3-Bit Binary Counter

Q'(t + 1) ~ J'Q' + KQ

each count. A Boolean function that includes all minterms defines a constant value of 1. The
input equations listed under each map specify the combinational part of the counter. Including
these functions with the three flip-flops, we obtain the logic diagram of the counter, as shown
in Fig. 5-31.

5-2 Construct a J K flip-flop using a D flip-flip, a 2-to-l-line multiplexer and an inverter.

5-3 Show that the characteristic equation for the complement output of a JK flip-flop is

5-1 The D latch of Fig. 5-6 is constructed with four NAND gates and an inverter. Consider the fol
lowing three other ways for obtaining a D latch. In each case, draw the logic diagram and verify
the circuit operation.

(a) Use NOR gates for the SR latch part and AND gates for the other two. An inverter may be needed.

(b) Use NOR gates for all four gates. Inverters may be needed.

(c) Use four NAND gates only (without an inverter). This can be done by connecting the output
of the upper gate in Fig. 5-6 (that goes to the SR latch) to the input of the lower gate (instead
of the inverter output).

5-4 A PN flip-flop has four operations: clear to 0, no change, complement, and set to 1, when inputs
P andN are 00, 01,10, and 11. respectively.

(a) Tabulate the characteristic table. (b) Derive the characteristic equation.

(c) Tabulate the excitation table. (d) Show how the PN flip-flop can be
converted to a D flip-flop.

5-5 Explain the differences among a truth table, a state table, a characteristic table, and an excitation
table. Also explain the difference among a Boolean equation, a state equation, a characteristic
equation, and a flip-flop input equation.

PROBLEMS

1 1 1 1

1 1 1 1

1 1

1 1

1

1

FIGURE 5-30
Maps for 3-Bit Binary Counter

this point of view, the state diagram of a counter does not have to show input and output val
ues aloug the directed lines. The only input to the circuit is the clock, and the outputs are spec
ified by the present state of the flip-flops. The next state of a counter depends entirely on its
present state, and the state transition occurs every time the clock goes through a transition.

Table 5-14 is the state table for the 3-bit binary counter. The three flip-flops are symbolized
by A" AI, and AD' Binary counters are most efficiently constructed with T flip-flops because
of their complement property. The flip-flop excitation for the T inputs is derived from the
excitation table of the Tflip-flop and from inspection of the state transition of the present state
to the next state. As an illustration, consider the flip-flop input entries for row 001. The pres
ent state here is DOl and the next state is 010, which is the next count in the sequence. Com
paring these two counts, we note thatA2 goes from O.to 0; so TA2 is marked with °because
flip-flop A2 must not change when a clock occurs. A I goes from 0 to I; so TA I is marked with
a I because this flip-flop must be complemented in the next clock edge. Similarly, AD goes
from I to 0, indicating that it must be complemented; so TAD is marked with I. The last row with
present state III is compared with the first count 000, which is its next state. Going from all
I's to all D's requires that all three flip-flops be complemented.

The flip-flop input equations are simplified in the maps of Fig. 5-30. Note that TAO has I's
in all eight minterms because the least significant bit of the counter is complemented with

REFERENCES

Registers
and Counters

217

A clocked sequential circuit consists of a group of flip-flops and combinational gates con
nected to form a feedback path. The flip- flops are essential because in their absence, the cir
cuit rednces to a purely combinational circuit (provided there is no feedback among the
gates). A circuit with flip-flops is considered a sequential circuit even in the absence of com
binational gates. Circuits that include flip-flops are usually classified by the function they
perform rather than by the name of the sequential circuit. Two such circuits are registers
and counters.

A register is a group of flip-flops. Each flip-flop is capable of storing one bit of infonna
tion. An n-bit register consists of a group of n flip-flops capable of storing n bits of binary
infonnation. In addition to the flip-flops, a register may have combinational gates that perfonn
certain data processing tasks. In its broadest definition, a register consists of a group of flip
flops and gates that effect their transition. The flipCflops hold the binary infonnation and the
gates determine how the information is transferred into the register.

A counter is essentially a register that goes through a predetennined sequence of states. The
gates in the counter are connected in such a way as to produce the prescribed sequence of
binary states. Although counters are a special type of register, it is common to differentiate
them by giving them a different name.

Various types of registers are available commercially. The simplest register is one that con
sists of only flip-flops without any gates. Fig. 6-1 shows such a register constructed with four
D-type flip-flops. The common clock input triggers all flip-flops on the positive edge of each
pulse and the binary data available at the four inputs are transferred into the 4-bit register. The
four outputs can be sampled at any time to obtain the binary information stored in the register.
The clear input goes to the R (reset) input of all four flip-flops. When this input goes to 0, all

REGISTERS6-1

HAYES, 1. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

WAKERLY, J. F. 2000. Digital Design: Principles and Practices, 3rd ed. Upper Saddle River, NJ:
Prentice Hall.

5.

12. PALNITKAR, S. 1996. VeriLog HDL: A Guide to Digital Design and Synthesis. SunSoft Press
(A Prentice Hall Title).

13. THOMAS, D. E., and P. R. MOGRBY 1998. The VeriLog Hardware Description Language 4th ed.
Boston: Kluwer Academic Publishers.

1.

2.

3.

4.

KATZ, R. H. 1994. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

MANO, M. M. and C. R. KrME. 2000. Logic and Computer Design Fundamentals, 2nd ed. Upper
Saddle River, NJ: Prentice Hall.

NELSON V. P., H. T: NAGLE, J. D. IRWIN, and B. D. CARROLL. 1995. Digital Logic Circuit Analy~
sis and Design. Upper Saddle River, NJ: Prentice Hall.

6. DIETM:EYER, D. L. 1988. Logic Design ofDigital Systems, 3rd ed. Boston: Allyn Bacon.

7. GAJSKI, D. D. 1997. Principles ofDigital Design. Upper Saddle River, NJ: Prentice Hall.

8. Rum, C. H. 1992. Fundamentals ofLogic Design, 4th ed. St. Paul: West.

9. BHASKER, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

10. BHASKER, J. 1998. VeriLog HDL Synthesis. Allentown, PA: Star Galaxy Press.

11. CILETTI, M. D. 1999. Modeling, Synrhesis, andRapidPrototyping with VeriLog HDL. Upper Sad
dIe River, NJ: Prentice Hall.

"V ~napter 5 Synchronous Sequential Logic

218 Chapter 6 Registers and Counters Section 6-2 Shift Registers 219

Register with Parallel Load

Synchronous digital systems have a master clock generator'that supplies a continuous train of
clock pulses. The clock pulses are applied to all flip-flops and registers in the system. The mas
ter clock acts like a pump that supplies a constant beat to all parts of the system. A separate con
trol signal must be used to decide which specific clock pulse will have an effect on a particular
register. The transfer of new information into a register is referred to as loading the register. If
all the bits of the register are loaded simultaneously with a common clock pulse, we say that
the loading is done in parallel. A clock edge applied to the C inputs of the register of Fig. 6-1
will load all four inputs in parallel. In this configuration, the clock must be inhibited from the
circuit if the content of the register must be left unchanged. The clock can be inhibited from
reaching the register by controlling the clock input signal with an enabling gate. However,
inserting gates in the clock path means that logic is performed with clock pulses. The insertion
of logic gates produces uneven propagation delays between the master clock and the inputs of
flip-flops. To fully synchronize the system, we must ensure that all clock pulses arrive at the
same time anywhere in the system so that all flip-flops trigger simultaneously. Performing
logic with clock pulses inserts variable delays and may cause the system to go out of syn
chronism. For this reason, it is advisable to control the operation of the register with the D
inputs rather than controlling the clock in the C inputs of the flip-flops.

A 4-bit register with a load control input that is directed through gates and into the D inputs
of the flip-flops is shown in Fig. 6-2. The load input to the register determines the action to be
taken with each clock pulse. When the load input is I, the data in the four inputs are trans
ferred into the register with the next positive edge of the clock. When the load input is 0, the
outputs of the flip-flops are connected to their respective inputs. The feedback connection from
output to input is necessary because the D flip-flop does not have a "no change" condition. With
each clock edge, the D input determines the next state of the register. To leave the output
unchanged, it is necessary to make the D input equal to the present value of the output.

The clock pulses are applied to the C inputs at all times. The load input determines whether
the next pulse will accept new information or leave the information in the register intact. The
transfer of information from the data inputs or the outputs of the register is done simultaneously
with all four bits in response to a clock edge.

I,

D ~

C

R

I

D

C

R

I

D f---

C

R

I

D

C

R

I

Az

6-2 SHIFT REGISTERS

Clock Clear

FIGURE 6-1
4-Bit Register

flip-flops are reset asynchronously. The clear iuput is useful for clearing the register to all D's
prior to its clocked operation. The R inputs must be maintained at logic I during nonnal clocked
operation. Note that either clear or reset can be used to indic"ate the transfer of the register to
an all D's state.

----'---~=-------..

A register capable of shifting its binary information in one or both directions is called a shift
register. The logical configuration of a shift register consists of a chain of flip-flops in cascade,
with the output of one flip-flop connected to the input of the next flip-flop. All flip-flops receive
common clock pulses, which activate the shift from one stage to the next.

The simplest possible shift register is one that uses only flip-flops, as shown in Fig. 6-3. The
output of a given flip-flop is connected to the D input of the flip-flop at its right. Each clock
pulse shifts the contents of the register one bit position to the right. The serial input detennines
what goes into the leftmost flip-flop during the shift. The serial output is taken from the out
put of the rightmost flip-flop. Sometimes it is necessary to control the shift so that it occurs only
with certain pulses, but not with others. This can be done by inhibiting the clock from the input

220 Chapter 6 Registers and Counters Section 6-2 Shift Registers 221

of the register to prevent it from shifting. It will be shown later that the shift operation can be
controlled through the D inputs of the flip-flops rather than through the clock input. If however
the shift register of Fig. 6-3 is used, ihe shift can be controlled by connecting the clock through
an AND gate with an input that controls the shift.

Serial Transfer

r---+---Ao

C

>----ID
10 -----+----1-1--1

Load

SO SI

Clock

Shift
control

A digital system is said to operate in a serial mode when information is transferred and
manipulated one bit at a time. Information is transferred one bit at a time by shifting the bits
out of the source register into the destination register. This in contrast to parallel transfer where
all the bits of the register are transferred at the same time.

The serial transfer of information from register A to register B is done with shift registers,
as shown in the block diagram of Fig. 6-4(a). The serial output (SO) of register A is connected
to the serial input (Sf) of register B. To prevent the loss of information stored in the source
register, the infonnation in register A is made to circulate by connecting the serial output to its
serial input. The initial content of register B is shifted out through its serial output and is lost
unless it is transferred to a third shift register. The shift control input determines when and
how many times the registers are shifted. This is done with an AND gate that allows clock
pulses to pass into the eLK terminals only when the shift control is active.

r----O--- A3

C

C

r---+---Az

C

>---f--ID

>---f--ID

>--+--ID

II -----+----f---I

13 ~---------+----1

I,-----+----f---I

(a) Block diagram

Clock -----------------------"

FIGURE 6-2
4-Bit Register with Parallel Load

Clock

1__-

CLK IUUUlL _
T1 T2 T3 T4

Shift
control _

FIGURE 6-4
Serial Transfer from Register A to register B

(b) Timing diagram

SO Serial
output

C

I--------jDI----DI--------jDSerial _,,-S,-I-ID
input

CLK -+------4----+--------'

FIGURE 6-3
4-Bit Shift Register

Section 6-2 Shift Registers 223

FIGURE 6-5
Serial Adder

~ . . I SO
. Shtft register A I I

x
S-

y FA

Sf --+

C_
z

. . .1 SO
~ Shtft register B I

Q -
D

C

Clear

I

Serial
input

Shift
control

CLK

serial input of register B can be used to transfer a new binary number while the addend bits are
shifted out during the addition.

The operation of the serial adder is as follows. Initially register A holds the augend, regis
ter B holds the addend, and the carry flip-flop is cleared to O. The outputs (SO) ofA and B pro
vide a pair of significant bits for the full adder at x and y. Output Q of the flip-flop provides
the input carry at z. The shift control enables both registers and the carry flip-flop, so at the next
clock pulse, both registers are shifted once to the right, the sum bit from S enters the leftmost
flip-flop ofA, and the output carry is transferred into flip-flop Q. The shift control enables the
registers for a number of clock pulses equal to the number of bits in the registers. For each
succeeding clock pulse, a new sum bit is transferred to A, a new carry is transferred to Q, and
both registers are shifted once to the right. This process continues until the shift control is dis
abled. Thus, the addition is accomplished by passing each pair of bits together with the previ
ous carry through a single full adder circuit and transferring the sum, one bit at a time, into
register A.

Initially, register A and the carry flip-flop are cleared to 0 and then the first number is added
from B. While B is shifted through the full adder, a second number is transferred to it through
its serial input. The second number is then added to the content of register A while a third num
ber is transferred serially into register B. This can be repeated to form the addition of two,
three, or more numbers and accumulate their sum in register A.

Comparing the serial adder with the parallel adder described in Section 4-4, we note several
differences. The parallel adder uses registers with parallel load, whereas the serial adder uses

Operations in digital computers are usually done in parallel because this is a faster mode of
operation. Serial operations are slower, hut have the advantage of requiring less equipment. To
demonstrate the serial mode of operation, we present here the design of a serial adder. The par
allel counterpart was presented in Section 4-4.

The two binary numbers to be added serially are stored in two shift registers. Bits are added
one pair at a time throngh a single full adder (FA) circuit, as shown in Fig. 6-5. The carry out
of the full adder is transferred to a D flip-flop. The output of this flip-flop is then used as the
carry input for the next pair of significant bits. The sum bit from the S output of the full adder
could be transferred into a third shift register. By shifting the sum into A while the bits ofA are
shifted out, it is possible to use one register for storing both the augend and the sum bits. The

Suppose the shift registers have four bits each. The control unit that supervises the transfer
must be designed in such a way that it enables the shift registers, through the shift control sig
nal, for a fixed time of four clock pulses. This is shown in the timing diagram of Fig. 6-4(b).
The shift control signal is synchronized with the clock and changes value just after the nega
tive edge of the clock. The next four clock pulses find the shift control signal in the active state,
so that the output of the AND gate connected to the eLK inputs produces four pulses, Tj , T2 ,

T3 , and T4 • Each rising edge of the pulse causes a shift in both registers. The fourth pulse
changes the shift control to 0 and the shift registers are disabled.

Assume that the binary content ofA before the shift is lOll and that ofB is 0010. The serial
transfer from A to B occurs in four steps, as shown in Table 6-1. With the first pulse Tj, the right
most bit of A is shifted into the leftmost bit of B and is also circulated into the leftmost posi
tion ofA. At the same time, all bits ofA and B are shifted one position to the right. The previous
seriat output from B in the rightmost position is lost and its value changes from 0 to 1. The next
three pulses perform identical operations, shifting the bits of A into B, one at a time. After the
fourth shift, the shift control goes to 0 and both registers A and B have the value lOll. Thus,
the content of A is transferred into B, while the content of A remains unchanged.

The difference between serial and parallel modes of operation should be apparent from this
example. In the parallel mode, information is available from all bits of a register and all bits
can be transferred simultaneously during one clock pulse. In the serial mode, the registers have
a single serial input and a single serial output. The information is transferred one bit at a time
while the registers are shifted in the same direction.

222 Chapter 6 Registers and Counters

Table 6-1
Serial-Transfer Example

Timing Pulse Shift Register A Shift Register B

Initial value I 0 I I 0 0 I 0
After T1 I I 0 I I 0 0 I
After Tz I I I 0- >1 I 0 0
After T3 0 I I I 0 I I 0
After T4 I 0 I I I 0 I I

Serial Addition

224 Chapter 6 Registers and Counters Section 6-2 Shift Registers 22S

S

Serial SI
input J

C

K

Clear

Shift
t 1

==rf::~:'~~'~~IS'-'o,----~--,x,-;::+===========\,
con ro Shift reglster A

CLK

FIGURE 6-6
Second form of Serial Adder

Universal Shift Register
If the flip-flop outputs of a shift register are accessible, then information entered serially by shift
ing can be taken out in parallel from the outputs of the flip-flops. If a parallel load capability
is added to a shift register, then data entered in parallel can be taken out in serial fashion by shift
ing the data stored iu the register.

Some shift registers provide the necessary input and output terruinals for parallel trausfer.
They may also have both shift right and shift left capabilities. The most general shift register
has the following capabilities:

1. A clear control to clear the register to O.

2. A clock input to synchronize the operations.

3. A shift-right control to enable the shift right operation and the serial input and output lines
associated with the shift right.

4. A shift-left control to enable the shift left operation and the serial input and output lines
associated with the shift left.

5. A parallel-load control to enable a parallel transfer and the n input liues associated with
the parallel transfer.

6. n parallel output lines.

7. A control state that leaves the information in the register unchanged in the presence of
the clock.

The circuit diagram is shown in Fig. 6-6. The circuit consists of three gates and a JK flip-flop.
The two shift registers are included iu the diagram to show the complete serial adder. Note that
output S is a function not only of x and y, but also of the present state of Q. The next state of
Q is a function of the present state of Q and the values of x and y that come out of the serial
outputs of the shift registers.

JQ = xy

KQ = X'y' = (x + y)'

S = xEllyEllQ

Table 6-2
State Table for Serial Adder

Present Next Flip-Flop
State Inputs State Output Inputs

Q X Y Q S IQ KQ

0 0 0 0 0 0 X
0 0 1 0 1 0 X
0 1 0 0 1 0 X
0 1 1 1 0 1 X
1 0 0 0 1 X 1
1 0 1 1 0 X 0
1 1 0 1 0 X 0
1 1 1 1 1 X 0

shift registers. The number of full adder circuits in the parallel adder is equal to the number of
bits in the binary numbers, whereas the serial adder requires only one full adder circuit and a
cany flip-flop. Excluding the registers, the parallel adder is a combinational circuit, whereas
the serial adder is a sequential circuit. The sequential circuit in the serial adder consists of a full
adder and a flip-flop that stores the output cany. This is typical in serial operations because the
result of a bit-time operation may depend not only on the present inputs, but also on previous
inputs that must be stored in flip-flops.

To show that serial operations can be designed by means of sequential circuit procedure, we
will redesign the serial adder using a state table. First, we assume that two shift registers are
available to store the binary numbers to be added serially. The serial outputs from the registers
are designated by x and y. The sequential circuit to be designed will not include the shift
registers, but they will be inserted later to show the complete circuit. The sequential circuit
proper has the two inputs, x and y, that provide a pair of significant bits, an output S that gen
erates the sum bit, and flip-flop Q for storing the carry. The state table that specifies the
sequential circuit is listed in Table 6-2. The present state of Q is the present value of the carry.
The present cany in Q is added together with inputs x and y to produce the sum bit in output
S. The next state of Q is equal to the output carry. Note that the state table entries are identical
to the entries in a full adder truth table, except that the input cany is now the present state of
Q and the output carry is now the next state of Q.

If a D flip-flop is used for Q, the circuit reduces to the one shown in Fig. 6-5. If a JK flip
flop is used for Q, it is necessary to determine the values of inputs J and K by referring to
the excitation table (Table 5-12). This is done in the last two columns of Table 6-2. The
two flip-flop input equations and the output equation can be simplified by means of maps
to obtain

RIPPLE COUNTERS

227

5, s. Register Operation

0 0 No change
0 I Shift right
1 0 Shift left
1 1 Parallel load

Section 6-3 Ripple Counters

Mode Control

Table 6-3
Function Table for the Register of Fig. 6-7

A register that goes through a prescribed seqnence of states upon the application of input pulses
is called a counter. The input pulses may be clock pulses or they may originate from some
external source and may occur at a fixed interval of time or at random. The sequence of states
may follow the binary number sequence or any other sequence of states. A counter that follows
the binary number sequence is called a binary counter. An n-bit binary counter consists of n flip
flops and can count in binary from 0 through 2" - l.

Counters are available in two categories: ripple counters and synchronous counters. In a
ripple counter, the flip-flop output transition serves as a source for triggering other flip- flops.
In other words, the C input of some or all flip-flops are triggered not by the common clock
pulses, but rather by the transition that occurs in other flip-flop outputs. In a synchronous count
er, the C inputs of all flip-flops receive the common clock. Synchronous counters are presented
in the next two sections. Here we present the binary and BCD ripple counters and explain their
operation.

plexer inputs has a path to the D inputs of the flip-flops. This causes a shift-right operation,
with the serial input transferred into flip-flop A4 • When SISO = 10, a shift-left operation re
sults, with the other serial input going into flip-flop AI' Finally, when SISO = 11, the binary
information on the parallel input lines is transferred into the register simultaneously during
the next clock edge.

Shift registers are often used to interface digital systems situated remotely from each other.
For example, suppose it is necessary to transmit an n-bit quantity between two points. If the
distance is far, it will be expensive to nse n lines to transmit the n bits in parallel. It is more eco
nomical to use a single line and transmit the information serially, one bit at a time. The trans
mitter accepts the n-bit data in parallel into a shift register and then transmits the data serially
along the common line. The receiver accepts the data serially into a shift register. When all n
bits are received, they can be taken from the outputs of the register in parallel. Thus the trans
mitter performs a parallel-to-serial conversion of data and the receiver does a serial-to-parallel
conversion.

6-3
Other shift registers may have only some of the preceding functions, with at least one shift

operation.
A register capable of shifting in one direction only is a unidirectional shift register. One

that can shift in both directions is a bidirectional shift register. If the register has both shifts and
parallel load capabilities, it is referred to as a universal shift register.

The diagram of a 4-bit universal shift register that has all the capabilities listed above is
shown in Fig. 6-7. It consists of four D flip-flops and four multiplexers. The four multi
plexers have two common selection inputs S1 and SQ. Input 0 in each multiplexer is selected
when 51S0 = 00, input 1 is selected when S1S0 = 01, and similarly for the other two inputs.
The selection inputs control the mode of operation of the register according to the function
entries in Table 6-3. When SISO = 00, the present value of the register is applied to the D
inputs of the flip-flops. This condition forms a path from the output of each flip-flop into the
input of the same flip-flop. The next clock edge transfers into each flip-flop the binary value
it held previously, and no change of state occurs. When SlsO ~ 01, terminal I of the multi-

Parallel inputs

A,

FIGURE 6-7
4-Bit Universal Shift Register

1,

Parallel outputs

Chapter 6 Registers and Counters

~ ~ ~ ~

re e e e
D D D D

'1- 4 xl 4 xl 4xl 4 xl
MUX MUX MUX MUX'0-

3 2 1 0 3 2 1 0 321 0 3 210

I I I IL

Serial
Serialinput for

shift-right L...-- input for
shift-left

eLK

Clear

226

Chapter 6 Registers and Counters
Section 6-3 Ripple Counters 229

DL D A

Count I'> e R p-
r

L D

I'> e R p-
I

L D

I>e R p-
I

L D

ve R

I

(b) With D flip-flops

p

Reset

D

A2

(a) With T flip"flops

FIGURE 6-8
4-Bit Binary Ripple Counter

\
T f----~A

I

I>e R

y

T ~

'-<poe R

y

T

'-<j>e R

y

T

L<poe R

y

Logic-l

Reset

Count

A binary ripple counter consists of a series connection of complementing flip-flops, with
the output of each flip-flop connected to the C input of the next higher-order flip-flop. The
flip-flop holding the least significant bit receives the incoming count pulses. A comple
menting flip-flop can be obtained from a JK flip-flop with the J and K inputs tied together
or from a T flip-flop. A third possibility is to use a D flip-flop with the complement output
connected to the D input. In this way, the D input is always the complement of the present
state and the next clock pulse will cause the flip-flop to complement. The logic diagram of
two 4-bit binary ripple counters is shown in Fig. 6-8. The counter is constructed with com
plementing flip-flops of the Ttype in part (a) and D type in part (b). The output of each flip
flop is connected to the C input of the next flip-flop in sequence. The flip-flop holding the
least significant bit receives the incoming count pulses. The T inputs of all the flip-flops in
(a) are connected to a permanent logic-I. This makes each flip-flop complement if the sig
nal in its C input goes through a negative transition. The bubble in front of the dynamic
indicator symbol next to C indicates that the flip-flops respond to the negative-edge transi
tion of the input. The negative transition Occurs when the output of the previous flip-flop to
which C is connected goes from I to O.

To understand the operation of the 4-bit binary ripple counter, refer to the first nine binary
numbers listed in Table 6-4. The count starts with binary 0 and increments by one with each
count pulse input. After the count of 15, the counter goes back to 0 to repeat the count. The least
significant bit AD is complemented with each count pulse input. Every time that AD goes from
I to 0, it complements A, . Every time that A j goes from I to 0, it complements Az. Every time
that A2 goes from I to 0, it complements A3 , and so on for any otp\" higher order bits of a
ripple counter. For example, consider the transition from countOOi 1 to OIQO. AD is comple
mented with ttle £911l)tjJulse. Since Aogoes from I to 0, ittriggeis A; and complements it. As
a result, A, goes from I to O~which in tum compl~s0:j changing'it from 0 to I. A

2
does

not togger A3 because A 2 produces a posltI"e-tranSlt1on!lild thy flIp-flop responds only to neg
ative transitions. Thus, the-count fr0IlI 00 II !9..Q190 is achieved by changing the bits one at a
time, so the count goes from 0011 to O()lO, then to 0000, and finally to OJOO. The flip-flops
------ . - ,.;~ c -J

change one at a time in succession and the signal propagates through the counter in a ripple fashion
from one stage to the next.

A binary counter with a reverse count is called a binary count-down counter. In a downward
counter, the binary count is decremented by I with every input count pulse. The count of a 4-bit
count-down counter starts from binary 15 and continues to binary counts 14,13,12, ... ,0 and
then back to 15. A list of the count sequence of a binary count-down counter shows that the least
significant bit is complemented with every count pulse. Any other bit in the sequence is com
plemented if its previous least significant bit goes. from 0 to I. Therefore, the diagram of a
binary count-down counter looks the same as in Fig. 6-8, provided all flip-flops trigger on the
positive edge of the clock. (The bubble in the C inputs must be absent.) If negative-edge
triggered flip-flops are used, then the C input of each flip-flop must be connected to the com
plement output of the previous flip-flop. Then when the true output goes from 0 to I, the
complement will go from I to 0 and complement the next flip-flop as required.

Binary Ripple Counter

,

Q,

~ J f-.--

Count C

;..-
K

J f-r--

C

I---- K

;..- J f-.--

C

~
K

In J I-----

c

;..-
K P-

Logic-l

goes from I to 0, the flip-flop is set if J = 1, is cleared if K = I, is complemented if
J = K = I, and is left unchanged if J ~ K ~ O.

To verify that these conditions result in the sequence required by a BCD ripple counter, it is
necessary to verify that the flip-flop transitions indeed follow a sequence of states as specified by

Section 6-3 Ripple Counters 231

FIGURE 6-10
BCD Ripple Counter

FIGURE 6-9
State Diagram of a Decimal BCD-Counter

A decimal counter follows a sequence of ten states and returns to aafter the count of 9. Such
a counter must have at least four flip-flops to represent each decimal digit, since a decimal
digit is represented by a binary code with at least four bits. The sequence of states in a dec
imal counter is dictated by the binary code used to represent a decimal digit. If BCD is
used, the sequence of states is as shown in the state diagram of Fig. 6-9. This is similar to
a binary counter, except that the state after 100l (code for decimal digit 9) is 0000 (code
for decimal digit 0).

The logic diagram of a BCD ripple counter using JK flip-flops is shown in Fig. 6-10.
The four outputs are designated by the letter symbol Q with a numeric subscript equal to
the binary weight of the corresponding bit in the BCD code. Note that the output of Qr is
applied to the C inputs of both Q2 and Q8 and the output of Q, is applied to the C input of
Q4' The J and K inputs are connected either to a permanent I signal or to outputs of other
flip-flops.

A ripple Counter is an asynchronous sequential circuit. Signals that affect the flip-flop tran
sition depend on the way they change from I to O. The operation of the counter can be explained
by a list of conditions for flip-flop transitions. These conditions are derived from the logic
diagram and from knowledge of how a JK flip-flop operates. Remember that when the C input

230 Chapter 6 Registers and Counters

Table 6-4
Binary Count Sequence

A. A2 A, Ao

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0

BCD Ripple Counter

232 Chapter 6 Registers and Counters Section 6-4 Synchronous Counters 233

....,

A3

o next stage

J f-----~.

- ~e

K

J -e---

f-- I>e

K

J -e---

e

K

J
J f-----~

i---I>e

K

I
I 'Ii
~

eLK

Count enable

FIGURE 6-12
4-Bit Synchronous Binary Counter

Synchronous binary counters have a regular patrem and can be constructed with comple
menting flip-flops and gates. The regular pattern can be seen from the 4-bit counter depicted
in Fig. 6-12. The C inputs of all flip-flops are connected to a common clock. The counter is
enabled with the count enable input. If the enable input is 0, all J and K inputs are equal to 0

Count
pulses

BCD
Counter

10° digit

BCD
Counter

101 digit

BCD
Counter

102 digit

FIGURE 6-11
Block Diagram of a Three-Decade Decimal BCD Counter

the state diagram of Fig. 6-9. Qj changes state after each clock pulse. Q, complements every time
Qj goes from 1 to 0 as long as Q, = O. When Q, becomes 1, Q, remains at O. Q. complements
every time Q, goes from 1 to O. Q8 remains at 0 as long as Q2 or Q. is O. When both Q, and Q.
become 1, Q8 complements when Qj goes from 1 to O. Q, is cleared on the next transition of Qj.

The BCD counter of Fig. 6-10 is a decade counter, since it counts from 0 to 9. To count in dec
imal from 0 to 99, we need a two-decade counter. To count from 0 to 999, we need a three-decade
counter. Multiple decade counters can be constructed by connecting BCD counters in cascade,
one for each decade. A three-decade counter is shown in Fig. 6-11. The inputs to the second and
third decades come from Q, of the previous decade. When Q, in one decade goes from 1 to 0, it
triggers the count for the next higher-order decade while its own decade goes from 9 to O.

Binary Counter

The design of a synchronous binary counter is so simple that there is no need to go through a
sequential logic design process. In a synchronous binary counter, the flip-flop in the least sig
nificant position is complemented with every pulse. A flip-flop in any other position is com
plemented when all the bits in the lower significant positions are equal to 1. For example, ifthe
present state of a 4-bit counter is A3A,A jAO = 0011, the next count is 0100. An is always com
plemented. A j is complemented because the present state of Ao = 1. A 2 is complemented
because the present state ofAjAO = II. However, A3 is not complemented because the present
state of A,AjAO = 011, which does not give an all-l's condition.

Synchronous counters are different from ripple counters in that clock pulses are applied to the
inputs of all flip-flops. A common clock triggers all flip-flops simultaneously rather than one
at a time in succession as in a ripple counter. The decision whether a flip-flop is to be com
plemented or not is determined from the values of the data inputs such as Tor J and K at the
time of the clock edge. If T = 0 or J = K = 0, the flip-flop does not change state. If T = 1
or J = K = 1, the flip-flop complements.

The design procedure for synchronous counters was presented in Section 5-7 and the design
of a 3-bit binary counter was carried out in conjunction with Fig. 5-31. In this section, we pres
ent some typical synchronous counters and explain their operation.

6-4 ~NCHRONOUS COUNTERS

234 Chapter 6 Registers and Counters Section 6-4 Synchronous Counters 235

)
",
"'I

f----~~-A2

f------A 3

f-----~-Ao

+---I>C

l----J>C

.----I>C

l----I>C

CLK

>--+----1T

)---+---1T

)------jT

')--I----1T

FIGURE 6-13
4-Bit Up-Down Binary Counter

Down ----~-----I

and the clock does not change the state of the counter. The first stage Aohas its J and K equal
to I if the counter is enabled. The other J and K inpnts are eqnal to I if all previous least sig
nificant stages are equal to I and the count is enabled. The chain of AND gates generates the
required logic for the J and K inputs in each stage. The counter can be extended to any num
ber of stages, with each stage having an additional flip-flop and an AND gate that gives an
output of I if all previous flip-flop outpnts are I.

Note that the flip-flops trigger on the positive edge of the clock. The polarity of the clock
is not essential here as is with the ripple counter. The synchronous counter can be triggered with
either the positive or the negative clock edge. The complementing flip-flops in a binary connter
can be either of the JK-type or the T-type or the D-type with XOR gates. The eqnivalency of
the three types is indicated in Fig. 5-13.

A synchronous count down binary counter goes through the binary states in reverse order from
IIII down to 0000 and back to 1111 to repeat the connt. It is possible to design a count-down
counter in the usual manner, but the result is predictable from inspection of the downward
binary count. The bit in the least significant position is complemented with each pulse. A bit
in any other position is complemented if all lower significant bits are equal to O. For example,
the next state after the present state of 0100 is 00 II. The least significant bit is always com
plemented. The second significant bit is complemented because the first bit is O. The third sig
nificant bit is complemented becanse the first two bits are equal to O. But the fourth bit does
not change because not all lower significant bits are equal to O.

A count-down binary counter can be constructed as shown in Fig. 6-12, except that the

inputs to the AND gates must come from the complement outputs instead of the normal out
puts of the previous flip-flops. The two operations can be combined in one circuit to form a
counter capable of counting either up or down. The circuit of an up-down binary counter using
T flip-flops is shown in Fig. 6-13. It has an up control input and a down control input. When
the up input is 1, the circuit counts up, since the T inputs receive their signals from the values
of the previous normal outputs of the flip-flops. When the down input is 1 and the up input is
0, the circuit counts down, since the complemented outputs of the previous flip-flops are applied
to the T inputs. When the up and down inputs are both 0, the circuit does not change state and
remains in the same count. When the up and down inputs are both 1, the circuit counts up. This
ensures that only one operation is performed at any given time.

A BCD counter counts in binary-coded decimal from 0000 to IDOl and back to 0000. Because
of the return to 0 after a count of 9, a BCD counter does not have a regular pattern as in a
straight binary count. To derive the circuit of a BCD synchronous counter, it is necessary to go
through a sequential circuit design procedure.

The state table of a BCD counter is listed in Table 6-5. The flip-flop input conditions for the
T flip-flops are obtained from the present and next state conditions. An output y is also shown
in the table. This output is equal to I when the present state is 1001. In this way, y can enable

BCD Counter

Up-Down Binary Counter

,
i
",J
"I
II,

Az

any-output

FIGURE 6-14
4-Bit Binary Counter with Parallel Load

Section 6-4 Synchronous Counters 237

{>o--

~ -

I J

~
e

----[::: I K

-y

~ -

0-«
J

e

>---fl- K

-y

'fl- -

o--q< J

e

.---rl- KL-t ~

'fl- -

~
J

e

Y> K

,

C

eLK

Clear

the count of the next-higher significant decade while the same pulse switches the present decade
from 1001 to 0000,

The flip-flop input equations can be simplified by means of maps. The unused states for
minterms 10 to 15 are taken as don't-care terms. The simplified functions are

TQ1 = I

TQ, ~ Q8QI

TQ4 ~ Q,QI

TQ8 = Q,QI + Q4Q,QI

Y = Q8QI

The circuit can be easily drawn with four Tflip"flops, five AND gates, and one OR gate. Syn
chronous BCD counters can be cascaded to form a counter for decimal numbers of any length.
The cascading is done as in Fig. 6-11, except that output y must be connected to the count
input of the next-higher significant decade.

Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel load capability for trans
ferring an initial binary number into the counter prior to the count operation. Fig. 6-14 shows
the logic diagram of a 4-bit register that has a parallel load capability and can operate as a
counter. The input load control when equal to I disables the count operation and causes a trans
fer of data from the four data inputs into the four flip-flops. If both control inputs are 0, clock
pulses do not change the state of the register.

236 Chapter 6 Registers and Counters

Table 6-5 Count
State Table for BCD Counter

Present State Next State Output Flip-Flop Inputs
Load

Q8 Q. Q. Q, Q8' Q. Q. Q, y TQ8 TQ. TQ. TQ,

0 0 0 0 0 0 0 1 0 0 0 0 1 100 0 0 1 0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 1 1 0 0 0 0 1
0 0 1 1 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 1 1 0 0 0 0 1 1
0 1 1 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 I 0 0 0 0 1 II
I 0 0 1 0 0 0 0 1 1 0 0 1

238 Chapter 6 Registers and Counters Section 6-5 Other Counters 239

Table 6-6
Function Table for the Counter of Fig. 6-14

Clear ClK load Count Function

o
1
1
1

x
t
t
t

X
1
o
o

x
X
1
o

Clear to 0
Load inputs
Count next binary state
No change

Load

Counter
of Fig.6-14

-+- Count = 1

-+- Clear = 1

Clear

Counter
of Fig.6-14

Count = 1

-+- Load = 0

-+- eLK -+- eLK

Counter with Unused States

Inputs have no effect

(b) Using the clear input(a) Using the load input

Inputs = 0 __..L.---'-_L-.J

Counters can be designed to generate any desired sequence of states. A divide-by-N counter
(also known as modulo-N counter) is a counter that goes through a repeated sequence of N
states. The sequence may follow the binary count or may be any other arbitrary sequence.
Counters are used to generate timing signals to control the sequence of operations in a digital
system. Counters can be constructed also by means of shift registers. In this section, we pres
ent a few examples of non binary counters.

goes from 1010 to 1011 and immediately to 0000. This momentary spike may be undesirable,
and for this reason, this configuration is not recommended. If the counter has a synchronous
clear input, it would be possible to clear the counter with the clock after an occurrence of the
1001 count.

A circuit with n flip-flops has 2/1 binary states. There are occasions when a sequential circuit
uses less than this maximum possible number of states. States that are not used in specify
ing the sequential circuit are not listed in the state table. When simplifying the input equa
tions, the unused states may be treated as don't-care conditions or may be assigned specific
next states. Once the circuit is designed and constructed, outside interference may cause the
circuit to enter one of the unused states. In that case, it is necessary to ensure that the circuit
eventually goes into one of the valid states so it can resume normal operation. Otherwise, if
the sequential circuit circulates among unused states, there will be no way to bring it back
to its intended sequence of state transitions. If the unused states are treated as don't-care
conditions, then once the circuit is designed, it must be investigated to determine the effect

FIGURE 6-15
Two ways to Achieve a BCD Counter Using a Counter with Parallel Load

6-5 0 THE ReO U N TE RS

The carry output becomes a 1 if all the flip-flops are equal to 1 while the count input is
enabled. This is the condition for complementing the flip-flop that holds the next significant
bit. The carry output is useful for expanding the counter to more than four bits. The speed of
the counter is increased when the carry is generated directly from the outputs of all four flip
flops because of the reduced delay for generating the carry. In going from state 1111 to 0000,
only one gate delay occurs; whereas, four gate delays occur in the AND gate chain shown in
Fig. 6-12. Similarly, each flip-flop is associated with an AND gate that receives all previous flip
flop outputs directly instead of connecting the AND gates in a chain.

The operation of the counter is summarized in Table 6-6. The four control inputs: clear,
CLK, load, and count deterntine the next state. The clear input is asynchronous and, when
equal to 0, causes the counter to be cleared regardless of the presence of clock pulses or other
inputs. This is indicated in the table by the X entries, which symbolize don't-care conditions
for the other inputs. The clear input must be at the 1 state for all other operations. With the load
and count inputs both at 0, the outputs do not change, even when clock pulses are applied. A
load input of 1 causes a transfer from inputs 10-13 into the register during a positive edge of the
clock. The input data are loaded into the register regardless of the value of the count input,
because the count input is inhibited when the load input is enabled. The load input must be a
for the count input to control the operation of the counter.

A counter with parallel load can be used to generate any desired count sequence. Fig. 6-15
shows two ways in which a counter with parallel load is used to generate the BCD count. In
each case, the count control is set to 1 to enable the count through the CLK input. Also,
remember that the load control inhibits the count and that the clear operation is independent
of other control inputs.

The AND gate in Fig. 6-15(a) detects the occurrence of state 1001. The counter is initially
cleared to 0 and then the clear and count inputs are set to 1 so the counter is active at all times.
As long as the output of the AND gate is 0, each positive-edge clock increments the counter
by one. When the output reaches the count of 1001, bothAoand A, become 1, makiug the out
put ofthe AND gate equal to 1. This condition activates the load input; therefore, on the next
clock edge the register does not count, but is loaded from its four inputs. Since all four inputs
are connected to logic 0, an all a's value is loaded into the register following the count of 1001.
Thus, the circuit goes through the count from 0000 through 1001 and back to 0000 as required
in a BCD counter.

In Fig. 6-l5(b), the NAND gate detects the count of 1010, but as soon as this count occurs,
the register is cleared. The count 1010 has no chance of staying on for any appreciable time
because the register goes immediately to O. A momentary spike occurs in outputAoas the count

of the unused states. The next state from an unused state can be determined from the analy
sis of the circuit after it is designed.

As an illustration, consider the counter specified in Table 6-7. The count has a repeated
sequence of six states, with flip-flops Band C repeating the binary count 00,01, 10, and flip
flop A alternating between 0 and I every three counts. The count sequence of the counter is
not straight binary and two states, OIl and 111, are not included in the count. The choice of
lK flip-flops results in the flip-flop input conditions listed in the table. Inputs KB and Kc have
only I's and X's in their columns, so these inputs are always equal to 1. The other flip-flop
input equations can be simplified using minterms 3 and 7 as don't-care conditions. The sim
plified equations are

(b) State diagram

A

B

e

(a) Logic diagram

Clock

~ J -

~b-e
~ - K

~- -J

~boe

K

~

~LJ

>- >e

K

FIGURE 6-16
Counter with Unused States

Section 6-5 Other Counters 241

Logic 1

Ring Counter

Timing signals that control the sequence of operations in a digital system can be generated
with a shift register or a Counter with a decoder. A ring counter is a circular shift register with
only one flip-flop being set at any particular time, all others are cleared. The single bit is shifted
from one flip-flop to the next to produce the sequence of timing signals. Fig. 6-17(a) shows a
4-bit shift register connected as a ring counter. The initial value of the register is 1000. The sin
gle bit is shifted right with every clock pulse and circulates back from T3 to To. Each flip-flop
is in the I state once every four clock cycles and produces one of the four timing signals shown
in Fig. 6-17(c). Each output becomes a I after the negative-edge transition of a clock pulse
and remains I during the next clock cycle.

The timing signals can be generated also by a 2-bit counter that goes through four distinct
states. The decoder shown in Fig. 6-17(b) decodes the four states of the counter and generates
the required sequence of timing signals.

KA = B

K B = I

Kc = IJc = B'

The logic diagram of the counteds shown in Fig. 6-16(a). Since there are two unused states,
we analyze the circuit to determine their effect. !fthe circuit happens to be in state OIl because
of an error signal, the circuit goes to state 100 after the application of a clock pulse. This is
determined from inspection of the logic diagram by noting that when B = I, the next clock edge
complements A and clears eta 0, and when C = I, the next clock edge complements B. In a
similar manner, we can evaluate the next state from present state III to be 000.

The state diagram including the effect of the unused states is shown in Fig. 6-16(b). lfthe
circuit ever goes to one of the unused states because of an outside interference, the next
count pulse transfers it to one of the valid states and the circuit continues to count correctly.
Thus, the counter is self-correcting. A self correcting counter is one that if it happens to be
in one of the unused states, eventually reaches the normal count sequence after one or more
clock pulses.

240 Chapter 6 Registers and Counters

Table 6-7
State Table for Counter

Present Next
State State Flip-Flop Inputs

A B C A B C JA KA J, K, Jc Kc

a a a a a 1 a x a x 1 X
a a 1 a 1 a a x 1 X X 1
a 1 a 1 a a 1 x X 1 a x
1 a a 1 a 1 x a a x 1 X
1 a 1 1 1 a x a 1 x X 1
1 1 a a a a x 1 X 1 a x

242 Chapter 6 Registers and Counters Section 6-5 Other Counters 243

flops and 16 4-inpnt AND gates for the decoder. It is also possible to generate the timing sig
nals with a combination of a shift register and a decoder. In this way, the number of flip-flops
is less than a ring counter, and the decoder requires only 2-input gates. This combination is called
a Johnson counter.

E'
C'

Cf-"---ID E

CC

B'

BI-'-'---ID

C

A'

A
I-'-'---ID

C

D

Johnson Counter

A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable
states. The number of states can be doubled if the shift register is connected as a switch-tail ring
counter. A switch-tail ring counter is a circular shift register with the complement output of the
last flip-flop connected to the input of the first flip-flop. Fig. 6-18(a) shows such a shift regis
ter. The circular connection is made from the complement output of the rightmost flip-flop to
the input of the leftmost flip-flop. The register shifts its contents once to the right with every
clock pulse, and at the same time, the complement value of the E flip-flop is transferred into
the A flip-flop. Starting from a cleared state, the switch-tail ring counter goes through a sequence
of eight states, as listed in Fig. 6-18(b). In general, a k-bit switch-tail ring counter will go
through a sequence of 2k states. Starting from all D's, each shift operation inserts l's from the
left until the register is filled with all l's. In the following sequences, D's are inserted from the
left until the register is again filled with all D's.

CLK -+ -<~------l

(a) Four-stage switch-tail ring counter

(a) Ring-counter (initial value = 1000)

T
2

--"ne-- _
T] ___lnl- ----

2x4
decoder

(b) Counter and decoder

CLK

(c) Sequence of four timing signals

FIGURE 6-17
Generation of Timing Signals

To generate 2" timing signals, we need either a shift register with 2" flip-flops or an n-bit
binary counter together with an n-to-2"-line decoder. For example, 16 timing signals can be geu
erated with a 16-bit shift register conuected as a ring counter or with a 4-bit binary counter and
a 4-to-16-line decoder. In the first case, we need 16 flip-flops. In the second, we need four flip-

Sequence Flip-flop outputs AND gate required
number A B C E for output

1 0 0 0 0 A'E'
2 1 0 0 0 AB'
3 1 1 0 0 BC'
4 1 1 1 0 CE'
5 1 1 1 1 AE
6 0 1 1 1 A'B
7 0 0 1 1 B'C
8 0 0 0 1 C'E

(b) Count sequence and required decoding

FIGURE 6-18
Construction of a Johnson Counter

-.

245

IINo change
IIShift right
//Shift left
IIParallel load input

endcase
endmodule

Section 6-6 HDL for Registers and Counters

HDL Example 6-1

IIBehavioral description of
IIUniversal shift register
II Fig. 6-7 and Table 6-3
module shftreg (sl,sO,Pin,lfin,rtin,A,CLK,Clr);

input 51, sO; IISelect inputs
input Ifin, rtin; IISerial inputs
input CLK,Clr; IIClock and Clear
input (3:0J Pin; IIParallel input
output (3:0J A; IIRegister output
reg [3,0] A;
always @ (posedge CLK or negedge Clr)

if (-Clr) A = 4'bOOOO;
else

case ({sl,sO})
2'bOO, A A;
2'bOl, A {rtin,A[3,1]};
2'blO, A {A[2,01,lfin};
2'b11: A Pin;

asynchronously with a negative signal. Clr must be high for the register to respond to the pos
itive edge of the clock. The four clocked operations of the register are determined from the
values of the two select inputs in the case statement (s I and sO are concatenated into a 2-bit vec
tor after the case keyword). The shifting is specified by the concatenation of the serial input and
three flip-flops. For example, the statement

specifies a concatenation of the serial input for right shift (rtin) with flip-t1ops A3, A2, and
Al to form a 4-bit number, which is transferred to A [3:0]. This produces a shift right oper
ation. Note that only the function of the circuit has been described irrespective of any par
ticular hardware.

The structure of the register can be described by refening to the logic diagram of Fig. 6-7.
The diagram shows that the register is constructed with four multiplexers and four D flip-flops.
The structural description of the register is shown in HDL Example 6-2. There are two mod
ules in the example. The first module declares the inputs, outputs, and then instantiates the
stages of the register. The four instantiations specify the interconnections between the four
stages and provide the detail construction of the register as specified in the logic diagram. The
second module has two always blocks. The first always block describes the multiplexer and the
second describes the flip-flop. Together they define one stage of the register.

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide
outputs for 2k timing signals. The decoding gates are not shown in Fig. 6-18, but are speci
fied in the last column of the table. The eight AND gates listed in the table, when connected
to the circuit, will complete the construction of the Johnson counter. Since each gate is enabled
during one particular state sequence, the outputs of the gates generate eight tinting signals in
succession.

The decoding of a k-bit switch-tail ring counter to obtain 2k timing signals follows a regu
lar pattern. The all-D's state is decoded by taking the complement of the two extreme flip-flop
outputs. The all-I's state is decoded by taking the normal outputs of the two extreme flip-t1ops.
All other states are decoded from an adjacent I, 0 or 0, I pattern in the sequence. For exam
ple, sequence 7 has an adjacent 0, I pattern in flip-flops Band C. The decoded output is then
obtained by taking the complement of B and the normal output of C, or B'C.

One disadvantage of the circuit in Fig. 6-18(a) is that if it finds itself in an unused state, it
will persist in moving from one invalid state to another and never find its way to a valid state.
This difficulty can be corrected by modifying the circuit to avoid this undesirable condition.
One correcting procedure is to disconnect the output from flip-flop B that goes to the D input
of flip-flop C, and instead enable the input of flip-flop C by the function

Dc = (A + C)B

where Dc is the flip-flop input equation for the D input of flip-flop C.
Johnson counters can be constructed for any number of timing sequences. The number of

flip-flops needed is one-half the number of tinting signals. The number of decoding gates is
equal to the number of timing signals and only 2-input gates are needed.

Registers and counters can be described in HDL at either the behavioral or the structural level.
In the behavioral level, the register is specified by a description of the various operations that
it performs similar to a function table. A structural level description shows the circuit in terms
of a collection of components such as gates, flip-flops, and multiplexers. The various compo
nents are instantiated to fonn a hierarchical description of the design similar to a representa
tion of a logic diagram. We will use three circuits from this chapter to illustrate the two types
of descriptions.

Chapter 6 Registers and Counters

Shift Register

The universal shift register presented in Section 6-2 is a bidirectional shift register with paral
lei load. The four clocked operations that are performed with the register are specified in
Table 6-6. The register also can be cleared asynchronously. The behavioral description of a
4-bit universal shift register is shown in HDL Example 6-1. There are two selection inputs,
two serial inputs, a 4-bit parallel input, and a 4-bit parallel output. The always block describes
the five operations that can be performed with the register. The Clr input clears the register

6-6 HDl FOR REGISTERS AND COUNTERS

244

~------------------------------

246 Chapter 6 Registers and Counters Section 6-6 HDl for Registers and Counters 247

HDL Example 6-2 HDL Example 6-3

The hierarchy implied in the if-else statements complies with the precedence specified in
Table 6-6.

Thus, CO = 1 if Count = I, Load ~ 0, and A = 1111; otherwise CO = O. The always block
specifies the operation to be performed in the register depending on the values of Clr, Load, and
Count. A negative signal in elr resets A to O. Otherwise, ifClr = 1, one out of three operations
is executed during the positive edge of the clock. The if, else if, and else statements make the
decisions as follows:

Clear A to 0

No change in A

Load inputs to A

Increment A

IIData input
IIOutput carry
IIData output

IIBinary cQunter with parallel load
IISee Figure 6-14 and Table 6-6
module counter (Count,Load,IN,CLK,Clr,A,CO);

input Count,Load,CLK,Clr;
input [3: 0] IN;
output CO;
output [3:0] A;
reg [3:0] A;

assign CO = Count & -Load & (A == 4'b1111);
always @ (posedge CLK or negedge Clr)

if (-Clr) A ~ 4'bOOOO;
else if (Load) A IN;
else if (Count) A = A + l'b1;
else A = A;

endrnodule

if Clr = 0

else (Clr = 1 and Load = 0 and Count = 0)

else if (Clr = 1 and) Load = 1

else if (Clr = 1 and Load = 0 and) Count = 1

Ripple Counter

The structural description of a ripple counter is shown in HDL Example 6-4. The first module
instantiates fOUT complementing flip-flops defined in the second module as CF
(Q, eLK, Reset) _The clock (input C) of the fITst flip-flop is connected to the external Count

input (Count replaces CLK in FO). The clock input of the second flip-flop is connected to the
output of the first (AO replaces CLK iu Fl). Similarly, the clock of each of the other flip-flops
is connected to the output of the previous flip-flop. In this way, the flip-flops are chained
together to create a ripple counter as shown in Fig. 6-8(b).

The second module describes a complementing flip-flop with delay. The circuit of a com
plementing flip-flop is constructed by connecting the complement output to the D input. A reset

IIOne stage of shift register
module stage{iO,il,i2,i3,Q,select,CLK,Clr);

input iO,il,i2,i3,CLK,Clr;
input [1:0] select;
output Q;
reg Q;
reg D;

114xl multiplexer
always @ (iO or i1 or i2 or i3 or select)

case (select)
2'bOO: D iO;
2'bOl: D il;
2 'blO: D i2;
2'bll: D i3;

endcase
liD flip-flop

always @ (posedge eLK or negedge Clr)
if (-Clr) Q ~ l'bO;
else Q = D;

endmodule

IIStructural description of
IIUniversalshift register(see Fig. 6~7)

module SHFTREG (I,select,lfin,rtin,A,CLK,Clr);
input [3:0] I; IIParallel input
input [1:0] select; IIMode select
input Ifin,rtin,CLK,Clr; IISerial inputs,clock/clear
output [3:0] A; IIParallel output

IIInstantiate the four stages
stage STO (A[O],A[l],lfin,I[O],A[O],select,CLK,Clr);
stage STl (A[l] ,A[2] ,A[O],I[l] ,A[l] ,select,CLK,Clr);
stage ST2 (A[2] ,A[3] ,A[l] ,I[2] ,A[2j ,select,CLK,Clr);
stage ST3 (A[3],rtin,A[2],I[3],A[3],select,CLK,Clr);

endmodule

Synchronous Counter
HDL Example 6-3 describes the synchronous counter with paraJlelJoad from Fig. 6-14. Count,
Load, CLK, and Clr are inputs that determine the operation of the register according to the
function specified in Tab]e 6-6. The counter has four data inputs, four data outputs, and a carry
output. The carry output CO is generated by a combinational circuit and is specified with an
assign statement. CO = 1 when the count reaches 15 and the counter is in the count state.

248 Chapter 6 Registers and Counters Section 6-6 HDL for Registers and Counters 249

HDL Example 6-4

/IRipple counter (See Fig. 6-8(b))
module ripplecounter (AO,Al,A2,A3,Count,Reset);

output AO,Al,A2,A3;
input Count, Reset;

/IInstantiate complementing flip-flop
CF FO (AO,Count,Reset);
CF Fl (Al,AO,Reset);
CF F2 (A2,Al,Reset);
CF F3 (A3,A2,Reset);

endmodule

I/Complementing flip-flop with delay
//Input to D flip-flop = Q'

module CF (Q,CLK,Reset);
output Q;
input eLK, Reset;
reg Q;
always @ (negedge eLK or posedge Reset)

if (Reset) Q l'bO;
else Q = #2 (-Q); II Delay of 2 time units

endmodule

//Stimulus for testing ripple counter
module testcounter;

reg Count;
reg Reset;
wire AO,Al,A2,A3;

//Instantiate ripple counter
ripplecounter RC (AO,Al,A2,A3,Count,Reset);

always
#5 Count = -Count:

initial
begin

Count l'bO;
Reset l'bli

#4 Reset l'bO;
#165 $finish;

end
endmodule

input is included with the flip-flop in order to be able to initialize the counter. HDL simulators
cannot provide output values unless they are initialized to some value. The flip-flop is assigned
a delay of 2 time units from the time that the clock is applied to the time thatthe flip-flop com
plements. This is specified by the statement Q = #2 (-Q).

The third module in Example 6-4 provides stimnlus for simulating and testing the ripple
counter. The always statement generates a clock with a cycle of 10 time units. The flip-flops
trigger on the negative edge of the clock, which occurs at t = 10,20, 30, and every 10 time units.
The waveforms obtained from this simulation are shown in Fig. 6-19. The Count goes nega
tive every 10 ns. AO is complemented with each negative edge of Count but is delayed by 2 ns.
Each flip-flop is complemented when its previous flip-flop goes from I to O. After t = 80 ns,
all four flip-flops complement because the counter goes from 0111 to 1000. Each output is
delayed by 2 ns and because of that, A3 goes from 0 to I at t = 88 ns and from I to 0 at 168 ns.

testcounter.Reset

testcounterAO

testcQunter.Al

testcQunter.A2

testcounter.A3

(a) From 0 to 170ns

I 172~S, , 174ns 17~n~ I , 1
7Sns lsons IS2ns

1
84ns IS60s ISSns 1900s

1
9

testcounter.Couot I \ I \
testcounter.Reset

testcouoter.AO J \ !
testcounter.Al \

testcounterA2 \
testcounter.A3 I

(b) From 70 to 92 fiS

FIGURE 6-19
Simulation Output of HDl Example 6-4

REFERENCES

254 Chapter 6 Registers and Counters

Memory and
Programmable Logic

A memory unit is a device to which binary information is transferred for storage and from
which information is available when needed for processing. When data processing takes place,
information from the memory is transferred to selected registers in the processing unit. Inter
mediate and final results obtained in the processing unit are transferred back to be stored in mem
ory. Binary information received from an input device is stored in memory and information
transferred to an output device is taken from memory. A memory unit is a collection of cells
capable of storing a large quantity of binary information.

There are two types of memories that are used in digital systems: random-access memory
(RAM) and read-only memory (ROM). Random-nccess memory accepts new information for
storage to be available later for use. The process of storing new information into memory is
referred to as a memory write operation. The process of transferring the stored information
out of memory is referred to as a memory read operation. Random-access memory can perform
both the write and rend operations. Read-only memory can perfonn only the rend operation.
This means that a suitable binary information is already stored inside the memory, which can
be retlieved or read at any time. However, the existing information cannot be altered by writing
because the read-only memory can only read; it cannot write.

The read-only memory is a programmable logic device. The binary information that is stored
within a programmable logic device is specified in some fashion nnd then embedded within the
hardware. This process is referred to as programming the device. The word "programming" here
refers to a hardware procedure that specifies the bits that are inserted into the hardware con
figuration of the device.

The read-only memory (ROM) is one example of a programmable logic device (PLD). Other
such units are the programmable logic array (PLA), the programmnble array logic (PAL), and

255

INTRODUCTION7-1

MANO, M. M. and C R KIME 2000 L .
Saddle River, NJ: Pr~ntice Hall . ogle and Computer Design Fundamentals, 2nd ed. Upper

NELSON V. P, H. T. NAGLE, J. D. IRWIN, and B D C 19 . . '"
sis and Design. Upper Saddle River, NJ: Prentice ·Ha~~ROLL. 95. Dlgual Logle Clrcult Analy-

HAyES, 1. P. 1993. Introduction to Digital Logic Design Reading MA Addi Wi I
. ,. 800- es ey.

~;::~~jt 2000. Digital Design: Principles and Practices, 3rd ed. Upper Saddle River, NJ:

DIETMEYER, D. L. 1988. Logic Design ofDigital Systems, 3rd ed. Boston: Allyn Bacon.

Gajski, D. D. 1997. Principles ofDigital Design. Upper Saddle River, NJ: Prentice Hall
R .

OTII, C. H. 1992. Fundamentals ofLogic Design, 4th ed. St. Paul: West.

KATZ, R. H. 1994. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

~~~~r~~·~~~~~~~~~:~ng, Synthesis, and Rapid Prototyping with Verilog HDL. Upper Sad-

BHASKER, J. 1997. A Verilog HDLPrimer. Allentown, PA: Star Galaxy Press.

THOMAS, D. E., and P R. Moorby. 1998. Th U 'L
B even og Hardware Descnp'tion Language 4th ed.

oston: Kluwer Academic Publishers.

BHASKER,1. 1998. Veri/og HDL Synthesis. Allentown PA- Star Gal P,. axy ress.
PALNlTKAR, S. 1996 Veri/og HDL' A G'd D" i
Prentice Hall Title).' . Ul e to 19lta Design and Synthesis. SunSoft Press (A

1.

2.

3.

4.

5.

6.

7.

8.

9.
.,
"

10.

11.

12.

13.



256 Chapter 7 Memory and Programmable Logic
r

Section 7-2 Random-Access Memory

n data input lines

257

(a) Conventional symbol

FIGURE 7-1
Conventional and Array Logic Diagrams for OR Gate

(b) Array logic symbol k address lines ----+-

Read ----+-

Write ----+-

Memory unit
2k words

n bit perword

."

7-2

the field-programmable gate array (FPGA). A programmable logic device is an integrated cir
cuit with internal logic gates that are connected through electronic paths that behave similar to
fuses. In the original state of the device, all the fuses are intact. Programming the device involves
blowing those fnses along the paths that must be removed in order to obtain the particular con
figuration of the desired logic function. In this chapter, we introduce the configuration of pro
grammable logic devices and indicate procedures for their use in the design of digital systems.

A typical programmable logic device may have hundreds to millions of gates interconnected
through hundreds to thousands of internal paths. In order to show the internal logic diagram in a
conciseform, it is necessary to employ a special gate symbology applicable to array logic. Fig. 7-1
shows the conventional and array symbols for a multiple input OR gate. Instead of having mul
tiple input lines into the gate, we draw a single line along the gate. The input lines are drawn per
pendicular to this single line and are connected to the gate through internal fuses. In a similar
fashion, we can draw the array logic for an AND gate. This type of graphical representation for
the inputs of gates will be nsed throughout this chapter when drawing array logic diagrams.

RANDOM-ACCESS MEMORY

n data output lines

FIGURE 7-2
Block Diagram of a Memory Unit

The memory unit is specified by the number of words it contains and the number of bits in each
word. The address lines select one particular word. Each word in memory is assigned an identi
fication number, called an address, starting from 0 up to 2' - I, where k is the number of address
lines. The selection of a specific word inside memory is done by applying the k-bit address to the
address lines. A decoder accepts this address and opens the paths needed to select the word spec
Hied. Memories vary greatly in size and may range from 1,024 words, requiring an address of 10
bits, to 232 words, requiring 32 address bits. It is customary to refer to the number of words (or
bytes) in a memory with one of the letters K (kilo), M (mega), or G (giga). K is equailD 210

, M
is equal to 220

, and G is equal to 230
• Thus, 64K = 216,2M = 221

, and 4G = 232
•

Consider, for example, the memory unit with a capacity of IK words of 16 bits each. Since
lK = 1,024 = 210 and 16 bits constitute two bytes, we can say that the memory can accommo
date 2,048 = 2K bytes. Fig. 7-3 shows the possible content of the first three and the last three

Memory address
A memory unit is a collection of storage cells together with associated circuits needed to transfer
information in and out ofthe device. The time it takes to transfer information to or from any desired
random location is always the same, hence, the name random-access memory abbreviated RAM.

A memory unit stores binary information in groups of bits called words. A word in memory
is an entity of bits that move in and out of storage as a unit. A memory word is a group of I's
and O's and may represent a number, an instruction, one or more alphanumeric characters, or
any other binary-coded information. A group of eight bits is called a byte. Most computer
memories use words that are multiples of eight bits in length. Thus, a 16-bit word contains two
bytes, and a 32-bit word is made up of four bytes. The capacity of a memory unit is usually stated
as the total number of bytes that it can store.

The communication between a memory and its environment is achieved through data input
and output lines, address selection lines, and control lines that specify the direction of trans
fer. A block diagram of the memory unit is shown in Fig. 7-2. The n data input lines provide
the information to be stored in memory and the n data output lines supply the information com
ing out of memory. The k address lines specify the particular word chosen among the many avail
able. The two control inputs specify the direction of transfer desired: The write input causes
binary data to be transferred into the memory, and the read input causes binary data to be trans
ferred out of memory.

Binary

0000000000

0000000001

0000000010

1111111101

1111111110

1111111111

FIGURE 7-3
Content of a 1024 X 16 Memory

decimal

o

1

2

1021

1022

1023

Memory content

1011010101011101

1010101110001001

0000110101000110

1001110100010100

0000110100011110

1101111000100101



258 Chapter 7 Memory and Programmable Logic Section 7-2 Random-Access Memory 259

HDL Example 7-1

Memory Operation

None
Write to selected word
Read from selected word

//64 x 4 memory

//write
//High impedance state

x
o
1

Read/Write

Dataln;
4 ' bz;

o
1
1

Memory E.nable

Table 7-1
Control Inputs to Memory Chip

//Read and write operations of memory_
//Memory size is 64 words of 4 bits each.
module memory (Enable,ReadWrite,Address,Dataln,DataOut);

input Enable, ReadWrite;
input [3:0] DataIn;
input [5:0] Address;
output [3:0] DataOut;
reg [3:0] DataOut;
reg [3:01 Mern [0:63J:
always @ (Enable or ReadWrite)

if (Enable)
if (ReadWrite)
DataOut = Mem[Address]; IIRead
else
Mern[Address]
else DataOut

endmodule

Memory Description in HDL

Memory is modeled in Verilog HDL by an array of registers. It is declared with a reg keyword
using a two-dimensional array. The first number in the array specifies the number of bits in a
word and the second gives the number of words in memory. For example, a memory of 1,024
words with 16 bits per word is declared as

reg[15:0] rnernword[O:1023l:

This describes a two-dimensional array of 1,024 registers, each containing 16 bits. The num
ber in memword specifies the total number of words in memory and is equivalent to the address
of the memory. For example, rnernword [512] refers to the l6-bit memory word at address 512.

The operation of a memory unit is illustrated in HDL Example 7-1. The memory has 64
words of four bits each. There are two control inputs: Enable and ReadWrite. The DataIn and
DataOut lines have four bits each. The input Address must have six bits (since 2' = 64). The
memory is declared as a two-dimensional array of registers with Mem specifying the address

The two operations that a random-access memory can perform are the write and read opera
tions. The write signal specifies a transfer-in operation and the read signal specifies a transfer
out operation. On accepting one of these control signals, the internal circuits inside the memory

provide the desired operation.
The steps that must be taken for the purpose of transferring a new word to be stored into

memory are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Apply the data bits that must be stored in memory to the data input lines.

3. Activate the write input.

The memory unit will then take the bits from the input data lines and store them in the word

specified by the address lines.
The steps that must be taken for the purpose of transferring a stored word out of memory

are as follows:

1. Apply the binary address of the desired word to the address lines.

2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them to the output data lines. The content of the selected word does not change

after reading.
Commercial memory components available in integrated-circuit chips sometimes provide

the two control inputs for reading and writing in a somewhat different configuration. Instead
of having separate read and write inputs to control the two operations, most integrated circuits
provide two other control inputs: one input selects the unit and the other determines the oper
ation. The memory operations that result from these control inputs are specified in Table 7-1.

The memory enable (sometimes called the chip select) is used to enable the particular mem
ory chip in a multichip implementation of a large memory. When the memory enable is inac
tive, the memory chip is not selected and no operation is performed. When the memory enable
input is active, the read/write input determines the operation to be performed.

words of this memory. Each word contains 16 hits that can he divided into two hytes. The words
are recognized by their decimal address from 0 to 1,023. The equivalent binary address consists
of 10 bits. The first address is specified with ten O's, and the last address is specified with ten l's.
This is because 1,023 in binary is equal to 1111111111. A word in memory is selected hy its
binary address. When a word is read or written, the memory operates on all 16 bits as a single unit.

The lK X 16 memory of Fig. 7-3 has 10 bits in the address and 16 bits in each word. As
another example, a 64K X 10 memory will have 16 bits in the address (since 64K = 2

16
) and

each word will consist of 10 bits. The numher of address bits needed in a memory is depend
ent on the total number of words that can be stored in the memory and is independent of the
number of bits in each word. The number of bits in the address is determined from the
relationship 2' 2': m, where m is the total number of words, and k is the number of address bits

needed to satisfy the relationship.

Write and Read Operations



-.

261

n

n

T3

T3

(b) Read cycle

12

12

50 osee

n

-+-- 20 nsec -----+-

________________~x Data valid >C

Clock

Memory~ Address valid >C
address ~~-------------------

L
\L- -----l!
~ Data valid >C-A~ _

Memory~
enable

Read!
Write

Data
input

Memory~ Address valid >C
address ~~-------...,-----------

L

Clock

(a) Write cycle

Section 7-2 Random-Access Memory

Memory~
enable

Data
output

Read!
Write

FIGURE 7-4

Memory Cycle Timing Waveforms

The read cycle shown in Fig. 7-4(b) has an address for the memory provided by the CPU.
The memory enable and read/write signals must be in their high level for a read operation. The
memory places the data of the word selected by the address into the output data lines within a
50 ns interval (or less) from the time that the memory enable is activated. The CPU can trans
fer the data into one of its internal registers during the negative transition of T3. The next Tl
cycle is available for another memory request.

Mem [Address] +- Dataln;

This causes a transfer from the 4-bit DataIn lines into the memory word selected by the Address.
When Enable is equal to 0, the memory is disabled and the outputs are assumed to be in a high
impedance state. This is symbolized by the keyword z, indicating that the memory has three
state outputs.

of the 64 words. A memory operation occurs when the Enable input is active. The ReadWrite
input determines the type of operation. If ReadWrite is I, the memory performs a read opera
tion symbolized by the statement

DataOut +- Mem [Address];

This causes a transfer of four bits from the selected memory word specified by the Address into
the DataOut lines. If ReadWrite is 0, the memory performs a write operation symbolized by
the statement

Chapter 7 Memory and Programmable Logic

Timing Waveforms

The operation of the memory unit is controlled by an external device such as a central processing
unit (CPU). The CPU is usually synchronized by its own clock. The memory, however, does
not employ an internal clock. Instead, its read and write operations are specified by control
inputs. The access time of a memory is the time required to select a word and read it. The cycle
time of a memory is the time required to complete a write operation. The CPU must provide
the memory control signals in such a way as to synchronize its internal clocked operations
with the read and write operations of memory. This means that the access time and cycle time
of the memory must be within a time equal to a fixed number of CPU clock cycles.

Assume as an example that a CPU operates with a clock frequency of 50 MHz, giving a
period for one clock cycle of 20 ns. Suppose now that the CPU communicates with a memo
ry whose access time and cycle time does not exceed 50 TIS. That means that the write cycle ter
minates the storage of the selected word within a 50-ns interval and that the read cycle provides
the output data of the selected word within 50 ns or less. (The two numbers are not always the
same.) Since the period of the CPU cycle is 20 ns, it will be necessary to devote at least two
and a half, and possibly three, clock cycles for each memory request.

The memory timing shown in Fig. 7-4 is for a CPU with 50 MHz clock and a memory with
50 us maximum cycle time. The write cycle in part (a) shows three 20 ns cycles-Tl, T2, and
T3. For a write operation, the CPU must provide the address and input data to the memory. This
is done at the beginning of TI. (The two lines that cross each other in the address and data
waveforms designate a possible change in value of the multiple lines.) The memory enable
and the read/write signals must be activated after the signals in the address lines are stable to
avoid destroying data in other memory words. The memory enable signal switches to the high
level and the read/write signal switches to the low level to indicate a write operation. The two
control signals must stay active for at least 50 TIS. The address and data signals must remain sta
ble for a short time after the control signals are deactivated. At the completion of the third
clock cycle, the memory write operation is completed and the CPU can access the memory again
with the next Tl cycle.

260



263

(b) Block diagram

Output

R

Select

s

(a) Logic diagram

Section 7-3 Memory Decoding

FIGURE 7-5
Memory Cell

~---o<::' I-----~--<--Read/Write

The internal construction of a random-access memory of m words and n bits per word consists
of m X n binary storage cells and associated decoding circuits for selecting individual words.
The binary storage cell is the basic building block of a memory unit. The equivalent logic of a
binary cell that stores one bit of information is shown in Fig. 7-5. The storage part of the cell
is modeled by an SR latch with associated gates. Actually, the cell is an electronic circuit with
four to six transistors. Nevertheless, it is possible and convenient to model it using logic sym
bols. A binary storage cell must be very small in order to be able to pack as many cells as pos
sible in the small area available in the integrated circuit chip. The binary cell stores one bit in
its internal latch. The select input enables the cell for reading or writing and the read/write
input detennines the cell operation when it is selected. A 1 in the read/write input provides the
read operation by forming a path from the latch to the output tenninal. A 0 in the read/write
input provides the write operation by forming a path from the input terminal to the latch.

The logical construction of a small RAM is shown in Fig. 7-6. It consists of four words of
four bits each and has a total of 16 binary cells. The small blocks labeled Be represent the
binary cell with its three inputs and one output as specified in Fig. 7-5(b). A memory with four
words needs two address lines. The two address inputs go through a 2 X 4 decoder to select
one of the four words. The decoder is enabled with the memory enable input. When the mem
ory enable is 0, all outputs of the decoder are 0 and none of the memory words are selected.
With the memory select at I, one of the four words is selected, dictated by the value in the two
address lines. Once a word has been selected, the read/write input detennines the operation. Dur
ing the read operation, the four bits althe selected word go through OR gates to the output ter
minals. (Note that the OR gates are drawn according to the array logic established in Fig. 7-1.)
During the write operation, the data available in the input lines are transferred into the four
binary cells of the selected word. The binary cells that are not selected are disabled and their
previous binary values remain unchanged. When the memory select input that goes into the
decoder is equal to 0, none of the words are selected and the contents of all cells remain
unchanged regardless of the value of the read/write input.

Input ~r---++-l

Internal Construction

In addition to the storage components in a memory unit, there is a need for decoding circuits
to select the memory word specified by the input address. In this section, we present the internal
construction of a random-access memory and demonstrate the operation of the decoder. To be
able to include the entire memory in one diagram, the memory unit presented here has a small
capacity of 16 bits arranged in four words of 4 bits each. An example of a two-dimensional
coincident decoding arrangement is presented to show a more efficient decoding scheme that
is used in large memories. We then show an example of address multiplexing commonly used
in DRAM integrated circuits.

Chapter 7 Memory and Programmable Logic

MEMORY DECODING7-3

262

Types of Memories

The mode of access of a memory system is detennined by the type of components used. In a
random-access memory, the word locations may be thought of as being separated in space, with
each word occupying one particular location. In a sequential-access memory, the information
stored in some medium is not immediately accessible, but is available only at certain intervals of
time. A magnetic disk or tape unit is of this type. Each memory location passes the read and write
heads in turn, but information is read out only when the requested word has been reached. In a
random-access memory, the access time is always the same regardless of the particular location
of the word. In a sequential-access memory, the time it takes to access a word depends on the
position of the word with respect to the reading head position; therefore, the access time is variable.

Integrated circuit RAM units are available in two possible operating modes, static and dynamic.
The static RAM (SRAM) consists essentially of intemallatches that store the binary information.
The stored information remains valid as long as power is applied to the unit. The dynamic RAM
(DRAM) stores the binary infonnation in the fonn of electric charges on capacitors. The capaci
tors are provided inside the chip by MOS transistors. The stored charge on tbe capacitors tends to
discharge with time and the capacitors must be periodically recharged by refreshing the dynamic
memory. Refreshing is done by cycling through the words every few milliseconds to restore the
decaying charge. DRAM offers reduced power consumption and larger storage capacity in asingle
memory chip. SRAM is easier to use and has shorter read and write cycles.

Memory units that lose stored information when power is tumed off are said to be volatile.
Integrated circuit RAMs, both static and dynamic, are of this category since the binary cells need
external power to maintain the stored information. In contrast, a nonvolatile memory, such as
magnetic disk, retains its stored information after removal of power. This is because the data
stored on magnetic components is represented by the direction of magnetization, which is
retained after power is turned off. Another nonvolatile memory is the read-only memory (ROM).
A nonvolatile property is needed in digital computers to store programs that are needed after
the computer is turned off. Programs and data that cannot be altered are stored in ROM. Other
large programs are maintained on magnetic disks. When power is turned on, the computer can
use the programs from ROM. The other programs residing on a magnetic disk are, then trans
ferred into the computer RAM as needed. Before turning the power off, the binary information
from the computer RAM is transferred into tbe disk for the information to be retained.



Coincident Decoding
A decoder with k inputs and 2' outputs requires 2' AND gates with k inputs per gate. The total
number of gates and the number of inputs per gate can be reduced by employing two decoders
in a two-dimensional selection scheme. The basic idea in two-dimensional decoding is to
arrange the memory cells in an array that is close as possible to square. In this configuration,
two k/2-input decoders are used iustead of one k-input decoder. One decoder performs the row
selection and the other the column selection in a two-dimensional matrix configuratIOn.

The two-dimensional selection pattern is demonstrated in Fig. 7-7 for a IK-word memory.
Instead of using a single 10 X 1,024 decoder, we use two 5 X 32 decoders. With the single

265

I I I I I

5 x 32 decoder

0 1 2 .. 20 .. 31

0

1
- 2 V "-

~
binary address

- 5 X 32 01100 10100
decoder -- --

- 12 X Y

-

31

Y

Section 7-3 Memory Decoding

x

FIGURE 7-7
Two-Dimensional Decoding Structure for a 1K-Word Memory

decoder we would need 1,024 AND gates with 10 inputs in each. In the two-decoder case, we
need 64 AND gates with five inputs in each. The five most significant bits of the address go to
input X and the five least significant bits go to input Y. Each word within the memory array is
selected by the coincidence of one X line and one Y line. Thus, each word in memory is selected
by the coincidence between I of 32 rows and I of 32 columns for a total of 1,024 words. Note
that each intersection represents a word that may have any number of bits.

As an example, consider the word whose address is 404. The 10-bit binary equivalent of 404
is 01100 10100. This makes X = 01100 (binary 12) and Y = 10100 (binary 20). The n-bit word
that is selected lies in the X decoder output number 12 and the Y decoder output number 20.
All the bits of the word are selected for reading or writing.

Address Multiplexing

The SRAM memory cell modeled in Fig. 7-5 typically contains six transistors. In order to build
memories with higher density it is necessary to reduce the number of transistors in a cell. The
DRAM cell contains a MOS transistor and a capacitor. The stored charge on the capacitor dis
charges with time and the memory cells must be periodically recharged by refreshing the memory.
Because of their simple cell structure, DRAMs typically have four times the density ofSRAM. This
allows four times as much memory capacity to be placed on a given size chip. The cost per bit of
DRAM storage is three to four times less than SRAM. A further cost savings is realized because

Word 31--+-+---,--+'-/---,,---f-+-T---j----t-!

Word 0~--i----.----1-~'---+-T--'-/--

EN

Input data

Commercial random-access memories may have a capacity of thousands of words and each
word may range from I to 64 bits. The logical construction of a large capacity memory would
be a direct extension of the configuration shown here. A memory with 2

k
words of n bits per

word requires k address lines that go into a k x 2k decoder. Each one of the decoder outputs

selects one word of n bits for reading or writing.

Output data

FIGURE 7-6
Diagram of a 4 x 4 RAM

ReadfWrite ---J~_-......._+_--4--_r---~-t_--~

Memory
enable

Chapter 7 Memory and Programmable Logic

Address
Word 1

inputs

2x4
decoder

Word 2

264



Chapter 7 Memory and Programmable Logic

of Ihe lower power requirement of DRAM cells. These advantages make DRAM Ihe preferred tech
nology for large memories. DRAM chips are available in capacity of64K to 256M bits. Most DRAMs
have a I-bit word size, so several chips have to be combined to produce a larger word SIze.

Because oflheir large capacity, Ihe address decoding'of DRAMs is arranged in two-dimensional
array and larger memories often have multiple arrays. To reduce Ihe number of pins in the IC
package, designers utilize address multiplexing whereby one set of address mp~t pms accommo
dates the address components. In a two-dimensional array, the address IS applied m two parts at
different times, with the row address first and the column address second. Since Ihe same set of
pins is used for both parts of Ihe address, the size of the package is decreased significantly.

We will use a 64K-word memory to illustrate the address mulliplexmg Idea. A diagram of the
decoding configuration is shown in Fig. 7-8. The memory consists of two-dimensional array of

ERROR DETECTION AND CORRECTION

The complexity level of a memory array may cause occasional errors in storing and retrieving
Ihe binary information. The reliability of a memory nnit may be improved by employing error
detecting and correcting codes. The most common error-detection scheme is the parity bit.
(See Section 3-8.) A parity bit is generated and stored along with the data word in memory. The
parity of the word is checked after reading it from memory. The data word is accepted if the
parity of the bits read out is correct. If the parity checked results in an inversion, an error is
detected, bnt it cannot be corrected.

An error-correcting code generates multiple parity check bits that are stored with the data
word in memory. Each check bit is a parity over a group of bits in Ihe data word. When the word
is read back from memory, the associated parity bits are also read from memory and compared
with a new set of check bits generated from the read data. If the check bits are correct, it sig
nifies that no error has occurred. If the check bits do not compare with the stored parity, they
generate a unique pattern, called a syndrome, that can be nsed to identify the bit in error. A sin
gle error occurs when a bit changes in value from 1 to 0 or from 0 to 1 during the write and
read operation. If the specific bit in error is identified, then the error can be corrected by com
plementing the erroneous bit.

267Section 7-4 Error Detection and Correction

ceIls arranged as 256 rows by 256 columns for a total of 28 X 28 = 216 = 64K words. There is
a single data input line, a single data output line, and a ReadlWrite control. There is an 8-bit
address input and two address strobes. The address strobes are included for enabling the row and
column address into their respective registers. The row address strobe RAS enables the 8-bit row
register, and Ihe column address strobe CAS enables the 8-bit column register. The bar on top of
Ihe strobe symbol name indicates that Ihe registers are enabled on the zero-level of the signal.

The 16-bit address is applied to the DRAM in two steps using RAS and CAS. Initially both
strobes are in the I state. The 8-bit row address is applied to the address inputs and RAS is
changed to O. This loads the row address into the row address register. RAS also enables the
row decoder so it can decode the row address and select one row of the array. After a time
equivalent to the settling time of Ihe row selection, RAS goes back to the I level. The 8-bit col
umn address is Ihen applied to the address inputs and CAS is driven to the 0 state. This trans
fers the column address into the colnmn register and enables Ihe colnmn decoder. At this point,
Ihe two parts of the address are in their respective registers, the decoders have decoded them
to select the one cell corresponding to the row and column address, and a read or write opera
tion can be performed on Ihat cell. CAS mnst go back to the I level before initiating another
memory operation.

7-4

ReadlWrite

8-bit column
register

8 X 256
decoder

1

8-bit 8 X 256
256 X 256

row decoder
memory f--

register cell array

RAS

8-bit
address

CAS

266

Hamming Code

FIGURE 7-8
Address Multiplexing for a 64K DRAM

Data
in

Data
out

One of the most common error-correcting codes used in random-access memories was devised
by R. W. Hamming. In the Hamming code, k parity bits are added to an n-bit data word, form
ing a new word of n + k bits. The bit positions are numbered in sequence from 1 to n + k.
Those positions numbered as a power of 2 are reserved for the parity bits. The remaining bits



I"

269

2-4
5-11

12-26
27-57
58-t20

Range of
Data Bits, n

3
4
5
6
7

Section 7-4 Error Detection and Correction

Number of
Check BIts, k

Cs C4 C2 CI

For no error: 0 0 0 0

With error in bit I: 0 0 0 I

With error in bit 5: 0 I 0 I

Thus, for no error, we have C = 0000; with an error in bit I, we obtain C = 0001; and with
an error in bit 5, we get C = 0101. The binary number of C, when it is not equal to 0000, gives
the position of the bit in error. The error can be corrected by complementing the corresponding
bit. Note that an error can occur in the data word or in one of the parity bits.

The Hamming code can be used for data words of any length. In general, the Hamming code
consists of k check bits and n data bits for a total of n + k bits. The syndrome value C consists
of k bits and has a range of 2k values between 0 and 2k

- 1. One of these values, usually zero,
is used to indicate that no enor was detected, leaving 2k

- 1 values to indicate which of the
n + k bits was in error. Each of these 2k

-;- 1 values can be used to uniquely describe a bit in
error. Therefore, the range of k must be equal to or greater than n + k, giving the relationship

2k
- I 2': n + k

Table 7-2
Range of Data Bits for k Check Bits

Solving for n in terms of k, we obtain

2k
- I - k 2': n

This relationship gives a formula for establishing the number of data bits that can be used in
conjunction with k check bits. For example, wheu k = 3, the number of data bits that can be
usedisn oS (23 -1- 3) = 4.Fork = 4, we have 24 -I - 4 ~ ll,givingn oS II. The
data word may be less than II bits, but must have at least 5 bits, otherwise, only 3 check bits
will be needed. This justifies the use of 4 check bits for the 8 data bits in the previous exam
ple. Ranges of n for various values of k are listed in Table 7-2.

The grouping of bits for parity generation and checking can be determined from a list of the
binary numbers from 0 through 2' - 1. The least significant bit is a I in the binary numbers

In the first case, there is no error in the 12-bit word. In the second case, there is an error in bit
position number 1 because it changed from 0 to 1. The third case· shows an error in bit posi
tion 5 with a change from 1 to O. Evaluating the XOR of the corresponding bits, we determine
the four check bits to be as follows:

o
12

Error in bit I

Error in bit 5

No error

9 10 11 12

o I 0 0

o I 0 0

o I 0 0I

8

I

567

I 0 0

I 0 0

o 0 0I

3 4

I I

I

I 2

o 0

I 0

o 0

Bit position:

00111001010

3 4 5 6 7 8 9 10 11Bit position: I 2

WHen the 12 bits are read from memory, they are checked again for possible errors. The parity
is checked over the same combination of bits including the patity bit. The 4 check bits are eval

uated as follows:

CI = XOR of bits (1,3,5,7,9,11)

C2 = XORofbits (2, 3, 6, 7,10,11)

C4 ~ XOR of bits (4, 5, 6, 7,12)

Cs = XOR of bits (8, 9, 10, 11, 12)

A 0 check bit designates an even parity over the checked bits and a I designates an odd patity.
Since the bits were stored with even parity, the result, C = CsC4 C2 CI = 0000, mdIcates that
no error has occurred. However, if C '" 0, then the 4-bit binary number formed by the check
bits gives the position of the erroneous bit. For example, consider the following three cases:

Chapter 7 Memory and programmable Logic

are the data bits. The code can be used with words of any length. Before giving the general char
acteristics of the code, we will illnstrate its operation with a data word of eight bits.

Consider, for example, the 8-bit data word 11000100. We include four parity bits with the

8-bit word and arrange the 12 bits as follows:

Bit position: I 2 3 4 5 6 7 8 9 10 II 12

PI P
2

IP,100Ps OIOO

The 4 parity bits, PI' P
2

, P
4

, and Ps, are in positions 1,2,4, and 8, respectively. The 8 bits of
the data word are in the remaining positions. Each parity bit is calculated as follows:

PI = XORofbits (3, 5, 7, 9,11) = I Ell I Ell OEllO Ell 0 = 0

P
2

= XOR of bits (3, 6, 7,10,11) = I Ell 0 Ell 0 Ell I Ell 0 = 0

P, = XOR of bits (5, 6, 7,12) = I Ell 0 Ell 0 Ell 0 ~ I

Pg = XOR of bits (9, 10, 11, 12) = 0 Ell I Ell 0 Ell 0 ~ I

Remember that the exclusive-OR operation performs the odd function. It is equal to I for an odd
number of 1's in the variables and to 0 for an even number of 1's. Thus, each parity bit is set so
that the total number of I's in the checked positions, including the parity bit, is always even.

The 8-bit data word is stored in memory together with the 4 parity bits as a 12-bit compos
ite word. Substituting the four P bits in their proper positions, we obtain the 12-bit composite

word stored in memory

268



270 Chapter 7 Memory and Programmable Logic Section 7-S Read-Only Memory 271

FIGURE 7-10

Internal logic of a 32 x 8 ROM

inputs because it does not have a write operation. Integrated circuit ROM chips have one or more
enable inputs and sometimes come with three-state outputs to facilitate the construction of
large arrays of ROM.

Consider for example a 32 X 8 ROM. The unit consists of 32 words of 8 bits each. There
are five input lines that form the binary numbers from 0 through 31 for the address. Fig. 7-10
shows the internal logic construction of the ROM. The five inputs are decoded into 32 distinct
outputs by means of a 5 X 32 decoder. Each output of the decoder represents a memory address.
The 32 outputs of the decoder are connected to each of the eight OR gates. The diagram shows
the array logic convention used in complex circuits (see Fig. 6-1). Each OR gate must be con
sidered as having 32 inputs. Each output of the decoder is connected to one of the inputs of each
OR gate. Since each OR gate has 32 input connections and there are 8 OR gates, the ROM
contains 32 X 8 = 256 internal connections. In general, a 2' X n ROM will have an internal
k X 2' decoder and n OR gates. Each OR gate has 2' inputs, which are connected to each of
the outputs of the decoder.

j-----+- n outputs (data)2k X n
ROM

0

1
/0

2
/) 3

/2
5 X 32

decoder

/3 28

/4 29

30

31

k inputs (address)-----+-

FIGURE 7-9
ROM Block Diagram

1,3,5,7, and so on. The second significant bit is a 1 in the binary numbers 2, 3, 6, 7, and so
on. Comparing these numbers with the bit positions used in generating and checking parity
bits in the Hamming code, we note the relationship between the bit groupings in the code and
the position of the I-bits in the binary count sequence. Note that each group of bits starts with
a number that is a power of 2 such as 1, 2, 4, 8, 16, etc. These numbers are also the position
numbers for the parity bits.

7-5 READ-ONLY MEMORY

This scheme may detect more than two errors, but is not guaranteed to detect all such errors.
Integrated circuits use a modified Hamming code to ,generate and check parity bits for a

single-error correction, double-error detection. The modified Hamming code uses a more
efficient parity configuration that balances the number of bits used to calculate the XOR op
eration. A typical IC that uses an 8-bit data word and a 5-bit check word is IC type 74637.
Other integrated circuits are available for data words of 16 and 32 bits. These circuits can be
used in conjunction with a memory unit to correct a single error or detect double errors during
the write and read operations.

A read-only memory (ROM) is essentially a memory device in which permanent binary
information is stored. The binary information must be specified by the designer and is then
embedded in the unit to form the required interconnection pattern. Once the pattern is estab
lished, it stays within the unit even when power is turned off and on again.

A block diagram of a ROM is shown in Fig. 7-9. It consists of k inputs and n outputs. The
inputs provide the address for the memory and the outputs give the data bits of the stored word
which is selected by the address. The number of words in a ROM is determined from the fact
that k address input lines are needed to specify 2' words. Note that ROM does not have data

Single-Error Correction, Double-Error Detection

The Hamming code can detect and correct only a single error. Multiple errors are not detected.
By adding another parity bit to the coded word, the Hamming code can be used to correct a
single error and detect double errors. If we include this additional parity bit, then the previous
I2-bit coded word becomes OOlllOOIOIOOPI3, where P13 is evaluated from the exclusive-OR
of the other 12 bits. This produces the 13-bit word 0011100101001 (even parity). When the
I3-bit word is read from memory, the check bits are evaluated and also the parity P over the
entire 13 bits. If P = 0, the parity is correct (even parity), but if P = 1, then the parity over
the 13 bits is incorrect (odd parity). The following four cases can occur:

If C = 0 and P = 0, no error occurred

If C '" 0 and P = I, a single error occurred that can be corrected

If C '" 0 and P = 0, a double error occurred that is detected but that cannot be corrected

If C = 0 and P = 1 An error occurred in the P13 bit



FIGURE 7-11

Programming the ROM According to Table 7-3

Combinational Circuit Implementation

It was shown in Section 4-8 that a decoder generates the 2' minterms of the k input variables.
By inserting OR gates to sum the minterms of Boolean functions, we were able to generate any
desired combinational circuit. The ROM is essentially a device that includes both the decoder
and the OR gates within a single device. By choosing connections for those rnintenns that are
included in the function, the ROM outputs can be programmed to represent the Boolean func
tions of the output variables in a combinational circuit.

The internal operation of a ROM can be interpreted in two ways. The first interpretation is that
of a memory unit that contains a fixed pattern of stored words. The second interpretation is of a
unit that implements a combinational circuit. From this point ofview, each output tenninal is con
sidered separately as the output of a Boolean function expressed as a sum of minterms. For example,
the ROM of Fig. 7-11 may be considered as a combinational circuit with eight outputs, each being
a function of the five input vatiables. Output A7 can be expressed in sum of minterms as

A7(I,,!3,!2,!I,!O) = L(O, 2, 3, ... ,29)

(The three dots represent minterms 4 through 27, which are not specified in the figure.) A con
nection marked with X in the figure produces a minterm for the sum. All other crosspoint are
not connected and are not included in the sum.

In practice, when a combinational circuit is designed by means of a ROM, it is not neces
sary to design the logic or to show the internal gate connections inside the unit. All that the
designer has to do is specify the particular ROM by its Ie number and provide the ROM truth
table. The truth table gives all the information for programming the ROM. No internal logic
diagram is needed to accompany the truth table.

The 256 intersections in Fig. 7-10 are programmable. A programmable connection between
two lines is logically equivalent to a switch tbat can be altered to either be close (meaning that
the two lines are connected) or open (meaning that the two lines are disconnected). The pro
grammable intersection between two lines is sometimes called ~ crosspoint. Vari~us physical
devices are used to implement crosspoint switches. One of the SImplest technologIes employs
a fuse that normally connects the two points, but is opened or "blown" by applying a high-

voltage pulse into the fuse. .
The internal binary storage of a ROM is specified by a truth table that shows the word con

tent in each address. For example, the content of a 32 X 8 ROM may be specified with a truth
table similar to the one shown in Table 7-3. The truth table shows the five inputs under which
are listed all 32 addresses. At each address, there is stored a word of 8 bits, which is listed
under the outputs columns. The table shows only the first four and the last four words in the
ROM. The complete table must include the list of all 32 words.

The hardware procedure that programs the ROM results in blowing fuse links according to
a given truth table. For example, programming the ROM according to the truth table given by
Table 7-3 results in the configuration shown in Fig. 7-11. Every 0 listed in the truth table spec
ifies a no connection and every 1 listed specifies a path that is obtained by a connection. For
example, the table specifies the 8-bit word 1011 0010 for permanent storage at address 3. The
four O's in the word are programmed by blowing the fuse links between output 3 of the decoder
and the inputs of the OR gates associated with outputs A6 , A3 , A2 , and Ao· The four I's in the
word are marked in the diagram with a X to denote a connection in place of a dot used for per
manent connection in logic diagrams. When the input of the ROM is 00011, all the outputs of
the decoder are 0 except for output 3, which is at logic 1. The signal equivalent to logic I at
decoder output 3 propagates through the connections to the OR gate outputs ofA7 , As,A" and
AI' The other four outputs remain at O. The result is that the stored word 10110010 IS applIed

to the eight data outputs.

M

272 Chapter 7 Memory and Programmable Logic Section 7-5 Read-Only Memory 273

Table 7-3
ROM Truth Table (Partial) 0

Outputs IInputs 10
2

14 B 12 11 10 A7 A6 A5 A4 A3 A2 Al AO
/1 3

0 0 0 0 0 I 0 I I 0 I I 0 /2
5 X 32

0 0 1 I 1 0 1 decoder
0 0 0 0 1 0

1 1 0 0 0 1 0 1 I /3 280 0 0 1 0

0 0 0 1 1 1 0 1 1 0 0 1 0 /, 29

30

1 1 1 0 0 0 0 0 0 1 0 0 1 31

1 1 1 0 1 1 1 1 0 0 0 1 0

1 1 1 1 0 0 1 0 0 1 0 1 0

1 1 1 1 1 0 0 1 1 0 0 1 1



The required paths in a ROM may be programmed in four different ways. The first is called mask
p~ogramr:zingand is done by the semiconductor company during the last fabrication process
of the umt. The procedure for fabricating a ROM requires that the customer fill out the truth
table he wishes the ROM to satisfy. The truth table may be submitted in a special form provided
by the manufacturer or in a specified format on a computer output medium. The manufacturer
makes the corresponding mask for the paths to produce the l's and O's according to the cus
tomer's truth table. ~his procedure is costly because the vendor charges the customer a special
fee for custom masking the particular ROM. For this reason, mask programming is economical
only if a large quantity of the same ROM configuration is to be ordered.

For small quantities, it is more economical to use a second type of ROM called program
mable re,ad-only memory or PROM. When ordered, PROM units contain all the fuses intact giv
Ing all I s In the bIts of the stored words. The fuses in the PROM are blown by application of
a hIgh-voltage pulse to the device through a special pin. A blown fuse defines a binary 0 state
and an intact fuse gives a binary 1 state. This allows the user to program the PROM in the lab
?ratory to achieve the desired relationship between input addresses and stored words. Special
Instruments called PROM programmers are available commercially to facilitate this procedure.
In any case, all procedures for programming ROMs are hardware procedures even though the
word programming is used.

The hardware procedure for programming ROMs or PROMs is irreversible and, once pro
grammed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been
established, the unit must be discarded if the bit pattern is to be changed. A third type of ROM
IS the erasable PROM or EPROM. The EPROM can be restructured to the initial state even
though it has been programmed previously. When the EPROM is placed under a special ultra
violet light for a given period of time, the short wave radiation discharges the internal floating
gates that serve as the programmed connections. After erasure, the EPROM returns to its ini
tial state and can be reprogrammed to a new set of values.
. The fourth type of ROM is the electrically-erasable PROM (EEPROM or E'PROM). It is

like the EPROM except that the previously programmed connections can be erased with an
electrical signal instead of ultraviolet light. The advantage is that the device can be erased with
out removing it from its socket.

275Section 7-5 Read-Only Memory

Types of ROMs

Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates
an output binary number equal to the square of the input number.

The first step is to derive the truth table of the combinational circuit. In most cases this is
all that is needed. In other cases, we can use a partial truth table for the ROM by utilizing cer
tain properties in the output variables. Table 7-4 is the truth table for the combinational circuit.
Three inputs and six outputs are needed to accommodate all possible binary numbers. We note
that output Eo is always equal to input Ao; so there is no need to generate Eo with a ROM since
it is equal to an input variable. Moreover, output B1 is always 0, so this output is a known con
stant. We actually need to generate only four outputs with the ROM; the other two are readily
obtained. The minimum size ROM needed must have three inputs and four outputs. Three
inputs specify eight words, so the ROM must be of size 8 X 4. The ROM implementation is
shown in Fig. 7-12. The three inputs specify eight words of four bits each. The truth table in
Fig. 7-12(b) specifies the information needed for programming the ROM. The block diagram
of Fig. 7-12(a) shows the required connections of the combinational circuit.

Chapter 7 Memory and Programmable Logic274

0--

8 x4ROM

(a) Block diagram

FIGURE 7-12
ROM Implementation of Example 7-1

Eo A, Al Ao E5 E4 B, E, Combinational PLDs
EI 0 0 0 0 0 0 0

The PROM is a combinational programmable logic device (PLD). A combinational PLD is an0 0 1 0 0 0 0
E, 0 1 0 0 0 0 ] integrated circuit with programmable gates divided into an AND array and an OR array to pro-

E, 0 1 1 0 0 1 0 VIde an AND-OR sum of product implementation. There are three major types of combinational
l 0 0 0 1 0 0 PLDs and they differ in the placement of the programmable connections in the AND-OR array.

E4
1 0 1 0 1 1 0
] 1 0 1 0 0 1 Fig. 7-13 shows the configuration of the three PLDs: The programmable read-only memory

E, 1 1 1 ] 1 0 0 (PROM) has a fixed AND array constructed as a decoder and programmable OR array. The pro-

(b) ROM truth table
grammable OR gates implement the Boolean functions in sum of mintenns. The programma-
ble array logic (PAL) has a programmable AND array and a fixed OR array. The AND gates
are progr~mmed to provide the product terms for the Boolean functions, which are logically
summed In each OR gate. The most flexible PLD is the programmable logic array (PLA),



276 Chapter 7 Memory and Programmable Logic Section 7-6 Programmable Logic Array 277

AB'

AC

BC '"",

A'BC' ~
0 h
1 ~~l

F[
,,)

J
F,

2

3

1

4

C C' B B' A A'

FIGURE 7-14

PLA with 3 Inputs, 4 Product Terms, and 2 Outputs

C

A

B

Outputs

Outputs

Outputs

, programmable programmable
~AND array OR array

programmable Fixed f----+-,
AND array OR array

Fixed programmable -----., AND array OR array
(decoder)

Inputs

(c) Programmable logic array (PLA)

FIGURE 7-13
Basic Configuration of Three PLDs

(a) Programmable read-only memory (PROM)

(b) Programmable array logic (PAL)

Inputs

Inputs

where both the AND and OR arrays can be programmed. The product terms in the AND array
may be shared by any OR gate to provide the required sum of products implementation. The
names PAL and PLA emerged from different vendors during the development of programma
ble logic devices. The implementation of combinational circuits with PROM was demonstrat
ed in this section. The design of combinational circuits with PLA and PAL is presented in the
next two sections.

7-6 PROGRAMMABLE LOGIC ARRAY

The programmable logic array (PLA) is similar to the PROM in concept except that the PLA
does not provide full decoding of the variables and does not generate all the minterms. The
decoder is replaced by an array of AND gates that can be programmed to generate any product
tenn of the input variables. The product tenns are then connected to OR gates to provide the
sum of products for the required Boolean functions.

The intemallogic of a PLA with three inputs and two outputs is shown in Fig. 7-14. Such
a circuit is too small to be available commercially, but is presented here to demonstrate the
typical logic configuration of a PLA. The diagram uses the array logic graphic symbols for
complex circuits. Each input goes through a buffer and an inverter shown in the diagram with
a composite graphic symbol, which has both the true and complement outputs. Each input and
its complement are connected to the inputs of each AND gate as indicated by the intersections
between the vertical and horizontal lines. The outputs of the AND gates are connected to the
inputs of each OR gate. The output of the OR gate goes to an XOR gate where the other input

can be programmed to receive a signal equal to either logic 1 or O. The output is inverted when
the XOR input is connected to I (since x Ell I = x'). The output does not change when the
XOR input is connected to 0 (since x Ell 0 = x). The palticular Boolean functions implemented
in the PLA of Fig. 7-14 are

F[ = AB' + AC + NBC'

F2 = (AC + BC)'

The product terms generated in each AND gate are listed along the output of the gate in the
diagram. The product term is detennined from the inputs whose crosspoints are connected and
marked with a X. The output of an OR gate gives the logic sum of the selected product terms.
The output maybe complemented or left in its true form depending on the connection for one
of the XOR gate inputs.

The fnse map of a PLA can be specified in a tabular form. For example, the programming
table that specifies the PLA of Fig. 7-14 is listed in Table 7-5. The PLA programming table con
sists of three sections. The first section lists the product terms numerically. The second section



278 Chapter 7 Memory and Programmable Logic

Table 7-5
PLA Programming Tab/e

Outputs

Inputs (T) (C)

Product Term A B C F, F2

AB' I 0

AC 2

BC 3 I I

A'BC' 4 0 I 0

specifies the required paths between inputs and AND gates. The third section specifies the
paths between the AND and OR gates. For each output variable, we may have a T (for true) or
C (for complement) for programming the XOR gate. The product terms listed on the left are
not part of the table; they are included for reference only. For each product term, the inputs are
marked with I, 0, or - (dash). If a variable in the prodnct term appears in its true form, the cor
responding input variable is marked with a I. If it appears complemented, the corresponding
input variable is marked with a O. If the variable is absent in the product term, it is marked

with a dash.
The paths between the inputs and the AND gates are specified under the column heading

inputs in the programming table. A 1 in the input column specifies a connection from the input
variable to the AND gate. A 0 in the input column specifies a connection from the comple
ment of the variable to the input of the AND gate. A dash specifies a blown fuse in both the input
variable and its complement. It is assumed that an open tenninal in the input of an AND gate

behaves like a I.
The paths between the AND and OR gates are specified under the column heading outputs.

The output variables are marked with I's for those product terms that are included in the func
tion. Each product term that has a I in the output column requires a path from the output of the
AND gate to the input of the OR gate. Those marked with a dash specify a blown fuse. It is
assumed that an open tenninal in the input of an OR gate behaves like a O. Finally, a T (true)
output dictates that the other input of the corresponding XOR gate be connected to 0, and a C

(complement) specifies a connection to 1.
The size of a PLA is specified by the number of inputs, the number ofproduct terms, and

the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 product terms,
and 8 outputs. For n inpnts, k product terms, and m outputs the internal logic of the PLA con
sists of n buffer-inverter gates, k AND gates, m OR gates, and m XOR gates. There are 2n X k
connections between the inpnts and the AND array, k X m connections between the AND and
OR arrays, and m connections associated with the XOR gates.

When designing a digital system with a PLA, there is no need to show the internal connec
tions of the unit as was done in Fig. 7-14. All that is needed is a PLA programming table from
which the PLA can be prograrmned to supply the required logic. As with a ROM, the PLA

Section 7-6 Programmable Logic Array 279

may be mask programmable or field programmable. With mask programming, the customer sub
mits a PLA program table to the manufacturer. This table is used by the vendor to produce a
custom-made PLA that hasthe required internal logic specified by the customer. A second type
of PLA available is called a field programmable logic array or FPLA. The FPLA can be pro
grammed by the user by means of a commercial hardware prograrmner unit.

When implementing a combinational circuit with a PLA, careful investigation must be
undertaken in order to reduce the number of distinct product terms, since a PLA has a finite num
ber of AND gates. This can be done by simplifying each Boolean function to a minimum
number of terms. The number of literals in a term is not important since all the input variables
are available anyway. Both the true and complement of each function should be simplified to
see which one can be expressed with fewer product terms and which one provides product
terms that are common to other functions.

Implement the following two Boolean functions with a PLA:

Fj(A, B, C) = ~(O, 1,2,4)

F,(A, B, C) ~ ~(O, 5, 6, 7)

The two functions are simplified in the maps of Fig. 7-15. Both the true and complement of the
functions are simplified in sum of products. The combination that gives a minimum number of
product terms is

F] ~ (AB + AC + BC)'

and

F, = AB + AC + A'B'C'

This gives four distinct product terms: AB, AC, BC, and A'B'C'. The PLA programming table
for this combination is shown in the figure. Note that output F] is the true output even though
a C is marked over it in the table. This is because F] is generated with an AND-OR circuit and
is available at the output of the OR gate. The XOR gate complements the function to produce
the true F] output.

•
The combinational circuit used in Example 7-2 is too simple for implementing with a PLA.

It was presented merely for illustratiou purposes. A typical PLA has a large number of inputs
and product terms. The simplification of Boolean functions with so many variables should be
carried out by means of computer-assisted simplification procedures. The computer-aided
design program simplifies each function and its complement to a minimum number of tenns.
The program then selects a minimum number of product tenns that cover all functions in their
true or complement form. The PLA programming table is then generated, and the required fuse
map is obtained. The fuse map is applied to an FPLA prograrmner that goes through the hard
ware procedure of blowing the internal fuses in the integrated circuit.



280 Chapter 7 Memory and Programmable Logic Section 7-7 Programmable Array Logic 281

Outputs
.....

F2

fr
(J
r~

~
'.",

AND gates inputs

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Product

FIGURE 7-16
PAL with Four Inputs, Four Outputs, and Three-Wide AND_OR Structure

term t
1

2

3

I > <'

4

5

6

>

7

8

9

>

10

11

12

>

12

1

B

11 10

C

01
BC
00

F2 =AB+AC+A'B'C'

F, ~ (A'C + A'B + AB'C')'

1 0 0 0

0 1 1 1

B

11 10

C

01

F1 =A'B' +A'C' +B'C'

F, ~ (AB + AC + BC)'

BC
00

1 1 0 1

1 0 0 0

PLA programming table

The programmable array logic (PAL) is a programmable logic device with a fixed OR array and
a programmable AND array. Because only the AND gates are programmable, the PAL is eas
ier to program, but is not as flexible as the PLA. Fig. 7-16 shows the logic configuration of a
typical PAL. It has four inpnts and four outputs. Each input has a buffer-inverter gate and each
output is generated by a fixed OR gate. There are four sections in the unit, each being composed
of a three-wide AND-OR array. This is the term used to indicate that there are three program
mable AND gates in each section and one fixed OR gate. Each AND gate has 10 programma
ble input connections. This is shown in the diagram by 10 vertical lines intersecting each
horizontal line. The horizontal line symbolizes the multiple-input configuration of the AND gate.
One of the outputs is connected to a buffer-inverter gate and then fed back into two inputs of

the AND gates.
Commercial PAL devices contain more gates than the one shown in Fig. 7-16. A typical

PAL integrated circuit may have eight inputs, eight outputs, and eight sections, each consist
ing of an eight-wide AND-OR array. The output terminals are sometimes driven by three-state

buffers or inverters.
When designing with a PAL, the Boolean functions must be simplified to fit into each

section. Unlike the PLA, a product term cannot be shared among two or more OR gates.

Product Inputs (C) (T)

term A B C FI F2

AB 1 1 1 - 1 1

AC 2 1 - 1 1 1

BC 3 - 1 1 1

A'B'C' 4 0 0 0 1

FIGURE 7-15
Solution to Example 7-2

7-7 PROGRAMMABLE ARRAY LOGIC



SEQUENTIAL PROGRAMMABLE DEVICES

I
(

~

t
.,

283Section 7-8 Sequential Programmable Devices

in each to conform with the PAL of Fig. 7-16. The first two sections need only two product terms
to implement the Boolean function. The last section for output z needs four product terms.
Using the output from w, we can reduce the function to three terms.

The fuse map for the PAL as specified in the programming table is shown in Fig. 7-17. For
each I or 0 iu the table, we mark the corresponding iutersectiou in the diagram with the sym
bol for an intact fuse. For each dash, we mark the diagram with blowu fuses in both the true
and complement inputs. If the AND gate is not used, we leave all its input fuses intact. Since
the corresponding input receives both the true and complement of each input variable, we have
AA' = 0 and the output of the AND gate is always O.

As with all PLDs, the design with PALs is facilitated by using computer-aided design tech
niques. The blowing of internal fuses is a hardware procedure done with the help of special elec
tronic instmments.

Digital systems are designed using flip-flops and gates. Since the combinational PLD consists
of only gates, it is necessary to include external flip-flops when they are used in the design.
Sequential programmable devices include both gates and flip-flops. In this way, the device can
be programmed to perform a variety of sequential-circuit functions. There are several types of
sequential programmable devices available commercially and each device has vendor-specific
variant within each type. The internal logic of these devices is too complex to be shown here.
Therefore, we will describe three major types without going into their detailed construction:

1. Sequential (or simple) programmable logic device (SPLD)

2. Complex programmable logic device (CPLD)

3. Field programmable gate array (FPGA)

The sequential PLD is sometimes referred to as a simple PLD to differentiate it from the com
plex PLD. SPLD includes flip-flops within the integrated circuit chip in addition to the AND-OR
array. The result is a sequential circuit as shown in Fig. 7-18. A PAL or PLA is modified by in
cluding a number of flip-flops connected to fonn a register. The circuit outputs can be taken
from the OR gates or from the outputs of the flip-flops. Additional programmable connections
are available to include the flip-flop outputs in the product terms formed with the AND array.
The flip-flops may be of the D or the JK type.

The first programmable device developed to support sequential circuit implementation is the
field-programmable logic sequencer (FPLS). A typical FPLS is organized around a PLA with
several outputs driving flip-flops. The flip-flops are flexible in that they can be programmed
to operate as either JK or D type. The FPLS did not succeed commercially because it has too
many programmable connections. The configuration mostly used for SPLD is the combinational
PAL together with D flip-flops. A PAL that includes flip-flops is referred to as a registered
PAL to signify that the device contains flip-flops in addition to the AND-OR array. Each sec
tion of an SPLD is called a macrocell. A macrocell is a circuit that contains a sum-of-products
combinational logic fuuction and an optional flip-flop. We will assume an AND-OR sum of
products but in practice, it can be anyone of the two-levelimplementation presented in Sec. 3-7.

7-8

Table 7-6
PAL Programming Table

AND Inputs

Product Term A B C D W Outputs

I 1 I 0 w = ABC'

2 0 0 I 0 + A'B'CD'

3

4 x = A

5 + BCD

6

7 0 Y ~ A'B

8 I 1 + CD

9 0 0 + B'D'

10 z = W

11 I 0 0 + AC'D'

12 0 0 0 I + A'B/CD

w = ABC' + A'B'CD'

x = A + BCD

y = A'B + CD + B'D'

z = ABC' + A'B'CD' + AC'D' + A'B'C'D

= w + AC'D' + A1B'C'D

Note that the function for z has four product terms. The logical sum of two of these terms is
equal to w. By using w, it is possible to reduce the number of terms for z from four to three.

The PAL programming table is similar to the one used for the PLA except that only the
inputs of the AND gates need to be programmed. Table 7-6 lists the PAL programming table
for the four Boolean functions. The table is divided into four sections with three product terms

Therefore, each function can be simplified by itself without regard to common product terms.
The number of product terms in each section is fixed, and if the number of terms III the f~nc

tion is too large, it may be necessary to use two sections to implement one Boolean funct1~n.

As an example of using a PAL in the design of a combinational circuit, consider the followmg

Boolean functions, given in sum of minterms:

w(A, B, C, D) = L(2, 12, 13)

x(A, B, C, D) = L(7, 8, 9,10,11,12,13,14, IS)

y(A, B, C, D) = L(O, 2, 3, 4, 5, 6, 7, 8, 10, 11, IS)

z(A, B, C, D) = L(I, 2, 8, 12, 13)

Simplifying the four fnnctions to a minimum number of terms results in the following

Boolean functions:

Chapter 7 Memory and Programmable Logic282



Chapter 7 Memory and Programmable Logic

·I~

285

Outputs

Flip-flops If---~I-+-

Section 7-8 Sequential Programmable Devices

AND-OR array

'I-----.:.-----+-IL-_(P_A_L_OI_P_L_A_)---.JH

Inputs ------+-1

FIGURE 7-18
Sequential Programmable Logic Device

eLK DE

FIGURE 7-19
Basic Macrocell Logic

Fig. 7-19 shows the logic of a basic macrocel!. The AND-OR array is the same as in the
combinational PAL shown in Fig. 7-16. The output is driven by an edge-triggered D flip-flop.
The flip-flop is connected to a common clock input aud changes state on a clock edge. The
output of the flip-flop is connected to a three-state buffer (or inverter) controlled by an output
enable signal marked in the diagram as OE. The output of the flip-flop is fed back into one of
the inputs of the programmable AND gates to provide the present-state condition for the
sequential circuit. A typical SPLD has from 8 to 10 macrocells within one IC package. All the
flip-flops are connected to the common CLK input and all three-state buffers are controlled by
the EO input.

In addition to programming the AND array, a macrocell may have other programming fea
tures. Typical programming options include the ability to either use or bypass the flip-flop,
selection of clock edge polarity, selection of preset and clear for the register, aud selection of

~

=<=< D-D K=<
F==<
L-.../ It> p-

>

> <'

w

z

y

x

w w'

w w'

AND gates inputs

A A' E E' C C' D D'

A A' B' B' C C' D D'

Pdtro lie
term t

1

2

3 X

'> <f---

4

5

6 X

All fuses intact"> (always = 0)

7

8

9

">

to

11

12

'> X Fuse intact

+ Fuse blown

FIGURE 7-17
Fuse Map for PAL as Specified in Table 7-6

C

E

A

D

284



286 Chapter 7 Memory and Programmable Logic Problems 287

PLD PLD PLD PLD

110 110

Programmable switch matrix

block block

PLD PLD PLD G
FIGURE 7-20
General CPLD Configuration

the true or complement of an output. An XOR gate is used to program a true/complement
condition. Multiplexers are used to select between two or four distinct paths by programming
the selection inputs.

The design of a digital system using PLD often requires the connection of several devices
to produce the complete specification. For this type of application, it is more economical to use
a complex programmable logic device (CPLD). A CPLD is a coJlection of individual PLDs on
a single integrated circuit. A programmable interconnection structure allows the PLDs to be con
nected to each other in the same way that can be done with individual PLDs.

Fig. 7-20 shows a general configuration of a CPLD. It consists of multiple PLDs intercon
nected through a programmable switch matrix. The input/output (I/O) blocks provide the con
nections to the IC pins. Each I/O pin is driven by a three-state buffer and can be programmed
to act as input or output. The switch matrix receives inputs from the I/O block and directs it to
the individual macroceJls. Similarly, selected outputs from macroceJls are sent to the outputs
as needed. Each PLD typically contains from 8 to 16 macroceJls. The macroceJls within each
PLD are usually fuJly connected. If a macroceJl has unused product terms they can be used by
other nearby macroceJls. In some cases the macroceJl flip-flop is programmed to act as aD, JK,

or Tflip-flop.
Different manufacturers have taken dilierent approaches to the general architecture of CPLDs.

Areas in which they differ include the individual PLDs (sometimes caJledfunction blocks), the
type of macroceJls, Tbe I/O blocks, and the programmable interconnection structure. The best
way to investigate a vendor-specific device is to look at the manufacturer's literature.

The basic component used in VLSI design is the gate array. A gate array consists of a pat
tern of gates fabricated in an area of silicon that is repeated thousands of times until the entire
chip is covered with the gates. Arrays of one thousand to hundred thousand gates are fabric
ated within a single IC chip depending on the technology used. The design with gate arrays

requires that the customer provide the manufacturer the desired interconnection pattern. The
first few levels of fabrication process are common and independent of the final logic function.
Additional fabrication steps are required to interconnect the gates according to the specifica
tions given by the designer.

A field programmable gate array (FPGA) is a VLSI circuit that can be programmed in the
user's location. A typical FPGA consists of an array of hundreds or thousands of logic blocks,
surrounded by programmable input and output blocks and counected together via program
mable interconnections. There is a wide variety of internal configurations within this group of
devices. The performance of each device type depends on the circuit contained in their logic
blocks and the efficiency of their programmed interconnections.

A typical FPGA logic block consists of look-up tables, multiplexers, gates, and flip-flops.
The look-up table is a truth table stored in a SRAM and provides the combinational circuit
functions for the logic block. These functions are realized from the truth table stored in the
SRAM, similar to the manner that combinational circuit functions are implemented with ROM,
as described in Sec. 7-5. For example, a 16 X 2 SRAM can store the truth table of a combi
national circuit that has four inputs and two outputs. The combinational logic section along with
a number of programmable multiplexers are used to configure the input equations for the flip
flop and the output of the logic block.

The advautage of using RAM instead of ROM to store the truth table is that the table can
be programmed by writing into memory. The disadvantage is that the memory is volatile and
presents the need for the look-up table content to be reloaded in the event that power is dis
rupted. The program can be downloaded either from a host computer or from an on-board
PROM. The program remains in SRAM until the FPGA is reprogrammed or the power is
turned off. The device must be reprogrammed every time power is turned on. The ability to
reprogram the FPGA can serve a variety of applications by using different logic implementa
tions in the program.

The design with PLD, CPLD, or FPGA requires extensive computer-aided design (CAD)
tools to facilitate the synthesis procedure. A variety of tools are available such as schematic entry
package and hardware description languages (HDL) such as ABEL, VHDL, and Verilog. Syn
thesis tools are available that allocate, configure, and connect logic blocks to match a high-level
design description written in HDL.

PROBLEMS

7-1 The following memory units are specified by the number of words times the number of bits per
word. How many address lines and input-output data lines are needed in each case? (a) 4K X 16,
(b) 2G X 8, (c) 16M X 32, (d) 256K X 64.

7-2 Give the number of bytes stored in the memories listed in Problem 7-1.

7-3 Word number 723 in the memory shown in Fig. 7-3 contains the binary equivalent of 3,45 1. List
the 10-bit address and the 16-bit memory content of the word.

7-4 Show the memory cycle timing wavefonns for the write and read operations. Assume a CPU
clock of 25 MHz and a meniory cycle time of 60 ns.



290 Chapter 7 Memory and Programmable Logic

7-24 The following is a truth table of a 3-input, 4-output combinational circuit. Tabulate the PAL pro-
gramming table for the circuit and mark the fuse map in a PAL diagram similar to the one shown

in Fig. 7-17.

Inputs Outputs

x y z A B C D

0 0 0 0 I 0 0

0 0 I I I 1 I

0 I 0 1 0 I I

0 I 1 0 I 0 I

I 0 0 I 0 I 0

I 0 I 0 0 0 I

I I 0 I I I 0

I I I 0 I I I

Register
Transfer Level

7-25 Using the registered macrocell of Fig. 7-19, show the fuse map for a sequential circuit with two
inputs x, y and one flip-flop A described by the input equation

DA ~ xEIiyEIiA

7-26 Modify the PAL diagram of Fig. 7-16 by including three clocked D-type flip-flops between the
OR gates and outputs as in Fig. 7-19. The diagram should conform with the block diagram of a
sequential circuit. This will require three additional buffer-inverter gates and six vertical lines for
the flip-flop outputs to be connected to the AND array through programmable connections. Using
the modified registered PAL diagram, show the fuse map that will implement a 3-bit binary counter

with an output carry.

REFERENCES

1. TOCCI, R. J. andN. S. WIDMER. 2001. Digital Systems Principles and Applications, 8thed. Upper

Saddle River, NJ: Prentice Hall.

2. KITSON, B. 1984. Programmable Array Logic Handbook. Sunnyvale, CA: Advanced Micro Devices.

3. WAKERLY, J. F. 2000. Digital Design: Principles and Practices, 3rd ed. Upper Saddle River, NJ:

Prentice Hall.

4. NELSON, V. P., H. T. NAGLE, 1. D. IRWIN, and B. D. CARROLL. 1995. Digital Logic Circuit Analysis

and Design. Upper Saddle River, NJ: Prentice Hall.

5. HAMMING, R. W. 1950. Error Detecting and Error Correcting Codes. Bell Syst. Tech J 29: 147-160.

6. LIN, S., andD. J. COSTELLO, JR. 1983. Error Control Coding. Englewood Cliffs, NJ: Prentice-Hall.

7. 1988. Programmable Logic Data Book. Dallas: Texas Instruments.

8. TRnvmERGER, S.M. 1994. Field Programmable GateArray Technology. Boston: KluwerAcademic Pub.

9. 1994. The Programmable Logic Data Book, 2nd ed. San Jose, CA: Xilinx, Inc.

10. 1986. Memory Components Handbook. Santa Clara, CA: Intel.

8-1 REGISTER TRANSFER LEVEL
(RTl) NOTATION

A digital system is a sequential logic system constructed with flip-flops and gates. Sequential
circuits can be specified by means of state tables as shown in Chapter 5. To specify a large
digital system with a state table is very difficult, if not impossible, because the number of states
would be prohibitively large. To overcome this difficulty, digital systems are designed using a
modular approach. The system is partitioned into modular subsystems, each of which performs
some functional task. The modules are constructed from such digital devices as registers, de
coders, multiplexers, arithmetic elements, and control logic. The various modules are inter
connected with cornman data and control paths to form a digital system.

Digital modules are best defined by a set of registers and the operations that are performed
on the binary information stored in them. Examples of register operations are shift, count, clear,
and load. The registers are assumed to be the basic components of the digital system. The in
formation flow and processing perform on the data stored in the registers is referred to as reg
ister transfer operations. A digital system is represented at the register transfer level (RTL)
when it is specified by the following three components:

1. The set of registers in the system.

2. The operations that are performed on the data stored in the registers.

3. The control that supervises the sequence of operations in the system.

A register is a group of flip-flops that stores binary information and has the capability of per
forming one or more elementary operations. A register can load new information or shift the
information to the right or the left. A counter is considered a register that increments a num
ber by one. A flip-flop standing alone is considered as a I-bit register that can be set, cleared,

291



Section 8-2 Register Transfer Level in HDL 293

The addition is done with a binary parallel adder, the incrementing with a connter, and the shift
with a shift register. The type of operations most often encountered in digital systems can be
classified into fOUf categories:

1. Transfer operations that transfer data from one register to another.

2. Arithmetic operations that perform arithmetic on data in registers.

3. Logic operations that perform bit manipulation of non-numeric data in registers.

4. Shift operations that shift data in registers.

The transfer operation does not change the information content of the data being moved from the
source register to the destination register. The other three types change the information content
during the transfer. The register transfer notation and the symbols used to represent the various
register transfer operations are not standardized. Here we employ two types of notation. The no
tation introduced in this section will be used informally to specify and explain digital systems at
the register transfer level. The next section introdnces the RTL symbols nsed in Verilog HDL.

REGISTER TRANSFER LEVEL IN HDL

Digital systems can be described at the register transfer level by means of a hardware descrip
tion language. In Verilog HDL, RTL descriptions use a combination of behavioral and dataflow
constructs. Register transfers are specified by means of procedural assignment statements.
Combinational circuit functions are specified by means of continuous assignment or proce
dural assignment statements. The symbol used to designate a transfer is either an equal sign or
an arrow. Synchronization with the clock is achieved by using an always statement with an
event control of posedge or negedge. The following examples show the possible ways that are
available to specify a transfer in Verilog HDL:

assign S = A + Bi

always @ (A or B)
S = A + B·

always @ (posedge clock)
begin

RA RA + RBi
RD RA;

end

always @ (negedge clock)
begin

RA <= RA + RB;

RD <= RA;

end

Continuous assignment

Procedural assignment (without a clock)

Blocking procedural assignment

Non-blocking procedural assignment

Continuous assignments are used to specify combinational circuits. The preceding assign state
ment describes a binary adder with inputs A and Band outpnt S. The target operand in an assign
statement (5 in this case) cannot be a register. Outputs of combinational circuits can be transferred



HDL Operators

The Verilog HDL operators and their symbols used in RTL design are listed in Table 8-1. The
arithmetic, logic, and shift operators are required for describing register transfer operations. The
logical and relational operators are useful for specifying control conditions. The arithmetic op
erations are done with binary numbers. Negative numbers are represented in 2's complement.
The modulus operator produces the remainder from the division of two numbers. For example,
14 % 3 evaluates to 2.

There are two types of logic operators: bit-wise and reduction. Bit-wise operators perfonn
a bit-by-bit logic operation on two operands. They take each bit in one operand and per
form the operation with the corresponding bit in the other operand. The reduction operators perform
the logic operation on a single operand. They perform the operation bit by bit from right to left and
yield a I-bit result. For example, the rednction NOR (-[) results in 0 with operand 00101
and in I with operand 00000. Negation is not used as a reduction operator. Truth tables for the
bit-wise operators are listed in Table 4-9 in Section 4-11.

The logical and relational operators can take variables or expressions as operands. They are
basically used for determining true or false conditions. They evaluate to I if the condition is
true, and to 0 if the condition is false. If the condition is ambiguous, they evaluate to x. When
the operand is a number, it evaluates to 0 if the number is equal to zero and to 1 if the number
is not equal to zero. For example, if A = 1010 and B = 0000, then A is taken as I (the num
ber is not eqnal to 0) and B is taken as O. Results of other operations with these values are:

A && B 0
A II B = 1
!A 0

!B 1
(A > B) 1

(A == B) = 0

,,
~
11
l

295

negation (complement)

AND

OR

Exclusive-OR (XORl

negation

AND

OR

addition

subtraction

multiplication

division

modulus

concatenation

shift right

shitt left

greater than

less than

equality

inequality

greater than or equal

less than or equal

Operation Performed

/

%

&

*

+

<

>

!==

»

&&

«

<=

>=

I I

Symbol

Section 8-2 Register Transfer Level in HDL

Logic

(bit-Wise

Arithmetic

or

reduction)

Logical

Shift

Relational

Operator Type

Table 8-1
VerUog HDL Operotors

. The shift operators shift a vector operand to the right or the left by a specified number of
bIts. The vacant bit positions are filled with zeros. For example, if R = 11010, the statement

R == R » 1;

shifts R to the right one position. The new value of R is 01101. The concatenation operator pro
VIdes a mechanism for appending multiple operands. It can be used to specify a shift includ
mg the bIts transferred into the vacant positions. This was shown in HDL Example 6-1 for the
shift register.

Verilog HDL has four types of loops that allow procedural statements to be executed repeat
edly: repeat, forever, while, and for. All looping statements must appear inside an initial or
always block.

Loop Statements

to a register by means of a clocked procedural assignment. The non-clocked procedural assign
ment in the second example shows an alternate way of specifying a combinational circuit.

There are two kinds of procedural assignments: blocking and non-blocking. The two are
distinguished by the symbols that they use. Blocking assignments use the symbol (=) as the
transfer operator and non-blocking assignments use the «=) as the operator. Blocking as
signment statements are executed sequentially in the order they are listed in a sequential block.
Non-blocking assignments evaluate the expressions on the right-hand side, but do not make the
assignment to the left-hand side until all expressions are evaluated. Consider the two examples
shown above. In the blocking procedural assignment, the first statement transfers the sum to
RA and the second statement transfers the new value of RA into RD. At the completion, both RA
and RD have the same value. In the non-blocking procedural assignment, the two operations
are performed concurrently so that RD receives the original value of RA.

To ensure synchronous operations in RTL design, it is necessary that non-blocking proce
dural assignments be used for variables that follow an always-clocked statement. This is to
prevent any possibility of functional mismatch between the design model and the HDL de
scription. The non-blocking assignment that appears in an always-clocked statement accurately
models the behavior of a synchronous sequential circuit.

Chapter 8 Register Transfer Level294



The loop statement repeats the execution of the procedural statements eight times. The control
variable is i, the initial condition is i = 0, the loop is repeated as long as i is less than 8. Every
time the loop is executed, i is incremented by 1.

The description of a 2-to-4-line decoder using a for loop is shown in HDL Example 8-1.
Since output Y is evaluated in a procedural statement, it must be declared as reg type. The con
trol variable for the loop is the integer I. When the loop is expanded, we get the following four
conditions (IN and Y are in binary, the index for Y is in decimal):

297

else Y(O) = 0

elseY(I) = 0

else Y(2) = 0

else Y(3) = 0

binary inputs
binary outputs

I ~ I + 1)

1·

//control variable for loop

I <== 3;
I) Y[I]

= 0;

if IN = 00 then Y(O) = 1

if IN = 01 then Y(I) = I

if IN = 10 then Y(2) = I

if IN = II thenY(3) = I

HDL Example 8-1

Section 8-2 Register Transfer Level in HDL

The following is an example of a for loop:

forti == Oi i < 8; i == i + 1)
procedural statements

//description of 2x4 decoder
//using for loop statement
module decoder (IN, Y);

input [1,0] IN; IITwo
output [3:0] Yi //Four
reg [3,0] Y;

integer I;
always @ (IN)

for (I == 0;
if (IN ~~

else Y[I]

endmodule

Logic Synthesis

Logic synthesis is the automatic process of transforming a high-level language description
such as HDL into an optimized nellist of gates that perform the operations specified by the
source code. There are various target technologies that implement the synthesized design.
Effective use of an HDL description requires that designers adopt a vendor-specific style suitable
for the particular synthesis tools. The type of ICs that implement the design may be an
application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a field
programmable gate array (FPGA).

Logic synthesis tools are programs that interpret the source code of the hardware descrip
tion language and translates it into a gate structure. Designs written in HDL for the purpose of
logic synthesis tend to be at the register transfer level. This is because HDL constructs used in
RTL description can be converted into a gate-level description in a straightforward manner.

integer count;
initial

begin
count:::: 0;
while (count < 64)

#5 count:::: count + 1;

end

The value of count is incremented from 0 to 63. The loop exits at the count of 64.
In dealing with looping statements, it is sometimes convenient to use integer ~ata type f~r

manipulating quantities. Integers are declared with the keyword integer as done m the preVI
ous example. Although it is possible to use the reg keyword for vanables, It IS more conven
ient to declare an integer variable for counting purposes. Variables declared as data type reg
are stored as unsigned numbers. Those declared as data type integer are store as sign~d num
bers in 2's complement format. The default width of an integer is a minimum of 32 bItS.

The for loop contains three parts separated by two semicolons:

initial
begin

clock l'bO;
forever
# clock :::: - clock;

end

• An initial condition.

• An expression to check for the terminating condition.

An assignment to change the control variable.

initial
begin

clock:::: l'bO;
repeat (16)

#5 clock :::: - clock;

end

The while loop executes a statement or block of statements repeatedly while an expression
is true. If the expression is false to begin with, the statement is never executed. The followmg

example illustrates the use of the while loop:

This produces eight clock cycles with a cycle time of 10 time units.
The forever loop causes a continuous repetitive execution of the procedural statement. For

example, the following loop produces a continuous clock:

Chapter 8 Register Transfer Level

The repeat loop executes the associated statemeuts a specified number of times. The fol

lowing is an example that was used previously:

296



assign Y = S ? Ii : 10;

299Section 8-3 Algorithmic State Machines (ASM)

FIGURE 8-1

Process of HDl Simulation and Synthesis

The binary information stored in a digital system can be classified as either data or control in
formation. Data are discrete elements of information that are manipulated to perform arith
metic, logic, shift, and other similar data processing tasks. These operations are implemented
with digital components such as adders, decoders, multiplexers, counters, and shift registers.
Control information provides command signals that supervise the various operations in the
data section in order to accomplish the desired data processing tasks. The logic design of a
digital system can be divided into two distinct parts. One part is concerned with the design of
the digital circuits that perform the data processing operations. The other part is concerned
with the design of the control circuits that determines the sequence in which the various actions
are performed.

The relationship between the control logic and the data processessing in a digital system is
shown in Fig. 8-2. The data processessing path, commonly referred to as the datapath, ma
nipulates data in registers according to the system's requirements. The control logic initiates a
sequence of commands to the datapatb. The control logic nses status conditions from the data
path to serve as decision variables for determining the sequence of control signals.

The control logic that generates the signals for sequencing the operations in the datapath is
a sequential circuit whose internal states dictate the control commands for the system. At any

t
HDL description Valid Synthesis f------>.-->- of design design tools Netlist

Simulate SimulateTest benchRTLdesign gate-level
design

t
Result Result

Good Good

Needs I Needs
correction correction

Compare Fabricate
No match Match Ie

ALGORITHMIC STATE MACHINES (ASM)8-3

or 10 or S)
Y Il;
Y = ro;

always @ (11
if (S)

else

translates into a 2-to-l-line multiplexer with control input S and data inputs II and IO. A state
ment with multiple conditional operators specifies a larger multiplexer.

The always statement may imply a combinational or sequential circuit. For sequential cir
cuits, the event control must be posedge or negedge of a clock, otherwise the procedural state
ment specify a combinational circuit. For example,

translates into a 2-to-l-line multiplexer. The case statement may be used to imply large
multiplexers.

The always @ posedge or negedge clock specifies clocked sequential circuits. The corre
sponding circuits consists of D flip-flops and the gates that implement the register transfer op
erations. Examples of such circuits are registers and counters. A sequential circuit description
with a case statement translates into a control circuit with D flip-flops and gates. Thus, each
statement in an RTL description is interpreted by the synthesizer and assigned to a correspon
ding gate and flip-flop circuit.

A simplified flow chart of the design process is shown in Fig. 8-1. The RTL description of
the HDL design is simulated and checked for proper operation. The test bench provides the stim
ulus signals to the simulator. If the result of the simulation is not satisfactory, the HDL de
scription is corrected and checked again. When the result of the simulation shows a valid design,
the RTL description is applied to the logic synthesizer. The synthesis tools generate a nellist
equivalent to a gate-level description of the design. The gate-level circuit is simulated with the
same set of stimuli used to check the RTL design. If any corrections are needed, the process is
repeated until a satisfactory simulation is achieved. The results of the two simulations are com
pared to see if they match. If they don't match, the designer goes back and changes tbe RTL
description to correct any faults in the design. Then the description is again read into the logic
synthesizer to generate a new gate-level description. Once the designer is satisfied with the re
sults of all simulation tests, the circuit can be fabricated with an integrated circuit.

Logic synthesis provides several advantages to the designer. It takes less time to write an HDL
description and synthesize a gate-level realization than it does to develop the circuit by man
ual entry from schematic diagrams. The ease of changing the description facilitates the explo
ration of design alternatives. It is easier to check the validity of the design by simulation rather
than produce a hardware prototype for evaluation. The database for fabricating the integrated
circuit can be generated automatically by the synthesis tools.

The following examples show how a logic synthesizer can interpret a HDL construct and con
vert it into a gate structure.

The assign statement is used to describe combinational circuits. An assign statement with
Boolean equations is interpreted into the corresponding gate circuit. A statement with a plus
(+) is interpreted as a binary adder with full adder circuits. A statement with a minus (-) is con
verted into a subtractor consisting of full adders and exclusive-OR gates (Fig. 4-13). A state
ment with the conditional operator such as

Chapter 8 Register Transfer level298



ASM Chart

The ASM chart is a special type of flowchart suitable for describing the sequential operations
of a digital system. The chart is composed of three basic elements: the state box, the decision
box, and the conditional box. A state in the control sequence is indicated by a state box, as
shown in Fig. 8-3. The shape of the state box is a rectangle within which are written register
operations or output signal names that the control generates while being in this state. The state

301

Exit path

1

011

Rc-O
START

(b) Specific example

Condition

Binary
code

o

Register operation
or output

Section 8-3 Algorithmic State Machines (ASM)

Name

(a) General description

Exit path

FIGURE 8-3
State Box

FIGURE 8-4
Decision Box

is given a symbolic name, which is placed at the upper left corner of the box. The binary code
assigned to the state [S placed at the upper right corner. Fig. 8-3(b) shows a specific example
of a state box. The state has the symbolic name T3 , and the binary code assigned to it is 011.
Inside the box is written the register operation R +--- 0, which indicates that register R is to be
cleared to 0 when the system is in state T,. The START name inside the box may indicate, for
example, an output signal that starts a certain operation.

The decision box describes the effect of an input on the control subsystem. It has a diamond
shaped box with two or more exit paths, as shown in Fig. 8-4. The input condition to be tested
is written inside the box. One exit path is taken if the condition is true and another when the
condition is false. When an input condition is assigned a binary value, the two paths are indi
cated by 1 and o.

The state and decision boxes are familiar from use in conventional flowcharts. The third el
ement, the conditional box, is unique to the ASM chart. The oval shape of the conditional box
is shownin Fig. 8-5. The rounded corners differentiate it from the state box. The input path to
the ~ondlt1onal box must corne from one of the exit paths of a decision box. The register op
e~atlOns or outputs listed inside the conditional box are generated during a given state, pro
VIded that the input condition is satisfied. Fig. 8-S(b) shows an example with a conditional
box. The control generates a START output signal when in state Tj. While in state Tj, the con
trol checks the status of input E. If E = 1, then R is cleared to 0; otherwise, R remains un
changed. In either case, the next state is Tz.

Output
data

Status conditions

Commands

Control
Datapath

logic

1------. lnput~ I-----+-data
Externa

inputs

FIGURE 8-2
Control and Datapath Interaction

given time, the state of the sequential control initiates a prescribed set of commands. Depend
ing on status conditions and other external inputs, the sequential control goes to the next state
to initiate other operations. The digital circuits that act as the control logic provide a time se
quence of signals for initiating the operations in the datapath and also determine the next state
of the control snbsystem itself.

The control sequence and datapath tasks of a digital system are specified by means of a
hardware algorithm. An algorithm consists of a finite number of procedural steps that specify
how to obtain a solution to a problem. A hardware algorithm is a procedure for implementing
the problem with a given piece of equipment. The most challenging and creative part of digi
tal design is the formulation of hardware algorithms for achieving required objectives.

A flowchart is a convenient way to specify the sequence of procedural steps and decision
paths for an algorithm. A flowchart for a hardware algorithm translates the word statement
to an information diagram that enumerates the sequence of operations together with the
conditions necessary for their execution. A special flowchart that has been developed specif
ically to define digital hardware algorithms is called an algorithmic state machine (ASM)
chart. A state machine is another term for a sequential circuit, which is the basic structure
of a digital system.

The ASM chart resembles a conventional flowchart, but is interpreted somewhat different
ly. A conventional flowchart describes the sequence of procedural steps and decision paths for
an algorithm in a sequential manner without taking into consideration their time relationship.
The ASM chart describes the seqnence of events as well as the timing relationship between the
states of a s~quential controller and the events that occur while going from one state to the
next. It is specifically adapted to specify accurately the control sequence and datapath opera
tions in a digital system, taking into consideration the constraints of digital hardware.

Chapter 8 Register Transfer Level300



Section 8-3 Algorithmic State Machines (ASM) 303

001

FIGURE 8-7
State Diagram Equivalent to the ASM Chart of Fig. 8-6

Tj are two decision boxes and one conditional box. The diagram distinguishes the block with
dashed lines around the entire structure, but this is not usually done, since the ASM chart
uniqnely defines each block from its structure. A state box without any decision or condition
al boxes constitutes a simple block.

Each block in the ASM chart describes the state of the system during one clock-pulse in
terval. The operations within the state and conditional boxes in Fig. 8-6 are executed with a com
mon clock pulse while the system is in state Tj • The same clock pulse also transfers the system
controller to one of the next states-T" T3 , or T4-as dictated by the binary values of E and F.

The ASM chart is very similar to a state diagram. Each state block is eqnivalent to a state in
a sequential circuit. The decision box is equivalent to the binary infonnation written along the
directed lines that connect two states in a state diagram. As a consequence, it is sometimes con
venient to convert the chart into a state diagram and then use sequential circuit procedures to de
sign the control logic. As an illustration, the ASM chart of Fig. 8-6 is drawn as a state diagram
in Fig. 8-7. The three states are symbolized by circles, with their binary values written inside the
circles. The directed lines indicate the conditions that determine the next state. The unconditional
and conditional operations that must be perfonned are not indicated in the state diagram.

ing Considerations

The timing for all registers and flip-flops in a digital system is coutrolled by a master-clock gen
erator. The clock pulses are applied not only to the registers of the datapath, but also to all the
flip-flops in the coutrollogic. Iuputs are also syuchronized with the clock because they are
normally generated as outputs of another circuit that uses the same clock signals. If the input
signal changes at an arbitrary time independeut of the clock, we call it an asynchrouous input.
Asynchronous inputs may cause a variety of problems, as discussed in Chapter 9. To simplify
the design, we will assnme that all inputs are synchronized with the clock and change state iu
response to an edge transition.

The major difference between a conventioual flow chart and au ASM chart is in interpret
ing the time relationship among the various operations, For example, if Fig. 8-6 were a con
ventional flowchart, theu the listed operations would be considered to follow oue after another
in time sequeuce: Register A is first incremented and only then is E evaluated. If E = I, then
register R is cleared and control goes to state T4 . Otherwise, if E = 0, the uext step is to eval
uate F and go to state T2 or T3 , In contrast, an ASM chart considers the entire block as one unit.



305Section 8-4 Design Example

FIGURE 8-9

ASM Chart for Design Example

A c-O
pc-a

The ASM chart is shown in Fig. 8-9. When uo operations are performed, the system is in the
lUlual state To, WajtlUg for the start SIgnal S. When input S is equal to I, counter A and flip-flop
F arecleared to 0 andthe controller goes to state Tj • Note the conditional box that follows the
deCISIOn box for S. ThIS means that the counter and flip-flop will be cleared during To if S = I,
and at the same tIme, control transfers to state T

l'

The blo.ck associated with state TI has two decision boxes and two conditional boxes. The
~ounter IS mcr~mented with every clock pulse. At the same time, one of three possible opera
tIons occur dunng the same clock edge:

Either E is cleared and control stays in state T
j
(A

3
= 0); or

E is set and control stays in state TI (A3A4 = 10); or

E is set and control goes to state Tz (A
3
A

4
= 11).

o s

ASM Chart

We will now demonstrate the components of the ASM chart and the register transfer repre
sentation by going over a specific design example. We start from the initial specifications and
proceed with the development of an appropriate ASM chart from which the digital hardware
is then designed.

We wish to design a digital system with two flip-flops, E and F, and one 4-bit binary count
er A. The individual flip-flops inA are denoted by A4 , A" Az,A j , withA4 holding the most sig
nificant bit of the count. A start signal S initiates the system operation by clearing the counter
A and flip-flop F. The counter is then incremented by one starting from the next clock pulse
and continues to increment until the operations stop. Counter bits A 3 and A4 determine the se
quence of operations:

If A3 = 0, E is cleared to 0 and the count continues.

If A3 = I, E is set to 1; then if A4 = 0, the count continues, but if A4 = I, F is set to I
on the next clock pulse and the system stops counting.

Then if S = 0, the system remains in the iuitial state, but if S = 1, the operation
cycle repeats.

FIGURE 8-8
Transition Between States

All the operations that are specified within the block mnst occur in synchronism during the edge
transition of the same clock pulse while the system changes from Tj to the next state. This is
presented pictorially in Fig. 8-8. We assume positive-edge triggering of all flip-flops. The first
positive transition of the clock transfers the control circuit into state T10 While in state T1, the
control circuits check inputs E and F and generate appropriate signals accordingly. The following
operations occur simultaneously during the next positive edge of the clock:

1. Register A is incremented.

2. If E = 1, register R is cleared.

3. Control transfers to the next state as specified in Fig. 8-7.

Note that the two operations in the datapath and the change of state in the control logic occur
at the same time.

ClOCk~

I- Present state T j -+t<-

Positive edge of clock

Chapter 8 Register Transfer Level304

8-4 DESIGN EXAMPLE



--------------
Section 8-4 Design Example 307

Table 8-2
Sequence of Operations for Design Example

Counter Flip-Flops

A. A, A2 AT E F Conditions State

a a a a I a A, = a,A4~ a T[
a a a I a a
a a I a a a
a a I I a a
a 1 a a a a AT = I,A4 ~ a
a I a I I a
a I I a I a
a I I I I a

a a a I a A, ~ a,A, = I
a a 1 a a
a I a a a
a 1 I a a

a a a a A) ~ I,A, = I

a I a T,

a To

the control generate the signals for all the operations specified in the present block plior to the
arrival of the next clock pulse. The next clock edge executes all the operations in the registers
and flip-flops, including the flip-flops in the controller that determine the next state.

tapath Design

The ASM chart gives all the information necessary to design the digital system. The require
ments for the design of the datapath are specified inside the state and conditional boxes. The
control logic is determined from the decision boxes and the required state transitions. A dia
gram showing the hardware for the design example is shown in Fig. 8-10. The control sub
system is shown with only its inputs and outputs. The detailed design of the control is considered
subsequently. The datapath consists of a four bit binary counter, two flip-tlops, and a number
of gates. The counter is similar to the one shown in Fig. 6-12 except that additional gates are
required for the synchronous clear operation. The counter is incremented with every clock
cycle when control is in state Tj • It is cleared only when control is at state To and S is equal to
1. This conditional operation requires an AND gate to guarantee that both conditions are pres
ent. The other two conditional operations use two other AND gates for setting or c1ealing flip
flop E. Flip-flop F is set unconditionally during state T,.Note that all flip-flops and registers
including the flip-flops in the control use a common clock.



309

il (A} ~ 0) then E c- 0

il(A} ~ 1) thenEc-l

(b) Register transfer operations

To:if(S~ l)thenAc-O,Fc-O

Section 8-4 Design Example

The state diagram can be converted into a state table from which the sequential circuit of the
controller can be designed. First, we must assign binary values to each state in the ASM chart.
For n flip-flops in the control sequential circuit, the ASM chart can accommodate up to 2/1
states. A chalt with three or four states requires a seqnential circuit with two flip-flops. With
five to eight states, there is a need for three flip-t1ops. Each combination of flip-flop values rep
resents a binary number for one of the states.

A state table for a controller is a list of present states and inputs and their corresponding next
states and outputs. In most cases, there are many don't-care input conditions that must be includ
ed, so it is advisable to arrange the state table to take this into consideration. We assign the fol
lowing binary valnes to the three states: To = 00, T, ~ 01, T, = I!. Binary state 10 is not used
and will be treated a don't-care condition. The state table corresponding to the state diagram is
shown in Table 8-3. Two flip-t1ops are needed, and they are labeled G, and Go. There are three
inputs and three outputs. The inputs are taken from the conditions in the decision boxes. The out
puts are equivalent to the present state of the control. Note that there is a row in the table for each

(a) State diagram for control

FIGURE 8-11
Register Transfer Level Description of Design Example

To )---------1 T, }--------...{ T2

S~O

State Table

!

I
i
I
I
I
I

tart S To

A 4 Control
T,

r' A3 T2l--

Clock

r-n J l--E
~

- I>c

0-----\) ~ K

J l--F

I--I>c

K

A 3 1 Azi A,A 4

Count

4-bit counter with CLK Clock
synchronous clear Clear A

s

Register Transfer Level

FIGURE 8-10
Datapath for Design Example

Chapter 8308

"• I

Register Transfer Representation
A digital system is represented in the register transfer level by specifying the registers in the system,
the operations petformed, and the control sequence. The register operations and control information
can be specified with an ASM chart. It is sometimes convenient to separate the control logic and the
register operations for the datapath. The control information and register transfer operations can be
represented separately as shown in Fig. 8-11. The state diagram specifies the control sequence and
the register operations are symbolized with the notation introduced in Section 8-1. This representa
tion is an alternative to the representation of the system described in theASM chart of Fig. 8-9. The
information for the state diagram is talcen directly from the ASM chart. The state names are speci
fied in each state box. The conditions that cause a change of state are specified inside the diamond
shaped decision boxes. The directed lines between states and the condition associated with each
follow the same path as in the ASM chart. The register transfer operations for each of the three states
are listed following the name ofthe state and a colon(:). They are taken from the corresponding rec
tangular-shaped state boxes and the oval-shaped conditional boxes in the ASM chart.

Table 8-3
State Table for Control of Fig. 8-10

Present Next
State Inputs State Outputs

Present-State
Symbol G, Go S A, A4 G, Go To T, Tz

To 0 0 0 X X 0 0 1 0 0
To 0 0 1 X X 0 1 1 0 0
T, 0 1 X 0 X 0 1 0 1 0
T, 0 I X 1 0 0 1 0 1 0
T, 0 1 X 1 1 1 1 0 1 0
T, 1 1 X X X 0 0 0 0 1



I
I

331

8)

o
y

o
z

1

/IBehavioral description of multiplier (n
module Mult (A,B,Q);

input [7:0] B,Q;
output [15:0] A;
reg [15:0] A;
always @ (B or Q)

A = B * Q;

endmodule

HDL Example 8-7

w

Section 8-9 Design with Multiplexers

~__-+-_0'C--/ x

o
z

y

FIGURE 8-19

Example of ASM Chart with Four Control Inputs

Simulation log:

C=x A=xxxxx Q=xxxxx P=xxx time=10
CoO A=OOOOO Q=10011 P=101 time=20
CoO A=10111 Q=10011 p=100 time=30
CoO A=01011 Q=llOOl P=100 time=40
C=l A=00010 Q=llOOl P=Oll time=50
CoO A=10001 Q=OllOO P=Oll time=60
CoO A=10001 Q=OllOO P=010 time=70
CoO A=01000 Q=10110 P=010 time=80
CoO A=01000 Q=10110 P=OOl tirne=90
CoO A=00100 Q=01011 P=OOl time=100
CoO A=llOll Q=01011 P=OOO time=110
CoO A=OllOl Q=10101 P=OOO tirne=120
CoO A=OllOl Q=10101 P=OOO time=130

HDL Example 8-6

//Testing binary multiplier
module test_mltp;
//Inputs for multiplier

reg S,CLK,Clr;
reg [4:0] Binput,Qinput;

//Data for display
wire C;
wire [4:0] A,Q;
wire [2:0] Pi

//Instantiate multiplier
mltp mp{S,CLK,Clr,Binput,Qinput,C,A,Q,P};
initial

begin
8=0; CLK=O; Clr=O;

#5 8=1; Clr=l;
Binput 5'blOl11;
Qinput = 5'blOOll;

#15 8 = 0;

end
initial

begin
repeat (26)

#5 CLK = -CLK;
end

//Display computations and compare with Table 8-4
always @(negedge eLK)

$strobe ("C=%b A=%b Q=%b P=%b time=%Od",C,A,Q,P,$time);

endmodule

Chapter 8 Register Transfer Level330



332 Chapter 8 Register Transfer Level

I
I

Section 8-9 Design with Multiplexers 333

Table 8-7
Multiplexer Input Conditions

Present Next
State State Inputs

Input
G, Go G, Go Conditions MUXl MUX2

0 0 0 0 w'
0 0 0 I w 0 w

0 1 1 0 x
0 1 1 I x' x'

I 0 0 0 y'
I 0 1 0 yz' yz' + yz = y yz
I 0 1 1 yz

1 I 0 I y'z
I 1 I 0 Y
I I 1 I y'z' Y + y'Z' = Y + z' y'z + y'Z' = y'

next state of Go is equal to the complement value of x. Therefore, the input ofMUXI is made equal
to 1 and that of MUX2 to x' when the present state of the register is a I. As another example, after
present state 10, the next state of G, must be equal to I if the input conditions are yz' or yz. When
these two Boolean terms are ORed together and then simplified, we obtain the single binary vari
able y, as indicated in the table. The next state of Go is equal to I if the input conditions are yz = II.
If the next state of G, remains at a after a given present state, we place a a in the multiplexer input
as shown in present state 00 for MUX1. If the next state of G, is always I, we place a I in the mul
tiplexer input as shown in present state 01 for MUX1. The other entries for MUXI and MUX2 are
derived in a similar manner. The multiplexer inputs from the table are then used in the control im
plementation of Fig. 8-20. Note that if the next state of a flip-flop is a function of two or more con
trol variables, the multiplexer may require one or more gates in its input. Otherwise, the multiplexer
input is equal to the control variable, or the complement of the control variable, or 0, or 1.

Design Example-Count the Number of Ones in a Register

We will demonstrate the multiplexer control implementation by means of a desigu example. The
example will also demonstrate the fonnulation of the ASM chart and the implementation of the
datapath subsystem.

The digital system to be desigued consists of two registers, RI and R2, and a flip-flop, E.
The system counts the number of I's in the number loaded into register RI and sets register R2
to that number. For example, if the binary number loaded into RI is 10111001, the circuit
counts the five I's in RI and sets register R2 to the binary count 101. This is done by shifting
each bit from register RI one at a time into flip-flop E. The value in E is checked by the con
trol, and each time it is equal to I, register R2 is incremented by I.

The control uses one external input S to start the operation and two status inputs E and Z from
the datapath. E is the output of the flip-flop. Z is the output of a circuit that checks the contents
of register RI for all a's. The circuit produces an output Z = I when RI is equal to O.

TheASM chart for the circuit is shown in Fig. 8-21. The binary number is loaded into RI, and
register R2 is set to an all-I 's ·value. Note that a number with all 1's in a register when incremented

2x4
decoder

eLK

e

e

\---+----1 D

I----ID

MUXselect

0 0

1 I
MUXI

Y 2

3
'1 ·'0

" So
w 0

x' I

y MUX2
2

z
3

FIGURE 8-20
Control Implementation with Multiplexers

implementation is shown in Fig. 8-20. It consists of two multiplexers, MUXI and MUX2; a reg
ister with two flip-flops, G, and Go; and a decoder with four ontputs. The ontputs of the regIster
are applied to the decoder inputs and also to the select inputs of the muillplexers. In this way, the
present state of the register is used to select one of the mputs from each multiplexer. The ~utputs
of the multiplexers are then applied to the D inputs of G, and Go. The purpose of each muillplexer
is to produce an input to its corresponding flip-flop equal to the blllary value of the next state.
The inputs of the multiplexers are determined from the decISIOn boxes and state transItIOns
given in the ASM chart For example, state 00 stays at 00 or goes to a I, depending on the value
of input w. Since the next state of G1is 0 in either case, we.place a slg~al eqUIvalent to lOglC-O
in MUXI input O. The next state of Go is a if w ~ a and I If w = 1. Slllce thenext state of Go
is equal to w, we apply control input w to MUX2 input O. What this means IS that when the
select inputs of the multiplexers are equal to present state 00, the outputs of the multIplexers

provide the binary value that is transferred to the register during the next clock pulse.
To facilitate the evaluation of the multiplexer inputs, we prepare a table ShOWlllg the mput con

ditions for each possible transition in the ASM chart Table 8-7 gives this infonnation forthe ASM
chart of Fig. 8-19. There are two transitions from present state 00 or 01 and three transIllonsfrom
present state 10 or II. These are separated by horizontal lines across the table. The lllput condIll~ns
listed in the table are obtained from the decISIon boxes III theASM chart. For example, from FIg. 8 19,
we note that present state 01 will go to next state 10 if x = I or to next state 11 if x = O. In the table,
we mark these input conditions as x and x', respectively. The two columns under "multiplexer~
puts" in the table specify the input values that must be applied to MUXI and MUX2. The mulll
plexer input for each present state is detennined from the mput condItIons when the next state of the
flip-flop is equal to L Thus, after present state 01, the next state of G, is always equal to I and the



I

335

Inputs = All! 's

Section 8-9 Design with Multiplexers

TO~Start S

TI
E Control

T,

Z T3 f--
IZ~lif
Rl ~ 0

Check for
zero

r Parallel output

I
Serial iUPUr 0

D~
Shift register Rl

Shift left
L-

Load input

C<f-
t

Input data

CLK
outPUt count

Count

Counter R2
Load input

t

E

FIGURE 8-22
Block Diagram for Count-of-Ones

The block diagram of the circuit is shown in Fig. 8-22. The control has three inputs and four
?utputs. Only three outputs are used by the datapath. Register RI is a shift register. Register R2
IS a counter WIth parallel load. In order not to complicate the diagram, the clock is not shown
but it must be applied to the two registers, the E flip-flop, and the flip-flops in the control. '
..The multiplexer input conditions for the control are detennined from Table 8-8. The input con

ditIons are obtamed from the ASM chart for each possible binary state transition. The four states
are assigned binary values 00 through II. The transition from present state 00 depends on S. The
transll10n from present state 0I depends on Z, and the transition from present state lIon E. Pre
sent state 10 goes to next state II unconditionally. The values under MUXI and MUX2 in the
table are determined from the input Boolean conditions for the next state of GI and Go, respectively.

0
S

1

Rl t- Input
R2 t- AlI1's

01

RZt-R2+1

1
Z

FIGURE 8-21
ASM Chart for Count-of-Ones Circuit

produces a number with all O's. In state TI , register R2 is incremented and the content of RI is ex
amined. If the content is zero, then Z = I, and it signifies that there are no I's stored in the regis
ter; so the operation terminates with R2 equal to O. If the content of RI is not zero, thenZ = 0, and
it indicates that there are some I's stored in the register. The number in RI is shifted and its leftmost
bit transferred into E. This is done as many times as necessary until a I is transferred into E. For every
I detected in E, register R2 is incremented and register RI is checked again for more I 's. The major
loop is repeated until all the I's in RI are counted. Note that the state box of T, has no register op
erations, bnt the block associated with it contains the decision box for E. Also note that the serral
input to shift register RI must be equal to 0 because we don't want to shift external 1's into RI.

1

Chapter 8 Register Transfer Level334



Problems 337

Explain in words the operations specified by the following register transfer notation:

(a) R2 <- R2 + 1, Rl <- R2

(b) R3 <- R3 - 1

(e) If(T, = l)then(RO <-Rl)elseif(T, = l)then(RO <- R2)

Draw the portion of an ASM chart starting from an initial state. There are two control signals x
and y. Ifxy = 10, register R is incremented by one and control goes to a second state. Ifxy = 01,
register R is cleared to zero and control goes from the initial state to a third state. Otherwise, con
trol stays in the initial state.

Draw the ASM charts for the following state transitions:

(a) If x = 0, control goes from state T[ to state T2 ; if x = I, generate a conditional operation and
go from T1 to T2 •

(b) If x = I, control goes from T, to T2 and then to T3; if x = 0, control goes from T, to T3•

(c) StartfromstateTt;then:ifxy = 00, go to T2 ; ifxy = 01,gotoT;;ifxy = 10,gotoT1;oth
erwise, go to T3•

8-4 Show the eight exit paths in an ASM block emanating from the decision boxes that check the
eight possible binary values of three control variables x, y, and z.

8-5 Explain how the ASM chart differs from a conventional flow chart. Using Fig. 8-5 as an illustra
tion, show the difference in interpretation.

8-6 Construct an ASM chart for a digital system that counts the number of people in a room. People
enter the room from one door with a photocell that changes a signal x from 1 to 0 when the light
is interrupted. They leave the room from a second door with a similar photocell that changes a sig
nal y from 1 to 0 when the light is interrupted. The circuit consists of an up-down counter with
a display that shows how many people are in the room.

8-7 Draw an ASM chart for a circuit with two 8-bit registers RA and RB that receive two unsigned
binary numbers and perfonns the subtraction operation:

RA <- RA - RB

Use the method for subtraction described in Section 1-5 and set a borrow flip-flop to 1 if the
answer is negative.

8-8 Design a digital circuit with three 16-bit registers AR, BR, and CR to perform the following
operations:

(a) Transfer two 16-bit signed numbers (in 2's complement representation) to AR and BR.

(b) If the number in AR is negative, divide the number in AR by two and transfer the result to
register CR.

(c) If the number in AR is positive but nonzero, multiply the number in BR by two and transfer
the result to register CR.

(d) If the number in AR is zero, clear register CR to o.
8-9 Design the control whose state diagram is given by Fig. 8-11(a) using one flip-flop per state (one

hot assignment).

8-10 The state diagram of a control unit is shown in Fig. P8-10. It has four states and two inputs x and
y. Draw the equivalent ASM chart, leaving the state boxes empty.

-0

-1
G,

MUX1 D -
-2

~>e
'-3

S S
1 0

-
e---2x4

MUXselect decoder f---

I--

Sl S
0

5-0

0-1 Go
MUX2 D -

1- 2
.......>eE- 3

o
Z'

1

E

eLK

FIGURE 8-23
Control Implementation for Count-ofROnes Circuit

The control implementation of the design example is shown in Fig. 8-23. This is a three-level
implementation with the mnltiplexers in the first level. The inpnts to the mulllplexers are ob-

tained from Table 8-8.

336 Chapter 8 Register Transfer Level

PROBLEMS
Table 8-8 .
Multiplexer Input Conditions for DesIgn Example

8-1

Present Next Multiplexer
Inputs

State State Input

G, Go Conditions MUXl MUX2
G, Go

0 0 0 0 S' 8-2
0 S

0 0 0 1 S

0 1 0 0 Z
Z' Z' 0

0 1 1 0
8-3

0 None

1 0 E'

0 1 E E' E



----------=-
Section 9-1 IntrOduction

343

k excitation
variables

(next state)

utput
abIes

Xl -----..

~Zl

n input x, ----+-

variables z, ma
vari

XII --+

i----l-- zm
Combinational

circut
Yt

ry Yl
y,

Y2

Yk,..---.... ~Yk

L Delay ~

Delay ll

Delay 11

k seconda
variables
(present
state)

FIGURE 9-1

Block Diagram of an As
ynchronous Sequent',al C' .. . IrCUlt

mdependent clock, must be done w'th
a mixed system where same part of~easyn~onouscircuits. Digital designers often prod
chronous circuit. Knowledge ofasy h sync onous system has the characteristics of uce
th t th' nc ronous seqn tiall . an aSyn-

a . e total dIgital system is operating in th en oglC behavior is helpful in verifyin
FIg. 9-1 shows the block d' e proper manner. g

b", Iagram of an asyn h
matIOnal CIrcuit and dela I c ronous sequential circuit It .

abIes m t . ye ements connected to form feedb . conSIsts of a COffi-

h
' ou put vanables, and k internal states Th d 1 ack loops. There are n input vari-

Sort-term m -i:' • e e ayelements b . .
'. emo~ lOr the sequential circuit. In a . ~an . e VIsualized as providin

eXIsts In the CombInational circuit path fr . gate-type cIrcUlt, the propagation delay th ~
feedback loop so that no specific delay el

om
Input to output proVides sufficient delay alon th

a

present-state and nextstate variables' emehnts are actually inserted in the feedback path gTh e
second . b· III async ronous sequ tial' . " e

ary vana les and eXcitation Variables . en CIrcUIts are customarily called
be ~nfused with the excitable table used in ~:s:ectlvelY. The excitation variables should not

hen an Input variable changes i I eSIgn of clocked sequential circuits
taneously. It takes a certain amount :f~::::;.~hey secondary variables do not Chang~ instan
nals through the combinational circuit to ther;he SIgnal to pr~pagate from the input termi

eXCitatIOn vanables where new values are

Asynchronous
Sequential Logic

A sequential circuit is specified by a time sequence of inputs, outputs, and internal states. In
synchronous sequential circuits, the change of internal state occurs in response to the syn
chronized clock pulses. Asynchronous sequential circuits do not use clock pulses. The change
of internal state occurs when there is a change in the input variables. The memory elements in
synchronous sequential circuits are clocked flip~flops. The memory elements in asynchronous
sequential circuits are either uuclocked flip-flops or time-delay elements. The memory capa
bility of a time-delay device is due to the finite time it takes for the signal to propagate through
digital gates. An asynchronous sequential circuit quite often resembles a combinational cir
cuit with feedback.

The design of asynchronous sequential circuits is more difficult than that of synchronous cir
cuits because of the timing problems involved in the feedback path. In a properly designed
synchronous system, timing problems are eliminated by triggering all flip-flops with the pulse
edge. The change from one state to the next occurs during the short time of the pulse transi
tion. Since the asynchronous circuit does not use a clock, the state of the system is allowed to
change immediately after the input changes. Care must be taken to ensure that each new state
keeps the circuit in a stable condition even though a feedback path exists.

Asynchronous sequential circuits are useful in a variety of applications. They are used when
speed of operation is important, especially in those cases where the digital system must re
spond quickly without having to wait for a clock pulse. They are more economical to use in small
independent systems that require only a few components, as it may not be practical to go to the
expense of providing a circuit for generating clock pulses. Asynchronous circuits are useful in
applications where the input signals to the system may change at any time, independently of
an internal clock. The communication between two units, with each unit having its own

342

9-1 I NT ROD U CT ION



344 Chapter 9 Asynchronous Sequential Logic
Section 9-2 Analysis Procedure 345

generated for the next state. These values propagate through the delay elements and become
the new present state for the secondary variables. Note the distinction betwen tbe y's and the
Y's. In the steady-state condition, they are the same, but during transition they are not. For a
given value of input variables, the system is stable if the circuit reaches a steady-state condi
tion with Yi = If for i = 1,2, ... , k. Otherwise, the circuit is in a continuous transition and is
said to be unstable. It is important to realize that a transition from one stable state to another
occurs only in response to a change in an input variable. This is in contrast to synchronous
systems, where the state transitions occur in response to the application of a clock pulse.

To ensure proper operation, asynchronous sequential circuits must be allowed to attain a
stable state before the input is changed to a new value. Because of delays in the wires and the
gate circuits, it is impossible to have two or more input variables change at exactly the same
instant of time without an uncertainty as to which one changes fIrst. Therefore, simultaneous
changes of two or more variables are usually prohibited. This restriction means that only one
input variable can change at anyone time and the time between two input changes must be
longer than the time it takes the circuit to reach a stable state. This type of operation is defined
as fundamental mode. Fundamental-mode operation assumes that the input signals change one
at a time and only when the circuit is in a stable condition.

Y1r-------[
x -i-,----1

Yz ,-i--t--'-------J

FIGURE 9-2

Example of an Asynchronous Sequential Circuit

f
variabthles as a function of the input and secondary variables. These can be readily obtained
rom e lOgIC diagram.

Yj = XYI + X'Yz

12 = XYI + x'Yz

The next step is to plotthe.l] and 12 functions in a map, as shown in Fig. 9-3(a) and (b) The
encoded bmary values of the y variables are used for labeling the rows, and the input x ·vari
abl~ IS used to deSIgnate the columns. ThIS configuration results in a slightly different three
vanable map from the one used in previous chapters. HoWever, it is still a valid map, and this
type of configur~tlOnIS more ~onvenientwhen dealing with asynchronous sequential circuits.
Nhote that the vanables belongmg to the appropriate squares are not marked along the sides of
t e map as done III prevIOUS chapters.

FIGURE 9-3

Maps and Transition Table for the Circuit of Fig. 9-2

x
o 1

@ 01

11 @
(0 10

00 G

x
o 1

01

(c) Transition table

11

10

YIYz

000 1

1 1

1 0

0 0

01

x
o 1

(b) Map for
Yz =xY'l +x'yz

11

10

YIYZ

000 0

1 0

1 1

0 1

(a) Map for
Y1 =xYl +x'Yz

01

11

10

YIYz

00

An example of an asynchronous sequential circuit with only gates is shown in Fig. 9-2. The di
agram clearly shows two feedback loops from the OR gate outputs back to the AND-gate in
puts. The circuit consists of one input variable x and two internal states. The internal states have
two excitation variables, Yj and fz, and two secondary variables, YI and Yz. The delay associ
ated with each feedback loop is obtained from the propagation delay between each y input and
its corresponding Y output. Each logic gate in the path introduces a propagation delay of about
2 to 10 ns. The wires that conduct electrical signals introduce an approximately one-nanosecond
delay for each foot of wire. Thus, no additional external delay elements are necessary when the
combinational circuit and the wires in the feedback path provide sufficient delay.

The analysis of the circuit starts by considering the excitation variables as outputs and the
secondary variables as inputs. We then derive the Boolean expressions for the excitation

The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that
describes the sequence of internal states and outputs as a function of changes in the input vari
ables. A logic diagram manifests an asynchronous-sequential-circuit behavior if it has one or
more feedback loops or if it includes unclocked flip-flops. In this section, we will investigate
the behavior of asynchronous sequential circuits that have feedback paths without employing
flip-flops. Unclocked flip-flops are called latches, and their use in asynchronous sequential
circuits will be explained in the next section.

The analysis procedure will be presented by means of three specific examples. The first ex
ample introduces the transition table. The second example defines the flow table. The third
example investigates the stability of asynchronous sequential circuits.

9-2 A N A LY SIS PRO C ED U RE

Transition Table



Flow Table

~urng the design ~f asynchronous sequential circuits, it is more convenient to name the states
yetter symbols wIthout ~aking specific reference to their binary values. Such a table is called
~~ow~ablehA flow table IS smular to a transition table except that the internal states are sym-

f
Otlhze WIt. letters rather than bmary numbers. The flow table also includes the output values

a e ClTcmt for each stable state.

. EX~~Ples of flow tables are shown in Fig. 9-4. The one in Fig. 9-4(a) has four states des
Ignate y the letters a, b, c, and d. It reduces to the transition table of Fig. 9-3(c)ifwe assign

10
XIX2

01 11

(b) Two states with two
inputs and one output

00

O,0 O,0 O,0 b ,0
a,O a,O 0,1 0,0

a

b

CD b

c G
G d

a CD

a

x
o 1

(a) Four states with
one input

b

c

d

FIGURE 9-4

Examples of Flow Tables

Se.ction 9-2 Analysis Procedure 347

The procedure for obtaiuing a transition table from the circuit diagram of an hr
sequential circuit is as follows: async onous

1. Determine all feedback loops in the circuit.

2. Designate the output of each feedback loop with variable Y and its correspo d' .
WIth f . - 1 2 . ' n !Dg !Dput

. Y, or I - , , ••. , k, where k IS the number of feedback loops in the circuit.

3. Denve the Boolean functions of all Y's as a function of the external inputs and the y's.

4. ;lotheach Y functIOn m a map, using the Y variables for the rows and the external inputs
l.or t e columns.

5. Combiue all the maps into one table showing the value of Y = Y. Y ...y"d h
~~. - 12 klnslee~

6. Circle those values of Y in each square that are equal to the value of Y = ....
the same row. YIY2 Yk III

~nce the transition table is available, the behavior of the circuit can be analyzed by observing
e state tranSItIon as a functIOn of changes in the input variables.

Table 9-1
State Table for the Circuit of Fig. 9-2

Present
Next State

State x~O x~l

0 0 0 0 a 1
0 1 1 1 0 1
t 0 0 0 1 0
1 1 1 1 1 0

The transition table shown in Fig. 9-3(c) is obtained from the maps by combining the binary
values in corresponding squares. The transition table shows the value of Y = l] Y2 inside each
square. The first bit of Y is obtained from the value of l], and the second bit is obtained from
the value of Y2 in the same square position. For a state to be stable, the value of Y must be the
same as that of Y = YIY" Those entries in the transition table where Y = Y are circled to in
dicate a stable condition. An uncircled entry represents an unstable state.

Now consider the effect of a change in the input variable. The square for x = aand Y = 00
in the transition table shows that Y = 00. Since Y represents the next value of Y, this is a sta
ble condition. If x changes from ato 1 while Y = 00, the circnit changes the value of Y to 01.
This represents a temporary unstable condition because Y is not equal to the present value of
y. What happens next is that as soon as the signal propagates to make Y ~ 01, the feedback path
in the circuit causes a change in y to 01. This is manifested in the transition table by a transi
tion from the first row (y = 00) to the second row, where Y = 01. Now that Y = Y, the cir
cuit reaches a stable condition with an input of x = 1. In general, if a change in the input takes
the circuit to an unstable state, the value of Y will change (while x remains the same) until it
reaches a stable (circled) state. Using this type of analysis for the remaining squares of the
transition table, we find that the circuit repeats the sequence of states 00, 01,11,10 when the
input repeatedly alternates between aand 1.

Note the difference between a synchronous and an asynchronous sequential circuit. In a syn
chronous system, the present state is totally specified by the flip-flop values and does not change
if the input changes while the clock pulse is inactive. In an asynchronous circuit, the internal
state can change immediately after a change in the input. Because of this, it is sometimes con
venient to combine the internal state with the input value together and call it the total state of
the circuit. The circuit whose transition table is shown in Fig. 9-3(c) has four stable total states
YIY'X ~ 000, OIl, 110, and IOI-and four unstable total states-OOl, 010, III, and 100.

The transition table of asynchronous sequential circuits is similar to the state table used for
synchronous circuits. If we regard the secondary variables. as the present state and the excita
tion variables as the next state, we obtain the state table, as shown in Table 9-1. This table pro
vides the same information as the transition table. There is one restriction that applies to the
asynchronous case, but not the synchronous case. In the asynchronous transition table, there
usually is at least one next state entry that is the same as the present-state value in each row.
Otherwise, all the total states in that row will be unstable.

346 Chapter 9 Asynchronous Sequential Logic



348 Chapter 9 Asynchronous Sequential Logic Section 9-2 Analysis Procedure 349

the following binary values to the states: a = 00, b = 01, c = 11, and d = 10. The table of
Fig. 9-4(a) is called a primitive flow table because it has only one stable state in each row. Fig
ure 9-4(b) shows a flow table with more than one stable state in the same row. It has two states,
a and b; two inputs, XI and X2; and one output, z. The binary value of the output variable is in
dicated inside the square next to the state symbol and is separated by a comma. From the flow
table, we observe the following behavior of the circuit. If XI = 0, the circuit is in state a. If XI
goes to 1 while X2 is 0, the circuit goes to state b. With inputs XI X2 = 11, the circuit may be
either in state a or state b. If in state a, the output is 0, and if in state b, the output is I. State b
is maintained if the inputs change from 10 to II. The circuit stays in state a if the inputs change
from 01 to II. Remember that in fundamental mode, two input variables cannot change si
multaneously, and therefore we do not allow a change of inputs from 00 to 11.

In order to obtain the circuit described by a flow table, it is necessary to assign to each state
a distinct binary value. This assignment converts the flow table into a transition table from
which we can derive the logic diagram. This is illustrated in Fig. 9-5 for the flow table of
Fig. 9-4(b). We assign binary 0 to state a and binary I to state b. The result is the transition table
of Fig. 9-5(a). The output map shown in Fig. 9-5(b) is obtained directly from the output val
ues· in the flow table. The excitation function Y and the output function z are simplified by
means of the two maps. The logic diagram of the circuit is shown in Fig. 9-5(c).

This example demonstrates the procedure for obtaining the logic diagram from a given flow
table. This procedure is not always as simple as in this example. There are several difficulties

@ 11

0
01

1l

X

o 1

10

11

(b) Possible transitions:

00-"""'-11-"""'-01
00-"""'-01
00 -"""'-10-"""'-11-"""'- 01

01

YIYZ

00@ 11

11

(0
11

01

(a) Possible transitions:

00-"""'-11
00-"""'-01-"""'-11
00-"""'-10-"""'-11

X

o 1

10

11

YrYz

00

A race condi~ion is said to exist in an asynchronous sequential circuit when two or more bi
nary state vanables change value in.r~sponse to a change in an input variable. When unequal
d?lays are encountered, a race COndItIon may cause the state variables to change in an unpre
dICtable manner. For example, if the state variables must change from 00 to II, the difference
In delays may cause the first variable to change faster than the second, with the result that the
state vanables change in sequence from 00 to 10 and then to II. If the second variable changes
faster than the first, the state variables will change from 00 to 0 I and then to 11. Thus, the order
by whIch the state variables change may not be known in advance. If the final stable state that
~e ClTcmt reach~s. does not d~p~nd on the order in which the state variables change, the race
IS cal.led a noncntlcal race. If It IS possible to end up in two or more different stable states de
pendI~g on t~~ order in which the state variables change, then it is a critical race. For pr~per
operatIOn, cntlcal races must be avoided.

The two examples in Fig. 9-6 illustrate noncritical races. We start with the total stable state
YIY2X := 000 and then change the input from 0 to 1. The state variables must change from 00 to
II, which defines a race condition. The listed transitions under each table show three possible
ways that the state vanables may change. They can either change simnltaneously from 00 to II
or they may change in sequence from 00 to 01 and then to II, or they may change in sequenc~
fr0r:n 00 to 10 andthen to II. In all cases, the final stable state is the same, which results in a non
crIllcal race condlllOn. In (a), the final total state is YI Y2 X = Ill, and in (b), it is 0 II.

associated with the binary state assignment and with the output assigned to the unstable states.
These problems are discussed in detail in the following sections.

Race Conditions

z

10

y

Xt X2

01 11

(b) Map for output
z = xlx2Y

00

·0 0 0 0

0 0 1 01

y

o

(c) Logic diagram

10

CD CD CD 1

0 0 (2) (2)
(a) Transition table

Y=xlx'2+ x IY

y

o

00

1

Xl -~+------1

X, -+--+---1 >:}----j

FIGURE 9-5
Derivation of a Circuit Specified by the Flow Table of Fig. 9-4(b)

FIGURE 9-6

Examples of Noncritical Races



350 Chapter 9 Asynchronous Sequential Logic
Section 9-2 Analysis Procedure 351

@ 11

@

@

0

@ 11

11

@

0

o
x

x
o 1

@ 01

11

10

01

01

11

10

YrYz

00

x
o

@ 01

II

(0

GV

01

11

10

YiYZ

00@ 01

11

10

GV

01

11

10

1
x

o

01

11

10

YtYz

00

1
x

o

01

11

10

YIYZ
00

The transition tables of Fig. 9-7 illustrate critical races. Here again we start with the total
stable state Y1Y2X = 000 and then change the input from 0 to 1. The state variables must change
from 00 to II. If they change simultaneously, the final total stable state is 111. In the transi
tion table of part (a), if Y, changes to I before J:[ because of unequal propagation delay, then
the circuit goes to the total stable state 011 and remains there. On the other hand, if J:[ changes
first, the internal state becomes 10 and the circuit will remain in the stable total state 101.
Hence, the race is critical because the circuit goes to different stable states depending on the
order in which the state variables change. The transition table of Fig. 9-7(b) illustrates anoth
er critical race, where two possible transitions result in one final total state, but the third pos
sible transition goes to a different total state.

Races may be avoided by making a proper binary assigmnent to the state variables. The
state variables must be assigned binary numbers in such a way that only one state variable can
change at anyone time when a state transition occurs in the flow table. The subject of race-free
state assignment is discussed in Section 9-6.

Races can be avoided by directing the circuit through intermediate unstable states with a
unique state-variable change. When a circuit goes through a unique sequence of unstable states,
it is said to have a cycle. Fig. 9-8 illustrates the occurrence of cycles. Again we start with
Y1Y2 = 00 and then change the input from 0 to 1. The transition table of part (a) gives a unique
sequence thatterminates in a total stable state 101. The table in (b) shows that even though the
state variables change from 00 to II, the cycle provides a unique transition from 00 to 0 I and
then to 11. Care must be taken when using a cycle that it terminates with a stable state. If a cycle
does not terminate with a stable state, the circuit will keep going from one unstable state to an
other, making the entire circuit unstable. This is demonstrated in Fig. 9-8(c) and also in the fol
lowing example.

(c) Unstable

C01 ->11-> 10J

10
XIX2

01 11

(a) Logic diagram

(b) State transition:

00 ---7 01 --7 11

(b) Transition table

00

CD 1 1 CD
0 8 0 0

y

o

(a) State transition:

00 ---7 01 --7 11 --7 10

X2

FIGURE 9-8

Examples of Cycles

FIGURE 9-9

Example of an Unstable Circuit

Because of the feedback connection that exists in asynchronous sequential circuits care must
be ta~en .to ensu~e that the circuit does not become unstable. An. unstable condition'will cause
the CIrCUIt to OSCIllate between unstable states. The transition-table method of analysis can be
usefull~ detectmg the OCcurrence of instability.

ConsIder, for example, the circuit of Fig. 9-9(a). The excitatiou function is

y = (X1Y)'X2 = (x~ + y')X2 = X;X2 + X2Y'

Stability Considerations

(b) Possible transitions:

00-11
00~ 01----+-11
00_10

(a) Possible transitions:

00-11
00_01
00-10

FIGURE 9-7
Examples of Critical Races



~-----
Section 9-3 Circuits With latches 3S3

(a) Crossed-coupled circuit

S R Q Q'
1 0 1 0

0 0 1 0 (After SR ~ 10)

0 1 0 1

0 0 0 1 (After SR ~ 01)

1 1 0 0

(b) Truth table

SR

lo--*--Q'
S---j

R----\

Y~SR'+R'y

y= S+ R'y whenSR = 0

(d) Transition table

0 0 0 1

0) 0 0 0)

R-------\

S

(c) Circuit showing feedback

y

o

00 01 11 10

fiGURE 9-10
SR latch with NOR Gates

R back to 0 leaves the circuit in the reset state. These conditions are also listed in the truth
table. The circuit exhibits some difficulty when both S and R are equal to I. From the truth table.
we see that both Q and Q' are equal to 0, a condition that violates the requiremeut that these
two outputs be the complemeut of each other. Moreover, from the transition table, we note that
going from SR = II to SR = 00 produces au unpredictable result. IfS goes to 0 fIrst, the out
put remains at 0, but ifR goes to 0 first, the output goes to I. In nonnal operation, we must make
sure that l's are uot applied to both the Saud R iuputs simultaneously. This couditiou can be
expressed by the Booleau fuuction SR = 0, which states that the ANDing of Saud R must al
ways result iu a O.

Comiug back to the excitatiou functiou, we note that when we OR the Boolean expression
SR' with SR, the result is the siugle variable S.

SR' + SR = S(R' + R) = S

From this. we deduce that SR' = S wheu SR = O. Therefore, the excitatiou functiou derived
previously,

Y = SR' + R'y

~an be expressed as

y = S + R'y wheuSR = 0



355

R2

Section 9-3 Circuits With Latches

Analysis Example

Asynchronous sequential circuits can be constructed with the use ofSR latches with or without ex
ternal fe~dback paths. Of course, there is always a feedback loop within the latch itself. The analy
SIS of a CITCUlt WIth latches Wlll be demonstrated by means of a specific example. From this example,
It WIll bepos~lble to generalize the procedural steps necessary to analyze other, similar circuits.

The CITCUlt shown'in Fig. 9-12 has two SR latches with outputs Yj and 12. There are two in
puts, Xl and X2,. and two external feedback loops giving rise to the secondary variables, Yl and
Y2' Note that thIS CITCUlt resembles a conventional sequential circuit with latches behaving like
flIp-flops WIthout clock pulses. The analysis of the circuit requires that we first obtain the
Boolean functions for the Sand R inputs in each latch.

81 = XIYZ 82 = XIX2

R1 = xIx; Rz= XZYI

We then check whether the condition SR = 0 is satisfied to ensure proper operation ofthe circuit:

SIR1 = XIY2X;X; = 0

SzRz = XIX2XZYI = a
The result is 0 because Xl x~ = XzX& = o.

FIGURE 9-12

Example of a Circuit with 5R Latches

S2
X2 -j

101101

S R Q Q'
1 0 0 1 x,
1 1 0 1 (After SR ~ 10)

0 1 1 0

1 1 1 0 (After SR ~ 01)

0 0 1 1

(b) Truth table

SR

(d) Transition table

00

y= S' +RywhenS'R' = 0

1 1 0 0
(2) (2) (2) 0

y

o

1

)o--+--Q'

\O-_-Q

(c) Circuit showing feedback

(a) Crossed-coupled circuit

FIGURE 9-11
5R Latch with NAND Gates

Comparing it with the excitation function of the NOR latch, we note that S has been replaced
with S' and R' with R. Hence, the input variables for the NAND latch require the comple
mented values of those used in the NOR latch. For this reason, the NAND latch is sometimes
referred to as an S'R' latch (or S-R latch).

To analyze a circuit with an SR latch, we must first check that the Boolean condition SR = 0
holds at all times. We then use the reduced excitation function to analyze the circuit. Howev
er, if it is found that both S and R can be equal to I at the same time, then it is necessary to use
the original excitation function.

The analysis of the SR latch with NAND gates is carried out in Fig. 9-11. The NAND latch
operates with both inputs normally at 1 unless the state of the latch has to be changed. The ap
plication of 0 to R causes the output Q to go to 0, thus putting the latch in the reset state. After
the R input returns to 1, a change of S to 0 causes a change to the set state. The condition to be
avoided here is that both S and R not be 0 simultaneously. This condition is satisfied when
S'R/ = O. The excitation function for the circuit is

Y = [S(Ry)']' = S' + Ry

S----/

R----/

s------1

R

Chapter 9 Asynchronous Sequential Logic354

_.



Chapter 9 Asynchronous Sequential Logic

The next step is to derive the transition table of the circuit. Remember that the transition table
specifies the value of Y as a function of y and x. The excitation functions are denved from the

relation Y = S + R'y.

II = 51 + R~Yl = XIYZ + (XI + Xl)Yl = X1YZ + XIYI + XIYl

y; = 52 + R~Y2 = XIX2 + (X2 + ynyz = XjXl + XIYZ + Y;Y2
, I

We now develop a composite map for Y = II Y2' The y variable~ ar~ assigned to the rows in the
map, and the x variables are assigned to the columns, as shown III FIg. 9-13. The Boolean ,func
tions of Y, and y: as expressed above are used to plot the composite map for Y. The entnes of
Y in each lrow th~t have the same value as that given to Y are circled and represent stab?e stat~~.
From investigation of the transition table, we deduce that the circuit is stable. There IS a cntI
cal race condition when the circuit is initially in total state YIY2XjX2 .. = II?I and X2 changes from
I to O. If lJ changes to 0 before Y" the circuit goes to total state0 I00 mstead of 0000. How
ever, with approximately equal delays in the gates and latches, this undesIrable SItuatIOn IS not

likely to occur. . . . .
The procedure for analyzing an asynchronous sequentIal CIrCUlt wIth SR latches can be sum-

marized as follows:

1. Label each latch output with Y, and its external feedback path (if any) with y; for

i = 1,2. "., k.
2. Derive the Boolean functions for the Si and Ri inputs in each latch.

3. Check whether SR = 0 for each NOR latch or whether S'R' = 0 for each NAND
latch. If this condition is not satisfied, there is a possibility that the CIrcUIt may not op-

erate properly.
4. Evaluate Y = S + R'y for each NOR latch or Y = S' + Ry for each NAND latch.

5. Construct a map with the y's representing the rows and the x inputs representing the columns.

6. Plot the value of Y = lJ 12'" Yk in the map.

7. Circle all stable states where Y = y. The resulting map is then the transition table.

e @ 01 @

@ @ 11 11

00 (0 (0 10

00 (0 11 (0

357

R = x~

and

and

Section 9-3 Circuits With Latches

The implementation of a sequential circuit with SR latches is a procedure for obtaining the
logic diagram from a given transition table. The procedure requires that we detennine the
Boolean functions for the S and R inputs of each latch. The logic diagram is then obtained by
drawing the SR latches and the logic gates that implement the S and R functions. To demon
strate the procedure, we will repeat the implementation example of Fig. 9-5. The output circuit
remains the same and will not be repeated again.

The transition table from Fig. 9-5(a) is duplicated in Fig. 9-14(a). From the information
given in the transition table and from the latch excitation table conditions in Fig. 9-14(b), we
can obtain the maps for the Sand R inputs of the latch, as shown in Fig. 9-14(c) and (d). For
example, the square in the second row and third column (yx I x, = Ill) in Fig. 9-14(a) requires
a transition from y = I to Y = I. The excitation table specifies S = X, R = 0 for this change.
Therefore, the corresponding square in the S map is marked with an X and the one in the R map
with a O. All other squares are filled with values in a similar manner. The maps are then used
to derive the simplified Boolean functions

The transition table of the SR latch is useful for analysis and for defining the operation of the
latch. It specifies the excitation variable Y when the secondary variable y and the inputs Sand
R are known. During the implementation process, the transition table of the circuit is available
and we wish to find the values of Sand R. For this reason, we need a table that lists the required
inputs Sand R for each of the possible transitions from y to Y. Such a list is called an excita
tion table.

The excitation table of the SR latch is shown in Fig. 9-l4(b). The first two columns list the
four possible transitions from y to Y. The next two columns specify the required input values
that will result in the specified transition. For example, in order to provide a transition from
y = 0 to Y = I, it is necessary to ensure that input S = I and input R = O. This is shown in
the second row of the transition table.

The required input conditions for each of the four transitions in the excitation table can be
derived directly from the latch transition table of Fig. 9-10(d) after removing the unstable con
dition SR = II. For example, in order to change from y = 0 to Y = 0, the transition table
shows that SR can be either 00 or 01. This means that S must be I and R may be either 0 or 1.
Therefore, the first row in the excitation table shows S = 0 and R = X, where X is a don't
care condition signifying either a aor a 1.

The logic diagram consists of an SR latch and the gates required to implement the Sand R
Boolean functions. The circuit is as shown in Fig. 9-14(e) when a NOR latch is used. With a
NAND latch, we must use the complemented values for Sand R.

Implementation Example

Latch Excitation Table

10110100

11

10

01

YIY2

00

356

FIGURE 9-13
Transition Table for the Circuit of Fig. 9-12

This circuit is shown in Fig. 9-14(D.



-
359

lr--<--Q'

Section 9-3 Circuits With latches

s

R

Ground

FIGURE 9-15
Debounce Circuit

3. Draw the logic diagram using k latches together with the gates required to generate the
Sand R Boolean functions. For NOR latches, use the Sand R Boolean functions obtained
in step 2. For NAND latches, use the complemented values of those obtained in step 2.

Another useful example of latch implementation can be found in Section 9-7 in conjunction
with Fig. 9-38.

Input binary information in a digital system can be generated manually by means of mechan
ical switches. One position of the switch provides a voltage equivalent to logic I, and the other
position provides a second voltage equivalent to logic O. Mechanical switches are also used to
start, stop, or reset the digital system. When testing digital circuits in the laboratory, the input
signals will normally come from switches. A common characteristic of a mechanical switch is
that when the arm is thrown from one position to the other, the switch contact vibrates or
bounces several times before coming to a final rest. In a typical switch, the contact bounce
may take several milliseconds to die out. This may cause the signal to oscillate between 1 and
obecause the switch contact is vibrating.

A debounce circuit is one that removes the series of pulses that result from a contact bounce
and produces a single smooth transition of the binary signal from 0 to 1 or from I to O. One
such circuit consists of a single-pole double-throw switch connected to an SR latch, as shown
in Fig. 9-15. The center contact is connected to ground that provides a signal equivalent to
logic-D. When one of the two contacts, A or B, is not connected to ground through the switch,
it behaves like a logic-l signal. A resistor is sometimes connected from each contact to a fixed
voltage to pruvide a film logic-I signal. When the switch is thrown from position A to posi
tion B and back, the outputs of the latch produce a single pulse as shown, negative for Q and
positive for Q'. The switch is usually a pushbutton whose contact rests in position A. When the
pushbutton is depressed, it goes to position B and when released, it returns to position A.

The operation of the debounce circuit is as follows. When the switch rests in position A, we
have the condition S = 0, R = I and Q = I, Q' = 0 (see Fig. 9-11(b)). When the switch is
moved to position B, the ground connection causes R to go to 0 while S becomes a 1 because

Debounce Circuit

y

R

10

x
o
1

1

R

11

o
1

o
X

s

01

(f) Orcuit with NAND latch

o
1

o
1

y

(d) Map for R =x'l

00

(b) Latch excitation table

o
o
1
1

x X X 0

1 1 0 01

y

o

10

10

1101

01 11

(c) Map for S = X1X'Z

R

(a) Transition table
Y=XIX'2+ X IY

00

00

/'
0 0 0 1

0 0 X 6

G) G) G) 1

0 0 G) G)

y

o

1

1

y

o

FIGURE 9-14
Derivation of a Latch Circuit from a Transition Table

The general procedure for implementing a circuit with SR latches from a given transition

table can now be summarized as follows:

Given a transition table that specifies the excitation function Y ~ Y] Yz· ."lk, ~e~ve a pair
1. " S d R "or each i = 12k This is done by usmg the condItIons spec-of maps lor i an i l' , , ... , .

ified in the latch excitation table of Fig. 9-14(b).
2. Derive the simplified Boolean functions for each Si and Ri. Care must be taken not to make

S and K equal to I in the same minterm square., ,

(e) Circuit with NOR latch

Chapter 9 Asynchronous Sequential logic358



360 Chapter 9 Asynchronous Sequential Logic

contact A is open. This condition causes output Q to go to 0 and Q' to go to I. After the switch
makes an initial contact with B, it bounces several times, but for proper operation, we must as
snme that it does not bounce back far enough to reach point A. The output of the latch will be
unaffected by the contact bounce because Q' remains I (and Q remains 0) whether R is equal
to 0 (contact with ground) or equal to I (no contact with ground). When the switch returns to
position A, S becomes 0 and Q returns to I. The output again will exhibit a smooth transition
even if there is a contact bounce in position A.

9-4 DESIGN PROCEDURE

D. Thus, if the transition of DG is from 01 to 00 to 10 thenQt' ab .
t th . . . . ' mus remam ecause D IS 0

a e lIme of the transllIon from I to 0 in G. If the transition of DG is from II to 10 to 00 then
~ mu~t remam I. This mformalIon results in six different total states, as shown in the table.'Note
t at Simultaneous transllIons of two input variables, such as from 01 to 10 or from II to 00
are not allowed In fundamental-mode operation. '

The primitive flow table for. the gated latch is shown in Fig. 9-16. It has one row for each
state. and one column for ~ach mput combination. First, we fill in one square in each row be
longmg to the stable state m that row. These entries are determined from ~able 9 2 F
pie t t . t bl d' " - . or exam
fl ' s a e a IS s a e an the output IS 0 when the input is 01. This information is entered in the
th

OW
table m the first row and second column. Similarly, the other five stable states together with

elr output are entered In the corresponding input columns.

c,- G),o b,- - -

- - a,- 0,1 e, -

0,0 a,- - - d,-

c,- - - b ,- 0,0

j,- - - b,- 0,1

(0,1 a,- - - e,-

10

DG
01 1100

a

c

b

d

e

j

FIGURE 9-16
Primitive Flow Table

Primitive Flow Table

As defined previously, a primitive flow table is a flow table with only one stable total state in
each row. Remember that a total state consists of the internal state combined with the input. The
derivation of the primitive flow table can be facilitated if we first form a table with all possi
ble total states in the system. This is shown in Table 9-2 for the gated latch. Each row in the
table specifies a total state, which consists of a letter designation for the internal state and a pos
sible input combination for D and G. The output Q is also shown for each total state. We star!
with the two total states that have G = 1. From the design specifications, we know that Q = 0
if DG = 01 and Q = I if DG = II because D must be equal to Q when G ~ I. We assign
these conditions to states a and b. When G goes to 0, the output depends on the last value of

The design of an asynchronous sequential circuit starts from the statement of the problem and
culminates in a logic diagram. There are a number of design steps that must be carried out in
order to minimize the circuit complexity and to produce a stable circuit without critical races.
Briefly, the design steps are as follows. A primitive flow table is obtained from the design spec
ifications. The flow table is reduced to a minimum number of states. The states are then given
a binary assignment from which we obtain the transition table. From the transition table, we de
rive the logic diagram as a combinational circuit with feedback or as a circuit with SR latches.

The design process will be demonstrated by going through a specific example. Once this ex
ample is mastered, it will be easier to understand the design steps that are enumerated at the
end of this section. Some of the steps require the application of formal procedures, and these
are discussed in greater detail in the following sections.

Design Example

It is necessary to design a gated latch circuit with two inputs, G (gate) and D (data), and one
output, Q. Binary information present at the D input is transferred to the Q output when Gis
equal to I. The Q output will follow the D input as long as G = I. When G goes to 0, the in
formation that was present at the D input at the time the transition occurred is retained at the
Q output. The gated latch is a memory element that accepts the value of D when G = I and
retains this value after G goes to O. Once G = 0, a change in D does not change the value of
the output Q.



362 Chapter 9 Asynchronous Sequential logic
Section 9-4 Design Procedure 363

(a) States that are candidates for merging

~)o 00 b,- 0.0
CDI a,- CD,1 0 1

C,- 0 0 b,- - -

(0,0 a,- ~ - d,-

c,- - - b,- @,o

0 00 0 b,- 00
CDI a,- CD,1 CDI

10

10

DC
01 11

DC
01 11

00

00

- - a,- f)1 e, -

f,- - - b,- 0 1

CDI a,- - - e ,-

b

e

f

a

b

10

10

DC
01 11

DC
01 11

00

00

c

a

d

b, e,f

a, c, d

Next we note that since both inputs are not allowed to change simultaneously, we can enter
dash marks in each row that differs in two or more variables from the input variables associ
ated with the stable state. For example, the first row in the flow table shows a stable state with
an inpnt of 0 I. Since only one input can change at any given time, it can change to 00 or II,
but not to 10. Therefore, we enter two dashes in the 10 column of row a. This will eventually
result in a don't care condition for the next state and output in this square. Following this pro
cedure, we fill in a second square in each row of the primitive flow table.

Next it is necessary to find values for two more squares in each row. The comments listed
in Table 9-2 may help in deriving the necessary information. For example, state c is associat
ed with input 00 and is reached after an input change from state a or d. Therefore, an unstable
state c is shown in column 00 and rows a and d in the flow table. The output is marked with a
dash to indicate a don't-care condition. The interpretation of this is that if the circuit is in sta
ble state a and the input changes from 01 to 00, the circuit first goes to an unstable next state
c, which changes the present state value from a to c, causing a transition to the third row and
first column of the flow table. The unstable state values for the other squares are determined
in a similar manner. All outputs associated with unstable states are marked with a dash to in
dicate don't-care conditions. The assignment of actual values to the outputs is discussed fur
ther after the design example is completed.

(b) Reduced table (two alternatives)
Reduction of the Primitive Flow Table

The primitive flow table has only one stable state in each row. The table can be reduced to a
smaller number of rows if two or more stable states are placed in the same row of the flow
table. The grouping of stable states from separate rows into one common row is called merg
ing. Merging a number of stable states in the same row means that the binary state variable that
is ultimately assigned to the merged row will not change when the input variable changes. This
is because in a primitive flow table, the state variable changes every time the input changes, but
in a reduced flow table, a change of input will not cause a change in the state variable if the
next stable state is in the same row.

A formal procedure for reducing a flow table is given in the next section. In order to com
plete the design example without going through the formal procedure, we will apply the merg
ing process by using a simplified version of the merging rules. Two or more rows in the primitive
flow table can be merged into one row if there are non-conflicting states and outputs in each
of the columns. Whenever one state symbol and don't-:care entries are encountered in the same
column, the state is listed in the merged row. Moreover, if the state is circled in one of the rows,
it is also circled in the merged row. The output value is included with each stable state in the
merged row.

We now apply these rules to the primitive flow table of Fig. 9-16. To see how this is done,
the primitive flow table is separated into two parts ofthree rows each, as shown in Fig. 9-17(a).
Each part shows three stable states that can be merged because there are no conflicting entries
in each of the four columns. The first column shows state c in all the rows and 0 or a dash for
the output. Since a dash represents a don't-care condition, it can be associated with any state
or output. The two dashes in the first column can be: taken as 0 output to make all three rows
identical to a stable state c with a 0 output. The second column shows that the dashes can be

FIGURE 9-17

Reduction of the Primitive Flow Table

Transition Table and Logic Diagram

In order to obtain the circuit describ d b th d d
each state a distinct binary value Thi e ~ e re lice flow table, it is necessary to assign to

E:;:~~~~:[~C:~~£s~:':!a:;;~;~~~;~;~;~e~l:ye;th;~ethr~e:~c~~:b~:::~;1:f~I~~:;1~~1~~
fl bI " an e no cnuca races in at

row ow ta e, and therefore, we Can finish the design of the ated latch rio . wo-

lIon 9-6. Assigning 0 to state a and 1 to state b in the reduc;d flow tabie 0:;~:.t~~i~~~)~~~



FIGURE 9-18
Transition Table and Output Map for Gated latch

10

DG
01 1100

/".
X X 0 X

0 1 0 0
'--../

1

y

o

Section 9-4 Design Procedure 365

(a) Maps for Sand R

10

DG
01 1100

0 0
/".

1 0

X 0 0 x1

y

o

10
DG

01 1100

0 0 1 0

1 0 1 11

y

o

10
DG

01 11

(a) Y ~ DG + G'y

00

0 0 1 0

1 0 1 1

y

o

364 Chapter 9 Asynchronous Sequential Logic

(b) Logic diagram

s

R

G --t------i

D-~------r---'

FIGURE 9-20
Circuit with SR latch

Y = DG + G'y

obtain the transition table of Fig. 9-18(a). The transition table is, in effect, a map for the exci
tation variable Y. The simplified Boolean fnnction for Y is then obtained from the map.

There are two don't-care outputs in the final rednced flow table. Ifwe assign valnes to the out
put, as shown in Fig. 9-18(b), it is possible to make output Q equal to the excitation function
Y. If we assign the other possible values to the don't-care outputs, we can make output Qequal
to y. In either case, the logic diagram of the gated latch is as shown in Fig. 9-19.

The diagram can be implemented also by means of an SR latch. Using the procedure out
lines in Section 9-3, we first obtain the Boolean functions for Sand R, as shown in Fig. 9-20(a).
The logic diagram with NAND gates is shown in Fig. 9-20(b). Note that the gated latch is a level
sensitive D-Iatch introduced in Section 5-2 and Fig. 5-6.

have the same output value as the stable states. Consider, for example, the flow table of
F~g. 9-21(a). A tranSlllOn from stable state a to stable state b goes through the unstable stat b
If the output aSSIgned to the nnstable b is a I, then a momentary short pulse will appear on~h~
output as the CITcmt ShIftS from an output of 0 in state a to an output of I for the unstable b and

FIGURE 9-21

Assigning Output Values to Unstable States

0 0

X 0

1 1

X 1

(b) Output assignment

(~),O b,·

c,· (E) 0

(9,1 d,·

n,· 0 1

(a) Flow table

d

b

a

c
Q

G ---+'--I >0------\----,

The stable states in a flow table have specific output values associated with them. The unsta
ble states have unspecified output entries designated by a dash. The output values for the un
stable states must be chosen so that no momentary false outputs occur when the circuit switches
between stable states. This means that if an output variable is not supposed to change as the re
sult of a transition, then an unstable state that is a transient state between two stable states must

D-------..,

FIGURE 9-19
Gated-latch logic Diagram

Assigning Outputs to Unstable States



Summary of Design Procedure

The design of asynchronous sequential circuits can be carried out by using the procedure il
lustrated in the previous example. Some of the design steps need further elaboration and are
explained in the following sections. The procedural steps are as follows:

Implication Table

367

1

1
1
o
o

Output

o
o
1
1

x- 0 Xx=O x=l

c b
d a
a d
b d

c
d

a
b

Table 9-3
State Table to Demonstrate Equivalent States

Present Next State

State

~~~tstate-tr~ductionprocedure for completely specified state tables is based on the algorithm
wo s a es III a state table can be combined into one if they can be shown to be .

Two states are equivalent if for each possible input, they give exactly the same outeq~lv~ent.
to the same next states or to equivalent next states. Table 6-6 shows an exam Ie ofpu "':u go

~::~~n~athhaveth~ same next states and outputs for each combination of inp~s. Th:~u;e~~~
w en a parr ~f states do not have the same next states, but, nonetheless .

~~ ~e:t sta~s. ConSlder, for example, the state table shown in Table 9-3. The ~r:~e~~ :~~~::
d f ave t_e same output for the same mput. Their next states are c and d for x = 0 a db

an a or x-I. If we can show that the pair of states (c, d) are equivalent then the :r 0

states (a, b) WIll also be equivalent because they will have the same 0 . ~ p f
When this relationship exists we sa that (b)' " r eqwv ent next states.
of Table 9 3 fi dth h' . Y a, Imply (c,d). Smularly, from the lasttworows

" -, we m att e patr of states (c, d) imply the pair of states (a b) Th
tensllc of eqwvalent states is that if (a, b) imply (c, d) and (c d) im I ta ') e charac
parrs of states are equivalent; that is, a and b are equivalent as well ~s c andPdYA ' b , then both
the fo f1: bl 9 . s a consequence

d
urd .rows 0 a e -3 can be reduced to two rows by combining a and b into one' state and

c an Illto a second state.

The checking of each pair of states for possible equivalence in a table with a lar

~:~:e~c~be done ?stematically by means of an implication table. The implicati~:~~:::~~;
in a c~nsls.ts 0 .squares. one for every possible pair of states, that provide spaces for list

g any pOSSIble ImplIed states. By judicious use of the table, it is possible to determine ~I

Section 9-S Reduction of State and Flow Tables

REDUCTION OF STATE AND FLOW TABLES9-5

1. Obtain a primitive flow table from the given design specifications. This is the most dif
ficult part of the design because it is necessary to use intuition and experience to arrive
at the correct interpretation of the problem specifications.

2. Reduce the flow table by merging rows in the primitive flow table. A formal procedure
for merging rows in the flow table is given in Section 9-5.

3. Assign binary state variables to each row of the reduced flow table to obtain the transi
tion table. The procedure of state assignment that eliminates any possible critical races
is given in Section 9-6.

4. Assign output values to the dashes associated with the unstable states to obtain the out
put maps. This procedure was explained previously.

5. Simplify the Boolean functions of the excitation and output variables and draw the logic
diagram, as shown in Section 9-2. The logic diagram can be drawn using SR latches, as
shown in Section 9-3 and also at the end of Section 9-7.

1. Assign a ato an output variable associated with an unstable state that is a transient state
between two stable states that have a 0 in the correspondiug output variable.

2. Assign a 1 to an output variable associated with an unstable state that is a transient state
between two stable states that have a I in the corresponding output variable.

3. Assign a don't-care condition to an output variable associated with an unstable state that
is a transient state between two stable states that have different values (0 and 1 or 1 and
0) in the corresponding output variable.

back to 0 when the circuit reaches stable state b. Thus the output corresponding to unstable state
b must be specified as 0 to avoid a momentary false output.

If an output variable is to change value as a result of a state change, then this variable is
assigned a don't-care condition. For example, the transition from stable state b to stable state
c iu Fig. 9-21(a) changes the output from 0 to I. If a 0 is entered as the output value for un
stable c, then the change in the output variable will not take place until the end of the tran
sition. If a I is entered, the change will take place at the start of the transition. Since it makes
no difference when the output change occurs, we place a don't-care entry for the output as
sociated with unstable state c. Fig. 9-21(b) shows the output assignmeut for the flow table.
It demonstrates the four possible combinations in output change that can occur. The proce
dure for making the assignment to outputs associated with unstable states can be summarized
as follows:

Chapter 9 Asynchronous Sequential Logic366

pairs of equivalent states. The state table of Table 9-4 will be used to illustra~e thi~. p:o;~u:~
The implication table is shown in Fig. 9-22. On the left sIde along thehvertlCa

t
~e 1Se~isted all

states defined in the state table except the first, and acroSS the botton: onzon a yar .
the states except the last. The result is a display of all possible combmatlOns of two st~te~ w:t~
a square placed in the intersection of a row and a column where the two states can e es e

for;~~i::~;:sc~at are not equivalent are marked with a croSS (X) in the corresponding square,
'r e uivalence is recorded with a check mark (;f). Some of the squares have enmes

:::'~~:~:~at~that must be further investigated to deterruine whether they are eiUlvalent or
not The step-by-step procedure of filling in the squares is as follows. FI~tf we p ace a c~o~~
in ~ny square corresponding to a pair of states who~e outputs are not equ or every mpu .

368 Chapter 9 Asynchronous Sequential Logic

Table 9-4
State Table to Be Reduced

Next State Output
Present

x=O x=l
State x-O x-l

d 6 a a
a a a
b e a

f a 1
c g a
d a d 1

d 1 a
e a

b a a
f c

1 a
g a e

Output

x=O x=l

a a
a 1
1 a
a a

Present
Next State

State x=O x=l

a d a
c d f
d a d

f c a

Table 9-5
Reduced State Table

Section 9-5 Reduction of State and Flow Tables 369

(a, b) (d, e) (d, g) (e, g)

This means that Table 9-4 can be reduced from seven states to four states, one for each mem
ber of the above partition. The reduced table is obtained by replacing state b by a and states e
and g by d. The reduced state table is shown in Table 9-5.

this case, state c has a different output than any other state, so a cross is placed in the two
squares of row c and the four squares of column c. There are nine other squares in this cate
gory in the implication table.

Next, we enter in the remaining squares the pairs of states that are implied by the pair of states
representing the squares. We do that starting from the top square in the left column and going
down and then proceeding with the next column to the right. From the state table, we see that
pair (a, b) imply (d, e), so (d, e) is recorded in the sqnare defined by column a and row b.
We proceed in this manner until the entire table is completed. Note that states (d, e) are equiv
alent because they go to the same next state and have the same output. Therefore, a check mark
is recorded in the square defined by colnmn d and rowe, indicating that the two states are
equivalent and independent of any implied pair.

The next step is to make successive passes through the table to determine whether any ad
ditional squares shonld be marked with a cross. A square in the table is crossed out if it con
tains at least one implied pair that is not equivalent. For example, the square defined by a and
fis marked with a cross next to e, d because the pair (c, d) defines a square that contains a cross.
This procedure is repeated until no additional squares can be crossed out. Finally, all the squares
that have no crosses are recorded with check marks. These squares define pairs of equivalent
states. In this example, the equivalent states are

We now combine pairs of states into larger groups of equivalent states. The last three pairs
can be combined into a set of three equivalent states (d, e, g) because each one of the states
in the group is equivalent to the other two. The final partition of the states consists of the equiv
alent states found from the implication table, together with all the remaining states in the state
table that are not equivalent to any other state.

(a, b) (c) (d,e,g) (J)

fedcba

-
d,el

x x

x x x

x x x I

c, d x c, eX X X X
a,b

x x X d,el d,el xlg

FIGURE 9-22
Implication Table

d

b

c

e

f

Merging of the Flow Table
Section 9-5 Reduction of State and Flow Tables

370 Chapter 9 Asynchronous Sequential logic

00 01 11 10

371

hOnce th~. initial implication table has been filled, it is scanned again to cross out the square; 0: Imp Jed ~~~tes are not compatible. The remaining squares that contain check marks de~
ne e compati e pam. In the example of Fig. 9-23, the compatible pairs are

(a, b) (a, c) (a,d) (b,e) (b,f) (c,d) (e,f)

FIGURE 9-23

Flow and Implication Tables

r--

j

j d, ex

j d, e X j

c,fx j d, ex
Xc,/x

c,fx j
d, ex

X c,fx j

edcb

(b) Implication table

a

c

b

d

e

I

(a) Primitive flow table

c, - (V, 0 b ,- - , -

- - a,- (~) I e,-

(~)O a,- - - d,-

c, - - - b - @,o

1,- - - b,- 0,1

(lJol a,- - - e.-

c

b

a

d

e

I

There are occasions when the state table for a sequential circuit is incompletely specified. This
happens when celiain combinations of inputs or input sequences may never occur because of
external or intemal constraints. In such a case, the next states and outputs that should have oc
curred if all inputs were possible are never attained and are regarded as don't-care conditions.
Although synchronolls sequential circuits may sometimes be represented by incompletely spec
ified state tables, OUf interest here is with asynchronous sequential circuits where the primitive
flow table is always incompletely specified.

Incompletely specified states can be combined to reduce the number of states in the flow
table. Such states cannot be called equivalent, because the formal definition of equivalence re
quires that all outputs and next states be specified for all inputs. Instead, two incompletely
specified states that can be combined are said to be compatible. Two states are compatible if
for each possible input they have the same output whenever specified and their next states are
compatible whenever they are specified. All don't-care conditions marked with dashes have no
effect when searching for compatible states as they represent unspecified conditions.

The process that must be applied in order to find a suitable group of compatibles for the pur
pose of merging a now table can be divided into three procedural steps:

Tbe minimal collection of compatibles is then used to merge the rows of the flow table. We will
now proceed to show and explain the three procedural steps using the primitive flow table from
the design example in the previous section.

1. Determine all compatible pairs by nsing the implication table.

2. Find the maximal compatibles using a merger diagram.

3. Find a minima! collection of compatibles that covers all the states and is closed.

Compatible Pairs

The procedure for finding compatible pairs is illustrated in Fig. 9-23. The primitive flow table
in (a) is the same as Fig. 9-16. The entries in each square represent the next state and output.
The dashes represent the unspecified states or outputs. The implication table is used to find
compatible states just as it is used to find equivalent states in the completely specified case. The
only difference is that when comparing rows, we are at liberty to adjust the dashes to fit any
desired condition.

Two states are compatible if in every column of the cOlTesponding rows in the flow table,
there are identical or compatible states and if there is no conflict in the output values. For ex
ample, rows a and b in the flow table are found to be compatible. but rows a andfwill be com
patible only if c andfare compatible. However. rows c and f are not compatible because tbey
have different outputs in the first column. This information is recorded in the implication table.
A check mark designates a square whose pair of states are compatible. Those states that are not
compatible are marked with a cross. The remaining squares are recorded with the implied pairs
that need further investigation.

Maximal Compatibles

~~~g~:nd all the compatible pairs, the next step is to find larger sets of states that are com
~inatie. ; maxlm~lcompatIble IS a group of compatibles that contains all the possible com

as Sho':~ ~n ~;P;t~4 e;~tes. The maxuna! compatible can be obtained from a merger diagram
dot placed a! . ~ '. ::;erger diagram is a graph in which each state is represented by ~

. ong e ctrcu erence of a circle. Lines are drawn between an tw
dl~ dots that fonn a compatible pair. All possible compatibles can be ObtainZct fro,::~rrespon
er .agram by observing the geometrical patterns in which states are connected e merg
An Isolated dot represents a state that is not compatible to any other state A lin to each other.

~:~f:~~~~~~F~~::~e~~;:~~u~~:nC~:fct:~b~~~~~~~~s:~:~:; ~i~;~~~~e::n~~;:;~si:
the i e ~erger lafam ofFIg. 9-24(a) is obtained from the list of compatible pairs derived from

eac~~~m(I~~~~e)t~~~rO(i:~~i:~;~~~e:eg:~:;~~a~~:~~::';i:~s~~:~c:fn~W~e~:~I~;~:~r
nee mg a, c, and b, e, 1) and a line (a, b). The maxima! compatibles are -

(a, b) (a, c, d) (b, e, 1)



Section 9-S Reduction of State and Flow Tables 373

Therefore, the primitive flow table can be merged into two rows, one for each of the compat
ibles. The detailed construction of the reduced table for this particular example was done iu the
previous section and is shown in Fig. 9-I7(b).

The second example is from a primitive flow table (not shown) whose implication table is
given in Fig. 9-25(a). The compatible pairs derived from the implication table are

(a, b) (a, d) (b, c) (c, d) (c, e) (d, e)

From the merger diagram of Fig. 9-25(b), we detennine the maximal compatibles:

(a, b) (a, d) (b, c) (c, d, e)

If we choose the two compatibles

(a,b) (c,d,e)

then the set will cover all five states of the original table. The closure condition can be checked
by means of a closure table, as shown in Fig. 9-25(c). The implied pairs listed for each com
patible are taken directly from the implication table. The implied states for (a, b) are (b, c).
But (b, c) is notinclnded in the chosen set of (a, b) (c, d, e), so this set of compatibles is not
closed. A set of compatibles that will satisfy the closed covering condition is

(a,d) (b,c) (c,d,e)

a

~

b,c!

X d,e!

b,c! X a,d!

X X ! b,c!

b

c

d

e

a b c d

e

b

(a) Implication table (b) Merger diagram

Compatibles (a, b) (a, d) (b, c) (c, d, e)

Implied states (b, c) (b, c) (d, e) (a, d,)

(b, c,)

(c) Closure table

FIGURE 9-25
Choosing a Set of Compatibles



Three-Row Flow-Table Example

375

c = 11

b = 01

c = 11

(b) Transition diagram

a =00

d = 10

(b) Transition diagram

10

10

Section 9-6 Race-Free State Assignment

1101

(a) Flow table

(a) Flow table

00

00

8 b c 8
a 0 (£) c

a 8 8 8

8 b d 8
a 0 0 c

d 8 8 8
a - c -

b

c

a

a

c

b

d

FIGURE 9-27
Flow Table with an Extra Row

FIGURE 9-26

Three-Row Flow-Table Example

A race-free assignment can be obtained if we add an extra row to the flow table. The use of
a fourth row does not mcrease the number of binary state variables, but it allows the formation
of cycles between two stable states. Consider the modified flow table in Fig. 9-27. The first three
rows represent the same conditIOns as the original three-row table. The fourth row labeled d
IS assigned the bmary value 10, which is adjacent to both a and c. The transition from a to ;
must~ow go through d, With th.e result that the biuary variables change from a = 00 to d = 10
to c - II, thus aVOldmg a cntic~l race. This is accomplished by changing row a, column II
to d and row d, column II to c. SImIlarly, the transition from c to a is shown to go through un
stable state d even though column 00 constitntes a noncritical race.

The transition table corresponding to the flow table with the indicated binary state assign
ment IS shown m Fig. 9-28. The two dashes in row d represent unspecified states that can be
~onsldered do~'t-care conditions. However, care must be taken not to assign 10 to these squares
m order to aVOid the possibility of an unwanted stable state being established in the fourth row.

This exanaple demonstrates the use of an extra row in the flow table for the purpose of achieving

The assignment of a single binary variable to a flow table with two rows does not impose crit
ical race problems. A flow table with three rows requires an assignment of two binary variables.
The assignment of binary valnes to the stable states may cause critical races if not done prop
erly. Consider, for exanaple, the reduced flow table of Fig. 9-26(a). The outputs have been omit
ted from the table for simplicity. Inspection of row a reveals that there is a transition from state
a to state b in column 01 and from state a to state c in column 11. This infonnation is trans
ferred into a transition diagram, as shown in Fig. 9-26(b). The directed lines from a to band
from a to c represent the two transitions just mentioned. Similarly, the transitions from the
other two rows are represented by directed lines in the transition diagram. The transition dia
gram is a pictorial representation of all required transitions between rows.

To avoid critical races, we must find a binary state assignment such that only one binary vari
able changes dnring each state transition. An attempt to find such assignment is shown in the
transition diagram. State a is assigned binary 00, and state c is assigned binary II. This as
signment will cause a critical race during the transition from a to c because there are two
changes in the binary state variables. Note that the transition from c to a also causes a race con
dition, but it is noncritical.

The set is covered because it contains all five states. Note that the same state can be repeated
more than once. The closure condition is satisfied because the implied states are (b, c) (d, e) and
(a, d), which are included in the set. The original flow table (not shown here) can be reduced from
five rows to three rows by merging rows a and d, b and c, and c, d, and e. Note that an alterna
tive satisfactory choice of closed-covered compatibles would be (a, b) (b, c) (d, e). In general,
there may be more than one possible way of merging rows when reducing a primitive flow table.

Once a reduced flow table has been derived for an asynchronous sequential circuit, the next step
in the design is to assign binary variables to each stable state. This assignment results in the trans
formation of the flow table into its equivalent transition table. The primary objective in choos
ing a proper binary state assignment is the prevention of critical races. The problem of critical
races was demonstrated in Section 9-2 in conjunction with Fig. 9-7.

Critical races can be avoided by making a binary state assignment in such a way that only
one variable changes at any given time when a state transition occurs in the flow table. To ac
complish this, it is necessary that states between which transitions occur be given adjacent as
signments. Two binary values are said to be adjacent if they differ in only one variable. For
exanaple, 010 and 011 are adjacent because they only differ in the third bit.

In order to ensure that a transition table has no critical races, it is necessary to test each pos
sible transition between two stable states and verify that the binary state variables change one
at a time. This is a tedious process, especially when there are many rows and columns in the
table. To simplify matters, we will explain the procedure of binary state assignment by going
through examples with only three and four rows in the flow table. These examples will demon
strate the general procedure that must be followed to ensure a race-free state assignment. The
procedure can then be applied to flow tables with any nnmber of rows and columns.

Chapter 9 Asynchronous Sequential Logic

RACE-FREE STATE ASSIGNMENT9-6

374



376 Chapter 9 Asynchronous Sequential Logic
Section 9-6 Race-Free State Assignment 377

@ 01 10 @
00 0 @ 11

10 (0 (0 (0
00 - 11 -

(b) Transition diagram

a =000 b =001r ~

e =1001",,-- .SJ
FIGURE 9-28
Transition Table

a =00

b =01

d = 10

00 01 11 10

~~OO 01 11 10 I
o a b

c t g

1 e d [

(a) Binary assignment

FIGURE 9-30

Choosing Extra Rows for the Flow Table

d=101 [=111 c=Ol1

a race-free assignment. The extra row is not assigned to any specific stable state, bnt instead is used
to convert a critical race into a cycle that goes through adjacent transitions hetween two stable states.
Sometimes, just one extra row may not be sufficient to prevent critical races, and it may be neces
sary to add two or more extra rows in the flow table. This is demonstrated in the next example.

101101

b 8 e 8
G d G a

8 g b 8
- a - -

- - - -

c - - c

[ CD CD [

- - d -

00

01O=g

011 =c

001=b

OOO=a

110-

111 =f

101 = d

100=e

FIGURE 9-31

State Assignment to Modified Flow Table

a :ig. 9-30 shows a sMe assignment map that is suitable for any four-row flow table. States
, ,c, ~nd d are the ongmal states, and e, f, and g are extra states. States placed in adjacent

squares m the map will have adjacent assignments. State b is assigned binary DOl d' d'
cent to the other three original states. The transition from a to d must be directed :o~s ~ ti:'~
extra state e to produce a cycle so that only One binary variable changes at a time SiJlarl
the tranSItIOn from c to a is directed through g and the transition from d to c goe;throu h y,
By usmg the aSSIgnment gIven by the map, the four-row table can be expanded to a seve;r!;
table that IS free of cntICal races, as shown in Fig. 9-31. Note that although the flow table has
seven rows, the~e are only four stable states. The uncircled states in the three extra rows are there
merely to prOVIde a race-free transition between the stable states.

b

c

(b) Transition diagram

a

d

101101

(al Flow table

00

b 8 d 8
0 d CD a

8 a b 8
c 0 0 c

a

c

d

b

FIGURE 9-29
Four-Row Flow-Table Example

Four-Row Flow-Table Example

A flow table with four rows requires a minimum of two state variables. Although race-free as
signment is sometimes possible with only two binary state variables, in many cases, the re
quirement of extra rows to avoid critical races will dictate the use of three binary state variables.
Consider, for example, the flow table and its corresponding transition diagram, shown in
Fig. 9-29. If there were no transitions in the diagonal direction (from b to d or from c to a), it
would be possible to find an adjacent assignment for the remaining four transitions. With one
or two diagonal transitions, there is no way of assigning two binary variables that satisfy the
adjacency requirement. Therefore, at least three binary state variables are needed.



Multiple-Row Method
The method for making race-free state assignments by adding extra rows in the flow table, as
demonstrated in the previous two examples, is sometimes referred to as the shared-row ~ethod.
There is a second method that is not as efficient, but is easier to apply, called the multIple-row
method. In the multiple-row assignment, each state in the original flow table IS replaced by two
or more combinations of state variables. The state-assignment map of Fig. 9-32(a) shows a

378 Chapter 9 Asynchronous Sequential Logic

This example demonstrates a possible way of selecting extra rowS in a flow table in order to
achieve a race-free assignment. A state-assignment map similar to the one used m Fig. 9-30(a)
can be helpful in most cases. Sometimes it is possible to take advantage of ~nspecifiedenlnes m
the flow table. Instead of adding rows to the table, it may be possible to elinunate cnl1~al races
by directing some of the state transitions through the don't-care entnes. The actual. assignment
is done by trial and error until a satisfactory assignment is found that resolves all cntlCal races.

(a) Binary assignment

"I b) c) dl

C, d, ", b2

Section 9-7 Hazards 379

multiple-row assignment that can be used with any four-row flow table. There are two binary
state variables for each stable state, each being the logical complement of each other. For ex
ample, the original state a is replaced with two equivalent states al = 000 and a, = lll. The
output values, not shown here, must be the same in al and ilZ' Note that al is adjacent to hI, c z ,

and d I and a2 is adjacent to CI, b2, and d" and, similarly, each state is adjacent to three states
of different letter designation. The behavior of the circuit is the same whether the internal state
is ill or az. and so on for the other states.

Fig. 9-32(b) shows the multiple-row assignment for the original flow table of Fig. 9-29(a).
The expanded table is formed by replacing each row of the original table with two rows. For
example, row b is replaced by rows bi and b2 and stable state b is entered in colunms 00 and
II in both rows b i and b,. After all the stable states have been entered, the unstable states are
filled in by reference to the assignment specified in the map of part (a). When choosing the next
state for a given present state, a state that is adjacent to the present state is selected from the
map. In the original table, the next states of b are a and d for inputs 10 and 01, respectively. In
the expanded table, the next states for bi are aj and d, because these are the states adjacent to
b,. Similarly, the next states for b2 are a, and d l because they are adjacent to b,.

In the multiple-row assignment, the change from one stable state to another will always
cause a change of only one binary state variable. Each stable state has two binary assignments
with exactly the same output. At any given time, only one of the assignments is in lise. For ex
ample, if we start with state a, and input 01 and then change the input to 11,01,00, and back
to 01, the sequence of internal states will be ai' d" cI , and a2' Although the circuit starts in state
Ql and tenninates in state a2' as far as the input-output relationship is concerned, the. two states,
al and a" are equivalent to state a of the original flow table.

1011
YZY3

0100

1

YI

o

A hazard is a condition where a single variable change produces a momentary output change
when no ouput change should occur. The circuit of Fig. 9-33(a) demonstrates the occurrence
of a hazard. Assume that all three inputs are initially equal to I. This causes the output of gate
I to be I, that of gate 2 to be 0, and the output of the circuit to be equal to 1. Now consider a
change of X2 from I to O. The output of gate I changes to 0 and that of gate 2 changes to 1, leav
ing the output at 1. However, the output may momentarily go to 0 if the propagation delay

When designing asynchronous sequential circuits, care must be taken to conform with certain
restrictions and precautions to ensure proper operation. The circuit must be operated in fun
damental mode with only one input changing at any time and must be free of critical races. In
addition, there is one more phenomenon, called hazard, that may cause the circuit to mal
function. Hazards are unwanted switching transients that may appear at the output of a circuit
because different paths exhibit different propagation delays. Hazards occur in combinational
circuits, where they may cause a temporary false-output value. When this condition occurs in
asynchronous sequential circuits, it may result in a transition to a wrong stable state. It is there
fore necessary to check for possible hazards and deterruine whether they cause improper op
erations. Steps must then be taken to eliminate their effect.

Hazards in Combinational Circuits

9-7 HAZARDS
101101

(b) Flow table

00

bl G d) 8
b, 8 d, 8

@ d, @ "I

@ d l @ ",

G ", bl (0

G "I b, G
) c) G ® CI

, C2 G ® C2101 ~ d

all = Cl

100 = Cz

010 ~ d

111 = az

FIGURE 9-32
Multiple-Row Assignment



381

10

>---y

XzX3

01 11

Section 9-7 Hazards

00
,.---..

1

1 1(1 ) 1)
'-'-'

1

o

1001 1100
,.---..

1

c:.,
1(1 1)~

1

o

FIGURE 9-35
Maps Demonstrating a Hazard and its Removal

implemented in sum of products with AND-OR gates or with NAND gates, the removal of
static I-hazard guarantees that no static a-hazards or dynamic hazards will occur.

The occurrence of the hazard can be detected by inspecting the map of the particular circuit.
To illustrate, consider the map in Fig. 9-35(a), which is a plot of the function implemented in
Fig. 9-33. The change in X, from I to a moves the circuit from minterm III to minterm 101.
The hazard exists because the change of input results in a different product term covering the
two minterms. Minterm III is covered by the productterm implemented in gate 1, and minterm
101 is covered by the product term implemented in gate 2 of Fig. 9-33. Whenever the circuit
must move from one product term to another, there is a possibility of a momentary interval when
neither term is equal to 1, giving rise to an undesirable a output.

The remedy for eliminating a hazard is to enclose the two minterms in question with another
product term that overlaps both groupings. This is shown in the map of Fig. 9-35(b), where the
two mintenns that cause the hazard are combined into one product term. The hazard-free cir
cuit obtained by this configuration is shown in Fig. 9-36. The extra gate in the circuit gener
ates the product term Xl X3. In general, hazards in combinational circuits can be removed by
covering any two minterms that may produce a hazard with a product term common to both.
The removal of hazards requires the addition of redundant gates to the circuit.

FIGURE 9-36
Hazard~FreeCircuit

X3 -+-.------

x, _~ --I

x, -+-.--------1

y

(c) Dynamic hazard

(b) NAND circuit

X2

(b) Static a-hazard(a) Static 1-hazard

FIGURE 9-34
Types of Hazards

(a) AND-OR circuit

FIGURE 9-33
Circuits with Hazards

x,
Xl = 1

Y = X1X2 + X;X3

This type of implementation may cause the output to go to a wheu it should remain a 1. If the

circuit is implemented in product of sums (see Section 3-5), namely,

y ~ (Xl + xo)(x, + X3)

then the output may momentarily go to 1 when it should remain a. The first case is referred to
as static I-hazard and the second case as static O-hazard. A third type of hazard, known as dy
namic hazard, causeS the output to change three or more times when it should change from. I
to a or from a to 1. Fig. 9-34 demonstrates the three types of hazards. When a CIrcmt IS

through the inverter is taken into consideration. The delay in the inverter may cause the output
of gate 1 to change to 0 before the output of gate 2 changes to I. In that case: both inputs of
gate 3 are momentarily equal to a, causing the output to go to a for the short mterval of time
that the input signal from x, is delayed while it is propagating through the mverter cITcmt.

The circuit of Fig. 9-33(b) is a NAND implementation of the same Boolean functlOn. It has
a hazard for the same reason. Because gates I and 2 are NAND gates, their outputs are the
complement of the outputs of the corresponding AND gates. When x, changes from I to a, both
inputs of gate 3 may be equal to I, causing tbe output to produce a momentary change to a when

it should have stayed at 1.
The two circuits shown in Fig. 9-33 implement the Boolean function in sum of products:

Chapter 9 Asynchronous Sequential Logic380



P-__-Q

P--<---Q'

Q = (Q'S)' = [Q'(AB)'(CD)'j'

A

B

Q
C
D

A'
Q'

C

(a)

C---i
D -_--j

(b)

A'---i
C ----,--L~p-------1

Section 9-7 Hazards 383

to oand th " th
latch with ~~ ~~~:~:gB:~~:~:~c~o:~~~~f~~h;~ was just said, consider a NAND SR

A---i
B ---i

FIGURE 9-38

latch Implementation

S = AB + CD

R = A'C

Since this is a NAND latch, we must apply the complemented values to the inputs:

S = (AB + CD)' = (AB)'(CD)'

R = (A'C)'

:~implemTehntBationis shown in Fig. 9-38(a). S is generated with two NAND gates and one
gate. e oolean functIOn for output Q is

1011

)-~,-Y = Xl X2 + x'zy

01

(e) Map for Y

'"1

~ 1 ~'----'

00
y

o

1

(a) Logic diagram

101101

(b) Transition table

00

CD CD 1 CD
(2) 0 (2) (2)1

y

o

FIGURE 9-37
Hazard in an Asynchronous Sequential Circuit

x, --+---1 >0---,

In normal combinational-circuit design associated with synchronous sequential circuits, haz
ards are not of concern, since momentary erroneous signals are not generally troublesome.
However, if a momentary incorrect signal is fed back in an asynchronous sequential circuit, it
may cause the circuit to go to the wrong stable state. This is illustrated in the example of
Fig. 9-37. If the circuit is in total stable state yx, x, = 111 and input x, changes from I to 0,
the next total stable state should be 110. However, because of the hazard, output Y may go to
omomentarily. If this false signal feeds back into gate 2 before the output of the inverter goes
to I, the output of gate 2 will remain at 0 and the circuit will switch to the incorrect total sta
ble state 010. This malfunction can be eliminated by adding an extra gate, as done in Fig. 9-36.

Another way to avoid static hazards in asynchronous sequential circuits is to implement the cir
cuit with SR latches. A momentary 0 signal applied to the S or R inputs of a NOR latch will
have no effect on the state of the circuit. Similarly, a momentary I signal applied to the Sand
R inputs of a NAND latch will have no effect on the state of the latch. In Fig. 9-33(b), we ob
served that a two-level sum of product expression implemented with NAND gates may have a
static I-hazard if both inputs of gate 3 go to 1, changing the output from I to 0 momentarily.
But if gate 3 is part of a latch, the momentary I signal will have no effect on the output because
a third input to the gate will come from the complemented side of the latch that will be equal

x, -----------1

Implementation with SR Latches

Hazards in Sequential Circuits

382 Chapter 9 Asynchronous Sequential Logic



9-8 DES I G N EX AMP l E

We are now in a position to examine a complete design example of an asynchronous sequen
tial circuit. This example may serve as a reference for the design of other similar circuits. We
will demonstrate the method of design by following the recommended procedural steps that were

listed at the end of Section 9-4 aud are repeated here:

385Section 9-8 Design Example

Table 9-6
Specification af Total States

Inputs Output

State T C Q Comments

a 1 1 a Initial output is 0
b 1 a 1 After state a
c 1 1 1 Initial output is 1
d 1 a a After state c
e a a a After state d orf
f a 1 0 After state e or a
g a a 1 After states b or h
h a 1 1 After states g or c

The derivation of the primitive flow table can be facilitated if we first derive a table that
lists all the possible total states in the circuit. This is shown in Table 9-6. We start with the
input condition TC = 11 and assign to it .state a. The circuit goes to state b and the out
put Q complements from 0 to I when C changes from I to 0 while T remains a I. Anoth
er change in the output occurs when the circuit goes from state c to state d. In this case,
T = I, C changes from I to 0, aud the output Q complements from I to O. The other four
states in the table do not chauge the output, because T is equal to O. If Q is initially 0, it
stays at 0, and if initially at I, it stays at I even though the clock input changes. This in
formation results in six total states. Note that simultaneous transitions of two input vari
ables, such as from 01 to 10, are not included, as they violate the condition for fundamental
mode operation.

The primitive flow table is shown in Fig. 9-39. The information for the flow table cau be ob
tained directly from the conditions listed in Table 9-6. We first fill in one square in each row
belonging to the stable state in that row as listed in the table. Then we enter dashes in those
squares whose input differs by two variables from the input corresponding to the stable state.
The unstable conditions are then determined by utilizing the information listed under the com
ments in Table 9-6.

Primitive Flow Table

Design Specifications

It is necessary to design a negative-edge-ttiggered T flip-flop. The circuit has two inputs, T (tog
gle) aud C (clock), and one output, Q. The output state is complemented ifT = I aud the clock
C changes from I to 0 (negative-edge triggering). Otherwise, under any other input condition,
the output Q remains unchanged. Although this circuit cau be used as a flip-flop in clocked se
quential circuits, the internal design of the flip-flop (as is the case with all other flip-flops) is
au asynchronous problem.

Chapter 9 Asynchronous Sequential Logic

This function is generated in Fig. 9-38(b) with two levels of NAND gates. If output Q is equal
to I, then Q' is equal to O. If two of the three inputs go momentarily to I, the NAND gate as
sociated with output Q will remain at I because Q' is maiutained at O.

Figure 9-38(b) shows a typical circuit that cau be used to construct asynchronous sequeu
tial circuits. The two NAND gates forming the latch normally have two mputs. However, If the
S or R functions contain two or more product terms when expressed in sum of products, then
the correspouding NAND gate of the SR latch will have three or more inputs. Thus, the two
terms in the original surn of products expression for S are AS and CD and each is implement
ed with a NAND gate whose output is applied to the input of the NAND latch. In this way, each
state variable requires a two-level circuit of NAND gates. The first level consists of NAND gates
that implement each product term in the original Booleau expression of S aud R. The second
level forms the cross-coupled connection of the SR latch with inputs that come from the out

puts of each NAND gate in the first level.

1. State the design specifications.

2. Derive a primitive flow table.

3. Reduce the flow table by merging the rows.

4. Make a race-free binary state assigurnent.

5. Obtain the trausition table and output map.

6. Obtain the logic diagram using SR latches.

Essential Hazards
Thus far we have considered what are known as static and dynamic hazards. There is another
type of hazard that may occur in asynchronous sequential circuits, called essential hazard. An
essential hazard is caused by unequal delays along two or more paths that ongmate from the
same input. An excessive delay through an inverter circuit in comparison to the delay associ
ated with the feedback path may cause such a hazard. Essential hazards caunot be corrected by
adding redundaut gates as in static hazards. The problem that they impose cau be corrected by
adjusting the amount of delay in the affected path. To avoid essential hazards, each feedback
loop must be haudled with individual care to ensure that the delay in the feedback path is long
enough compared to delays of other signals that originate from the input terruinals. This prob
lem tends to be specialized, as it depends on the particular circuit used aud the amount of de

lays that are encountered in its various paths.

384



Merging of the Flow Table

The rows in the primitive flow table are merged by first obtaining all compatible pairs of states.
This is done by means of the implication table shown in Fig. 9-40. The squares that contain
check marks define the compatible pairs:

387

10

g

(b)

TC
01 11

f

00

d,- G), 0 G), 0 O'-

O,1 O,1 C,- eEl,1

b,- O,1 O,1 d,-

@,O @,o a,- @,O

e

a

b

c

d

Section 9-8 Design Example

d

a

10

b

f·""",------~-/d

r--

a,e X

X b,dX

b, dx x a,c X

b,dX e,g X f,k x /b ,dx

j e,g X f,k X
/ /a,e x a, C X

f,k X / b,dX
e,g X X e,g X
b,dX f,k X

f,k X
/ .j d,e X e,g X //a,e X c,fx f,k X X

(a)

b

e

a

d

g

g

f

k

TC
01 11

e,- (f),o O,0 b,-

@,1 (E), 1 C,- O,1

g,1 (E), 1 O,1 d,-

O,0 (j),o a,- @,Od, e,j

00

a,j

b,g, h

c, h

FIGURE 9-40
Implication Table

FIGURE 9-41
Merger Diagram

FIGURE 9-42
Reduced Flow Table

10
TC

01 1100

- - !,- ~}o b,-

g,- - - C ,- eEl,1

- - h,- es),! d ,-

e,- - , - a ,- @)o

0,0 !,- - , - d,-

e ,- (J),o a,- - -

(lp h ,- - - b,-

g,- (£),1 C ,- - -

e

g

a

C

h

d

b

!

FIGURE 9-39
Primitive Flow Table

(a, f) (b, g) (b, h) (c, h) (d, e) (d,!) (e, I) (g, h)

The maximal compatibles are obtained from the merger diagram shown in Fig. 9-41. The
geomettical patterns that are recognized in the diagraru consist of two ttiangles and two straight
lines. The maximal compatible set is

(a,I) (b,g,h) (c,h) (d,e,!)

In this particular example, the minimal collection of compatibles is also the maximal compat
ible set. Note that the closed condition is satisfied because the set includes all the origiual eight
states listed in the primitive flow table, although states h andfare repeated. The covering con
dition is also satisfied because all the compatible pairs have no implied states, as can be seen
from the implication table.

The rednced flow table is shown in Fig. 9-42. The one shown in part (a) of the fignre retains
the original state symbols bnt merges the corresponding rows. For example, states a andfare
compatible and are merged into one row that retains the original letter symbols of the states.
Similarly, the other three compatible sets of states are used to merge the flow table into fonr

Chapter 9 Asynchronous Sequential Logic386



388 Chapter 9 Asynchronous Sequential Logic
Section 9-8 Design Example 389

The circuit to be designed has two state variables, I"J and Y" and one output, Q. The output
map m FIg. 9-44 shows that Q IS equal to the state variable y,. The implementation of the cir
CUlt reqUlres two SR latches, one for each state variable. The maps for inputs Sand R of the
two latches are shown m Fig. 9-45. The maps are obtained from the information given in the
translllOn table by usmg the conditions specified in the latch excitation table shown in
FIg. 9-14(b). The simplified Boolean functions are listed under each map.

The logiC diagram of the circuit is shown in Fig. 9-46. Here we use two NAND latches with
two ?f three .inputs. in e~ch ga~e. T~is implementation is according to the pattern established in
Seclton 9-7 m collJunclton WIth FIg. 9-38(b). The S and R input functions require six NAND
gates for theIr Implementation.

10

TC

01 1100

(b) Rj ~ Y2 T'C' +/, TC

0 X W X

~
X X 0 X

1 0 0 0'----"'

0 0 01 0

01

00

11

10

10

TC

01 1100

0 W 0 0 0

r--,
1 0 0 1 0

1 0 X
~ X

~ X 0 X

o

o

10

Logic Diagram

FIGURE 9-43
Transition Diagram

rows, retaining the eight originalletler symbols. The other alternative for drawing the merged
flow table is shown in part (b) of the figure. Here we assign a common letter symbol to all the
stable states in each merged row. Thus, the symbolfis replaced by a, and g and h are replaced
by b, and similarly for the other two rows. The second alternative shows clearly a four-state flow
table with only four letter symbols for the states.

c = 11

a = 00

State Assignment and Transition Table

The next step in the design is to find a race-free binary assignment for the four stable states in the
reduced flow table. In order to find a suitable adjacent assignment, we draw the transition diagram,
as shown in Fig. 9-43. For this example, it is possible to obtain a suitable adjacent assignment with
out the need of extra states. This is because there are no diagonal lines in the transition diagram.

Substituting the binary assignment indicated in the transition diagram into the reduced flow
table, we obtain the transition table shown in Fig. 9-44. The output map is obtained from the
reduced flow table. The dashes in the output section are assigned values according to the rules
established in Section 9-4.

10

TC
01 11

(d) R, ~ y, TC'

00

X X X 0

0 0 0 0

0 0 0 tJ

X X X X
'-'

01

00

11

10

10

TC

01 11

(c) 5, ~ Y'I TC'

00

0
/"'

0 0 0 1

1 X X X X
'----"'

X X X 0

0 0 0 0

o

o

11

10

YIY2

FIGURE 9-45

Maps for Latch Inputs

10

TC
01 11

(b) Output map Q ~ y,

00

0 0 0 X

1 1 1 1

1 1 1 X

0 0 0 0

11

01

10

YrYz

00

10

TC
01 11,
8 @10 01

@ @ 11 @
01 (0 (0 10

@ @ 00 @
(a) Transition table

YIY

a = 00

c = 11

00

FIGURE 9-44
Transition Table and Output Map



390 Chapter 9 Asynchronous Sequential Logic

T -.--------, PROBLEMS
Problems 391

9-1 (a) Explain the difference between asynchronous and synchronous sequential circuits.

(b) Define fundamental-mode operation.

(c) Explain the difference between stable and unstable states.

Cd) What is the difference between an internal state and a total state?

9-2 Derive the transition table for the asynchronous sequential circuit shown in Fig. P9-2. Detennine the

sequence of internal states Y] Yz for the following sequence of inputs XI X2: 00, 10, 11,01, 11, 10,00.

Xl ---......-.j ":;>0-----1

X2 --.--+---__L..--1

FIGURE P9-2

Yz

(b) Derive the transition table and output map.

(d) Describe in words the behavior of the circuit.

9.3 An asynchronous sequential circuit is described by the excitation and output functions

Y = xlxz + (XI + xz)y
Z=y

(a) Draw the logic diagram of the circuit.

(c) Obtain a two-state flow table.

Yj = XI Xl + XIYZ + xZYr

12 = Xz + xlyfyz + X;Yl

Z=XZ+Yl

(a) Draw the logic diagram of the circuit. (b) Derive the transition table and output map.
(c) Obtain a flow table for the circuit.

9-4 An asynchronous sequential circuit has two internal states and one output. The excitation and
output functions describing the circuit are

9-5 Convert the flow table of Fig. P9-5 into a transition table by assigning the following binary val
ues to the states: a = 00, b = 11, and c = 01.

(a) Assign values to the extra fourth state to avoid critical races.
(b) Assign outputs to the don't-care states to avoid momentary false outputs.
(c) Derive the logic diagram of the circuit.

Y'z

h-+-- Q

FIGURE 9-46
logic Diagram of Negative-Edge-Triggered T Flip-Flop

This example demonstrates the complexity involved in designing asynchronous sequential
circuits. It was necessary to go through ten diagrams in order to obtam the final CITcmt dlagr~.
Although most digital circuits are synchronous, there ar~ occ~sions when one has. to deal Wlt~
asynchronous behavior. The basic properties presented III this chapter are essentIal to under
stand fully the internal behavior of digital circuits.



Section 10-1 Introduction 399

;=Q-zH
H
H
L

H
L
L
L

Output

Z

Output

Inputs

x y

L L
L H
H L
H H

Inputs

L L
L H
H L
H H

FIGURE 10-1
Positive Logic NAND Gate

FIGURE 10-2
Positive Logic NOR Gate

x y z

much in the functions that they achieve as in the specific electrical characteristics of the basic
gate from which the circuit is constructed.

. NAND ~d NOR gates are usually defined by the Boolean functions that they implement
III t~nns ofb~n~ vanables. When analyzing them as electronic circuits, it is necessary to in
vestigate theIr Input--output relationships in terms of two voltage levels: a high level designat
ed by H and a low level des~gnated by L. As mentioned in Section 2-8, the assignment of
bInary I to H results In a posllwe logIC system and the assignment of binary 1 to L resnlts in
a negative logIC system. The truth table in terms of Hand L of a positive logic NAND gate is
shown In FIg. 10-1. We notice that the output ofthe gate is high as long as one or more inpnts
are low. The output IS 10':" only when both inputs are high. The behavior of a positive logic
NAND gate In terms of hIgh and low signals can be stated as fonows:

If any input of a NAND gate is low, the output its high.

If all inputs of a NAND gate are high, the output is low.

The corresponding truth table for a positive logic NOR gate is shown in Fig. 10-2. The output
of the NOR gate ISlow when one or more inputs are high. The outpnt is high when both inputs
are low. The behaVIOr of a posItive logIC NOR gate in terms, of high and low signals can be stat
ed as fonows:

If any input of a NOR gate is high, the output is low.

If all inputs of a NOR gate are low, the output is high.

These statements for NAND and NOR gates must be remembered because they will be used
dunng the analysIS of the electronic gates in this chapter.

Digital
Integrated Circuits

Resistor-transistor logic

Diode-transistor logic

Transistor-transistor logic

Emitter-coupled logic

Metal-oxide semiconductor

Complementary metal-oxide semiconductor

RTL

DTL

TTL

ECL

MOS

CMOS

The first two, RTL and DTL, have only historical significance since they are no longer used
in the design of digital systems. RTL was the first commercial family to have been used ex
tensively. It is included here because it represents a useful starting point for explaining the
basic operation of digital gates. DTL circuits have been replaced by TTL. In fact, TTL is a
modification of the DTL gate. The operation of the TTL gate will be easier to understand after
the DTL gate is analyzed. TTL, EeL, and CMOS have a large number of SSI circuits, as well
as MSI, LSI, and VLSI components.

The basic circuit in each IC digital logic family is either a NAND or NOR gate. This basic
circuit is the primary building block from which all other more complex digital components are
obtained. Each IC logic family has available a data book that lists all the integrated circuits in
that family. The differences in the logic functions available from each logic family are not so

The integrated circuit (IC) and the digital logic families were introduced in Section 2-8. This
chapter presents the electronic circuits in each IC digital logic family and analyzes their elec
trical operation. A basic knowledge of electrical circuits is assumed.

The IC digital logic families to be considered here are

INTRODUCTION

398

10-1



401

To other
inputs

(b)Low-Ievel output

Section 10-2 Special Characteristics

1m IJL---+-
-+-

1m IlL---+-
-+-

To other
inputs

(a) High~level output

FIGURE 10-3
Fan-Out Computation

of the gate is calculated from the ratio IOH/Im or IodIJL, whichever is smaller. For example,
the standard TTL gates have the following values for the currents:

I OH = 400}LA

1m = 40}LA

IOL = l6mA

IJL = 1.6 rnA

The two ratios give the same number in this case:

400 }LA 16 mA
=--=10

40 }LA 1.6 mA

Therefore, the fan-out of standard TTL is 10. TIris means that the output of a TTL gate can be
connected to no more than ten inputs of other gates in the same logic family. Otherwise, the
gate may not be able to drive or sink the amonnt of current needled from the inputs that are con
nected to it.

~very electronic circuit requires a certain amount of power to operate. The power dissipation
IS a parameter expressed in milliwatts (mW) and represents the amonnt of power needed by the
gate. The number that represents this parameter does not include the power delivered from an
other gate; rather: it represents the power delivered to the gate from the power supply. An IC
WIth four gates WIll requITe, from Us power supply, four times the power dissipated in each gate.

Pow,,'r Dissipation

A bipolar junction transistor (BJT) can be either an npn or a pnp junction transistor. In con
trast, the field-effect transistor (PET) is said to be unipolar. The operation of a bipolar transis
tor depends on the flow of two types of carriers: electrons and holes. A unipolar transistor
depends on the flow of only one type of majority carrier, which may be electrons (n-channel)
or holes (p-channel). The first four digital logic families listed-RTL, DTL, TTL, and ECL
use bipolar transistors. The last two families-MOS and CMOS-employ a type of unipolar
transistor called a metal-oxide-semiconductor field-effect transistor, abbreviated MOSFET or
MOS for short.

In this chapter, we first introduce the most common characteristics by which the digital
logic families are compared. We then describe the properties of the bipolar transistor and an
alyze the basic gates in the bipolar logic families. We then explain the operation of the MOS
transistor and introduce the basic gates of its two logic families.

The fan-out of a gate specifies the number of standard loads that can be connected to the ont
put of the gate without degrading its normal operation. A standard load is usually defined as
the amount of current needed by an input of another gate in the same logic family. Sometimes
the term loading is used instead of fan-out. This term is derived because the output of a gate
can supply a limited amount of current, above which it ceases to operate properly and is said
to be overloaded. The output of a gate is usually connected to the inputs of other gates. Each
input consumes a certain amount of current from the gate output, so that each additional
connection adds to the load of the gate. Loading rules are sometimes specified for a family
of digital circuits. These rules give the maximum amount of loading allowed for each out
put of each circuit in the family. Exceeding the specified maximum load may cause a mal
function because the circuit cannot supply the power demanded from it. The fan-ollt is the
maximum number of inputs that can be connected to the output of a gate, and is expressed
by a number.

The fan-out is calculated from the amount of current available in the output of a gate and
the amount of current needed in each input of a gate. Consider the connections shown in
Fig. 10-3. The output of one gate is connected to one or more inputs of other gates. The out
put of the gate is in the high voltage level in Fig. 1O-3(a). It provides a current source I OH to
all the gate inputs connected to it. Each gate input requires a current l IH for proper operatIOn.
Similarly, the output of the gate is in the low voltage level in Fig. 10-3(b). It provides a current
sink IOL for all the gate inputs connected to it. Each gate input supplies a current IlL' The fan-out

The characteristics of IC digital logic families are usually compared by analyzing the circuit
of the basic gate in each family. The most important parameters that are evaluated and com
pared are fan-out, power dissipation, propagation delay, and noise margin. We first explain the
properties of these parameters and then use them to compare the IC logic families.

SPECIAL CHARACTERISTICS

Chapter 10 Digital Integrated Circuits

Fan-Out

400

10-2



402 Chapter 10 Digital Integrated Circuits

The amount of power that is dissipated in a gate is calculated from fhe supply voltage Vee
and the current Icc fhat is drawn by the circuit. The power is fhe product Vee X Icc. The cur
rent drain from the power supply depends on the logic state of the gate. The current drawn
from fhe power supply when the output of the gate is in fhe high-voltage level is termed I CCH '

When the output is in the low-voltage level, the current is leCL' The average current IS

ICCH + feeL
Iec(avg) ~ 2

Input

Section 10-2 Special Characteristics

---->-) Time

403

and is used to calculate the average power dissipation:

Pd avg) = Iee(avg) X Vcc

For example, a standard TTL NAND gate uses a supply voltage Vee of 5 V and has current
drains I

ecH
= 1 rnA and ICCL = 3 rnA. The average current is (3 + 1)/2 = 2 rnA. The aver

age power dissipation is 5 X 2 = 10mW. An IC fhat has four NAND gates dISSIpates a total
of 10 X 4 = 40 mW. In a typical digital system there will be many ICs, and the power re
quired by each IC must be considered. The total power dissipation in the system is the sum total

of the power dissipated in all ICs.

Propagation Delay

The propagation delay of a gate is fhe average transition-delay time for the signal to propagate
from input to output when fhe binary signal changes in value. The signals through a gate take
a certain amount of time to propagate from the inputs to the output. ThIS mterval of hme 18 de
fined as fhe propagation delay of the gate. Propagation delay is measured in nanoseconds (ns).

1 ns is eqnal to 10-9 of a second.. .
The signals that travel from the inputs of a digital circuit to its outputs pass through a senes

of gates. The sum of fhe propagation delays through the gates IS the total delay of fhe ClrcUlt.
When speed of operation is important, each gate must have a short propagatIOn delay and fhe
digital circuit must have a minimum number of gates between mputs a~d outputs.

The average propagation delay time of a gate is calculated from the mput and output wave
forms, as shown in Fig. 10-4. The signal-delay time between the input and output when fhe out
put changes from the high to the low level is referred to as I PHL • Similarly, when the output goes
from the low to fhe high level, fhe delay is I PLH' It is customary to measure the tIme between
the 50 percent point on the input and output transitions. In general, fhe two delays are not the
same, and bofh will vary wifh loading conditions. The average propagatIOn-delay tIme IS cal

culated as the average of fhe two delays.
As an example, the delays for a standard TTL gate are f PHL = 7 ns and f PLH ~ 11 ns. These

quantities are given in fhe TTL data book and are measured with a load resistance of 400 ohms
and a load capacitance of 15 pF. The average propagation delay of the TTL gate IS

(11 + 7)/2 = 9 ns. . .
Under certain conditions, it is more important to know the maximum delay hme of a g~te

rafher fhan fhe average value. The TTL data book lists fhe following maximum propagatIOn
delays for a standard NAND gate: t pHL = 15 ns and I PLH = 22 ns. When speed of operatIon IS
critical, it is necessary to take into account the maximum delay to ensure proper operatlOTI.

Output

FIGURE 10-4

Measurement of Propagation Delay

The input signals in most digital circuits are applied simultaneously to more than one gate.
All the gates that are connected to external inputs constitnte the flrst logic level of fhe circuit.
Gates that receive at least one input from an outpnt of a first level gate are considered to be in
the second logic lev.el, and similarly for the third and higher logic levels. The total propagation
delay of the ClrcUlt IS equal to fhe propagation delay of a gate times the number of logic levels
ill the CITcmt. Thus, a reduction in fhe number of logic levels results in a reduction of sigual delay
and faster circ~its. The reduction of the propagation delay in circuits may be more important
than fhe reductIon of fhe total number of gates if speed of operation is a major factor.

Noise Margin

Spurious electrical signals from industrial and ofher similar sources can induce undesirable volt
ages on the connecting wires between logic circuits. These unwanted signals are referred to as
noise. There are two types of noise to be considered. DC noise is caused by a drift in the voltage
levels ?fa signal. AC nOlse IS a random pulse fhat may be created by ofher switching signals. Thus,
n~lse l~ a tenn used to denote an undesirable signal that is superimposed upon the nonnal oper
atIng sIgnal. Noise margin is fhe maximnm noise voltage added to an input signal of a digital cir
CUlt that does not cause an undesirable change in the circuit output. The ability of circuits to
operate ~eliably in a noise environment is important in many applications. Noise margin is ex
pressed III volts and represents fhe maximum noise signal fhat can be tolerated by fhe gate.

The noise margin is calculated from knowledge of fhe voltage signal available in fhe output
of the gate and fhe voltage signal required in fhe input of fhe gate. Fig. 10-5 illustrates fhe sig
nals for computing noise margin. Part (a) shows fhe range of output voltages fhat can OCcur in a
typical gate. Any voltage in the gate output between Vee and VOH is considered as the high-level
state and any voltage between 0 and VOL in fhe gate output is considered as fhe low-level state.
Voltages between VOL and VOH are indeterminate and do not appear under normal operating con
ditIons except dunng transition between fhe two levels. The corresponding two voltage ranges that
are recognized by fhe input offhe gate are indicated in Fig. 1O-5(b). In order to compensate for
any noise signal, fhe circuit must be designed so fhat T-[L is greater fhan VOL and T-[H is less fhan
VOH ' The noise margin is the difference VOH - VIHor VJL - VOL, whichever is smaller.



405

(c) Transistor-collector characteristic

,.-- 0.6

J>.c------ 0.5

f..--~""~__ Oo4

1[....--"""-".;;;:--- 004

II~===="""~'S;=~I~B:- 0.2 rnA
~ VeE (V)

Vee

Vee
Re

Ie
(rnA)

(a) Inverter circuit

Vi O--'\N\~---j

Section 10-3 Bipolar-Transistor Characteristics

L----+7-:'::----,c-::- VBE (V)
0.6 0.7 0.8

(b) Transistor-base characteristic

I B
(rnA)

FIGURE 10-6

Silicon npn Transistor Characteristics

resistor Rs and the base of the transistor. The emitter is connected to ground and its current
f E = f e + fB' The supply Yoltage is between Vee and ground. The input is between V and
ground, and the output is between V

o
and ground. I

. W~ have assumed a positive direction for the currents as indicated. These are the directions
ill whIch the currents normally flow in an npn transistor. Collector and base currents f and f
~espectively, are positive when they flow into the transistor. Emitter current IE is Positi~e Wh:~
It-flows out of the transistor, as indicated by the arrow in the emitter terminal. The symbol VeE
stands for the voltage drop from collector to emitter and is always positive. Correspondingly,
VEE IS the .voltage drop across the base-to-emitter junction. This junction is forward biased
when VSE IS positive. It is reverse biased when VEE is negative.

The base-emitter graphical characteristic is shown in Fig. 1O-6(b). This is a plot of V
BE

ver
sus fB' If the base-emItter voltage Is less than 0.6 V, the transistor is said to be eut off and no
base current flo.ws. When the base-emitter junction is forward biased with a voltage greater than
0.6 V, the transIstor conducts and f B starts rising very fast whereas V

BE
changes very little. The

voltage VBE across a conducting transistor seldom exceeds 0.8 V.

(b) Input voltage range

Low-state
noise margin

(a) Output voltage range

FIGURE 10-5
Signals for Evaluating Noise Margin

High-state
noise margin

This section is devoted to a review of the bipolar transistor as applied to digital circuits. This
information will be used for the analysis of the basic circuit in the four bipolar logic families.
Bipolar transistors may be of the npn or-pnp type. Moreover, they are constructed e.ithe~ :-,ith
germanium or silicon semiconductor material. Ie transistors, however, are made WIth sIlIcon
and are usually of the npn type. .

The basic data needed for the analysis of digital circuits may be obtained from inspecllon
of the typical characteristic curves of a common-emitter npn silicon transistor, shown III

Fig. 10-6. The circuit in (a) is a simple inverter with two resistors and a transistor. The current
marked f e flows through resistor Re and the collector ofthe transistor. CurrentlB flows through

As illustrated in Fig. 10-5, VOL is the maximum Yoltage that the output can be when in the
low-level state. The circuit can tolerate any noise signal that is less than the noise margin
(V - V ) because the input will recognize the signal as being in the low-level state. Any

IL OL . h' d
signal greater than V plus the noise-margin figure will send the input voltage mto t em e-

~ . h'tenninate range, which may cause an error in the output of the gate. In a similar tas lOn, a
negative-voltage noise greater than VOH - VfH will send the input voltage into the indetermi
nate range.

The parameters for the noise margin in a standard TTL NAND gate are VOH = 2.4 V,
VOL = 0.4 V, VlH = 2 V, and VlL = 0.8 V. The high-state noise margin is 2.4 - 2 = 0.4 V,
and the low-state noise margin is 0.8 - 0.4 = 0.4 V. In this case, both values are the same.

BIPOLAR-TRANSISTOR CHARACTERISTICS

Chapter 10 Digital Integrated Circuits

10-3

404



406 Chapter 10 Digital Integrated Circuits Section 10-3 Bipolar-Transistor Characteristics 407

We then check for saturation, using the condition

The maximum collector current, assuming VeE = 0.2 V, is

5 - 0.2
1 kil = 4.8mA

1 _ Vee - VeE
cs - =

Re

I _ V; - VBE 5 - 0.7
B - R

B
= 22kil = 0.195 rnA

values. Then, if the base current is large enough thalIB ;=: Ies/h
FE

, we deduce that the transistor
IS III the saturation region with VCE = 0.2 V. However, if the base current is smaller arid the
above relationship is not satisfied, the transistor is in the active region and We recalculate col
lector current Ie using the equation Ie = hPEIB.

To demonstrate with an example, consider the inverter circuit of Fig. 1O-6(a) with the fol
lowmg parameters:

Ies 4.8
0.195 = Is ;=: - = - = 0.096 rnA

hFE 50

whereupon we find that the ineqUality is satisfied, since 0.195 > 0.096. We conclude that the
transistor is saturated and output voltage 1(, = VeE = 0.2 V = L. Thus, the circuit behaves as
an mverter.

The procedure just described will be used extensively during the analysis of the circuits in
the following sections. This will be done by means of a qualitative analysis, i.e., without writ
m~ down the specI~c n~merical equations. The quantitative analysis and specific calculations
WIll be left as exerCIses m the Problems section at the end of the chapter.

Ther~ are ?CCaSlOlls where not only transistors but also diodes are used in digital circuits.
An IC diOde is usually constructed from a transistor with its collector connected to the base
as shown in Fig. 10-7(a)..The graphic symbol employed for a diode is shown in Fig. 10-7(b):
The di~de behaves essenllally like the base-emitter junction of a transistor. Its graphical char
actensllc, shown m Fig. 1O-7(c), is similar to the base-emitter characteristic of a transistor. We
can then conclude that ~ diode is off and non-conducting when its forward voltage, V

D
, is less

than 0.6 V. Wheu the dIOde conducts, current I D flows in the direction shown in Fig. 1O-7(b),
~nd VD stays at about 0.7 V. One must always provide an external resistor to limit the current
m a conducting diode, since its voltage remains fairly constant at a fraction of a volt.

Re = 1 Hi Vee = 5 V (voltage supply)

RB = 22 kil H = 5 V (high-level voltage)

hFE = 50 L = 0.2 V (low-level voltage)

With input voltage V; = L = 0.2 V, we have that VBE < 0.6 V and the transistor is cut off.
The COllector-emitter circuit behaves like an open circuit, so output voltage V

o
= 5 V = H.

With mput voltage V; = H = 5 V, we deduce that VBE > 0.6 V. ASSUming that V
BE

= 07
we calculate the base current: . ,

Region VB' (V) Ve, (V) Current Relationship

Cutoff < 0.6 Open circuit IE = Ie ~ 0
Active 0.6-D.7 > 0.8 Ie = hFEIB

Saturation 0.7-0.8 0.2 IE ~ Ies/hFE

The graphical collector-emitter characteristics, together with the load line, are shown in
Fig. 10-6(c). When VEE is less than 0.6 V, the transistor is cnt off with IB = 0 and a negligible
current flows in the collector. The collector-to-emitter circuit then behaves like an open circuit.
In the active region, collector voltage VeE may be anywhere from about 0.8 V up to Vee. Col
lector current Ie in this region can be calculated to be approximately equal to IBhFE • where
hFt: is a transistor parameter called the de current gain. The maximum collector current depends
not on IB , but rather on the external circuit connected to the collector. This is because VeE is al
ways positive and its lowest possible value is 0 V. For example, in the inverter shown, the max
imum Ie is obtained by making VCE = 0 to obtain Ie = Vee! Re.

It was stated that Ie = hFEIB in the active region. The parameter hFE varies widely over the
opemting range of the transistor, but still it is useful to employ an average value for the pur
pose of analysis. In a typical operating range, hPE is about 50, but under certain conditions, it
could be as low as 20. It must be realized that the base current I B may be increased to any de
sirable value, but the collector current Ie is limited by external circuit parameters. As a conse
quence, a situation can be reached where hFEfBis greater than Ie. If this condition exists, then
the transistor is said to be in the saturation region. Thus, the condition for saturation is deter
mined from the relationship

Table 10-1
Typical npn Silicon Transistor Parameters

Ies1>
B - h

FE

where Ies is the maximum collector current flowing during saturation. VeE is not exactly zero
in the saturation region, but is normally about 0.2 V.

The basic data needed for analyzing bipolar transistor digital circuits are listed in Table 10-1.
In the cutoff region, VBE is less than 0.6 V, VeE is considered as an open circuit, and both cur
rents are negligible. In the active region, V BE is about 0.7 V, VCE may vary over a wide range,
and Ie can be calculated as a function of lB. In the saturation region, VBE hardly changes, but
VeE drops to 0.2 V. The base current must be large enough to satisfy the inequality listed. To
simplify the analysis, we will assume that VBE = 0.7 V if the transistor is conducting, whether
in the active or saturation region.

The analysis of digital circuits may be undertaken using the following prescribed proce
dure: For each transistor in the circuit, detennine if its VBE is less than 0.6 V. If so, then the tran
sistor is cut off and the collector-to-emitter circuit is considered an open circuit. If VBE is greater
than 0.6 V, the transistor may be in the active or saturation region. Calculate the base current,
assuming that VEE = 0.7 V. Then calculate the maximum possible value of collector current
Ies , assuming VeE = 0.2 V. These calculations will be in terms of voltages applied and resistor



408 Chapter 10 Digital Integrated Circuits
Section 10-4 RTL and DTL Circuits 409

(a) Transistor adapted for
use as a diode

I D
---+-

10 )1 02
+

VD

I D
(rnA)

'------:":--:-'::---VD (V)
0.6 0.7

This causes the output to be low, regardless of the states of the other transistors. If all inputs are
low at 0.2 V, all tranSIstors are cut off because VBE < 0.6 V. This causes the output of the circuit
to be high, approaching the value of supply voltage Vee' This confirms the conditions stated in
Fig. 10-2 for the NOR gate. Note that the noise margin forlow signal input is 0.6 - 0.2 = 0.4 V.

The fan-out of the RTL gate is limited by the value of the outpnt voltage when high. As the
output is loaded with inputs of other gates, more cnrrent is consumed by the load. This current
must flow through the 640-D. resistor. A simple calculation (see Problem 10-2) will show that
if hFE drops to 20, the output voltage drops to about I V when the fan-out is 5. Any voltage below
I, V i~ the output may not drive the next transistor into saturation as required. The power dis
S!patlOn of the RTL gate is about 12 mWand the propagation delay averages 25 ns.

DTL Basic Gates

y~ (ABC)'
D1 D2

FIGURE 10-9
DTl Basic NAND Gate

QI

5kQ
Bo--/4--4

The basic circuit in the DTL digital logic family is the NAND gate shown in Fig. 10-9. Each
input is associated with one diode. The diodes and the 5-kD. resistor form an AND gate. The
tranSIstor serves as a current amplifier while inverting the digital signal. The two voltage lev
els are 0.2 V for the low level and between 4 and 5 V for the high level.

The analysis of the DTL gate should conform to the conditions listed in Fig. 10-1 for the
NAND gate. If any input of the gate is low at 0.2 V, the corresponding input diode conducts cur
rent through Vee and the 5-kD. resistor into the input node. The voltage at point P is equal to the
input voltage of 0.2 V plus a diode drop of 0.7 V, for a total of 0.9 V. In orderfor the transistor to
start conducting, the voltage at point P must overcome a potential of one V

BE
drop in Q I plus two

diode drops across D I and D2, or 3 X 0.6 = 1.8 V. Since the voltage atP is maintained at 0.9 V
by the input conducting diode, the transistor is cut off and the output voltage is high at 5 V.

If all inputs of the gate are high, the transistor is driven into the saturation region. The volt
age at P now is equal to VBE plus the two diode drops across DI and D2, or 0.7 X 3 = 2.1 V.
Since all inputs are high at 5 V and Vp = 2.1 V, the input diodes are reverse biased and off. The
base current is equal to the difference of currents flowing in the two 5-kO resistors and is

5kQ

2kQ

450Q

(c) Diode characteristic

450Q
B o--,\/\!,,~--"

,--------t--------rc-o y~ (A +B + C)'

(b) Diode graphic symbol

450Q

Vee = 3.6V

640Q

FIGURE 10-8
RTl Basic NOR Gate

A ~~\IV 'v-----,

FIGURE 10-7
Silicon Diode Symbol and Characteristic

RTl AND DTl CIRCUITS

RTL Basic Gate

The basic circuit of the RTL digital logic family is the NOR gate shown in Fig. 10-8. Each input
is associated with one resistor and one transistor. The collectors of the transistors are tied to
gether at the output. The voltage levels for the circuit are 0.2 V for the low level and from I to
3.6 V for the high level.

The analysis of the RTL gate is very simple and follows the procedure outlined in the previous
section. If any input of the RTL gate is high, the corresponding transistor is driven into saturation.

10-4



~

ii

410 Chapter 10 Digital Integrated Circuits

Vee = 5 V
Section 10-5 Transistor-Transistor logic (TTL) 411

The standard TTL gate was the first version in the TTL family. This basic gate was then de
signed with different resistor values to produce gates with lower power dissipation or with
higher speed. The propagation delay of a transistor circuit that goes into saturation depends
mostly on two factors: storage time and RC time constants. Reducing the storage time de
creases the propagation delay. Reducing resistor values in the circuit reduces the RC time con
stants and decreases the propagation delay. Of course, the trade-off is higher power dissipation
~ecause lower re~istances draw more current from the power supply. The speed of the gate is
Inversely proportIOnal to the propagation delay.

In the low-power TTL gate, the resistor values are higher than in the standard gate to re
dnce the power dissipation, but the propagation delay is increased. In the high-speed TTL
~ate, reSIstor values are lowered to reduce the propagation delay, but the power dissipation is
Increased. The Schottky TTL gate was the next improvement in the technology. The effect of
the Schottky transistor is to remove the storage time delay by preventing the transistor from
going into saturation. This series increases the speed of operation without an excessive increase
i~ power dissipation. The low-power Schottky TTL sacrifices some speed for reduced power
dISSIpatIOn. It IS equal to the standard TTL in propagation delay, but has only one-fifth the
power dissipation. Recent innovations have led to the development of the advanced Schottky
series. It provides an improvement in propagation delay over the Schottky series and also
lowers the power dissipation. The advanced low-power Schottky has the lowest speed-power
product and is the most efficient series. The Fast TTL fantily is the best choice for high-speed
deSIgns.

All TTL series are available in SSI and in more complex forms such as MSI and LSI com
ponents. The differences in the TTL series are not in the digital logic that they perform, but rather
in the internal construction of the basic NAND gate. In any case, TTL gates in all the available
series come in three different types of output configuration:

1. Open-collector output

2. Totem-pole output

3. Three-state (or tristate) output

These three types of outputs will be considered in conjunction with the circuit description of
the basic TTL gate.

Table 10-2
TTL Series and Their Characteristics

Fan- Power Propagation Speed-PowerTTL Series Name Prefix out Dissipation (mW) Delay (ns) Product (pI)
Standard 74 10 10 9 90Low-power 74L 20 1 33 33High-speed 74H 10 22 6 132Schottky 74S 10 19 3 57Low-power Schottky 74LS 20 2 9.5 19Advanced Schottky 74AS 40 10 1.5 15Advanced low-power Schottky 74ALS 20 1 4 4Fast 74F 20 4 3 12

y~ (ABC)'

The original basic TTL gate was a slight improvement over the DTL gate. As the TTL tech
nology progressed, additional improvements were added to the point where this logic family
is widely used in the design of digital systems. There are several subfamilies or series of the
TTL technology. The names and characteristics of eight TTL series appear in Table 10-2. Com
mercial TTL ICs have a number designation that starts with 74 and follows with a suffix that
identifies the series type. Examples are 7404, 74S86, and 74ALS161. Fan-out, power dissipa
tion, and propagation delay were defined in Section 10-2. The speed-power product is an im
portant parameter for comparing the various TTL series. This is the product of the propagation
delay and power dissipation and is measured in picojoules (pI). A low value for this parame
ter is desirable, because it indicates that a given propagation delay can be achieved without
excessive power dissipation, and vice versa.

FIGURE 10-10
Modified DTL Gate

Bo-*--.1
5kQ

2kQ

2kQ

1.6Hl

Co--j_--.J

sufficient to drive the transistor into saturation. (See Problem 10-3.) With the transistor satu
rated, the output drops to VeE of 0.2 V, which is the low level for the gate.

The power dissipation of a DTL gate is about 12 mW and the propagation delay averages
30 ns. The noise margin is about I V and a fan-out as high as 8 is possible. The fan-out of the
DTL gate is limited by the maximum current that can flow in the collector of the saturated
transistor. (See Problem 10-4.)

The fan-out of a DTL gate may be iucreased by replacing one of the diodes iu the base cir
cuit with a transistor, as shown in Fig. 10-10. Transistor Q 1 is maintained in the active region
wheu output transistor Q2 is saturated. As a cousequence, the modified circuit can supply a larg
er amount of base current to the output transistor. The output transistor can now draw a larger
amount of collector current before it goes out of saturation. Part of the collector current comes
from the conducting diodes in the loading gates when Q2 is saturated. Thus, an increase in al
lowable collector saturated current allows more loads to be connected to the output, which in
creases the fan-out capability of the gate.

TRANSISTOR-TRANSISTOR LOGIC (TTL)10-5

/



Y

A

B

(b) Wired-logic graphic symbol

C

D

rr--t--C Y

(a) Physical connection

C

D

A

B

FIGURE 10-12
Wired-AND of two Open-Collector (oc) Gates, Y ~ (AB + CD)'

In this analysis, we said that the base-collector junction of Q I acts like a pn diode junc
tion. This is true in the steady-state condition. However, during the turn-off transition, Q I
does exhibit transistor action, resulting in a reduction in propagation delay. When all in
puts are high and then one of the inputs is brought to a low level, both Q 2 and Q 3 start
turning off. At this time, the collector junction of Q 1 is reverse biased and the emitter is
forward biased; so transistor Q 1 goes momentarily into the active region. The collector cur
rent of Q I comes from the base of Q 2 and quickly removes the excess charge stored in Q 2
during its previous saturation state. This causes a reduction in the storage time of the cir
cuit as compared to the DTL type of inpnt. The result is a reduction of the turn-off time
of the gate.

The open-collector TTL gate will operate without the external resistor when connected to
inputs of other TTL gates, although this is not recommended because of the low noise immu
nity encountered. Without an external resistor, the outpnt of the gate will be an open circuit when
Q 3 is off. An open circuit to an input of a TTL gate behaves as if it has a high-level input (but
a small amount of noise can change this to a low level). When Q 3 conducts, its collector will
have a current path supplied by the input of the loading gate through Vee, the 4-kf! resistor, and
the forward-biased base-emitter junction.

Open-collector gates are used in three major applications: driving a larup or relay, per
forming wired logic, and construction of a common-bus system. An open-collector output can
drive a 1arup placed in its output through a limiting resistor. When the output is low, the satu
rated transistor Q 3 forms a path for the current that turns the lamp on. When the output tran
sistor is off, the lamp turns off because there is nO path for the current.

If the outputs of several open-collector TTL gates are tied together with a single exter
nal resistor, a wired-AND logic is performed. Remember that a positive-logic AND func
tion gives a high level only if all variables are high; otherwise, the function is low. With
outputs of open-collector gates connected together, the common output is high only when
all output transistors are off (or high). If an output transistor conducts, it forces the output
to the low state.

The wired logic performed with open-collector TTL gates is depicted in Fig. 10-12. The phys
ical wiring in (a) shows how the outputs must be connected to a common resistor. The graphic

Section 10-5 Transistor-Transistor Logic (TTL) 413

RL

4kn 1.6 k n

Q2 y
A
B
C

Q3

lk n

FIGURE 10-11
Open-Collector TIL Gate

Open-Collector Output Gate
The basic TTL gate shown in Fig. 10-11 is a modified circuit of the DTL gate. The multiple
emitters in transistor Q 1 are connected to the inputs. These emitters behave most of the time
like the input diodes in the DTL gate since they form a pn junction with their common base.
The base-collector junction of Q 1 acts as another pn junction diode corresponding to D 1 III

the DTL gate (see Fig. 10-5). Transistor Q2 replaces the second diode, D2, in the DTL gate.
The output of the TTL gate is taken from the open collector of Q 3. A resistor connected to Vee
must be inserted externally to the Ie package for the output to "pull up" to the high voltage level
when Q 3 is off; otherwise, the output acts as an open circuit. The reason for not providing the

resistor internally will be discussed later.
The two voltage levels of the TTL gate are 0.2 V for the low level and from 2.4 to 5 V for

the high level. The basic circuit is a NAND gate. If any inpnt is low, the corresponding base
emitter junction in Q 1 is forward biased. The voltage at the base of Q 1 IS equal to the mput
voltage of 0.2 V plus a V

BE
drop of 0.7 or 0.9 V. In order for Q3 to start conducting, the path

from Q I to Q 3 must overcome a potential of one diode drop in the base-collector pn Juncllon
of Q 1 and two V

BE
drops in Q2 and Q 3, or 3 X 0.6 = 1.8 V. Since the base of Q 1 is maintained

at 0.9 V by the inpnt signal, the output transistor cannot conduct and is cut off. The outpnt
level will be high if an external resistor is connected between the output and Vee (or an open

circuit if a resistor is not used).
If all inputs are high, both Q 2 and Q 3 conduct and saturate. The base voltage of Q 1 is equal

to the voltage across its base-collector pn junction plus two VBE drops in Q2 and Q 3, or about
0.7 X 3 = 2.1 V. Since all inputs are high and greater than 2.4 V, the base-emitter junctions of
Q 1 are all reverse biased. When output transistor Q 3 saturates (provided it has a current path),
the output voltage goes low to 0.2 V. This confirms the conditions of a NAND operatIOn.

412 Chapter 10 Digital Integrated Circuits



412 Chapter 10 Digital Integrated Circuits Section 10-5 Transistor-Transistor Logic (TTL) 413

y

(b) Wired-logic graphic symbol

A

B

C

D

P--+--oY
A

B

(a) Physical connection

C

D

FIGURE 10-12

Wired-AND of two Open-Collector (oc) Gates, Y ~ (AB + CD)'

In this analysis, we said that the base-collector junction of Q I acts like a pn diode junc
tion. This is true in the steady-state condition. However, during the turn-off transition, Q 1
does exhibit transistor action, resulting in a reduction in propagation delay. When all in
puts are high and then one of the inputs is brought to a low level, both Q 2 and Q 3 start
turning off. At this time, the collector junction of Q I is reverse biased and the emitter is
forward biased; so transistor Q 1 goes momentarily into the active region. The collector cur
rent of Q I comes from the base of Q 2 and quickly removes the excess charge stored in Q 2
dUring its previous saturation state. This causes a reduction in the storage time of the cir
cuit as compared to the DTL type of input. The result is a reduction of the turn-off time
of the gate.

The open-collector TTL gate will operate without the external resistor when connected to
inputs of other TTL gates, although this is not recommended because of the low noise immu
nity encountered. Without an external resistor, the output of the gate will be an open circuit when
Q 3 i$ off. An open circuit to an input of a TTL gate behaves as if it has a high-level input (but
a small amount of noise can change this to a low level). When Q 3 conducts, its collector will
have a current path supplied by the input of the loading gate through Vee, the 4-kf1 resistor, and
the forward-biased base-emitter junction.

Open-collector gates are used in three major applications: driving a lamp or relay, per
fonning wired logic, and construction of a common-bus system. An open-collector output can
drive a lamp placed in its output through a limiting resistor. When the output is low, the satu
rated transistor Q 3 forms a path for the current that turns the lamp on. When the output tran
sistor is off, the lamp turns off because there is no path for the current.

If the outputs of several open-collector TTL gates are tied together witb a single exter
nal resistor, a wired-AND logic is performed. Remember that a positive-logic AND func
tion gives a high level only if all variables are high; otherwise, the function is low. With
outputs of open-collector gates connected together, the common output is high only when
all output transistors are off (or high). If an output transistor conducts, it forces the output
to the low state.

The wired logic performed with open-collector TTL gates is depicted in Fig. 10-12. The phys
ical wiring in (a) shows how the outputs must be connected toa common resistor. The graphic

RL

4kQ 1.6 kQ

Q2 YA Ql
B

Q3C

FIGURE 10-11
Open-Collector TTL Gate

Open-Collector Output Gate
The basic TTL gate shown in Fig. 10-11 is a modified circuit of the DTL gate. The multiple
emitters in transistor Q 1 are connected to the inputs. These emitters behave most of the time
like the input diodes in the DTL gate since they form a pn junction with their common base.
The base-collector junction of Q I acts as another pn junction diode correspondIng to D I In
the DTL gate (see Fig. 10-5). Transistor Q2 replaces the second diode. D2, in the DTL gate.
The output of the TTL gate is taken from the open collector of Q 3. A resIstor connected to Vee
must be inserted externally to the Ie package for the output to "pull up" to the high voltage level
when Q 3 is off; otherwise, the output acts as an open circuit. The reason for not providing the
resistor internally will be discussed later.

The two voltage levels of the TTL gate are 0.2 V for the low level and from 2.4 to 5 V for
the high level. The basic circuit is a NAND gate. If any input is low, the correspondIng base
emitter junction in Q I is forward biased. The voltage at the base of Q I IS equal to the Input
voltage of 0.2 V plus a VBE drop of 0.7 or 0.9 V. In order for Q3 to start conducting, the p~th

from Q I to Q 3 must overcome a potential of one diode drop in the base-collector pn Juncl10n
ofQ I and two VBEdrops in Q2 and Q3, or3 X 0.6 = 1.8 V. Since the base ofQ1Is maIntaIned
at 0.9 V by the input signal, the output transistor cannot cooduct and IS cut off. The output
level will be high if an external resistor is connected between the output and Vee (or an open
circuit if a resistor is not used).

If all inputs are high, both Q 2 and Q 3 conduct and saturate. The base voltage of Q I is equal
to the voltage across its base-collector pn junction plus two VBE drops in Q 2 and Q 3, or about
0.7 X 3 = 2.1 V. Since all inputs are high and greater than 2.4 V, the base-e1ll1tterJUllcl10ns of
Q I are all reverse biased. When output transistor Q 3 saturates (provided it has a current path),
the output voltage goes low to 0.2 V. This confirms the conditions of a NAND operatlOn.



Totem-Pole Output

The output impedance of a gate is normally a resistive plus a capacitive load. The capacitive
load consists of the capacitance of the output transistor, the capacitance of the fan-out gates,
and any stray wiring capacitance. When the output changes from the low to the high state, the
output transistor of the gate goes from sal1lfation to cutoff and the total load capacitance C
charges exponentially from the low to the high voltage level with a time constant equal to RC.
For the open-collector gate, R is the external resistor marked RL . For a typical operating value
of C = IS pF and RL = 4 kfl, the propagation delay of a TTL open-collector gate during the
turn-off time is 35 ns. With an active pull-up circuit replacing the passive pull-up resistor RL ,

the propagation delay is reduced to 10 ns. This configuration, shown in Fig. 10-14, is called a
totem-pole output because transistor Q4 "sits" upon Q3.

The TTL gate with the totem-pole output is the same as the open-collector gate, except for
the output transistor Q4 and the diode D 1. When the output Y is in the low state, Q2 and Q3
are driven into saturation as in the open-collector gate. The voltage in the collector of Q 2 is
VBE(Q3) + VCE(Q2) or 0.7 + 0.2 = 0.9 V. The output Y = VciQ3) = 0.2 V. Transistor
Q4 is cutoff because its base must be one VBE drop plus one diode drop, or 2 X 0.6 = 1.2 V,
to start conducting. Since the collector of Q2 is connected to the base of Q4, the lalter's volt
age is only 0.9 V instead of the required 1.2 V, and so Q 4 is cut off. The reason for placing the
diode in the circuit is to provide a diode drop in the output path and thus eusure that Q 4 is cut
off when Q 3 is saturated.

When the output changes to the high state because one of the inputs drops to the low state,
transistors Q 2 and Q 3 go into cutoff. However, the output remains momentarily low because

414 Chapter 10 Digital Integrated Circuits

symbol for such a connection is demonstrated in (b). The AND function formed by connect
ing together the two outputs is called a wired-AND function. The AND gate IS drawn wIth the
lines going through the center of the gate to distinguish it from a convenl1onal gate. The wlfed
AND gate is not a physical gate, but only a symbol to designate the function obtained from the
indicated connection. The Boolean function obtained from the cIrcUIt of FIg. 10-12 IS the AND

operation between the outputs of the two NAND gates:

Y = (AB)' , (CD)' ~ (AB + CD)'

The second expression is preferred since it shows an operation commonly referred to as an

AND-DR-INVERT function (see Section 3-7).
Open-collector gates can be tied together to form a common bus. At any time, all gate out

puts tied to the bus, except one, must be maintained in their high state. The selected gate may
be either in the hicrh or low state, depending on whether we want to transmIt a 1 or 0 on the bus.

b • .

Control circuits must be used to select the particular gate that drives the bus at any gIVen tIme.
Fig. 10-13 demonstrates the connection of four sources tied to a common bus line. Each of

the four inputs drives an open-collector inverter, and the outputs of the inverters are tied together
to form a single bns line. The figure shows that three of the inputs are 0, which produces a I
or high level on the bus. The fourth input, 14 , can now transmit information .through the com
mon-bus line into inverter 5. Remember that an AND operation is performed m the WIred lagle.
If 1

4
= I, the output of gate 4 is 0 and the wired-AND operation produces a O. If 14 ~ 0, the

output of gate 4 is I and the wired-AND operation produces a 1. Thus, if all other outputs are
maintained at 1, the selected gate can transmit its value through the bus. The value transmltt~d
is the complement of /4, but inverter 5 in the receiving end can easily invert this signal agam

to make Y = 14 ,

Section 10-5 Transistor-Transistor logic (TTL) 415

0 1 Bus line
5 Y11 oc-l

0 1
12 oc-2

0 1
13 oc-3

1
oc-4

0
I,

0 1

FIGURE 10-13
Open-Collector Gates Forming a Common Bus line

1.6kn
Bon

4kn
Q4

D1

Ql
Q2 Y

Q3

1 kn

FIGURE 10-14
TTL Gate with Totem-Pole Output



417

SOQ
900Q

2.8kQ

Q5

3.5 kQ

-

500Q 250n

Section 10·5 Transistor-Transistor logic (TTL)

FIGURE 10-15
Schottky TIL Gate

the voltages across the load capacitance cannot change instantaneously. As soon as Q2 turns
off, Q 4 conducts because lts base is connected to Vee through the 1.6-kD resistor. The current
needed to charge the load capacitance causes Q4 to momentarily saturate, and the output volt
age rises with a time constant Re. But R in this case is equal to 1300" plus the saturation re
sistance of Q4, plus the resistance of the diode, for a total of approximately 150 D. This value
of R is much smaller than the passive pull-up resistance used in the open-collector circuit. As
a conseguence, the transition from the low to high level is much faster.

As the capacitive load charges, the output voltage rises and the current in Q4 decreases,
bringing the transistor into the active region. Thus, in contrast to the other transistors, Q4 is
in the active region when in a steady-state condition. The final value of the output voltage
is then 5 V, minus a VIlE drop in Q4, minus a diode drop in D 1 to about 3.6 V. Transistor Q 3
goes into cutoff very fast, but during the initial transition time, both Q 3 and Q 4 are on and
a peak current is drawn from the power supply. This current spike generates nOl-se in the
power-supply distribution system. When the change of state is frequent, the transient-cunent
splkes increase the power-supply current requirement and the average power dissipation of
the circuit increases.

The wired-logic connection is not allowed with totem-pole output circuits. When two totern
poles are wired together wlth the output of one gate high and the output of the second gate
low, the excessive amount of current drawn can produce enough heat to damage the transistors
in the circuit (see Problem 10-7). Some TTL gates are constructed to withstand the amount of
current that flows under this condition. In any case, the collector current in the low gate may
be high enough to move the transistor into the active region and produce an output voltage in
the wired connection greater than 0.8 V, whlch is not a valid binary signal for TTL gates.

~"dp(er 10 Digital Integrated Circuits

Schottky TTL Gate

As mentioned before, a reduction in storage time results in a reduction of propagation delay.
This is because the time needed for a transistor to come out of saturation delays the switching
of the transistor from the on condltion to the off condition. Saturation can be eliminated by plac
ing a Schottky diode between the base and collector of each saturated transistor in the circuit
The Schottky diode is formed by the junction of a metal and semiconductor, in contrast to a con
ventional diode, which is formed by the junction of p-type and n-type semiconductor mnteri
aL The voltage across a conducting Schottky diode is only 0.4 V, as compared to 0.7 V ln a
conventional diode. The presence of a Schottky diode between the base and coUector prevents
the transistor from going into saturation. The resulting transistor is called a Schott"'-y transistor.
The use of Schottky transistors in a TTL decreases the propagation delay without a sacrifice
of power dissipation.

The Schottky TTL gate is shown in Fig. 10-15. Note the special symbol used for the
Schottky transistors and diodes. The diagram shows aU transistors to be of the Schottky
type except Q4. An exception is made of Q4 since it does not saturate, but stays in the ac'
tive region. Note also that resistor values have been reduced to further decrease the propa
gation delay.

In addition to using Schottky transistors and lower resistor values, the circuit of Fig. 10-15
includes other modifications not available in the standard gate of Fig. 10-14. Two new transistors,

Q 5 and Q 6 have been added, and Schottky diodes are inserted between each input terminal and
ground. There is no diode in the totem-pole circuit. However, the new combination of Q 5 and
Q4 still gives the two VBE drops necessary to prevent Q4 from conducting when the output is
low. ThtS combmatIOn compnses a double emitter-follower called a Darlington pair. The Dar
lingt~n pair provides a very high current gain and extremely low resistance. This is exactly
what IS needed dunng the low-to-high swing of the output, reSUlting in a decrease of propaga
tIon delay.

The diodes in each input shown in the circuit help clamp any ringing that may occur in the
input lines. Under transient switching conditions, signal lines appear inductive; this, along with
stray capacItance, causes SIgnals to osciUate or "ring." When the output of a gate switches from
the high to the low state, the ringing waveform at the input may have excursions below ground
as g;eat as 2-3 V, depending on line length. The diodes connected to ground help clamp this
nngmg smce they conduct as soon as the negative voltage exceeds 0.4 V. When the negative
excursion is lintited, the positive swing is also reduced. The clamp diodes have been so suc
cessful in lintiting line effects, that all versions of TTL gates use them.

The entitter resistor of Q 2 in Fig. 10-14 has been replaced in Fig. 10-15 by a circuit con
sisting of transistor Q 6 aud two resistors. The effect ofthis circuit is to reduce the turn-off cur
rent spikes discussed previously. The analysis of this circuit, which helps to reduce the
propagation time of the gate, is too involved to present in this brief discussion.



Three-State Gate

419

=!]-
Y~A'ifC~low

A Y high impedance
If C = high

C

(b) Three-state inverter gate

Transistor-Transistor Logic (TTL)Section 10-5

(c) Circuit diagram for the three-state inverter of (b)

Vee

(a) Three-state buffer gate

?
Y~AifC~high

A Y h~gh impedance
IfC~low

C

Data A 0---./

input

Control
input co-----../

FIGURE 10-16
Three-State TIL Gate

As mentioned earlier, the outputs of two TTL gates with totem-pole structures cannot be con
nected together as in open-collector outputs. There is, however, a special type of totem-pole gate
that allows the wired connection of ontputs for the purpose of forming a common-bus system.
When a totem-pole output TTL gate has this property, it is called a three-state (or tristate) gate.

A three-state gate exhibits three output states: (I) a low-level state when the lower transis
tor in the totem-pole is on and the upper trausistor is off, (2) a high-level state when the upper
transistor in the totem-pole is on and the lower transistor is off, and (3) a third state when both tran
sistors in the totem-pole are off. The third state provides an open circuit or high-impedance state
that allows a direct wire connection of many outputs to a common line. Three-state gates elim
inate the need for open-collector gates in bus configurations.

Fig. 1O-16(a) shows the graphic symbol of a three-state buffer gate. When the control iuput
C is high, the gate is euabled and behaves like a uormal buffer with the output equal to the
input binary value. When the control input is low, the output is an open circuit, which gives a
high impedauce (the third state) regardless of the value of iuput A. Some three-state gates pro
duce a high-impedance state when the control input is high. This is shown symbolically in
Fig. 1O-16(b). Here we have two small circles, one for the inverter output and the other to in
dicate that the gate is enabled when C is low.

The circuit diagram of the three-state inverter is shown in Fig. 1O-16(c). Transistors Q6,
Q 7, and Q 8 associated with the control input form a circuit similar to the open-collector gate.
Transistors Q1-Q5, associated with the data input, form a totem-pole TTL circuit. The two
circuits are connected together through diode D 1. As in an open-collector circuit, transistor Q8
turns off when the control input at C is in the low-level state. This prevents diode D I from con
ducting. In addition, the emitter in Q I connected to Q 8 has no conduction path. Under this con
dition, transistor Q8 has no effect on the operation of the gate and the output in Y depends
only on the data input at A.

When the control input is high, transistor Q 8 turns on, and the current flowing from Vee through
diode D 1 causes transistor Q 8 to saturate. The voltage at the base of Q 5 is now equal to the volt
age across the saturated transistor, Q 8, plus one diode drop, or 0.9 V. This voltage turns off Q 5 and
Q4 since it is less than two VBE drops. At the same time, the low input to one of the emitters of Q I
forces transistor Q3 (and Q2) to turn off. Thus, both Q3 and Q4 in the totem-pole are turned off
and the output of the circuit behaves like an open circuit with a very high output impedance.

A three-state bus is created by wiring several three-state outputs together. At any given time,
only one control input is enabled while all other outputs are in the high-impedance state. The sin
gle gate not in a high-impedance state can transmit binary information through the common bus.
Extreme care must be taken that all except one of the outputs are in the third state; otherwise, we
have the undesirable condition of having two active totem-pole outputs connected together.

An important feature of most three-state gates is that the output enable delay is longer than
the output disable delay. If a control circuit enables one gate and disables another at the same
time, the disabled gate enters the high-impedance state before the other gate is enabled. This
eliminates the situation of both gates being active at the same time.

There is a very small leakage current associated with the high-impedance condition in a
three-state gate. Nevertheless, this current is so small that as many as 100 three-state outputs
can be connected together to form a common-bus line.

Chapter 10 Digital Integrated Circuits418



,.,
:1
i

II

I
il
il

4--<'---1---- (A + B)(C + D)

~ +~+--_(A + B)' + (C + D)'~

[(A + B)(C + D)]'

(b) Wired combination of two gates

A

B

C

D

(a) Single gate

FIGURE 10-18

Graphic Symbols of Eel Gates

A =D=(A + B)' NOR
B (A + B) OR

0.3 V more positive than its emitter. Q5 is cut off because its VBE voltage needs at least 0.6V to start
conductmg. The current in resistor RC2 flows into the base of Q 8 (provided there is a load resistor).
This current IS so small that only a negligible voltage drop occurs across R

C2
• The OR output of the

gate IS one VBE drop below ground, or -0.8 V, which is the high state. The current flowing through
RCI and the c~nducting transistor causes a drop ofabout 1V below ground (see Problem 10-9). The
NOR output IS one VBE drop below this level, or at -1.8 V, which is the low state.
. If all inputs are at the lowlevel, all input transistors tnrn off and Q 5 conducts. The voltage
~n the common-emItter node IS one VBE drop below VEE' or -2.1 V. Since the base of each input
IS at a low level of -1.8 V, each base-emitter junction has only 0.3 V and all input transistors
are cut off. RC2 draws current through Q 5 that results in a voltage drop of about I V, making
the OR output one VBE drop below this, at -1.8 V or the low level. The current in R

CI
is negli

gIble and the NOR output is one VBE drop below ground, at -0.8 V or the high level. This ver
Ifies the OR and NOR operations of the circuit.

. The propagation delay of the ECL gate is 2 ns, and the power dissipation is 25 mW. This
glvesa speed-power product of 50, which is about the same as for the Schottky TTL. The noise
margm IS about 0.3 V and not as good as in the TTL gate. High fan-out is possible in the ECL
gate because of the hIgh mput Impedance of the differential amplifier and the low output im
pedance of the emItter-follower. Because of the extreme high speed of the signals, external
WIres act lIke transmIssIOn lmes. Except for very short wires of a few centimeters EeL out
puts must use coaxial cables with a resistor tennination to reduce line reflections '

The graphic symbol for the ECL gate is shown in Fig. 1O-18(a). Two outputs";'e available:
one for the NOR functIOn and the other for the OR function. The outputs of two or more ECL
gates can be connected together to form wired logic. As shown in Fig. 1O-18(b), an external
wlre.d connectIOn of two NOR outputs produces a wired-OR function. An internal wired con
nectIOn of two OR outputs is employed in some ECL ICs to produce a wired-AND (some
tImes called dot-AND) logic. This property may be utilized when ECL gates are used to form
the OR-AND-INVERT and the OR-AND functions.

Section 10-7 Emitter-Coupled logic (ECl) 421

The field-effect transistor (FED is a unipolar transistor, since its operation depends on the flow of
only one type ofcarner. There are two types offield-effect transistors: the junction field-effect tran
sIstor (JFET) and the metal-oxide semi-conductor (MOS). The former is used in linear circuits and
the latter in digital circuits. MOS transistors can be fabricated in less area than bipolar transistors.

METAL-OXIDE SEMICONDUCTOR (MOS)10-7

NOR
output

OR
output

Emitter
follower
outputs

Vcc1 = GND

970Q

4.98 kf.!

Internal
temperature
and voltage
compensated
bias network

V cc2 = GND

VEE = -5.2 V

6.1 nRE
7790

t-----+--+-----1 Qs

Reo
245Q

R,
50kQ

D

+------1------1---+----1 Q,

C

Differential input amplifier

B

FIGURE 10-17
Eel Basic Gate

A

Emitter-coupled logic (ECL) is a nonsaturated digital logic family. Since transistors do not satnrate,
it is possible to achieve propagation delays as low as 1-2 ns. This logic family has the lowest prop
agation delay of any family and is used mostly in systems requiling very high-speed operation. Its
noise immunity and power dissipation, however, are the worst of all the logic families available.

A typical basic circuit of the ECL family is shown in Fig. 10-17. The outputs provide both
the OR and NOR functions. Each input is connected to the base of a transistor. The two volt
age levels are about -0.8 V for the high state and about -1.8 V for the low state. The circuit
consists of a differential amplifier, a temperature- and voltage-compensated bias network, and
an emitter-follower output. The emitter outputs require a pull-down resistor for current to flow.
This is obtained from the input resistor R p of another similar gate or from an external resistor
connected to a negative voltage supply.

The internal temperature- and voltage-compensated bias circuit supplies a reference voltage
to the differential amplifier. Bias voltage VBE is set at -1.3 V, which is the midpoint of the
signal logic swing. The diodes in the voltage divider, together with Q 6, provide a circuit that
maintains a constant VEE value despite changes in temperature or supply voltage. Anyone of
the power supply inputs could be used as ground. However, the use of the Vcc node as ground
and VEE at -5.2 V results in best noise immunity.

If any input in the ECL gate is high, the corresponding transistor is turned on and Q 5 is turned
off. An input of -0.8 V causes the transistor to conduct and places -1.6 Von the emitters of all tran
sistors (VBE drop in ECL transistors is 0.8 V). Since VBE = -1.3 V, the base voltage of Q 5 is only

EMITTER-COUPLED lOGIC (ECl)

Chapter 10 Digital Integrated Circuits420

10-6



:1

,
'.il·:;)

J
HI
II
II
j~

II•

I''I.":i

·l'·"f..•..._.:'i
,".

423

D

G--I~
s

(b) n-channel

drain

~
gate --I q substrate

sources

D

G--I~

Section 10-8 Metal-Oxide Semiconductor (MOS)

(a) p-channel

FIGURE 10-20

Symbols for MOS Transistors

drain

~
gate --I q substrate

source

Because of the symmetrical construction of source and drain, the MOS transistor can be
operated as a bilateral device. Although normally operated so that carriers flow from source to
dram, there are clrcurllstances when it is convenient to allow carrier flow from drain to source
(see Problem 10-12).

Oue advautage of the MOS device is that it can be used not only as a transistor but as a re
sistor as well. A resistor is obtained from the MOS by permanently biasing the g~te terminal
for conductIOn. The ratIO of the source-drain voltage to the channel current then determines the
val?e of the resistance. Different resistor values may be constructed during manufacturing by
fixmg the channel length and width of the MOS device.

Three logic circuits using MOS devices are shown in Fig. 10-21. For an n-channel MOS
supply voltage VDD is positive (about 5 V) to allow positive current flow from drain to source:
The two voltage levels are a function of the threshold voltage V

T
. The low level is anywhere

fromzero t~ 'T, aud the high level rauges from VT to VDD • The n-channel gates usually employ
posltIve lOgIC. The p-chaunel MOS circuits use a negative voltage for V

DD
to allow positive

current fl..ow from source to drain. The two voltage levels are both negative above and below
the negative threshold voltage VT • p-chanuel gates usually employ negative logic:

. The mverter CIrCUit shown in Fig. 10-21(a) uses two MOS devices. Q 1 acts as the load re
SIstor and Q2 as the active device. The load resistor MOS has its gate connected to V

DD
, thus

mamtammg It always m the conduction state. When the input voltage is low (below V
T

), Q2 turns
off. Smce Q 1 IS always on, the output voltage is at about VDD • When the input voltage is high
(above VT), Q2 turns on. Current flows from VDD through the load resistor Q 1 and into Q2. The
geometry of the two MOS deVIces must be such that the resistance of Q 2, when conducting,
IS much less than the reSistance of Q 1 to maintain the output Y at a voltage below V; .

The NAND gate shown iu Fig. 1O-21(b) uses trausistors in series. Inputs A and B :;'ust both
be high for. all transistors to conduct and cause the output to go low. If either input is low, the
correspondmg trausistor IS turned off and the output is high. Again, the series resistance formed
by the two active MOS devices must be much less than the resistance of the load-resistor MOS.
The NOR gate shown in Fig. 1O-21(c) uses transistors in parallel. If either input is high, the cor
respondmg tranSIstor conducts and the output is low. If all inputs are low, all active transistors
are off and the output is high.

Complementary MOS circuits take advantage of the fact that both n-chanuel and p-chanuel de
VIces can be fabncated on the same substrate. CMOS circuits consist ofboth types ofMOS devices
mterconnected to fonn logic functions. The basic circuit is the inverter, which consists of one

COMPLEMENTARY MOS (CMOS)

gate (+)

drain (+) source

(b) n-channel(a) p-channel

FIGURE 10-19
Basic Structure of MOS Transistor

The basic structure of the MOS transistor is shown in Fig. 10-19. The p-channel MOS con
sists of a lightly doped substrate of n-type silicon material. Two regions are heavily doped by
diffusion with p-type impurities to form the source and drain. The region between the two
p-type sections serves as the channel. The gate is a metal plate separated from the channel by
an insulated dielectric of silicon dioxide. A negative voltage (with respect to the substrate) at
the gate terminal causes an induced electric field in the channel that attracts p-type carriers
from the substrate. As the magnitude of the negative voltage on the gate increases, the region
below the gate accumulates more positive caITI.ers, the conductivity increases, and current can flow
from source to drain, provided a voltage difference is maintained between these two tenninals.

There are four basic types of MOS structures. The channel can be a p- or n-type, depending ou
whether the majority carriers are holes or electrons. The mode of operation can be enhancement or
depletion, dependiug on the state of the channel region at zero gate voltage. Ifthe channel is initially
doped lightly with p-type impurity (diffused channel), a conducting channel exist, at zero gate volt
age and the device is said to operate in the depletion mode. In this mode, current flows unless the
channel is depleted by an applied gate field. If the regiou beneath the gate is left initially uncharged,
a channel must be induced by the gate field before current can flow. Thus, the channel current is en
hanced by the gate voltage and such a device is said to operate in the enhancement mode.

The source is the terminal through which the majority carriers enter the bar. The drain is the
terminal through which the majority carriers leave the bar. In a p-channel MOS, the source
terminal is connected to the substrate and a negative voltage is applied to the drain terminal.
When the gate voltage is above a threshold voltage VT (about -2 V), no current flows in the chan
nel aud the drain-lo-source path is like an open circuit. When the gate voltage is sufficiently
negative below VT , a channel is formed and p-type carriers flow from source to drain. p-type
carriers are positive and correspond to a positive current flow from source to drain.

In the n-channel MOS, the source terminal is connected to the substrate and a positive volt
age is applied to the drain termiual. When the gate voltage is below the threshold voltage VT

(about 2 V), no curreut flows in the channel. Wheu the gate voltage is sufficiently positive
above VT to form the channel, n-type carriers flow from source to drain. n-type carriers are
negative, which corresponds to a positive current flow from drain to source. The threshold volt
age may vary from 1 to 4 V, depending on the particular process used.

The graphic symbols for the MOS transistors are shown in Fig. 10-20. The symbol for the
enhancement type is the one with the broken line connection between source and drain. In this
symbol, the substrate cau be identified and is shown conuected to the source. An alternative sym
bol omits the substrate and instead, an arrow is placed in the source tenninal to show the di
rection ofpositive current flow (from source to drain in the p-channel and from drain to source
in the n-channel).

Chapter 10 Digital Integrated Circuits422



424 Chapter 10 Digital Integrated Circuits Section 10-8 Complementary MaS (CMOS) 425

(c) NOR gate

,--+-------<'---..------oy ~ (A + B)'

A

(a) Inverter

(b) NAND gate

FIGURE 10-22
CMOS logic Circuits

'---j---,-->---<> Y ~ (AB),

. A two-input NOR gate consists of two n-type units in parallel and two p-type units in se
nes, as shown iu Fig_ 1O-22(c). When all inputs are low, both p-chanuel units are on aud both
n~chanuel uuits are off, The output is coupled to VDD and goes to the high state. If any iuput is
hIgh, the associated p-channel transistor is turned off and the associated n-channel transistor
turns on. This connects the output to ground, causing a low-level output.

MOS transistors can be considered as electronic switches that either conduct or are open. As
an example, the CMOS inverter can be visualized as consisting of two switches as shown in
Fig. 1O-23(a). Applyiug a low voltage to the iuput causes the upper switch (p) to close supplying
a high voltage to the output. Applyiug a high voltage to the input causes the lowerswitch (n) to
close connecting the output to ground. Thus, the output ~ut is the complement of the input "in
Commercial applicatious ofteu use other graphic symbols for the MOS transistors to emphasize
the logical behavior of the switches. The arrows showing the direction of current flow are omitted.

B o-- --j

A o--+--_"----j

(c) NOR gate

,..---l----,- y ~ (A + B)'

y ~ (AB)'

(b) NAND gate

Y=A'

FIGURE 10-21
n-channel MaS logic Circuits

p-channel transistor and one n-channel transistor, as shown in Fig. lO-22(a). The. so~rce tenninal
of the p-channel device is at VDD , and the source terminal of the n-channel devIce IS at ground.
The value of V

DD
may be anywhere from +3 to + 18 V. The two voltage levels are 0 V for the

low level and VDD for the high level (typically, 5 V).
To understand the operation of the inverter, we must review the behavior of the MOS tran-

sistor from the previous section:

1. The n-channel MOS conducts when its gate-ta-source voltage is positive.

2. The p-channel MOS conducts wheu its gate-to-source voltage is negative.

3. Either type of device is turned off if its gate-ta-source voltage is zero.

Now consider the operation of the inverter. When the input is low, both gates are at zero po
teutial. The input is at -VDD relative to the source of the p-chauuel device and at 0 V relative
to the source of the n-chanuel device. The result is that the p-chauuel deVICe IS turned ou and
the n-channel device is turned off. Under these conditions, there is a low-impedance path from
V

DD
to the output and a very high-impedance path from output to grouud. Therefore, the output

voltage approaches the high level VDD under uormalloadiug couditions. Wheu the mput IS hIgh,
both gates are at V

DD
and the situation is reversed: The p-channel deVIce IS off and the n-chan

uel device is au. The result is that the output approaches the low level of 0 V.
Two other CMOS basic gates are showu in Fig. 10-22. A two-iuput NAND gate cousistsof

two p-type uuits iu parallel aud two n-type uuits in series, as showu iu Fig.lO-22(b). If allm
puts are high, both p-channel transistors turn off and both n-chaunel trausIstors turn ou. The
output has a low impedauce to ground aud produces a low state, If any mput IS low, the assO
ciated n-channel transistor is turned off and the associated p-channel tranSIstor IS turned on. The
output is coupled to VDD and goes to the high state, Multiple-input NAND gates may be formed
by placing equal numbers of p-type and n-type transistors iu parallel aud senes, respecnvely,
iu au arrangement similar to that showu iu Fig. IO-22(b).

(a) Inverter



iI'
I
:1'

y

N

p

TG

(b)

x

Open switch

X~~y
N~O

P~l

(c)

y

(a)

Close switch

T
p

x

FIGURE 10-24

Transmission Gate (TG)

Section 10-9 CMOS Transmission Gate Circuits 427

The CMOS fabrication process is simpler than TTLad'd .
ty. This means that more' . . n praYl es a greater packing densi-

func~~n. This property, t~:~~~::~~~~l~~c;~::r~f:~~~t%:a;~~~i~~~:~~~~~~t~d~:~t per

sona e propagation delay, makes CMOS the most popular st~ndard as a digitallogi~ fa~~;-

A special CMOS circuit that is not available in the other digital logic families is the t .
SlOn gate The transmiss . t' . ransmlS-

~~~~~~~~~~~~~~lc~~~s;e~1~~l~~~~f~:~~~:I::;U::~~::~cv:~~:d~~~:a:sc~:;~~~~~s~h:~
an:~~el~~;:~:~~~;:~~~e basic circuit of the transmission gate. It consists of one n-channel

ranslstor connected III parallel.

j,\ ~n-channel substrate is connected to ground and the p-channel substrate is connected to

i:~~IOs~~np~t~~ ~ate IS at VDD and the P gate is at ground, both transistors conduct and there
. e ween Input X and ontpnt Y. When the N gate is at ground and the Pate

;;:b~ot~~ansIstors;re off and there is an open circuit between X and Y. Fig. 1O-24(b)~ho::
Oc Iagram 0 the transmIssIOn gate. Note that the terminal of the p-channel gate is

N

--.L

CMOS TRANSMISSION GATE CIRCUITS10-9

V DD

,-(y

-=-

(b) Logical model(a) Switch model

V DD = 5v

I

"'._{f-"
1

FIGURE 10-23
CMOS inverter

Instead, the gate input of the p-channel transistor is drawn with an inversion hubble on the gate ter
minal to show that it is enabled with a low voltage. The inverter circuit is redrawn in Fig. 1O-23(h)
using these symbols. A logic 0 in the input causes the upper transistor to conduct making the out
put logic 1. A logic 1 in the input enables the lower transistor, making the output logic O.

When a CMOS logic circuit is in a static state, its power dissipation is very low. This is because
there is always an off transistor in the path when the state of the circuit is not changing. As a
result, a typical CMOS gate has a static power dissipation on the order of 0.01 mW. However,
when the circuit is changing state at the rate of 1 MHz, the power dissipation increases to about
1 mW, and at 10 MHz to about 5 mW.

CMOS logic is usually specified for a single power supply operation over a voltage range
from 3 to 18 V with a typical VDD value of 5 V. Operating CMOS at a larger power supply volt
age rednces the propagation delay time and improves the noise margin, but the power dissipa
tion is increased. The propagation delay time with VDD = 5 V ranges from 5 to 20 ns depending
on the type used. The noise margin is usually about 40 percent of the power supply voltage. The
fan-out of CMOS gates is ahout 30 when operated at a frequency of 1 MHz. The fan-out de
creases with increase in frequency of operation.

There are several series of the CMOS digital logic family. The 74C series are pin and func
tion compatible with TTL devices having the same number. For example, CMOS IC type 74C04
has six inverters with the same pin configuration as TTL type 7404. The high-speed CMOS
74HC series is an improvement of the 74C series with a tenfold increase in switching speed.
The 74HCT series is electrically compatible with TTL ICs. This means that the circuit in this
series can be connected to inputs and outputs of TTL ICs without the need of additional inter
facing circuits. Newer versions of CMOS are the high-speed series 74VHC and its TTL com
patihle version 74VHCT.

Chapter 10 Digital Integrated Circuits

CMOS Characteristics

426

y

So

SI f'-..

0 TG
(So ~ 0)

TG
(S, ~ 0)

TG
(So ~ 1)

f---

TG
(So ~ 0)

TG
(S, ~ 1)

TG
(So ~ 1)

Section 10-9 CMOS Transmission Gate Circuits 429

~Iosed and output Y is equal to input B. When input A is equal to I TG 2 is closed and out ut
IS equal to the complement of input B. This results in the exclusive-OR truth table as i ~.

cated m the table of Fig. 10-26. ' n I-

I- Another circuit that can be constructed with transmission gates is the multiplexer. A 4-to
Ime m~ll1plexerImplemented wIth transmission gates is shown in Fig. 10-27. The TG cir

cUIt.provIdes a :ransffilsslOll path between its horizontal input and output lines when the two
vertIcal control Inputs have the value of I in the uncircled terminal and 0 in the circled terminal.

I

FIGURE 10-27

Multiplexer with Transmission Gates

y

TGI TG2
[2

A B Y

0 0 close open 0
y 0 1 close open 1

1 0 open close 1
1 1 open close 0

I,

TGx

c -_.----1 >0------,

TGI

----[::; >--

TG2

FIGURE 10-25
Bilateral Switch

marked with the negation symbol. Fig. 10-24(c) demonstrates the behavior of the switch in terms
of positive-logic assignment with VDD eqnivalent to logic-I and ground equivalent to logic-O.

The transmission gate is usually connected to an inverter, as shown in Fig. 10-25. This type
of arrangement is refened to as a bilateral switch. The control input C is connected directly to
the n-channel gate and its inverse to the p-channel gate. When C ~ I, the switch is closed,
producing a path between X and Y. When C = 0, the switch is open, disconnecting the path
between X and Y.

Various circuits can be constructed using the transmission gate. In order to demonstrate its
usefulness as a component in the CMOS family, we will show three circuit examples.

The exclusive-OR gate can be constructed with two transmission gates and two inverters,
as shown in Fig. 10-26. Input A controls the paths in the transmission gates and input B is con
nected to output Y through the gates. When input A is equal to 0, transmission gate TG I is

A

B

FIGURE 10-26
Exclusive-OR Constructed with Transmission Gates

Chapter 10 Digital Integrated Circuits428

Chapter 10 Digital Integrated Circuits

With an opposite polarity in the control inputs, the path disconnects and the circuit behaves like
an open switch. The two selection inputs,S, and So, control the transmission path in the TG
circuits. Inside each box is marked the condition for the transmission gate switch to be closed.
Thus, if So ~ 0 and 51 ~ 0, there is a closed path from input 10 to output Y through the two TGs
marked with So = 0 and 51 = O. The other three inputs are disconnected from the output by
one of the other TG circuits.

The level-sensitive D flip-flop commonly referred to as gated D latch can be constructed with
transmission gates, as shown in Fig. 10-28. The C input controls two transmission gates TG.
When C = 1, the TG connected to input D has a closed path and the one connected to output
Qhas an open path. This produces an equivalent circuit from input D through two inverters to
output Q. Thus, the output foUows the data input as long as C remains active. When C switch
es to 0, the first TG disconnects input D from the circuit and the second TG produces a closed
path between the two inverters at the output. Thus, the value that was present at input D at the
time that C went from 1 to 0 is retained at the Q output.

A master-slave D flip-flop can be constructed with two circuits of the type shown in
Fig. 10-28. The first circuit is the master and the second is the slave. Thus, a master-slave D
flip-flop can be constructed with four transmission gates and six inverters.

FIGURE 10-28
Gated D latch with Transmission Gates

431

II {Drain, source, gate)
II {Drain, source, gate)

IICMOS inverter Fig. 10-22 (a)
module inverter (Y,A);

input Aj

output Yi

supplyl PWR;
supplyO GRD;

pmos (Y,PWR,A);

lUnOS (Y,GRD,A);
endmodule

HDL Example 10-2

HDL Example 10-1

Section 10-10 Switch-lever Modeling With HDl

SW~hchesare c~nsidered as primitives so the use of an instance name is optional
e connectIons to a power source (vc) d t d .

circuits are d' d P DD an 0 groun must be specified when the MOS

They are spe;:~~~eW;th°~:rf~~~;:~~~~a~:~:~;edwith the keywords supply1 and supplyO.

supplyl PWR;

supplyo GRDi

Sources of type supply1 are equivalent to VDD and have a value of 10 ic-I Sourc
supplyO are eqUIvalent to ground connection and have a value of logic~.· es of type

. The descnplIon of the CMOS mverter of Fig. 1O-22(a) is shown in HDL Exam Ie 10-1 Th
~n::;~~tPut, and the two supply sources are first declared. The module instantiates~PMOS an~

is ~s~ co=~::~rb: ~~~~~~~sa~~':~~t~t~::::.s~~r~:::~~~e;::~~~~ i~~~t
SIS or IS connected to PWR and the Source terminal of the NMOS transistor is connected to G
F The second module ill Example 10-2 describes the 2-input CMOS NAND cir '~f

19. 1O-22(b). There are two PMOS transistors connected in parallel w'th th . CUI 0
nals connected to PWR Th 1 elf source tefml-

~::NMinaloWsL The draind~f~;~::;~~~~s~~:u:~~~~~t~~:':::~:::ds;:ee:o:~~~~~~h~:~~
IS connecte to GRD.

Q'

Q

TG

t
~ TG

------c

c

D

430

lO-22(b)

Iiterminal between two nmos
Iisource connected to Vdd
II parallel connection
II serial connection
II source connected to ground

IICMOS 2-input NAND Fig.
module NAND2 (Y,A,B);

input A,B;
output Y;
supplyl PWRj

supplyO GRD;
wire Wii

pmos (Y,PWR,A) j

pmos (Y,PWR,B);
runos (Y,Wl,A);

runos (Wl,GRD,B);
endmodulenmos (drain, source, gate)j

pmos (drain, source, gate) j

CMOS is the dominant digital logic family used with integrated circuits. By definition, CMOS
is a complementary connection of an NMOS and a PMOS transistor. MOS transistors can be
considered as electronic switches that either conduct or are open. By specifying the connections
among MOS switches, the designer can describe a digital circuit constructed with CMOS. This
type of description is called switch-level modeling in Verilog HDL.

The two types of MOS switches are specified in Verilog HDL with the keywords nmos and
pmos. They are instantiated by specifying the three terminals of the transistor as shown in Fig. 10-20.

SWITCH-LEVEL MODELING WITH HDL10-10

Transmission Gate

;f
iJ

433

Y =%b" ,A,B, Y);

II (output,input,ncontrol,pcontrol)

II (Drain, source, gate)
II (Drain, source, gate)

B= %b

SXOR

B=l'bO;

B=i'bi;
B=l'bO;

B=l 'bl;

IIXOR with CMOS switchs Fig. 10-25
module SXOR (A,E,Y);

input A,B;
output Y;

wire Anot, Bnoti
Ilinstantiate inverter

inverter vi (Anot,A);
inverter v2 (Bnot,B);

Ilinstantiate cmos switch
cmos (Y,B,Anot,A);
cmos (Y,Bnot,A,Anot);

endmodule

IICMOS inverter Fig. 10-22(a)
module inverter (Y,A) i

input A;

output Y;

supply1 PWR;
supplyO GRD:
pmos (Y,PWR,A);
runos (Y,GRD,A);

endmodule

Section 10-10 Switch-lever Modeling With HDl

HDL Example 10-3

IIStimulus to test
module test_SxORi

reg A,B:
wire Yi

IIInstantiate SXOR
SXOR Xl (A,B,Y);

IIApply truth table
initial

begin
A=l 'bO;

A=l'bO;

A=i'bii
A=l 'bl;

#5
#5
#5

end
Iidisplay results

initial
$monitor ("A =%b

endmodule

y=O
y = 1

Y = I

Y=O

B=O
B = I

B=O
B = I

A=O
A=O
A=l
A = I

cmos(output,input,ncontrol,pcontrol); //general description
cmos{Y,X,N,P); //transmission gate of Fig. lO-24(b)

The ncontrol and pcontrol are normally the complement of each other. The cmos switch does not
need power sources since VDn and ground are connected to the substrates of the MOS transis
tors. Transmission gates are useful for building multiplexers and flip-flops with CMOS circuits.

HDL example 10-3 demonstrates the description of a circuit with cmos switches. The
exclusive-OR circuit of Fig. 10-26 has two transmission gates and two inverters. The two
inverters are instantiated with the module of a CMOS inverter. The two cmos switches are
instantiated without an instance name since they are considered as primitives. A test module
is included to test the circuit operation. Applying all possible combinations of the two inputs,
the result of the simulator verifies the operation of the exclusive-OR circuit. The output of the

simulation is as follows:

The transmission gate is instantiated in Verilog HDL with the keyword cmos. It has an output,
input, and two control signals as shown in Fig. 10-24. It is referred to as a cmos switch. The

relevant code is as follows:

432 Chapter 10 Digital Integrated Circuits

REFERENCES

436 Chapter 10 Digital Integrated Circuits

Laboratory
Experiments

437

This chapter presents 18 laboratory experiments in digital circnits and logic design. They pro
vide hands-on experience for the student using this book. The digital circuits can be constructed
by using standard integrated circuits (ICs) mounted on breadboards that are easily assembled
in the laboratory. The experiments are ordered according to the material presented in the book.
The last section consists of a number of supplements witb suggestions for using Veri log HDL
to simulate and test the digital circuits presented in the experiments.

A logic breadboard suitable for performing the experiments must have the following equipment:

1. LED (ligbt-emitting diode) indicator lamps.

2. Toggle switches to provide logic-I and -0 signals.

3. Pulsers with pushbuttons and debounce circuits to generate single pulses.

4. A clock-pulse generator with at least two frequencies-a low frequency of about one
pulse per second to observe slow changes in digital signals and a higher frequency for
observing waveforms in an oscilloscope.

5. A power supply of 5 V.

6. Socket strips for mounting the ICs.

7. Solid hookup wire and a pair of wire strippers for cutting the wires.

Digital logic trainers that include the required equipment are available from several manu
facturers. A digital logic trainer contains LED lamps, toggle switches, pulsers, a variable clock,
power supply, and IC socket strips. Some experiments may require additional switches, lamps,
or IC socket strips. Extended breadboards with more solderless sockets and plug-in switches
and lamps may be needed.

INTRODUCTION TO EXPERIMENTS11-0

TOCCI, R. J. and N. S. WIDMER. 2001. Digital Systems Principles and Applications, 8th ed. Upper

Saddle River, NJ: Prentice Hall.

WESTE, N. E. and K. ESHRAGHIAN. 1993. Principles o.fCMOS VLSI design: A System Perspective,

2nd ed. Reading, MA: Addison-Wesley.

WAKERLY, 1. F. 2000. Digital Design: Principles and Practices, 3rd ed. Upper Saddle River, NJ:

Prentice Hall.

HODGES, D. A., and H. G. JACKSON. 1988. Analysis and Design of Digital Integrated Circliits,

2nd ed. New York: McGraw-HilL

1988. The TTL Logic Data Book. Dallas: Texas Instruments.

1994. CMOS Logic Data Book. Dallas: Texas Intruments.

CILEITI, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL Upper Sad

dle River, NJ: Prentice Hall.

S.

6.

7.

4.

3.

2.

1.

.no

GND

GND

GND

2-inputAND
7408

2-inputNOR
7402

4-input NAND
7420

2-inputXOR
7486

Vee

GND

GND

GND

Inverters
7404

2-input NAND
7400

2-inputOR
7432

3-input NAND
7410

Vee

Vee

Vee

FIGURE 11-1

Digital Gates in IC Packages with Identification Numbers and Pin Assignments

Additional equipment required are a dual-trace oscilloscope (for Experiments 1,2,8, and
15), a logic probe to be used for debugging, and a number of res. The res required. for the ex
periments are of the TTL or CMOS series 7400.

The integrated circuits to be used in tile experiments can be classified as small-scale integra
tion (551) or medium-scale integration (MSI) circuits. SST circuits contain individual gates or
flip-flops, and MSI circuits perfOlID specitic digital functions. The eight SSI gate ICs needed for
the experiments are shown in Fig. 11-1. They include two-input NAND, NOR, AND, OR, and
XOR gates, inverters, and three-input and four-input NAND gates. The pin assignment for the gates
is indicated in the diagram. The pins are numbered from 1 to 14. Pin number J4 is marked Vee,
and pin number 7 is marked GND (ground). These are the supply terminals, which must be con
nected to a power supply of 5 V for proper operation. Each IC is recognized by its identifIcation
number; for example, the two-input NAND gates are found inside the IC whose number is 7400.

Detailed descriptions of the MSI circuits can be found in data books published by the manu
facturers. The best way to acquire experience with commercial MSI circuits is to study their de
scription in a data book that provides complete information on the internal, external, and electrical
characteristics of the integrated circuits. Various semiconductor companies publish data books for
the 7400 series. The MSI circuits that are needed for the experiments are introduced and ek
plained when they are used for the fIrst time. The operation of the circuit is explained by refer
ring to similar circuits in previous chapters. The information given in this chapter about the MSI
circuits should be sufficient for peltorming the experiments adequately. Nevertheless, a refer
ence to a data book will always be preferable, as it gives more detailed description of the circuits.

We will now demonstrate the method of presentation of MSI circuits adopted here. This
will be done by means of a specific example that introduces the ripple counter IC, type 7493.
This IC is used in Experiment I and in subsequent experiments to generate a sequence of bi
nary numbers for verifying the operation of combinational circuits.

The infonnation about the 74931C that is found in a data book is shown in Figs. I J-2(a) and
(b). PaIt (a) shows a diagram of the internal logic circuit and its connection to external pins. All
inputs and outputs are given symbolic letters ,md assigned to pin numbers. Pmt (b) shows the phys
ical layout of the IC with its 14-pin assignment to signal names. Some of the pins are not used
by the circuit and are marked as Ne (no connection). The IC is inserted into a socket, and wires
are connected to the various pins through the socket telminais. When drawing schematic dia
grams in this chapter, we will show the IC in a block diagraIn form as in Fig. 11-2(c). The IC num
ber 7493 is written inside the block. All input temunals m'e placed on the lett of the block and all
output tenninals on the right. The letter symbols of the signals, such as A, RI, and QA, are writ
ten inside the block, and the corresponding pin numbers, such as J4, 2 , and 12, are written along the
external lines. Vee and GND are the power terminals connected to pins 5 and 10. The size of the
block may vary to accommodate all input and output tenninals.Inputs or outputs may sometimes
be placed on the top or the bottom of the block for convenience.

The operation of the circuit is similar to the ripple counter shown in Fig. 6-8(a) with an asyn
chronous clear to each flip-flop. When inputs RI or R2 or both are equal to logic 0 (ground), all
asynchronous clears are equal to I and are disabled. To cleaI' all four flip-flops to 0, the output of
the NAND gate must be equal to O. This is accomplished by having both inputs RJ and R2 at logic-I
(about 5 V). Note that the J and K inputs show no connections. It is charactetistic of TTL circuits
that an input terminal with no external connections has the effect of producing a signal equiva
lent to logic-I. Also note that output QA is not connected to input B internally.

438 Chapter 11 laboratory Experiments

Chapter 11 Laboratory Experiments

The 7493 IC can operate as a three-bit counter using inputB and flip-flops QB, QC, aud QD.
It can operate as a four-bit counter using input A if output QA is connected to input B. The.re~
fore, to operate the circuit as a four-bit counter, it is necess~ to have an exte~al connectlO~
between pin 12 aud pin 1. The reset inputs, Rl and R2, at pms 2 aud 3, respecllvely, must b

441

In Chap. 12

Fig. 12-1

Fig. 12-9(b)
Fig. 12-9(a)
Fig. 12-2
Fig. 12-13
Fig. 12-7(a)
Fig. 12-6
Fig. 12-7(b)
Fig. 12-14
Fig. 12-t5
Fig. 12-12
Fig. 12-tl

In Chap. 11

Fig.ll-t
Fig. 11-8
Fig. 11-13
Fig. 11-12
Fig. 11-10
Fig. 11-2
Fig. 11-9
Fig. 11-7
Fig. 11-17
Fig. 11-15
Fig. 11-18
Fig. 11-19
Fig. 11-16
Fig. 11-8
Fig. 11-21

Graphic Symbol

Section 11-0 Introduction to Experiments

Description

Various gates
BCD-to-seven-segment decoder
Dual D-type flip-flops
Dual JK -type flip-flops
4-bit binary adder
4-bit ripple counter
8 X I multiplexer
3 X 8 decoder
Quadruple 2 X 1 multiplexers
4-bit synchronous counter
16 X 4 random-access memory
Bidirectional shift register
4-bit shift register
Seven-segment LED display
Timer (same as 555)

7447
7474
7476
7483
7493

74151
74155
74157
74t61
74189
74194
74195

7730
72555

IC Number

Table 11-1
Integrated Circuits Required for the Experiments

grounded. Pins 5 and 10 must be connected to a 5 V power supply. The input pulses must be
applied to input A at pin 14;, and the four flip-flop outputs of the counter are taken from QA,
QB, QC, aud QD, at pins 12,9,8, aud II, respectively, with QA being the least significaut bit.

Figure 11-2(c) demonstrates the way that all MSI circuits will be symbolized graphically in
this chapter. Only a block diagram similar to the one shown in this figure will be showu for each
Ie. The letter symbols for the inputs aud outputs in the IC block diagram will be according to
the symbols used in the data book. The operation of the circuit will be explained with reference
to logic diagrams from previous chapters. The operation of the circuit will be specified by
means of a truth table or a function table.

Other possible graphic symbols for the ICs are presented in Chapter 12. These are staudard
graphic symbols approved by the Institute of Electrical aud Electronics Eugineers aud are given
in IEEE sllmdard 91-1984. The staudard graphic symbols for SSI gates have rectaugular shapes,
as shown in Fig. 12-1. The staudard graphic symbol for the 7493 IC is shown in Fig. 12-13. This
symbol cau be substituted in place of the one shown in Fig. 11-2(c). The staudard graphic sym
bols of the other ICs that are needed to run the experiments are presented in Chapter 12. They cau
be used for drawing schematic diagrams of the logic circuits if the sllmdard symbols are preferred.

Table 11-1 lists the ICs that are needed for the experiments together with the figure num
bers where they are presented in this chapter. In addition, the table lists the figure numbers in
Chapter 12 where the equivalent standard graphic symbols are drawn.

The rest of the chapter contains 19 sectious. The first 18 sections present 18 hardware ex
periments requiring the use of digital integrated circuits. Section 11-19 outlines HDL simula
tion experimeuts requiring a Verilog HDL compiler aud simulator.

7493

Rl 1?2 NC

(b) Physical layout (NC: no connection)

B

5

14 Vee 12
A QA

1 9
B QB

7493
2 8

RI QC

3 11
. R2 QD

GND

10

(c) Schematic diagram

FIGURE 11-2
IC Type 7493 Ripple Counter

(a) Internal circuit diagram

12
J Q----oA

A 14
C

K
CLR

'(

J QJ'...Qii
tB 1

C

K CLR

T

8
J Q~QC

'---< >C

K CLR

'(

11
J Q~

L---(t>c

K CLR

2 I
3

Rl

R2

Topu

Input

440

Binary Count

IC type 7493 consists offour flip-flops, as shown in Fig. 11-2. They can be connected to count
in binary or in BCD. Connect the IC to operate as a 4-bit binary counter by wiring the exter
nal terminals, as shown in Fig. 11-3. This is done by connecting a wirefrom pin 12 (output QA)
to pin I (input B). Input A at pin 14 is connected to a pulser that provides single pulses. The
two reset inputs, Rl and R2, are connected to ground. The four outputs go to four mdicator lamps
with the low-order bit of the counter from QA connected to the rightmost indicator lamp. Do
not forget to supply 5 V and ground to the IC. All connections should be made with the power
supply in the off position.

Turn the power on and observe the four indicator lamps. The 4-bit number in the output is
incremented by one for every pulse generated in the push-button pulser. The count goes to bi
nary 15 and then back to O. Disconnect the input of the counter at pin 14 from the pulser and
connect it to a clock generator that produces a train of pulses at a low frequency of about one
pulse per second. This will provide an automatic binary count. Note that the binary counter will
be used in subsequent experiments to provide the input binary signals for testing combma
tional circuits.

BCD Count

The BCD representation uses the binary numbers from 0000 to 100I to represent the coded dec
imal digits from ato 9. IC type 7493 can be operated as a BCD counter by making the exter
nal connectious shown in Fig. 11-4. Outputs QB and QD are connected to the two reset inputs,
RI and R2. When both RI and R2 are equal to I, all four cells in the counter clear to airre
spective of the input pulse. The counter starts from 0, and every input pulse increments it by I

443Section 11-1 Binary and Decimal Numbers

Oscilloscope Display

Increase the frequency of the clock to 10 kHz or higher and connect its output to an oscillo
scope. Observe the clock output on the oscilloscope and sketch its waveform. Using a dual-trace
oscilloscope, connect the output of QA to oue channel and the output of the clock to the sec
ond channel. Note that the output of QA is complemented every time the clock pulse goes
through a.negati~e transition from I to O. Also, note that the clock frequency at the output of
the first flip-flop IS one-half that of the mput clock frequency. Each flip-flop in turn divides its
mcommg frequency by 2. The four-bit counter divides the iucoming frequency by 16 at out
put QD. Obtain a timing diagram showing the time relationship of the clock and the four outputs
of the counter. Make sure that you include at least 16 clock cycles. The way to proceed with a
dual-trace oscilloscope is as follows. First, observe the clock pulses and QA and record their
timing waveforms. Then repeat by observiug and recording the waveforms of QA together with
QB, followed by the waveforms of QB with QC and then QC with QD. Your final result should
be a diagram showing the time relationship of the clock and the four outputs in one composite
diagram having at least 16 clock cycles.

This experiment demonstrates the count sequence of binary numbers and the bi~ary-coded

decimal (BCD) representation. It serves as an introduction to the breadboard used m the labo
ratory and acquaints the student with the cathode-ray oscilloscope. Reference m~terial ~rom the
text that may be useful to know while performing the experiment can be found m SectIOn 1-2,
on binary numbers, and Section 1-7, on BCD numbers.

BINARY AND DECIMAL NUMBERS

Chapter 11 Laboratory Experiments442

11-1

15
14 Vce 12A QA

e-.l 9
B QB

7493
QC 8

2
RI 11

3 QD
r- R2

GND

1
10

5
Input

14 Vee 12 pulses
A QA

Push-button
9pulser or 1 QBclock B

7493 QC 8
2

RI 11
3 QD

R2
GND Indicator

lamps

10

~

FIGURE 11-3
FIGURE 11-4Binary Counter
BCD Counter

F~

F
QA
QB

Fig. 11-3
(counter)

A
Input
pulses

FIGURE 11-5

Waveforms for NAND Gate

In this experiment, you will investigate the logic behavior of various IC gates:

'7400 Quadruple 2-inpm NAND gates

7402 Quadruple 2-input NOR gates

7404 Hex inverters

7408 Quadruple 2-input AND gates

7432 Quadruple 2-input OR gates

7486 Quadruple 2-input XOR gates

The pin assignments to the various gates are shown in Fig. 11-1. "Quadruple" means that
there are four gates wlthm the package. The digital logic gates and their characteristics are dis
cussed m SectlOn 2-8. NAND implementation is discussed in Section 3-6.

Section 11-2 Digital logic Gates 44S

Use one gate from each IC listed above and obtain the truth table of the gate. The truth table
IS obtamed by connectmg the Inputs of the gate to switches and the output to an indicator lamp.
Compare your results With the truth tables listed in Fig. 2-5.

For each gate listed above, obtain the input-output waveform relationship of the gate. The
wavefonn~ are to be observed in the oscilloscope. Use the two low-order outputs -of a binary
counter (Fig. 11-3) to provide the inputs to the gate. As an example, the circuit and waveforms
for the NAND gate are illustrated in Fig. 11-5. The oscilloscope display will repeat this wave
form, but you should record only the non-repetitive portion.

DIGITAL LOGIC GATES11-2

Truth Tables

Waveforms

When the count pulses into the BCD counter are continuous, the counter keeps repeating the
sequence from 0000 to 1001 and back to 0000. This means that each bit in the four outputs pro
duces a fixed pattern of I's and a's, which is repeated every 10 pulses. These patterns can be
predicted from the list of the binary numbers from 0000 to 1001. The list will show that out
put QA, being the least significant bit, produces a pattern of alternate I's and a's. Output QD,
being the most significant bit, produces a pattern of eight a's followed by two I's. Obtain the
pattern for the other two outputs and then check all four patterns on the oscilloscope. This is
done with a dual-trace oscilloscope by displaying the clock pulses in one channel and one of
the output waveforms in the other channel. The pattern of I's and a's for the corresponding out
put is obtained by observing the output levels at the vertical positions where the pulses change
from I to O.

(a) 0101

(b) alII

(e) lOll

until it reaches the count of 1001. The next pulse changes the ouput to 1010, making QB and
QD equal to I. This momentary output cannot be sustained, because the four cells immediately
clear to 0, with the result that the output goes to 0000. Thus, the pulse after the count of 1001
changes the output to 0000, producing a BCD count.

Connect the IC to operate as a BCD counter. Connect the input to a pulser and the four out
puts to indicator lamps. Verify that the count goes from 0000 to 1001.

Disconnect the input from the pulser and connect it to a clock generator. Observe the clock
waveform and the four outputs on the oscilloscope. Obtain an accurate timing diagram show
ing the time relationship between the clock and the four outputs. Make sure to include at least
ten clock cycles in the oscilloscope display and in the composite timing diagram.

Connect each circuit and verify its count sequence by applying pulses from the pulser and
observing the output count in the indicator lamps. If the initial count starts with a value greater
than the final count, keep applying input pulses until the output clears to O.

IC type 7493 can be connected to count from a to a variety of final counts. This is done by con
necting one or two outputs to the reset inputs, RI and R2. Thus, if RI is connected to QA in
stead of QB in Fig. 11-4, the resulting count will be from 0000 to 1000, which is I less than
1001 (QD = I and QA = I).

Utilizing your knowledge of how RI and R2 affect the final count, connect the 7493 IC to
count from 0000 to the following final counts:

Output Pattern

Other Counts

444 Chapter 11 Laboratory Experiments

\..........•...\.,

11\

·\~i
1)

F

FIGURE 11-6
Logic Diagram for Experiment 3

Section 11-3 Simplification of Boolean Functions 447

The gate ICs to be used for the logic diagrams must be those from Fig. 11-1 that contain the
follOWIng NAND gates:

7400 2-input NAND

7404 Inverter (l-input NAND);

7410 3-input NAND

7420 4-input NAND

If an input to a NAND gate is not used, it should not be left open, but, instead, should be
~onnected to a~other mput that is used. For example, if the circuit needs an inverter and there
IS an extra tWO-Input gate available in a 7400 IC, then both inputs of the gate are to be connected
together to form a smgle mput for an inverter.

z-,l--------l-~--J

Logic Diagram

This part of the experiment starts with a given logic diagram from which we proceed to apply
sImphficatlOn proceduresto reduce the number of gates and possibly the number of ICs. The
logIC dIagram shown In FIg. 11-6 requires two ICs, a 7400 and a 7410. Note that the inverters
for Inputs x, y, and z are obtained from the remaining three gates in the 7400 Ie. If the invert
ers were taken from a 7404 IC, the circuit would have required three ICs. Also note that in
draWIng SSI CIrCUIts, the gates are not enclosed in blocks as is done with MSI circuits.

1. Draw the circuit diagram.

2, Obtain the truth table for F as a function of the four inputs.

3, Connect the circuit and verify the truth table.

4. Record the patterns of I's and O's for F as inpnts A, B, C, and D go from binary 0
to binary 15.

5, Connect the four outputs of the binary counter shown in Fig. 11-3 to the four inputs of
the NAND circuit. Connect the input clock pulses from the counter to one channel and
output F to the other channel of a dual-trace oscilloscope. Observe and record the l's and
O's pattern of F after each clock pulse and compare it to the pattern recorded in Step 4.

This experiment demonstrates the relationship between a Boolean function and the corre
sponding logic diagram. The Boolean functions are simplified by using the map method, as dis
cussed in Chapter 3. The logic diagrams are to be drawn using NAND gates, as explained in
Section 3-6.

SIMPLIFICATION OF BOOLEAN FUNCTIONS

NAND Circuit

Using a single 7400 IC, connect a circuit that produces

(a) an inverter

(b) a 2-input AND

(c) a 2-input OR

(d) a 2-input NOR

(e) a 2-input XOR (See Fig. 3-32)

In each case, verify your circuit by checking its truth table.

11-3

Using a single 7400 IC, construct a circnit with NAND gates that implements the Boolean function

F = AB + CD

446 Chapter 11 Laboratory Experiments

Universal NAND Gate

Propagation Delay

Connect all six inverters inside the 7404 IC in cascade. The output will be the same as the input
except that it will be delayed by the time it takes the signal to propagate through all six in
verters. Apply clock pulses to the input of the first inverter. Using the oscilloscope, determine
the delay from the input to the output of the sixth inverter during the upswing and again dur
ing the downswing of the pulse. This is done with a dual-trace oscilloscope by applying the input
clock pulses to one of the channels and the output of the sixth inverter to the second channel.
Set the time-base knob to the lowest time-per-division setting. The rise or fall time of the two
pulses should appear on the screen. Divide the total delay by 6 to obtain an average propaga
tion delay per inverter.

Boolean Functions

Complement

Plot the following Boolean function in a map:

449Section 11-4 Combinational Circuits

Design, constru~t, and test a circuit that generates an even parity bit from four message bits. Use
XOR gates. Addmg one more XOR gate, expand the circnit so it generates an odd parity bit also.

Design Example

Design a combinational circuit with four inputs-A B C and D d .
ball . ' " -an one output, F. F IS to

e equ to when A ~ I proVIded that B = 0, or when B = I provided that either C or D is
also equal to 1. OtherWIse, the output is to be equal to O.

1. Obtain the truth table of the circuit.

2. Simplify the output function.

3. Draw the logic diagram of the circuit using NAND gates with a minimum uumber of ICs.

4. Construct the CITCUlt and test it for proper operation by verifying the given conditions.

F1 = xz + x'y'zl

F2 = x'y + xiz'

F3 = xy + x'iz

Implement and test the combinational circuit using a 74155 decoder IC and external NAND
gates.

The block diagram of the decoder and its truth table are shown in Fig. 11-7. The 74155 can
be connected as a dual 2 X 4 decoder or as a single 3 X 8 decoder. When a 3 X 8 decoder is

de~re~IInput~Cl and C2 mustbe connected together as well as inputs GI and G2, as shown
1ll e oc~ diagram. The functIOn of the circuit is similar to the one shown in Fig 4-18 Gis
th~:nabl~ ,;put and must be equal to 0 for proper operation. The eight outputs ~re labeled
WI sym 0 s gIven m the data book. The 74155 uses NAND gates, with the result that the se
lectedoutput goe~ to 0 whIle all other outputs remain at 1. The implementation with the de
codens as shown m FIg. 4-21, except that the OR gates must be replaced with external NAND
gates when the 74155 is used.

Majority Logic

A majority logic is a digital circnit whose output is equal to 1 ifthe maJ'on'ty of th' t
l's Th tp t' 0 th· . e mpu s are

'·h e ~u. u 18 0 erWlse. DeSIgn and test a three-input majority circuit using NAND gat
WIt a nummum number of les. es

Parity Generator

Decoder Implementation

A combinational circuit has three inputs-x, y, and z-and three outputs-F: F and F Th
SImplIfied Boolean functions for the circuit are 1, 2, 3" e

In this experiment, you will design, construct, and test four combinational logic circuits. The
first two circuits are to be constructed with NAND gates, the third with XOR gates, and the
fourth with a decoder and NAND gates. Reference to a parity generator can be found in Sec
tion 3-8. Implementation with a decoder is discussed in Section 4-8.

F ~ A'D + BD + B'C + AB'D

Assign pin numbers to all inputs and outputs of the gates and connect the circuit with the
x, y, and z inputs going to three switches and the output F to an indicator lamp. Test the cir
cuit by obtaining its truth table.

Obtain the Boolean function of the circuit and simplify it using the map method. Construct
the simplified circuit without disconnecting the original circuit. Test both circuits by applying
identical inputs to both and observing the separate outputs. Show that for each of the eight
possible input combinations, the two circuits have identical outputs. This will prove that the sim
plified circuit behaves exactly as the original circuit.

simplify the two functions by means of maps. Obtain a composite logic diagram with four in
puts, A, B, C, and D, and two outputs, FI and F2 • Implement the two functions together using
a minimum number of NAND ICs. Do not duplicate the same gate if the corresponding term
is needed for both functions. Use any extra gates in existing les for inverters when possible.
Connect the circuit and check its operation. The truth table for F, and F2 obtained from the cir
cuit should conform with the minterrns listed.

FI(A, B, C, D) = (0, I, 4, 5, 8, 9, 10, 12, 13)

F2(A, B, C, D) = (3,5,7,8,10,11,13,15)

Given the two Boolean functions in sum of mintenns:

Combine the I's in the map to obtain the simplified function for F in sum of products. Then
combine the O's in the map to obtain the simplified function for F' also in sum of products. Im
plement both F and F' using NAND gates and connect the two circuits to the same input switch
es, bnt to separate output indicator lamps. Obtain the truth table of each circuit in the laboratory
and show that they are the complements of each other.

COMBINATIONAL CIRCUITS

Chapter 11 Laboratory Experiments

11-4

448

...~

450 Chapter 11 laboratory Experiments Section 11-5 Code Converters 451

Gray Code to Binary

Design a combinational circuit with four inputs and four outputs that converts a four-bit Gr~
code number (Table 1-6) into the equivalent four-bit bmary number. Implement the clrcmt WI
exclusive-OR gates. (This can be done with one 7486 IC.) Connect the Clrcmt to four SWItch
es and four indicator lamps and check for proper operatIOn.

47Q

16

<>
Vee <

13 1
~a a a CA

12 13 --

Ib-.!.... b b IIA
11 10 g

~ e c --B 10 8 el Ie--..l:.... 7447 d d
C 9 7 --

~
e e

dD 15 2I I
773014 11g g

GND

/s
FIGURE 11-8

BCD-to-5even-Segment Decoder (7447) and Seven-Segment Display (7730)

9's Complementer

Design a combinational circuit with four input lines that represent a decimal digit in BCD and
four output lines that generate the 9's complement of the input digit. Provide a fifth outputthat
detects an error in the input BCD number. This output should be equal to logic-I when the
four inputs have one of the unused combinations of the BCD code. Use any of the gates listed
in Fig. II-I, but minimize the total number of ICs used.

Seven-Segment Display

A seven-segment indicator is used for displaying anyone of the decimal digits 0 through 9. Usually,
the decimal digit is available in BCD. A BCD-to-seven-segment decoder accepts a decimal digit in
BCD and generates the corresponding seven-segment code. This is shown pictorially in Problem 4-9.

Fig. 11-8 shows the connections necessary between the decoder and the display. The 7447
IC is a BCD-to-seven-segment decoder/driver. It has four inputs for the BCD digit. Input D is
the most significant and input A the least significant. The 4-bit BCD digit is converted to a
seven-segment code with outputs a through g. The outputs of the 7447 are applied to the in
puts of the 7730 (or equivalent) seven-segment display. This IC contains the seven LED (light
emitting diode) segments on top of the package. The input at pin 14 is the common anode (CA)
for all the LEDs. A 47-!1 resistor to Vee is needed in order to supply the proper current to the
selected LED segments. Other equivalent seven-segment display ICs may have additional anode
terminals and may require different resistor values.

Construct the circuit shown in Fig. 11-8. Apply the 4-bit BCD digits through four switches and
observe the decimal display from 0 to 9. Inputs 1010 through 1111 have no meaning in BCD.

1

16

Vee 9

~
2YO

Cl 10
2Y1

C2 11
2Y2

3 12
B 2Y3

13 74155 7
lYO

A 6

~
lYl

Gl 5
lY2

4
G2 lY3

GND

Is

B

C

G

Truth table

A

Inputs Outputs

A 2YO 2Y1 2Y2 2Y3 IYO lYl lY2 lY3G C B

X 1 1 1 1 1 1 1 11 X X
1 1 1 1 10 0 0 0 0 1 1

1 1 0 1 1 1 1 1 10 0 0
1 1 1 1 10 1 1 00 0 1
0 1 1 1 11 1 1 10 0 1
1 0 1 1 10 1 0 0 1 1 1

1 1 1 1 1 1 0 1 I0 1 0
1 1 1 0 10 1 1 10 1 1
1 1 1 1 00 1 1 1 1 1 1

FIGURE 11-7
Ie Type 74155 Connected as a 3 x 8 Decoder

The conversion from one binary code to another is common in digital systems. In this exp~ri

ment, you will design and construct three combinational-circuit converters. Code converSIOn
is discussed in Section 4-3.

CODE CONVERTERS115

11-6 DESIGN WITH MULTIPLEXERS
i
j
d

"H
i,i

Desigu, construct, and test a full-adder circuit using two ICs, 7486, and 7400.

Section 11-7 Adders and Subtractors 453

Design, construct, and test a half-adder circuit using one XOR gate and two NAND gates.

Each of these persons has a switch to close when voting yes and to open when voting no for
his or her shares.

It is necessary to design a circuit that displays the totaJ number of shares that vote yes for
each measure. Use a seven-segment display and a decoder, as shown in Fig. 11-8, to display
the required number. If all shares vote no for a measure, the display should be blank. (Note that
binary input 15 into the 7447 blanks all seven segments.) If 10 shares vote yes for a measure,
the display should show O. Otherwise, the display shows a decimal number equal to the num
ber of shares that vote yes. Use four 74151 multiplexers to design the combinational circuit that
converts the inputs from the stock owners' switches into the BCD digit for the 7447. Do not
use 5 V for logic-I. Use the output of an inverter whose input is grounded.

except that there are eight inputs instead of four. The eight inputs are designated DO through
D7. The three selection lines-C, B, and A-select the particular input to be multiplexed and
applied to the output. A strobe control S acts as an enable signal. The function table specifies
the value of output Y as a function of the selection lines. Output W is the complement ofY. For
proper operation, the strobe input S must be connected to ground.

In this experiment, you will construct and test various adder and subtractor circuits. The sub
tractor circuit is then used for comparing the relative magnitude of two numbers. Adders are
discussed in Section 4-3. Subtraction with 2's complement is explained in Section 1-6. A 4-bit
parallel adder-subtractor is shown in Fig. 4-13, and the comparison of two numbers is ex
plained in Section 4-7.

ADDERS AND SUBTRACTORS

Full-Adder

Half-Adder

11-7

Design Specifications

A small corporation has 10 shares of stock, and each share entitles its owner to one vote at a
stockholder's meeting. The 10 shares of stock are owned by four people as follows:

Mr. W: I share

Mr. X: 2 shares

Mr. Y: 3 shares

Mrs. Z: 4 shares

W=¥'

Output Y

Select inputs

Function table

Strobe Select Output

S C B A y

1 X X X 0

0 0 0 0 DO

0 0 0 1 Dl

0 0 1 0 D2

0 0 1 1 D3

0 1 0 0 D4

0 1 0 1 D5

0 1 1 0 D6

0 1 1 1 D7

1
16

1
8

7
Vee GND

S
4

DO
3

Dl
2 5D2 Y
1

D3 74151
~15 W

ts D4
14

13
D5

12 D6

D7 C B A

9 \ 10 11\

Data
lopn

Strobe

FIGURE 11-9
Ie Type 74151 8 x 1 Multiplexer

In this experiment, you will design a combinational circuit and i~plement it with mUltiple~
ers, as explained in Section 4-10. The multiplexer to be used IS IC type 74151, shown I~
Fig. 11-9. The internal construction of the 74151 IS Slml1ar to the diagram shown m Fig. 4-2

452 Chapter 11 Laboratory Experiments

Depending on the decoder, these values may cause either a blank or a meaningless pattern to be
displayed. Observe and record the output displayed patterns oftbe SIX uuused mput combmallOns.

"~...

~'

455

5

1 Vo<
A4 C4 14

3 Output carry
A3

8
A2

10
Al 15

S4

B4
2

S3
7483 Data output

6 SS2
H3

9
SI

H2

Bl CO GND

13 12

M=Oforadd
M = 1 for subtract

Mode select M --......- _

Data input
A

Section 11-7 Adders and Subtractors

Data input
H

FIGURE 11-11
4-Blt Adder-Subtractor

The comparison of two numbers is an operation that determines whether one number is greater
than, equal to, or less than th~ other number. Two numbers, A and E, cau be compared by first
su~tractmg A - E as done m FIg. 11-11. If the output in S is equal to zero, we know that
A-E. The output carry from C4 deterntines the relative magnitude: when C4 = 1 w h
A>E' h C4 0 ' eave- , wen = ,we have A < E; and whenC4 = 1 andS,. 0, we have A > B.

Connect the adder-subtractor circuit and test it for proper operation. Connect the four A in
puts to a fixed bmary number 1001 and the E inputs to switches. Perform the following oper
atIOns and record the values of the ontput sum and the output carry C4:

9+5 9-5
9+9 9-9

9 + 15 9 - 15

Show that during addition, the output carry is equal to 1 when the sum exceeds 15. Also show
that when A "" E, the subtracllon operation gives the correct answer A - E and th tC4 . I ' , e ou put
carry IS equa to 1. But when A < E, the subtraction gives the 2's complement of E - A
and the output carry is equal to O.

Magnitude Comparator

Is
16

Vee
B4 14

1
C4

A4
4 15

B3 S4

3 2A3 S3
7

B2 7483 6
8 S2

A2
11 9

Bl SI
10

Al
13

CO
GND

1
12

FIGURE 11-10
Ie Type 7483 4-Blt Binary Adder

The subtraction of two binary numbers can be done by taking the 2's complement of the sub
trahend and adding it to the minuend. The 2's complement can be obtained by taking the l's
complement and adding 1. To perform A - E, we complement the four bits of E, add them
to the four bits of A, and add 1 through the input carry. This is done as shown in Fig. 11-11.
The four XOR gates complement the bits of E when the mode select M = 1 (because
x $ 1 = x') and leave the bits of E unchanged when M = 0 (because x $ 0 = x). Thus,
when the mode select M is equal to 1, the input carry CO is equal to 1 and the sum output
is A plus the 2's complement of E. When M is equal to 0, the input carry is equal to 0 and
the sum generates A + E.

IC type 7483 is a 4-bit binary parallel adder. The pin assignment is shown in Fig. 11-10. The
two 4-bit input binary numbers are Al through A4 and Bl through E4. The 4-bit sum is obtained
from Sl through S4. CO is the input carry and C4 the output carry.

Test the 4-bit binary adder 7483 by connecting the power supply and ground terminals.
Then connect the four A inputs to a fixed binary number such as 1001 and the E inputs and the
input carry to five toggle switches. The five outputs are applied to indicator lamps. Perform the
addition of a few binary numbers and check that the output sum and output carry give the prop
er values. Show that when the input carry is equal to I, it adds 1 to the output sum.

Chapter 11 Laboratory Experiments

Adder-Subtractor

Parallel Adder

454

Chapter 11 Laboratory Experiments

The combinational circuit can be implemented with the two ICs, 7404 and 7408.
Construct the comparator circuit and test its operation. Use at least two sets of numbers for

A and B to check each of the outpnts x, y, and z.

It is necessary to supplement the subtractor circuit of Fig. 11-11 to provide the comparison
logic. This is done with a combinational circuit that has five inputs, SI through S4 and C4, and
three outputs desiguated by x, y, and z, so that

Edge-Triggered Flip-Flop

Construct aD-type positive-edge-triggered flip-flop using six NAND gates. Connect the clock
U:;fut tO

f
~ulser, the D Input to a toggle switch, and the omput Q to an indicator lamp Set th

v ue 0 to th~ complement value of Q. Show that the flip-flop out ut chan es on'. e
:::on~e t~ a positive transition of the clock pulse. Verify that the outputdoes no~chan~~ :h~~
10e c oc Input IS logic-I, when the clock goes through a negative transition or when it is
g~:O. Continue changmg the D input to correspond to the complement ofthe Q ou~ut at all times

lem:connect the /mput from. the pulser and connect it to the clock generator. Connect the com~
p .?t output Q to the D Input. This causes the output to complement with each ositive
trausitlO.n of the clock pulse. Usiug a dual-trace oscilloscope, observe and record the ti~in re-
latIOnshIp between the Input clock and output Q. Show that the output h . g
a positive edge transition. c anges m response to

457Section 11-8 Flip-Flops

(S = 0000)

(C4 ~ 0)

(C4 ~ landS'" 0000)

if A = B

if A < B

if A > B

x = I

y = I

z=1

456

11-8 fliP-flOPS
Ie Flip-Flops

In this experiment, you will construct, test and investigate the operation of various latches and
flip-flops. The internal construction oflatches and flip-flops can be found in Sections 5-2 and 5-3.

SR Latch

IC type 7476 consists oftwo JK master-slave flip-flops with preset and clear Th' .

:o'::'t~r ;;:'C~~iP-flOP is ~hown in Fig. 11-12. The function table specifies the c;r~~~ta~;~~~:
. e s ee entrIes In the table specify the operation of the asynchronous preset and clear

Construct an SR latch with two cross-coupled NAND gates. Connect the two inputs to switch
es and the two outputs to indicator lamps. Set the two switches to logic-I, and then momen
tarily turn each switch separately to the logic-O position and back to 1. Obtain the function
table of the circuit.

D Latch

Construct a D latch with four NAND gates (only one 7400 Ie) and verify its function table.

Master-Slave Flip-Flop

12

4 PR 15
J Q

1
CK

16 14
K Q'

CLR

13

17

9 PR 11
J Q

6
CK

12 10
K Q'

CLR

18

Vee = pinS
GND ~ pin 13

Funet' t blIon a e

Inputs Outputs

Preset Clear Clock J K Q Q'
0 1 X X X 1 01 0 X X X 0 1
0 0 X X X 1 1

1 1 SL 0 0 No change
1 1 SL 0 1 0 11 1 SL 1 0 1 01 1 SL 1 1 Toggle

FIGURE 11-12

Ie Type 7476 Dual fK Master-Slave Flip-Flops

Connect a master-slave D flip-flop using two D latches and an inverter. Connect the D input
to a switch aud the clock input to a pulser. Connect the output of the master latch to one indi
cator lamp and the output of the slave latch to another indicator lamp. Set the value of the input
to the complement value of the output. Press the pushbutton in the pulser and then release it to
produce a single pulse. Observe that the master changes when the pulse goes positive and the
slave follows the change when the pulse goes negative. Repeat a few times while observing the
two indicator lamps. Explain the transfer sequence from input to master and from master to slave.

Disconnect the clock input from the pulser and connect it to a clock generator. Connect the
complement output of the flip-flop to the D input. This causes the flip-flop to complement
with each clock pulse. Using a dual-trace oscilloscope, observe the wavefonns of the clock
and the master and slave outputs. Verify that the delay between the master and the slave out
puts is equal to the positive half of the clock cycle. Obtain a timing diagram showing the rela
tionship between the clock wavefonn and the master and slave outputs.

458 Chapter 11 Laboratory Experiments

4 10

2 PR 5 12 PR Q 9
D Q D

3 11
CK CK

6 8
Q' Q'

CLR CLR

I 13

Vee = pin 14
GND =pin7

Section 11-9 Sequential Circuits 459

Up-Down Counter with Enable

Design, construct, and test a 2-bit counter that counts up or down. An enable input E detennines
whether the counter is on or off. If E = 0, the counter is disabled and remains at its present
count even though clock pulses are applied to the flip-flops. If E = 1, the counter is enabled
and a second input, x, determines the count direction. If x = 1, the circuit counts up with the
sequence 00, 01, 10, 11, and the count repeats. If x = 0, the circuit counts down with the se
quence 11, 10,01, 00, and the count repeats. Do not use E to disable the clock. Design the se
quential circuit with E and x as inputs.

11-9

Function table

Inputs Outputs

Preset Clear Clock D Q Q'

0 1 X X I 0
I 0 X X 0 I
0 0 X X I I

I 1 t 0 0 I
I I t I 1 0
I 1 0 X No change

FIGURE 11-13
IC Type 7474 Dual D Positive-Edge-Triggered Flip-Flops

. t These inputs behave like a NAND SR latch and are independent of the clock or the J
~u~'inputs (the X's indicate don't-care conditions). The last four entries in the functlOn table
specify the clock operation with both the preset and clear mputs mamtamed at 10gIC-!. The cloc~

value is shown as a single pulse. The positive tranSItIOn of the pulse changes the maste: fll~

flop and the negative transition changes the slave flip-flop as well as the output of the Clrcmt.
With J = K = 0, the output does not change. The ±lip-flop toggles or complements when
J = K = 1 Investigate the operation of one 7476 flip-flop and venfy Its functlOn table.

IC type 7474 consists of two D positive-edge-triggered flip-flops with preset and clear. The
. . t' hown l'n FI'g 11-13 The function table speCIfies the preset and clear oper-pm asslgnmen IS S h't .

ations and the clock operation. The clock is shown with ~n upward arrow to.mdlcate t at 1 ~~

a positive-edge-triggered flip-flop. Investigate the operatlOn of one of the flIp-flops and ven
fy its function table.

SEQUENTIAL CIRCUITS

In this experiment, you will design, construct, and test three synchronous sequen:ial ~ir~u~ts.

Use IC type 7476 (Fig. 11-12) or 7474 (Fig. 11-13). Choose any gate type that WIll mmlm~~
the total number of ICs. The design of synchronous sequenl1al ctrcmts IS covered m SectlOn 5 .

State Diagram

Design, construct and test a sequential circuit whose state diagram is shown in Fig. 11-14.
Designate the two flip-flops as A and E, the input as x, and the output as y.

Connect the output of the least significant flip-flop E to the input x and predict the sequence
of states and output that will occur with the application of clock pulses. Verify the state trau
sition and output by testing the circuit.

Design of Counter

Design, construct, and test a counter that goes through the follOWing sequence of binary states:
0, 1,2,3,6,7, 10, 11, 12, 13, 14, 15, and back to ato repeat. Note that binary states 4, 5, 8,
and 9 are not used. The counter must be self-starting; that is, if the circuit starts from anyone
of the four invalid states, the count pulses must transfer the circuit to one of the valid states to
continue the count correctly.

Check the circuit operation for the required count sequence. Verify that the counter is self
starting. This is done by initializing the circuit to each unused state by means of the preset and
clear inputs and then applying pulses to see whether the counter reaches one of the valid states.

~
III

010 00 ~O/l

Oil \

01~0110

110 III
11

010

FIGURE 11-14

State Diagram for Experiment 9

Synchronous Counter

Constmct a synchronous 4-bit binary counter and check its operation. Use two 74761Cs and
one 7408 Ie.

Ripple Counter

Construct a 4-bit binary ripple counter using two 7476 ICs (Fig. 11-12). Connect all asyn
chronous clear and preset inputs to logic-I. Connect the count-pulse input to a pulser and check
the counter for proper operation.

Modify the counter so it will count down instead of up. Check that each input pulse decre
ments the counter by 1.

461

Data
outputs

any out

Section 11-11 Shift Registers

1
16

3 V"
A 14

4 QA

'. r
B 13

uts 5 QB
C 12

6 QC
D 11

9 QD
L 74161

~
P COUT 15

C

T
2

CK
1

CLR
GND

/s

D
inp

Load

Clear

Clock

Count

In this experiment, you will construct and test various ripple and synchronous counter cir
cuits. Ripple counters are discussed in Section 6-3 and synchronous counters are covered in
Section 6-4.

COUNTERS

Chapter 11 Laboratory Experiments460

11-10

Decimal Counter

Design a synchronous BCD counter that counts from 0000 to 1001. Use two 7476 ICs and one
7408 Ie. Test the counter for the proper sequence. Determine whether it is self-starting. This
is done by initializing the counter to each of the six unused states by means of the preset and
clear inputs. The application of pulses must transfer the counterto one of the valid states if the
counter is self-starting.

Function table
Clear Clock Load Count Function

0 X X X Clear outputs to 0
1 t 0 X Load input data1 t 1 1 Count to next binary value1 t 1 0 No change iIi output

IC Shift Register

Binary Counter with Parallel Load

IC type 74161 is a 4-bit synchronous binary counter with parallel load and asynchronous clear.
The internal logic is similar to the circuit shown in Fig. 6-14. The pin assignment to the inputs
and outputs is shown in Fig. 11-15. When the load signal is enabled, the four data inputs are
transferred into four internal flip-flops, QA through QD, with QD being the most significant
bit. There are two count-enable inputs called P and T. Both must be equal to I for the count
er to operate. The function table is similar to Table 6-6 with one exception: the load input in
the 74161 is enabled when equal to O. To load the input data, the clear input must be equai to
1 and the load input must be equal to O. The two count inputs have don't-care conditions and
may be equal to either I or O. The internal flip-flops ttigger on the positive transition of the clock
pulse. The circuit functions as a counter when the load input is equal to I and both count in
puts P and T are equal to 1. If either P or T goes to 0, the output does not change. The carry
out output is equal to 1 when all four data outputs are equal to I. Perform an experiment to vetify
the operation of the 74161 IC according to the function table.

Show how the 74161 IC together with a 2-inputNAND gate can be made to operate as a syn
chronous BCD counter that counts from 0000 to 1001. Do not use the clear input. Use the NAND
gate to detect the count of 100I, which then causes all O's to be loaded into the counter.

11-11

FIGURE 11-15

IC Type 74161 Binary Counter with Parallel load

SHIFT REGISTERS

In this experiment, you will investigate the operation of shift registers. The IC to be used is the
74195 shift regIster WIth parallel load. Shift registers are explained in Section 6-2.

IC type 74195 is a 4-bit shift register with parallel load and asynchronous clear. The pin as
sIgnment t~ the mputs and outputs IS shown in Fig. 11-16. The single control line labeled
SH/LD (shlft/load)determmes the synchronous operation of the register. When SH/LD = 0
the control mpnt IS m the load mode and the four data inputs are transferred into the four in~
ternal flIp-flops, QA through QD. When SH /LD = 1, the control input is in the shift mode and the
mformatlOn m the register IS shIfted right from QA toward QD. The serial input into QA during

Section 11-11 Shift Registers 463

Chapter 11 laboratory Experiments
shift right, theSH/LD must be equal to I. The I and K inputs must be connected together to
form the serial iuput.

Perform an experiment that will verify the operation of the 74195 Ie. Show that it performs
all the operations listed iu the function table. Include in your fnnction table the two conditions
for IK = OJ and 10.

A feedback shift register is a shift register whose serial input is connected to some function of
selected register outputs. Connect a feedback shift register whose serial input is the exclusive
OR of outputs QC and QD. Predict the sequence of states of the register starting from state 1000.
Verify your prediction by observing the state sequence after each clock pulse.

Feedback Shift Register

Ring Counter

A ring connter is a circular shift register with the signal from the serial ontpnt QD going into
the serial input. Connect the I and K input together to form the serial input. Use the load con
dition to preset the ring counter to an initial value of 1000. Rotate the single bit with the shift
conditiou and check the state of the register after each clock pulse.

A switch-tail ring counter uses the complement output 'of QD for the serial input. Preset the
switch-tail ring counter to 0000 and predict the sequence of states that will result from shift
ing. Verify your prediction by observing the state sequence after each shift.

omplement of QD

Data
outputs

1
16

1 V"
CLR

10
CK

9 15
SH/LD QA

2 14
J QB

3 13
K 74195 QC

4 12
A QD

5 QD
11

B C

6
C

7
D

GND

Is

Serial [
inputs

Data [

inputs t

Shiftlload

Clear

Clock

462

Function table

Shiftl Serial

Clear load Clock J K input Function

0 X X X X X Asynchronous clear

1 X 0 X X X No change in output

1 0 t X X X Load input data

1 1 t 0 0 0 Shift from QA toward QD, QA = 0

1 1 t 1 1 1 Shift from QA toward QD, QA ~ 1

FIGURE 11-16
Ie Type 74195 Shift Register with Parallel Load

the shift is determined from the I and K inputs. Th,,-two inputs behave like the I and the com
plement of K of a I K flip-flop. When both I and K are equal to 0, flIp-flop QA IS cleared to
oafter the shift. If bOth inputs are equal to 1, QA is set to I after the shIft. The other :wo co~
ditions for the I and K inputs provide a complement or no change m the output of flIp flop Q

~~~ . h h
The functiou table for the 74195 shows the mode of operation of the regIster. W en t e

clear input goes to 0, the four flip-flops clear to 0 asynchrononsly, that is, without the need of
a clock. Synchronous operations are affected by a positive trausition of thedock. To load ~~
input data, the SH /LD must be equal to 0 and a positive clock-pulse tranSItIOn must occur.

Bidirectional Shift Register

The 74195 IC can shift only right from QA toward QD. It is possible to convert the register to
a bidirectional shift register by using the load mode to obtain a shift left operation (from QD
toward QA). This is accomplished by connecting the output of each flip-flop to the input of the
flip-flop on its left and using the load mode of the SH/LD input as a shift-left control. Input
D becomes the serial input for the shift-left operation.

Connect the 74195 as a bidirectional shift register (without parallel load). Connect the se
rial input for shift right to a toggle switch. Construct the shift left as a ring counter by connecting
the serial output QA to the serial input D. Clear the register and then check its operation by shift
ing a single I from the serial input switch. Shift right three more times and insert O's from the
serial input switch. Then rotate left with the shift-left (load) control. The single I shonld remain
visible while shifting.

Bidirectional Shift Register with Parallel Load

The 74195 IC can be converted to a bidirectional shift register with parallel load in conjunc
tion with a multiplexer circuit. We will use IC type 74157 for this purpose. This is a quadru
ple 2-to-l-line multiplexers whose internal logic is shown in Fig. 4-26. The pin assignment to
the inputs and outputs of the 74157 is shown in Fig. 11-17. Note that the enable input is called
a strobe in the 74157.



Chapter 11 Laboratory Experiments

Serial Adder

Starting from the diagram of Fig. 6-6, design and construct a 4-bit serial adder using the fol
lowing ICs: 74195 (two), 7408, 7486, and 7476. Provide a facility for register B to accept par
allel data from four toggle switches and connect its serial input to ground so that D's are shifted
into register B during the addition. Provide a toggle switch to clear the registers and the flip
flop. Another switch will be needed to specify whether register B is to accept parallel data or
is to be shifted during the addition.

Testing the Adder

To test your serial adder, perform the binary addition 5 + 6 + 15 = 26. Tltis is done by first
clearing the registers and the carry flip-flop. Parallel load the binary value 0101 into register
B. Apply four pulses to add B toA seriaUy and check that the result in A is 0101. (Note that
clock pulses for the 7476 must be as shown in Fig. 11-12.) Parallel load 0110 into B and add
it to A serially. Check that A has the proper sum. Parallel load 1111 into B and add to A. Check
that the value in A is 1010 and that the carry flip-flop is set.

Clear the registers and flip-flop and try a few other numbers to verify that your serial adder
is functioning properly.

46SSection 11-13 Memory Unit

In this experiment, you will construct and test a serial adder-subtractor circuit. Serial addition oftwo
binary numbers can be done by means of shift registers and a full adder, as explained in Section 6-2.

SERIAL ADDITION11-12

Data
outputs

1
16

2
Vee

Al
5

A2
11

A3 4
14 Yl

A4 7
Y2

9

3
Y3

Bl 12
6

74157 Y4
B2

10 B3
13 B4

1 SEL

15 STB
GND

Is

Strobe

Data l
in~ts

Select

Data \
in~ts

464

Serial Adder-Subtractor

FIGURE 11-17
Ie Type 74157 Quadruple 2 x 1 Multiplexers

Construct a bidirectional shift register with parallel load using the 74195 register and the

74157 multiplexer. The circuit should be able to perform the followmg operatIOns.

1. Asynchronous clear

2. Shift right

3. Shift left

4. Parallel load

5. Synchronous clear.
. th I I k, d SH!LD inputs of the 74195

Deriveatableforthefiveoperationsasafuncrronof ecear,coc an . fu' t ble
and the strobe and select inputs of the 74157·.Connect the circuit and ven~ your tt~~~:atout:
Use the arallel-load condition to provide an lTIlual value mto ~e regt~ter an ~onnec. ..
puts to ~e serial inputs of both shifts in order not to lose the bmary mfonnarron while shiftmg.

Strobe Select

1 X
o 0
o 1

Function table

D.ata outputs Y

All O's
Select data inputs A
Select data inputs B

If we follow the procedure used in Section 6-2 for the design of a serial subtractor (that sub
tracts A - B), we will find that the output difference is the sarne as the output sum, but that
the input to the J and K of the borrow flip-flop needs the complement of QD (available in the
74195). Using the other two XOR gates from the 7486, convert the serial adder to a serial
adder-subtractor with a mode control M. When M = 0, the circuit adds A + B. When M = I,
the circuit subtracts A - B and the flip-flop holds the borrow instead of the carry.

Test the adder part of the circuit by repeating the operations recommended above to ensure
that the modification did not change the operation. Test the serial subtractor part by perfonn
ing the operations 15 - 4 - 5 - 13 = -7. Binary 15 can be transferred to register A by first
clearing it to 0 and adding 15 from B. Check the intermediate results during the subtraction.
Note that -7 will appear as the 2's complement of 7 with a borrow of I in the flip-flop.

11-13 MEMORY UNIT

In tltis experiment, you will investigate the behavior of a random-access memory (RAM) unit
and its storage capability. The RAM will be used to simulate a read-only memory (ROM). The
ROM simulator will then be used to implement combinational circuits, as explained in Sec
tion 7-5. The memory unit is discussed in Sections 7-2 and 7-3.

ICRAM

IC type 74189 is a 16 X 4 random-access memory. The internal logic is similar to the circuit
shown in Fig. 7-6 for a 4 X 4 RAM. The pin assignment to the inputs and outputs is shown in



& j

466 Chapter 11 laboratory Experiments Section 11-14 lamp Handball 467

A ROM simulator is obtained from a RAM when operated in the read mode only. The pattern of
l's and O's is first entered into the simulating RAM by placing the unit momentarily in the write
mode. Simulation is achieved by placing the unit in the read mode and taking the address lines
as inputs for the ROM. The ROM can then be nsed to implement any combinational circuit.

Implement a combinational circuit using the ROM simulator that converts a 4-bit binary
number to its equivalent Gray code as defined in Table 1-6. This is done as follows. Obtain the
truth table of the code converter. Store the truth table into the 74189 memory by setting the ad
dress inputs to the binary value and the data inputs to the corresponding Gray code value. After
all 16 entries of the table are written in memory, the ROM simulator is set by connecting the
WE line to logic-I permanently. Check the code converter by applying the inputs to the address
lines and verifying the correct outputs in the data output lines.

four 7404 inverters. Provide four indicator lamps for the address and four more for the out
puts of the inverters. Connect input CS to ground and WE to a toggle switch Cor a pulser that
provides a negative pulse). Store a few words into the memory and then read them to verify
that the write and read operations are functioning properly. You must be careful when using
the WE switch. Always leave the WE iuput in the read mode, unless you want to write into
memory. The proper way to write is first to set the address in the connter and the inputs in the
four toggle switches. To store the word in memory, flip the WE switch to the write position
and then return it to the read position. Be careful not to change the address or the inputs when
WE is in the write mode.

ROM Simulator

1
Data

outputs

1
16

4
V~ 5

Dl 51

6 D2
7

52

10 9
D3 53

12 11
D4 54

1 Ao
15

74189

At
14

Az
13

A,

2 C5t

3
WEe

GND

1
8

Add,e,,!
inputs

Data \inputs

Chip selec

Write enabl

FIGURE 11-18
Ie Type 74189 16 X 4 RAM

16 d · th emory The least significant
Fig 11 18 The four address inputs select one of wor s m em: b al t
b't . f ~e address is A and the most significant is A,. The chip select (CS) mput must e equ. 0

1 0 . al to I the memory is disabled and all four outputs are m a
oto enable the memo~If CS IS equ

bl
(WE) input determines the type of operation as indicat

high impedance state. e WITte ena e. . Iii d when WE = 0 This is a transfer of the
ed in the function table. The wnte operatIon 18 pe onne . . read 0 eration is per-

binary num
h

berwfrE0n:.th
1
e~~: ~~:s~e~~t~~~;:;~:~e~o~~::~:~%~eselecte~ word into the

formed w en -. 11ll . . . n
d lin The memory has three-state outputs to facIlItate memory expanslO .

output ata es.

Function table Memory Expansion

Expand the memory unit to a 32 X 4 RAM using two 74189 Ies. Use the CS inputs to select be
tween the two ICs. Note that since the data outputs are three-stated you can tie pairs of terminals
together to obtain a logic OR operation between the two ICs. Test your circnit by using it as a ROM
simulator that adds a 3-bit number to a 2-bit number to produce a 4-bit sum. For example, if the
input of the ROM is 10110, then the output is calculated to be 101 + 10 = 0111. (The first three
bits ofthe input represent 5, the last two bits represent 2, and the ontput sum is binary 7.) Use the
counter to provide four bits of the address and a switch for the fifth bit of the address.

C5

o
o
1

WE Operation

o Write
1 Read
X Disable

Data outputs

High impedance
Complement of selected word
High impedance

11-14 LAMP HANDBALL

In this experiment, you will constrnct an electronic game ofhandball using a single light to sim
ulate the moving ball. This project demonstrates the application of a bidirectional shift regis
ter with parallel load. It also shows the operation of the asynchronous inputs of flip-flops. We
will first introduce an IC that is needed for this experiment and then present the logic diagram
of the simulated lamp handball game.

Testing the RAM . in

Since the outputs of the 74189 pr~duce the compleme~u~~~::t~:~:dt~f:~:~=;th~
verters to change the outputs to theIr normal value. The . h 7493 Ie

dd . t t a binary counter usmg t e
fCohliowing Fc?nnlelct3io)ncs:oCnnO~~te:et~~; d~:s~n;~~ tSo t~ggle switches and the data outputs to

S Qwnm 19. - . .

Ie Type 74194

This is a 4-bit bidirectional shift register with parallel load. The internal logic is similar to
Fig. 6-7. The pin assigurnentto the inputs and outputs is shown in Fig. 11-19. The two mode
control inputs determine the type of operation as specified in the function table.



4

Function table

Mode
Clear Clock SI SO Function

0 X X X Clear outputs to 0
1 t 0 0 No change in output
1 t 0 1 Shift right in the direction from

QA to QD. SIR to QA

1 t 1 0 Shift left in the direction from
QD to QA. SIL to QD

1 t 1 1 Parellel-load input data

Logic Diagram

The logic diagram of the electronic lamp handball is shown in Fig. 11-20. It consists of two
741941Cs, a dual D flip-flop 7474 IC, and three gate ICs: 7400, 7404, and 7408. The ball is
simulated by a moving light that is shifted left or right through the bidirectional shift register.
The rate at which the light moves is determined by the frequency of the clock. The circuit is
first initialized with the reset switch. The start switch starts the game by placing the ball (an
indicator lamp) at the extreme right. The player must press the pulser push button to start the

469

FIGURE 11-20
lamp Handball logic Diagram

~TT~ ~T~~ Indi"tor lamp,

I I
QA QB QC QD QA QB QC QD

SIL f--' - SIR
~ SIR 74194

74194 SIL f---
CLR CLR

CK A BCD SI SO SI SOABCDCK

I I I I I

CLK

--I>-- <J-----
D PR ~

Q Q PR D

"'="
~>CK -I Pill,e, ICK

Q'
CLR '--- Q'

CLR

rl r

I

f
- f---

~
~y~Reset u--- Start

Data
ouputs

t
21 1

16

SIR Vee
153 A QA

4 14
B QB

5 13
C QC

6 12
D QD

10 74194

[
SI

9
SO

11
k CK

1
r CLR

SIL GND

7 1 [sSerial input
for shift left

Cloc

Clea

Serial input
for shift righ

Parallel data
inputs

Mode control
inputs

FIGURE 11-19
Ie Type 74194 Bidirectional Shift Register with Parallel Load

468 Chapter 11 Laboratory Experiments



470 Chapter 11 Laboratory Experiments
Section 11-15 Clock-Pulse Generator 471

ball moving to the left. The single light shifts to the left until it reaches the leftmost position
(the wall), at which time the ball returns to the player by reversing the direction of shift of the
moving light. When the light is again at the rightmost position, the player must press the pulser
again to reverse the direction of shift. If the player presses the pulser too soon or too late, the
ball disappears and the light goes off. The game can be restarted by turning the start switch on
and then off. The start switch must be open (logic-I) during the game.

Circuit Analysis

Prior to connecting the circuit, analyze the logic diagram to ensure that you understand how
the circuit operates. In particular, try to answer the following questions:

1. What is the function of the reset switch?

2. Explain how the light in the rightmost position comes on when the start switch is
grounded. Why is it necessary to place the start switch in the logic-l position before
the game starts?

3. What happens to the two mode-control inputs, Sl and SO, once the ball is set in motion?

4. What happens to the mode-control inputs and to the ball if the pulser is pressed while the
ball is moving to the left? What happens if it is moving to the right but has not reached
the rightmost position yet?

S. Suppose that the ball returned to the rightmost position, but the pulser has not been
pressed yet; what is the state of the mode-control inputs if the pulser is pressed? What
happens if it is not pressed?

Playing the Game

Wire the circuit of Fig. 11-20. Test the circuit for proper operation by playing the game. Note
that the pulser must provide a positive-edge transition and that both the reset and start switch
es must be open (be in the logic-l state) during the game. Start with a low clock rate and in
crease the clock frequency to make the handball game more challenging.

Counting the Number of Losses

Design a circuit that keeps score of the number of times the player loses while playing the
game. Use a BCD-to-seven-segment decoder and a seven-segment display as in Fig. 11-8 to dis
play the count from 0 through 9. Counting is done with a decimal counter using either the 7493
as aripple decimal counter orthe 74161 and a NAND gate as a synchronons decimal counter.
The display should show 0 when the circuit is reset. Every time the ball disappears and the
light goes off, the display should increase by 1. If the light stays on during the play, the num
ber in the display should not change. The final design should be an automatic scoring circuit,
with the decimal display incremented automatically each time the player loses when the light
disappears.

Lamp Ping-Pong TM

Modify the cIrcuit of Fig. 11-20 so as to obtain a lamp Ping-Pong game. Two players can par
UCIpate In this game, WIth each player having his own pulser. The player with the right pulser
returns the ball when In the extreme right position, and the player with the left pulser returns
the ball when In the extreme left position. The only modification required for the Ping-Pong
game IS a second pulser and a change of few wires.

With a second start circuit, the game can be made to start (serve) by either one of the two
players. ThIS addnlOn IS optional.

11-15 CLOCK-PULSE GENERATOR

I~ this experiment, yo~ wi~l use ~n Ie timer unit and connect it to produce clock pulses at a
gIven fre~uency. The CIrcmt reqmres the connection of two external resistors and two exter
nal capacItors. The cathode-ray oscilloscope is used to observe the waveforms and measure
the frequency.

IC Timer

IC type 72555 (or 555) is a precision timer circuit whose internal logic is shown in Fig. 11-21.
(The reSIstors, RA andRB' and the two capacitors are not part of the IC.) It consists of two volt
age comparators, a flip-flop, and an internal transistor. The voltage division from Vee = 5 V
through the three internal resistors to ground producd and ~ of Vee (3.3 V and 1.7 V) into the
fixed mputs of the comparators. When the threshold input at pin 6 goes above 3.3 V, the npper
comparator resets the flip-flop and the outpnt goes low to abont 0 V. When the trigger input at
pm 2 goes below 1.7 V, the lower comparator sets the flip-flop and the output goes high to
abont 5 V. When the ontput is low, Q' is high and the base-emitter jnnction of the transistor is
forward-bIased. When the output is high, Q' is low and the transistor is cnt off (see Section 10-2).
The tImer clrcwt IS capable of prodncing accurate time delays controlled by an external RC
CITCWt. In thIS expenment the IC timer will be operated in the astable mode to produce clock
pulses.

Circuit Operation

Fig. 11-21 shows the external connections for the astable operation. The capacitor C charges
through resIstors RA and RB when the transistor is cut off and discharges through R

B
when the

transIstor IS forward-bIased and conducting. When the charging voltage across capacitor C
reaches 3.3 V, the threshold Input at pm 6 causes the flip-flop to reset and the transistor turns
on. When the discharging voltage reaches 1.7 V, the trigger inpnt at pin 2 causes the flip-flop
to set and the transIstor turns off. Thus, the output continually alternates between two voltage
kvels at the output of the flIp-flop. The output remains high for a duration equal to the charge
time. ThIS duratIOn IS determmed from the equation

IN = 0.693(RA + RB)C



Clock-Pulse Generator
Starting with a capacitor C of 0,001 /.LP, calculate values for RA and RB to produce clock ~~~:

h . P' II 22 The pulse width is I "S m the10w level, and It IS repeatmg ates as s own III 19. - . r . th
q~ency rate of 100 kHz (every 10 /.Ls). Connect the circuit and check the output m e

oscilloscope.

Observe the output across the capacitor C and record its two levels to verify that they are
between the trigger and threshold values.

Observe the waveform in the collector of the transistor at pin 7 and record all pertinent in
formation. Explain the waveform by analyzing the circuit action.

Connect a variable resistor (potentiometer) in series with RA to produce a variable-frequency
pulse generator. The low-level duration remains at I /.Ls. The frequency should range from 20
to 100 kHz.

Change the low-level pulses to high-level pulses with a 7404 inverter. This will produce
positive pulses of I /.LS with a variable-frequency range.

In this experiment, you wiIl constrnct a 4-bit paraIlel adder whose sum can be loaded into a reg
ister. The numbers to be added will be stored in a random-access memory. A set of binary num
bers will be selected from memory and their sum wiIl be accumulated in the register.

PARALLEL ADDER AND ACCUMULATOR

FIGURE 11-22
Output Waveform for Clock Gen erator

Section 11-16 Parallel Adder and Accumulator 473

Block Diagram

Use the RAM circuit from the memory experiment of Section 11-13, a 4-bit parallel adder, a
4-bit shift register with parallel load, a carry flip-flop, and a multiplexer to construct the cir
cuit. The block diagram and the ICs to be used are shown in Pig. 11-23. Information can be writ
ten into RAM from data in four switches or from the 4-bit data available in the outputs of the
register. The selection is done by means of a multiplexer. The data in RAM can be added to the
contents of the register and the sum transferred back to the register.

Control of Register

Provide toggle switches to control the 74194 register and the 7476 carry flip-tlop as follows:

(a) A LOAD condition to transfer the sum to the register and the output carry to the flip-flop
upon application of a clock pulse.

(b) A SHIFT condition to shift the register right with the carry from the carry flip-flop trans
ferred into the leftmost position of the register upon application of a clock pulse. The value
in the carry flip-flop should not change during the shift.

(c) A NO-CHANGE condition that leaves the contents of the register and flip-flop unchanged
even when clock pulses are applied.

11-16

Output

harge

5V

If 001,1

Vee 8 5 Reset 4
<>RA;

6

~ R Q'~

V
3

~

~~'
Q

T2 7 Disc
72555 Timer

"
~RB

<

GND 1

Ie
-'-

FIGURE 11-21
IC Type 72555 Timer Connected as a Clock-Pulse Generator

Trigger

Threshold

The output remains low for a duration equal to the discharge time, This duration is determined

from the equation

Chapter 11 Laboratory Experiments472



474 Chapter 11 Laboratory Experiments
Section 11-17 Binary Multiplier 475

Address Content

a 0110
3 1110
6 1101
9 0101
12 0011

Circuit Operation

Clear the register and the carry flip-flop to zero and store the following 4-bit numbers in RAM
in the indicated addresses:

Now perform the following four operations:

1. Add the contents of address 0 to the contents of the register using the LOAD condition.

2. Store the sum from the register into RAM at address 1.

3. Shift right the contents of the register and carry with the SHIFT condition.

4. Store the shifted contents of the register at address 2 of RAM.

Check that the contents of the first three locations in RAM are as follows:

Count ---+
(puiser)

Address RAM MUX
f---- -+--counter (74189) (74157)

(7493)

t
Inverters

(7404)

t
Output carry 4-bit adder

(7483)

Sum

Carry f---- Register
(7476) (74194)

Select
(switch)

4 switches

Address

a
I
2

Content

0110
0110
0011

Repeat the above four operations for each of the other four binary numbers stored in RAM.
Use addresses 4, 7, 10, and 13 to store the sum from the register in step 2. Use addresses 5, 8,
II, and 14 to store the shifted value from the register in step 4. Predict what the contents of RAM
at addresses 0 through 14 would be and check to verify your results.

In this experiment, you will design and construct a circuit that multiplies two 4-bit unsigned
numbers to produce an 8-bit product. An algorithm for multiplying two binary numbers is pre
sented in Section 8-6.

BINARY MULTIPLIER

Block Diagram

The block diagram of the binary multiplier with the recommended ICs to be used is shown in
Fig. 11-24(a). The multiplicand B is available from four switches instead of a register. The
multiplier Q is obtained from another set of four switches. The product is displayed with eight
indicator lamps. Counter P is initialized to 0 and then incremented after each partial product
is formed. When the counter reaches the count of four, output P, becomes I and the multipli
cation operation terminates.

11-17

FIGURE 11-23
Block Diagram of a Parallel Adderfor Experiment 16

Checking the Circuit
Store the following nnmbers in RAM and then add them to the register one at a time. Start
with a cleared register and flip-flop. Predict the values in the output of the regIster and carry

after each addition and verify your results:

0110 + 1110 + 1101 + 0101 + 0011

Detailed Circuit
Draw a detailed diagram showing all the wiring between the ICs. Connect the circuit and pro
vide indicator lamps for the outputs of the register and carry flIp-flop and for the address and

outpnt data of the RAM.

Carry Circuit
In order to conform with the above specifications, it is necessary to provide a circuit between
the output carry from the adder and the J and K inputs of the 7476 flip-flop so that the output
carry is transferred into the flip-flop (whether it is equal to 0 or I) only when the LOAD con
dition is activated and a pulse is applied to the clock input of the flip-flop.The carry flIp-flop
should not change if the LOAD condition is disabled or the SHIFT condlllOn IS enabled.



IiIII

477Section 11-17 Binary Multiplier

each state are listed in Fig. 11-24(b). T,Qo is generated with an AND gate whose inputs are T,
and Qo. Note that carry flip-flop C can be cleared to°with every clock pulse, except when the
output carry is transferred to it.

Datapath Design

Draw a detailed diagram of the datapath part of the multiplier, showing all IC pin connections.
Generate the control signals-T1, T" and T3-with three switches and use them to provide the
required control operations for the various registers. Connect the circuit and check that each
component is functioning properly. With the three control variables at 0, set the multiplicand
switches to 1111 and the multiplier switches to lOll. Sequence the control variables manual
ly by means of the control switches as specified by the state diagram of Fig. 11-24(b). Apply
a single pulse while in each control state and observe the outputs of registers A and Qand the
values in C and Pc. Compare with the numbers in your numerical example to verify that the cir
cuit is functioning properly. Note that IC type 74161 has master-slave flip-flops. To operate it
manually, it is necessary that the single clock pulse be a negative pulse.

Multiplication Example

Before connecting the circuit, make sure that you understand the operation of the multiplier.
To do this, construct a table similar to the one shown in Table 8-4, but with B = 1111 for the
multiplicand and Q = 1011 for the multiplier. Along each comment listed on the left side of
the table, specify which one of the state variables-T1 or T, or T,-is enabled in each case,
(The states should start with T1 and then repeat T, and T3 four times.)

t f 41
Multiplicand B

(a) Datapath block program

(4 switches)

Py rTI
1111 Counter P

(74161)

Coul Paranel adder
(7483)

Multiplier Q
(4 switches)

1 111
c Register A ,------... Register Q

(7474) (74194) (74194)

Qo

Chapter 11 Laboratory Experiments476

T A <- 0, C f- 0, P f- 0, Q f- Multiplier1: .
T2: p+-P+l

T2Qo: A f-A + B, Cf- Caut

T
3

: Shift right CAQ, C f- 0

(b) Control state diagram

FIGURE 11-24
Binary Multiplier Circuit

Control of Registers h
The ASM chart for the binary multiplier in Fig. 8-14 shows that the three register~ ~d ~ e

carry flip-flop are controlled with signals T1, T" and T,. An additional ~ontr~ Slg~: t~ea:ea~
ends on QI loads the sum into register A and the output carry mto flIp flop . Qo in

;ignificant bit of register Q. The control-state diagram and the operatlOns to be performed

Design of Control

Design the control circuit specified by the state diagram. You can use any method of control
implementation discussed in Section 8-7.

Choose the method that minimizes the number otICs. Verify the operation of the control cir
cuit prior to its connection to the data processor.

Checking the Multiplier

Connect the outputs of the control circuit to the data processor and verify the total circuit op
eration by repeating the steps of multiplying Illl by lOll. The single clock pulses should
now sequence the control states as well (remove the manual switches). The start sigual S can
be generated with a switch that is on while the control is in state To.

Generate the start signal S with a pulser or any other short pulse and operate the multiplier
with continuous clock pulses from a clock generator. Pressing the S pulser should initiate the
multiplication operation and upon completion, the product should be displayed in the A and Q
registers. Note that the multiplication will be repeated as long as signal S is enabled. Make
sure that S goes back to 0, then set the switches to two other four-bit numbers and press S
again. The new product should appear at the outputs. Repeat the multiplicatiou of a few num
bers to verify the operation of the circuit.



478 Chapter 11 Laboratory Experiments

Supplement to Experiment 2 (Section 11-2)

Analysis Example

47Section 11-19 VeriLog HDL Simulation Experiments

Supplement to Experiment 4 (Section 11-4)

T~e operation of a combinational circuit is verified b ch . .
With the circuit truth table. HDL Example 4-10 S . Y ecking the ontput and COmparlllg
obtaining the truth table of a comb' t' I' (ebclIon 4-11) demonstrates the procedure fo

. lila lOna ClrcUlt y SImulating it In 0 d t .
WIth this procedure, compile and simulate HDL E . r er 0 get acquamtel

In Experiment 4 you designed am' 't 1 xample4-1O and check the output truth table
tion of the majOrity'logiC circuit togeth

aJon
Yth

oglc
ClrcUlt. Wnte the HDL gate-level descrip

'1 er WI a stImulus for displaying th t th bl
pI e and simulate the circuit and h k th e ru ta e. Comc ec e output response.

Supplement to Experiment 5 (Section 11-5)

This experiment deals with code conversion A BCD-
Section 4-3. Use the result of the design to check it Wl'thto-exHceDsLs3 conv

i
erter was designed in

an Slmu ator.

(a) Write an HDL gate-level description of the circuit shown in Fig. 4-4.

(b) W~te a dataflow description using the Boolean expressions listed in Fig. 4-3.

(c) Wnte an HDL behavioral description of a BCD to exce 3. - - ss- converter.
(d) Wnte a test bench to simnlate and test the BCD-to- . "

verify the truth table Check II thr " excess-3 converter ClrcUlt III order to
. a ee ClrcUlts.

(a) Write an HDL behavioral description of the 7474 D fl' fl .
(Note that when Preset = 0 Q goes to 1 and h P lp- op USlllg only the Q output.

, , wen reset = 1 and Clear - 0 Q
to O. Thns, Preset takes precedence over Clear.) - , goes

(b) Write an HDL behaVioral description of the 7474 D fl' fI . b
the sec d Q lp- op USlllg oth outpnts Label
P on outpnt _not and note that this is not always the complement of Q ('Wh

reset = Clear = 0, both Q and Q_not go to 1.) . en

Supplement to Experiment 7 (Section 11-7)

A 4-bit adder-subtractor is develo d' th' .
developed in Section 4-4. pe m IS expenment. An adder-subtractor circuit is also

(a) Write theHDL behavioral description of the 7483 4-bit adder.

(b) Write a behavioral description of the adder-subtractor circuit shown in Fig. 11-11.

(c) ~::~~~:g~~L~:~r~:~~~~ description of the 4-bit adder-snbtractor shown in Fig. 4-13

scribed in HI)L Exannple 4_~n~~~t:~~~~~~ng a modified version of the 4-bit adder de-

(d) Write an HDL test bench to simnlate and test the ci .
the values that cause an overflow with V = 1. rCUlts of part (c). Check and verify

Supplement to Experiment 8 (Section 11-8)

The edge-triggered D flip-flop 7474 is shown in Fig. 11-13. Th tli -fl h
set and clear inputs. e p op as asynchronous pre-

In this experiment, you will analyze and design asynchronous sequential circuits. These type
of circuits are presented in Chapter 9.

Some of the hardware experiments outlined in this chapter can be supplemented by a COrre
sponding software procedure using the Verilog Hardware Description Language (HDL). A
Verilog compiler and simulator is necessary for this supplement. The following are sugges
tions for simulating and testing some of the circuits used in the laboratory experiments.

ASYNCHRONOUS SEQUENTIAL CIRCUITS

VERI LOG HDL SIMULATION EXPERIMENTS

The various logic gates and their propagation delays were introduced in the hardware experi
ment. In Section 3-9, a simple circuit with gate delays was investigated. As an introduction to
the laboratory Verilog program, compile the circuit described in HDL Example 3-3 and then
run the simulator to verify the waveforms shown in Fig. 3-38.

Assign the following delays to the Exclusive-OR circuit shown in Fig. 3-32(a): 10 ns for an
inverter, 20 ns for an AND gate, and 30 ns for an OR gate. The input of the circuit goes from
xy = 00 to xy ~ 01.

(a) Determine the signals at the output of each gate from t ~ 0 to t = 50 ns.

(b) Write the HDL description of the circuit including the delays.

(e) Write a stimulus module (similar to HDL Exannple 3-3) and simulate the circuit to ver
ify the answer in part (a).

Design Example

The circuit of a positive-edge-triggered D-type flip-flop is shown in Fig. 5-10. The circuit of
a negative-edge T-type flip-flop is shown in Fig. 9-46. Using the six-step procedure recom
mended in Section 9-8, design, construct, and test a D-type flip-flop that triggers on both the
positive and negative transitions of the clock. The circuit has two inputs-D and C-and a
single ontput, Q. The value of D at the time C changes from 0 to 1 becomes the flip-flop ont
put, Q. The output remains unchanged irrespective of the value of D as long as C remains at l.
On the next clock transition, the ontput is again updated to the value of D when C changes
from 1 to O. The output then remains unchanged as long as C remains at O.

11-19

The analysis of asynchronous sequential circuits with SR latches is outlined in Section 9-3. Analyze
the circuit of Fig. P9-9 (shown with Problem 9-9) by deriving the transition table and output map of the
circnit. From the transition table and output map, detennine: (a) what happens to output Q when input
X, is a 1 irrespective of the value of input X2: (b) what happens to output Q when input X2 is a 1 and
Xl is equal to 0; and (c) what happens to output Q when both inputs go hack to O?

Connect the circuit and show that it operates according to the way you analyzed it.

11-18



Supplement to Experiment 10 (Section 11-10) . . . . .

The synchronous counter with parallel load IC type 74161 is shown III FIg. 11-15. Th;~S :Im~

ilar to the one described in HDL Example 6-3 (Section 6-6) wIth two exceptlOns. e oa
input is enabled when equal to 0, and there are two inputs (P and 7) that control the count. Wnte
the HDL description of the 741611C.

Supplement to Experiment 13 (Section 11-13)

This experiment investigates the operation of a rando~-acc~ss ~emo~ (RAM). The ~i-t
memory is described in HDL is explained in Section 7-2 III conjunctIOn with HDL Examp e .

(a) Write the HDL description ofIC type 74189 RAM shown in Fig. 11-18. . .

(b) Test the operation of the memory by writing a stimulus program that stores blll:Z 3 I~

address°and binary I in address 14. Then read the stored numbers from the two a esse
to check if the numbers were stored correctly.

Supplement to Experiment 9 (Section 11-9) " " "

In the hardware experiment, you are asked to design and test ~ se~ue~tla~ c~rcUlt whose state
" "" b F" I 1-14 This is a Mealy model sequentIal clrcUlt SImIlar to the one de-diagram IS gIVen y 19. .

scribed in HDL Example 5-5 (Section 5-5).

(a) Write the HDL description of the state diagram of Fig. 11-14. .

(b) Write the HDL structural description of the sequential circuit obtained from the desIgn
(This is similar to HDL Example 5-7. III SectlOn 5-5).

(c) Fig. 11-24(b) (Section 11-17) shows a control state diagram. Write the HDL descript~on

of the state diagram using the one-hot binary assIgnment (see Table 5-9 III SectlOn 5 6)
and three outputs, T" Tz, and T,.

481Section 11-19 VeriLog HDL Simulation Experiments

The block diagram of a 4-bit binary multiplier is shown in Fig. 11-24. The multiplier can be
described in two ways: (I) using the register transfer level statements listed in part (b) of the
figure or (2) using the block diagram shown in part (a) of the figure. The description of the mnl
tiplier in terms of the register transfer level (RTL) format is canied out in HDL Example 8-5
(Section 8-7). In this experiment we will use the integrated circuit components specified in the
block diagram to write the HDL Structural descliption of the binary multiplier. The structural
description is obtained by using the module description of each component and then instanti
ating them to show how they are interconnected. (See Section 8-5 for an example.) The HDL
descriptions of the components may be available from the solutions to previous experiments.
7483 is described with a solution to Experiment 7(a), 7474 with Experiment 8(a), 74161 with
Experiment 10, 74194 with Experiment 14, and the description of the control is available from
a solution to Experiment 9(c).

Write the HDL behavioral description of the 74194 bidirectional shift register with parallel
load shown in Fig. 11-19.

A parallel adder with an accumulator register and a memory unit is shown in the block diagram
of Fig. 11-23. Write the structural description of the circuit specified by the block diagram. The
HDL structural description of this circuit can be obtained by instantiating the various compo
nents. An example of a structural description of a design can be found in HDL Example 8-4 in
Section 8-5. First, it is necessary to write the behavioral description of each component. Use
counter 74161 instead of 7493, and substitute the D flip-flop 7474 instead of the JK flip-flop
7476. The block diagram of the various components can be found from the list in Table II-I.

Supplement to Experiment 14 (Section 11-14)

Supplement to Experiment 16 (Section 11-16)

Supplement to Experiment 17 (Section 11-17)

Chapter 11 Laboratory Experiments480

Supplement to Experiment 11 (Section 11-11) ..

A bidirectional shift register with parallel load is designed in the expenment by USlllg the 74195
and 74157 IC types.

(a) Write the HDL description of the 74195 shift register. Assume that inputs J and K (bar)
are connected together to form the senal mput.

(b) Write the HDL description of the 74157 multiplexer. .

(c) Obtain the HDL description of the 4-bit bidirectional shift register that has been deSIgned
in this experiment. (I) Write the structural description by instant13tlllg the two ICs and
specifying their interconnection, and (2) w~te th~ behavl~ral descnptIOn of the ClIcmt
using the function table that is derived in thIS desIgn expenment.



Section 12-1 Rectangular-Shape Symbols 483

Standard
Graphic Symbols

&

AND

&

"1

OR

I

~1

XOR

~I

FIGURE 12-1

Rectangular-Shape Graphic Symbols for Gates

NAND NOR Inverter XNOR

12-1 RECTANGULAR-SHAPE SYMBOLS

FIGURE 12-2

Standard Graphic Symbol for a 4-Bit Parallel Adder, Ie Type 7483

are the decimal equivalents of ;he weights of the bits to the power of 2. Thus, the inpnt labeled
3 corresponds to the value of2 = 8. The input carry is designated by CI and the outpnt carry
b~ CO. When the dIgItal component represented by the outline is also a commercial integrat
e cITcmt, It IS cnstomary to write the IC pin number along each input and ontpnt. Thus, IC type
7483 IS a 4-bIt adder wah look-ahead carry. It is enclosed in a package with 16 pins. The in
numbers for the mne mputs and five ontpnts are shown in Fig. 12-2. The other two pins are~
the power supply. or

SI

S2

S3

S4

co

10 L
a

8

3 P 9
0

1 63
11 L 20
7 15

3
4 Q

16
3

13 14CI CO

Al

A2

A3

A4

Bl

B2

B3

B4

Cl

Digital components such as gates, decoders, multiplexers, and registers are available com
mercially in integrated circuits and are classified as 55I or MSI circuits. Standard graphic sym
bols have been developed for these and other components so that the user can recognize each
function from the unique graphic symbol assigned to it. This standard, known as ANSI/IEEE
Std. 91-1984, has been approved by industry, government, and professional orgimizations and
is consistent with international standards.

The standard uses a rectangular-shape outline to represent each particular logic function.
Within the outline, there is a general qualifying symbol denoting the logical operation per
formed by the unit. For example, the general qualifying symbol for a multiplexer is MUX. The
size of the outline is arbitrary and can be either a square or a rectangular shape with an arbi
trary length-width ratio. Input lines are placed on the left and output lines are placed on the right.
If the direction of signal flow is reversed, it must be indicated by arrows.

The rectangular-shape graphic symbols for SSI gates are shown in Fig. 12-1. The qnalify
ing symbol for the AND gate is the ampersand (&). The OR gate has the qualifying symbol that
designates greater than or equal to 1, indicating that at least one input must be active for the out
put to be active. The symbol for the buffer gate is I, showing that only one input is present. The
exclusive-OR symbol designates the fact that only one input must be active for the output to
be active. The inclusion of the logic negation small circle in the output converts the gates to their
complement values. Although the rectangular-shape symbols for the gates are recommended,
the standard also recognizes the distinctive-shape symbols for the gates shown in Fig. 2-5.

An example of an MSI standard graphic symbol is the 4-bit parallel adder shown in Fig. 12-2.
The qualifying symbol for an adder is the Greek letter 2;. The preferred letters for the arithmetic
operands are P and Q. The bit-grouping symbols in the two types of inputs and the sum output

482



484 Chapter 12 Standard Graphic Symbols
Section 12-2 Qualifying Symbols 485

Symbol Description

Table 12-1
General QualifyIng Symbols

:h~ IEE~ standard graphic symbols for logic functions provides a list of qualifying symbols
o e use m conjunctIOn WIth the outline. A qualifying symbol is added to the basic 0 tl· t

deSIgnate the overall logic characteristics of the elemeut or the physical characteris/ m; 0

Illput or output. Table 12-1 lists some of the general qualifying symbols specified i~ :~~ ~ta~~
dard. A general quahfYlllg symbol defines the basic function performed by the device re re
~~ted III th~ dIagram. It IS placed near the top center position of the rectangular-shape outl~ne

e genera quahfymg symbols for the gates, decoder, and adder were shown in previous di~
agram

h
s. The other symbols are self-explanatory aud will be used later in diagrams represent

mg t e correspondmg dIgItal elements.

AND gate or function
OR gate or function
Buffer gate or inverter
Exclusive-OR gate or function
Even function or even parity element
Odd function or odd parity element
Coder, decoder, or code converter
Multiplexer
Demultiplexer
Adder
Multiplier
Magnitude comparator
Arithmetic logic unit
Shift register
Counter
Ripple counter
Read-only memory
Random-access memory

&

"'1
1
~1

2k
2k + 1

X/Y
MUX

DMUX
2:
TI

COMP
ALU
SRG
CTR

RCTR
ROM
RAM

QUALIFYING SYMBOLS12-2Before introducing the graphic symbols of other components, it is necessary to review some
terminology. As mentioned in Section 2-7, a positive-logic system defines the more positive of
two signal levels (designated by H) as logic-I and the more negative signal level (designated
by L) as logic-D. Negative logic assnmes the opposite assignment. A third alternative is to em
playa mixed-logic convention, where the signals are considered entirely in terms of their H
and L values. At any point in the circnit, the nser is allowed to define the logic polarity hy as
signing logic-l to either the H or L signa1. The mixed-logic notation uses a small right-angle
triangle graphic symbol to designate a negative-logic polarity at any input or output termina1.
(See Fig. 2-10(1).)

Integrated-circuit manufacturers specify the operation of integrated circuits in tenns of H
and L signals. When an input or output is considered in terms of positive logic, it is defined as
active-high. When it is considered in terms of negative logic, it is defined as active-low.
Active-low inputs or outputs are recognized hy the presence of the small-triangle polarity
indicator symbol. When positive logic is used exclusively throughout the entire system, the
small-triangle polarity symbol is equivalent to the small circle that designates negation. In this
book, we have assumed positive logic throughout and employed the small circle when draw
ing logic diagrams. When an input or output line does not include the small circle, we define
it to he active if it is logic-I. An input or output that includes the small-circle symbol is con
sidered active if it is in the logic-O state. However, we will use the small-triangle polarity sym
hoi to indicate active-low assignment in all drawings that represent standard diagrams. This will
conform with integrated-circuit data books, where the polarity symbol is usually employed. Note
that the bottom four gates in Fig. 12-1 could have been drawn with a small triangle in the out
put lines instead of a small circle.

Another example of a graphic symbol for an MSI circuit is shown in Fig. 12-3. This is a
2-to-4-line decoder representing one-half of Ie type 74155. Inputs are ou the left and outputs
on the right. The identifying symbol X jY indicates that the circuit converts from code X to code
Y. Data inputs A and B are assigned binary weights 1 and 2 equivalentto 20 and 2' , respectively.
The outputs are assigned numbers from Dto 3, corresponding to outputs Do through D3 , re
spectively. The decoder has one active-low input EI and one active-high input E2 • These two
inputs go through an internal AND gate to enable the decoder. The output of the AND gate is
labeled EN (enable) and is activated when E I is at a low-level state and E2 at a high-level state.

FIGURE 12-3
Standard Graphic Symbol for a 2-to-4-Line Decoder (one-half of Ie type 74155)

A

B

El

E2

13 X'Y
1 7

3 0
2 6

1
5

2 ~ 2

& EN 4
1 3

DO

D1

D2

D3

Some of the qualifying symbols associated with inputs and outputs are shown in Fig 12-4
Symbols aSSOCIated WIth mputs are placed ou the left side of the column labeled symbol' S m~
boIs assocIated WIth outputs are placed on the right side of the column The actIO I .' Y
outp t b l' th I' . . . ve-owmputor
. u :ym o. I~ e p~ ~ty mdicator. As mentioned previously, it is equivalent to the logic nega-
~on ~ en.posI~ve ~OglC IS assum~d. Th~ dynamic input is associated with the clock input in flip-

op CirCUIts. It mdicates that the mput IS active on a transition from a low-to-high-level' I
The three-state output has a third high-impedance state, which has no logic significauce ~~~~~
~c~t IS enabled, the .o~tput i.s in .the nonnal 0 or 1 logic state, but when the circuit i~ disabled,

e tree-state output IS III a hIgh-Impedance state. TIlls state is equivalent to an open circuit
The open-collectoroutput has one state that exhibits a high-impedance condition. An 'ex

ternally connected reSIstor IS sometimes required in order to produce the proper logic level.



487Section 12-3 Dependency Notation

The most important aspect of the standard logic symbols is the dependency notation. Depen
dency notation is used to provide the means of denoting the relationship between different in
puts or outputs without actually showing all the elements and interconnections between them.
We will fIrst demonstrate the dependency notation with an example of the AND dependency
and then defIne all the other symbols associated with this notation.

The AND dependency is represented with the letter G followed by a number. Any input or
output in a diagram that is labeled with the number associated with G is considered to be
ANDed with it. For example, if one input in the diagram has the label Gland another input is
labeled with the number I, then the two inputs labeled Gland I are considered to be ANDed
together internally.

An example of AND dependency is shown in Fig. 12-5. In (a), we have a portion of a graph
ic symbol with two AND dependency labels, G I and G 2. There are two inputs labeled with
the number I and one input labeled with the number 2. The equivalent interpretation is shown
in part (b) of the fIgure. Input X associated with G 1 is considered to be ANDed with inputs A
and B, which are labeled with a 1. Similarly, input Y is ANDed with input C to conform with
the dependency between G 2 and 2.

The standard defInes 10 other dependencies. Each dependency is denoted by a letter sym
bol (except EN). The letter appears at the input or output and is followed by a number. Each

The diamond-shape symbol may have a bar on top (for high type) or on the bottom (for low
type). The high or low type specifies the logic level when the output is not in the high
impedance state. For example, TTL-type integrated circuits have special outputs called open
collector outputs. These outputs are recognized by a diamond-shape symbol with a bar under
it. This indicates that the output can be either in a high-impedance state or in a low-level
state. When used as part of a distribution function, two or more open-collector NAND gates
when connected to a common resistor perform a positive-logic AND function or a negative
logic OR function.

The output with special amplifIcation is used in gates that provide special driving capabil
ities. Such gates are employed in components such as clock drivers or bus-oriented transmit
ters. The EN symbol desiguates an enable input. It has the effect of enabling all outputs when
it is active. When the input marked with EN is inactive, all outputs are disabled. The symbols
for flip-flop inputs have the usual meaning. The D input is also associated with other storage
elements such as memory input.

The symbols for shift right and shift left are arrows pointing to the right or the left, respec
tively. The symbols for count-up and count-down counters are the plus and minus symbols, re
spectively. An output designated by CT = 15 will be active when the contents of the register
reach the binary count of 15. When nonstandard information is shown inside the outline, it is
enclosed in square brackets [like this].

DEPENDENCY NOTATION12-3

Countup

Countdown

Description

Contents of register equals bianry 15

Shift left

Shift right

Data input to a storage element

Enable input

Output with special amplification

Open-collector output (see Fig. 10-12)

Three-state output (see Fig. 10-16)

Dynamic indicator input

Logic negation input or output

Active-low input or output

. Flip~flop inputs

Symbol

CT~l}---

-----G K, R, S, or T

FIGURE 12-4
Qualifying Symbols Associated with Inputs and Outputs

Chapter 12 Standard Graphic Symbols486



488 Chapter 12 Standard Graphic Symbols Section 12-4 Symbols For Combinational Elements 489

input or output affected by that dependency is labeled with that same number. The 11 de
pendencies and their corresponding letter designation are as follows:

G Denotes an AND (gate) relationship

V Denotes an OR relationship

N Denotes a negate (exclusive-OR) relationship

EN Specifies an enable action

C Identifies a control dependency

S Specifies a setting action

R Specifies a resetting action

M Identifies a mode dependency

A Identifies an address dependency

Z Indicates an internal interconnection
X Indicates a controlled transmission

The V and N dependencies are used to denote the Boolean relationships of OR and exclu
sive-OR similar to the G that denotes the Boolean AND. The EN dependency is similar to the
qualifying symbol EN except that a number follows it (for example, EN2). Only the outputs
marked with that number are disabled when the input associated with EN is active.

D6

D7

DO

D1

D2

D3

D4

D5

XIY 9
0

13 10
1 1

3 112 2
1 } 12

1 3
15 7

4
2 ~

JEN
6

I 5
514 ~

6
4

7

A

B

C

G

FIGURE 12-6
IC Type 74155 Connected as a 3 x 8 Decoder

The control dependency C is used to identify a clock inpnt in a sequential element and to in
dicate which input is controlled by it. The set S and reset R dependencies are used to specify in
temallogic states of an SR flip-flop. The C, S, and R dependencies are explained in Section 12-5
in conjnnction with the flip-flop circuit. The mode M dependency is used to identify inputs that
select the mode of operation of the unit. The mode dependency is presented in Section 12-6 in
conjunction with registers and counters. The address A dependency is used to identify the address
input of a memory. It is introduced in Section 12-8 in conjunction with the memory unit.

The Z dependency is used to indicate interconnections inside the unit. It signifies the exis
tence of illternallogic connections between inputs, outputs, internal inputs, and internal out
puts, in any combination. The X dependency is used to indicate the controlled transmission path
in a CMOS transmission gate.

The examples in this section and the rest of this chapter illustrate the use of the standard in repre
senting various digital components with graphic symbols. The examples demonstrate actual com
mercial integrated circuits with the pin numbers included in the inputs and outputs. Most ofthe ICs
presented in this chapter are included with the snggested experiments outlined in Chapter II.

The graphic symbols for the adder and decoder were shown in Section 12-2. IC type 74155
can be connected as a 3 X 8 decoder, as shown in Fig. 12-6. (The truth table of this decoder
is shown in Fig. 11-7.) There are two C and two G inputs in the Ie. Each pair must be connected
together as shown in the diagram. The enable inpnt is active when in the low-level state. The
outpnts are all active-low. The inputs are assigned binary weights 1,2, and 4, equivalent to 2°,
2' and 22

, respectively. The outputs are assigned numbers from 0 to 7. The sum of the weights
of the inputs determines the output that is active. Thus, if the two input lines with weights I
and 4 are activated, the total weight is I + 4 = 5 and output 5 is activated. Of course, the EN
input must be activated for any output to be active.

SYMBOLS FOR COMBINATIONAL ELEMENTS12-4

(b) Equivalent interpretation

~
&

f----

'-- &

I--

&

I--

B

c

y

A

FIGURE 12-5
Example of G (AND) Dependency

(a) Block with Gl and G2

A-----Il

B 1

C 2

X----Gl

y----G2

x



490 Chapter 12 Standard Graphic Symbols Section 12-5 Symbols For Flip-Flops 491

The decoder is a special case of a more general component referred to as a coder. A coder is a
device that receives an input binary code on a number of inputs and produces a different binmy code
on a nnmberof ontpnts. Instead of using the qualifying symbol X !Y, the coder can be specified by
the code name. For example, the 3-to-8-line decoder of Fig. 12-6 can be symbolized with the name
BIN/OCT since the circnit converts a 3-bit binary number into 8 octal values, a through 7.

Before showing the graphic symbol for the multiplexer, it is necessary to show a variation
of the AND dependency. The AND dependency is sometimes represented by a shorthand no
tation like G~ .This symbol stands for eight AND dependency symbols from ato 7 as follows:

GO, GI, G2, G3, G4, G5, G6, G7

At any given time, only one out of the eight AND gates can be active. The active AND gate is
determined from the inputs associated with the G symbol. These inputs are marked with weights
equal to the powers of 2. For the eight AND gates just listed, the weights are 0, I, and 2, cor
responding to the numbers 2°, 21

, and 22
, respectively. The AND gate that is active at any given

time is determined from the sum of the weights of the active inputs. Thus, if inputs 0 and 2 are
active, then the AND gate that is active has the number 2° + 2' = 5. This makes G 5 active and
the other seven AND gates inactive.

The standard graphic symbol for a 8 X I multiplexer is shown in Fig. 12-7(a). The quali
fying symbol MUX identifies the device as a multiplexer. The symbols inside the block m'e part

of the standard notation, but the symbols marked outsideare user-defined symbols. The fnnc
tion table of the 741551 IC can be found in Fig. 11-9. The AND dependency is marked with
G~ and is associated with the inputs enclosed in brackets. These inputs have weights of 0, I,
and 2. They are actually what we have called the selection inputs. The eight data inputs are
marked with numbers from 0 to 7. The net weight of the active inputs associated with the G
symbol specifies the number in the data input that is active. For example, if selection inputs
eBA = 110, then inputs 1 and 2 associated with G are active. This gives a numerical value for
the AND dependency of 2' + 21 = 6, which makes G 6 active. Since G 6 is ANDed with data
input number 6, it makes this input active. Thus, the output will be equal to data input D, pro
vided that the enable input is active.

Fig.12-7(b) represents the quadruple 2 X 1 multiplexer IC type 74157 whose function table
is listed in Fig. 11-17. The enable and selection inputs are common to all four multiplexers. This
is indicated in the standard notation by the indented box at the top of the diagram, which repre
sents a common control block. The inputs to a common control block control all lower sections
of the diagram. The common enable input EN is active when in the low-level state. The AND
dependency, G I, determines which input is active in each multiplexer section. When G I = 0,
the A inputs marked with 1" are active. When G I = I, the B inputs marked with I are active. The
active inputs are applied to the corresponding outpnts if EN is active. Note that the input sym
bols 1" and 1 are marked in the upper section only instead of repeating them in each section.

S

A

B

C

DO

D1

D2

D3

D4

D5

D6

D7

7 MUX
EN

11
0

10 GQ
7

9
2

4
0 5

3
1 6

2
2

1
3

15
4

14
5

13
6

12
7

(a) IC type 741518 X 1 MUX

FIGURE 12-7
Graphic Symbols for Multiplexers

Y

W

Strobe

Select

Al

Bl

A2

B2

A3

B3

A4

84

15 ~
EN

1
Gl

'I I
2 MUX

I 4
3

1

5
7

6

11
9

10

14
12

13

(b) lC type 74157 quadruple 2 X 1 MUX

Yl

Y2

Y3

Y4

12-5 SYMBOLS FOR FLIP-FLOPS

The standard graphic symbols for different types of flip-flops are shown in Fig. 12-8. A flip
flop is represented by a rectangular-shaped block with inputs on the left and outputs on the right.
One output designates the normal state of the flip-flop and the other output with a small-circle
negation symbol (or polarity indicator) designates the complement output. The graphic sym
bols distinguish between three types of flip-flops: the D latch, whose internal construction is
shown in Fig. 6-5; the master-slave flip-flop, shown in Fig. 6-9; and the edge-triggered flip-flop,
introduced in Fig. 6-12. The graphic symbol for the D latch or D flip-flop has inputs D and C
indicated inside the block. The graphic symbol for the JK flip-flop has inputs J, K, and e in
side. The notation C 1, I D, 11, and I K are examples of control dependency. The input in e 1
controls input I D in a D flip-flop and inputs I J and 1K in a JK flip-flop.

The D latch has no other symbols besides the 1 D and C I inpnts. The edge-triggered flip
flop has an arrowhead-shaped symbol in front of the control dependency C I to designate a
dynamic input. The dynamic indicator symbol denotes that the flip-flop responds to the posi
tive-edge transition of the input clock pulses. A small circle outside the block along the dynamic
indicator designates a negative-edge transition for triggering the flip-flop. The master-slave is
considered to be a pulse-triggered flip-flop and is indicated as such with an npside-down L
symbol in front of the outputs. This is to show thatthe output signal changes on the falling edge
of the pulse. Note that the master-slave flip-flop is drawn without the dynamic indicator.

Flip-flops available in integrated-circuit packages provide special inputs for setting and re
setting the flip-flop asynchronously. These inputs are usually called direct set and direct reset.
They affect the output on the negative level of the signal without the need of a clock. The
graphic symbol of a master-slave JK flip-flop with direct set and reset is shown in Fig. 12-9(a).



Master-slave JK flip-flop

493

Q

Q'

Section 12-6 Symbols For Registers

1 "- R
9

C1

I I
2

4
lD 3

7
5

6

10
12

11

15
13

14

FIGURE 12-10
Graphic Symbol for a 4-Bit Register, IC Type 74175

Clock

Clear

The standard graphic symbol for a register is equivalent to the symbol used for a group of flip
flops with a common clock input. Fig. 12-10 shows the standard graphic symbol otIC type
74175, consisting offOUT D flip-flops with common clock and clear inputs. The clock input C I
and the clear input R appear in the common control block. The inputs to the common control
block are connected to each of the elements in the lower sections of the diagram. The notation
C I is the control dependency that controls all the I D inputs. Thus, each flip-flop is triggered

The notations C 1, 1J, and 1K represent control dependency, showing that the clock input at
C 1 controls inputs I J and 1 K. S andR have no 1 in front of the letters and, therefore, they are
not controlled by the clock at C 1. The S and R inputs have a small circle along the input lines
to indicate that they are active when in the logic-O level. The function table for the 7476 flip
flop is shown in Fig. 11-12.

The graphic symbol for a positive-edge-triggered D flip-flop with direct set and reset is
shown in Fig. 12-9(b). The positive-edge transition of the clock at input C I controls input I D.
The Sand R inputs are independent of the clock. This is IC type 7474, whose function table is
listed in Fig. 11-13.

SYMBOLS FOR REGISTERS12-6

6

5

'b--

(b) One-half 7474 D flip-flop

If

lD

Negative-edge-triggered
fK flip-flop

Positive-ectge-triggered
D flip-flop

---IC1

-----<1>C1

---11K

-------I>C1

-lD

Master-slave D flip-flop

_--.e4_.qs

_-,-3_-[> C1

_--=-2_--j lD

_--=-l_<jR

'1--

C1

1K

---Ill

D latch

1K

Positive-edge-triggered
JK flip-flop

---Ill

---I>C1

---IC1

---IlD

2
S

4 15
1J ,

1
Cl

16 14
1K ,

3
R

(a) One-half 7476 fK flip-flop

FIGURE 12-9
IC Flip-Flops with Direct Set and Reset

FIGURE 12-8
Standard Graphic Symbols for Flip-Flops

Chapter 12 Standard Graphic Symbols



Chapter 12 Standard Graphic Symbols

FIGURE 12-11
Graphic Symbol for a Shift Register with Parallel load, IC Type 74195

495

QB

QC

QA

QD

Section 12-6 Symbols For Registers

1 ~
SRG4

R
9

10 °jMQ
1 3

11
C4/1-7 /2 f--

~ I
2

1,4D 15
3

3,4D

4 14
3,4D

5
3,4D

13

6
3,4D

7
12

2,4D

A

B

C

D

Serial input

FIGURE 12-12
Graphic Symbol for a Bidirectional Shift Register with Parallel load, IC Type 74194

Serial input

Clear

So

Sl

Clock

(load) operation. The serial input label 1,3 J indicates that the J input of flip-flop QA is active
when Ml (shift) is active and C3 goes through a positive clock transition. The other serial
input with labell, 3 K has a polarity symbol in its input line corresponding to the complement
of input K in aJK flip-flop. The third input of QA and the inputs of the other flip-flops are for
the parallel input data. Each input is denoted by the label 2, 3D. The 2 is for M2 (load), and 3
is for the clock C 3. If the input in pin number 9 is in the low level, M 1 is active. and a posi
tive transition of the clock at C 3 causes a parallel transfer from the four inputs, A through D,
into the four flip-flops, QA through QD. Note that the parallel input is labeled only iu the first
and second sections. It is assumed to be in the other two sections below.

Fig. 12-12 shows the graphic symbol for the bidirectional shift register with parallel load,
IC type 74194. The function table for this IC is listed in Fig. 11-19. The common control block
shows an R input for resetting all flip-flops to 0 asynchrononsly. The mode select has two in
puts and the mode dependency M may take binary valnes from 0 to 3. This is indicated by the
symbol M~, which stands for MO, Ml, M2, M3, and is similar to the notation for the G de
pendency in multiplexers. The symbol associated with the clock is

C 4/1 --+ /2 +--

C 4 is the control dependency for the clock. The /1 --+ symbol indicates that the register shifts
right (down in this case) when the mode is M 1 (SI So = 01). The /2 +-- symbol indicates that
the register shifts left (np in this case) when the mode is M, (SISO = 10). The right and left di
rections are obtained when the page is turned 90 degrees counterclockwise.

QD

QD

QB

QC

QA

1 ~ SRG4
R

9

~
Ml [SHIFT]

M2 [LOAD]
10

C3/1--'

I I
2

1,3J
3 ~

15
1,3K

4 2,3D

5 14
2, 3D

6 13

12

7 11
D

J

K

A

B

C

Clock

SH/LD

Clear

by the common clock input. The dynamic inpnt symbol associated with C 1 indicates that the
flip-flops are triggered on the positive edge of the input clock. The common R input resets all
flip-flops when its input is at a low-level state. The 1D symbol is placed only once in the upper
section instead of repeating it in each section. The complement outputs of the flip-flops in this
diagram are marked with the polarity symbol rather than the negation symbo1.

The standard graphic symbol for a shift register with parallel load is shown in Fig. 12-11.
This is IC type 74195, whose function table can be fonnd in Fig. 11-16. The qualifying sym
bol for a shift register is SRG followed by a number that designates the nnmber of stages. Thus,
SRG4 denotes a 4-bit shift register. The common control block has two mode dependencies,
M 1 and M 2, for the shift and load operations, respectively. Note that the IC has a single input
labeled SH/LD (shift/load), which is split into two lines to show the two modes. M 1 is active
when the SH/LD input is high and M2 is active when the SH/LD input is low. M2 is recog
nized as active-low from the polarity indicator along its input line. Note the convention in this
symbology: we must recognize that a single input actually exists in pin 9, but it is split into two
parts in order to assign to it the two modes, M 1 and M 2. The control dependency C 3 is for the
clock input. The dynamic symbol along the C 3 input indicates that the flip-flops trigger on the
positive edge of the clock. The symbol /1 --+ following C 3 indicates that the register shifts to
the right or in the downward direction when mode M 1 is active.

The four sections below the common control block represent the four flip-flops. Flip-flop
QA has three inputs: two are associated with the serial (shift) operation and one with the parallel

494



496 Chapter 12 Standard Graphic Symbols Section 12-7 Symbols For Counters 497

FIGURE 12-14
Graphic Symbol for 4-Bit Binary Counter with Parallel load, IC Type 74161

load input at pin 9 that is split into the two modes, M 1 and M 2. M I is active when the load
input at pin 9 is low and M2 is active when the load input at pin 9 is high. M I is recognized
as active-low from the polarity indicator along its input line. The count-enable inputs use the
G dependencies. G 3 is associated with the T input and G 4 with the P input of the count en
able. The label associated with the clock is

12-7

The sections below the common control block represent the four flip-flops. The first flip
flop has a serial inpnt for shift right, denoted by I, 4D (mode M I, clock C 4, inpnt D). The last
flip-flop has a serial inpnt for shift left, denoted by 2, 4D (mode M2, clock C4, input D). All
four flip-flops have a parallel input denoted by the label 3, 4 D (mode M 3, clock C 4, input D).
Thus, M3 (S,So = II) is for parallel load. The remaining mode MO (S,So = 00) has no ef
fect on the outpnts because it is not included in the input labels.

SYMBOLS FOR COUNTERS

The standard graphic symbol of a binary ripple counter is shown in Fig. 12-13. The qualifying
symbol for a ripple counter is RCTR. The designation DIV 2 stands for the divide-by-2 circuit
that is obtained from the single flip-flop QA. The DIV 8 designation is for the divide-by-8
counter obtained from the other three flip-flops. The diagram represents IC type 7493, whose
internal circuit diagram is shown iu Fig. 11-2. The common control block has an iuternal AND
gate, with inputs R 1 and R 2. When both of these inputs are equal to 1, the content of the count
er goes to zero. This is indicated by the symbol CT = O. Since the count input does not go to
the clock inputs of all flip-flops, it has no C I label and, instead, the symbol + is used to indi
cate a count-up operation. The dynamic symbol next to the + together with the polarity sym
bol along the input line signify that the count is affected with a negative-edge transition of the
input signal. The bit grouping from 0 to 2 in the output represents values for the weights to the
power of 2. Thus, 0 represents the value of 20 = I and 2 represents the value 22 = 4.

The standard graphic symbol for the 4-bit counter with parallel load, IC type 74161, is
shown in Fig. 12-14. The qualifying symbol for a synchronous counter is CTR followed by the
symbol DIV 16 (divide by 16), which gives the cycle length of the counter. There is a single

Clear

Load

ENT

EN?

Clock

A

B

C

D

1 "-
CTR DIV16

CT~O

9 "-
M1

L M2 15
10 3CT~ 15

G3
7

G4

2 .....
C5/2, 3, 4 +

I I
143

1,5D [1] ...,
4 13

[2]
5 12

[4J
6

[8J
11

Output carry

QA

QB

QC

QD

FIGURE 12-13
Graphic Symbol for Ripple Counter, IC Type 7493

R1

R2

A

B

RCTR

2

3 & CT~O

'I I
14 "- 12

+ DIV2

1 "-
DIV8 9

+ 0
8

CT
11

2

QA

QB

QC

QD

C5/2,3,4 +

This means that the circuit counts up (the + symbol) when M2, G3, and G4 are active
(load = I, ENT = I, and ENP = I) and the clock in C 5 goes through a positive transition.
This condition is specified in the function table of the 74161 listed in Fig. II-IS. The parallel
inputs have the label I , 5 D, meaning thatthe D inputs are active when M 1 is active (load = 0)
and the clock goes through a positive transition. The output carry is designated by the label

3CT = IS

This is interpreted to mean that the output carry is active (equal to 1) if G 3 is active (ENT = I)
and the content (CT) of the counter is IS (binary 1111). Note that the outputs have an invert
ed L symbol, indicating that all the flip-flops are of the master-slave type. The polarity sym
bol in the C 5 input designates an inverted pulse for the input clock. This means that the master
is triggered on the negative transition of the clock pulse and the slave changes state on the
positive transition. Thus, the output changes on the positive transition of the clock pulse. It
should be noted that IC type 74LSI61 (low-power Schottky version) has positive-edge-triggered
flip-flops.



499References

(b) Active-high and active-low.

(d) Dynamic indicator.

Define the following in your own words:

(a) Positive and negative logic.

(c) Polarity indicator.

(e) Dependency notation.

Figure 11-1 shows various small-scale integration circuits with pin assignment. Using this in
formation, draw the rectangular-shaped graphic symbols for the 7400, 7404, and 7486 les.

Show an example of a graphic symbol that has the three Boolean dependencies-G, V, and N.
Draw the equivalent interpretation.

Draw the graphic symbol of a BCD-to-decimal decoder. This is similar to a decoder with 4 in
puts and 10 outputs.

Draw the graphic symbol of dual4-to-l-line multiplexers with common selection inputs and
a separate enable input for each multiplexer.

Draw the graphic symbol for the following flip-flops:

(a) Negative-edge-triggered D flip-flop. (b) Master-slave RS flip-flop.

(c) Positive-edge-triggered T flip-flop.

Draw the graphic symbol for a binary-to-octal decoder with three enable inputs, E 1, E2, and
E3. The circuit is enabled ifEl = 1,E2 = O,andE3 = o(assuming positive logic).

1984. IEEE Standard Graphic Symbols for Logic Functions (ANSIJIEEE Std. 91-1984). New
York: Institute of Electrical and Electronics Engineers.

KAMPEL, I. 1985. A Practical Introduction to the New Logic Symbols. Boston: Butterworth.

MANN, F. A. 1984. Explanation ofNew Logic Symbols. Dallas: Texas Instruments.

1985. The TTL Data Book, Volume 1. Dallas: Texas Instruments.

12-4

Explain the function of the common control block when used with the standard graphic symbols.

Draw the graphic symbol of a 4-bit register with parallel load using the label M 1 for the load
input and C 2 for the clock.

12-10 Explain all the symbols used in the standard graphic diagram of Fig. 12-12.

12-8

12-9

12-11 Draw the graphic symbol of an up-down synchronous binary counter with mode input (for up
or down) and count-enable input with G dependency. Show the output carries for the up count
and the down count.

12-7

12-6

12-3

12-2

12-1

12-5

12-12 Draw the graphic symbol of a 256 X 1 RAM. Include the symbol for three-state outputs.

1.

2.

3.

4.

REFERENCES

PROBLEMS

SI

S2

S3

S4

1
RAM 16 x 4

0
15

0
14 A 15
13

2

2 ~
Gl

3

~
lEN [READ]

lC2 [WRITE]

'I I
4 5

A,2D AV
6 7

10 9

12 11

D1

D2

D3

D4

AO

Al

A2

A3

CS

WE

FIGURE 12-15
Graphic Symbol for 16 x 4 RAM, Ie Type 74189

The standard graphic symbol for the random-access memory (RAM) 74189 is shown in
Fig. 12-15. The numbers 16 X 4 that follow the qualifying symbol RAM designate the num
ber of words and the number of bits per word. The common control block is shown with four
address lines and two control inputs. Each bit of the word is shown in a separate section with
an input and output data line. The address dependency A is used to identify the address inputs
of the memory. Data inputs and outputs affected by the address are labeled with the letter A.
The bit grouping from 0 through 3 provides the binary address that ranges from A0 through
A IS. The iuverted triangle signifies three-state outputs. The polarity symbol specifies the in
version of the outputs.

The operation of the memory is specified by means of the dependency notation. The
RAM graphic symbol uses four dependencies: A (address), G (AND), EN (enable), and C
(control). Input G I is to be considered ANDed with lEN and IC2 because G I has a I
after the letter G and the other two have a I in their label. The EN dependency is used to
identify an enable input that controls the data outputs. The dependency C 2 controls the in
puts as indicated by the 2D label. Thus, for a write operation, we have the G I and IC2 de
pendency(CS = 0), the C2 and 2D dependency (WE = 0), and the A dependency, which
specifies the binary address in the four address inputs. For a read operation, we have the G I
and lEN dependencies (CS = 0, WE = I) and the A dependency for the outputs. The in
terpretation of these dependencies results in the operation of the memory as listed in the func
tion table of Fig. 11-18.

SYMBOL FOR RAM

Chapter 12 Standard Graphic Symbols

12-8

498


	ch.1.pdf
	ch.2.pdf
	ch.3 part1.pdf
	ch.3 part2.pdf
	ch.4 part1.pdf
	ch.4 part2.pdf
	ch.4 part3.pdf
	ch.4 part4.pdf
	ch.5part1.pdf
	ch.5part2.pdf
	ch.5part3.pdf
	ch.6part1.pdf
	ch.6part2.pdf
	ch.7part1.pdf
	ch.7part2.pdf
	ch.8part1.pdf
	ch.8part2.pdf
	ch.9part1.pdf
	ch.9part2.pdf
	ch.9part3.pdf
	ch.10part1.pdf
	ch.10part2.pdf
	ch.11part1.pdf
	ch.11part2.pdf
	ch.11part3.pdf
	ch.12.pdf


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     3
     2
     3
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     3
     2
     3
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     3
     2
     3
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     7
     6
     7
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     11
     10
     11
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     11
     10
     11
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     11
     10
     11
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     7
     6
     7
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     7
     6
     7
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     4
     3
     4
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     4
     3
     4
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     9
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     15
     14
     15
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     15
     14
     15
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     15
     14
     15
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 21.60 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     21.6000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     9
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     3
     2
     3
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     3
     2
     3
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     3
     2
     3
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     148
     61
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       PDDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     11
     10
     11
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 11
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         SubDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     11
     10
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: cut right edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         CurrentPage
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     11
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: cut left edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         CurrentPage
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     11
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 11
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         SubDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     11
     10
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       PDDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     11
     10
     11
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     11
     10
     11
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     11
     10
     11
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     9
     8
     9
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 144.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     144.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut top edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 21.60 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     21.6000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 14.40 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     14.4000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     5
     4
     5
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 144.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     144.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     13
     12
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 21.60 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     21.6000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     13
     12
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     3
     13
     12
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     13
     12
     13
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: cut top edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         CurrentPage
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     13
     1
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: cut top edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         CurrentPage
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     2
     13
     2
     1
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     175
     92
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 108.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     175
     92
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     108.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut bottom edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     175
     92
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         11
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     10
     9
     10
      

   1
  

 HistoryList_V1
 QI2base




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 16
     Trim: cut bottom edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     450
     194
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         SubDoc
         16
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     16
     15
     15
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 16
     Trim: cut bottom edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     450
     194
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         SubDoc
         16
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     16
     15
     15
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 2 to page 16
     Trim: cut bottom edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     450
     194
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         SubDoc
         16
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     16
     15
     15
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: current page
     Trim: cut top edge by 180.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         CurrentPage
         16
              

       CurrentAVDoc
          

     Smaller
     180.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     0
     16
     0
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     16
     15
     16
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut right edge by 36.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       CurrentAVDoc
          

     Smaller
     36.0000
     Right
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     16
     15
     16
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: cut left edge by 72.00 points
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     355
     132
    
     None
     Down
     14.4000
     0.0000
            
                
         Both
         2
         AllDoc
         16
              

       CurrentAVDoc
          

     Smaller
     72.0000
     Left
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0g
     Quite Imposing Plus 2
     1
      

        
     1
     16
     15
     16
      

   1
  

 HistoryList_V1
 QI2base





