

Digital Design
With an Introduction to the Verilog HDL

This page intentionally left blank

 Digital Design
 With an Introduction to the Verilog HDL

 FIFTH EDITION

 M. Morris Mano
 Emeritus Professor of Computer Engineering

 California State University, Los Angeles

 Michael D. Ciletti
 Emeritus Professor of Electrical and Computer Engineering

 University of Colorado at Colorado Springs

 Upper Saddle River Boston Columbus San Franciso New York
Indianapolis London Toronto Sydney Singapore Tokyo Montreal

Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

 Library of Congress Cataloging-in-Publication Data

 Mano, M. Morris, 1927–

 Digital design : with an introduction to the verilog hdl / M. Morris Mano, Michael D. Ciletti.—5th ed.

 p. cm.

 Includes index.

 ISBN-13: 978-0-13-277420-8

 ISBN-10: 0-13-277420-8

 1. Electronic digital computers—Circuits. 2. Logic circuits. 3. Logic design. 4. Digital integrated

circuits. I. Ciletti, Michael D. II. Title.

 TK7888.3.M343 2011

 621.39'5—dc23

 2011039094

Vice President and Editorial Director, ECS:

 Marcia J. Horton
Executive Editor: Andrew Gilfillan
Vice-President, Production: Vince O’Brien
Executive Marketing Manager: Tim Galligan
Marketing Assistant: Jon Bryant
Permissions Project Manager: Karen Sanatar
Senior Managing Editor: Scott Disanno
Production Project Manager/Editorial Production

 Manager: Greg Dulles

Cover Designer: Jayne Conte
Cover Photo: Michael D. Ciletti
Composition: Jouve India Private Limited
Full-Service Project Management: Jouve India Private
 Limited
Printer/Binder: Edwards Brothers
Typeface: Times Ten 10/12

Copyright © 2013, 2007, 2002, 1991, 1984 Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper
Saddle River, New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication is

protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction,

storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,

recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to

Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where

those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been

printed in initial caps or all caps.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing

from the publisher.

Verilogger Pro and SynaptiCAD are trademarks of SynaptiCAD, Inc., Blacksburg, VA 24062–0608.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the

development, research, and testing of the theories and programs to determine their effectiveness. The author and

publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation

contained in this book. The author and publisher shall not be liable in any event for incidental or consequential

damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

About the cover: “Spider Rock in Canyon de Chelley,” Chinle, Arizona, USA, January 2011. Photograph courtesy of mdc

Images, LLC (www.mdcilettiphotography.com). Used by permission.

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-277420-8

ISBN-10: 0-13-277420-8

 PowerEn.ir

www.mdcilettiphotography.com

v

P r e f a c e i x

1 D i g i t a l S y s t e m s a n d B i n a r y N u m b e r s 1

1.1 Digital Systems 1
1.2 Binary Numbers 3
1.3 Number‐Base Conversions 6
1.4 Octal and Hexadecimal Numbers 8
1.5 Complements of Numbers 10
1.6 Signed Binary Numbers 14
1.7 Binary Codes 18
1.8 Binary Storage and Registers 27
1.9 Binary Logic 30

2 B o o l e a n A l g e b r a a n d L o g i c G a t e s 3 8

2.1 Introduction 38
2.2 Basic Definitions 38
2.3 Axiomatic Definition of Boolean Algebra 40
2.4 Basic Theorems and Properties of Boolean Algebra 43
2.5 Boolean Functions 46
2.6 Canonical and Standard Forms 51
2.7 Other Logic Operations 58
2.8 Digital Logic Gates 60
2.9 Integrated Circuits 66

Contents

vi Contents

 3 G a t e ‐ L e v e l M i n i m i z a t i o n 7 3

 3.1 Introduction 73
 3.2 The Map Method 73
 3.3 Four‐Variable K-Map 80
 3.4 Product‐of‐Sums Simplification 84
 3.5 Don’t‐Care Conditions 88
 3.6 NAND and NOR Implementation 90
 3.7 Other Two‐Level Implementations 97
 3.8 Exclusive‐OR Function 103
 3.9 Hardware Description Language 108

 4 C o m b i n a t i o n a l L o g i c 1 2 5

 4.1 Introduction 125
 4.2 Combinational Circuits 125
 4.3 Analysis Procedure 126
 4.4 Design Procedure 129
 4.5 Binary Adder–Subtractor 133
 4.6 Decimal Adder 144
 4.7 Binary Multiplier 146
 4.8 Magnitude Comparator 148
 4.9 Decoders 150
 4.10 Encoders 155
 4.11 Multiplexers 158
 4.12 HDL Models of Combinational Circuits 164

 5 S y n c h r o n o u s S e q u e n t i a l L o g i c 1 9 0

 5.1 Introduction 190
 5.2 Sequential Circuits 190
 5.3 Storage Elements: Latches 193
 5.4 Storage Elements: Flip‐Flops 196
 5.5 Analysis of Clocked Sequential Circuits 204
 5.6 Synthesizable HDL Models of Sequential Circuits 217
 5.7 State Reduction and Assignment 231
 5.8 Design Procedure 236

 6 R e g i s t e r s a n d C o u n t e r s 2 5 5

 6.1 Registers 255
 6.2 Shift Registers 258
 6.3 Ripple Counters 266
 6.4 Synchronous Counters 271
 6.5 Other Counters 278
 6.6 HDL for Registers and Counters 283

Contents vii

 7 M e m o r y a n d P r o g r a m m a b l e L o g i c 2 9 9

 7.1 Introduction 299
 7.2 Random‐Access Memory 300
 7.3 Memory Decoding 307
 7.4 Error Detection and Correction 312
 7.5 Read‐Only Memory 315
 7.6 Programmable Logic Array 321
 7.7 Programmable Array Logic 325
 7.8 Sequential Programmable Devices 329

 8 D e s i g n a t t h e R e g i s t e r
Tr a n s f e r L e v e l 3 5 1

 8.1 Introduction 351
 8.2 Register Transfer Level Notation 351
 8.3 Register Transfer Level in HDL 354
 8.4 Algorithmic State Machines (ASMs) 363
 8.5 Design Example (ASMD Chart) 371
 8.6 HDL Description of Design Example 381
 8.7 Sequential Binary Multiplier 391
 8.8 Control Logic 396
 8.9 HDL Description of Binary Multiplier 402
 8.10 Design with Multiplexers 411
 8.11 Race‐Free Design (Software Race Conditions) 422
 8.12 Latch‐Free Design (Why Waste Silicon?) 425
 8.13 Other Language Features 426

 9 L a b o r a t o r y E x p e r i m e n t s
w i t h S t a n d a r d I C s a n d F P G A s 4 3 8

 9.1 Introduction to Experiments 438
 9.2 Experiment 1: Binary and Decimal Numbers 443
 9.3 Experiment 2: Digital Logic Gates 446
 9.4 Experiment 3: Simplification of Boolean Functions 448
 9.5 Experiment 4: Combinational Circuits 450
 9.6 Experiment 5: Code Converters 452
 9.7 Experiment 6: Design with Multiplexers 453
 9.8 Experiment 7: Adders and Subtractors 455
 9.9 Experiment 8: Flip‐Flops 457
 9.10 Experiment 9: Sequential Circuits 460
 9.11 Experiment 10: Counters 461
 9.12 Experiment 11: Shift Registers 463
 9.13 Experiment 12: Serial Addition 466
 9.14 Experiment 13: Memory Unit 467
 9.15 Experiment 14: Lamp Handball 469

viii Contents

 9.16 Experiment 15: Clock‐Pulse Generator 473
 9.17 Experiment 16: Parallel Adder and Accumulator 475
 9.18 Experiment 17: Binary Multiplier 478
 9.19 Verilog HDL Simulation Experiments

and Rapid Prototyping with FPGAs 480

 1 0 S t a n d a r d G r a p h i c S y m b o l s 4 8 8

 10.1 Rectangular‐Shape Symbols 488
 10.2 Qualifying Symbols 491
 10.3 Dependency Notation 493
 10.4 Symbols for Combinational Elements 495
 10.5 Symbols for Flip‐Flops 497
 10.6 Symbols for Registers 499
 10.7 Symbols for Counters 502
 10.8 Symbol for RAM 504

 A p p e n d i x 5 0 7

 A n s w e r s t o S e l e c t e d P r o b l e m s 5 2 1

 I n d e x 5 3 9

ix

 Since the fourth edition of Digital Design, the commercial availability of devices using

digital technology to receive, manipulate, and transmit information seems to have

exploded. Cell phones and handheld devices of various kinds offer new, competing

features almost daily. Underneath the attractive graphical user interface of all of these

devices sits a digital system that processes data in a binary format. The theoretical

foundations of these systems have not changed much; indeed, one could argue that

the stability of the core theory, coupled with modern design tools, has promoted the

widespread response of manufacturers to the opportunities of the marketplace. Con-

sequently, our refinement of our text has been guided by the need to equip our grad-

uates with a solid understanding of digital machines and to introduce them to the

methodology of modern design.

 This edition of Digital Design builds on the previous four editions, and the feedback

of the team of reviewers who helped set a direction for our presentation. The focus of

the text has been sharpened to more closely reflect the content of a foundation course

in digital design and the mainstream technology of today’s digital systems: CMOS

circuits. The intended audience is broad, embracing students of computer science, com-

puter engineering, and electrical engineering. The key elements that the book focuses

include (1) Boolean logic, (2) logic gates used by designers, (3) synchronous finite state

machines, and (4) datapath controller design—all from a perspective of designing dig-

ital systems. This focus led to elimination of material more suited for a course in elec-

tronics. So the reader will not find here content for asynchronous machines or

descriptions of bipolar transistors. Additionally, the widespread availability of web‐

based ancillary material prompted us to limit our discussion of field programmable

gate arrays (FPGAs) to an introduction of devices offered by only one manufacturer,

rather than two. Today’s designers rely heavily on hardware description languages

 Preface

x Preface

(HDLs), and this edition of the book gives greater attention to their use and presents

what we think is a clear development of a design methodology using the Verilog HDL.

 M U LT I ‐ M O D A L L E A R N I N G

 Digital Design supports a multimodal approach to learning. The so‐called VARK char-

acterization of learning modalities identifies four major modes by which humans learn:

(V) visual, (A) aural, (R) reading, and (K) kinesthetic. In hindsight, we note that the

relatively high level of illustrations and graphical content of our text addresses the visual

(V) component of VARK; discussions and numerous examples address the reading (R)

component. Students who exploit the availability of free simulators to work assignments

are led through a kinesthetic (K) learning experience, including the positive feedback

and delight of designing a logic system that works. The remaining element of VARK, the

aural/auditory (A) experience, is left to the instructor. We have provided an abundance

of material and examples to support classroom lectures. Thus, a course in digital design,

using Digital Design, can provide a rich, balanced learning experience and address all

the modes identified by VARK.

 For those who might still question the presentation and use of HDLs in a first course

in digital design, we note that industry has largely abandoned schematic‐based design

entry, a style which emerged in the 1980s, during the nascent development of CAD tools

for integrated circuit (IC) design. Schematic entry creates a representation of functional-

ity that is implicit in the layout of the schematic. Unfortunately, it is difficult for anyone

in a reasonable amount of time to determine the functionality represented by the sche-

matic of a logic circuit without having been instrumental in its construction, or without

having additional documentation expressing the design intent. Consequently, industry

has migrated to HDLs (e.g., Verilog) to describe the functionality of a design and to serve

as the basis for documenting, simulating, testing, and synthesizing the hardware imple-

mentation of the design in a standard cell‐based ASIC or an FPGA. The utility of a

schematic depends on the careful, detailed documentation of a carefully constructed

hierarchy of design modules. In the old paradigm, designers relied upon their years of

experience to create a schematic of a circuit to implement functionality. In today’s design

flow, designers using HDLs can express functionality directly and explicitly, without years

of accumulated experience, and use synthesis tools to generate the schematic as a by‐

product, automatically. Industry practices arrived here because schematic entry dooms

us to inefficiency, if not failure, in understanding and designing large, complex ICs.

 We note, again in this edition, that introducing HDLs in a first course in designing

digital circuits is not intended to replace fundamental understanding of the building blocks

of such circuits or to eliminate a discussion of manual methods of design. It is still essential

for a student to understand how hardware works . Thus, we retain a thorough treatment of

combinational and sequential logic devices. Manual design practices are presented, and

their results are compared with those obtained with a HDL‐based paradigm. What we are

presenting, however, is an emphasis on how hardware is designed, to better prepare a

student for a career in today’s industry, where HDL‐based design practices are dominant.

Preface xi

 F L E X I B I L I T Y

 The sequence of topics in the text can accommodate courses that adhere to traditional,

manual‐based, treatments of digital design, courses that treat design using an HDL, and

courses that are in transition between or blend the two approaches. Because modern

synthesis tools automatically perform logic minimization, Karnaugh maps and related

topics in optimization can be presented at the beginning of a treatment of digital design,

or they can be presented after circuits and their applications are examined and simulated

with an HDL. The text includes both manual and HDL‐based design examples. Our end‐

of‐chapter problems further facilitate this flexibility by cross referencing problems that

address a traditional manual design task with a companion problem that uses an HDL

to accomplish the task. Additionally, we link the manual and HDL‐based approaches by

presenting annotated results of simulations in the text, in answers to selected problems

at the end of the text, and in the solutions manual.

 N E W T O T H I S E D I T I O N

 This edition of Digital Design uses the latest features of IEEE Standard 1364, but only

insofar as they support our pedagogical objectives. The revisions and updates to the

text include:

 • Elimination of specialized circuit‐level content not typically covered in a first

course in logic circuits and digital design (e.g., RTL, DTL, and emitter‐coupled

logic circuits)

 • Addition of “Web Search Topics” at the end of each chapter to point students to

additional subject matter available on the web

 • Revision of approximately one‐third of the problems at the end of the chapters

 • A printed solution manual for entire text, including all new problems

 • Streamlining of the discussion of Karnaugh maps

 • Integration of treatment of basic CMOS technology with treatment of logic gates

 • Inclusion of an appendix introducing semiconductor technology

 D E S I G N M E T H O D L O G Y

 This text presents a systematic methodology for designing a state machine to control

the datapath of a digital system. Moreover, the framework in which this material is pre-

sented treats the realistic situation in which status signals from the datapath are used by

the controller, i.e., the system has feedback. Thus, our treatment provides a foundation

for designing complex and interactive digital systems. Although it is presented with an

emphasis on HDL‐based design, the methodology is also applicable to manual‐based

approaches to design.

xii Preface

 J U S T E N O U G H H D L

 We present only those elements of the Verilog language that are matched to the level and

scope of this text. Also, correct syntax does not guarantee that a model meets a functional

specification or that it can be synthesized into physical hardware. So, we introduce stu-

dents to a disciplined use of industry‐based practices for writing models to ensure that a

behavioral description can be synthesized into physical hardware, and that the behavior

of the synthesized circuit will match that of the behavioral description. Failure to follow

this discipline can lead to software race conditions in the HDL models of such machines,

race conditions in the test bench used to verify them, and a mismatch between the results

of simulating a behavioral model and its synthesized physical counterpart. Similarly, fail-

ure to abide by industry practices may lead to designs that simulate correctly, but which

have hardware latches that are introduced into the design accidentally as a consequence

of the modeling style used by the designer. The industry‐based methodology we present

leads to race‐free and latch‐free designs. It is important that students learn and follow

industry practices in using HDL models, independent of whether a student’s curriculum

has access to synthesis tools.

 V E R I F I C AT I O N

 In industry, significant effort is expended to verify that the functionality of a circuit is

correct. Yet not much attention is given to verification in introductory texts on digital

design, where the focus is on design itself, and testing is perhaps viewed as a secondary

undertaking. Our experience is that this view can lead to premature “high‐fives” and

declarations that “the circuit works beautifully.” Likewise, industry gains repeated returns

on its investment in an HDL model by ensuring that it is readable, portable, and reusable.

We demonstrate naming practices and the use of parameters to facilitate reusability and

portability. We also provide test benches for all of the solutions and exercises to (1) verify

the functionality of the circuit, (2) underscore the importance of thorough testing, and

(3) introduce students to important concepts, such as self‐checking test benches. Advo-

cating and illustrating the development of a test plan to guide the development of a test

bench, we introduce test plans, albeit simply, in the text and expand them in the solutions

manual and in the answers to selected problems at the end of the text.

 H D L C O N T E N T

 We have ensured that all examples in the text and all answers in the solution manual

conform to accepted industry practices for modeling digital hardware. As in the previ-

ous edition, HDL material is inserted in separate sections so that it can be covered or

skipped as desired, does not diminish treatment of manual‐based design, and does not

dictate the sequence of presentation. The treatment is at a level suitable for beginning

students who are learning digital circuits and a HDL at the same time. The text prepares

Preface xiii

students to work on signficant independent design projects and to succeed in a later

course in computer architecture and advanced digital design.

 Instructor Resources

 Instructors can download the following classroom‐ready resources from the publisher’s

website for the text (www.pearsonhighered.com/mano):

 • Source code and test benches for all Verilog HDL examples in the test

 • All figures and tables in the text

 • Source code for all HDL models in the solutions manual

 • A downloadable solutions manual with graphics suitable for classroom presentation

 HDL Simulators

 The Companion Website identifies web URLs to two simulators provided by Synapti-

CAD. The first simulator is VeriLogger Pro, a traditional Verilog simulator that can be

used to simulate the HDL examples in the book and to verify the solutions of HDL

problems. This simulator accepts the syntax of the IEEE‐1995 standard and will be

useful to those who have legacy models. As an interactive simulator, Verilogger Ex-
treme accepts the syntax of IEEE‐2001 as well as IEEE‐1995, allowing the designer to

simulate and analyze design ideas before a complete simulation model or schematic is

available. This technology is particularly useful for students because they can quickly

enter Boolean and D flip‐flop or latch input equations to check equivalency or to ex-

periment with flip‐flops and latch designs. Students can access the Companion Website

at www.pearsonhighered.com/mano.

 Chapter Summary

 The following is a brief summary of the topics that are covered in each chapter.

 Chapter 1 presents the various binary systems suitable for representing information

in digital systems. The binary number system is explained and binary codes are illus-

trated. Examples are given for addition and subtraction of signed binary numbers and

decimal numbers in binary‐coded decimal (BCD) format.

 Chapter 2 introduces the basic postulates of Boolean algebra and shows the correla-

tion between Boolean expressions and their corresponding logic diagrams. All possible

logic operations for two variables are investigated, and the most useful logic gates used

in the design of digital systems are identified. This chapter also introduces basic CMOS

logic gates.

 Chapter 3 covers the map method for simplifying Boolean expressions. The map

method is also used to simplify digital circuits constructed with AND‐OR, NAND, or

NOR gates. All other possible two‐level gate circuits are considered, and their method

of implementation is explained. Verilog HDL is introduced together with simple exam-

ples of gate‐level models.

www.pearsonhighered.com/mano
www.pearsonhighered.com/mano

xiv Preface

 Chapter 4 outlines the formal procedures for the analysis and design of combina-

tional circuits. Some basic components used in the design of digital systems, such as

adders and code converters, are introduced as design examples. Frequently used digital

logic functions such as parallel adders and subtractors, decoders, encoders, and multi-

plexers are explained, and their use in the design of combinational circuits is illustrated.

HDL examples are given in gate‐level, dataflow, and behavioral models to show the

alternative ways available for describing combinational circuits in Verilog HDL. The

procedure for writing a simple test bench to provide stimulus to an HDL design is

presented.

 Chapter 5 outlines the formal procedures for analyzing and designing clocked (syn-

chronous) sequential circuits. The gate structure of several types of flip‐flops is presented

together with a discussion on the difference between level and edge triggering. Specific

examples are used to show the derivation of the state table and state diagram when

analyzing a sequential circuit. A number of design examples are presented with empha-

sis on sequential circuits that use D‐type flip‐flops. Behavioral modeling in Verilog HDL

for sequential circuits is explained. HDL Examples are given to illustrate Mealy and

Moore models of sequential circuits.

 Chapter 6 deals with various sequential circuit components such as registers, shift

registers, and counters. These digital components are the basic building blocks from

which more complex digital systems are constructed. HDL descriptions of shift registers

and counter are presented.

 Chapter 7 deals with random access memory (RAM) and programmable logic

devices. Memory decoding and error correction schemes are discussed. Combinational

and sequential programmable devices such as ROMs, PLAs, PALs, CPLDs, and FPGAs

are presented.

 Chapter 8 deals with the register transfer level (RTL) representation of digital sys-

tems. The algorithmic state machine (ASM) chart is introduced. A number of examples

demonstrate the use of the ASM chart, ASMD chart, RTL representation, and HDL

description in the design of digital systems. The design of a finite state machine to con-

trol a datapath is presented in detail, including the realistic situation in which status

signals from the datapath are used by the state machine that controls it. This chapter is

the most important chapter in the book as it provides the student with a systematic

approach to more advanced design projects.

 Chapter 9 outlines experiments that can be performed in the laboratory with hard-

ware that is readily available commercially. The operation of the ICs used in the

experiments is explained by referring to diagrams of similar components introduced

in previous chapters. Each experiment is presented informally and the student is

expected to design the circuit and formulate a procedure for checking its operation

in the laboratory. The lab experiments can be used in a stand‐alone manner too and

can be accomplished by a traditional approach, with a breadboard and TTL circuits,

or with an HDL/synthesis approach using FPGAs. Today, software for synthesizing

an HDL model and implementing a circuit with an FPGA is available at no cost from

vendors of FPGAs, allowing students to conduct a significant amount of work in their

personal environment before using prototyping boards and other resources in a lab.

Preface xv

Circuit boards for rapid prototyping circuits with FPGAs are available at a nominal

cost, and typically include push buttons, switches, seven‐segment displays, LCDs, key-

pads, and other I/O devices. With these resources, students can work prescribed lab

exercises or their own projects and get results immediately.

 Chapter 10 presents the standard graphic symbols for logic functions recommended

by an ANSI/IEEE standard. These graphic symbols have been developed for small‐scale

integration (SSI) and medium‐scale integration (MSI) components so that the user can

recognize each function from the unique graphic symbol assigned. The chapter shows

the standard graphic symbols of the ICs used in the laboratory experiments.

A C K N O W L E D G M E N T S

We are grateful to the reviewers of Digital Design, 5e. Their expertise, careful reviews,

and suggestions helped shape this edition.

Dmitri Donetski, Stony Brook University

Ali Amini, California State University, Northridge

Mihaela Radu, Rose Hulman Institute of Technology

Stephen J Kuyath, University of North Carolina, Charlotte

Peter Pachowicz, George Mason University

David Jeff Jackson, University of Alabama

A. John Boye, University of Nebraska, Lincoln

William H. Robinson, Vanderbilt University

Dinesh Bhatia, University of Texas, Dallas

We also wish to express our gratitude to the editorial and publication team at Prentice

Hall/Pearson Education for supporting this edition of our text. We are grateful, too, for

the ongoing support and encouragement of our wives, Sandra and Jerilynn.

 M. Morris Mano

Emeritus Professor of Computer Engineering
California State University, Los Angeles

 Michael D. Ciletti

Emeritus Professor of Electrical and Computer Engineering
 University of Colorado at Colorado Springs

This page intentionally left blank

1

 Chapter 1

 Digital Systems and Binary Numbers

 1 . 1 D I G I TA L S Y S T E M S

 Digital systems have such a prominent role in everyday life that we refer to the present

technological period as the digital age. Digital systems are used in communication, busi-

ness transactions, traffic control, spacecraft guidance, medical treatment, weather mon-

itoring, the Internet, and many other commercial, industrial, and scientific enterprises.

We have digital telephones, digital televisions, digital versatile discs, digital cameras,

handheld devices, and, of course, digital computers. We enjoy music downloaded to our

portable media player (e.g., iPod Touch™) and other handheld devices having high‐

resolution displays. These devices have graphical user interfaces (GUIs), which enable

them to execute commands that appear to the user to be simple, but which, in fact,

involve precise execution of a sequence of complex internal instructions. Most, if not all,

of these devices have a special‐purpose digital computer embedded within them. The

most striking property of the digital computer is its generality. It can follow a sequence

of instructions, called a program, that operates on given data. The user can specify and

change the program or the data according to the specific need. Because of this flexibil-

ity, general‐purpose digital computers can perform a variety of information‐processing

tasks that range over a wide spectrum of applications.

 One characteristic of digital systems is their ability to represent and manipulate dis-

crete elements of information. Any set that is restricted to a finite number of elements

contains discrete information. Examples of discrete sets are the 10 decimal digits, the

26 letters of the alphabet, the 52 playing cards, and the 64 squares of a chessboard. Early

digital computers were used for numeric computations. In this case, the discrete ele-

ments were the digits. From this application, the term digital computer emerged. Dis-

crete elements of information are represented in a digital system by physical quantities

2 Chapter 1 Digital Systems and Binary Numbers

called signals. Electrical signals such as voltages and currents are the most common.

Electronic devices called transistors predominate in the circuitry that implements these

signals. The signals in most present‐day electronic digital systems use just two discrete

values and are therefore said to be binary. A binary digit, called a bit, has two values: 0

and 1. Discrete elements of information are represented with groups of bits called binary

codes. For example, the decimal digits 0 through 9 are represented in a digital system

with a code of four bits (e.g., the number 7 is represented by 0111). How a pattern of

bits is interpreted as a number depends on the code system in which it resides. To make

this distinction, we could write (0111) 2 to indicate that the pattern 0111 is to be inter-

preted in a binary system, and (0111) 10 to indicate that the reference system is decimal.

Then 0111 2 = 7 10 , which is not the same as 0111 10 , or one hundred eleven. The subscript

indicating the base for interpreting a pattern of bits will be used only when clarification

is needed. Through various techniques, groups of bits can be made to represent discrete

symbols, not necessarily numbers, which are then used to develop the system in a digital

format. Thus, a digital system is a system that manipulates discrete elements of informa-

tion represented internally in binary form. In today’s technology, binary systems are most

practical because, as we will see, they can be implemented with electronic components.

 Discrete quantities of information either emerge from the nature of the data being

processed or may be quantized from a continuous process. On the one hand, a payroll

schedule is an inherently discrete process that contains employee names, social security

numbers, weekly salaries, income taxes, and so on. An employee’s paycheck is processed

by means of discrete data values such as letters of the alphabet (names), digits (salary),

and special symbols (such as $). On the other hand, a research scientist may observe a

continuous process, but record only specific quantities in tabular form. The scientist is

thus quantizing continuous data, making each number in his or her table a discrete

quantity. In many cases, the quantization of a process can be performed automatically

by an analog‐to‐digital converter, a device that forms a digital (discrete) representation

of a analog (continuous) quantity.

 The general‐purpose digital computer is the best‐known example of a digital system.

The major parts of a computer are a memory unit, a central processing unit, and input–

output units. The memory unit stores programs as well as input, output, and intermedi-

ate data. The central processing unit performs arithmetic and other data‐processing

operations as specified by the program. The program and data prepared by a user are

transferred into memory by means of an input device such as a keyboard. An output

device, such as a printer, receives the results of the computations, and the printed results

are presented to the user. A digital computer can accommodate many input and output

devices. One very useful device is a communication unit that provides interaction with

other users through the Internet. A digital computer is a powerful instrument that can

perform not only arithmetic computations, but also logical operations. In addition, it can

be programmed to make decisions based on internal and external conditions.

 There are fundamental reasons that commercial products are made with digital cir-

cuits. Like a digital computer, most digital devices are programmable. By changing the

program in a programmable device, the same underlying hardware can be used for many

different applications, thereby allowing its cost of development to be spread across a

wider customer base. Dramatic cost reductions in digital devices have come about

Section 1.2 Binary Numbers 3

because of advances in digital integrated circuit technology. As the number of transistors

that can be put on a piece of silicon increases to produce complex functions, the cost per

unit decreases and digital devices can be bought at an increasingly reduced price. Equip-

ment built with digital integrated circuits can perform at a speed of hundreds of millions

of operations per second. Digital systems can be made to operate with extreme reli-

ability by using error‐correcting codes. An example of this strategy is the digital versa-

tile disk (DVD), in which digital information representing video, audio, and other data

is recorded without the loss of a single item. Digital information on a DVD is recorded

in such a way that, by examining the code in each digital sample before it is played back,

any error can be automatically identified and corrected.

 A digital system is an interconnection of digital modules. To understand the opera-
tion of each digital module, it is necessary to have a basic knowledge of digital circuits
and their logical function. The first seven chapters of this book present the basic tools

of digital design, such as logic gate structures, combinational and sequential circuits, and

programmable logic devices. Chapter 8 introduces digital design at the register transfer

level (RTL) using a modern hardware description language (HDL). Chapter 9 concludes

the text with laboratory exercises using digital circuits.

 A major trend in digital design methodology is the use of a HDL to describe and simulate

the functionality of a digital circuit. An HDL resembles a programming language and is

suitable for describing digital circuits in textual form. It is used to simulate a digital system

to verify its operation before hardware is built. It is also used in conjunction with logic syn-

thesis tools to automate the design process. Because it is important that students become
familiar with an HDL‐based design methodology , HDL descriptions of digital circuits are

presented throughout the book. While these examples help illustrate the features of an HDL,

they also demonstrate the best practices used by industry to exploit HDLs. Ignorance of

these practices will lead to cute, but worthless, HDL models that may simulate a phenom-

enon, but that cannot be synthesized by design tools, or to models that waste silicon area or

synthesize to hardware that cannot operate correctly.

 As previously stated, digital systems manipulate discrete quantities of information

that are represented in binary form. Operands used for calculations may be expressed

in the binary number system. Other discrete elements, including the decimal digits and

characters of the alphabet, are represented in binary codes. Digital circuits, also referred

to as logic circuits, process data by means of binary logic elements (logic gates) using

binary signals. Quantities are stored in binary (two‐valued) storage elements (flip‐flops).

The purpose of this chapter is to introduce the various binary concepts as a frame of

reference for further study in the succeeding chapters.

 1 . 2 B I N A RY N U M B E R S

 A decimal number such as 7,392 represents a quantity equal to 7 thousands, plus 3 hun-

dreds, plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied

by the position of the coefficients (symbols) in the number. To be more exact, 7,392 is a

shorthand notation for what should be written as

 7 * 103 + 3 * 102 + 9 * 101 + 2 * 100

4 Chapter 1 Digital Systems and Binary Numbers

 However, the convention is to write only the numeric coefficients and, from their posi-

tion, deduce the necessary powers of 10 with powers increasing from right to left. In

general, a number with a decimal point is represented by a series of coefficients:

 a5a4a3a2a1a0. a-1a-2a-3

 The coefficients aj are any of the 10 digits (0, 1, 2, c , 9), and the subscript value j gives

the place value and, hence, the power of 10 by which the coefficient must be multiplied.

Thus, the preceding decimal number can be expressed as

 105a5 + 104a4 + 103a3 + 102a2 + 101a1 + 100a0 + 10-1a-1 + 10-2a-2 + 10-3a-3

 with a 3 = 7, a 2 = 3, a 1 = 9, and a 0 = 2.

 The decimal number system is said to be of base, or radix, 10 because it uses 10 digits

and the coefficients are multiplied by powers of 10. The binary system is a different

number system. The coefficients of the binary number system have only two possible

values: 0 and 1. Each coefficient aj is multiplied by a power of the radix, e.g., 2j, and

the results are added to obtain the decimal equivalent of the number. The radix

point (e.g., the decimal point when 10 is the radix) distinguishes positive powers of

10 from negative powers of 10. For example, the decimal equivalent of the binary

number 11010.11 is 26.75, as shown from the multiplication of the coefficients by

powers of 2:

 1 * 24 + 1 * 23 + 0 * 22 + 1 * 21 + 0 * 20 + 1 * 2-1 + 1 * 2-2 = 26.75

 There are many different number systems. In general, a number expressed in a base‐r

system has coefficients multiplied by powers of r:

 an # rn + an -1
rn -1 + g + a2

r2 + a1
r + a0 + a-1

r-1

+ a-2
r-2 + g + a-m # r-m

 The coefficients aj range in value from 0 to r - 1. To distinguish between numbers of

different bases, we enclose the coefficients in parentheses and write a subscript equal to

the base used (except sometimes for decimal numbers, where the content makes it obvi-

ous that the base is decimal). An example of a base‐5 number is

 (4021.2)5 = 4 * 53 + 0 * 52 + 2 * 51 + 1 * 50 + 2 * 5-1 = (511.4)10

 The coefficient values for base 5 can be only 0, 1, 2, 3, and 4. The octal number system

is a base‐8 system that has eight digits: 0, 1, 2, 3, 4, 5, 6, 7. An example of an octal number

is 127.4. To determine its equivalent decimal value, we expand the number in a power

series with a base of 8:

 (127.4)8 = 1 * 82 + 2 * 81 + 7 * 80 + 4 * 8-1 = (87.5)10

 Note that the digits 8 and 9 cannot appear in an octal number.

 It is customary to borrow the needed r digits for the coefficients from the decimal

system when the base of the number is less than 10. The letters of the alphabet are used
to supplement the 10 decimal digits when the base of the number is greater than 10. For

example, in the hexadecimal (base‐16) number system, the first 10 digits are borrowed

Section 1.2 Binary Numbers 5

from the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11,

12, 13, 14, and 15, respectively. An example of a hexadecimal number is

 (B65F)16 = 11 * 163 + 6 * 162 + 5 * 161 + 15 * 160 = (46,687)10

 The hexadecimal system is used commonly by designers to represent long strings of bits

in the addresses, instructions, and data in digital systems. For example, B65F is used to

represent 1011011001010000.

 As noted before, the digits in a binary number are called bits. When a bit is equal to

0, it does not contribute to the sum during the conversion. Therefore, the conversion

from binary to decimal can be obtained by adding only the numbers with powers of two

corresponding to the bits that are equal to 1. For example,

 (110101)2 = 32 + 16 + 4 + 1 = (53)10

 There are four 1’s in the binary number. The corresponding decimal number is the sum

of the four powers of two. Zero and the first 24 numbers obtained from 2 to the power of

n are listed in Table 1.1 . In computer work, 210 is referred to as K (kilo), 220 as M (mega),

 230 as G (giga), and 240 as T (tera). Thus, 4K = 212 = 4,096 and 16M = 224 = 16,777,216.

Computer capacity is usually given in bytes. A byte is equal to eight bits and can accom-

modate (i.e., represent the code of) one keyboard character. A computer hard disk with

four gigabytes of storage has a capacity of 4G = 232 bytes (approximately 4 billion bytes).

A terabyte is 1024 gigabytes, approximately 1 trillion bytes.

 Arithmetic operations with numbers in base r follow the same rules as for decimal

numbers. When a base other than the familiar base 10 is used, one must be careful to

use only the r‐allowable digits. Examples of addition, subtraction, and multiplication of

two binary numbers are as follows:

augend: 101101 minuend: 101101 multiplicand: 1011

addend: +100111 subtrahend: -100111 multiplier: * 101

sum: 1010100 difference: 000110 1011

0000

1011

product: 110111

 Table 1.1
 Powers of Two

 n 2n n 2n n 2n

 0 1 8 256 16 65,536

 1 2 9 512 17 131,072

 2 4 10 1,024 (1K) 18 262,144

 3 8 11 2,048 19 524,288

 4 16 12 4,096 (4K) 20 1,048,576 (1M)

 5 32 13 8,192 21 2,097,152

 6 64 14 16,384 22 4,194,304

 7 128 15 32,768 23 8,388,608

partial product:

6 Chapter 1 Digital Systems and Binary Numbers

 The sum of two binary numbers is calculated by the same rules as in decimal, except

that the digits of the sum in any significant position can be only 0 or 1. Any carry

obtained in a given significant position is used by the pair of digits one significant posi-

tion higher. Subtraction is slightly more complicated. The rules are still the same as in

decimal, except that the borrow in a given significant position adds 2 to a minuend digit.

(A borrow in the decimal system adds 10 to a minuend digit.) Multiplication is simple:

The multiplier digits are always 1 or 0; therefore, the partial products are equal either

to a shifted (left) copy of the multiplicand or to 0.

 1 . 3 N U M B E R ‐ B A S E C O N V E R S I O N S

 Representations of a number in a different radix are said to be equivalent if they have

the same decimal representation. For example, (0011) 8 and (1001) 2 are equivalent—both

have decimal value 9. The conversion of a number in base r to decimal is done by

expanding the number in a power series and adding all the terms as shown previously.

We now present a general procedure for the reverse operation of converting a decimal

number to a number in base r. If the number includes a radix point, it is necessary to

separate the number into an integer part and a fraction part, since each part must be

converted differently. The conversion of a decimal integer to a number in base r is done

by dividing the number and all successive quotients by r and accumulating the remain-

ders. This procedure is best illustrated by example.

 EXAMPLE 1.1

 Convert decimal 41 to binary. First, 41 is divided by 2 to give an integer quotient of 20

and a remainder of 12. Then the quotient is again divided by 2 to give a new quotient and

remainder. The process is continued until the integer quotient becomes 0. The coefficients

of the desired binary number are obtained from the remainders as follows:

 Integer
Quotient

 Remainder Coefficient

 41>2 = 20 + 12 a0 = 1

 20>2 = 10 + 0 a1 = 0

 10>2 = 5 + 0 a2 = 0

 5>2 = 2 + 12 a3 = 1

 2>2 = 1 + 0 a4 = 0

 1>2 = 0 + 12 a5 = 1

 Therefore, the answer is (41)10 = (a5a4a3a2a1a0)2 = (101001)2.

Section 1.3 Number‐Base Conversions 7

 The arithmetic process can be manipulated more conveniently as follows:

 Integer Remainder

 41

 20 1

 10 0

 5 0

 2 1

 1 0

 0 1 101001 = answer

 Conversion from decimal integers to any base‐r system is similar to this example, except

that division is done by r instead of 2.

■

 EXAMPLE 1.2

 Convert decimal 153 to octal. The required base r is 8. First, 153 is divided by 8 to give

an integer quotient of 19 and a remainder of 1. Then 19 is divided by 8 to give an integer

quotient of 2 and a remainder of 3. Finally, 2 is divided by 8 to give a quotient of 0 and

a remainder of 2. This process can be conveniently manipulated as follows:

 153

 19 1

 2 3

 0 2 = (231)8

 The conversion of a decimal fraction to binary is accomplished by a method similar

to that used for integers. However, multiplication is used instead of division, and integers

instead of remainders are accumulated. Again, the method is best explained by example.

■

 EXAMPLE 1.3

 Convert (0.6875)10 to binary. First, 0.6875 is multiplied by 2 to give an integer and a fraction.

Then the new fraction is multiplied by 2 to give a new integer and a new fraction. The process

is continued until the fraction becomes 0 or until the number of digits has sufficient

 accuracy. The coefficients of the binary number are obtained from the integers as follows:

 Integer Fraction Coefficient

 0.6875 * 2 = 1 + 0.3750 a-1 = 1

 0.3750 * 2 = 0 + 0.7500 a-2 = 0

 0.7500 * 2 = 1 + 0.5000 a-3 = 1

 0.5000 * 2 = 1 + 0.0000 a-4 = 1

8 Chapter 1 Digital Systems and Binary Numbers

 Therefore, the answer is (0.6875)10 = (0. a-1 a-2 a-3 a-4)2 = (0.1011)2.

 To convert a decimal fraction to a number expressed in base r, a similar procedure is

used. However, multiplication is by r instead of 2, and the coefficients found from the

integers may range in value from 0 to r - 1 instead of 0 and 1.

■

 EXAMPLE 1.4

 Convert (0.513)10 to octal.

 0.513 * 8 = 4.104

 0.104 * 8 = 0.832

 0.832 * 8 = 6.656

 0.656 * 8 = 5.248

 0.248 * 8 = 1.984

 0.984 * 8 = 7.872

 The answer, to seven significant figures, is obtained from the integer part of the products:

 (0.513)10 = (0.406517c)8

 The conversion of decimal numbers with both integer and fraction parts is done by

converting the integer and the fraction separately and then combining the two answers.

Using the results of Examples 1.1 and 1.3, we obtain

 (41.6875)10 = (101001.1011)2

 From Examples 1.2 and 1.4, we have

 (153.513)10 = (231.406517)8

■

 1 . 4 O C TA L A N D H E X A D E C I M A L N U M B E R S

 The conversion from and to binary, octal, and hexadecimal plays an important role in digi-

tal computers, because shorter patterns of hex characters are easier to recognize than long

patterns of 1’s and 0’s. Since 23 = 8 and 24 = 16, each octal digit corresponds to three

binary digits and each hexadecimal digit corresponds to four binary digits. The first 16 num-

bers in the decimal, binary, octal, and hexadecimal number systems are listed in Table 1.2 .

 The conversion from binary to octal is easily accomplished by partitioning the binary

number into groups of three digits each, starting from the binary point and proceeding

to the left and to the right. The corresponding octal digit is then assigned to each group.

The following example illustrates the procedure:

(10 110 001 101 011 # 111 100 000 110)2 = (26153.7406)8

2 6 1 5 3 7 4 0 6

Section 1.4 Octal and Hexadecimal Numbers 9

 Conversion from binary to hexadecimal is similar, except that the binary number is

divided into groups of four digits:

(10 1100 0110 1011 # 1111 0010)2 = (2C6B.F2)16

2 C 6 B F 2

 The corresponding hexadecimal (or octal) digit for each group of binary digits is easily

remembered from the values listed in Table 1.2 .

 Conversion from octal or hexadecimal to binary is done by reversing the preceding

procedure. Each octal digit is converted to its three‐digit binary equivalent. Similarly,

each hexadecimal digit is converted to its four‐digit binary equivalent. The procedure is

illustrated in the following examples:

(673.124)8 = (110 111 011 # 001 010 100)2

6 7 3 1 2 4

 and

(306.D)16 = (0011 0000 0110 # 1101)2

3 0 6 D

 Binary numbers are difficult to work with because they require three or four times

as many digits as their decimal equivalents. For example, the binary number 111111111111

is equivalent to decimal 4095. However, digital computers use binary numbers, and it is

sometimes necessary for the human operator or user to communicate directly with the

 Table 1.2
 Numbers with Different Bases

 Decimal
(base 10)

 Binary
(base 2)

 Octal
(base 8)

 Hexadecimal
(base 16)

 00 0000 00 0

 01 0001 01 1

 02 0010 02 2

 03 0011 03 3

 04 0100 04 4

 05 0101 05 5

 06 0110 06 6

 07 0111 07 7

 08 1000 10 8

 09 1001 11 9

 10 1010 12 A

 11 1011 13 B

 12 1100 14 C

 13 1101 15 D

 14 1110 16 E

 15 1111 17 F

10 Chapter 1 Digital Systems and Binary Numbers

machine by means of such numbers. One scheme that retains the binary system in the

computer, but reduces the number of digits the human must consider, utilizes the rela-

tionship between the binary number system and the octal or hexadecimal system. By this

method, the human thinks in terms of octal or hexadecimal numbers and performs the

required conversion by inspection when direct communication with the machine is nec-

essary. Thus, the binary number 111111111111 has 12 digits and is expressed in octal as

7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between

people (about binary numbers in the computer), the octal or hexadecimal representa-

tion is more desirable because it can be expressed more compactly with a third or a

quarter of the number of digits required for the equivalent binary number. Thus, most
computer manuals use either octal or hexadecimal numbers to specify binary quantities .
The choice between them is arbitrary, although hexadecimal tends to win out, since it

can represent a byte with two digits.

 1 . 5 C O M P L E M E N T S O F N U M B E R S

 Complements are used in digital computers to simplify the subtraction operation and for

logical manipulation. Simplifying operations leads to simpler, less expensive circuits to

implement the operations. There are two types of complements for each base‐r system:

the radix complement and the diminished radix complement. The first is referred to as

the r’s complement and the second as the (r - 1)>s complement. When the value of the

base r is substituted in the name, the two types are referred to as the 2’s complement and

1’s complement for binary numbers and the 10’s complement and 9’s complement for

decimal numbers.

 Diminished Radix Complement

 Given a number N in base r having n digits, the (r - 1)>s complement of N , i.e., its

diminished radix complement, is defined as (rn - 1) - N. For decimal numbers, r = 10

 and r - 1 = 9, so the 9’s complement of N is (10n - 1) - N. In this case, 10n represents

a number that consists of a single 1 followed by n 0’s. 10n - 1 is a number represented

by n 9’s. For example, if n = 4, we have 104 = 10,000 and 104 - 1 = 9999. It follows

that the 9’s complement of a decimal number is obtained by subtracting each digit from 9.

Here are some numerical examples:

 The 9>s complement of 546700 is 999999 - 546700 = 453299.

The 9>s complement of 012398 is 999999 - 012398 = 987601.

 For binary numbers, r = 2 and r - 1 = 1, so the 1’s complement of N is (2n - 1) - N.

Again, 2n is represented by a binary number that consists of a 1 followed by n 0’s. 2n - 1

is a binary number represented by n 1’s. For example, if n = 4, we have 24 = (10000)2

and 24 - 1 = (1111)2. Thus, the 1’s complement of a binary number is obtained by

subtracting each digit from 1. However, when subtracting binary digits from 1, we can

Section 1.5 Complements of Numbers 11

have either 1 - 0 = 1 or 1 - 1 = 0, which causes the bit to change from 0 to 1 or from

1 to 0, respectively. Therefore, the 1’s complement of a binary number is formed by
changing 1’s to 0’s and 0’s to 1’s. The following are some numerical examples:

 The 1’s complement of 1011000 is 0100111.

 The 1’s complement of 0101101 is 1010010.

 The (r - 1)>s complement of octal or hexadecimal numbers is obtained by subtracting

each digit from 7 or F (decimal 15), respectively.

 Radix Complement

 The r’s complement of an n‐digit number N in base r is defined as rn - N for N � 0 and

as 0 for N = 0. Comparing with the (r - 1)>s complement, we note that the r’s complement

is obtained by adding 1 to the (r - 1)>s complement, since rn - N = [(r n - 1) - N] + 1.

Thus, the 10’s complement of decimal 2389 is 7610 + 1 = 7611 and is obtained by adding

1 to the 9’s complement value. The 2’s complement of binary 101100 is 010011 + 1 = 010100

and is obtained by adding 1 to the 1’s‐complement value.

 Since 10 is a number represented by a 1 followed by n 0’s, 10n - N, which is the 10’s

complement of N, can be formed also by leaving all least significant 0’s unchanged,

subtracting the first nonzero least significant digit from 10, and subtracting all higher

significant digits from 9. Thus,

 the 10’s complement of 012398 is 987602

 and

 the 10’s complement of 246700 is 753300

 The 10’s complement of the first number is obtained by subtracting 8 from 10 in the least

significant position and subtracting all other digits from 9. The 10’s complement of the

second number is obtained by leaving the two least significant 0’s unchanged, subtract-

ing 7 from 10, and subtracting the other three digits from 9.

 Similarly, the 2’s complement can be formed by leaving all least significant 0’s and

the first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher sig-

nificant digits. For example,

 the 2’s complement of 1101100 is 0010100

 and

 the 2’s complement of 0110111 is 1001001

 The 2’s complement of the first number is obtained by leaving the two least significant

0’s and the first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other

four most significant digits. The 2’s complement of the second number is obtained by

leaving the least significant 1 unchanged and complementing all other digits.

12 Chapter 1 Digital Systems and Binary Numbers

 In the previous definitions, it was assumed that the numbers did not have a radix point.

If the original number N contains a radix point, the point should be removed temporarily

in order to form the r’s or (r - 1)>s complement. The radix point is then restored to the

complemented number in the same relative position. It is also worth mentioning that the
complement of the complement restores the number to its original value . To see this

relationship, note that the r’s complement of N is rn - N, so that the complement of the

complement is rn - (rn - N) = N and is equal to the original number.

 Subtraction with Complements

 The direct method of subtraction taught in elementary schools uses the borrow concept.

In this method, we borrow a 1 from a higher significant position when the minuend digit

is smaller than the subtrahend digit. The method works well when people perform sub-

traction with paper and pencil. However, when subtraction is implemented with digital

hardware, the method is less efficient than the method that uses complements.

 The subtraction of two n‐digit unsigned numbers M - N in base r can be done as

follows:

 1. Add the minuend M to the r’s complement of the subtrahend N. Mathematically,

 M + (r n - N) = M - N + rn.

 2. If M Ú N, the sum will produce an end carry rn, which can be discarded; what is

left is the result M - N.

 3. If M 6 N, the sum does not produce an end carry and is equal to rn - (N - M),

which is the r’s complement of (N - M). To obtain the answer in a familiar form,

take the r’s complement of the sum and place a negative sign in front.

 The following examples illustrate the procedure:

 EXAMPLE 1.5

 Using 10’s complement, subtract 72532 - 3250.

 M = 72532

10>s complement of N = + 96750

Sum = 169282

Discard end carry 105 = - 100000

Answer = 69282

 Note that M has five digits and N has only four digits. Both numbers must have the same

number of digits, so we write N as 03250. Taking the 10’s complement of N produces a

9 in the most significant position. The occurrence of the end carry signifies that M Ú N

and that the result is therefore positive.

■

Section 1.5 Complements of Numbers 13

 EXAMPLE 1.6

 Using 10’s complement, subtract 3250 - 72532.

 M = 03250

10>s complement of N = + 27468

Sum = 30718

 There is no end carry. Therefore, the answer is -(10>s complement of 30718) = -69282.

 Note that since 3250 6 72532, the result is negative. Because we are dealing with

unsigned numbers, there is really no way to get an unsigned result for this case. When

subtracting with complements, we recognize the negative answer from the absence

of the end carry and the complemented result. When working with paper and pencil,

we can change the answer to a signed negative number in order to put it in a famil-

iar form.

 Subtraction with complements is done with binary numbers in a similar manner, using

the procedure outlined previously.

■

 EXAMPLE 1.7

 Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction

(a) X - Y and (b) Y - X by using 2’s complements.

 (a) X = 1010100

 2>s complement of Y = + 0111101

 Sum = 10010001

 Discard end carry 27 = - 10000000

 Answer: X - Y = 0010001

 (b) Y = 1000011

 2>s complement of X = + 0101100

 Sum = 1101111

 There is no end carry. Therefore, the answer is Y - X = -(2>s complement of 1101111) =

 -0010001.

■

 Subtraction of unsigned numbers can also be done by means of the (r - 1)>s com-

plement. Remember that the (r - 1)>s complement is one less than the r’s comple-

ment. Because of this, the result of adding the minuend to the complement of the

subtrahend produces a sum that is one less than the correct difference when an end

carry occurs. Removing the end carry and adding 1 to the sum is referred to as an

end‐around carry.

14 Chapter 1 Digital Systems and Binary Numbers

 EXAMPLE 1.8

 Repeat Example 1.7, but this time using 1’s complement.

 (a) X - Y = 1010100 - 1000011

X = 1010100

1>s complement of Y = + 0111100

Sum = 10010000

End@around carry = + 1

Answer: X - Y = 0010001

 (b) Y - X = 1000011 - 1010100

Y = 1000011

1>s complement of X = + 0101011

Sum = 1101110

 There is no end carry. Therefore, the answer is Y - X = -(1>s complement of 1101110) =

 -0010001.

■

 Note that the negative result is obtained by taking the 1’s complement of the sum, since

this is the type of complement used. The procedure with end‐around carry is also appli-

cable to subtracting unsigned decimal numbers with 9’s complement.

 1 . 6 S I G N E D B I N A RY N U M B E R S

 Positive integers (including zero) can be represented as unsigned numbers. However, to

represent negative integers, we need a notation for negative values. In ordinary arith-

metic, a negative number is indicated by a minus sign and a positive number by a plus

sign. Because of hardware limitations, computers must represent everything with binary

digits. It is customary to represent the sign with a bit placed in the leftmost position of

the number. The convention is to make the sign bit 0 for positive and 1 for negative.

 It is important to realize that both signed and unsigned binary numbers consist of a

string of bits when represented in a computer. The user determines whether the number

is signed or unsigned. If the binary number is signed, then the leftmost bit represents the

sign and the rest of the bits represent the number. If the binary number is assumed to

be unsigned, then the leftmost bit is the most significant bit of the number. For example,

the string of bits 01001 can be considered as 9 (unsigned binary) or as +9 (signed binary)

because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent of

25 when considered as an unsigned number and the binary equivalent of -9 when con-

sidered as a signed number. This is because the 1 that is in the leftmost position designates

a negative and the other four bits represent binary 9. Usually, there is no confusion in

interpreting the bits if the type of representation for the number is known in advance.

Section 1.6 Signed Binary Numbers 15

 The representation of the signed numbers in the last example is referred to as the

signed‐magnitude convention. In this notation, the number consists of a magnitude and

a symbol (+ or -) or a bit (0 or 1) indicating the sign. This is the representation of signed

numbers used in ordinary arithmetic. When arithmetic operations are implemented in

a computer, it is more convenient to use a different system, referred to as the signed‐
complement system, for representing negative numbers. In this system, a negative num-

ber is indicated by its complement. Whereas the signed‐magnitude system negates a

number by changing its sign, the signed‐complement system negates a number by taking

its complement. Since positive numbers always start with 0 (plus) in the leftmost posi-

tion, the complement will always start with a 1, indicating a negative number. The

signed‐complement system can use either the 1’s or the 2’s complement, but the 2’s

complement is the most common.

 As an example, consider the number 9, represented in binary with eight bits. +9 is

represented with a sign bit of 0 in the leftmost position, followed by the binary equiva-

lent of 9, which gives 00001001. Note that all eight bits must have a value; therefore, 0’s

are inserted following the sign bit up to the first 1. Although there is only one way to

represent +9, there are three different ways to represent -9 with eight bits:

 signed‐magnitude representation: 10001001

 signed‐1’s‐complement representation: 11110110

 signed‐2’s‐complement representation: 11110111

 In signed‐magnitude, -9 is obtained from +9 by changing only the sign bit in the leftmost

position from 0 to 1. In signed‐1’s-complement, -9 is obtained by complementing all the

bits of +9, including the sign bit. The signed‐2’s‐complement representation of -9 is

obtained by taking the 2’s complement of the positive number, including the sign bit.

 Table 1.3 lists all possible four‐bit signed binary numbers in the three representations.

The equivalent decimal number is also shown for reference. Note that the positive num-

bers in all three representations are identical and have 0 in the leftmost position. The

signed‐2’s‐complement system has only one representation for 0, which is always posi-

tive. The other two systems have either a positive 0 or a negative 0, something not

encountered in ordinary arithmetic. Note that all negative numbers have a 1 in the

leftmost bit position; that is the way we distinguish them from the positive numbers.

With four bits, we can represent 16 binary numbers. In the signed‐magnitude and the

1’s‐complement representations, there are eight positive numbers and eight negative

numbers, including two zeros. In the 2’s‐complement representation, there are eight

positive numbers, including one zero, and eight negative numbers.

 The signed‐magnitude system is used in ordinary arithmetic, but is awkward when

employed in computer arithmetic because of the separate handling of the sign and the

magnitude. Therefore, the signed‐complement system is normally used. The 1’s com-

plement imposes some difficulties and is seldom used for arithmetic operations. It is

useful as a logical operation, since the change of 1 to 0 or 0 to 1 is equivalent to a

logical complement operation, as will be shown in the next chapter. The discussion of

signed binary arithmetic that follows deals exclusively with the signed‐2’s‐complement

16 Chapter 1 Digital Systems and Binary Numbers

representation of negative numbers. The same procedures can be applied to the

signed‐1’s‐complement system by including the end‐around carry as is done with

unsigned numbers.

 Arithmetic Addition

 The addition of two numbers in the signed‐magnitude system follows the rules of

ordinary arithmetic. If the signs are the same, we add the two magnitudes and give

the sum the common sign. If the signs are different, we subtract the smaller magni-

tude from the larger and give the difference the sign of the larger magnitude. For

example, (+25) + (-37) = -(37 - 25) = -12 is done by subtracting the smaller mag-

nitude, 25, from the larger magnitude, 37, and appending the sign of 37 to the result.

This is a process that requires a comparison of the signs and magnitudes and then per-

forming either addition or subtraction. The same procedure applies to binary numbers

in signed‐magnitude representation. In contrast, the rule for adding numbers in the

signed‐complement system does not require a comparison or subtraction, but only

addition. The procedure is very simple and can be stated as follows for binary numbers:

 The addition of two signed binary numbers with negative numbers represented in

signed‐ 2’s‐complement form is obtained from the addition of the two numbers, includ-
ing their sign bits. A carry out of the sign‐bit position is discarded.

 Table 1.3
 Signed Binary Numbers

 Decimal
 Signed‐2’s

Complement
 Signed‐1’s

Complement
 Signed

Magnitude

 +7 0111 0111 0111

 +6 0110 0110 0110

 +5 0101 0101 0101

 +4 0100 0100 0100

 +3 0011 0011 0011

 +2 0010 0010 0010

 +1 0001 0001 0001

 +0 0000 0000 0000

 -0 — 1111 1000

 -1 1111 1110 1001

 -2 1110 1101 1010

 -3 1101 1100 1011

 -4 1100 1011 1100

 -5 1011 1010 1101

 -6 1010 1001 1110

 -7 1001 1000 1111

 -8 1000 — —

Section 1.6 Signed Binary Numbers 17

 Numerical examples for addition follow:

+ 6 00000110 - 6 11111010

+13 00001101 +13 00001101

+19 00010011 + 7 00000111

+ 6 00000110 - 6 11111010

-13 11110011 -13 11110011

- 7 11111001 -19 11101101

 Note that negative numbers must be initially in 2’s‐complement form and that if the sum

obtained after the addition is negative, it is in 2’s‐complement form. For example, -7 is

represented as 11111001, which is the 2s complement of +7.

 In each of the four cases, the operation performed is addition with the sign bit

included. Any carry out of the sign‐bit position is discarded, and negative results are

automatically in 2’s‐complement form.

 In order to obtain a correct answer, we must ensure that the result has a sufficient

number of bits to accommodate the sum. If we start with two n‐bit numbers and the sum

occupies n + 1 bits, we say that an overflow occurs. When one performs the addition with

paper and pencil, an overflow is not a problem, because we are not limited by the width

of the page. We just add another 0 to a positive number or another 1 to a negative number

in the most significant position to extend the number to n + 1 bits and then perform the

addition. Overflow is a problem in computers because the number of bits that hold a

number is finite, and a result that exceeds the finite value by 1 cannot be accommodated.

 The complement form of representing negative numbers is unfamiliar to those used

to the signed‐magnitude system. To determine the value of a negative number in signed‐2’s

complement, it is necessary to convert the number to a positive number to place it in a

more familiar form. For example, the signed binary number 11111001 is negative because

the leftmost bit is 1. Its 2’s complement is 00000111, which is the binary equivalent of

 +7. We therefore recognize the original negative number to be equal to -7.

 Arithmetic Subtraction

 Subtraction of two signed binary numbers when negative numbers are in 2’s‐complement

form is simple and can be stated as follows:

 Take the 2’s complement of the subtrahend (including the sign bit) and add it to the

minuend (including the sign bit). A carry out of the sign‐bit position is discarded.

 This procedure is adopted because a subtraction operation can be changed to an addi-

tion operation if the sign of the subtrahend is changed, as is demonstrated by the

following relationship:

 ({A) - (+B) = ({A) + (-B);

({A) - (-B) = ({A) + (+B).

 But changing a positive number to a negative number is easily done by taking the 2’s

complement of the positive number. The reverse is also true, because the complement

18 Chapter 1 Digital Systems and Binary Numbers

of a negative number in complement form produces the equivalent positive number. To

see this, consider the subtraction (-6) - (-13) = +7. In binary with eight bits, this

operation is written as (11111010 - 11110011) . The subtraction is changed to addition

by taking the 2’s complement of the subtrahend (-13), giving (+13) . In binary, this is

 11111010 + 00001101 = 100000111. Removing the end carry, we obtain the correct

answer: 00000111 (+7) .
 It is worth noting that binary numbers in the signed‐complement system are added

and subtracted by the same basic addition and subtraction rules as unsigned numbers.

Therefore, computers need only one common hardware circuit to handle both types of
arithmetic . This consideration has resulted in the signed‐complement system being used

in virtually all arithmetic units of computer systems. The user or programmer must

interpret the results of such addition or subtraction differently, depending on whether

it is assumed that the numbers are signed or unsigned.

 1 . 7 B I N A RY C O D E S

 Digital systems use signals that have two distinct values and circuit elements that

have two stable states. There is a direct analogy among binary signals, binary circuit

elements, and binary digits. A binary number of n digits, for example, may be repre-

sented by n binary circuit elements, each having an output signal equivalent to 0 or 1.

Digital systems represent and manipulate not only binary numbers, but also many

other discrete elements of information. Any discrete element of information that is

distinct among a group of quantities can be represented with a binary code (i.e., a

pattern of 0’s and 1’s). The codes must be in binary because, in today’s technology,

only circuits that represent and manipulate patterns of 0’s and 1’s can be manufac-

tured economically for use in computers. However, it must be realized that binary

codes merely change the symbols, not the meaning of the elements of information

that they represent. If we inspect the bits of a computer at random, we will find that

most of the time they represent some type of coded information rather than binary

numbers.

 An n‐bit binary code is a group of n bits that assumes up to 2n distinct combinations

of 1’s and 0’s, with each combination representing one element of the set that is being

coded. A set of four elements can be coded with two bits, with each element assigned

one of the following bit combinations: 00, 01, 10, 11. A set of eight elements requires a

three‐bit code and a set of 16 elements requires a four‐bit code. The bit combination of

an n‐bit code is determined from the count in binary from 0 to 2n - 1. Each element

must be assigned a unique binary bit combination, and no two elements can have the

same value; otherwise, the code assignment will be ambiguous.

 Although the minimum number of bits required to code 2n distinct quantities is n,

there is no maximum number of bits that may be used for a binary code. For example,

the 10 decimal digits can be coded with 10 bits, and each decimal digit can be assigned

a bit combination of nine 0’s and a 1. In this particular binary code, the digit 6 is assigned

the bit combination 0001000000.

Section 1.7 Binary Codes 19

 Binary-Coded Decimal Code

 Although the binary number system is the most natural system for a computer because

it is readily represented in today’s electronic technology, most people are more accus-

tomed to the decimal system. One way to resolve this difference is to convert decimal

numbers to binary, perform all arithmetic calculations in binary, and then convert the

binary results back to decimal. This method requires that we store decimal numbers in

the computer so that they can be converted to binary. Since the computer can accept

only binary values, we must represent the decimal digits by means of a code that contains

1’s and 0’s. It is also possible to perform the arithmetic operations directly on decimal

numbers when they are stored in the computer in coded form.

 A binary code will have some unassigned bit combinations if the number of elements

in the set is not a multiple power of 2. The 10 decimal digits form such a set. A binary

code that distinguishes among 10 elements must contain at least four bits, but 6 out of

the 16 possible combinations remain unassigned. Different binary codes can be obtained

by arranging four bits into 10 distinct combinations. The code most commonly used for

the decimal digits is the straight binary assignment listed in Table 1.4 . This scheme is

called binary‐coded decimal and is commonly referred to as BCD. Other decimal codes

are possible and a few of them are presented later in this section.

 Table 1.4 gives the four‐bit code for one decimal digit. A number with k decimal

digits will require 4k bits in BCD. Decimal 396 is represented in BCD with 12 bits as

0011 1001 0110, with each group of 4 bits representing one decimal digit. A decimal

number in BCD is the same as its equivalent binary number only when the number is

between 0 and 9. A BCD number greater than 10 looks different from its equivalent

binary number, even though both contain 1’s and 0’s. Moreover, the binary combina-
tions 1010 through 1111 are not used and have no meaning in BCD. Consider decimal

185 and its corresponding value in BCD and binary:

 (185)10 = (0001 1000 0101)BCD = (10111001)2

 Table 1.4
 Binary‐Coded Decimal (BCD)

 Decimal
Symbol

 BCD
Digit

 0 0000

 1 0001

 2 0010

 3 0011

 4 0100

 5 0101

 6 0110

 7 0111

 8 1000

 9 1001

20 Chapter 1 Digital Systems and Binary Numbers

 The BCD value has 12 bits to encode the characters of the decimal value, but the equiv-

alent binary number needs only 8 bits. It is obvious that the representation of a BCD

number needs more bits than its equivalent binary value. However, there is an advantage

in the use of decimal numbers, because computer input and output data are generated

by people who use the decimal system.

 It is important to realize that BCD numbers are decimal numbers and not binary

numbers, although they use bits in their representation. The only difference between a

decimal number and BCD is that decimals are written with the symbols 0, 1, 2, c , 9

and BCD numbers use the binary code 0000, 0001, 0010, c , 1001. The decimal value

is exactly the same. Decimal 10 is represented in BCD with eight bits as 0001 0000 and

decimal 15 as 0001 0101. The corresponding binary values are 1010 and 1111 and have

only four bits.

 BCD Addition

 Consider the addition of two decimal digits in BCD, together with a possible carry

from a previous less significant pair of digits. Since each digit does not exceed 9, the

sum cannot be greater than 9 + 9 + 1 = 19, with the 1 being a previous carry. Sup-

pose we add the BCD digits as if they were binary numbers. Then the binary sum will

produce a result in the range from 0 to 19. In binary, this range will be from 0000 to

10011, but in BCD, it is from 0000 to 1 1001, with the first (i.e., leftmost) 1 being a

carry and the next four bits being the BCD sum. When the binary sum is equal to or

less than 1001 (without a carry), the corresponding BCD digit is correct. However,

when the binary sum is greater than or equal to 1010, the result is an invalid BCD

digit. The addition of 6 = (0110)2 to the binary sum converts it to the correct digit and

also produces a carry as required. This is because a carry in the most significant bit

position of the binary sum and a decimal carry differ by 16 - 10 = 6. Consider the

following three BCD additions:

4 0100 4 0100 8 1000

+5 +0101 +8 +1000 +9 1001

9 1001 12 1100 17 10001

+0110 +0110

10010 10111

 In each case, the two BCD digits are added as if they were two binary numbers. If the

binary sum is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum

and a carry. In the first example, the sum is equal to 9 and is the correct BCD sum. In

the second example, the binary sum produces an invalid BCD digit. The addition of 0110

produces the correct BCD sum, 0010 (i.e., the number 2), and a carry. In the third

example, the binary sum produces a carry. This condition occurs when the sum is greater

than or equal to 16. Although the other four bits are less than 1001, the binary sum

requires a correction because of the carry. Adding 0110, we obtain the required BCD

sum 0111 (i.e., the number 7) and a BCD carry.

Section 1.7 Binary Codes 21

 The addition of two n‐digit unsigned BCD numbers follows the same procedure.

Consider the addition of 184 + 576 = 760 in BCD:

BCD 1 1

0001 1000 0100 184

+0101 0111 0110 +576

Binary sum 0111 10000 1010

Add 6 0110 0110

BCD sum 0111 0110 0000 760

 The first, least significant pair of BCD digits produces a BCD digit sum of 0000 and a

carry for the next pair of digits. The second pair of BCD digits plus a previous carry

produces a digit sum of 0110 and a carry for the next pair of digits. The third pair of

digits plus a carry produces a binary sum of 0111 and does not require a correction.

 Decimal Arithmetic

 The representation of signed decimal numbers in BCD is similar to the representation

of signed numbers in binary. We can use either the familiar signed‐magnitude system or

the signed‐complement system. The sign of a decimal number is usually represented

with four bits to conform to the four‐bit code of the decimal digits. It is customary to

designate a plus with four 0’s and a minus with the BCD equivalent of 9, which is 1001.

 The signed‐magnitude system is seldom used in computers. The signed‐complement

system can be either the 9’s or the 10’s complement, but the 10’s complement is the one

most often used. To obtain the 10’s complement of a BCD number, we first take the 9’s

complement and then add 1 to the least significant digit. The 9’s complement is calcu-

lated from the subtraction of each digit from 9.

 The procedures developed for the signed‐2’s‐complement system in the previous

section also apply to the signed‐10’s‐complement system for decimal numbers. Addition

is done by summing all digits, including the sign digit, and discarding the end carry. This

operation assumes that all negative numbers are in 10’s‐complement form. Consider the

addition (+375) + (-240) = +135, done in the signed‐complement system:

0 375

+9 760

0 135

 The 9 in the leftmost position of the second number represents a minus, and 9760 is

the 10’s complement of 0240. The two numbers are added and the end carry is dis-

carded to obtain +135. Of course, the decimal numbers inside the computer, including

the sign digits, must be in BCD. The addition is done with BCD digits as described

previously.

 The subtraction of decimal numbers, either unsigned or in the signed‐10’s‐complement

system, is the same as in the binary case: Take the 10’s complement of the subtrahend and

add it to the minuend. Many computers have special hardware to perform arithmetic

22 Chapter 1 Digital Systems and Binary Numbers

calculations directly with decimal numbers in BCD. The user of the computer can specify

programmed instructions to perform the arithmetic operation with decimal numbers

directly, without having to convert them to binary.

 Other Decimal Codes

 Binary codes for decimal digits require a minimum of four bits per digit. Many different

codes can be formulated by arranging four bits into 10 distinct combinations. BCD and

three other representative codes are shown in Table 1.5 . Each code uses only 10 out of

a possible 16 bit combinations that can be arranged with four bits. The other six unused

combinations have no meaning and should be avoided.

 BCD and the 2421 code are examples of weighted codes. In a weighted code, each bit

position is assigned a weighting factor in such a way that each digit can be evaluated by

adding the weights of all the 1’s in the coded combination. The BCD code has weights

of 8, 4, 2, and 1, which correspond to the power‐of‐two values of each bit. The bit assign-

ment 0110, for example, is interpreted by the weights to represent decimal 6 because

 8 * 0 + 4 * 1 + 2 * 1 + 1 * 0 = 6. The bit combination 1101, when weighted by the

respective digits 2421, gives the decimal equivalent of 2 * 1 + 4 * 1 + 2 * 0 + 1 * 1 = 7.

Note that some digits can be coded in two possible ways in the 2421 code. For instance,

decimal 4 can be assigned to bit combination 0100 or 1010, since both combinations add

up to a total weight of 4.

 Table 1.5
 Four Different Binary Codes for the Decimal Digits

 Decimal
Digit

 BCD
8421 2421 Excess‐3 8, 4, �2, �1

 0 0000 0000 0011 0000

 1 0001 0001 0100 0111

 2 0010 0010 0101 0110

 3 0011 0011 0110 0101

 4 0100 0100 0111 0100

 5 0101 1011 1000 1011

 6 0110 1100 1001 1010

 7 0111 1101 1010 1001

 8 1000 1110 1011 1000

 9 1001 1111 1100 1111

 1010 0101 0000 0001

 Unused 1011 0110 0001 0010

 bit 1100 0111 0010 0011

 combi- 1101 1000 1101 1100

 nations 1110 1001 1110 1101

 1111 1010 1111 1110

Section 1.7 Binary Codes 23

 BCD adders add BCD values directly, digit by digit, without converting the numbers

to binary. However, it is necessary to add 6 to the result if it is greater than 9. BCD

adders require significantly more hardware and no longer have a speed advantage of

conventional binary adders [5].

 The 2421 and the excess‐3 codes are examples of self‐complementing codes. Such

codes have the property that the 9’s complement of a decimal number is obtained

directly by changing 1’s to 0’s and 0’s to 1’s (i.e., by complementing each bit in the pat-

tern). For example, decimal 395 is represented in the excess‐3 code as 0110 1100 1000.

The 9’s complement of 604 is represented as 1001 0011 0111, which is obtained simply

by complementing each bit of the code (as with the 1’s complement of binary numbers).

 The excess‐3 code has been used in some older computers because of its self‐

complementing property. Excess‐3 is an unweighted code in which each coded com-
bination is obtained from the corresponding binary value plus 3. Note that the BCD

code is not self‐complementing.

 The 8, 4, -2, -1 code is an example of assigning both positive and negative weights

to a decimal code. In this case, the bit combination 0110 is interpreted as decimal 2 and

is calculated from 8 * 0 + 4 * 1 + (-2) * 1 + (-1) * 0 = 2.

 Gray Code

 The output data of many physical systems are quantities that are continuous. These

data must be converted into digital form before they are applied to a digital system.

Continuous or analog information is converted into digital form by means of an ana-

log‐to‐digital converter. It is sometimes convenient to use the Gray code shown in

 Table 1.6 to represent digital data that have been converted from analog data. The

advantage of the Gray code over the straight binary number sequence is that only

one bit in the code group changes in going from one number to the next. For example,

in going from 7 to 8, the Gray code changes from 0100 to 1100. Only the first bit

changes, from 0 to 1; the other three bits remain the same. By contrast, with binary

numbers the change from 7 to 8 will be from 0111 to 1000, which causes all four bits

to change values.

 The Gray code is used in applications in which the normal sequence of binary numbers

generated by the hardware may produce an error or ambiguity during the transition from

one number to the next. If binary numbers are used, a change, for example, from 0111 to

1000 may produce an intermediate erroneous number 1001 if the value of the rightmost

bit takes longer to change than do the values of the other three bits. This could have seri-

ous consequences for the machine using the information. The Gray code eliminates this

problem, since only one bit changes its value during any transition between two numbers.

 A typical application of the Gray code is the representation of analog data by a con-

tinuous change in the angular position of a shaft. The shaft is partitioned into segments,

and each segment is assigned a number. If adjacent segments are made to correspond

with the Gray‐code sequence, ambiguity is eliminated between the angle of the shaft

and the value encoded by the sensor.

24 Chapter 1 Digital Systems and Binary Numbers

 ASCII Character Code

 Many applications of digital computers require the handling not only of numbers, but

also of other characters or symbols, such as the letters of the alphabet. For instance,

consider a high‐tech company with thousands of employees. To represent the names

and other pertinent information, it is necessary to formulate a binary code for the let-

ters of the alphabet. In addition, the same binary code must represent numerals and

special characters (such as $). An alphanumeric character set is a set of elements that

includes the 10 decimal digits, the 26 letters of the alphabet, and a number of special

characters. Such a set contains between 36 and 64 elements if only capital letters are

included, or between 64 and 128 elements if both uppercase and lowercase letters are

included. In the first case, we need a binary code of six bits, and in the second, we need

a binary code of seven bits.

 The standard binary code for the alphanumeric characters is the American Standard

Code for Information Interchange (ASCII), which uses seven bits to code 128 charac-

ters, as shown in Table 1.7 . The seven bits of the code are designated by b1 through b7,

with b7 the most significant bit. The letter A, for example, is represented in ASCII as

1000001 (column 100, row 0001). The ASCII code also contains 94 graphic characters

that can be printed and 34 nonprinting characters used for various control functions.

The graphic characters consist of the 26 uppercase letters (A through Z), the 26 lower-

case letters (a through z), the 10 numerals (0 through 9), and 32 special printable char-

acters, such as %, *, and $.

 Table 1.6
 Gray Code

 Gray
Code

 Decimal
Equivalent

 0000 0

 0001 1

 0011 2

 0010 3

 0110 4

 0111 5

 0101 6

 0100 7

 1100 8

 1101 9

 1111 10

 1110 11

 1010 12

 1011 13

 1001 14

 1000 15

Section 1.7 Binary Codes 25

 Table 1.7
 American Standard Code for Information Interchange (ASCII)

 b7b6b5

 b4b3b2b1 000 001 010 011 100 101 110 111

 0000 NUL DLE SP 0 @ P ̀ p

 0001 SOH DC1 ! 1 A Q a q

 0010 STX DC2 “ 2 B R b r

 0011 ETX DC3 # 3 C S c s

 0100 EOT DC4 $ 4 D T d t

 0101 ENQ NAK % 5 E U e u

 0110 ACK SYN & 6 F V f v

 0111 BEL ETB ‘ 7 G W g w

 1000 BS CAN (8 H X h x

 1001 HT EM) 9 I Y i y

 1010 LF SUB * : J Z j z

 1011 VT ESC + ; K [k {

 1100 FF FS , < L \ l |

 1101 CR GS - = M] m }

 1110 SO RS . > N ¿ n ~

 1111 SI US / ? O - o DEL

 Control Characters

 NUL Null DLE Data‐link escape

 SOH Start of heading DC1 Device control 1

 STX Start of text DC2 Device control 2

 ETX End of text DC3 Device control 3

 EOT End of transmission DC4 Device control 4

 ENQ Enquiry NAK Negative acknowledge

 ACK Acknowledge SYN Synchronous idle

 BEL Bell ETB End‐of‐transmission block

 BS Backspace CAN Cancel

 HT Horizontal tab EM End of medium

 LF Line feed SUB Substitute

 VT Vertical tab ESC Escape

 FF Form feed FS File separator

 CR Carriage return GS Group separator

 SO Shift out RS Record separator

 SI Shift in US Unit separator

 SP Space DEL Delete

 The 34 control characters are designated in the ASCII table with abbreviated names. They

are listed again below the table with their functional names. The control characters are used

for routing data and arranging the printed text into a prescribed format. There are three types

of control characters: format effectors, information separators, and communication‐control

26 Chapter 1 Digital Systems and Binary Numbers

characters. Format effectors are characters that control the layout of printing. They include

the familiar word processor and typewriter controls such as backspace (BS), horizontal tabu-

lation (HT), and carriage return (CR). Information separators are used to separate the data

into divisions such as paragraphs and pages. They include characters such as record separator

(RS) and file separator (FS). The communication‐control characters are useful during

the transmission of text between remote devices so that it can be distinguished from other

messages using the same communication channel before it and after it. Examples of

 communication‐control characters are STX (start of text) and ETX (end of text), which are

used to frame a text message transmitted through a communication channel.

 ASCII is a seven‐bit code, but most computers manipulate an eight‐bit quantity

as a single unit called a byte. Therefore, ASCII characters most often are stored one

per byte. The extra bit is sometimes used for other purposes, depending on the appli-

cation. For example, some printers recognize eight‐bit ASCII characters with the

most significant bit set to 0. An additional 128 eight‐bit characters with the most

significant bit set to 1 are used for other symbols, such as the Greek alphabet or italic

type font.

 Error‐Detecting Code

 To detect errors in data communication and processing, an eighth bit is sometimes added

to the ASCII character to indicate its parity. A parity bit is an extra bit included with a

message to make the total number of 1’s either even or odd. Consider the following two

characters and their even and odd parity:

 With even parity With odd parity
 ASCII A = 1000001 01000001 11000001

 ASCII T = 1010100 11010100 01010100

 In each case, we insert an extra bit in the leftmost position of the code to produce an

even number of 1’s in the character for even parity or an odd number of 1’s in the char-

acter for odd parity. In general, one or the other parity is adopted, with even parity being

more common.

 The parity bit is helpful in detecting errors during the transmission of information

from one location to another. This function is handled by generating an even parity bit

at the sending end for each character. The eight‐bit characters that include parity bits

are transmitted to their destination. The parity of each character is then checked at the

receiving end. If the parity of the received character is not even, then at least one bit has

changed value during the transmission. This method detects one, three, or any odd com-

bination of errors in each character that is transmitted. An even combination of errors,

however, goes undetected, and additional error detection codes may be needed to take

care of that possibility.

 What is done after an error is detected depends on the particular application. One

possibility is to request retransmission of the message on the assumption that the error

was random and will not occur again. Thus, if the receiver detects a parity error, it sends

Section 1.8 Binary Storage and Registers 27

back the ASCII NAK (negative acknowledge) control character consisting of an even‐

parity eight bits 10010101. If no error is detected, the receiver sends back an ACK

(acknowledge) control character, namely, 00000110. The sending end will respond to an

NAK by transmitting the message again until the correct parity is received. If, after a

number of attempts, the transmission is still in error, a message can be sent to the oper-

ator to check for malfunctions in the transmission path.

 1 . 8 B I N A RY S T O R A G E A N D R E G I S T E R S

 The binary information in a digital computer must have a physical existence in some

medium for storing individual bits. A binary cell is a device that possesses two stable

states and is capable of storing one bit (0 or 1) of information. The input to the cell

receives excitation signals that set it to one of the two states. The output of the cell is

a physical quantity that distinguishes between the two states. The information stored

in a cell is 1 when the cell is in one stable state and 0 when the cell is in the other stable

state.

 Registers

 A register is a group of binary cells. A register with n cells can store any discrete quantity

of information that contains n bits. The state of a register is an n‐tuple of 1’s and 0’s, with

each bit designating the state of one cell in the register. The content of a register is a

function of the interpretation given to the information stored in it. Consider, for example,

a 16‐bit register with the following binary content:

 1100001111001001

 A register with 16 cells can be in one of 216 possible states. If one assumes that the con-

tent of the register represents a binary integer, then the register can store any binary

number from 0 to 216 - 1. For the particular example shown, the content of the register

is the binary equivalent of the decimal number 50,121. If one assumes instead that the

register stores alphanumeric characters of an eight‐bit code, then the content of the

register is any two meaningful characters. For the ASCII code with an even parity placed

in the eighth most significant bit position, the register contains the two characters C (the

leftmost eight bits) and I (the rightmost eight bits). If, however, one interprets the con-

tent of the register to be four decimal digits represented by a four‐bit code, then the

content of the register is a four‐digit decimal number. In the excess‐3 code, the register

holds the decimal number 9,096. The content of the register is meaningless in BCD,

because the bit combination 1100 is not assigned to any decimal digit. From this exam-

ple, it is clear that a register can store discrete elements of information and that the same

bit configuration may be interpreted differently for different types of data depending

on the application.

28 Chapter 1 Digital Systems and Binary Numbers

 Register Transfer

 A digital system is characterized by its registers and the components that perform data

processing. In digital systems, a register transfer operation is a basic operation that con-

sists of a transfer of binary information from one set of registers into another set of

registers. The transfer may be direct, from one register to another, or may pass through

data‐processing circuits to perform an operation. Figure 1.1 illustrates the transfer of infor-

mation among registers and demonstrates pictorially the transfer of binary information

from a keyboard into a register in the memory unit. The input unit is assumed to have a

keyboard, a control circuit, and an input register. Each time a key is struck, the control

circuit enters an equivalent eight‐bit alphanumeric character code into the input register.

We shall assume that the code used is the ASCII code with an odd‐parity bit. The informa-

tion from the input register is transferred into the eight least significant cells of a processor

register. After every transfer, the input register is cleared to enable the control to insert a

new eight‐bit code when the keyboard is struck again. Each eight‐bit character transferred

to the processor register is preceded by a shift of the previous character to the next eight

cells on its left. When a transfer of four characters is completed, the processor register is

full, and its contents are transferred into a memory register. The content stored in the

MEMORY UNIT

PROCESSOR UNIT

INPUT UNIT

J O H N
Memory
Register

8 cells 8 cells 8 cells

8 cells

8 cells

Keyboard CONTROL

01001010010011111100100011001110

Processor
Register

Input
Register

J

O

H

N

 FIGURE 1.1
 Transfer of information among registers

Section 1.8 Binary Storage and Registers 29

memory register shown in Fig. 1.1 came from the transfer of the characters “J,” “O,” “H,”

and “N” after the four appropriate keys were struck.

 To process discrete quantities of information in binary form, a computer must be

provided with devices that hold the data to be processed and with circuit elements that

manipulate individual bits of information. The device most commonly used for holding
data is a register. Binary variables are manipulated by means of digital logic circuits.

 Figure 1.2 illustrates the process of adding two 10‐bit binary numbers. The memory unit,

which normally consists of millions of registers, is shown with only three of its registers.

The part of the processor unit shown consists of three registers—R1, R2, and R3—

together with digital logic circuits that manipulate the bits of R1 and R2 and transfer into

R3 a binary number equal to their arithmetic sum. Memory registers store information

and are incapable of processing the two operands. However, the information stored in

memory can be transferred to processor registers, and the results obtained in processor

registers can be transferred back into a memory register for storage until needed again.

The diagram shows the contents of two operands transferred from two memory registers

MEMORY UNIT

PROCESSOR UNIT

Operand 1

Operand 2

Sum

R1

R2

R3

0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1

0 0 1 1 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 1 0 0 1 0 0 0 1 1
Digital logic
circuits for

binary addition

 FIGURE 1.2
 Example of binary information processing

30 Chapter 1 Digital Systems and Binary Numbers

into R1 and R2. The digital logic circuits produce the sum, which is transferred to register

R3. The contents of R3 can now be transferred back to one of the memory registers.

 The last two examples demonstrated the information‐flow capabilities of a digital

system in a simple manner. The registers of the system are the basic elements for storing

and holding the binary information. Digital logic circuits process the binary information

stored in the registers. Digital logic circuits and registers are covered in Chapters 2

through 6. The memory unit is explained in Chapter 7 . The description of register oper-

ations at the register transfer level and the design of digital systems are covered in

 Chapter 8 .

 1 . 9 B I N A RY L O G I C

 Binary logic deals with variables that take on two discrete values and with operations

that assume logical meaning. The two values the variables assume may be called by dif-

ferent names (true and false, yes and no, etc.), but for our purpose, it is convenient to

think in terms of bits and assign the values 1 and 0. The binary logic introduced in this

section is equivalent to an algebra called Boolean algebra. The formal presentation of

Boolean algebra is covered in more detail in Chapter 2 . The purpose of this section is

to introduce Boolean algebra in a heuristic manner and relate it to digital logic circuits

and binary signals.

 Definition of Binary Logic

 Binary logic consists of binary variables and a set of logical operations. The variables are

designated by letters of the alphabet, such as A, B, C, x, y, z, etc., with each variable hav-

ing two and only two distinct possible values: 1 and 0. There are three basic logical oper-

ations: AND, OR, and NOT. Each operation produces a binary result, denoted by z.

 1. AND: This operation is represented by a dot or by the absence of an operator. For

example, x # y = z or xy = z is read “x AND y is equal to z.” The logical operation

AND is interpreted to mean that z = 1 if and only if x = 1 and y = 1; otherwise

 z = 0. (Remember that x, y, and z are binary variables and can be equal either to

1 or 0, and nothing else.) The result of the operation x # y is z.

 2. OR: This operation is represented by a plus sign. For example, x + y = z is read

“x OR y is equal to z,” meaning that z = 1 if x = 1 or if y = 1 or if both x = 1

and y = 1. If both x = 0 and y = 0, then z = 0.

 3. NOT: This operation is represented by a prime (sometimes by an overbar). For

example, x� = z (or x = z) is read “not x is equal to z,” meaning that z is what x

is not. In other words, if x = 1, then z = 0, but if x = 0, then z = 1. The NOT

operation is also referred to as the complement operation, since it changes a 1 to

0 and a 0 to 1, i.e., the result of complementing 1 is 0, and vice versa.

 Binary logic resembles binary arithmetic, and the operations AND and OR have

similarities to multiplication and addition, respectively. In fact, the symbols used for

Section 1.9 Binary Logic 31

AND and OR are the same as those used for multiplication and addition. However,

binary logic should not be confused with binary arithmetic. One should realize that an

arithmetic variable designates a number that may consist of many digits. A logic vari-

able is always either 1 or 0. For example, in binary arithmetic, we have 1 + 1 = 10 (read

“one plus one is equal to 2”), whereas in binary logic, we have 1 + 1 = 1 (read “one

OR one is equal to one”).

 For each combination of the values of x and y, there is a value of z specified by the

definition of the logical operation. Definitions of logical operations may be listed in a

compact form called truth tables. A truth table is a table of all possible combinations of

the variables, showing the relation between the values that the variables may take and

the result of the operation. The truth tables for the operations AND and OR with vari-

ables x and y are obtained by listing all possible values that the variables may have when

combined in pairs. For each combination, the result of the operation is then listed in a

separate row. The truth tables for AND, OR, and NOT are given in Table 1.8 . These

tables clearly demonstrate the definition of the operations.

 Logic Gates

 Logic gates are electronic circuits that operate on one or more input signals to pro-

duce an output signal. Electrical signals such as voltages or currents exist as analog

signals having values over a given continuous range, say, 0 to 3 V, but in a digital

system these voltages are interpreted to be either of two recognizable values, 0 or 1.

Voltage‐operated logic circuits respond to two separate voltage levels that represent a

binary variable equal to logic 1 or logic 0. For example, a particular digital system may

define logic 0 as a signal equal to 0 V and logic 1 as a signal equal to 3 V. In practice,

each voltage level has an acceptable range, as shown in Fig. 1.3 . The input terminals of

digital circuits accept binary signals within the allowable range and respond at the

output terminals with binary signals that fall within the specified range. The intermedi-

ate region between the allowed regions is crossed only during a state transition. Any

desired information for computing or control can be operated on by passing binary

signals through various combinations of logic gates, with each signal representing a

particular binary variable. When the physical signal is in a particular range it is inter-

preted to be either a 0 or a 1.

 Table 1.8
 Truth Tables of Logical Operations

 AND OR NOT

 x y x # y x y x + y x x�

 0 0 0 0 0 0 0 1

 0 1 0 0 1 1 1 0

 1 0 0 1 0 1

 1 1 1 1 1 1

32 Chapter 1 Digital Systems and Binary Numbers

 The graphic symbols used to designate the three types of gates are shown in Fig. 1.4 .

The gates are blocks of hardware that produce the equivalent of logic‐1 or logic‐0 output

signals if input logic requirements are satisfied. The input signals x and y in the AND and

OR gates may exist in one of four possible states: 00, 10, 11, or 01. These input signals

are shown in Fig. 1.5 together with the corresponding output signal for each gate. The

timing diagrams illustrate the idealized response of each gate to the four input signal

combinations. The horizontal axis of the timing diagram represents the time, and the

vertical axis shows the signal as it changes between the two possible voltage levels. In

reality, the transitions between logic values occur quickly, but not instantaneously. The

low level represents logic 0, the high level logic 1. The AND gate responds with a logic

1 output signal when both input signals are logic 1. The OR gate responds with a logic

1 output signal if any input signal is logic 1. The NOT gate is commonly referred to as

an inverter. The reason for this name is apparent from the signal response in the timing

diagram, which shows that the output signal inverts the logic sense of the input signal.

Volts

Signal
range for

logic 1

Signal
range for

logic 0

0

1

2

3

Transition occurs
between these limits

 FIGURE 1.3
 Signal levels for binary logic values

x x�

(c) NOT gate or inverter(a) Two-input AND gate

x z � x � y

y

(b) Two-input OR gate

z � x �yx

y

 FIGURE 1.4
 Symbols for digital logic circuits

Problems 33

 AND and OR gates may have more than two inputs. An AND gate with three inputs

and an OR gate with four inputs are shown in Fig. 1.6 . The three‐input AND gate

responds with logic 1 output if all three inputs are logic 1. The output produces logic 0

if any input is logic 0. The four‐input OR gate responds with logic 1 if any input is logic

1; its output becomes logic 0 only when all inputs are logic 0.

 P R O B L E M S

 (Answers to problems marked with * appear at the end of the text.)

 1.1 List the octal and hexadecimal numbers from 16 to 32. Using A and B for the last two

digits, list the numbers from 8 to 28 in base 12.

 1.2* What is the exact number of bytes in a system that contains (a) 32K bytes, (b) 64M bytes,

and (c) 6.4G bytes?

 1.3 Convert the following numbers with the indicated bases to decimal:

 (a) * (4310) 5 (b) * (198) 12

 (c) (435) 8 (d) (345) 6

 1.4 What is the largest binary number that can be expressed with 16 bits? What are the equiv-

alent decimal and hexadecimal numbers?

 1.5* Determine the base of the numbers in each case for the following operations to be correct:

(a) 14/2 = 5 (b) 54/4 = 13 (c) 24 + 17 = 40.

 1.6* The solutions to the quadratic equation x 2 - 11x + 22 = 0 are x = 3 and x = 6. What is the

base of the numbers?

x

y

AND: x � y

OR: x � y

NOT: x�

0 0 01 1

0 1 00 1

0 0 00 1

0 1 01 1

1 1 10 0

 FIGURE 1.5
 Input–output signals for gates

A
B
C

F � ABC G � A � B � C � D
A
B
C
D

(a) Three-input AND gate (b) Four-input OR gate

 FIGURE 1.6
 Gates with multiple inputs

34 Chapter 1 Digital Systems and Binary Numbers

 1.7* Convert the hexadecimal number 64CD to binary, and then convert it from binary to octal.

 1.8 Convert the decimal number 431 to binary in two ways: (a) convert directly to binary;

(b) convert first to hexadecimal and then from hexadecimal to binary. Which method is faster?

 1.9 Express the following numbers in decimal:

 (a) * (10110.0101) 2 (b) * (16.5) 16

 (c) * (26.24) 8 (d) (DADA.B) 16

 (e) (1010.1101) 2

 1.10 Convert the following binary numbers to hexadecimal and to decimal: (a) 1.10010,

(b) 110.010. Explain why the decimal answer in (b) is 4 times that in (a).

 1.11 Perform the following division in binary: 111011 ÷ 101.

 1.12* Add and multiply the following numbers without converting them to decimal.

 (a) Binary numbers 1011 and 101.

 (b) Hexadecimal numbers 2E and 34.

 1.13 Do the following conversion problems:

 (a) Convert decimal 27.315 to binary.

 (b) Calculate the binary equivalent of 2/3 out to eight places. Then convert from binary to

decimal. How close is the result to 2/3?

 (c) Convert the binary result in (b) into hexadecimal. Then convert the result to decimal.

Is the answer the same?

 1.14 Obtain the 1’s and 2’s complements of the following binary numbers:

 (a) 00010000 (b) 00000000

 (c) 11011010 (d) 10101010

 (e) 10000101 (f) 11111111.

 1.15 Find the 9’s and the 10’s complement of the following decimal numbers:

 (a) 25,478,036 (b) 63, 325, 600

 (c) 25,000,000 (d) 00,000,000.

 1.16 (a) Find the 16’s complement of C3DF.

 (b) Convert C3DF to binary.

 (c) Find the 2’s complement of the result in (b).

 (d) Convert the answer in (c) to hexadecimal and compare with the answer in (a).

 1.17 Perform subtraction on the given unsigned numbers using the 10’s complement of the

subtrahend. Where the result should be negative, find its 10’s complement and affix a minus

sign. Verify your answers.

 (a) 4,637 - 2,579 (b) 125 - 1,800

 (c) 2,043 - 4,361 (d) 1,631 - 745

 1.18 Perform subtraction on the given unsigned binary numbers using the 2’s complement of the

subtrahend. Where the result should be negative, find its 2’s complement and affix a minus sign.

 (a) 10011 - 10010 (b) 100010 - 100110

 (c) 1001 - 110101 (d) 101000 - 10101

 1.19* The following decimal numbers are shown in sign‐magnitude form: +9,286 and +801.

 Convert them to signed-10’s‐complement form and perform the following operations

(note that the sum is +10,627 and requires five digits and a sign).

 (a) (+9,286) + (+801) (b) (+9,286) + (-801)

 (c) (-9,286) + (+801) (d) (-9,286) + (-801)

Problems 35

 1.20 Convert decimal +49 and +29 to binary, using the signed‐2’s‐complement representation

and enough digits to accommodate the numbers. Then perform the binary equivalent of

(+29) + (-49), (-29) + (+49), and (-29) + (-49). Convert the answers back to decimal and

verify that they are correct.

 1.21 If the numbers (+9,742) 10 and (+641) 10 are in signed magnitude format, their sum is (+10,383) 10

and requires five digits and a sign. Convert the numbers to signed-10’s‐complement form and

find the following sums:

 (a) (+9,742) + (+641) (b) (+9,742) + (-641)

 (c) (-9,742) + (+641) (d) (-9,742) + (-641)

 1.22 Convert decimal 6,514 to both BCD and ASCII codes. For ASCII, an even parity bit is to

be appended at the left.

 1.23 Represent the unsigned decimal numbers 791 and 658 in BCD, and then show the steps

necessary to form their sum.

 1.24 Formulate a weighted binary code for the decimal digits, using the following weights:

 (a) * 6, 3, 1, 1

 (b) 6, 4, 2, 1

 1.25 Represent the decimal number 6,248 in (a) BCD, (b) excess‐3 code, (c) 2421 code, and

(d) a 6311 code.

 1.26 Find the 9’s complement of decimal 6,248 and express it in 2421 code. Show that the result

is the 1’s complement of the answer to (c) in CR_PROBlem 1.25. This demonstrates that

the 2421 code is self‐complementing.

 1.27 Assign a binary code in some orderly manner to the 52 playing cards. Use the minimum

number of bits.

 1.28 Write the expression “G. Boole” in ASCII, using an eight‐bit code. Include the period and

the space. Treat the leftmost bit of each character as a parity bit. Each eight‐bit code should

have odd parity. (George Boole was a 19th‐century mathematician. Boolean algebra,

introduced in the next chapter, bears his name.)

 1.29* Decode the following ASCII code:

 1010011 1110100 1100101 1110110 1100101 0100000 1001010 1101111 1100010 1110011.

 1.30 The following is a string of ASCII characters whose bit patterns have been converted into

hexadecimal for compactness: 73 F4 E5 76 E5 4A EF 62 73. Of the eight bits in each pair

of digits, the leftmost is a parity bit. The remaining bits are the ASCII code.

 (a) Convert the string to bit form and decode the ASCII.

 (b) Determine the parity used: odd or even?

 1.31* How many printing characters are there in ASCII? How many of them are special char-

acters (not letters or numerals)?

 1.32* What bit must be complemented to change an ASCII letter from capital to lowercase and

vice versa?

 1.33* The state of a 12‐bit register is 100010010111. What is its content if it represents

 (a) Three decimal digits in BCD?

 (b) Three decimal digits in the excess‐3 code?

 (c) Three decimal digits in the 84‐2‐1 code?

 (d) A binary number?

36 Chapter 1 Digital Systems and Binary Numbers

 1.34 List the ASCII code for the 10 decimal digits with an even parity bit in the leftmost

position.

 1.35 By means of a timing diagram similar to Fig. 1.5 , show the signals of the outputs f and g in

 Fig. P1.35 as functions of the three inputs a, b, and c. Use all eight possible combinations

of a, b, and c.

f

g

a b c

 FIGURE P1.35

f

g

a b

 FIGURE P1.36

 1.36 By means of a timing diagram similar to Fig. 1.5 , show the signals of the outputs f and g in

 Fig. P1.36 as functions of the two inputs a and b. Use all four possible combinations of a

and b.

 R E F E R E N C E S

 1. C avanagh, J. J. 1984. Digital Computer Arithmetic. New York: McGraw‐Hill.

 2. M ano, M. M. 1988. Computer Engineering: Hardware Design. Englewood Cliffs, NJ:

 Prentice‐Hall.

 3. N elson, V. P., H. T. N agle, J. D. I rwin, and B. D. C arroll . 1997. Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

 4. S chmid, H. 1974. Decimal Computation. New York: John Wiley.

 5. Katz, R. H. and Borriello, G. 2004. Contemporary Logic Design, 2nd ed. Upper Saddle

River, NJ: Prentice‐Hall.

Web Search Topics 37

 W E B S E A R C H T O P I C S

 BCD code

 ASCII

 Storage register

 Binary logic

 BCD addition

 Binary codes

 Binary numbers

 Excess‐3 code

38

 Chapter 2

 Boolean Algebra and Logic Gates

 2 . 1 I N T R O D U C T I O N

 Because binary logic is used in all of today’s digital computers and devices, the cost of

the circuits that implement it is an important factor addressed by designers—be they

computer engineers, electrical engineers, or computer scientists. Finding simpler and

cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the

overall cost of the design. Mathematical methods that simplify circuits rely primarily on

Boolean algebra. Therefore, this chapter provides a basic vocabulary and a brief founda-

tion in Boolean algebra that will enable you to optimize simple circuits and to under-

stand the purpose of algorithms used by software tools to optimize complex circuits

involving millions of logic gates.

 2 . 2 B A S I C D E F I N I T I O N S

 Boolean algebra, like any other deductive mathematical system, may be defined with a

set of elements, a set of operators, and a number of unproved axioms or postulates. A set
of elements is any collection of objects, usually having a common property. If S is a set,

and x and y are certain objects, then the notation x H S means that x is a member of the

set S and y x S means that y is not an element of S. A set with a denumerable number

of elements is specified by braces: A = {1, 2, 3, 4} indicates that the elements of set A

are the numbers 1, 2, 3, and 4. A binary operator defined on a set S of elements is a rule

that assigns, to each pair of elements from S, a unique element from S. As an example,

consider the relation a*b = c. We say that * is a binary operator if it specifies a rule

for finding c from the pair (a, b) and also if a, b, c H S. However, * is not a binary operator

if a, b H S, and if c x S.

Section 2.2 Basic Definitions 39

 The postulates of a mathematical system form the basic assumptions from which it

is possible to deduce the rules, theorems, and properties of the system. The most com-

mon postulates used to formulate various algebraic structures are as follows:

 1. Closure. A set S is closed with respect to a binary operator if, for every pair of

elements of S, the binary operator specifies a rule for obtaining a unique element

of S. For example, the set of natural numbers N = {1, 2, 3, 4, c} is closed with

respect to the binary operator + by the rules of arithmetic addition, since, for any

 a, b H N, there is a unique c H N such that a + b = c. The set of natural numbers

is not closed with respect to the binary operator - by the rules of arithmetic

subtraction, because 2 - 3 = -1 and 2, 3 H N, but (-1) x N.

 2. Associative law. A binary operator * on a set S is said to be associative whenever

 (x*y)*z = x* (y*z) for all x, y, z, H S

 3. Commutative law. A binary operator * on a set S is said to be commutative when-

ever

 x*y = y*x for all x, y H S

 4. Identity element. A set S is said to have an identity element with respect to a binary

operation * on S if there exists an element e H S with the property that

 e*x = x*e = x for every x H S

 Example: The element 0 is an identity element with respect to the binary operator

 + on the set of integers I = {c , -3, -2, -1, 0, 1, 2, 3,c}, since

 x + 0 = 0 + x = x for any x H I

 The set of natural numbers, N, has no identity element, since 0 is excluded from the set.

 5. Inverse. A set S having the identity element e with respect to a binary operator *

is said to have an inverse whenever, for every x H S, there exists an element y H S

such that

 x *y = e

 Example: In the set of integers, I, and the operator + , with e = 0, the inverse of

an element a is (-a), since a + (-a) = 0.

 6. Distributive law. If * and # are two binary operators on a set S, * is said to be dis-

tributive over # whenever

 x* (y # z) = (x*y) # (x*z)

 A field is an example of an algebraic structure. A field is a set of elements, together with

two binary operators, each having properties 1 through 5 and both operators combining

to give property 6. The set of real numbers, together with the binary operators + and # ,

40 Chapter 2 Boolean Algebra and Logic Gates

forms the field of real numbers. The field of real numbers is the basis for arithmetic and

ordinary algebra. The operators and postulates have the following meanings:

 The binary operator + defines addition.

 The additive identity is 0.

 The additive inverse defines subtraction.

 The binary operator # defines multiplication.

 The multiplicative identity is 1.

 For a � 0, the multiplicative inverse of a = 1>a defines division (i.e., a # 1>a = 1).

 The only distributive law applicable is that of # over + :

 a # (b + c) = (a # b) + (a # c)

 2 . 3 A X I O M AT I C D E F I N I T I O N
O F B O O L E A N A L G E B R A

 In 1854, George Boole developed an algebraic system now called Boolean algebra. In

1938, Claude E. Shannon introduced a two‐valued Boolean algebra called switching
algebra that represented the properties of bistable electrical switching circuits. For the

formal definition of Boolean algebra, we shall employ the postulates formulated by

E. V. Huntington in 1904.

 Boolean algebra is an algebraic structure defined by a set of elements, B, together

with two binary operators, + and # , provided that the following (Huntington) postulates

are satisfied:

 1. (a) The structure is closed with respect to the operator + .

 (b) The structure is closed with respect to the operator # .

 2. (a) The element 0 is an identity element with respect to + ; that is, x + 0 =

0 + x = x .

 (b) The element 1 is an identity element with respect to # ; that is, x # 1 = 1 # x = x.

 3. (a) The structure is commutative with respect to + ; that is, x + y = y + x .

 (b) The structure is commutative with respect to # ; that is, x # y = y # x.

 4. (a) The operator # is distributive over + ; that is, x # (y + z) = (x # y) + (x # z).

 (b) The operator + is distributive over # ; that is, x + (y # z) = (x + y) # (x + z).

 5. For every element x H B, there exists an element x� H B (called the complement of x)

such that (a) x + x� = 1 and (b) x # x� = 0.

 6. There exist at least two elements x, y H B such that x � y.

 Comparing Boolean algebra with arithmetic and ordinary algebra (the field of real

numbers), we note the following differences:

 1. Huntington postulates do not include the associative law. However, this law holds for

Boolean algebra and can be derived (for both operators) from the other postulates.

 2. The distributive law of + over # (i.e., x + (y # z) = (x + y) # (x + z)) is valid for

Boolean algebra, but not for ordinary algebra.

Section 2.3 Axiomatic Definition of Boolean Algebra 41

 3. Boolean algebra does not have additive or multiplicative inverses; therefore, there

are no subtraction or division operations.

 4. Postulate 5 defines an operator called the complement that is not available in

ordinary algebra.

 5. Ordinary algebra deals with the real numbers, which constitute an infinite set of

elements. Boolean algebra deals with the as yet undefined set of elements, B, but

in the two‐valued Boolean algebra defined next (and of interest in our subse-

quent use of that algebra), B is defined as a set with only two elements, 0 and 1.

 Boolean algebra resembles ordinary algebra in some respects. The choice of the

 symbols + and # is intentional, to facilitate Boolean algebraic manipulations by persons

already familiar with ordinary algebra. Although one can use some knowledge from

ordinary algebra to deal with Boolean algebra, the beginner must be careful not to

substitute the rules of ordinary algebra where they are not applicable.

 It is important to distinguish between the elements of the set of an algebraic structure

and the variables of an algebraic system. For example, the elements of the field of real

numbers are numbers, whereas variables such as a, b, c, etc., used in ordinary algebra,

are symbols that stand for real numbers. Similarly, in Boolean algebra, one defines the

elements of the set B, and variables such as x, y, and z are merely symbols that represent
the elements. At this point, it is important to realize that, in order to have a Boolean

algebra, one must show that

 1. the elements of the set B,

 2. the rules of operation for the two binary operators, and

 3. the set of elements, B, together with the two operators, satisfy the six Huntington

postulates.

 One can formulate many Boolean algebras, depending on the choice of elements of

B and the rules of operation. In our subsequent work, we deal only with a two‐valued
Boolean algebra (i.e., a Boolean algebra with only two elements). Two‐valued Boolean

algebra has applications in set theory (the algebra of classes) and in propositional logic.

Our interest here is in the application of Boolean algebra to gate‐type circuits commonly

used in digital devices and computers.

 Two‐Valued Boolean Algebra

 A two‐valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with rules

for the two binary operators + and # as shown in the following operator tables (the rule

for the complement operator is for verification of postulate 5):

 x y x # y x y x � y x x�

 0 0 0 0 0 0 0 1
 0 1 0 0 1 1 1 0
 1 0 0 1 0 1
 1 1 1 1 1 1

42 Chapter 2 Boolean Algebra and Logic Gates

 These rules are exactly the same as the AND, OR, and NOT operations, respectively,

defined in Table 1.8. We must now show that the Huntington postulates are valid for the

set B = {0, 1} and the two binary operators + and # .

 1. That the structure is closed with respect to the two operators is obvious from the

tables, since the result of each operation is either 1 or 0 and 1, 0 H B.

 2. From the tables, we see that

 (a) 0 + 0 = 0 0 + 1 = 1 + 0 = 1;

 (b) 1 # 1 = 1 1 # 0 = 0 # 1 = 0.

 This establishes the two identity elements, 0 for + and 1 for # , as defined by

postulate 2.

 3. The commutative laws are obvious from the symmetry of the binary operator tables.

 4. (a) The distributive law x # (y + z) = (x # y) + (x # z) can be shown to hold from

the operator tables by forming a truth table of all possible values of x, y, and z. For

each combination, we derive x # (y + z) and show that the value is the same as the

value of (x # y) + (x # z):

 x y z y � z x # (y �z) x # y x # z (x # y) �(x # z)

 0 0 0 0 0 0 0 0

 0 0 1 1 0 0 0 0

 0 1 0 1 0 0 0 0

 0 1 1 1 0 0 0 0

 1 0 0 0 0 0 0 0

 1 0 1 1 1 0 1 1

 1 1 0 1 1 1 0 1

 1 1 1 1 1 1 1 1

 (b) The distributive law of + over # can be shown to hold by means of a truth table

similar to the one in part (a).

 5. From the complement table, it is easily shown that

 (a) x + x � = 1, since 0 + 0� = 0 + 1 = 1 and 1 + 1� = 1 + 0 = 1.

 (b) x # x� = 0, since 0 # 0� = 0 # 1 = 0 and 1 # 1� = 1 # 0 = 0.

 Thus, postulate 1 is verified.

 6. Postulate 6 is satisfied because the two‐valued Boolean algebra has two elements,

1 and 0, with 1 � 0.

 We have just established a two‐valued Boolean algebra having a set of two elements,

1 and 0, two binary operators with rules equivalent to the AND and OR operations, and

a complement operator equivalent to the NOT operator. Thus, Boolean algebra has been

defined in a formal mathematical manner and has been shown to be equivalent to the

binary logic presented heuristically in Section 1.9. The heuristic presentation is helpful

in understanding the application of Boolean algebra to gate‐type circuits. The formal

Section 2.4 Basic Theorems and Properties of Boolean Algebra 43

presentation is necessary for developing the theorems and properties of the algebraic

system. The two‐valued Boolean algebra defined in this section is also called “switching

algebra” by engineers. To emphasize the similarities between two‐valued Boolean alge-

bra and other binary systems, that algebra was called “binary logic” in Section 1.9. From

here on, we shall drop the adjective “two‐valued” from Boolean algebra in subsequent

discussions.

 2 . 4 B A S I C T H E O R E M S A N D P R O P E R T I E S
O F B O O L E A N A L G E B R A

 Duality

 In Section 2.3, the Huntington postulates were listed in pairs and designated by part

(a) and part (b). One part may be obtained from the other if the binary operators and

the identity elements are interchanged. This important property of Boolean algebra is

called the duality principle and states that every algebraic expression deducible from

the postulates of Boolean algebra remains valid if the operators and identity elements

are interchanged. In a two‐valued Boolean algebra, the identity elements and the ele-

ments of the set B are the same: 1 and 0. The duality principle has many applications. If

the dual of an algebraic expression is desired, we simply interchange OR and AND

operators and replace 1’s by 0’s and 0’s by 1’s.

 Basic Theorems

 Table 2.1 lists six theorems of Boolean algebra and four of its postulates. The notation

is simplified by omitting the binary operator whenever doing so does not lead to

confusion. The theorems and postulates listed are the most basic relationships in Boolean

 Table 2.1
 Postulates and Theorems of Boolean Algebra

 Postulate 2 (a) x + 0 = x (b) x # 1 = x

 Postulate 5 (a) x + x � = 1 (b) x # x� = 0

 Theorem 1 (a) x + x = x (b) x # x = x

 Theorem 2 (a) x + 1 = 1 (b) x # 0 = 0

 Theorem 3, involution (x �)� = x

 Postulate 3, commutative (a) x + y = y + x (b) xy = yx

 Theorem 4, associative (a) x + (y + z) = (x + y) + z (b) x(yz) = (xy)z

 Postulate 4, distributive (a) x(y + z) = xy + xz (b) x + yz = (x + y)(x + z)

 Theorem 5, DeMorgan (a) (x + y)� = x �y� (b) (xy)� = x � + y�

 Theorem 6, absorption (a) x + xy = x (b) x(x + y) = x

44 Chapter 2 Boolean Algebra and Logic Gates

algebra. The theorems, like the postulates, are listed in pairs; each relation is the dual of

the one paired with it. The postulates are basic axioms of the algebraic structure and

need no proof. The theorems must be proven from the postulates. Proofs of the theorems

with one variable are presented next. At the right is listed the number of the postulate

which justifies that particular step of the proof.

 THEOREM 1(a): x + x = x.

 Statement Justification

 x + x = (x + x) # 1 postulate 2(b)

 = (x + x)(x + x�) 5(a)

 = x + xx� 4(b)

 = x + 0 5(b)

 = x 2(a)

 THEOREM 1(b): x # x = x.

 Statement Justification

 x # x = xx + 0 postulate 2(a)

 = xx + xx� 5(b)

 = x(x + x�) 4(a)

 = x # 1 5(a)

 = x 2(b)

 Note that theorem 1(b) is the dual of theorem 1(a) and that each step of the proof

in part (b) is the dual of its counterpart in part (a). Any dual theorem can be similarly

derived from the proof of its corresponding theorem.

 THEOREM 2(a): x + 1 = 1.

 Statement Justifi cation

 x + 1 = 1 # (x + 1) postulate 2(b)

 = (x + x�)(x + 1) 5(a)

 = x + x� # 1 4(b)

 = x + x� 2(b)

 = 1 5(a)

 THEOREM 2(b): x # 0 = 0 by duality.

 THEOREM 3: (x�)� = x. From postulate 5, we have x + x� = 1 and x # x� = 0, which

together define the complement of x. The complement of x� is x and is also (x�)�.

Section 2.4 Basic Theorems and Properties of Boolean Algebra 45

Therefore, since the complement is unique, we have (x�)� = x. The theorems involv-

ing two or three variables may be proven algebraically from the postulates and the

theorems that have already been proven. Take, for example, the absorption theorem:

 THEOREM 6(a): x + xy = x.

 Statement Justifi cation

 x + xy = x # 1 + xy postulate 2(b)

 = x(1 + y) 4(a)

 = x(y + 1) 3(a)

 = x # 1 2(a)

 = x 2(b)

 THEOREM 6(b): x(x + y) = x by duality.

 The theorems of Boolean algebra can be proven by means of truth tables. In truth

tables, both sides of the relation are checked to see whether they yield identical results

for all possible combinations of the variables involved. The following truth table verifies

the first absorption theorem:

 x y xy x � xy

 0 0 0 0

 0 1 0 0

 1 0 0 1

 1 1 1 1

 The algebraic proofs of the associative law and DeMorgan’s theorem are long and will

not be shown here. However, their validity is easily shown with truth tables. For example,

the truth table for the first DeMorgan’s theorem, (x + y)� = x�y�, is as follows:

 x y x � y (x � y)� x� y� x�y�

 0 0 0 1 1 1 1

 0 1 1 0 1 0 0

 1 0 1 0 0 1 0

 1 1 1 0 0 0 0

 Operator Precedence

 The operator precedence for evaluating Boolean expressions is (1) parentheses,

(2) NOT, (3) AND, and (4) OR. In other words, expressions inside parentheses must be

evaluated before all other operations. The next operation that holds precedence is the

complement, and then follows the AND and, finally, the OR. As an example, consider

the truth table for one of DeMorgan’s theorems. The left side of the expression is

 (x + y)�. Therefore, the expression inside the parentheses is evaluated first and the

46 Chapter 2 Boolean Algebra and Logic Gates

 Table 2.2
 Truth Tables for F1 and F2

 x y z F1 F2

 0 0 0 0 0

 0 0 1 1 1

 0 1 0 0 0

 0 1 1 0 1

 1 0 0 1 1

 1 0 1 1 1

 1 1 0 1 0

 1 1 1 1 0

result then complemented. The right side of the expression is x�y�, so the complement

of x and the complement of y are both evaluated first and the result is then ANDed.

Note that in ordinary arithmetic, the same precedence holds (except for the comple-

ment) when multiplication and addition are replaced by AND and OR, respectively.

 2 . 5 B O O L E A N F U N C T I O N S

 Boolean algebra is an algebra that deals with binary variables and logic operations. A

Boolean function described by an algebraic expression consists of binary variables, the

constants 0 and 1, and the logic operation symbols. For a given value of the binary variables,

the function can be equal to either 1 or 0. As an example, consider the Boolean function

 F1 = x + y�z

 The function F1 is equal to 1 if x is equal to 1 or if both y� and z are equal to 1. F1 is equal

to 0 otherwise. The complement operation dictates that when y� = 1, y = 0. Therefore,

 F1 = 1 if x = 1 or if y = 0 and z = 1. A Boolean function expresses the logical rela-

tionship between binary variables and is evaluated by determining the binary value of

the expression for all possible values of the variables.

 A Boolean function can be represented in a truth table. The number of rows in the

truth table is 2n, where n is the number of variables in the function. The binary combina-

tions for the truth table are obtained from the binary numbers by counting from 0

through 2n - 1. Table 2.2 shows the truth table for the function F1. There are eight pos-

sible binary combinations for assigning bits to the three variables x, y, and z. The column

labeled F1 contains either 0 or 1 for each of these combinations. The table shows that

the function is equal to 1 when x = 1 or when yz = 01 and is equal to 0 otherwise.

 A Boolean function can be transformed from an algebraic expression into a circuit

diagram composed of logic gates connected in a particular structure. The logic‐circuit

diagram (also called a schematic) for F1 is shown in Fig. 2.1 . There is an inverter for input
y to generate its complement. There is an AND gate for the term y�z and an OR gate

Section 2.5 Boolean Functions 47

that combines x with y�z. In logic‐circuit diagrams, the variables of the function are taken

as the inputs of the circuit and the binary variable F1 is taken as the output of the circuit.

The schematic expresses the relationship between the output of the circuit and its inputs.

Rather than listing each combination of inputs and outputs, it indicates how to compute

the logic value of each output from the logic values of the inputs.
 There is only one way that a Boolean function can be represented in a truth table.

However, when the function is in algebraic form, it can be expressed in a variety of ways,

all of which have equivalent logic. The particular expression used to represent the function

will dictate the interconnection of gates in the logic‐circuit diagram. Conversely, the inter-

connection of gates will dictate the logic expression. Here is a key fact that motivates our

use of Boolean algebra: By manipulating a Boolean expression according to the rules of

Boolean algebra, it is sometimes possible to obtain a simpler expression for the same

function and thus reduce the number of gates in the circuit and the number of inputs to

the gate. Designers are motivated to reduce the complexity and number of gates because

their effort can significantly reduce the cost of a circuit. Consider, for example, the fol-

lowing Boolean function:

 F2 = x�y�z + x�yz + xy�

 A schematic of an implementation of this function with logic gates is shown in

 Fig. 2.2 (a). Input variables x and y are complemented with inverters to obtain x� and

 y�. The three terms in the expression are implemented with three AND gates. The

OR gate forms the logical OR of the three terms. The truth table for F2 is listed in

 Table 2.2 . The function is equal to 1 when xyz = 001 or 011 or when xy = 10 (irre-

spective of the value of z) and is equal to 0 otherwise. This set of conditions produces

four 1’s and four 0’s for F2.
 Now consider the possible simplification of the function by applying some of the

identities of Boolean algebra:

 F2 = x�y�z + x�yz + xy� = x�z(y� + y) + xy� = x�z + xy�

 The function is reduced to only two terms and can be implemented with gates as shown

in Fig. 2.2 (b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both

implement the same function. By means of a truth table, it is possible to verify that the

two expressions are equivalent. The simplified expression is equal to 1 when xz = 01 or

when xy = 10. This produces the same four 1’s in the truth table. Since both expressions

F1
x

y
z

 FIGURE 2.1
 Gate implementation of F1 � x � y�z

48 Chapter 2 Boolean Algebra and Logic Gates

produce the same truth table, they are equivalent. Therefore, the two circuits have the

same outputs for all possible binary combinations of inputs of the three variables. Each

circuit implements the same identical function, but the one with fewer gates and fewer

inputs to gates is preferable because it requires fewer wires and components. In general,

there are many equivalent representations of a logic function. Finding the most eco-

nomic representation of the logic is an important design task.

 Algebraic Manipulation

 When a Boolean expression is implemented with logic gates, each term requires a gate

and each variable within the term designates an input to the gate. We define a literal to

be a single variable within a term, in complemented or uncomplemented form. The

function of Fig. 2.2 (a) has three terms and eight literals, and the one in Fig. 2.2 (b) has

two terms and four literals. By reducing the number of terms, the number of literals, or

both in a Boolean expression, it is often possible to obtain a simpler circuit. The manip-

ulation of Boolean algebra consists mostly of reducing an expression for the purpose of

obtaining a simpler circuit. Functions of up to five variables can be simplified by the

map method described in the next chapter. For complex Boolean functions and many

(a) F2 � x�y�z � x�yz � xy�

(b) F2 � xy� � x�z

x

y

z
F2

x

y

z

F2

 FIGURE 2.2
 Implementation of Boolean function F2 with gates

Section 2.5 Boolean Functions 49

different outputs, designers of digital circuits use computer minimization programs that

are capable of producing optimal circuits with millions of logic gates. The concepts intro-

duced in this chapter provide the framework for those tools. The only manual method

available is a cut‐and‐try procedure employing the basic relations and other manipulation

techniques that become familiar with use, but remain, nevertheless, subject to human

error. The examples that follow illustrate the algebraic manipulation of Boolean algebra

to acquaint the reader with this important design task.

 EXAMPLE 2.1

 Simplify the following Boolean functions to a minimum number of literals.

 1. x(x� + y) = xx� + xy = 0 + xy = xy.

 2. x + x�y = (x + x�)(x + y) = 1(x + y) = x + y.

 3. (x + y)(x + y�) = x + xy + xy� + yy� = x(1 + y + y�) = x.

 4. xy + x�z + yz = xy + x�z + yz(x + x�)

 = xy + x�z + xyz + x�yz

 = xy(1 + z) + x�z(1 + y)

 = xy + x�z.

 5. (x + y)(x� + z)(y + z) = (x + y)(x� + z), by duality from function 4.

■

 Functions 1 and 2 are the dual of each other and use dual expressions in correspond-

ing steps. An easier way to simplify function 3 is by means of postulate 4(b) from

 Table 2.1 : (x + y)(x + y�) = x + yy� = x. The fourth function illustrates the fact that

an increase in the number of literals sometimes leads to a simpler final expression.

Function 5 is not minimized directly, but can be derived from the dual of the steps used

to derive function 4. Functions 4 and 5 are together known as the consensus theorem.

 Complement of a Function

 The complement of a function F is F� and is obtained from an interchange of 0’s for 1’s

and 1’s for 0’s in the value of F. The complement of a function may be derived algebraically

through DeMorgan’s theorems, listed in Table 2.1 for two variables. DeMorgan’s theo-

rems can be extended to three or more variables. The three‐variable form of the first

DeMorgan’s theorem is derived as follows, from postulates and theorems listed in Table 2.1 :

 (A + B + C)� = (A + x)� let B + C = x

 = A�x� by theorem 5(a) (DeMorgan)

 = A�(B + C)� substitute B + C = x

 = A�(B�C�) by theorem 5(a) (DeMorgan)

 = A�B�C� by theorem 4(b) (associative)

50 Chapter 2 Boolean Algebra and Logic Gates

 DeMorgan’s theorems for any number of variables resemble the two‐variable case in

form and can be derived by successive substitutions similar to the method used in the

preceding derivation. These theorems can be generalized as follows:

 (A + B + C + D + g + F)� = A�B�C�D�c F�

 (ABCDc F)� = A� + B� + C� + D� + g + F�

 The generalized form of DeMorgan’s theorems states that the complement of a func-

tion is obtained by interchanging AND and OR operators and complementing each

literal.

 EXAMPLE 2.2

 Find the complement of the functions F1 = x�yz� + x�y�z and F2 = x(y�z� + yz). By

applying DeMorgan’s theorems as many times as necessary, the complements are

obtained as follows:

 F =
1 = (x�yz� + x�y�z)� = (x�yz�)�(x�y�z)� = (x + y� + z)(x + y + z�)

 F =2 = [x(y�z� + yz)]� = x� + (y�z� + yz)� = x� + (y�z�)�(yz)�

 = x� + (y + z)(y� + z�)

 = x� + yz� + y�z

■

 A simpler procedure for deriving the complement of a function is to take the dual of

the function and complement each literal. This method follows from the generalized

forms of DeMorgan’s theorems. Remember that the dual of a function is obtained from

the interchange of AND and OR operators and 1’s and 0’s.

 EXAMPLE 2.3

 Find the complement of the functions F1 and F2 of Example 2.2 by taking their duals

and complementing each literal.

 1. F1 = x�yz� + x�y�z.

 The dual of F1 is (x� + y + z�)(x� + y� + z).

 Complement each literal: (x + y� + z)(x + y + z�) = F =
1.

 2. F2 = x(y�z� + yz).

 The dual of F2 is x + (y� + z�)(y + z).

 Complement each literal: x� + (y + z)(y� + z�) = F =
2.

■

Section 2.6 Canonical and Standard Forms 51

 2 . 6 C A N O N I C A L A N D S TA N D A R D F O R M S

 Minterms and Maxterms

 A binary variable may appear either in its normal form (x) or in its complement form (x�).

Now consider two binary variables x and y combined with an AND operation. Since each

variable may appear in either form, there are four possible combinations: x�y�, x�y, xy�,
and xy. Each of these four AND terms is called a minterm, or a standard product. In a

similar manner, n variables can be combined to form 2n minterms. The 2n different min-

terms may be determined by a method similar to the one shown in Table 2.3 for three

variables. The binary numbers from 0 to 2n - 1 are listed under the n variables. Each

minterm is obtained from an AND term of the n variables, with each variable being

primed if the corresponding bit of the binary number is a 0 and unprimed if a 1. A symbol

for each minterm is also shown in the table and is of the form mj, where the subscript j
denotes the decimal equivalent of the binary number of the minterm designated.

 In a similar fashion, n variables forming an OR term, with each variable being primed

or unprimed, provide 2n possible combinations, called maxterms, or standard sums. The

eight maxterms for three variables, together with their symbolic designations, are listed

in Table 2.3 . Any 2n maxterms for n variables may be determined similarly. It is impor-

tant to note that (1) each maxterm is obtained from an OR term of the n variables, with

each variable being unprimed if the corresponding bit is a 0 and primed if a 1, and (2)

each maxterm is the complement of its corresponding minterm and vice versa.

 A Boolean function can be expressed algebraically from a given truth table by form-
ing a minterm for each combination of the variables that produces a 1 in the function
and then taking the OR of all those terms. For example, the function f1 in Table 2.4 is

determined by expressing the combinations 001, 100, and 111 as x�y�z, xy�z�, and xyz,

respectively. Since each one of these minterms results in f1 = 1, we have

 f1 = x�y�z + xy�z� + xyz = m1 + m4 + m7

Table 2.3
Minterms and Maxterms for Three Binary Variables

Minterms Maxterms

x y z Term Designation Term Designation

0 0 0 x�y�z� m0 x + y + z M0

0 0 1 x�y�z m1 x + y + z� M1

0 1 0 x�yz� m2 x + y� + z M2

0 1 1 x�yz m3 x + y� + z� M3

1 0 0 xy�z� m4 x� + y + z M4

1 0 1 xy�z m5 x� + y + z� M5

1 1 0 xyz� m6 x� + y� + z M6

1 1 1 xyz m7 x� + y� + z� M7

52 Chapter 2 Boolean Algebra and Logic Gates

 Similarly, it may be easily verified that

 f2 = x�yz + xy�z + xyz� + xyz = m3 + m5 + m6 + m7

 These examples demonstrate an important property of Boolean algebra: Any Boolean

function can be expressed as a sum of minterms (with “sum” meaning the ORing of terms).

 Now consider the complement of a Boolean function. It may be read from the truth

table by forming a minterm for each combination that produces a 0 in the function and

then ORing those terms. The complement of f1 is read as

 f =1 = x�y�z� + x�yz� + x�yz + xy�z + xyz�

 If we take the complement of f =1, we obtain the function f1:

 f1 = (x + y + z)(x + y� + z)(x� + y + z�)(x� + y� + z)

 = M0
M2

M3
M5

M6

 Similarly, it is possible to read the expression for f2 from the table:

 f2 = (x + y + z)(x + y + z�)(x + y� + z)(x� + y + z)

 = M0M1M2M4

 These examples demonstrate a second property of Boolean algebra: Any Boolean func-

tion can be expressed as a product of maxterms (with “product” meaning the ANDing

of terms). The procedure for obtaining the product of maxterms directly from the truth

table is as follows: Form a maxterm for each combination of the variables that produces

a 0 in the function, and then form the AND of all those maxterms. Boolean functions
expressed as a sum of minterms or product of maxterms are said to be in canonical form .

 Sum of Minterms

 Previously, we stated that, for n binary variables, one can obtain 2n distinct minterms and

that any Boolean function can be expressed as a sum of minterms. The minterms whose
sum defines the Boolean function are those which give the 1’s of the function in a

Table 2.4
Functions of Three Variables

x y z Function f1 Function f2

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Section 2.6 Canonical and Standard Forms 53

truth table. Since the function can be either 1 or 0 for each minterm, and since there are

 2n minterms, one can calculate all the functions that can be formed with n variables to

be 22n. It is sometimes convenient to express a Boolean function in its sum‐of‐minterms

form. If the function is not in this form, it can be made so by first expanding the expres-

sion into a sum of AND terms. Each term is then inspected to see if it contains all the

variables. If it misses one or more variables, it is ANDed with an expression such as

 x + x�, where x is one of the missing variables. The next example clarifies this procedure.

 EXAMPLE 2.4

 Express the Boolean function F = A + B�C as a sum of minterms. The function has

three variables: A, B, and C. The first term A is missing two variables; therefore,

 A = A(B + B�) = AB + AB�

 This function is still missing one variable, so

 A = AB(C + C�) + AB�(C + C�)

 = ABC + ABC� + AB�C + AB�C�

 The second term B�C is missing one variable; hence,

 B�C = B�C(A + A�) = AB�C + A�B�C

 Combining all terms, we have

 F = A + B�C

 = ABC + ABC� + AB�C + AB�C� + A�B�C

 But AB�C appears twice, and according to theorem 1 (x + x = x), it is possible to

remove one of those occurrences. Rearranging the minterms in ascending order, we

finally obtain

 F = A�B�C + AB�C + AB�C + ABC� + ABC

= m1 + m4 + m5 + m6 + m7

■

 When a Boolean function is in its sum‐of‐minterms form, it is sometimes convenient to

express the function in the following brief notation:

 F(A, B, C) = �(1, 4, 5, 6, 7)

 The summation symbol g stands for the ORing of terms; the numbers following it are

the indices of the minterms of the function. The letters in parentheses following F form

a list of the variables in the order taken when the minterm is converted to an AND term.

 An alternative procedure for deriving the minterms of a Boolean function is to obtain
the truth table of the function directly from the algebraic expression and then read the
minterms from the truth table. Consider the Boolean function given in Example 2.4:

 F = A + B�C

 The truth table shown in Table 2.5 can be derived directly from the algebraic expres-

sion by listing the eight binary combinations under variables A, B, and C and inserting

54 Chapter 2 Boolean Algebra and Logic Gates

1’s under F for those combinations for which A = 1 and BC = 01. From the truth table,

we can then read the five minterms of the function to be 1, 4, 5, 6, and 7.

 Product of Maxterms

 Each of the 22n functions of n binary variables can be also expressed as a product of
maxterms. To express a Boolean function as a product of maxterms, it must first be

brought into a form of OR terms. This may be done by using the distributive law,

 x + yz = (x + y)(x + z). Then any missing variable x in each OR term is ORed with

 xx�. The procedure is clarified in the following example.

 EXAMPLE 2.5

 Express the Boolean function F = xy + x�z as a product of maxterms. First, convert

the function into OR terms by using the distributive law:

 F = xy + x�z = (xy + x�)(xy + z)

 = (x + x�)(y + x�)(x + z)(y + z)

 = (x� + y)(x + z)(y + z)

 The function has three variables: x, y, and z. Each OR term is missing one variable;

therefore,

 x� + y = x� + y + zz� = (x� + y + z)(x� + y + z�)

 x + z = x + z + yy� = (x + y + z)(x + y� + z)

 y + z = y + z + xx� = (x + y + z)(x� + y + z)

 Combining all the terms and removing those which appear more than once, we finally

obtain

 F = (x + y + z)(x + y� + z)(x� + y + z)(x� + y + z�)

 = M0M2M4M5

Table 2.5
Truth Table for F � A � B�C

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Section 2.6 Canonical and Standard Forms 55

 A convenient way to express this function is as follows:

 F(x, y, z) = �(0, 2, 4, 5)

 The product symbol, �, denotes the ANDing of maxterms; the numbers are the indices

of the maxterms of the function.

■

 Conversion between Canonical Forms

 The complement of a function expressed as the sum of minterms equals the sum of min-

terms missing from the original function. This is because the original function is expressed

by those minterms which make the function equal to 1, whereas its complement is a 1 for

those minterms for which the function is a 0. As an example, consider the function

 F(A, B, C) = �(1, 4, 5, 6, 7)

 This function has a complement that can be expressed as

 F�(A, B, C) = �(0, 2, 3) = m0 + m2 + m3

 Now, if we take the complement of F� by DeMorgan’s theorem, we obtain F in a differ-

ent form:

 F = (m0 + m2 + m3)� = m=
0
m=

2
m=

3 = M0M2M3 = �(0, 2, 3)

 The last conversion follows from the definition of minterms and maxterms as shown in

 Table 2.3 . From the table, it is clear that the following relation holds:

 m=
j = Mj

 That is, the maxterm with subscript j is a complement of the minterm with the same
subscript j and vice versa.

 The last example demonstrates the conversion between a function expressed in sum‐

of‐minterms form and its equivalent in product‐of‐maxterms form. A similar argument

will show that the conversion between the product of maxterms and the sum of minterms

is similar. We now state a general conversion procedure: To convert from one canonical

form to another, interchange the symbols � and � and list those numbers missing from

the original form. In order to find the missing terms, one must realize that the total number

of minterms or maxterms is 2n, where n is the number of binary variables in the function.

 A Boolean function can be converted from an algebraic expression to a product of

maxterms by means of a truth table and the canonical conversion procedure. Consider,

for example, the Boolean expression

 F = xy + x�z

 First, we derive the truth table of the function, as shown in Table 2.6 . The 1’s under F in

the table are determined from the combination of the variables for which xy = 11 or

 xz = 01. The minterms of the function are read from the truth table to be 1, 3, 6, and 7.

The function expressed as a sum of minterms is

 F(x, y, z) = �(1, 3, 6, 7)

56 Chapter 2 Boolean Algebra and Logic Gates

 Since there is a total of eight minterms or maxterms in a function of three variables, we

determine the missing terms to be 0, 2, 4, and 5. The function expressed as a product of

maxterms is

 F(x, y, z) = �(0, 2, 4, 5)

 the same answer as obtained in Example 2.5.

 Standard Forms

 The two canonical forms of Boolean algebra are basic forms that one obtains from read-

ing a given function from the truth table. These forms are very seldom the ones with the

least number of literals, because each minterm or maxterm must contain, by definition,

all the variables, either complemented or uncomplemented.

 Another way to express Boolean functions is in standard form. In this configuration,

the terms that form the function may contain one, two, or any number of literals. There

are two types of standard forms: the sum of products and products of sums.

 The sum of products is a Boolean expression containing AND terms, called product
terms, with one or more literals each. The sum denotes the ORing of these terms. An

example of a function expressed as a sum of products is

 F1 = y� + xy + x�yz�

 The expression has three product terms, with one, two, and three literals. Their sum is,

in effect, an OR operation.

 The logic diagram of a sum‐of‐products expression consists of a group of AND gates

followed by a single OR gate. This configuration pattern is shown in Fig. 2.3 (a). Each

product term requires an AND gate, except for a term with a single literal. The logic sum

is formed with an OR gate whose inputs are the outputs of the AND gates and the

single literal. It is assumed that the input variables are directly available in their comple-

ments, so inverters are not included in the diagram. This circuit configuration is referred

to as a two‐level implementation.

Table 2.6
Truth Table for F � xy � x�z

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Minterms

Maxterms

Section 2.6 Canonical and Standard Forms 57

 A product of sums is a Boolean expression containing OR terms, called sum terms.

Each term may have any number of literals. The product denotes the ANDing of these

terms. An example of a function expressed as a product of sums is

 F2 = x(y� + z)(x� + y + z�)

 This expression has three sum terms, with one, two, and three literals. The product is an

AND operation. The use of the words product and sum stems from the similarity of the

AND operation to the arithmetic product (multiplication) and the similarity of the OR

operation to the arithmetic sum (addition). The gate structure of the product‐of‐sums

expression consists of a group of OR gates for the sum terms (except for a single literal),

followed by an AND gate, as shown in Fig. 2.3 (b). This standard type of expression
results in a two‐level structure of gates.

 A Boolean function may be expressed in a nonstandard form. For example, the function

 F3 = AB + C(D + E)

 is neither in sum‐of‐products nor in product‐of‐sums form. The implementation of this

expression is shown in Fig. 2.4 (a) and requires two AND gates and two OR gates. There

are three levels of gating in this circuit. It can be changed to a standard form by using

the distributive law to remove the parentheses:

 F3 = AB + C(D + E) = AB + CD + CE

y�

F1

x�

z�
y

x
y

F2

x

y�

y

z

z

x�

(a) Sum of Products (b) Product of Sums

FIGURE 2.3
Two‐level implementation

F3

A

B

C
D
E

(a) AB � C(D � E) (b) AB � CD � CE

A

F3

B

D
C

C
E

FIGURE 2.4
Three‐ and two‐level implementation

58 Chapter 2 Boolean Algebra and Logic Gates

 The sum‐of‐products expression is implemented in Fig. 2.4 (b). In general, a two‐level

implementation is preferred because it produces the least amount of delay through the

gates when the signal propagates from the inputs to the output. However, the number

of inputs to a given gate might not be practical.

 2 . 7 O T H E R L O G I C O P E R AT I O N S

 When the binary operators AND and OR are placed between two variables, x and y,

they form two Boolean functions, x # y and x + y, respectively. Previously we stated that

there are 22n functions for n binary variables. Thus, for two variables, n = 2, and the

number of possible Boolean functions is 16. Therefore, the AND and OR functions

are only 2 of a total of 16 possible functions formed with two binary variables. It would

be instructive to find the other 14 functions and investigate their properties.

 The truth tables for the 16 functions formed with two binary variables are listed in

 Table 2.7 . Each of the 16 columns, F0 to F15, represents a truth table of one possible func-

tion for the two variables, x and y. Note that the functions are determined from the

16 binary combinations that can be assigned to F. The 16 functions can be expressed

algebraically by means of Boolean functions, as is shown in the first column of Table 2.8 .

The Boolean expressions listed are simplified to their minimum number of literals.

 Although each function can be expressed in terms of the Boolean operators AND,

OR, and NOT, there is no reason one cannot assign special operator symbols for express-

ing the other functions. Such operator symbols are listed in the second column of

 Table 2.8 . However, of all the new symbols shown, only the exclusive‐OR symbol, �,

is in common use by digital designers.

 Each of the functions in Table 2.8 is listed with an accompanying name and a com-

ment that explains the function in some way.1 The 16 functions listed can be subdivided

into three categories:

 1. Two functions that produce a constant 0 or 1.

 2. Four functions with unary operations: complement and transfer.

 3. Ten functions with binary operators that define eight different operations: AND,

OR, NAND, NOR, exclusive‐OR, equivalence, inhibition, and implication.

Table 2.7
Truth Tables for the 16 Functions of Two Binary Variables

x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 The symbol ˆ is also used to indicate the exclusive or operator, e.g., xˆy. The symbol for the AND function is

sometimes omitted from the product of two variables, e.g., xy.

Section 2.7 Other Logic Operations 59

 Constants for binary functions can be equal to only 1 or 0. The complement function

produces the complement of each of the binary variables. A function that is equal to an

input variable has been given the name transfer, because the variable x or y is transferred

through the gate that forms the function without changing its value. Of the eight binary

operators, two (inhibition and implication) are used by logicians, but are seldom used

in computer logic. The AND and OR operators have been mentioned in conjunction

with Boolean algebra. The other four functions are used extensively in the design of

digital systems.

 The NOR function is the complement of the OR function, and its name is an

abbreviation of not‐OR. Similarly, NAND is the complement of AND and is an

abbreviation of not‐AND. The exclusive‐OR, abbreviated XOR, is similar to OR, but

excludes the combination of both x and y being equal to 1; it holds only when x and y
differ in value. (It is sometimes referred to as the binary difference operator.) Equiv-

alence is a function that is 1 when the two binary variables are equal (i.e., when both

are 0 or both are 1). The exclusive‐OR and equivalence functions are the comple-

ments of each other. This can be easily verified by inspecting Table 2.7 : The truth

table for exclusive‐OR is F6 and for equivalence is F9, and these two functions are

the complements of each other. For this reason, the equivalence function is called

exclusive‐NOR, abbreviated XNOR.

Table 2.8
Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions
Operator
 Symbol Name Comments

F0 = 0 Null Binary constant 0

F1 = xy x # y AND x and y

F2 = xy� x/y Inhibition x, but not y

F3 = x Transfer x

F4 = x�y y/x Inhibition y, but not x

F5 = y Transfer y

F6 = xy� + x�y x � y Exclusive‐OR x or y, but not both

F7 = x + y x + y OR x or y

F8 = (x + y)� x T y NOR Not‐OR

F9 = xy + x�y� (x � y)� Equivalence x equals y

F10 = y� y� Complement Not y

F11 = x + y� x � y Implication If y, then x

F12 = x� x� Complement Not x

F13 = x� + y x � y Implication If x, then y

F14 = (xy)� x c y NAND Not‐AND

F15 = 1 Identity Binary constant 1

60 Chapter 2 Boolean Algebra and Logic Gates

 Boolean algebra, as defined in Section 2.2, has two binary operators, which we have

called AND and OR, and a unary operator, NOT (complement). From the definitions,

we have deduced a number of properties of these operators and now have defined other

binary operators in terms of them. There is nothing unique about this procedure. We

could have just as well started with the operator NOR (T), for example, and later

defined AND, OR, and NOT in terms of it. There are, nevertheless, good reasons for

introducing Boolean algebra in the way it has been introduced. The concepts of “and,”

“or,” and “not” are familiar and are used by people to express everyday logical ideas.

Moreover, the Huntington postulates reflect the dual nature of the algebra, emphasizing

the symmetry of + and # with respect to each other.

 2 . 8 D I G I TA L L O G I C G AT E S

 Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is

easier to implement a Boolean function with these type of gates. Still, the possibility of

constructing gates for the other logic operations is of practical interest. Factors to be

weighed in considering the construction of other types of logic gates are (1) the feasibil-

ity and economy of producing the gate with physical components, (2) the possibility of

extending the gate to more than two inputs, (3) the basic properties of the binary oper-

ator, such as commutativity and associativity, and (4) the ability of the gate to implement

Boolean functions alone or in conjunction with other gates.

 Of the 16 functions defined in Table 2.8 , two are equal to a constant and four are

repeated. There are only 10 functions left to be considered as candidates for logic gates.

Two—inhibition and implication—are not commutative or associative and thus are

impractical to use as standard logic gates. The other eight—complement, transfer, AND,

OR, NAND, NOR, exclusive‐OR, and equivalence—are used as standard gates in

 digital design.

 The graphic symbols and truth tables of the eight gates are shown in Fig. 2.5 . Each

gate has one or two binary input variables, designated by x and y, and one binary output

variable, designated by F. The AND, OR, and inverter circuits were defined in Fig. 1.6.

The inverter circuit inverts the logic sense of a binary variable, producing the NOT, or

complement, function. The small circle in the output of the graphic symbol of an inverter

(referred to as a bubble) designates the logic complement. The triangle symbol by itself

designates a buffer circuit. A buffer produces the transfer function, but does not produce

a logic operation, since the binary value of the output is equal to the binary value of the

input. This circuit is used for power amplification of the signal and is equivalent to two

inverters connected in cascade.

 The NAND function is the complement of the AND function, as indicated by a

graphic symbol that consists of an AND graphic symbol followed by a small circle. The

NOR function is the complement of the OR function and uses an OR graphic symbol

followed by a small circle. NAND and NOR gates are used extensively as standard logic

gates and are in fact far more popular than the AND and OR gates. This is because

NAND and NOR gates are easily constructed with transistor circuits and because digital

circuits can be easily implemented with them.

Section 2.8 Digital Logic Gates 61

Name
Graphic
symbol

Algebraic
function

Truth
table

AND

OR

Inverter

Buffer

NAND

NOR

Exclusive-OR
(XOR)

Exclusive-NOR
or

equivalence

F � x · y

F � x � y

F � (xy)�

F � x�

F � x

x y F

x y F

x y F

x y F

x y F

x y F

x F

x F

F � (x � y)�

F � xy� � x�y

F � xy � x�y�

F

F

Fx

Fx

F

F

F

F
x

y

x
y

x
y � x � y

� (x � y)�

0
0
1
1

0
1
0
1

0
0
1
1

0
1
0
1

0
1
1
1

0
1

1
0

0
1

0
1

0
0
1
1

0
1
0
1

1
1
1
0

0
0
1
1

0
1
0
1

1
0
0
0

0
0
1
1

0
1
0
1

0
1
1
0

0
0
1
1

0
1
0
1

1
0
0
1

0
0
0
1

x
y

x
y

x
y

FIGURE 2.5
Digital logic gates

62 Chapter 2 Boolean Algebra and Logic Gates

 The exclusive‐OR gate has a graphic symbol similar to that of the OR gate, except

for the additional curved line on the input side. The equivalence, or exclusive‐NOR, gate

is the complement of the exclusive‐OR, as indicated by the small circle on the output

side of the graphic symbol.

 Extension to Multiple Inputs

 The gates shown in Fig. 2.5 —except for the inverter and buffer—can be extended to

have more than two inputs. A gate can be extended to have multiple inputs if the binary

operation it represents is commutative and associative. The AND and OR operations,

defined in Boolean algebra, possess these two properties. For the OR function, we have

 x + y = y + x (commutative)

 and

 (x + y) + z = x + (y + z) = x + y + z (associative)

 which indicates that the gate inputs can be interchanged and that the OR function can

be extended to three or more variables.

 The NAND and NOR functions are commutative, and their gates can be extended

to have more than two inputs, provided that the definition of the operation is modified

slightly. The difficulty is that the NAND and NOR operators are not associative

(i.e., (x T y) T z � x T (y T z)), as shown in Fig. 2.6 and the following equations:

 (x T y) T z = [(x + y)� + z]� = (x + y)z� = xz� + yz�

 x T (y T z) = [x + (y + z)�]� = x�(y + z) = x�y + x�z

 To overcome this difficulty, we define the multiple NOR (or NAND) gate as a

 complemented OR (or AND) gate. Thus, by definition, we have

 x T y T z = (x + y + z)�

 x c y c z = (xyz)�

 The graphic symbols for the three‐input gates are shown in Fig. 2.7 . In writing cascaded

NOR and NAND operations, one must use the correct parentheses to signify the proper

sequence of the gates. To demonstrate this principle, consider the circuit of Fig. 2.7 (c).

The Boolean function for the circuit must be written as

 F = [(ABC)�(DE)�]� = ABC + DE

 The second expression is obtained from one of DeMorgan’s theorems. It also shows that

an expression in sum‐of‐products form can be implemented with NAND gates. (NAND

and NOR gates are discussed further in Section 3.7.)

 The exclusive‐OR and equivalence gates are both commutative and associative and

can be extended to more than two inputs. However, multiple‐input exclusive‐OR gates

are uncommon from the hardware standpoint. In fact, even a two‐input function is usu-

ally constructed with other types of gates. Moreover, the definition of the function must

be modified when extended to more than two variables. Exclusive‐OR is an odd function

(i.e., it is equal to 1 if the input variables have an odd number of 1’s). The construction

Section 2.8 Digital Logic Gates 63

of a three‐input exclusive‐OR function is shown in Fig. 2.8 . This function is normally

implemented by cascading two‐input gates, as shown in (a). Graphically, it can be

 represented with a single three‐input gate, as shown in (b). The truth table in (c) clearly

indicates that the output F is equal to 1 if only one input is equal to 1 or if all three inputs

are equal to 1 (i.e., when the total number of 1’s in the input variables is odd). (Exclusive‐

OR gates are discussed further in Section 3.9.)

 Positive and Negative Logic

 The binary signal at the inputs and outputs of any gate has one of two values, except

during transition. One signal value represents logic 1 and the other logic 0. Since two

signal values are assigned to two logic values, there exist two different assignments of

(x y) z � (x � y)z�

x

y

y

x (y z) � x� (y � z)
x

y

z

FIGURE 2.6
Demonstrating the nonassociativity of the NOR operator: (x T y) T z � x T (y T z)

(a) 3-input NOR gate

y (x � y � z)�
x

z

(b) 3-input NAND gate

(xyz)�y
x

z

(c) Cascaded NAND gates

D

B

F � [(ABC)� � (DE)�]� � ABC � DE

A

C

E

FIGURE 2.7
Multiple‐input and cascaded NOR and NAND gates

64 Chapter 2 Boolean Algebra and Logic Gates

signal level to logic value, as shown in Fig. 2.9 . The higher signal level is designated by

H and the lower signal level by L. Choosing the high‐level H to represent logic 1 defines
a positive logic system. Choosing the low‐level L to represent logic 1 defines a negative
logic system. The terms positive and negative are somewhat misleading, since both sig-

nals may be positive or both may be negative. It is not the actual values of the signals

that determine the type of logic, but rather the assignment of logic values to the relative

amplitudes of the two signal levels.

 Hardware digital gates are defined in terms of signal values such as H and L. It is up

to the user to decide on a positive or negative logic polarity. Consider, for example, the

electronic gate shown in Fig. 2.10 (b). The truth table for this gate is listed in Fig. 2.10 (a).

It specifies the physical behavior of the gate when H is 3 V and L is 0 V. The truth table

of Fig. 2.10 (c) assumes a positive logic assignment, with H = 1 and L = 0. This truth

table is the same as the one for the AND operation. The graphic symbol for a positive

logic AND gate is shown in Fig. 2.10 (d).

 Now consider the negative logic assignment for the same physical gate with L = 1

and H = 0. The result is the truth table of Fig. 2.10 (e). This table represents the OR

operation, even though the entries are reversed. The graphic symbol for the negative‐

logic OR gate is shown in Fig. 2.10 (f). The small triangles in the inputs and output

(a) Using 2-input gates

(b) 3-input gate
(c) Truth table

x
F � x � y � zy

z

y

z
F � x � y � z

x
x y z F

0

0

0
0

1
1

1

1

0

1

1
0

1
0

0

1

0

1

0
1

0
1

0

1

0
1
1

0

0

1

0

1

FIGURE 2.8
Three‐input exclusive‐OR gate

(a) Positive logic

Logic
value

1

0

Signal
value

H

L
(b) Negative logic

Logic
value

0

1

Signal
value

H

L

FIGURE 2.9
Signal assignment and logic polarity

Section 2.8 Digital Logic Gates 65

 designate a polarity indicator, the presence of which along a terminal signifies that

negative logic is assumed for the signal. Thus, the same physical gate can operate either

as a positive‐logic AND gate or as a negative‐logic OR gate.

 The conversion from positive logic to negative logic and vice versa is essentially

an operation that changes 1’s to 0’s and 0’s to 1’s in both the inputs and the output

of a gate. Since this operation produces the dual of a function, the change of all ter-

minals from one polarity to the other results in taking the dual of the function. The

upshot is that all AND operations are converted to OR operations (or graphic sym-

bols) and vice versa. In addition, one must not forget to include the polarity‐indicator

triangle in the graphic symbols when negative logic is assumed. In this book, we will

not use negative logic gates and will assume that all gates operate with a positive logic

assignment.

(c) Truth table for
 positive logic

(e) Truth table for
 negative logic

(d) Positive logic AND gate

(f) Negative logic OR gate

(b) Gate block diagram

x
zDigital

gate
y

z
x

y

z
x

y

(a) Truth table
 with H and L

x y z

LLL
L L

LL
HH

H

H
H

x y z

0
00

0 0

00
11

1

1
1

x y z

1
11

1 1

11
00

0

0
0

FIGURE 2.10
Demonstration of positive and negative logic

66 Chapter 2 Boolean Algebra and Logic Gates

 2 . 9 I N T E G R AT E D C I R C U I T S

 An integrated circuit (IC) is fabricated on a die of a silicon semiconductor crystal, called

a chip, containing the electronic components for constructing digital gates. The complex

chemical and physical processes used to form a semiconductor circuit are not a subject

of this book. The various gates are interconnected inside the chip to form the required

circuit. The chip is mounted in a ceramic or plastic container, and connections are welded

to external pins to form the integrated circuit. The number of pins may range from 14

on a small IC package to several thousand on a larger package. Each IC has a numeric

designation printed on the surface of the package for identification. Vendors provide

data books, catalogs, and Internet websites that contain descriptions and information

about the ICs that they manufacture.

 Levels of Integration

 Digital ICs are often categorized according to the complexity of their circuits, as mea-

sured by the number of logic gates in a single package. The differentiation between those

chips which have a few internal gates and those having hundreds of thousands of gates

is made by customary reference to a package as being either a small‐, medium‐, large‐,

or very large‐scale integration device.

 Small‐scale integration (SSI) devices contain several independent gates in a single

package. The inputs and outputs of the gates are connected directly to the pins in the

package. The number of gates is usually fewer than 10 and is limited by the number of

pins available in the IC.

 Medium‐scale integration (MSI) devices have a complexity of approximately 10 to

1,000 gates in a single package. They usually perform specific elementary digital opera-

tions. MSI digital functions are introduced in Chapter 4 as decoders, adders, and multi-

plexers and in Chapter 6 as registers and counters.

 Large‐scale integration (LSI) devices contain thousands of gates in a single package.

They include digital systems such as processors, memory chips, and programmable logic

devices. Some LSI components are presented in Chapter 7 .

 Very large‐scale integration (VLSI) devices now contain millions of gates within a

single package. Examples are large memory arrays and complex microcomputer chips.

Because of their small size and low cost, VLSI devices have revolutionized the computer

system design technology, giving the designer the capability to create structures that

were previously uneconomical to build.

 Digital Logic Families

 Digital integrated circuits are classified not only by their complexity or logical operation,

but also by the specific circuit technology to which they belong. The circuit technology

is referred to as a digital logic family. Each logic family has its own basic electronic

circuit upon which more complex digital circuits and components are developed. The

basic circuit in each technology is a NAND, NOR, or inverter gate. The electronic

Section 2.9 Integrated Circuits 67

 components employed in the construction of the basic circuit are usually used to name

the technology. Many different logic families of digital integrated circuits have been

introduced commercially. The following are the most popular:

 TTL transistor–transistor logic;

 ECL emitter‐coupled logic;

 MOS metal‐oxide semiconductor;

 CMOS complementary metal‐oxide semiconductor.

 TTL is a logic family that has been in use for 50 years and is considered to be stan-

dard. ECL has an advantage in systems requiring high‐speed operation. MOS is suitable

for circuits that need high component density, and CMOS is preferable in systems

requiring low power consumption, such as digital cameras, personal media players, and

other handheld portable devices. Low power consumption is essential for VLSI design;

therefore, CMOS has become the dominant logic family, while TTL and ECL continue

to decline in use. The most important parameters distinguishing logic families are listed

below; CMOS integrated circuits are discussed briefly in the appendix.

 Fan‐out specifies the number of standard loads that the output of a typical gate can

drive without impairing its normal operation. A standard load is usually defined as the

amount of current needed by an input of another similar gate in the same family.

 Fan‐in is the number of inputs available in a gate.

 Power dissipation is the power consumed by the gate that must be available from the

power supply.

 Propagation delay is the average transition delay time for a signal to propagate from

input to output. For example, if the input of an inverter switches from 0 to 1, the output

will switch from 1 to 0, but after a time determined by the propagation delay of the

device. The operating speed is inversely proportional to the propagation delay.

 Noise margin is the maximum external noise voltage added to an input signal that

does not cause an undesirable change in the circuit output.

 Computer‐Aided Design of VLSI Circuits

 Integrated circuits having submicron geometric features are manufactured by optically

projecting patterns of light onto silicon wafers. Prior to exposure, the wafers are coated

with a photoresistive material that either hardens or softens when exposed to light.

Removing extraneous photoresist leaves patterns of exposed silicon. The exposed

regions are then implanted with dopant atoms to create a semiconductor material hav-

ing the electrical properties of transistors and the logical properties of gates. The design

process translates a functional specification or description of the circuit (i.e., what it must

do) into a physical specification or description (how it must be implemented in silicon).

 The design of digital systems with VLSI circuits containing millions of transistors and

gates is an enormous and formidable task. Systems of this complexity are usually impos-

sible to develop and verify without the assistance of computer‐aided design (CAD)

68 Chapter 2 Boolean Algebra and Logic Gates

tools, which consist of software programs that support computer‐based representations

of circuits and aid in the development of digital hardware by automating the design

process. Electronic design automation (EDA) covers all phases of the design of inte-

grated circuits. A typical design flow for creating VLSI circuits consists of a sequence of

steps beginning with design entry (e.g., entering a schematic) and culminating with the

generation of the database that contains the photomask used to fabricate the IC. There

are a variety of options available for creating the physical realization of a digital circuit

in silicon. The designer can choose between an application‐specific integrated circuit

(ASIC), a field‐programmable gate array (FPGA), a programmable logic device (PLD),

and a full‐custom IC. With each of these devices comes a set of CAD tools that provide

the necessary software to facilitate the hardware fabrication of the unit. Each of these

technologies has a market niche determined by the size of the market and the unit cost

of the devices that are required to implement a design.

 Some CAD systems include an editing program for creating and modifying schematic

diagrams on a computer screen. This process is called schematic capture or schematic

entry. With the aid of menus, keyboard commands, and a mouse, a schematic editor can

draw circuit diagrams of digital circuits on the computer screen. Components can be

placed on the screen from a list in an internal library and can then be connected with

lines that represent wires. The schematic entry software creates and manages a database

containing the information produced with the schematic. Primitive gates and functional

blocks have associated models that allow the functionality (i.e., logical behavior) and

timing of the circuit to be verified. Verification is performed by applying inputs to the

circuit and using a logic simulator to determine and display the outputs in text or wave-

form format.

 An important development in the design of digital systems is the use of a hardware

description language (HDL). Such a language resembles a computer programming

language, but is specifically oriented to describing digital hardware. It represents logic

diagrams and other digital information in textual form to describe the functionality

and structure of a circuit. Moreover, the HDL description of a circuit’s functionality

can be abstract, without reference to specific hardware, thereby freeing a designer to

devote attention to higher level functional detail (e.g., under certain conditions the

circuit must detect a particular pattern of 1’s and 0’s in a serial bit stream of data) rather

than transistor‐level detail. HDL‐based models of a circuit or system are simulated to

check and verify its functionality before it is submitted to fabrication, thereby reducing

the risk and waste of manufacturing a circuit that fails to operate correctly. In tandem

with the emergence of HDL‐based design languages, tools have been developed to

automatically and optimally synthesize the logic described by an HDL model of a

circuit. These two advances in technology have led to an almost total reliance by indus-
try on HDL‐based synthesis tools and methodologies for the design of the circuits of
complex digital systems. Two HDLs—Verilog and VHDL—have been approved as

standards by the Institute of Electronics and Electrical Engineers (IEEE) and are in

use by design teams worldwide. The Verilog HDL is introduced in Section 3.10, and

because of its importance, we include several exercises and design problems based on

Verilog throughout the book.

Problems 69

 P R O B L E M S

 (Answers to problems marked with * appear at the end of the text.)

 2.1 Demonstrate the validity of the following identities by means of truth tables:

 (a) DeMorgan’s theorem for three variables: (x + y + z)� = x�y�z� and (xyz)� =
x� + y� + z�

 (b) The distributive law: x + yz = (x + y)(x + z)

 (c) The distributive law: x(y + z) = xy + xz

 (d) The associative law: x + (y + z) = (x + y) + z

 (e) The associative law and x(yz) = (xy)z

 2.2 Simplify the following Boolean expressions to a minimum number of literals:

 (a) * xy + xy � (b) * (x + y) (x + y�)

 (c) * xyz + x � y + xyz � (d) * (A + B)� (A� + B�)�
 (e) (a + b + c�)(a� b� + c) (f) a�bc + abc� + abc + a�bc�

 2.3 Simplify the following Boolean expressions to a minimum number of literals:

 (a) * ABC + A�B + ABC� (b)* x � yz + xz

 (c) * (x + y)� (x� + y�) (d) * xy + x(wz + wz�)

 (e) * (BC� + A�D) (AB� + CD�) (f) (a� + c�) (a + b� + c�)

 2.4 Reduce the following Boolean expressions to the indicated number of literals:

 (a) * A�C� + ABC + AC� to three literals

 (b) * (x�y� + z)� + z + xy + wz to three literals

 (c) * A�B(D� + C�D) + B(A + A�CD) to one literal

 (d) * (A� + C) (A� + C�) (A + B + C�D) to four literals

 (e) ABC'D + A'BD + ABCD to two literals

 2.5 Draw logic diagrams of the circuits that implement the original and simplified expressions

in Problem 2.2.

 2.6 Draw logic diagrams of the circuits that implement the original and simplified expressions

in Problem 2.3.

 2.7 Draw logic diagrams of the circuits that implement the original and simplified expressions

in Problem 2.4.

 2.8 Find the complement of F = wx + yz; then show that FF� = 0 and F + F� = 1.

 2.9 Find the complement of the following expressions:

 (a) * xy� + x�y (b) (a + c) (a + b�) (a� + b + c�)

 (c) z + z�(v�w + xy)

 2.10 Given the Boolean functions F1 and F 2 , show that

 (a) The Boolean function E = F1 + F2 contains the sum of the minterms of F1 and F2.

 (b) The Boolean function G = F1F2 contains only the minterms that are common to F1

and F2.

 2.11 List the truth table of the function:

 (a) * F = xy + xy� + y�z (b) F = bc + a�c�

 2.12 We can perform logical operations on strings of bits by considering each pair of correspond-

ing bits separately (called bitwise operation). Given two eight‐bit strings A = 10110001

and B = 10101100, evaluate the eight‐bit result after the following logical operations:

 (a)* AND (b) OR (c)* XOR (d)* NOT A (e) NOT B

70 Chapter 2 Boolean Algebra and Logic Gates

 2.13 Draw logic diagrams to implement the following Boolean expressions:

 (a) y = [(u + x�) (y� + z)]

 (b) y = (u � y)� + x

 (c) y = (u� + x�) (y + z�)

 (d) y = u(x � z) + y�
 (e) y = u + yz + uxy

 (f) y = u + x + x�(u + y�)

 2.14 Implement the Boolean function

 F = xy + x�y� + y�z

 (a) With AND, OR, and inverter gates

 (b) * With OR and inverter gates

 (c) With AND and inverter gates

 (d) With NAND and inverter gates

 (e) With NOR and inverter gates

 2.15* Simplify the following Boolean functions T1 and T2 to a minimum number of literals:

 A B C T 1 T 2

 0 0 0 1 0
 0 0 1 1 0

 0 1 0 1 0

 0 1 1 0 1

 1 0 0 0 1

 1 0 1 0 1

 1 1 0 0 1

 1 1 1 0 1

 2.16 The logical sum of all minterms of a Boolean function of n variables is 1.

 (a) Prove the previous statement for n = 3.

 (b) Suggest a procedure for a general proof.

 2.17 Obtain the truth table of the following functions, and express each function in sum‐of‐min-

terms and product‐of‐maxterms form:

 (a) * (b + cd)(c + bd) (b) (cd + b�c + bd�)(b + d)

 (c) (c� + d)(b + c�) (d) bd� + acd� + ab�c + a�c�

 2.18 For the Boolean function

 F = xy�z + x�y�z + w�xy + wx�y + wxy

 (a) Obtain the truth table of F.
 (b) Draw the logic diagram, using the original Boolean expression.

 (c) * Use Boolean algebra to simplify the function to a minimum number of literals.

 (d) Obtain the truth table of the function from the simplified expression and show that

it is the same as the one in part (a).

 (e) Draw the logic diagram from the simplified expression, and compare the total number

of gates with the diagram of part (b).

Problems 71

 2.19* Express the following function as a sum of minterms and as a product of maxterms:

 F(A, B, C, D) = B�D + A�D + BD

 2.20 Express the complement of the following functions in sum‐of‐minterms form:

 (a) F(A,B ,C, D) = g(2, 4, 7, 10, 12, 14)

 (b) F (x, y, z) = w (3, 5, 7)

 2.21 Convert each of the following to the other canonical form:

 (a) F(x, y, z) = g(1, 3, 5)

 (b) F(A, B, C, D) = w (3, 5, 8, 11)

 2.22* Convert each of the following expressions into sum of products and product of sums:

 (a) (u + xw)(x + u�v)

 (b) x� + x(x + y�)(y + z�)

 2.23 Draw the logic diagram corresponding to the following Boolean expressions without sim-

plifying them:

 (a) BC� + AB + ACD

 (b) (A + B)(C + D)(A� + B + D)

 (c) (AB + A�B�)(CD� + C�D)

 (d) A + CD + (A + D')(C' + D)

 2.24 Show that the dual of the exclusive‐OR is equal to its complement.

 2.25 By substituting the Boolean expression equivalent of the binary operations as defined in

 Table 2.8 , show the following:

 (a) The inhibition operation is neither commutative nor associative.

 (b) The exclusive‐OR operation is commutative and associative.

 2.26 Show that a positive logic NAND gate is a negative logic NOR gate and vice versa.

 2.27 Write the Boolean equations and draw the logic diagram of the circuit whose outputs are

defined by the following truth table:

 Table P2.27

 f 1 f 2 a b c

 1 1 0 0 0

 0 1 0 0 1

 1 0 0 1 0

 1 1 0 1 1

 1 0 1 0 0

 0 1 1 0 1

 1 0 1 1 1

 2.28 Write Boolean expressions and construct the truth tables describing the outputs of the

circuits described by the logic diagrams in Fig. P2.28.

 2.29 Determine whether the following Boolean equation is true or false.

 x�y� + x�z + x�z� = x�z� + y�z� + x�z

72 Chapter 2 Boolean Algebra and Logic Gates

 2.30 Write the following Boolean expressions in sum of products form:

 (b + d)(a� + b� + c)

 2.31 Write the following Boolean expression in product of sums form:

 a�b + a�c� + abc

 R E F E R E N C E S

 1. B oole, G. 1854. An Investigation of the Laws of Thought. New York: Dover.

 2. D ietmeyer, D. L. 1988. Logic Design of Digital Systems, 3rd ed. Boston: Allyn and Bacon.

 3. H untington, E. V. Sets of independent postulates for the algebra of logic. Trans. Am. Math.
Soc., 5 (1904): 288–309.

 4. IEEE Standard Hardware Description Language Based on the Verilog Hardware Descrip-
tion Language, Language Reference Manual (LRM), IEEE Std.1364‐1995, 1996, 2001,

2005, The Institute of Electrical and Electronics Engineers, Piscataway, NJ.

 5. IEEE Standard VHDL Language Reference Manual (LRM), IEEE Std. 1076‐1987, 1988,

The Institute of Electrical and Electronics Engineers, Piscataway, NJ.

 6. M ano, M. M. and C. R. K ime . 2000. Logic and Computer Design Fundamentals, 2nd ed.

Upper Saddle River, NJ: Prentice Hall.

 7. S hannon, C. E. A symbolic analysis of relay and switching circuits. Trans. AIEE, 57 (1938):

713–723.

WEB SEARCH TOP ICS

 Algebraic field

 Boolean logic

 Boolean gates

 Bipolar transistor

 Field-effect transistor

 Emitter-coupled logic

 TTL logic

 CMOS logic

 CMOS process

a

b

c

d

e

y

a

b

c

d

e

f

y2

y1

(b)(a)

 FIGURE P2.28

73

 Chapter 3

 Gate-Level Minimization

 3 . 1 I N T R O D U C T I O N

 Gate-level minimization is the design task of finding an optimal gate-level implementa-

tion of the Boolean functions describing a digital circuit. This task is well understood,

but is difficult to execute by manual methods when the logic has more than a few inputs.

Fortunately, computer-based logic synthesis tools can minimize a large set of Boolean

equations efficiently and quickly. Nevertheless, it is important that a designer understand

the underlying mathematical description and solution of the problem. This chapter serves

as a foundation for your understanding of that important topic and will enable you to

execute a manual design of simple circuits, preparing you for skilled use of modern

design tools. The chapter will also introduce a hardware description language that is used

by modern design tools.

 3 . 2 T H E M A P M E T H O D

 The complexity of the digital logic gates that implement a Boolean function is directly

related to the complexity of the algebraic expression from which the function is imple-

mented. Although the truth table representation of a function is unique, when it is expressed

algebraically it can appear in many different, but equivalent, forms. Boolean expressions may

be simplified by algebraic means as discussed in Section 2.4. However, this procedure of

minimization is awkward because it lacks specific rules to predict each succeeding step in

the manipulative process. The map method presented here provides a simple, straightforward

procedure for minimizing Boolean functions. This method may be regarded as a pictorial

form of a truth table. The map method is also known as the Karnaugh map or K-map .

74 Chapter 3 Gate-Level Minimization

 A K-map is a diagram made up of squares, with each square representing one minterm

of the function that is to be minimized. Since any Boolean function can be expressed as a

sum of minterms, it follows that a Boolean function is recognized graphically in the map

from the area enclosed by those squares whose minterms are included in the function. In

fact, the map presents a visual diagram of all possible ways a function may be expressed

in standard form. By recognizing various patterns, the user can derive alternative algebraic

expressions for the same function, from which the simplest can be selected.

 The simplified expressions produced by the map are always in one of the two standard

forms: sum of products or product of sums. It will be assumed that the simplest algebraic

expression is an algebraic expression with a minimum number of terms and with the

smallest possible number of literals in each term. This expression produces a circuit

diagram with a minimum number of gates and the minimum number of inputs to each

gate. We will see subsequently that the simplest expression is not unique: It is sometimes

possible to find two or more expressions that satisfy the minimization criteria. In that

case, either solution is satisfactory.

 Two-Variable K-Map

 The two-variable map is shown in Fig. 3.1 (a). There are four minterms for two variables;

hence, the map consists of four squares, one for each minterm. The map is redrawn in

(b) to show the relationship between the squares and the two variables x and y . The 0

and 1 marked in each row and column designate the values of variables. Variable x

appears primed in row 0 and unprimed in row 1. Similarly, y appears primed in column

0 and unprimed in column 1.

 If we mark the squares whose minterms belong to a given function, the two-variable

map becomes another useful way to represent any one of the 16 Boolean functions of

two variables. As an example, the function xy is shown in Fig. 3.2 (a). Since xy is equal to

 m3, a 1 is placed inside the square that belongs to m3. Similarly, the function x + y is

represented in the map of Fig. 3.2 (b) by three squares marked with 1’s. These squares

are found from the minterms of the function:

 m1 + m2 + m3 = x�y + xy� + xy = x + y

m0 m1

m2 m3

(a)

0

1

0 1

y

x
y

x

x�y�

m0

x�y
m1

xy�

m2

xy
m3

(b)

 FIGURE 3.1
 Two-variable K-map

Section 3.2 The Map Method 75

 The three squares could also have been determined from the intersection of variable

 x in the second row and variable y in the second column, which encloses the area

belonging to x or y . In each example, the minterms at which the function is asserted are

marked with a 1.

 Three-Variable K-Map

 A three-variable K-map is shown in Fig. 3.3 . There are eight minterms for three binary

variables; therefore, the map consists of eight squares. Note that the minterms are

arranged, not in a binary sequence, but in a sequence similar to the Gray code (Table 1.6).

The characteristic of this sequence is that only one bit changes in value from one adjacent
column to the next. The map drawn in part (b) is marked with numbers in each row and

each column to show the relationship between the squares and the three variables. For

example, the square assigned to m5 corresponds to row 1 and column 01. When these two

numbers are concatenated, they give the binary number 101, whose decimal equivalent

is 5. Each cell of the map corresponds to a unique minterm, so another way of looking at

square m5 = xy�z is to consider it to be in the row marked x and the column belonging

to y�z (column 01). Note that there are four squares in which each variable is equal to 1

and four in which each is equal to 0. The variable appears unprimed in the former four

0

1

0 1x
y

1

m0 m1

m2 m3

x

y

0

1

0 1x
y

1

1 1

y

x

x

y

(a) xy (b) x � y

m0 m1

m2 m3

 FIGURE 3.2
 Representation of functions in the map

(a)

m0 m1 m3 m2

m4 m5 m7 m6

0

1

00 01 11 10

z

y

x
yz

x

x�y�z� x�y�z x�yz x�yz�

xy�z� xy�z xyz xyz�

m0 m1 m3 m2

m4 m5 m7 m6

(b)

 FIGURE 3.3
 Three-variable K-map

76 Chapter 3 Gate-Level Minimization

squares and primed in the latter. For convenience, we write the variable with its letter

symbol under the four squares in which it is unprimed.

 To understand the usefulness of the map in simplifying Boolean functions, we must

recognize the basic property possessed by adjacent squares: Any two adjacent squares
in the map differ by only one variable, which is primed in one square and unprimed in

the other. For example, m5 and m7 lie in two adjacent squares. Variable y is primed in

 m5 and unprimed in m7, whereas the other two variables are the same in both squares.

From the postulates of Boolean algebra, it follows that the sum of two minterms in

adjacent squares can be simplified to a single product term consisting of only two liter-

als. To clarify this concept, consider the sum of two adjacent squares such as m5 and m7:

 m5 + m7 = xy�z + xyz = xz(y� + y) = xz

 Here, the two squares differ by the variable y , which can be removed when the sum of

the two minterms is formed. Thus, any two minterms in adjacent squares (vertically or

horizontally, but not diagonally, adjacent) that are ORed together will cause a removal

of the dissimilar variable. The next four examples explain the procedure for minimizing

a Boolean function with a K-map.

 EXAMPLE 3.1

 Simplify the Boolean function

 F (x, y, z) = �(2, 3, 4, 5)

 First, a 1 is marked in each minterm square that represents the function. This is shown

in Fig. 3.4 , in which the squares for minterms 010, 011, 100, and 101 are marked with 1’s.

The next step is to find possible adjacent squares. These are indicated in the map by two

shaded rectangles, each enclosing two 1’s. The upper right rectangle represents the area

enclosed by x�y. This area is determined by observing that the two-square area is in row

0, corresponding to x�, and the last two columns, corresponding to y . Similarly, the lower

left rectangle represents the product term xy�. (The second row represents x and the

two left columns represent y�.) The sum of four minterms can be replaced by a sum of

0

1

00 01 11 10x
yz

m0 m1

1
m3

1
m2

1
m4

1
m5 m7 m6

x�y

xy�
z

y

x

 FIGURE 3.4
 Map for Example 3.1 , F (x, y, z) = �(2, 3, 4, 5) = x�y + xy�

Section 3.2 The Map Method 77

only two product terms. The logical sum of these two product terms gives the simplified

expression

 F = x�y + xy�

■

 In certain cases, two squares in the map are considered to be adjacent even though

they do not touch each other. In Fig. 3.3 (b), m0 is adjacent to m2 and m4 is adjacent to

 m6 because their minterms differ by one variable. This difference can be readily verified

algebraically:

 m0 + m2 = x�y�z� + x�yz� = x�z�(y� + y) = x�z�

 m4 + m6 = xy�z� + xyz� = xz� + (y� + y) = xz�

 Consequently, we must modify the definition of adjacent squares to include this and

other similar cases. We do so by considering the map as being drawn on a surface in

which the right and left edges touch each other to form adjacent squares.

 EXAMPLE 3.2

 Simplify the Boolean function

 F (x, y, z) = �(3, 4, 6, 7)

 The map for this function is shown in Fig. 3.5 . There are four squares marked with 1’s,

one for each minterm of the function. Two adjacent squares are combined in the third

column to give a two-literal term yz . The remaining two squares with 1’s are also adja-

cent by the new definition. These two squares, when combined, give the two-literal term

 xz�. The simplified function then becomes

 F = yz + xz�

0

1

00 01 11 10

z

y

x
yz

x

m0 m1 m3 m2

m6m7m5m4

1

1 1 1

yz

xy�z� xyz�

Note: xy�z� � xyz� � xz�

 FIGURE 3.5
 Map for Example 3.2 , F (x, y, z) = �(3, 4, 6, 7) = yz + xz� ■

78 Chapter 3 Gate-Level Minimization

 Consider now any combination of four adjacent squares in the three-variable map.

Any such combination represents the logical sum of four minterms and results in an

expression with only one literal. As an example, the logical sum of the four adjacent

minterms 0, 2, 4, and 6 reduces to the single literal term z�:

 m0 + m2 + m4 + m6 = x�y�z� + x�yz� + xy�z� + xyz�

= x�z�(y� + y) + xz�(y� + y)

= x�z� + xz� = z�(x� + x) = z�

 The number of adjacent squares that may be combined must always represent a

number that is a power of two, such as 1, 2, 4, and 8. As more adjacent squares are com-

bined, we obtain a product term with fewer literals.

 One square represents one minterm, giving a term with three literals.

 Two adjacent squares represent a term with two literals.

 Four adjacent squares represent a term with one literal.

 Eight adjacent squares encompass the entire map and produce a function that is

always equal to 1.

 EXAMPLE 3.3

 Simplify the Boolean function

 F (x, y, z) = �(0, 2, 4, 5, 6)

 The map for F is shown in Fig. 3.6 . First, we combine the four adjacent squares in the

first and last columns to give the single literal term z�. The remaining single square,

representing minterm 5, is combined with an adjacent square that has already been used

once. This is not only permissible, but rather desirable, because the two adjacent squares

give the two-literal term xy� and the single square represents the three-literal minterm

 xy�z. The simplified function is

 F = z� + xy�

Note: y�z� � yz� � z�

0

1

00 01 11 10

z

y

x
yz

x

1 1

1 1 1

xy�

yz�
y�z�

m0 m1 m3 m2

m6m7m5m4

 FIGURE 3.6
 Map for Example 3.3 , F (x, y, z) = �(0, 2, 4, 5, 6) = z� + xy�

■

Section 3.2 The Map Method 79

 If a function is not expressed in sum-of-minterms form, it is possible to use the map to

obtain the minterms of the function and then simplify the function to an expression with a

minimum number of terms. It is necessary, however, to make sure that the algebraic expres-

sion is in sum-of-products form. Each product term can be plotted in the map in one, two,

or more squares. The minterms of the function are then read directly from the map.

 EXAMPLE 3.4

 For the Boolean function

 F = A�C + A�B + AB�C + BC

 (a) Express this function as a sum of minterms.

 (b) Find the minimal sum-of-products expression.

 Note that F is a sum of products. Three product terms in the expression have two literals

and are represented in a three-variable map by two squares each. The two squares cor-

responding to the first term, A�C, are found in Fig. 3.7 from the coincidence of A� (first

row) and C (two middle columns) to give squares 001 and 011. Note that, in marking

1’s in the squares, it is possible to find a 1 already placed there from a preceding term.

This happens with the second term, A�B, which has 1’s in squares 011 and 010. Square

011 is common with the first term, A�C, though, so only one 1 is marked in it. Continu-

ing in this fashion, we determine that the term AB�C belongs in square 101, correspond-

ing to minterm 5, and the term BC has two 1’s in squares 011 and 111. The function has

a total of five minterms, as indicated by the five 1’s in the map of Fig. 3.7 . The minterms

are read directly from the map to be 1, 2, 3, 5, and 7. The function can be expressed in

sum-of-minterms form as

 F (A, B, C) = �(1, 2, 3, 5, 7)

 The sum-of-products expression, as originally given, has too many terms. It can be

simplified, as shown in the map, to an expression with only two terms:

 F = C + A�B

0

1

00 01 11 10

C

B

A
BC

A

1 1

1 1

A�B

C

1
m0 m1 m3 m2

m6m7m5m4

 FIGURE 3.7
 Map of Example 3.4 , A�C � A�B � AB�C � BC � C � A�B

■

80 Chapter 3 Gate-Level Minimization

 3 . 3 F O U R - VA R I A B L E K - M A P

 The map for Boolean functions of four binary variables (w, x, y, z) is shown in Fig. 3.8 .

In Fig. 3.8(a) are listed the 16 minterms and the squares assigned to each. In Fig. 3.8(b),

the map is redrawn to show the relationship between the squares and the four variables.

The rows and columns are numbered in a Gray code sequence, with only one digit

changing value between two adjacent rows or columns. The minterm corresponding to

each square can be obtained from the concatenation of the row number with the column

number. For example, the numbers of the third row (11) and the second column (01),

when concatenated, give the binary number 1101, the binary equivalent of decimal 13.

Thus, the square in the third row and second column represents minterm m13.

 The map minimization of four-variable Boolean functions is similar to the method

used to minimize three-variable functions. Adjacent squares are defined to be squares

next to each other. In addition, the map is considered to lie on a surface with the top

and bottom edges, as well as the right and left edges, touching each other to form adja-

cent squares. For example, m0 and m2 form adjacent squares, as do m3 and m11. The

combination of adjacent squares that is useful during the simplification process is easily

determined from inspection of the four-variable map:

 One square represents one minterm, giving a term with four literals.

 Two adjacent squares represent a term with three literals.

 Four adjacent squares represent a term with two literals.

 Eight adjacent squares represent a term with one literal.

 Sixteen adjacent squares produce a function that is always equal to 1.

 No other combination of squares can simplify the function. The next two examples

show the procedure used to simplify four-variable Boolean functions.

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

(a) (b)

m0 m1 m3 m2

m6m7m5m4

m14m15m13m12

m10m11m9m8

00

01

11

10

00 01 11 10

x

y

wx
yz

w

z

w�x�y�z� w�x�y�z w�x�yz w�x�yz�

w�xy�z� w�xy�z w�xyz w�xyz�

wxy�z� wxy�z wxyz wxyz�

wx�y�z� wx�y�z wx�yz wx�yz�

 FIGURE 3.8
 Four-variable map

Section 3.3 Four-Variable K-Map 81

 EXAMPLE 3.5

 Simplify the Boolean function

 F (w, x, y, z) = �(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

 Since the function has four variables, a four-variable map must be used. The minterms

listed in the sum are marked by 1’s in the map of Fig. 3.9 . Eight adjacent squares marked

with 1’s can be combined to form the one literal term y�. The remaining three 1’s on the

right cannot be combined to give a simplified term; they must be combined as two or

four adjacent squares. The larger the number of squares combined, the smaller is the

number of literals in the term. In this example, the top two 1’s on the right are combined

with the top two 1’s on the left to give the term w�z� . Note that it is permissible to use

the same square more than once. We are now left with a square marked by 1 in the third

row and fourth column (square 1110). Instead of taking this square alone (which will

give a term with four literals), we combine it with squares already used to form an area

of four adjacent squares. These squares make up the two middle rows and the two end

columns, giving the term xz�. The simplified function is

 F = y� + w�z� + xz�

Note: w�y�z� � w�yz� � w�z�

 xy�z� � xyz� � xz�

m0 m1 m3 m2

m6m7m5m4

m12

m8

m13

m9

m15 m14

m10m11

00

01

11

10

00 01 11 10

x

y

wx
yz

w

z

1 1 1

1 1 1

1 1 1

11

w�yz�

xyz�

w�y�z�

xy�z�

y�

 FIGURE 3.9
 Map for Example 3.5 , F(w, x, y, z) � �(0,1, 2, 4, 5, 6, 8, 9, 12, 13, 14) �

 y�� w�z� � xz� ■

 EXAMPLE 3.6

 Simplify the Boolean function

 F = A�B�C� + B�CD� + A�BCD� + AB�C�

 The area in the map covered by this function consists of the squares marked with 1’s in

 Fig. 3.10 . The function has four variables and, as expressed, consists of three terms with

82 Chapter 3 Gate-Level Minimization

three literals each and one term with four literals. Each term with three literals is repre-

sented in the map by two squares. For example, A�B�C� is represented in squares 0000

and 0001. The function can be simplified in the map by taking the 1’s in the four corners

to give the term B�D�. This is possible because these four squares are adjacent when the

map is drawn in a surface with top and bottom edges, as well as left and right edges,

touching one another. The two left-hand 1’s in the top row are combined with the two

1’s in the bottom row to give the term B�C�. The remaining 1 may be combined in a two-

square area to give the term A�CD�. The simplified function is

 F = B�D� + B�C� + A�CD�

■

 Prime Implicants

 In choosing adjacent squares in a map, we must ensure that (1) all the minterms of the

function are covered when we combine the squares, (2) the number of terms in the

expression is minimized, and (3) there are no redundant terms (i.e., minterms already

covered by other terms). Sometimes there may be two or more expressions that satisfy

the simplification criteria. The procedure for combining squares in the map may be made

more systematic if we understand the meaning of two special types of terms. A prime
implicant is a product term obtained by combining the maximum possible number of
adjacent squares in the map. If a minterm in a square is covered by only one prime

implicant, that prime implicant is said to be essential.

Note: A�B�C�D� � A�B�CD� � A�B�D�
 AB�C�D� � AB�CD� � AB�D�
 A�B�D� � AB�D� � B�D�
 A�B�C� � AB�C� � B�C�

m0 m1 m3 m2

m6m7m5m4

m12

m8

m13

m9

m15 m14

m10m11

00

01

11

10

00 01 11 10

B

C

AB
CD

A

D

1 1 1

1

1

A�B�C�D�

AB�C�D�

A�B�CD�

AB�CD�

1

AB�C�

A�B�C�

A�CD�

1

 FIGURE 3.10
 Map for Example 3.6 , A�B�C� � B�CD� � A�BCD� � AB�C� � B�D� � B�C� � A�CD�

Section 3.3 Four-Variable K-Map 83

 The prime implicants of a function can be obtained from the map by combining all
possible maximum numbers of squares. This means that a single 1 on a map represents

a prime implicant if it is not adjacent to any other 1’s. Two adjacent 1’s form a prime

implicant, provided that they are not within a group of four adjacent squares. Four

adjacent 1’s form a prime implicant if they are not within a group of eight adjacent

squares, and so on. The essential prime implicants are found by looking at each square

marked with a 1 and checking the number of prime implicants that cover it. The prime

implicant is essential if it is the only prime implicant that covers the minterm.

 Consider the following four-variable Boolean function:

 F(A, B, C, D) = �(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)

 The minterms of the function are marked with 1’s in the maps of Fig. 3.11 . The partial

map (Fig. 3.11(a)) shows two essential prime implicants, each formed by collapsing four

cells into a term having only two literals. One term is essential because there is only one

way to include minterm m0 within four adjacent squares. These four squares define the

term B�D�. Similarly, there is only one way that minterm m5 can be combined with four

adjacent squares, and this gives the second term BD . The two essential prime implicants

cover eight minterms. The three minterms that were omitted from the partial map

(m3, m9, and m11) must be considered next.

 Figure 3.11 (b) shows all possible ways that the three minterms can be covered with

prime implicants. Minterm m3 can be covered with either prime implicant CD or prime

implicant B�C. Minterm m9 can be covered with either AD or AB�. Minterm m11 is

covered with any one of the four prime implicants. The simplified expression is obtained

from the logical sum of the two essential prime implicants and any two prime implicants

(b) Prime implicants CD, B�C,
AD, and AB�

00

01

11

10

00 01 11 10AB
CD

1 1

1

1

1 1

B�C

11

1

1

1

AB�

AD

m0 m1 m3 m2

m12 m13 m15 m14

m8 m9 m11 m10

m4 m5 m7 m6

C

A

B

CD

Note: A�B�C�D� � A�B�CD� � A�B�D�
 AB�C�D� � AB�CD� � AB�D�
 A�B�D� � AB�D� � B�D�

(a) Essential prime implicants
BD and B�D�

1 1

1 1

A�B�C�D�

AB�C�D�

A�B�CD�

AB�CD�

BD

D D

m0 m1 m3 m2

m12 m13 m15 m14

m8 m9 m11 m10

m4 m5 m7 m6

00

01

11

10

00 01 11 10

B

C

AB
CD

A

1 1

1 1

 FIGURE 3.11
 Simplification using prime implicants

84 Chapter 3 Gate-Level Minimization

that cover minterms m3, m9, and m11. There are four possible ways that the function can

be expressed with four product terms of two literals each:

 F = BD + B�D� + CD + AD

 = BD + B�D� + CD + AB�

 = BD + B�D� + B�C + AD

 = BD + B�D� + B�C + AB�

 The previous example has demonstrated that the identification of the prime implicants in

the map helps in determining the alternatives that are available for obtaining a simplified

expression.

 The procedure for finding the simplified expression from the map requires that we

first determine all the essential prime implicants. The simplified expression is obtained

from the logical sum of all the essential prime implicants, plus other prime implicants

that may be needed to cover any remaining minterms not covered by the essential prime

implicants. Occasionally, there may be more than one way of combining squares, and

each combination may produce an equally simplified expression.

 Five-Variable Map

 Maps for more than four variables are not as simple to use as maps for four or fewer

variables. A five-variable map needs 32 squares and a six-variable map needs 64 squares.

When the number of variables becomes large, the number of squares becomes excessive

and the geometry for combining adjacent squares becomes more involved.

 Maps for more than four variables are difficult to use and will not be considered here.

 3 . 4 P R O D U C T- O F - S U M S S I M P L I F I C AT I O N

 The minimized Boolean functions derived from the map in all previous examples were

expressed in sum-of-products form. With a minor modification, the product-of-sums

form can be obtained.

 The procedure for obtaining a minimized function in product-of-sums form follows

from the basic properties of Boolean functions. The 1’s placed in the squares of the

map represent the minterms of the function. The minterms not included in the standard

sum-of-products form of a function denote the complement of the function. From this

observation, we see that the complement of a function is represented in the map by

the squares not marked by 1’s. If we mark the empty squares by 0’s and combine them

into valid adjacent squares, we obtain a simplified sum-of-products expression of the

complement of the function (i.e., of F�). The complement of F� gives us back the func-

tion F in product-of-sums form (a consequence of DeMorgan’s theorem). Because of

the generalized DeMorgan’s theorem, the function so obtained is automatically in

product-of-sums form. The best way to show this is by example.

Section 3.4 Product-of-Sums Simplification 85

 EXAMPLE 3.7

 Simplify the following Boolean function into (a) sum-of-products form and

(b) product-of-sums form:

 F (A, B, C, D) = �(0, 1, 2, 5, 8, 9, 10)

 The 1’s marked in the map of Fig. 3.12 represent all the minterms of the function. The

squares marked with 0’s represent the minterms not included in F and therefore denote

the complement of F . Combining the squares with 1’s gives the simplified function in

sum-of-products form:

 (a) F = B�D� + B�C� + A�C�D

 If the squares marked with 0’s are combined, as shown in the diagram, we obtain

the simplified complemented function:

 F� = AB + CD + BD�

 Applying DeMorgan’s theorem (by taking the dual and complementing each

literal as described in Section 2.4), we obtain the simplified function in product-

of-sums form:

 (b) F = (A� + B�) (C� + D�) (B� + D)

■

 The gate-level implementation of the simplified expressions obtained in Example 3.7 is

shown in Fig. 3.13 . The sum-of-products expression is implemented in (a) with a group of

AND gates, one for each AND term. The outputs of the AND gates are connected to the

inputs of a single OR gate. The same function is implemented in (b) in its product-of-sums

100

01

11

10

00 01 11 10

B

C

AB
CD

A

1 0 1

1 0

1 1 0 1

D

00 0

00

0

CD

BCD�

AB

BC�D�

Note: BC�D� � BCD� � BD�

m0 m1 m3 m2

m6m7m5m4

m12

m8

m13

m9

m15 m14

m10m11

 FIGURE 3.12
 Map for Example 3.7 , F (A, B, C, D) = �(0,1, 2, 5, 8, 9,10) = B�D� + B�C� + A�C�D =
 (A� + B�)(C� + D�)(B� + D)

86 Chapter 3 Gate-Level Minimization

form with a group of OR gates, one for each OR term. The outputs of the OR gates are

connected to the inputs of a single AND gate. In each case, it is assumed that the input

variables are directly available in their complement, so inverters are not needed. The con-

figuration pattern established in Fig. 3.13 is the general form by which any Boolean function

is implemented when expressed in one of the standard forms. AND gates are connected

to a single OR gate when in sum-of-products form; OR gates are connected to a single

AND gate when in product-of-sums form. Either configuration forms two levels of gates.

Thus, the implementation of a function in a standard form is said to be a two-level imple-

mentation. The two-level implementation may not be practical, depending on the number

of inputs to the gates.

 Example 3.7 showed the procedure for obtaining the product-of-sums simplifica-

tion when the function is originally expressed in the sum-of-minterms canonical form.

The procedure is also valid when the function is originally expressed in the product-

of-maxterms canonical form. Consider, for example, the truth table that defines the

 function F in Table 3.1 . In sum-of-minterms form, this function is expressed as

 F (x, y, z) = �(1, 3, 4, 6)

F

B�

D�

C�

A�

D

F

A�

B�

C�

D

D�

(a) F � B�D� � B�C� � A�C�D (b) F � (A� � B�) (C� � D�) (B� � D)

 FIGURE 3.13
 Gate implementations of the function of Example 3.7

 Table 3.1
 Truth Table of Function F

 x y z F

 0 0 0 0

 0 0 1 1

 0 1 0 0

 0 1 1 1

 1 0 0 1

 1 0 1 0

 1 1 0 1

 1 1 1 0

Section 3.4 Product-of-Sums Simplification 87

 In product-of-maxterms form, it is expressed as

 F (x, y, z) = �(0, 2, 5, 7)

 In other words, the 1’s of the function represent the minterms and the 0’s represent

the maxterms. The map for this function is shown in Fig. 3.14 . One can start simplify-

ing the function by first marking the 1’s for each minterm that the function is a 1. The

remaining squares are marked by 0’s. If, instead, the product of maxterms is initially

given, one can start marking 0’s in those squares listed in the function; the remaining

squares are then marked by 1’s. Once the 1’s and 0’s are marked, the function can be

simplified in either one of the standard forms. For the sum of products, we combine

the 1’s to obtain

 F = x�z + xz�

 For the product of sums, we combine the 0’s to obtain the simplified complemented

function

 F� = xz + x�z�

 which shows that the exclusive-OR function is the complement of the equivalence func-

tion (Section 2.6). Taking the complement of F�, we obtain the simplified function in

product-of-sums form:

 F = (x� + z�)(x + z)

 To enter a function expressed in product-of-sums form into the map, use the comple-

ment of the function to find the squares that are to be marked by 0’s. For example, the

function

 F = (A� + B� + C�)(B + D)

 can be entered into the map by first taking its complement, namely,

 F� = ABC + B�D�

0

1

00 01 11 10

z

y

x
yz

x

10 01

1 10 0

xz�

x�z
m0 m1 m3 m2

m4 m5 m7 m6

 FIGURE 3.14
 Map for the function of Table 3.1

88 Chapter 3 Gate-Level Minimization

 and then marking 0’s in the squares representing the minterms of F�. The remaining

squares are marked with 1’s.

 3 . 5 D O N ’ T- C A R E C O N D I T I O N S

 The logical sum of the minterms associated with a Boolean function specifies the con-

ditions under which the function is equal to 1. The function is equal to 0 for the rest of

the minterms. This pair of conditions assumes that all the combinations of the values

for the variables of the function are valid. In practice, in some applications the function

is not specified for certain combinations of the variables. As an example, the four-bit

binary code for the decimal digits has six combinations that are not used and conse-

quently are considered to be unspecified. Functions that have unspecified outputs for

some input combinations are called incompletely specified functions . In most applica-

tions, we simply don’t care what value is assumed by the function for the unspecified

minterms. For this reason, it is customary to call the unspecified minterms of a function

 don’t-care conditions . These don’t-care conditions can be used on a map to provide

further simplification of the Boolean expression.

 A don’t-care minterm is a combination of variables whose logical value is not speci-

fied. Such a minterm cannot be marked with a 1 in the map, because it would require

that the function always be a 1 for such a combination. Likewise, putting a 0 on the

square requires the function to be 0. To distinguish the don’t-care condition from 1’s and

0’s, an X is used. Thus, an X inside a square in the map indicates that we don’t care

whether the value of 0 or 1 is assigned to F for the particular minterm.

 In choosing adjacent squares to simplify the function in a map, the don’t-care min-

terms may be assumed to be either 0 or 1. When simplifying the function, we can choose

to include each don’t-care minterm with either the 1’s or the 0’s, depending on which

combination gives the simplest expression.

 EXAMPLE 3.8

 Simplify the Boolean function

 F (w, x, y, z) = �(1, 3, 7, 11, 15)

 which has the don’t-care conditions

 d (w, x, y, z) = �(0, 2, 5)

 The minterms of F are the variable combinations that make the function equal to 1. The

minterms of d are the don’t-care minterms that may be assigned either 0 or 1. The map

simplification is shown in Fig. 3.15 . The minterms of F are marked by 1’s, those of d are

marked by X’s, and the remaining squares are filled with 0’s. To get the simplified expres-

sion in sum-of-products form, we must include all five 1’s in the map, but we may or may

not include any of the X’s, depending on the way the function is simplified. The term yz

covers the four minterms in the third column. The remaining minterm, m1, can be combined

Section 3.5 Don’t-Care Conditions 89

with minterm m3 to give the three-literal term w�x�z. However, by including one or

two adjacent X’s we can combine four adjacent squares to give a two-literal term. In

Fig. 3.15(a), don’t-care minterms 0 and 2 are included with the 1’s, resulting in the simpli-

fied function

 F = yz + w�x�

 In Fig. 3.15(b), don’t-care minterm 5 is included with the 1’s, and the simplified func-

tion is now

 F = yz + w�z

 Either one of the preceding two expressions satisfies the conditions stated for this

 example.

■

 The previous example has shown that the don’t-care minterms in the map are ini-

tially marked with X’s and are considered as being either 0 or 1. The choice between 0

and 1 is made depending on the way the incompletely specified function is simplified.

Once the choice is made, the simplified function obtained will consist of a sum of min-

terms that includes those minterms which were initially unspecified and have been

chosen to be included with the 1’s. Consider the two simplified expressions obtained

in Example 3.8 :

 F (w, x, y, z) = yz + w�x� = �(0, 1, 2, 3, 7, 11, 15)

F (w, x, y, z) = yz + w�z = �(1, 3, 5, 7, 11, 15)

 Both expressions include minterms 1, 3, 7, 11, and 15 that make the function F equal

to 1. The don’t-care minterms 0, 2, and 5 are treated differently in each expression.

m0 m1 m3 m2

m12 m13 m15 m14

m8 m9 m11 m10

m4 m5 m7 m6

00

01

11

10

00 01 11 10

x

y

wx
yz

w

1 1 X

0 X

X

1 0

0 0 1 0

0 1 00

w�z

yz
z

00

01

11

10

00 01 11 10wx
yz

z

X 1 1 X

0 X 1 0

0 0 1 0

0 1 00

w�x�

yz

x

w

y

m0 m1 m3 m2

m12 m13 m15 m14

m8 m9 m11 m10

m4 m5 m7 m6

(a) F � yz � w�x� (b) F � yz � w�z

 FIGURE 3.15
 Example with don’t-care conditions

90 Chapter 3 Gate-Level Minimization

The first expression includes minterms 0 and 2 with the 1’s and leaves minterm 5 with

the 0’s. The second expression includes minterm 5 with the 1’s and leaves minterms 0

and 2 with the 0’s. The two expressions represent two functions that are not algebra-

ically equal. Both cover the specified minterms of the function, but each covers dif-

ferent don’t-care minterms. As far as the incompletely specified function is concerned,

either expression is acceptable because the only difference is in the value of F for the

don’t-care minterms.

 It is also possible to obtain a simplified product-of-sums expression for the function

of Fig. 3.15 . In this case, the only way to combine the 0’s is to include don’t-care minterms

0 and 2 with the 0’s to give a simplified complemented function:

 F� = z� + wy�

 Taking the complement of F� gives the simplified expression in product-of-sums form:

 F (w, x, y, z) = z(w� + y) = �(1, 3, 5, 7, 11, 15)

 In this case, we include minterms 0 and 2 with the 0’s and minterm 5 with the 1’s.

 3 . 6 N A N D A N D N O R I M P L E M E N TAT I O N

 Digital circuits are frequently constructed with NAND or NOR gates rather than with

AND and OR gates. NAND and NOR gates are easier to fabricate with electronic

components and are the basic gates used in all IC digital logic families. Because of the

prominence of NAND and NOR gates in the design of digital circuits, rules and proce-

dures have been developed for the conversion from Boolean functions given in terms

of AND, OR, and NOT into equivalent NAND and NOR logic diagrams.

 NAND Circuits

 The NAND gate is said to be a universal gate because any logic circuit can be imple-

mented with it. To show that any Boolean function can be implemented with NAND

gates, we need only show that the logical operations of AND, OR, and complement can

be obtained with NAND gates alone. This is indeed shown in Fig. 3.16 . The complement

operation is obtained from a one-input NAND gate that behaves exactly like an inverter.

The AND operation requires two NAND gates. The first produces the NAND operation

and the second inverts the logical sense of the signal. The OR operation is achieved

through a NAND gate with additional inverters in each input.

 A convenient way to implement a Boolean function with NAND gates is to obtain
the simplified Boolean function in terms of Boolean operators and then convert the
function to NAND logic. The conversion of an algebraic expression from AND, OR, and

complement to NAND can be done by simple circuit manipulation techniques that

change AND–OR diagrams to NAND diagrams.

 To facilitate the conversion to NAND logic, it is convenient to define an alternative

graphic symbol for the gate. Two equivalent graphic symbols for the NAND gate are

shown in Fig. 3.17 . The AND-invert symbol has been defined previously and consists

Section 3.6 NAND and NOR Implementation 91

of an AND graphic symbol followed by a small circle negation indicator referred to as

a bubble. Alternatively, it is possible to represent a NAND gate by an OR graphic

symbol that is preceded by a bubble in each input. The invert-OR symbol for the

NAND gate follows DeMorgan’s theorem and the convention that the negation indica-

tor (bubble) denotes complementation. The two graphic symbols’ representations are

useful in the analysis and design of NAND circuits. When both symbols are mixed in

the same diagram, the circuit is said to be in mixed notation.

 Two-Level Implementation

 The implementation of Boolean functions with NAND gates requires that the functions
be in sum-of-products form. To see the relationship between a sum-of-products expres-

sion and its equivalent NAND implementation, consider the logic diagrams drawn in

 Fig. 3.18 . All three diagrams are equivalent and implement the function

 F = AB + CD

 The function is implemented in Fig. 3.18(a) with AND and OR gates. In Fig. 3.18(b), the

AND gates are replaced by NAND gates and the OR gate is replaced by a NAND gate

with an OR-invert graphic symbol. Remember that a bubble denotes complementation

and two bubbles along the same line represent double complementation, so both can be

removed. Removing the bubbles on the gates of (b) produces the circuit of (a). Therefore,

the two diagrams implement the same function and are equivalent.

(x�y�)� � x � y

y

x

x

x
y

xy

x�Inverter

AND

OR

 FIGURE 3.16
 Logic operations with NAND gates

x
y
z

(xyz)�
x
y
z

x� � y� � z� � (xyz)�

(a) AND-invert (b) Invert-OR

 FIGURE 3.17
 Two graphic symbols for a three-input NAND gate

92 Chapter 3 Gate-Level Minimization

 In Fig. 3.18 (c), the output NAND gate is redrawn with the AND-invert graphic symbol.

In drawing NAND logic diagrams, the circuit shown in either Fig. 3.18(b) or (c) is accept-

able. The one in Fig. 3.18(b) is in mixed notation and represents a more direct relationship

to the Boolean expression it implements. The NAND implementation in Fig. 3.18 (c) can

be verified algebraically. The function it implements can easily be converted to sum- of-

products form by DeMorgan’s theorem:

 F = ((AB)�(CD)�)� = AB + CD

 EXAMPLE 3.9

 Implement the following Boolean function with NAND gates:

 F (x, y, z) = (1, 2, 3, 4, 5, 7)

 The first step is to simplify the function into sum-of-products form. This is done by

means of the map of Fig. 3.19 (a), from which the simplified function is obtained:

 F = xy� + x�y + z

 The two-level NAND implementation is shown in Fig. 3.19 (b) in mixed notation. Note

that input z must have a one-input NAND gate (an inverter) to compensate for the

bubble in the second-level gate. An alternative way of drawing the logic diagram is given

in Fig. 3.19 (c). Here, all the NAND gates are drawn with the same graphic symbol. The

inverter with input z has been removed, but the input variable is complemented and

denoted by z�.
■

(a)

C

D

A

B
F

F

(b)

C

D

A

B

(c)

C

D

A

B
F

 FIGURE 3.18
 Three ways to implement F = AB + CD

Section 3.6 NAND and NOR Implementation 93

 The procedure described in the previous example indicates that a Boolean function

can be implemented with two levels of NAND gates. The procedure for obtaining the

logic diagram from a Boolean function is as follows:

 1. Simplify the function and express it in sum-of-products form.

 2. Draw a NAND gate for each product term of the expression that has at least two

literals. The inputs to each NAND gate are the literals of the term. This procedure

produces a group of first-level gates.

 3. Draw a single gate using the AND-invert or the invert-OR graphic symbol in the

second level, with inputs coming from outputs of first-level gates.

 4. A term with a single literal requires an inverter in the first level. However, if the

single literal is complemented, it can be connected directly to an input of the second-

level NAND gate.

 Multilevel NAND Circuits

 The standard form of expressing Boolean functions results in a two-level implementation.

There are occasions, however, when the design of digital systems results in gating structures

with three or more levels. The most common procedure in the design of multilevel circuits

is to express the Boolean function in terms of AND, OR, and complement operations. The

function can then be implemented with AND and OR gates. After that, if necessary, it can

be converted into an all-NAND circuit. Consider, for example, the Boolean function

 F = A (CD + B) + BC�

x

y�

x�

y

z

(b)

(a)

x

y�

x�

y

z�

(c)

F F

0

1

00 01 11 10

z

y

x
yz

x

0 1

1

x�y

xy� z

1 1

1 1
m4 m5 m7 m6

m0 m1 m3 m2

F � xy� � x�y � z

 FIGURE 3.19
 Solution to Example 3.9

94 Chapter 3 Gate-Level Minimization

 Although it is possible to remove the parentheses and reduce the expression into a standard

sum-of-products form, we choose to implement it as a multilevel circuit for illustration. The

AND–OR implementation is shown in Fig. 3.20 (a). There are four levels of gating in the

circuit. The first level has two AND gates. The second level has an OR gate followed by an

AND gate in the third level and an OR gate in the fourth level. A logic diagram with a pat-

tern of alternating levels of AND and OR gates can easily be converted into a NAND circuit

with the use of mixed notation, shown in Fig. 3.20 (b). The procedure is to change every AND

gate to an AND-invert graphic symbol and every OR gate to an invert-OR graphic symbol.

The NAND circuit performs the same logic as the AND–OR diagram as long as there are

two bubbles along the same line. The bubble associated with input B causes an extra comple-

mentation, which must be compensated for by changing the input literal to B�.
 The general procedure for converting a multilevel AND–OR diagram into an all-NAND

diagram using mixed notation is as follows:

 1. Convert all AND gates to NAND gates with AND-invert graphic symbols.

 2. Convert all OR gates to NAND gates with invert-OR graphic symbols.

 3. Check all the bubbles in the diagram. For every bubble that is not compensated

by another small circle along the same line, insert an inverter (a one-input NAND

gate) or complement the input literal.

 As another example, consider the multilevel Boolean function

 F = (AB� + A�B)(C + D�)

(a) AND–OR gates

(b) NAND gates

F
B

C

D

B�

A

C�

F

C

D

B

A

B

C�

 FIGURE 3.20
 Implementing F = A(CD + B) + BC�

Section 3.6 NAND and NOR Implementation 95

 The AND–OR implementation of this function is shown in Fig. 3.21 (a) with three levels

of gating. The conversion to NAND with mixed notation is presented in Fig. 3.21(b) of

the diagram. The two additional bubbles associated with inputs C and D� cause these

two literals to be complemented to C� and D . The bubble in the output NAND gate

complements the output value, so we need to insert an inverter gate at the output in

order to complement the signal again and get the original value back.

 NOR Implementation

 The NOR operation is the dual of the NAND operation. Therefore, all procedures and

rules for NOR logic are the duals of the corresponding procedures and rules developed

for NAND logic. The NOR gate is another universal gate that can be used to implement

any Boolean function. The implementation of the complement, OR, and AND operations

with NOR gates is shown in Fig. 3.22 . The complement operation is obtained from a one-

input NOR gate that behaves exactly like an inverter. The OR operation requires two NOR

gates, and the AND operation is obtained with a NOR gate that has inverters in each input.

 The two graphic symbols for the mixed notation are shown in Fig. 3.23 . The OR-invert

symbol defines the NOR operation as an OR followed by a complement. The invert-AND

symbol complements each input and then performs an AND operation. The two symbols

designate the same NOR operation and are logically identical because of DeMorgan’s

theorem.

F

A

B�

A�

B

C

D�

(a) AND–OR gates

F

A

B�

A�

B

C�

D

(b) NAND gates

 FIGURE 3.21
 Implementing F = (AB� + A�B) (C + D�)

96 Chapter 3 Gate-Level Minimization

 A two-level implementation with NOR gates requires that the function be simplified

into product-of-sums form. Remember that the simplified product-of-sums expression

is obtained from the map by combining the 0’s and complementing. A product-of-sums

expression is implemented with a first level of OR gates that produce the sum terms

followed by a second-level AND gate to produce the product. The transformation from

the OR–AND diagram to a NOR diagram is achieved by changing the OR gates to

NOR gates with OR-invert graphic symbols and the AND gate to a NOR gate with an

invert-AND graphic symbol. A single literal term going into the second-level gate must

be complemented. Figure 3.24 shows the NOR implementation of a function expressed

as a product of sums:

 F = (A + B)(C + D)E

 The OR–AND pattern can easily be detected by the removal of the bubbles along the

same line. Variable E is complemented to compensate for the third bubble at the input

of the second-level gate.

 The procedure for converting a multilevel AND–OR diagram to an all-NOR diagram

is similar to the one presented for NAND gates. For the NOR case, we must convert

each OR gate to an OR-invert symbol and each AND gate to an invert-AND symbol.

Any bubble that is not compensated by another bubble along the same line needs an

inverter, or the complementation of the input literal.

 The transformation of the AND–OR diagram of Fig. 3.21 (a) into a NOR diagram is

shown in Fig. 3.25 . The Boolean function for this circuit is

 F = (AB� + A�B)(C + D�)

OR
x
y

x � y

Inverter x x�

x

y

AND (x� � y�)� � xy

 FIGURE 3.22
 Logic operations with NOR gates

x
y
z

x
y
z

x�y�z� � (x � y � z)�(x � y � z)�

(a) OR-invert (b) Invert-AND

 FIGURE 3.23
 Two graphic symbols for the NOR gate

Section 3.7 Other Two-Level Implementations 97

 The equivalent AND–OR diagram can be recognized from the NOR diagram by remov-

ing all the bubbles. To compensate for the bubbles in four inputs, it is necessary to

complement the corresponding input literals.

 3 . 7 O T H E R T W O - L E V E L I M P L E M E N TAT I O N S

 The types of gates most often found in integrated circuits are NAND and NOR gates.

For this reason, NAND and NOR logic implementations are the most important from

a practical point of view. Some (but not all) NAND or NOR gates allow the possibility

of a wire connection between the outputs of two gates to provide a specific logic func-

tion. This type of logic is called wired logic. For example, open-collector TTL NAND

gates, when tied together, perform wired-AND logic. The wired-AND logic performed

with two NAND gates is depicted in Fig. 3.26 (a). The AND gate is drawn with the lines

going through the center of the gate to distinguish it from a conventional gate. The

wired-AND gate is not a physical gate, but only a symbol to designate the function

obtained from the indicated wired connection. The logic function implemented by the

circuit of Fig. 3.26 (a) is

 F = (AB)�c (CD)� = (AB + CD)� = (A� + B�)(C� + D�)

 and is called an AND–OR–INVERT function.

A

B

C

D

E�

F

 FIGURE 3.24
 Implementing F = (A + B)(C + D)E

C

F

D�

A

B�

A�

B

 FIGURE 3.25
 Implementing F = (AB� + A�B)(C + D�) with NOR gates

98 Chapter 3 Gate-Level Minimization

 Similarly, the NOR outputs of ECL gates can be tied together to perform a wired-OR

function. The logic function implemented by the circuit of Fig. 3.26 (b) is

 F = (A + B)� + (C + D)� = 3(A + B)(C + D)4�

 and is called an OR–AND–INVERT function.

 A wired-logic gate does not produce a physical second-level gate, since it is just a wire

connection. Nevertheless, for discussion purposes, we will consider the circuits of Fig. 3.26

as two-level implementations. The first level consists of NAND (or NOR) gates and the

second level has a single AND (or OR) gate. The wired connection in the graphic symbol

will be omitted in subsequent discussions.

 Nondegenerate Forms

 It will be instructive from a theoretical point of view to find out how many two-level com-

binations of gates are possible. We consider four types of gates: AND, OR, NAND, and

NOR. If we assign one type of gate for the first level and one type for the second level, we

find that there are 16 possible combinations of two-level forms. (The same type of gate can

be in the first and second levels, as in a NAND–NAND implementation.) Eight of these

combinations are said to be degenerate forms because they degenerate to a single opera-

tion. This can be seen from a circuit with AND gates in the first level and an AND gate in

the second level. The output of the circuit is merely the AND function of all input variables.

The remaining eight nondegenerate forms produce an implementation in sum-of-products

form or product-of-sums form. The eight nondegenerate forms are as follows:

 AND–OR OR–AND

 NAND–NAND NOR–NOR

 NOR–OR NAND–AND

 OR–NAND AND–NOR

F � (AB � CD)� F � [(A � B) (C � D)]�

A
B

C
D

A
B

C
D

(a) Wired-AND in open-collector
TTL NAND gates.

(AND–OR–INVERT)

(b) Wired-OR in ECL gates

(OR–AND–INVERT)

 FIGURE 3.26
 Wired logic
 (a) Wired-AND logic with two NAND gates
 (b) Wired-OR in emitter-coupled logic (ECL) gates

Section 3.7 Other Two-Level Implementations 99

 The first gate listed in each of the forms constitutes a first level in the implementation.

The second gate listed is a single gate placed in the second level. Note that any two forms

listed on the same line are duals of each other.

 The AND–OR and OR–AND forms are the basic two-level forms discussed in

Section 3.4. The NAND–NAND and NOR–NOR forms were presented in Section 3.5.

The remaining four forms are investigated in this section.

 AND–OR–INVERT Implementation

 The two forms, NAND–AND and AND–NOR, are equivalent and can be treated

together. Both perform the AND–OR–INVERT function, as shown in Fig. 3.27 . The

AND–NOR form resembles the AND–OR form, but with an inversion done by the

bubble in the output of the NOR gate. It implements the function

 F = (AB + CD + E)�

 By using the alternative graphic symbol for the NOR gate, we obtain the diagram of

 Fig. 3.27 (b). Note that the single variable E is not complemented, because the only

change made is in the graphic symbol of the NOR gate. Now we move the bubble from

the input terminal of the second-level gate to the output terminals of the first-level gates.

An inverter is needed for the single variable in order to compensate for the bubble.

Alternatively, the inverter can be removed, provided that input E is complemented. The

circuit of Fig. 3.27 (c) is a NAND–AND form and was shown in Fig. 3.26 to implement

the AND–OR–INVERT function.

 An AND–OR implementation requires an expression in sum-of-products form. The

AND–OR–INVERT implementation is similar, except for the inversion. Therefore, if the

 complement of the function is simplified into sum-of-products form (by combining the 0’s

in the map), it will be possible to implement F� with the AND–OR part of the function.

When F� passes through the always present output inversion (the INVERT part), it will

(a) AND–NOR

A

B

C

D

E

F

(b) AND–NOR

A

B

C

D

E

F

(c) NAND–AND

A

B

C

D

E

F

 FIGURE 3.27
 AND–OR–INVERT circuits, F = (AB + CD + E)�

100 Chapter 3 Gate-Level Minimization

generate the output F of the function. An example for the AND–OR–INVERT imple-

mentation will be shown subsequently.

 OR–AND–INVERT Implementation

 The OR–NAND and NOR–OR forms perform the OR–AND–INVERT function, as

shown in Fig. 3.28 . The OR–NAND form resembles the OR–AND form, except for the

inversion done by the bubble in the NAND gate. It implements the function

 F = 3(A + B)(C + D)E4�

 By using the alternative graphic symbol for the NAND gate, we obtain the diagram

of Fig. 3.28 (b). The circuit in Fig. 3.28(c) is obtained by moving the small circles from the

inputs of the second-level gate to the outputs of the first-level gates. The circuit of Fig.

 3.28 (c) is a NOR–OR form and was shown in Fig. 3.26 to implement the OR–AND–

INVERT function.

 The OR–AND–INVERT implementation requires an expression in product-of-sums

form. If the complement of the function is simplified into that form, we can implement

 F� with the OR–AND part of the function. When F� passes through the INVERT part,

we obtain the complement of F�, or F , in the output.

 Tabular Summary and Example

 Table 3.2 summarizes the procedures for implementing a Boolean function in any one

of the four 2-level forms. Because of the INVERT part in each case, it is convenient to

use the simplification of F� (the complement) of the function. When F� is implemented

in one of these forms, we obtain the complement of the function in the AND–OR or

OR–AND form. The four 2-level forms invert this function, giving an output that is the

complement of F�. This is the normal output F .

(c) NOR–OR

A
B

C
D

E

F

(b) OR–NAND

A
B

C
D

E

F

(a) OR–NAND

A
B

C
D

E

F

 FIGURE 3.28
 OR–AND–INVERT circuits, F = 3(A + B)(C + D)E4�

Section 3.7 Other Two-Level Implementations 101

 Table 3.2
 Implementation with Other Two-Level Forms

 Equivalent
Nondegenerate Form Implements

the
Function

 Simplify
 F’

into

 To Get
an Output

of (a) (b)*

 AND–NOR NAND–AND AND–OR–INVERT Sum-of-products

form by combining

0’s in the map. F

 OR–NAND NOR–OR OR–AND–INVERT Product-of-sums

form by combining

1’s in the map and

then complementing. F

 * Form (b) requires an inverter for a single literal term.

 EXAMPLE 3.10

 Implement the function of Fig. 3.29 (a) with the four 2-level forms listed in Table 3.2 .

 The complement of the function is simplified into sum-of-products form by combining

the 0’s in the map:

 F� = x�y + xy� + z

 The normal output for this function can be expressed as

 F = (x�y + xy� + z)�

 which is in the AND–OR–INVERT form. The AND–NOR and NAND–AND imple-

mentations are shown in Fig. 3.29 (b). Note that a one-input NAND, or inverter, gate is

needed in the NAND–AND implementation, but not in the AND–NOR case. The

inverter can be removed if we apply the input variable z� instead of z.
 The OR–AND–INVERT forms require a simplified expression of the complement

of the function in product-of-sums form. To obtain this expression, we first combine the

1’s in the map:

 F = x�y�z� + xyz�

 Then we take the complement of the function:

 F� = (x + y + z)(x� + y� + z)

102 Chapter 3 Gate-Level Minimization

 The normal output F can now be expressed in the form

 F = 3(x + y + z)(x� + y� + z)4�

 which is the OR–AND–INVERT form. From this expression, we can implement the

function in the OR–NAND and NOR–OR forms, as shown in Fig. 3.29 (c).

■

0

1

00 01 11 10

z

y
x

yz

x

1
m0 m1 m3 m2

m4 m5 m7 m6

0 0 0

0 0 0 1
xyz�

x�y�z�

F = x�y�z� + xyz�

F� = x�y + xy� + z

(a) Map simplification in sum of products

NAND–AND

x�

y

x

y�

z

F

 AND–NOR

x�

y

x

y�

z

F

(b) F � (x�y � xy� � z)�

(c) F � [(x � y � z) (x� � y� � z)]�

NOR–OR OR–NAND

FF
z
y
x

z
y�

x�

z
y
x

z
y�

x�

 FIGURE 3.29
 Other two-level implementations

Section 3.8 Exclusive-OR Function 103

 3 . 8 E X C L U S I V E - O R F U N C T I O N

 The exclusive-OR (XOR), denoted by the symbol { , is a logical operation that performs

the following Boolean operation:

 x { y = xy� + x�y

 The exclusive-OR is equal to 1 if only x is equal to 1 or if only y is equal to 1 (i.e., x and y

differ in value), but not when both are equal to 1 or when both are equal to 0. The exclusive-

NOR, also known as equivalence, performs the following Boolean operation:

 (x { y)� = xy + x�y�

 The exclusive-NOR is equal to 1 if both x and y are equal to 1 or if both are equal to 0.

The exclusive-NOR can be shown to be the complement of the exclusive-OR by means

of a truth table or by algebraic manipulation:

 (x { y)� = (xy� + x�y)� = (x� + y)(x + y�) = xy + x�y�

 The following identities apply to the exclusive-OR operation:

 x { 0 = x

 x { 1 = x�

 x { x = 0

 x { x� = 1

 x { y� = x� { y = (x { y)�

 Any of these identities can be proven with a truth table or by replacing the { operation

by its equivalent Boolean expression. Also, it can be shown that the exclusive-OR oper-

ation is both commutative and associative; that is,

 A { B = B { A

 and

 (A { B) { C = A { (B { C) = A { B { C

 This means that the two inputs to an exclusive-OR gate can be interchanged without

affecting the operation. It also means that we can evaluate a three-variable exclusive-OR

operation in any order, and for this reason, three or more variables can be expressed

without parentheses. This would imply the possibility of using exclusive-OR gates with

three or more inputs. However, multiple-input exclusive-OR gates are difficult to fabri-

cate with hardware. In fact, even a two-input function is usually constructed with other

types of gates. A two-input exclusive-OR function is constructed with conventional gates

using two inverters, two AND gates, and an OR gate, as shown in Fig. 3.30 (a). Figure 3.30 (b)

shows the implementation of the exclusive-OR with four NAND gates. The first NAND

gate performs the operation (xy)� = (x� + y�). The other two-level NAND circuit

 produces the sum of products of its inputs:

 (x� + y�)x + (x� + y�)y = xy� + x�y = x { y

104 Chapter 3 Gate-Level Minimization

 Only a limited number of Boolean functions can be expressed in terms of exclusive-OR

operations. Nevertheless, this function emerges quite often during the design of digital

systems. It is particularly useful in arithmetic operations and error detection and correc-

tion circuits.

 Odd Function

 The exclusive-OR operation with three or more variables can be converted into an

ordinary Boolean function by replacing the { symbol with its equivalent Boolean

expression. In particular, the three-variable case can be converted to a Boolean expres-

sion as follows:

 A { B { C = (AB� + A�B)C� + (AB + A�B�)C

= AB�C� + A�BC� + ABC + A�B�C

= �(1, 2, 4, 7)

 The Boolean expression clearly indicates that the three-variable exclusive-OR function is

equal to 1 if only one variable is equal to 1 or if all three variables are equal to 1. Contrary

to the two-variable case, in which only one variable must be equal to 1, in the case of three

or more variables the requirement is that an odd number of variables be equal to 1. As a

consequence, the multiple-variable exclusive-OR operation is defined as an odd function.

(a) Exclusive-OR with AND–OR–NOT gates

x

y

x � y

(b) Exclusive-OR with NAND gates

x � y

x

y

 FIGURE 3.30
 Exclusive-OR implementations

Section 3.8 Exclusive-OR Function 105

 The Boolean function derived from the three-variable exclusive-OR operation is

expressed as the logical sum of four minterms whose binary numerical values are 001, 010,

100, and 111. Each of these binary numbers has an odd number of 1’s. The remaining four

minterms not included in the function are 000, 011, 101, and 110, and they have an even

number of 1’s in their binary numerical values. In general, an n -variable exclusive-OR

function is an odd function defined as the logical sum of the 2n>2 minterms whose binary

numerical values have an odd number of 1’s.

 The definition of an odd function can be clarified by plotting it in a map. Figure 3.31 (a)

shows the map for the three-variable exclusive-OR function. The four minterms of the

function are a unit distance apart from each other. The odd function is identified from

the four minterms whose binary values have an odd number of 1’s. The complement of

an odd function is an even function. As shown in Fig. 3.31 (b), the three-variable even

function is equal to 1 when an even number of its variables is equal to 1 (including the

condition that none of the variables is equal to 1).

 The three-input odd function is implemented by means of two-input exclusive-OR

gates, as shown in Fig. 3.32 (a). The complement of an odd function is obtained by replac-

ing the output gate with an exclusive-NOR gate, as shown in Fig. 3.32 (b).

 Consider now the four-variable exclusive-OR operation. By algebraic manipulation,

we can obtain the sum of minterms for this function:

 A { B { C { D = (AB� + A�B) { (CD� + C�D)

 = (AB� + A�B)(CD + C�D�) + (AB + A�B�)(CD� + C�D)

 = �(1, 2, 4, 7, 8, 11, 13, 14)

0

1

00 01 11 10

C

(a) Odd function F � A � B � C (b) Even function F � (A � B � C)�

A
BC

A

m0

m4 m5 m7 m6

m1 m3 m2 m0

m4 m5 m7 m6

m1 m3 m2

1 1

1 1

0

1

00 01 11 10

B
A

BC

1 1

1 1

B

A

C

 FIGURE 3.31
 Map for a three-variable exclusive-OR function

(a) 3-input odd function (b) 3-input even function

A

C

B

A

C

B

 FIGURE 3.32
 Logic diagram of odd and even functions

106 Chapter 3 Gate-Level Minimization

 There are 16 minterms for a four-variable Boolean function. Half of the minterms

have binary numerical values with an odd number of 1’s; the other half of the minterms

have binary numerical values with an even number of 1’s. In plotting the function in the

map, the binary numerical value for a minterm is determined from the row and column

numbers of the square that represents the minterm. The map of Fig. 3.33 (a) is a plot of

the four-variable exclusive-OR function. This is an odd function because the binary

values of all the minterms have an odd number of 1’s. The complement of an odd func-

tion is an even function. As shown in Fig. 3.33 (b), the four-variable even function is equal

to 1 when an even number of its variables is equal to 1.

 Parity Generation and Checking

 Exclusive-OR functions are very useful in systems requiring error detection and cor-

rection codes. As discussed in Section 1.6, a parity bit is used for the purpose of

detecting errors during the transmission of binary information. A parity bit is an extra

bit included with a binary message to make the number of 1’s either odd or even. The

message, including the parity bit, is transmitted and then checked at the receiving end

for errors. An error is detected if the checked parity does not correspond with the

one transmitted. The circuit that generates the parity bit in the transmitter is called

a parity generator. The circuit that checks the parity in the receiver is called a parity
checker.

 As an example, consider a three-bit message to be transmitted together with an

even-parity bit. Table 3.3 shows the truth table for the parity generator. The three

bits— x, y, and z —constitute the message and are the inputs to the circuit. The parity

bit P is the output. For even parity, the bit P must be generated to make the total

number of 1’s (including P) even. From the truth table, we see that P constitutes an

00

01

11

10

00 01 11 10

C

AB
CD

(a) Odd function F � A � B � C � D (b) Even function F � (A � B � C � D)�

1 1

1 1

1 1

1 1

m0

m4

m12

m8 m9 m11 m10

m13 m15 m14

m5 m7 m6

m1 m3 m2
m0

m4

m12

m8 m9 m11 m10

m13 m15 m14

m5 m7 m6

m1 m3 m2

00

01

11

10

00 01 11 10

B

AB
CD

A

D

1 1

1 1

1

1 1

1

C

D

A

B

 FIGURE 3.33
 Map for a four-variable exclusive-OR function

Section 3.8 Exclusive-OR Function 107

odd function because it is equal to 1 for those minterms whose numerical values have

an odd number of 1’s. Therefore, P can be expressed as a three-variable exclusive-OR

function:

 P = x { y { z

 The logic diagram for the parity generator is shown in Fig. 3.34 (a).

 The three bits in the message, together with the parity bit, are transmitted to their

destination, where they are applied to a parity-checker circuit to check for possible

errors in the transmission. Since the information was transmitted with even parity, the

four bits received must have an even number of 1’s. An error occurs during the trans-

mission if the four bits received have an odd number of 1’s, indicating that one bit has

changed in value during transmission. The output of the parity checker, denoted by

 C , will be equal to 1 if an error occurs—that is, if the four bits received have an odd

number of 1’s. Table 3.4 is the truth table for the even-parity checker. From it, we see

that the function C consists of the eight minterms with binary numerical values hav-

ing an odd number of 1’s. The table corresponds to the map of Fig. 3.33 (a), which

(a) 3-bit even parity generator (b) 4-bit even parity checker

x

y

x

y

z

z

P

P

C

 FIGURE 3.34
 Logic diagram of a parity generator and checker

 Table 3.3
 Even-Parity-Generator Truth Table

 Three-Bit Message Parity Bit

 x y z P

 0 0 0 0
 0 0 1 1

 0 1 0 1

 0 1 1 0

 1 0 0 1

 1 0 1 0

 1 1 0 0
 1 1 1 1

108 Chapter 3 Gate-Level Minimization

represents an odd function. The parity checker can be implemented with exclusive-

OR gates:

 C = x { y { z { P

 The logic diagram of the parity checker is shown in Fig. 3.34 (b).

 It is worth noting that the parity generator can be implemented with the circuit of

Fig. 3.34 (b) if the input P is connected to logic 0 and the output is marked with P . This is

because z { 0 = z, causing the value of z to pass through the gate unchanged. The advan-

tage of this strategy is that the same circuit can be used for both parity generation and

checking.

 It is obvious from the foregoing example that parity generation and checking circuits

always have an output function that includes half of the minterms whose numerical values

have either an odd or even number of 1’s. As a consequence, they can be implemented

with exclusive-OR gates. A function with an even number of 1’s is the complement of an

odd function. It is implemented with exclusive-OR gates, except that the gate associated

with the output must be an exclusive-NOR to provide the required complementation.

 3 . 9 H A R D WA R E D E S C R I P T I O N L A N G U A G E

 Manual methods for designing logic circuits are feasible only when the circuit is small.

For anything else (i.e., a practical circuit), designers use computer-based design tools.

Coupled with the correct-by-construction methodology, computer-based design tools

 Table 3.4
 Even-Parity-Checker Truth Table

 Four Bits
Received

 Parity Error
Check

 x y z P C

 0 0 0 0 0
 0 0 0 1 1

 0 0 1 0 1

 0 0 1 1 0

 0 1 0 0 1

 0 1 0 1 0

 0 1 1 0 0

 0 1 1 1 1

 1 0 0 0 1

 1 0 0 1 0

 1 0 1 0 0

 1 0 1 1 1

 1 1 0 0 0

 1 1 0 1 1

 1 1 1 0 1
 1 1 1 1 0

Section 3.9 Hardware Description Language 109

leverage the creativity and the effort of a designer and reduce the risk of producing a

flawed design. Prototype integrated circuits are too expensive and time consuming to

build, so all modern design tools rely on a hardware description language to describe,

design, and test a circuit in software before it is ever manufactured.

 A hardware description language (HDL) is a computer-based language that describes

the hardware of digital systems in a textual form. It resembles an ordinary computer

programming language, such as C, but is specifically oriented to describing hardware

structures and the behavior of logic circuits. It can be used to represent logic diagrams,

truth tables, Boolean expressions, and complex abstractions of the behavior of a digital

system. One way to view an HDL is to observe that it describes a relationship between

signals that are the inputs to a circuit and the signals that are the outputs of the circuit.

For example, an HDL description of an AND gate describes how the logic value of the

gate’s output is determined by the logic values of its inputs.

 As a documentation language, an HDL is used to represent and document digital

systems in a form that can be read by both humans and computers and is suitable as

an exchange language between designers. The language content can be stored,

retrieved, edited, and transmitted easily and processed by computer software in

an efficient manner.

 HDLs are used in several major steps in the design flow of an integrated circuit:

design entry, functional simulation or verification, logic synthesis, timing verification,

and fault simulation.

 Design entry creates an HDL-based description of the functionality that is to be

implemented in hardware. Depending on the HDL, the description can be in a variety

of forms: Boolean logic equations, truth tables, a netlist of interconnected gates, or an

abstract behavioral model. The HDL model may also represent a partition of a larger

circuit into smaller interconnected and interacting functional units.

 Logic simulation displays the behavior of a digital system through the use of a com-

puter. A simulator interprets the HDL description and either produces readable output,

such as a time-ordered sequence of input and output signal values, or displays wave-

forms of the signals. The simulation of a circuit predicts how the hardware will behave

before it is actually fabricated. Simulation detects functional errors in a design without

having to physically create and operate the circuit. Errors that are detected during a

simulation can be corrected by modifying the appropriate HDL statements. The stimu-

lus (i.e., the logic values of the inputs to a circuit) that tests the functionality of the design

is called a test bench. Thus, to simulate a digital system, the design is first described in

an HDL and then verified by simulating the design and checking it with a test bench,

which is also written in the HDL. An alternative and more complex approach relies on

formal mathematical methods to prove that a circuit is functionally correct. We will focus

exclusively on simulation.

 Logic synthesis is the process of deriving a list of physical components and their

interconnections (called a netlist) from the model of a digital system described in an

HDL. The netlist can be used to fabricate an integrated circuit or to lay out a printed

circuit board with the hardware counterparts of the gates in the list. Logic synthesis is

similar to compiling a program in a conventional high-level language. The difference is

110 Chapter 3 Gate-Level Minimization

that, instead of producing an object code, logic synthesis produces a database describing

the elements and structure of a circuit. The database specifies how to fabricate a physi-

cal integrated circuit that implements in silicon the functionality described by statements

made in an HDL. Logic synthesis is based on formal exact procedures that implement

digital circuits and addresses that part of a digital design which can be automated with

computer software. The design of today’s large, complex circuits is made possible by

logic synthesis software.

 Timing verification confirms that the fabricated, integrated circuit will operate at a

specified speed. Because each logic gate in a circuit has a propagation delay, a signal

transition at the input of a circuit cannot immediately cause a change in the logic value

of the output of a circuit. Propagation delays ultimately limit the speed at which

a circuit can operate. Timing verification checks each signal path to verify that it is

not compromised by propagation delay. This step is done after logic synthesis specifies

the actual devices that will compose a circuit and before the circuit is released for

production.

 In VLSI circuit design, fault simulation compares the behavior of an ideal circuit with

the behavior of a circuit that contains a process-induced flaw. Dust and other particu-

lates in the atmosphere of the clean room can cause a circuit to be fabricated with a

fault. A circuit with a fault will not exhibit the same functionality as a fault-free circuit.

Fault simulation is used to identify input stimuli that can be used to reveal the difference

between the faulty circuit and the fault-free circuit. These test patterns will be used to

test fabricated devices to ensure that only good devices are shipped to the customer.

Test generation and fault simulation may occur at different steps in the design process,

but they are always done before production in order to avoid the disaster of producing

a circuit whose internal logic cannot be tested.

 Companies that design integrated circuits use proprietary and public HDLs. In the

public domain, there are two standard HDLs that are supported by the IEEE: VHDL

and Verilog. VHDL is a Department of Defense–mandated language. (The V in VHDL

stands for the first letter in VHSIC, an acronym for very high-speed integrated circuit.)

Verilog began as a proprietary HDL of Cadence Design Systems, but Cadence trans-

ferred control of Verilog to a consortium of companies and universities known as Open

Verilog International (OVI) as a step leading to its adoption as an IEEE standard.

VHDL is more difficult to learn than Verilog. Because Verilog is an easier language than

VHDL to describe, learn, and use, we have chosen it for this book. However, the Verilog

HDL descriptions listed throughout the book are not just about Verilog, but also serve

to introduce a design methodology based on the concept of computer-aided modeling

of digital systems by means of a typical hardware description language. Our emphasis

will be on the modeling, verification, and synthesis (both manual and automated) of

Verilog models of circuits having specified behavior. The Verilog HDL was initially

approved as a standard HDL in 1995; revised and enhanced versions of the language

were approved in 2001 and 2005. We will address only those features of Verilog, includ-

ing the latest standard, that support our discussion of HDL-based design methodology

for integrated circuits.

Section 3.9 Hardware Description Language 111

 Module Declaration

 The language reference manual for the Verilog HDL presents a syntax that describes

precisely the constructs that can be used in the language. In particular, a Verilog

model is composed of text using keywords, of which there are about 100. Keywords

are predefined lowercase identifiers that define the language constructs. Examples of

keywords are module, endmodule, input, output, wire, and, or, and not. For clarity,

keywords will be displayed in boldface in the text in all examples of code and wher-

ever it is appropriate to call attention to their use. Any text between two forward

slashes (//) and the end of the line is interpreted as a comment and will have no effect

on a simulation using the model. Multiline comments begin with / * and terminate

with * /. Blank spaces are ignored, but they may not appear within the text of a key-

word, a user-specified identifier, an operator, or the representation of a number. Ver-

ilog is case sensitive, which means that uppercase and lowercase letters are

distinguishable (e.g., not is not the same as NOT). The term module refers to the text

enclosed by the keyword pair module . . . endmodule. A module is the fundamental

descriptive unit in the Verilog language. It is declared by the keyword module and

must always be terminated by the keyword endmodule.

 Combinational logic can be described by a schematic connection of gates, by a set of

Boolean equations, or by a truth table. Each type of description can be developed in

Verilog. We will demonstrate each style, beginning with a simple example of a Verilog

gate-level description to illustrate some aspects of the language.

 The HDL description of the circuit of Fig. 3.35 is shown in HDL Example 3.1 . The

first line of text is a comment (optional) providing useful information to the reader. The

second line begins with the keyword module and starts the declaration (description) of

the module; the last line completes the declaration with the keyword endmodule. The

keyword module is followed by a name and a list of ports. The name (Simple_Circuit in

this example) is an identifier. Identifiers are names given to modules, variables (e.g., a

signal), and other elements of the language so that they can be referenced in the design.

In general, we choose meaningful names for modules. Identifiers are composed of alpha-

numeric characters and the underscore (_), and are case sensitive. Identifiers must start

with an alphabetic character or an underscore, but they cannot start with a number.

A w1

B

C

D

E

G1

G2

G3

 FIGURE 3.35
 Circuit to demonstrate an HDL

112 Chapter 3 Gate-Level Minimization

 The port list of a module is the interface between the module and its environment.

In this example, the ports are the inputs and outputs of the circuit. The logic values of

the inputs to a circuit are determined by the environment; the logic values of the outputs

are determined within the circuit and result from the action of the inputs on the circuit.

The port list is enclosed in parentheses, and commas are used to separate elements of

the list. The statement is terminated with a semicolon (;). In our examples, all keywords

(which must be in lowercase) are printed in bold for clarity, but that is not a requirement

of the language. Next, the keywords input and output specify which of the ports are

inputs and which are outputs. Internal connections are declared as wires. The circuit in

this example has one internal connection, at terminal w1 , and is declared with the key-

word wire. The structure of the circuit is specified by a list of (predefined) primitive

gates, each identified by a descriptive keyword (and, not, or). The elements of the list

are referred to as instantiations of a gate, each of which is referred to as a gate instance .

Each gate instantiation consists of an optional name (such as G1, G2 , etc.) followed by

the gate output and inputs separated by commas and enclosed within parentheses. The

output of a primitive gate is always listed first, followed by the inputs. For example, the

OR gate of the schematic is represented by the or primitive, is named G3 , and has out-

put D and inputs w1 and E . (Note : The output of a primitive must be listed first, but the

inputs and outputs of a module may be listed in any order.) The module description ends

with the keyword endmodule. Each statement must be terminated with a semicolon, but

there is no semicolon after endmodule.
 It is important to understand the distinction between the terms declaration and instan-

tiation . A Verilog module is declared. Its declaration specifies the input–output behavior

of the hardware that it represents. Predefined primitives are not declared, because their

definition is specified by the language and is not subject to change by the user. Primitives

are used (i.e., instantiated), just as gates are used to populate a printed circuit board.

We’ll see that once a module has been declared, it may be used (instantiated) within a

design. Note that Simple_Circuit is not a computational model like those developed in

an ordinary programming language: The sequential ordering of the statements instanti-

ating gates in the model has no significance and does not specify a sequence of compu-

tations. A Verilog model is a descriptive model. Simple_Circuit describes what primitives

form a circuit and how they are connected. The input–output behavior of the circuit is

 HDL Example 3.1 (Combinational Logic Modeled with Primitives)

// Verilog model of circuit of Figure 3.35. IEEE 1364–1995 Syntax

module Simple_Circuit (A, B, C, D, E);
output D, E;
input A, B, C;
wire w1;

and G1 (w1, A, B); // Optional gate instance name
not G2 (E, C);
or G3 (D, w1, E);

endmodule

Section 3.9 Hardware Description Language 113

implicitly specified by the description because the behavior of each logic gate is defined.

Thus, an HDL-based model can be used to simulate the circuit that it represents.

 Gate Delays

 All physical circuits exhibit a propagation delay between the transition of an input and a

resulting transition of an output. When an HDL model of a circuit is simulated, it is some-

times necessary to specify the amount of delay from the input to the output of its gates.

In Verilog, the propagation delay of a gate is specified in terms of time units and by the

symbol #. The numbers associated with time delays in Verilog are dimensionless. The

association of a time unit with physical time is made with the � timescale compiler direc-

tive. (Compiler directives start with the (�) back quote, or grave accent, symbol.) Such a

directive is specified before the declaration of a module and applies to all numerical

values of time in the code that follows. An example of a timescale directive is

� timescale 1ns/100ps

 The first number specifies the unit of measurement for time delays. The second number

specifies the precision for which the delays are rounded off, in this case to 0.1 ns. If no

timescale is specified, a simulator may display dimensionless values or default to a certain

time unit, usually 1 ns (=10-9 s). Our examples will use only the default time unit.
 HDL Example 3.2 repeats the description of the simple circuit of Example 3.1 , but

with propagation delays specified for each gate. The and, or , and not gates have a time

delay of 30, 20, and 10 ns, respectively. If the circuit is simulated and the inputs change

from A , B , C = 0 to A , B , C = 1, the outputs change as shown in Table 3.5 (calculated

by hand or generated by a simulator). The output of the inverter at E changes from 1 to

0 after a 10-ns delay. The output of the AND gate at w1 changes from 0 to 1 after a 30-ns

delay. The output of the OR gate at D changes from 1 to 0 at t = 30 ns and then changes

back to 1 at t = 50 ns. In both cases, the change in the output of the OR gate results

from a change in its inputs 20 ns earlier. It is clear from this result that although output

 D eventually returns to a final value of 1 after the input changes, the gate delays produce

a negative spike that lasts 20 ns before the final value is reached.

 Table 3.5
 Output of Gates after Delay

 Time Units

(ns)

 Input Output

 ABC E w1 D

 Initial — 0 0 0 1 0 1
 Change — 1 1 1 1 0 1

 10 1 1 1 0 0 1

 20 1 1 1 0 0 1

 30 1 1 1 0 1 0

 40 1 1 1 0 1 0
 50 1 1 1 0 1 1

114 Chapter 3 Gate-Level Minimization

 In order to simulate a circuit with an HDL, it is necessary to apply inputs to the circuit

so that the simulator will generate an output response. An HDL description that provides

the stimulus to a design is called a test bench. The writing of test benches is explained in

more detail at the end of Section 4.12. Here, we demonstrate the procedure with a simple

example without dwelling on too many details. HDL Example 3.3 shows a test bench for

simulating the circuit with delay. (Note the distinguishing name Simple_Circuit_prop_
delay .) In its simplest form, a test bench is a module containing a signal generator and

an instantiation of the model that is to be verified. Note that the test bench (t_Simple_
Circuit_prop_delay) has no input or output ports, because it does not interact with its

environment. In general, we prefer to name the test bench with the prefix t_ concatenated

with the name of the module that is to be tested by the test bench, but that choice is left

to the designer. Within the test bench, the inputs to the circuit are declared with keyword

 reg and the outputs are declared with the keyword wire . The module Simple_Circuit_
prop_delay is instantiated with the instance name M1. Every instantiation of a module

must include a unique instance name. Note that using a test bench is similar to testing

actual hardware by attaching signal generators to the inputs of a circuit and attaching

 HDL Example 3.2 (Gate-Level Model with Propagation Delays)

// Verilog model of simple circuit with propagation delay

module Simple_Circuit_prop_delay (A, B, C, D, E);
 output D, E;
input A, B, C;
wire w1;

and #(30) G1 (w1, A, B);
not #(10) G2 (E, C);
or #(20) G3 (D, w1, E);

endmodule

 HDL Example 3.3 (Test Bench)

// Test bench for Simple_Circuit_prop_delay

module t_Simple_Circuit_prop_delay;
wire D, E;
reg A, B, C;

Simple_Circuit_prop_delay M1 (A, B, C, D, E); // Instance name required

initial
begin

A = 1'b0; B = 1'b0; C = 1'b0;
#100 A = 1'b1; B = 1'b1; C = 1'b1;

end

initial #200 $finish;
endmodule

Section 3.9 Hardware Description Language 115

probes (wires) to the outputs of the circuit. (The interaction between the signal genera-

tors of the stimulus module and the instantiated circuit module is illustrated in Fig. 4.36 .)

 Hardware signal generators are not used to verify an HDL model: The entire simula-

tion exercise is done with software models executing on a digital computer under the

direction of an HDL simulator. The waveforms of the input signals are abstractly modeled

(generated) by Verilog statements specifying waveform values and transitions. The initial
 keyword is used with a set of statements that begin executing when the simulation is ini-

tialized; the signal activity associated with initial terminates execution when the last state-

ment has finished executing. The initial statements are commonly used to describe

waveforms in a test bench. The set of statements to be executed is called a block statement
and consists of several statements enclosed by the keywords begin and end. The action

specified by the statements begins when the simulation is launched, and the statements

are executed in sequence, left to right, from top to bottom, by a simulator in order to

provide the input to the circuit. Initially, A, B, C = 0. (A, B, and C are each set to 1�b0,

which signifies one binary digit with a value of 0.) After 100 ns, the inputs change to

 A, B, C = 1. After another 100 ns, the simulation terminates at time 200 ns. A second

 initial statement uses the $finish system task to specify termination of the simulation. If a

statement is preceded by a delay value (e.g., #100), the simulator postpones executing the

statement until the specified time delay has elapsed. The timing diagram of waveforms

that result from the simulation is shown in Figure 3.36. The total simulation generates

waveforms over an interval of 200 ns. The inputs A, B, and C change from 0 to 1 after 100

ns. Output E is unknown for the first 10 ns (denoted by shading), and output D is unknown

for the first 30 ns. Output E goes from 1 to 0 at 110 ns. Output D goes from 1 to 0 at 130

ns and back to 1 at 150 ns, just as we predicted in Table 3.5 .

 Boolean Expressions

 Boolean equations describing combinational logic are specified in Verilog with a con-

tinuous assignment statement consisting of the keyword assign followed by a Boolean

expression. To distinguish arithmetic operators from logical operators, Verilog uses the

symbols (&), (/), and (&) for AND, OR, and NOT (complement), respectively. Thus, to

Name
0.0 ns 58.0 ns 116.0 ns 174.0 ns

A

B

C

D

E

 FIGURE 3.36
 Simulation output of HDL Example 3.3

116 Chapter 3 Gate-Level Minimization

describe the simple circuit of Fig. 3.35 with a Boolean expression, we use the statement

 assign D = (A && B) � � (!C);

 HDL Example 3.4 describes a circuit that is specified with the following two Boolean

expressions:

 E = A + BC + B�D

 F = B�C + BC�D�

 The equations specify how the logic values E and F are determined by the values of

 A, B, C, and D .

 HDL Example 3.4 (Combinational Logic Modeled with Boolean Equations)

// Verilog model: Circuit with Boolean expressions

module Circuit_Boolean_CA (E, F, A, B, C, D);
output E, F;
input A, B, C, D;

assign E � A || (B && C) || ((!B) && D);
assign F � ((!B) && C) || (B && (!C) && (!D));

endmodule

 The circuit has two outputs E and F and four inputs A, B, C, and D . The two assign

statements describe the Boolean equations. The values of E and F during simulation are

determined dynamically by the values of A , B , C , and D . The simulator detects when the

test bench changes a value of one or more of the inputs. When this happens, the simula-

tor updates the values of E and F . The continuous assignment mechanism is so named

because the relationship between the assigned value and the variables is permanent. The

mechanism acts just like combinational logic, has a gate-level equivalent circuit, and is

referred to as implicit combinational logic .

 We have shown that a digital circuit can be described with HDL statements, just as

it can be drawn in a circuit diagram or specified with a Boolean expression. A third

alternative is to describe combinational logic with a truth table.

 User-Defined Primitives

 The logic gates used in Verilog descriptions with keywords and, or, etc., are defined by

the system and are referred to as system primitives. (Caution: Other languages may use
these words differently .) The user can create additional primitives by defining them in

tabular form. These types of circuits are referred to as user-defined primitives (UDPs).

One way of specifying a digital circuit in tabular form is by means of a truth table. UDP

descriptions do not use the keyword pair module . . . endmodule. Instead, they are

declared with the keyword pair primitive . . . endprimitive. The best way to demonstrate

a UDP declaration is by means of an example.

Section 3.9 Hardware Description Language 117

 HDL Example 3.5 defines a UDP with a truth table. It proceeds according to the

following general rules:

 • It is declared with the keyword primitive , followed by a name and port list.
 • There can be only one output, and it must be listed fi rst in the port list and declared

with keyword output .
 • There can be any number of inputs. The order in which they are listed in the input

declaration must conform to the order in which they are given values in the table that
follows.

 • The truth table is enclosed within the keywords table and endtable.
 • The values of the inputs are listed in order, ending with a colon (:). The output is al-

ways the last entry in a row and is followed by a semicolon (;).
 • The declaration of a UDP ends with the keyword endprimitive.

 HDL Example 3.5 (User-Defined Primitive)

// Verilog model: User-defined Primitive

primitive UDP_02467 (D, A, B, C);
output D;
input A, B, C;

//Truth table for D 5 f (A, B, C) 5 �(0, 2, 4, 6, 7);
 table
// A B C : D // Column header comment

0 0 0 : 1;
0 0 1 : 0;
0 1 0 : 1;
0 1 1 : 0;
1 0 0 : 1;
1 0 1 : 0;
1 1 0 : 1;
1 1 1 : 1;

 endtable
endprimitive

// Instantiate primitive

// Verilog model: Circuit instantiation of Circuit_UDP_02467

module Circuit_with_UDP_02467 (e, f, a, b, c, d);
output e, f;
input a, b, c, d

 UDP_02467 (e, a, b, c);
and (f, e, d); // Option gate instance name omitted

endmodule

118 Chapter 3 Gate-Level Minimization

 Note that the variables listed on top of the table are part of a comment and are shown

only for clarity. The system recognizes the variables by the order in which they are listed

in the input declaration. A user-defined primitive can be instantiated in the construction

of other modules (digital circuits), just as the system primitives are used. For example,

the declaration

 Circuit _with _UDP_ 02467 (E, F, A, B, C, D);

 will produce a circuit that implements the hardware shown in Figure 3.37 .

 Although Verilog HDL uses this kind of description for UDPs only, other HDLs and

computer-aided design (CAD) systems use other procedures to specify digital circuits

in tabular form. The tables can be processed by CAD software to derive an efficient gate

structure of the design. None of Verilog’s predefined primitives describes sequential

logic. The model of a sequential UDP requires that its output be declared as a reg data

type, and that a column be added to the truth table to describe the next state. So the

columns are organized as inputs : state : next state.

 In this section, we introduced the Verilog HDL and presented simple examples to

illustrate alternatives for modeling combinational logic. A more detailed presentation

of Verilog HDL can be found in the next chapter. The reader familiar with combina-

tional circuits can go directly to Section 4.12 to continue with this subject.

 P R O B L E M S

 (Answers to problems marked with * appear at the end of the text.)

 3.1* Simplify the following Boolean functions, using three-variable maps:

 (a) F1x, y, z2 = �10, 2, 4, 52 (b) F1x, y, z2 = �10, 2, 4, 5, 62

 (c) F1x, y, z2 = �10, 1, 2, 3, 52 (d) F1x, y, z2 = �11, 2, 3, 72

 3.2 Simplify the following Boolean functions, using three-variable maps:

 (a) * F (x, y, z) = �(0, 1, 5, 7) (b) * F (x, y, z) = �(1, 2, 3, 6, 7)

 (c) F1x, y, z2 = �12, 3, 4, 52 (d) F1x, y, z2 = �11, 2, 3, 5, 6, 72

 (e) F1x, y, z2 = �10, 2, 4, 62 (f) F1x, y, z2 = �13, 4, 5, 6, 72

 3.3* Simplify the following Boolean expressions, using three-variable maps:

 (a) * xy + x� y� z� + x� yz� (b) * x� y� + yz + x�yz�
 (c) * F1x, y, z2 = x�y + yz� + y�z� (d) F1x, y, z2 = x�yz + xy�z� + xy�z

A

E

F

B

C

D

UDP_02467

 FIGURE 3.37
 Schematic for Circuit with_UDP_02467

Problems 119

 3.4 Simplify the following Boolean functions, using Karnaugh maps:

 (a) * F (x, y, z) = �(2, 3, 6, 7) (b) * F (A, B, C, D) = �(4, 6, 7, 15)

 (c) * F (A, B, C, D) = �(3, 7, 11, 13, 14, 15) (d) * F (w, x, y, z) = �(2, 3, 12, 13, 14, 15)

 (e) F (w, x, y, z) = � (11, 12, 13, 14, 15) (f) F (w, x, y, z) = �(8, 10, 12, 13, 14)

 3.5 Simplify the following Boolean functions, using four-variable maps:

 (a) * F (w, x, y, z) = � (1, 4, 5, 6, 12, 14, 15)

 (b) F (A, B, C, D) = �(2, 3, 6, 7, 12, 13, 14)

 (c) F (w, x, y, z) = � (1, 3, 4, 5, 6, 7, 9, 11, 13, 15)

 (d) * F (A, B, C, D) = � (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)

 3.6 Simplify the following Boolean expressions, using four-variable maps:

 (a) * A�B� C� D� + AC�D� + B� CD� + A� BCD + BC� D

 (b) * x�z + w� xy� + w(x�y + xy�)

 (c) A�B�C�D + AB�D + A�BC� + ABCD + AB�C

 (d) A�B�C�D� + BC�D + A�C�D + A�BCD + ACD�

 3.7 Simplify the following Boolean expressions, using four-variable maps:

 (a) * w� z + xz + x� y + wx� z

 (b) AD� + B�C�D + BCD� + BC�D

 (c) * AB� C + B� C�D� + BCD + ACD� + A�B� C + A� BC�D

 (d) wxy + xz + wx�z + w�x

 3.8 Find the minterms of the following Boolean expressions by first plotting each function in

a map:

 (a) * xy + yz + xy� z (b) * C�D + ABC� + ABD� + A�B�D

 (c) wyz + w�x� + wxz� (d) A�B + A�CD + B�CD + BC�D�

 3.9 Find all the prime implicants for the following Boolean functions, and determine which

are essential:

 (a) * F (w, x, y, z) = � (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)

 (b) * F (A, B, C, D) = � (0, 2, 3, 5, 7, 8, 10, 11, 14, 15)

 (c) F1A, B, C, D2 = � 12, 3, 4, 5, 6, 7, 9, 11, 12, 132

 (d) F1w, x, y, z2 = � 11, 3, 6, 7, 8, 9, 12, 13, 14, 152

 (e) F1A, B, C, D2 = � 10, 1, 2, 5, 7, 8, 9, 10, 13, 152

 (f) F1w, x, y, z2 = � 10, 1, 2, 5, 7, 8, 10, 152

 3.10 Simplify the following Boolean functions by first finding the essential prime implicants:

 (a) F1w, x, y, z2 = � 10, 2, 5, 7, 8, 10, 12, 13, 14, 152

 (b) F (A, B, C, D) = �(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)

 (c) * F (A, B, C, D) = �(1, 3, 4, 5, 10, 11, 12, 13, 14, 15)

 (d) F1w, x, y, z2 = � 10, 1, 4, 5, 6, 7, 9, 11, 14, 152

 (e) F1A, B, C, D2 = � 10, 1, 3, 7, 8, 9, 10, 13, 152

 (f) F1w, x, y, z2 = � 10, 1, 2, 4, 5, 6, 7, 10, 152

 3.11 Convert the following Boolean function from a sum-of-products form to a simplified

product-of-sums form.

 F1x, y, z2 = � 10, 1, 2, 5, 8, 10, 132

120 Chapter 3 Gate-Level Minimization

 3.12 Simplify the following Boolean functions:

 (a) * F1A, B, C, D2 = �11, 3, 5, 7, 13, 152

 (b) F1A, B, C, D2 = �11, 3, 6, 9, 11, 12, 142

 3.13 Simplify the following expressions to (1) sum-of-products and (2) products-of-sums:

 (a) * x� z� + y� z� + yz� + xy

 (b) ACD� + C�D + AB� + ABCD

 (c) 1A� + B + D�2 1A� + B� + C�2 1A� + B� + C2 1B� + C + D�2
 (d) BCD� + ABC� + ACD

 3.14 Give three possible ways to express the following Boolean function with eight or fewer literals:

 F = A�BC�D + AB�CD + A�B�C� + ACD�

 3.15 Simplify the following Boolean function F , together with the don’t-care conditions d , and

then express the simplified function in sum-of-minterms form:

 (a) F1x, y, z2 = �10, 1, 4, 5, 62 (b) * F (A, B, C, D) = � (0, 6, 8, 13, 14)

 d1x, y, z2 = �12, 3, 72 d (A, B, C, D) = � (2, 4, 10)

 (c) F1A, B, C, D2 = �15, 6, 7, 12, 14, 15, 2 (d) F1A, B, C, D2 = �14, 12, 7, 2, 10,2

 d1A, B, C, D2 = �13, 9, 11, 152 d1A, B, C, D2 = �10, 6, 82

 3.16 Simplify the following functions, and implement them with two-level NAND gate circuits:

 (a) F1A, B, C, D2 = AC�D� + A�C + ABC + AB�C + A�C�D�
 (b) F1A, B, C, D2 = A�B�C�D + CD + AC�D

 (c) F1A, B, C2 = 1A� + C� + D�2 1A� + C�2 1C� + D�2
 (d) F1A, B, C, D2 = A� + B + D� + B�C

 3.17* Draw a NAND logic diagram that implements the complement of the following function:

 F1A, B, C, D2 = � 10, 1, 2, 3, 6, 10, 11, 142

 3.18 Draw a logic diagram using only two-input NOR gates to implement the following function:

 F1A, B, C, D2 = (A { B)'(C { D)

 3.19 Simplify the following functions, and implement them with two-level NOR gate circuits:

 (a) * F = wx� + y� z� + w� yz�

 (b) F1w, x, y, z2 = � 10, 3, 12, 152

 (c) F (x, y, z) = [(x + y)(x = z)]�

 3.20 Draw the multiple-level NOR circuit for the following expression:

 CD1B + C2A + 1BC� + DE�2

 3.21 Draw the multiple-level NAND circuit for the following expression:

 w1x + y + z2 + xyz

 3.22 Convert the logic diagram of the circuit shown in Fig. 4.4 into a multiple-level NAND circuit.

 3.23 Implement the following Boolean function F , together with the don’t-care conditions d ,

using no more than two NOR gates:

 F1A, B, C, D2 = � 12, 4, 10, 12, 14, 2

d1A, B, C, D2 = � 10, 1, 5, 82

 Assume that both the normal and complement inputs are available.

Problems 121

 3.24 Implement the following Boolean function F , using the two-level forms of logic (a) NAND-

AND, (b) AND-NOR, (c) OR-NAND, and (d) NOR-OR:

 F1A, B, C, D2 = � 10, 4, 8, 9, 10, 11, 12, 142

 3.25 List the eight degenerate two-level forms and show that they reduce to a single operation.

Explain how the degenerate two-level forms can be used to extend the number of inputs

to a gate.

 3.26 With the use of maps, find the simplest sum-of-products form of the function F = fg , where

 f = abc� + c�d + a�cd� + b�cz�

 and

 g = 1a + b + c� + d�2 1b� + c� + d2 1a� + c + d�2

 3.27 Show that the dual of the exclusive-OR is also its complement.

 3.28 Derive the circuits for a three-bit parity generator and four-bit parity checker using an odd

parity bit.

 3.29 Implement the following four Boolean expressions with three half adders:

 D = A { B { C
E = A� BC + AB� C
F = ABC� + (A� + B�) C
G = ABC

 3.30* Implement the following Boolean expression with exclusive-OR and AND gates:

 F = AB� CD� + A� BC D� + AB� C� D + A� BC� D

 3.31 Write a Verilog gate-level description of the circuit shown in

 (a) Fig. 3.20 (a) (b) Fig. 3.20 (b) (c) Fig. 3.21 (a)

 (d) Fig. 3.21 (b) (e) Fig. 3.24 (f) Fig. 3.25

 3.32 Using continuous assignment statements, write a Verilog description of the circuit

shown in

 (a) Fig. 3.20 (a) (b) Fig. 3.20 (b) (c) Fig. 3.21 (a)

 (d) Fig. 3.21 (b) (e) Fig. 3.24 (f) Fig. 3.25

 3.33 The exclusive-OR circuit of Fig. 3.30 (a) has gates with a delay of 3 ns for an inverter, a 6 ns

delay for an AND gate, and a 8 ns delay for an OR gate. The input of the circuit goes from

 xy = 00 to xy = 01.

 (a) Determine the signals at the output of each gate from t = 0 to t = 50 ns.

 (b) Write a Verilog gate-level description of the circuit, including the delays.

 (c) Write a stimulus module (i.e., a test bench similar to HDL Example 3.3), and simulate

the circuit to verify the answer in part (a).

 3.34 Using continuous assignments, write a Verilog description of the circuit specified by the

following Boolean functions:

 Out_1 = 1A + B�2C�1C + D2

Out_2 = 1C�D + BCD + CD�2 1A� + B2

Out_3 = 1AB + C2D + B�C

 Write a test bench and simulate the circuit’s behavior.

122 Chapter 3 Gate-Level Minimization

 3.35* Find the syntax errors in the following declarations (note that names for primitive gates

are optional):

 module Exmpl-3(A, B, C, D, F) // Line 1
 inputs A, B, C, Output D, F, // Line 2
 output B // Line 3
 and g1(A, B, D); // Line 4
 not (D, A, C), // Line 5
 OR (F, B; C); // Line 6
 endmodule; // Line 7

 3.36 Draw the logic diagram of the digital circuit specified by the following Verilog description:

 (a) module Circuit_A (A, B, C, D, F);
 input A, B, C, D;
 output F;
 wire w, x, y, z, a, d;
 or (x, B, C, d);
 and (y, a ,C);
 and (w, z ,B);
 and (z, y, A);
 or (F, x, w);
 not (a, A);
 not (d, D);
 endmodule

 (b) module Circuit_B (F1, F2, F3, A0, A1, B0, B1);
 output F1, F2, F3;
 input A0, A1, B0, B1;
 nor (F1, F2, F3);
 or (F2, w1, w2, w3);
 and (F3, w4, w5);
 and (w1, w6, B1);
 or (w2, w6, w7, B0);
 and (w3, w7, B0, B1);
 not (w6, A1);
 not (w7, A0);
 xor (w4, A1, B1);
 xnor (w5, A0, B0);
 endmodule

 (c) module Circuit_C (y1, y2, y3, a, b);
 output y1, y2, y3;
 input a, b;

 assign y1 = a || b;
 and (y2, a, b);
 assign y3 = a && b;
 endmodule

References 123

 3.39 Using primitive gates, write a Verilog model of a circuit that will produce two outputs,

s and c, equal to the sum and carry produced by adding two binary input bits a and b (e.g.,

s = 1 and c = 0 if a = 0 and b = 1). (Hint: Begin by developing a truth table for s and c.)

 R E F E R E N C E S

 1. B hasker , J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

 2. C iletti , M. D. 1999. Modeling, Synthesis and Rapid Prototyping with the Verilog HDL.

Upper Saddle River, NJ: Prentice Hall.

 3. H ill , F. J., and G. R. P eterson . 1981. Introduction to Switching Theory and Logical Design,

3rd ed. New York: John Wiley.

 4. IEEE Standard Hardware Description Language Based on the Verilog Hardware Descrip-
tion Language (IEEE Std. 1364-1995). 1995. New York: The Institute of Electrical and

Electronics Engineers.

 5. K arnaugh , M. A Map Method for Synthesis of Combinational Logic Circuits. Transactions
of AIEE, Communication and Electronics. 72, part I (Nov. 1953): 593–99.

 6. K ohavi , Z. 1978. Switching and Automata Theory, 2nd ed. New York: McGraw-Hill.

A

B

t, ns

t, ns

10 20 30 40 50 60

10 20 30 40 50 60 70 80

70 80

C

t, ns
10 20 30 40 50 60 70 80

D

t, ns
10 20 30 40 50 60 70 80

 FIGURE P3.38
Stimulus waveforms for Problem 3.38

 3.37 A majority logic function is a Boolean function that is equal to 1 if the majority of the

variables are equal to 1, equal to 0 otherwise.

 (a) Write a truth table for a four-bit majority function.

 (b) Write a Verilog user-defined primitive for a four-bit majority function.

 3.38 Simulate the behavior of Circuit_with_UDP_02467 , using the stimulus waveforms shown

in Fig. P3.38 .

124 Chapter 3 Gate-Level Minimization

 7. M ano , M. M. and C. R. K ime . 2004. Logic and Computer Design Fundamentals, 3rd ed.

Upper Saddle River, NJ: Prentice Hall.

 8. M c C luskey , E. J. 1986. Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall.

 9. P alnitkar , S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,

CA: SunSoft Press (a Prentice Hall title).

 WEB SEARCH TOP ICS

 Boolean minimization

 Karnaugh map

 Wired logic

 Emitter-coupled logic

 Open-collector logic

 Quine McCluskey method

 Expresso software

 Consensus theorem

 Don’t-care conditions

125

 Chapter 4

 Combinational Logic

 4 . 1 I N T R O D U C T I O N

 Logic circuits for digital systems may be combinational or sequential. A combinational

circuit consists of logic gates whose outputs at any time are determined from only the

present combination of inputs. A combinational circuit performs an operation that can

be specified logically by a set of Boolean functions. In contrast, sequential circuits

employ storage elements in addition to logic gates. Their outputs are a function of the

inputs and the state of the storage elements. Because the state of the storage elements

is a function of previous inputs, the outputs of a sequential circuit depend not only on

present values of inputs, but also on past inputs, and the circuit behavior must be speci-

fied by a time sequence of inputs and internal states. Sequential circuits are the building

blocks of digital systems and are discussed in Chapters 5 and 8 .

 4 . 2 C O M B I N AT I O N A L C I R C U I T S

 A combinational circuit consists of an interconnection of logic gates. Combinational

logic gates react to the values of the signals at their inputs and produce the value of the

output signal, transforming binary information from the given input data to a required

output data. A block diagram of a combinational circuit is shown in Fig. 4.1 . The n input

binary variables come from an external source; the m output variables are produced by

the internal combinational logic circuit and go to an external destination. Each input

and output variable exists physically as an analog signal whose values are interpreted

to be a binary signal that represents logic 1 and logic 0. (Note : Logic simulators show

only 0’s and 1’s, not the actual analog signals.) In many applications, the source and

126 Chapter 4 Combinational Logic

destination are storage registers. If the registers are included with the combinational

gates, then the total circuit must be considered to be a sequential circuit.

 For n input variables, there are 2n possible combinations of the binary inputs. For each

possible input combination, there is one possible value for each output variable. Thus, a

combinational circuit can be specified with a truth table that lists the output values for

each combination of input variables. A combinational circuit also can be described by

 m Boolean functions, one for each output variable. Each output function is expressed

in terms of the n input variables.

 In Chapter 1 , we learned about binary numbers and binary codes that represent discrete

quantities of information. The binary variables are represented physically by electric volt-

ages or some other type of signal. The signals can be manipulated in digital logic gates to

perform required functions. In Chapter 2 , we introduced Boolean algebra as a way to

express logic functions algebraically. In Chapter 3 , we learned how to simplify Boolean

functions to achieve economical (simpler) gate implementations. The purpose of the cur-

rent chapter is to use the knowledge acquired in previous chapters to formulate systematic

analysis and design procedures for combinational circuits. The solution of some typical

examples will provide a useful catalog of elementary functions that are important for the

understanding of digital systems. We’ll address three tasks: (1) Analyze the behavior of a

given logic circuit, (2) synthesize a circuit that will have a given behavior, and (3) write

hardware description language (HDL) models for some common circuits.

 There are several combinational circuits that are employed extensively in the design

of digital systems. These circuits are available in integrated circuits and are classified as

standard components. They perform specific digital functions commonly needed in the

design of digital systems. In this chapter, we introduce the most important standard

combinational circuits, such as adders, subtractors, comparators, decoders, encoders, and

multiplexers. These components are available in integrated circuits as medium-scale

integration (MSI) circuits. They are also used as standard cells in complex very large-

scale integrated (VLSI) circuits such as application-specific integrated circuits (ASICs).

The standard cell functions are interconnected within the VLSI circuit in the same way

that they are used in multiple-IC MSI design.

 4 . 3 A N A LY S I S P R O C E D U R E

 The analysis of a combinational circuit requires that we determine the function that the

circuit implements. This task starts with a given logic diagram and culminates with a set

of Boolean functions, a truth table, or, possibly, an explanation of the circuit operation.

Combinational
circuit���

���

n inputs m outputs

 FIGURE 4.1
 Block diagram of combinational circuit

Section 4.3 Analysis Procedure 127

If the logic diagram to be analyzed is accompanied by a function name or an explanation

of what it is assumed to accomplish, then the analysis problem reduces to a verification

of the stated function. The analysis can be performed manually by finding the Boolean

functions or truth table or by using a computer simulation program.

 The first step in the analysis is to make sure that the given circuit is combinational

and not sequential. The diagram of a combinational circuit has logic gates with no
 feedback paths or memory elements . A feedback path is a connection from the output

of one gate to the input of a second gate whose output forms part of the input to the

first gate. Feedback paths in a digital circuit define a sequential circuit and must be

analyzed by special methods and will not be considered here.

 Once the logic diagram is verified to be that of a combinational circuit, one can proceed

to obtain the output Boolean functions or the truth table. If the function of the circuit is

under investigation, then it is necessary to interpret the operation of the circuit from the

derived Boolean functions or truth table. The success of such an investigation is enhanced

if one has previous experience and familiarity with a wide variety of digital circuits.

 To obtain the output Boolean functions from a logic diagram, we proceed as follows:

 1. Label all gate outputs that are a function of input variables with arbitrary symbols—

but with meaningful names. Determine the Boolean functions for each gate output.

 2. Label the gates that are a function of input variables and previously labeled gates

with other arbitrary symbols. Find the Boolean functions for these gates.

 3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

 4. By repeated substitution of previously defined functions, obtain the output

Boolean functions in terms of input variables.

 The analysis of the combinational circuit of Fig. 4.2 illustrates the proposed proce-

dure. We note that the circuit has three binary inputs— A , B , and C —and two binary

outputs— F1 and F2. The outputs of various gates are labeled with intermediate symbols.

The outputs of gates that are a function only of input variables are T1 and T2. Output

 F2 can easily be derived from the input variables. The Boolean functions for these three

outputs are

 F2 = AB + AC + BC

 T1 = A + B + C

 T2 = ABC

 Next, we consider outputs of gates that are a function of already defined symbols:

 T3 = F�2T1

F1 = T3 + T2

 To obtain F1 as a function of A , B , and C , we form a series of substitutions as follows:

F1 = T3 + T2 = F�2T1 + ABC = 1AB + AC + BC2�1A + B + C2 + ABC
= 1A� + B�2 1A� + C�2 1B� + C�2 1A + B + C2 + ABC
= 1A� + B�C�2 1AB� + AC� + BC� + B�C2 + ABC

 = A�BC� + A�B�C + AB�C� + ABC

128 Chapter 4 Combinational Logic

 If we want to pursue the investigation and determine the information transformation

task achieved by this circuit, we can draw the circuit from the derived Boolean expres-

sions and try to recognize a familiar operation. The Boolean functions for F1 and F2

implement a circuit discussed in Section 4.5. Merely finding a Boolean representation

of a circuit doesn’t provide insight into its behavior, but in this example we will observe

that the Boolean equations and truth table for F1 and F2 match those describing the

functionality of what we call a full adder.

 The derivation of the truth table for a circuit is a straightforward process once the

output Boolean functions are known. To obtain the truth table directly from the logic

diagram without going through the derivations of the Boolean functions, we proceed as

follows:

 1. Determine the number of input variables in the circuit. For n inputs, form the 2n

possible input combinations and list the binary numbers from 0 to (2n - 1) in a

table.

 2. Label the outputs of selected gates with arbitrary symbols.

 3. Obtain the truth table for the outputs of those gates which are a function of the

input variables only.

 4. Proceed to obtain the truth table for the outputs of those gates which are a func-

tion of previously defined values until the columns for all outputs are determined.

A

B

A
B
C

A
B
C

A

C

B

C

F2

F1

T3

T2

T1

F�2

 FIGURE 4.2
 Logic diagram for analysis example

Section 4.4 Design Procedure 129

 This process is illustrated with the circuit of Fig. 4.2 . In Table 4.1 , we form the

eight possible combinations for the three input variables. The truth table for F2 is

determined directly from the values of A , B , and C , with F2 equal to 1 for any com-

bination that has two or three inputs equal to 1. The truth table for F�2 is the comple-

ment of F2. The truth tables for T1 and T2 are the OR and AND functions of the

input variables, respectively. The values for T3 are derived from T1 and F�2:T3 is equal

to 1 when both T1 and F�2 are equal to 1, and T3 is equal to 0 otherwise. Finally, F1 is

equal to 1 for those combinations in which either T2 or T3 or both are equal to 1.

Inspection of the truth table combinations for A, B, C, F1, and F2 shows that it is

identical to the truth table of the full adder given in Section 4.5 for x, y, z, S , and C ,

respectively.
 Another way of analyzing a combinational circuit is by means of logic simulation.

This is not practical, however, because the number of input patterns that might be

needed to generate meaningful outputs could be very large. But simulation has a very

practical application in verifying that the functionality of a circuit actually matches its

specification. In Section 4.12, we demonstrate the logic simulation and verification of

the circuit of Fig. 4.2 , using Verilog HDL.

 4 . 4 D E S I G N P R O C E D U R E

 The design of combinational circuits starts from the specification of the design objective

and culminates in a logic circuit diagram or a set of Boolean functions from which the

logic diagram can be obtained. The procedure involves the following steps:

 1. From the specifications of the circuit, determine the required number of inputs

and outputs and assign a symbol to each.

 2. Derive the truth table that defines the required relationship between inputs and

outputs.

 Table 4.1
 Truth Table for the Logic Diagram of Fig. 4.2

 A B C F 2 F�2 T 1 T 2 T 3 F 1

 0 0 0 0 1 0 0 0 0
 0 0 1 0 1 1 0 1 1

 0 1 0 0 1 1 0 1 1

 0 1 1 1 0 1 0 0 0

 1 0 0 0 1 1 0 1 1

 1 0 1 1 0 1 0 0 0

 1 1 0 1 0 1 0 0 0

 1 1 1 1 0 1 1 0 1

130 Chapter 4 Combinational Logic

 3. Obtain the simplified Boolean functions for each output as a function of the input

variables.

 4. Draw the logic diagram and verify the correctness of the design (manually or by

simulation).

 A truth table for a combinational circuit consists of input columns and output

columns. The input columns are obtained from the 2n binary numbers for the n input

variables. The binary values for the outputs are determined from the stated specifica-

tions. The output functions specified in the truth table give the exact definition of the

combinational circuit. It is important that the verbal specifications be interpreted

correctly in the truth table, as they are often incomplete, and any wrong interpretation

may result in an incorrect truth table.

 The output binary functions listed in the truth table are simplified by any available

method, such as algebraic manipulation, the map method, or a computer-based sim-

plification program. Frequently, there is a variety of simplified expressions from

which to choose. In a particular application, certain criteria will serve as a guide in

the process of choosing an implementation. A practical design must consider such

constraints as the number of gates, number of inputs to a gate, propagation time of

the signal through the gates, number of interconnections, limitations of the driving

capability of each gate (i.e., the number of gates to which the output of the circuit

may be connected), and various other criteria that must be taken into consideration

when designing integrated circuits. Since the importance of each constraint is dictated

by the particular application, it is difficult to make a general statement about what

constitutes an acceptable implementation. In most cases, the simplification begins by

satisfying an elementary objective, such as producing the simplified Boolean func-

tions in a standard form. Then the simplification proceeds with further steps to meet

other performance criteria.

 Code Conversion Example

 The availability of a large variety of codes for the same discrete elements of information

results in the use of different codes by different digital systems. It is sometimes necessary

to use the output of one system as the input to another. A conversion circuit must be

inserted between the two systems if each uses different codes for the same information.

Thus, a code converter is a circuit that makes the two systems compatible even though

each uses a different binary code.

 To convert from binary code A to binary code B, the input lines must supply the

bit combination of elements as specified by code A and the output lines must gener-

ate the corresponding bit combination of code B. A combinational circuit performs

this transformation by means of logic gates. The design procedure will be illustrated

by an example that converts binary coded decimal (BCD) to the excess-3 code for the

decimal digits.

 The bit combinations assigned to the BCD and excess-3 codes are listed in Table 1.5

(Section 1.7). Since each code uses four bits to represent a decimal digit, there must

Section 4.4 Design Procedure 131

be four input variables and four output variables. We designate the four input binary

 variables by the symbols A, B, C, and D, and the four output variables by w, x, y , and

 z . The truth table relating the input and output variables is shown in Table 4.2 . The bit

combinations for the inputs and their corresponding outputs are obtained directly

from Section 1.7. Note that four binary variables may have 16 bit combinations, but

only 10 are listed in the truth table. The six bit combinations not listed for the input

variables are don’t-care combinations. These values have no meaning in BCD and we

assume that they will never occur in actual operation of the circuit. Therefore, we are

at liberty to assign to the output variables either a 1 or a 0, whichever gives a simpler

circuit.
 The maps in Fig. 4.3 are plotted to obtain simplified Boolean functions for the

outputs. Each one of the four maps represents one of the four outputs of the circuit

as a function of the four input variables. The 1’s marked inside the squares are

obtained from the minterms that make the output equal to 1. The 1’s are obtained

from the truth table by going over the output columns one at a time. For example,

the column under output z has five 1’s; therefore, the map for z has five 1’s, each

being in a square corresponding to the minterm that makes z equal to 1. The six

don’t-care minterms 10 through 15 are marked with an X . One possible way to sim-

plify the functions into sum-of-products form is listed under the map of each variable.

(See Chapter 3 .)

 A two-level logic diagram for each output may be obtained directly from the Boolean

expressions derived from the maps. There are various other possibilities for a logic diagram

that implements this circuit. The expressions obtained in Fig. 4.3 may be manipulated

algebraically for the purpose of using common gates for two or more outputs. This manip-

ulation, shown next, illustrates the flexibility obtained with multiple-output systems when

 Table 4.2
 Truth Table for Code Conversion Example

 Input BCD Output Excess-3 Code

 A B C D w x y z

 0 0 0 0 0 0 1 1

 0 0 0 1 0 1 0 0

 0 0 1 0 0 1 0 1

 0 0 1 1 0 1 1 0

 0 1 0 0 0 1 1 1

 0 1 0 1 1 0 0 0

 0 1 1 0 1 0 0 1

 0 1 1 1 1 0 1 0

 1 0 0 0 1 0 1 1

 1 0 0 1 1 1 0 0

132 Chapter 4 Combinational Logic

implemented with three or more levels of gates:

 z = D�

 y = CD + C�D� = CD + 1C + D2�

x = B�C + B�D + BC�D� = B�1C + D2 + BC�D�

 = B�1C + D2 + B1C + D2�

 w = A + BC + BD = A + B1C + D2

 The logic diagram that implements these expressions is shown in Fig. 4.4 . Note that the OR

gate whose output is C + D has been used to implement partially each of three outputs.

 Not counting input inverters, the implementation in sum-of-products form requires

seven AND gates and three OR gates. The implementation of Fig. 4.4 requires four AND

gates, four OR gates, and one inverter. If only the normal inputs are available, the first

100

01

11

10

00 01 11 10AB
CD

1

1

1 X X

XX X

1

X

D

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

C

B

A

00

01

11

10

00 01 11 10AB
CD

1

X X

XX X

1

C

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

1

1

1

X

D

B

A

00

01

11

10

00 01 11 10AB
CD

1 1 1

1 X X

XX X

11

X

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

C

B

A

D

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

00

01

11

10

00 01 11 10

B

AB
CD

A

1 1

1 1 X X

XX X

1

X

D

C

z � D� y � CD � C�D�

x � B�C � B�D � BC�D� w � A � BC� BD

 FIGURE 4.3
 Maps for BCD-to-excess-3 code converter

Section 4.5 Binary Adder–Subtractor 133

implementation will require inverters for variables B, C , and D , and the second

 implementation will require inverters for variables B and D . Thus, the three-level logic

circuit requires fewer gates, all of which in turn require no more than two inputs.

 4 . 5 B I N A RY A D D E R – S U B T R A C T O R

 Digital computers perform a variety of information-processing tasks. Among the func-

tions encountered are the various arithmetic operations. The most basic arithmetic

operation is the addition of two binary digits. This simple addition consists of four pos-

sible elementary operations: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The

first three operations produce a sum of one digit, but when both augend and addend

bits are equal to 1, the binary sum consists of two digits. The higher significant bit of this

result is called a carry . When the augend and addend numbers contain more significant

digits, the carry obtained from the addition of two bits is added to the next higher order

pair of significant bits. A combinational circuit that performs the addition of two bits is

called a half adder . One that performs the addition of three bits (two significant bits and

a previous carry) is a full adder . The names of the circuits stem from the fact that two

half adders can be employed to implement a full adder.

x

z

y

w

D

C �D

(C �D)�

CD

D�

C

B

A

 FIGURE 4.4
 Logic diagram for BCD-to-excess-3 code converter

134 Chapter 4 Combinational Logic

 A binary adder–subtractor is a combinational circuit that performs the arithmetic

operations of addition and subtraction with binary numbers. We will develop this

circuit by means of a hierarchical design. The half adder design is carried out first, from

which we develop the full adder. Connecting n full adders in cascade produces a binary

adder for two n -bit numbers. The subtraction circuit is included in a complementing

circuit.

 Half Adder

 From the verbal explanation of a half adder, we find that this circuit needs two binary

inputs and two binary outputs. The input variables designate the augend and addend

bits; the output variables produce the sum and carry. We assign symbols x and y to the

two inputs and S (for sum) and C (for carry) to the outputs. The truth table for the half

adder is listed in Table 4.3 . The C output is 1 only when both inputs are 1. The S output

represents the least significant bit of the sum.
 The simplified Boolean functions for the two outputs can be obtained directly from

the truth table. The simplified sum-of-products expressions are

 S = x�y + xy�

 C = xy

 The logic diagram of the half adder implemented in sum of products is shown in

 Fig. 4.5(a) . It can be also implemented with an exclusive-OR and an AND gate as shown

in Fig. 4.5(b) . This form is used to show that two half adders can be used to construct a

full adder.

x
y�

x�

y

x
y

S

C

x
y S

C

(a) S � xy� � x�y
 C � xy

(b) S � x � y
 C � xy

 FIGURE 4.5
 Implementation of half adder

 Table 4.3
 Half Adder

 x y C S

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 1 0

Section 4.5 Binary Adder–Subtractor 135

 Full Adder

 Addition of n-bit binary numbers requires the use of a full adder, and the process of addi-

tion proceeds on a bit-by-bit basis, right to left, beginning with the least significant bit. After

the least significant bit, addition at each position adds not only the respective bits of the

words, but must also consider a possible carry bit from addition at the previous position.

 A full adder is a combinational circuit that forms the arithmetic sum of three bits. It

consists of three inputs and two outputs. Two of the input variables, denoted by x and y ,

represent the two significant bits to be added. The third input, z , represents the carry from

the previous lower significant position. Two outputs are necessary because the arithmetic

sum of three binary digits ranges in value from 0 to 3, and binary representation of 2 or 3

needs two bits. The two outputs are designated by the symbols S for sum and C for carry.

The binary variable S gives the value of the least significant bit of the sum. The binary

variable C gives the output carry formed by adding the input carry and the bits of the

words. The truth table of the full adder is listed in Table 4.4 . The eight rows under the input

variables designate all possible combinations of the three variables. The output variables

are determined from the arithmetic sum of the input bits. When all input bits are 0, the

output is 0. The S output is equal to 1 when only one input is equal to 1 or when all three

inputs are equal to 1. The C output has a carry of 1 if two or three inputs are equal to 1.
 The input and output bits of the combinational circuit have different interpretations

at various stages of the problem. On the one hand, physically, the binary signals of the

inputs are considered binary digits to be added arithmetically to form a two-digit sum

at the output. On the other hand, the same binary values are considered as variables of

Boolean functions when expressed in the truth table or when the circuit is implemented

with logic gates. The maps for the outputs of the full adder are shown in Fig. 4.6 . The

simplified expressions are

 S = x�y�z + x�yz� + xy�z� + xyz

 C = xy + xz + yz

 The logic diagram for the full adder implemented in sum-of-products form is shown

in Fig. 4.7 . It can also be implemented with two half adders and one OR gate, as shown

 Table 4.4
 Full Adder

 x y z C S

 0 0 0 0 0

 0 0 1 0 1

 0 1 0 0 1

 0 1 1 1 0

 1 0 0 0 1

 1 0 1 1 0

 1 1 0 1 0

 1 1 1 1 1

136 Chapter 4 Combinational Logic

in Fig. 4.8 . The S output from the second half adder is the exclusive-OR of z and the

output of the first half adder, giving

 S = z { 1x { y2

 = z�1xy� + x�y2 + z1xy� + x�y2�

 = z�1xy� + x�y2 + z1xy + x�y�2

 = xy�z� + x�yz� + xyz + x�y�z

The carry output is

 C = z1xy� + x�y2 + xy = xy�z + x�yz + xy

 Binary Adder

 A binary adder is a digital circuit that produces the arithmetic sum of two binary num-

bers. It can be constructed with full adders connected in cascade, with the output carry

from each full adder connected to the input carry of the next full adder in the chain.

x

y

x

z

y

z

C

x�
y�
z

x�
y
z�

x
y�
z�

x
y
z

S

 FIGURE 4.7
 Implementation of full adder in sum-of-products form

0

1

00 01 11 10x
yz

x

m0 m1 m3 m2 m0 m1 m3 m2

m4 m5 m7 m6 m4

1 1

1 1

(a) S � x�y�z � x�yz� � xy�z� � xyz (b) C � xy � xz � yz

0

00 01 11 10

y

x
yz

1

z

1
m5 m7 m6

1 11

z

x

y

 FIGURE 4.6
 K-Maps for full adder

Section 4.5 Binary Adder–Subtractor 137

Addition of n-bit numbers requires a chain of n full adders or a chain of one-half adder

and n 9 1 full adders. In the former case, the input carry to the least significant position

is fixed at 0. Figure 4.9 shows the interconnection of four full-adder (FA) circuits to

provide a four-bit binary ripple carry adder. The augend bits of A and the addend bits

of B are designated by subscript numbers from right to left, with subscript 0 denoting

the least significant bit. The carries are connected in a chain through the full adders. The

input carry to the adder is C0, and it ripples through the full adders to the output carry

 C4. The S outputs generate the required sum bits. An n -bit adder requires n full adders,

with each output carry connected to the input carry of the next higher order full adder.

 To demonstrate with a specific example, consider the two binary numbers A = 1011

and B = 0011. Their sum S = 1110 is formed with the four-bit adder as follows:

 Subscript i: 3 2 1 0

 Input carry 0 1 1 0 Ci
 Augend 1 0 1 1 Ai
 Addend 0 0 1 1 Bi

 Sum 1 1 1 0 Si

 Output carry 0 0 1 1 Ci+ 1

 The bits are added with full adders, starting from the least significant position (subscript

0), to form the sum bit and carry bit. The input carry C0 in the least significant position

must be 0. The value of Ci+1 in a given significant position is the output carry of the full

adder. This value is transferred into the input carry of the full adder that adds the bits

one higher significant position to the left. The sum bits are thus generated starting from

the rightmost position and are available as soon as the corresponding previous carry

bit is generated. All the carries must be generated for the correct sum bits to appear at

the outputs.

 The four-bit adder is a typical example of a standard component. It can be used in

many applications involving arithmetic operations. Observe that the design of this circuit

x
y

z

S

C

x � y

xy

(x � y) z � xy

(x � y) � z

(x � y) z

 FIGURE 4.8
 Implementation of full adder with two half adders and an OR gate

138 Chapter 4 Combinational Logic

by the classical method would require a truth table with 29 = 512 entries, since there

are nine inputs to the circuit. By using an iterative method of cascading a standard func-

tion, it is possible to obtain a simple and straightforward implementation.

 Carry Propagation

 The addition of two binary numbers in parallel implies that all the bits of the augend

and addend are available for computation at the same time. As in any combinational

circuit, the signal must propagate through the gates before the correct output sum is

available in the output terminals. The total propagation time is equal to the propagation

delay of a typical gate, times the number of gate levels in the circuit. The longest propa-

gation delay time in an adder is the time it takes the carry to propagate through the full

adders. Since each bit of the sum output depends on the value of the input carry, the

value of Si at any given stage in the adder will be in its steady-state final value only after

the input carry to that stage has been propagated. In this regard, consider output S3 in

 Fig. 4.9 . Inputs A3 and B3 are available as soon as input signals are applied to the adder.

However, input carry C3 does not settle to its final value until C2 is available from the

previous stage. Similarly, C2 has to wait for C1 and so on down to C0. Thus, only after

the carry propagates and ripples through all stages will the last output S3 and carry C4

settle to their final correct value.

 The number of gate levels for the carry propagation can be found from the circuit

of the full adder. The circuit is redrawn with different labels in Fig. 4.10 for convenience.

The input and output variables use the subscript i to denote a typical stage of the adder.

The signals at Pi and Gi settle to their steady-state values after they propagate through

their respective gates. These two signals are common to all half adders and depend on

only the input augend and addend bits. The signal from the input carry Ci to the output

carry Ci+1 propagates through an AND gate and an OR gate, which constitute two gate

levels. If there are four full adders in the adder, the output carry C4 would have

 2 * 4 = 8 gate levels from C0 to C4. For an n -bit adder, there are 2 n gate levels for the

carry to propagate from input to output.

B3

C4 S3

A3

FA

B2

C3

S2

A2

FA

B1

C2

S1

A1

FA

B0

C1

S0

A0

FA C0

 FIGURE 4.9
 Four-bit adder

Section 4.5 Binary Adder–Subtractor 139

 The carry propagation time is an important attribute of the adder because it limits

the speed with which two numbers are added. Although the adder—or, for that matter,

any combinational circuit—will always have some value at its output terminals, the

outputs will not be correct unless the signals are given enough time to propagate through

the gates connected from the inputs to the outputs. Since all other arithmetic operations

are implemented by successive additions, the time consumed during the addition process

is critical. An obvious solution for reducing the carry propagation delay time is to

employ faster gates with reduced delays. However, physical circuits have a limit to their

capability. Another solution is to increase the complexity of the equipment in such a

way that the carry delay time is reduced. There are several techniques for reducing the

carry propagation time in a parallel adder. The most widely used technique employs the

principle of carry lookahead logic .

 Consider the circuit of the full adder shown in Fig. 4.10 . If we define two new binary

variables

 Pi = Ai { Bi

 Gi = AiBi

 the output sum and carry can respectively be expressed as

 Si = Pi { Ci

 Ci+1 = Gi + PiCi

 Gi is called a carry generate , and it produces a carry of 1 when both Ai and Bi are 1,

regardless of the input carry Ci. Pi is called a carry propagate , because it determines

whether a carry into stage i will propagate into stage i + 1 (i.e., whether an assertion of

 Ci will propagate to an assertion of Ci+1).

 We now write the Boolean functions for the carry outputs of each stage and substitute

the value of each Ci from the previous equations:

 C0 = input carry

C1 = G0 + P0C0

Si

Ci � 1

Ai Pi

PiCi � Gi

Gi

Half adder Half adder

Bi

Ci

Pi � Ci

 FIGURE 4.10
 Full adder with P and G shown

140 Chapter 4 Combinational Logic

C2 = G1 + P1C1 = G1 + P11G0 + P0C02 = G1 + P1G0 + P1P0C0

 C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 = P2P1P0C0

 Since the Boolean function for each output carry is expressed in sum-of-products form,

each function can be implemented with one level of AND gates followed by an OR gate

(or by a two-level NAND). The three Boolean functions for C1, C2, and C3 are imple-

mented in the carry lookahead generator shown in Fig. 4.11 . Note that this circuit can

add in less time because C3 does not have to wait for C2 and C1 to propagate; in fact, C3

 is propagated at the same time as C1 and C2. This gain in speed of operation is achieved

at the expense of additional complexity (hardware).

 The construction of a four-bit adder with a carry lookahead scheme is shown in Fig. 4.12 .

Each sum output requires two exclusive-OR gates. The output of the first exclusive-OR

gate generates the Pi variable, and the AND gate generates the Gi variable. The carries

are propagated through the carry lookahead generator (similar to that in Fig. 4.11) and

applied as inputs to the second exclusive-OR gate. All output carries are generated after

C3

C2

C1

P2

G2

P1

G1

P0

G0

C0

 FIGURE 4.11
 Logic diagram of carry lookahead generator

Section 4.5 Binary Adder–Subtractor 141

a delay through two levels of gates. Thus, outputs S1 through S3 have equal propagation

delay times. The two-level circuit for the output carry C4 is not shown. This circuit can

easily be derived by the equation-substitution method.

 Binary Subtractor

 The subtraction of unsigned binary numbers can be done most conveniently by means

of complements, as discussed in Section 1.5. Remember that the subtraction A - B can

be done by taking the 2’s complement of B and adding it to A . The 2’s complement can

be obtained by taking the 1’s complement and adding 1 to the least significant pair of

bits. The 1’s complement can be implemented with inverters, and a 1 can be added to

the sum through the input carry.

B3
P3

G3

P2

G2

P1

G1

P0

G0

C0

A3
P3

C3

C4

S3

C4

P2

C2
S2

P1

C1
S1

P0

S0

B2

A2

B1

A1

B0

A0

C0

Carry
Lookahead
Generator

 FIGURE 4.12
 Four-bit adder with carry lookahead

142 Chapter 4 Combinational Logic

 The circuit for subtracting A - B consists of an adder with inverters placed between

each data input B and the corresponding input of the full adder. The input carry C0 must

be equal to 1 when subtraction is performed. The operation thus performed becomes A ,

plus the 1’s complement of B , plus 1. This is equal to A plus the 2’s complement of B .

For unsigned numbers, that gives A - B if A Ú B or the 2’s complement of 1B - A2
if A 6 B. For signed numbers, the result is A - B, provided that there is no overflow.

(See Section 1.6.)

 The addition and subtraction operations can be combined into one circuit with one

common binary adder by including an exclusive-OR gate with each full adder. A four-bit

adder–subtractor circuit is shown in Fig. 4.13 . The mode input M controls the operation.

When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor.

Each exclusive-OR gate receives input M and one of the inputs of B . When M = 0, we

have B { 0 = B. The full adders receive the value of B , the input carry is 0, and the

circuit performs A plus B . When M = 1, we have B { 1 = B� and C0 = 1. The B inputs

are all complemented and a 1 is added through the input carry. The circuit performs the

operation A plus the 2’s complement of B . (The exclusive-OR with output V is for

detecting an overflow.)

 It is worth noting that binary numbers in the signed-complement system are added

and subtracted by the same basic addition and subtraction rules as are unsigned num-

bers. Therefore, computers need only one common hardware circuit to handle both types

of arithmetic. The user or programmer must interpret the results of such addition or

subtraction differently, depending on whether it is assumed that the numbers are signed

or unsigned.

B3

C4
C

V
S3

A3

FA

B2

C3

S2

A2

FA

B1

C2

S1

A1

FA

B0

C1

S0

A0

FA
C0

M

 FIGURE 4.13
 Four-bit adder–subtractor (with overflow detection)

Section 4.5 Binary Adder–Subtractor 143

 Overflow

 When two numbers with n digits each are added and the sum is a number occupying

 n + 1 digits, we say that an overflow occurred. This is true for binary or decimal num-

bers, signed or unsigned. When the addition is performed with paper and pencil, an

overflow is not a problem, since there is no limit by the width of the page to write down

the sum. Overflow is a problem in digital computers because the number of bits that

hold the number is finite and a result that contains n + 1 bits cannot be accommodated

by an n -bit word. For this reason, many computers detect the occurrence of an overflow,

and when it occurs, a corresponding flip-flop is set that can then be checked by the user.

 The detection of an overflow after the addition of two binary numbers depends on

whether the numbers are considered to be signed or unsigned. When two unsigned

numbers are added, an overflow is detected from the end carry out of the most signifi-

cant position. In the case of signed numbers, two details are important: the leftmost bit

always represents the sign, and negative numbers are in 2’s-complement form. When

two signed numbers are added, the sign bit is treated as part of the number and the end

carry does not indicate an overflow.

 An overflow cannot occur after an addition if one number is positive and the other

is negative, since adding a positive number to a negative number produces a result

whose magnitude is smaller than the larger of the two original numbers. An overflow

may occur if the two numbers added are both positive or both negative. To see how this

can happen, consider the following example: Two signed binary numbers, +70 and +80,

are stored in two eight-bit registers. The range of numbers that each register can accom-

modate is from binary +127 to binary -128. Since the sum of the two numbers is +150,

it exceeds the capacity of an eight-bit register. This is also true for -70 and -80. The two

additions in binary are shown next, together with the last two carries:

carries: 0 1 carries: 1 0

+70 0 1000110 -70 1 0111010

+80 0 1010000 -80 1 0110000

 +150 1 0010110 -150 0 1101010

 Note that the eight-bit result that should have been positive has a negative sign bit (i.e.,

the eighth bit) and the eight-bit result that should have been negative has a positive sign

bit. If, however, the carry out of the sign bit position is taken as the sign bit of the result,

then the nine-bit answer so obtained will be correct. But since the answer cannot be

accommodated within eight bits, we say that an overflow has occurred.

 An overflow condition can be detected by observing the carry into the sign bit position

and the carry out of the sign bit position. If these two carries are not equal, an overflow

has occurred. This is indicated in the examples in which the two carries are explicitly

shown. If the two carries are applied to an exclusive-OR gate, an overflow is detected

when the output of the gate is equal to 1. For this method to work correctly, the 2’s comple-

ment of a negative number must be computed by taking the 1’s complement and adding 1.

This takes care of the condition when the maximum negative number is complemented.

144 Chapter 4 Combinational Logic

 The binary adder–subtractor circuit with outputs C and V is shown in Fig. 4.13 . If the

two binary numbers are considered to be unsigned, then the C bit detects a carry after

addition or a borrow after subtraction. If the numbers are considered to be signed, then

the V bit detects an overflow. If V = 0 after an addition or subtraction, then no overflow

occurred and the n -bit result is correct. If V = 1, then the result of the operation contains

 n + 1 bits, but only the rightmost n bits of the number fit in the space available, so an

overflow has occurred. The 1n + 12 th bit is the actual sign and has been shifted out of

position.

 4 . 6 D E C I M A L A D D E R

 Computers or calculators that perform arithmetic operations directly in the decimal

number system represent decimal numbers in binary coded form. An adder for such

a computer must employ arithmetic circuits that accept coded decimal numbers and

present results in the same code. For binary addition, it is sufficient to consider a

pair of significant bits together with a previous carry. A decimal adder requires a

minimum of nine inputs and five outputs, since four bits are required to code each

decimal digit and the circuit must have an input and output carry. There is a wide

variety of possible decimal adder circuits, depending upon the code used to repre-

sent the decimal digits. Here we examine a decimal adder for the BCD code. (See

Section 1.7.)

 BCD Adder

 Consider the arithmetic addition of two decimal digits in BCD, together with an input

carry from a previous stage. Since each input digit does not exceed 9, the output sum

cannot be greater than 9 + 9 + 1 = 19, the 1 in the sum being an input carry. Sup-

pose we apply two BCD digits to a four-bit binary adder. The adder will form the sum

in binary and produce a result that ranges from 0 through 19. These binary numbers

are listed in Table 4.5 and are labeled by symbols K, Z8, Z4, Z2, and Z1. K is the carry,

and the subscripts under the letter Z represent the weights 8, 4, 2, and 1 that can be

assigned to the four bits in the BCD code. The columns under the binary sum list the

binary value that appears in the outputs of the four-bit binary adder. The output sum

of two decimal digits must be represented in BCD and should appear in the form

listed in the columns under “BCD Sum.” The problem is to find a rule by which the

binary sum is converted to the correct BCD digit representation of the number in the

BCD sum.

 In examining the contents of the table, it becomes apparent that when the binary sum

is equal to or less than 1001, the corresponding BCD number is identical, and therefore

no conversion is needed. When the binary sum is greater than 1001, we obtain an invalid

BCD representation. The addition of binary 6 (0110) to the binary sum converts it to

the correct BCD representation and also produces an output carry as required.

Section 4.6 Decimal Adder 145

 The logic circuit that detects the necessary correction can be derived from the

entries in the table. It is obvious that a correction is needed when the binary sum has

an output carry K = 1. The other six combinations from 1010 through 1111 that need

a correction have a 1 in position Z8. To distinguish them from binary 1000 and 1001,

which also have a 1 in position Z8, we specify further that either Z4 or Z2 must have

a 1. The condition for a correction and an output carry can be expressed by the Bool-

ean function

 C = K + Z8Z4 + Z8Z2

 When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry

for the next stage.

 A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown

in Fig. 4.14 . The two decimal digits, together with the input carry, are first added in the

top four-bit adder to produce the binary sum. When the output carry is equal to 0, noth-

ing is added to the binary sum. When it is equal to 1, binary 0110 is added to the binary

sum through the bottom four-bit adder. The output carry generated from the bottom

 Table 4.5
 Derivation of BCD Adder

 Binary Sum BCD Sum Decimal

 K Z 8 Z 4 Z 2 Z 1 C S 8 S 4 S 2 S 1

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 1 0 0 0 0 1 1

 0 0 0 1 0 0 0 0 1 0 2

 0 0 0 1 1 0 0 0 1 1 3

 0 0 1 0 0 0 0 1 0 0 4

 0 0 1 0 1 0 0 1 0 1 5

 0 0 1 1 0 0 0 1 1 0 6

 0 0 1 1 1 0 0 1 1 1 7

 0 1 0 0 0 0 1 0 0 0 8

 0 1 0 0 1 0 1 0 0 1 9

 0 1 0 1 0 1 0 0 0 0 10

 0 1 0 1 1 1 0 0 0 1 11

 0 1 1 0 0 1 0 0 1 0 12

 0 1 1 0 1 1 0 0 1 1 13

 0 1 1 1 0 1 0 1 0 0 14

 0 1 1 1 1 1 0 1 0 1 15

 1 0 0 0 0 1 0 1 1 0 16

 1 0 0 0 1 1 0 1 1 1 17

 1 0 0 1 0 1 1 0 0 0 18

 1 0 0 1 1 1 1 0 0 1 19

146 Chapter 4 Combinational Logic

adder can be ignored, since it supplies information already available at the output carry

terminal. A decimal parallel adder that adds n decimal digits needs n BCD adder stages.

The output carry from one stage must be connected to the input carry of the next higher

order stage.

 4 . 7 B I N A RY M U LT I P L I E R

 Multiplication of binary numbers is performed in the same way as multiplication of

decimal numbers. The multiplicand is multiplied by each bit of the multiplier, starting

from the least significant bit. Each such multiplication forms a partial product. Succes-

sive partial products are shifted one position to the left. The final product is obtained

from the sum of the partial products.

 To see how a binary multiplier can be implemented with a combinational circuit,

consider the multiplication of two 2-bit numbers as shown in Fig. 4.15 . The multiplicand

Output
carry

Carry
out

Carry
in

Addend Augend

4-bit binary adder

4-bit binary adder

K

0

Z8 Z4 Z2 Z1

S8 S4 S2 S1

 FIGURE 4.14
 Block diagram of a BCD adder

Section 4.7 Binary Multiplier 147

bits are B1 and B0, the multiplier bits are A1 and A0, and the product is C3C2C1C0. The

first partial product is formed by multiplying B1B0 by A0. The multiplication of two bits

such as A0 and B0 produces a 1 if both bits are 1; otherwise, it produces a 0. This is iden-

tical to an AND operation. Therefore, the partial product can be implemented with

AND gates as shown in the diagram. The second partial product is formed by multiply-

ing B1B0 by A1 and shifting one position to the left. The two partial products are added

with two half-adder (HA) circuits. Usually, there are more bits in the partial products

and it is necessary to use full adders to produce the sum of the partial products. Note

that the least significant bit of the product does not have to go through an adder, since

it is formed by the output of the first AND gate.

 A combinational circuit binary multiplier with more bits can be constructed in a

similar fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as

many levels as there are bits in the multiplier. The binary output in each level of AND

gates is added with the partial product of the previous level to form a new partial prod-

uct. The last level produces the product. For J multiplier bits and K multiplicand bits, we

need 1J * K2 AND gates and 1J - 12 K -bit adders to produce a product of (J + K)

bits.

 As a second example, consider a multiplier circuit that multiplies a binary number

represented by four bits by a number represented by three bits. Let the multiplicand be

represented by B3B2B1B0 and the multiplier by A2A1A0. Since K = 4 and J = 3, we

need 12 AND gates and two 4-bit adders to produce a product of seven bits. The logic

diagram of the multiplier is shown in Fig. 4.16 .

HA HA

C3

B1

B1

C3 C2 C1 C0

B0

A1

A1B1 A1B0

A0B1 A0B0

A0

A1

A0

B0

B1 B0

C2 C1 C0

 FIGURE 4.15
 Two-bit by two-bit binary multiplier

148 Chapter 4 Combinational Logic

B3

A0

A1
B2 B1 B0

B3 B2 B1 B0

0

Addend Augend

Sum and output carry

4-bit adder

B3

A2
B2 B1 B0

Addend

Sum and output carry

4-bit adder

C2 C1 C0C3C4C5C6

Augend

 FIGURE 4.16
 Four-bit by three-bit binary multiplier

 4 . 8 M A G N I T U D E C O M PA R AT O R

 The comparison of two numbers is an operation that determines whether one number

is greater than, less than, or equal to the other number. A magnitude comparator is a

combinational circuit that compares two numbers A and B and determines their relative

magnitudes. The outcome of the comparison is specified by three binary variables that

indicate whether A 7 B, A = B, or A 6 B.

 On the one hand, the circuit for comparing two n -bit numbers has 22n entries in the

truth table and becomes too cumbersome, even with n = 3. On the other hand, as one

Section 4.8 Magnitude Comparator 149

may suspect, a comparator circuit possesses a certain amount of regularity. Digital func-

tions that possess an inherent well-defined regularity can usually be designed by means

of an algorithm—a procedure which specifies a finite set of steps that, if followed, give

the solution to a problem. We illustrate this method here by deriving an algorithm for

the design of a four-bit magnitude comparator.

 The algorithm is a direct application of the procedure a person uses to compare the

relative magnitudes of two numbers. Consider two numbers, A and B , with four digits

each. Write the coefficients of the numbers in descending order of significance:

 A = A3 A2 A1 A0

B = B3 B2 B1 B0

 Each subscripted letter represents one of the digits in the number. The two numbers are

equal if all pairs of significant digits are equal: A3 = B3, A2 = B2, A1 = B1, and

 A0 = B0. When the numbers are binary, the digits are either 1 or 0, and the equality of

each pair of bits can be expressed logically with an exclusive-NOR function as

 xi = AiBi + A�i B�i for i = 0, 1, 2, 3

 where xi = 1 only if the pair of bits in position i are equal (i.e., if both are 1 or both

are 0).

 The equality of the two numbers A and B is displayed in a combinational circuit by

an output binary variable that we designate by the symbol 1A = B2 . This binary vari-

able is equal to 1 if the input numbers, A and B , are equal, and is equal to 0 otherwise.

For equality to exist, all xi variables must be equal to 1, a condition that dictates an AND

operation of all variables:

 1A = B2 = x3x2x1x0

 The binary variable 1A = B2 is equal to 1 only if all pairs of digits of the two numbers

are equal.

 To determine whether A is greater or less than B , we inspect the relative magnitudes

of pairs of significant digits, starting from the most significant position. If the two digits

of a pair are equal, we compare the next lower significant pair of digits. The comparison

continues until a pair of unequal digits is reached. If the corresponding digit of A is 1

and that of B is 0, we conclude that A 7 B. If the corresponding digit of A is 0 and that

of B is 1, we have A 6 B. The sequential comparison can be expressed logically by the

two Boolean functions

 1A 7 B2 = A3B�3 + x3 A2B�2 + x3x2A1B�1 + x3x2x1A0B�0

1A 6 B2 = A�3B3 + x3A�2B2 + x3x2A�1B�1 + x3x2x1A�n0B�0

 The symbols 1A 7 B2 and 1A 6 B2 are binary output variables that are equal to 1

when A 7 B and A 6 B, respectively.

 The gate implementation of the three output variables just derived is simpler than it

seems because it involves a certain amount of repetition. The unequal outputs can use

the same gates that are needed to generate the equal output. The logic diagram of the

four-bit magnitude comparator is shown in Fig. 4.17 . The four x outputs are generated

150 Chapter 4 Combinational Logic

with exclusive-NOR circuits and are applied to an AND gate to give the output binary

variable 1A = B2 . The other two outputs use the x variables to generate the Boolean

functions listed previously. This is a multilevel implementation and has a regular pattern.

The procedure for obtaining magnitude comparator circuits for binary numbers with

more than four bits is obvious from this example.

 4 . 9 D E C O D E R S

 Discrete quantities of information are represented in digital systems by binary codes.

A binary code of n bits is capable of representing up to 2n distinct elements of coded

information. A decoder is a combinational circuit that converts binary information from

(A � B)

(A � B)

(A � B)

x3

A3

B3

A2

B2

A1

B1

A0

B0

x2

x1

x0

 FIGURE 4.17
 Four-bit magnitude comparator

Section 4.9 Decoders 151

 n input lines to a maximum of 2n unique output lines. If the n -bit coded information has

unused combinations, the decoder may have fewer than 2n outputs.

 The decoders presented here are called n -to- m -line decoders, where m … 2n. Their

purpose is to generate the 2n (or fewer) minterms of n input variables. Each combination

of inputs will assert a unique output. The name decoder is also used in conjunction with

other code converters, such as a BCD-to-seven-segment decoder.

 As an example, consider the three-to-eight-line decoder circuit of Fig. 4.18 . The three

inputs are decoded into eight outputs, each representing one of the minterms of the

three input variables. The three inverters provide the complement of the inputs, and each

one of the eight AND gates generates one of the minterms. A particular application of

this decoder is binary-to-octal conversion. The input variables represent a binary num-

ber, and the outputs represent the eight digits of a number in the octal number system.

However, a three-to-eight-line decoder can be used for decoding any three-bit code to

provide eight outputs, one for each element of the code.

D0 � x�y�z�

D1 � x�y�z

D2 � x�yz�

D3 � x�yz

D4 � xy�z�

D5 � xy�z

D6 � xyz�

D7 � xyz

z

y

x

 FIGURE 4.18
 Three-to-eight-line decoder

152 Chapter 4 Combinational Logic

 The operation of the decoder may be clarified by the truth table listed in Table 4.6 .

For each possible input combination, there are seven outputs that are equal to 0 and

only one that is equal to 1. The output whose value is equal to 1 represents the minterm

equivalent of the binary number currently available in the input lines.
 Some decoders are constructed with NAND gates. Since a NAND gate produces the

AND operation with an inverted output, it becomes more economical to generate the

decoder minterms in their complemented form. Furthermore, decoders include one or

more enable inputs to control the circuit operation. A two-to-four-line decoder with an

enable input constructed with NAND gates is shown in Fig. 4.19 . The circuit operates

with complemented outputs and a complement enable input. The decoder is enabled

when E is equal to 0 (i.e., active-low enable). As indicated by the truth table, only one

 Table 4.6
 Truth Table of a Three-to-Eight-Line Decoder

 Inputs Outputs

 x y z D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7

 0 0 0 1 0 0 0 0 0 0 0

 0 0 1 0 1 0 0 0 0 0 0

 0 1 0 0 0 1 0 0 0 0 0

 0 1 1 0 0 0 1 0 0 0 0

 1 0 0 0 0 0 0 1 0 0 0

 1 0 1 0 0 0 0 0 1 0 0

 1 1 0 0 0 0 0 0 0 1 0

 1 1 1 0 0 0 0 0 0 0 1

D0

D1

D2

A

B

E

D3

(a) Logic diagram (b) Truth table

E A B D0 D1 D2 D3

1

1 1

1

1
1

1 1 1
1 1

1
1

1
1 1 1

1

11 1 1

0
0
0

0
0 0

0
00 0

0

X X

 FIGURE 4.19
 Two-to-four-line decoder with enable input

Section 4.9 Decoders 153

output can be equal to 0 at any given time; all other outputs are equal to 1. The output

whose value is equal to 0 represents the minterm selected by inputs A and B . The circuit

is disabled when E is equal to 1, regardless of the values of the other two inputs. When

the circuit is disabled, none of the outputs are equal to 0 and none of the minterms are

selected. In general, a decoder may operate with complemented or uncomplemented

outputs. The enable input may be activated with a 0 or with a 1 signal. Some decoders

have two or more enable inputs that must satisfy a given logic condition in order to

enable the circuit.

 A decoder with enable input can function as a demultiplexer— a circuit that receives

information from a single line and directs it to one of 2n possible output lines. The

selection of a specific output is controlled by the bit combination of n selection lines.

The decoder of Fig. 4.19 can function as a one-to-four-line demultiplexer when E is

taken as a data input line and A and B are taken as the selection inputs. The single

input variable E has a path to all four outputs, but the input information is directed to

only one of the output lines, as specified by the binary combination of the two selection

lines A and B . This feature can be verified from the truth table of the circuit. For

example, if the selection lines AB = 10, output D2 will be the same as the input value

 E , while all other outputs are maintained at 1. Because decoder and demultiplexer

operations are obtained from the same circuit, a decoder with an enable input is

referred to as a decoder – demultiplexer .

 Decoders with enable inputs can be connected together to form a larger decoder

circuit. Figure 4.20 shows two 3-to-8-line decoders with enable inputs connected to form

a 4-to-16-line decoder. When w � 0, the top decoder is enabled and the other is disabled.

The bottom decoder outputs are all 0’s, and the top eight outputs generate minterms

0000 to 0111. When w � 1, the enable conditions are reversed: The bottom decoder

outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all

0’s. This example demonstrates the usefulness of enable inputs in decoders and other

 FIGURE 4.20
 4 * 16 decoder constructed with two 3 * 8 decoders

x

y

z

w

D0 to D7

D8 to D15

3 � 8
decoder

E

3 � 8
decoder

E

154 Chapter 4 Combinational Logic

combinational logic components. In general, enable inputs are a convenient feature for

interconnecting two or more standard components for the purpose of combining them

into a similar function with more inputs and outputs.

 Combinational Logic Implementation

 A decoder provides the 2n minterms of n input variables. Each asserted output of the

decoder is associated with a unique pattern of input bits. Since any Boolean function

can be expressed in sum-of-minterms form, a decoder that generates the minterms of

the function, together with an external OR gate that forms their logical sum, provides

a hardware implementation of the function. In this way, any combinational circuit with

 n inputs and m outputs can be implemented with an n -to-2 n -line decoder and m OR

gates.

 The procedure for implementing a combinational circuit by means of a decoder and

OR gates requires that the Boolean function for the circuit be expressed as a sum of

minterms. A decoder is then chosen that generates all the minterms of the input vari-

ables. The inputs to each OR gate are selected from the decoder outputs according to

the list of minterms of each function. This procedure will be illustrated by an example

that implements a full-adder circuit.

 From the truth table of the full adder (see Table 4.4), we obtain the functions for the

combinational circuit in sum-of-minterms form:

 S(x, y, z) = �(1, 2, 4, 7)

C(x, y, z) = �(3, 5, 6, 7)

 Since there are three inputs and a total of eight minterms, we need a three-to-eight-line

decoder. The implementation is shown in Fig. 4.21 . The decoder generates the eight

minterms for x , y , and z . The OR gate for output S forms the logical sum of minterms 1,

2, 4, and 7. The OR gate for output C forms the logical sum of minterms 3, 5, 6, and 7.

S

C

x

y

z

0

1

222

21

20

3

4

5

6

7

3 � 8
decoder

 FIGURE 4.21
 Implementation of a full adder with a decoder

Section 4.10 Encoders 155

 A function with a long list of minterms requires an OR gate with a large number of

inputs. A function having a list of k minterms can be expressed in its complemented form

 F� with 2n - k minterms. If the number of minterms in the function is greater than 2n>2,

then F� can be expressed with fewer minterms. In such a case, it is advantageous to use

a NOR gate to sum the minterms of F�. The output of the NOR gate complements this

sum and generates the normal output F . If NAND gates are used for the decoder, as in

 Fig. 4.19 , then the external gates must be NAND gates instead of OR gates. This is

because a two-level NAND gate circuit implements a sum-of-minterms function and is

equivalent to a two-level AND–OR circuit.

 4 . 1 0 E N C O D E R S

 An encoder is a digital circuit that performs the inverse operation of a decoder. An

encoder has 2n (or fewer) input lines and n output lines. The output lines, as an aggregate,

generate the binary code corresponding to the input value. An example of an encoder

is the octal-to-binary encoder whose truth table is given in Table 4.7 . It has eight inputs

(one for each of the octal digits) and three outputs that generate the corresponding

binary number. It is assumed that only one input has a value of 1 at any given time.
 The encoder can be implemented with OR gates whose inputs are determined

directly from the truth table. Output z is equal to 1 when the input octal digit is 1, 3, 5,

or 7. Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These

conditions can be expressed by the following Boolean output functions:

 z = D1 + D3 + D5 + D7

y = D2 + D3 + D6 + D7

x = D4 + D5 + D6 + D7

 The encoder can be implemented with three OR gates.

 Table 4.7
 Truth Table of an Octal-to-Binary Encoder

 Inputs Outputs

 D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7 x y z

 1 0 0 0 0 0 0 0 0 0 0

 0 1 0 0 0 0 0 0 0 0 1

 0 0 1 0 0 0 0 0 0 1 0

 0 0 0 1 0 0 0 0 0 1 1

 0 0 0 0 1 0 0 0 1 0 0

 0 0 0 0 0 1 0 0 1 0 1

 0 0 0 0 0 0 1 0 1 1 0

 0 0 0 0 0 0 0 1 1 1 1

156 Chapter 4 Combinational Logic

 The encoder defined in Table 4.7 has the limitation that only one input can be active

at any given time. If two inputs are active simultaneously, the output produces an unde-

fined combination. For example, if D3 and D6 are 1 simultaneously, the output of the

encoder will be 111 because all three outputs are equal to 1. The output 111 does not

represent either binary 3 or binary 6. To resolve this ambiguity, encoder circuits must

establish an input priority to ensure that only one input is encoded. If we establish a

higher priority for inputs with higher subscript numbers, and if both D3 and D6 are 1 at

the same time, the output will be 110 because D6 has higher priority than D3.

 Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is

generated when all the inputs are 0; but this output is the same as when D0 is equal to 1.

The discrepancy can be resolved by providing one more output to indicate whether at

least one input is equal to 1.

 Priority Encoder

 A priority encoder is an encoder circuit that includes the priority function. The operation

of the priority encoder is such that if two or more inputs are equal to 1 at the same time,

the input having the highest priority will take precedence. The truth table of a four-input

priority encoder is given in Table 4.8 . In addition to the two outputs x and y , the circuit

has a third output designated by V ; this is a valid bit indicator that is set to 1 when one or

more inputs are equal to 1. If all inputs are 0, there is no valid input and V is equal to 0.

The other two outputs are not inspected when V equals 0 and are specified as don’t-care

conditions. Note that whereas X ’s in output columns represent don’t-care conditions, the

 X ’s in the input columns are useful for representing a truth table in condensed form.

Instead of listing all 16 minterms of four variables, the truth table uses an X to represent

either 1 or 0. For example, X 100 represents the two minterms 0100 and 1100.
 According to Table 4.8 , the higher the subscript number, the higher the priority of

the input. Input D3 has the highest priority, so, regardless of the values of the other

inputs, when this input is 1, the output for xy is 11 (binary 3). D2 has the next priority

level. The output is 10 if D2 = 1, provided that D3 = 0, regardless of the values of the

other two lower priority inputs. The output for D1 is generated only if higher priority

inputs are 0, and so on down the priority levels.

 Table 4.8
 Truth Table of a Priority Encoder

 Inputs Outputs

 D 0 D 1 D 2 D 3 x y V

 0 0 0 0 X X 0

 1 0 0 0 0 0 1

 X 1 0 0 0 1 1

 X X 1 0 1 0 1

 X X X 1 1 1 1

Section 4.10 Encoders 157

 The maps for simplifying outputs x and y are shown in Fig. 4.22 . The minterms for the

two functions are derived from Table 4.8. Although the table has only five rows, when

each X in a row is replaced first by 0 and then by 1, we obtain all 16 possible input com-

binations. For example, the fourth row in the table, with inputs XX10, represents the four

minterms 0010, 0110, 1010, and 1110. The simplified Boolean expressions for the priority

encoder are obtained from the maps. The condition for output V is an OR function of

all the input variables. The priority encoder is implemented in Fig. 4.23 according to the

following Boolean functions:

 x = D2 + D3

 y = D3 + D1 D�2

V = D0 + D1 + D2 + D3

X00

01

11

10

00 01 11 10D0D1

D2D3

1 1 1

1 1

1 1 X

11 1

1

D0

D1

D3

D2

m0 m1 m3 m2

m4 m5 m7 m6

m14m15

m10

m13m12

m9 m11m8

X00

01

11

10

00 01 11 10D0D1
D2D3

1 1

1 1

111

1

D0

D1

D3

D2

m0 m1 m3 m2

m4 m5 m7 m6

m14m15

m10

m13m12

m9 m11m8

1 1

x � D2 � D3 y � D3 � D1D�2

 FIGURE 4.22
 Maps for a priority encoder

D3

D2

D1

D0

y

x

V

 FIGURE 4.23
 Four-input priority encoder

158 Chapter 4 Combinational Logic

 4 . 1 1 M U LT I P L E X E R S

 A multiplexer is a combinational circuit that selects binary information from one of

many input lines and directs it to a single output line. The selection of a particular input

line is controlled by a set of selection lines. Normally, there are 2n input lines and n selec-

tion lines whose bit combinations determine which input is selected.

 A two-to-one-line multiplexer connects one of two 1-bit sources to a common desti-

nation, as shown in Fig. 4.24 . The circuit has two data input lines, one output line, and

one selection line S . When S = 0, the upper AND gate is enabled and I0 has a path to

the output. When S = 1, the lower AND gate is enabled and I1 has a path to the output.

The multiplexer acts like an electronic switch that selects one of two sources. The block

diagram of a multiplexer is sometimes depicted by a wedge-shaped symbol, as shown in

 Fig. 4.24(b) . It suggests visually how a selected one of multiple data sources is directed

into a single destination. The multiplexer is often labeled “MUX” in block diagrams.

 A four-to-one-line multiplexer is shown in Fig. 4.25 . Each of the four inputs, I0

through I3, is applied to one input of an AND gate. Selection lines S1 and S0 are decoded

to select a particular AND gate. The outputs of the AND gates are applied to a single

OR gate that provides the one-line output. The function table lists the input that is

passed to the output for each combination of the binary selection values. To demonstrate

the operation of the circuit, consider the case when S1S0 = 10. The AND gate associated

with input I2 has two of its inputs equal to 1 and the third input connected to I2. The

other three AND gates have at least one input equal to 0, which makes their outputs

equal to 0. The output of the OR gate is now equal to the value of I2, providing a path

from the selected input to the output. A multiplexer is also called a data selector , since

it selects one of many inputs and steers the binary information to the output line.

 The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed,

they decode the selection input lines. In general, a 2 n -to-1-line multiplexer is constructed

from an n -to-2 n decoder by adding 2n input lines to it, one to each AND gate. The outputs

of the AND gates are applied to a single OR gate. The size of a multiplexer is specified by

Y

I0

I1

S

(a) Logic diagram (b) Block diagram

I0

S

Y

I1

MUX

0

1

 FIGURE 4.24
 Two-to-one-line multiplexer

Section 4.11 Multiplexers 159

the number 2n of its data input lines and the single output line. The n selection lines are

implied from the 2n data lines. As in decoders, multiplexers may have an enable input to

control the operation of the unit. When the enable input is in the inactive state, the outputs

are disabled, and when it is in the active state, the circuit functions as a normal multiplexer.

 Multiplexer circuits can be combined with common selection inputs to provide

 multiple-bit selection logic. As an illustration, a quadruple 2-to-1-line multiplexer is shown

in Fig. 4.26 . The circuit has four multiplexers, each capable of selecting one of two input

lines. Output Y0 can be selected to come from either input A0 or input B0. Similarly,

output Y1 may have the value of A1 or B1, and so on. Input selection line S selects one of

the lines in each of the four multiplexers. The enable input E must be active (i.e., asserted)

for normal operation. Although the circuit contains four 2-to-1-line multiplexers, we are

more likely to view it as a circuit that selects one of two 4-bit sets of data lines. As shown

in the function table, the unit is enabled when E = 0. Then, if S = 0, the four A inputs

have a path to the four outputs. If, by contrast, S = 1, the four B inputs are applied to the

outputs. The outputs have all 0’s when E = 1, regardless of the value of S .

 Boolean Function Implementation

 In Section 4.9, it was shown that a decoder can be used to implement Boolean functions

by employing external OR gates. An examination of the logic diagram of a multiplexer

reveals that it is essentially a decoder that includes the OR gate within the unit. The

(a) Logic diagram (b) Function table

Y

I0

I1

I2

I3

S1

S0

YS1 S0

0

1

0
1

0

1

1
0

I0
I1
I2
I3

 FIGURE 4.25
 Four-to-one-line multiplexer

160 Chapter 4 Combinational Logic

minterms of a function are generated in a multiplexer by the circuit associated with the

selection inputs. The individual minterms can be selected by the data inputs, thereby

providing a method of implementing a Boolean function of n variables with a multi-

plexer that has n selection inputs and 2n data inputs, one for each minterm.

 We will now show a more efficient method for implementing a Boolean function of

 n variables with a multiplexer that has n - 1 selection inputs. The first n - 1 variables

of the function are connected to the selection inputs of the multiplexer. The remaining

single variable of the function is used for the data inputs. If the single variable is denoted

A0

Y0

Y1

Y2

Y3

A1

A2

A3

B0

B1

B2

B3

S

E

(select)

(enable)

Function table

E S Output Y

1
0 0
0 1

all 0’s
select A
select B

X

 FIGURE 4.26
 Quadruple two-to-one-line multiplexer

Section 4.11 Multiplexers 161

by z , each data input of the multiplexer will be z , z�, 1, or 0. To demonstrate this proce-

dure, consider the Boolean function

 F (x, y, z) = �(1, 2, 6, 7)

 This function of three variables can be implemented with a four-to-one-line multiplexer

as shown in Fig. 4.27 . The two variables x and y are applied to the selection lines in that

order; x is connected to the S1 input and y to the S0 input. The values for the data input

lines are determined from the truth table of the function. When xy = 00, output F is

equal to z because F = 0 when z = 0 and F = 1 when z = 1. This requires that variable

 z be applied to data input 0. The operation of the multiplexer is such that when xy = 00,

data input 0 has a path to the output, and that makes F equal to z . In a similar fashion,

we can determine the required input to data lines 1, 2, and 3 from the value of F when

 xy = 01, 10, and 11, respectively. This particular example shows all four possibilities that

can be obtained for the data inputs.

 The general procedure for implementing any Boolean function of n variables with a

multiplexer with n - 1 selection inputs and 2n -1 data inputs follows from the previous

example. To begin with, Boolean function is listed in a truth table. Then first n - 1 vari-

ables in the table are applied to the selection inputs of the multiplexer. For each com-

bination of the selection variables, we evaluate the output as a function of the last

variable. This function can be 0, 1, the variable, or the complement of the variable. These

values are then applied to the data inputs in the proper order.

 As a second example, consider the implementation of the Boolean function

 F (A, B, C, D) = �(1, 3, 4, 11, 12, 13, 14, 15)

 This function is implemented with a multiplexer with three selection inputs as shown in

 Fig. 4.28 . Note that the first variable A must be connected to selection input S2 so that

 A , B, and C correspond to selection inputs S2, S1, and S0, respectively. The values for the

S0

S1

0

1

2

3

y

x

z

0

1

z�

F

(b) Multiplexer implementation(a) Truth table

4 � 1 MUX

x y z F

F � z0
0

0
0

0
1

0
1

F � z�0
0

1
1

0
1

1
0

F � 01
1

0
0

0
1

0
0

F � 11
1

1
1

0
1

1
1

 FIGURE 4.27
 Implementing a Boolean function with a multiplexer

162 Chapter 4 Combinational Logic

data inputs are determined from the truth table listed in the figure. The corresponding

data line number is determined from the binary combination of ABC . For example, the

table shows that when ABC = 101, F = D, so the input variable D is applied to data

input 5. The binary constants 0 and 1 correspond to two fixed signal values. When inte-

grated circuits are used, logic 0 corresponds to signal ground and logic 1 is equivalent to

the power signal, depending on the technology (e.g., 3 V).

 Three-State Gates

 A multiplexer can be constructed with three-state gates—digital circuits that exhibit

three states. Two of the states are signals equivalent to logic 1 and logic 0 as in a conven-

tional gate. The third state is a high-impedance state in which (1) the logic behaves like

an open circuit, which means that the output appears to be disconnected, (2) the circuit

has no logic significance, and (3) the circuit connected to the output of the three-state

gate is not affected by the inputs to the gate. Three-state gates may perform any con-

ventional logic, such as AND or NAND. However, the one most commonly used is the

buffer gate.

 The graphic symbol for a three-state buffer gate is shown in Fig. 4.29 . It is distinguished

from a normal buffer by an input control line entering the bottom of the symbol. The

buffer has a normal input, an output, and a control input that determines the state of the

output. When the control input is equal to 1, the output is enabled and the gate behaves

like a conventional buffer, with the output equal to the normal input. When the control

S0

S1

S2

0
1
2

3
4

5

6

7

8 � 1 MUX

F

C

B
A

D

0

1

A B C D F

F � D

F � D

F � D�

F � 0

F � 0

F � D

F � 1

F � 1

0
0

0
0

0
0

0
0

1
1

1
1

1
1

1
1

0
0

0
0

1
1

1
1

0
0

0
0

1
1

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
0

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
0

0
0

0
0

0
1

1
1

1
1

 FIGURE 4.28
 Implementing a four-input function with a multiplexer

Section 4.11 Multiplexers 163

input is 0, the output is disabled and the gate goes to a high-impedance state, regardless

of the value in the normal input. The high-impedance state of a three-state gate provides

a special feature not available in other gates. Because of this feature, a large number of

three-state gate outputs can be connected with wires to form a common line without

endangering loading effects.

 The construction of multiplexers with three-state buffers is demonstrated in Fig. 4.30 .

Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three-state

buffers and an inverter. The two outputs are connected together to form a single output

line. (Note that this type of connection cannot be made with gates that do not have

three-state outputs.) When the select input is 0, the upper buffer is enabled by its control

input and the lower buffer is disabled. Output Y is then equal to input A . When the select

input is 1, the lower buffer is enabled and Y is equal to B .

 The construction of a four-to-one-line multiplexer is shown in Fig. 4.30(b) . The out-

puts of 4 three-state buffers are connected together to form a single output line. The

control inputs to the buffers determine which one of the four normal inputs I0 through

Normal input A Output Y � A if C � 1
High-impedance if C � 0

Control input C

 FIGURE 4.29
 Graphic symbol for a three-state buffer

I0

I1

I2

I3

Select

Enable

Y

A

B

Y

Select

(a) 2-to-1-line mux (b) 4-to-1-line mux

0

1

2

3

2 � 4
decoder

S1

S0

EN

 FIGURE 4.30
 Multiplexers with three-state gates

164 Chapter 4 Combinational Logic

 I3 will be connected to the output line. No more than one buffer may be in the active

state at any given time. The connected buffers must be controlled so that only 1 three-

state buffer has access to the output while all other buffers are maintained in a high-

impedance state. One way to ensure that no more than one control input is active at any

given time is to use a decoder, as shown in the diagram. When the enable input of the

decoder is 0, all of its four outputs are 0 and the bus line is in a high-impedance state

because all four buffers are disabled. When the enable input is active, one of the three-

state buffers will be active, depending on the binary value in the select inputs of the

decoder. Careful investigation reveals that this circuit is another way of constructing a

four-to-one-line multiplexer.

 4 . 1 2 H D L M O D E L S O F C O M B I N AT I O N A L
C I R C U I T S

 The Verilog HDL was introduced in Section 3.10. In the current section, we introduce

additional features of Verilog, present more elaborate examples, and compare alternative

descriptions of combinational circuits in Verilog. Sequential circuits are presented in

Chapter 5. As mentioned previously, the module is the basic building block for modeling

hardware with the Verilog HDL. The logic of a module can be described in any one (or a

combination) of the following modeling styles:

 • Gate-level modeling using instantiations of predefined and user-defined primitive

gates.

 • Dataflow modeling using continuous assignment statements with the keyword

 assign .

 • Behavioral modeling using procedural assignment statements with the keyword

 always .

 Gate-level (structural) modeling describes a circuit by specifying its gates and how they

are connected with each other. Dataflow modeling is used mostly for describing the

Boolean equations of combinational logic. We’ll also consider here behavioral modeling

that is used to describe combinational and sequential circuits at a higher level of abstrac-

tion. Combinational logic can be designed with truth tables, Boolean equations, and

schematics; Verilog has a construct corresponding to each of these “classical” approaches

to design: user-defined primitives, continuous assignments, and primitives, as shown in

 Fig. 4.31 . There is one other modeling style, called switch-level modeling. It is sometimes

used in the simulation of MOS transistor circuit models, but not in logic synthesis. We

will not consider switch-level modeling.

 Gate-Level Modeling

 Gate-level modeling was introduced in Section 3.10 with a simple example. In this type

of representation, a circuit is specified by its logic gates and their interconnections. Gate-

level modeling provides a textual description of a schematic diagram. The Verilog HDL

Section 4.12 HDL Models of Combinational Circuits 165

includes 12 basic gates as predefined primitives. Four of these primitive gates are of the

three-state type. The other eight are the same as the ones listed in Section 2.8. They are

all declared with the lowercase keywords and, nand, or, nor, xor, xnor, not, and buf .
Primitives such as and are n -input primitives. They can have any number of scalar inputs

(e.g., a three-input and primitive). The buf and not primitives are n -output primitives.

A single input can drive multiple output lines distinguished by their identifiers.

 The Verilog language includes a functional description of each type of gate, too. The

logic of each gate is based on a four-valued system. When the gates are simulated,

the simulator assigns one value to the output of each gate at any instant. In addition to

the two logic values of 0 and 1, there are two other values: unknown and high impedance .

An unknown value is denoted by x and a high impedance by z . An unknown value is

assigned during simulation when the logic value of a signal is ambiguous—for instance,

if it cannot be determined whether its value is 0 or 1 (e.g., a flip-flop without a reset

condition). A high-impedance condition occurs at the output of three-state gates that

are not enabled or if a wire is inadvertently left unconnected. The four-valued logic truth

tables for the and, or, xor, and not primitives are shown in Table 4.9 . The truth table for

the other four gates is the same, except that the outputs are complemented. Note that

for the and gate, the output is 1 only when both inputs are 1 and the output is 0 if any

input is 0. Otherwise, if one input is x or z , the output is x . The output of the or gate is 0

if both inputs are 0, is 1 if any input is 1, and is x otherwise.
 When a primitive gate is listed in a module, we say that it is instantiated in the module.

In general, component instantiations are statements that reference lower level compo-

nents in the design, essentially creating unique copies (or instances) of those components

in the higher level module. Thus, a module that uses a gate in its description is said to

Boolean equation

C
on

ti
nu

ou
s

as
si

gn
m

en
t

P
rim

itive (gate)

U
se

r-
de

fi
ne

d
pr

im
it

iv
e

Truth table Schematic

Verilog model
(combinational logic)

 FIGURE 4.31
 Relationship of Verilog constructs to truth tables, Boolean equations, and schematics

166 Chapter 4 Combinational Logic

 instantiate the gate. Think of instantiation as the HDL counterpart of placing and

 connecting parts on a circuit board.

 We now present two examples of gate-level modeling. Both examples use identifiers

having multiple bit widths, called vectors . The syntax specifying a vector includes within

square brackets two numbers separated with a colon. The following Verilog statements

specify two vectors:

 output [0: 3] D;

 wire [7: 0] SUM;

 The first statement declares an output vector D with four bits, 0 through 3. The second

declares a wire vector SUM with eight bits numbered 7 through 0. (Note : The first (left-

most) number (array index) listed is always the most significant bit of the vector.) The

individual bits are specified within square brackets, so D[2] specifies bit 2 of D . It is also

possible to address parts (contiguous bits) of vectors. For example, SUM[2: 0] specifies

the three least significant bits of vector SUM .

 HDL Example 4.1 shows the gate-level description of a two-to-four-line decoder.

(See Fig. 4.19 .) This decoder has two data inputs A and B and an enable input E . The

four outputs are specified with the vector D . The wire declaration is for internal connec-

tions. Three not gates produce the complement of the inputs, and four nand gates provide

the outputs for D . Remember that the output is always listed first in the port list of a
primitive , followed by the inputs. This example describes the decoder of Fig. 4.19 and

follows the procedures established in Section 3.10. Note that the keywords not and nand

are written only once and do not have to be repeated for each gate, but commas must

be inserted at the end of each of the gates in the series, except for the last statement,

which must be terminated with a semicolon.

 Table 4.9
 Truth Table for Predefined Primitive Gates

 and 0 1 x z or 0 1 x z

 0 0 0 0 0 0 0 1 x x

 1 0 1 x x 1 1 1 1 1

 x 0 x x x x x 1 x x

 z 0 x x x z x 1 x x

 xor 0 1 x z not input output

 0 0 1 x x 0 1

 1 1 0 x x 1 0

 x x x x x x x

 z x x x x z x

Section 4.12 HDL Models of Combinational Circuits 167

 HDL Example 4.1 (Two-to-Four-Line Decoder)

 // Gate-level description of two-to-four-line decoder
 // Refer to Fig. 4.19 with symbol E replaced by enable , for clarity.

 module decoder_2x4_gates (D, A, B, enable);
 output [0: 3] D;
 input A, B;
 input enable;
 wire A_not,B_not, enable_not;

 not

 G1 (A_not, A),
 G2 (B_not, B),
 G3 (enable_not, enable);

 nand

 G4 (D[0], A_not, B_not, enable_not),
 G5 (D[1], A_not, B, enable_not),
 G6 (D[2], A, B_not, enable_not),
 G7 (D[3], A, B, enable_not);

 endmodule

 Two or more modules can be combined to build a hierarchical description of a design.

There are two basic types of design methodologies: top down and bottom up. In a

 top-down design, the top-level block is defined and then the subblocks necessary to

build the top-level block are identified. In a bottom-up design, the building blocks are

first identified and then combined to build the top-level block. Take, for example, the

binary adder of Fig. 4.9 . It can be considered as a top-block component built with four

full-adder blocks, while each full adder is built with two half-adder blocks. In a top-down

design, the four-bit adder is defined first, and then the two adders are described. In a

bottom-up design, the half adder is defined, then each full adder is constructed, and then

the four-bit adder is built from the full adders.

 A bottom-up hierarchical description of a four-bit adder is shown in HDL

 Example 4.2. The half adder is defined by instantiating primitive gates. The next mod-

ule describes the full adder by instantiating and connecting two half adders. The third

module describes the four-bit adder by instantiating and connecting four full adders.

Note that the first character of an identifier cannot be a number, but can be an under-

score, so the module name _4bitadder is valid. An alternative name that is meaningful,

but does not require a leading underscore, is adder_4_bit . The instantiation is done by

using the name of the module that is instantiated together with a new (or the same)

set of port names. For example, the half adder HA1 inside the full adder module is

instantiated with ports S1 , C1 , x, and y . This produces a half adder with outputs S1 and

 C1 and inputs x and y .

168 Chapter 4 Combinational Logic

 HDL Example 4.2 (Ripple-Carry Adder)

 // Gate-level description of four-bit ripple carry adder
 // Description of half adder (Fig. 4.5b)

 // module half_adder (S, C, x, y); // Verilog 1995 syntax
 // output S, C;
 // input x, y;

 module half_adder (output S, C, input x, y); // Verilog 2001, 2005 syntax
 // Instantiate primitive gates

 xor (S, x, y);
 and (C, x, y);

 endmodule

 // Description of full adder (Fig. 4.8) // Verilog 1995 syntax
 // module full_adder (S, C, x, y, z);
 // output S, C;
 // input x, y, z;

 module full_adder (output S, C, input x, y, z); // Verilog 2001, 2005 syntax
 wire S1, C1, C2;

 // Instantiate half adders
 half_adder HA1 (S1, C1, x, y);
 half_adder HA2 (S, C2, S1, z);
 or G1 (C, C2, C1);

 endmodule

 // Description of four-bit adder (Fig. 4.9) // Verilog 1995 syntax
 // module ripple_carry_4_bit_adder (Sum, C4, A, B, C0);
 // output [3: 0] Sum;
 // output C4;
 // input [3: 0] A, B;
 // input C0;
 // Alternative Verilog 2001, 2005 syntax:

 module ripple_carry_4_bit_adder (output [3: 0] Sum, output C4,
input [3: 0] A, B, input C0);
 wire C1, C2, C3; // Intermediate carries

 // Instantiate chain of full adders
 full_adder FA0 (Sum[0], C1, A[0], B[0], C0),
 FA1 (Sum[1], C2, A[1], B[1], C1),
 FA2 (Sum[2], C3, A[2], B[2], C2),
 FA3 (Sum[3], C4, A[3], B[3], C3);
 endmodule

 HDL Example 4.2 illustrates Verilog 2001, 2005 syntax, which eliminates extra typing

of identifiers declaring the mode (e.g., output), type (reg), and declaration of a vector range

(e.g., [3: 0]) of a port. The first version of the standard (1995) uses separate statements for

these declarations.

Section 4.12 HDL Models of Combinational Circuits 169

 Note that modules can be instantiated (nested) within other modules, but module

declarations cannot be nested; that is, a module definition (declaration) cannot be placed

within another module declaration. In other words, a module definition cannot be

inserted into the text between the module and endmodule keywords of another module.

The only way one module definition can be incorporated into another module is by

instantiating it. Instantiating modules within other modules creates a hierarchical

decomposition of a design. A description of a module is said to be a structural descrip-

tion if it is composed of instantiations of other modules. Note also that instance names
must be specified when defined modules are instantiated (such as FA0 for the first full

adder in the third module), but using a name is optional when instantiating primitive

gates. Module ripple_carry_4_bit_adder is composed of instantiated and interconnected

full adders, each of which is itself composed of half adders and some glue logic . The top

level, or parent module, of the design hierarchy is the module ripple_carry_4_ bit_adder.

Four copies of full_adder are its child modules, etc. C0 is an input of the cell forming the

least significant bit of the chain, and C4 is the output of the cell forming the most

 significant bit.

 Three-State Gates

 As mentioned in Section 4.11, a three-state gate has a control input that can place the

gate into a high-impedance state. The high-impedance state is symbolized by z in Verilog.

There are four types of three-state gates, as shown in Fig. 4.32 . The bufif1 gate behaves

like a normal buffer if control = 1. The output goes to a high-impedance state z when

 control = 0. The bufif0 gate behaves in a similar fashion, except that the high-impedance

state occurs when control = 1. The two notif gates operate in a similar manner, except

that the output is the complement of the input when the gate is not in a high-impedance

state. The gates are instantiated with the statement

 gate name 1output, input, control2;

in out

control

bufif1

in out

control

bufif0

in out

control
notif1

in out

control
notif0

 FIGURE 4.32
 Three-state gates

170 Chapter 4 Combinational Logic

 The gate name can be that of any 1 of the 4 three-state gates. In simulation, the output

can result in 0, 1, x , or z . Two examples of gate instantiation are

 bufif1 (OUT, A, control);
 notif0 (Y, B, enable);

 In the first example, input A is transferred to OUT when control = 1. OUT goes to z

when control = 0. In the second example, output Y = z when enable = 1 and output

 Y = B� when enable = 0.

 The outputs of three-state gates can be connected together to form a common output

line. To identify such a connection, Verilog HDL uses the keyword tri (for tristate) to

indicate that the output has multiple drivers. As an example, consider the two-to-one-

line multiplexer with three-state gates shown in Fig. 4.33 .

A

B

m_out

select

 FIGURE 4.33
 Two-to-one-line multiplexer with three-state buffers

 The HDL description must use a tri data type for the output:

 // Mux with three-state output

 module mux_tri (m_out, A, B, select);
 output m_out;
 input A, B, select;
 tri m_out;

 bufif1 (m_out, A, select);
 bufif0 (m_out, B, select);

 endmodule

 The 2 three-state buffers have the same output. In order to show that they have a com-

mon connection, it is necessary to declare m_out with the keyword tri.
 Keywords wire and tri are examples of a set of data types called nets , which represent

connections between hardware elements. In simulation, their value is determined by a

continuous assignment statement or by the device whose output they represent. The word

 net is not a keyword, but represents a class of data types, such as wir e , wor, wand, tri,
 supply1, and supply0. The wire declaration is used most frequently. In fact, if an identifier

is used, but not declared, the language specifies that it will be interpreted (by default) as

a wire . The net wor models the hardware implementation of the wired-OR configuration

(emitter-coupled logic). The wand models the wired-AND configuration (open-collector

technology; see Fig. 3.26). The nets supply1 and supply0 represent power supply and

ground, respectively. They are used to hardwire an input of a device to either 1 or 0.

Section 4.12 HDL Models of Combinational Circuits 171

 Dataflow Modeling

 Dataflow modeling of combinational logic uses a number of operators that act on binary

operands to produce a binary result. Verilog HDL provides about 30 different operators.

 Table 4.10 lists some of these operators, their symbols, and the operation that they per-

form. (A complete list of operators supported by Verilog 2001, 2005 can be found in

 Table 8.1 in Section 8.2.) It is necessary to distinguish between arithmetic and logic

operations, so different symbols are used for each. The plus symbol 1+2 indicates the

arithmetic operation of addition; the bitwise logic AND operation (conjunction) uses

the symbol &. There are special symbols for bitwise logical OR (disjunction), NOT, and

XOR. The equality symbol uses two equals signs (without spaces between them) to

distinguish it from the equals sign used with the assign statement. The bitwise operators

operate bit by bit on a pair of vector operands to produce a vector result. The concat-

enation operator provides a mechanism for appending multiple operands. For example,

two operands with two bits each can be concatenated to form an operand with four bits.

The conditional operator acts like a multiplexer and is explained later, in conjunction

with HDL Example 4.6.
 It should be noted that a bitwise operator (e.g., &) and its corresponding logical

operator (e.g., !) may produce different results, depending on their operand. If the

operands are scalar the results will be identical; if the operands are vectors the result

will not necessarily match. For example, & (1010) is (0101), and !(1010) is 0. A binary

value is considered to be logically true if it is not 0. In general, use the bitwise opera-

tors to describe arithmetic operations and the logical operators to describe logical

operations.

 Dataflow modeling uses continuous assignments and the keyword assign. A continu-

ous assignment is a statement that assigns a value to a net. The data type family net is

used in Verilog HDL to represent a physical connection between circuit elements. A net

 Table 4.10
 Some Verilog HDL Operators

 Symbol Operation Symbol Operation

 � binary addition

 � binary subtraction

 & bitwise AND && logical AND

 � bitwise OR || logical OR

 ̂ bitwise XOR

 ∼ bitwise NOT ! logical NOT

 � � equality

 � greater than

 � less than

 {} concatenation

 ?: conditional

172 Chapter 4 Combinational Logic

is declared explicitly by a net keyword (e.g., wire) or by declaring an identifier to be an

input port. The logic value associated with a net is determined by what the net is con-

nected to. If the net is connected to an output of a gate, the net is said to be driven by

the gate, and the logic value of the net is determined by the logic values of the inputs to

the gate and the truth table of the gate. If the identifier of a net is the left-hand side of

a continuous assignment statement or a procedural assignment statement, the value

assigned to the net is specified by a Boolean expression that uses operands and opera-

tors. As an example, assuming that the variables were declared, a two-to-one-line mul-

tiplexer with scalar data inputs A and B , select input S , and output Y is described with

the continuous assignment

 assign Y � (A && S) || (B && S)

 The relationship between Y , A , B , and S is declared by the keyword assign , followed by

the target output Y and an equals sign. Following the equals sign is a Boolean expres-

sion. In hardware terms, this assignment would be equivalent to connecting the output

of the OR gate to wire Y .

 The next two examples show the dataflow models of the two previous gate-level

examples. The dataflow description of a two-to-four-line decoder with active-low output

enable and inverted output is shown in HDL Example 4.3. The circuit is defined with

four continuous assignment statements using Boolean expressions, one for each output.

The dataflow description of the four-bit adder is shown in HDL Example 4.4. The addi-

tion logic is described by a single statement using the operators of addition and concat-

enation. The plus symbol (�) specifies the binary addition of the four bits of A with the

four bits of B and the one bit of C _ in . The target output is the concatenation of the

output carry C _ out and the four bits of Sum . Concatenation of operands is expressed

within braces and a comma separating the operands. Thus, {C_out, Sum} represents the

five-bit result of the addition operation.

 HDL Example 4.3 (Dataflow: Two-to-Four Line Decoder)

 // Dataflow description of two-to-four-line decoder

 // See Fig. 4.19 . Note: The figure uses symbol E, but the
 // Verilog model uses enable to clearly indicate functionality.

 module decoder_2x4_df (// Verilog 2001, 2005 syntax
 output [0: 3] D,
 input A, B,
 enable
);
 assign D[0] � !((!A) && (!B) && (!enable)),
 D[1] � !(*!A) && B && (!enable)),
 D[2] � !(A && B && (!enable)
 D[3] � !(A && B && (!enable))
 endmodule

Section 4.12 HDL Models of Combinational Circuits 173

 Dataflow HDL models describe combinational circuits by their function rather than

by their gate structure. To show how dataflow descriptions facilitate digital design, con-

sider the 4-bit magnitude comparator described in HDL Example 4.5. The module

specifies two 4-bit inputs A and B and three outputs. One output (A_lt_B) is logic 1 if

 A is less than B , a second output (A_gt_B) is logic 1 if A is greater than B , and a third

output (A_eq_B) is logic 1 if A is equal to B . Note that equality (identity) is symbolized

with two equals signs (� �) to distinguish the operation from that of the assignment

operator (�). A Verilog HDL synthesis compiler can accept this module description as

input, execute synthesis algorithms, and provide an output netlist and a schematic of a

circuit equivalent to the one in Fig. 4.17 , all without manual intervention! The designer

need not draw the schematic.

 HDL Example 4.4 (Dataflow: Four-Bit Adder)

 // Dataflow description of four-bit adder

 // Verilog 2001, 2005 module port syntax

 module binary_adder (
 output [3: 0] Sum,
 output C_out,
 input [3: 0] A, B,
 input C_in
);

 assign {C_out, Sum} � A � B � C_in;
 endmodule

 HDL Example 4.5 (Dataflow: Four-Bit Comparator)

 // Dataflow description of a four-bit comparator //V2001, 2005 syntax

 module mag_compare
 (output A_lt_B, A_eq_B, A_gt_B,
 input [3: 0] A, B
);
 assign A_lt_B � (A � B);
 assign A_gt_B � (A � B);
 assign A_eq_B � (A � � B);
 endmodule

 The next example uses the conditional operator (? :). This operator takes three

operands:

 condition ? true-expression : false-expression;

 The condition is evaluated. If the result is logic 1, the true expression is evaluated and

used to assign a value to the left-hand side of an assignment statement. If the result is

174 Chapter 4 Combinational Logic

logic 0, the false expression is evaluated. The two conditions together are equivalent to

an if–else condition. HDL Example 4.6 describes a two-to-one-line multiplexer using

the conditional operator. The continuous assignment

 assign OUT � select ? A : B;

 specifies the condition that OUT � A if select � 1, else OUT � B if select � 0.

 HDL Example 4.6 (Dataflow: Two-to-One Multiplexer)

 // Dataflow description of two-to-one-line multiplexer

 module mux_2x1_df(m_out, A, B, select);
 output m_out;
 input A, B;
 input select;

 assign m_out � (select)? A : B;
 endmodule

 Behavioral Modeling

 Behavioral modeling represents digital circuits at a functional and algorithmic level. It

is used mostly to describe sequential circuits, but can also be used to describe combina-

tional circuits. Here, we give two simple combinational circuit examples to introduce the

subject. Behavioral modeling is presented in more detail in Section 5.6, after the study

of sequential circuits.

 Behavioral descriptions use the keyword always , followed by an optional event con-

trol expression and a list of procedural assignment statements. The event control expres-

sion specifies when the statements will execute. The target output of a procedural

assignment statement must be of the reg data type. Contrary to the wire data type,

whereby the target output of an assignment may be continuously updated, a reg data

type retains its value until a new value is assigned.

 HDL Example 4.7 shows the behavioral description of a two-to-one-line multiplexer.

(Compare it with HDL Example 4.6.) Since variable m_out is a target output, it must

be declared as reg data (in addition to the output declaration). The procedural assign-

ment statements inside the always block are executed every time there is a change in

any of the variables listed after the @ symbol. (Note that there is no semicolon (;) at the

end of the always statement.) In this case, these variables are the input variables A , B ,

and select. The statements execute if A, B , or select changes value. Note that the keyword

 or , instead of the bitwise logical OR operator “|”, is used between variables. The condi-

tional statement if–else provides a decision based upon the value of the select input. The

 if statement can be written without the equality symbol:

 if (select) OUT � A;

 The statement implies that select is checked for logic 1.

Section 4.12 HDL Models of Combinational Circuits 175

 HDL Example 4.8 describes the function of a four-to-one-line multiplexer. The select
input is defined as a two-bit vector, and output y is declared to have type reg . The always

statement, in this example, has a sequential block enclosed between the keywords case

and endcase . The block is executed whenever any of the inputs listed after the @ symbol

changes in value. The case statement is a multiway conditional branch construct. When-

ever in_0, in_1, in_2, in_3 or select change, the case expression (select) is evaluated and

its value compared, from top to bottom, with the values in the list of statements that

follow, the so-called case items. The statement associated with the first case item that

matches the case expression is executed. In the absence of a match, no statement is

executed. Since select is a two-bit number, it can be equal to 00, 01, 10, or 11. The case

items have an implied priority because the list is evaluated from top to bottom.

 The list is called a sensitivity list (Verilog 2001, 2005) and is equivalent to the event
control expression (Verilog 1995) formed by “ORing” the signals. Combinational logic

is reactive—when an input changes an output may change.

 HDL Example 4.7 (Behavioral: Two-to-One Line Multiplexer)

 // Behavioral description of two-to-one-line multiplexer

 module mux_2x1_beh (m_out, A, B, select);
 output m_out;
 input A, B, select;
 reg m_out;

 always @(A or B or select)
 if (select �� 1) m_out � A;
 else m_out 5 B;
 endmodule

 HDL Example 4.8 (Behavioral: Four-to-One Line Multiplexer)

 // Behavioral description of four-to-one line multiplexer

 // Verilog 2001, 2005 port syntax

 module mux_4x1_beh
 (output reg m_out,
 input in_0, in_1, in_2, in_3,
 input [1: 0] select
);
 always @ (in_0, in_1, in_2, in_3, select) // Verilog 2001, 2005 syntax
 case (select)
 2’b00: m_out � in_0;
 2’b01: m_out � in_1;
 2’b10: m_out � in_2;
 2’b11: m_out � in_3;
 endcase
 endmodule

176 Chapter 4 Combinational Logic

 Binary numbers in Verilog are specified and interpreted with the letter b preceded

by a prime. The size of the number is written first and then its value. Thus, 2�b01 speci-

fies a two-bit binary number whose value is 01. Numbers are stored as a bit pattern in

memory, but they can be referenced in decimal, octal, or hexadecimal formats with the

letters d� o�, and h�, respectively. For example, 4�HA � 4�d10 � 4�b1010 and have the

same internal representation in a simulator. If the base of the number is not specified,

its interpretation defaults to decimal. If the size of the number is not specified, the

system assumes that the size of the number is at least 32 bits; if a host simulator has a

larger word length—say, 64 bits—the language will use that value to store unsized

numbers. The integer data type (keyword integer) is stored in a 32-bit representation.

The underscore (_) may be inserted in a number to improve readability of the code

(e.g., 16�b0101_1110_0101_0011). It has no other effect.

 The case construct has two important variations: casex and casez . The first will treat

as don’t-cares any bits of the case expression or the case item that have logic value x or

 z . The casez construct treats as don’t-cares only the logic value z , for the purpose of

detecting a match between the case expression and a case item.

 The list of case items need not be complete. If the list of case items does not include

all possible bit patterns of the case expression, no match can be detected. Unlisted case

items, i.e., bit patterns that are not explicitly decoded can be treated by using the default
keyword as the last item in the list of case items. The associated statement will execute

when no other match is found. This feature is useful, for example, when there are more

possible state codes in a sequential machine than are actually used. Having a default
case item lets the designer map all of the unused states to a desired next state without

having to elaborate each individual state, rather than allowing the synthesis tool to

arbitrarily assign the next state.

 The examples of behavioral descriptions of combinational circuits shown here are

simple ones. Behavioral modeling and procedural assignment statements require knowl-

edge of sequential circuits and are covered in more detail in Section 5.6.

 Writing a Simple Test Bench

 A test bench is an HDL program used for describing and applying a stimulus to an HDL

model of a circuit in order to test it and observe its response during simulation. Test

benches can be quite complex and lengthy and may take longer to develop than the

design that is tested. The results of a test are only as good as the test bench that is used

to test a circuit. Care must be taken to write stimuli that will test a circuit thoroughly,

exercising all of the operating features that are specified. However, the test benches

considered here are relatively simple, since the circuits we want to test implement only

combinational logic. The examples are presented to demonstrate some basic features of

HDL stimulus modules. Chapter 8 considers test benches in greater depth.

 In addition to employing the always statement, test benches use the initial statement

to provide a stimulus to the circuit being tested. We use the term “ always statement”

loosely. Actually, always is a Verilog language construct specifying how the associated

statement is to execute (subject to the event control expression). The always statement

Section 4.12 HDL Models of Combinational Circuits 177

executes repeatedly in a loop. The initial statement executes only once, starting from

simulation time 0, and may continue with any operations that are delayed by a given

number of time units, as specified by the symbol #. For example, consider the initial
block

initial

begin
A � 0; B � 0;

#10 A � 1;
#20 A � 0; B � 1;

end

The block is enclosed between the keywords begin and end . At time 0, A and B are set

to 0. Ten time units later, A is changed to 1. Twenty time units after that (at t � 30), A is

changed to 0 and B to 1. Inputs specified by a three-bit truth table can be generated with

the initial block:

initial

begin
D � 3’b000;
repeat (7)
#10 D � D � 3’b001;

end

When the simulator runs, the three-bit vector D is initialized to 000 at time � 0. The

keyword repeat specifies a looping statement: D is incremented by 1 seven times, once

every 10 time units. The result is a sequence of binary numbers from 000 to 111.

A stimulus module has the following form:

module test_module_name;
// Declare local reg and wire identifiers.
// Instantiate the design module under test.
// Specify a stopwatch, using $finish to terminate the simulation.
// Generate stimulus, using initial and always statements.
// Display the output response (text or graphics (or both)).

endmodule

A test module is written like any other module, but it typically has no inputs or outputs.

The signals that are applied as inputs to the design module for simulation are declared

in the stimulus module as local reg data type. The outputs of the design module that are

displayed for testing are declared in the stimulus module as local wire data type. The

module under test is then instantiated, using the local identifiers in its port list.

Figure 4.34 clarifies this relationship. The stimulus module generates inputs for the

design module by declaring local identifiers t_A and t_B as reg type and checks the

output of the design unit with the wire identifier t_C . The local identifiers are then used

to instantiate the design module being tested. The simulator associates the (actual) local

identifiers within the test bench, t_A, t_B , and t_C, with the formal identifiers of the

178 Chapter 4 Combinational Logic

module (A, B, C). The association shown here is based on position in the port list, which

is adequate for the examples that we will consider. The reader should note, however,

that Verilog provides a more flexible name association mechanism for connecting ports

in larger circuits.

 The response to the stimulus generated by the initial and al ways blocks will

appear in text format as standard output and as waveforms (timing diagrams) in

simulators having graphical output capability. Numerical outputs are displayed by

using Verilog system tasks . These are built-in system functions that are recognized

by keywords that begin with the symbol $. Some of the system tasks that are useful

for display are

 $display —display a one-time value of variables or strings with an end-of-line return,

 $write —same as $display , but without going to next line,

 $monitor —display variables whenever a value changes during a simulation run,

 $time —display the simulation time,

 $finish —terminate the simulation.

 The syntax for $display, $write, and $monitor is of the form

 Task-name (format specification, argumentlist);

 The format specification uses the symbol % to specify the radix of the numbers that are

displayed and may have a string enclosed in quotes (�). The base may be binary, decimal,

hexadecimal, or octal, identified with the symbols %b, %d, %h, and %o, respectively

(%B, %D, %H, and %O are valid too). For example, the statement

 $display ("%d %b %b", C, A, B);

 specifies the display of C in decimal and of A and B in binary. Note that there are no

commas in the format specification, that the format specification and argument list

module t_circuit;

reg t_A, t_B;

wire t_C;

// Stimulus generators for

// t_A and t_B go here

initial # stop_time $finish;

endmodule

module circuit (C , A, B)

input A, B;

output C;

// Description goes here

endmodule

parameter stop_time � 1000 ;

 circuit M (t_C, t_A, t_B);

 FIGURE 4.34
 Interaction between stimulus and design modules

Section 4.12 HDL Models of Combinational Circuits 179

are separated by a comma, and that the argument list has commas between the

 variables. An example that specifies a string enclosed in quotes may look like the

statement

 $display ("time � %0d A � %b", $time, A, B);

 and will produce the display

 time � 3 A � 10 B � 1

 where (time �), (A �), and (B �) are part of the string to be displayed. The format

specifiers %0d, %b, and %b specify the base for $time , A , and B , respectively. In display-

ing time values, it is better to use the format %0d instead of %d. This provides a display

of the significant digits without the leading spaces that %d will include. (%d will display

about 10 leading spaces because time is calculated as a 32-bit number.)

 An example of a stimulus module is shown in HDL Example 4.9. The circuit to be

tested is the two-to-one-line multiplexer described in Example 4.6. The module

 t_mux_2x1_df has no ports. The inputs for the mux are declared with a reg keyword and

the outputs with a wire keyword. The mux is instantiated with the local variables. The

 initial block specifies a sequence of binary values to be applied during the simulation.

The output response is checked with the $monitor system task. Every time a variable in

its argument changes value, the simulator displays the inputs, output, and time. The result

of the simulation is listed under the simulation log in the example. It shows that

 m_out � A when select � 1 and m_out � B when select � 0 verifying the operation of

the multiplexer.

 HDL Example 4.9 (Test Bench)

 // Test bench with stimulus for mux_2x1_df

 module t_mux_2x1_df;
 wire t_mux_out;
 reg t_A, t_B;
 reg t_select;
 parameter stop_time � 50;

 mux_2x1_df M1 (t_mux_out, t_A, t_B, t_select); // Instantiation of circuit to be tested

 initial # stop_time $finish;

 initial begin // Stimulus generator
 t_select � 1; t_A � 0; t_B � 1;
 #10 t_A � 1; t_B � 0;
 #10 t_select � 0;
 #10 t_A � 0; t_B � 1;
 end

 initial begin // Response monitor
 // $display (� time Select A B m_out �);
 // $monitor ($time ,, � %b %b %b %b �, t_select, t_A, t_B, t_m_out);

180 Chapter 4 Combinational Logic

Logic simulation is a fast and accurate method of verifying that a model of a

combinational circuit is correct. There are two types of verification: functional and

timing. In functional verification, we study the circuit logical operation indepen-

dently of timing considerations. This can be done by deriving the truth table of the

combinational circuit. In timing verification, we study the circuit’s operation by

including the effect of delays through the gates. This can be done by observing the

waveforms at the outputs of the gates when they respond to a given input. An exam-

ple of a circuit with gate delays was presented in Section 3.10 in HDL Example 3.3 .

We next show an HDL example that produces the truth table of a combinational

circuit. A $monitor system task displays the output caused by the given stimulus.

A commented alternative statement having a $displ ay task would create a header

that could be used with a $monitor statement to eliminate the repetition of names

on each line of output.

The analysis of combinational circuits was covered in Section 4.3. A multilevel

circuit of a full adder was analyzed, and its truth table was derived by inspection. The

gate-level description of this circuit is shown in HDL Example 4.10. The circuit has

three inputs, two outputs, and nine gates. The description of the circuit follows the

interconnections between the gates according to the schematic diagram of Fig. 4.2 .

The stimulus for the circuit is listed in the second module. The inputs for simulating

the circuit are specified with a three-bit reg vector D . D[2] is equivalent to input A ,

D[1] to input B , and D[0] to input C . The outputs of the circuit F1 and F2 are declared

as wire. The complement of F2 is named F2_b to illustrate a common industry practice

for designating the complement of a signal (instead of appending _not). This procedure

$monitor (� time � �, $time ,, � select � %b A � %b B � %b OUT � %b �,
 t_select, t_A, t_B, t_mux_out);
end

endmodule

// Dataflow description of two-to-one-line multiplexer

// from Example 4.6
module mux_2x1_df (m_out, A, B, select);
output m_out;
input A, B;
input select;

assign m_out � (select)? A : B;
endmodule

Simulation log:
select � 1 A � 0 B � 1 OUT � 0 time � 0
select � 1 A � 1 B � 0 OUT � 1 time � 10
select � 0 A � 1 B � 0 OUT � 0 time � 20
select � 0 A � 0 B � 1 OUT � 1 time � 30

Section 4.12 HDL Models of Combinational Circuits 181

follows the steps outlined in Fig. 4.34 . The repeat loop provides the seven binary num-

bers after 000 for the truth table. The result of the simulation generates the output

truth table displayed with the example. The truth table listed shows that the circuit is

a full adder.

 HDL Example 4.10 (Gate-Level Circuit)

 // Gate-level description of circuit of Fig. 4.2

 module Circuit_of_Fig_4_2 (A, B, C, F1, F2);
 input A, B, C;
 output F1, F2;
 wire T1, T2, T3, F2_b, E1, E2, E3;
 or g1 (T1, A, B, C);
 and g2 (T2, A, B, C);
 and g3 (E1, A, B);
 and g4 (E2, A, C);
 and g5 (E3, B, C);
 or g6 (F2, E1, E2, E3);
 not g7 (F2_b, F2);
 and g8 (T3, T1, F2_b);
 or g9 (F1, T2, T3);
 endmodule

 // Stimulus to analyze the circuit

 module test_circuit;
 reg [2: 0] D;
 wire F1, F2;
 Circuit_of_Fig_4_2 (D[2], D[1], D[0], F1, F2);
 initial
 begin
 D � 3’b000;
 repeat (7) #10 D � D 1 1’b1;
 end
 initial
 $monitor (� ABC � %b F1 � %b F2 �%b �, D, F1, F2);

 endmodule

 Simulation log: ABC � 000 F1 � 0 F2 �0
 ABC � 001 F1 � 1 F2 �0 ABC � 010 F1 � 1 F2 �0
 ABC � 011 F1 � 0 F2 �1 ABC � 100 F1 � 1 F2 �0
 ABC � 101 F1 � 0 F2 �1 ABC � 110 F1 � 0 F2 �1
 ABC � 111 F1 � 1 F2 �1

182 Chapter 4 Combinational Logic

 P R O B L E M S

 (Answers to problems marked with * appear at the end of the text. Where appropriate, a logic

design and its related HDL modeling problem are cross-referenced.)

 4.1 Consider the combinational circuit shown in Fig. P4.1 . (HDL—see Problem 4.49.)

A

B

C

D

T1

T3

T4

F1

F2

T2

 FIGURE P4.1

 (a)* Derive the Boolean expressions for T1 through T4. Evaluate the outputs F1 and F2

as a function of the four inputs.

 (b) List the truth table with 16 binary combinations of the four input variables. Then list

the binary values for T1 through T4 and outputs F1 and F2 in the table.

 (c) Plot the output Boolean functions obtained in part (b) on maps and show that the

simplified Boolean expressions are equivalent to the ones obtained in part (a).

 4.2* Obtain the simplified Boolean expressions for output F and G in terms of the input

 variables in the circuit of Fig. P4.2 .

F

G

A

B

C

D

 FIGURE P4.2

 4.3 For the circuit shown in Fig. 4.26 (Section 4.11),

 (a) Write the Boolean functions for the four outputs in terms of the input variables.

 (b)* If the circuit is described in a truth table, how many rows and columns would there

be in the table?

 4.4 Design a combinational circuit with three inputs and one output.

 (a)* The output is 1 when the binary value of the inputs is less than 3. The output is 0 otherwise.

 (b) The output is 1 when the binary value of the inputs is an even number.

Problems 183

 4.5 Design a combinational circuit with three inputs, x , y , and z , and three outputs, A, B , and C .

When the binary input is 0, 1, 2, or 3, the binary output is one greater than the input. When

the binary input is 4, 5, 6, or 7, the binary output is two less than the input.

 4.6 A majority circuit is a combinational circuit whose output is equal to 1 if the input variables

have more 1’s than 0’s. The output is 0 otherwise.

 (a)* Design a 3-input majority circuit by finding the circuit’s truth table, Boolean equation,

and a logic diagram.

 (b) Write and verify a Verilog gate-level model of the circuit.

 4.7 Design a combinational circuit that converts a four-bit Gray code (Table 1.6) to a bit four-

binary number.

 (a)* Implement the circuit with exclusive-OR gates.

 (b) Using a case statement, write and verify a Verilog model of the circuit.

 4.8 Design a code converter that converts a decimal digit from

 (a)* The 8, 4, –2, –1 code to BCD (see Table 1.5). (HDL—see Problem 4.50.)

 (b) The 8, 4, –2, –1 code to Gray code.

 4.9 An ABCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit

in BCD to an appropriate code for the selection of segments in an indicator used to display

the decimal digit in a familiar form. The seven outputs of the decoder (a, b, c, d, e, f, g) select

the corresponding segments in the display, as shown in Fig. P4.9(a) . The numeric display

chosen to represent the decimal digit is shown in Fig. P4.9(b) . Using a truth table and

 Karnaugh maps, design the BCD-to-seven-segment decoder using a minimum number of

gates. The six invalid combinations should result in a blank display. (HDL—see Problem 4.51.)

(a) Segment designation (b) Numerical designation for display

b

c

b

a

g

d c

f

e

 FIGURE P4.9

 4.10* Design a four-bit combinational circuit 2’s complementer. (The output generates the 2’s

complement of the input binary number.) Show that the circuit can be constructed with

exclusive-OR gates. Can you predict what the output functions are for a five-bit 2’s com-

plementer?

 4.11 Using four half-adders (HDL—see Problem 4.52),

 (a) Design a full-subtractor circuit incrementer. (A circuit that adds one to a four-bit

binary number.)

 (b)* Design a four-bit combinational decrementer (a circuit that subtracts 1 from a four-

bit binary number).

 4.12 Design a half-subtractor circuit with inputs x and y and outputs Diff and B out . The circuit

subtracts the bits x – y and places the difference in D and the borrow in B out .
 (a) Design a full-subtractor circuit with three inputs x , y , B in and two outputs Diff and

 B out . The circuit subtracts x – y – B in , where B in is the input borrow, B out is the output

borrow, and Diff is the difference.

184 Chapter 4 Combinational Logic

 4.13* The adder–subtractor circuit of Fig. 4.13 has the following values for mode input M and

data inputs A and B .

 M A B

 (a) 0 0111 0110

 (b) 0 1000 1001

 (c) 1 1100 1000

 (d) 1 0101 1010

 (e) 1 0000 0001

 In each case, determine the values of the four SUM outputs, the carry C , and overflow V .

(HDL—see Problems 4.37 and 4.40.)

 4.14* Assume that the exclusive-OR gate has a propagation delay of 10 ns and that the AND or

OR gates have a propagation delay of 5 ns. What is the total propagation delay time in the

four-bit adder of Fig. 4.12 ?

 4.15 Derive the two-level Boolean expression for the output carry C 4 shown in the lookahead

carry generator of Fig. 4.12 .

 4.16 Define the carry propagate and carry generate as

 Pi � Ai � Bi

 Gi � AiBi

 respectively. Show that the output carry and output sum of a full adder becomes

 Ci+ 1 = (C�i G�i + P�i)�

 Si = (PiG�i) { Ci

 The logic diagram of the first stage of a four-bit parallel adder as implemented in IC type

74283 is shown in Fig. P4.16 . Identify the P�i and G�i terminals and show that the circuit

implements a full-adder circuit.

B0

A0

C0

C1

S0

 FIGURE P4.16
 First stage of a parallel adder

Problems 185

 4.17 Show that the output carry in a full adder circuit can be expressed in the AND-OR-

INVERT form

 Ci+ 1 = Gi + PiCi = (Gi
�Pi

� + Gi
�Ci

�)�

 IC type 74182 is a lookahead carry generator circuit that generates the carries with AND-

OR-INVERT gates (see Section 3.8). The circuit assumes that the input terminals have

the complements of the G ’s, the P ’s, and of C 1 . Derive the Boolean functions for the

lookahead carries C 2 , C 3 , and C 4 in this IC. (Hint: Use the equation-substitution method

to derive the carries in terms of C i �)

 4.18 Design a combinational circuit that generates the 9’s complement of a

 (a)* BCD digit. (HDL—see Problem 4.54(a).)

 (b) Gray-code digit. (HDL—see Problem 4.54(b).)

 4.19 Construct a BCD adder–subtractor circuit. Use the BCD adder of Fig. 4.14 and the 9’s

complementer of problem 4.18. Use block diagrams for the components. (HDL—see Prob-

lem 4.55.)

 4.20 For a binary multiplier that multiplies two unsigned four-bit numbers,

 (a) Using AND gates and binary adders (see Fig. 4.16), design the circuit.

 (b) Write and verify a Verilog dataflow model of the circuit.

 4.21 Design a combinational circuit that compares two 4-bit numbers to check if they are equal.

The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.

 4.22* Design an excess-3-to-binary decoder using the unused combinations of the code as

 don’t-care conditions. (HDL—see Problem 4.42.)

 4.23 Draw the logic diagram of a 2-to-4-line decoder using (a) NOR gates only and (b) NAND

gates only. Include an enable input. (HDL—see Problems 4.36, 4.45.)

 4.24 Design a BCD-to-decimal decoder using the unused combinations of the BCD code as

don’t-care conditions.

 4.25 Construct a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to-

4-line decoder. Use block diagrams for the components. (HDL—see Problem 4.63.)

 4.26 Construct a 4-to-16-line decoder with five 2-to-4-line decoders with enable. (HDL—see

Problem 4.64.)

 4.27 A combinational circuit is specified by the following three Boolean functions:

 F11A, B, C2 = �11, 4, 62

 F21A, B, C2 = �13, 52

 F31A, B, C2 = �12, 4, 6, 72

 Implement the circuit with a decoder constructed with NAND gates (similar to Fig. 4.19)

and NAND or AND gates connected to the decoder outputs. Use a block diagram for the

decoder. Minimize the number of inputs in the external gates.

 4.28 Using a decoder and external gates, design the combinational circui defined by the

following three Boolean functions:

 (a) F1 = x�yz� + xz (b) F1 = 1y� + x2z

 F2 = xy�z� + x�y F2 = y�z� + x�y + yz�

 F3 = x�y�z� + xy F3 = 1x + y2z

186 Chapter 4 Combinational Logic

 4.29* Design a four-input priority encoder with inputs as in Table 4.8 , but with input D 0 having

the highest priority and input D 3 the lowest priority.

 4.30 Specify the truth table of an octal-to-binary priority encoder. Provide an output V to in-

dicate that at least one of the inputs is present. The input with the highest subscript num-

ber has the highest priority. What will be the value of the four outputs if inputs D 2 and D 6

are 1 at the same time? (HDL—see Problem 4.65.)

 4.31 Construct a 16 � 1 multiplexer with two 8 � 1 and one 2 � 1 multiplexers. Use block dia-

grams. (HDL—see Problem 4.67.)

 4.32 Implement the following Boolean function with a multiplexer (HDL—see Problem 4.46):

 (a) F1A, B, C, D2 = � 10, 2, 5, 8, 10, 142

 (b) F1A, B, C, D2 = �12, 6, 112

 4.33 Implement a full adder with two 4 � 1 multiplexers.

 4.34 An 8 � 1 multiplexer has inputs A , B , and C connected to the selection inputs S 2 , S 1 , and

 S 0 , respectively. The data inputs I 0 through I7 are as follows:

 (a)* I 1 � I 2 � I 7 � 0; I 3 � I 5 � 1; I 0 � I 4 � D ; and I 6 � D ’.

 (b) I 1 � I 2 � 0; I 3 � I 7 � 1; I 4 � I 5 � D ; and I 0 � I 6 � D ’.

 Determine the Boolean function that the multiplexer implements.

 4.35 Implement the following Boolean function with a 4 � 1 multiplexer and external gates.

 (a)* F11A, B, C, D2 = � 11, 3, 4, 11, 12, 13, 14, 152

 (b) F21A, B, C, D2 = � 11, 2, 5, 7, 8, 10, 11, 13, 152

 Connect inputs A and B to the selection lines. The input requirements for the four data

lines will be a function of variables C and D . These values are obtained by expressing F as

a function of C and D for each of the four cases when AB � 00, 01, 10, and 11. These func-

tions may have to be implemented with external gates. (HDL—see Problem 4.47.)

 4.36 Write the HDL gate-level description of the priority encoder circuit shown in Fig. 4.23 .

(HDL—see Problem 4.45.)

 4.37 Write the HDL gate-level hierarchical description of a four-bit adder–subtractor for un-

signed binary numbers. The circuit is similar to Fig. 4.13 but without output V . You can

instantiate the four-bit full adder described in HDL Example 4.2. (HDL—see Problems

4.13 and 4.40.)

 4.38 Write the HDL dataflow description of a quadruple 2-to-1-line multiplexer with enable

(see Fig. 4.26).

 4.39* Write an HDL behavioral description of a four-bit comparator with a six-bit output Y35:04 .
Bit 5 of Y is for “equals,” bit 4 for “not equal to,” bit 3 for “greater than,” bit 2 for “less

than,” bit 1 for “greater than or equal,” and bit 0 for “less than or equal to.”

 4.40 Using the conditional operator (?:), write an HDL dataflow description of a four-bit adder–

subtractor of unsigned numbers. (See Problems 4.13 and 4.37.)

 4.41 Repeat problem 4.40 using an always statement.

Problems 187

 4.42 (a) Write an HDL gate-level description of the BCD-to-excess-3 converter circuit shown

in Fig. 4.4 (see Problem 4.22).

 (b) Write a dataflow description of the BCD-to-excess-3 converter using the Boolean

expressions listed in Fig. 4.3 .

 (c)* Write an HDL behavioral description of a BCD-to-excess-3 converter.

 (d) Write a test bench to simulate and test the BCD-to-excess-3 converter circuit in order

to verify the truth table. Check all three circuits.

 4.43 Explain the function of the circuit specified by the following HDL description:

 module Prob4_43 (A, B, S, E, Q);
 input [1:0] A, B;
 input S, E;
 output [1:0] Q;
 assign Q � E ? (S ? A : B) : 'bz;
 endmodule

 4.44 Using a case statement, write an HDL behavioral description of a eight-bit arithmetic-

logic unit (ALU). The circuit has a three-bit select bus (Sel), sixteen-bit input datapaths

(A[15:0] and B[15:0]), an eight-bit output datapath (y[15:0]), and performs the arithmetic

and logic operations listed below.

 Sel Operation Description

 000 y � 8�b0
 001 y � A & B Bitwise AND
 010 y � A | B Bitwise OR
 011 y � A ^ B Bitwise exclusive OR
 100 y � ~ A Bitwise complement
 101 y � A � B Subtract
 110 y � A � B Add (Assume A and B are unsigned)
 111 y � 8�hFF

 4.45 Write an HDL behavioral description of a four-input priority encoder. Use a four-bit vector

for the D inputs and an always block with if–else statements. Assume that input D [3] has

the highest priority (see Problem 4.36).

 4.46 Write a Verilog dataflow description of the logic circuit described by the Boolean function

in Problem 4.32.

 4.47 Write a Verilog dataflow description of the logic circuit described by the Boolean function

in Problem 4.35.

 4.48 Develop and modify the eight-bit ALU specified in Problem 4.44 so that it has three-state

output controlled by an enable input, En . Write a test bench and simulate the circuit.

 4.49 For the circuit shown in Fig. P4.1,

 (a) Write and verify a gate-level HDL model of the circuit.

 (b) Compare your results with those obtained for Problem 4.1.

 4.50 Using a case statement, develop and simulate a behavioral model of

 (a)* The 8, 4, –2, –1 to BCD code converter described in Problem 4.8(a).

 (b) The 8, 4, –2, –1 to Gray code converter described in Problem 4.8(b).

188 Chapter 4 Combinational Logic

 4.51 Develop and simulate a behavioral model of the ABCD-to-seven-segment decoder

 described in Problem 4.9.

 4.52 Using a continuous assignment, develop and simulate a dataflow model of

 (a) The four-bit incrementer described in Problem 4.11(a).

 (b) The four-bit decrementer described in Problem 4.11(b).

 4.53 Develop and simulate a structural model of the decimal adder shown in Fig. 4.14 .

 4.54 Develop and simulate a behavioral model of a circuit that generates the 9’s complement of

 (a) a BCD digit (see Problem 4.18(a)).

 (b) a Gray-code digit (see Problem 4.18(b).)

 4.55 Construct a hierarchical model of the BCD adder–subtractor described in Problem 4.19.

The BCD adder and the 9’s complementer are to be described as behavioral models in

separate modules, and they are to be instantiated in a top-level module.

 4.56* Write a continuous assignment statement that compares two 4-bit numbers to check if

their bit patterns match. The variable to which the assignment is made is to equal 1 if the

numbers match and 0 otherwise.

 4.57* Develop and verify a behavioral model of the four-bit priority encoder described in

 Problem 4.29.

 4.58 Write a Verilog model of a circuit whose 32-bit output is formed by shifting its 32-bit input

three positions to the right and filling the vacant positions with the bit that was in the MSN

before the shift occurred (shift arithmetic right).Write a Verilog model of a circuit whose

32-bit output is formed by shifting its 32-bit input three positions to the left and filling the

vacant positions with 0 (shift logical left).

 4.59 Write a Verilog model of a BCD-to-decimal decoder using the unused combinations of

the BCD code as don’t-care conditions (see Problem 4.24).

 4.60 Using the port syntax of the IEEE 1364-2001 standard, write and verify a gate-level model

of the four-bit even parity checker shown in Fig. 3.34 .

 4.61 Using continuous assignment statements and the port syntax of the IEEE 1364-2001 standard,

write and verify a gate-level model of the four-bit even parity checker shown in Fig. 3.34 .

 4.62 Write and verify a gate-level hierarchical model of the circuit described in Problem 4.25.

 4.63 Write and verify a gate-level hierarchical model of the circuit described in Problem 4.26.

 4.64 Write and verify a Verilog model of the octal-to-binary circuit described in Problem 4.30.

 4.65 Write a hierarchical gate-level model of the multiplexer described in Problem 4.31.

 R E F E R E N C E S

 1. B hasker , J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

 2. B hasker , J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

 3. C iletti , M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL. Upper

Saddle River, NJ: Prentice Hall.

 4. D ietmeyer , D. L. 1988. Logic Design of Digital Systems, 3rd ed. Boston: Allyn Bacon.

Web Search Topics 189

 5. G ajski , D. D. 1997. Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.

 6. H ayes , J. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

 7. K atz , R. H. 2005. Contemporary Logic Design. Upper Saddle River, NJ: Pearson Prentice Hall.

 8. M ano , M. M. and C. R. K ime . 2007. Logic and Computer Design Fundamentals, 4th ed.

Upper Saddle River, NJ: Prentice Hall.

 9. N elson, V. P., H. T. N agle , J. D. I rwin , and B. D. C arroll . 1995. Digital Logic Circuit
Analysis and Design. Englewood Cliffs, NJ: Prentice Hall.

 10. P alnitkar , S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,

CA: SunSoft Press (a Prentice Hall title).

 11. R oth , C. H. 2009. Fundamentals of Logic Design, 6th ed. St. Paul, MN: West.

 12. T homas , D. E. and P. R. M oorby . 2002. The Verilog Hardware Description Language,

5th ed. Boston: Kluwer Academic Publishers.

 13. W akerly , J. F. 2005. Digital Design: Principles and Practices, 4th ed. Upper Saddle River,

NJ: Prentice Hall.

 W E B S E A R C H T O P I C S

 Boolean equation

 Combinational logic

 Truth table

 Exclusive–OR

 Comparator

 Multiplexer

 Decoder

 Priority encoder

 Three-state inverter

 Three-state buffer

190

 Chapter 5

 Synchronous Sequential Logic

 5 . 1 I N T R O D U C T I O N

 Hand-held devices, cell phones, navigation receivers, personal computers, digital cameras,

personal media players, and virtually all electronic consumer products have the ability to

send, receive, store, retrieve, and process information represented in a binary format. The

technology enabling and supporting these devices is critically dependent on electronic

components that can store information, i.e., have memory. This chapter examines the

operation and control of these devices and their use in circuits and enables you to better

understand what is happening in these devices when you interact with them. The digital

circuits considered thus far have been combinational—their output depends only and

immediately on their inputs—they have no memory, i.e., dependence on past values of

their inputs. Sequential circuits, however, act as storage elements and have memory. They

can store, retain, and then retrieve information when needed at a later time. Our treatment

will distinguish sequential logic from combinational logic.

 5 . 2 S E Q U E N T I A L C I R C U I T S

 A block diagram of a sequential circuit is shown in Fig. 5.1 . It consists of a combinational

circuit to which storage elements are connected to form a feedback path. The storage

elements are devices capable of storing binary information. The binary information

stored in these elements at any given time defines the state of the sequential circuit at

that time. The sequential circuit receives binary information from external inputs that,

together with the present state of the storage elements, determine the binary value of

the outputs. These external inputs also determine the condition for changing the state

Section 5.2 Sequential Circuits 191

in the storage elements. The block diagram demonstrates that the outputs in a sequen-

tial circuit are a function not only of the inputs, but also of the present state of the stor-

age elements. The next state of the storage elements is also a function of external inputs

and the present state. Thus, a sequential circuit is specified by a time sequence of inputs,
outputs, and internal states . In contrast, the outputs of combinational logic depend only

on the present values of the inputs.

 There are two main types of sequential circuits, and their classification is a function of

the timing of their signals. A synchronous sequential circuit is a system whose behavior

can be defined from the knowledge of its signals at discrete instants of time. The behavior

of an asynchronous sequential circuit depends upon the input signals at any instant of time

 and the order in which the inputs change. The storage elements commonly used in asyn-

chronous sequential circuits are time-delay devices. The storage capability of a time-delay

device varies with the time it takes for the signal to propagate through the device. In prac-

tice, the internal propagation delay of logic gates is of sufficient duration to produce the

needed delay, so that actual delay units may not be necessary. In gate-type asynchronous

systems, the storage elements consist of logic gates whose propagation delay provides the

required storage. Thus, an asynchronous sequential circuit may be regarded as a combina-

tional circuit with feedback. Because of the feedback among logic gates, an asynchronous

sequential circuit may become unstable at times. The instability problem imposes many

difficulties on the designer. These circuits will not be covered in this text.

 A synchronous sequential circuit employs signals that affect the storage elements at

only discrete instants of time. Synchronization is achieved by a timing device called a

 clock generator, which provides a clock signal having the form of a periodic train of clock
pulses . The clock signal is commonly denoted by the identifiers clock and clk . The clock

pulses are distributed throughout the system in such a way that storage elements are

affected only with the arrival of each pulse. In practice, the clock pulses determine when

computational activity will occur within the circuit, and other signals (external inputs

and otherwise) determine what changes will take place affecting the storage elements

and the outputs. For example, a circuit that is to add and store two binary numbers would

compute their sum from the values of the numbers and store the sum at the occurrence

of a clock pulse. Synchronous sequential circuits that use clock pulses to control storage

elements are called clocked sequential circuits and are the type most frequently encoun-

tered in practice. They are called synchronous circuits because the activity within the

circuit and the resulting updating of stored values is synchronized to the occurrence of

 FIGURE 5.1
 Block diagram of sequential circuit

Combinational
circuit

Memory
elements

Inputs Outputs

192 Chapter 5 Synchronous Sequential Logic

clock pulses. The design of synchronous circuits is feasible because they seldom manifest

instability problems and their timing is easily broken down into independent discrete

steps, each of which can be considered separately.

 The storage elements (memory) used in clocked sequential circuits are called flip-
flops. A flip-flop is a binary storage device capable of storing one bit of information. In

a stable state, the output of a flip-flop is either 0 or 1. A sequential circuit may use many

flip-flops to store as many bits as necessary. The block diagram of a synchronous clocked

sequential circuit is shown in Fig. 5.2 . The outputs are formed by a combinational logic

function of the inputs to the circuit or the values stored in the flip-flops (or both). The

value that is stored in a flip-flop when the clock pulse occurs is also determined by the

inputs to the circuit or the values presently stored in the flip-flop (or both). The new

value is stored (i.e., the flip-flop is updated) when a pulse of the clock signal occurs.

Prior to the occurrence of the clock pulse, the combinational logic forming the next

value of the flip-flop must have reached a stable value. Consequently, the speed at

which the combinational logic circuits operate is critical. If the clock (synchronizing)

pulses arrive at a regular interval, as shown in the timing diagram in Fig. 5.2 , the com-

binational logic must respond to a change in the state of the flip-flop in time to be

updated before the next pulse arrives. Propagation delays play an important role in

determining the minimum interval between clock pulses that will allow the circuit to

operate correctly. A change in state of the flip-flops is initiated only by a clock pulse

transition—for example, when the value of the clock signals changes from 0 to 1. When

a clock pulse is not active, the feedback loop between the value stored in the flip-flop

and the value formed at the input to the flip-flop is effectively broken because the flip-

flop outputs cannot change even if the outputs of the combinational circuit driving their

inputs change in value. Thus, the transition from one state to the next occurs only at

predetermined intervals dictated by the clock pulses.

 FIGURE 5.2
 Synchronous clocked sequential circuit

Combinational
circuit

Flip-flops

Inputs Outputs

Clock pulses

(a) Block diagram

(b) Timing diagram of clock pulses

Section 5.3 Storage Elements: Latches 193

 5 . 3 S T O R A G E E L E M E N T S : L AT C H E S

 A storage element in a digital circuit can maintain a binary state indefinitely (as long

as power is delivered to the circuit), until directed by an input signal to switch states.

The major differences among various types of storage elements are in the number of

inputs they possess and in the manner in which the inputs affect the binary state. Storage
elements that operate with signal levels (rather than signal transitions) are referred to as

 latches ; those controlled by a clock transition are flip-flops . Latches are said to be level

sensitive devices; flip-flops are edge-sensitive devices. The two types of storage elements

are related because latches are the basic circuits from which all flip-flops are con-

structed. Although latches are useful for storing binary information and for the design

of asynchronous sequential circuits, they are not practical for use as storage elements

in synchronous sequential circuits. Because they are the building blocks of flip-flops,

however, we will consider the fundamental storage mechanism used in latches before

considering flip-flops in the next section.

 SR Latch

 The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND

gates, and two inputs labeled S for set and R for reset. The SR latch constructed with two

cross-coupled NOR gates is shown in Fig. 5.3 . The latch has two useful states. When output

 Q = 1 and Q� = 0, the latch is said to be in the set state . When Q = 0 and Q� = 1, it is

in the reset state . Outputs Q and Q� are normally the complement of each other. However,

when both inputs are equal to 1 at the same time, a condition in which both outputs are

equal to 0 (rather than be mutually complementary) occurs. If both inputs are then switched

to 0 simultaneously, the device will enter an unpredictable or undefined state or a meta-

stable state. Consequently, in practical applications, setting both inputs to 1 is forbidden.

 Under normal conditions, both inputs of the latch remain at 0 unless the state has to be

changed. The application of a momentary 1 to the S input causes the latch to go to the set

state. The S input must go back to 0 before any other changes take place, in order to avoid

the occurrence of an undefined next state that results from the forbidden input condition.

As shown in the function table of Fig. 5.3 (b), two input conditions cause the circuit to be in

 FIGURE 5.3
 SR latch with NOR gates

1

0

1

0

R (reset)

S (set)

Q

Q�

(a) Logic diagram (b) Function table

(after S � 1, R � 0)

(after S � 0, R � 1)

1

11

1
1

1

0

0

0

0
00
0

0
00
00 1

1

Q�QRS

(forbidden)

194 Chapter 5 Synchronous Sequential Logic

the set state. The first condition (S = 1, R = 0) is the action that must be taken by input

 S to bring the circuit to the set state. Removing the active input from S leaves the circuit in

the same state. After both inputs return to 0, it is then possible to shift to the reset state by

momentary applying a 1 to the R input. The 1 can then be removed from R, whereupon the

circuit remains in the reset state. Thus, when both inputs S and R are equal to 0, the latch

can be in either the set or the reset state, depending on which input was most recently a 1.

 If a 1 is applied to both the S and R inputs of the latch, both outputs go to 0. This

action produces an undefined next state, because the state that results from the input

transitions depends on the order in which they return to 0. It also violates the require-

ment that outputs be the complement of each other. In normal operation, this condition

is avoided by making sure that 1’s are not applied to both inputs simultaneously.

 The SR latch with two cross-coupled NAND gates is shown in Fig. 5.4 . It operates with

both inputs normally at 1, unless the state of the latch has to be changed. The application

of 0 to the S input causes output Q to go to 1, putting the latch in the set state. When the S

input goes back to 1, the circuit remains in the set state. After both inputs go back to 1, we

are allowed to change the state of the latch by placing a 0 in the R input. This action causes

the circuit to go to the reset state and stay there even after both inputs return to 1. The

condition that is forbidden for the NAND latch is both inputs being equal to 0 at the same

time, an input combination that should be avoided.

 In comparing the NAND with the NOR latch, note that the input signals for the

NAND require the complement of those values used for the NOR latch. Because the

NAND latch requires a 0 signal to change its state, it is sometimes referred to as an S�R�
latch. The primes (or, sometimes, bars over the letters) designate the fact that the inputs

must be in their complement form to activate the circuit.

 The operation of the basic SR latch can be modified by providing an additional input

signal that determines (controls) when the state of the latch can be changed by determining

whether S and R (or S � and R �) can affect the circuit. An SR latch with a control input is

shown in Fig. 5.5 . It consists of the basic SR latch and two additional NAND gates. The

control input En acts as an enable signal for the other two inputs. The outputs of the NAND
gates stay at the logic-1 level as long as the enable signal remains at 0. This is the quiescent

condition for the SR latch. When the enable input goes to 1, information from the S or R

input is allowed to affect the latch. The set state is reached with S = 1, R = 0, and En = 1

 FIGURE 5.4
 SR latch with NAND gates

1

0

1

0

S (set)

R (reset)

Q

Q�

(a) Logic diagram (b) Function table

(after S � 1, R � 0)

(after S � 0, R � 1)

1

00

0
0

1

1

1

1

1
11
0

1
11
10 0

0

Q�QRS

(forbidden)

Section 5.3 Storage Elements: Latches 195

(active-high enabled). To change to the reset state, the inputs must be S = 0, R = 1, and

 En = 1. In either case, when En returns to 0, the circuit remains in its current state. The

control input disables the circuit by applying 0 to En, so that the state of the output does

not change regardless of the values of S and R . Moreover, when En = 1 and both the S

and R inputs are equal to 0, the state of the circuit does not change. These conditions are

listed in the function table accompanying the diagram.

 An indeterminate condition occurs when all three inputs are equal to 1. This condition

places 0’s on both inputs of the basic SR latch, which puts it in the undefined state. When

the enable input goes back to 0, one cannot conclusively determine the next state, because

it depends on whether the S or R input goes to 0 first. This indeterminate condition makes

this circuit difficult to manage, and it is seldom used in practice. Nevertheless, the SR latch

is an important circuit because other useful latches and flip-flops are constructed from it.

 D Latch (Transparent Latch)

 One way to eliminate the undesirable condition of the indeterminate state in the SR

latch is to ensure that inputs S and R are never equal to 1 at the same time. This is

done in the D latch, shown in Fig. 5.6 . This latch has only two inputs: D (data) and

 FIGURE 5.5
 SR latch with control input

(a) Logic diagram (b) Function table

Q

Q�

S

En

R

Next state of Q

No change

Indeterminate

No change
Q � 0; reset state
Q � 1; set state

SEn R

X X0
0 0
0

0

1

1

1
1

1

1
1
1

 FIGURE 5.6
 D latch

Q

Q�

(a) Logic diagram (b) Function table

D

En
Next state of Q

No change
Q � 0; reset state
Q � 1; set state

X
0

0

11
1

En D

196 Chapter 5 Synchronous Sequential Logic

 En (enable). The D input goes directly to the S input, and its complement is applied

to the R input. As long as the enable input is at 0, the cross-coupled SR latch has both

inputs at the 1 level and the circuit cannot change state regardless of the value of D .

The D input is sampled when En = 1. If D = 1, the Q output goes to 1, placing the

circuit in the set state. If D = 0, output Q goes to 0, placing the circuit in the reset

state.

 The D latch receives that designation from its ability to hold data in its internal stor-

age. It is suited for use as a temporary storage for binary information between a unit

and its environment. The binary information present at the data input of the D latch is

transferred to the Q output when the enable input is asserted. The output follows

changes in the data input as long as the enable input is asserted. This situation provides

a path from input D to the output, and for this reason, the circuit is often called a trans-
parent latch. When the enable input signal is de-asserted, the binary information that

was present at the data input at the time the transition occurred is retained (i.e., stored)

at the Q output until the enable input is asserted again. Note that an inverter could be

placed at the enable input. Then, depending on the physical circuit, the external enabling

signal will be a value of 0 (active low) or 1 (active high).

 The graphic symbols for the various latches are shown in Fig. 5.7 . A latch is designated

by a rectangular block with inputs on the left and outputs on the right. One output

designates the normal output, and the other (with the bubble designation) designates

the complement output. The graphic symbol for the SR latch has inputs S and R indi-

cated inside the block. In the case of a NAND gate latch, bubbles are added to the inputs

to indicate that setting and resetting occur with a logic-0 signal. The graphic symbol for

the D latch has inputs D and En indicated inside the block.

 5 . 4 S T O R A G E E L E M E N T S : F L I P - F L O P S

 The state of a latch or flip-flop is switched by a change in the control input. This momentary

change is called a trigger, and the transition it causes is said to trigger the flip-flop. The D

latch with pulses in its control input is essentially a flip-flop that is triggered every time the

pulse goes to the logic-1 level. As long as the pulse input remains at this level, any changes

in the data input will change the output and the state of the latch.

 FIGURE 5.7
 Graphic symbols for latches

S

R

SR

S

R

SR

D

En

D

Section 5.4 Storage Elements: Flip-Flops 197

 As seen from the block diagram of Fig. 5.2 , a sequential circuit has a feedback path

from the outputs of the flip-flops to the input of the combinational circuit. Conse-

quently, the inputs of the flip-flops are derived in part from the outputs of the same and

other flip-flops. When latches are used for the storage elements, a serious difficulty

arises. The state transitions of the latches start as soon as the clock pulse changes to the

logic-1 level. The new state of a latch appears at the output while the pulse is still active.

This output is connected to the inputs of the latches through the combinational circuit.

If the inputs applied to the latches change while the clock pulse is still at the logic-1

level, the latches will respond to new values and a new output state may occur. The

result is an unpredictable situation, since the state of the latches may keep changing for

as long as the clock pulse stays at the active level. Because of this unreliable operation,

the output of a latch cannot be applied directly or through combinational logic to the

input of the same or another latch when all the latches are triggered by a common clock

source.

 Flip-flop circuits are constructed in such a way as to make them operate properly

when they are part of a sequential circuit that employs a common clock. The problem

with the latch is that it responds to a change in the level of a clock pulse. As shown in

 Fig. 5.8 (a), a positive level response in the enable input allows changes in the output

when the D input changes while the clock pulse stays at logic 1. The key to the proper

operation of a flip-flop is to trigger it only during a signal transition . This can be accom-

plished by eliminating the feedback path that is inherent in the operation of the sequen-

tial circuit using latches. A clock pulse goes through two transitions: from 0 to 1 and the

return from 1 to 0. As shown in Fig. 5.8 , the positive transition is defined as the positive

edge and the negative transition as the negative edge. There are two ways that a latch

can be modified to form a flip-flop. One way is to employ two latches in a special con-

figuration that isolates the output of the flip-flop and prevents it from being affected

while the input to the flip-flop is changing. Another way is to produce a flip-flop that

 FIGURE 5.8
 Clock response in latch and flip-flop

(a) Response to positive level

(b) Positive-edge response

(c) Negative-edge response

198 Chapter 5 Synchronous Sequential Logic

triggers only during a signal transition (from 0 to 1 or from 1 to 0) of the synchronizing

signal (clock) and is disabled during the rest of the clock pulse. We will now proceed to

show the implementation of both types of flip-flops.

 Edge-Triggered D Flip-Flop

 The construction of a D flip-flop with two D latches and an inverter is shown in Fig. 5.9 .

The first latch is called the master and the second the slave. The circuit samples the D

input and changes its output Q only at the negative edge of the synchronizing or control-

ling clock (designated as Clk). When the clock is 0, the output of the inverter is 1. The

slave latch is enabled, and its output Q is equal to the master output Y . The master latch

is disabled because Clk = 0. When the input pulse changes to the logic-1 level, the data

from the external D input are transferred to the master. The slave, however, is disabled

as long as the clock remains at the 1 level, because its enable input is equal to 0. Any

change in the input changes the master output at Y, but cannot affect the slave output.

When the clock pulse returns to 0, the master is disabled and is isolated from the D

input. At the same time, the slave is enabled and the value of Y is transferred to the

output of the flip-flop at Q . Thus, a change in the output of the flip-flop can be triggered
only by and during the transition of the clock from 1 to 0.

 The behavior of the master–slave flip-flop just described dictates that (1) the output

may change only once, (2) a change in the output is triggered by the negative edge of

the clock, and (3) the change may occur only during the clock’s negative level. The value

that is produced at the output of the flip-flop is the value that was stored in the master
stage immediately before the negative edge occurred . It is also possible to design the

circuit so that the flip-flop output changes on the positive edge of the clock. This hap-

pens in a flip-flop that has an additional inverter between the Clk terminal and the

junction between the other inverter and input En of the master latch. Such a flip-flop is

triggered with a negative pulse, so that the negative edge of the clock affects the master

and the positive edge affects the slave and the output terminal.

 Another construction of an edge-triggered D flip-flop uses three SR latches as shown

in Fig. 5.10 . Two latches respond to the external D (data) and Clk (clock) inputs. The

third latch provides the outputs for the flip-flop. The S and R inputs of the output latch

 FIGURE 5.9
 Master–slave D flip-flop

D QD

En

D

En

D latch
(master)

D latch
(slave)

Y

Clk

Section 5.4 Storage Elements: Flip-Flops 199

are maintained at the logic-1 level when Clk = 0. This causes the output to remain in

its present state. Input D may be equal to 0 or 1. If D = 0 when Clk becomes 1, R

changes to 0. This causes the flip-flop to go to the reset state, making Q = 0. If there is

a change in the D input while Clk = 1, terminal R remains at 0 because Q is 0. Thus, the

flip-flop is locked out and is unresponsive to further changes in the input. When the

clock returns to 0, R goes to 1, placing the output latch in the quiescent condition with-

out changing the output. Similarly, if D = 1 when Clk goes from 0 to 1, S changes to 0.

This causes the circuit to go to the set state, making Q = 1. Any change in D while

 Clk = 1 does not affect the output.

 In sum, when the input clock in the positive-edge-triggered flip-flop makes a positive

transition, the value of D is transferred to Q . A negative transition of the clock (i.e., from

1 to 0) does not affect the output, nor is the output affected by changes in D when Clk

is in the steady logic-1 level or the logic-0 level. Hence, this type of flip-flop responds to

the transition from 0 to 1 and nothing else.

 The timing of the response of a flip-flop to input data and to the clock must be taken

into consideration when one is using edge-triggered flip-flops. There is a minimum time

called the setup time during which the D input must be maintained at a constant value prior

to the occurrence of the clock transition. Similarly, there is a minimum time called the hold
time during which the D input must not change after the application of the positive transi-

tion of the clock. The propagation delay time of the flip-flop is defined as the interval

between the trigger edge and the stabilization of the output to a new state. These and other

parameters are specified in manufacturers’ data books for specific logic families.

 FIGURE 5.10
 D -type positive-edge-triggered flip-flop

Q

Q�

S

R

Clk

D

200 Chapter 5 Synchronous Sequential Logic

 The graphic symbol for the edge-triggered D flip-flop is shown in Fig. 5.11 . It is simi-

lar to the symbol used for the D latch, except for the arrowhead-like symbol in front of

the letter Clk, designating a dynamic input. The dynamic indicator (>) denotes the fact

that the flip-flop responds to the edge transition of the clock. A bubble outside the block

adjacent to the dynamic indicator designates a negative edge for triggering the circuit.

The absence of a bubble designates a positive-edge response.

 Other Flip-Flops

 Very large-scale integration circuits contain several thousands of gates within one pack-

age. Circuits are constructed by interconnecting the various gates to provide a digital

system. Each flip-flop is constructed from an interconnection of gates. The most eco-

nomical and efficient flip-flop constructed in this manner is the edge-triggered D flip-

flop, because it requires the smallest number of gates. Other types of flip-flops can be

constructed by using the D flip-flop and external logic. Two flip-flops less widely used

in the design of digital systems are the JK and T flip-flops.
 There are three operations that can be performed with a flip-flop: Set it to 1, reset it

to 0, or complement its output. With only a single input, the D flip-flop can set or reset

the output, depending on the value of the D input immediately before the clock transi-

tion. Synchronized by a clock signal, the JK flip-flop has two inputs and performs all

three operations. The circuit diagram of a JK flip-flop constructed with a D flip-flop and

gates is shown in Fig. 5.12 (a). The J input sets the flip-flop to 1, the K input resets it to

0, and when both inputs are enabled, the output is complemented. This can be verified

by investigating the circuit applied to the D input:

 D = JQ� + K�Q

 When J = 1 and K = 0, D = Q� + Q = 1, so the next clock edge sets the output to 1.

When J = 0 and K = 1, D = 0, so the next clock edge resets the output to 0. When

both J = K = 1 and D = Q�, the next clock edge complements the output. When both

 J = K = 0 and D = Q, the clock edge leaves the output unchanged. The graphic sym-

bol for the JK flip-flop is shown in Fig. 5.12 (b). It is similar to the graphic symbol of the

 D flip-flop, except that now the inputs are marked J and K .

 The T (toggle) flip-flop is a complementing flip-flop and can be obtained from a JK

flip-flop when inputs J and K are tied together. This is shown in Fig. 5.13 (a). When

 FIGURE 5.11
 Graphic symbol for edge-triggered D flip-flop

D

Clk

(a) Positive-edge

D

Clk

(a) Negative-edge

Section 5.4 Storage Elements: Flip-Flops 201

 T = 0 (J = K = 0), a clock edge does not change the output. When T = 1 (J = K = 1),

a clock edge complements the output. The complementing flip-flop is useful for design-

ing binary counters.

 The T flip-flop can be constructed with a D flip-flop and an exclusive-OR gate as

shown in Fig. 5.13 (b). The expression for the D input is

 D = T { Q = TQ� + T�Q

 When T = 0, D = Q and there is no change in the output. When T = 1, D = Q� and

the output complements. The graphic symbol for this flip-flop has a T symbol in the input.

 Characteristic Tables

 A characteristic table defines the logical properties of a flip-flop by describing its oper-

ation in tabular form. The characteristic tables of three types of flip-flops are presented

in Table 5.1 . They define the next state (i.e., the state that results from a clock transition)

 FIGURE 5.12
 JK flip-flop

D J

K

Clk

J

K

Q

Q�Clk Clk

(a) Circuit diagram (b) Graphic symbol

 FIGURE 5.13
 T flip-flop

J

K

Clk

(a) From JK flip-flop

T

(c) Graphic symbol

T

Clk

(b) From D flip-flop

T
D

Clk

202 Chapter 5 Synchronous Sequential Logic

as a function of the inputs and the present state. Q (t) refers to the present state (i.e., the

state present prior to the application of a clock edge). Q(t + 1) is the next state one

clock period later. Note that the clock edge input is not included in the characteristic

table, but is implied to occur between times t and t + 1. Thus, Q(t) denotes the state of

the flip-flop immediately before the clock edge, and Q(t + 1) denotes the state that

results from the clock transition.

 The characteristic table for the JK flip-flop shows that the next state is equal to the

present state when inputs J and K are both equal to 0. This condition can be expressed

as Q(t + 1) = Q(t), indicating that the clock produces no change of state. When K = 1

and J = 0, the clock resets the flip-flop and Q(t + 1) = 0. With J = 1 and K = 0, the

flip-flop sets and Q(t + 1) = 1. When both J and K are equal to 1, the next state changes

to the complement of the present state, a transition that can be expressed as

 Q(t + 1) = Q�(t).
 The next state of a D flip-flop is dependent only on the D input and is independent

of the present state. This can be expressed as Q(t + 1) = D. It means that the next-state

value is equal to the value of D . Note that the D flip-flop does not have a “no-change”

condition. Such a condition can be accomplished either by disabling the clock or by

operating the clock by having the output of the flip-flop connected into the D input.

Either method effectively circulates the output of the flip-flop when the state of the

flip-flop must remain unchanged.

 The characteristic table of the T flip-flop has only two conditions: When T = 0, the

clock edge does not change the state; when T = 1, the clock edge complements the state

of the flip-flop.

 Table 5.1
 Flip-Flop Characteristic Tables

 JK Flip-Flop

 J K Q(t � 1)

 0 0 Q (t) No change

 0 1 0 Reset

 1 0 1 Set

 1 1 Q�(t) Complement

 D Flip-Flop T Flip-Flop

 D Q(t � 1) T Q(t � 1)

 0 0 Reset 0 Q (t) No change

 1 1 Set 1 Q�(t) Complement

Section 5.4 Storage Elements: Flip-Flops 203

 Characteristic Equations

 The logical properties of a flip-flop, as described in the characteristic table, can be

expressed algebraically with a characteristic equation. For the D flip-flop, we have the

characteristic equation

 Q(t + 1) = D

 which states that the next state of the output will be equal to the value of input D in the

present state. The characteristic equation for the JK flip-flop can be derived from the

characteristic table or from the circuit of Fig. 5.12 . We obtain

 Q(t + 1) = JQ� + K�Q

 where Q is the value of the flip-flop output prior to the application of a clock edge. The

characteristic equation for the T flip-flop is obtained from the circuit of Fig. 5.13 :

 Q(t + 1) = T { Q = TQ� + T�Q

 Direct Inputs

 Some flip-flops have asynchronous inputs that are used to force the flip-flop to a par-

ticular state independently of the clock. The input that sets the flip-flop to 1 is called

 preset or direct set . The input that clears the flip-flop to 0 is called clear or direct reset .
When power is turned on in a digital system, the state of the flip-flops is unknown. The

direct inputs are useful for bringing all flip-flops in the system to a known starting state

prior to the clocked operation.

 A positive-edge-triggered D flip-flop with active-low asynchronous reset is shown

in Fig. 5.14 . The circuit diagram is the same as the one in Fig. 5.10 , except for the

additional reset input connections to three NAND gates. When the reset input is 0,

it forces output Q� to stay at 1, which, in turn, clears output Q to 0, thus resetting the

flip-flop. Two other connections from the reset input ensure that the S input of the

third SR latch stays at logic 1 while the reset input is at 0, regardless of the values of

 D and Clk .

 The graphic symbol for the D flip-flop with a direct reset has an additional input

marked with R . The bubble along the input indicates that the reset is active at the logic-0

level. Flip-flops with a direct set use the symbol S for the asynchronous set input.

 The function table specifies the operation of the circuit. When R = 0, the output

is reset to 0. This state is independent of the values of D or Clk . Normal clock opera-

tion can proceed only after the reset input goes to logic 1. The clock at Clk is shown

with an upward arrow to indicate that the flip-flop triggers on the positive edge of

the clock. The value in D is transferred to Q with every positive-edge clock signal,

provided that R = 1.

204 Chapter 5 Synchronous Sequential Logic

 5 . 5 A N A LY S I S O F C L O C K E D
S E Q U E N T I A L C I R C U I T S

 Analysis describes what a given circuit will do under certain operating conditions. The

behavior of a clocked sequential circuit is determined from the inputs, the outputs, and

the state of its flip-flops. The outputs and the next state are both a function of the inputs

and the present state. The analysis of a sequential circuit consists of obtaining a table or

a diagram for the time sequence of inputs, outputs, and internal states. It is also possible

Q

Q�

S

R

Clock

Reset

D

(a) Circuit diagram

D Q

Q�
R

Clk

(b) Graphic symbol

Data

Clock

Reset
(b) Function table

R Clk D Q Q�

0
0
0

X X
0
1

0
0
1

1
1
0

 FIGURE 5.14
 D flip-flop with asynchronous reset

Section 5.5 Analysis of Clocked Sequential Circuits 205

to write Boolean expressions that describe the behavior of the sequential circuit. These

expressions must include the necessary time sequence, either directly or indirectly.

 A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops

with clock inputs. The flip-flops may be of any type, and the logic diagram may or may

not include combinational logic gates. In this section, we introduce an algebraic repre-

sentation for specifying the next-state condition in terms of the present state and inputs.

A state table and state diagram are then presented to describe the behavior of the

sequential circuit. Another algebraic representation is introduced for specifying the logic

diagram of sequential circuits. Examples are used to illustrate the various procedures.

 State Equations

 The behavior of a clocked sequential circuit can be described algebraically by means of

state equations. A state equation (also called a transition equation) specifies the next

state as a function of the present state and inputs. Consider the sequential circuit shown

in Fig. 5.15 . We will later show that it acts as a 0-detector by asserting its output when a

D

Clk

x

y

x

D

Clk

Clock

A

A�

B

B�

y

 FIGURE 5.15
 Example of sequential circuit

206 Chapter 5 Synchronous Sequential Logic

0 is detected in a stream of 1s. It consists of two D flip-flops A and B, an input x and an

output y . Since the D input of a flip-flop determines the value of the next state (i.e., the

state reached after the clock transition), it is possible to write a set of state equations

for the circuit:
 A(t + 1) = A(t)x(t) + B(t)x(t)

 B(t + 1) = A�(t)x(t)

 A state equation is an algebraic expression that specifies the condition for a flip-flop

state transition. The left side of the equation, with (t + 1), denotes the next state of the

flip-flop one clock edge later. The right side of the equation is a Boolean expression that

specifies the present state and input conditions that make the next state equal to 1. Since

all the variables in the Boolean expressions are a function of the present state, we can

omit the designation (t) after each variable for convenience and can express the state

equations in the more compact form

 A(t + 1) - Ax + Bx

B(t + 1) - A�x

 The Boolean expressions for the state equations can be derived directly from the gates

that form the combinational circuit part of the sequential circuit, since the D values of

the combinational circuit determine the next state. Similarly, the present-state value of

the output can be expressed algebraically as

 y(t) = [A(t) + B(t)]x�(t)

 By removing the symbol (t) for the present state, we obtain the output Boolean equation:

 y = (A + B)x�

 State Table

 The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state
table (sometimes called a transition table). The state table for the circuit of Fig. 5.15 is

shown in Table 5.2 . The table consists of four sections labeled present state, input, next
state, and output . The present-state section shows the states of flip-flops A and B at

any given time t . The input section gives a value of x for each possible present state.

The next-state section shows the states of the flip-flops one clock cycle later, at time

 t + 1. The output section gives the value of y at time t for each present state and input

condition.
 The derivation of a state table requires listing all possible binary combinations of

present states and inputs. In this case, we have eight binary combinations from 000 to

111. The next-state values are then determined from the logic diagram or from the state

equations. The next state of flip-flop A must satisfy the state equation

 A(t + 1) = Ax + Bx

Section 5.5 Analysis of Clocked Sequential Circuits 207

 The next-state section in the state table under column A has three 1’s where the present

state of A and input x are both equal to 1 or the present state of B and input x are both

equal to 1. Similarly, the next state of flip-flop B is derived from the state equation

 B(t + 1) = A�x

 and is equal to 1 when the present state of A is 0 and input x is equal to 1. The output

column is derived from the output equation

 y = Ax� + Bx�

 The state table of a sequential circuit with D -type flip-flops is obtained by the same

procedure outlined in the previous example. In general, a sequential circuit with m flip-

flops and n inputs needs 2m +n rows in the state table. The binary numbers from 0 through

 2m +n - 1 are listed under the present-state and input columns. The next-state section

has m columns, one for each flip-flop. The binary values for the next state are derived

directly from the state equations. The output section has as many columns as there are

output variables. Its binary value is derived from the circuit or from the Boolean func-

tion in the same manner as in a truth table.

 It is sometimes convenient to express the state table in a slightly different form hav-

ing only three sections: present state, next state, and output. The input conditions are

enumerated under the next-state and output sections. The state table of Table 5.2 is

repeated in Table 5.3 in this second form. For each present state, there are two possible

next states and outputs, depending on the value of the input. One form may be prefer-

able to the other, depending on the application.

 State Diagram

 The information available in a state table can be represented graphically in the form

of a state diagram. In this type of diagram, a state is represented by a circle, and the

(clock-triggered) transitions between states are indicated by directed lines connecting

 Table 5.2
 State Table for the Circuit of Fig. 5.15

 Present
State

Input

 Next
State Output

 A B x A B y

 0 0 0 0 0 0

 0 0 1 0 1 0

 0 1 0 0 0 1

 0 1 1 1 1 0

 1 0 0 0 0 1

 1 0 1 1 0 0

 1 1 0 0 0 1

 1 1 1 1 0 0

208 Chapter 5 Synchronous Sequential Logic

the circles. The state diagram of the sequential circuit of Fig. 5.15 is shown in Fig. 5.16 .

The state diagram provides the same information as the state table and is obtained

directly from Table 5.2 or Table 5.3 . The binary number inside each circle identifies the

state of the flip-flops. The directed lines are labeled with two binary numbers separated

by a slash. The input value during the present state is labeled first, and the number after

the slash gives the output during the present state with the given input. (It is important

to remember that the bit value listed for the output along the directed line occurs dur-

ing the present state and with the indicated input, and has nothing to do with the

transition to the next state.) For example, the directed line from state 00 to 01 is labeled

1/0, meaning that when the sequential circuit is in the present state 00 and the input is

1, the output is 0. After the next clock cycle, the circuit goes to the next state, 01. If the

input changes to 0, then the output becomes 1, but if the input remains at 1, the output

stays at 0. This information is obtained from the state diagram along the two directed

lines emanating from the circle with state 01. A directed line connecting a circle with

itself indicates that no change of state occurs.

 The steps presented in this example are summarized below:

 Circuit diagram S Equations – State table S State diagram

 Table 5.3
 Second Form of the State Table

Present
State

 Next State

 x = 0 x = 1

 Output

 x = 0 x = 1

 A B A B A B y y

 0 0 0 0 0 1 0 0

 0 1 0 0 1 1 1 0

 1 0 0 0 1 0 1 0

 1 1 0 0 1 0 1 0

01

00 10

11

1/0

1/0

1/0

0/0

1/0 0/10/1

0/1

 FIGURE 5.16
 State diagram of the circuit of Fig. 5.15

Section 5.5 Analysis of Clocked Sequential Circuits 209

 This sequence of steps begins with a structural representation of the circuit and proceeds

to an abstract representation of its behavior. An HDL model can be in the form of a

gate-level description or in the form of a behavioral description. It is important to note

that a gate-level approach requires that the designer understands how to select and

connect gates and flip-flops to form a circuit having a particular behavior. That under-

standing comes with experience. On the other hand, an approach based on behavioral

modeling does not require the designer to know how to invent a schematic—the designer

needs only to know how to describe behavior using the constructs of the HDL, because

the circuit is produced automatically by a synthesis tool. Therefore, one does not have

to accumulate years of experience in order to become a productive designer of digital

circuits; nor does one have to acquire an extensive background in electrical engineering.

 There is no difference between a state table and a state diagram, except in the manner

of representation. The state table is easier to derive from a given logic diagram and the

state equation. The state diagram follows directly from the state table. The state diagram
gives a pictorial view of state transitions and is the form more suitable for human interpre-
tation of the circuit’s operation . For example, the state diagram of Fig. 5.16 clearly shows

that, starting from state 00, the output is 0 as long as the input stays at 1. The first 0 input

after a string of 1’s gives an output of 1 and transfers the circuit back to the initial state,

00. The machine represented by this state diagram acts to detect a zero in the bit stream

of data. It corresponds to the behavior of the circuit in Fig. 5.15. Other circuits that detect

a zero in a stream of data may have a simpler circuit diagram and state diagram.

 Flip-Flop Input Equations

 The logic diagram of a sequential circuit consists of flip-flops and gates. The interconnec-

tions among the gates form a combinational circuit and may be specified algebraically

with Boolean expressions. The knowledge of the type of flip-flops and a list of the Bool-

ean expressions of the combinational circuit provide the information needed to draw the

logic diagram of the sequential circuit. The part of the combinational circuit that gener-

ates external outputs is described algebraically by a set of Boolean functions called

 output equations . The part of the circuit that generates the inputs to flip-flops is described

algebraically by a set of Boolean functions called flip-flop input equations (or, sometimes,

 excitation equations). We will adopt the convention of using the flip-flop input symbol to

denote the input equation variable and a subscript to designate the name of the flip-flop

output. For example, the following input equation specifies an OR gate with inputs x and

 y connected to the D input of a flip-flop whose output is labeled with the symbol Q :

 DQ = x + y

 The sequential circuit of Fig. 5.15 consists of two D flip-flops A and B, an input x, and

an output y . The logic diagram of the circuit can be expressed algebraically with two

flip-flop input equations and an output equation:

 DA = Ax + Bx

 DB = A�x

 y = (A + B)x�

210 Chapter 5 Synchronous Sequential Logic

 The three equations provide the necessary information for drawing the logic diagram

of the sequential circuit. The symbol DA specifies a D flip-flop labeled A . DB specifies

a second D flip-flop labeled B . The Boolean expressions associated with these two vari-

ables and the expression for output y specify the combinational circuit part of the

sequential circuit.

 The flip-flop input equations constitute a convenient algebraic form for specifying

the logic diagram of a sequential circuit. They imply the type of flip-flop from the letter

symbol, and they fully specify the combinational circuit that drives the flip-flops. Note

that the expression for the input equation for a D flip-flop is identical to the expression

for the corresponding state equation. This is because of the characteristic equation that

equates the next state to the value of the D input: Q(t + 1) = DQ.

 Analysis with D Flip-Flops

 We will summarize the procedure for analyzing a clocked sequential circuit with D flip-

flops by means of a simple example. The circuit we want to analyze is described by the

input equation

 DA = A { x { y

 The DA symbol implies a D flip-flop with output A . The x and y variables are the inputs

to the circuit. No output equations are given, which implies that the output comes from

the output of the flip-flop. The logic diagram is obtained from the input equation and is

drawn in Fig. 5.17 (a).

 The state table has one column for the present state of flip-flop A, two columns for

the two inputs, and one column for the next state of A . The binary numbers under Axy

are listed from 000 through 111 as shown in Fig. 5.17 (b). The next-state values are

obtained from the state equation

 A(t + 1) = A { x { y

 The expression specifies an odd function and is equal to 1 when only one variable is 1

or when all three variables are 1. This is indicated in the column for the next state of A .

 The circuit has one flip-flop and two states. The state diagram consists of two circles,

one for each state as shown in Fig. 5.17 (c). The present state and the output can be either

0 or 1, as indicated by the number inside the circles. A slash on the directed lines is not

needed, because there is no output from a combinational circuit. The two inputs can

have four possible combinations for each state. Two input combinations during each

state transition are separated by a comma to simplify the notation.

 Analysis with JK Flip-Flops

 A state table consists of four sections: present state, inputs, next state, and outputs. The

first two are obtained by listing all binary combinations. The output section is deter-

mined from the output equations. The next-state values are evaluated from the state

equations. For a D -type flip-flop, the state equation is the same as the input equation.

When a flip-flop other than the D type is used, such as JK or T, it is necessary to refer

Section 5.5 Analysis of Clocked Sequential Circuits 211

to the corresponding characteristic table or characteristic equation to obtain the next-

state values. We will illustrate the procedure first by using the characteristic table and

again by using the characteristic equation.

 The next-state values of a sequential circuit that uses JK - or T -type flip-flops can be

derived as follows:

 1. Determine the flip-flop input equations in terms of the present state and input

variables.

 2. List the binary values of each input equation.

 3. Use the corresponding flip-flop characteristic table to determine the next-state

values in the state table.

 As an example, consider the sequential circuit with two JK flip-flops A and B and

one input x, as shown in Fig. 5.18 . The circuit has no outputs; therefore, the state table

does not need an output column. (The outputs of the flip-flops may be considered as

the outputs in this case.) The circuit can be specified by the flip-flop input equations

 JA = B KA = Bx�

 JB = x� KB = A�x + Ax� = A � x

 The state table of the sequential circuit is shown in Table 5.4 . The present-state and

input columns list the eight binary combinations. The binary values listed under the

x

y

AD

Clk

Clock

(a) Circuit diagram (b) State table

Present
state

Next
stateInputs

A x y A

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

(c) State diagram

00, 11 00, 11

01, 10

01, 10

0 1

 FIGURE 5.17
 Sequential circuit with D flip-flop

212 Chapter 5 Synchronous Sequential Logic

columns labeled flip-flop inputs are not part of the state table, but they are needed for

the purpose of evaluating the next state as specified in step 2 of the procedure. These

binary values are obtained directly from the four input equations in a manner similar

to that for obtaining a truth table from a Boolean expression. The next state of each

flip-flop is evaluated from the corresponding J and K inputs and the characteristic table

of the JK flip-flop listed in Table 5.1 . There are four cases to consider. When J = 1 and

J

K

Clk

J

K

Clk

Clock

A

B

x

 FIGURE 5.18
 Sequential circuit with JK flip-flop

 Table 5.4
 State Table for Sequential Circuit with JK Flip-Flops

 Present
State Input

 Next
State

 Flip-Flop
Inputs

 A B x A B J A K A J B K B

 0 0 0 0 1 0 0 1 0

 0 0 1 0 0 0 0 0 1

 0 1 0 1 1 1 1 1 0

 0 1 1 1 0 1 0 0 1

 1 0 0 1 1 0 0 1 1

 1 0 1 1 0 0 0 0 0

 1 1 0 0 0 1 1 1 1

 1 1 1 1 1 1 0 0 0

Section 5.5 Analysis of Clocked Sequential Circuits 213

 K = 0, the next state is 1. When J = 0 and K = 1, the next state is 0. When J = K = 0,

there is no change of state and the next-state value is the same as that of the present

state. When J = K = 1, the next-state bit is the complement of the present-state bit.

Examples of the last two cases occur in the table when the present state AB is 10 and

input x is 0. JA and KA are both equal to 0 and the present state of A is 1. Therefore, the

next state of A remains the same and is equal to 1. In the same row of the table, JB and

 KB are both equal to 1. Since the present state of B is 0, the next state of B is comple-

mented and changes to 1.
 The next-state values can also be obtained by evaluating the state equations from the

characteristic equation. This is done by using the following procedure:

 1. Determine the flip-flop input equations in terms of the present state and input

variables.

 2. Substitute the input equations into the flip-flop characteristic equation to obtain

the state equations.

 3. Use the corresponding state equations to determine the next-state values in the

state table.

 The input equations for the two JK flip-flops of Fig. 5.18 were listed a couple of para-

graphs ago. The characteristic equations for the flip-flops are obtained by substituting

 A or B for the name of the flip-flop, instead of Q :

 A(t + 1) = JA� + K�A

 B(t + 1) = JB� + K�B

 Substituting the values of JA and KA from the input equations, we obtain the state equa-

tion for A :

 A(t + 1) = BA� + (Bx�)� A = A�B + AB� + Ax

 The state equation provides the bit values for the column headed “Next State” for A in

the state table. Similarly, the state equation for flip-flop B can be derived from the char-

acteristic equation by substituting the values of JB and KB:

 B(t + 1) = x�B� + (A { x)�B = B�x� + ABx + A�Bx�

 The state equation provides the bit values for the column headed “Next State” for B in

the state table. Note that the columns in Table 5.4 headed “Flip-Flop Inputs” are not

needed when state equations are used.

 The state diagram of the sequential circuit is shown in Fig. 5.19 . Note that since the

circuit has no outputs, the directed lines out of the circles are marked with one binary

number only, to designate the value of input x .

 Analysis with T Flip-Flops

 The analysis of a sequential circuit with T flip-flops follows the same procedure outlined

for JK flip-flops. The next-state values in the state table can be obtained by using either

214 Chapter 5 Synchronous Sequential Logic

the characteristic table listed in Table 5.1 or the characteristic equation

 Q(t + 1) = T { Q = T�Q + TQ�

 Now consider the sequential circuit shown in Fig. 5.20 . It has two flip-flops A and B, one

input x, and one output y and can be described algebraically by two input equations and

an output equation:

 TA = Bx

 TB = x

 y = AB

 The state table for the circuit is listed in Table 5.5 . The values for y are obtained from

the output equation. The values for the next state can be derived from the state equa-

tions by substituting TA and TB in the characteristic equations, yielding

 A(t + 1) = (Bx)�A + (Bx)A� = AB� + Ax� + A�Bx

 B(t + 1) = x � B
 The next-state values for A and B in the state table are obtained from the expressions

of the two state equations.

 The state diagram of the circuit is shown in Fig. 5.20 (b). As long as input x is equal to 1, the

circuit behaves as a binary counter with a sequence of states 00, 01, 10, 11, and back to 00.

When x = 0, the circuit remains in the same state. Output y is equal to 1 when the present

state is 11. Here, the output depends on the present state only and is independent of the input.

The two values inside each circle and separated by a slash are for the present state and output.

 Mealy and Moore Models of Finite State Machines

 The most general model of a sequential circuit has inputs, outputs, and internal states. It

is customary to distinguish between two models of sequential circuits: the Mealy model

and the Moore model. Both are shown in Fig. 5.21 . They differ only in the way the output

00 11

1 1

1

0 00

S0 S3

S2S1

0

1

01 10

 FIGURE 5.19
 State diagram of the circuit of Fig. 5.18

Section 5.5 Analysis of Clocked Sequential Circuits 215

 Table 5.5
 State Table for Sequential Circuit with T Flip-Flops

 Present
State

Input

 Next
State

Output

 A B x A B y

 0 0 0 0 0 0

 0 0 1 0 1 0

 0 1 0 0 1 0

 0 1 1 1 0 0

 1 0 0 1 0 0

 1 0 1 1 1 0

 1 1 0 1 1 1

 1 1 1 0 0 1

T

B

A

y

T

Clk
R

R
Clk

x

Clock reset

(a) Circuit diagram (b) State diagram

11/1

00/0 01/0

10/0

00

1 1

1

1

0 0

 FIGURE 5.20
 Sequential circuit with T flip-flops (Binary Counter)

216 Chapter 5 Synchronous Sequential Logic

is generated. In the Mealy model, the output is a function of both the present state and

the input. In the Moore model, the output is a function of only the present state. A circuit

may have both types of outputs. The two models of a sequential circuit are commonly

referred to as a finite state machine, abbreviated FSM. The Mealy model of a sequential

circuit is referred to as a Mealy FSM or Mealy machine. The Moore model is referred

to as a Moore FSM or Moore machine.

 The circuit presented previously in Fig. 5.15 is an example of a Mealy machine. Out-

put y is a function of both input x and the present state of A and B . The corresponding

state diagram in Fig. 5.16 shows both the input and output values, separated by a slash

along the directed lines between the states.

 An example of a Moore model is given in Fig. 5.18 . Here, the output is a function of

the present state only. The corresponding state diagram in Fig. 5.19 has only inputs marked

along the directed lines. The outputs are the flip-flop states marked inside the circles.

Another example of a Moore model is the sequential circuit of Fig. 5.20 . The output

depends only on flip-flop values, and that makes it a function of the present state only.

The input value in the state diagram is labeled along the directed line, but the output

value is indicated inside the circle together with the present state.
 In a Moore model, the outputs of the sequential circuit are synchronized with the

clock, because they depend only on flip-flop outputs that are synchronized with the
clock. In a Mealy model, the outputs may change if the inputs change during the clock

Inputs
State

Register

Next State
Combinational

Logic

Inputs
State

Register
Outputs
(Moore-type)

Output
Combinational

Logic

Clock

Clock

Moore Machine

Mealy Machine

Next State
Combinational

Logic

Output

Combinational

Logic

Outputs
(Mealy-type)

(a)

(b)

 FIGURE 5.21
 Block diagrams of Mealy and Moore state machines

Section 5.6 Synthesizable HDL Models of Sequential Circuits 217

cycle. Moreover, the outputs may have momentary false values because of the delay

encountered from the time that the inputs change and the time that the flip-flop outputs

change. In order to synchronize a Mealy-type circuit, the inputs of the sequential circuit

must be synchronized with the clock and the outputs must be sampled immediately

before the clock edge. The inputs are changed at the inactive edge of the clock to ensure

that the inputs to the flip-flops stabilize before the active edge of the clock occurs. Thus,

 the output of the Mealy machine is the value that is present immediately before the
active edge of the clock.

 5 . 6 S Y N T H E S I Z A B L E H D L M O D E L S
O F S E Q U E N T I A L C I R C U I T S

 The Verilog HDL was introduced in Section 3.9. Combinational circuits were described

in Section 4.12, and behavioral modeling with Verilog was introduced in that section

as well. Behavioral models are abstract representations of the functionality of digi-

tal hardware. That is, they describe how a circuit behaves, but don’t specify the internal

details of the circuit. Historically, the abstraction has been described by truth tables,

state tables, and state diagrams. An HDL describes the functionality differently,

by language constructs that represent the operations of registers in a machine.

This representation has “added value,” i.e., it is important for you to know how to use,

because it can be simulated to produce waveforms demonstrating the behavior of the

machine.

 Behavioral Modeling

 There are two kinds of abstract behaviors in the Verilog HDL. Behavior declared by

the keyword initial is called single-pass behavior and specifies a single statement or

a block statement (i.e., a list of statements enclosed by either a begin . . . end or a

 fork . . . join keyword pair). A single-pass behavior expires after the associated state-

ment executes. In practice, designers use single-pass behavior primarily to prescribe

stimulus signals in a test bench—never to model the behavior of a circuit—because

synthesis tools do not accept descriptions that use the initial statement. The always

keyword declares a cyclic behavior. Both types of behaviors begin executing when

the simulator launches at time t = 0. The initial behavior expires after its statement

executes; the always behavior executes and reexecutes indefinitely, until the simula-

tion is stopped. A module may contain an arbitrary number of initial or always behav-

ioral statements. They execute concurrently with respect to each other, starting at

time 0, and may interact through common variables. Here’s a word description of how

an always statement works for a simple model of a D flip-flop: Whenever the rising

edge of the clock occurs, if the reset input is asserted, the output q gets 0; otherwise

the output Q gets the value of the input D . The execution of statements triggered by

the clock is repeated until the simulation ends. We’ll see shortly how to write this

description in Verilog.

218 Chapter 5 Synchronous Sequential Logic

 An initial behavioral statement executes only once. It begins its execution at the start

of simulation and expires after all of its statements have completed execution. As men-

tioned at the end of Section 4.12, the initial statement is useful for generating input

signals to simulate a design. In simulating a sequential circuit, it is necessary to generate

a clock source for triggering the flip-flops. The following are two possible ways to pro-

vide a free-running clock that operates for a specified number of cycles:

 initial initial

 begin begin

 clock = 1'b0; clock = 1'b0;
 repeat (30) end
 #10 clock = ~clock;
 end initial 300 $ finish ;
 always #10 clock = ~clock;

 In the first version, the initial block contains two statements enclosed within the begin

and end keywords. The first statement sets clock to 0 at time = 0. The second statement

specifies a loop that reexecutes 30 times to wait 10 time units and then complement the

value of clock . This produces 15 clock cycles, each with a cycle time of 20 time units. In

the second version, the first initial behavior has a single statement that sets clock to 0 at

 time = 0, and it then expires (causes no further simulation activity). The second single-

pass behavior declares a stopwatch for the simulation. The system task finish causes the

simulation to terminate unconditionally after 300 time units have elapsed. Because this

behavior has only one statement associated with it, there is no need to write the begin . . .

 end keyword pair. After 10 time units, the always statement repeatedly complements clock,
providing a clock generator having a cycle time of 20 time units. The three behavioral

statements in the second example can be written in any order.

 Here is another way to describe a free-running clock:

 initial begin clock = 0; forever #10 clock = ~clock; end

 This version, with two statements in one block statement, initializes the clock and then

executes an indefinite loop (forever) in which the clock is complemented after a delay

of 10 time steps. Note that the single-pass behavior never finishes executing and so does

not expire. Another behavior would have to terminate the simulation.

 The activity associated with either type of behavioral statement can be controlled by

a delay operator that waits for a certain time or by an event control operator that waits

for certain conditions to become true or for specified events (changes in signals) to

occur. Time delays specified with the # delay control operator are commonly used in

single-pass behaviors. The delay control operator suspends execution of statements until

a specified time has elapsed. We’ve already seen examples of its use to specify signals in

a test bench. Another operator @ is called the event control operator and is used to

 suspend activity until an event occurs. An event can be an unconditional change in a

signal value (e.g., @ A) or a specified transition of a signal value (e.g., @ (posedge

clock)). The general form of this type of statement is

 always @ (event control expression) begin
 // Procedural assignment statements that execute when the condition is met

 end

Section 5.6 Synthesizable HDL Models of Sequential Circuits 219

 The event control expression specifies the condition that must occur to launch execu-

tion of the procedural assignment statements. The variables in the left-hand side of the

procedural statements must be of the reg data type and must be declared as such. The

right-hand side can be any expression that produces a value using Verilog-defined

operators.

 The event control expression (also called the sensitivity list) specifies the events that

must occur to initiate execution of the procedural statements associated with the always

block. Statements within the block execute sequentially from top to bottom. After

the last statement executes, the behavior waits for the event control expression to be

satisfied. Then the statements are executed again. The sensitivity list can specify level-

sensitive events, edge-sensitive events, or a combination of the two. In practice, design-

ers do not make use of the third option, because this third form is not one that synthesis

tools are able to translate into physical hardware. Level-sensitive events occur in com-

binational circuits and in latches. For example, the statement

 always @ (A or B or C)

 will initiate execution of the procedural statements in the associated always block if a

change occurs in A, B, or C . In synchronous sequential circuits, changes in flip-flops

occur only in response to a transition of a clock pulse. The transition may be either a

positive edge or a negative edge of the clock, but not both. Verilog HDL takes care of

these conditions by providing two keywords: posedge and negedge . For example, the

expression

 always @(posedge clock or negedge reset) // Verilog 1995

 will initiate execution of the associated procedural statements only if the clock goes

through a positive transition or if reset goes through a negative transition. The 2001 and

2005 revisions to the Verilog language allow a comma-separated list for the event con-

trol expression (or sensitivity list):

 always @(posedge clock, negedge reset) // Verilog 2001, 2005

 A procedural assignment is an assignment of a logic value to a variable within an

 initial or always statement. This is in contrast to a continuous assignment discussed in

Section 4.12 with dataflow modeling. A continuous assignment has an implicit level-

sensitive sensitivity list consisting of all of the variables on the right-hand side of its

assignment statement. The updating of a continuous assignment is triggered whenever

an event occurs in a variable included on the right-hand side of its expression. In con-

trast, a procedural assignment is made only when an assignment statement is executed

and assigns value to it within a behavioral statement. For example, the clock signal in

the preceding example was complemented only when the statement clock = ~ clock

executed; the statement did not execute until 10 time units after the simulation began.

It is important to remember that a variable having type reg remains unchanged until a

procedural assignment is made to give it a new value.

 There are two kinds of procedural assignments: blocking and nonblocking . The two

are distinguished by the symbols that they use. Blocking assignments use the symbol (=)

as the assignment operator, and nonblocking assignments use (< =) as the operator.

220 Chapter 5 Synchronous Sequential Logic

Blocking assignment statements are executed sequentially in the order they are listed

in a block of statements. Nonblocking assignments are executed concurrently by evalu-

ating the set of expressions on the right-hand side of the list of statements; they do not

make assignments to their left-hand sides until all of the expressions are evaluated. The

two types of assignments may be better understood by means of an illustration. Consider

these two procedural blocking assignments:

 B = A
 C = B + 1

 The first statement transfers the value of A into B . The second statement increments the

value of B and transfers the new value to C . At the completion of the assignments, C

contains the value of A + 1.

 Now consider the two statements as nonblocking assignments:

 B <= A
 C <= B + 1

 When the statements are executed, the expressions on the right-hand side are evaluated

and stored in a temporary location. The value of A is kept in one storage location and

the value of B + 1 in another. After all the expressions in the block are evaluated and

stored, the assignment to the targets on the left-hand side is made. In this case, C will

contain the original value of B, plus 1. A general rule is to use blocking assignments when
sequential ordering is imperative and in cyclic behavior that is level sensitive (i.e., in

combinational logic). Use nonblocking assignments when modeling concurrent execu-
tion (e.g., edge-sensitive behavior such as synchronous, concurrent register transfers)

 and when modeling latched behavior . Nonblocking assignments are imperative in deal-

ing with register transfer level design, as shown in Chapter 8 . They model the concurrent

operations of physical hardware synchronized by a common clock. Today’s designers

are expected to know what features of an HDL are useful in a practical way and how to

avoid features that are not. Following these rules for using the assignment operators will

prevent conditions that lead synthesis tools astray and create mismatches between

the behavior of a model and the behavior of physical hardware that is produced by a

synthesis tool.

 HDL Models of Flip-Flops and Latches

 HDL Examples 5.1 through 5.4 show Verilog descriptions of various flip-flops and a D

latch. The D latch is said to be transparent because it responds to a change in data input

with a change in the output as long as the enable input is asserted—viewing the output

is the same as viewing the input. The description of a D latch is shown in HDL Example

5.1 It has two inputs, D and enable, and one output, Q . Since Q is assigned value in a

behavior, its type must be declared to be reg . Hardware latches respond to input signal

 levels, so the two inputs are listed without edge qualifiers in the sensitivity list following

the @ symbol in the always statement. In this model, there is only one blocking proce-

dural assignment statement, and it specifies the transfer of input D to output Q if enable

Section 5.6 Synthesizable HDL Models of Sequential Circuits 221

is true (logic 1). 1 Note that this statement is executed every time there is a change in D

if enable is 1.

 A D-type flip-flop is the simplest example of a sequential machine. HDL Example

5.2 describes two positive-edge D flip-flops in two modules. The first responds only to

the clock; the second includes an asynchronous reset input. Output Q must be declared

as a reg data type in addition to being listed as an output. This is because it is a target

output of a procedural assignment statement. The keyword posedge ensures that the

transfer of input D into Q is synchronized by the positive-edge transition of Clk .

A change in D at any other time does not change Q .

 1 The statement (single or block) associated with if (Boolean expression) executes if the Boolean expression

is true.

 HDL Example 5.1 (D-Latch)

 // Description of D latch (See Fig. 5.6)
 module D_latch (Q, D, enable);
 output Q;
 input D, enable;
 reg Q;
 always @ (enable or D)
 if (enable) Q <= D; // Same as: if (enable == 1)
 endmodule

 // Alternative syntax (Verilog 2001, 2005)
 module D_latch (output reg Q, input enable, D);
 always @ (enable, D)
 if (enable) Q <= D; // No action if enable not asserted
 endmodule

 HDL Example 5.2 (D-Type Flip-Flop)

 // D fl ip-fl op without reset
 module D_FF (Q, D, Clk);
 output Q;
 input D, Clk;
 reg Q;
 always @ (posedge Clk)
 Q <= D;
 endmodule

 // D fl ip-fl op with asynchronous reset (V2001, V2005)
 module DFF (output reg Q, input D, Clk, rst);
 always @ (posedge Clk, negedge rst)
 if (!rst) Q <= 1'b0; // Same as: if (rst == 0)
 else Q <= D;
 endmodule

222 Chapter 5 Synchronous Sequential Logic

 The second module includes an asynchronous reset input in addition to the synchro-

nous clock. A specific form of an if statement is used to describe such a flip-flop so that

the model can be synthesized by a software tool. The event expression after the @ sym-

bol in the always statement may have any number of edge events, either posedge or

 negedge . For modeling hardware, one of the events must be a clock event. The remain-

ing events specify conditions under which asynchronous logic is to be executed. The

designer knows which signal is the clock, but clock is not an identifier that software tools

automatically recognize as the synchronizing signal of a circuit. The tool must be able

to infer which signal is the clock, so you need to write the description in a way that enables
the tool to infer the clock correctly . The rules are simple to follow: (1) Each if or else if
statement in the procedural assignment statements is to correspond to an asynchronous

event, (2) the last else statement corresponds to the clock event, and (3) the asynchro-

nous events are tested first. There are two edge events in the second module of HDL

Example 5.2. The negedge rst (reset) event is asynchronous, since it matches the if (!rst)

statement. As long as rst is 0, Q is cleared to 0. If Clk has a positive transition, its effect

is blocked. Only if rst = 1 can the posedge clock event synchronously transfer D into Q .

 Hardware always has a reset signal. It is strongly recommended that all models of

edge-sensitive behavior include a reset (or preset) input signal; otherwise, the initial

state of the flip-flops of the sequential circuit cannot be determined. A sequential circuit

cannot be tested with HDL simulation unless an initial state can be assigned with an

input signal.

 HDL Example 5.3 describes the construction of a T or JK flip-flop from a D flip-flop

and gates. The circuit is described with the characteristic equations of the flip-flops:

 Q(t + 1) = Q { T for a T flip-flop

 Q(t + 1) = JQ� + K�Q for a JK flip-flop

 The first module, TFF, describes a T flip-flop by instantiating DFF . (Instantiation is

explained in Section 4.12.) The declared wire, DT, is assigned the exclusive-OR of Q

and T, as is required for building a T flip-flop with a D flip-flop. The instantiation with

the value of DT replacing D in module DFF produces the required T flip-flop. The JK

flip-flop is specified in a similar manner by using its characteristic equation to define a

replacement for D in the instantiated DFF .

 HDL Example 5.3 (Alternative Flip-Flop Models)

 // T fl ip-fl op from D fl ip-fl op and gates
 module TFF (Q, T, Clk, rst);
 output Q;
 input T, Clk, rst;
 wire DT;
 assign DT = Q ^ T ; // Continuous assignment
 // Instantiate the D fl ip-fl op
 DFF TF1 (Q, DT, Clk, rst);
 endmodule

Section 5.6 Synthesizable HDL Models of Sequential Circuits 223

 // JK fl ip-fl op from D fl ip-fl op and gates (V2001, 2005)
 module JKFF (output reg Q, input J, K, Clk, rst);
 wire JK;
 assign JK = (J & ~Q) � (~K & Q);
 // Instantiate D fl ip-fl op
 DFF JK1 (Q, JK, Clk, rst);
 endmodule

 // D fl ip-fl op (V2001, V2005)
 module DFF (output reg Q, input D, Clk, rst);
 always @ (p osedge Clk, negedge rst)
 if (!rst) Q <= 1'b0;
 else Q <= D;
 endmodule

 HDL Example 5.4 shows another way to describe a JK flip-flop. Here, we describe

the flip-flop by using the characteristic table rather than the characteristic equation. The

 case multiway branch condition checks the two-bit number obtained by concatenating

the bits of J and K . The case expression ({ J, K }) is evaluated and compared with the

values in the list of statements that follows. The first value that matches the true condi-

tion is executed. Since the concatenation of J and K produces a two-bit number, it can

be equal to 00, 01, 10, or 11. The first bit gives the value of J and the second the value of

 K . The four possible conditions specify the value of the next state of Q after the applica-

tion of a positive-edge clock.

 HDL Example 5.4 (JK Flip-Flop)

 // Functional description of JK fl ip-fl op (V2001, 2005)
 module JK_FF (input J, K, Clk, output reg Q, output Q_b);
 assign Q_b = ~ Q ;
 always @ (posedge Clk)
 case ({J,K})
 2'b00: Q <= Q;
 2'b01: Q <= 1'b0;
 2'b10: Q <= 1'b1;
 2'b11: Q <= !Q;
 endcase
 endmodule

 State diagram-Based HDL Models

 An HDL model of the operation of a sequential circuit can be based on the format of the

circuit’s state diagram. A Mealy HDL model is presented in HDL Example 5.5 for the

zero-detector machine described by the sequential circuit in Fig. 5.15 and its state diagram

shown in Fig. 5.16 . The input, output, clock, and reset are declared in the usual manner.

224 Chapter 5 Synchronous Sequential Logic

The state of the flip-flops is declared with identifiers state and next_state . These variables

hold the values of the present state and the next value of the sequential circuit. The state’s

binary assignment is done with a parameter statement. (Verilog allows constants to be

defined in a module by the keyword parameter .) The four states S0 through S3 are assigned

binary 00 through 11. The notation S2 = 2�b10 is preferable to the alternative S2 = 2. The

former uses only two bits to store the constant, whereas the latter results in a binary num-

ber with 32 (or 64) bits because an unsized number is interpreted and sized as an integer.

 HDL Example 5.5 (Mealy Machine: Zero Detector)

 // Mealy FSM zero detector (See Fig. 5.15 and Fig. 5.16) Verilog 2001, 2005 syntax
 module Mealy_Zero_Detector (
 output reg y_out,
 input x_in, clock, reset
);
 reg [1: 0] state, next_state;
 parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;
 always @ (posedge clock, negedge reset) Verilog 2001, 2005 syntax
 if (reset == 0) state <= S0;
 else state <= next_state;

 always @ (state, x_in) // Form the next state
 case (state)
 S0: if (x_in) next_state = S1; else next_state = S0;
 S1: if (x_in) next_state = S3; else next_state = S0;
 S2: if (~x_in) next_state = S0; else next_state = S2;
 S3: if (x_in) next_state = S2; else next_state = S0;
 endcase

 always @ (state, x_in) // Form the Mealy output
 case (state)
 S0: y_out = 0;
 S1, S2, S3: y_out = ~x_in;
 endcase

 endmodule

 module t_Mealy_Zero_Detector;
 wire t_y_out;
 reg t_x_in, t_clock, t_reset;

 Mealy_Zero_Detector M0 (t_y_out, t_x_in, t_clock, t_reset);
 initial #200 $finish ;
 initial begin t_clock = 0; forever #5 t_clock = ~t_clock; end

 initial fork
 t_reset = 0;
 #2 t_reset = 1;
 #87 t_reset = 0;
 #89 t_reset = 1;

Section 5.6 Synthesizable HDL Models of Sequential Circuits 225

 #10 t_x_in = 1;
 #30 t_x_in = 0;
 #40 t_x_in = 1;
 #50 t_x_in = 0;
 #52 t_x_in = 1;
 #54 t_x_in = 0;
 #70 t_x_in = 1;
 #80 t_x_in = 1;
 #70 t_x_in = 0;
 #90 t_x_in = 1;
 #100 t_x_in = 0;
 #120 t_x_in = 1;
 #160 t_x_in = 0;
 #170 t_x_in = 1;
 join
 endmodule

 The circuit I HDL Example 5.5 detects a 0 following a sequence of 1s in a serial bit

stream. Its Verilog model uses three always blocks that execute concurrently and inter-

act through common variables. The first always statement resets the circuit to the initial

state S0 = 00 and specifies the synchronous clocked operation. The statement state <=
next_state is synchronized to a positive-edge transition of the clock. This means that any

change in the value of next_state in the second always block can affect the value of state

only as a result of a posedge event of clock . The second always block determines the

value of the next state transition as a function of the present state and input. The value

assigned to state by the nonblocking assignment is the value of next_state immediately

before the rising edge of clock . Notice how the multiway branch condition implements

the state transitions specified by the annotated edges in the state diagram of Fig. 5.16 .

The third always block specifies the output as a function of the present state and the

input. Although this block is listed as a separate behavior for clarity, it could be com-

bined with the second block. Note that the value of output y_out may change if the value

of input x_in changes while the circuit is in any given state.

 So let’s summarize how the model describes the behavior of the machine: At every ris-

ing edge of clock, if reset is not asserted, the state of the machine is updated by the first

 always block; when state is updated by the first always block, the change in state is detected

by the sensitivity list mechanism of the second always block; then the second always block

updates the value of next_state (it will be used by the first always block at the next tick of

the clock); the third always block also detects the change in state and updates the value of

the output. In addition, the second and third always blocks detect changes in x_in and

update next_state and y_out accordingly. The test bench provided with Mealy_Zero_
Detector provides some waveforms to stimulate the model, producing the results shown in

 Fig. 5.22 . Notice how t_ y_out responds to changes in both the state and the input, and has

a glitch (a transient logic value). We display both to state [1:0] and next_state [1:0] to illus-

trate how changes in t_x_in influence the value of next_state and t_y_out. The Mealy glitch

in t_y_out is due to the (intentional) dynamic behavior of t_x_in . The input, t_x_in, settles

226 Chapter 5 Synchronous Sequential Logic

to a value of 0 immediately before the clock, and at the clock, the state makes a transition

from 0 to 1, which is consistent with Fig. 5.16 . The output is 1 in state S 1 immediately before

the clock, and changes to 0 as the state enters S 0.

 The description of waveforms in the test bench uses the fork . . . join construct. State-

ments with the fork . . . join block execute in parallel, so the time delays are relative to

a common reference of t = 0, the time at which the block begins execution. 2 It is usually

more convenient to use the fork . . . join block instead of the begin . . . end block in

describing waveforms. Notice that the waveform of reset is triggered “on the fly” to

demonstrate that the machine recovers from an unexpected (asynchronous) reset con-

dition during any state.
 How does our Verilog model Mealy_Zero_Detector correspond to hardware? The first

 always block corresponds to a D flip-flop implementation of the state register in Fig. 5.21 ;

the second always block is the combinational logic block describing the next state; the

third always block describes the output combinational logic of the zero-detecting Mealy

machine. The register operation of the state transition uses the nonblocking assignment

operator (< =) because the (edge-sensitive) flip-flops of a sequential machine are updated

concurrently by a common clock. The second and third always blocks describe combina-

tional logic, which is level sensitive, so they use the blocking (=) assignment operator.

t_clock

t_reset

t_x_in

state[1:0]

next_state[1:0]

t_y_out

0

Stream of 1s

30 60 90

0 1

0

3

1

2

3 0

1 3

1

0

0

1 1

0

3

1

0

0

Mealy glitchvalid Mealy output

0

 FIGURE 5.22
 Simulation output of Mealy_Zero_Detector

 2 A fork . . . join block completes execution when the last executing statement within it completes its

execution.

Section 5.6 Synthesizable HDL Models of Sequential Circuits 227

Their sensitivity lists include both the state and the input because their logic must respond

to a change in either or both of them.

 Note: The modeling style illustrated by Mealy_Zero_Detector is commonly used by

designers because it has a close relationship to the state diagram of the machine that is

being described. Notice that the reset signal is associated with the always block that

synchronizes the state transitions. In this example, it is modeled as an active-low reset.

Because the reset condition is included in the description of the state transitions, there

is no need to include it in the combinational logic that specifies the next state and the

output, and the resulting description is less verbose, simpler, and more readable.

 HDL Example 5.6 presents the Verilog behavioral model of the Moore FSM shown

in Fig. 5.18 and having the state diagram given in Fig. 5.19 . The model illustrates an

alternative style in which the state transitions of the machine are described by a single

clocked (i.e., edge-sensitive) cyclic behavior, i.e., by one always block. The present state

of the circuit is identified by the variable state, and its transitions are triggered by the

rising edge of the clock according to the conditions listed in the case statement. The

combinational logic that determines the next state is included in the nonblocking assign-

ment to state. In this example, the output of the circuits is independent of the input and

is taken directly from the outputs of the flip-flops. The two-bit output y_out is specified

with a continuous assignment statement and is equal to the value of the present state

vector. Figure 5.23 shows some simulation results for Moore_Model_Fig_5_19. Here

are some important observations: (1) the output depends on only the state, (2) reset

“on-the-fly” forces the state of the machine back to S0 (00), and (3) the state transitions

are consistent with Fig. 5.19 .

 HDL Example 5.6 (Moore Machine: Zero Detector)

 // Moore model FSM (see Fig. 5.19) Verilog 2001, 2005 syntax
 module Moore_Model_Fig_5_19 (
 output [1: 0] y_out,
 input x_in, clock, reset
);
 reg [1: 0] state;
 parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

 always @ (posedge clock, negedge reset)
 if (reset == 0) state <= S0; // Initialize to state S0
 else case (state)
 S0: if (~x_in) state <= S1; else state <= S0;
 S1: if (x_in) state <= S2; else state <= S3;
 S2: if (~x_in) state <= S3; else state <= S2;
 S3: if (~x_in) state <= S0; else state <= S3;
 endcase

 assign y_out = state; // Output of fl ip-fl ops

 endmodule

228 Chapter 5 Synchronous Sequential Logic

 Structural Description of Clocked Sequential Circuits

 Combinational logic circuits can be described in Verilog by a connection of gates

(primitives and UDPs), by dataflow statements (continuous assignments), or by level-

sensitive cyclic behaviors (always blocks). Sequential circuits are composed of com-

binational logic and flip-flops, and their HDL models use sequential UDPs and

behavioral statements (edge-sensitive cyclic behaviors) to describe the operation of

flip-flops. One way to describe a sequential circuit uses a combination of dataflow

and behavioral statements. The flip-flops are described with an always statement. The

combinational part can be described with assign statements and Boolean equations.

The separate modules can be combined to form a structural model by instantiation

within a module .

 The structural description of a Moore-type zero detector sequential circuit is shown

in HDL Example 5.7. We want to encourage the reader to consider alternative ways to

model a circuit, so as a point of comparison, we first present Moore_Model_Fig_5_20,
a Verilog behavioral description of a binary counter having the state diagram examined

earlier shown in Fig. 5.20 (b). This style of modeling follows directly from the state dia-

gram. An alternative style, used in Moore_Model_STR_Fig_5_20, represents the struc-

ture shown in Fig. 5.20 (a). This style uses two modules. The first describes the circuit of

 Fig. 5.20 (a). The second describes the T flip-flop that will be used by the circuit. We also

show two ways to model the T flip-flop. The first asserts that, at every clock tick, the

value of the output of the flip-flop toggles if the toggle input is asserted. The second

model describes the behavior of the toggle flip-flop in terms of its characteristic equa-

tion. The first style is attractive because it does not require the reader to remember the

characteristic equation. Nonetheless, the models are interchangeable and will synthesize

to the same hardware circuit. A test bench module provides a stimulus for verifying the

functionality of the circuit. The sequential circuit is a two-bit binary counter controlled

by input x_in . The output, y_out, is enabled when the count reaches binary 11. Flip-flops

0 30 60

reset on-the-fly

90

t_clock

t_reset

t_x_in

state[1:0]

t_y_out[1:0] 0

0

1

1 2

2 3

3 0

0 1

1

0

0 1

1 3

3

 FIGURE 5.23
 Simulation output of HDL Example 5.6

Section 5.6 Synthesizable HDL Models of Sequential Circuits 229

 A and B are included as outputs in order to check their operation. The flip-flop input

equations and the output equation are evaluated with continuous assignment (assign)

statements having the corresponding Boolean expressions. The instantiated T flip-flops

use TA and TB as defined by the input equations.

 The second module describes the T flip-flop. The reset input resets the flip-flop to 0

with an active-low signal. The operation of the flip-flop is specified by its characteristic

equation, Q(t + 1) = Q { T.

 The test bench includes both models of the machine. The stimulus module provides

common inputs to the circuits to simultaneously display their output responses. The

first initial block provides eight clock cycles with a period of 10 ns. The second initial
block specifies a toggling of input x_in that occurs at the negative edge transition of

the clock. The result of the simulation is shown in Fig. 5.24 . The pair (A, B) goes

through the binary sequence 00, 01, 10, 11, and back to 00. The change in the count is

triggered by a positive edge of the clock, provided that x_in = 1. If x_in = 0, the

count does not change. y_out is equal to 1 when both A and B are equal to 1. This

verifies the main functionality of the circuit, but not a recovery from an unexpected

reset event.

 HDL Example 5.7 (Binary Counter_Moore Model)

 // State-diagram-based model (V2001, 2005)
 module Moore_Model_Fig_5_20 (
 output y_out,
 input x_in, clock, reset
);
 reg [1: 0] state;
 parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

 always @ (posedge clock, negedge reset)
 if (reset == 0) state <= S0; // Initialize to state S0
 else case (state)
 S0: if (x_in) state <= S1; else state <= S0;
 S1: if (x_in) state <= S2; else state <= S1;
 S2: if (x_in) state <= S3; else state <= S2;
 S3: if (x_in) state <= S0; else state <= S3;
 endcase

 assign y_out = (state == S3); // Output of fl ip-fl ops
 endmodule

 // Structural model
 module Moore_Model_STR_Fig_5_20 (
 output y_out, A, B,
 input x_in, clock, reset
);
 wire TA, TB;

 // Flip-fl op input equations
 assign TA = x_in & B;

230 Chapter 5 Synchronous Sequential Logic

 assign TB = x_in;
 // Output equation
 assign y_out = A & B;

 // Instantiate Toggle fl ip-fl ops
 Toggle_fl ip_fl op_3 M_A (A, TA, clock, reset);
 Toggle_fl ip_fl op_3 M_B (B, TB, clock, reset);

 endmodule

 module Toggle_fl ip_fl op (Q, T, CLK, RST_b);
 output Q;
 input T, CLK, RST_b;
 reg Q;

 always @ (posedge CLK, negedge RST_b)
 if (RST_b == 0) Q <= 1'b0;
 else if (T) Q <= ~Q;

 endmodule

 // Alternative model using characteristic equation
 // module Toggle_fl ip_fl op (Q, T, CLK, RST_b);
 // output Q;
 // input T, CLK, RST_b;
 // reg Q;

 // always @ (posedge CLK, negedge RST)
 // if (RST_b == 0) Q <= 1'b0;
 // else Q <= Q ^ T;
 // endmodule

 module t_Moore_Fig_5_20;
 wire t_y_out_2, t_y_out_1;
 reg t_x_in, t_clock, t_reset;

 Moore_Model_Fig_5_20 M1(t_y_out_1, t_x_in, t_clock, t_reset);
 Moore_Model_STR_Fig_5_20 M2 (t_y_out_2, A, B, t_x_in, t_clock, t_reset);

 initial #200 $finish ;
 initial begin
 t_reset = 0;
 t_clock = 0;
 #5 t_reset = 1;
 repeat (16)
 #5 t_clock = ~t_clock;
 end
 initial begin
 t_x_in = 0;
 #15 t_x_in = 1;
 repeat (8)
 #10 t_x_in = ~t_x_in;
 end
 endmodule

Section 5.7 State Reduction and Assignment 231

Name
0 50 100 150

t_clock

t_reset

t_x_in

t_y_out_1

t_y_out_2

A

B

 FIGURE 5.24
 Simulation output of HDL Example 5.7

 5 . 7 S TAT E R E D U C T I O N A N D A S S I G N M E N T

 The analysis of sequential circuits starts from a circuit diagram and culminates in a state

table or diagram. The design (synthesis) of a sequential circuit starts from a set of

specifications and culminates in a logic diagram. Design procedures are presented in

Section 5.8. Two sequential circuits may exhibit the same input–output behavior, but

have a different number of internal states in their state diagram. The current section

discusses certain properties of sequential circuits that may simplify a design by reduc-

ing the number of gates and flip-flops it uses. In general, reducing the number of flip-

flops reduces the cost of a circuit.

 State Reduction

 The reduction in the number of flip-flops in a sequential circuit is referred to as the

 state-reduction problem. State-reduction algorithms are concerned with procedures for

reducing the number of states in a state table, while keeping the external input–output

requirements unchanged. Since m flip-flops produce 2m states, a reduction in the number

of states may (or may not) result in a reduction in the number of flip-flops. An unpre-

dictable effect in reducing the number of flip-flops is that sometimes the equivalent

circuit (with fewer flip-flops) may require more combinational gates to realize its next

state and output logic.

 We will illustrate the state-reduction procedure with an example. We start with a sequen-

tial circuit whose specification is given in the state diagram of Fig. 5.25 . In our example, only

the input–output sequences are important; the internal states are used merely to provide

the required sequences. For that reason, the states marked inside the circles are denoted

232 Chapter 5 Synchronous Sequential Logic

by letter symbols instead of their binary values. This is in contrast to a binary counter,

wherein the binary value sequence of the states themselves is taken as the outputs.
 There are an infinite number of input sequences that may be applied to the circuit;

each results in a unique output sequence. As an example, consider the input sequence

01010110100 starting from the initial state a . Each input of 0 or 1 produces an output

of 0 or 1 and causes the circuit to go to the next state. From the state diagram, we obtain

the output and state sequence for the given input sequence as follows: With the circuit

in initial state a, an input of 0 produces an output of 0 and the circuit remains in state a .

With present state a and an input of 1, the output is 0 and the next state is b . With pres-

ent state b and an input of 0, the output is 0 and the next state is c . Continuing this

process, we find the complete sequence to be as follows:

 state a a b c d e f f g f g a
 input 0 1 0 1 0 1 1 0 1 0 0
 output 0 0 0 0 0 1 1 0 1 0 0

 In each column, we have the present state, input value, and output value. The next state

is written on top of the next column. It is important to realize that in this circuit the states

themselves are of secondary importance, because we are interested only in output

sequences caused by input sequences.

 Now let us assume that we have found a sequential circuit whose state diagram has

fewer than seven states, and suppose we wish to compare this circuit with the circuit

whose state diagram is given by Fig. 5.25 . If identical input sequences are applied to the

two circuits and identical outputs occur for all input sequences, then the two circuits are

said to be equivalent (as far as the input–output is concerned) and one may be replaced

by the other. The problem of state reduction is to find ways of reducing the number of

states in a sequential circuit without altering the input–output relationships.

a

b c

d eg

f

0/0
1/1 1/1

1/1

1/1

1/0

1/0
1/0 0/0

0/0

0/0

0/0

0/0

0/0

 FIGURE 5.25
 State diagram

Section 5.7 State Reduction and Assignment 233

 Table 5.6
 State Table

 Next State Output

 Present State x � 0 x � 1 x � 0 x � 1

 a a b 0 0

 b c d 0 0

 c a d 0 0

 d e f 0 1

 e a f 0 1

 f g f 0 1

 g a f 0 1

 We now proceed to reduce the number of states for this example. First, we need the

state table; it is more convenient to apply procedures for state reduction with the use of

a table rather than a diagram. The state table of the circuit is listed in Table 5.6 and is

obtained directly from the state diagram.

 The following algorithm for the state reduction of a completely specified state table

is given here without proof: “Two states are said to be equivalent if, for each member of

the set of inputs, they give exactly the same output and send the circuit either to the

same state or to an equivalent state.” When two states are equivalent, one of them can

be removed without altering the input–output relationships.

 Now apply this algorithm to Table 5.6 . Going through the state table, we look for two

present states that go to the same next state and have the same output for both input

combinations. States e and g are two such states: They both go to states a and f and have

outputs of 0 and 1 for x = 0 and x = 1, respectively. Therefore, states g and e are equiv-

alent, and one of these states can be removed. The procedure of removing a state and

replacing it by its equivalent is demonstrated in Table 5.7 . The row with present state g

is removed, and state g is replaced by state e each time it occurs in the columns headed

“Next State.”

 Present state f now has next states e and f and outputs 0 and 1 for x = 0 and x = 1,

respectively. The same next states and outputs appear in the row with present state d .

Therefore, states f and d are equivalent, and state f can be removed and replaced by d .

The final reduced table is shown in Table 5.8 . The state diagram for the reduced table

consists of only five states and is shown in Fig. 5.26 . This state diagram satisfies the

original input–output specifications and will produce the required output sequence for

any given input sequence. The following list derived from the state diagram of Fig. 5.26

is for the input sequence used previously (note that the same output sequence results,

although the state sequence is different):

 state a a b c d e d d e d e a

 input 0 1 0 1 0 1 1 0 1 0 0

 output 0 0 0 0 0 1 1 0 1 0 0

234 Chapter 5 Synchronous Sequential Logic

a

b ce

d

0/0 1/1 1/0

1/0

1/0

1/1

0/0

0/0 0/0

0/0

 FIGURE 5.26
 Reduced state diagram

 In fact, this sequence is exactly the same as that obtained for Fig. 5.25 if we replace g by

 e and f by d .

 Checking each pair of states for equivalency can be done systematically by means of

a procedure that employs an implication table, which consists of squares, one for every

suspected pair of possible equivalent states. By judicious use of the table, it is possible

to determine all pairs of equivalent states in a state table.

 Table 5.8
 Reduced State Table

 Next State Output

 Present State x � 0 x � 1 x � 0 x � 1

 a a b 0 0

 b c d 0 0

 c a d 0 0

 d e d 0 1

 e a d 0 1

 Table 5.7
 Reducing the State Table

 Next State Output

 Present State x � 0 x � 1 x � 0 x � 1

 a a b 0 0

 b c d 0 0

 c a d 0 0

 d e f 0 1

 e a f 0 1

 f e f 0 1

Section 5.7 State Reduction and Assignment 235

 The sequential circuit of this example was reduced from seven to five states. In

general, reducing the number of states in a state table may result in a circuit with

less equipment. However, the fact that a state table has been reduced to fewer states

does not guarantee a saving in the number of flip-flops or the number of gates. In

actual practice designers may skip this step because target devices are rich in

resources.

 State Assignment

 In order to design a sequential circuit with physical components, it is necessary to assign

unique coded binary values to the states. For a circuit with m states, the codes must con-

tain n bits, where 2n Ú m. For example, with three bits, it is possible to assign codes to

eight states, denoted by binary numbers 000 through 111. If the state table of Table 5.6 is

used, we must assign binary values to seven states; the remaining state is unused. If the

state table of Table 5.8 is used, only five states need binary assignment, and we are left

with three unused states. Unused states are treated as don’t-care conditions during the

design. Since don’t-care conditions usually help in obtaining a simpler circuit, it is more

likely but not certain that the circuit with five states will require fewer combinational

gates than the one with seven states.

 The simplest way to code five states is to use the first five integers in binary counting

order, as shown in the first assignment of Table 5.9 . Another similar assignment is the

Gray code shown in assignment 2. Here, only one bit in the code group changes when

going from one number to the next. This code makes it easier for the Boolean functions

to be placed in the map for simplification. Another possible assignment often used in

the design of state machines to control data-path units is the one-hot assignment. This

configuration uses as many bits as there are states in the circuit. At any given time, only

one bit is equal to 1 while all others are kept at 0. This type of assignment uses one flip-

flop per state, which is not an issue for register-rich field-programmable gate arrays. (See

 Chapter 7 .) One-hot encoding usually leads to simpler decoding logic for the next state
and output. One-hot machines can be faster than machines with sequential binary

encoding, and the silicon area required by the extra flip-flops can be offset by the area

 Table 5.9
 Three Possible Binary State Assignments

 State
 Assignment 1,

Binary
 Assignment 2,

Gray Code
 Assignment 3,

One-Hot

 a 000 000 00001

 b 001 001 00010

 c 010 011 00100

 d 011 010 01000

 e 100 110 10000

236 Chapter 5 Synchronous Sequential Logic

saved by using simpler decoding logic. This trade-off is not guaranteed, so it must be

evaluated for a given design.

 Table 5.10 is the reduced state table with binary assignment 1 substituted for the let-

ter symbols of the states. A different assignment will result in a state table with different

binary values for the states. The binary form of the state table is used to derive the next-

state and output-forming combinational logic part of the sequential circuit. The com-

plexity of the combinational circuit depends on the binary state assignment chosen.

 Sometimes, the name transition table is used for a state table with a binary assignment.

This convention distinguishes it from a state table with symbolic names for the states.

In this book, we use the same name for both types of state tables.

 5 . 8 D E S I G N P R O C E D U R E

 Design procedures or methodologies specify hardware that will implement a desired

behavior. The design effort for small circuits may be manual, but industry relies on

automated synthesis tools for designing massive integrated circuits. The sequential build-

ing block used by synthesis tools is the D flip-flop. Together with additional logic, it can

implement the behavior of JK and T flip-flops. In fact, designers generally do not con-

cern themselves with the type of flip-flop; rather, their focus is on correctly describing

the sequential functionality that is to be implemented by the synthesis tool. Here we

will illustrate manual methods using D, JK, and T flip-flops.

 The design of a clocked sequential circuit starts from a set of specifications and cul-

minates in a logic diagram or a list of Boolean functions from which the logic diagram

can be obtained. In contrast to a combinational circuit, which is fully specified by a truth

table, a sequential circuit requires a state table for its specification. The first step in the

design of sequential circuits is to obtain a state table or an equivalent representation,

such as a state diagram.3

 A synchronous sequential circuit is made up of flip-flops and combinational gates. The

design of the circuit consists of choosing the flip-flops and then finding a combinational

 Table 5.10
 Reduced State Table with Binary Assignment 1

 Next State Output

 Present State x � 0 x � 1 x � 0 x � 1

 000 000 001 0 0

 001 010 011 0 0

 010 000 011 0 0

 011 100 011 0 1

 100 000 011 0 1

3 We will examine later another important representation of a machine’s behavior—the algorithmic state

machine (ASM) chart.

Section 5.8 Design Procedure 237

gate structure that, together with the flip-flops, produces a circuit which fulfills the stated

specifications. The number of flip-flops is determined from the number of states needed

in the circuit and the choice of state assignment codes. The combinational circuit is

derived from the state table by evaluating the flip-flop input equations and output equa-

tions. In fact, once the type and number of flip-flops are determined, the design process

involves a transformation from a sequential circuit problem into a combinational circuit

problem. In this way, the techniques of combinational circuit design can be applied.

 The procedure for designing synchronous sequential circuits can be summarized by

a list of recommended steps:

 1. From the word description and specifications of the desired operation, derive a

state diagram for the circuit.

 2. Reduce the number of states if necessary.

 3. Assign binary values to the states.

 4. Obtain the binary-coded state table.

 5. Choose the type of flip-flops to be used.

 6. Derive the simplified flip-flop input equations and output equations.

 7. Draw the logic diagram.

 The word specification of the circuit behavior usually assumes that the reader is famil-

iar with digital logic terminology. It is necessary that the designer use intuition and expe-

rience to arrive at the correct interpretation of the circuit specifications, because word

descriptions may be incomplete and inexact. Once such a specification has been set down

and the state diagram obtained, it is possible to use known synthesis procedures to com-

plete the design. Although there are formal procedures for state reduction and assign-

ment (steps 2 and 3), they are seldom used by experienced designers. Steps 4 through 7

in the design can be implemented by exact algorithms and therefore can be automated.

The part of the design that follows a well-defined procedure is referred to as synthesis .

Designers using logic synthesis tools (software) can follow a simplified process that devel-

ops an HDL description directly from a state diagram, letting the synthesis tool deter-

mine the circuit elements and structure that implement the description.

 The first step is a critical part of the process, because succeeding steps depend on it.

We will give one simple example to demonstrate how a state diagram is obtained from

a word specification.

 Suppose we wish to design a circuit that detects a sequence of three or more con-

secutive 1’s in a string of bits coming through an input line (i.e., the input is a serial bit
stream). The state diagram for this type of circuit is shown in Fig. 5.27 . It is derived by

starting with state S0, the reset state. If the input is 0, the circuit stays in S0, but if the

input is 1, it goes to state S1 to indicate that a 1 was detected. If the next input is 1, the

change is to state S2 to indicate the arrival of two consecutive 1’s, but if the input is 0,

the state goes back to S0. The third consecutive 1 sends the circuit to state S3. If more

1’s are detected, the circuit stays in S3. Any 0 input sends the circuit back to S0. In this

way, the circuit stays in S3 as long as there are three or more consecutive 1’s received.

This is a Moore model sequential circuit, since the output is 1 when the circuit is in state

 S3 and is 0 otherwise.

238 Chapter 5 Synchronous Sequential Logic

 Table 5.11
 State Table for Sequence Detector

 Present
State Input

 Next
State Output

 A B x A B y

 0 0 0 0 0 0

 0 0 1 0 1 0

 0 1 0 0 0 0

 0 1 1 1 0 0

 1 0 0 0 0 0

 1 0 1 1 1 0

 1 1 0 0 0 1

 1 1 1 1 1 1

S0/0 S1/0

S3/1 S2/0

0

0

0
0

1

1

1

1

 FIGURE 5.27
 State diagram for sequence detector

 Synthesis Using D Flip-Flops

 Once the state diagram has been derived, the rest of the design follows a straight-

forward synthesis procedure. In fact, we can design the circuit by using an HDL

description of the state diagram and the proper HDL synthesis tools to obtain a

synthesized netlist. (The HDL description of the state diagram will be similar to

HDL Example 5.6 in Section 5.6.) To design the circuit by hand, we need to assign

binary codes to the states and list the state table. This is done in Table 5.11 . The table

is derived from the state diagram of Fig. 5.27 with a sequential binary assignment.

We choose two D flip-flops to represent the four states, and we label their outputs

 A and B . There is one input x and one output y . The characteristic equation of the

 D flip-flop is Q(t + 1) = DQ, which means that the next-state values in the state

table specify the D input condition for the flip-flop. The flip-flop input equations

Section 5.8 Design Procedure 239

can be obtained directly from the next-state columns of A and B and expressed in

sum-of-minterms form as

 A(t + 1) = DA(A, B, x) = ©(3, 5, 7)

 B(t + 1) = DB(A, B, x) = ©(1, 5, 7)

 y(A, B, x) = ©(6, 7)

 where A and B are the present-state values of flip-flops A and B, x is the input, and DA

and DB are the input equations. The minterms for output y are obtained from the output

column in the state table.

 The Boolean equations are simplified by means of the maps plotted in Fig. 5.28 . The

simplified equations are

 DA = Ax + Bx

 DB = Ax + B�x

 y = AB

 The advantage of designing with D flip-flops is that the Boolean equations describing

the inputs to the flip-flops can be obtained directly from the state table. Software tools

automatically infer and select the D -type flip-flop from a properly written HDL model.

The schematic of the sequential circuit is drawn in Fig. 5.29 .

 Excitation Tables

 The design of a sequential circuit with flip-flops other than the D type is complicated

by the fact that the input equations for the circuit must be derived indirectly from the

state table. When D -type flip-flops are employed, the input equations are obtained

directly from the next state. This is not the case for the JK and T types of flip-flops. In

order to determine the input equations for these flip-flops, it is necessary to derive a

functional relationship between the state table and the input equations.

 The flip-flop characteristic tables presented in Table 5.1 provide the value of the

next state when the inputs and the present state are known. These tables are useful

0

00 01 11 10

x

B

A
Bx

m0 m1 m3 m2

m4 m5 m7 m6

1

1 11A

m1 m3 m2

m4

m0

m5 m7 m6

0

00 01 11 10

B

A
Bx

1

1 1

x

1A

m0 m1 m3 m2

m4 m5 m7 m6

0

00 01 11 10

B

A
Bx

1 11A

x

DA � Ax � Bx DB � Ax � B�x y � AB

 FIGURE 5.28
 K-Maps for sequence detector

240 Chapter 5 Synchronous Sequential Logic

D

Clk
x

A

D

Clk

B

B�

Clock

y

 FIGURE 5.29
 Logic diagram of a Moore-type sequence detector

for analyzing sequential circuits and for defining the operation of the flip-flops. Dur-

ing the design process, we usually know the transition from the present state to the

next state and wish to find the flip-flop input conditions that will cause the required

transition. For this reason, we need a table that lists the required inputs for a given

change of state. Such a table is called an excitation table .

 Table 5.12 shows the excitation tables for the two flip-flops (JK and T). Each table

has a column for the present state Q (t), a column for the next state Q(t + 1), and a

column for each input to show how the required transition is achieved. There are four

possible transitions from the present state to the next state. The required input condi-

tions for each of the four transitions are derived from the information available in the

characteristic table. The symbol X in the tables represents a don’t-care condition, which

means that it does not matter whether the input is 1 or 0.

 The excitation table for the JK flip-flop is shown in part (a). When both present state

and next state are 0, the J input must remain at 0 and the K input can be either 0 or 1.

Similarly, when both present state and next state are 1, the K input must remain at 0,

Section 5.8 Design Procedure 241

while the J input can be 0 or 1. If the flip-flop is to have a transition from the 0-state

to the 1-state, J must be equal to 1, since the J input sets the flip-flop. However, input

 K may be either 0 or 1. If K = 0, the J = 1 condition sets the flip-flop as required; if

 K = 1 and J = 1, the flip-flop is complemented and goes from the 0-state to the

1-state as required. Therefore, the K input is marked with a don’t-care condition for the

0-to-1 transition. For a transition from the 1-state to the 0-state, we must have K = 1,

since the K input clears the flip-flop. However, the J input may be either 0 or 1, since

 J = 0 has no effect and J = 1 together with K = 1 complements the flip-flop with a

resultant transition from the 1-state to the 0-state.

 The excitation table for the T flip-flop is shown in part (b). From the characteristic

table, we find that when input T = 1, the state of the flip-flop is complemented, and

when T = 0, the state of the flip-flop remains unchanged. Therefore, when the state of

the flip-flop must remain the same, the requirement is that T = 0. When the state of the

flip-flop has to be complemented, T must equal 1.

 Synthesis Using JK Flip-Flops

 The manual synthesis procedure for sequential circuits with JK flip-flops is the same as

with D flip-flops, except that the input equations must be evaluated from the present-

state to the next-state transition derived from the excitation table. To illustrate the pro-

cedure, we will synthesize the sequential circuit specified by Table 5.13 . In addition to

having columns for the present state, input, and next state, as in a conventional state table,

the table shows the flip-flop input conditions from which the input equations are derived.

The flip-flop inputs are derived from the state table in conjunction with the excitation

table for the JK flip-flop. For example, in the first row of Table 5.13 , we have a transition

for flip-flop A from 0 in the present state to 0 in the next state. In Table 5.12 , for the JK

flip-flop, we find that a transition of states from present state 0 to next state 0 requires

that input J be 0 and input K be a don’t-care. So 0 and X are entered in the first row under

 JA and KA, respectively. Since the first row also shows a transition for flip-flop B from 0

in the present state to 0 in the next state, 0 and X are inserted into the first row under JB

and KB, respectively. The second row of the table shows a transition for flip-flop B from

0 in the present state to 1 in the next state. From the excitation table, we find that a tran-

sition from 0 to 1 requires that J be 1 and K be a don’t-care, so 1 and X are copied into

 Table 5.12
 Flip-Flop Excitation Tables

 Q (t) Q (t � 1) J K Q (t) Q (t � 1) T

 0 0 0 X 0 0 0

 0 1 1 X 0 1 1

 1 0 X 1 1 0 1

 1 1 X 0 1 1 0

 (a) JK Flip-Flop (b) T Flip-Flop

242 Chapter 5 Synchronous Sequential Logic

the second row under JB and KB, respectively. The process is continued for each row in

the table and for each flip-flop, with the input conditions from the excitation table copied

into the proper row of the particular flip-flop being considered.

 The flip-flop inputs in Table 5.13 specify the truth table for the input equations as a

function of present state A, present state B, and input x . The input equations are simpli-

fied in the maps of Fig. 5.30 . The next-state values are not used during the simplification,

1A

m0 m1 m3 m2

m4 m5 m7 m6

0

00 01 11 10

x

A
Bx

X X 1

X X 1

B

1A

B

m0 m1 m3 m2

m5 m2 m6m4

0

00 01 11 10

x

A
Bx

1 X X

1 X X

1A

B

m0 m1 m3 m2

m6m7m5m4

0

00 01 11 10A
Bx

X X X X

1

x

1A

0

00 01 11 10A
Bx

m0 m1 m3 m2

m4 m5 m7 m6

1

X X X X

B

x
JA � Bx�

JB � x KB � (A � x)�

KA � Bx

 FIGURE 5.30
 Maps for J and K input equations

 Table 5.13
 State Table and JK Flip-Flop Inputs

 Present
State Input

 Next
State Flip-Flop Inputs

 A B x A B J A K A J B K B

 0 0 0 0 0 0 X 0 X

 0 0 1 0 1 0 X 1 X

 0 1 0 1 0 1 X X 1

 0 1 1 0 1 0 X X 0

 1 0 0 1 0 X 0 0 X

 1 0 1 1 1 X 0 1 X

 1 1 0 1 1 X 0 X 0

 1 1 1 0 0 X 1 X 1

Section 5.8 Design Procedure 243

J

K

Clk

Clk

J

K

Clock

x
A

A�

B

B�

 FIGURE 5.31
 Logic diagram for sequential circuit with JK flip-flops

since the input equations are a function of the present state and the input only. Note the

advantage of using JK -type flip-flops when sequential circuits are designed manually .

The fact that there are so many don’t-care entries indicates that the combinational cir-

cuit for the input equations is likely to be simpler, because don’t-care minterms usually

help in obtaining simpler expressions. If there are unused states in the state table, there

will be additional don’t-care conditions in the map. Nonetheless, D-type flip-flops are

more amenable to an automated design flow.

 The four input equations for the pair of JK flip-flops are listed under the maps of

 Fig. 5.30 . The logic diagram (schematic) of the sequential circuit is drawn in Fig. 5.31 .

 Synthesis Using T Flip-Flops

 The procedure for synthesizing circuits using T flip-flops will be demonstrated by design-

ing a binary counter. An n -bit binary counter consists of n flip-flops that can count in

binary from 0 to 2n - 1. The state diagram of a three-bit counter is shown in Fig. 5.32 . As

001

010

111

110

101011

000

100

 FIGURE 5.32
 State diagram of three-bit binary counter

244 Chapter 5 Synchronous Sequential Logic

seen from the binary states indicated inside the circles, the flip-flop outputs repeat the

binary count sequence with a return to 000 after 111. The directed lines between circles

are not marked with input and output values as in other state diagrams. Remember that

state transitions in clocked sequential circuits are initiated by a clock edge; the flip-flops

remain in their present states if no clock is applied. For that reason, the clock does not

appear explicitly as an input variable in a state diagram or state table. From this point of

view, the state diagram of a counter does not have to show input and output values along

the directed lines. The only input to the circuit is the clock, and the outputs are specified

by the present state of the flip-flops. The next state of a counter depends entirely on its

present state, and the state transition occurs every time the clock goes through a transition.

 Table 5.14 is the state table for the three-bit binary counter. The three flip-flops are

symbolized by A2, A1, and A0. Binary counters are constructed most efficiently with T

flip-flops because of their complement property. The flip-flop excitation for the T inputs

is derived from the excitation table of the T flip-flop and by inspection of the state

transition of the present state to the next state. As an illustration, consider the flip-flop

input entries for row 001. The present state here is 001 and the next state is 010, which

is the next count in the sequence. Comparing these two counts, we note that A2 goes

from 0 to 0, so TA2 is marked with 0 because flip-flop A2 must not change when a clock

occurs. Also, A1 goes from 0 to 1, so TA1 is marked with a 1 because this flip-flop must

be complemented in the next clock edge. Similarly, A0 goes from 1 to 0, indicating that

it must be complemented, so TA0 is marked with a 1. The last row, with present state 111,

is compared with the first count 000, which is its next state. Going from all 1’s to all 0’s

requires that all three flip-flops be complemented.

 The flip-flop input equations are simplified in the maps of Fig. 5.33 . Note that TA0

has 1’s in all eight minterms because the least significant bit of the counter is comple-

mented with each count. A Boolean function that includes all minterms defines a

constant value of 1. The input equations listed under each map specify the combina-

tional part of the counter. Including these functions with the three flip-flops, we obtain

 Table 5.14
 State Table for Three-Bit Counter

 Present State Next State Flip-Flop Inputs

 A 2 A 1 A 0 A 2 A 1 A 0 T A2 T A1 T A0

 0 0 0 0 0 1 0 0 1

 0 0 1 0 1 0 0 1 1

 0 1 0 0 1 1 0 0 1

 0 1 1 1 0 0 1 1 1

 1 0 0 1 0 1 0 0 1

 1 0 1 1 1 0 0 1 1

 1 1 0 1 1 1 0 1 1

 1 1 1 0 0 0 1 1 1

Problems 245

the logic diagram of the counter, as shown in Fig. 5.34 . For simplicity, the reset signal

is not shown, but be aware that every design should include a reset signal.

 P R O B L E M S

 (Answers to problems marked with * appear at the end of the book. Where appropriate, a logic

design and its related HDL modeling problem are cross-referenced.)

 Note: For each problem that requires writing and verifying an HDL model, a test plan should be

written to identify which functional features are to be tested during the simulation and how they

will be tested. For example, a reset on the fly could be tested by asserting the reset signal while

the simulated machine is in a state other than the reset state. The test plan is to guide development

of a test bench that will implement the plan. Simulate the model, using the test bench, and verify

that the behavior is correct. If synthesis tools and an ASIC cell library are available, the Verilog

descriptions developed for Problems 5.34–5.42 can be assigned as synthesis exercises. The gate-

level circuit produced by the synthesis tools should be simulated and compared to the simulation

results for the pre-synthesis model. The same exercises can be assigned if an FPGA tool suite is

available.

Clk
T

A2

Clk
T

A1

Clk
T

A0

Clock

1

 FIGURE 5.34
 Logic diagram of three-bit binary counter

0

1

00 01 11 10

A0

A1

A2

A1A0

A2

1

1

m0 m1 m3 m2

m4 m5 m7 m6

0

1

00 01 11 10

x

1 1 1 1

1 1 1 1

A1A0
A2

A2

A1

m0 m1 m3 m2

m4 m5 m7 m6

0

1

00 01 11 10

1 1

1 1

A1A0

A2

A0

A1

A2

m0 m1 m3 m2

m4 m5 m7 m6

TA2 � A1A0 TA1 � A0 TA0 � 1

 FIGURE 5.33
 Maps for three-bit binary counter

246 Chapter 5 Synchronous Sequential Logic

 5.1 The D latch of Fig. 5.6 is constructed with four NAND gates and an inverter. Consider the

following three other ways for obtaining a D latch. In each case, draw the logic diagram

and verify the circuit operation.

 (a) Use NOR gates for the SR latch part and AND gates for the other two. An inverter

may be needed.

 (b) Use NOR gates for all four gates. Inverters may be needed.

 (c) Use four NAND gates only (without an inverter). This can be done by connecting

the output of the upper gate in Fig. 5.6 (the gate that goes to the SR latch) to the input

of the lower gate (instead of the inverter output).

 5.2 Construct a JK flip-flop using a D flip-flop, a two-to-one-line multiplexer, and an inverter.

(HDL—see Problem 5.34.)

 5.3 Show that the characteristic equation for the complement output of a JK flip-flop is

 Q�(t + 1) = J�Q� + KQ

 5.4 A PN flip-flop has four operations: clear to 0, no change, complement, and set to 1, when

inputs P and N are 00, 01, 10, and 11, respectively.

 (a) Tabulate the characteristic table. (b) * Derive the characteristic equation.

 (c) Tabulate the excitation table. (d) Show how the PN flip-flop can be con-

verted to a D flip-flop.

 5.5 Explain the differences among a truth table, a state table, a characteristic table, and an

excitation table. Also, explain the difference among a Boolean equation, a state equation,

a characteristic equation, and a flip-flop input equation.

 5.6 A sequential circuit with two D flip-flops A and B, two inputs, x and y ; and one output z

is specified by the following next-state and output equations (HDL—see Problem 5.35):

 A(t + 1) = xy� + xB

 B(t + 1) = xA + xB�

 z = A

 (a) Draw the logic diagram of the circuit.

 (b) List the state table for the sequential circuit.

 (c) Draw the corresponding state diagram.

 5.7* A sequential circuit has one flip-flop Q, two inputs x and y, and one output S . It consists

of a full-adder circuit connected to a D flip-flop, as shown in Fig. P5.7 . Derive the state

table and state diagram of the sequential circuit.

x

Q

D

C

S

ClockClk

y Full
adder

 FIGURE P5.7

Problems 247

Clk

Clock

A� A B� B

T
Clk

T

 FIGURE P5.8

 5.8* Derive the state table and the state diagram of the sequential circuit shown in Fig. P5.8 .

Explain the function that the circuit performs. (HDL—see Problem 5.36.)

 5.9 A sequential circuit has two JK flip-flops A and B and one input x . The circuit is described

by the following flip-flop input equations:

 JA = x KA = B

 JB = x KB = A�

 (a) Derive the state equations A (t + 1) and B (t + 1) by substituting the input equations

for the J and K variables.

 (b) Draw the state diagram of the circuit.

 5.10 A sequential circuit has two JK flip-flops A and B, two inputs x and y, and one output z .

The flip-flop input equations and circuit output equation are

 JA = Bx + B�y� KA = B�xy�

 JB = A�x KB = A + xy�

 z = Ax�y� + Bx�y�

 (a) Draw the logic diagram of the circuit.

 (b) Tabulate the state table.

 (c) Derive the state equations for A and B .

 5.11 For the circuit described by the state diagram of Fig. 5.16 ,

 (a) * Determine the state transitions and output sequence that will be generated when an

input sequence of 010110111011110 is applied to the circuit and it is initially in the

state 00.

 (b) Find all of the equivalent states in Fig. 5.16 and draw a simpler, but equivalent, state

diagram.

 (c) Using D flip-flops, design the equivalent machine (including its logic diagram)

described by the state diagram in (b).

248 Chapter 5 Synchronous Sequential Logic

 5.12 For the following state table

 Next State Output

 Present State x � 0 x � 1 x � 0 x � 1

 a f b 0 0

 b d c 0 0

 c f e 0 0

 d g a 1 0

 e d c 0 0

 f f b 1 1

 g g h 0 1

 h g a 1 0

 (a) Draw the corresponding state diagram.

 (b) * Tabulate the reduced state table.

 (c) Draw the state diagram corresponding to the reduced state table.

 5.13 Starting from state a, and the input sequence 01110010011, determine the output

sequence for

 (a) The state table of the previous problem.

 (b) The reduced state table from the previous problem. Show that the same output

sequence is obtained for both.

 5.14 Substitute the one-hot assignment 2 from Table 5.9 to the states in Table 5.8 and obtain

the binary state table.

 5.15 List a state table for the JK flip-flop using Q as the present and next state and J and K as

inputs. Design the sequential circuit specified by the state table and show that it is equiva-

lent to Fig. 5.12 (a).

 5.16 Design a sequential circuit with two D flip-flops A and B, and one input x_in .

 (a) * When x_in = 0, the state of the circuit remains the same. When x_in = 1, the circuit

goes through the state transitions from 00 to 01, to 11, to 10, back to 00, and repeats.

 (b) When x_in = 0, the state of the circuit remains the same. When x_in =1, the circuit

goes through the state transitions from 00 to 11, to 01, to 10, back to 00, and repeats.

(HDL—see Problem 5.38.)

 5.17 Design a one-input, one-output serial 2’s complementer. The circuit accepts a string of bits

from the input and generates the 2’s complement at the output. The circuit can be reset

asynchronously to start and end the operation. (HDL—see Problem 5.39.)

 5.18* Design a sequential circuit with two JK flip-flops A and B and two inputs E and F . If E = 0,

the circuit remains in the same state regardless of the value of F . When E = 1 and F = 1, the

circuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats.

When E = 1 and F = 0, the circuit goes through the state transitions from 00 to 11, to 10, to

01, back to 00, and repeats. (HDL—see Problem 5.40.)

 5.19 A sequential circuit has three flip-flops A, B, C ; one input x_in ; and one output y_out . The

state diagram is shown in Fig. P5.19 . The circuit is to be designed by treating the unused

states as don’t-care conditions. Analyze the circuit obtained from the design to determine

the effect of the unused states. (HDL—see Problem 5.41.)

Problems 249

 (a)* Use D flip-flops in the design.

 (b) Use JK flip-flops in the design.

001

010

011100

000

1/1

1/1

1/0

1/1

1/1

0/0
0/0

0/0

0/0

0/0

 FIGURE P5.19

 5.20 Design the sequential circuit specified by the state diagram of Fig. 5.19 , using T flip-flops.

 5.21 What is the main difference between an initial statement and an always statement in

Verilog HDL?

 5.22 Draw the waveform generated by the statements below:

 (a) initial begin

 w = 0; #10 w = 1; # 40 w = 0; # 20 w = 1; #15 w = 0;
 end

 (b) initial fork

 w = 0; #10 w = 1; # 40 w = 0; # 20 w = 1; #15 w = 0;
 join

 5.23* Consider the following statements assuming that RegA contains the value of 50 initially.

 (a) RegA = 125; (b) RegA <= 125;
 RegB = RegA; RegB <= RegA;

 What are the values of RegA and RegB after execution?

 5.24 Write and verify an HDL behavioral description of a positive-edge-sensitive D flip-flop

with asynchronous preset and clear.

 5.25 A special positive-edge-triggered flip-flop circuit component has four inputs D 1, D 2, D 3,

and D 4, and a two-bit control input that chooses between them. Write and verify an HDL

behavioral description of this component.

 5.26 Write and verify an HDL behavioral description of the JK flip-flop using an if-else statement

based on the value of the present state.

 (a) * Obtain the characteristic equation when Q = 0 or Q = 1.

 (b) Specify how the J and K inputs affect the output of the flip-flop at each clock tick.

 5.27 Rewrite and verify the description of HDL Example 5.5 by combining the state transitions

and output into one always block.

 5.28 Simulate the sequential circuit shown in Fig. 5.17 .

250 Chapter 5 Synchronous Sequential Logic

 (a) Write the HDL description of the state diagram (i.e., behavioral model).

 (b) Write the HDL description of the logic (circuit) diagram (i.e., a structural model).

 (c) Write an HDL stimulus with a sequence of inputs: 00, 01, 11, 10. Verify that the

response is the same for both descriptions.

 5.29 Write a behavioral description of the state machine described by the state diagram shown

in Fig. P5.19. Write a test bench and verify the functionality of the description.

 5.30 Draw the logic diagram for the sequential circuit described by the following HDL module:

 module Seq_Ckt (input A, B, C, E output reg Q,input CLK,);
 reg E;

 always @ (posedge CLK)
 begin

 E <= A || B;
 Q <= E && C;
 end

 endmodule

 5.31 How should the description in problem 5.30 be written to have the same behavior when

the assignments are made with = instead of with <= ?

 5.32 Using an initial statement with a begin . . . end block write a Verilog description of the

waveforms shown in Fig. P5.32 . Repeat using a fork . . . join block.

enable

t
10 20 30 40 50 60 70 80

A

B

0

C
D

E

F

 FIGURE P5.32
 Waveforms for Problem 5.32

 5.33 Explain why it is important that the stimulus signals in a test bench be synchronized to the

inactive edge of the clock of the sequential circuit that is to be tested.

 5.34 Write and verify an HDL structural description of the machine having the circuit diagram

(schematic) shown in Fig. 5.5.

 5.35 Write and verify an HDL model of the sequential circuit described in Problem 5.6.

 5.36 Write and verify an HDL structural description of the machine having the circuit diagram

(schematic) shown in Fig. P5.8.

 5.37 Write and verify HDL behavioral descriptions of the state machines shown in Figs. 5.25

Problems 251

and 5.26 . Write a test bench to compare the state sequences and input–output behaviors

of the two machines.

 5.38 Write and verify an HDL behavioral description of the machine described in Problem 5.16.

 5.39 Write and verify a behavioral description of the machine specified in Problem 5.17.

 5.40 Write and verify a behavioral description of the machine specified in Problem 5.18.

 5.41 Write and verify a behavioral description of the machine specified in Problem 5.19.

(Hint : See the discussion of the default case item preceding HDL Example 4.8 in

 Chapter 4 .)

 5.42 Write and verify an HDL structural description of the circuit shown in Fig. 5.29 .

 5.43 Write and verify an HDL behavioral description of the three-bit binary counter in Fig. 5.34 .

 5.44 Write and verify a Verilog model of a D flip-flop having asynchronous reset.

 5.45 Write and verify an HDL behavioral description of the sequence detector described in Fig. 5.27 .

 5.46 A synchronous finite state machine has an input x_in and an output y_out . When x_in

changes from 0 to 1, the output y_out is to assert for three cycles, regardless of the value

of x_in, and then de-assert for two cycles before the machine will respond to another

assertion of x_in . The machine is to have active-low synchronous reset.

 (a) Draw the state diagram of the machine.

 (b) Write and verify a Verilog model of the machine.

 5.47 Write a Verilog model of a synchronous finite state machine whose output is the sequence

0, 2, 4, 6, 8 10, 12, 14, 0 The machine is controlled by a single input, Run, so that counting

occurs while Run is asserted, suspends while Run is de-asserted, and resumes the count

when Run is re-asserted. Clearly state any assumptions that you make.

 5.48 Write a Verilog model of the Mealy FSM described by the state diagram in Fig. P5.48.

Develop a test bench and demonstrate that the machine state transitions and output cor-

respond to its state diagram.

 FIGURE P5.48

a b

d c

0 /1

1/0 1/1

0/0 0/0

1/1

0/1

1/0

252 Chapter 5 Synchronous Sequential Logic

 FIGURE P5.49

0

1 1

0 0

1

0

1

b

1

c

1

a

0

d

0

 5.49 Write a Verilog model of the Moore FSM described by the state diagram in Fig. P5.49.

Develop a test bench and demonstrate that the machine's state transitions and output

correspond to its state diagram.

 5.50 A synchronous Moore FSM has a single input, x_in, and a single output y_out . The machine

is to monitor the input and remain in its initial state until a second sample of x_in is detected

to be 1. Upon detecting the second assertion of x_in y_out is to asserted and remain asserted

until a fourth assertion of x_in is detected. When the fourth assertion of x_in is detected the

machine is to return to its initial state and resume monitoring of x_in .

 (a) Draw the state diagram of the machine.

 (b) Write and verify a Verilog model of the machine.

 5.51 Draw the state diagram of the machine described by the Verilog model given below.

 module Prob_5_51 (output reg y_out, input x_in, clk, reset);
 parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
 reg [1:0] state, next_state;
 always @ (posedge clk, negedge reset) begin
 if (reset == 1'b0) state <= s0;
 else state <= next_state;
 always @(state, x_in) begin
 y_out = 0;
 next_state = s0;
 case (state)
 s0: if x_in = 1 begin y_out = 0; if (x_in) next_state = s1; else next_state = s0; end
 s1: if x_in = 1 begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end

Problems 253

 s2: if x_in = 1 begin y_out = 1; if (x_in) next_state = s3; else next_state = s2; end
 s3: if x_in = 1 begin y_out = 1; if (x_in) next_state = s0; else next_state = s3; end
 default : next_state = s0;
 endcase
 end

 endmodule

 5.52 Draw the state diagram of the machine described by the Verilog model given below.

 module Prob_5_52 (output reg y_out, input x_in, clk, reset);
 parameter s0 = 2'b00, s1 = 2'b01, s2 = 2'b10, s3 = 2'b11;
 reg [1:0] state, next_state;
 always @ (posedge clk, negedge reset) begin
 if (reset == 1'b0) state <= s0;
 else state <= next_state;
 always @(state, x_in) begin
 y_out = 0;
 next_state = s0;
 case (state)
 s0: if x_in = 1 begin y_out = 0; if (x_in) next_state = s1; else next_state = s0; end
 s1: if x_in = 1 begin y_out = 0; if (x_in) next_state = s2; else next_state = s1; end
 s2: if x_in = 1 if (x_in) begin next_state = s3; y_out = 0;
 else begin next_state = s2; y_out = 1; end
 s3: if x_in = 1 begin y_out = 1; if (x_in) next_state = s0; else next_state = s3; end
 default : next_state = s0;
 endcase
 end
 endmodule

 5.53 Draw a state diagram and write a Verilog model of a Mealy synchronous state machine

having a single input, x_in, and a single output y_out, such that y_out is asserted if the total

number of 1’s received is a multiple of 3.

 5.54 A synchronous Moore machine has two inputs, x 1, and x 2, and output y_out . If both inputs

have the same value the output is asserted for one cycle; otherwise the output is 0. Develop

a state diagram and a write a Verilog behavioral model of the machine. Demonstrate that

the machine operates correctly.

 5.55 Develop the state diagram for a Mealy state machine that detects a sequence of three or

more consecutive 1's in a string of bits coming through an input line.

 5.56 Using manual methods, obtain the logic diagram of a three-bit counter that counts in the

sequence 0, 2, 4, 6, 0,

 5.57 Write and verify a Verilog behavioral model of a three-bit counter that counts in the

sequence 0, 2, 4, 6, 0,

 5.58 Write and verify a Verilog behavioral model of the counter designed in Problem 5.55.

 5.59 Write and verify a Verilog structural model of the counter described in Problem 5.56.

 5.60 Write and verify a Verilog behavioral model of a four-bit counter that counts in the

sequence 0, 1, . . . , 9, 0, 1, 2,

254 Chapter 5 Synchronous Sequential Logic

R E F E R E N C E S

1. B hasker, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

 2. B hasker, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

 3. C iletti, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL. Upper

Saddle River, NJ: Prentice Hall.

 4. D ietmeyer, D. L. 1988. Logic Design of Digital Systems, 3rd ed. Boston: Allyn Bacon.

5. G ajski, D. D. 1997. Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.

6. H ayes, J. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley.

 7. K atz, R. H. 2005. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

8. M ano, M. M. and C. R. K ime . 2007. Logic and Computer Design Fundamentals & Xilinx
6.3 Student Edition, 4th ed. Upper Saddle River, NJ: Prentice Hall.

9. N elson, V. P., H. T. N agle, J. D. I rwin, and B. D. C arroll . 1995. Digital Logic Circuit
Analysis and Design. Englewood Cliffs, NJ: Prentice Hall.

10. P alnitkar, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,

CA: SunSoft Press (a Prentice Hall title).

11. R oth, C. H. 2009. Fundamentals of Logic Design, 6th ed. St. Paul, MN: Brooks/Cole.

12. T homas, D. E. and P. R. M oorby, 2002. The Verilog Hardware Description Language, 6th

ed. Boston: Kluwer Academic Publishers.

13. W akerly, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River,

NJ: Prentice Hall.

W E B S E A R C H T O P I C S

 Finite State Machine

 Synchronous state machine

 Asynchronous state machine

 D-type flip-flop

 Toggle flip-flop

 J-K type flip-flop

 Binary counter

 State diagram

 Mealy state machine

 Moore state machine

 One-hot/cold codes

255

 Chapter 6

 Registers and Counters

 6 . 1 R E G I S T E R S

 A clocked sequential circuit consists of a group of flip‐flops and combinational gates. The

flip‐flops are essential because, in their absence, the circuit reduces to a purely combinational

circuit (provided that there is no feedback among the gates). A circuit with flip‐flops is

considered a sequential circuit even in the absence of combinational gates. Circuits that

include flip‐flops are usually classified by the function they perform rather than by the name

of the sequential circuit. Two such circuits are registers and counters.

 A register is a group of flip‐flops, each one of which shares a common clock and is

capable of storing one bit of information. An n ‐bit register consists of a group of n

flip‐flops capable of storing n bits of binary information. In addition to the flip‐flops, a

register may have combinational gates that perform certain data‐processing tasks. In

its broadest definition, a register consists of a group of flip‐flops together with gates

that affect their operation. The flip‐flops hold the binary information, and the gates

determine how the information is transferred into the register.

 A counter is essentially a register that goes through a predetermined sequence of

binary states. The gates in the counter are connected in such a way as to produce the

prescribed sequence of states. Although counters are a special type of register, it is

common to differentiate them by giving them a different name.

 Various types of registers are available commercially. The simplest register is one that

consists of only flip‐flops, without any gates. Figure 6.1 shows such a register constructed

with four D ‐type flip‐flops to form a four‐bit data storage register. The common clock

input triggers all flip‐flops on the positive edge of each pulse, and the binary data available

at the four inputs are transferred into the register. The value of (I 3 , I 2 , I 1 , I 0) immediately

before the clock edge determines the value of (A 3 , A 2 , A 1 , A 0) after the clock edge. The four

256 Chapter 6 Registers and Counters

outputs can be sampled at any time to obtain the binary information stored in the register.

The input Clear_b goes to the active‐low R (reset) input of all four flip‐flops. When this

input goes to 0, all flip‐flops are reset asynchronously. The Clear_b input is useful for clear-

ing the register to all 0’s prior to its clocked operation. The R inputs must be maintained

 FIGURE 6.1
 Four‐bit register

D

R

C

I0 A0

D

R

C

I1 A1

D

R

C

I2 A2

D

R

C

I3 A3

Clock Clear_b

Section 6.1 Registers 257

at logic 1 (i.e., de-asserted) during normal clocked operation. Note that, depending on the

flip‐flop, either Clear, Clear_b, reset, or reset_b can be used to indicate the transfer of the

register to an all 0’s state.

 Register with Parallel Load

 Registers with parallel load are a fundamental building block in digital systems. It is

important that you have a thorough understanding of their behavior. Synchronous dig-

ital systems have a master clock generator that supplies a continuous train of clock

pulses. The pulses are applied to all flip‐flops and registers in the system. The master

clock acts like a drum that supplies a constant beat to all parts of the system. A separate

control signal must be used to decide which register operation will execute at each clock

pulse. The transfer of new information into a register is referred to as loading or updat-
ing the register. If all the bits of the register are loaded simultaneously with a common

clock pulse, we say that the loading is done in parallel . A clock edge applied to the C

inputs of the register of Fig. 6.1 will load all four inputs in parallel. In this configuration,

if the contents of the register must be left unchanged, the inputs must be held constant

or the clock must be inhibited from the circuit. In the first case, the data bus driving the

register would be unavailable for other traffic. In the second case, the clock can be

inhibited from reaching the register by controlling the clock input signal with an enabling

gate. However, inserting gates into the clock path is ill advised because it means that

logic is performed with clock pulses. The insertion of logic gates produces uneven prop-

agation delays between the master clock and the inputs of flip‐flops. To fully synchronize

the system, we must ensure that all clock pulses arrive at the same time anywhere in the

system, so that all flip‐flops trigger simultaneously. Performing logic with clock pulses

inserts variable delays and may cause the system to go out of synchronism. For this

reason, it is advisable to control the operation of the register with the D inputs, rather

than controlling the clock in the C inputs of the flip‐flops. This creates the effect of a

gated clock, but without affecting the clock path of the circuit.

 A four‐bit data‐storage register with a load control input that is directed through gates

and into the D inputs of the flip‐flops is shown in Fig. 6.2 . The additional gates implement

a two‐channel mux whose output drives the input to the register with either the data bus

or the output of the register. The load input to the register determines the action to be

taken with each clock pulse. When the load input is 1, the data at the four external inputs

are transferred into the register with the next positive edge of the clock. When the load

input is 0, the outputs of the flip‐flops are connected to their respective inputs. The feed-

back connection from output to input is necessary because a D flip‐flop does not have

a “no change” condition. With each clock edge, the D input determines the next state of

the register. To leave the output unchanged, it is necessary to make the D input equal to

the present value of the output (i.e., the output circulates to the input at each clock

pulse). The clock pulses are applied to the C inputs without interruption. The load input

determines whether the next pulse will accept new information or leave the information

in the register intact. The transfer of information from the data inputs or the outputs of

the register is done simultaneously with all four bits in response to a clock edge.

258 Chapter 6 Registers and Counters

 6 . 2 S H I F T R E G I S T E R S

 A register capable of shifting the binary information held in each cell to its neighboring

cell, in a selected direction, is called a shift register. The logical configuration of a shift

register consists of a chain of flip‐flops in cascade, with the output of one flip‐flop con-

nected to the input of the next flip‐flop. All flip‐flops receive common clock pulses,

which activate the shift of data from one stage to the next.

 The simplest possible shift register is one that uses only flip‐flops, as shown in Fig. 6.3 .

The output of a given flip‐flop is connected to the D input of the flip‐flop at its right. This

shift register is unidirectional (left‐to‐right). Each clock pulse shifts the contents of the

 FIGURE 6.2
 Four‐bit register with parallel load

Load

Clock

D

C

A0

I0

I1

I2

I3

D

C

A1

D

C

A2

D

C

A3

Section 6.2 Shift Registers 259

register one bit position to the right. The configuration does not support a left shift. The

 serial input determines what goes into the leftmost flip‐flop during the shift. The serial
output is taken from the output of the rightmost flip‐flop. Sometimes it is necessary to

control the shift so that it occurs only with certain pulses, but not with others. As with the

data register discussed in the previous section, the clock’s signal can be suppressed by gat-

ing the clock signal to prevent the register from shifting. A preferred alternative in high‐

speed circuits is to suppress the clock action, rather than gate the clock signal, by leaving

the clock path unchanged, but recirculating the output of each register cell back through a

two‐channel mux whose output is connected to the input of the cell. When the clock action

is not suppressed, the other channel of the mux provides a datapath to the cell.

 It will be shown later that the shift operation can be controlled through the D inputs of

the flip‐flops rather than through the clock input. If, however, the shift register of Fig. 6.3

is used, the shift can be controlled with an input by connecting the clock through an AND

gate. This is not a preferred practice. Note that the simplified schematics do not show a

reset signal, but such a signal is required in practical designs.

 Serial Transfer

 The datapath of a digital system is said to operate in serial mode when information

is transferred and manipulated one bit at a time. Information is transferred one bit at

a time by shifting the bits out of the source register and into the destination register.

This type of transfer is in contrast to parallel transfer, whereby all the bits of the

register are transferred at the same time.

 The serial transfer of information from register A to register B is done with shift

registers, as shown in the block diagram of Fig. 6.4 (a). The serial output (SO) of register

 A is connected to the serial input (SI) of register B. To prevent the loss of information

stored in the source register, the information in register A is made to circulate by con-

necting the serial output to its serial input. The initial content of register B is shifted out

through its serial output and is lost unless it is transferred to a third shift register. The

shift control input determines when and how many times the registers are shifted. For

illustration here, this is done with an AND gate that allows clock pulses to pass into the

 CLK terminals only when the shift control is active. (This practice can be problematic

because it may compromise the clock path of the circuit, as discussed earlier.)

 Suppose the shift registers in Fig. 6.4 have four bits each. Then the control unit that

supervises the transfer of data must be designed in such a way that it enables the shift

 FIGURE 6.3
 Four‐bit shift register

D

C

SOSI
D

C

D

C

D

C

Serial
input

Serial
output

CLK

260 Chapter 6 Registers and Counters

registers, through the shift control signal, for a fixed time of four clock pulses in order

to pass an entire word. This design is shown in the timing diagram of Fig. 6.4 (b). The shift

control signal is synchronized with the clock and changes value just after the negative

edge of the clock. The next four clock pulses find the shift control signal in the active

state, so the output of the AND gate connected to the CLK inputs produces four pulses:

 T1, T2, T3, and T4. Each rising edge of the pulse causes a shift in both registers. The

fourth pulse changes the shift control to 0, and the shift registers are disabled.

 Assume that the binary content of A before the shift is 1011 and that of B is 0010.

The serial transfer from A to B occurs in four steps, as shown in Table 6.1 . With the first

pulse, T1, the rightmost bit of A is shifted into the leftmost bit of B and is also circulated

into the leftmost position of A. At the same time, all bits of A and B are shifted one

position to the right. The previous serial output from B in the rightmost position is lost,

and its value changes from 0 to 1. The next three pulses perform identical operations,

shifting the bits of A into B, one at a time. After the fourth shift, the shift control goes

to 0, and registers A and B both have the value 1011. Thus, the contents of A are copied

into B, so that the contents of A remain unchanged i.e., the contents of A are restored

to their original value.

 The difference between the serial and the parallel mode of operation should be appar-

ent from this example. In the parallel mode, information is available from all bits of a

register and all bits can be transferred simultaneously during one clock pulse. In the serial

 FIGURE 6.4
 Serial transfer from register A to register B

Shift register A Shift register B
SIA SOA SIB SOB

CLK

CLK

CLK
Clock

Clock

Shift
control

Shift
control

(a) Block diagram

(b) Timing diagram

T1 T2 T3 T4

Section 6.2 Shift Registers 261

mode, the registers have a single serial input and a single serial output. The information

is transferred one bit at a time while the registers are shifted in the same direction.

 Serial Addition

 Operations in digital computers are usually done in parallel because that is a faster

mode of operation. Serial operations are slower because a datapath operation takes

several clock cycles, but serial operations have the advantage of requiring fewer hard-

ware components. In VLSI circuits, they require less silicon area on a chip. To demon-

strate the serial mode of operation, we present the design of a serial adder. The parallel

counterpart was presented in Section 4.4.

 The two binary numbers to be added serially are stored in two shift registers. Begin-

ning with the least significant pair of bits, the circuit adds one pair at a time through a

single full‐adder (FA) circuit, as shown in Fig. 6.5 . The carry out of the full adder is trans-

ferred to a D flip‐flop, the output of which is then used as the carry input for the next

pair of significant bits. The sum bit from the S output of the full adder could be trans-

ferred into a third shift register. By shifting the sum into A while the bits of A are shifted

out, it is possible to use one register for storing both the augend and the sum bits. The

serial input of register B can be used to transfer a new binary number while the addend

bits are shifted out during the addition.

 The operation of the serial adder is as follows: Initially, register A holds the augend,

register B holds the addend, and the carry flip‐flop is cleared to 0. The outputs (SO) of A

and B provide a pair of significant bits for the full adder at x and y. Output Q of the flip‐flop

provides the input carry at z. The shift control enables both registers and the carry flip‐flop,

so at the next clock pulse, both registers are shifted once to the right, the sum bit from S

enters the leftmost flip‐flop of A, and the output carry is transferred into flip‐flop Q. The

shift control enables the registers for a number of clock pulses equal to the number of bits

in the registers. For each succeeding clock pulse, a new sum bit is transferred to A, a new

carry is transferred to Q, and both registers are shifted once to the right. This process con-

tinues until the shift control is disabled. Thus, the addition is accomplished by passing each

pair of bits together with the previous carry through a single full‐adder circuit and transfer-

ring the sum, one bit at a time, into register A.
 Initially, register A and the carry flip‐flop are cleared to 0, and then the first number

is added from B. While B is shifted through the full adder, a second number is transferred

 Table 6.1
 Serial‐Transfer Example

 Timing Pulse Shift Register A Shift Register B

 Initial value 1 0 1 1 0 0 1 0

 After T1 1 1 0 1 1 0 0 1

 After T2 1 1 1 0 1 1 0 0

 After T3 0 1 1 1 0 1 1 0

 After T4 1 0 1 1 1 0 1 1

262 Chapter 6 Registers and Counters

to it through its serial input. The second number is then added to the contents of register

 A , while a third number is transferred serially into register B. This can be repeated to

perform the addition of two, three, or more four‐bit numbers and accumulate their sum

in register A.
 Comparing the serial adder with the parallel adder described in Section 4.4, we note

several differences. The parallel adder uses registers with a parallel load, whereas the

serial adder uses shift registers. The number of full‐adder circuits in the parallel adder

is equal to the number of bits in the binary numbers, whereas the serial adder requires

only one full‐adder circuit and a carry flip‐flop. Excluding the registers, the parallel

adder is a combinational circuit, whereas the serial adder is a sequential circuit which

consists of a full adder and a flip‐flop that stores the output carry. This design is typical

in serial operations because the result of a bit‐time operation may depend not only on

the present inputs, but also on previous inputs that must be stored in flip‐flops.

 To show that serial operations can be designed by means of sequential circuit proce-

dure, we will redesign the serial adder with the use of a state table. First, we assume that

two shift registers are available to store the binary numbers to be added serially. The

serial outputs from the registers are designated by x and y. The sequential circuit to

be designed will not include the shift registers, but they will be inserted later to show

the complete circuit. The sequential circuit proper has the two inputs, x and y, that

provide a pair of significant bits, an output S that generates the sum bit, and flip‐flop

 Q for storing the carry. The state table that specifies the sequential circuit is listed in

 Table 6.2 . The present state of Q is the present value of the carry. The present carry in

Shift register A
(Augend)

Shift register B

D

C

SI

SI SO

SO

x

y

S

C

Q

z

FA

Serial
input

Shift
control

CLK

Clear

(Addend)

 FIGURE 6.5
 Serial adder

Section 6.2 Shift Registers 263

 Q is added together with inputs x and y to produce the sum bit in output S. The next

state of Q is equal to the output carry. Note that the state table entries are identical

to the entries in a full‐adder truth table, except that the input carry is now the present

state of Q and the output carry is now the next state of Q.
 If a D flip‐flop is used for Q, the circuit reduces to the one shown in Fig. 6.5 . If a JK flip‐

flop is used for Q, it is necessary to determine the values of inputs J and K by referring to

the excitation table (Table 5.12). This is done in the last two columns of Table 6.2 . The two

flip‐flop input equations and the output equation can be simplified by means of maps to

 JQ = xy

 KQ = x�y� = (x + y)�

 S = x { y { Q

 The circuit diagram is shown in Fig. 6.6 . The circuit consists of three gates and a JK

flip‐flop. The two shift registers are included in the diagram to show the complete serial

adder. Note that output S is a function not only of x and y, but also of the present state

of Q. The next state of Q is a function of the present state of Q and of the values of x

and y that come out of the serial outputs of the shift registers.

 Universal Shift Register

 If the flip‐flop outputs of a shift register are accessible, then information entered serially

by shifting can be taken out in parallel from the outputs of the flip‐flops. If a parallel

load capability is added to a shift register, then data entered in parallel can be taken out

in serial fashion by shifting the data stored in the register.

 Some shift registers provide the necessary input and output terminals for parallel

transfer. They may also have both shift‐right and shift‐left capabilities. The most general

shift register has the following capabilities:

 1. A clear control to clear the register to 0.

 2. A clock input to synchronize the operations.

 Table 6.2
 State Table for Serial Adder

 Present State Inputs Next State Output Flip‐Flop Inputs

 Q x y Q S JQ KQ

 0 0 0 0 0 0 X

 0 0 1 0 1 0 X

 0 1 0 0 1 0 X

 0 1 1 1 0 1 X

 1 0 0 0 1 X 1

 1 0 1 1 0 X 0

 1 1 0 1 0 X 0

 1 1 1 1 1 X 0

264 Chapter 6 Registers and Counters

 3. A shift‐right control to enable the shift‐right operation and the serial input and

output lines associated with the shift right.

 4. A shift‐left control to enable the shift‐left operation and the serial input and output
lines associated with the shift left.

 5. A parallel‐load control to enable a parallel transfer and the n input lines associ-

ated with the parallel transfer.

 6. n parallel output lines.

 7. A control state that leaves the information in the register unchanged in response

to the clock. Other shift registers may have only some of the preceding functions,

with at least one shift operation.

 A register capable of shifting in one direction only is a unidirectional shift register.

One that can shift in both directions is a bidirectional shift register. If the register has

both shifts and parallel‐load capabilities, it is referred to as a universal shift register.
 The block diagram symbol and the circuit diagram of a four‐bit universal shift register

that has all the capabilities just listed are shown in Fig. 6.7 . The circuit consists of four D

flip‐flops and four multiplexers. The four multiplexers have two common selection inputs

 s1 and s0. Input 0 in each multiplexer is selected when s1s0 = 00, input 1 is selected when

 s1s0 = 01, and similarly for the other two inputs. The selection inputs control the mode

of operation of the register according to the function entries in Table 6.3 . When s1s0 = 00,

the present value of the register is applied to the D inputs of the flip‐flops. This condition

forms a path from the output of each flip‐flop into the input of the same flip‐flop, so that

the output recirculates to the input in this mode of operation. The next clock edge trans-

fers into each flip‐flop the binary value it held previously, and no change of state occurs.

Shift register A

Shift register B

Clear

SI
S

SI

 x

y
Serial
input

Shift
control

CLK

J

C

K

SO

SO

 FIGURE 6.6
 Second form of serial adder

Section 6.2 Shift Registers 265

C
D

Q Q Q Q

4 � 1
MUX

A3

C
D

A2

C
D

A1

C
D

A0

3 2 1 0

4 � 1
MUX

3 2 1 0

4 � 1
MUX

3 2 1 0

4 � 1
MUX

3 2 1 0

CLK

I3 I2 I1 I0

s0

s1

Serial
input for
shift-right

Serial
input for
shift-left

Parallel inputs

(b)

Parallel outputs

Shift_Register

4

4

A_par

I_par

MSB_in

s1
s0

CLK
Clear_b

Clear_b

LSB_in

(a)

y y y y

 FIGURE 6.7
 Four‐bit universal shift register

266 Chapter 6 Registers and Counters

When s1s0 = 01, terminal 1 of the multiplexer inputs has a path to the D inputs of the

flip‐flops. This causes a shift‐right operation, with the serial input transferred into flip‐flop

 A3. When s1s0 = 10, a shift‐left operation results, with the other serial input going into

flip‐flop A0. Finally, when s1s0 = 11, the binary information on the parallel input lines is

transferred into the register simultaneously during the next clock edge. Note that data

enters MSB_in for a shift‐right operation and enters LSB_in for a shift‐left operation.

 Clear_b is an active‐low signal that clears all of the flip‐flops.

 Shift registers are often used to interface digital systems situated remotely from each

other. For example, suppose it is necessary to transmit an n ‐bit quantity between two

points. If the distance is far, it will be expensive to use n lines to transmit the n bits in

parallel. It is more economical to use a single line and transmit the information serially,

one bit at a time. The transmitter accepts the n ‐bit data in parallel into a shift register

and then transmits the data serially along the common line. The receiver accepts the

data serially into a shift register. When all n bits are received, they can be taken from

the outputs of the register in parallel. Thus, the transmitter performs a parallel‐to‐serial

conversion of data and the receiver does a serial‐to‐parallel conversion.

 6 . 3 R I P P L E C O U N T E R S

 A register that goes through a prescribed sequence of states upon the application of input

pulses is called a counter . The input pulses may be clock pulses, or they may originate

from some external source and may occur at a fixed interval of time or at random. The

sequence of states may follow the binary number sequence or any other sequence of

states. A counter that follows the binary number sequence is called a binary counter . An

 n ‐bit binary counter consists of n flip‐flops and can count in binary from 0 through 2n - 1.

 Counters are available in two categories: ripple counters and synchronous counters.

In a ripple counter, a flip‐flop output transition serves as a source for triggering other

flip‐flops. In other words, the C input of some or all flip‐flops are triggered, not by the

common clock pulses, but rather by the transition that occurs in other flip‐flop outputs.

In a synchronous counter, the C inputs of all flip‐flops receive the common clock.

 Synchronous counters are presented in the next two sections. Here, we present the

binary and BCD ripple counters and explain their operation.

 Table 6.3
 Function Table for the Register of Fig. 6.7

 Mode Control

 s1 s0 Register Operation

 0 0 No change

 0 1 Shift right

 1 0 Shift left

 1 1 Parallel load

Section 6.3 Ripple Counters 267

 Binary Ripple Counter

 A binary ripple counter consists of a series connection of complementing flip‐flops, with

the output of each flip‐flop connected to the C input of the next higher order flip‐flop.

The flip‐flop holding the least significant bit receives the incoming count pulses. A com-

plementing flip‐flop can be obtained from a JK flip‐flop with the J and K inputs tied

together or from a T flip‐flop. A third possibility is to use a D flip‐flop with the complement

output connected to the D input. In this way, the D input is always the complement of

the present state, and the next clock pulse will cause the flip‐flop to complement. The

logic diagram of two 4‐bit binary ripple counters is shown in Fig. 6.8 . The counter is con-

structed with complementing flip‐flops of the T type in part (a) and D type in part (b).

The output of each flip‐flop is connected to the C input of the next flip‐flop in sequence.

The flip‐flop holding the least significant bit receives the incoming count pulses. The T

inputs of all the flip‐flops in (a) are connected to a permanent logic 1, making each flip‐

flop complement if the signal in its C input goes through a negative transition. The bub-

ble in front of the dynamic indicator symbol next to C indicates that the flip‐flops respond

to the negative‐edge transition of the input. The negative transition occurs when the

output of the previous flip‐flop to which C is connected goes from 1 to 0.

 To understand the operation of the four‐bit binary ripple counter, refer to the first

nine binary numbers listed in Table 6.4 . The count starts with binary 0 and increments

by 1 with each count pulse input. After the count of 15, the counter goes back to 0 to

repeat the count. The least significant bit, A0, is complemented with each count pulse

input. Every time that A0 goes from 1 to 0, it complements A1. Every time that A1 goes

from 1 to 0, it complements A2. Every time that A2 goes from 1 to 0, it complements A3,

and so on for any other higher order bits of a ripple counter. For example, consider the

transition from count 0011 to 0100. A0 is complemented with the count pulse. Since A0

goes from 1 to 0, it triggers A1 and complements it. As a result, A1 goes from 1 to 0, which

in turn complements A2, changing it from 0 to 1. A2 does not trigger A3, because A2

produces a positive transition and the flip‐flop responds only to negative transitions.

Thus, the count from 0011 to 0100 is achieved by changing the bits one at a time, so the

 Table 6.4
 Binary Count Sequence

A 3 A 2 A 1 A 0

 0 0 0 0

 0 0 0 1

 0 0 1 0

 0 0 1 1

 0 1 0 0

 0 1 0 1

 0 1 1 0

 0 1 1 1

 1 0 0 0

268 Chapter 6 Registers and Counters

T

R
C

A0

T

R
C

A1

T

R
C

A2

T

R
C

A3

Reset

Logic 1

Count

D

R
C

A0

D

R
C

A1

D

R
C

A2

D

R
C

A3

Reset

Count

(a) With T flip-flops (b) With D flip-flops

 FIGURE 6.8
 Four‐bit binary ripple counter

Section 6.3 Ripple Counters 269

count goes from 0011 to 0010, then to 0000, and finally to 0100. The flip‐flops change

one at a time in succession, and the signal propagates through the counter in a ripple

fashion from one stage to the next.

 A binary counter with a reverse count is called a binary countdown counter . In a

countdown counter, the binary count is decremented by 1 with every input count pulse.

The count of a four‐bit countdown counter starts from binary 15 and continues to binary

counts 14, 13, 12, . . . , 0 and then back to 15. A list of the count sequence of a binary

countdown counter shows that the least significant bit is complemented with every count

pulse. Any other bit in the sequence is complemented if its previous least significant bit

goes from 0 to 1. Therefore, the diagram of a binary countdown counter looks the same

as the binary ripple counter in Fig. 6.8 , provided that all flip‐flops trigger on the positive

edge of the clock. (The bubble in the C inputs must be absent.) If negative‐edge‐triggered

flip‐flops are used, then the C input of each flip‐flop must be connected to the comple-

mented output of the previous flip‐flop. Then, when the true output goes from 0 to 1, the

complement will go from 1 to 0 and complement the next flip‐flop as required.

 BCD Ripple Counter

 A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9.

Such a counter must have at least four flip‐flops to represent each decimal digit, since

a decimal digit is represented by a binary code with at least four bits. The sequence of

states in a decimal counter is dictated by the binary code used to represent a decimal

digit. If BCD is used, the sequence of states is as shown in the state diagram of Fig. 6.9 .

A decimal counter is similar to a binary counter, except that the state after 1001 (the

code for decimal digit 9) is 0000 (the code for decimal digit 0).

 The logic diagram of a BCD ripple counter using JK flip‐flops is shown in Fig. 6.10 .

The four outputs are designated by the letter symbol Q, with a numeric subscript equal

to the binary weight of the corresponding bit in the BCD code. Note that the output of

 Q1 is applied to the C inputs of both Q2 and Q8 and the output of Q2 is applied to the

 C input of Q4. The J and K inputs are connected either to a permanent 1 signal or to

outputs of other flip‐flops.

 A ripple counter is an asynchronous sequential circuit. Signals that affect the flip‐flop

transition depend on the way they change from 1 to 0. The operation of the counter can

0000 0001 0010 0011 0100

1001 1000 0111 0110 0101

 FIGURE 6.9
 State diagram of a decimal BCD counter

270 Chapter 6 Registers and Counters

J

K

C

Q1

J

K

C

Q2

J

K

C

Q4

J

K

C

Q8

Logic 1

Count

 FIGURE 6.10
 BCD ripple counter

be explained by a list of conditions for flip‐flop transitions. These condi-

tions are derived from the logic diagram and from knowledge of how a

 JK flip‐flop operates. Remember that when the C input goes from 1 to 0,

the flip‐flop is set if J = 1, is cleared if K = 1, is complemented if

 J = K = 1, and is left unchanged if J = K = 0.

Section 6.4 Synchronous Counters 271

 To verify that these conditions result in the sequence required by a BCD ripple coun-

ter, it is necessary to verify that the flip‐flop transitions indeed follow a sequence of

states as specified by the state diagram of Fig. 6.9 . Q1 changes state after each clock

pulse. Q2 complements every time Q1 goes from 1 to 0, as long as Q8 = 0. When Q8

becomes 1, Q2 remains at 0. Q4 complements every time Q2 goes from 1 to 0. Q8 remains

at 0 as long as Q2 or Q4 is 0. When both Q2 and Q4 become 1, Q8 complements when Q1

goes from 1 to 0. Q8 is cleared on the next transition of Q1.

 The BCD counter of Fig. 6.10 is a decade counter, since it counts from 0 to 9. To

count in decimal from 0 to 99, we need a two‐decade counter. To count from 0 to 999,

we need a three‐decade counter. Multiple decade counters can be constructed by con-

necting BCD counters in cascade, one for each decade. A three‐decade counter is

shown in Fig. 6.11 . The inputs to the second and third decades come from Q8 of the

previous decade. When Q8 in one decade goes from 1 to 0, it triggers the count for the

next higher order decade while its own decade goes from 9 to 0.

 6 . 4 S Y N C H R O N O U S C O U N T E R S

 Synchronous counters are different from ripple counters in that clock pulses are applied

to the inputs of all flip‐flops. A common clock triggers all flip‐flops simultaneously,

rather than one at a time in succession as in a ripple counter. The decision whether a

flip‐flop is to be complemented is determined from the values of the data inputs, such

as T or J and K at the time of the clock edge. If T = 0 or J = K = 0, the flip‐flop does

not change state. If T = 1 or J = K = 1, the flip‐flop complements.

 The design procedure for synchronous counters was presented in Section 5.8, and the

design of a three‐bit binary counter was carried out in conjunction with Fig. 5.31. In this

section, we present some typical synchronous counters and explain their operation.

 Binary Counter

 The design of a synchronous binary counter is so simple that there is no need to go

through a sequential logic design process. In a synchronous binary counter, the flip‐flop

in the least significant position is complemented with every pulse. A flip‐flop in any other

BCD
Counter

Q8 Q4 Q2 Q1

BCD
Counter

Q8 Q4 Q2 Q1

BCD
Counter

Q8 Q4 Q2 Q1

Count
pulses

102 digit 101 digit 100 digit

 FIGURE 6.11
 Block diagram of a three‐decade decimal BCD counter

272 Chapter 6 Registers and Counters

position is complemented when all the bits in the lower significant positions are equal to 1 .

For example, if the present state of a four‐bit counter is A3A2A1A0 = 0011, the next

count is 0100. A0 is always complemented. A1 is complemented because the present

state of A0 = 1. A2 is complemented because the present state of A1A0 = 11. However,

 A3 is not complemented, because the present state of A2A1A0 = 011, which does not

give an all‐1’s condition.

 Synchronous binary counters have a regular pattern and can be constructed with

complementing flip‐flops and gates. The regular pattern can be seen from the four‐bit

counter depicted in Fig. 6.12 . The C inputs of all flip‐flops are connected to a common

clock. The counter is enabled by Count_enable. If the enable input is 0, all J and K inputs

are equal to 0 and the clock does not change the state of the counter. The first stage,

 A0, has its J and K equal to 1 if the counter is enabled. The other J and K inputs are

equal to 1 if all previous least significant stages are equal to 1 and the count is enabled.

The chain of AND gates generates the required logic for the J and K inputs in each

stage. The counter can be extended to any number of stages, with each stage having an

additional flip‐flop and an AND gate that gives an output of 1 if all previous flip‐flop

outputs are 1.

 Note that the flip‐flops trigger on the positive edge of the clock. The polarity of the

clock is not essential here, but it is with the ripple counter. The synchronous counter can

be triggered with either the positive or the negative clock edge. The complementing

flip‐flops in a binary counter can be of either the JK type, the T type, or the D type with

XOR gates. The equivalency of the three types is indicated in Fig. 5.13.

 Up–Down Binary Counter

 A synchronous countdown binary counter goes through the binary states in reverse order,

from 1111 down to 0000 and back to 1111 to repeat the count. It is possible to design a

countdown counter in the usual manner, but the result is predictable by inspection of the

downward binary count. The bit in the least significant position is complemented with each

pulse. A bit in any other position is complemented if all lower significant bits are equal to 0.
For example, the next state after the present state of 0100 is 0011. The least significant

bit is always complemented. The second significant bit is complemented because the first

bit is 0. The third significant bit is complemented because the first two bits are equal to 0.

But the fourth bit does not change, because not all lower significant bits are equal to 0.

 A countdown binary counter can be constructed as shown in Fig. 6.12 , except that

the inputs to the AND gates must come from the complemented outputs, instead of

the normal outputs, of the previous flip‐flops. The two operations can be combined in

one circuit to form a counter capable of counting either up or down. The circuit of an

up–down binary counter using T flip‐flops is shown in Fig. 6.13 . It has an up control

input and a down control input. When the up input is 1, the circuit counts up, since the

 T inputs receive their signals from the values of the previous normal outputs of the

flip‐flops. When the down input is 1 and the up input is 0, the circuit counts down,

since the complemented outputs of the previous flip‐flops are applied to the T inputs.

When the up and down inputs are both 0, the circuit does not change state and remains

Section 6.4 Synchronous Counters 273

J

K

C

A0

J

K

C

A1

J

K

C

A2

J

K

C

A3

CLK

Count_enable

To next stage

 FIGURE 6.12
 Four‐bit synchronous binary counter

274 Chapter 6 Registers and Counters

T

C

A0

T

C

A1

T

C

A2

T

C

A3

CLK

Up

Down

 FIGURE 6.13
 Four‐bit up–down binary counter

Section 6.4 Synchronous Counters 275

in the same count. When the up and down inputs are both 1, the circuit counts up. This

set of conditions ensures that only one operation is performed at any given time. Note

that the up input has priority over the down input.

 BCD Counter

 A BCD counter counts in binary‐coded decimal from 0000 to 1001 and back to 0000.

Because of the return to 0 after a count of 9, a BCD counter does not have a regular

pattern, unlike a straight binary count. To derive the circuit of a BCD synchronous

counter, it is necessary to go through a sequential circuit design procedure.

 The state table of a BCD counter is listed in Table 6.5 . The input conditions for the

 T flip‐flops are obtained from the present‐ and next‐state conditions. Also shown in the

table is an output y, which is equal to 1 when the present state is 1001. In this way, y can

enable the count of the next‐higher significant decade while the same pulse switches the

present decade from 1001 to 0000.

 The flip‐flop input equations can be simplified by means of maps. The unused states

for minterms 10 to 15 are taken as don’t‐care terms. The simplified functions are

 TQ1 = 1

 TQ2 = Q�8Q1

 TQ4 = Q2Q1

 TQ8 = Q8Q1 + Q4Q2Q1

 y = Q8Q1

 The circuit can easily be drawn with four T flip‐flops, five AND gates, and one OR

gate. Synchronous BCD counters can be cascaded to form a counter for decimal numbers

of any length. The cascading is done as in Fig. 6.11 , except that output y must be con-

nected to the count input of the next‐higher significant decade.

 Table 6.5
 State Table for BCD Counter

 Present State Next State Output Flip‐Flop Inputs

 Q 8 Q 4 Q 2 Q 1 Q 8 Q 4 Q 2 Q1 y TQ 8 TQ 4 TQ 2 TQ 1

 0 0 0 0 0 0 0 1 0 0 0 0 1

 0 0 0 1 0 0 1 0 0 0 0 1 1

 0 0 1 0 0 0 1 1 0 0 0 0 1

 0 0 1 1 0 1 0 0 0 0 1 1 1

 0 1 0 0 0 1 0 1 0 0 0 0 1

 0 1 0 1 0 1 1 0 0 0 0 1 1

 0 1 1 0 0 1 1 1 0 0 0 0 1

 0 1 1 1 1 0 0 0 0 1 1 1 1

 1 0 0 0 1 0 0 1 0 0 0 0 1

 1 0 0 1 0 0 0 0 1 1 0 0 1

276 Chapter 6 Registers and Counters

 Binary Counter with Parallel Load

 Counters employed in digital systems quite often require a parallel‐load capability for

transferring an initial binary number into the counter prior to the count operation.

 Figure 6.14 shows the top‐level block diagram symbol and the logic diagram of a four‐bit

register that has a parallel load capability and can operate as a counter. When equal to

1, the input load control disables the count operation and causes a transfer of data from

the four data inputs into the four flip‐flops. If both control inputs are 0, clock pulses do

not change the state of the register.

 The carry output becomes a 1 if all the flip‐flops are equal to 1 while the count input is

enabled. This is the condition for complementing the flip‐flop that holds the next significant

bit. The carry output is useful for expanding the counter to more than four bits. The speed

of the counter is increased when the carry is generated directly from the outputs of all four

flip‐flops, because the delay to generate the carry bit is reduced. In going from state 1111

to 0000, only one gate delay occurs, whereas four gate delays occur in the AND gate chain

shown in Fig. 6.12 . Similarly, each flip‐flop is associated with an AND gate that receives all

previous flip‐flop outputs directly instead of connecting the AND gates in a chain.

 The operation of the counter is summarized in Table 6.6 . The four control inputs—

 Clear, CLK, Load, and Count —determine the next state. The Clear input is asynchro-

nous and, when equal to 0, causes the counter to be cleared regardless of the presence

of clock pulses or other inputs. This relationship is indicated in the table by the X entries,

which symbolize don’t‐care conditions for the other inputs. The Clear input must be in

the 1 state for all other operations. With the Load and Count inputs both at 0, the out-

puts do not change, even when clock pulses are applied. A Load input of 1 causes a

transfer from inputs I0 - I3 into the register during a positive edge of CLK . The input

data are loaded into the register regardless of the value of the Count input, because the

 Count input is inhibited when the Load input is enabled. The Load input must be 0 for

the Count input to control the operation of the counter.

 A counter with a parallel load can be used to generate any desired count sequence.

 Figure 6.15 shows two ways in which a counter with a parallel load is used to generate

the BCD count. In each case, the Count control is set to 1 to enable the count through

the CLK input. Also, recall that the Load control inhibits the count and that the clear

operation is independent of other control inputs.

 The AND gate in Fig. 6.15 (a) detects the occurrence of state 1001. The counter is

initially cleared to 0, and then the Clear and Count inputs are set to 1, so the counter is

active at all times. As long as the output of the AND gate is 0, each positive‐edge clock

 Table 6.6
 Function Table for the Counter of Fig. 6.14

 Clear CLK Load Count Function

 0 X X X Clear to 0

 1 c 1 X Load inputs

 1 c 0 1 Count next binary state

 1 c 0 0 No change

Section 6.4 Synchronous Counters 277

J

K

C

A0

J

K

C

A1

J

K

C

A2

J

K

C

A3

CLK
Clear

Count

Load

I0

I1

I2

I3

4-Bit Binary Counter
4 4

Data_in A_count

Count
Load

Clear

CLK
C_out

C_out

(a)

(b)

 FIGURE 6.14
 Four‐bit binary counter with parallel load

278 Chapter 6 Registers and Counters

increments the counter by 1. When the output reaches the count of 1001, both A0 and

 A3 become 1, making the output of the AND gate equal to 1. This condition activates

the Load input; therefore, on the next clock edge the register does not count, but is

loaded from its four inputs. Since all four inputs are connected to logic 0, an all‐0’s value

is loaded into the register following the count of 1001. Thus, the circuit goes through the

count from 0000 through 1001 and back to 0000, as is required in a BCD counter.

 In Fig. 6.15 (b), the NAND gate detects the count of 1010, but as soon as this count

occurs, the register is cleared. The count 1010 has no chance of staying on for any appre-

ciable time, because the register goes immediately to 0. A momentary spike occurs in

output A0 as the count goes from 1010 to 1011 and immediately to 0000. The spike may

be undesirable, and for that reason, this configuration is not recommended. If the coun-

ter has a synchronous clear input, it is possible to clear the counter with the clock after

an occurrence of the 1001 count.

 6 . 5 O T H E R C O U N T E R S

 Counters can be designed to generate any desired sequence of states. A divide‐by‐ N

counter (also known as a modulo‐ N counter) is a counter that goes through a repeated

sequence of N states. The sequence may follow the binary count or may be any other

arbitrary sequence. Counters are used to generate timing signals to control the sequence

of operations in a digital system. Counters can also be constructed by means of shift

registers. In this section, we present a few examples of nonbinary counters.

 Counter with Unused States

 A circuit with n flip‐flops has 2n binary states. There are occasions when a sequential

circuit uses fewer than this maximum possible number of states. States that are not used

Counter
of Fig. 6.14

A3 A2 A1 A0

Count � 1

Clear � 1

CLK

Load

Inputs � 0

(a) Using the load input (b) Using the clear input

Counter
of Fig. 6.14

A3 A2 A1 A0

Count � 1

Load � 0

CLK

Clear

Inputs have no effect

 FIGURE 6.15
 Two ways to achieve a BCD counter using a counter with parallel load

Section 6.5 Other Counters 279

in specifying the sequential circuit are not listed in the state table. In simplifying the

input equations, the unused states may be treated as don’t‐care conditions or may be

assigned specific next states. It is important to realize that once the circuit is designed

and constructed, outside interference during its operation may cause the circuit to enter

one of the unused states. In that case, it is necessary to ensure that the circuit eventually

goes into one of the valid states so that it can resume normal operation. Otherwise, if the

sequential circuit circulates among unused states, there will be no way to bring it back to

its intended sequence of state transitions. If the unused states are treated as don’t‐care

conditions, then once the circuit is designed, it must be investigated to determine the

effect of the unused states. The next state from an unused state can be determined from

the analysis of the circuit after it is designed.

 As an illustration, consider the counter specified in Table 6.7. The count has a

repeated sequence of six states, with flip‐flops B and C repeating the binary count 00,

01, 10, and flip‐flop A alternating between 0 and 1 every three counts. The count

sequence of the counter is not straight binary, and two states, 011 and 111, are not

included in the count. The choice of JK flip‐flops results in the flip‐flop input conditions

listed in the table. Inputs KB and KC have only 1’s and X’s in their columns, so these

inputs are always equal to 1. The other flip‐flop input equations can be simplified by

using minterms 3 and 7 as don’t‐care conditions. The simplified equations are

 JA = B KA = B

 JB = C KB = 1

 JC = B� KC = 1

 The logic diagram of the counter is shown in Fig. 6.16 (a). Since there are two unused

states, we analyze the circuit to determine their effect. If the circuit happens to be in

state 011 because of an error signal, the circuit goes to state 100 after the application of

a clock pulse. This action may be determined from an inspection of the logic diagram by

noting that when B = 1, the next clock edge complements A and clears C to 0, and when

 C = 1, the next clock edge complements B. In a similar manner, we can evaluate the

next state from present state 111 to be 000.

 Table 6.7
 State Table for Counter

 Present State Next State Flip‐Flop Inputs

 A B C A B C J A K A J B K B J C K C

 0 0 0 0 0 1 0 X 0 X 1 X

 0 0 1 0 1 0 0 X 1 X X 1

 0 1 0 1 0 0 1 X X 1 0 X

 1 0 0 1 0 1 X 0 0 X 1 X

 1 0 1 1 1 0 X 0 1 X X 1

 1 1 0 0 0 0 X 1 X 1 0 X

280 Chapter 6 Registers and Counters

 The state diagram including the effect of the unused states is shown in Fig. 6.16 (b). If

the circuit ever goes to one of the unused states because of outside interference, the next

count pulse transfers it to one of the valid states and the circuit continues to count cor-

rectly. Thus, the counter is self‐correcting. In a self‐correcting counter, if the counter

happens to be in one of the unused states, it eventually reaches the normal count

sequence after one or more clock pulses. An alternative design could use additional logic

to direct every unused state to a specific next state.

 Ring Counter

 Timing signals that control the sequence of operations in a digital system can be gener-

ated by a shift register or by a counter with a decoder. A ring counter is a circular shift

register with only one flip‐flop being set at any particular time; all others are cleared.

The single bit is shifted from one flip‐flop to the next to produce the sequence of timing

signals. Figure 6.17 (a) shows a four‐bit shift register connected as a ring counter. The

initial value of the register is 1000 and requires Preset/Clear flip‐flops. The single bit is

000

100

111

011

001

010

110

101

(b) State transition diagram

K

J

C

A

K

J

C

B

K

J

C

C

(a) Logic circuit diagram

Clock

Logic 1

 FIGURE 6.16
 Counter with unused states

Section 6.5 Other Counters 281

T0 T1 T2 T3
Shift
right

(a) Ring-counter (initial value � 1000)

T0 T1 T2 T3

(c) Counter and decoder

2 � 4
decoder

2-bit counterCount
enable

CLK

T0

T1

T2

T3

(b) Sequence of four timing signals

 FIGURE 6.17
 Generation of timing signals

shifted right with every clock pulse and circulates back from T3 to T0. Each flip‐flop is

in the 1 state once every four clock cycles and produces one of the four timing signals

shown in Fig. 6.17 (b). Each output becomes a 1 after the negative‐edge transition of a

clock pulse and remains 1 during the next clock cycle.

282 Chapter 6 Registers and Counters

 For an alternative design, the timing signals can be generated by a two‐bit counter

that goes through four distinct states. The decoder shown in Fig. 6.17 (c) decodes the four

states of the counter and generates the required sequence of timing signals.

 To generate 2n timing signals, we need either a shift register with 2n flip‐flops or an

 n ‐bit binary counter together with an n ‐to‐2 n ‐line decoder. For example, 16 timing sig-

nals can be generated with a 16‐bit shift register connected as a ring counter or with a

4‐bit binary counter and a 4‐to‐16‐line decoder. In the first case, we need 16 flip‐flops.

In the second, we need 4 flip‐flops and 16 four‐input AND gates for the decoder. It is

also possible to generate the timing signals with a combination of a shift register and a

decoder. That way, the number of flip‐flops is less than that in a ring counter, and the

decoder requires only two‐input gates. This combination is called a Johnson counter .

 Johnson Counter

 A k ‐bit ring counter circulates a single bit among the flip‐flops to provide k distinguish-

able states. The number of states can be doubled if the shift register is connected as a

 switch‐tail ring counter. A switch‐tail ring counter is a circular shift register with the

complemented output of the last flip‐flop connected to the input of the first flip‐flop.

 Figure 6.18 (a) shows such a shift register. The circular connection is made from the

D

C

A
D

C

B
D

C

C
D

C

E

A� B� C�
E�

CLK
(a) Four-stage switch-tail ring counter

(b) Count sequence and required decoding

Sequence
number

Flip-flop outputs

A B C E
AND gate required

for output

1 A�E�
AB�
BC�
CE�
AE
A�B
B�C
C�E

2
3
4
5
6
7
8

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

 FIGURE 6.18
 Construction of a Johnson counter

Section 6.6 HDL for Registers and Counters 283

complemented output of the rightmost flip‐flop to the input of the leftmost flip‐flop.

The register shifts its contents once to the right with every clock pulse, and at the same

time, the complemented value of the E flip‐flop is transferred into the A flip‐flop.

 Starting from a cleared state, the switch‐tail ring counter goes through a sequence of

eight states, as listed in Fig. 6.18 (b). In general, a k ‐bit switch‐tail ring counter will go

through a sequence of 2 k states. Starting from all 0’s, each shift operation inserts 1’s from

the left until the register is filled with all 1’s. In the next sequences, 0’s are inserted from

the left until the register is again filled with all 0’s.

 A Johnson counter is a k ‐bit switch‐tail ring counter with 2 k decoding gates to pro-

vide outputs for 2 k timing signals. The decoding gates are not shown in Fig. 6.18 , but are

specified in the last column of the table. The eight AND gates listed in the table, when

connected to the circuit, will complete the construction of the Johnson counter. Since

each gate is enabled during one particular state sequence, the outputs of the gates gen-

erate eight timing signals in succession.

 The decoding of a k ‐bit switch‐tail ring counter to obtain 2 k timing signals follows a

regular pattern. The all‐0’s state is decoded by taking the complement of the two extreme

flip‐flop outputs. The all‐1’s state is decoded by taking the normal outputs of the two extreme

flip‐flops. All other states are decoded from an adjacent 1, 0 or 0, 1 pattern in the sequence.

For example, sequence 7 has an adjacent 0, 1 pattern in flip‐flops B and C . The decoded

output is then obtained by taking the complement of B and the normal output of C, or B�C.

 One disadvantage of the circuit in Fig. 6.18 (a) is that if it finds itself in an unused state,

it will persist in moving from one invalid state to another and never find its way to a valid

state. The difficulty can be corrected by modifying the circuit to avoid this undesirable

condition. One correcting procedure is to disconnect the output from flip‐flop B that goes

to the D input of flip‐flop C and instead enable the input of flip‐flop C by the function

 DC = (A + C)B

 where DC is the flip‐flop input equation for the D input of flip‐flop C.
 Johnson counters can be constructed for any number of timing sequences. The num-

ber of flip‐flops needed is one‐half the number of timing signals. The number of decod-

ing gates is equal to the number of timing signals, and only two‐input gates are needed.

 6 . 6 H D L F O R R E G I S T E R S A N D C O U N T E R S

 Registers and counters can be described in Verilog at either the behavioral or the struc-

tural level. Behavioral modeling describes only the operations of the register, as pre-

scribed by a function table, without a preconceived structure. A structural‐level

description shows the circuit in terms of a collection of components such as gates, flip‐

flops, and multiplexers. The various components are instantiated to form a hierarchical

description of the design similar to a representation of a multilevel logic diagram. The

examples in this section will illustrate both types of descriptions. Both are useful. When

a machine is complex, a hierarchical description creates a physical partition of the

machine into simpler and more easily described units.

284 Chapter 6 Registers and Counters

 Shift Register

 The universal shift register presented in Section 6.2 is a bidirectional shift register with a

parallel load. The four clocked operations that are performed with the register are speci-

fied in Table 6.6 . The register also can be cleared asynchronously. Our chosen name for a

behavioral description of the four‐bit universal shift register shown in Fig. 6.7 (a), the name

 Shift_Register_4_beh, signifies the behavioral model of the internal detail of the top‐level

block diagram symbol and distinguishes that model from a structural one. The behavioral

model is presented in HDL Example 6.1, and the structural model is given in HDL Exam-

ple 6.2. The top‐level block diagram symbol in Fig. 6.7 (a) indicates that the four‐bit uni-

versal shift register has two selection inputs (s1, s0), two serial inputs (shift_left, shift_right),
for controlling the shift register, two serial datapath inputs (MSB_in and LSB_in), a four‐

bit parallel input (I_par), and a four‐bit parallel output (A_par). The elements of vector

 I_par[3: 0] correspond to the bits I3, . . . , I0 in Fig. 6.7 , and similarly for A_par[3: 0].
The always block describes the five operations that can be performed with the register.

The Clear input clears the register asynchronously with an active‐low signal. Clear

must be high for the register to respond to the positive edge of the clock. The four

clocked operations of the register are determined from the values of the two select

inputs in the case statement. (s1 and s0 are concatenated into a two‐bit vector and are used

as the expression argument of the case statement.) The shifting operation is specified by the

concatenation of the serial input and three bits of the register. For example, the statement

A_par <= {MSB_in, A_par [3: 1]}

 specifies a concatenation of the serial data input for a right shift operation (MSB_in)

with bits A_par[3: 1] of the output data bus . A reference to a contiguous range of bits

within a vector is referred to as a part select . The four‐bit result of the concatenation is

transferred to register A_par [3: 0] when the clock pulse triggers the operation. This

transfer produces a shift‐right operation and updates the register with new information.

The shift operation overwrites the contents of A_par[0] with the contents of A_par[1] .

Note that only the functionality of the circuit has been described, irrespective of any

particular hardware. A synthesis tool would create a netlist of ASIC cells to implement

the shift register in the structure of Fig. 6.7 (b).

 HDL Example 6.1 (Universal Shift Register‐Behavioral Model)

 // Behavioral description of a 4-bit universal shift register
 // Fig. 6.7 and Table 6.3
 module Shift_Register_4_beh (// V2001, 2005
 output reg [3: 0] A_par, // Register output
 input [3: 0] I_par, // Parallel input
 input s1, s0, // Select inputs
 MSB_in, LSB_in, // Serial inputs
 CLK, Clear_b // Clock and Clear
);

Section 6.6 HDL for Registers and Counters 285

 Variables of type reg retain their value until they are assigned a new value by an

assignment statement. Consider the following alternative case statement for the shift

register model:

 always @ (posedge CLK, negedge Clear_b) // V2001, 2005
 if (Clear_b == 0) A_par <= 4’b0000;
 else
 case ({s1, s0})
 2'b00: A_par <= A_par; // No change
 2'b01: A_par <= {MSB_in, A_par[3: 1]}; // Shift right
 2'b10: A_par <= {A_par[2: 0], LSB_in}; // Shift left
 2'b11: A_par <= I_par; // Parallel load of input
 endcase
 endmodule

 case ({s1, s0})
 // 2'b00: A_par <= A_par; // No change
 2'b01: A_par <= {MSB_in, A_par [3: 1]}; // Shift right
 2'b10: A_par <= {A_par [2: 0], LSB_in}; // Shift left
 2'b11: A_par <= I_par; // Parallel load of input
 endcase

 Without the case item 2�b00, the case statement would not find a match between

 5s1, s06 and the case items, so register A_par would be left unchanged.

 A structural model of the universal shift register can be described by referring to the

logic diagram of Fig. 6.7 (b). The diagram shows that the register has four multiplexers and

four D flip‐flops. A mux and flip‐flop together are modeled as a stage of the shift register.

The stage is a structural model, too, with an instantiation and interconnection of a module

for a mux and another for a D flip‐flop. For simplicity, the lowest‐level modules of the

structure are behavioral models of the multiplexer and flip‐flop. Attention must be paid

to the details of connecting the stages correctly. The structural description of the register

is shown in HDL Example 6.2. The top‐level module declares the inputs and outputs and

then instantiates four copies of a stage of the register. The four instantiations specify the

interconnections between the four stages and provide the detailed construction of the

register as specified in the logic diagram. The behavioral description of the flip‐flop uses

a single edge‐sensitive cyclic behavior (an always block). The assignment statements use

the nonblocking assignment operator (<=) the model of the mux employs a single level‐

sensitive behavior, and the assignments use the blocking assignment operator (=).

 HDL Example 6.2 (Universal Shift Register‐Structural Model)

 // Structural description of a 4-bit universal shift register (see Fig. 6.7)
 module Shift_Register_4_str (// V2001, 2005
 output [3: 0] A_par, // Parallel output
 input [3: 0] I_par, // Parallel input

286 Chapter 6 Registers and Counters

 input s1, s0, // Mode select
 input MSB_in, LSB_in, CLK, Clear_b // Serial inputs, clock, clear
);

 // bus for mode control
 assign [1:0] select = {s1, s0};

 // Instantiate the four stages
 stage ST0 (A_par[0], A_par[1], LSB_in, I_par[0], A_par[0], select, CLK, Clear_b);
 stage ST1 (A_par[1], A_par[2], A_par[0], I_par[1], A_par[1], select, CLK, Clear_b);
 stage ST2 (A_par[2], A_par[3], A_par[1], I_par[2], A_par[2], select, CLK, Clear_b);
 stage ST3 (A_par[3], MSB_in, A_par[2], I_par[3], A_par[3], select, CLK, Clear_b);
 endmodule

 // One stage of shift register
 module stage (i0, i1, i2, i3, Q, select, CLK, Clr_b);
 input i0, // circulation bit selection
 i1, // data from left neighbor or serial input for shift-right
 i2, // data from right neighbor or serial input for shift-left
 i3; // data from parallel input
 output Q;
 input [1: 0] select; // stage mode control bus
 input CLK, Clr_b; // Clock, Clear for fl ip-fl ops
 wire mux_out;

 // instantiate mux and fl ip-fl op
 Mux_4_x_1 M0 (mux_out, i0, i1, i2, i3, select);
 D_fl ip_fl op M1 (Q, mux_out, CLK, Clr_b);
 endmodule

 // 4x1 multiplexer // behavioral model
 module Mux_4_x_1 (mux_out, i0, i1, i2, i3, select);
 output mux_out;
 input i0, i1, i2, i3;
 input [1: 0] select;
 reg mux_out;
 always @ (select, i0, i1, i2, i3)
 case (select)
 2'b00: mux_out = i0;
 2'b01: mux_out = i1;
 2'b10: mux_out = i2;
 2'b11: mux_out = i3;
 endcase
 endmodule

Section 6.6 HDL for Registers and Counters 287

 The above examples presented two descriptions of a universal shift register to illus-

trate the different styles for modeling a digital circuit. A simulation should verify that

the models have the same functionality. In practice, a designer develops only the behav-

ioral model, which is then synthesized. The function of the synthesized circuit can be

compared with the behavioral description from which it was compiled. Eliminating the

need for the designer to develop a structural model produces a huge improvement in

the efficiency of the design process.

 Synchronous Counter

 HDL Example 6.3 presents Binary_Counter_4_Par_Load, a behavioral model of the

synchronous counter with a parallel load from Fig. 6.14 . Count, Load, CLK, and Clear_b

are inputs that determine the operation of the counter according to the function speci-

fied in Table 6.6 . The counter has four data inputs, four data outputs, and a carry output.

The internal data lines (I3, I2, I1, I0) are bundled as Data_in[3: 0] in the behavioral

model. Likewise, the register that holds the bits of the count (A3, A2, A1, A0) is A_
count[3: 0]. It is good practice to have identifiers in the HDL model of a circuit corre-

spond exactly to those in the documentation of the model. That is not always feasible,

however, if the circuit‐level identifiers are those found in a handbook, for they are often

short and cryptic and do not exploit the text that is available with an HDL. The top‐level

block diagram symbol in Fig. 6.14 (a) serves as an interface between the names used in

a circuit diagram and the expressive names that can be used in the HDL model. The

carry output C_out is generated by a combinational circuit and is specified with an assign

statement. C_out = 1 when the count reaches 15 and the counter is in the count state.

Thus, C_out = 1 if Count = 1, Load = 0, and A = 1111; otherwise C_out = 0. The

 always block specifies the operation to be performed in the register, depending on the

values of Clear_b, Load, and Count . A 0 (active‐low signal) at Clear_b resets A to 0.

Otherwise, if Clear_b = 1, one out of three operations is triggered by the positive edge

of the clock. The if, else if, and else statements establish a precedence among the control

signals Clear, Load, and Count corresponding to the specification in Table 6.6 . Clear_b

overrides Load and Count ; Load overrides Count . A synthesis tool will produce the

circuit of Fig. 6.14 (b) from the behavioral model.

 // Behavioral model of D fl ip-fl op
 module D_fl ip_fl op (Q, D, CLK, Clr_b);
 output Q;
 input D, CLK, Clr;
 reg Q;

 always @ (posedge CLK, negedge Clr_b)
 if (!Clr_b) Q <= 1'b0; else Q <= D;
 endmodule

288 Chapter 6 Registers and Counters

 Ripple Counter

 The structural description of a ripple counter is shown in HDL Example 6.4. The first

module instantiates four internally complementing flip‐flops defined in the second mod-

ule as Comp_D_flip_flop (Q, CLK, Reset) . The clock (input CLK) of the first flip‐flop

is connected to the external control signal Count . (Count replaces CLK in the port list

of instance F0 .) The clock input of the second flip‐flop is connected to the output of the

first. (A0 replaces CLK in instance F1 .) Similarly, the clock of each of the other flip‐flops

is connected to the output of the previous flip‐flop. In this way, the flip‐flops are chained

together to create a ripple counter as shown in Fig. 6.8 (b).

 The second module describes a complementing flip‐flop with delay. The circuit of a

complementing flip‐flop is constructed by connecting the complement output to the D

input. A reset input is included with the flip‐flop in order to be able to initialize the

counter; otherwise the simulator would assign the unknown value (x) to the output of

the flip‐flop and produce useless results. The flip‐flop is assigned a delay of two time

units from the time that the clock is applied to the time that the flip‐flop complements

its output. The delay is specified by the statement Q 6 = #2 �Q. Notice that the delay

operator is placed to the right of the nonblocking assignment operator. This form of

delay, called intra‐assignment delay, has the effect of postponing the assignment of the

complemented value of Q to Q . The effect of modeling the delay will be apparent in

the simulation results. This style of modeling might be useful in simulation, but it is to

be avoided when the model is to be synthesized. The results of synthesis depend on the

ASIC cell library that is accessed by the tool, not on any propagation delays that might

appear within the model that is to be synthesized.

 HDL Example 6.3 (Synchronous Counter)

 // Four-bit binary counter with parallel load (V2001, 2005)
 // See Figure 6.14 and Table 6.6
 module Binary_Counter_4_Par_Load (
 output reg [3: 0] A_count, // Data output
 output C_out, // Output carry
 input [3: 0] Data_in, // Data input
 input Count, // Active high to count
 Load, // Active high to load
 CLK, // Positive-edge sensitive
 Clear_b // Active low
);
 assign C_out = Count && (~Load) && (A_count == 4'b1111);
 always @ (posedge CLK, negedge Clear_b)
 if (~Clear_b) A_count <= 4'b0000;
 else if (Load) A_count <= Data_in;
 else if (Count) A_count <= A_count + 1'b1;
 else A_count <= A_count; // redundant statement
 endmodule

Section 6.6 HDL for Registers and Counters 289

 HDL Example 6.4 (Ripple Counter)

 // Ripple counter (See Fig. 6.8 (b))
 'timescale 1ns / 100 ps
 module Ripple_Counter_4bit (A3, A2, A1, A0, Count, Reset);
 output A3, A2, A1, A0;
 input Count, Reset;
 // Instantiate complementing fl ip-fl op
 Comp_D_fl ip_fl op F0 (A0, Count, Reset);
 Comp_D_fl ip_fl op F1 (A1, A0, Reset);
 Comp_D_fl ip_fl op F2 (A2, A1, Reset);
 Comp_D_fl ip_fl op F3 (A3, A2, Reset);
 endmodule
 // Complementing fl ip-fl op with delay
 // Input to D fl ip-fl op = Q'
 module Comp_D_fl ip_fl op (Q, CLK, Reset);
 output Q;
 input CLK, Reset;
 reg Q;
 always @ (negedge CLK, posedge Reset)
 if (Reset) Q <= 1'b0;
 else Q <= #2 ~Q; // intra-assignment delay
 endmodule
 // Stimulus for testing ripple counter
 module t_Ripple_Counter_4bit;
 reg Count;
 reg Reset;
 wire A0, A1, A2, A3;
 // Instantiate ripple counter
 Ripple_Counter_4bit M0 (A3, A2, A1, A0, Count, Reset);
 always
 #5 Count = ~Count;
 initial
 begin
 Count = 1'b0;
 Reset = 1'b1;
 #4 Reset = 1'b0;
 end

 initial #170 $finish;

 endmodule

290 Chapter 6 Registers and Counters

 The test bench module in HDL Example 6.4 provides a stimulus for simulating and

verifying the functionality of the ripple counter. The always statement generates a free‐

running clock with a cycle of 10 time units. The flip‐flops trigger on the negative edge of

the clock, which occurs at t = 10, 20, 30, and every 10 time units thereafter. The waveforms

obtained from this simulation are shown in Fig. 6.19 . The control signal Count goes negative

every 10 ns. A0 is complemented with each negative edge of Count, but is delayed by 2 ns.

Each flip‐flop is complemented when its previous flip‐flop goes from 1 to 0. After t = 80 ns,

all four flip‐flops complement because the counter goes from 0111 to 1000. Each output is

delayed by 2 ns, and because of that, A 3 goes from 0 to 1 at t = 88 ns and from 1 to 0 at

168 ns. Notice how the propagation delays accumulate to the last bit of the counter, result-

ing in very slow counter action. This limits the practical utility of the counter.

70.0 ns 77.0 ns 84.0 ns 91.0 ns 98.0 ns

Reset

Count

A0
A1

A2

A3

t � 168 nst � 88 ns

(b) From 70 to 98 ns

(a) From 0 to 180 ns

0.0 ns 57.0 ns 114.0 ns 171.0 ns

Reset

Count

A0

A1

A2

A3

 FIGURE 6.19
 Simulation output of HDL Example 6.4

Problems 291

 P R O B L E M S

 (Answers to problems marked with * appear at the end of the book. Where appropriate, a logic

design and its related HDL modeling problem are cross-referenced.)

Note: For each problem that requires writing and verifying a Verilog description, a test plan is to

be written to identify which functional features are to be tested during the simulation and how

they will be tested. For example, a reset on the fly could be tested by asserting the reset signal

while the simulated machine is in a state other than the reset state. The test plan is to guide the

development of a test bench that will implement the plan. Simulate the model using the test bench

and verify that the behavior is correct. If synthesis tools and an ASIC cell library or a field pro-

grammable gate array (FPGA) tool suite are available, the Verilog descriptions developed for

Problems 6.34–6.51 can be assigned as synthesis exercises. The gate‐level circuit produced by the

synthesis tools should be simulated and compared to the simulation results for the pre‐synthesis

model .

 In some of the HDL problems, there may be a need to deal with the issue of unused states (see

the discussion of the default case item preceding HDL Example 4.8 in Chapter 4).

 6.1 Include a 2‐input NAND gate in the register of Fig. 6.1 and connect the gate output to the

 C inputs of all the flip‐flops. One input of the NAND gate receives the clock pulses from

the clock generator, and the other input of the NAND gate provides a parallel load control.

Explain the operation of the modified register. Explain why this circuit might have opera-

tional problems.

 6.2 Include a synchronous clear input to the register of Fig. 6.2 . The modified register will have

a parallel load capability and a synchronous clear capability. The register is cleared syn-

chronously when the clock goes through a positive transition and the clear input is equal

to 1. (HDL—see Problem 6.35(a), (b).)

 6.3 What is the difference between serial and parallel transfer? Explain how to convert serial

data to parallel and parallel data to serial. What type of register is needed?

 6.4* The contents of a four‐bit register is initially 0110. The register is shifted six times to the

right with the serial input being 1011100. What is the content of the register after each

shift?

 6.5 The four‐bit universal shift register shown in Fig. 6.7 is enclosed within one IC component

package. (HDL—see Problem 6.52.)

 (a) Draw a block diagram of the IC showing all inputs and outputs. Include two pins for

the power supply.

 (b) Draw a block diagram using two of these ICs to produce an eight‐bit universal shift

register.

 6.6 Design a four‐bit shift register with parallel load using D flip‐flops. There are two control

inputs: shift and load . When shift = 1, the content of the register is shifted by one posi-

tion. New data are transferred into the register when load = 1 and shift = 0. If both

control inputs are equal to 0, the content of the register does not change. (HDL—see

Problem 6.35(c), (d).)

 6.7 Draw the logic diagram of a four‐bit register with four D flip‐flops and four 4 × 1 mul-

tiplexers with mode selection inputs s 1 and s 0 . The register operates according to the

following function table. (HDL—see Problem 6.35(e), (f).)

292 Chapter 6 Registers and Counters

 6.8* The serial adder of Fig. 6.6 uses two four‐bit registers. Register A holds the binary number

0101 and register B holds 0111. The carry flip‐flop is initially reset to 0. List the binary

values in register A and the carry flip‐flop after each shift. (HDL—see Problem 6.54).

 6.9 Two ways for implementing a serial adder (A + B) is shown in Section 6.2. It is necessary

to modify the circuits to convert them to serial subtractors (A - B).

 (a) Using the circuit of Fig. 6.5 , show the changes needed to perform A + 2’s complement

of B . (HDL—see Problem 6.35(h).)

 (b) *Using the circuit of Fig. 6.6 , show the changes needed by modifying Table 6.2 from an

adder to a subtractor circuit. (See Problem 4.12). (HDL—see Problem 6.35(i).)

 6.10 Design a serial 2’s complementer with a shift register and a flip‐flop. The binary number

is shifted out from one side and it’s 2’s complement shifted into the other side of the shift

register. (HDL—see Problem 6.35(j).)

 6.11 A binary ripple counter uses flip‐flops that trigger on the positive‐edge of the clock. What

will be the count if

 (a) the normal outputs of the flip‐flops are connected to the clock and

 (b) the complement outputs of the flip‐flops are connected to the clock?

 6.12 Draw the logic diagram of a four‐bit binary ripple countdown counter using

 (a) flip‐flops that trigger on the positive‐edge of the clock and

 (b) flip‐flops that trigger on the negative‐edge of the clock.

 6.13 Show that a BCD ripple counter can be constructed using a four‐bit binary ripple counter

with asynchronous clear and a NAND gate that detects the occurrence of count 1010.

(HDL—see Problem 6.35(k).)

 6.14 How many flip‐flop will be complemented in a 10‐bit binary ripple counter to reach the

next count after the following counts?

 (a) *1001100111

 (b) 1111000111

 (c) 0000001111

 6.15* A flip‐flops has a 3 ns delay from the time the clock edge occurs to the time the output

is complemented. What is the maximum delay in a 10‐bit binary ripple counter that uses

these flip‐flops? What is the maximum frequency at which the counter can operate

reliably?

 6.16* The BCD ripple counter shown in Fig. 6.10 has four flip‐flops and 16 states, of which only

10 are used. Analyze the circuit and determine the next state for each of the other six

unused states. What will happen if a noise signal sends the circuit to one of the unused

states? (HDL—see Problem 6.54.)

 s 1 s 0 Register Operation

 0 0 No change

 1 0 Complement the four outputs

 0 1 Clear register to 0 (synchronous with the clock)

 1 1 Load parallel data

Problems 293

 6.17* Design a four‐bit binary synchronous counter with D flip‐flops.

 6.18 What operation is performed in the up–down counter of Fig. 6.13 when both the up and

down inputs are enabled? Modify the circuit so that when both inputs are equal to 1, the

counter does not change state. (HDL—see Problem 6.35(l).)

 6.19 The flip‐flop input equations for a BCD counter using T flip‐flops are given in Section 6.4.

Obtain the input equations for a BCD counter that uses (a) JK flip‐flops and (b)* D flip‐

flops. Compare the three designs to determine which one is the most efficient.

 6.20 Enclose the binary counter with parallel load of Fig. 6.14 in a block diagram showing, all

inputs and outputs.

 (a) Show the connections of four such blocks to produce a 16‐bit counter with parallel

load.

 (b) Construct a binary counter that counts from 0 through binary 127.

 6.21* The counter of Fig. 6.14 has two control inputs— Load (L) and Count (C)—and a data

input, (I i).

 (a) Derive the flip‐flop input equations for J and K of the first stage in terms of L, C,

and I.
 (b) The logic diagram of the first stage of an equivalent circuit is shown in Fig. P6.21 .

Verify that this circuit is equivalent to the one in (a).

J

K

CLK

Load (L)

Count (C)

Data (I)

 FIGURE P6.21
 6.22 For the circuit of Fig. 6.14 , give three alternatives for a mod‐10 counter (i.e., the count

evolves through a sequence of 12 distinct states).

 (a) Using an AND gate and the load input.

 (b) Using the output carry.

 (c) Using a NAND gate and the asynchronous clear input.

 6.23 Design a timing circuit that provides an output signal that stays on for exactly twelve clock

cycles. A start signal sends the output to the 1 state, and after twelve clock cycles the signal

returns to the 0 state. (HDL—see Problem 6.45.)

 6.24* Design a counter with T flip‐flops that goes through the following binary repeated se-

quence: 0, 1, 3, 7, 6, 4. Show that when binary states 010 and 101 are considered as don’t

care conditions, the counter may not operate properly. Find a way to correct the design.

(HDL—see Problem 6.55.)

 6.25 It is necessary to generate six repeated timing signals T0 through T5 similar to the ones

shown in Fig. 6.17 (c). Design the circuit using (HDL—see Problem 6.46.):

 (a) flip‐flops only.

 (b) a counter and a decoder.

294 Chapter 6 Registers and Counters

 6.26* A digital system has a clock generator that produces pulses at a frequency of 80 MHz.

Design a circuit that provides a clock with a cycle time of 50 ns.

 6.27 Using JK flip‐flops,

 (a) Design a counter with the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6.

(HDL—see Problem 6.50(a), 6.51.).

 (b) Draw the logic diagram of the counter.

 6.28 Using D flip‐flops,

 (a) *Design a counter with the following repeated binary sequence: 0, 1, 2, 4, 6. (HDL—see

Problem 6.50(b).)

 (b) Draw the logic diagram of the counter.

 (c) Design a counter with the following repeated binary sequence: 0, 2, 4, 6, 8.

 (d) Draw the logic diagram of the counter.

 6.29 List the eight unused states in the switch‐tail ring counter of Fig. 6.18 (a). Determine the

next state for each of these states and show that, if the counter finds itself in an invalid

state, it does not return to a valid state. Modify the circuit as recommended in the text and

show that the counter produces the same sequence of states and that the circuit reaches a

valid state from any one of the unused states.

 6.30 Show that a Johnson counter with n flip‐flops produces a sequence of 2 n states. List the

10 states produced with five flip‐flops and the Boolean terms of each of the 10 AND gate

outputs.

 6.31 Write and verify the HDL behavioral and structural descriptions of the four‐bit register

 Fig. 6.1 .

 6.32 (a) Write and verify an HDL behavioral description of a four‐bit register with parallel

load and asynchronous clear.

 (b) Write and verify the HDL structural description of the four‐bit register with parallel

load shown in Fig. 6.2 . Use a 2 * 1 multiplexer for the flip‐flop inputs. Include an

asynchronous clear input.

 (c) Verify both descriptions, using a test bench.

 6.33 The following stimulus program is used to simulate the binary counter with parallel load

described in HDL Example 6.3. Draw waveforms showing the output of the counter and

the carry output from t = 0 to t = 155 ns.

 // Stimulus for testing the binary counter of Example 6.3
 module testcounter;
 reg Count, Load, CLK, Clr;
 reg [3: 0] IN;
 wire C0;
 wire [3: 0] A;
 counter cnt (Count, Load, IN, CLK, Clr, A, CO);
 always
 #5 CLK = ~CLK;
 initial
 begin
 Clr = 0;
 CLK = 1;
 Load = 0; Count = 1;

Problems 295

 #5 Clr = 1;
 #40 Load = 1; IN = 4'b1001;
 #10 Load = 0;
 #70 Count = 0;
 #20 $finish ;
 end
 endmodule

 6.34* Write and verify the HDL behavioral description of a four‐bit shift register (see Fig. 6.3).

 6.35 Write and verify

 (a) A structural HDL model for the register described in Problem 6.2

 (b) *A behavioral HDL model for the register described in Problem 6.2

 (c) A structural HDL model for the register described in Problem 6.6

 (d) A behavioral HDL model for the register described in Problem 6.6

 (e) A structural HDL model for the register described in Problem 6.7

 (f) A behavioral HDL model for the register described in Problem 6.7

 (g) A behavioral HDL model of the binary counter described in Fig. 6.8 (b)

 (h) A behavioral HDL model of the serial subtractor described in Problem 6.9(a)

 (i) A behavioral HDL model of the serial subtractor described in Problem 6.9(b)

 (j) A behavioral HDL model of the serial 2’s complementer described in Problem 6.10

 (k) A behavioral HDL model of the BCD ripple counter described in Problem 6.13

 (l) A behavioral HDL model of the up–down counter described in Problem 6.18.

 6.36 Write and verify the HDL behavioral and structural descriptions of the four‐bit up–down

counter whose logic diagram is described by Fig. 6.13 , Table 6.5 , and Table 6.6 .

 6.37 Write and verify a behavioral description of the counter described in Problem 6.24.

 (a) *Using an if … else statement

 (b) Using a case statement

 (c) A finite state machine.

 6.38 Write and verify the HDL behavioral description of a four‐bit up–down counter with

parallel load using the following control inputs:

 (a) *The counter has three control inputs for the three operations: Up, Down, and Load .

The order of precedence is: Load, Up, and Down .

 (b) The counter has two selection inputs to specify four operations: Load, Up, Down, and

no change.

 6.39 Write and verify HDL behavioral and structural descriptions of the counter of Fig. 6.16 .

 6.40 Write and verify the HDL description of an eight‐bit ring‐counter similar to the one shown

in Fig. 6.17 (a).

 6.41 Write and verify the HDL description of a four‐bit switch‐tail ring (Johnson) counter

(Fig. 6.18 a).

 6.42* The comment with the last clause of the if statement in Binary_Counter _4_ Par_Load in

HDL Example 6.3 notes that the statement is redundant. Explain why this statement can

be removed without changing the behavior implemented by the description.

 6.43 The scheme shown in Fig. 6.4 gates the clock to control the serial transfer of data from shift

register A to shift register B. Using multiplexers at the input of each cell of the shift registers,

develop a structural model of an alternative circuit that does not alter the clock path. The

296 Chapter 6 Registers and Counters

top level of the design hierarchy is to instantiate the shift registers. The module describing

the shift registers is to have instantiations of flip‐flops and muxes. Describe the mux and

flip‐flop modules with behavioral models. Be sure to consider the need to reset the machine.

Develop a test bench to simulate the circuit and demonstrate the transfer of data.

 6.44 Modify the design of the serial adder shown in Fig. 6.5 by removing the gated clock to the D

flip‐flop and supplying the clock signal to it directly. Augment the D flip‐flop with a mux to

recirculate the contents of the flip‐flop when shifting is suspended and provide the carry out

of the full adder when shifting is active. The shift registers are to incorporate this feature also,

rather than use a gated clock. The top‐level of the design is to instantiate modules using

behavioral models for the shift registers, full adder, D flip‐flop, and mux. Assume asynchro-

nous reset. Develop a test bench to simulate the circuit and demonstrate the transfer of data.

 6.45* Write and verify a behavioral description of a finite state machine to implement the coun-

ter described in Problem 6.24.

 6.46 Problem 6.25 specifies an implementation of a circuit to generate timing signals using

 (a) Only flip‐flops.

 (b) A counter and a decoder.

 As an alternative, write a behavioral description (without consideration of the actual hard-

ware) of a state machine whose output generates the timing signals T 0 through T 5 .

 6.47 Write a behavioral description of the circuit shown in Fig. P6.47 and verify that the circuit’s

output is asserted if successive samples of the input have an odd number of 1s.

QD

CLK

P_oddD_in

CLK

reset

 FIGURE P6.47
Circuit for Problem 6.47

 6.48 Write and verify a behavioral description of the counter shown in Fig. P6.48 (a); repeat for

the counter in Fig. P6.48(b).

 6.49 Write a test plan for verifying the functionality of the universal shift register described in

HDL Example 6.1. Using the test plan, simulate the model given in HDL Example 6.1.

 6.50 Write and verify a behavioral model of the counter described in

 (a) Problem 6.27

 (b) Problem 6.28

 6.51 Without requiring a state machine, and using a shift register and additional logic, write and

verify a model of an alternative to the sequence detector described in Fig. 5.27. Compare

the implementations.

 6.52 Write a Verilog structural model of the universal shift register in Fig. 6.7 . Verify all modes

of its operation.

Problems 297

 6.53 Verify that the serial adder in Fig. 6.5 operates as an accumulator when words are shifted

into the addend register repeatedly.

 6.54 Write and verify a structural model of the serial adder in Fig. 6.6 .

 6.55 Write and verify a structural model of the BCD ripple counter in Fig. 6.10 .

 6.56 Write and verify a structural model of the synchronous binary counter in Fig. 6.12 .

 6.57 Write and verify a structural model of the up–down counter in Fig. 6.13 .

 6.58 Write and verify all modes of operation of

 (a) A structural model of the binary counter in Fig. 6.14

 (b) A behavioral model of the binary counter in Fig. 6.14 .

 6.59 Write and verify

 (a) A structural model of the switch‐tail ring counter in Fig. 6.18 (a)

 (b) A behavioral model of the switch‐tail ringer counter in Fig. 6.18 (a)

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1

0 00 0 0 0 1

0 0 00 0 0 1

0 0 0 00 0 1

0 0 0 0 00 1

0 00 0 0 01

0

0

0

0

0

0

0

t

0 00 0 1

0 0 01 0

0 0 0 0 00 10

0 0 0

0 0 0 0 00 10

0 00

0 0 0 0 00 10

001 0 0 00 0

t

(a) (b)

00000001

00000010

000001

00 00001

000 0001

0000 001

00000 01

00 0000 1

0

0

0

0

0

0

0

count [7: 0] count [7: 0]

00 001

000 10

00000 01 0

000

00000 01 0

00 0

00000 01 0

0 0 1000 00

 FIGURE P6.48
Circuit for Problem 6.48

298 Chapter 6 Registers and Counters

 R E F E R E N C E S

 1. M ano, M. M. and C. R. Kime . 2007. Logic and Computer Design Fundamentals, 4th ed. Upper

Saddle River, NJ: Prentice Hall.

 2. N elson V. P., H. T. Nagle, J. D. Irwin, and B. D. Carroll . 1995. Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

 3. H ayes, J. P. 1993. Introduction to Digital Logic Design. Reading, MA: Addison‐Wesley.

 4. W akerly, J. F. 2000. Digital Design: Principles and Practices, 3rd ed. Upper Saddle River,

NJ: Prentice Hall.

 5. D ietmeyer, D. L. 1988. Logic Design of Digital Systems, 3rd ed. Boston: Allyn Bacon.

 6. G ajski, D. D. 1997. Principles of Digital Design. Upper Saddle River, NJ: Prentice Hall.

 7. R oth, C. H. 2009. Fundamentals of Logic Design, 6th ed. St. Paul: West.

 8. K atz, R. H. 1994. Contemporary Logic Design. Upper Saddle River, NJ: Prentice Hall.

 9. C iletti, M. D. 1999. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL. Upper

Saddle River, NJ: Prentice Hall.

 10. B hasker, J. 1997. A Verilog HDL Primer. Allentown, PA: Star Galaxy Press.

 11. T homas, D. E. and P. R. Moorby. 2002. The VeriLog Hardware Description Language, 5th

ed. Boston: Kluwer Academic Publishers.

 12. B hasker, J. 1998. Verilog HDL Synthesis. Allentown, PA: Star Galaxy Press.

 13. P alnitkar, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View,

CA: SunSoft Press (A Prentice Hall Title).

 14. C iletti, M. D. 2010. Advanced Digital Design with the Verilog HDL, 2e. Upper Saddle

River, NJ: Prentice Hall.

 15. C iletti, M. D. 2004. Starter’s Guide to Verilog 2001. Upper Saddle River, NJ: Prentice Hall.

 WEB SEARCH TOP ICS

 BCD counter

 Johnson counter

 Ring counter

 Sequence detector

 Synchronous counter

 Switch‐tail ring counter

 Up–down counter

299

 Chapter 7

 Memory and Programmable Logic

 7 . 1 I N T R O D U C T I O N

 A memory unit is a device to which binary information is transferred for storage and from

which information is retrieved when needed for processing. When data processing takes

place, information from memory is transferred to selected registers in the processing unit.

Intermediate and final results obtained in the processing unit are transferred back to be

stored in memory. Binary information received from an input device is stored in memory,

and information transferred to an output device is taken from memory. A memory unit

is a collection of cells capable of storing a large quantity of binary information.

 There are two types of memories that are used in digital systems: random‐access
memory (RAM) and read‐only memory (ROM). RAM stores new information for later

use. The process of storing new information into memory is referred to as a memory

 write operation. The process of transferring the stored information out of memory is

referred to as a memory read operation. RAM can perform both write and read opera-

tions. ROM can perform only the read operation. This means that suitable binary infor-

mation is already stored inside memory and can be retrieved or read at any time.

However, that information cannot be altered by writing.

 ROM is a programmable logic device (PLD). The binary information that is stored

within such a device is specified in some fashion and then embedded within the hard-

ware in a process is referred to as programming the device. The word “programming”

here refers to a hardware procedure which specifies the bits that are inserted into the

hardware configuration of the device.

 ROM is one example of a PLD. Other such units are the programmable logic array

(PLA), programmable array logic (PAL), and the field‐programmable gate array (FPGA).

A PLD is an integrated circuit with internal logic gates connected through electronic

300 Chapter 7 Memory and Programmable Logic

paths that behave similarly to fuses. In the original state of the device, all the fuses are

intact. Programming the device involves blowing those fuses along the paths that must

be removed in order to obtain the particular configuration of the desired logic function.

In this chapter, we introduce the configuration of PLDs and indicate procedures for their

use in the design of digital systems. We also present CMOS FPGAs, which are configured

by downloading a stream of bits into the device to configure transmission gates to estab-

lish the internal connectivity required by a specified logic function (combinational or

sequential).

 A typical PLD may have hundreds to millions of gates interconnected through hun-

dreds to thousands of internal paths. In order to show the internal logic diagram of such

a device in a concise form, it is necessary to employ a special gate symbology applicable

to array logic. Figure 7.1 shows the conventional and array logic symbols for a multiple‐

input OR gate. Instead of having multiple input lines into the gate, we draw a single line

entering the gate. The input lines are drawn perpendicular to this single line and are

connected to the gate through internal fuses. In a similar fashion, we can draw the array

logic for an AND gate. This type of graphical representation for the inputs of gates will

be used throughout the chapter in array logic diagrams.

 7 . 2 R A N D O M - A C C E S S M E M O RY

 A memory unit is a collection of storage cells, together with associated circuits needed

to transfer information into and out of a device. The architecture of memory is such that

information can be selectively retrieved from any of its internal locations. The time it

takes to transfer information to or from any desired random location is always the

same—hence the name random‐access memory, abbreviated RAM. In contrast, the time

required to retrieve information that is stored on magnetic tape depends on the location

of the data.

 A memory unit stores binary information in groups of bits called words . A word in

memory is an entity of bits that move in and out of storage as a unit. A memory word

is a group of 1’s and 0’s and may represent a number, an instruction, one or more

alphanumeric characters, or any other binary‐coded information. A group of 8 bits is

called a byte . Most computer memories use words that are multiples of 8 bits in length.

Thus, a 16‐bit word contains two bytes, and a 32‐bit word is made up of four bytes. The

capacity of a memory unit is usually stated as the total number of bytes that the unit

can store.

(a) Conventional symbol (b) Array logic symbol

 FIGURE 7.1
 Conventional and array logic diagrams for OR gate

Section 7.2 Random-Access Memory 301

 Communication between memory and its environment is achieved through data input

and output lines, address selection lines, and control lines that specify the direction of

transfer. A block diagram of a memory unit is shown in Fig. 7.2 . The n data input lines

provide the information to be stored in memory, and the n data output lines supply the

information coming out of memory. The k address lines specify the particular word

chosen among the many available. The two control inputs specify the direction of trans-

fer desired: The Write input causes binary data to be transferred into the memory, and

the Read input causes binary data to be transferred out of memory.

 The memory unit is specified by the number of words it contains and the number of

bits in each word. The address lines select one particular word. Each word in memory

is assigned an identification number, called an address, starting from 0 up to 2k - 1,

where k is the number of address lines. The selection of a specific word inside memory

is done by applying the k ‐bit address to the address lines. An internal decoder accepts

this address and opens the paths needed to select the word specified. Memories vary

greatly in size and may range from 1,024 words, requiring an address of 10 bits, to 232

words, requiring 32 address bits. It is customary to refer to the number of words (or

bytes) in memory with one of the letters K (kilo), M (mega), and G (giga). K is equal to

 210, M is equal to 220, and G is equal to 230. Thus, 64K = 216, 2M = 221, and 4G = 232.

 Consider, for example, a memory unit with a capacity of 1K words of 16 bits each.

Since 1K = 1,024 = 210 and 16 bits constitute two bytes, we can say that the memory

can accommodate 2,048 = 2K bytes . Figure 7.3 shows possible contents of the first

three and the last three words of this memory. Each word contains 16 bits that can be

divided into two bytes. The words are recognized by their decimal address from 0 to

1,023. The equivalent binary address consists of 10 bits. The first address is specified with

ten 0’s; the last address is specified with ten 1’s, because 1,023 in binary is equal to

1111111111. A word in memory is selected by its binary address. When a word is read or

written, the memory operates on all 16 bits as a single unit.

 The 1K * 16 memory of Fig. 7.3 has 10 bits in the address and 16 bits in each word.

As another example, a 64K * 10 memory will have 16 bits in the address (since

 64K = 216) and each word will consist of 10 bits. The number of address bits needed in

Memory unit
2k words

n bit per word

k address lines

Read

Write

n data input lines

n data output lines

 FIGURE 7.2
 Block diagram of a memory unit

302 Chapter 7 Memory and Programmable Logic

a memory is dependent on the total number of words that can be stored in the memory

and is independent of the number of bits in each word. The number of bits in the address

is determined from the relationship 2k Ú m, where m is the total number of words and

 k is the number of address bits needed to satisfy the relationship.

 Write and Read Operations

 The two operations that RAM can perform are the write and read operations. As alluded

to earlier, the write signal specifies a transfer‐in operation and the read signal specifies

a transfer‐out operation. On accepting one of these control signals, the internal circuits

inside the memory provide the desired operation.

 The steps that must be taken for the purpose of transferring a new word to be stored

into memory are as follows:

 1. Apply the binary address of the desired word to the address lines.

 2. Apply the data bits that must be stored in memory to the data input lines.

 3. Activate the write input.

 The memory unit will then take the bits from the input data lines and store them in the

word specified by the address lines.

 The steps that must be taken for the purpose of transferring a stored word out of

memory are as follows:

 1. Apply the binary address of the desired word to the address lines.

 2. Activate the read input.

Memory content

10110101010111010000000000

10101011100010010000000001

00001101010001100000000010

0

1

2

1111111101

1111111110

1111111111

Memory address

Binary Decimal

1021

1022

1023

1001110100010100

0000110100011110

1101111000100101

•
•
•
•

•
•
•
•

 FIGURE 7.3
 Contents of a 1024 * 16 memory

Section 7.2 Random-Access Memory 303

 The memory unit will then take the bits from the word that has been selected by the

address and apply them to the output data lines. The contents of the selected word do

not change after the read operation, i.e., the word operation is nondestructive.

 Commercial memory components available in integrated‐circuit chips sometimes

provide the two control inputs for reading and writing in a somewhat different configu-

ration. Instead of having separate read and write inputs to control the two operations,

most integrated circuits provide two other control inputs: One input selects the unit and

the other determines the operation. The memory operations that result from these

 control inputs are specified in Table 7.1 .

 The memory enable (sometimes called the chip select) is used to enable the particu-

lar memory chip in a multichip implementation of a large memory. When the memory

enable is inactive, the memory chip is not selected and no operation is performed. When

the memory enable input is active, the read/write input determines the operation to be

performed.

 Memory Description in HDL

 Memory is modeled in the Verilog hardware description language (HDL) by an array

of registers. It is declared with a reg keyword, using a two‐dimensional array. The first

number in the array specifies the number of bits in a word (the word length) and the

second gives the number of words in memory (memory depth). For example, a memory

of 1,024 words with 16 bits per word is declared as

 reg [15: 0] memword [0: 1023];

 This statement describes a two‐dimensional array of 1,024 registers, each containing 16

bits. The second array range in the declaration of memword specifies the total number

of words in memory and is equivalent to the address of the memory. For example,

 memword[512] refers to the 16‐bit memory word at address 512.

 The operation of a memory unit is illustrated in HDL Example 7.1. The memory has

64 words of four bits each. There are two control inputs: Enable and ReadWrite . The

 DataIn and DataOut lines have four bits each. The input Address must have six bits

(since 26 = 64). The memory is declared as a two‐dimensional array of registers, with

 Mem used as an identifier that can be referenced with an index to access any of the

64 words. A memory operation requires that the Enable input be active. The ReadWrite

input determines the type of operation. If ReadWrite is 1, the memory performs a read

operation symbolized by the statement

 Table 7.1
 Control Inputs to Memory Chip

 Memory Enable Read/Write Memory Operation

 0 X None

 1 0 Write to selected word

 1 1 Read from selected word

304 Chapter 7 Memory and Programmable Logic

 DataOut d Mem [Address];

 Execution of this statement causes a transfer of four bits from the selected memory word

specified by Address onto the DataOut lines. If ReadWrite is 0, the memory performs a

write operation symbolized by the statement

 Mem [Address] d DataIn;

 Execution of this statement causes a transfer from the four‐bit DataIn lines into the

memory word selected by Address . When Enable is equal to 0, the memory is disabled

and the outputs are assumed to be in a high‐impedance state, indicated by the symbol z .

Thus, the memory has three‐state outputs.

 HDL Example 7.1

 // Read and write operations of memory
 // Memory size is 64 words of four bits each.

 module memory (Enable, ReadWrite, Address, DataIn, DataOut);
 input Enable, ReadWrite;
 input [3: 0] DataIn;
 input [5: 0] Address;
 output [3: 0] DataOut;
 reg [3: 0] DataOut;
 reg [3: 0] Mem [0: 63]; // 64 x 4 memory
 always @ (Enable or ReadWrite)
 if (Enable)
 if (ReadWrite) DataOut = Mem [Address]; // Read
 else Mem [Address] = DataIn; // Write
 else DataOut = 4'bz; // High impedance state
 endmodule

 Timing Waveforms

 The operation of the memory unit is controlled by an external device such as a central

processing unit (CPU). The CPU is usually synchronized by its own clock. The memory,

however, does not employ an internal clock. Instead, its read and write operations are

specified by control inputs. The access time of memory is the time required to select a

word and read it. The cycle time of memory is the time required to complete a write

operation. The CPU must provide the memory control signals in such a way as to syn-

chronize its internal clocked operations with the read and write operations of memory.

This means that the access time and cycle time of the memory must be within a time

equal to a fixed number of CPU clock cycles.

 Suppose as an example that a CPU operates with a clock frequency of 50 MHz, giv-

ing a period of 20 ns for one clock cycle. Suppose also that the CPU communicates with

a memory whose access time and cycle time do not exceed 50 ns. This means that the

Section 7.2 Random-Access Memory 305

write cycle terminates the storage of the selected word within a 50‐ns interval and that

the read cycle provides the output data of the selected word within 50 ns or less. (The

two numbers are not always the same.) Since the period of the CPU cycle is 20 ns, it will

be necessary to devote at least two‐and‐a‐half, and possibly three, clock cycles for each

memory request.

 The memory timing shown in Fig. 7.4 is for a CPU with a 50‐MHz clock and a memory

with 50 ns maximum cycle time. The write cycle in part (a) shows three 20‐ns cycles: T 1,

20 nsec

T1 T1T2 T3

Address valid

Data valid

(a) Write cycle

Clock

Memory
address

Memory
enable

Read/
Write

Data
input

50 nsec

T1 T1T2 T3

Address valid

Data valid

(b) Read cycle

Clock

Memory
address

Memory
enable

Read/
Write

Data
output

Initiate writing

Initiate read

Latched

 FIGURE 7.4
 Memory cycle timing waveforms

306 Chapter 7 Memory and Programmable Logic

 T 2, and T 3. For a write operation, the CPU must provide the address and input data to

the memory. This is done at the beginning of T 1. (The two lines that cross each other in

the address and data waveforms designate a possible change in value of the multiple

lines.) The memory enable and the read/write signals must be activated after the signals

in the address lines are stable in order to avoid destroying data in other memory words.

The memory enable signal switches to the high level and the read/write signal switches

to the low level to indicate a write operation. The two control signals must stay active

for at least 50 ns. The address and data signals must remain stable for a short time after

the control signals are deactivated. At the completion of the third clock cycle, the mem-

ory write operation is completed and the CPU can access the memory again with the

next T 1 cycle.

 The read cycle shown in Fig. 7.4 (b) has an address for the memory provided by the

CPU. The memory‐enable and read/write signals must be in their high level for a read

operation. The memory places the data of the word selected by the address into the out-

put data lines within a 50‐ns interval (or less) from the time that the memory enable is

activated. The CPU can transfer the data into one of its internal registers during the

negative transition of T 3. The next T 1 cycle is available for another memory request.

 Types of Memories

 The mode of access of a memory system is determined by the type of components used.

In a random‐access memory, the word locations may be thought of as being separated

in space, each word occupying one particular location. In a sequential‐access memory,

the information stored in some medium is not immediately accessible, but is available

only at certain intervals of time. A magnetic disk or tape unit is of this type. Each

memory location passes the read and write heads in turn, but information is read out

only when the requested word has been reached. In a random‐access memory, the access

time is always the same regardless of the particular location of the word. In a sequential‐

access memory, the time it takes to access a word depends on the position of the word

with respect to the position of the read head; therefore, the access time is variable.

 Integrated circuit RAM units are available in two operating modes: static and

 dynamic . Static RAM (SRAM) consists essentially of internal latches that store the

binary information. The stored information remains valid as long as power is applied to

the unit. Dynamic RAM (DRAM) stores the binary information in the form of electric

charges on capacitors provided inside the chip by MOS transistors. The stored charge

on the capacitors tends to discharge with time, and the capacitors must be periodically

recharged by refreshing the dynamic memory. Refreshing is done by cycling through the

words every few milliseconds to restore the decaying charge. DRAM offers reduced

power consumption and larger storage capacity in a single memory chip. SRAM is

easier to use and has shorter read and write cycles.

 Memory units that lose stored information when power is turned off are said to be

 volatile . CMOS integrated circuit RAMs, both static and dynamic, are of this category, since

the binary cells need external power to maintain the stored information. In contrast, a

nonvolatile memory, such as magnetic disk, retains its stored information after the removal

Section 7.3 Memory Decoding 307

of power. This type of memory is able to retain information because the data stored on

magnetic components are represented by the direction of magnetization, which is retained

after power is turned off. ROM is another nonvolatile memory. A nonvolatile memory

enables digital computers to store programs that will be needed again after the computer

is turned on. Programs and data that cannot be altered are stored in ROM, while other

large programs are maintained on magnetic disks. The latter programs are transferred into

the computer RAM as needed. Before the power is turned off, the binary information from

the computer RAM is transferred to the disk so that the information will be retained.

 7 . 3 M E M O RY D E C O D I N G

 In addition to requiring storage components in a memory unit, there is a need for decod-

ing circuits to select the memory word specified by the input address. In this section, we

present the internal construction of a RAM and demonstrate the operation of the

decoder. To be able to include the entire memory in one diagram, the memory unit

presented here has a small capacity of 16 bits, arranged in four words of 4 bits each. An

example of a two‐dimensional coincident decoding arrangement is presented to show a

more efficient decoding scheme that is used in large memories. We then give an example

of address multiplexing commonly used in DRAM integrated circuits.

 Internal Construction

 The internal construction of a RAM of m words and n bits per word consists of m * n

binary storage cells and associated decoding circuits for selecting individual words. The

binary storage cell is the basic building block of a memory unit. The equivalent logic of

a binary cell that stores one bit of information is shown in Fig. 7.5 . The storage part of

the cell is modeled by an SR latch with associated gates to form a D latch. Actually, the

BC

Select

OutputInput

Read/Write

Read/Write

S

R

Select

Input
Output

(a) Logic diagram (b) Block diagram

 FIGURE 7.5
 Memory cell

308 Chapter 7 Memory and Programmable Logic

cell is an electronic circuit with four to six transistors. Nevertheless, it is possible and

convenient to model it in terms of logic symbols. A binary storage cell must be very small

in order to be able to pack as many cells as possible in the small area available in the

integrated circuit chip. The binary cell stores one bit in its internal latch. The select input

enables the cell for reading or writing, and the read/write input determines the operation

of the cell when it is selected. A 1 in the read/write input provides the read operation by

forming a path from the latch to the output terminal. A 0 in the read/write input provides

the write operation by forming a path from the input terminal to the latch.

 The logical construction of a small RAM is shown in Fig. 7.6 . This RAM consists of

four words of four bits each and has a total of 16 binary cells. The small blocks labeled

BC represent the binary cell with its three inputs and one output, as specified in

 Fig. 7.5 (b). A memory with four words needs two address lines. The two address inputs

go through a 2 * 4 decoder to select one of the four words. The decoder is enabled with

BC BC BC BC

BC BC BC BC

BC BC BC BC

BC BC BC BC

Output data

Input data

Address
inputs

Memory
enable

Read/Write

Word 0

Word 1

Word 2

Word 3

2 � 4
decoder

EN

 FIGURE 7.6
 Diagram of a 4 * 4 RAM

Section 7.3 Memory Decoding 309

the memory‐enable input. When the memory enable is 0, all outputs of the decoder are

0 and none of the memory words are selected. With the memory select at 1, one of the

four words is selected, dictated by the value in the two address lines. Once a word has

been selected, the read/write input determines the operation. During the read opera-

tion, the four bits of the selected word go through OR gates to the output terminals.

(Note that the OR gates are drawn according to the array logic established in Fig. 7.1 .)

During the write operation, the data available in the input lines are transferred into the

four binary cells of the selected word. The binary cells that are not selected are disabled,

and their previous binary values remain unchanged. When the memory select input that

goes into the decoder is equal to 0, none of the words are selected and the contents of

all cells remain unchanged regardless of the value of the read/write input.

 Commercial RAMs may have a capacity of thousands of words, and each word may

range from 1 to 64 bits. The logical construction of a large‐capacity memory would be a

direct extension of the configuration shown here. A memory with 2k words of n bits per

word requires k address lines that go into a k * 2k decoder. Each one of the decoder

outputs selects one word of n bits for reading or writing.

 Coincident Decoding

 A decoder with k inputs and 2k outputs requires 2k AND gates with k inputs per gate.

The total number of gates and the number of inputs per gate can be reduced by

employing two decoders in a two‐dimensional selection scheme. The basic idea in

two‐dimensional decoding is to arrange the memory cells in an array that is close as

possible to square. In this configuration, two k /2‐input decoders are used instead of

one k ‐input decoder. One decoder performs the row selection and the other the col-

umn selection in a two‐dimensional matrix configuration.

 The two‐dimensional selection pattern is demonstrated in Fig. 7.7 for a 1K‐word

memory. Instead of using a single 10 * 1,024 decoder, we use two 5 * 32 decoders.

With the single decoder, we would need 1,024 AND gates with 10 inputs in each. In the

two‐decoder case, we need 64 AND gates with 5 inputs in each. The five most significant

bits of the address go to input X and the five least significant bits go to input Y. Each

word within the memory array is selected by the coincidence of one X line and one Y

line. Thus, each word in memory is selected by the coincidence between 1 of 32 rows and

1 of 32 columns, for a total of 1,024 words. Note that each intersection represents a word

that may have any number of bits.

 As an example, consider the word whose address is 404. The 10‐bit binary equivalent

of 404 is 01100 10100. This makes X = 01100 (binary 12) and Y = 10100 (binary 20).

The n ‐bit word that is selected lies in the X decoder output number 12 and the Y decoder

output number 20. All the bits of the word are selected for reading or writing.

 Address Multiplexing

 The SRAM memory cell modeled in Fig. 7.5 typically contains six transistors. In order to

build memories with higher density, it is necessary to reduce the number of transistors in

a cell. The DRAM cell contains a single MOS transistor and a capacitor. The charge stored

310 Chapter 7 Memory and Programmable Logic

on the capacitor discharges with time, and the memory cells must be periodically recharged

by refreshing the memory. Because of their simple cell structure, DRAMs typically have

four times the density of SRAMs. This allows four times as much memory capacity to be

placed on a given size of chip. The cost per bit of DRAM storage is three to four times

less than that of SRAM storage. A further cost savings is realized because of the lower

power requirement of DRAM cells. These advantages make DRAM the preferred tech-

nology for large memories in personal digital computers. DRAM chips are available in

capacities from 64K to 256M bits. Most DRAMs have a 1‐bit word size, so several chips

have to be combined to produce a larger word size.

 Because of their large capacity, the address decoding of DRAMs is arranged in a

two‐dimensional array, and larger memories often have multiple arrays. To reduce the

number of pins in the IC package, designers utilize address multiplexing whereby one

set of address input pins accommodates the address components. In a two‐dimensional

array, the address is applied in two parts at different times, with the row address first and

the column address second. Since the same set of pins is used for both parts of the

address, the size of the package is decreased significantly.

 We will use a 64K‐word memory to illustrate the address‐multiplexing idea.

A diagram of the decoding configuration is shown in Fig. 7.8 . The memory consists of

5 � 32 decoder

5 � 32
 decoderX

Y

0 1 2 20 31.

binary address
01100 10100

X Y

0

1

2

12

31

.

.

.

.

.

.

 FIGURE 7.7
 Two‐dimensional decoding structure for a 1K‐word memory

Section 7.3 Memory Decoding 311

a two‐dimensional array of cells arranged into 256 rows by 256 columns, for a total of

 28 * 28 = 216 = 64K words. There is a single data input line, a single data output line,

and a read/write control, as well as an eight‐bit address input and two address strobes,
the latter included for enabling the row and column address into their respective regis-

ters. The row address strobe (RAS) enables the eight‐bit row register, and the column

address strobe (CAS) enables the eight‐bit column register. The bar on top of the name

of the strobe symbol indicates that the registers are enabled on the zero level of the

signal.

 The 16‐bit address is applied to the DRAM in two steps using RAS and CAS. Initially,

both strobes are in the 1 state. The 8‐bit row address is applied to the address inputs and

RAS is changed to 0. This loads the row address into the row address register. RAS also

enables the row decoder so that it can decode the row address and select one row of the

array. After a time equivalent to the settling time of the row selection, RAS goes back

to the 1 level. The 8‐bit column address is then applied to the address inputs, and CAS

is driven to the 0 state. This transfers the column address into the column register and

Data
in

Data
out

8-bit column
register

8-bit
 row

register

8 � 256
decoder

8 � 256
decoder Read/Write

256 � 256
memory
cell array

CAS

RAS

8-bit
address

 FIGURE 7.8
 Address multiplexing for a 64K DRAM

312 Chapter 7 Memory and Programmable Logic

enables the column decoder. Now the two parts of the address are in their respective

registers, the decoders have decoded them to select the one cell corresponding to the

row and column address, and a read or write operation can be performed on that cell.

CAS must go back to the 1 level before initiating another memory operation.

 7 . 4 E R R O R D E T E C T I O N A N D C O R R E C T I O N

 The dynamic physical interaction of the electrical signals affecting the data path of a

memory unit may cause occasional errors in storing and retrieving the binary informa-

tion. The reliability of a memory unit may be improved by employing error‐detecting

and error‐correcting codes. The most common error detection scheme is the parity bit.

(See Section 3.9.) A parity bit is generated and stored along with the data word in

memory. The parity of the word is checked after reading it from memory. The data word

is accepted if the parity of the bits read out is correct. If the parity checked results in an

inversion, an error is detected, but it cannot be corrected.

 An error‐correcting code generates multiple parity check bits that are stored with

the data word in memory. Each check bit is a parity over a group of bits in the data

word. When the word is read back from memory, the associated parity bits are also

read from memory and compared with a new set of check bits generated from the data

that have been read. If the check bits are correct, no error has occurred. If the check

bits do not match the stored parity, they generate a unique pattern, called a syndrome,

that can be used to identify the bit that is in error. A single error occurs when a bit

changes in value from 1 to 0 or from 0 to 1 during the write or read operation. If the

specific bit in error is identified, then the error can be corrected by complementing

the erroneous bit.

 Hamming Code

 One of the most common error‐correcting codes used in RAMs was devised by R. W.

Hamming. In the Hamming code, k parity bits are added to an n ‐bit data word, forming

a new word of n + k bits. The bit positions are numbered in sequence from 1 to n + k.

Those positions numbered as a power of 2 are reserved for the parity bits. The remain-

ing bits are the data bits. The code can be used with words of any length. Before giving

the general characteristics of the code, we will illustrate its operation with a data word

of eight bits.

 Consider, for example, the 8‐bit data word 11000100. We include 4 parity bits with

the 8‐bit word and arrange the 12 bits as follows:

 Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

 P1 P2 1 P4 1 0 0 P8 0 1 0 0

Section 7.4 Error Detection and Correction 313

 The 4 parity bits, P1, P2, P4, and P8, are in positions 1, 2, 4, and 8, respectively. The 8 bits

of the data word are in the remaining positions. Each parity bit is calculated as follows:

 P1 = XOR of bits (3, 5, 7, 9, 11) = 1 { 1 { 0 { 0 { 0 = 0

 P2 = XOR of bits (3, 5, 7, 10, 11) = 1 { 0 { 0 { 1 { 0 = 0

 P4 = XOR of bits (5, 6, 7, 12) = 1 { 0 { 0 { 0 = 1

 P8 = XOR of bits (9, 10, 11, 12) = 0 { 1 { 0 { 0 = 1

 Remember that the exclusive‐OR operation performs the odd function: It is equal to 1

for an odd number of 1’s in the variables and to 0 for an even number of 1’s. Thus, each

parity bit is set so that the total number of 1’s in the checked positions, including the

parity bit, is always even.

 The 8‐bit data word is stored in memory together with the 4 parity bits as a 12‐bit

composite word. Substituting the 4 P bits in their proper positions, we obtain the 12‐bit

composite word stored in memory:

 0 0 1 1 1 0 0 1 0 1 0 0

 Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

 When the 12 bits are read from memory, they are checked again for errors. The parity is

checked over the same combination of bits, including the parity bit. The 4 check bits are

evaluated as follows:

 C1 = XOR of bits (1, 3, 5, 7, 9, 11)

 C2 = XOR of bits (2, 3, 6, 7, 10, 11)

 C4 = XOR of bits (4, 5, 6, 7, 12)

 C8 = XOR of bits (8, 9, 10, 11, 12)

 A 0 check bit designates even parity over the checked bits and a 1 designates odd parity.

Since the bits were stored with even parity, the result, C = C8C4C2C1 = 0000, indicates

that no error has occurred. However, if C � 0, then the 4‐bit binary number formed by

the check bits gives the position of the erroneous bit. For example, consider the following

three cases:

 Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

 0 0 1 1 1 0 0 1 0 1 0 0 No error

 1 0 1 1 1 0 0 1 0 1 0 0 Error in bit 1

 0 0 1 1 0 0 0 1 0 1 0 0 Error in bit 5

 In the first case, there is no error in the 12‐bit word. In the second case, there is an

error in bit position number 1 because it changed from 0 to 1. The third case shows

314 Chapter 7 Memory and Programmable Logic

an error in bit position 5, with a change from 1 to 0. Evaluating the XOR of the corre-

sponding bits, we determine the 4 check bits to be as follows:

 C8 C4 C2 C1

 For no error: 0 0 0 0

 With error in bit 1: 0 0 0 1

 With error in bit 5: 0 1 0 1

 Thus, for no error, we have C = 0000; with an error in bit 1, we obtain C = 0001; and with

an error in bit 5, we get C = 0101. When the binary number C is not equal to 0000, it gives

the position of the bit in error. The error can be corrected by complementing the corre-

sponding bit. Note that an error can occur in the data word or in one of the parity bits.

 The Hamming code can be used for data words of any length. In general, the Ham-

ming code consists of k check bits and n data bits, for a total of n + k bits. The syndrome

value C consists of k bits and has a range of 2k values between 0 and 2k - 1. One of

these values, usually zero, is used to indicate that no error was detected, leaving 2k - 1

values to indicate which of the n + k bits was in error. Each of these 2k - 1 values can

be used to uniquely describe a bit in error. Therefore, the range of k must be equal to

or greater than n + k, giving the relationship

 2k - 1 Ú n + k

 Solving for n in terms of k, we obtain

 2k - 1 - k Ú n

 This relationship gives a formula for establishing the number of data bits that can be

used in conjunction with k check bits. For example, when k = 3, the number of data bits

that can be used is n … (23 - 1 - 3) = 4. For k = 4, we have 24 - 1 - 4 = 11, giving

 n … 11. The data word may be less than 11 bits, but must have at least 5 bits; otherwise,

only 3 check bits will be needed. This justifies the use of 4 check bits for the 8 data bits

in the previous example. Ranges of n for various values of k are listed in Table 7.2 .

 The grouping of bits for parity generation and checking can be determined from a

list of the binary numbers from 0 through 2k - 1. The least significant bit is a 1 in the

binary numbers 1, 3, 5, 7, and so on. The second significant bit is a 1 in the binary numbers

 Table 7.2
 Range of Data Bits for k Check Bits

 Number of Check Bits, k Range of Data Bits, n

 3 2–4

 4 5–11

 5 12–26

 6 27–57

 7 58–120

Section 7.5 Read‐Only Memory 315

2, 3, 6, 7, and so on. Comparing these numbers with the bit positions used in generating

and checking parity bits in the Hamming code, we note the relationship between the bit

groupings in the code and the position of the 1‐bits in the binary count sequence. Note

that each group of bits starts with a number that is a power of 2: 1, 2, 4, 8, 16, etc. These

numbers are also the position numbers for the parity bits.

 Single‐Error Correction, Double‐Error Detection

 The Hamming code can detect and correct only a single error. By adding another parity

bit to the coded word, the Hamming code can be used to correct a single error and detect

double errors. If we include this additional parity bit, then the previous 12‐bit coded

word becomes 001110010100P13, where P13 is evaluated from the exclusive‐OR of the

other 12 bits. This produces the 13‐bit word 0011100101001 (even parity). When the

13‐bit word is read from memory, the check bits are evaluated, as is the parity P over

the entire 13 bits. If P = 0, the parity is correct (even parity), but if P = 1, then the

parity over the 13 bits is incorrect (odd parity). The following four cases can arise:

 If C = 0 and P = 0, no error occurred.

 If C � 0 and P = 1, a single error occurred that can be corrected.

 If C � 0 and P = 0, a double error occurred that is detected, but that cannot be

corrected.

 If C = 0 and P = 1, an error occurred in the P13 bit.

 This scheme may detect more than two errors, but is not guaranteed to detect all such

errors.

 Integrated circuits use a modified Hamming code to generate and check parity bits

for single‐error correction and double‐error detection. The modified Hamming code

uses a more efficient parity configuration that balances the number of bits used to cal-

culate the XOR operation. A typical integrated circuit that uses an 8‐bit data word and

a 5‐bit check word is IC type 74637. Other integrated circuits are available for data words

of 16 and 32 bits. These circuits can be used in conjunction with a memory unit to correct

a single error or detect double errors during write and read operations.

 7 . 5 R E A D ‐ O N LY M E M O RY

 A read‐only memory (ROM) is essentially a memory device in which permanent binary

information is stored. The binary information must be specified by the designer and is

then embedded in the unit to form the required interconnection pattern. Once the pat-

tern is established, it stays within the unit even when power is turned off and on again.

 A block diagram of a ROM consisting of k inputs and n outputs is shown in Fig. 7.9 .

The inputs provide the address for memory, and the outputs give the data bits of the

stored word that is selected by the address. The number of words in a ROM is deter-

mined from the fact that k address input lines are needed to specify 2k words. Note that

ROM does not have data inputs, because it does not have a write operation. Integrated

316 Chapter 7 Memory and Programmable Logic

circuit ROM chips have one or more enable inputs and sometimes come with three‐state

outputs to facilitate the construction of large arrays of ROM.

 Consider, for example, a 32 * 8 ROM. The unit consists of 32 words of 8 bits each.

There are five input lines that form the binary numbers from 0 through 31 for the

address. Figure 7.10 shows the internal logic construction of this ROM. The five inputs

are decoded into 32 distinct outputs by means of a 5 * 32 decoder. Each output of the

decoder represents a memory address. The 32 outputs of the decoder are connected to

each of the eight OR gates. The diagram shows the array logic convention used in com-

plex circuits. (See Fig. 6.1.) Each OR gate must be considered as having 32 inputs. Each

output of the decoder is connected to one of the inputs of each OR gate. Since each OR

gate has 32 input connections and there are 8 OR gates, the ROM contains 32 * 8 = 256

internal connections. In general, a 2k * n ROM will have an internal k * 2k decoder

and n OR gates. Each OR gate has 2k inputs, which are connected to each of the outputs

of the decoder.

2k � n
ROM

k inputs (address) n outputs (data)

 FIGURE 7.9
 ROM block diagram

5 � 32
decoder

A7

I0

I1

I2

I3

I4

A6 A5 A4 A3 A2 A1 A0

0

1

2

3

28

29

30

31

.

.

.

 FIGURE 7.10
 Internal logic of a 32 : 8 ROM

Section 7.5 Read‐Only Memory 317

 The 256 intersections in Fig. 7.10 are programmable. A programmable connection

between two lines is logically equivalent to a switch that can be altered to be either

closed (meaning that the two lines are connected) or open (meaning that the two

lines are disconnected). The programmable intersection between two lines is some-

times called a crosspoint . Various physical devices are used to implement crosspoint

switches. One of the simplest technologies employs a fuse that normally connects the

two points, but is opened or “blown” by the application of a high‐voltage pulse into

the fuse.

 The internal binary storage of a ROM is specified by a truth table that shows the

word content in each address. For example, the content of a 32 * 8 ROM may be

specified with a truth table similar to the one shown in Table 7.3 . The truth table shows

the five inputs under which are listed all 32 addresses. Each address stores a word of

8 bits, which is listed in the outputs columns. The table shows only the first four and

the last four words in the ROM. The complete table must include the list of all

32 words.

 The hardware procedure that programs the ROM blows fuse links in accordance with

a given truth table. For example, programming the ROM according to the truth table

given by Table 7.3 results in the configuration shown in Fig. 7.11 . Every 0 listed in the

truth table specifies the absence of a connection, and every 1 listed specifies a path that

is obtained by a connection. For example, the table specifies the eight‐bit word 10110010

for permanent storage at address 3. The four 0’s in the word are programmed by blowing

the fuse links between output 3 of the decoder and the inputs of the OR gates associated

with outputs A6, A3, A2, and A0. The four 1’s in the word are marked with a * to denote

a temporary connection, in place of a dot used for a permanent connection in logic

diagrams. When the input of the ROM is 00011, all the outputs of the decoder are 0

except for output 3, which is at logic 1. The signal equivalent to logic 1 at decoder output

3 propagates through the connections to the OR gate outputs of A7, A5, A4, and A1. The

other four outputs remain at 0. The result is that the stored word 10110010 is applied to

the eight data outputs.

 Table 7.3
 ROM Truth Table (Partial)

 Inputs Outputs

 I 4 I 3 I 2 I 1 I 0 A 7 A 6 A 5 A 4 A 3 A 2 A 1 A 0

 0 0 0 0 0 1 0 1 1 0 1 1 0

 0 0 0 0 1 0 0 0 1 1 1 0 1

 0 0 0 1 0 1 1 0 0 0 1 0 1

 0 0 0 1 1 1 0 1 1 0 0 1 0
 f f

 1 1 1 0 0 0 0 0 0 1 0 0 1

 1 1 1 0 1 1 1 1 0 0 0 1 0
 1 1 1 1 0 0 1 0 0 1 0 1 0

 1 1 1 1 1 0 0 1 1 0 0 1 1

318 Chapter 7 Memory and Programmable Logic

 Combinational Circuit Implementation

 In Section 4.9, it was shown that a decoder generates the 2k minterms of the k input

variables. By inserting OR gates to sum the minterms of Boolean functions, we were

able to generate any desired combinational circuit. The ROM is essentially a device that

includes both the decoder and the OR gates within a single device to form a minterm

generator. By choosing connections for those minterms which are included in the func-

tion, the ROM outputs can be programmed to represent the Boolean functions of the

output variables in a combinational circuit.

 The internal operation of a ROM can be interpreted in two ways. The first interpreta-

tion is that of a memory unit that contains a fixed pattern of stored words. The second

interpretation is that of a unit which implements a combinational circuit. From this point

of view, each output terminal is considered separately as the output of a Boolean func-

tion expressed as a sum of minterms. For example, the ROM of Fig. 7.11 may be consid-

ered to be a combinational circuit with eight outputs, each a function of the five input

variables. Output A7 can be expressed in sum of minterms as

 A7(I4, I3, I2, I1, I0) = �(0, 2, 3, c, 29)

 (The three dots represent minterms 4 through 27, which are not specified in the figure.)

A connection marked with * in the figure produces a minterm for the sum. All other

crosspoints are not connected and are not included in the sum.

 In practice, when a combinational circuit is designed by means of a ROM, it is not

necessary to design the logic or to show the internal gate connections inside the unit. All

that the designer has to do is specify the particular ROM by its IC number and provide

the applicable truth table. The truth table gives all the information for programming the

ROM. No internal logic diagram is needed to accompany the truth table.

5 � 32
decoder

A7

I0

I1

I2

I3

I4

A6 A5 A4 A3 A2 A1 A0

0

1

2

3

28

29

30

31

.

.

.

 FIGURE 7.11
 Programming the ROM according to Table 7.3

Section 7.5 Read‐Only Memory 319

 EXAMPLE 7.1

 Design a combinational circuit using a ROM. The circuit accepts a three‐bit number and

outputs a binary number equal to the square of the input number.

 The first step is to derive the truth table of the combinational circuit. In most cases,

this is all that is needed. In other cases, we can use a partial truth table for the ROM by

utilizing certain properties in the output variables. Table 7.4 is the truth table for the

combinational circuit. Three inputs and six outputs are needed to accommodate all

possible binary numbers. We note that output B0 is always equal to input A0, so there

is no need to generate B0 with a ROM, since it is equal to an input variable. Moreover,

output B1 is always 0, so this output is a known constant. We actually need to generate

only four outputs with the ROM; the other two are readily obtained. The minimum size

of ROM needed must have three inputs and four outputs. Three inputs specify eight

words, so the ROM must be of size 8 * 4. The ROM implementation is shown in

 Fig. 7.12 . The three inputs specify eight words of four bits each. The truth table in

 Fig. 7.12 (b) specifies the information needed for programming the ROM. The block

diagram of Fig. 7.12 (a) shows the required connections of the combinational circuit.

A0

B0

B1

B2

B3

B4

B5

A1

A2

(a) Block diagram (b) ROM truth table

0

8 � 4 ROM

A2 A1 A0 B5 B4 B3 B2

0
0

0
0
0

1

0
1

0
0

0

0

0

1

0

1

0
0

1

0

0

0

1

1

0
0

1

0

1

0

1

1

0
0

0

0

1

0

1

0

0
0

0

1

1

1

1

0

0
1

0

0

0

1

1

1

 FIGURE 7.12
 ROM implementation of Example 7.1

■

 Table 7.4
 Truth Table for Circuit of Example 7.1

 Inputs Outputs

 A 2 A 1 A 0 B 5 B 4 B 3 B 2 B 1 B 0 Decimal

 0 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 1 1

 0 1 0 0 0 0 1 0 0 4

 0 1 1 0 0 1 0 0 1 9

 1 0 0 0 1 0 0 0 0 16

 1 0 1 0 1 1 0 0 1 25

 1 1 0 1 0 0 1 0 0 36

 1 1 1 1 1 0 0 0 1 49

320 Chapter 7 Memory and Programmable Logic

 Types of ROMs

 The required paths in a ROM may be programmed in four different ways. The first

is called mask programming and is done by the semiconductor company during the

last fabrication process of the unit. The procedure for fabricating a ROM requires

that the customer fill out the truth table he or she wishes the ROM to satisfy. The

truth table may be submitted in a special form provided by the manufacturer or in

a specified format on a computer output medium. The manufacturer makes the cor-

responding mask for the paths to produce the 1’s and 0’s according to the customer’s

truth table. This procedure is costly because the vendor charges the customer a

special fee for custom masking the particular ROM. For this reason, mask program-

ming is economical only if a large quantity of the same ROM configuration is to be

ordered.

 For small quantities, it is more economical to use a second type of ROM called pro-
grammable read‐only memory, or PROM. When ordered, PROM units contain all the

fuses intact, giving all 1’s in the bits of the stored words. The fuses in the PROM are

blown by the application of a high‐voltage pulse to the device through a special pin.

A blown fuse defines a binary 0 state and an intact fuse gives a binary 1 state. This pro-

cedure allows the user to program the PROM in the laboratory to achieve the desired

relationship between input addresses and stored words. Special instruments called

PROM programmers are available commercially to facilitate the procedure. In any case,

all procedures for programming ROMs are hardware procedures, even though the word

 programming is used.

 The hardware procedure for programming ROMs or PROMs is irreversible, and once

programmed, the fixed pattern is permanent and cannot be altered. Once a bit pattern

has been established, the unit must be discarded if the bit pattern is to be changed. A

third type of ROM is the erasable PROM, or EPROM, which can be restructured to the

initial state even though it has been programmed previously. When the EPROM is

placed under a special ultraviolet light for a given length of time, the shortwave radiation

discharges the internal floating gates that serve as the programmed connections. After

erasure, the EPROM returns to its initial state and can be reprogrammed to a new set

of values.

 The fourth type of ROM is the electrically erasable PROM (EEPROM or E2PROM).

This device is like the EPROM, except that the previously programmed connections can

be erased with an electrical signal instead of ultraviolet light. The advantage is that the

device can be erased without removing it from its socket.

 Flash memory devices are similar to EEPROMs, but have additional built‐in circuitry

to selectively program and erase the device in‐circuit, without the need for a special

programmer. They have widespread application in modern technology in cell phones,

digital cameras, set‐top boxes, digital TV, telecommunications, nonvolatile data storage,

and microcontrollers. Their low consumption of power makes them an attractive storage

medium for laptop and notebook computers. Flash memories incorporate additional

circuitry, too, allowing simultaneous erasing of blocks of memory, for example, of size

16 to 64 K bytes. Like EEPROMs, flash memories are subject to fatigue, typically having

about 105 block erase cycles.

Section 7.6 Programmable Logic Array 321

 Combinational PLDs

 The PROM is a combinational programmable logic device (PLD)—an integrated circuit

with programmable gates divided into an AND array and an OR array to provide an

AND–OR sum‐of‐product implementation. There are three major types of combina-

tional PLDs, differing in the placement of the programmable connections in the AND–

OR array. Figure 7.13 shows the configuration of the three PLDs. The PROM has a fixed

AND array constructed as a decoder and a programmable OR array. The programmable

OR gates implement the Boolean functions in sum‐of‐minterms form. The PAL has a

programmable AND array and a fixed OR array. The AND gates are programmed to

provide the product terms for the Boolean functions, which are logically summed in each

OR gate. The most flexible PLD is the PLA, in which both the AND and OR arrays can

be programmed. The product terms in the AND array may be shared by any OR gate

to provide the required sum‐of‐products implementation. The names PAL and PLA

emerged from different vendors during the development of PLDs. The implementation

of combinational circuits with PROM was demonstrated in this section. The design of

combinational circuits with PLA and PAL is presented in the next two sections.

 7 . 6 P R O G R A M M A B L E L O G I C A R R AY

 The PLA is similar in concept to the PROM, except that the PLA does not provide full

decoding of the variables and does not generate all the minterms. The decoder is

replaced by an array of AND gates that can be programmed to generate any product

Inputs Outputs
Fixed

AND array
(decoder)

programmable
OR array

(a) Programmable read-only memory (PROM)

Inputs Outputsprogrammable
AND array

Fixed
OR array

(b) Programmable array logic (PAL)

Inputs Outputsprogrammable
OR array

programmable
AND array

(c) Programmable logic array (PLA)

 FIGURE 7.13
 Basic configuration of three PLDs

322 Chapter 7 Memory and Programmable Logic

term of the input variables. The product terms are then connected to OR gates to pro-

vide the sum of products for the required Boolean functions.

 The internal logic of a PLA with three inputs and two outputs is shown in Fig. 7.14 .

Such a circuit is too small to be useful commercially, but is presented here to demonstrate

the typical logic configuration of a PLA. The diagram uses the array logic graphic symbols

for complex circuits. Each input goes through a buffer–inverter combination, shown in the

diagram with a composite graphic symbol, that has both the true and complement outputs.

Each input and its complement are connected to the inputs of each AND gate, as indicated

by the intersections between the vertical and horizontal lines. The outputs of the AND

gates are connected to the inputs of each OR gate. The output of the OR gate goes to an

XOR gate, where the other input can be programmed to receive a signal equal to either

logic 1 or logic 0. The output is inverted when the XOR input is connected to 1 (since

 x { 1 = x�). The output does not change when the XOR input is connected to 0 (since

 x { 0 = x). The particular Boolean functions implemented in the PLA of Fig. 7.14 are

 F1 = AB� + AC + A�BC�

 F2 = (AC + BC)�

1

2

3

4

C C�

C

B

B

B� A

A

A�

AB�

AC

BC

A�BC�

0

1

F1

F2

 FIGURE 7.14
 PLA with three inputs, four product terms, and two outputs

Section 7.6 Programmable Logic Array 323

 The product terms generated in each AND gate are listed along the output of the gate

in the diagram. The product term is determined from the inputs whose crosspoints are

connected and marked with a * . The output of an OR gate gives the logical sum of

the selected product terms. The output may be complemented or left in its true form,

depending on the logic being realized.

 The fuse map of a PLA can be specified in a tabular form. For example, the program-

ming table that specifies the PLA of Fig. 7.14 is listed in Table 7.5 . The PLA programming

table consists of three sections. The first section lists the product terms numerically. The

second section specifies the required paths between inputs and AND gates. The third

section specifies the paths between the AND and OR gates. For each output variable,

we may have a T (for true) or C (for complement) for programming the XOR gate. The

product terms listed on the left are not part of the table; they are included for reference

only. For each product term, the inputs are marked with 1, 0, or — (dash). If a variable

in the product term appears in the form in which it is true, the corresponding input vari-

able is marked with a 1. If it appears complemented, the corresponding input variable

is marked with a 0. If the variable is absent from the product term, it is marked with a

dash.
 The paths between the inputs and the AND gates are specified under the column head

“Inputs” in the programming table. A 1 in the input column specifies a connection from

the input variable to the AND gate. A 0 in the input column specifies a connection from

the complement of the variable to the input of the AND gate. A dash specifies a blown

fuse in both the input variable and its complement. It is assumed that an open terminal

in the input of an AND gate behaves like a 1.

 The paths between the AND and OR gates are specified under the column head

“Outputs.” The output variables are marked with 1’s for those product terms which

are included in the function. Each product term that has a 1 in the output column

requires a path from the output of the AND gate to the input of the OR gate. Those

marked with a dash specify a blown fuse. It is assumed that an open terminal in the

input of an OR gate behaves like a 0. Finally, a T (true) output dictates that the other

input of the corresponding XOR gate be connected to 0, and a C (complement)

specifies a connection to 1.

 Table 7.5
 PLA Programming Table

 Outputs
 Inputs (T) (C)

 Product Term A B C F 1 F 2

 AB� 1 1 0 — 1 —

 AC 2 1 — 1 1 1

 BC 3 — 1 1 — 1

 A�BC� 4 0 1 0 1 —

 Note: See text for meanings of dashes.

324 Chapter 7 Memory and Programmable Logic

 The size of a PLA is specified by the number of inputs, the number of product terms,

and the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48

product terms, and eight outputs. For n inputs, k product terms, and m outputs, the inter-

nal logic of the PLA consists of n buffer–inverter gates, k AND gates, m OR gates, and

 m XOR gates. There are 2n * k connections between the inputs and the AND array,

 k * m connections between the AND and OR arrays, and m connections associated

with the XOR gates.

 In designing a digital system with a PLA, there is no need to show the internal con-

nections of the unit as was done in Fig. 7.14 . All that is needed is a PLA programming

table from which the PLA can be programmed to supply the required logic. As with a

ROM, the PLA may be mask programmable or field programmable. With mask pro-

gramming, the customer submits a PLA program table to the manufacturer. This table

is used by the vendor to produce a custom‐made PLA that has the required internal

logic specified by the customer. A second type of PLA that is available is the field‐

programmable logic array, or FPLA, which can be programmed by the user by means

of a commercial hardware programmer unit.

 In implementing a combinational circuit with a PLA, careful investigation must be

undertaken in order to reduce the number of distinct product terms, since a PLA has a

finite number of AND gates. This can be done by simplifying each Boolean function to

a minimum number of terms. The number of literals in a term is not important, since all

the input variables are available anyway. Both the true value and the complement of

each function should be simplified to see which one can be expressed with fewer prod-

uct terms and which one provides product terms that are common to other functions.

 EXAMPLE 7.2

 Implement the following two Boolean functions with a PLA:

 F1(A, B, C) = g(0, 1, 2, 4)

 F2(A, B, C) = g(0, 5, 6, 7)

 The two functions are simplified in the maps of Fig. 7.15 . Both the true value and the

complement of the functions are simplified into sum‐of‐products form. The combination

that gives the minimum number of product terms is

 F1 = (AB + AC + BC)�

 and

 F2 = AB + AC + A�B�C�

 This combination gives four distinct product terms: AB, AC, BC, and A�B�C�. The PLA

programming table for the combination is shown in the figure. Note that output F1 is

the true output, even though a C is marked over it in the table. This is because F1 is

generated with an AND–OR circuit and is available at the output of the OR gate. The

XOR gate complements the function to produce the true F1 output.

Section 7.7 Programmable Array Logic 325

 The combinational circuit used in Example 7.2 is too simple for implementing with

a PLA. It was presented merely for purposes of illustration. A typical PLA has a large

number of inputs and product terms. The simplification of Boolean functions with so

many variables should be carried out by means of computer‐assisted simplification pro-

cedures. The computer‐aided design (CAD) program simplifies each function and its

complement to a minimum number of terms. The program then selects a minimum

number of product terms that cover all functions in the form in which they are true or

in their complemented form. The PLA programming table is then generated and the

required fuse map obtained. The fuse map is applied to an FPLA programmer that goes

through the hardware procedure of blowing the internal fuses in the integrated circuit.

 7 . 7 P R O G R A M M A B L E A R R AY L O G I C

 The PAL is a programmable logic device with a fixed OR array and a programmable

AND array. Because only the AND gates are programmable, the PAL is easier to pro-

gram than, but is not as flexible as, the PLA. Figure 7.16 shows the logic configuration of

a typical PAL with four inputs and four outputs. Each input has a buffer–inverter gate,

and each output is generated by a fixed OR gate. There are four sections in the unit,

each composed of an AND–OR array that is three wide, the term used to indicate that

there are three programmable AND gates in each section and one fixed OR gate. Each

AND gate has 10 programmable input connections, shown in the diagram by 10 vertical

lines intersecting each horizontal line. The horizontal line symbolizes the multiple‐input

configuration of the AND gate. One of the outputs is connected to a buffer–inverter

gate and then fed back into two inputs of the AND gates.

 Commercial PAL devices contain more gates than the one shown in Fig. 7.16 . A typical

PAL integrated circuit may have eight inputs, eight outputs, and eight sections, each con-

sisting of an eight‐wide AND–OR array. The output terminals are sometimes driven by

three‐state buffers or inverters.

 In designing with a PAL, the Boolean functions must be simplified to fit into each

section. Unlike the situation with a PLA, a product term cannot be shared among two

or more OR gates. Therefore, each function can be simplified by itself, without regard

B

C

0

1

00 01 11 10A
BC

A

1
m0 m1 m3 m2

m6m7m5m4

1 0 1

1 0 0 0

B

A

m0 m1 m3 m2

m6m7m5m4

0

1

00 01 11 10A
BC

1 0 0 0

0 1 1 1

C

PLA programming table

Product
term

Inputs

A B C

Outputs
(C) (T)

F1 F2

AB 1 11 1 – 1
AC 2 11 – 1 1
BC 3 1– 1 1 –
A�B�C� 4 –0 0 0 1

 FIGURE 7.15
 Solution to Example 7.2

■

326 Chapter 7 Memory and Programmable Logic

F3

F4

1 2 3 4 5 6 7 8 9 10

AND gates inputs

8

9

10

11

12

F1

F2

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

Product
term

I1

I2

I3

I4

 FIGURE 7.16
 PAL with four inputs, four outputs, and a three‐wide AND–OR structure

Section 7.7 Programmable Array Logic 327

to common product terms. The number of product terms in each section is fixed, and if

the number of terms in the function is too large, it may be necessary to use two sections

to implement one Boolean function.

 As an example of using a PAL in the design of a combinational circuit, consider the

following Boolean functions, given in sum‐of‐minterms form:

 w(A, B, C, D) = g(2, 12, 13)

 x(A, B, C, D) = g(7, 8, 9, 10, 11, 12, 13, 14, 15)

 y(A, B, C, D) = g(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)

 z(A, B, C, D) = g(1, 2, 8, 12, 13)

 Simplifying the four functions to a minimum number of terms results in the following

Boolean functions:

 w = ABC� + A�B�CD�

 x = A + BCD

 y = A�B + CD + B�D�

 z = ABC� + A�B�CD� + AC�D� + A�B�C�D

 = w + AC�D� + A�B�C�D

 Note that the function for z has four product terms. The logical sum of two of these terms

is equal to w . By using w, it is possible to reduce the number of terms for z from four to

three.

 The PAL programming table is similar to the one used for the PLA, except that

only the inputs of the AND gates need to be programmed. Table 7.6 lists the PAL

 Table 7.6
 PAL Programming Table

 AND Inputs

 Product Term A B C D w Outputs

 1 1 1 0 — — w = ABC� + A�B�CD�
 2 0 0 1 0 —

 3 — — — — —

 4 1 — — — — x = A + BCD

 5 — 1 1 1 —

 6 — — — — —

 7 0 1 — — — y = A�B + CD + B�D�
 8 — — 1 1 —

 9 — 0 — 0 —

 10 — — — — 1 z = w + AC�D� + A�B�C�D

 11 1 — 0 0 —

 12 0 0 0 1 —

328 Chapter 7 Memory and Programmable Logic

w

x

y

z

A A� B B� C C� D D� w w�

AND gates inputs

1

2

3

4

5

6

7

8

9

10

11

12

Product
term

A

B

C

D

A A� B� B� C C� D D� w w�

Fuse intact

Fuse blown

All fuses intact
(always � 0)

�

 FIGURE 7.17
 Fuse map for PAL as specified in Table 7.6

Section 7.8 Sequential Programmable Devices 329

programming table for the four Boolean functions. The table is divided into four sec-

tions with three product terms in each, to conform with the PAL of Fig. 7.16 . The first

two sections need only two product terms to implement the Boolean function. The

last section, for output z, needs four product terms. Using the output from w, we can

reduce the function to three terms.
 The fuse map for the PAL as specified in the programming table is shown in Fig. 7.17 .

For each 1 or 0 in the table, we mark the corresponding intersection in the diagram with

the symbol for an intact fuse. For each dash, we mark the diagram with blown fuses in both

the true and complement inputs. If the AND gate is not used, we leave all its input fuses

intact. Since the corresponding input receives both the true value and the complement of

each input variable, we have AA� = 0 and the output of the AND gate is always 0.

 As with all PLDs, the design with PALs is facilitated by using CAD techniques. The

blowing of internal fuses is a hardware procedure done with the help of special elec-

tronic instruments.

 7 . 8 S E Q U E N T I A L P R O G R A M M A B L E D E V I C E S

 Digital systems are designed with flip‐flops and gates. Since the combinational PLD

consists of only gates, it is necessary to include external flip‐flops when they are used in

the design. Sequential programmable devices include both gates and flip‐flops. In this

way, the device can be programmed to perform a variety of sequential‐circuit functions.

There are several types of sequential programmable devices available commercially, and

each device has vendor‐specific variants within each type. The internal logic of these

devices is too complex to be shown here. Therefore, we will describe three major types

without going into their detailed construction:

 1. Sequential (or simple) programmable logic device (SPLD)

 2. Complex programmable logic device (CPLD)

 3. Field‐programmable gate array (FPGA)

 The sequential PLD is sometimes referred to as a simple PLD to differentiate it from

the complex PLD. The SPLD includes flip‐flops, in addition to the AND–OR array,

within the integrated circuit chip. The result is a sequential circuit as shown in Fig. 7.18 .

A PAL or PLA is modified by including a number of flip‐flops connected to form a

register. The circuit outputs can be taken from the OR gates or from the outputs of the

AND–OR array
(PAL or PLA)

Flip-flops

Inputs

Outputs

 FIGURE 7.18
 Sequential programmable logic device

330 Chapter 7 Memory and Programmable Logic

flip‐flops. Additional programmable connections are available to include the flip‐flop

outputs in the product terms formed with the AND array. The flip‐flops may be of the

 D or the JK type.

 The first programmable device developed to support sequential circuit implementation

is the field‐programmable logic sequencer (FPLS). A typical FPLS is organized around a

PLA with several outputs driving flip‐flops. The flip‐flops are flexible in that they can be

programmed to operate as either the JK or the D type. The FPLS did not succeed com-

mercially, because it has too many programmable connections. The configuration mostly

used in an SPLD is the combinational PAL together with D flip‐flops. A PAL that includes

flip‐flops is referred to as a registered PAL, to signify that the device contains flip‐flops in

addition to the AND–OR array. Each section of an SPLD is called a macrocell, which is

a circuit that contains a sum‐of‐products combinational logic function and an optional

flip‐flop. We will assume an AND–OR sum‐of‐products function, but in practice, it can be

any one of the two‐level implementations presented in Section 3.7.

 Figure 7.19 shows the logic of a basic macrocell. The AND–OR array is the same as

in the combinational PAL shown in Fig. 7.16 . The output is driven by an edge‐triggered

 D flip‐flop connected to a common clock input and changes state on a clock edge. The

output of the flip‐flop is connected to a three‐state buffer (or inverter) controlled by an

output‐enable signal marked in the diagram as OE . The output of the flip‐flop is fed

back into one of the inputs of the programmable AND gates to provide the present‐state

condition for the sequential circuit. A typical SPLD has from 8 to 10 macrocells within

CLK OE

D

CLK

 FIGURE 7.19
 Basic macrocell logic

Section 7.8 Sequential Programmable Devices 331

one IC package. All the flip‐flops are connected to the common CLK input, and all

three‐state buffers are controlled by the OE input.

 In addition to programming the AND array, a macrocell may have other program-

ming features. Typical programming options include the ability to either use or bypass

the flip‐flop, the selection of clock edge polarity, the selection of preset and clear for the

register, and the selection of the true value or complement of an output. An XOR gate

is used to program a true/complement condition. Multiplexers select between two or

four distinct paths by programming the selection inputs.

 The design of a digital system using PLDs often requires the connection of several

devices to produce the complete specification. For this type of application, it is more

economical to use a complex programmable logic device (CPLD), which is a collection

of individual PLDs on a single integrated circuit. A programmable interconnection

structure allows the PLDs to be connected to each other in the same way that can be

done with individual PLDs.

 Figure 7.20 shows the general configuration of a CPLD. The device consists of mul-

tiple PLDs interconnected through a programmable switch matrix. The input–output

(I/O) blocks provide the connections to the IC pins. Each I/O pin is driven by a three‐

state buffer and can be programmed to act as input or output. The switch matrix receives

inputs from the I/O block and directs them to the individual macrocells. Similarly,

selected outputs from macrocells are sent to the outputs as needed. Each PLD typically

contains from 8 to 16 macrocells, usually fully connected. If a macrocell has unused

product terms, they can be used by other nearby macrocells. In some cases the macrocell

flip‐flop is programmed to act as a D, JK, or T flip‐flop.

 Different manufacturers have taken different approaches to the general architecture

of CPLDs. Areas in which they differ include the individual PLDs (sometimes called

PLD

PLD

PLD

PLD

PLD

PLD

PLD

PLD

Programmable switch matrix

I/O

block

I/O

block

 FIGURE 7.20
 General CPLD configuration

332 Chapter 7 Memory and Programmable Logic

 function blocks), the type of macrocells, the I/O blocks, and the programmable intercon-

nection structure. The best way to investigate a vendor‐specific device is to look at the

manufacturer’s literature.

 The basic component used in VLSI design is the gate array, which consists of a pattern

of gates, fabricated in an area of silicon, that is repeated thousands of times until the entire

chip is covered with gates. Arrays of one thousand to several hundred thousand gates are

fabricated within a single IC chip, depending on the technology used. The design with

gate arrays requires that the customer provide the manufacturer the desired interconnec-

tion pattern. The first few levels of the fabrication process are common and independent

of the final logic function. Additional fabrication steps are required to interconnect the

gates according to the specifications given by the designer.

 A field‐programmable gate array (FPGA) is a VLSI circuit that can be programmed

at the user’s location. A typical FPGA consists of an array of millions of logic blocks,

surrounded by programmable input and output blocks and connected together via pro-

grammable interconnections. There is a wide variety of internal configurations within

this group of devices. The performance of each type of device depends on the circuit

contained in its logic blocks and the efficiency of its programmed interconnections.

 A typical FPGA logic block consists of lookup tables, multiplexers, gates, and

flip‐flops. A lookup table is a truth table stored in an SRAM and provides the com-

binational circuit functions for the logic block. These functions are realized from the

lookup table, in the same way that combinational circuit functions are implemented

with ROM, as described in Section 7.5. For example, a 16 * 2 SRAM can store the

truth table of a combinational circuit that has four inputs and two outputs. The

combinational logic section, along with a number of programmable multiplexers, is

used to configure the input equations for the flip‐flop and the output of the logic

block.

 The advantage of using RAM instead of ROM to store the truth table is that the table

can be programmed by writing into memory. The disadvantage is that the memory is

volatile and presents the need for the lookup table’s content to be reloaded in the event

that power is disrupted. The program can be downloaded either from a host computer

or from an onboard PROM. The program remains in SRAM until the FPGA is repro-

grammed or the power is turned off. The device must be reprogrammed every time

power is turned on. The ability to reprogram the FPGA can serve a variety of applica-

tions by using different logic implementations in the program.

 The design with PLD, CPLD, or FPGA requires extensive computer‐aided design

(CAD) tools to facilitate the synthesis procedure. Among the tools that are available

are schematic entry packages and hardware description languages (HDLs), such as

ABEL, VHDL, and Verilog. Synthesis tools are available that allocate, configure, and

connect logic blocks to match a high‐level design description written in HDL. As an

example of CMOS FPGA technology, we will discuss the Xilinx FPGA. 1

 1 See www.Altera.com for an alternative CMOS FPGA architecture.

www.Altera.com

Section 7.8 Sequential Programmable Devices 333

 Xilinx FPGAs

 Xilinx launched the world’s first commercial FPGA in 1985, with the vintage XC2000

device family. 2 The XC3000 and XC4000 families soon followed, setting the stage for

today’s Spartan™, and Virtex™ device families. Each evolution of devices brought

improvements in density, performance, power consumption, voltage levels, pin counts, and

functionality. For example, the Spartan family of devices initially offered a maximum of

40K system gates, but today’s Spartan‐6 offers 150,000 logic cells plus 4.8Mb block RAM.

 Basic Xilinx Architecture

 The basic architecture of Spartan and earlier device families consists of an array of

configurable logic blocks (CLBs), a variety of local and global routing resources, and

input–output (I/O) blocks (IOBs), programmable I/O buffers, and an SRAM‐based

configuration memory, as shown in Fig. 7.21 .

 2 See www.Xilinx.com for detailed, up‐to‐date information about Xilinx products.

Switch
Matrix

CLB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB IOB IOB

IOB IOB IOB

Vertical
long line

Horizontal
long line

CLB

Switch
Matrix

CLBCLB

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
Matrix

Switch
MatrixIOB

IOB

IOB

IOB

 FIGURE 7.21
 Basic architecture of Xilinx Spartan and predecessor devices

www.Xilinx.com

334 Chapter 7 Memory and Programmable Logic

 Configurable Logic Block (CLB)

 Each CLB consists of a programmable lookup table, multiplexers, registers, and paths for

control signals, as shown in Fig. 7.22 . Two of the function generators (F and G) of the lookup

table can generate any arbitrary function of four inputs, and the third (H) can generate any

Boolean function of three inputs. The H‐function block can get its inputs from the F and

G lookup tables or from external inputs. The three function generators can be programmed

to generate (1) three different functions of three independent sets of variables (two with

four inputs and one with three inputs—one function must be registered within the CLB),

(2) an arbitrary function of five variables, (3) an arbitrary function of four variables together

with some functions of six variables, and (4) some functions of nine variables.

 Each CLB has two storage devices that can be configured as edge‐triggered flip‐flops

with a common clock, or, in the XC4000X, they can be configured as flip‐flops or as

transparent latches with a common clock (programmed for either edge and separately

invertible) and an enable. The storage elements can get their inputs from the function

generators or from the Din input. The other element can get an external input from the

 H1 input. The function generators can also drive two outputs (X and Y) directly and

independently of the outputs of the storage elements. All of these outputs can be con-

nected to the interconnect network. The storage elements are driven by a global set/

reset during power‐up; the global set/reset is programmed to match the programming

of the local S/R control for a given storage element.

 Distributed RAM

 The three function generators within a CLB can be used as either a 16 * 2 dual‐port

RAM or a 32 * 1 single‐port RAM. The XC4000 devices do not have block RAM, but

a group of their CLBs can form an array of memory. Spartan devices have block RAM

in addition to distributed RAM.

 Interconnect Resources

 A grid of switch matrices overlays the architecture of CLBs to provide general‐purpose

interconnect for branching and routing throughout the device. The interconnect has

three types of general‐purpose interconnects: single‐length lines, double‐length lines,

and long lines. A grid of horizontal and vertical single‐length lines connects an array of

switch boxes that provide a reduced number of connections between signal paths within

each box, not a full crossbar switch. Each CLB has a pair of three‐state buffers that can

drive signals onto the nearest horizontal lines above or below the CLB.

 Direct (dedicated) interconnect lines provide routing between adjacent vertical and

horizontal CLBs in the same column or row. These are relatively high speed local con-

nections through metal, but are not as fast as a hardwired metal connection because of

the delay incurred by routing the signal paths through the transmission gates that con-

figure the path. Direct interconnect lines do not use the switch matrices, thus eliminating

the delay incurred on paths going through a matrix. 3

 3 See Xilinx documentation for the pin‐out conventions to establish local interconnects between CLBs.

Sectio
n

 7.8 Seq
uen

tial Pro
g

ram
m

ab
le D

evices 335

 FIGURE 7.22
 CLB architecture

(Clock)
K

G�

H�

Logic
Function
of
G1 ... G4

G�

Logic
Function
of F�, G�,
and H1

H�

Logic
Function
of
F1 ... F4

F�

F�

G�

H�

DIN

RDEC

D
Q

SD

F�

G�

H�

DIN

S/R
control

S/R
control

1

1

H�

F�

F1
F2
F3
F4

G1
G2
G3
G4

Y

YQ

X

XQ

C1...C4

SR/H0DIN/H2 ECH1

Note: Muxes without a select line
are configured by the program memory.

RDEC

D Q
SD

336 Chapter 7 Memory and Programmable Logic

 Double‐length lines traverse the distance of two CLBs before entering a switch

matrix, skipping every other CLB. These lines provide a more efficient implementation

of intermediate‐length connections by eliminating a switch matrix from the path, thereby

reducing the delay of the path.

 Long lines span the entire array vertically and horizontally. They drive low‐skew,

high‐fan‐out control signals. Long vertical lines have a programmable splitter that seg-

ments the lines and allows two independent routing channels spanning one‐half of the

array, but located in the same column. The routing resources are exploited automatically

by the routing software. There are eight low‐skew global buffers for clock distribution.

 The signals that drive long lines are buffered. Long lines can be driven by adjacent

CLBs or IOBs and may connect to three‐state buffers that are available to CLBs. Long

lines provide three‐state buses within the architecture and implement wired‐AND logic.

Each horizontal long line is driven by a three‐state buffer and can be programmed to

connect to a pull‐up resistor, which pulls the line to a logical 1 if no driver is asserted on

the line.

 The programmable interconnect resources of the device connect CLBs and IOBs, either

directly or through switch boxes. These resources consist of a grid of two layers of metal

segments and programmable interconnect points (PIPs) within switch boxes. A PIP is a

CMOS transmission gate whose state (on or off) is determined by the content of a static

RAM cell in the programmable memory, as shown in Fig. 7.23 . The connection is estab-

lished when the transmission gate is on (i.e., when a 1 is applied at the gate of the n ‐channel

transistor), and a 0 is applied at the gate of the p ‐channel transistor. Thus, the device can

be reprogrammed simply by changing the contents of the controlling memory cell.

 The architecture of a PIP‐based interconnection in a switch box is shown in Fig. 7.24 ,

which shows possible signal paths through a PIP. The configuration of CMOS transmis-

sion gates determines the connection between a horizontal line and the opposite hori-

zontal line and between the vertical lines at the connection. Each switch matrix PIP

requires six pass transistors to establish full connectivity.

Static RAM
Cell

Interconnect path

Configuration Control

Write

Read

 FIGURE 7.23
 RAM cell controlling a PIP transmission gate

Section 7.8 Sequential Programmable Devices 337

 I/O Block (IOB)

 Each programmable I/O pin has a programmable IOB having buffers for compatibility

with TTL and CMOS signal levels. Figure 7.25 shows a simplified schematic for a pro-

grammable IOB. It can be used as an input, an output, or a bidirectional port. An IOB

that is configured as an input can have direct, latched, or registered input. In an output

configuration, the IOB has direct or registered output. The output buffer of an IOB has

skew and slew control. The registers available to the input and output path of an IOB

are driven by separate, invertible clocks. There is a global set/reset.

 Internal delay elements compensate for the delay induced when a clock signal passes

through a global buffer before reaching an IOB. This strategy eliminates the hold condi-

tion on the data at an external pin. The three‐state output of an IOB puts the output

buffer in a high‐impedance state. The output and the enable for the output can be

inverted. The slew rate of the output buffer can be controlled to minimize transients on

the power bus when noncritical signals are switched. The IOB pin can be programmed

for pull‐up or pull‐down to prevent needless power consumption and noise.

 The devices have embedded logic to support the IEEE 1149.1 (JTAG) boundary scan

standard. There is an on‐chip test access port (TAP) controller, and the I/O cells can be

configured as a shift register. Under testing, the device can be checked to verify that all

the pins on a PC board are connected and operate properly by creating a serial chain of

all of the I/O pins of the chips on the board. A master three‐state control signal puts all

of the IOBs in high‐impedance mode for board testing.

 Enhancements

 Spartan chips can accommodate embedded soft cores, and their on‐chip distributed, dual‐

port, synchronous RAM (SelectRAM) can be used to implement first‐in, first‐out register

 FIGURE 7.24
 Circuit for a programmable PIP

338 Chapter 7 Memory and Programmable Logic

files (FIFOs), shift registers, and scratchpad memories. The blocks can be cascaded to any

width and depth and located anywhere in the part, but their use reduces the CLBs avail-

able for logic. Figure 7.26 displays the structure of the on‐chip RAM that is formed by

16 � 2
32 � 1

Ram array

R
ea

d
ro

w
se

le
ct

W
ri

te
 r

ow
se

le
ct

Write
control

Read
out

In
pu

t r
eg

is
te

r

SPO

WCLK

D0 or D1

WE

nA[n�1:0]

n

 FIGURE 7.26
 Distributed RAM cell formed from a lookup table

Slew rate
control

VCC

Output
buffer

QD

Delay

I/O
PAD

Passive
pull-up

pull-down

Q D

Input
buffer

I1

OE

O

I2

Input
clock

Output
clock

 FIGURE 7.25
 XC4000 series IOB

Section 7.8 Sequential Programmable Devices 339

programming a lookup table to implement a single‐port RAM with synchronous write

and asynchronous read. Each CLB can be programmed as a 16 * 2 or 32 * 1 memory.

 Dual‐port RAMs are emulated in a Spartan device by the structure shown in Fig. 7.27 ,

which has a single (common) write port and two asynchronous read ports. A CLB can

form a memory having a maximum size of 16 * 1.

 Xilinx Spartan XL FPGAs

 Spartan XL chips are a further enhancement of Spartan chips, offering higher speed and

density (40,000 system gates, approximately 6,000 of which are usable) and on‐chip,

distributed SelectRAM memory. 4 The lookup tables of the devices can implement 22n

different functions of n inputs.

 4 The maximum number of logic gates for a Xilinx FPGA is an estimate of the maximum number of logic gates that
could be realized in a design consisting of only logic functions (no memory). Logic capacity is expressed in terms
of the number of two‐input NAND gates that would be required to implement the same number and type of logic
functions (Xilinx App. Note).

16 � 1
RAM array

16 � 1
RAM array

R
ea

d
ro

w
se

le
ct

W
ri

te
 r

ow
se

le
ct

Write
control

Write
control

Read
out

Read
out

In
pu

t r
eg

is
te

r
SPO

4

WCLK

D

WE

A[3:0]

4

R
ea

d
ro

w
se

le
ct

W
ri

te
 r

ow
se

le
ct

DPRA[3:0]

SPO

4

 FIGURE 7.27
 Spartan dual‐port RAM

340 Chapter 7 Memory and Programmable Logic

 The XL series is targeted for applications for which low cost, low power, low packag-

ing, and low test cost are important factors constraining the design. Spartan XL devices

offer up to 80‐MHz system performance, depending on the number of cascaded lookup

tables, which reduce performance by introducing longer paths. Table 7.7 presents sig-

nificant attributes of devices in the Spartan XL family.

 The architecture of the Spartan XL and earlier devices consists of an array of CLB

tiles mingled within an array of switch matrices, surrounded by a perimeter of IOBs.

These devices support only distributed memory, whose use reduces the number of

CLBs that could be used for logic. The relatively small amount of on‐chip memory

limits the devices to applications in which operations with off‐chip memory devices do

not compromise performance objectives. Beginning with the Spartan II series, Xilinx

supported configurable embedded block memory, as well as distributed memory in a

new architecture.

 Xilinx Spartan II FPGAs

 Aside from improvements in speed (200‐MHz I/O switching frequency), density (up to

200,000 system gates) and operating voltage (2.5 V), four other features distinguish the

Spartan II devices from the Spartan devices: (1) on‐chip block memory, (2) a novel

architecture, (3) support for multiple I/O standards, and (4) delay locked loops (DLLs). 5

 The Spartan II device family, manufactured in 0.22>0.18@mm CMOS technology with

six layers of metal for interconnect, incorporates configurable block memory in addition

to the distributed memory of the previous generations of devices, and the block memory

does not reduce the amount of logic or distributed memory that is available for the

 Table 7.7
 Attributes of the Xilinx Spartan XL Device Family

 Spartan XL XCS05/XL XCS10/XL XCS20/XL XCS30/XL XCS40/XL

 System Gates 1 2K–5K 3K–10K 7K–20K 10K–30K 13K–40K

 Logic Cells 2 238 466 950 1,368 1,862

 Max Logic Gates 3,000 5,000 10,000 13,000 20,000

 Flip‐Flops 360 616 1,120 1,536 2,016

 Max RAM Bits 3,200 6,272 12,800 18,432 25,088

 Max Avail I/O 77 112 160 192 224

 1 20–30% of CLBs as RAM.

 2 1 Logic cell = four‐input lookup table + fl ip‐fl op.

 5 Spartan II devices do not support low‐voltage differential signaling (LVDS) or low‐voltage positive emitter‐coupled
logic (LVPECL) I/O standards.

Section 7.8 Sequential Programmable Devices 341

application. A large on‐chip memory can improve system performance by eliminating

or reducing the need to access off‐chip storage.

 Reliable clock distribution is the key to the synchronous operation of high‐speed

digital circuits. If the clock signal arrives at different times at different parts of a circuit,

the device may fail to operate correctly. Clock skew reduces the available time budget

of a circuit by lengthening the setup time at registers. It can also shorten the effective

hold‐time margin of a flip‐flop in a shift register and cause the register to shift incor-

rectly. At high clock frequencies (shorter clock periods), the effect of skew is more

significant because it represents a larger fraction of the clock cycle time. Buffered clock

trees are commonly used to minimize clock skew in FPGAs. Xilinx provides all‐digital

DLLs for clock synchronization or management in high‐speed circuits. DLLs eliminate

the clock distribution delay and provide frequency multipliers, frequency dividers, and

clock mirrors.

 Spartan II devices are suitable for applications such as implementing the glue logic

of a video capture system and the glue logic of an ISDN modem. Device attributes are

summarized in Table 7.8 , and the evolution of technology in the Spartan series is evident

in the data in Table 7.9 .

 Table 7.8
 Spartan II Device Attributes

 Spartan II FPGAs XC2S15 XC2S30 XC2S50 XC2S100 XC2S150 XC2S200

 System Gates 1 6K–15K 13K–30K 23K–50K 37K–100K 52K–150K 71K–200K

 Logic Cells 2 432 972 1,728 2,700 3,888 5,292

 Block RAM Bits 16,384 24,576 32,768 40,960 49,152 57,344

 Max Avail I/O 86 132 176 196 260 284

 1 20–30% of CLBs as RAM.

 2 1 Logic cell = four‐input lookup table + fl ip‐fl op.

 Table 7.9
 Comparison of the Spartan Device Families

 Part Spartan Spartan XL Spartan II

 Architecture XC4000 Based XC4000 Based Virtex Based

 Max # System Gates 5K–40K 5K–40K 15K–200K

 Memory Distributed RAM Distributed RAM Block + Distributed

 I/O Performance 80 MHz 100 MHz 200 MHz

 I/O Standards 4 4 16

 Core Voltage 5 V 3.3 V 2.5 V

 DLLs No No Yes

342 Chapter 7 Memory and Programmable Logic

 The top‐level tiled architecture of the Spartan II device, shown in Fig. 7.28 , marks

a new organization structure of the Xilinx parts. Each of four quadrants of CLBs is

supported by a DLL and is flanked by a 4,096‐bit block 6 of RAM, and the periphery

of the chip is lined with IOBs.

 Each CLB contains four logic cells, organized as a pair of slices. Each logic cell, shown

in Fig. 7.29 , has a four‐input lookup table, logic for carry and control, and a D ‐type

flip‐flop. The CLB contains additional logic for configuring functions of five or six inputs.

 The Spartan II part family provides the flexibility and capacity of an on‐chip block

RAM; in addition, each lookup table can be configured as a 16 * 1 RAM (distributed),

and the pair of lookup tables in a logic cell can be configured as a 16 * 2 bit RAM or

a 32 * 1 bit RAM.

 The IOBs of the Spartan II family are individually programmable to support the

reference, output voltage, and termination voltages of a variety of high‐speed memory

B
lo

ck
 S

el
ec

t R
A

M
B

lo
ck

 S
el

ec
t R

A
M

I/O I/O I/O I/O I/O I/O

B
lo

ck
 S

el
ec

t R
A

M
B

lo
ck

 S
el

ec
t R

A
M

DLL

DLL DLL

DLL

CLBsCLBs

CLBs CLBs

 FIGURE 7.28
 Spartan II architecture

 6 Parts are available with up to 14 blocks (56K bits).

Section 7.8 Sequential Programmable Devices 343

and bus standards. (See Fig. 7.30 .) Each IOB has three registers that can function as

 D ‐type flip‐flops or as level‐sensitive latches. One register (TFF) can be used to reg-

ister the signal that (synchronously) controls the programmable output buffer. A sec-

ond register (OFF) can be programmed to register a signal from the internal logic.

(Alternatively, a signal from the internal logic can pass directly to the output buffer.)

The third device can register the signal coming from the I/O pad. (Alternatively, this

EC

CK

D QS

R

EC

CK

D QS

R

Carry
and

Control
Logic

Carry
and

Control
Logic

I1

I2

I3

I4

F1

F2

F3

F4

I1

I2

I3

I4

G1

G2

G3

G4

O

Lookup
Table

O

Lookup
Table

BX
CIN

CLK
CE

F5IN

BY

SR

XB

X

XQ

COUT

YB

Y

YQ

Logic Cell

 FIGURE 7.29
 Spartan II CLB slice

344 Chapter 7 Memory and Programmable Logic

signal can pass directly to the internal logic.) A common clock drives each register,

but each has an independent clock enable. A programmable delay element on the

input path can be used to eliminate the pad‐to‐pad hold time.

 Xilinx Virtex FPGAs

 The Virtex device series 7 is the leading edge of Xilinx technology. This family of

devices addresses four key factors that influence the solution to complex system‐level

and system‐on‐chip designs: (1) the level of integration, (2) the amount of embedded

memory, (3) performance (timing), and (4) subsystem interfaces. The family targets

applications requiring a balance of high‐performance logic, serial connectivity, signal

processing, and embedded processing (e.g., wireless communications). Process rules

 7 Virtex, Virtex‐II, II Platform, II‐Pro/Pro X, and Virtex‐5 Multi‐Platform FPGA.

EC

CK

D QSR

EC

CK

D QSR

EC

CK

D QSR

TFF

OFF

IFF

Programmable
Bias &

ESD Network

Programmable
output buffer

Programmable
Delay

Programmable
input buffer

Internal
Reference

Package Pin

I/O

Package Pin

VCCO

VCC
OE

Package Pin

I/O

To Next
I/O

To Other
External

VREF
Inputs of

Banks

ICE

I

OCE

O

T

CLK

TCE

SR

IQ

 FIGURE 7.30
 Spartan II IOB

Section 7.8 Sequential Programmable Devices 345

for leading‐edge Virtex parts stand at 65 nm, with a 1‐V operating voltage. The rules

allow up to 330,000 logic cells and over 200,000 internal flip‐flops with clock enable,

together with over 10 Mb of block RAM, and 550‐MHz clock technology packed into

a single die.

 The Virtex family incorporates physical (electrical) and protocol support for

20 different I/O standards, including LVDS and LVPECL, with individually program-

mable pins. Up to 12 digital clock managers provide support for frequency synthesis

and phase shifting in synchronous applications requiring multiple clock domains and

high‐frequency I/O. The Virtex architecture is shown in Fig. 7.31 , and its IOB is shown

in Fig. 7.32 .

DCMDCM

B
lo

ck
 S

el
ec

t R
A

M

B
lo

ck
 S

el
ec

t R
A

M

M
ul

ti
pl

ie
r

M
ul

ti
pl

ie
r

B
lo

ck
 S

el
ec

t R
A

M

B
lo

ck
 S

el
ec

t R
A

M

IOB

M
ul

ti
pl

ie
r

M
ul

ti
pl

ie
r

Global
Clock Mux

DCM: Clock Manager

CLBs CLBsCLBs

 FIGURE 7.31
 Virtex II overall architecture

346 Chapter 7 Memory and Programmable Logic

 P R O B L E M S

 Answers to problems marked with * appear at the end of the book.

 7.1 The memory units that follow are specified by the number of words times the number of

bits per word. How many address lines and input–output data lines are needed in each

case?

 (a) 8K * 16 (b) 2G * 8

 (c) 16M * 32 (d) 256K * 64

 7.2* Give the number of bytes stored in the memories listed in Problem 7.1.

 7.3* Word number 563 in the memory shown in Fig. 7.3 contains the binary equivalent of 1,212.

List the 10‐bit address and the 16‐bit memory content of the word.

 7.4 Show the memory cycle timing waveforms for the write and read operations. Assume a

CPU clock of 150 MHz and a memory cycle time of 20 ns.

 7.5 Write a test bench for the ROM described in Example 7.1. The test program stores binary

7 in address 5 and binary 5 in address 7. Then the two addresses are read to verify their

stored contents.

 7.6 Enclose the 4 * 4 RAM of Fig. 7.6 in a block diagram showing all inputs and outputs.

Assuming three‐state outputs, construct an 8 * 8 memory using four 4 * 4 RAM units.

Reg

OCK1

Reg

OCK2

DDR mux

3-State

Reg

OCK2

DDR mux

3-State

PAD

Reg

OCK1

Reg

ICK1

Reg

ICK2

Input

IOB

 FIGURE 7.32
 Virtex IOB block

Problems 347

 7.7* A 16K * 4 memory uses coincident decoding by splitting the internal decoder into

 X ‐selection and Y ‐selection.

 (a) What is the size of each decoder, and how many AND gates are required for decoding

the address?

 (b) Determine the X and Y selection lines that are enabled when the input address is the

binary equivalent of 6,000.

 7.8* (a) How many 32K * 8 RAM chips are needed to provide a memory capacity of 256K

bytes?

 (b) How many lines of the address must be used to access 256K bytes? How many of these

lines are connected to the address inputs of all chips?

 (c) How many lines must be decoded for the chip select inputs? Specify the size of the

decoder.

 7.9 A DRAM chip uses two‐dimensional address multiplexing. It has 13 common address pins,

with the row address having one bit more than the column address. What is the capacity

of the memory?

 7.10* Given the 8‐bit data word 01011011, generate the 13‐bit composite word for the Hamming

code that corrects single errors and detects double errors.

 7.11* Obtain the 15‐bit Hamming code word for the 11‐bit data word 11001001010.

 7.12* A 12‐bit Hamming code word containing 8 bits of data and 4 parity bits is read from

memory. What was the original 8‐bit data word that was written into memory if the 12‐bit

word read out is as follows:

 (a) 000011101010 (b) 101110000110

 (c) 101111110100

 7.13* How many parity check bits must be included with the data word to achieve single‐error

correction and double‐error detection when the data word contains

 (a) 16 bits. (b) 32 bits.

 (c) 48 bits.

 7.14 It is necessary to formulate the Hamming code for four data bits, D3, D5, D6, and D7,

together with three parity bits, P1, P2, and P4.

 (a) * Evaluate the 7‐bit composite code word for the data word 0010.

 (b) Evaluate three check bits, C4, C2, and C1, assuming no error.

 (c) Assume an error in bit D5 during writing into memory. Show how the error in the bit

is detected and corrected.

 (d) Add parity bit P8 to include double‐error detection in the code. Assume that errors

occurred in bits P2 and D5. Show how the double error is detected.

 7.15 Using 64 * 8 ROM chips with an enable input, construct a 512 * 8 ROM with eight chips

and a decoder.

 7.16* A ROM chip of 4,096 * 8 bits has two chip select inputs and operates from a 5‐V power

supply. How many pins are needed for the integrated circuit package? Draw a block dia-

gram, and label all input and output terminals in the ROM.

 7.17 The 32 * 6 ROM, together with the 20 line, as shown in Fig. P7.17, converts a six‐bit binary

number to its corresponding two‐digit BCD number. For example, binary 100001 converts

to BCD 011 0011 (decimal 33). Specify the truth table for the ROM.

348 Chapter 7 Memory and Programmable Logic

 7.18* Specify the size of a ROM (number of words and number of bits per word) that will

accommodate the truth table for the following combinational circuit components:

 (a) a binary multiplier that multiplies two 4‐bit binary words,

 (b) a 4‐bit adder–subtractor,

 (c) a quadruple two‐to‐one‐line multiplexer with common select and enable inputs, and

 (d) a BCD‐to‐seven‐segment decoder with an enable input.

 7.19 Tabulate the PLA programming table for the four Boolean functions listed below. Mini-

mize the numbers of product terms.

 A(x, y, z) = �(1, 3, 5, 6)

B(x, y, z) = �(0, 1, 6, 7)

C(x, y, z) = �(3, 5)

D(x, y, z) = �(1, 2, 4, 5, 7)

 7.20 Tabulate the truth table for an 8 * 4 ROM that implements the Boolean functions

 A(x, y, z) = �(0, 3, 4, 6)

B(x, y, z) = �(0, 1, 4, 7)

C(x, y, z) = �(1, 5)

D(x, y, z) = �(0, 1, 3, 5, 7)

 Considering now the ROM as a memory. Specify the memory contents at addresses 1 and 4.

 7.21 Derive the PLA programming table for the combinational circuit that squares a three‐bit

number. Minimize the number of product terms. (See Fig. 7.12 for the equivalent ROM

implementation.)

 7.22 Derive the ROM programming table for the combinational circuit that squares a 4‐bit

number. Minimize the number of product terms.

 7.23 List the PLA programming table for the BCD‐to‐excess‐3‐code converter whose Boolean

functions are simplified in Fig. 4.3.

21

20

100

101

22

23

24

25

D1

D2

D3

D4

D5

D6

/1

/2

/3

/4

/5

32 � 6
ROM

 FIGURE P7.17

References 349

 7.24 Repeat Problem 7.23, using a PAL.

 7.25* The following is a truth table of a three‐input, four‐output combinational circuit:

 Inputs Outputs

 x y z A B C D

 0 0 0 0 1 0 0

 0 0 1 1 1 1 1

 0 1 0 1 0 1 1

 0 1 1 0 1 0 1

 1 0 0 1 1 1 0

 1 0 1 0 0 0 1

 1 1 0 1 0 1 0

 1 1 1 0 1 1 1

 Tabulate the PAL programming table for the circuit, and mark the fuse map in a PAL

diagram similar to the one shown in Fig. 7.17 .

 7.26 Using the registered macrocell of Fig. 7.19 , show the fuse map for a sequential circuit with

two inputs x and y and one flip‐flop A described by the input equation

 DA = x { y { A

 7.27 Modify the PAL diagram of Fig. 7.16 by including three clocked D ‐type flip‐flops between

the OR gates and the outputs, as in Fig. 7.19 . The diagram should conform with the block

diagram of a sequential circuit. The modification will require three additional buffer–

inverter gates and six vertical lines for the flip‐flop outputs to be connected to the AND

array through programmable connections. Using the modified registered PAL diagram,

show the fuse map that will implement a three‐bit binary counter with an output carry.

 7.28 Draw a PLA circuit to implement the functions

 F1 = A�B + AC + A�BC�

F2 = (AC + AB + BC)�

 7.29 Develop the programming table for the PLA described in Problem 7.26.

 R E F E R E N C E S

 1. H amming, R. W. 1950. Error Detecting and Error Correcting Codes. Bell Syst. Tech. J.
29: 147–160.

 2. K itson, B. 1984. Programmable Array Logic Handbook . Sunnyvale, CA: Advanced Micro

Devices.

 3. L in, S. and D. J. C ostello, jr . 2004. Error Control Coding . 2 nd ed. Englewood Cliffs, NJ:

Prentice‐Hall.

 4. Memory Components Handbook. 1986. Santa Clara, CA: Intel.

 5. N elson, V. P., H. T. N agle, J. D. I rwin, and B. D. C arroll . 1995. Digital Logic Circuit
Analysis and Design. Upper Saddle River, NJ: Prentice Hall.

350 Chapter 7 Memory and Programmable Logic

 6. The Programmable Logic Data Book, 2nd ed. 1994. San Jose, CA: Xilinx, Inc.

 7. T occi, R. J. and N. S. W idmer . 2004. Digital Systems Principles and Applications, 9th ed.

Upper Saddle River, NJ: Prentice Hall.

 8. T rimberger, S. M. 1994. Field Programmable Gate Array Technology. Boston: Kluwer

Academic Publishers.

 9. W akerly, J. F. 2006. Digital Design: Principles and Practices, 4th ed. Upper Saddle River,

NJ: Prentice Hall.

 WEB SEARCH TOP ICS

 FPGA

 Gate array

 Programmable array logic

 Programmable logic data book

 RAM

 ROM

351

 Chapter 8

 Design at the Register Transfer Level

 8 . 1 I N T R O D U C T I O N

 The behavior of many digital systems depends on the history of their inputs, and the

conditions that determine their future actions depend on the results of previous actions.

Such systems are said to have “memory.” A digital system is a sequential logic system

constructed with flip‐flops and gates. Sequential circuits can be specified by means of

state tables as shown in Chapter 5 . To specify a large digital system with a state table is

very difficult, because the number of states would be enormous. To overcome this dif-

ficulty, digital systems are designed via a modular approach. The system is partitioned

into subsystems, each of which performs some function. The modules are constructed

from such digital devices as registers, decoders, multiplexers, arithmetic elements, and

control logic. The various modules are interconnected with datapaths and control signals

to form a digital system. In this chapter, we will introduce a design methodology for

describing and designing large, complex digital systems.

 8 . 2 R E G I S T E R T R A N S F E R L E V E L N O TAT I O N

 The modules of a digital system are best defined by a set of registers and the opera-

tions that are performed on the binary information stored in them. Examples of

register operations are shift, count, clear, and load . Registers are assumed to be the

basic components of the digital system. The information flow and processing per-

formed on the data stored in the registers are referred to as register transfer opera-
tions . We’ll see subsequently how a hardware description language (HDL) includes

operators that correspond to the register transfer operations of a digital system.

352 Chapter 8 Design at the Register Transfer Level

A digital system is represented at the register transfer level (RTL) when it is specified

by the following three components:

 1. The set of registers in the system.

 2. The operations that are performed on the data stored in the registers.

 3. The control that supervises the sequence of operations in the system.

 A register is a connected group of flip‐flops that stores binary information and has the

capability of performing one or more elementary operations. A register can load new

information or shift the information to the right or the left. A counter is a register that

increments a number by a fixed value (e.g., 1). A flip‐flop is a one‐bit register that can

be set, cleared, or complemented. In fact, the flip‐flops and associated gates of any

sequential circuit can be called registers by this definition.

 The operations executed on the information stored in registers are elementary oper-

ations that are performed in parallel on the bits of a data word during one clock cycle.

The data produced by the operation may replace the binary information that was in the

register before the operation executed. Alternatively, the result may be transferred to

another register (i.e., an operation on a register may leave its contents unchanged). The

digital circuits introduced in Chapter 6 are registers that implement elementary opera-

tions. A counter with a parallel load is able to perform the increment‐by‐one and load

operations. A bidirectional shift register is able to perform the shift‐right and shift‐left

operations by shifting its contents by one or more bits in a specified direction.

 The operations in a digital system are controlled by signals that sequence the opera-

tions in a prescribed manner. Certain conditions that depend on results of previous

operations may determine the sequence of future operations. The outputs of the control

logic of a digital system are binary variables that initiate the various operations in the

system’s registers.

 Information transfer from one register to another is designated in symbolic form by

means of a replacement operator. The statement

 R2 d R1

 denotes a transfer of the contents of register R1 into register R2 —that is, a replacement

of the contents of register R2 by the contents of register R1 . For example, an eight‐bit

register R 2 holding the value 01011010 could have its contents replaced by R 1 holding

the value 10100101. By definition, the contents of the source register R1 do not change

after the transfer. They are merely copied to R1 . The arrow symbolizes the transfer and

its direction; it points from the register whose contents are being transferred and towards

the register that will receive the contents. A control signal would determine when the

operation actually executes.

 The controller in a digital system is a finite state machine (see Chapter 5) whose

outputs are the control signals governing the register operations. In synchronous

machines, the operations are synchronized by the system clock. For example, register

 R 2 might be synchronized to have its contents replaced at the positive edge of the clock.

 A statement that specifies a register transfer operation implies that a datapath (i.e.,

a set of circuit connections) is available from the outputs of the source register to the

Section 8.2 Register Transfer Level Notation 353

inputs of the destination register and that the destination register has a parallel load

capability. Data can be transferred serially between registers, too, by repeatedly shifting

their contents along a single wire, one bit at a time. Normally, we want a register transfer

operation to occur, not with every clock cycle, but only under a predetermined condition.

A conditional statement governing a register transfer operation is symbolized with an

if–then statement such as

 If (T1 = 1) then (R2 d R1)

 where T1 is a control signal generated in the control section. Note that the clock is not

included as a variable in the register transfer statements. It is assumed that all transfers

occur at a clock‐edge transition (i.e., a transition from 0 to 1 or from 1 to 0). Although

a control condition such as T1 may become true before the clock transition, the actual

transfer does not occur until the clock transition does. The transfers are initiated and

synchronized by the action of the clock signal, but the actual transition of the outputs

(in a physical system) does not result in instantaneous transitions at the outputs of the

registers. Propagation delays depend on the physical characteristics of the transistors

implementing the flip‐flops of the register and the wires connecting devices. There is

always a delay, however small, between a cause and its effect in a physical system.

 A comma may be used to separate two or more operations that are executed at the

same time (concurrently). Consider the statement

 If (T3 = 1) then (R2 d R1, R1 d R2)

 This statement specifies an operation that exchanges the contents of two registers; more-

over, the operation in both registers is triggered by the same clock edge, provided that

 T3 = 1. This simultaneous (concurrent) operation is possible with registers that have

edge‐triggered flip‐flops controlled by a common clock (synchronizing signal). Other

examples of register transfers are as follows:

 R1 d R1 + R2 Add contents of R2 to R1 (R1 gets R1 + R2)

 R3 d R3 + 1 Increment R3 by 1 (count upwards)

 R4 d shr R4 Shift right R4

 R5 d 0 Clear R5 to 0

 In hardware, addition is done with a binary parallel adder, incrementing is done with a

counter, and the shift operation is implemented with a shift register. The type of opera-

tions most often encountered in digital systems can be classified into four categories:

 1. Transfer operations, which transfer (i.e., copy) data from one register to another.

 2. Arithmetic operations, which perform arithmetic (e.g., multiplication) on data in

registers.

 3. Logic operations, which perform bit manipulation (e.g., logical OR) of non numeric

data in registers.

 4. Shift operations, which shift data between registers.

 The transfer operation does not change the information content of the data being moved

from the source register to the destination register unless the source and destination are

354 Chapter 8 Design at the Register Transfer Level

the same. The other three operations change the information content during the trans-

fer. The register transfer notation and the symbols used to represent the various regis-

ter transfer operations are not standardized. In this text, we employ two types of

notation. The notation introduced in this section will be used informally to specify and

explain digital systems at the register transfer level. The next section introduces the

RTL symbols used in the Verilog HDL, which is standardized.

 8 . 3 R E G I S T E R T R A N S F E R L E V E L I N H D L

 Digital systems can be described at the register transfer level by means of a HDL. In the

Verilog HDL, descriptions of RTL operations use a combination of behavioral and data-

flow constructs and are employed to specify the register operations and the combina-

tional logic functions implemented by hardware. Register transfers are specified by

means of procedural assignment statements within an edge‐sensitive cyclic behavior.
Combinational circuit functions are specified at the RTL level by means of continuous

assignment statements or by procedural assignment statements within a level‐sensitive
cyclic behavior. The symbol used to designate a register transfer is either an equals sign

(=) or an arrow (6 =); the symbol used to specify a combinational circuit function is an

equals sign. Synchronization with the clock is represented by associating with an always

statement an event control expression in which sensitivity to the clock event is qualified

by posedge or negedge . The always keyword indicates that the associated block of state-

ments will be executed repeatedly, for the life of the simulation. The @ operator and the

event control expression preceding the block of statements synchronize the execution

of the statements to the clock event.

 The following examples show the various ways to specify a register transfer operation

in Verilog:

 (a) assign S = A + B; // Continuous assignment for addition operation
 (b) always @ (A, B) // Level-sensitive cyclic behavior
 S = A + B; // Combinational logic for addition operation
 (c) always @ (negedge clock) // Edge-sensitive cyclic behavior
 begin
 RA = RA + RB; // Blocking procedural assignment for addition
 RD = RA; // Register transfer operation
 end
 (d) always @ (negedge clock) // Edge-sensitive cyclic behavior
 begin
 RA <= RA + RB; // Nonblocking procedural assignment for addition
 RD <= RA; // Register transfer operation
 end

 Continuous assignments (e.g., assign S = A + B;) are used to represent and specify

combinational logic circuits. In simulation, a continuous assignment statement executes

when the expression on the right‐hand side changes. The effect of execution is immediate.

Section 8.3 Register Transfer Level in HDL 355

(The variable on the left‐hand side is updated.) Similarly, a level‐sensitive cyclic behav-

ior (e.g., always @ (A, B)) executes during simulation when a change is detected by its

event control expression (sensitivity list). The effect of assignments made by the = oper-

ator is immediate. The continuous assignment statement (assign S = A + B) describes a

binary adder with inputs A and B and output S . The target operand in a continuous

assignment statement (S in this case) cannot be a register data type, but must be a type

of net, for example, wire . The procedural assignment made in the level‐sensitive cyclic

behavior in the second example shows an alternative way of specifying a combinational

circuit for addition. Within the cyclic behavior, the mechanism of the sensitivity list

ensures that the output, S, will be updated whenever A, or B, or both change.

 There are two kinds of procedural assignments: blocking and nonblocking . The two

are distinguished by their symbols and by their operation. Blocking assignments use the

equals symbol (=) as the assignment operator, and nonblocking assignments use the left

arrow (6 =) as the operator. Blocking assignment statements are executed sequentially

in the order that they are listed in a sequential block; when they execute, they have an

immediate effect on the contents of memory before the next statement can be executed.

Nonblocking assignments are made concurrently . This feature is implemented by evalu-

ating the expression on the right‐hand side of each statement in the list of statements

before making the assignment to their left‐hand sides. Consequently, there is no interac-
tion between the result of any assignment and the evaluation of an expression affecting
another assignment. Also, the statements associated with an edge‐sensitive cyclic behav-

ior do not execute until the indicated edge condition occurs. Consider (c) in the example

given above. In the list of blocking procedural assignment, the first statement transfers the

sum (RA + RB) to RA, and the second statement transfers the new value of RA into RD .

The value in RA after the clock event is the sum of the values in RA and RB immediately

before the clock event. At the completion of the operation, both RA and RD have the

same value. In the nonblocking procedural assignment ((d) above), the two assignments

are performed concurrently, so that RD receives the original value of RA . The activity

in both examples is launched by the clock undergoing a falling edge transition.

 The registers in a system are clocked simultaneously (concurrently). The D ‐input of

each flip‐flop determines the value that will be assigned to its output, independently of

the input to any other flip‐flop. To ensure synchronous operations in RTL design, and

to ensure a match between an HDL model and the circuit synthesized from the model,

it is necessary that nonblocking procedural assignments be used for all variables that

are assigned a value within an edge‐sensitive cyclic behavior (always clocked). The non-

blocking assignment that appears in an edge‐sensitive cyclic behavior models the behav-

ior of the hardware of a synchronous sequential circuit accurately. In general, the

blocking assignment operator (=) is used in a procedural assignment statement only

when it is necessary to specify a sequential ordering of multiple assignment statements.

 HDL Operators

 The Verilog HDL operators and their symbols used in RTL design are listed in Table 8.1 .

The arithmetic, logic, and shift operators describe register transfer operations. The

356 Chapter 8 Design at the Register Transfer Level

logical and relational operators specify control conditions and have Boolean expres-

sions as their arguments.

 The operands of the arithmetic operators are numbers. The +, -, *, and / operators

form the sum, difference, product, and quotient, respectively, of a pair of operands.

The exponentiation operator (**) was added to the language in 2001 and forms a

double‐precision floating‐point value from a base and exponent having a real, integer,

 Table 8.1
 Verilog 2001 HDL Operators

 Operator Type Symbol Operation Performed

 Arithmetic + addition

 – subtraction

 * multiplication

 / division

 % modulus

 ** exponentiation

 Bitwise or Reduction ~ negation (complement)

 & AND

 | OR

 ̂ exclusive‐OR (XOR)

 Logical ! negation

 && AND

 || OR

 Shift >> logical right shift

 << logical left shift

 >>> arithmetic right shift

 <<< arithmetic left shift

 { , } concatenation

 Relational > greater than

 < less than

 == equality

 != inequality

 === case equality

 !== case inequality

 >= greater than or equal

 <= less than or equal

Section 8.3 Register Transfer Level in HDL 357

or signed value. Negative numbers are represented in 2’s‐complement form. The mod-

ulus operator produces the remainder from the division of two numbers. For example,

14 % 3 evaluates to 2.

 There are two types of binary operators for binary words: bitwise and reduction. The

bitwise operators perform a bit‐by‐bit operation on two vector operands to form a vec-

tor result. They take each bit in one operand and perform the operation with the cor-

responding bit in the other operand. Negation (~) is a unary operator; it complements

the bits of a single vector operand to form a vector result. The reduction operators are

also unary, acting on a single operand and producing a scalar (one‐bit) result. They oper-

ate pairwise on the bits of a word, from right to left, and yield a one‐bit result. For

example, the reduction NOR (~|) results in 0 with operand 00101 and in 1 with operand

00000. The result of applying the NOR operation on the first two bits is used with the

third bit, and so forth. Negation is not used as a reduction operator — its operation on

a vector produces a vector. Truth tables for the bitwise operators acting on a pair of

scalar operands are the same as those listed in Table 4.9 in Section 4.12 for the corre-

sponding Verilog primitive (e.g., the and primitive and the & bitwise operator have the

same truth table). The output of an AND gate with two scalar inputs is the same as the

result produced by operating on the two bits with the & operator.

 The logical and relational operators are used to form Boolean expressions and can

take variables or expressions as operands. (Note : A variable is also an expression.) Used

basically for determining true or false conditions, the logical and relational operators

evaluate to 1 if the condition expressed is true and to 0 if the condition is false. If the

condition is ambiguous, they evaluate to x. An operand that is a variable evaluates to 0

if the value of the variable is equal to zero and to 1 if the value is not equal to zero. For

example, if A = 1010 and B = 0000, then the expression A has the Boolean value 1 (the

number in question is not equal to 0) and the expression B has the Boolean value 0.

Results of other operations with these values are as follows:

 A && B = 0 // Logical AND: (1010) && (0000) = 0

 A & B = 0000 // Bitwise AND: (1010) & (1010) = (0000)

 A || B = 1 // Logical OR: (1010) || (0000) = 1

 A | B = 1010 // Bitwise OR: (1010) | (0000) = (1010)

 !A = 0 // Logical negation !(1010) = !(1) = 0

 ~A = 0101 // Bitwise negation ~(1010) = (0101)

 !B = 1 // Logical negation !(0000) = !(0) = 1

 ~B = 1111 // Bitwise negation ~(0000) = 1111

 (A > B) = 1 // is greater than

 (A == B) = 0 // identity (equality)

 The relational operators = = = and ! = = test for bitwise equality (identity) and inequal-

ity in Verilog’s four‐valued logic system. For example, if A = 0xx0 and B = 0xx0, the test

 A = = = B would evaluate to true, but the test A = = B would evaluate to x.

358 Chapter 8 Design at the Register Transfer Level

 Verilog 2001 has logical and arithmetic shift operators. The logical shift operators shift

a vector operand to the right or the left by a specified number of bits. The vacated bit

positions are filled with zeros. For example, if R = 11010, then the statement

 R = R >> 1;

 shifts R to the right one position. The value of R that results from the logical right‐shift

operation (11010) >> 1 is 01101. In contrast, the arithmetic right‐shift operator fills the

vacated cell (the most significant bit (MSB)) with its original contents when the word

is shifted to the right. The arithmetic left‐shift operator fills the vacated cell with a 0

when the word is shifted to the left. The arithmetic right‐shift operator is used when the

sign extension of a number is important. If R = 11010, then the statement

 R >>> 1;

 produces the result R = 11101; if R = 01101, it produces the result R = 00110. There is

no distinction between the logical left‐shift and the arithmetic left‐shift operators.

 The concatenation operator provides a mechanism for appending multiple oper-

ands. It can be used to specify a shift, including the bits transferred into the vacant

positions. This aspect of its operation was shown in HDL Example 6.1 for the shift

register.

 Expressions are evaluated from left to right, and their operators associate from left

to right (with the exception of the conditional operator) according to the precedence

shown in Table 8.2 . For example, in the expression A + B – C , the value of B is added

to A, and then C is subtracted from the result. In the expression A + B/C, the value of

 B is divided by C, and then the result is added to A because the division operator (/)

has a higher precedence than the addition operator (+). Use parentheses to establish

precedence. For example, the expression (A + B)/ C is not the same as the expression

 A + B/C.

 Loop Statements

 Verilog HDL has four types of loops that execute procedural statements repeatedly:

 repeat, forever, while, and for. All looping statements must appear inside an initial or

 always block.

 The repeat loop executes the associated statements a specified number of times. The

following is an example that was used previously:

 initial
 begin
 clock = 1'b0;
 repeat (16)
 #5 clock = ~ clock;
 end

 This code toggles the clock 16 times and produces eight clock cycles with a cycle time

of 10 time units.

Section 8.3 Register Transfer Level in HDL 359

 The forever loop causes unconditional, repetitive execution of a procedural statement

or a block of procedural statements. For example, the following loop produces a con-

tinuous clock having a cycle time of 20 time units:

 initial
 begin
 clock = 1'b0;
 forever
 #10 clock = ~ clock;
 end

 The while loop executes a statement or a block of statements repeatedly while an

expression is true. If the expression is false to begin with, the statement is never exe-

cuted. The following example illustrates the use of the while loop:

 integer count;
 initial
 begin
 count = 0;
 while (count < 64)
 #5 count = count + 1;
 end

 Table 8.2
 Verilog Operator Precedence

 + − ! ~ & ~& | ~ | ^ ~^ ^~ (unary) Highest precedence

 **

 * / %

 + − (binary)

 << >> <<< >>>

 < < = > > =

 == != === !==

 & (binary)

 ̂ ^~ ~^ (binary)

 | (binary)

 &&

 ||

 ?: (conditional operator)

 { } { { } } Lowest precedence

360 Chapter 8 Design at the Register Transfer Level

 The value of count is incremented from 0 to 63. Each increment is delayed by five time

units, and the loop exits at the count of 64.

 In dealing with looping statements, it is sometimes convenient to use the integer data

type to index the loop. Integers are declared with the keyword integer, as in the previous

example. Although it is possible to use a reg variable to index a loop, sometimes it is

more convenient to declare an integer variable, rather than a reg, for counting purposes.

Variables declared as data type reg are stored as unsigned numbers. Those declared as

data type integer are store as signed numbers in 2’s‐complement format. The default

width of an integer is a minimum of 32 bits.

 The for loop is a compact way to express the operations implied by a list of state-

ments whose variables are indexed. The for loop contains three parts separated by two

semicolons:

 • An initial condition.

 • An expression to check for the terminating condition.

 • An assignment to change the control variable.

 The following is an example of a for loop:

 for (j = 0; j < 8; j = j + 1)
 begin
 // procedural statements go here
 end

 The for loop statement repeats the execution of the procedural statements eight times. The

control variable is j, the initial condition is j = 0, and the loop is repeated as long as j is less

than 8. After each execution of the loop statement, the value of j is incremented by 1.

 A description of a two‐to‐four‐line decoder using a for loop is shown in HDL Exam-

ple 8.1. Since output Y is evaluated in a procedural statement, it must be declared as

type reg . The control variable for the loop is the integer k . When the loop is expanded

(unrolled), we get the following four conditions (IN and Y are in binary, and the index

for Y is in decimal):

 if IN = 00 then Y(0) = 1; else Y(0) = 0;

 if IN = 01 then Y(1) = 1; else Y(1) = 0;

 if IN = 10 then Y(2) = 1; else Y(2) = 0;

 if IN = 11 then Y(3) = 1; else Y(3) = 0;

 HDL Example 8.1 (Decoder)

 // Description of 2 x 4 decoder using a for loop statement
 module decoder (IN, Y);
 input [1: 0] IN; // Two binary inputs
 output [3: 0] Y; // Four binary outputs
 reg [3: 0] Y;
 integer k; // Control (index) variable for loop

Section 8.3 Register Transfer Level in HDL 361

 Logic Synthesis

 Logic synthesis is the automatic process by which a computer‐based program (i.e., a

synthesis tool) transforms an HDL model of a logic circuit into an optimized netlist of

gates that perform the operations specified by the source code. There are various target

technologies that implement the synthesized design in hardware. The effective use of

an HDL description requires that designers adopt a vendor‐specific style suitable for

the particular synthesis tools. The type of ICs that implement the design may be an

application‐specific integrated circuit (ASIC), a programmable logic device (PLD), or

a field‐programmable gate array (FPGA). Logic synthesis is widely used in industry to

design and implement large circuits efficiently, correctly, and rapidly.

 Logic synthesis tools interpret the source code of the HDL and translate it into

an optimized gate structure, accomplishing (correctly) all of the work that would be

done by manual methods using Karnaugh maps. Designs written in Verilog or a compa-

rable language for the purpose of logic synthesis tend to be at the register transfer level.

This is because the HDL constructs used in an RTL description can be converted into

a gate‐level description in a straightforward manner. The following examples discuss

how a logic synthesizer can interpret an HDL construct and convert it into a gate

 structure.

 The continuous assignment (assign) statement is used to describe combinational

circuits. In an HDL, it represents a Boolean equation for a logic circuit. A continuous

assignment with a Boolean expression for the right‐hand side of the assignment state-

ment is synthesized into the corresponding gate circuit implementing the expression.

An expression with an addition operator (+) is interpreted as a binary adder using

full‐adder circuits. An expression with a subtraction operator (−) is converted into a

gate‐level subtractor consisting of full adders and exclusive‐OR gates (Fig. 4.13).

A statement with a conditional operator such as

 assign Y = S ? In_1 : In_0;

 translates into a two‐to‐one‐line multiplexer with control input S and data inputs In_1

and In_0 . A statement with multiple conditional operators specifies a larger multiplexer.

 A cyclic behavior (always . . .) may imply a combinational or sequential circuit,

depending on whether the event control expression is level sensitive or edge sensitive.

A synthesis tool will interpret as combinational logic a level‐sensitive cyclic behavior

whose event control expression is sensitive to every variable that is referenced within

the behavior (e.g., by the variable’s appearing in the right‐hand side of an assignment

 always @ (IN)
 for (k = 0; k <= 3; k = k + 1)
 if (IN == k) Y[k] = 1;
 else Y[k] = 0;
 endmodule

362 Chapter 8 Design at the Register Transfer Level

statement). The event control expression in a description of combinational logic may

not be sensitive to an edge of any signal. For example,

 always @ (In_1 or In_0 or S) // Alternative: (In_1, In_0, S)
 if (S) Y = In_1;
 else Y = In_0;

 translates into a two‐to‐one‐line multiplexer. As an alternative, the case statement may

be used to imply large multiplexers. The casex statement treats the logic values x and z

as don’t‐cares when they appear in either the case expression or a case item.

 An edge‐sensitive cyclic behavior (e.g., always @ (posedge clock)) specifies a syn-

chronous (clocked) sequential circuit. The implementation of the corresponding circuit

consists of D flip‐flops and the gates that implement the synchronous register transfer

operations specified by the statements associated with the event control expression.

Examples of such circuits are registers and counters. A sequential circuit description

with a case statement translates into a control circuit with D flip‐flops and gates that

form the inputs to the flip‐flops. Thus, each statement in an RTL description is inter-

preted by the synthesizer and assigned to a corresponding gate and flip‐flop circuit. For

synthesizable sequential circuits, the event control expression must be sensitive to the

positive or the negative edge of the clock (synchronizing signal), but not to both.

 A simplified flowchart of the process used by industry to design digital systems is

shown in Fig. 8.1 . The RTL description of the HDL design is simulated and checked for

proper operation. Its operational features must match those given in the specification

for the behavior of the circuit. The test bench provides the stimulus signals to the simu-

lator. If the result of the simulation is not satisfactory, the HDL description is corrected

and checked again. After the simulation run shows a valid design, the RTL description

is ready to be compiled by the logic synthesizer. All errors (syntax and functional) in

the description must be eliminated before synthesis. The synthesis tool generates a

netlist equivalent to a gate‐level description of the design as it is represented by the

model. If the model fails to express the functionality of the specification, the circuit will

fail to do so also. The gate‐level circuit is simulated with the same set of stimuli used to

check the RTL design. If any corrections are needed, the process is repeated until a

satisfactory simulation is achieved. The results of the two simulations are compared to

see if they match. If they do not, the designer must change the RTL description to correct

any errors in the design. Then the description is compiled again by the logic synthesizer

to generate a new gate‐level description. Once the designer is satisfied with the results

of all simulation tests, the design of the circuit is ready for physical implementation in a

technology. In practice, additional testing will be performed to verify that the timing

specifications of the circuit can be met in the chosen hardware technology. That issue is

not within the scope of this text.

 Logic synthesis provides several advantages to the designer. It takes less time to write

an HDL description and synthesize a gate‐level realization than it does to develop the

circuit by manual entry from schematic diagrams. The ease of changing the description

facilitates exploration of design alternatives. It is faster, easier, less expensive, and less

risky to check the validity of the design by simulation than it is to produce a hardware

Section 8.4 Algorithmic State Machines (ASMs) 363

prototype for evaluation. A schematic and the database for fabricating the integrated

circuit can be generated automatically by synthesis tools. The HDL model can be com-

piled by different tools into different technologies (e.g., ASIC cells or FPGAs), provid-

ing multiple returns on the investment to create the model.

 8 . 4 A L G O R I T H M I C S TAT E M A C H I N E S (A S M s)

 The binary information stored in a digital system can be classified as either data or

control information. Data are discrete elements of information (binary words) that are

manipulated by performing arithmetic, logic, shift, and other similar data‐processing

Develop/edit HDL
description

Yes

Correct?
No

Simulate/verify HDL
description

Synthesis
tools?

Synthesize
netlist

Develop
(manually)
gate-level

model

Simulate netlist/model

Compare
simulation

results

Create production
masks for ICs

Yes

Test bench

Match?
No

Yes No

Develop specification

 FIGURE 8.1
 A simplified flowchart for HDL‐based modeling, verification, and synthesis

364 Chapter 8 Design at the Register Transfer Level

operations. These operations are implemented with digital hardware components such

as adders, decoders, multiplexers, counters, and shift registers. Control information pro-

vides command signals that coordinate and execute the various operations in the data

section of the machine in order to accomplish the desired data‐processing tasks.

 The design of the logic of a digital system can be divided into two distinct efforts. One

part is concerned with designing the digital circuits that perform the data‐processing

operations. The other part is concerned with designing the control circuits that deter-

mine the sequence in which the various manipulations of data are performed.

 The relationship between the control logic and the data‐processing operations in a

digital system is shown in Fig. 8.2 . The data‐processing path, commonly referred to as

the datapath unit, manipulates data in registers according to the system’s requirements.

The control unit issues a sequence of commands to the datapath unit. Note that an

internal feedback path from the datapath unit to the control unit provides status condi-

tions that the control unit uses together with the external (primary) inputs to determine

the sequence of control signals (outputs of the control unit) that direct the operation

of the datapath unit. We’ll see later that understanding how to model this feedback

relationship with an HDL is very important.

 The control logic that generates the signals for sequencing the operations in the

datapath unit is a finite state machine (FSM), i.e., a synchronous sequential circuit. The

control commands for the system are produced by the FSM as functions of the primary

inputs, the status signals, and the state of the machine. In a given state, the outputs of

the controller are the inputs to the datapath unit and determine the operations that it

will execute. Depending on status conditions and other external inputs, the FSM goes

to its next state to initiate other operations. The digital circuits that act as the control

logic provide a time sequence of signals for initiating the operations in the datapath and

also determine the next state of the control subsystem itself.

Control unit
(FSM)

Input
data

Datapath
unit

Output
data

Control
signals

Status
signals

Input
signals

(external)

 FIGURE 8.2
 Control and datapath interaction

Section 8.4 Algorithmic State Machines (ASMs) 365

 The control sequence and datapath tasks of a digital system are specified by means of

a hardware algorithm. An algorithm consists of a finite number of procedural steps that

specify how to obtain a solution to a problem. A hardware algorithm is a procedure for

solving the problem with a given piece of equipment. The most challenging and creative

part of digital design is the formulation of hardware algorithms for achieving required

objectives. The goal is to implement the algorithms in silicon as an integrated circuit.

 A flowchart is a convenient way to specify the sequence of procedural steps and deci-

sion paths for an algorithm. A flowchart for a hardware algorithm translates the verbal

instructions to an information diagram that enumerates the sequence of operations

together with the conditions necessary for their execution. An algorithmic state machine

(ASM) chart is a flowchart that has been developed to specifically define algorithms for

execution on digital hardware. A state machine is another term for a sequential circuit,

which is the basic structure of a digital system.

 ASM Chart

 An ASM chart resembles a conventional flowchart, but is interpreted somewhat differ-

ently. A conventional flowchart describes the procedural steps and decision paths of an

algorithm in a sequential manner, without taking into consideration their time relation-

ship. The ASM chart describes the sequence of events, i.e., the ordering of events in time,

as well as the timing relationship between the states of a sequential controller and the

events that occur while going from one state to the next (i.e., the events that are syn-

chronous with changes in the state). The chart is adapted to specify accurately the con-

trol sequence and datapath operations in a digital system, taking into consideration the

constraints of digital hardware.

 An ASM chart is composed of three basic elements: the state box, the decision box,

and the conditional box. The boxes themselves are connected by directed edges indicat-

ing the sequential precedence and evolution of the states as the machine operates. There

are various ways to attach information to an ASM chart. In one, a state in the control

sequence is indicated by a state box, as shown in Fig. 8.3 (a). The shape of the state box

is a rectangle within which are written register operations or the names of output signals

that the control generates while being in the indicated state. The state is given a symbolic

name, which is placed within the upper left corner of the box. The binary code assigned

to the state is placed at the upper right corner. (The state symbol and code can be placed

State name
Moore-type
output signals, register operations

Binary code 0101

S_pause
R 0

Start_OP_A

(a) (b)

 FIGURE 8.3
 ASM chart state box

366 Chapter 8 Design at the Register Transfer Level

in other places as well.) Figure 8.3 (b) gives an example of a state box. The state has the

symbolic name S_pause, and the binary code assigned to it is 0101. Inside the box is writ-

ten the register operation R d 0 , which indicates that register R is to be cleared to 0. The

name Start_OP_A inside the box indicates, for example, a Moore‐type output signal that

is asserted while the machine is in state S_pause and that launches a certain operation

in the datapath unit.

 The style of state box shown in Fig. 8.3 (b) is sometimes used in ASM charts, but it can

lead to confusion about when the register operation R d 0 is to execute. Although the

operation is written inside the state box, it actually occurs when the machine makes a

transition from S_pause to its next state. In fact, writing the register operation within the

state box is a way (albeit possibly confusing) to indicate that the controller must assert

a signal that will cause the register operation to occur when the machine changes state.

Later we’ll introduce a chart and notation that are more suited to digital design and that

will eliminate any ambiguity about the register operations controlled by a state machine.

 The decision box of an ASM chart describes the effect of an input (i.e., a primary, or

external, input or a status, or internal, signal) on the control subsystem. The box is dia-

mond shaped and has two or more exit paths, as shown in Fig. 8.4 . The input condition

to be tested is written inside the box. One or the other exit path is taken, depending on

the evaluation of the condition. In the binary case, one path is taken if the condition is

true and another when the condition is false. When an input condition is assigned a

binary value, the two paths are indicated by 1 and 0, respectively.

 The state and decision boxes of an ASM chart are similar to those used in conven-

tional flowcharts. The third element, the conditional box, is unique to the ASM chart.

The shape of the conditional box is shown in Fig. 8.5 (a). Its rounded corners differenti-

ate it from the state box. The input path to the conditional box must come from one of

the exit paths of a decision box. The outputs listed inside the conditional box are gener-

ated as Mealy‐type signals during a given state; the register operations listed in the

conditional box are associated with a transition from the state. Figure 8.5 (b) shows an

example with a conditional box. The control generates the output signal Start while in

state S_1 and checks the status of input Flag . If Flag = 1, then R is cleared to 0; otherwise,

 R remains unchanged. In either case, the next state is S_2 . A register operation is

Condition
1

2

3

Exit path

Exit path

Exit path

 FIGURE 8.4
 ASM chart decision box

Section 8.4 Algorithmic State Machines (ASMs) 367

 associated with S_2 . We again note that this style of chart can be a source of confusion,

because the state machine does not execute the indicated register operation R d 0 when

it is in S_1 or the operation F d G when it is in S_2 . The notation actually indicates that

when the controller is in S_1, it must assert a Mealy‐type signal that will cause the reg-

ister operation R d 0 to execute in the datapath unit1, subject to the condition that Flag

= 0. Likewise, in state S_2, the controller must generate a Moore‐type output signal that

causes the register operation F d G to execute in the datapath unit. The operations in

the datapath unit are synchronized to the clock edge that causes the state to move from

 S_1 to S_2 and from S_2 to S_3, respectively. Thus, the control signal generated in a given
state affects the operation of a register in the datapath when the next clock transition
occurs. The result of the operation is apparent in the next state.

 The ASM chart in Fig. 8.5 (b) mixes descriptions of the datapath and the controller.

An ASM chart for only the controller is shown in Fig. 8.5 (c), in which the register oper-

ations are omitted. In their place are the control signals that must be generated by the

control unit to launch the operations of the datapath unit. This chart is useful for describ-

ing the controller, but it does not contain adequate information about the datapath.

(We’ll address this issue later.)

Binary code

Conditional
(Mealy) outputs

and register
operations

State name
Moore-type output signals
Unconditional register
operations

Condition R 0

F G

S_1

001

Flag

S_2

0

Reset_b

010

Start

1

S_3

100

S_1

001

Flag

Load_F_G

0

Reset_b

010

Flush_R

Start

1

S_3

100

S_2

(a) (b) (c)

 FIGURE 8.5
 ASM chart conditional box and examples

1 If the path came from a state box the asserted signals would be moore type signals, dependent on only the

state, and should be listed within the box.

368 Chapter 8 Design at the Register Transfer Level

 ASM Block

 An ASM block is a structure consisting of one state box and all the decision and condi-

tional boxes connected to its exit path. An ASM block has one entrance and any number

of exit paths represented by the structure of the decision boxes. An ASM chart consists

of one or more interconnected blocks. An example of an ASM block is given in Fig. 8.6 .

Associated with state S_0 are two decision boxes and one conditional box. The diagram

distinguishes the block with dashed lines around the entire structure, but this is not usu-

ally done, since the ASM chart uniquely defines each block from its structure. A state

box without any decision or conditional boxes constitutes a simple block.

 Each block in the ASM chart describes the state of the system during one clock‐pulse

interval (i.e., the interval between two successive active edges of the clock). The opera-

tions within the state and conditional boxes in Fig. 8.6 (a) are initiated by a common

clock pulse when the state of the controller transitions from S_0 to its next state. The

same clock pulse transfers the system controller to one of the next states, S_1, S_2, or

 S_3, as dictated by the binary values of E and F . The ASM chart for the controller alone

is shown in Fig. 8.6 (b). The Moore‐type signal incr_A is asserted unconditionally while

the machine is in S_0 ; the Mealy‐type signal Clear_R is generated conditionally when

the state is S_0 and E is asserted. In general, the Moore‐type outputs of the controller

are generated unconditionally and are indicated within a state box; the Mealy‐type

outputs are generated conditionally and are indicated in the conditional boxes con-

nected to the edges that leave a decision box.

 The ASM chart is similar to a state transition diagram. Each state block is equivalent

to a state in a sequential circuit. The decision box is equivalent to the binary information

R 0

A A � 1
S_0

001

E

F

S_3S_1 S_2

1

010

Reset_b

100011

1

S_0

001

E

F

S_3S_1 S_2

1

010

Reset_b

100011

1

incr_A

Clear_B

(a) (b)

 FIGURE 8.6
 ASM blocks

Section 8.4 Algorithmic State Machines (ASMs) 369

written along the directed lines that connect two states in a state diagram. As a conse-

quence, it is sometimes convenient to convert the chart into a state diagram and then use

sequential circuit procedures to design the control logic. As an illustration, the ASM chart

of Fig. 8.6 is drawn as a state diagram (outputs are omitted) in Fig. 8.7 . The states are

symbolized by circles, with their binary values written inside. The directed lines indicate

the conditions that determine the next state. The unconditional and conditional opera-

tions that must be performed in the datapath unit are not indicated in the state diagram.

 Simplifications

 A binary decision box of an ASM chart can be simplified by labeling only the edge cor-

responding to the asserted decision variable and leaving the other edge without a label.

A further simplification is to omit the edges corresponding to the state transitions that

occur when a reset condition is asserted. Output signals that are not asserted are not shown

on the chart; the presence of the name of an output signal indicates that it is asserted.

 Timing Considerations

 The timing for all registers and flip‐flops in a digital system is controlled by a master‐

clock generator. The clock pulses are applied not only to the registers of the datapath,

but also to all the flip‐flops in the state machine implementing the control unit. Inputs

are also synchronized to the clock, because they are normally generated as outputs of

another circuit that uses the same clock signals. If the input signal changes at an arbitrary

time independently of the clock, we call it an asynchronous input. Asynchronous inputs

may cause a variety of problems. To simplify the design, we will assume that all inputs

are synchronized with the clock and change state in response to an edge transition.

 The major difference between a conventional flowchart and an ASM chart is in inter-

preting the time relationship among the various operations. For example, if Fig. 8.6 were

a conventional flowchart, then the operations listed would be considered to follow one

after another in sequence: First register A is incremented, and only then is E evaluated.

If E = 1, then register R is cleared and control goes to state S_3 . Otherwise (if E = 0),

the next step is to evaluate F and go to state S_1 or S_2 . In contrast, an ASM chart con-

siders the entire block as one unit. All the register operations that are specified within

001

011

010 100

EF � 00

EF � 01

E � 1

 FIGURE 8.7
 State diagram equivalent to the ASM chart of Fig. 8.6

370 Chapter 8 Design at the Register Transfer Level

the block must occur in synchronism at the edge transition of the same clock pulse while

the system changes from S_0 to the next state. This sequence of events is presented

pictorially in Fig. 8.8 . In this illustration, we assume positive‐edge triggering of all flip‐

flops. An asserted asynchronous reset signal (reset_b) transfers the control circuit into

state S_0 . While in state S_0, the control circuits check inputs E and F and generate

appropriate signals accordingly. If reset_b is not asserted, the following operations occur

simultaneously at the next positive edge of the clock:

 1. Register A is incremented.

 2. If E = 1, register R is cleared.

 3. Control transfers to the next state, as specified in Fig. 8.7 .

 Note that the two operations in the datapath and the change of state in the control logic

occur at the same time. Note also that the ASM chart in Fig. 8.6 (a) indicates the register

operations that must occur in the datapath unit, but does not indicate the control signal

that is to be formed by the control unit. Conversely, the chart in Fig. 8.6 (b) indicates the

control signals, but not the datapath operations. We will now present an ASMD chart to

provide the clarity and complete information needed by logic designers.

 ASMD Chart

 Algorithmic state machine and datapath (ASMD) charts were developed to clarify the

information displayed by ASM charts and to provide an effective tool for designing a

control unit for a given datapath unit. An ASMD chart differs from an ASM chart in

three important ways: (1) An ASMD chart does not list register operations within a state

box, (2) the edges of an ASMD chart are annotated with register operations that are

concurrent with the state transition indicated by the edge, and (3) an ASMD chart

includes conditional boxes identifying the signals which control the register operations

that annotate the edges of the chart. Thus, an ASMD chart associates register operations
with state transitions rather than with states ; it also associates register operations with the

signals that cause them. Consequently, an ASMD chart represents a partition of a com-

plex digital machine into its datapath and control units and clearly indicates the relation-

ship between them. There is no room for confusion about the timing of register

operations or about the signals that launch them.

 Designers form an ASMD chart in a three‐step process that creates an annotated and

completely specified ASM chart for the controller of a datapath unit.

Present state
(S_0)

Next state
(S_1 or S_2 or S_3)

Clock

Positive edge of Clock

 FIGURE 8.8
 Transition between states

Section 8.5 Design Example (ASMD Chart) 371

 The steps to form an ASMD chart are:

 1. Form an ASM chart showing only the states of the controller and the input signals 2

that cause state transitions,

 2. Convert the ASM chart into an ASMD chart by annotating the edges of the ASM

chart to indicate the concurrent register operations of the datapath unit (i.e., reg-

ister operations that are concurrent with a state transition), and

 3. Modify the ASMD chart to identify the control signals that are generated by the

controller and that cause the indicated operations in the datapath unit.

 The ASMD chart produced by this process clearly and completely specifies the finite

state machine of the controller, identifies the registers operations of the datapath unit,

identifies signals reporting the status of the datapath to the controller, and links register

operations to the signals that control them.

 One important use of a state machine is to control register operations on a datapath

in a sequential machine that has been partitioned into a controller and a datapath. An

ASMD chart links the ASM chart of the controller to the datapath it controls in a man-

ner that serves as a universal model representing all synchronous digital hardware

design. ASMD charts help clarify the design of a sequential machine by separating the

design of its datapath from the design of the controller, while maintaining a clear rela-

tionship between the two units. Register operations that occur concurrently with state

transitions are annotated on a path of the chart, rather than in state boxes or in condi-

tional boxes on the path, because these registers are not part of the controller. The

outputs generated by the controller are the signals that control the registers of the

datapath and cause the register operations annotated on the ASMD chart.

 8 . 5 D E S I G N E X A M P L E (A S M D C H A R T)

 We will now present a simple example demonstrating the use of the ASMD chart and

the register transfer representation. We start from the initial specifications of a system

and proceed with the development of an appropriate ASMD chart from which the

digital hardware is then designed.

 The datapath unit is to consist of two JK flip‐flops E and F, and one four‐bit binary

counter A[3: 0] . The individual flip‐flops in A are denoted by A3, A2, A1, and A0, with A3

holding the most significant bit of the count. A signal, Start, initiates the system’s oper-

ation by clearing the counter A and flip‐flop F . At each subsequent clock pulse, the

counter is incremented by 1 until the operations stop. Counter bits A2 and A3 determine

the sequence of operations:

 If A2 = 0 , E is cleared to 0 and the count continues.

 If A2 = 1 , E is set to 1; then, if A3 = 0 , the count continues, but if A3 = 1 , F is set to
1 on the next clock pulse and the system stops counting.

2 In general, the inputs to the control unit are external (primary) inputs and status signals that originate in

the datapath unit.

372 Chapter 8 Design at the Register Transfer Level

 Then, if Start = 0, the system remains in the initial state, but if Start = 1, the operation
cycle repeats.

 A block diagram of the system’s architecture is shown in Fig. 8.9 (a), with (1) the

registers of the datapath unit, (2) the external (primary) input signals, (3) the status

signals fed back from the datapath unit to the control unit, and (4) the control signals

generated by the control unit and input to the datapath unit. Note that the names of the

control signals clearly indicate the operations that they cause to be executed in the

datapath unit. For example, clr_A_F clears registers A and F . The name of the signal

 reset_b (alternatively, reset_bar) indicates that the reset action is active low. The internal

details of each unit are not shown.

 ASMD Chart

 An ASMD chart for the system is shown in Fig. 8.9 (b) for asynchronous reset action and

in Fig. 8.9 (c) for synchronous reset action. The chart shows the state transitions of the

controller and the datapath operations associated with those transitions. The chart is not

in its final form, for it does not identify the control signals generated by the controller.

The nonblocking Verilog operator (6=) is shown instead of the arrow (d) for register

transfer operations because we will ultimately use the ASMD chart to write a Verilog

description of the system.

 When the reset action is synchronous, the transition to the reset state is synchronous

with the clock. This transition is shown for S_idle in the diagram, but all other synchro-
nous reset paths are omitted for clarity . The system remains in the reset state, S_idle, until

 Start is asserted. When that happens (i.e., Start = 1), the state moves to S_1. At the next
clock edge, depending on the values of A2 and A3 (decoded in a priority order), the state

returns to S_1 or goes to S_2 . From S_2, it moves unconditionally to S_idle, where it

awaits another assertion of Start .
 The edges of the chart represent the state transitions that occur at the active (i.e.,

synchronizing) edge of the clock (e.g., the rising edge) and are annotated with the

register operations that are to occur in the datapath. With Start asserted in S_idle,

the state will transition to S_1 and the registers A and F will be cleared. Note that,

on the one hand, if a register operation is annotated on the edge leaving a state box,

the operation occurs unconditionally and will be controlled by a Moore‐type signal.

For example, register A is incremented at every clock edge that occurs while the

machine is in the state S_1 . On the other hand, the register operation setting register

 E annotates the edge leaving the decision box for A2 . The signal controlling the

operation will be a Mealy‐type signal asserted when the system is in state S_1 and

 A2 has the value 1. Likewise, the control signal clearing A and F is asserted condition-

ally: The system is in state S_idle and Start is asserted.

 In addition to showing that the counter is incremented in state S_1, the annotated

paths show that other operations occur conditionally with the same clock edge:

 Either E is cleared and control stays in state S_1 (A2 = 0) or

 E is set and control stays in state S_1 (A2A3 = 10) or

 E is set and control goes to state S_2 (A2A3 = 11).

Section 8.5 Design Example (ASMD Chart) 373

Status signals

ControllerStart

reset_b
clock

set_F
clr_A_F

set_E
clr_E

incr_A

Datapath

A

E

F

A3

A2

(a)

E �� 0

F �� 1 F �� 1 F �� 1

A �� 0
F �� 0

A �� A � 1

1

Start

1

A2

S_1

S_idle

A3

S_2

1

reset_b

E �� 1

Note: A3 denotes A[3],
A2 denotes A[2],
�� denotes nonblocking assignment
reset_b denotes active-low reset condition

(b)

1

A2

1

S_1
incr_A

S_idle

A3

S_2
set_F

1

clr_E

reset_b

clr_A_F

set_E

E �� 0

A �� A � 1

E �� 1

A �� 0
F �� 0

(d)

1

Start

1

1

A2

reset_b

S_1

S_idle

E �� 0

A3

S_2

1

A �� 0
F �� 0

A �� A � 1

E �� 1

(c)

Start

 FIGURE 8.9
 (a) Block diagram for design example
 (b) ASMD chart for controller state transitions, asynchronous reset
 (c) ASMD chart for controller state transitions, synchronous reset
 (d) ASMD chart for a completely specified controller, asynchronous reset

374 Chapter 8 Design at the Register Transfer Level

 When control is in state S_2, a Moore‐type control signal must be asserted to set flip‐flop

 F to 1, and the state returns to S_idle at the next active edge of the clock.
 The third and final step in creating the ASMD chart is to insert conditional boxes for

the signals generated by the controller or to insert Moore‐type signals in the state boxes,

as shown in Fig. 8.9 (d). The signal clr_A_F is generated conditionally in state S_idle,
 incr_A is generated unconditionally in S_1, clr_E and set_E are generated conditionally

in S_1, and set_F is generated unconditionally in S_2. The ASM chart has three states

and three blocks. The block associated with S_idle consists of the state box, one decision

box, and one conditional box. The block associated with S_2 consists of only the state

box. In addition to clock and reset_b, the control logic has one external input, Start, and

two status inputs, A2 and A3.

 In this example, we have shown how a verbal (text) description (specification) of a

design is translated into an ASMD chart that completely describes the controller for the

datapath, indicating the control signals and their associated register operations. This

design example does not necessarily have a practical application, and in general, depend-

ing on the interpretation, the ASMD chart produced by the three‐step design process

for the controller may be simplified and formulated differently. However, once the

ASMD chart is established, the procedure for designing the circuit is straightforward.

 In practice, designers use the ASMD chart to write Verilog models of the controller and
the datapath and then synthesize a circuit directly from the Verilog description . We will

first design the system manually and then write the HDL description, keeping synthesis

as an optional step for those who have access to synthesis tools.

 Timing Sequence

 Every block in an ASMD chart specifies the signals which control the operations that

are to be initiated by one common clock pulse. The control signals specified within the

state and conditional boxes in the block are formed while the controller is in the indi-

cated state, and the annotated operations occur in the datapath unit when the state

makes a transition along an edge that exits the state. The change from one state to the

next is performed in the control logic. In order to appreciate the timing relationship

involved, we will list the step‐by‐step sequence of operations after each clock edge,

beginning with an assertion of the signal Start until the system returns to the reset (ini-

tial) state, S_idle .

 Table 8.3 shows the binary values of the counter and the two flip‐flops after every

clock pulse. The table also shows separately the status of A2 and A3 , as well as the pres-

ent state of the controller. We start with state S_1 right after the input signal Start has

caused the counter and flip‐flop F to be cleared. We will assume that the machine had

been running before it entered S_idle, instead of entering it from a reset condition.

Therefore, the value of E is assumed to be 1, because E is set to 1 when the machine

enters S _ 2, before moving to S_idle (as shown at the bottom of the table), and because

 E does not change during the transition from S_idle to S_1. The system stays in state S_1

during the next 13 clock pulses. Each pulse increments the counter and either clears or

sets E . Note the relationship between the time at which A2 becomes a 1 and the time at

Section 8.5 Design Example (ASMD Chart) 375

which E is set to 1. When A = (A3 A2 A1 A0) 0011, the next (4th) clock pulse increments

the counter to 0100, but that same clock edge sees the value of A2 as 0, so E remains

cleared. The next (5th) pulse changes the counter from 0100 to 0101, and because A2 is

equal to 1 before the clock pulse arrives, E is set to 1. Similarly, E is cleared to 0 not when

the count goes from 0111 to 1000, but when it goes from 1000 to 1001, which is when

 A2 is 0 in the present value of the counter.

 When the count reaches 1100, both A2 and A3 are equal to 1. The next clock edge

increments A by 1, sets E to 1, and transfers control to state S_2 . Control stays in S_2

for only one clock period. The clock edge associated with the path leaving S _ 2 sets flip‐

flop F to 1 and transfers control to state S_idle . The system stays in the initial state S_idle

as long as Start is equal to 0.

 From an observation of Table 8.3 , it may seem that the operations performed on E

are delayed by one clock pulse. This is the difference between an ASMD chart and a

conventional flowchart. If Fig. 8.9 (d) were a conventional flowchart, we would assume

that A is first incremented and the incremented value would have been used to check

the status of A2 . The operations that are performed in the digital hardware, as specified

by a block in the ASMD chart, occur during the same clock cycle and not in a sequence

of operations following each other in time, as is the usual interpretation in a conven-

tional flowchart. Thus, the value of A2 to be considered in the decision box is taken

 Table 8.3
 Sequence of Operations for Design Example

 Counter Flip‐Flops

 A3 A2 A1 A0 E F Conditions State

 0 0 0 0 1 0 A2 = 0, A3 = 0 S_1

 0 0 0 1 0 0

 0 0 1 0 0 0

 0 0 1 1 0 0

 0 1 0 0 0 0 A2 = 1, A3 = 0

 0 1 0 1 1 0

 0 1 1 0 1 0

 0 1 1 1 1 0

 1 0 0 0 1 0 A2 = 0, A3 = 1

 1 0 0 1 0 0

 1 0 1 0 0 0

 1 0 1 1 0 0

 1 1 0 0 0 0 A2 = 1, A3 = 1

 1 1 0 1 1 0 S_2

 1 1 0 1 1 1 S_idle

376 Chapter 8 Design at the Register Transfer Level

from the value of the counter in the present state and before it is incremented. This is

because the decision box for E belongs with the same block as state S_1 . The digital

circuits in the control unit generate the signals for all the operations specified in the

present block prior to the arrival of the next clock pulse . The next clock edge executes

all the operations in the registers and flip‐flops, including the flip‐flops in the controller

that determine the next state, using the present values of the output signals of the

controller. Thus, the signals that control the operations in the datapath unit are formed

in the controller in the clock cycle (control state) preceding the clock edge at which the

operations execute.

 Controller and Datapath Hardware Design

 The ASMD chart provides all the information needed to design the digital system — the

datapath and the controller. The actual boundary between the hardware of the control-

ler and that of the datapath can be arbitrary, but we advocate, first, that the datapath

unit contain only the hardware associated with its operations and the logic required,

perhaps, to form status signals used by the controller, and, second, that the control unit

contain all of the logic required to generate the signals that control the operations of

the datapath unit. The requirements for the design of the datapath are indicated by the

control signals inside the state and conditional boxes of the ASMD chart and are spec-

ified by the annotations of the edges indicating datapath operations. The control logic

is determined from the decision boxes and the required state transitions. The hardware

configuration of the datapath and controller is shown in Fig. 8.10 .

 Note that the input signals of the control unit are the external (primary) inputs (Start,
 reset_b, and clock) and the status signals from the datapath (A2 and A3). The status

signals provide information about the present condition of the datapath. This informa-

tion, together with the primary inputs and information about the present state of the

machine, is used to form the output of the controller and the value of the next state. The

outputs of the controller are inputs to the datapath and determine which operations will

be executed when the clock undergoes a transition. Note, also, that the state of the con-

trol unit is not an output of the control unit.

 The control subsystem is shown in Fig. 8.10 with only its inputs and outputs, with

names matching those of the ASMD chart. The detailed design of the controller is con-

sidered subsequently. The datapath unit consists of a four‐bit binary counter and two

 JK flip‐flops. The counter is similar to the one shown in Fig. 6.12, except that additional

internal gates are required for the synchronous clear operation. The counter is incre-

mented with every clock pulse when the controller state is S_1 . It is cleared only when

control is at state S_idle and Start is equal to 1. The logic for the signal clr_A_F will be

included in the controller and requires an AND gate to guarantee that both conditions

are present. Similarly, we can anticipate that the controller will use AND gates to form

signals set_E and clr_E . Depending on whether the controller is in state S_1 and whether

 A2 is asserted, set_F controls flip‐flop F and is asserted unconditionally during state S_2 .

Note that all flip‐flops and registers, including the flip‐flops in the control unit, use a

common clock.

Section 8.5 Design Example (ASMD Chart) 377

 Register Transfer Representation

 A digital system is represented at the register transfer level by specifying the registers

in the system, the operations performed, and the control sequence. The register opera-

tions and control information can be specified with an ASMD chart. It is convenient to

separate the control logic from the register operations of the datapath. The ASMD chart

provides this separation and a clear sequence of steps to design a controller for a data-

path. The control information and register transfer operations can also be represented

separately, as shown in Fig. 8.11 . The state diagram specifies the control sequence, and

the register operations are represented by the register transfer notation introduced in

 FIGURE 8.10
 Datapath and controller for design example

C

J

K

set_E
clr_E
set_F

clr_A_F
incr_A

C

J

K

E

F

A3 A2 A1 A0

4-bit counter with
synchronous clear

clock

clock

A3

A2

Start
Controller

Datapath

Start

reset_b

reset_b

Q

Q

A

Design_Example

4

378 Chapter 8 Design at the Register Transfer Level

Section 8.2. The state transition and the signal controlling the register operation are

shown with the operation. This representation is an alternative to the representation of

the system described in the ASMD chart of Fig. 8.9 (d). Only the ASMD chart is really

needed, but the state diagram for the controller is an alternative representation that is

useful in manual design. The information for the state diagram is taken directly from

the ASMD chart. The state names are specified in each state box. The conditions that

cause a change of state are specified inside the diamond‐shaped decision boxes of the

ASMD chart and are used to annotate the state diagram. The directed lines between

states and the condition associated with each follow the same path as in the ASMD

chart. The register transfer operations for each of the three states are listed following

the name of the state. They are taken from the state boxes or the annotated edges of the

ASMD chart.

 State Table

 The state diagram can be converted into a state table from which the sequential circuit

of the controller can be designed. First, we must assign binary values to each state in the

ASMD chart. For n flip‐flops in the control sequential circuit, the ASMD chart can

accommodate up to 2n states. A chart with 3 or 4 states requires a sequential circuit with

two flip‐flops. With 5 to 8 states, there is a need for three flip‐flops. Each combination

of flip‐flop values represents a binary number for one of the states.

 A state table for a controller is a list of present states and inputs and their correspond-

ing next states and outputs. In most cases, there are many don’t‐care input conditions

 FIGURE 8.11
 Register transfer‐level description of design example

A2 � 0

A2A3 � 10

A2A3 � 11

(a)

Start � 1

Start � 0

(b)

S_idle

S_1 S_1, incr_A:

if (A2 � 1) then set_E:

if (A2 � 0) then clr_E:

S_2 S_idle, set_F:

S_1, clr_A_F: A 0, F 0

A A � 1

E 1

E 0

F 1

S_2S_idle S_1

Section 8.5 Design Example (ASMD Chart) 379

that must be included, so it is advisable to arrange the state table to take those conditions

into consideration. We assign the following binary values to the three states: S_idle = 00,

 S_1 = 01, and S_2 = 11. Binary state 10 is not used and will be treated as a don’t‐care

condition. The state table corresponding to the state diagram is shown in Table 8.4 . Two

flip‐flops are needed, and they are labeled G1 and G0 . There are three inputs and five

outputs. The inputs are taken from the conditions in the decision boxes. The outputs

depend on the inputs and the present state of the control. Note that there is a row in the

table for each possible transition between states. Initial state 00 goes to state 01 or stays

in 00, depending on the value of input Start . The other two inputs are marked with

don’t‐care X’s, as they do not determine the next state in this case. While the system is

in binary state 00 with Start = 1, the control unit provides an output labeled clr_A_F to

initiate the required register operations. The transition from binary state 01 depends on

inputs A2 and A3 . The system goes to binary state 11 only if A2A3 = 11; otherwise, it

remains in binary state 01. Finally, binary state 11 goes to 00 independently of the input

variables.

 Control Logic

 The procedure for designing a sequential circuit starting from a state table was pre-

sented in Chapter 5 . If this procedure is applied to Table 8.4 , we need to use five‐

variable maps to simplify the input equations. This is because there are five variables

listed under the present‐state and input columns of the table. Instead of using maps

to simplify the input equations, we can obtain them directly from the state table by

inspection. To design the sequential circuit of the controller with D flip‐flops, it is

necessary to go over the next‐state columns in the state table and derive all the

conditions that must set each flip‐flop to 1. From Table 8.4 , we note that the next‐

state column of G1 has a single 1 in the fifth row. The D input of flip‐flop G1 must

 Table 8.4
 State Table for the Controller of Fig. 8.10

 Present
State Inputs

 Next
State Outputs

 Present‐State
Symbol G1 G0 Start A2 A3 G1 G0

 S_idle 0 0 0 X X 0 0 0 0 0 0 0

 S_idle 0 0 1 X X 0 1 0 0 0 1 0

 S_1 0 1 X 0 X 0 1 0 1 0 0 1

 S_1 0 1 X 1 0 0 1 1 0 0 0 1

 S_1 0 1 X 1 1 1 1 1 0 0 0 1

 S_2 1 1 X X X 0 0 0 0 1 0 0

 se
t_

E

 se
t_

F

 cl
r_

E

 cl
r_

A
_F

 in
cr

_A

380 Chapter 8 Design at the Register Transfer Level

be equal to 1 during present state S_1 when both inputs A2 and A3 are equal to 1.

This condition is expressed with the D flip‐flop input equation

 DG1 = S_1 A2A3

 Similarly, the next‐state column of G0 has four 1’s, and the condition for setting this

flip‐flop is

 DG0 = Start S_idle + S_1

 To derive the five output functions, we can exploit the fact that binary state 10 is not

used, which simplifies the equation for clr_A_F and enables us to obtain the following

simplified set of output equations:

 set_E = S_1A2

clr_E = S_1A2�

set_F = S_2

clr_A_F = Start S_idle

incr_A = S_1

 The logic diagram showing the internal detail of the controller of Fig. 8.10 is drawn in

 Fig. 8.12 . Note that although we derived the output equations from Table 8.4 , they can

also be obtained directly by inspection of Fig. 8.9 (d). This simple example illustrates the

 FIGURE 8.12
 Logic diagram of the control unit for Fig. 8.10

clr_A_F

clock

Start

C

D

C

D

G0

A2

A3

G1 set_F

incr_A

set_E

clr_E

reset_b

w2

w3

w1

Section 8.6 HDL Description of Design Example 381

manual design of a controller for a datapath, using an ASMD chart as a starting point.

The fact that synthesis tools automatically execute these steps should be appreciated.

 8 . 6 H D L D E S C R I P T I O N O F D E S I G N E X A M P L E

 In previous chapters, we gave examples of HDL descriptions of combinational circuits,

sequential circuits, and various standard components such as multiplexers, counters, and

registers. We are now in a position to incorporate these components into the description

of a specific design. As mentioned previously, a design can be described either at the

structural or behavioral level. Behavioral descriptions may be classified as being either

at the register transfer level or at an abstract algorithmic level. Consequently, we now

consider three levels of design: structural description, RTL description, and algorithmic‐

based behavioral description.

 The structural description is the lowest and most detailed level. The digital system is

specified in terms of the physical components and their interconnection. The various

components may include gates, flip‐flops, and standard circuits such as multiplexers and

counters. The design is hierarchically decomposed into functional units, and each unit is

described by an HDL module. A top‐level module combines the entire system by instan-

tiating all the lower level modules. This style of description requires that the designer

have sufficient experience not only to understand the functionality of the system, but

also to implement it by selecting and connecting other functional elements.

 The RTL description specifies the digital system in terms of the registers, the opera-

tions performed, and the control that sequences the operations. This type of description

simplifies the design process because it consists of procedural statements that determine

the relationship between the various operations of the design without reference to any

specific structure. The RTL description implies a certain hardware configuration among

the registers, allowing the designer to create a design that can be synthesized automati-

cally, rather than manually, into standard digital components.

 The algorithmic‐based behavioral description is the most abstract level, describing

the function of the design in a procedural, algorithmic form similar to a programming

language. It does not provide any detail on how the design is to be implemented with

hardware. The algorithmic‐based behavioral description is most appropriate for simulat-

ing complex systems in order to verify design ideas and explore trade-offs. Descriptions

at this level are accessible to nontechnical users who understand programming lan-

guages. Some algorithms, however, might not be synthesizable.

 We will now illustrate the RTL and structural descriptions by using the design exam-

ple of the previous section. The design example will serve as a model of coding style for

future examples and will exploit alternative syntax options supported by revisions to

the Verilog language. (An algorithmic‐based description is illustrated in Section 8.9.)

 RTL Description

 The block diagram in Fig. 8.10 describes the design example. An HDL description of

the design example can be written as a single RTL description in a Verilog module or

382 Chapter 8 Design at the Register Transfer Level

as a top‐level module having instantiations of separate modules for the controller and

the datapath. The former option simply ignores the boundaries between the functional

units; the modules in the latter option establish the boundaries shown in Fig. 8.9 (a) and

 Fig. 8.10 . We advocate the second option, because, in general, it distinguishes more

clearly between the controller and the datapath. This choice also allows one to easily

substitute alternative controllers for a given datapath (e.g., replace an RTL model by

a structural model). The RTL description of the design example is shown in HDL

Example 8.2. The description follows the ASMD chart of Fig. 8.9 (d), which contains a

complete description of the controller, the datapath, and the interface between them

(i.e., the outputs of the controller and the status signals). Likewise, our description has

three modules: Design_Example_RTL, Controller_RTL, and Datapath_RTL . The

descriptions of the controller and the datapath units are taken directly from Fig. 8.9 (d).

 Design_Example_RTL declares the input and output ports of the module and instanti-

ates Controller_RTL and Datapath_RTL . At this stage of the description, it is important

to remember to declare A as a vector. Failure to do so will produce port mismatch errors

when the descriptions are compiled together. Note that the status signals A[2] and A[3],

but not A[0] and A[1], are passed to the controller. The primary (external) inputs to

the controller are Start, clock (to synchronize the system), and reset_b . The active‐low

input signal reset_b is needed to initialize the state of the controller to S_idle . Without

that signal, the controller could not be placed in a known initial state.

 The controller is described by three cyclic (always) behaviors. An edge‐sensitive

behavior updates the state at the positive edge of the clock, depending on whether a

reset condition is asserted. Two level‐sensitive behaviors describe the combinational

logic for the next state and the outputs of the controller, as specified by the ASMD

chart. Notice that the description includes default assignments to all of the outputs

(e.g., set_E = 0). This approach allows the code of the case logic to be simplified by

expressing only explicit assertions of the variables (i.e., values are assigned by excep-

tion). The approach also ensures that every path through the assignment logic assigns

a value to every variable. Thus, a synthesis tool will interpret the logic to be combina-

tional; failure to assign a value to every variable on every path of logic implies the

need for a transparent latch (memory) to implement the logic. Synthesis tools will

provide the latch, wasting silicon area.

 The three states of the controller are given symbolic names and are encoded into

binary values. Only three of the possible two‐bit patterns are used, so the case statement

for the next‐state logic includes a default assignment to handle the possibility that one

of the three assigned codes is not detected. The alternative is to allow the hardware to

make an arbitrary assignment to the next state (next_state = 2�bx ;). Also, the first state-

ment of the next‐state logic assigns next_state = S_idle to guarantee that the next state

is assigned in every thread of the logic. This is a precaution against accidentally forget-

ting to make an assignment to the next state in every thread of the logic, with the result

that the description implies the need for memory, which a synthesis tool will implement

with a transparent latch.

 The description of Datapath_RTL is written by testing for an assertion of each

control signal from Controller_RTL . The register transfer operations are displayed in

Section 8.6 HDL Description of Design Example 383

the ASMD chart (Fig. 8.9 (d)). Note that nonblocking assignments are used (with

symbol 6 =) for the register transfer operations. This ensures that the register opera-

tions and state transitions are concurrent, a feature that is especially crucial during

control state S_1 . In this state, A is incremented by 1 and the value of A2 (A[2]) is

checked to determine the operation to execute at register E at the next clock. To

accomplish a valid synchronous design, it is necessary to ensure that A[2] is checked

before A is incremented. If blocking assignments were used, one would have to place

the two statements that check E first and the A statement that increments last. How-

ever, by using nonblocking assignments, we accomplish the required synchronization

without being concerned about the order in which the statements are listed. The

counter A in Datapath_RTL is cleared synchronously because clr_A_F is synchro-

nized to the clock.

 The cyclic behaviors of the controller and the datapath interact in a chain reaction:

At the active edge of the clock, the state and datapath registers are updated. A change

in the state, a primary input, or a status input causes the level‐sensitive behaviors of

the controller to update the value of the next state and the outputs. The updated values

are used at the next active edge of the clock to determine the state transition and the

updates of the datapath.

 Note that the manual method of design developed (1) a block diagram (Fig. 8.9 (a))

showing the interface between the datapath and the controller, (2) an ASMD chart for

the system (Fig. 8.9 (d)), (3) the logic equations for the inputs to the flip‐flops of the

controller, and (4) a circuit that implements the controller (Fig. 8.12). In contrast, an

RTL model describes the state transitions of the controller and the operations of the

datapath as a step toward automatically synthesizing the circuit that implements them.

The descriptions of the datapath and controller are derived directly from the ASMD

chart in both cases.

 HDL Example 8.2

 // RTL description of design example (see Fig. 8.11)
 module Design_Example_RTL (A, E, F, Start, clock, reset_b);
 // Specify ports of the top-level module of the design
 // See block diagram, Fig. 8.10
 output [3: 0] A;
 output E, F;
 input Start, clock, reset_b;
 // Instantiate controller and datapath units
 Controller_RTL M0 (set_E, clr_E, set_F, clr_A_F, incr_A, A[2], A[3], Start, clock, reset_b);
 Datapath_RTL M1 (A, E, F, set_E, clr_E, set_F, clr_A_F, incr_A, clock);
 endmodule

 module Controller_RTL (set_E, clr_E, set_F, clr_A_F, incr_A, A2, A3, Start, clock, reset_b);
 output reg set_E, clr_E, set_F, clr_A_F, incr_A;
 input Start, A2, A3, clock, reset_b;

384 Chapter 8 Design at the Register Transfer Level

 reg [1: 0] state, next_state;
 parameter S_idle = 2'b00, S_1 = 2'b01, S_2 = 2'b11; // State codes
 always @ (posedge clock, negedge reset_b) // State transitions (edge sensitive)
 if (reset_b == 0) state <= S_idle;
 else state <= next_state;
 // Code next-state logic directly from ASMD chart (Fig. 8.9 d)
 always @ (state, Start, A2, A3) begin // Next-state logic (level sensitive)
 next_state = S_idle;
 case (state)
 S_idle: if (Start) next_state = S_1; else next_state = S_idle;
 S_1: if (A2 & A3) next_state = S_2; else next_state = S_1;
 S_2: next_state = S_idle;
 default : next_state = S_idle;
 endcase

 end

 // Code output logic directly from ASMD chart (Fig. 8.9 d)
 always @ (state, Start, A2) begin
 set_E = 0; // default assignments; assign by exception
 clr_E = 0;
 set_F = 0;
 clr_A_F = 0;
 incr_A = 0;
 case (state)
 S_idle: if (Start) clr_A_F = 1;
 S_1: begin incr_A = 1; if (A2) set_E = 1; else clr _E = 1; end
 S_2: set_F = 1;
 endcase

 end

 endmodule

 module Datapath_RTL (A, E, F, set_E, clr_E, set_F, clr_A_F, incr_A, clock);
 output reg [3: 0] A; // register for counter
 output reg E, F; // flags
 input set_E, clr_E, set_F, clr_A_F, incr_A, clock;
 // Code register transfer operations directly from ASMD chart (Fig. 8.9 (d))
 always @ (posedge clock) begin
 if (set_E) E <= 1;
 if (clr_E) E <= 0;
 if (set_F) F <= 1;
 if (clr_A_F) begin A <= 0; F <= 0; end
 if (incr_A) A <= A + 1;
 end

 endmodule

Section 8.6 HDL Description of Design Example 385

 Testing the Design Description

 The sequence of operations for the design example was investigated in the previous

section. Table 8.3 shows the values of E and F while register A is incremented. It is

instructive to devise a test that checks the circuit to verify the validity of the HDL

description. The test bench in HDL Example 8.3 provides such a module. (The procedure

for writing test benches is explained in Section 4.12.) The test module generates signals

for Start, clock, and reset_b, and checks the results obtained from registers A, E, and F .

Initially, the reset_b signal is set to 0 to initialize the controller, and Start and clock are

set to 0. At time t = 5 , the reset_b signal is de‐asserted by setting it to 1, the Start input

is asserted by setting it to 1, and the clock is then repeated for 16 cycles. The $monitor

statement displays the values of A, E, and F every 10 ns. The output of the simulation is

listed in the example under the simulation log. Initially, at time t = 0 , the values of the

registers are unknown, so they are marked with the symbol x . The first positive clock

transition, at time = 10, clears A and F, but does not affect E, so E is unknown at this

time. The rest of the table is identical to Table 8.3 . Note that since Start is still equal to

1 at time = 160, the last entry in the table shows that A and F are cleared to 0, and E

does not change and remains at 1. This occurs during the second transition, from S_idle

to S_1 .

 HDL Example 8.3

 // Test bench for design example
 'timescale 1 ns / 1 ps
 module t_Design_Example_RTL;
 reg Start, clock, reset_b;
 wire [3: 0] A;
 wire E, F;
 // Instantiate design example
 Design_Example_RTL M0 (A, E, F, Start, clock, reset_b);
 // Describe stimulus waveforms
 initial #500 $finish ; // Stopwatch
 initial

 begin

 reset_b = 0;
 Start = 0;
 clock = 0;
 #5 reset_b = 1; Start = 1;
 repeat (32)
 begin

 #5 clock = ~ clock; // Clock generator
 end

386 Chapter 8 Design at the Register Transfer Level

 Waveforms produced by a simulation of Design_Example_RTL with the test bench

are shown in Fig. 8.13 . Numerical values are shown in hexadecimal format. The results

are annotated to call attention to the relationship between a control signal and the

operation that it causes to execute. For example, the controller asserts set_E for one

clock cycle before the clock edge at which E is set to 1. Likewise, set_F asserts during

the clock cycle before the edge at which F is set to 1. Also, clr_A_F is formed in the

cycle before A and F are cleared. A more thorough verification of Design_Example_
RTL would confirm that the machine recovers from a reset on the fly (i.e., a reset that

is asserted randomly after the machine is operating). Note that the signals in the out-

put of the simulation have been listed in groups showing (1) clock and reset_b, (2) Start
and the status inputs, (3) the state, (4) the control signals, and (5) the datapath regis-

ters. It is strongly recommended that the state always be displayed, because this informa-

tion is essential for verifying that the machine is operating correctly and for debugging

its description when it is not. For the chosen binary state code, S_idle = 002 = 0H,

S_1= 012 = 1H, and S_2 = 112 = 3H.

 Structural Description

 The RTL description of a design consists of procedural statements that determine the

functional behavior of the digital circuit. This type of description can be compiled by

 end

 initial

 $monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
 endmodule

 Simulation log:
 A = xxxx E = x F = x time = 0
 A = 0000 E = x F = 0 time = 10
 A = 0001 E = 0 F = 0 time = 20
 A = 0010 E = 0 F = 0 time = 30
 A = 0011 E = 0 F = 0 time = 40
 A = 0100 E = 0 F = 0 time = 50
 A = 0101 E = 1 F = 0 time = 60
 A = 0110 E = 1 F = 0 time = 70
 A = 0111 E = 1 F = 0 time = 80
 A = 1000 E = 1 F = 0 time = 90
 A = 1001 E = 0 F = 0 time = 100
 A = 1010 E = 0 F = 0 time = 110
 A = 1011 E = 0 F = 0 time = 120
 A = 1100 E = 0 F = 0 time = 130
 A = 1101 E = 1 F = 0 time = 140
 A = 1101 E = 1 F = 1 time = 150
 A = 0000 E = 1 F = 0 time = 160

Section 8.6 HDL Description of Design Example 387

 FIGURE 8.13
 Simulation results for Design_Example_RTL

Name
0

0

x 0 1 2 3 4 5 6 7 8 9 a b c 0

1 3 0 1

50 100 150

clock
reset_b

Start

A3
A2

state[1: 0]

clr_A_F

clr_E

incr_A
set_F

set_E

A[3: 0]

F
E

d

HDL synthesis tools, from which it is possible to obtain the equivalent gate‐level circuit

of the design. It is also possible to describe the design by its structure rather than its

function. A structural description of a design consists of instantiations of components

that define the circuit elements and their interconnections. In this regard, a structural

description is equivalent to a schematic diagram or a block diagram of the circuit. Con-

temporary design practice relies heavily on RTL descriptions, but we will present a

structural description here to contrast the two approaches.

 For convenience, the circuit is again decomposed into two parts: the controller and

the datapath. The block diagram of Fig. 8.10 shows the high‐level partition between these

units, and Fig. 8.12 provides additional underlying structural details of the controller.

The structure of the datapath is evident in Fig. 8.10 and consists of the flip‐flops and the

four‐bit counter with synchronous clear. The top level of the Verilog description replaces

 Design_Example_RTL, Controller_RTL, and Datapath_RTL by Design_Example_STR,
 Controller_STR, and Datapath_STR, respectively. The descriptions of Controller_STR

and Datapath_STR will be structural.

 HDL Example 8.4 presents the structural description of the design example. It consists

of a nested hierarchy of modules and gates describing (1) the top‐level module, Design_
Example_STR, (2) the modules describing the controller and the datapath, (3) the modules

describing the flip‐flops and counters, and (4) gates implementing the logic of the controller.

For simplicity, the counter and flip‐flops are described by RTL models.

 The top‐level module (see Fig. 8.10) encapsulates the entire design by (1) instantiating

the controller and the datapath modules, (2) declaring the primary (external) input signals,

388 Chapter 8 Design at the Register Transfer Level

(3) declaring the output signals, (4) declaring the control signals generated by the controller

and connected to the datapath unit, and (5) declaring the status signals generated by the

datapath unit and connected to the controller. The port list is identical to the list used in the

RTL description. The outputs are declared as wire type here because they serve merely to

connect the outputs of the datapath module to the outputs of the top‐level module, with

their logic value being determined within the datapath module.

 The control module describes the circuit of Fig. 8.12 . The outputs of the two flip‐flops

 G1 and G0 are declared as wire data type. G1 and G0 cannot be declared as reg data

type because they are outputs of an instantiated D flip‐flop. DG1 and DG0 are unde-

clared identifiers, i.e., implicit wires. The name of a variable is local to the module or

procedural block in which it is declared. Nets may not be declared within a procedural

block (e.g., begin . . . end). The rule to remember is that a variable must be a declared

register type (e.g., reg) if and only if its value is assigned by a procedural statement

(i.e., a blocking or nonblocking assignment statement within a procedural block in cyclic

or single‐pass behavior or in the output of a sequential UDP). The instantiated gates

specify the combinational part of the circuit. There are two flip‐flop input equations and

three output equations. The outputs of the flip‐flops G1 and G0 and the input equations

 DG1 and DG0 replace output Q and input D in the instantiated flip‐flops. The D flip‐

flop is then described in the next module. The structure of the datapath unit has direct

inputs to the JK flip‐flops. Note the correspondence between the modules of the HDL

description and the structures in Figs. 8.9, 8.10, and 8.12.

 HDL Example 8.4

 // Structural description of design example (Figs. 8.9(a), 8.12)
 module Design_Example_STR
 (output [3: 0] A, // V 2001 port syntax
 output E, F,
 input Start, clock, reset_b
);

 Controller_STR M0 (clr_A_F, set_E, clr_E, set_F, incr_A, Start, A[2], A[3], clock,
 reset_b);
 Datapath_STR M1 (A, E, F, clr_A_F, set_E, clr_E, set_F, incr_A, clock);
 endmodule

 module Controller_STR
 (output clr_A_F, set_E, clr_E, set_F, incr_A,
 input Start, A2, A3, clock, reset_b
);

 wire G0, G1;
 parameter S_idle = 2'b00, S_1 = 2'b01, S_2 = 2'b11;
 wire w1, w2, w3;

Section 8.6 HDL Description of Design Example 389

 not (G0_b, G0);
 not (G1_b, G1);
 buf (incr_A, w2);
 buf (set_F, G1);
 not (A2_b, A2);
 or (D_G0, w1, w2);
 and (w1, Start, G0_b);
 and (clr_A_F, G0_b, Start);
 and (w2, G0, G1_b);
 and (set_E, w2, A2);
 and (clr_E, w2, A2_b);
 and (D_G1, w3, w2);
 and (w3, A2, A3);
 D_flip_flop_AR M0 (G0, D_G0, clock, reset_b);
 D_flip_flop_AR M1 (G1, D_G1, clock, reset_b);
 endmodule

 // datapath unit

 module Datapath_STR
 (output [3: 0] A,
 output E, F,
 input clr_A_F, set_E, clr_E, set_F, incr_A, clock
);
 JK_flip_flop_2 M0 (E, E_b, set_E, clr_E, clock);
 JK_flip_flop_2 M1 (F, F_b, set_F, clr_A_F, clock);
 Counter_4 M2 (A, incr_A, clr_A_F, clock);
 endmodule

 // Counter with synchronous clear

 module Counter_4 (output reg [3: 0] A, input incr, clear, clock);
 always @ (posedge clock)
 if (clear) A <= 0; else if (incr) A <= A + 1;
 endmodule

 module D_flip_flop_AR (Q, D, CLK, RST);
 output Q;
 input D, CLK, RST;
 reg Q;

 always @ (posedge CLK, negedge RST)
 if (RST == 0) Q <= 1'b0;
 else Q <= D;
 endmodule

 // Description of JK flip-flop

390 Chapter 8 Design at the Register Transfer Level

 The structural description was tested with the test bench that verified the RTL descrip-

tion to produce the results shown in Fig. 8.13 . The only change necessary is the replacement

of the instantiation of the example from Design_Example_RTL by Design_Example_STR .

The simulation results for Design_Example_STR matched those for Design_Example_
RTL . However, a comparison of the two descriptions indicates that the RTL style is easier

 module JK_flip_flop_2 (Q, Q_not, J, K, CLK);
 output Q, Q_not;
 input J, K, CLK;
 reg Q;
 assign Q_not = ~Q;
 always @ (posedge CLK)
 case ({J, K})
 2'b00: Q <= Q;
 2'b01: Q <= 1'b0;
 2'b10: Q <= 1'b1;
 2'b11: Q <= ~Q;
 endcase

 endmodule

 module t_Design_Example_STR;
 reg Start, clock, reset_b;
 wire [3: 0] A;
 wire E, F;

 // Instantiate design example

 Design_Example_STR M0 (A, E, F, Start, clock, reset_b);

 // Describe stimulus waveforms

 initial #500 $finish ; // Stopwatch
 initial

 begin

 reset_b = 0;
 Start = 0;
 clock = 0;
 #5 reset_b = 1; Start = 1;
 repeat (32)
 begin

 #5 clock = ~ clock; // Clock generator
 end

 end

 initial

 $monitor ("A = %b E = %b F = %b time = %0d", A, E, F, $time);
 endmodule

Section 8.7 Sequential Binary Multiplier 391

to write and will lead to results faster if synthesis tools are available to automatically

synthesize the registers, the combinational logic, and their interconnections.

 8 . 7 S E Q U E N T I A L B I N A RY M U LT I P L I E R

 This section introduces a second design example. It presents a hardware algorithm for

binary multiplication, proposes the register configuration for its implementation, and

then shows how to use an ASMD chart to design its datapath and its controller.

 The system we will examine multiplies two unsigned binary numbers. The hardware

developed in Section 4.7 to execute multiplication resulted in a combinational circuit

multiplier with many adders and AND gates, and requires large area of silicon as an

integrated circuit. In contrast, in this section, a more efficient hardware algorithm results

in a sequential multiplier that uses only one adder and a shift register. The savings in

hardware and silicon area come about from a trade‐off in the space (hardware)–time

domain. A parallel adder uses more hardware, but forms its result in one cycle of the

clock; a sequential adder uses less hardware, but takes multiple clock cycles to form its

result.

 The multiplication of two binary numbers is done with paper and pencil by successive

(i.e., sequential) additions and shifting. The process is best illustrated with a numerical

example. Let us multiply the two binary numbers 10111 and 10011:

 23 10111 multiplican

19 10011 multiplier

10111

10111

00000

00000

10111

 437 110110101 product

 The process consists of successively adding and shifting copies of the multiplicand.

Successive bits of the multiplier are examined, least significant bit first. If the multi-

plier bit is 1, the multiplicand is copied down; otherwise, 0’s are copied down. The

numbers copied in successive lines are shifted one position to the left from the previ-

ous number. Finally, the numbers are added and their sum forms the product. The

product obtained from the multiplication of two binary numbers of n bits each can

have up to 2 n bits. It is apparent that the operations of addition and shifting are

executed by the algorithm.

 When the multiplication process is implemented with digital hardware, it is conve-

nient to change the process slightly. First, we note that, in the context of synthesizing

a sequential machine, the add‐and‐shift algorithm for binary multiplication can be

executed in a single clock cycle or over multiple clock cycles. A choice to form the

392 Chapter 8 Design at the Register Transfer Level

product in the time span of a single clock cycle will synthesize the circuit of a parallel

multiplier like the one discussed in Section 4.7. On the other hand, an RTL model of

the algorithm adds shifted copies of the multiplicand to an accumulated partial prod-

uct. The values of the multiplier, multiplicand, and partial product are stored in regis-

ters, and the operations of shifting and adding their contents are executed under the

control of a state machine. Among the many possibilities for distributing the effort of

multiplication over multiple clock cycles, we will consider that in which only one par-

tial product is formed and accumulated in a single cycle of the clock. (One alternative

would be to use additional hardware to form and accumulate two partial products in

a clock cycle, but this would require more logic gates and either faster circuits or a

slower clock.) Instead of providing digital circuits to store and add simultaneously as

many binary numbers as there are 1’s in the multiplier, it is less expensive to provide

only the hardware needed to sum two binary numbers and accumulate the partial

products in a register. Second, instead of shifting the multiplicand to the left, the par-

tial product being formed is shifted to the right. This leaves the partial product and

the multiplicand in the required relative positions. Third, when the corresponding bit

of the multiplier is 0, there is no need to add all 0’s to the partial product, since doing

so will not alter its resulting value.

 Register Configuration

 A block diagram for the sequential binary multiplier is shown in Fig. 8.14 (a), and the

register configuration of the datapath is shown in Fig. 8.14 (b). The multiplicand is

stored in register B, the multiplier is stored in register Q, and the partial product is

formed in register A and stored in A and Q . A parallel adder adds the contents of

register B to register A . The C flip‐flop stores the carry after the addition. The counter

 P is initially set to hold a binary number equal to the number of bits in the multiplier.

This counter is decremented after the formation of each partial product. When the

content of the counter reaches zero, the product is formed in the double register A

and Q, and the process stops. The control logic stays in an initial state until Start
becomes 1. The system then performs the multiplication. The sum of A and B forms

the n most significant bits of the partial product, which is transferred to A . The output

carry from the addition, whether 0 or 1, is transferred to C . Both the partial product

in A and the multiplier in Q are shifted to the right. The least significant bit of A is

shifted into the most significant position of Q, the carry from C is shifted into the most

significant position of A, and 0 is shifted into C . After the shift‐right operation, one

bit of the partial product is transferred into Q while the multiplier bits in Q are shifted

one position to the right. In this manner, the least significant bit of register Q, desig-

nated by Q[0], holds the bit of the multiplier that must be inspected next. The control

logic determines whether to add or not on the basis of this input bit. The control logic

also receives a signal, Zero, from a circuit that checks counter P for zero. Q[0] and

 Zero are status inputs for the control unit. The input signal Start is an external control

input. The outputs of the control logic launch the required operations in the registers

of the datapath unit.

Section 8.7 Sequential Binary Multiplier 393

 The interface between the controller and the datapath consists of the status signals

and the output signals of the controller. The control signals govern the synchronous

register operations of the datapath. Signal Load_regs loads the internal registers of the

datapath, Shift_regs causes the shift register to shift, Add_regs forms the sum of the

multiplicand and register A, and Decr_P decrements the counter. The controller also

forms output Ready to signal to the host environment that the machine is ready to mul-

tiply. The contents of the register holding the product vary during execution, so it is

useful to have a signal indicating that its contents are valid. Note, again, that the state

of the control is not an interface signal between the control unit and the datapath. Only

the signals needed to control the datapath are included in the interface. Putting the state

in the interface would require a decoder in the datapath, and would require a wider and

more active bus than the control signals alone. Not good.

 FIGURE 8.14
 (a) Block diagram and (b) datapath of a binary multiplier

(a)

Controller
Shift_regs

Load_regs

Start

reset

Decr_P

Q[0]

Add_regs

A

B

C

Q

P

Zero

Multiplicand Multiplier

Product
clock

Datapath

Ready

(b)

1 1 0 1 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

015 8

8 0

9

7

7

16

Register B (Multiplicand)

Register A (Sum)C Register Q (Multiplier)

8

1 0 0

Register P (Counter)

0

�

394 Chapter 8 Design at the Register Transfer Level

 ASMD Chart

 The ASMD chart for the binary multiplier is shown in Fig. 8.15 . The intermediate form

in Fig. 8.15 (a) annotates the ASM chart of the controller with the register operations,

and the completed chart in Fig. 8.15 (b) identifies the Moore and Mealy outputs of the

controller. Initially, the multiplicand is in B and the multiplier in Q . As long as the circuit

is in the initial state and Start = 0, no action occurs and the system remains in state S_idle

with Ready asserted. The multiplication process is launched when Start = 1. Then, (1) con-

trol goes to state S_add, (2) register A and carry flip‐flop C are cleared to 0, (3) registers

 FIGURE 8.15
 ASMD chart for binary multiplier

S_idle

S_add

Zero

reset_b

Start

1

A �� 0
C �� 0
B �� Multiplicand
Q �� Multiplier
P �� n

Q[0]

S_shift

1

1

P �� P�1

{C, A} �� A � B

{C, A, Q} �� {C, A, Q} �� 1

17-bit register shifts to the
right by one bit

Add multiplicand
to shifted sum

Decrement counter

(a) (b)

S_idle
Ready

S_add
Decr_P

Zero

reset_b

Start

1

Q[0]

S_shift
Shift_regs

1

1

Add_regs

Load_regs

{C, A, Q} �� {C, A, Q} �� 1

{C, A} �� A � B

P �� P�1

A �� 0
C �� 0
B �� Multiplicand
Q �� Multiplier
P �� n

Section 8.7 Sequential Binary Multiplier 395

 B and Q are loaded with the multiplicand and the multiplier, respectively, and (4) the

sequence counter P is set to a binary number n, equal to the number of bits in the mul-

tiplier. In state S_add, the multiplier bit in Q[0] is checked, and if it is equal to 1, the

multiplicand in B is added to the partial product in A . The carry from the addition is

transferred to C . The partial product in A and C is left unchanged if Q[0] = 0. The coun-

ter P is decremented by 1 regardless of the value of Q[0], so Decr_P is formed in state

 S_add as a Moore output of the controller. In both cases, the next state is S_shift . Reg-

isters C, A, and Q are combined into one composite register CAQ, denoted by the

concatenation { C, A, Q }, and its contents are shifted once to the right to obtain a new

partial product. This shift operation is symbolized in the flowchart with the Verilog

logical right‐shift operator, 77. It is equivalent to the following statement in register

transfer notation:

 Shift right CAQ, C d 0

 In terms of individual register symbols, the shift operation can be described by the fol-

lowing register operations:

 A d shr A, An -1 d C

Q d shr Q, Qn -1 d A0

C d 0

 Both registers A and Q are shifted right. The leftmost bit of A, designated by An -1 ,

receives the carry from C . The leftmost bit of Q, Qn -1 , receives the bit from the rightmost

position of A in A0 , and C is reset to 0. In essence, this is a long shift of the composite

register CAQ with 0 inserted into the serial input, which is at C .

 The value in counter P is checked after the formation of each partial product. If the

contents of P are different from zero, status bit Zero is set equal to 0 and the process is

repeated to form a new partial product. The process stops when the counter reaches 0

and the controller’s status input Zero is equal to 1. Note that the partial product formed

in A is shifted into Q one bit at a time and eventually replaces the multiplier. The final

product is available in A and Q, with A holding the most significant bits and Q the least

significant bits of the product.

 The previous numerical example is repeated in Table 8.5 to clarify the multiplication

process. The procedure follows the steps outlined in the ASMD chart. The data shown

in the table can be compared with simulation results.

 The type of registers needed for the data processor subsystem can be derived from the

register operations listed in the ASMD chart. Register A is a shift register with parallel

load to accept the sum from the adder and must have a synchronous clear capability to

reset the register to 0. Register Q is a shift register. The counter P is a binary down coun-

ter with a facility to parallel load a binary constant. The C flip‐flop must be designed to

accept the input carry and have a synchronous clear. Registers B and Q need a parallel

load capability in order to receive the multiplicand and multiplier prior to the start of the

multiplication process.

396 Chapter 8 Design at the Register Transfer Level

 8 . 8 C O N T R O L L O G I C

 The design of a digital system can be divided into two parts: the design of the regis-

ter transfers in the datapath unit and the design of the control logic of the control

unit. The control logic is a finite state machine; its Mealy‐ and Moore‐type outputs

control the operations of the datapath. The inputs to the control unit are the primary

(external) inputs and the internal status signals fed back from the datapath to the

controller. The design of the system can be synthesized from an RTL description

derived from the ASMD chart. Alternatively, a manual design must derive the logic

governing the inputs to the flip‐flops holding the state of the controller. The informa-

tion needed to form the state diagram of the controller is already contained in the

ASMD chart, since the rectangular blocks that designate state boxes are the states

of the sequential circuit. The diamond‐shaped blocks that designate decision boxes

determine the logical conditions for the next state transition in the state diagram and

assertions of the conditional outputs.

 As an example, the control state diagram for the binary multiplier developed in the

previous section is shown in Fig. 8.16 (a). The information for the diagram is taken directly

from the ASMD chart of Fig. 8.15 . The three states S_idle through S_shift are taken from

the rectangular state boxes. The inputs Start and Zero are taken from the diamond‐

shaped decision boxes. The register transfer operations for each of the three states are

listed in Fig. 8.16 (b) and are taken from the corresponding state and conditional boxes

in the ASMD chart. Establishing the state transitions is the initial focus, so the outputs

of the controller are not shown.

 Table 8.5
 Numerical Example For Binary Multiplier

 Multiplicand B = 10111 2 = 17 H = 23 10 Multiplier Q = 10011 2 = 13 H = 19 10

 C A Q P

 Multiplier in Q 0 00000 10011 101

 Q 0 = 1; add B 10111

 First partial product 0 10111 100

 Shift right CAQ 0 01011 11001

 Q 0 = 1; add B 10111

 Second partial product 1 00010 011

 Shift right CAQ 0 10001 01100

 Q 0 = 0; shift right CAQ 0 01000 10110 010

 Q 0 = 0; shift right CAQ 0 00100 01011 001

 Q 0 = 1; add B 10111

 Fifth partial product 0 11011

 Shift right CAQ 0 01101 10101 000

 Final product in AQ = 0110110101 2 = 1b5 H

Section 8.8 Control Logic 397

 We must execute two steps when implementing the control logic: (1) establish the

required sequence of states, and (2) provide signals to control the register operations.

The sequence of states is specified in the ASMD chart or the state diagram. The signals

for controlling the operations in the registers are specified in the register transfer state-

ments annotated on the ASMD chart or listed in tabular format. For the multiplier, these

signals are Load_regs (for parallel loading the registers in the datapath unit), Decr_P

(for decrementing the counter), Add_regs (for adding the multiplicand and the partial

product), and Shift_regs (for shifting register CAQ). The block diagram of the control

unit is shown in Fig. 8.14 (a). The inputs to the controller are Start, Q[0], and Zero, and

the outputs are Ready, Load_regs, Decr_P, Add_regs, and Shift_regs, as specified in the

ASMD chart. We note that Q[0] affects only the output of the controller, not its state

transitions. The machine transitions from S_add to S_shift unconditionally.

 An important step in the design is the assignment of coded binary values to the states.

The simplest assignment is the sequence of binary numbers, as shown in Table 8.6 .

Another assignment is the Gray code, according to which only one bit changes when

going from one number to the next. A state assignment often used in control design is

the one‐hot assignment. This assignment uses as many bits and flip‐flops as there are

states in the circuit. At any given time, only one bit is equal to 1 (the one that is hot)

 FIGURE 8.16
 Control specifications for binary multiplier

S_idle
Start � 1

Start � 0

S_add S_shift

Zero � 0

Zero � 1

(a)

State Transition Register Operations

From To

S_idle Initial state

S_idle S_add A �� 0, C �� 0, P �� dp_width

S_add S_shift P �= P � 1
if (Q[0]) then (A �� A � B, C �� Cout)

S_shift shift right {CAQ}, C <� 0

(b)

398 Chapter 8 Design at the Register Transfer Level

while all others are kept at 0 (all cold). This type of assignment uses a flip‐flop for each

state. Indeed, one‐hot encoding uses more flip‐flops than other types of coding, but it

usually leads to simpler decoding logic for the next state and the output of the machine.

Because the decoding logic does not become more complex as states are added to the

machine, the speed at which the machine can operate is not limited by the time required

to decode the state.

 Since the controller is a sequential circuit, it can be designed manually by the sequential

logic procedure outlined in Chapter 5 . However, in most cases this method is difficult to

carry out manually because of the large number of states and inputs that a typical control

circuit may have. As a consequence, it is necessary to use specialized methods for control

logic design that may be considered as variations of the classical sequential logic method.

We will now present two such design procedures. One uses a sequence register and decoder,

and the other uses one flip‐flop per state. The method will be presented for a small circuit,

but it applies to larger circuits as well. Of course, the need for these methods is eliminated

if one has software that automatically synthesizes the circuit from an HDL description.

 Sequence Register and Decoder

 The sequence‐register‐and‐decoder (manual) method, as the name implies, uses a reg-

ister for the control states and a decoder to provide an output corresponding to each of

the states. (The decoder is not needed if a one‐hot code is used.) A register with n flip‐

flops can have up to 2 n states, and an n ‐to‐2 n ‐line decoder has up to 2 n outputs. An n ‐bit

sequence register is essentially a circuit with n flip‐flops, together with the associated

gates that effect their state transitions.

 The ASMD chart and the state diagram for the controller of the binary multiplier

have three states and two inputs. (There is no need to consider Q[0] .) To implement the

design with a sequence register and decoder, we need two flip‐flops for the register and

a two‐to‐four‐line decoder. The outputs of the decoder will form the Moore‐type outputs

of the controller directly. The Mealy‐type outputs will be formed from the Moore outputs

and the inputs.

 The state table for the finite state machine of the controller is shown in Table 8.7 . It

is derived directly from the ASMD chart of Fig. 8.15 (b) or the state diagram of

 Fig. 8.16 (a). We designate the two flip‐flops as G1 and G0 and assign the binary states

00, 01, and 10 to S_idle, S_add, and S_shift, respectively. Note that the input columns

have don’t‐care entries whenever the input variable is not used to determine the next

 Table 8.6
 State Assignment for Control

 State Binary Gray Code One‐Hot

 S_idle 00 00 001

 S_add 01 01 010

 S_shift 10 11 100

Section 8.8 Control Logic 399

 Table 8.7
 State Table for Control Circuit

 Present
State Inputs

 Next
State

 Present‐State
Symbol G1 G0 Start Q[0] Zero G1 G0

 S_idle 0 0 0 X X 0 0 1 0 0 0 0

 S_idle 0 0 1 X X 0 1 1 1 0 0 0

 S_add 0 1 X 0 X 1 0 0 0 1 0 0

 S_add 0 1 X 1 X 1 0 0 0 1 1 0

 S_shift 1 0 X X 0 0 1 0 0 0 0 1

 S_shift 1 0 X X 1 0 0 0 0 0 0 1

 R
ea

d
y

 Lo
a
d
_r

eg
s

 D
ec

r_
P

 A
d
d
_r

eg
s

 Sh
if

t_
re

g
s

state. The outputs of the control circuit are designated by the names given in the ASMD

chart. The particular Moore‐type output variable that is equal to 1 at any given time is

determined from the equivalent binary value of the present state. Those output variables

are shaded in Table 8.7 . Thus, when the present state is G1G0 = 00, output Ready must

be equal to 1, while the other outputs remain at 0. Since the Moore‐type outputs are a

function of only the present state, they can be generated with a decoder circuit having

the two inputs G1 and G0 and using three of the decoder outputs T0 through T2, as

shown in Fig. 8.17 (a), which does not include the wiring for the state feedback.

 The state machine of the controller can be designed from the state table by means of

the classical procedure presented in Chapter 5 . This example has a small number of states

and inputs, so we could use maps to simplify the Boolean functions. In most control logic

applications, the number of states and inputs is much larger. In general, the application of

the classical method requires an excessive amount of work to obtain the simplified input

equations for the flip‐flops and is prone to error. The design can be simplified if we take

into consideration the fact that the decoder outputs are available for use in the design.

Instead of using flip‐flop outputs as the present‐state conditions, we use the outputs of the
decoder to indicate the present‐state condition of the sequential circuit . Moreover, instead of

using maps to simplify the flip‐flop equations, we can obtain them directly by inspection of

the state table. For example, from the next‐state conditions in the state table, we find that

the next state of G1 is equal to 1 when the present state is S_add and is equal to 0 when the

present state is S_idle or S_shift . These conditions can be specified by the equation

 DG1 = T1

 where DG1 is the D input of flip‐flop G1. Similarly, the D input of G0 is

 DG0 = T0 Start + T2 Zero�

400

 FIGURE 8.17
 Logic diagram of control for binary multiplier using a sequence register and decoder

C

D

C

D

Load_regs

Decr_P

Add_regs

Shift_regs

clock

Start

reset_b

Q[0]

Zero

Ready

Next State Logic

 T3

(S_idle) T0

(S_shift) T2

(S_add) T1

0

1

Next State
Logic

2 � 4
Decoder

2 � 4 Decoder

C

D

C

D

G0

G1
T3

(S_Idle) T0

(S_shift) T2

(S_add) T1

0

1

Load_regs

Ready

Decr_P

Add_regs

Shift_regs

clock

Start

reset_b

Q[0]

Zero

G0

G1

(a)

(b)

Section 8.8 Control Logic 401

 When deriving input equations by inspection from the state table, we cannot be sure

that the Boolean functions have been simplified in the best possible way. (Synthesis tools

take care of this detail automatically.) In general, it is advisable to analyze the circuit to

ensure that the equations derived do indeed produce the required state transitions.

 The logic diagram of the control circuit is drawn in Fig. 8.17 (b). It consists of a register

with two flip‐flops G1 and G0 and a 2 * 4 decoder. The outputs of the decoder are used to

generate the inputs to the next‐state logic as well as the control outputs. The outputs of the

controller should be connected to the datapath to activate the required register operations.

 One‐Hot Design (One Flip‐Flop per State)

 Another method of control logic design is the one‐hot assignment, which results in a

sequential circuit with one flip‐flop per state. Only one of the flip‐flops contains a 1 at

any time; all others are reset to 0. The single 1 propagates from one flip‐flop to another

under the control of decision logic. In such a configuration, each flip‐flop represents a

state that is present only when the control bit is transferred to it.

 This method uses the maximum number of flip‐flops for the sequential circuit. For

example, a sequential circuit with 12 states requires a minimum of four flip‐flops. By

contrast, with the method of one flip‐flop per state, the circuit requires 12 flip‐flops, one

for each state. At first glance, it may seem that this method would increase system cost,

since more flip‐flops are used. But the method offers some advantages that may not be

apparent. One advantage is the simplicity with which the logic can be designed by

inspection of the ASMD chart or the state diagram. No state or excitation tables are

needed if D ‐type flip‐flops are employed. The one‐hot method offers a savings in design

effort, an increase in operational simplicity, and a possible decrease in the total number

of gates, since a decoder is not needed.

 The design procedure for a one‐hot state assignment will be demonstrated by obtaining

the control circuit specified by the state diagram of Fig. 8.16 (a). Since there are three states

in the state diagram, we choose three D flip‐flops and label their outputs G0, G1, and G2,

 corresponding to S_idle, S_add, and S_shift, respectively. The input equations for setting

each flip‐flop to 1 are determined from the present state and the input conditions along

the corresponding directed lines going into the state. For example, DG0 , the input to flip‐

flop G0 , is set to 1 if the machine is in state G0 and Start is not asserted, or if the machine

is in state G2 and Zero is asserted. These conditions are specified by the input equation:

 DG0 = G0 Start� + G2 Zero

 In fact, the condition for setting a flip‐flop to 1 is obtained directly from the state dia-

gram, from the condition specified in the directed lines going into the corresponding

flip‐flop state ANDed with the previous flip‐flop state. If there is more than one directed

line going into a state, all conditions must be ORed. Using this procedure for the other

three flip‐flops, we obtain the remaining input equations:

 DG1 = G0 Start + G2 Zero�

DG2 = G1

402 Chapter 8 Design at the Register Transfer Level

 The logic diagram of the one‐hot controller (with one flip‐flop per state) is shown in

 Fig. 8.18 . The circuit consists of three D flip‐flops labeled G0 through G2, together with the

associated gates specified by the input equations. Initially, flip‐flop G0 must be set to 1 and

all other flip‐flops must be reset to 0, so that the flip‐flop representing the initial state is

enabled. This can be done by using an asynchronous preset on flip‐flop G0 and an asynchro-

nous clear for the other flip‐flops. Once started, the controller with one flip‐flop per state

will propagate from one state to the other in the proper manner. Only one flip‐flop will be

set to 1 with each clock edge; all others are reset to 0, because their D inputs are equal to 0.

 8 . 9 H D L D E S C R I P T I O N O F B I N A RY M U LT I P L I E R

 A second example of an HDL description of an RTL design is given in HDL Example 8.5,

the binary multiplier designed in Section 8.7. For simplicity, the entire description is “flat-

tened” and encapsulated in one module. Comments will identify the controller and the

datapath. The first part of the description declares all of the inputs and outputs as specified

 FIGURE 8.18
 Logic diagram for one‐hot state controller

clock

Start

C

D

C

D

G0

G1

reset_b

(S_idle)

Load_regs

Decr_P

Q[0]

Add_regs

Shift_regs

Zero

Ready

C

D
G2

(S_add)

(S_shift)

Set

Rst

Rst

Section 8.9 HDL Description of Binary Multiplier 403

in the block diagram of Fig. 8.14 (a). The machine will be parameterized for a five‐bit data-

path to enable a comparison between its simulation data and the result of the multiplication

with the numerical example listed in Table 8.5 . The same model can be used for a datapath

having a different size merely by changing the value of the parameters. The second part of

the description declares all registers in the controller and the datapath, as well as the one‐

hot encoding of the states. The third part specifies implicit combinational logic (continuous

assignment statements) for the concatenated register CAQ, the Zero status signal, and the

 Ready output signal. The continuous assignments for Zero and Ready are accomplished by

assigning a Boolean expression to their wire declarations. The next section describes the

control unit, using a single edge‐sensitive cyclic behavior to describe the state transitions,

and a level‐sensitive cyclic behavior to describe the combinational logic for the next state

and the outputs. Again, note that default assignments are made to next_state, Load_regs,
 Decr_P, Add_regs, and Shift_regs . The subsequent logic of the case statement assigns their

value by exception. The state transitions and the output logic are written directly from the

ASMD chart of Fig. 8.15 (b).

 The datapath unit describes the register operations within a separate edge‐sensitive

cyclic behavior. 3 (For clarity, separate cyclic behaviors are used; we do not mix the

description of the datapath with the description of the controller.) Each control input

is decoded and is used to specify the associated operations. The addition and subtraction

operations will be implemented in hardware by combinational logic. Signal Load_regs

causes the counter and the other registers to be loaded with their initial values, etc.

Because the controller and datapath have been partitioned into separate units, the con-

trol signals completely specify the behavior of the datapath; explicit information about

the state of the controller is not needed and is not made available to the datapath unit.

 The next‐state logic of the controller includes a default case item to direct a synthesis

tool to map any of the unused codes to S_idle . The default case item and the default

assignments preceding the case statement ensure that the machine will recover if it

somehow enters an unused state. They also prevent unintentional synthesis of latches.

(Remember, a synthesis tool will synthesize latches when what was intended to be com-

binational logic in fact fails to completely specify the input–output function of the logic.)

 3 The width of the datapath here is dp‐width .

 HDL Example 8.5 (Sequential Multiplier)

 module Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start,
clock, reset_b);
 // Default configuration: five-bit datapath
 parameter dp_width = 5; // Set to width of datapath
 output [2*dp_width -1: 0] Product;
 output Ready;
 input [dp_width -1: 0] Multiplicand, Multiplier;
 input Start, clock, reset_b;

404 Chapter 8 Design at the Register Transfer Level

 parameter BC_size = 3; // Size of bit counter
 parameter S_idle = 3'b001, // one-hot code

 S_add = 3'b010,
 S_shift = 3'b100;

 reg [2: 0] state, next_state;
 reg [dp_width -1: 0] A, B, Q; // Sized for datapath
 reg C;
 reg [BC_size -1: 0] P;
 reg Load_regs, Decr_P, Add_regs, Shift_regs;

 // Miscellaneous combinational logic

 assign Product = {A, Q};
 wire Zero = (P == 0); // counter is zero

 // Zero = ~|P; // alternative
 wire Ready = (state == S_idle); // controller status
 // control unit
 always @ (posedge clock, negedge reset_b)
 if (~reset_b) state <= S_idle; else state <= next_state;

 always @ (state, Start, Q[0], Zero) begin
 next_state = S_idle;
 Load_regs = 0;
 Decr_P = 0;
 Add_regs = 0;
 Shift_regs = 0;
 case (state)
 S_idle: begin if (Start) next_state = S_add; Load_regs = 1; end
 S_add: begin next_state = S_shift; Decr_P = 1; if (Q[0]) Add_regs = 1; end
 S_shift: begin Shift_regs = 1; if (Zero) next_state = S_idle;
 else next_state = S_add; end
 default : next_state = S_idle;
 endcase

 end

 // datapath unit
 always @ (posedge clock) begin
 if (Load_regs) begin
 P <= dp_width;
 A <= 0;
 C <= 0;
 B <= Multiplicand;
 Q <= Multiplier;
 end

 if (Add_regs) {C, A} <= A + B;

Section 8.9 HDL Description of Binary Multiplier 405

 Testing the Multiplier

 HDL Example 8.6 shows a test bench for testing the multiplier. The inputs and outputs

are the same as those shown in the block diagram of Fig. 8.14 (a). It is naive to conclude

that an HDL description of a system is correct on the basis of the output it generates

under the application of a few input signals. A more strategic approach to testing and

verification exploits the partition of the design into its datapath and control unit. This

partition supports separate verification of the controller and the datapath. A separate

test bench can be developed to verify that the datapath executes each operation and

generates status signals correctly. After the datapath unit is verified, the next step is to

verify that each control signal is formed correctly by the control unit. A separate test

bench can verify that the control unit exhibits the complete functionality specified by

the ASMD chart (i.e., that it makes the correct state transitions and asserts its outputs

in response to the external inputs and the status signals).

 A verified control unit and a verified datapath unit together do not guarantee that

the system will operate correctly. The final step in the design process is to integrate

the verified models within a parent module and verify the functionality of the overall

machine. The interface between the controller and the datapath must be examined in

order to verify that the ports are connected correctly. For example, a mismatch in the

listed order of signals may not be detected by the compiler. After the datapath unit

and the control unit have been verified, a third test bench should verify the specified

functionality of the complete system. In practice, this requires writing a comprehensive

test plan identifying that functionality. For example, the test plan would identify the

need to verify that the sequential multiplier asserts the signal Ready in state S_idle.

The exercise to write a test plan is not academic: The quality and scope of the test plan

determine the worth of the verification effort. The test plan guides the development

of the test bench and increases the likelihood that the final design will match its

specification.

 Testing and verifying an HDL model usually requires access to more information

than the inputs and outputs of the machine. Knowledge of the state of the control unit,

the control signals, the status signals, and the internal registers of the datapath might

all be necessary for debugging. Fortunately, Verilog provides a mechanism to hierarchi-

cally de‐reference identifiers so that any variable at any level of the design hierarchy

can be visible to the test bench. Procedural statements can display the information

required to support efforts to debug the machine. Simulators use this mechanism to

display waveforms of any variable in the design hierarchy. To use the mechanism, we

reference the variable by its hierarchical path name. For example, the register P within

 if (Shift_regs) {C, A, Q} <= {C, A, Q} >> 1;
 if (Decr_P) P <= P -1;
 end

 endmodule

406 Chapter 8 Design at the Register Transfer Level

the datapath unit is not an output port of the multiplier, but it can be referenced as

 M0.P . The hierarchical path name consists of the sequence of module identifiers or

block names, separated by periods and specifying the location of the variable in the

design hierarchy. We also note that simulators commonly have a graphical user interface

that displays all levels of the hierarchy of a design.

 The first test bench in HDL Example 8.6 uses the system task $strobe to display the

result of the computations. This task is similar to the $display and $monitor tasks

explained in Section 4.12. The $strobe system task provides a synchronization mecha-

nism to ensure that data are displayed only after all assignments in a given time step are

executed. This is very useful in synchronous sequential circuits, where the time step

begins at a clock edge and multiple assignments may occur at the same time step of

simulation. When the system is synchronized to the positive edge of the clock, using

 $strobe after the always @ (posedge clock) statement ensures that the display shows

values of the signal after the clock pulse.

 The test bench module t_Sequential_Binary_Multiplier in HDL Example 8.6 instan-

tiates the module Sequential Binary_Multiplier of HDL Example 8.5. Both modules

must be included as source files when simulating the multiplier with a Verilog HDL

simulator. The result of this simulation displays a simulation log with numbers identi-

cal to the ones in Table 8.5 . The code includes a second test bench to exhaustively

multiply five‐bit values of the multiplicand and the multiplier. Waveforms for a sample

of simulation results are shown in Fig. 8.19 . The numerical values of Multiplicand,
 Multiplier, and Product are displayed in decimal and hexadecimal formats. Insight can

be gained by studying the displayed waveforms of the control state, the control signals,

the status signals, and the register operations. Enhancements to the multiplier and its

test bench are considered in the problems at the end of this chapter. In this example,

 1910 * 2310 = 43710, and 17H + 0bH = 02H with C = 1. Note the need for the carry bit.

 HDL Example 8.6

 // Test bench for the binary multiplier
 module t_Sequential_Binary_Multiplier;
 parameter dp_width = 5; // Set to width of datapath
 wire [2*dp_width -1: 0] Product; // Output from multiplier
 wire Ready;
 reg [dp_width -1: 0] Multiplicand, Multiplier; // Inputs to multiplier
 reg Start, clock, reset_b;
 // Instantiate multiplier
 Sequential_Binary_Multiplier M0 (Product, Ready, Multiplicand, Multiplier, Start, clock,
 reset_b);
 // Generate stimulus waveforms
 initial #200 $finish ;
 initial

 begin

 Start = 0;

Section 8.9 HDL Description of Binary Multiplier 407

 FIGURE 8.19
 Simulation waveforms for one‐hot state controller

clock

Name

reset_b

Start

state[2: 0]

Load_regs

Decr_P

Add_regs

Shift_regs

P[2: 0]

Zero

B[4: 0]

A[4: 0]

Q[4: 0]

C

Multiplicand[4: 0]

Multiplicand[4: 0]

Multiplier[4: 0]

Multiplier[4: 0]

Product[9: 0]

Product[9: 0]

Ready

4 1 2 4 2 4 2 4 2 4 2 4 1 2

0 5 4 3 2 1 0 5

16

0d

02 13 19 0c 16 0b 15 13

00 17 0b 02 11 08 04 1b 0d 00

17 18

16 17

23 24

13

19

18

22

1a2 013 2j3 179 059 22c 11b 08b 36b 1b5 013

1943787513927855689377418 19 755

65885 65925 65965 66005

408 Chapter 8 Design at the Register Transfer Level

 reset_b = 0;
 #2 Start = 1; reset_b = 1;
 Multiplicand = 5'b10111; Multiplier = 5'b10011;
 #10 Start = 0;
 end

 initial

 begin

 clock = 0;
 repeat (26) #5 clock = ~clock;
 end

 // Display results and compare with Table 8.5
 always @ (posedge clock)
 $strobe ("C=%b A=%b Q=%b P=%b time=%0d",M0.C,M0.A,M0.Q,M0.P, $time);
 endmodule

 Simulation log:
 C=0 A=00000 Q=10011 P=101 time=5
 C=0 A=10111 Q=10011 P=100 time=15
 C=0 A=01011 Q=11001 P=100 time=25
 C=1 A=00010 Q=11001 P=011 time=35
 C=0 A=10001 Q=01100 P=011 time=45
 C=0 A=10001 Q=01100 P=010 time=55
 C=0 A=01000 Q=10110 P=010 time=65
 C=0 A=01000 Q=10110 P=001 time=75
 C=0 A=00100 Q=01011 P=001 time=85
 C=0 A=11011 Q=01011 P=000 time=95
 C=0 A=01101 Q=10101 P=000 time=105
 C=0 A=01101 Q=10101 P=000 time=115
 C=0 A=01101 Q=10101 P=000 time=125
 /* Test bench for exhaustive simulation
 module t_Sequential_Binary_Multiplier;
 parameter dp_width = 5; // Width of datapath
 wire [2 * dp_width -1: 0] Product;
 wire Ready;
 reg [dp_width -1: 0] Multiplicand, Multiplier;
 reg Start, clock, reset_b;
 Sequential_Binary_Multiplier M0 (Product, Ready, Multiplicand, Multiplier, Start, clock,
 reset_b);
 initial #1030000 $finish ;
 initial begin clock = 0; #5 forever #5 clock = ~clock; end
 initial fork
 reset_b = 1;
 #2 reset_b = 0;
 #3 reset_b = 1;
 join

Section 8.9 HDL Description of Binary Multiplier 409

 Behavioral Description of a Parallel Multiplier

 Structural modeling implicitly specifies the functionality of a digital machine by prescrib-

ing an interconnection of gate‐level hardware units. In this form of modeling, a synthesis

tool performs Boolean optimization and translates the HDL description of a circuit into

a netlist of gates in a particular technology, e.g., CMOS. Hardware design at this level often

requires cleverness and accrued experience. It is the most tedious and detailed form of

modeling. In contrast, behavioral RTL modeling specifies functionality abstractly, in terms

of HDL operators. The RTL model does not specify a gate‐level implementation of the

registers or the logic to control the operations that manipulate their contents—those tasks

are accomplished by a synthesis tool. RTL modeling implicitly schedules operations by

explicitly assigning them to clock cycles. The most abstract form of behavioral modeling

describes only an algorithm, without any reference to a physical implementation, a set of

resources, or a schedule for their use. Thus, algorithmic modeling allows a designer to

explore trade‐offs in the space (hardware) and time domains, trading processing speed

for hardware complexity.

 HDL Example 8.7 presents an RTL model and an algorithmic model of a binary

multiplier. Both use a level‐sensitive cyclic behavior. The RTL model expresses the

functionality of a multiplier in a single statement. A synthesis tool will associate with

the multiplication operator a gate‐level circuit equivalent to that shown in Section 4.7.

In simulation, when either the multiplier or the multiplicand changes, the product will

be updated. The time required to form the product will depend on the propagation

delays of the gates available in the library of standard cells used by the synthesis tool.

The second model is an algorithmic description of the multiplier. A synthesis tool will

unroll the loop of the algorithm and infer the need for a gate‐level circuit equivalent to

that shown in Section 4.7.

 Be aware that a synthesis tool may not be able to synthesize a given algorithmic

description, even though the associated HDL model will simulate and produce correct

results. One difficulty is that the sequence of operations implied by an algorithm might

not be physically realizable in a single clock cycle. It then becomes necessary to distrib-

ute the operations over multiple clock cycles. A tool for synthesizing RTL logic will not

be able to automatically accomplish the required distribution of effort, but a tool that

 initial begin #5 Start = 1; end
 initial begin
 #5 Multiplicand = 0;
 Multiplier = 0;
 repeat (32) #10 begin Multiplier = Multiplier + 1;
 repeat (32) @ (posedge M0.Ready) 5 Multiplicand = Multiplicand + 1;
 end

 end

 endmodule

 */

410 Chapter 8 Design at the Register Transfer Level

 HDL Example 8.7

 // Behavioral (RTL) description of a parallel multiplier (n = 8)
 module Mult (Product, Multiplicand, Multiplier);
 input [7: 0] Multiplicand, Multiplier;
 output reg [15: 0] Product;
 always @ (Multiplicand, Multiplier)
 Product = Multiplicand * Multiplier;
 endmodule

 module Algorithmic_Binary_Multiplier #(parameter dp_width = 5) (
 output [2*dp_width -1: 0] Product, input [dp_width -1: 0] Multiplicand, Multiplier);
 reg [dp_width -1: 0] A, B, Q; // Sized for datapath
 reg C;
 integer k;
 assign Product = {C, A, Q};
 always @ (Multiplier, Multiplicand) begin

 Q = Multiplier;
 B = Multiplicand;
 C = 0;
 A = 0;
 for (k = 0; k <= dp_width -1; k = k + 1) begin
 if (Q[0]) {C, A} = A + B;
 {C, A, Q} = {C, A, Q} >> 1;
 end

 end

 endmodule

 module t_Algorithmic_Binary_Multiplier;
 parameter dp_width = 5; // Width of datapath
 wire [2 * dp_width -1: 0] Product;
 reg [dp_width -1: 0] Multiplicand, Multiplier;
 integer Exp_Value;
 reg Error;
 Algorithmic_Binary_Multiplier M0 (Product, Multiplicand, Multiplier);
 // Error detection
 initial # 1030000 finish ;
 always @ (Product) begin

 Exp_Value = Multiplier * Multiplicand;
 // Exp_Value = Multiplier * Multiplicand +1; // Inject error to confirm detection
 Error = Exp_Value ^ Product;
 end

 // Generate multiplier and multiplicand exhaustively for 5 bit operands
 initial begin
 #5 Multiplicand = 0;
 Multiplier = 0;

Section 8.10 Design with Multiplexers 411

is designed to synthesize algorithms should be successful. In effect, a behavioral synthe-

sis tool would have to allocate the registers and adders to implement multiplication. If

only a single adder is to be shared by all of the operations that form a partial sum, the

activity must be distributed over multiple clock cycles and in the correct sequence, ulti-

mately leading to the sequential binary multiplier for which we have explicitly designed

the controller for its datapath. Behavioral synthesis tools require a different and more

sophisticated style of modeling and are not within the scope of this text.

 8 . 1 0 D E S I G N W I T H M U LT I P L E X E R S

 The register‐and‐decoder scheme for the design of a controller has three parts: the

flip‐flops that hold the binary state value, the decoder that generates the control outputs,

and the gates that determine the next‐state and output signals. In Section 4.11, it was

shown that a combinational circuit can be implemented with multiplexers instead of

individual gates. Replacing the gates with multiplexers results in a regular pattern of

three levels of components. The first level consists of multiplexers that determine the

next state of the register. The second level contains a register that holds the present

binary state. The third level has a decoder that asserts a unique output line for each

control state. These three components are predefined standard cells in many integrated

circuits.

 Consider, for example, the ASM chart of Fig. 8.20 , consisting of four states and four

control inputs. We are interested in only the control signals governing the state sequence.

These signals are independent of the register operations of the datapath, so the edges of

the graph are not annotated with datapath register operations, and the graph does not

identify the output signals of the controller. The binary assignment for each state is indi-

cated at the upper right corner of the state boxes. The decision boxes specify the state

transitions as a function of the four control inputs: w, x, y, and z . The three‐level control

implementation, shown in Fig. 8.21 , consists of two multiplexers, MUX1 and MUX2;

a register with two flip‐flops, G1 and G0; and a decoder with four outputs— d0, d1, d2, and

 d3, corresponding to S_0, S_1, S_2, and S_3, respectively. The outputs of the state‐register

flip‐flops are applied to the decoder inputs and also to the select inputs of the multiplexers.

In this way, the present state of the register is used to select one of the inputs from each

multiplexer. The outputs of the multiplexers are then applied to the D inputs of G1 and

 G0 . The purpose of each multiplexer is to produce an input to its corresponding flip‐flop

equal to the binary value of that bit of the next‐state vector. The inputs of the multiplexers

 repeat (32) #10 begin Multiplier = Multiplier + 1;
 repeat (32) #5 Multiplicand = Multiplicand + 1;
 end

 end

 endmodule

412 Chapter 8 Design at the Register Transfer Level

are determined from the decision boxes and state transitions given in the ASM chart. For

example, state 00 stays at 00 or goes to 01, depending on the value of input w . Since the

next state of G1 is 0 in either case, we place a signal equivalent to logic 0 in MUX1 input 0.

The next state of G0 is 0 if w = 0 and 1 if w = 1. Since the next state of G0 is equal to w,

we apply control input w to MUX2 input 0. This means that when the select inputs of the

multiplexers are equal to present state 00, the outputs of the multiplexers provide the

binary value that is transferred to the register at the next clock pulse.

 FIGURE 8.20
 Example of ASM chart with four control inputs

w

x

y

z

y

z

S_0

S_1

S_3 S_2

00

01

11 10

0 1

0

0

1

1

0 1 1 0

1 0

Section 8.10 Design with Multiplexers 413

 To facilitate the evaluation of the multiplexer inputs, we prepare a table showing

the input conditions for each possible state transition in the ASM chart. Table 8.8 gives

this information for the ASM chart of Fig. 8.20 . There are two transitions from present

state 00 or 01 and three from present state 10 or 11. The sets of transitions are sepa-

rated by horizontal lines across the table. The input conditions listed in the table are

obtained from the decision boxes in the ASM chart. For example, from Fig. 8.20 , we

note that present state 01 will go to next state 10 if x = 1 or to next state 11 if x = 0 .

In the table, we mark these input conditions as x and x� , respectively. The two columns

under “multiplexer inputs” in the table specify the input values that must be applied

to MUX1 and MUX2. The multiplexer input for each present state is determined from

the input conditions when the next state of the flip‐flop is equal to 1. Thus, after present

state 01, the next state of G1 is always equal to 1 and the next state of G0 is equal to

the complement of x . Therefore, the input of MUX1 is made equal to 1 and that of

MUX2 to x� when the present state of the register is 01. As another example, after pres-

ent state 10, the next state of G1 must be equal to 1 if the input conditions are yz� or

 yz . When these two Boolean terms are ORed together and then simplified, we obtain

the single binary variable y, as indicated in the table. The next state of G0 is equal to 1

if the input conditions are yz = 11 . If the next state of G1 remains at 0 after a given

present state, we place a 0 in the multiplexer input, as shown in present state 00 for

 FIGURE 8.21
 Control implementation with multiplexers

D

C

C

D

CLK

0

1

2

3

y
z

y
z�

0

1

y

w

x�

y�

MUX1

s1

G1

G0

s0

s1 s0

0

1

2

3

MUX2

d0

d1

d2

d3

MUX select 2 � 4
decoder

414 Chapter 8 Design at the Register Transfer Level

MUX1. If the next state of G1 is always 1, we place a 1 in the multiplexer input, as

shown in present state 01 for MUX1. The other entries for MUX1 and MUX2 are

derived in a similar manner. The multiplexer inputs from the table are then used in the

control implementation of Fig. 8.21 . Note that if the next state of a flip‐flop is a function

of two or more control variables, the multiplexer may require one or more gates in its

input. Otherwise, the multiplexer input is equal to the control variable, the complement

of the control variable, 0, or 1.

 Design Example: Count the Number of Ones in a Register

 We will demonstrate the multiplexer implementation of the logic for a control unit by

means of a design example—a system that is to count the number of 1’s in a word of

data. The example will also demonstrate the formulation of the ASMD chart and the

implementation of the datapath subsystem.

 From among various alternatives, we will consider a ones counter consisting of two

registers R1 and R2, and a flip‐flop E . (A more efficient implementation is considered

in the problems at the end of the chapter.) The system counts the number of 1’s in the

number loaded into register R1 and sets register R2 to that number. For example, if the

binary number loaded into R1 is 10111001, the circuit counts the five 1’s in R1 and sets

register R 2 to the binary count 101. This is done by shifting each bit from register R1

one at a time into flip‐flop E . The value in E is checked by the control, and each time it

is equal to 1, register R2 is incremented by 1.

 The block diagram of the datapath and controller are shown in Fig. 8.22 (a). The

datapath contains registers R1, R2, and E, as well as logic to shift the leftmost bit of R1

into E . The unit also contains logic (a NOR gate to detect whether R1 is 0, but that

 Table 8.8
 Multiplexer Input Conditions

 Present
State

 Next
State

 Input
Condition Inputs

 G1 G0 G1 G0 s MUX1 MUX2

 0 0 0 0 w�
 0 0 0 1 w 0 w
 0 1 1 0 x
 0 1 1 1 x� 1 x�
 1 0 0 0 y�
 1 0 1 0 yz�
 1 0 1 1 yz yz� + yz = y yz
 1 1 0 1 y�z
 1 1 1 0 y
 1 1 1 1 y�z� y + y�z� = y + z� y�z + y�z� = y�

 415

 FIGURE 8.22
 Block diagram and ASMD chart for count‐of‐ones circuit

1

S_idle
Ready

1

Start

1
Zero

S_1
Incr_R2

reset_b

S_2
Shift_left

S_3

E

Load_regs

R2 �� R2 � 1

R1 �� data
R2 �� all 1s

{E, R1} �� {E, R1} �� 1

S_idle
Ready

1

Start

1
Zero

S_1

reset_b

R1 �� data
R2 �� all 1s

{E, R1} �� {E, R1} �� 1
S_2

S_3

E

1

R2 �� R2 � 1

Status
signals

Controller
Shift_left

Start

reset_b
clock

Datapath R1

E

Zero

...

... R2

E

data

count

Incr_R2

Load_regs

Shift_left

Ready

(a)

(b) (c)

416 Chapter 8 Design at the Register Transfer Level

detail is omitted in the figure). The external input signal Start launches the operation

of the machine; Ready indicates the status of the machine to the external environment.

The controller has status input signals E and Zero from the datapath. These signals

indicate the contents of a register holding the MSB of the data word and the condition

that the data word is 0, respectively. E is the output of the flip‐flop. Zero is the output

of a circuit that checks the contents of register R1 for all 0’s. The circuit produces an

output Zero = 1 when R1 is equal to 0 (i.e., when R1 is empty of 1’s).

 A preliminary ASMD chart showing the state sequence and the register operations

is illustrated in Fig. 8.22 (b), and the complete ASMD chart in Fig. 8.22 (c). Asserting

 Start with the controller in S_idle transfers the state to S_1, concurrently loads reg-

ister R1 with the binary data word, and fills the cells of R2 with 1’s. Note that incre-

menting a number with all 1’s in a counter register produces a number with all 0’s.

Thus, the first transition from S_1 to S_2 will clear R2 . Subsequent transitions will

have R2 holding a count of the bits of data that have been processed. The content of

 R1, as indicated by Zero, will also be examined in S_1 . If R1 is empty, Zero = 1, and

the state returns to S_idle, where it asserts Ready . In state S_1, Incr_R2 is asserted

to cause the datapath unit to increment R2 at each clock pulse. If R1 is not empty of

1’s, then Zero = 0, indicating that there are some 1’s stored in the register. The num-

ber in R1 is shifted and its leftmost bit is transferred into E . This is done as many

times as necessary, until a 1 is transferred into E . For every 1 detected in E, register

 R2 is incremented and register R1 is checked again for more 1’s. The major loop is

repeated until all the 1’s in R1 are counted. Note that the state box of S_3 has no

register operations, but the block associated with it contains the decision box for E .

Note also that the serial input to shift register R1 must be equal to 0 because we don’t

want to shift external 1’s into R1 . The register R1 in Fig. 8.22 (a) is a shift register.

Register R2 is a counter with parallel load. The multiplexer input conditions for the

control are determined from Table 8.9 . The input conditions are obtained from the

ASMD chart for each possible binary state transition. The four states are assigned

 Table 8.9
 Multiplexer Input Conditions for Design Example

 Present
State

 Next
State

 Input
Conditions

 Multiplexer
Inputs

 G1 G0 G1 G0 MUX1 MUX2

 0 0 0 0 Start�
 0 0 0 1 Start 0 Start
 0 1 0 0 Zero
 0 1 1 0 Zero� Zero� 0

 1 0 1 1 None 1 1

 1 1 1 0 E�

 1 1 0 1 E E� E

Section 8.10 Design with Multiplexers 417

binary values 00 through 11. The transition from present state 00 depends on Start .
The transition from present state 01 depends on Zero, and the transition from pres-

ent state 11 on E . Present state 10 goes to next state 11 unconditionally. The values

under MUX1 and MUX2 in the table are determined from the Boolean input condi-

tions for the next state of G1 and G0 , respectively.

 The control implementation of the design example is shown in Fig. 8.23 . This is a

three‐level implementation, with the multiplexers in the first level. The inputs to the

multiplexers are obtained from Table 8.9 . The Verilog description in HDL Example 8.8

instantiates structural models of the controller and the datapath. The listing of code

includes the lower level modules implementing their structures. Note that the datapath

unit does not have a reset signal to clear the registers, but the models for the flip‐flop,

shift register, and counter have an active‐low reset. This illustrates the use of Verilog

data type supply1 to hardwire those ports to logic value 1 in their instantiation within

 Datapath_STR . Note also that the test bench uses hierarchical de‐referencing to access

the state of the controller to make the debug and verification tasks easier, without hav-

ing to alter the module ports to provide access to the internal signals. Another detail to

observe is that the serial input to the shift register is hardwired to 0. The lower level

models are described behaviorally for simplicity.

 FIGURE 8.23
 Control implementation for count‐of‐ones circuit

Mux_1

Mux_2

2 � 4 Decoder

C

D

C

D

0

Zero�

1

E�

s1 s0

s1 s0

Start

0

1

E

clock

reset_b

G1

G0

Start

Incr_R2

Shift_left

0

1

0

2

0

3

1

2

3

1

2

3

Ready

Load_regs

418 Chapter 8 Design at the Register Transfer Level

 HDL Example 8.8 (Ones Counter)

 module Count_Ones_STR_STR (count, Ready, data, Start, clock, reset_b);
 // Mux – decoder implementation of control logic
 // controller is structural
 // datapath is structural

 parameter R1_size = 8, R2_size = 4;
 output [R2_size -1: 0] count;
 output Ready;
 input [R1_size -1: 0] data;
 input Start, clock, reset_b;
 wire Load_regs, Shift_left, Incr_R2, Zero, E;

 Controller_STR M0 (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock, reset_b);
 Datapath_STR M1 (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);
 endmodule

 module Controller_STR (Ready, Load_regs, Shift_left, Incr_R2, Start, E, Zero, clock,
 reset_b);
 output Ready;
 output Load_regs, Shift_left, Incr_R2;
 input Start;
 input E, Zero;
 input clock, reset_b;
 supply0 GND;
 supply1 PWR;
 parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11; // Binary code
 wire Load_regs, Shift_left, Incr_R2;
 wire G0, G0_b, D_in0, D_in1, G1, G1_b;
 wire Zero_b = ~Zero;
 wire E_b = ~E;
 wire [1: 0] select = {G1, G0};
 wire [0: 3] Decoder_out;
 assign Ready = ~Decoder_out[0];
 assign Incr_R2 = ~Decoder_out[1];
 assign Shift_left = ~Decoder_out[2];
 and (Load_regs, Ready, Start);
 mux_4x1_beh Mux_1 (D_in1, GND, Zero_b, PWR, E_b, select);
 mux_4x1_beh Mux_0 (D_in0, Start, GND, PWR, E, select);
 D_flip_flop_AR_b M1 (G1, G1_b, D_in1, clock, reset_b);
 D_flip_flop_AR_b M0 (G0, G0_b, D_in0, clock, reset_b);
 decoder_2x4_df M2 (Decoder_out, G1, G0, GND);

 endmodule

Section 8.10 Design with Multiplexers 419

 module Datapath_STR (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);
 parameter R1_size = 8, R2_size = 4;
 output [R2_size -1: 0] count;
 output E, Zero;
 input [R1_size -1: 0] data;
 input Load_regs, Shift_left, Incr_R2, clock;
 wire [R1_size -1: 0] R1;
 wire Zero;
 supply0 Gnd;
 supply1 Pwr;
 assign Zero = (R1 == 0); // implicit combinational logic
 Shift_Reg M1 (R1, data, Gnd, Shift_left, Load_regs, clock, Pwr);
 Counter M2 (count, Load_regs, Incr_R2, clock, Pwr);
 D_flip_flop_AR M3 (E, w1, clock, Pwr);
 and (w1, R1[R1_size - 1], Shift_left);
 endmodule

 module Shift_Reg (R1, data, SI_0, Shift_left, Load_regs, clock, reset_b);
 parameter R1_size = 8;
 output [R1_size -1: 0] R1;
 input [R1_size -1: 0] data;
 input SI_0, Shift_left, Load_regs;
 input clock, reset_b;
 reg [R1_size -1: 0] R1;
 always @ (posedge clock, negedge reset_b)
 if (reset_b == 0) R1 <= 0;
 else begin
 if (Load_regs) R1 <= data; else
 if (Shift_left) R1 <= {R1[R1_size -2: 0], SI_0}; end
 endmodule

 module Counter (R2, Load_regs, Incr_R2, clock, reset_b);
 parameter R2_size = 4;
 output [R2_size -1: 0] R2;
 input Load_regs, Incr_R2;
 input clock, reset_b;
 reg [R2_size -1: 0] R2;
 always @ (posedge clock, negedge reset_b)
 if (reset_b == 0) R2 <= 0;
 else if (Load_regs) R2 <= {R2_size {1'b1}}; // Fill with 1
 else if (Incr_R2 == 1) R2 <= R2 + 1;
 endmodule

 module D_flip_flop_AR (Q, D, CLK, RST_b);
 output Q;
 input D, CLK, RST_b;

420 Chapter 8 Design at the Register Transfer Level

 reg Q;
 always @ (posedge CLK, negedge RST_b)
 if (RST_b == 0) Q <= 1'b0;
 else Q <= D;
 endmodule

 module D_flip_flop_AR_b (Q, Q_b, D, CLK, RST_b);
 output Q, Q_b;
 input D, CLK, RST_b;
 reg Q;
 assign Q_b = ~Q;
 always @ (posedge CLK, negedge RST_b)
 if (RST_b == 0) Q <= 1'b0;
 else Q <= D;
 endmodule

 // Behavioral description of four-to-one line multiplexer
 // Verilog 2005 port syntax
 module mux_4x1_beh
 (output reg m_out,
 input in_0, in_1, in_2, in_3,
 input [1: 0] select
);
 always @ (in_0, in_1, in_2, in_3, select) // Verilog 2005 syntax
 case (select)
 2'b00: m_out = in_0;
 2'b01: m_out = in_1;
 2'b10: m_out = in_2;
 2'b11: m_out = in_3;
 endcase

 endmodule

 // Dataflow description of two-to-four-line decoder
 // See Fig. 4.19. Note: The figure uses symbol E, but the
 // Verilog model uses enable to indicate functionality clearly.
 module decoder_2x4_df (D, A, B, enable);
 output [0: 3] D;
 input A, B;
 input enable;

 assign D[0] = !(!A && !B && !enable),
 D[1] = !(!A && B && !enable),
 D[2] = !(A && !B && !enable),
 D[3] = !(A && B && !enable);
 endmodule

 module t_Count_Ones;

Section 8.10 Design with Multiplexers 421

 parameter R1_size = 8, R2_size = 4;
 wire [R2_size -1: 0] R2;
 wire [R2_size -1: 0] count;
 wire Ready;
 reg [R1_size -1: 0] data;
 reg Start, clock, reset_b;
 wire [1: 0] state; // Use only for debug
 assign state = {M0.M0.G1, M0.M0.G0};
 Count_Ones_STR_STR M0 (count, Ready, data, Start, clock, reset_b);
 initial #650 $finish ;
 initial begin clock = 0; #5 forever #5 clock = ~clock; end
 initial fork
 #1 reset_b = 1;
 #3 reset_b = 0;
 #4 reset_b = 1;
 #27 reset_b = 0;
 #29 reset_b = 1;
 #355 reset_b = 0;
 #365 reset_b = 1;
 #4 data = 8'Hff;
 #145 data = 8'haa;
 # 25 Start = 1;
 # 35 Start = 0;
 #55 Start = 1;
 #65 Start = 0;
 #395 Start = 1;
 #405 Start = 0;
 join

 endmodule

 Testing the Ones Counter

 The test bench in HDL Example 8.8 was used to produce the simulation results in

 Fig. 8.24 . Annotations have been added for clarification. In Fig. 8.24 (a), reset_b is toggled

low at t = 3 to drive the controller into S_idle, but with Start not yet having an assigned

value. (The default is x.) Consequently, the controller enters an unknown state (the

shaded waveform) at the next clock, and its outputs are unknown.4 When reset_b is

asserted (low) again at t = 27, the state enters S_idle . Then, with Start = 1 at the first clock

after reset_b is de‐asserted, (1) the controller enters S_1, (2) Load_regs causes R1 to be

set to the value of data, namely, 8�Hff , and (3) R2 is filled with 1’s. At the next clock, R2

4 Remember, this simulation is in Verilog’s four‐valued logic system. In actual hardware, the values will be 0 or 1.
Without a known applied value for the inputs, the next state and outputs will be undetermined, even after the reset
signal has been applied.

422 Chapter 8 Design at the Register Transfer Level

starts counting from 0. Shift_left is asserted while the controller is in state S_2, and

 incr_R2 is asserted while the controller is in state S_1 . Notice that R2 is incremented in

the next cycle after incr_R2 is asserted. No output is asserted in state S_3 . The counting

sequence continues in Fig. 8.24 (b) until Zero is asserted, with E holding the last 1 of the

data word. The next clock produces count = 8, and state returns to S_idle . (Additional

testing is addressed in the problems at the end of the chapter.)

 8 . 1 1 R A C E ‐ F R E E D E S I G N (S O F T WA R E R A C E
C O N D I T I O N S)

 Once a circuit has been synthesized, either manually or with tools, it is necessary to

verify that the simulation results produced by the HDL behavioral model match those of

the netlist of the gates (standard cells) of the physical circuit. It is important to resolve any

 FIGURE 8.24
 Simulation waveforms for count‐of‐ones circuit

R2 filled with 1s

(a)

reset_b asserted (low), but
Start unknown

Machine begins
counting

R1 loaded with data

Name
0 30 60 90 120

clock
reset_b

Start
Zero
E

state[1: 0]
state[1]
state[0]

Ready
Load_regs
Shift_left
Incr_R2

data[7: 0]

R1[7: 0]
E
R2[3: 0]
count[3: 0]

x 0 X

x
x

xx

0 1

f
f

ff

2 3

0

1

0

2

fe

3

1

1

1

2

fc

3

2
2

f8

ff

1

Section 8.11 Race‐Free Design (Software Race Conditions) 423

mismatch, because the behavioral model was presumed to be correct. There are various

potential sources of mismatch between the results of a simulation, but we will consider

one that typically happens in HDL‐based design methodology. Three realities contribute

to the potential problem: (1) a physical feedback path exists between a datapath unit and

a control unit whose inputs include status signals fed back from the datapath unit;

(2) blocked procedural assignments execute immediately, and behavioral models simu-

late with 0 propagation delays, effectively creating immediate changes in the outputs of

combinational logic when its inputs change (i.e., changes in the inputs and the outputs

are scheduled in the same time step of the simulation); and (3) the order in which a

simulator executes multiple blocked assignments to the same variable at a given time

step of the simulation is indeterminate (i.e., unpredictable).

R2 holds number of 1s

(b)

Computations are
done

Name
120 180 240 300

clock
reset_b

Start
Zero

E

state[1: 0]
state[1]
state[0]

Ready
Load_regs
Shift_left
Incr_R2

data[7: 0]

R1[7: 0]

E
R2[3: 0]

count[3: 0]

1

2
2

f8

2

ff

3

3

1

3

2

f0

3

4

1

4

2

e0

3

5

1

5

2

c0

3

6

1

6

80

2 3

7

1

7
8
8

00

aa

0

R1 is empty of
1s

Machine returns to
S_idle

 Figure 8.24 (Continued)

424 Chapter 8 Design at the Register Transfer Level

 Now consider a sequential machine with an HDL model in which all assignments

are made with the blocked assignment operator. At a clock pulse, the register opera-

tions in the datapath, the state transitions in the controller, the updates of the next

state and output logic of the controller, and the updates to the status signals in the

datapath are all scheduled to occur at the same time step of the simulation. Which

executes first? Suppose that when a clock pulse occurs, the state of the controller

changes before the register operations execute. The change in the state could change

the outputs of the control unit. The new values of the outputs would be used by the

datapath when it finally executes its assignments at that same clock pulse. The result

might not be the same as it would have been if the datapath had executed its assign-

ments before the control unit updated its state and outputs. Conversely, suppose that

when the clock pulse occurs, the datapath unit executes its operations and updates its

status signals first. The updated status signals could cause a change in the value of the

next state of the controller, which would be used to update the state. The result could

differ from that which would result if the state had been updated before the edge‐

sensitive operations in the datapath executed. In either case, the timing of register

transfer operations and state transitions in the different representations of the system

might not match. Failing to detect a mismatch can have disastrous consequences for
the user of the design. Finding the source of the mismatch can be very time‐consuming
and costly. It is better to avoid the mismatch by following a strict discipline in your
design . Fortunately, there is a solution to this dilemma.

 A designer can eliminate the software race conditions just described by observing

the rule of modeling combinational logic with blocked assignments and modeling

state transitions and edge‐sensitive register operations with nonblocking assign-

ments. A software race cannot happen if nonblocking operators are used as shown

in all of the examples in this text, because the sampling mechanism of the nonblock-

ing operator breaks the feedback path between a state transition or edge‐sensitive

datapath operation and the combinational logic that forms the next state or inputs

to the registers in the datapath unit. The mechanism does this because simulators

evaluate the expressions on the right‐hand side of their nonblocking assignment

statements before any blocked assignments are made. Thus, the nonblocking assign-

ments cannot be affected by the results of the blocked assignments. This matches the

hardware reality. Always use the blocking operator to model combinational logic,

and use the nonblocking operator to model edge‐sensitive register operations and

state transitions.

 It also might appear that the physical structure of a datapath and the controller

together create a physical (i.e., hardware), race condition, because the status signals are

fed back to the controller and the outputs of the controller are fed forward to the

datapath. However, timing analysis can verify that a change in the output of the control-

ler will not propagate through the datapath logic and then through the input logic of

the controller in time to have an effect on the output of the controller until the next

clock pulse. The state cannot update until the next edge of the clock, even though the

status signals update the value of the next state. The flip‐flop cuts the feedback path

Section 8.12 Latch‐Free Design (Why Waste Silicon?) 425

between clock cycles. In practice, timing analysis verifies that the circuit will operate at

the specified clock frequency, or it identifies signal paths whose propagation delays are

problematic. Remember, the design must implement the correct logic and operate at

the speed prescribed by the clock.

 8 . 1 2 L AT C H ‐ F R E E D E S I G N (W H Y WA S T E
S I L I C O N ?)

 Continuous assignments model combinational logic implicitly. A feedback‐free continu-

ous assignment will synthesize to combinational logic, and the input–output relationship

of the logic is automatically sensitive to all of the inputs of the circuit. In simulation, the

simulator monitors the right‐hand sides of all continuous assignments, detects a change

in any of the referenced variables, and updates the left‐hand side of an affected assign-

ment statement. Unlike a continuous assignment, a cyclic behavior is not necessarily

completely sensitive to all of the variables that are referenced by its assignment state-

ments. If a level‐sensitive cyclic behavior is used to describe combinational logic, it is

essential that the sensitivity list include every variable that is referenced on the right‐hand

side of an assignment statement in the behavior. If the list is incomplete, the logic

described by the behavior will be synthesized with latches at the outputs of the logic. This

implementation wastes silicon area and may have a mismatch between the simulation of

the behavioral model and the synthesized circuit. These difficulties can be avoided by

ensuring that the sensitivity list is complete, but, in large circuits, it is easy to fail to include

every referenced variable in the sensitivity list of a level‐sensitive cyclic behavior.

 Consequently, Verilog 2001 included a new operator to reduce the risk of accidentally

 synthesizing latches.

 In Verilog 2001, the tokens @ and * can be combined as @* or @(*) and are used

without a sensitivity list to indicate that execution of the associated statement is sensi-

tive to every variable that is referenced on the right‐hand side of an assignment state-

ment in the logic. In effect, the operator @* indicates that the logic is to be interpreted

 HDL Example 8.9

 The following level-sensitive cyclic behavior will synthesize a two-channel multiplexer:

 module mux_2_V2001 (output reg [31: 0] y, input [31: 0] a, b, input sel);
 always @*
 y = sel ? a: b;
 endmodule

 The cyclic behavior has an implicit sensitivity list consisting of a, b, and sel .

426 Chapter 8 Design at the Register Transfer Level

and synthesized as level‐sensitive combinational logic; the logic has an implicit sensitivity

list composed of all of the variables that are referenced by the procedural assignments.

Using the @* operator will prevent accidental synthesis of latches.

 8 . 1 3 O T H E R L A N G U A G E F E AT U R E S

 The examples in this text have used only those features of the Verilog HDL that are

appropriate for an introductory course in logic design. Verilog 2001 contains features

that are very useful to designers, but which are not considered here. Among them are

multidimensional arrays, variable part selects, array bit and part selects, signed reg, net,

and port declarations, and local parameters. These enhancements are treated in more

advanced texts using Verilog 2001 and Verilog 2005.

 P R O B L E M S

 Answers to problems marked with * appear at the end of the book.

 8.1* Explain in words and write HDL statements for the operations specified by the following

register transfer notation:

 (a) R2 d R2 + 1, R1 d R

 (b) R3 d R3 - 1

 (c) If (S1 = 1) then (R0 d R1) else if (S2 = 1) then (R0 d R2)

 8.2 A logic circuit with active‐low synchronous reset has two control inputs x and y. If x is 1

and y is 0, register R is incremented by 1 and control goes to a second state. If x is 0 and y

is 1, register R is cleared to zero and control goes from the initial state to a third state.

Otherwise, control stays in the initial state. Draw (1) a block diagram showing the control-

ler, datapath unit (with internal registers), and signals, and (2) the portion of an ASMD

chart starting from an initial state.

 8.3 Draw the ASMD charts for the following state transitions:

 (a) If x = 1, control goes from state S1 to state S2 ; if x = 0, generate a conditional opera-

tion R 6 = R + 2 and go from S1 to S2 .

 (b) If x = 1, control goes from S1 to S2 and then to S3; if x = 0, control goes from S1 to S3.

 (c) Start from state S1; then if xy = 11, go to S2; if xy = 01 go to S3; and if xy = 10, go to S1;

otherwise, go to S3.

 8.4 Show the eight exit paths in an ASM block emanating from the decision boxes that check

the eight possible binary values of three control variables x, y, and z .

 8.5 Explain how the ASM and ASMD charts differ from a conventional flowchart. Using

 Fig. 8.5 as an illustration, show the difference in interpretation. Explain the difference

between and ASM chart and an ASMD chart. In your own words, discuss the use and merit

of using an ASMD chart.

 8.6 Construct a block diagram and an ASMD chart for a digital system that counts the number

of people in a room. The one door through which people enter the room has a photocell

that changes a signal x from 1 to 0 while the light is interrupted. They leave the room from

Problems 427

a second door with a similar photocell that changes a signal y from 1 to 0 while the light

is interrupted. The datapath circuit consists of an up–down counter with a display that

shows how many people are in the room.

 8.7* Draw a block diagram and an ASMD chart for a circuit with two eight‐bit registers RA

and RB that receive two unsigned binary numbers. The circuit performs the subtraction

operation

 RA d RA - RB

 Use the method for subtraction described in Section 1.5, and set a borrow flip‐flop to 1 if

the answer is negative. Write and verify an HDL model of the circuit.

 8.8* Design a digital circuit with three 16‐bit registers AR, BR, and CR that perform the

following operations:

 (a) Transfer two 16‐bit signed numbers (in 2’s‐complement representation) to AR and BR .

 (b) If the number in AR is negative, divide the number in AR by 2 and transfer the result

to register CR .

 (c) If the number in AR is positive but nonzero, multiply the number in BR by 2 and

transfer the result to register CR .

 (d) If the number in AR is zero, clear register CR to 0.

 (e) Write and verify a behavioral model of the circuit.

 8.9* Design the controller whose state diagram is given by Fig. 8.11 (a). Use one flip‐flop per

state (a one‐hot assignment). Write, simulate, verify, and compare RTL and structural

models of the controller.

 8.10 The state diagram of a control unit is shown in Fig. P8.10 . It has four states and two

inputs x and y . Draw the equivalent ASM chart. Write and verify a Verilog model of the

controller.

 FIGURE P8.10
 Control state diagram for Problems 8.10 and 8.11

00

11 10

01

x � 1

x � 0
y � 1

x � 1
y � 0

x � 0

x � 1

x � 0, y � 0

x � 1, y � 1

y � 1 y � 0

x � 0

 8.11* Design the controller whose state diagram is shown in Fig. P8.10. Use D flip‐flops.

 8.12 Design the four‐bit counter with synchronous clear specified in Fig. 8.10 . Repeat for

asynchronous clear.

428 Chapter 8 Design at the Register Transfer Level

 8.13 Simulate Design_Example_STR (see HDL Example 8.4), and verify that its behavior

matches that of the RTL description. Obtain state information by displaying G0 and G1

as a concatenated vector for the state.

 8.14 What, if any, are the consequences of the machine in Design_Example_RTL (see HDL

Example 8.2) entering an unused state?

 8.15 Simulate Design_Example_RTL in HDL Example 8.2, and verify that it recovers from an

unexpected reset condition during its operation, i.e., a “running reset” or a “reset on‐the‐fly.”

 8.16* Develop a block diagram and an ASMD chart for a digital circuit that multiplies two binary

numbers by the repeated‐addition method. For example, to multiply 5 * 4, the digital system

evaluates the product by adding the multiplicand four times: 5 + 5 + 5 + 5 = 20. Design the

circuit. Let the multiplicand be in register BR, the multiplier in register AR, and the product

in register PR . An adder circuit adds the contents of BR to PR . A zero‐detection signal indi-

cates whether AR is 0. Write and verify a Verilog behavioral model of the circuit.

 8.17* Prove that the multiplication of two n‐bit numbers gives a product of length less than or

equal to 2 n bits.

 8.18* In Fig. 8.14 , the Q register holds the multiplier and the B register holds the multiplicand.

Assume that each number consists of 16 bits.

 (a) How many bits can be expected in the product, and where is it available?

 (b) How many bits are in the P counter, and what is the binary number loaded into it

initially?

 (c) Design the circuit that checks for zero in the P counter.

 8.19 List the contents of registers C, A, Q, and P in a manner similar to Table 8.5 during the

process of multiplying the two numbers 11011 (multiplicand) and 10111 (multiplier).

 8.20* Determine the time it takes to process the multiplication operation in the binary multi-

plier described in Section 8.8. Assume that the Q register has n bits and the clock cycle is

 t ns.

 8.21 Design the control circuit of the binary multiplier specified by the state diagram of Fig. 8.16 ,

using multiplexers, a decoder, and a register.

 8.22 Figure P8.22 shows an alternative ASMD chart for a sequential binary multiplier. Write and

verify an RTL model of the system. Compare this design with that described by the ASMD

chart in Fig. 8.15 (b).

 8.23 Figure P8.23 shows an alternative ASMD chart for a sequential binary multiplier. Write

and verify an RTL model of the system. Compare this design with that described by the

ASMD chart in Fig. 8.15 (b).

 8.24 The HDL description of a sequential binary multiplier given in HDL Example 8.5

encapsulates the descriptions of the controller and the datapath in a single Verilog

module. Write and verify a model that encapsulates the controller and datapath in

separate modules.

 8.25 The sequential binary multiplier described by the ASMD chart in Fig. 8.15 does not consider

whether the multiplicand or the shifted multiplier is 0. Therefore, it executes for a fixed

number of clock cycles, independently of the data.

 (a) Develop an ASMD chart for a more efficient multiplier that will terminate execution

as soon as either word is found to be zero.

Problems 429

 FIGURE P8.22
 ASMD chart for Problem 8.22

A �� 0
C �� 0
B �� Multiplicand
Q �� Multiplier
P �� m_size

P �� P � 1
Decrement counter

{C, A} �� A � B

{C, A, Q} �� {C, A, Q} �� 1
17-bit register shifts to the
right by one bit

Add multiplicand
to shifted sum

S_idle
Ready

S_loaded
Decr_P

Zero

reset

Start

1

Q[0]

S_sum

S_shifted

1

1

Add_regs

Load_regs

Shift_regs

Shift_regs

 (b) Write an HDL description of the circuit. The controller and datapath are to be encap-

sulated in separate Verilog modules.

 (c) Write a test plan and a test bench, and verify the circuit.

 8.26 Modify the ASMD chart of the sequential binary multiplier shown in Fig. 8.15 to add and

shift in the same clock cycle. Write and verify an RTL description of the system.

 8.27 The second test bench given in HDL Example 8.6 generates a product for all possible

values of the multiplicand and multiplier. Verifying that each result is correct would not

be practical, so modify the test bench to include a statement that forms the expected

430 Chapter 8 Design at the Register Transfer Level

product. Write additional statements to compare the result produced by the RTL descrip-

tion with the expected result. Your simulation is to produce an error signal indicating the

result of the comparison. Repeat for the structural model of the multiplier.

 8.28 Write the HDL structural description of the multiplier designed in Section 8.8. Use the

block diagram of Fig. 8.14 (a) and the control circuit of Fig. 8.18 . Simulate the design and

verify its functionality by using the test bench of HDL Example 8.6.

 8.29 An incomplete ASMD chart for a finite state machine is shown in Fig. P8.29 . The register

operations are not specified, because we are interested only in designing the control logic.

 (a) Draw the equivalent state diagram.

 (b) Design the control unit with one flip‐flop per state.

 (c) List the state table for the control unit.

 FIGURE P8.23
 ASMD chart for Problem 8.23

A �� 0
C �� 0
B �� Multiplicand
Q �� Multiplier
P �� m_size

{C, A, Q} �� {C, A, Q} �� 1
17-bit register shifts to the
right by one bit

Add multiplicand
to shifted sum
{C, A} �� A � B

Decrement counter
P �� P � 1

S_idle
Ready

 S_load
Load_regs

Zero

reset

Start

1

Q[0]

 S_decr
decr_P

 S_shift
Shift_regs

1

1

Add_regs

Load_regs

Problems 431

 (d) Design the control unit with three D flip‐flops, a decoder, and gates.

 (e) Derive a table showing the multiplexer input conditions for the control unit.

 (f) Design the control unit with three multiplexers, a register with three flip‐flops, and a

3 * 8 decoder.

 (g) Using the results of (f), write and verify a structural model of the controller.

 (h) Write and verify an RTL description of the controller.

 FIGURE P8.29
 ASMD chart for Problem 8.29

y

E

x

000

001

010

100

110

111 101

011

F
0

0

1

0

1

1

0 1

S_0

S_1

S_2

S_3

S_4

S_6

S_7 S_5

432 Chapter 8 Design at the Register Transfer Level

 8.30* What is the value of E in each HDL block, assuming that RA = 1?

 (a) RA = RA - 1; (b) RA <= RA - 1;
 if (RA == 0) E = 1; if (RA == 0) E <= 1;
 else E = 0; else E <= 0;

 8.31* Using the Verilog HDL operators listed in Table 8.2 , assume that A = 4�b0110,

B = 4�b0010, and C = 4�b0000 and evaluate the result of the following operations:

 A * B; A + B; A - B; ~C; A & B; A | B; A ^ B; & A; ~|C; A || B; A && C; |A; A < B; A > B;
A != B;

 8.32 Consider the following always block:

 always @ (posedge CLK)
 if (S1) R1 <= R1 + R2;
 else if (S2) R1 <= R1 + 1;
 else R1 <= R1;

 Using a four‐bit counter with parallel load for R1 (as in Fig. 6.15) and a four‐bit adder,

draw a block diagram showing the connections of components and control signals for a

possible synthesis of the block.

 8.33 The multilevel case statement is often translated by a logic synthesizer into hardware

multiplexers. How would you translate the following case block into hardware (assume

registers of eight bits each)?

 case (state)
 S0: R4 = R0;
 S1: R4 = R1;
 S2: R4 = R2;
 S3: R4 = R3;

 endcase

 8.34 The design of a circuit that counts the number of ones in a register is carried out in Section

8.10. The block diagram for the circuit is shown in Fig. 8.22 (a), a complete ASMD chart

for the circuit appears in Fig. 8.22 (c), and structural HDL models of the datapath and

controller are given in HDL Example 8.8. Using the operations and signal names indi-

cated on the ASMD chart,

 (a) Write Datapath_BEH, an RTL description of the datapath unit of the ones counter.

Write a test plan specifying the functionality that will be tested, and write a test bench

to implement the plan. Execute the test plan to verify the functionality of the datapath

unit, and produce annotated simulation results relating the test plan to the waveforms

produced in a simulation.

 (b) Write Controller_BEH, an RTL description of the control unit of the ones counter.

Write a test plan specifying the functionality that will be tested, and write a test bench

to implement the plan. Execute the test plan to verify the functionality of the control

unit, and produce annotated simulation results relating the test plan to the waveforms

produced in a simulation.

 (c) Write Count_Ones_BEH_BEH, a top‐level module encapsulating and integrating

 Controller_BEH and Datapath_BEH . Write a test plan and a test bench, and verify

the description. Produce annotated simulation results relating the test plan to the

waveforms produced in a simulation.

Problems 433

 (d) Write Controller_BEH_1Hot, an RTL description of a one‐hot controller implement-

ing the ASMD chart of Fig. 8.22 (c). Write a test plan specifying the functionality that

will be tested, and write a test bench to implement the plan. Execute the test plan and

produce annotated simulation results relating the test plan to the waveforms produced

in a simulation.

 (e) Write Count_Ones_BEH_1_Hot, a top‐level module encapsulating the module Con-
troller_BEH_1_Hot and Datapath_BEH . Write a test plan and a test bench, and verify

the description. Produce annotated simulation results relating the test plan to the

waveforms produced in a simulation.

 8.35 The HDL description and test bench for a circuit that counts the number of ones in a

register are given in HDL Example 8.8. Modify the test bench and simulate the circuit to

verify that the system operates correctly for the following patterns of data: 8�hff, 8�h0f,

8�hf0, 8�h00, 8�haa, 8�h0a, 8�ha0, 8�h55, 8�h05, 8�h50, 8�ha5, and 8�h5a .

 8.36 The design of a circuit that counts the number of ones in a register is carried out in Section

8.10. The block diagram for the circuit is shown in Fig. 8.22 (a), a complete ASMD chart

for this circuit appears in Fig. 8.22 (c), and structural HDL models of the datapath and

controller are given in HDL Example 8.8. Using the operations and signal names indi-

cated on the ASMD chart,

 (a) Design the control logic, employing one flip‐flop per state (a one‐hot assignment). List

the input equations for the four flip‐flops.

 (b) Write Controller_Gates_1_Hot, a gate‐level HDL structural description of the circuit,

using the control designed in part (a) and the signals shown in the block diagram of

 Fig. 8.22 (a).

 (c) Write a test plan and a test bench, and then verify the controller.

 (d) Write Count_Ones_Gates_1_Hot_STR, a top‐level module encapsulating and integrating

instantiations of Controller_Gates_1_Hot and Datapath_STR . Write a test plan and a

test bench to verify the description. Produce annotated simulation results relating the

test plan to the waveforms produced in a simulation.

 8.37 Compared with the circuit presented in HDL Example 8.8, a more efficient circuit that

counts the number of ones in a data word is described by the block diagram and the par-

tially completed ASMD chart in Fig. P8.37. This circuit accomplishes addition and shifting

in the same clock cycle and adds the LSB of the data register to the counter register at

every clock cycle.

 (a) Complete the ASMD chart.

 (b) Using the ASMD chart, write an RTL description of the circuit. A top‐level Verilog

module, Count_of_ones_2_Beh is to instantiate separate modules for the datapath and

control units.

 (c) Design the control logic, using one flip‐flop per state (a one‐hot assignment). List the

input equations for the flip‐flops.

 (d) Write the HDL structural description of the circuit, using the controller designed in

part (c) and the block diagram of Fig. P8.37 (a).

 (e) Write a test bench to test the circuit. Simulate the circuit to verify the operation described

in both the RTL and the structural programs.

 8.38 The addition of two signed binary numbers in the signed‐magnitude representation follows

the rules of ordinary arithmetic: If the two numbers have the same sign (both positive or

both negative), the two magnitudes are added and the sum has the common sign; if the

two numbers have opposite signs, the smaller magnitude is subtracted from the larger and

434 Chapter 8 Design at the Register Transfer Level

the result has the sign of the larger magnitude. Write an HDL behavioral description for

adding two 8‐bit signed numbers in signed‐magnitude representation and verify. The left-

most bit of the number holds the sign and the other seven bits hold the magnitude.

 8.39* For the circuit designed in Problem 8.16,

 (a) Write and verify a structural HDL description of the circuit. The datapath and control-

ler are to be described in separate units.

 (b) Write and verify an RTL description of the circuit. The datapath and controller are to

be described in separate units.

 8.40 Modify the block diagram of the sequential multiplier given in Fig. 8.14 (a) and the ASMD

chart in Fig. 8.15 (b) to describe a system that multiplies 32‐bit words, but with 8‐bit (byte-

wide) external datapaths. The machine is to assert Ready in the (initial) reset state. When

 Start is asserted, the machine is to fetch the data bytes from a single 8‐bit data bus in

consecutive clock cycles (multiplicand bytes first, followed by multiplier bytes, least sig-

nificant byte first) and store the data in datapath registers. Got_Data is to be asserted for

one cycle of the clock when the transfer is complete. When Run is asserted, the product is

to be formed sequentially. Done_Product is to be asserted for one clock cycle when the

multiplication is complete. When a signal Send_Data is asserted, each byte of the product

is to be placed on an 8‐bit output bus for one clock cycle, in sequence, beginning with the

least significant byte. The machine is to return to the initial state after the product has

been transmitted. Consider safeguards, such as not attempting to send or receive data

while the product is being formed. Consider also other features that might eliminate need-

less multiplication by 0. For example, do not continue to multiply if the shifted multiplier

is empty of 1’s.

 FIGURE P8.37
 (a) Alternative circuit for a ones counter
 (b) ASMD Chart for Problem 8.37

Status
signals

Controller Add_shift
Start

reset_b
Clock

Datapath R1

R1[0]

Zero

...

R2

data

count

...

Ready

�

(a)

S_idle
Ready

1

Start

1
Zero

S_running

reset_b

R1 �� data
R2 �� 0

R2 �� R2 � R1[0]
R1 �� R1 �� 1

(b)

Problems 435

 8.41 The block diagram and partially completed ASMD chart in Fig. P8.41 describe the be-

havior of a two‐stage pipeline that acts as a 2:1 decimator with a parallel input and output.

Decimators are used in digital signal processors to move data from a datapath with a high

clock rate to a datapath with a lower clock rate, converting data from a parallel format

to a serial format in the process. In the datapath shown, entire words of data can be trans-

ferred into the pipeline at twice the rate at which the contents of the pipeline must be

dumped into a holding register or consumed by some processor. The contents of the

holding register R0 can be shifted out serially, to accomplish an overall parallel‐to‐serial

conversion of the data stream. The ASMD chart indicates that the machine has synchro-

nous reset to S_idle, where it waits until rst is de‐asserted and En is asserted. Note that

synchronous transitions which would occur from the other states to S_idle under the

action of rst are not shown. With En asserted, the machine transitions from S_idle to S_1,

accompanied by concurrent register operations that load the MSByte of the pipe with

 Data and move the content of P1 to the LSByte (P0). At the next clock, the state goes to

 S_full, and now the pipe is full. If Ld is asserted at the next clock, the machine moves to

 S_1 while dumping the pipe into a holding register R0 . If Ld is not asserted, the machine

 FIGURE P8.41
 Two‐stage pipeline register: Datapath unit and ASMD chart

P1 �� Data
P0 �� P1

Ld

Ld
1

R0 �� {P1, P0}

S_1

En

S_full

P1 �� Data
P0 �� P1

S_wait

1

1

1
rst

S_idle
{P1, P0} �� {0, 0}

En

1

{P1, P0} �� {0, 0}

P1 �� Data
P0 �� P1

(b)

8 8 8

Data

R0[15: 0]P1[7: 0] P0[7: 0]

P1[7: 0] P0[7: 0]

(a)

436 Chapter 8 Design at the Register Transfer Level

enters S_wait and remains there until Ld is asserted, at which time it dumps the pipe and

returns to S_1 or to S_idle, depending on whether En is asserted, too. The data rate at R0

is one‐half the rate at which data are supplied to the unit from an external datapath.

 (a) Develop the complete ASMD chart.

 (b) Using the ASMD chart developed in (a), write and verify an HDL model of the

datapath.

 (c) Write and verify a Verilog behavioral model of the control unit.

 (d) Encapsulate the datapath and controller in a top‐level module, and verify the integrated

system.

 8.42 The count‐of‐ones circuit described in Fig. 8.22 has a latency that is to be eliminated. It

arises because the status signal E is formed as the output of a flip‐flop into which the MSB

of R 1 is shifted. Develop a design that eliminates the latency.

 R E F E R E N C E S

 1. A rnold, M. G. 1999. Verilog Digital Computer Design . Upper Saddle River, NJ: Prentice

Hall.

 2. B hasker, J. 1997. A Verilog HDL Primer . Allentown, PA: Star Galaxy Press.

 3. B hasker, J. 1998. Verilog HDL Synthesis . Allentown, PA: Star Galaxy Press.

 4. C iletti, M. D. 2003. Modeling, Synthesis, and Rapid Prototyping with Verilog HDL . Upper

Saddle River, NJ: Prentice Hall.

 5. C iletti, M. D. 2010. Advanced Digital Design with the Verilog HDL. Upper Saddle River,

NJ: Prentice Hall.

 6. C lare, C. R. 1971. Designing Logic Systems Using State Machines . New York: McGraw‐

Hill.

 7. H ayes, J. P. 1993. Introduction to Digital Logic Design . Reading, MA: Addison‐Wesley.

 8. IEEE Standard Hardware Description Language Based on the Verilog Hardware Description
Language (IEEE Std 1364‐2005). 2005. New York: Institute of Electrical and Electronics

Engineers.

 9. M ano, M. M. 1993. Computer System Architecture, 3rd ed. Upper Saddle River, NJ: Prentice

Hall.

 10. M ano, M. M., and C. R. K ime . 2005. Logic and Computer Design Fundamentals, 3rd ed.

Upper Saddle River, NJ: Prentice Hall.

 11. P alnitkar, S. 2003. Verilog HDL: A Guide to Digital Design and Synthesis . Mountain View,

CA: SunSoft Press (a Prentice Hall Title).

 12. S mith, D. J. 1996. HDL Chip Design. Madison, AL: Doone Publications.

 13. T homas, D. E., and P. R. M oorby . 2002. The Verilog Hardware Description Language,
5th ed. Boston: Kluwer Academic Publishers.

 14. W inkler, D., and F. P rosser . 1987. The Art of Digital Design, 2nd ed. Englewood Cliffs, NJ:

Prentice‐Hall.

Web Search Topics 437

 WEB SEARCH TOP ICS

 Algorithmic state machine

 Algorithmic state machine chart

 Asynchronous circuit

 Decimator

 Digital control unit

 Digital datapath unit

 Mealy machine

 Moore machine

Race condition

438

 Chapter 9

 Laboratory Experiments with
Standard ICs and FPGAs

 9 . 1 I N T R O D U C T I O N T O E X P E R I M E N T S

 This chapter presents 17 laboratory experiments in digital circuits and logic design. The

experiments give the student using this book hands‐on experience. The digital circuits

can be constructed by using standard integrated circuits (ICs) mounted on breadboards

that are easily assembled in the laboratory. The experiments are ordered according to

the material presented in the book. The last section consists of a number of supplements

with suggestions for using the Verilog HDL to simulate and verify the functionality of

the digital circuits presented in the experiments. If an FPGA prototyping board is avail-

able, the experiments can be implemented in an FPGA as an alternative to standard ICs.

 A logic breadboard suitable for performing the experiments must have the following

equipment:

 1. Light‐emitting diode (LED) indicator lamps.

 2. Toggle switches to provide logic‐1 and logic‐0 signals.

 3. Pulsers with push buttons and debounce circuits to generate single pulses.

 4. A clock‐pulse generator with at least two frequencies: a low frequency of about

1 pulse per second to observe slow changes in digital signals and a higher frequency

for observing waveforms in an oscilloscope.

 5. A power supply of 5 V.

 6. Socket strips for mounting the ICs.

 7. Solid hookup wires and a pair of wire strippers for cutting the wires.

 Digital logic trainers that include the required equipment are available from several

manufacturers. A digital logic trainer contains LED lamps, toggle switches, pulsers,

Section 9.1 Introduction to Experiments 439

a variable clock, a power supply, and IC socket strips. Some experiments may require

additional switches, lamps, or IC socket strips. Extended breadboards with more solder-

less sockets and plug‐in switches and lamps may be needed.

 Additional equipment required is a dual‐trace oscilloscope (for Experiments 1, 2, 8,

and 15), a logic probe to be used for debugging, and a number of ICs. The ICs required

for the experiments are of the TTL or CMOS series 7400.

 The integrated circuits to be used in the experiments can be classified as small‐scale

integration (SSI) or medium‐scale integration (MSI) circuits. SSI circuits contain indi-

vidual gates or flip‐flops, and MSI circuits perform specific digital functions. The eight

SSI gate ICs needed for the experiments—two‐input NAND, NOR, AND, OR, and

XOR gates, inverters, and three‐input and four‐input NAND gates—are shown in

 Fig. 9.1 . The pin assignments for the gates are indicated in the diagram. The pins are

numbered from 1 to 14. Pin number 14 is marked VCC, and pin number 7 is marked GND

(ground). These are the supply terminals, which must be connected to a power supply

of 5 V for proper operation of the circuit. Each IC is recognized by its identification

number; for example, the two‐input NAND gates are found inside the IC whose number

is 7400.

 Detailed descriptions of the MSI circuits can be found in data books published by

the manufacturers. The best way to acquire experience with a commercial MSI circuit

is to study its description in a data book that provides complete information on the

internal, external, and electrical characteristics of integrated circuits. Various semicon-

ductor companies publish data books for the 7400 series. The MSI circuits that are

needed for the experiments are introduced and explained when they are used for the

first time. The operation of the circuit is explained by referring to similar circuits in

previous chapters. The information given in this chapter about the MSI circuits should

be sufficient for performing the experiments adequately. Nevertheless, reference to a

data book will always be preferable, as it gives more detailed description of the circuits.

 We will now demonstrate the method of presentation of MSI circuits adopted here. To

illustrate, we introduce the ripple counter IC, type 7493. This IC is used in Experiment 1

and in subsequent experiments to generate a sequence of binary numbers for verifying

the operation of combinational circuits.

 The information about the 7493 IC that is found in a data book is shown in Figs. 9.2(a)

and (b). Part (a) shows a diagram of the internal logic circuit and its connection to

external pins. All inputs and outputs are given symbolic letters and assigned to pin

numbers. Part (b) shows the physical layout of the IC, together with its 14‐pin assign-

ment to signal names. Some of the pins are not used by the circuit and are marked as

 NC (no connection). The IC is inserted into a socket, and wires are connected to the

various pins through the socket terminals. When drawing schematic diagrams in this

chapter, we will show the IC in block diagram form, as in Fig. 9.2 (c). The IC number

(here, 7493) is written inside the block. All input terminals are placed on the left of the

block and all output terminals on the right. The letter symbols of the signals, such as A,
 R1, and QA, are written inside the block, and the corresponding pin numbers, such as

14, 2, and 12, are written along the external lines. VCC, and GND are the power terminals

connected to pins 5 and 10. The size of the block may vary to accommodate all input

440

 FIGURE 9.1
 Digital gates in IC packages with identification numbers and pin assignments

14 13 12 11 10 9 8

7654321

GND2-input NAND
7400

VCC

14 13 12 11 10 9 8

7654321

GNDInverters
7404

VCC

14 13 12 11 10 9 8

7654321

GND3-input NAND
7410

VCC

14 13 12 11 10 9 8

7654321

GND2-input OR
7432

VCC

14 13 12 11 10 9 8

7654321

GND4-input NAND
7420

VCC

14 13 12 11 10 9 8

7654321

GND2-input NOR
7402

VCC

14 13 12 11 10 9 8

7654321

GND2-input AND
7408

VCC

14 13 12 11 10 9 8

7654321

GND2-input XOR
7486

VCC

Section 9.1 Introduction to Experiments 441

and output terminals. Inputs or outputs may sometimes be placed on the top or the

bottom of the block for convenience.

 The operation of the circuit is similar to the ripple counter shown in Fig. 6.8(a) with

an asynchronous clear to each flip‐flop. When input R1 or R2 or both are equal to logic 0

 FIGURE 9.2
 IC type 7493 ripple counter

J Q
QA

K

C

CLR

12

Input A 14

J Q
QB

K

C

CLR

9

Input B 1

J Q
QC

K

C

CLR

8

J Q
QD

K

C

CLR

11

R1
R2

2
3

(a) Internal circuit diagram

A

B

R1

R2 QD

QC

QB

QA

GND

7493

14

1

2

3

12

9

8

11

10

5

(c) Schematic diagram

VCC

14 13 12 11 10 9 8

7654321

7493

(b) Physical layout (NC: no connection)

A NC QA QD GND QB QC

B R1 R2 NC VCC NC NC

442 Chapter 9 Laboratory Experiments

(ground), all asynchronous clears are equal to 1 and are disabled. To clear all four flip‐

flops to 0, the output of the NAND gate must be equal to 0. This is accomplished by

having both inputs R1 and R2 at logic 1 (about 5 V). Note that the J and K inputs show

no connections. It is characteristic of TTL circuits that an input terminal with no exter-

nal connections has the effect of producing a signal equivalent to logic 1. Note also that

output QA is not connected to input B internally.

 The 7493 IC can operate as a three‐bit counter using input B and flip‐flops QB, QC,

and QD . It can operate as a four‐bit counter using input A if output QA is connected

to input B . Therefore, to operate the circuit as a four‐bit counter, it is necessary to have

an external connection between pin 12 and pin 1. The reset inputs, R1 and R2, at pins 2

and 3, respectively, must be grounded. Pins 5 and 10 must be connected to a 5‐V power

supply. The input pulses must be applied to input A at pin 14, and the four flip‐flop

outputs of the counter are taken from QA, QB, QC, and QD at pins 12, 9, 8, and 11,

respectively, with QA being the least significant bit.

 Figure 9.2 (c) demonstrates the way that all MSI circuits will be symbolized graph-

ically in this chapter. Only a block diagram similar to the one shown in this figure

will be given for each IC. The letter symbols for the inputs and outputs in the IC block

diagram will be according to the symbols used in the data book. The operation of the

 Table 9.1
 Integrated Circuits Required for the Experiments

 IC Number Description

 Graphic Symbol

 In Chapter 9 In Chapter 10

 Various gates Fig. 9.1 Fig. 10.1

 7447 BCD‐to‐seven‐segment decoder Fig. 9.8 —

 7474 Dual D ‐type flip‐flops Fig. 9.13 Fig. 10.9(b)

 7476 Dual JK ‐type flip‐flops Fig. 9.12 Fig. 10.9(a)

 7483 Four‐bit binary adder Fig. 9.10 Fig. 10.2

 7493 Four‐bit ripple counter Fig. 9.2 Fig. 10.13

 74151 8 * 1 multiplexer Fig. 9.9 Fig. 10.7(a)

 74155 3 * 8 decoder Fig. 9.7 Fig. 10.6

 74157 Quadruple 2 * 1 multiplexers Fig. 9.17 Fig. 10.7(b)

 74161 Four‐bit synchronous counter Fig. 9.15 Fig. 10.14

 74189 16 * 4 random‐access memory Fig. 9.18 Fig. 10.15

 74194 Bidirectional shift register Fig. 9.19 Fig. 10.12

 74195 Four‐bit shift register Fig. 9.16 Fig. 10.11

 7730 Seven‐segment LED display Fig. 9.8 —

 72555 Timer (same as 555) Fig. 9.21 —

Section 9.2 Experiment 1: Binary and Decimal Numbers 443

circuit will be explained with reference to logic diagrams from previous chapters. The

operation of the circuit will be specified by means of a truth table or a function table.

 Other possible graphic symbols for the ICs are presented in Chapter 10 . These are

standard graphic symbols approved by the Institute of Electrical and Electronics

Engineers and are given in IEEE Standard 91‐1984. The standard graphic symbols for

SSI gates have rectangular shapes, as shown in Fig. 10.1. The standard graphic symbol

for the 7493 IC is shown in Fig. 10.13. This symbol can be substituted in place of the one

shown in Fig. 9.2 (c). The standard graphic symbols of the other ICs that are needed to

run the experiments are presented in Chapter 10 . They can be used to draw schematic

diagrams of the logic circuits if the standard symbols are preferred.

 Table 9.1 lists the ICs that are needed for the experiments, together with the numbers of

the figures in which they are presented in this chapter. In addition, the table lists the numbers

of the figures in Chapter 10 in which the equivalent standard graphic symbols are drawn.
 The next 18 sections present 18 hardware experiments requiring the use of digital

inte grated circuits. Section 9.20 outlines HDL simulation experiments requiring a Verilog

HDL compiler and simulator.

 9 . 2 E X P E R I M E N T 1 : B I N A RY A N D D E C I M A L
N U M B E R S

 This experiment demonstrates the count sequence of binary numbers and the binary‐

coded decimal (BCD) representation. It serves as an introduction to the breadboard used

in the laboratory and acquaints the student with the cathode‐ray oscilloscope. Reference

material from the text that may be useful to know while performing the experiment can

be found in Section 1.2, on binary numbers, and Section 1.7, on BCD numbers.

 Binary Count

 IC type 7493 consists of four flip‐flops, as shown in Fig. 9.2 . They can be connected to

count in binary or in BCD. Connect the IC to operate as a four‐bit binary counter by

wiring the external terminals, as shown in Fig. 9.3 . This is done by connecting a wire from

pin 12 (output QA) to pin 1 (input B). Input A at pin 14 is connected to a pulser that

provides single pulses. The two reset inputs, R1 and R2, are connected to ground. The

four outputs go to four indicator lamps, with the low‐order bit of the counter from QA

connected to the rightmost indicator lamp. Do not forget to supply 5 V and ground to

the IC. All connections should be made with the power supply in the off position.

 Turn the power on and observe the four indicator lamps. The four‐bit number in the

output is incremented by 1 for every pulse generated in the push‐button pulser. The

count goes to binary 15 and then back to 0. Disconnect the input of the counter at pin

14 from the pulser, and connect it to a clock generator that produces a train of pulses at

a low frequency of about 1 pulse per second. This will provide an automatic binary count.

Note that the binary counter will be used in subsequent experiments to provide the

input binary signals for testing combinational circuits.

444 Chapter 9 Laboratory Experiments

 Oscilloscope Display

 Increase the frequency of the clock to 10 kHz or higher and connect its output to an oscil-

loscope. Observe the clock output on the oscilloscope and sketch its waveform. Using a

dual‐trace oscilloscope, connect the output of QA to one channel and the output of the

clock to the second channel. Note that the output of QA is complemented every time the

clock pulse goes through a negative transition from 1 to 0. Note also that the clock fre-

quency at the output of the first flip‐flop is one‐half that of the input clock frequency. Each

flip‐flop in turn divides its incoming frequency by 2. The four‐bit counter divides the

incoming frequency by 16 at output QD . Obtain a timing diagram showing the relationship

of the clock to the four outputs of the counter. Make sure that you include at least 16 clock

cycles. The way to proceed with a dual‐trace oscilloscope is as follows: First, observe the

clock pulses and QA, and record their timing waveforms. Then repeat by observing and

recording the waveforms of QA together with QB, followed by the waveforms of QB with

 QC and then QC with QD . Your final result should be a diagram showing the relationship

of the clock to the four outputs in one composite diagram having at least 16 clock cycles.

 BCD Count

 The BCD representation uses the binary numbers from 0000 to 1001 to represent the

coded decimal digits from 0 to 9. IC type 7493 can be operated as a BCD counter by

making the external connections shown in Fig. 9.4 . Outputs QB and QD are connected

to the two reset inputs, R1 and R2 . When both R1 and R2 are equal to 1, all four cells in

the counter clear to 0 irrespective of the input pulse. The counter starts from 0, and every

input pulse increments it by 1 until it reaches the count of 1001. The next pulse changes

the ouput to 1010, making QB and QD equal to 1. This momentary output cannot be

Push-button
pulser or

clock

Indicator
lamps

VCC
A

B

R1

R2

QD

QC

QB

QA

GND

7493

14

1

2

5

10

3

12

9

8

11

 FIGURE 9.3
 Binary counter

Section 9.2 Experiment 1: Binary and Decimal Numbers 445

sustained, because the four cells immedi ately clear to 0, with the result that the output

goes to 0000. Thus, the pulse after the count of 1001 changes the output to 0000, produc-

ing a BCD count.

 Connect the IC to operate as a BCD counter. Connect the input to a pulser and the

four outputs to indicator lamps. Verify that the count goes from 0000 to 1001.

 Disconnect the input from the pulser and connect it to a clock generator. Observe the

clock waveform and the four outputs on the oscilloscope. Obtain an accurate timing dia-

gram showing the relationship between the clock and the four outputs. Make sure to include

at least 10 clock cycles in the oscilloscope display and in the composite timing diagram.

 Output Pattern

 When the count pulses into the BCD counter are continuous, the counter keeps repeat-

ing the sequence from 0000 to 1001 and back to 0000. This means that each bit in the

four outputs produces a fixed pattern of 1’s and 0’s that is repeated every 10 pulses. These

patterns can be predicted from a list of the binary numbers from 0000 to 1001. The list

will show that output QA, being the least significant bit, produces a pattern of alternate

1’s and 0’s. Output QD, being the most significant bit, produces a pattern of eight 0’s

followed by two 1’s. Obtain the pattern for the other two outputs and then check all four

patterns on the oscilloscope. This is done with a dual‐trace oscilloscope by displaying the

clock pulses in one channel and one of the output waveforms in the other channel. The

pattern of 1’s and 0’s for the corresponding output is obtained by observing the output

levels at the vertical positions where the pulses change from 1 to 0.

VCC
A

B

R1

R2

QD

QC

QB

QA

GND

7493

5

10

14

1

2

3

12

9

8

11

Input
pulses

 FIGURE 9.4
 BCD counter

446 Chapter 9 Laboratory Experiments

 Other Counts

 IC type 7493 can be connected to count from 0 to a variety of final counts. This is done

by connecting one or two outputs to the reset inputs, R1 and R2 . Thus, if R1 is connected

to QA instead of to QB in Fig. 9.4 , the resulting count will be from 0000 to 1000, which

is 1 less than 1001 (QD = 1 and QA = 1).

 Utilizing your knowledge of how R1 and R2 affect the final count, connect the 7493

IC to count from 0000 to the following final counts:

 (a) 0101

 (b) 0111

 (c) 1011

 Connect each circuit and verify its count sequence by applying pulses from the pulser

and observing the output count in the indicator lamps. If the initial count starts with a

value greater than the final count, keep applying input pulses until the output clears to 0.

 9 . 3 E X P E R I M E N T 2 : D I G I TA L L O G I C G AT E S

 In this experiment, you will investigate the logic behavior of various IC gates:

 7400 quadruple two‐input NAND gates

 7402 quadruple two‐input NOR gates

 7404 hex inverters

 7408 quadruple two‐input AND gates

 7432 quadruple two‐input OR gates

 7486 quadruple two‐input XOR gates

 The pin assignments to the various gates are shown in Fig. 9.1 . “Quadruple” means

that there are four gates within the package. The digital logic gates and their character-

istics are discussed in Section 2.8. A NAND implementation is discussed in Section 3.7.

 Truth Tables

 Use one gate from each IC listed and obtain the truth table of the gate. The truth table

is obtained by connecting the inputs of the gate to switches and the output to an indica-

tor lamp. Compare your results with the truth tables listed in Fig. 2.5.

 Waveforms

 For each gate listed, obtain the input–output waveform of the gate. The waveforms are

to be observed in the oscilloscope. Use the two low‐order outputs of a binary counter

(Fig. 9.3) to provide the inputs to the gate. As an example, the circuit and waveforms

for the NAND gate are illustrated in Fig. 9.5 . The oscilloscope display will repeat this

waveform, but you should record only the nonrepetitive portion.

Section 9.3 Experiment 2: Digital Logic Gates 447

 Propagation Delay

 Connect the six inverters inside the 7404 IC in cascade. The output will be the same as

the input, except that it will be delayed by the time it takes the signal to propagate

through all six inverters. Apply clock pulses to the input of the first inverter. Using the

oscilloscope, determine the delay from the input to the output of the sixth inverter dur-

ing the upswing of the pulse and again during the downswing. This is done with a dual‐

trace oscilloscope by applying the input clock pulses to one of the channels and the

output of the sixth inverter to the second channel. Set the time‐base knob to the lowest

time‐per‐division setting. The rise or fall time of the two pulses should appear on the

screen. Divide the total delay by 6 to obtain an average propagation delay per inverter.

 Universal NAND Gate

 Using a single 7400 IC, connect a circuit that produces

 (a) an inverter,

 (b) a two‐input AND,

 (c) a two‐input OR,

 (d) a two‐input NOR,

 (e) a two‐input XOR. (See Fig. 3.32.)

 In each case, verify your circuit by checking its truth table.

 NAND Circuit

 Using a single 7400 IC, construct a circuit with NAND gates that implements the Boolean

function

 F = AB + CD

 1. Draw the circuit diagram.

 2. Obtain the truth table for F as a function of the four inputs.

 3. Connect the circuit and verify the truth table.

Input
pulses F

QAA
QB

Fig. 9.3
(counter)

QA

QB

F

0 1 0 1

0 0 1 1

1 1 1 0

 FIGURE 9.5
 Waveforms for NAND gate

448 Chapter 9 Laboratory Experiments

 4. Record the patterns of 1’s and 0’s for F as inputs A, B, C, and D go from binary 0

to binary 15.

 5. Connect the four outputs of the binary counter shown in Fig. 9.3 to the four inputs

of the NAND circuit. Connect the input clock pulses from the counter to one

channel of a dual‐trace oscilloscope and output F to the other channel. Observe

and record the 1’s and 0’s pattern of F after each clock pulse, and compare it with

the pattern recorded in step 4.

 9 . 4 E X P E R I M E N T 3 : S I M P L I F I C AT I O N
O F B O O L E A N F U N C T I O N S

 This experiment demonstrates the relationship between a Boolean function and the

corresponding logic diagram. The Boolean functions are simplified by using the map

method, as discussed in Chapter 3 . The logic diagrams are to be drawn with NAND gates,

as explained in Section 3.7.

 The gate ICs to be used for the logic diagrams must be those from Fig. 9.1 which

contain the following NAND gates:

 7400 two‐input NAND

 7404 inverter (one‐input NAND)

 7410 three‐input NAND

 7420 four‐input NAND

 If an input to a NAND gate is not used, it should not be left open, but instead should be

connected to another input that is used. For example, if the circuit needs an inverter and

there is an extra two‐input gate available in a 7400 IC, then both inputs of the gate are

to be con nected together to form a single input for an inverter.

 Logic Diagram

 This part of the experiment starts with a given logic diagram from which we proceed to

apply simplification procedures to reduce the number of gates and, possibly, the number

of ICs. The logic diagram shown in Fig. 9.6 requires two ICs—a 7400 and a 7410. Note

that the inverters for inputs x, y, and z are obtained from the remaining three gates in

the 7400 IC. If the inverters were taken from a 7404 IC, the circuit would have required

three ICs. Note also that, in drawing SSI circuits, the gates are not enclosed in blocks as

is done with MSI circuits.

 Assign pin numbers to all inputs and outputs of the gates, and connect the circuit with

the x, y, and z inputs going to three switches and the output F to an indicator lamp. Test

the circuit by obtaining its truth table.

 Obtain the Boolean function of the circuit and simplify it, using the map method. Con-

struct the simplified circuit without disconnecting the original circuit. Test both circuits by

applying identical inputs to each and observing the separate outputs. Show that, for each

of the eight possible input combinations, the two circuits have identical outputs. This will

prove that the simplified circuit behaves exactly like the original circuit.

Section 9.4 Experiment 3: Simplification of Boolean Functions 449

F

x

y

z

 FIGURE 9.6
 Logic diagram for Experiment 3

 Boolean Functions

 Consider two Boolean functions in sum‐of‐minterms form:

F1(A, B, C, D) = (0, 1, 4, 5, 8, 9, 10, 12, 13)

F2(A, B, C, D) = (3, 5, 7, 8, 10, 11, 13, 15)

 Simplify these functions by means of maps. Obtain a composite logic diagram with four

inputs, A, B, C, and D, and two outputs, F1 and F2. Implement the two functions

together, using a minimum number of NAND ICs. Do not duplicate the same gate if

the corresponding term is needed for both functions. Use any extra gates in existing

ICs for inverters when possible. Connect the circuit and check its operation. The truth

table for F1 and F2 obtained from the circuit should conform with the minterms listed.

 Complement

 Plot the following Boolean function in a map:

 F = A�D + BD + B�C + AB�D

 Combine the 1’s in the map to obtain the simplified function for F in sum‐of‐products

form. Then combine the 0’s in the map to obtain the simplified function for F�, also in

sum‐of‐products form. Implement both F and F� with NAND gates, and connect the two

circuits to the same input switches, but to separate output indicator lamps. Obtain the

truth table of each circuit in the laboratory and show that they are the complements of

each other.

450 Chapter 9 Laboratory Experiments

 9 . 5 E X P E R I M E N T 4 : C O M B I N AT I O N A L C I R C U I T S

 In this experiment, you will design, construct, and test four combinational logic circuits.

The first two circuits are to be constructed with NAND gates, the third with XOR gates,

and the fourth with a decoder and NAND gates. Reference to a parity generator can be

found in Section 3.9. Implementation with a decoder is discussed in Section 4.9.

 Design Example

 Design a combinational circuit with four inputs— A, B, C, and D —and one output, F . F

is to be equal to 1 when A = 1, provided that B = 0, or when B = 1, provided that

either C or D is also equal to 1. Otherwise, the output is to be equal to 0.

 1. Obtain the truth table of the circuit.

 2. Simplify the output function.

 3. Draw the logic diagram of the circuit, using NAND gates with a minimum number

of ICs.

 4. Construct the circuit and test it for proper operation by verifying the given

conditions.

 Majority Logic

 A majority logic is a digital circuit whose output is equal to 1 if the majority of the inputs

are 1’s. The output is 0 otherwise. Design and test a three‐input majority circuit using

NAND gates with a minimum number of ICs.

 Parity Generator

 Design, construct, and test a circuit that generates an even parity bit from four message

bits. Use XOR gates. Adding one more XOR gate, expand the circuit so that it generates

an odd parity bit also.

 Decoder Implementation

 A combinational circuit has three inputs— x, y, and z —and three outputs— F1, F2, and

 F3. The simplified Boolean functions for the circuit are

 F1 = xz + x�y�z�

F2 = x�y + xy�z�

F3 = xy + x�y�z

 Implement and test the combinational circuit, using a 74155 decoder IC and external

NAND gates.

Section 9.5 Experiment 4: Combinational Circuits 451

 The block diagram of the decoder and its truth table are shown in Fig. 9.7 . The

74155 can be connected as a dual 2 * 4 decoder or as a single 3 * 8 decoder. When

a 3 * 8 decoder is desired, inputs C1 and C2, as well as inputs G1 and G2, must be

connected together, as shown in the block diagram. The function of the circuit is

similar to that illustrated in Fig. 4.18. G is the enable input and must be equal to 0 for

proper operation. The eight outputs are labeled with symbols given in the data book.

The 74155 uses NAND gates, with the result that the selected output goes to 0 while

all other outputs remain at 1. The implementation with the decoder is as shown in

Fig. 4.21, except that the OR gates must be replaced with external NAND gates when

the 74155 is used.

C

B

A

G

C1

C2

B

A

G1

G2

GND

9

10

11

12

7

6

5

4

1

15

3

13

2

14

74155

16

8

VCC

G C B A 2Y0 2Y1 2Y2 2Y3 1Y0 1Y1 1Y2 1Y3

Inputs Outputs

Truth table

2Y0

2Y1

2Y2

2Y3

1Y0

1Y1

1Y2

1Y3

1
0
0
0
0
0
0
0
0

1
0
1
1
1
1
1
1
1

1
1
0
1
1
1
1
1
1

1
1
1
0
1
1
1
1
1

1
1
1
1
0
1
1
1
1

1
1
1
1
1
0
1
1
1

1
1
1
1
1
1
0
1
1

1
1
1
1
1
1
1
0
1

1
1
1
1
1
1
1
1
0

X
0
0
0
0
1
1
1
1

X
0
0
1
1
0
0
1
1

X
0
1
0
1
0
1
0
1

 FIGURE 9.7
 IC type 74155 connected as a 3 * 8 decoder

452 Chapter 9 Laboratory Experiments

 9 . 6 E X P E R I M E N T 5 : C O D E C O N V E R T E R S

 The conversion from one binary code to another is common in digital systems. In this

experiment, you will design and construct three combinational‐circuit converters. Code

conversion is discussed in Section 4.4.

 Gray Code to Binary

 Design a combinational circuit with four inputs and four outputs that converts a four‐

bit Gray code number (Table 1.6) into the equivalent four‐bit binary number. Imple-

ment the circuit with exclusive‐OR gates. (This can be done with one 7486 IC.)

Connect the circuit to four switches and four indicator lamps, and check for proper

operation.

 9’s Complementer

 Design a combinational circuit with four input lines that represent a decimal digit in

BCD and four output lines that generate the 9’s complement of the input digit. Pro-

vide a fifth output that detects an error in the input BCD number. This output should

be equal to logic 1 when the four inputs have one of the unused combinations of the

BCD code. Use any of the gates listed in Fig. 9.1 , but minimize the total number of

ICs used.

 Seven‐Segment Display

 A seven‐segment indicator is used to display any one of the decimal digits 0 through 9.

Usually, the decimal digit is available in BCD. A BCD‐to‐seven‐segment decoder accepts

a decimal digit in BCD and generates the corresponding seven‐segment code, as is

shown pictorially in Problem 4.9.

 Figure 9.8 shows the connections necessary between the decoder and the display. The

7447 IC is a BCD‐to‐seven‐segment decoder/driver that has four inputs for the BCD

digit. Input D is the most significant and input A the least significant. The four‐bit BCD

digit is converted to a seven‐segment code with outputs a through g . The outputs of the

7447 are applied to the inputs of the 7730 (or equivalent) seven‐segment display. This

IC contains the seven light‐emitting diode (LED) segments on top of the package. The

input at pin 14 is the common anode (CA) for all the LEDs. A 47@� resistor to VCC is

needed in order to supply the proper current to the selected LED segments. Other

equivalent seven‐segment display ICs may have additional anode terminals and may

require different resistor values.

 Construct the circuit shown in Fig. 9.8 . Apply the four‐bit BCD digits through four

 switches, and observe the decimal display from 0 to 9. Inputs 1010 through 1111 have

no meaning in BCD. Depending on the decoder, these values may cause either a blank

or a meaningless pattern to be displayed. Observe and record the output patterns of the

six unused input combinations.

Section 9.7 Experiment 6: Design With Multiplexers 453

 9 . 7 E X P E R I M E N T 6 : D E S I G N W I T H M U LT I P L E X E R S

 In this experiment, you will design a combinational circuit and implement it with multi-

plexers, as explained in Section 4.11. The multiplexer to be used is IC type 74151, shown

in Fig. 9.9 . The internal construction of the 74151 is similar to the diagram shown in

Fig. 4.25, except that there are eight inputs instead of four. The eight inputs are desig-

nated D0 through D7 . The three selection lines— C, B, and A —select the particular input

to be multiplexed and applied to the output. A strobe control S acts as an enable signal.

The function table specifies the value of output Y as a function of the selection lines.

Output W is the complement of Y . For proper operation, the strobe input S must be

connected to ground.

 Design Specifications

 A small corporation has 10 shares of stock, and each share entitles its owner to one vote

at a stockholder’s meeting. The 10 shares of stock are owned by four people as follows:

 Mr. W: 1 share

 Mr. X: 2 shares

 Mr. Y: 3 shares

 Mrs. Z: 4 shares

7

1

2

6

A

B

C

D

GND

7447

7730

VCC

VCC � 5 V

13

12

11

10

9

15

14

1

13

10

 8

7

2

11

8

a

b

c

d

e

f

g

a

b

c

d

e

f

g

16

14

47 �

f

CA

g

e

b

c

d

a

 FIGURE 9.8
 BCD‐to‐seven‐segment decoder (7447) and seven‐segment display (7730)

454 Chapter 9 Laboratory Experiments

Data
Inputs

Strobe

74151

GNDVCC7

4

5

6

3

2

1

15

16 8

14

13

12

D0

S

Y

W

D1

D2

D3

D4

D5

D6

D7
C B A

Output Y

W � Y�

Select inputs

9 10 11

Strobe Select Output

Function table

S

01
0
0
0
0
0
0
0
0

C

1
1
1
1

0
0
0
0

X

B

1
1

1
1

0
0

0
0

X

1

1

1

1

0

0

0

0

X

A Y

D0
D1
D2
D3
D4
D5
D6
D7

 FIGURE 9.9
 IC type 74151 38 * 1 multiplexer

 Each of these persons has a switch to close when voting yes and to open when voting

no for his or her shares.

 It is necessary to design a circuit that displays the total number of shares that vote yes for

each measure. Use a seven‐segment display and a decoder, as shown in Fig. 9.8 , to display

the required number. If all shares vote no for a measure, the display should be blank. (Note

that binary input 15 into the 7447 blanks out all seven segments.) If 10 shares vote yes for a

measure, the display should show 0. Otherwise, the display shows a decimal number equal

to the number of shares that vote yes. Use four 74151 multiplexers to design the combina-

tional circuit that converts the inputs from the stock owners’ switches into the BCD digit for

the 7447. Do not use 5 V for logic 1. Use the output of an inverter whose input is grounded.

Section 9.8 Experiment 7: Adders and Subtractors 455

 9 . 8 E X P E R I M E N T 7 : A D D E R S A N D S U B T R A C T O R S

 In this experiment, you will construct and test various adder and subtractor circuits. The

subtractor circuit is then used to compare the relative magnitudes of two numbers.

Adders are discussed in Section 4.3. Subtraction with 2’s complement is explained in

Section 1.6. A four‐bit parallel adder–subtractor is shown in Fig. 4.13, and the compari-

son of two numbers is explained in Section 4.8.

 Half Adder

 Design, construct, and test a half‐adder circuit using one XOR gate and two NAND gates.

 Full Adder

 Design, construct, and test a full‐adder circuit using two ICs, 7486 and 7400.

 Parallel Adder

 IC type 7483 is a four‐bit binary parallel adder. The pin assignment is shown in Fig. 9.10 .

The 2 four‐bit input binary numbers are A1 through A4 and B1 through B4 . The four‐bit

sum is obtained from S1 through S4 . C0 is the input carry and C4 the output carry.

 Test the four‐bit binary adder 7483 by connecting the power supply and ground ter-

minals. Then connect the four A inputs to a fixed binary number, such as 1001, and the

 B inputs and the input carry to five toggle switches. The five outputs are applied to

7483

GND

VCC16
14

15

1

2

6

9

4

3

7

8

5

11

10

13

B4

A4

B3

A3

B2

A2

B1

A1

C0

12

C4

S4

S3

S2

S1

 FIGURE 9.10
 IC type 7483 four‐bit binary adder

456 Chapter 9 Laboratory Experiments

indicator lamps. Perform the addition of a few binary numbers and check that the output

sum and output carry give the proper values. Show that when the input carry is equal

to 1, it adds 1 to the output sum.

 Adder–Subtractor

 Two binary numbers can be subtracted by taking the 2’s complement of the subtrahend

and adding it to the minuend. The 2’s complement can be obtained by taking the 1’s

complement and adding 1. To perform A - B, we complement the four bits of B, add them

to the four bits of A, and add 1 through the input carry. This is done as shown in Fig. 9.11 .

The four XOR gates complement the bits of B when the mode select M = 1 (because

 x { 1 = x� and leave the bits of B unchanged when M = 0 (because x { 0 = x). Thus,

when the mode select M is equal to 1, the input carry C0 is equal to 1 and the sum output

is A plus the 2’s complement of B . When M is equal to 0, the input carry is equal to 0 and

the sum generates A + B.

 Connect the adder–subtractor circuit and test it for proper operation. Connect the

four A inputs to a fixed binary number 1001 and the B inputs to switches. Perform

Data input
A

Data input
B

Data output
S

Output carry
1

3

5

14

13 12

15

2

6

9
4

7

8

10

11

16

A4 C4

S4

S3

S2

S1

A3

A2

A1

B4

B3

B2

B1
C0

7483

GND

VCC

Mode select M

M � 0 for add
M � 1 for subtract

 FIGURE 9.11
 Four‐bit adder–subtractor

Section 9.9 Experiment 8: Flip‐Flops 457

the following operations and record the values of the output sum and the output

carry C4 :

9 + 5 9 - 5

9 + 9 9 - 9

9 + 15 9 - 15

 Show that during addition, the output carry is equal to 1 when the sum exceeds 15.

Also, show that when A Ú B, the subtraction operation gives the correct answer,

 A - B, and the output carry C4 is equal to 1, but when A 6 B, the subtraction gives

the 2’s complement of B - A and the output carry is equal to 0.

 Magnitude Comparator

 The comparison of two numbers is an operation that determines whether one number is

greater than, equal to, or less than the other number. Two numbers, A and B, can be com-

pared by first subtracting A - B as is done in Fig. 9.11 . If the output in S is equal to zero,

then A = B. The output carry from C4 determines the relative magnitudes of the num-

bers: When C4 = 1, A Ú B; when C4 = 0, A 6 B; and when C4 = 1 and S � 0, A 7 B.

 It is necessary to supplement the subtractor circuit of Fig. 9.11 to provide the com-

parison logic. This is done with a combinational circuit that has five inputs— S1 through

 S4 and C4 —and three outputs, designated by x, y, and z, so that

 x = 1 if A = B (S = 0000)

y = 1 if A 6 B (C4 = 0)

z = 1 if A 7 B (C4 = 1 and S � 0000)

 The combinational circuit can be implemented with the 7404 and 7408 ICs.

 Construct the comparator circuit and test its operation. Use at least two sets of num-

bers for A and B to check each of the outputs x, y, and z .

 9 . 9 E X P E R I M E N T 8 : F L I P ‐ F L O P S

 In this experiment, you will construct, test, and investigate the operation of various

latches and flip‐flops. The internal construction of latches and flip‐flops can be found in

Sections 5.3 and 5.4.

 SR Latch

 Construct an SR latch with two cross‐coupled NAND gates. Connect the two inputs to

 switches and the two outputs to indicator lamps. Set the two switches to logic 1, and then

momentarily turn each switch separately to the logic‐0 position and back to 1. Obtain

the function table of the circuit.

 D Latch

 Construct a D latch with four NAND gates (only one 7400 IC) and verify its function table.

458 Chapter 9 Laboratory Experiments

 Master–Slave Flip‐Flop

 Connect a master–slave D flip‐flop using two D latches and an inverter. Connect the

 D input to a switch and the clock input to a pulser. Connect the output of the master

latch to one indicator lamp and the output of the slave latch to another indicator

lamp. Set the value of the input to the complement value of the output. Press the push

button in the pulser and then release it to produce a single pulse. Observe that the

master changes when the pulse goes positive and the slave follows the change when

the pulse goes negative. Press the push button again a few times while observing the

two indicator lamps. Explain the transfer sequence from input to master and from

master to slave.

 Disconnect the clock input from the pulser and connect it to a clock generator. Con-

nect the complement output of the flip‐flop to the D input. This causes the flip‐flop to

be complemented with each clock pulse. Using a dual‐trace oscilloscope, observe the

waveforms of the clock and the master and slave outputs. Verify that the delay between

the master and the slave outputs is equal to the positive half of the clock cycle. Obtain

a timing diagram showing the relationship between the clock waveform and the master

and slave outputs.

J Q

Q�K

CK

CLR

PR4

2

3

16

15

14

1

J Q

Q�K

CK

CLR

PR9

7

8

12

11

10

6

Function table

Inputs Outputs

No change

Toggle

GND � pin 13
VCC � pin 5

0
0
00

1
1

1 1
1
1
1

1
1
1

X
X
X

X
X
X

X
X
X

0
0
1
1

0

0
0

0
1

1
1

1

1

1
0

Preset Clear Clock J K Q Q�

0
1
1

 FIGURE 9.12
 IC type 7476 dual JK master–slave flip‐flops

Section 9.9 Experiment 8: Flip‐Flops 459

 Edge‐Triggered Flip‐Flop

 Construct a D ‐type positive‐edge‐triggered flip‐flop using six NAND gates. Connect the

clock input to a pulser, the D input to a toggle switch, and the output Q to an indicator

lamp. Set the value of D to the complement of Q . Show that the flip‐flop output changes

only in response to a positive transition of the clock pulse. Verify that the output does

not change when the clock input is logic 1, when the clock goes through a negative

transition, or when the clock input is logic 0. Continue changing the D input to corre-

spond to the complement of the Q output at all times.

 Disconnect the input from the pulser and connect it to the clock generator. Connect

the complement output Q� to the D input. This causes the output to be complemented

with each positive transition of the clock pulse. Using a dual‐trace oscilloscope, observe

and record the timing relationship between the input clock and the output Q . Show that

the output changes in response to a positive edge transition.

 IC Flip‐Flops

 IC type 7476 consists of two JK master–slave flip‐flops with preset and clear. The pin

assignment for each flip‐flop is shown in Fig. 9.12 . The function table specifies the circuit’s

operation. The first three entries in the table specify the operation of the asynchronous

D Q

Q�

CK

CLR

PR2

4

1

5

6

3

D Q

Q�

CK

CLR

PR12

10

13

9

8

11

Function table

Inputs Outputs

No change

GND � pin 7
VCC � pin 14

Preset

0
0
0

0

0
0

0
1

1 0
1
1

0
1

1

1
1
1

1
1

0
1

1
1
1

Clear Clock

X
X
X

X
X
X

X

D Q Q�

 FIGURE 9.13
 IC type 7474 dual D positive‐edge‐triggered flip‐flops

460 Chapter 9 Laboratory Experiments

preset and clear inputs. These inputs behave like a NAND SR latch and are independent

of the clock or the J and K inputs. (The X’s indicate don’t‐care conditions.) The last four

entries in the function table specify the operation of the clock with both the preset and

clear inputs maintained at logic 1. The clock value is shown as a single pulse. The positive

transition of the pulse changes the master flip‐flop, and the negative transition changes

the slave flip‐flop as well as the output of the circuit. With J = K = 0, the output does

not change. The flip‐flop toggles, or is complemented, when J = K = 1. Investigate the

operation of one 7476 flip‐flop and verify its function table.

 IC type 7474 consists of two D positive‐edge‐triggered flip‐flops with preset and

clear. The pin assignment is shown in Fig. 9.13 . The function table specifies the preset

and clear operations and the clock’s operation. The clock is shown with an upward

arrow to indicate that it is a positive‐edge‐triggered flip‐flop. Investigate the operation

of one of the flip‐flops and verify its function table.

 9 . 1 0 E X P E R I M E N T 9 : S E Q U E N T I A L C I R C U I T S

 In this experiment, you will design, construct, and test three synchronous sequential circuits.

Use IC type 7476 (Fig. 9.12) or 7474 (Fig. 9.13). Choose any type of gate that will minimize

the total number of ICs. The design of synchronous sequential circuits is covered in Section 5.7.

 Up–Down Counter with Enable

 Design, construct, and test a two‐bit counter that counts up or down. An enable input E

determines whether the counter is on or off. If E = 0, the counter is disabled and remains

at its present count even though clock pulses are applied to the flip‐flops. If E = 1, the

counter is enabled and a second input, x, determines the direction of the count. If x = 1,

the circuit counts upward with the sequence 00, 01, 10, 11, and the count repeats. If x = 0,

the circuit counts downward with the sequence 11, 10, 01, 00, and the count repeats. Do

not use E to disable the clock. Design the sequential circuit with E and x as inputs.

 State Diagram

 Design, construct, and test a sequential circuit whose state diagram is shown in Fig. 9.14 .

Designate the two flip‐flops as A and B, the input as x, and the output as y .

 Connect the output of the least significant flip‐flop B to the input x, and predict the

sequence of states and output that will occur with the application of clock pulses. Verify

the state transition and output by testing the circuit.

 Design of Counter

 Design, construct, and test a counter that goes through the following sequence of binary

states: 0, 1, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, and back to 0 to repeat. Note that binary states

4, 5, 8, and 9 are not used. The counter must be self‐starting; that is, if the circuit starts

from any one of the four invalid states, the count pulses must transfer the circuit to one

of the valid states to continue the count correctly.

Section 9.11 Experiment 10: Counters 461

 Check the circuit’s operation for the required count sequence. Verify that the counter

is self‐starting. This is done by initializing the circuit to each unused state by means of

the preset and clear inputs and then applying pulses to see whether the counter reaches

one of the valid states.

 9 . 1 1 E X P E R I M E N T 1 0 : C O U N T E R S

 In this experiment, you will construct and test various ripple and synchronous counter

circuits. Ripple counters are discussed in Section 6.3 and synchronous counters are cov-

ered in Section 6.4.

 Ripple Counter

 Construct a four‐bit binary ripple counter using two 7476 ICs (Fig. 9.12). Connect all

asynchronous clear and preset inputs to logic 1. Connect the count‐pulse input to a

pulser and check the counter for proper operation.

 Modify the counter so that it will count downward instead of upward. Check that

each input pulse decrements the counter by 1.

 Synchronous Counter

 Construct a synchronous four‐bit binary counter and check its operation. Use two 7476

ICs and one 7408 IC.

 Decimal Counter

 Design a synchronous BCD counter that counts from 0000 to 1001. Use two 7476 ICs

and one 7408 IC. Test the counter for the proper sequence. Determine whether the

counter is self‐starting. This is done by initializing the counter to each of the six unused

states by means of the preset and clear inputs. The application of pulses will transfer the

counter to one of the valid states if the counter is self‐starting.

00

11

01 10

0/0 0/1

1/1

1/1

0/1

0/0

1/0

1/0

 FIGURE 9.14
 State diagram for Experiment 9

462 Chapter 9 Laboratory Experiments

 Binary Counter with Parallel Load

 IC type 74161 is a four‐bit synchronous binary counter with parallel load and asyn-

chronous clear. The internal logic is similar to that of the circuit shown in Fig. 6.14.

The pin assignments to the inputs and outputs are shown in Fig. 9.15 . When the load

signal is enabled, the four data inputs are transferred into four internal flip‐flops, QA

through QD, with QD being the most significant bit. There are two count‐enable

inputs called P and T . Both must be equal to 1 for the counter to operate. The function

table is similar to Table 6.6, with one exception: The load input in the 74161 is enabled

when equal to 0. To load the input data, the clear input must be equal to 1 and the

load input must be equal to 0. The two count inputs have don’t‐care conditions and

may be equal to either 1 or 0. The internal flip‐flops trigger on the positive transition

of the clock pulse. The circuit functions as a counter when the load input is equal to

1 and both count inputs P and T are equal to 1. If either P or T goes to 0, the output

Data
outputs

3

4

16

14

13

12

8

11

15

2

1

5

6

9

7

10

A QA

QB

QC

QD

B

C

D

L

P

T

CK

CLR

74161

GND

VCC

Data
inputs

Load

Count

Clock

Clear

COUT Carry out

Clear outputs to 0

No change in output
Count to next binary value
Load input data

Function table

Clear

0
0

0

1
1 11

1 1

Clock

X

Load

X

Count

X
X

Function

 FIGURE 9.15
 IC type 74161 binary counter with parallel load

Section 9.12 Experiment 11: Shift Registers 463

does not change. The carry‐out output is equal to 1 when all four data outputs are

equal to 1. Perform an experiment to verify the operation of the 74161 IC according

to the function table.

 Show how the 74161 IC, together with a two‐input NAND gate, can be made to oper-

ate as a synchronous BCD counter that counts from 0000 to 1001. Do not use the clear

input. Use the NAND gate to detect the count of 1001, which then causes all 0’s to be

loaded into the counter.

 9 . 1 2 E X P E R I M E N T 1 1 : S H I F T R E G I S T E R S

 In this experiment, you will investigate the operation of shift registers. The IC to be

used is the 74195 shift register with parallel load. Shift registers are explained in

Section 6.2.

 IC Shift Register

 IC type 74195 is a four‐bit shift register with parallel load and asynchronous clear. The

pin assignments to the inputs and outputs are shown in Fig. 9.16 . The single control line

labeled SH>LD (shift/load) determines the synchronous operation of the register. When

 SH>LD = 0, the control input is in the load mode and the four data inputs are trans-

ferred into the four internal flip‐flops, QA through QD . When SH>LD = 1, the control

input is in the shift mode and the information in the register is shifted right from QA

toward QD . The serial input into QA during the shift is determined from the J and K

inputs. The two inputs behave like the J and the complement of K of a JK flip‐flop. When

both J and K are equal to 0, flip‐flop QA is cleared to 0 after the shift. If both inputs are

equal to 1, QA is set to 1 after the shift. The other two conditions for the J and K inputs

provide a complement or no change in the output of flip‐flop QA after the shift.
 The function table for the 74195 shows the mode of operation of the register. When

the clear input goes to 0, the four flip‐flops clear to 0 asynchronously—that is, without

the need of a clock. Synchronous operations are affected by a positive transition of the

clock. To load the input data, SH/LD must be equal to 0 and a positive clock‐pulse

transition must occur. To shift right, SH/LD must be equal to 1. The J and K inputs must

be connected together to form the serial input.

 Perform an experiment that will verify the operation of the 74195 IC. Show that it

performs all the operations listed in the function table. Include in your function table

the two conditions for JK = 01 and 10.

 Ring Counter

 A ring counter is a circular shift register with the signal from the serial output QD going

into the serial input. Connect the J and K input together to form the serial input. Use

the load condition to preset the ring counter to an initial value of 1000. Rotate the single

bit with the shift condition and check the state of the register after each clock pulse.

464 Chapter 9 Laboratory Experiments

 A switch‐tail ring counter uses the complement output of QD for the serial input.

Preset the switch‐tail ring counter to 0000 and predict the sequence of states that

will result from shifting. Verify your prediction by observing the state sequence after

each shift.

 Feedback Shift Register

 A feedback shift register is a shift register whose serial input is connected to some func-

tion of selected register outputs. Connect a feedback shift register whose serial input is

Data
outputs

1

10

16

15

14

13

8

12

11

6

7

9

2

3

4

5

CLR

QA

QB

QC

QD

QD

CK

SH/LD

J

K

A

B

C

D

74195

GND

VCC

Clock

Shift/load

Clear

Complement of QD

Shift from QA toward QD, QA � 1
Shift from QA toward QD, QA � 0
Load input data
No change in output
Asynchronous clear

Function table

Clear

0

0
0

0 0 0

1

1
1 1 1 1

1
1
1

Shift/
load

X X X X X
X X
X X

X
X

X

Clock J K
Serial
input Function

Serial
inputs

Data
inputs

 FIGURE 9.16
 IC type 74195 shift register with parallel load

Section 9.12 Experiment 11: Shift Registers 465

the exclusive‐OR of outputs QC and QD . Predict the sequence of states of the register,

starting from state 1000. Verify your prediction by observing the state sequence after

each clock pulse.

 Bidirectional Shift Register

 The 74195 IC can shift only right from QA toward QD . It is possible to convert the

register to a bidirectional shift register by using the load mode to obtain a shift‐left

operation (from QD toward QA). This is accomplished by connecting the output of

each flip‐flop to the input of the flip‐flop on its left and using the load mode of the

 SH/LD input as a shift‐left control. Input D becomes the serial input for the shift‐

left operation.

 Connect the 74195 as a bidirectional shift register (without parallel load). Con-

nect the serial input for shift right to a toggle switch. Construct the shift left as a

ring counter by connecting the serial output QA to the serial input D . Clear the

register and then check its operation by shifting a single 1 from the serial input

switch. Shift right three more times and insert 0’s from the serial input switch. Then

rotate left with the shift‐left (load) control. The single 1 should remain visible while

shifting.

 Bidirectional Shift Register with Parallel Load

 The 74195 IC can be converted to a bidirectional shift register with parallel load in con-

junction with a multiplexer circuit. We will use IC type 74157 for this purpose. The 74157

is a quadruple two‐to‐one‐line multiplexer whose internal logic is shown in Fig. 4.26. The

pin assignments to the inputs and outputs of the 74157 are shown in Fig. 9.17 . Note that

the enable input is called a strobe in the 74157.

 Construct a bidirectional shift register with parallel load using the 74195 register

and the 74157 multiplexer. The circuit should be able to perform the following opera-

tions:

 1. Asynchronous clear

 2. Shift right

 3. Shift left

 4. Parallel load

 5. Synchronous clear

 Derive a table for the five operations as a function of the clear, clock, and SH/LD inputs

of the 74195 and the strobe and select inputs of the 74157. Connect the circuit and verify

your function table. Use the parallel‐load condition to provide an initial value to the

register, and connect the serial outputs to the serial inputs of both shifts in order not to

lose the binary information while shifting.

466 Chapter 9 Laboratory Experiments

 9 . 1 3 E X P E R I M E N T 1 2 : S E R I A L A D D I T I O N

 In this experiment, you will construct and test a serial adder–subtractor circuit. Serial

addition of two binary numbers can be done by means of shift registers and a full adder,

as explained in Section 6.2.

 Serial Adder

 Starting from the diagram of Fig. 6.6, design and construct a four‐bit serial adder using

the following ICs: 74195 (two), 7408, 7486, and 7476. Provide a facility for register B to

accept parallel data from four toggle switches, and connect its serial input to ground so

that 0’s are shifted into register B during the addition. Provide a toggle switch to clear

Data
outputs

2

5

16

4

7

9

8

12

10

13

11

14

3

6

1

15

Y1

A1

A2

A3

A4

B1

B2

B3

B4

Y2

Y3

Y474157

GND

SEL

STB

VCC

Data
inputs

B

Data
inputs

A

Select

Strobe

Select data inputs B
Select data inputs A
All 0’s

Function table

Strobe

1

1
0 0
0

Select

X

Data outputs Y

 FIGURE 9.17
 IC type 74157 quadruple 2 * 1 multiplexers

Section 9.14 Experiment 13: Memory Unit 467

the registers and the flip‐flop. Another switch will be needed to specify whether register

 B is to accept parallel data or is to be shifted during the addition.

 Testing the Adder

 To test your serial adder, perform the binary addition 5 + 6 + 15 = 26. This is done by

first clearing the registers and the carry flip‐flop. Parallel load the binary value 0101 into

register B . Apply four pulses to add B to A serially, and check that the result in A is 0101.

(Note that clock pulses for the 7476 must be as shown in Fig. 9.12 .) Parallel load 0110

into B and add it to A serially. Check that A has the proper sum. Parallel load 1111 into

 B and add to A . Check that the value in A is 1010 and that the carry flip‐flop is set.

 Clear the registers and flip‐flop and try a few other numbers to verify that your serial

adder is functioning properly.

 Serial Adder–Subtractor

 If we follow the procedure used in Section 6.2 for the design of a serial subtractor (that

subtracts A - B), we will find that the output difference is the same as the output sum, but

that the input to the J and K of the borrow flip‐flop needs the complement of QD (available

in the 74195). Using the other two XOR gates from the 7486, convert the serial adder to a

serial adder–subtractor with a mode control M . When M = 0, the circuit adds A + B. When

 M = 1, the circuit subtracts A - B and the flip‐flop holds the borrow instead of the carry.

 Test the adder part of the circuit by repeating the operations recommended to ensure

that the modification did not change the operation. Test the serial subtractor part by

performing the subtraction 15 - 4 - 5 - 13 = -7. Binary 15 can be transferred to reg-

ister A by first clearing it to 0 and adding 15 from B. Check the intermediate results

during the subtraction. Note that -7 will appear as the 2’s complement of 7 with a bor-

row of 1 in the flip‐flop.

 9 . 1 4 E X P E R I M E N T 1 3 : M E M O RY U N I T

 In this experiment, you will investigate the behavior of a random‐access memory (RAM)

unit and its storage capability. The RAM will be used to simulate a read‐only memory

(ROM). The ROM simulator will then be used to implement combinational circuits, as

explained in Section 7.5. The memory unit is discussed in Sections 7.2 and 7.3.

 IC RAM

 IC type 74189 is a 16 * 4 RAM. The internal logic is similar to the circuit shown in Fig. 7.6

for a 4 * 4 RAM. The pin assignments to the inputs and outputs are shown in Fig. 9.18 .

The four address inputs select 1 of 16 words in the memory. The least significant bit of the

address is A and the most significant is A3. The chip select (CS) input must be equal to 0

to enable the memory. If CS is equal to 1, the memory is disabled and all four outputs are

in a high‐impedance state. The write enable (WE) input determines the type of operation,

as indicated in the function table. The write operation is performed when WE = 0. This

468 Chapter 9 Laboratory Experiments

operation is a transfer of the binary number from the data inputs into the selected word

in memory. The read operation is performed when WE = 1. This operation transfers the

complemented value stored in the selected word into the output data lines. The memory

has three‐state outputs to facilitate memory expansion.

 Testing the RAM

 Since the outputs of the 74189 produce the complemented values, we need to insert four

inverters to change the outputs to their normal value. The RAM can be tested after

making the following connections: Connect the address inputs to a binary counter using

the 7493 IC (shown in Fig. 9.3). Connect the four data inputs to toggle switches and the

Data
outputs

16

8

5

7

9

11

4

6

10

12

14

13

1

15

2

3

S1D1

D2

D3

D4

A0

A1

A2

A3

S2

S3

S4

74189

GND

CS

WE

VCC

Address
inputs

Data
inputs

Chip select

Write enable

Function table

Data outputs

High impedance
Complement of selected word
High impedance

Operation

Write
Read
Disable

WE

0
1
X

CS

0
0
1

 FIGURE 9.18
 IC type 74189 16 * 4 RAM

Section 9.15 Experiment 14: Lamp Handball 469

data outputs to four 7404 inverters. Provide four indicator lamps for the address and

four more for the outputs of the inverters. Connect input CS to ground and WE to a

toggle switch (or a pulser that provides a negative pulse). Store a few words into the

memory, and then read them to verify that the write and read operations are functioning

properly. You must be careful when using the WE switch. Always leave the WE input in

the read mode, unless you want to write into memory. The proper way to write is first to

set the address in the counter and the inputs in the four toggle switches. Then, store the

word in memory, flip the WE switch to the write position and return it to the read posi-

tion. Be careful not to change the address or the inputs when WE is in the write mode.

 ROM Simulator

 A ROM simulator is obtained from a RAM operated in the read mode only. The pattern

of 1’s and 0’s is first entered into the simulating RAM by placing the unit momentarily

in the write mode. Simulation is achieved by placing the unit in the read mode and tak-

ing the address lines as inputs to the ROM. The ROM can then be used to implement

any combinational circuit.

 Implement a combinational circuit using the ROM simulator that converts a four‐bit

bi nary number to its equivalent Gray code as defined in Table 1.6. This is done as follows:

Obtain the truth table of the code converter. Store the truth table into the 74189 mem-

ory by setting the address inputs to the binary value and the data inputs to the corre-

sponding Gray code value. After all 16 entries of the table are written into memory, the

ROM simulator is set by permanently connecting the WE line to logic 1. Check the code

converter by applying the inputs to the address lines and verifying the correct outputs

in the data output lines.

 Memory Expansion

 Expand the memory unit to a 32 * 4 RAM using two 74189 ICs. Use the CS inputs to

select between the two ICs. Note that since the data outputs are three‐stated, you can

tie pairs of terminals together to obtain a logic OR operation between the two ICs. Test

your circuit by using it as a ROM simulator that adds a three‐bit number to a two‐bit

number to produce a four‐bit sum. For example, if the input of the ROM is 10110, then

the output is calculated to be 101 + 10 = 0111. (The first three bits of the input repre-

sent 5, the last two bits represent 2, and the output sum is binary 7.) Use the counter to

provide four bits of the address and a switch for the fifth bit of the address.

 9 . 1 5 E X P E R I M E N T 1 4 : L A M P H A N D B A L L

 In this experiment, you will construct an electronic game of handball, using a single light

to simulate the moving ball. The experiment demonstrates the application of a bidirec-

tional shift register with parallel load. It also shows the operation of the asynchronous

inputs of flip‐flops. We will first introduce an IC that is needed for the experiment and

then present the logic diagram of the simulated lamp handball game.

470 Chapter 9 Laboratory Experiments

 IC Type 74194

 This is a four‐bit bidirectional shift register with parallel load. The internal logic is sim-

ilar to that shown in Fig. 6.7. The pin assignments to the inputs and outputs are shown

in Fig. 9.19 . The two mode‐control inputs determine the type of operation, as specified

in the function table.

 Logic Diagram

 The logic diagram of the electronic lamp handball game is shown in Fig. 9.20 . It consists

of two 74194 ICs, a dual D flip‐flop 7474 IC, and three gate ICs: the 7400, 7404, and

7408. The ball is simulated by a moving light that is shifted left or right through the

Mode control
inputs

74194

GNDSIL

SIR VCC 15

12

13

144

3

5

6

10

162

9

11

1

B

A QA

QB

QC

QD

C

D

S1

S0

CK

CLR

7 8

Data
outputs

Serial input
for shift right

Serial input
for shift left

Parallel data
inputs

Clock

Clear

Clear outputs to 0
No change in output
Shift right in the direction from
QA to QD. SIR to QA

Parallel-load input data

Shift left in the direction from
QD to QA. SIL to QD

Function

Function table

Mode
Clear

0
0 0

0

0
1

1

1

11

1

1

1

Clock

X X X

S1 S0

 FIGURE 9.19
 IC type 74194 bidirectional shift register with parallel load

 471

74194

QA

CK CKS1 S1S0 S0

QB QC QD

SIR

SIL

CLR CLR

A B C D A B C D

D Q

Q�

CK

CLR

PR

74194

QA QB QC QD

SIR

SIL

DQ

Q�

CK

CLR

PR

CLK

Pulser

Reset

Start

Indicator lamps

 FIGURE 9.20
 Lamp handball logic diagram

472 Chapter 9 Laboratory Experiments

bidirectional shift register. The rate at which the light moves is determined by the fre-

quency of the clock. The circuit is first initialized with the reset switch. The start switch

starts the game by placing the ball (an indicator lamp) at the extreme right. The player

must press the pulser push button to start the ball moving to the left. The single light

shifts to the left until it reaches the leftmost position (the wall), at which time the ball

returns to the player by reversing the direction of shift of the moving light. When the

light is again at the rightmost position, the player must press the pulser again to reverse

the direction of shift. If the player presses the pulser too soon or too late, the ball dis-

appears and the light goes off. The game can be restarted by turning the start switch

on and then off. The start switch must be open (logic 1) during the game.

 Circuit Analysis

 Prior to connecting the circuit, analyze the logic diagram to ensure that you understand

how the circuit operates. In particular, try to answer the following questions:

 1. What is the function of the reset switch?

 2. How does the light in the rightmost position come on when the start switch is

 grounded? Why is it necessary to place the start switch in the logic‐1 position

before the game starts?

 3. What happens to the two mode‐control inputs, S1 and S0, once the ball is set in

motion?

 4. What happens to the mode‐control inputs and to the ball if the pulser is pressed

while the ball is moving to the left? What happens if the ball is moving to the right,

but has not yet reached the rightmost position?

 5. If the ball has returned to the rightmost position, but the pulser has not yet been

pressed, what is the state of the mode‐control inputs if the pulser is pressed? What

happens if it is not pressed?

 Playing the Game

 Wire the circuit of Fig. 9.20 . Test the circuit for proper operation by playing the game. Note

that the pulser must provide a positive‐edge transition and that both the reset and start

 switches must be open (i.e., must be in the logic‐1 state) during the game. Start with a low

clock rate, and increase the clock frequency to make the handball game more challenging.

 Counting the Number of Losses

 Design a circuit that keeps score of the number of times the player loses while playing

the game. Use a BCD‐to‐seven‐segment decoder and a seven‐segment display, as in

 Fig. 9.8 , to display the count from 0 through 9. Counting is done with either the 7493 as

a ripple decimal counter or the 74161 and a NAND gate as a synchronous decimal

counter. The display should show 0 when the circuit is reset. Every time the ball disap-

pears and the light goes off, the display should increase by 1. If the light stays on during

the play, the number in the display should not change. The final design should be an

Section 9.16 Experiment 15: Clock‐Pulse Generator 473

automatic scoring circuit, with the decimal display incremented automatically each time

the player loses when the light disappears.

 Lamp Ping‐Pong™

 Modify the circuit of Fig. 9.20 so as to obtain a lamp Ping‐Pong game. Two players can

participate in this game, with each player having his or her own pulser. The player with

the right pulser returns the ball when it is in the extreme right position, and the player

with the left pulser returns the ball when it is in the extreme left position. The only mod-

ification required for the Ping‐Pong game is a second pulser and a change of a few wires.

 With a second start circuit, the game can be made to start by either one of the two

players (i.e., either one serves). This addition is optional.

 9 . 1 6 E X P E R I M E N T 1 5 : C L O C K ‐ P U L S E G E N E R AT O R

 In this experiment, you will use an IC timer unit and connect it to produce clock pulses

at a given frequency. The circuit requires the connection of two external resistors and

two external capacitors. The cathode‐ray oscilloscope is used to observe the waveforms

and measure the frequency of the pulses.

 IC Timer

 IC type 72555 (or 555) is a precision timer circuit whose internal logic is shown in Fig. 9.21 .

(The resistors, RA and RB, and the two capacitors are not part of the IC.) The circuit con-

sists of two voltage comparators, a flip‐flop, and an internal transistor. The voltage division

from VCC = 5 V through the three internal resistors to ground produces 23 and 13 of VCC

(3.3 V and 1.7 V, respectively) into the fixed inputs of the comparators. When the threshold

input at pin 6 goes above 3.3 V, the upper comparator resets the flip‐flop and the output

goes low to about 0 V. When the trigger input at pin 2 goes below 1.7 V, the lower com-

parator sets the flip‐flop and the output goes high to about 5 V. When the output is low,

 Q� is high and the base–emitter junction of the transistor is forward biased. When the

output is high, Q� is low and the transistor is cut off. (See Section 10.3.) The timer circuit

is capable of producing accurate time delays controlled by an external RC circuit. In this

experiment, the IC timer will be operated in the astable mode to produce clock pulses.

 Circuit Operation

 Figure 9.21 shows the external connections for astable operation of the circuit. Capacitor

 C charges through resistors RA and RB when the transistor is cut off and discharges through

 RB when the transistor is forward biased and conducting. When the charging voltage across

capacitor C reaches 3.3 V, the threshold input at pin 6 causes the flip‐flop to reset and the

transistor turns on. When the discharging voltage reaches 1.7 V, the trigger input at pin 2

causes the flip‐flop to set and the transistor turns off. Thus, the output continually alternates

474 Chapter 9 Laboratory Experiments

between two voltage levels at the output of the flip‐flop. The output remains high for a

duration equal to the charge time. This duration is determined from the equation

 tH = 0.693(RA + RB)C

 The output remains low for a duration equal to the discharge time. This duration is

determined from the equation

 tL = 0.693RBC

 Clock‐Pulse Generator

 Starting with a capacitor C of 0.001 μF calculate values for RA and RB to produce clock

 pulses, as shown in Fig. 9.22 . The pulse width is 1 μs in the low level and repeats at a

Threshold

Trigger
72555 Timer

Compare

Compare

GND

2

1

6

C

5 V

VCC 8 5 Reset

Output

Discharge

3

7

RA

R

S

Q�

Q

RB

0.01 �f

4

 FIGURE 9.21
 IC type 72555 timer connected as a clock‐pulse generator

Section 9.17 Experiment 16: Parallel Adder and Accumulator 475

frequency rate of 100 kHz (every 10 μs). Connect the circuit and check the output in the

oscilloscope.

 Observe the output across the capacitor C, and record its two levels to verify that

they are between the trigger and threshold values.
 Observe the waveform in the collector of the transistor at pin 7 and record all perti-

nent information. Explain the waveform by analyzing the circuit’s action.

 Connect a variable resistor (potentiometer) in series with RA to produce a variable‐

frequency pulse generator. The low‐level duration remains at 1 μs The frequency should

range from 20 to 100 kHz.

 Change the low‐level pulses to high‐level pulses with a 7404 inverter. This will pro-

duce positive pulses of 1 μs with a variable‐frequency range.

 9 . 1 7 E X P E R I M E N T 1 6 : PA R A L L E L A D D E R
A N D A C C U M U L AT O R

 In this experiment, you will construct a four‐bit parallel adder whose sum can be loaded

into a register. The numbers to be added will be stored in a RAM. A set of bi nary

 numbers will be selected from memory and their sum will be accumulated in the register.

 Block Diagram

 Use the RAM circuit from the memory experiment of Section 9.14, a four‐bit parallel

adder, a four‐bit shift register with parallel load, a carry flip‐flop, and a multiplexer to

construct the circuit. The block diagram and the ICs to be used are shown in Fig. 9.23 .

Information can be written into RAM from data in four switches or from the four‐bit

data available in the outputs of the register. The selection is done by means of a multi-

plexer. The data in RAM can be added to the contents of the register and the sum

transferred back to the register.

 Control of Register

 Provide toggle switches to control the 74194 register and the 7476 carry flip‐flop as follows:

 (a) A LOAD condition transfers the sum to the register and the output carry to the

flip‐flop upon the application of a clock pulse.

10 �S

1 �S

 FIGURE 9.22
 Output waveform for clock generator

476 Chapter 9 Laboratory Experiments

 (b) A SHIFT condition shifts the register right with the carry from the carry flip‐

flop transferred into the leftmost position of the register upon the application

of a clock pulse. The value in the carry flip‐flop should not change during the

shift.

 (c) A NO‐CHANGE condition leaves the contents of the register and flip‐flop

unchanged even when clock pulses are applied.

 Carry Circuit

 To conform with the preceding specifications, it is necessary to provide a circuit between

the output carry from the adder and the J and K inputs of the 7476 flip‐flop so that the

output carry is transferred into the flip‐flop (whether it is equal to 0 or 1) only when the

LOAD condition is activated and a pulse is applied to the clock input of the flip‐flop.

The carry flip‐flop should not change if the LOAD condition is disabled or the SHIFT

condition is enabled.

Count
(pulser)

Address
counter
(7493)

RAM
(74189)

MUX
(74157)

Inverters
(7404)

Select
(switch)

4 switches

Output carry 4-bit adder
(7483)

Sum

Register
(74194)

Carry
(7476)

 FIGURE 9.23
 Block diagram of a parallel adder for Experiment 16

Section 9.17 Experiment 16: Parallel Adder and Accumulator 477

 Detailed Circuit

 Draw a detailed diagram showing all the wiring between the ICs. Connect the circuit,

and provide indicator lamps for the outputs of the register and carry flip‐flop and for

the address and output data of the RAM.

 Checking the Circuit

 Store the numbers 0110, 1110, 1101, 0101, and 0011 in RAM and then add them to the

register one at a time. Start with a cleared register and flip‐flop. Predict the values in

the output of the register and carry after each addition in the following sum, and verify

your results:

 0110 + 1110 + 1101 + 0101 + 0011

 Circuit Operation

 Clear the register and the carry flip‐flop to zero, and store the following four‐bit num-

bers in RAM in the indicated addresses:

 Address Content

 0 0110
 3 1110
 6 1101
 9 0101
 12 0011

 Now perform the following four operations:

 1. Add the contents of address 0 to the contents of the register, using the LOAD

condition.

 2. Store the sum from the register into RAM at address 1.

 3. Shift right the contents of the register and carry with the SHIFT condition.

 4. Store the shifted contents of the register at address 2 of RAM.

 Check that the contents of the first three locations in RAM are as follows:

 Address Contents

 0 0110
 1 0110
 2 0011

 Repeat the foregoing four operations for each of the other four binary numbers

stored in RAM. Use addresses 4, 7, 10, and 13 to store the sum from the register in step 2.

478 Chapter 9 Laboratory Experiments

Use addresses 5, 8, 11, and 14 to store the shifted value from the register in step 4. Predict

what the contents of RAM at addresses 0 through 14 would be, and check to verify your

results.

 9 . 1 8 E X P E R I M E N T 1 7 : B I N A RY M U LT I P L I E R

 In this experiment, you will design and construct a circuit that multiplies 2 four‐bit

unsigned numbers to produce an eight‐bit product. An algorithm for multiplying two

binary numbers is presented in Section 8.7. The algorithm implemented in this experi-

ment differs from the one described in Figs. 8.14 and 8.15, by treating only a four‐bit

datapath and by incrementing, instead of decrementing, a bit counter.

 Block Diagram

 The ASMD chart and block diagram of the binary multiplier with those ICs recom-

mended to be used are shown in Fig. 9.24 (a) and (b). The multiplicand, B, is available

from four switches instead of a register. The multiplier, Q, is obtained from another set

of four switches. The product is displayed with eight indicator lamps. Counter P is

initialized to 0 and then incremented after each partial product is formed. When the

counter reaches the count of four, output Done becomes 1 and the multiplication

operation terminates.

 Control of Registers

 The ASMD chart for the binary multiplier in Fig. 9.24 (a) shows that the three registers

and the carry flip‐flop of the datapath unit are controlled with signals Load_regs,
Incr_P, Add_regs, and Shift_regs . The external input signals of the control unit are

 clock, reset_b (active‐low), and Start ; another input to the control unit is the internal

status signal, Done, which is formed by the datapath unit to indicate that the counter

has reached a count of four, corresponding to the number of bits in the multiplier.

 Load_regs clears the product register (A) and the carry flip‐flop (C), loads the mul-

tiplicand into register B, loads the multiplier into register Q, and clears the bit coun-

ter. Incr_P increments the bit counter concurrently with the accumulation of a partial

product. Add_regs adds the multiplicand to A, if the least significant bit of the shifted

 multiplier (Q [0]) is 1. Flip‐flop C accommodates a carry that results from the addition.

The concatenated register CAQ is updated by storing the result of shifting its contents

one bit to the right. Shift_regs shifts CAQ one bit to the right, which also clears flip‐

flop C .

 The state diagram for the control unit is shown in Fig. 9.24 (c). Note that it does not

show the register operations of the datapath unit or the output signals that control

them. That information is apparent in Fig. 9.24 (d). Note that Incr_P and Shift_regs are

generated unconditionally in states S_add and S_shift, respectively. Load_regs is

Section 9.18 Experiment 17: Binary Multiplier 479

 generated under the condition that Start is asserted conditionally while the state is in

 S_idle ; Add_regs is asserted conditionally in S_add if Q[0] = 1.

 Multiplication Example

 Before connecting the circuit, make sure that you understand the operation of the

multiplier. To do this, construct a table similar to Table 8.5, but with B = 1111 for the

multiplicand and Q = 1011 for the multiplier. Along with each comment listed on

the left side of the table, specify the state.

 Datapath Design

 Draw a detailed diagram of the datapath part of the multiplier, showing all IC pin con-

nections. Generate the four control signals with switches, and use them to provide the

required control operations for the various registers. Connect the circuit and check that

each component is functioning properly. With the control signals at 0, set the multipli-

cand switches to 1111 and the multiplier switches to 1011. Assert the control signals

manually by means of the control switches, as specified by the state diagram of

 Fig. 9.24 (c). Apply a single pulse while in each control state, and observe the outputs of

registers A and Q and the values in C and P. Compare these outputs with the numbers

in your numerical example to verify that the circuit is functioning properly. Note that IC

type 74161 has master–slave flip‐flops. To operate it manually, it is necessary that the

single clock pulse be a negative pulse.

 Design of Control

 Design the control circuit specified by the state diagram. You can use any method of

control implementation discussed in Section 8.8.

 Choose the method that minimizes the number of ICs. Verify the operation of the

control circuit prior to its connection to the datapath unit.

 Checking the Multiplier

 Connect the outputs of the control circuit to the datapath unit, and verify the total circuit

operation by repeating the steps of multiplying 1111 by 1011. The single clock pulses

should now sequence the control states as well. (Remove the manual switches.) The start

signal (Start) can be generated with a switch that is on while the control is in state S_idle.

 Generate the start signal (Start) with a pulser or any other short pulse, and operate the

multiplier with continuous clock pulses from a clock generator. Pressing the pulser for

 Start should initiate the multiplication operation, and upon its completion, the product

should be displayed in the A and Q registers. Note that the multiplication will be repeated

as long as signal Start is enabled. Make sure that Start goes back to 0. Then set the switches

to two other four‐bit numbers and press Start again. The new product should appear at the

outputs. Repeat the multiplication of a few numbers to verify the operation of the circuit.

480 Chapter 9 Laboratory Experiments

 FIGURE 9.24
 ASMD chart, block diagram of the datapath, control state diagram, and register
operations of the binary multiplier circuit

(a) ASMD chart

S_idle
Ready

S_add
Incr_P

Done

reset

Start

1

Q[0]

S_shift
Shift_regs

1

1

Add_regs

Load_regs

{C, A, Q} �� {C, A, Q} �� 1

{C, A} �� A � B

P �� P�1

A �� 0
C �� 0
B �� Multiplicand
Q �� Multiplier
P �� 0

 9 . 1 9 V E R I L O G H D L S I M U L AT I O N E X P E R I M E N T S
A N D R A P I D P R O T O T Y P I N G W I T H F P G A S

 Field programmable gate arrays (FPGAs) are used by industry to implement logic when

the system is complex, the time‐to‐market is short, the performance (e.g., speed) of an

FPGA is acceptable, and the volume of potential sales does not warrant the investment

in a standard cell‐based ASIC. Circuits can be rapidly prototyped into an FPGA using an

Section 9.19 Verilog HDL Simulation Experiments 481

Parallel adder
(7483)

Register A
(74194)

C
(7474)

Register Q
(74194)

Multiplier Q
(4 switches)

Multiplicand B
(4 switches)

Counter P
(74161)

Done � 1 on count of 4

Q0

Cout

(b) Datapath block program

S_idle
Start � 1

Start � 0

S_add S_shift

Done � 0

Done � 1

(c) Control state diagram

State Transition Register Operations Control signal

Load_regs

Incr_P
Add_regs

Shift_regs

From To

S_idle Initial state reached by reset action

S_idle S_add A �� 0, C �� 0, P �� 0

S_add S_shift P �= P � 1
if (Q[0]) then (A �� A � B, C �� Cout)

S_shift shift right {CAQ}, C <� 0

(d) Register operations

FIGURE 9.24
(Continued)

482 Chapter 9 Laboratory Experiments

HDL. Once the HDL model is verified, the description is synthesized and mapped into

the FPGA. FPGA vendors provide software tools for synthesizing the HDL description

of a circuit into an optimized gate‐level description and mapping (fitting) the resulting

netlist into the resources of their FPGA. This process avoids the detailed assembly of ICs

that is required by composing a circuit on a breadboard, and the process involves sig-

nificantly less risk of failure, because it is easier and faster to edit an HDL description

than to re‐wire a breadboard.

 Most of the hardware experiments outlined in this chapter can be supplemented by

a corresponding software procedure using the Verilog hardware description language

(HDL). A Verilog compiler and simulator are necessary for these supplements. The

supplemental experiments have two levels of engagement. In the first, the circuits that

are specified in the hands‐on laboratory experiments can be described, simulated, and

verified using Verilog and a simulator. In the second, if a suitable FPGA prototyping

board is available (e.g., see www.digilentinc.com), the hardware experiments can be

done by synthesizing the Verilog descriptions and implementing the circuits in an FPGA.

Where appropriate, the identity of the individual (structural) hardware units (e.g., a 4‐bit

counter) can be preserved by encapsulating them in separate Verilog modules whose

internal detail is described behaviorally or by a mixture of behavioral and structural

models.

 Prototyping a circuit with an FPGA requires synthesizing a Verilog description to

produce a bit stream that can be downloaded to configure the internal resources

(e.g., CLBS of a Xilinx FPGA) and connectivity of the FPGA. Three details require

attention: (1) The pins of the prototyping board are connected to the pins of the FPGA,

and the hardware implementation of the synthesized circuit requires that its input and

output signals be associated with the pins of the prototyping board (this association is

made using the synthesis tool provided by the vendor of the FPGA (such tools are avail-

able free)), (2) FPGA prototyping boards have a clock generator, but it will be necessary,

in some cases, to implement a clock divider (in Verilog) to obtain an internal clock

whose frequency is suitable for the experiment, and (3) inputs to an FPGA‐based circuit

can be made using switches and pushbuttons located on the prototyping board, but it

might be necessary to implement a pulser circuit in software to control and observe the

activity of a counter or a state machine (see the supplement to Experiment 1).

 Supplement to Experiment 1 (Section 9.2)

 The functionality of the counters specified in Experiment 1 can be described in Verilog

and synthesized for implementation in an FPGA. Note that the circuit shown in Fig. 9.3

uses a push‐button pulser or a clock to cause the count to increment in a circuit built

with standard ICs. A software pulser circuit can be developed to work with a switch on

the prototyping board of an FPGA so that the operation of the counters can be verified

by visual inspection.

 The software pulser has the ASM chart shown in Fig. 9.25 , where the external input

(Pushed) is obtained from a mechanical switch or pushbutton. This circuit asserts Start
for one cycle of the clock and then waits for the switch to be opened (or the pushbutton

www.digilentinc.com

Section 9.19 Verilog HDL Simulation Experiments 483

to be released) to ensure that each action of the switch or pushbutton will produce only

one pulse of Start . If the counter, or a state machine, is in the reset state (S_idle) when

the switch is closed, the pulse will launch the activity of the counter or state machine. It

will be necessary to open the switch (or release the pushbutton) before Start can be

reasserted. Using the software pulser will allow each value of the count to be observed.

If necessary, a simple synchronizer circuit can be used with Pushed .

 Supplement to Experiment 2 (Section 9.3)

 The various logic gates and their propagation delays were introduced in the hardware

experiment. In Section 3.10, a simple circuit with gate delays was investigated. As an

introduction to the laboratory Verilog program, compile the circuit described in HDL

Example 3.3 and then run the simulator to verify the waveforms shown in Fig. 3.38.

 Assign the following delays to the exclusive‐OR circuit shown in Fig. 3.32(a): 10 ns

for an inverter, 20 ns for an AND gate, and 30 ns for an OR gate. The input of the circuit

goes from xy = 00 to xy = 01.

 (a) Determine the signals at the output of each gate from t = 0 to t = 50 ns.

 (b) Write the HDL description of the circuit including the delays.

 FIGURE 9.25
 Pulser circuit for FPGA implementation of Experiment 1

1

pushed

1

A2

S_pulse
Start

S_idle

S_wait

Pushed

reset_b

484 Chapter 9 Laboratory Experiments

 (c) Write a stimulus module (similar to HDL Example 3.3) and simulate the circuit

to verify the answer in part (a).

 (d) Implement the circuit with an FPGA and test its operation.

 Supplement to Experiment 4 (Section 9.5)

 The operation of a combinational circuit is verified by checking the output and compar-

ing it with the truth table for the circuit. HDL Example 4.10 (Section 4.12) demonstrates

the procedure for obtaining the truth table of a combinational circuit by simulating it.

 (a) In order to get acquainted with this procedure, compile and simulate HDL

Example 4.10 and check the output truth table.

 (b) In Experiment 4, you designed a majority logic circuit. Write the HDL gate‐level

description of the majority logic circuit together with a stimulus for displaying the

truth table. Compile and simulate the circuit and check the output response.

 (c) Implement the majority logic circuit units in an FPGA and test its operation.

 Supplement to Experiment 5 (Section 9.6)

 This experiment deals with code conversion. A BCD‐to‐excess‐3 converter was designed

in Section 4.4. Use the result of the design to check it with an HDL simulator.

 (a) Write an HDL gate‐level description of the circuit shown in Fig. 4.4.

 (b) Write a dataflow description using the Boolean expressions listed in Fig. 4.3.

 (c) Write an HDL behavioral description of a BCD‐to‐excess‐3 converter.

 (d) Write a test bench to simulate and test the BCD‐to‐excess‐3 converter circuit in

order to verify the truth table. Check all three circuits.

 (e) Implement the behavioral description with an FPGA and test the operation of the

circuit.

 Supplement to Experiment 7 (Section 9.8)

 A four‐bit adder–subtractor is developed in this experiment. An adder–subtractor cir-

cuit is also developed in Section 4.5.

 (a) Write the HDL behavioral description of the 7483 four‐bit adder.

 (b) Write a behavioral description of the adder–subtractor circuit shown in Fig. 9.11 .

 (c) Write the HDL hierarchical description of the four‐bit adder–subtractor shown in

Fig. 4.13 (including V). This can be done by instantiating a modified version of the

four‐bit adder described in HDL Example 4.2 (Section 4.12).

 (d) Write an HDL test bench to simulate and test the circuits of part (c). Check and

verify the values that cause an overflow with V = 1.

 (e) Implement the circuit of part (c) with an FPGA and test its operation.

Section 9.19 Verilog HDL Simulation Experiments 485

 Supplement to Experiment 8 (Section 9.9)

 The edge‐triggered D flip‐flop 7474 is shown in Fig. 9.13 . The flip‐flop has asynchronous

preset and clear inputs.

 (a) Write an HDL behavioral description of the 7474 D flip‐flop, using only the Q

output. (Note that when Preset = 0, Q goes to 1, and when Preset = 1 and

 Clear = 0, Q goes to 0. Thus, Preset takes precedence over Clear .)

 (b) Write an HDL behavioral description of the 7474 D flip‐flop, using both outputs.

Label the second output Q_not, and note that this is not always the complement

of Q. (When Preset = Clear = 0, both Q and Q_not go to 1.)

 Supplement to Experiment 9 (Section 9.10)

 In this hardware experiment, you are asked to design and test a sequential circuit whose

state diagram is given by Fig. 9.14 . This is a Mealy model sequential circuit similar to the

one described in HDL Example 5.5 (Section 5.6).

 (a) Write the HDL description of the state diagram of Fig. 9.14 .

 (b) Write the HDL structural description of the sequential circuit obtained from the

design. (This is similar to HDL Example 5.7 in Section 5.6.)

 (c) Figure 9.24 (c) (Section 9.18) shows a control state diagram. Write the HDL descrip-

tion of the state diagram, using the one‐hot binary assignment (see Table 5.9 in

Section 5.7) and four outputs— T0, T1, T2, and T3 .

 (d) Write a behavioral model of the datapath unit, and verify that the interconnected

control unit and datapath unit operate correctly.

 (e) Implement the integrated circuit with an FPGA and test its operation.

 Supplement to Experiment 10 (Section 9.11)

 The synchronous counter with parallel load IC type 74161 is shown in Fig. 9.15 . This

circuit is similar to the one described in HDL Example 6.3 (Section 6.6), with two excep-

tions: The load input is enabled when equal to 0, and there are two inputs (P and T) that

control the count. Write the HDL description of the 74161 IC. Implement the counter

with an FPGA and test its operation.

 Supplement to Experiment 11 (Section 9.12)

 A bidirectional shift register with parallel load is designed in this experiment by using

the 74195 and 74157 IC types.

 (a) Write the HDL description of the 74195 shift register. Assume that inputs J and K

are connected together to form the serial input.

 (b) Write the HDL description of the 74157 multiplexer.

486 Chapter 9 Laboratory Experiments

 (c) Obtain the HDL description of the four‐bit bidirectional shift register that has

been designed in this experiment. (1) Write the structural description by instanti-

ating the two ICs and specifying their interconnection, and (2) write the behav-

ioral description of the circuit, using the function table that is derived in this design

experiment.

 (d) Implement the circuit with an FPGA and test its operation.

 Supplement to Experiment 13 (Section 9.14)

 This experiment investigates the operation of a random‐access memory (RAM). The

way a memory is described in HDL is explained in Section 7.2 in conjunction with HDL

Example 7.1.

 (a) Write the HDL description of IC type 74189 RAM, shown in Fig. 9.18 .

 (b) Test the operation of the memory by writing a stimulus program that stores bi-

nary 3 in address 0 and binary 1 in address 14. Then read the stored numbers from

the two addresses to check whether the numbers were stored correctly.

 (c) Implement the RAM with an FPGA and test its operation.

 Supplement to Experiment 14 (Section 9.15)

 (a) Write the HDL behavioral description of the 74194 bidirectional shift register with

parallel load shown in Fig. 9.19 .

 (b) Implement the shift register with an FPGA and test its operation.

 Supplement to Experiment 16 (Section 9.17)

 A parallel adder with an accumulator register and a memory unit is shown in the block

diagram of Fig. 9.23 . Write the structural description of the circuit specified by the

block diagram. The HDL structural description of this circuit can be obtained by

instantiating the various components. An example of a structural description of a

design can be found in HDL Example 8.4 in Section 8.6. First, it is necessary to write

the behavioral description of each component. Use counter 74161 instead of 7493, and

substitute the D flip‐flop 7474 instead of the JK flip‐flop 7476. The block diagram of

the various components can be found from the list in Table 9.1 . Write a test bench for

each model, and then write a test bench to verify the entire design. Implement the

circuit with an FPGA and test its operation.

 Supplement to Experiment 17 (Section 9.18)

 The block diagram of a four‐bit binary multiplier is shown in Fig. 9.24 . The multiplier

can be described in one of two ways: (1) by using the register transfer level statements

listed in part (b) of the figure or (2) by using the block diagram shown in part (a) of the

Section 9.19 Verilog HDL Simulation Experiments 487

figure. The description of the multiplier in terms of the register transfer level (RTL)

format is carried out in HDL Example 8.5 (Section 8.7).

 (a) Use the integrated circuit components specified in the block diagram to write the

HDL structural description of the binary multiplier. The structural description is

obtained by using the module description of each component and then instantiating

all the components to show how they are interconnected. (See Section 8.5 for an

example.) The HDL descriptions of the components may be available from the

solutions to previous experiments. The 7483 is described with a solution to

Experiment 7(a), the 7474 with Experiment 8(a), the 74161 with Experiment 10,

and the 74194 with Experiment 14. The description of the control is available from

a solution to Experiment 9(c). Be sure to verify each structural unit before

attempting to verify the multiplier.

 (b) Implement the binary multiplier with an FPGA. Use the pulser described in the

supplement to Experiment 1.

488

 Chapter 10

 Standard Graphic Symbols

 1 0 . 1 R E C TA N G U L A R ‐ S H A P E S Y M B O L S

 Digital components such as gates, decoders, multiplexers, and registers are available

commercially in integrated circuits and are classified as SSI or MSI circuits. Standard

graphic symbols have been developed for these and other components so that the user

can recognize each function from the unique graphic symbol assigned to it. This stan-

dard, known as ANSI/IEEE Std. 91‐1984, has been approved by industry, government,

and professional organizations and is consistent with international standards.

 The standard uses a rectangular‐shape outline to represent each particular logic func-

tion. Within the outline, there is a general qualifying symbol denoting the logical operation

performed by the unit. For example, the general qualifying symbol for a multiplexer is

MUX. The size of the outline is arbitrary and can be either a square or a rectangular shape

with an arbitrary length–width ratio. Input lines are placed on the left and output lines are

placed on the right. If the direction of signal flow is reversed, it must be indicated by arrows.

 The rectangular‐shape graphic symbols for SSI gates are shown in Fig. 10.1 . The

qualifying symbol for the AND gate is the ampersand (&). The OR gate has the qualify-

ing symbol that designates greater than or equal to 1, indicating that at least one input

must be active for the output to be active. The symbol for the buffer gate is 1, showing

that only one input is present. The exclusive‐OR symbol designates the fact that only

one input must be active for the output to be active. The inclusion of the logic negation

small circle in the output converts the gates to their complement values. Although the

rectangular‐shape symbols for the gates are recommended, the standard also recognizes

the distinctive‐shape symbols for the gates shown in Fig. 2.5.

 An example of an MSI standard graphic symbol is the four‐bit parallel adder shown

in Fig. 10.2 . The qualifying symbol for an adder is the Greek letter �. The preferred

Section 10.1 Rectangular‐Shape Symbols 489

letters for the arithmetic operands are P and Q . The bit‐grouping symbols in the two

types of inputs and the sum output are the decimal equivalents of the weights of the

bits to the power of 2. Thus, the input labeled 3 corresponds to the value of 2 3 = 8. The

input carry is designated by CI and the output carry by CO . When the digital compo-

nent represented by the outline is also a commercial integrated circuit, it is customary

to write the IC pin number along each input and output. Thus, IC type 7483 is a four‐bit

adder with look‐ahead carry. It is enclosed in a package with 16 pins. The pin numbers

 FIGURE 10.1
 Rectangular‐shape graphic symbols for gates

AND

&

OR

�1

Buffer

1

XOR

�1

NAND

&

NOR

�1

Inverter

1

XNOR

�1

 FIGURE 10.2
 Standard graphic symbol for a four‐bit parallel adder, IC type 7483

A1

S1

S2

S3

S4

A2

A3

A4

B1

B2

B3

B4

CI CO

10

8

9

6

2

15

14

3

1

11

7

4

16

13
CI CO

0

3

0

3

0

3

P

Q

�

�

490 Chapter 10 Standard Graphic Symbols

for the nine inputs and five outputs are shown in Fig. 10.2 . The other two pins are for

the power supply.

 Before introducing the graphic symbols of other components, it is necessary to review

some terminology. As mentioned in Section 2.8, a positive‐logic system defines the more

positive of two signal levels (designated by H) as logic 1 and the more negative signal

level (designated by L) as logic 0. Negative logic assumes the opposite assignment.

A third alternative is to employ a mixed‐logic convention, where the signals are consid-

ered entirely in terms of their H and L values. At any point in the circuit, the user is

allowed to define the logic polarity by assigning logic 1 to either the H or L signal. The

mixed‐logic notation uses a small right‐angle‐triangle graphic symbol to designate a

negative‐logic polarity at any input or output terminal. (See Fig. 2.10(f).)

 Integrated‐circuit manufacturers specify the operation of integrated circuits in terms of

 H and L signals. When an input or output is considered in terms of positive logic, it is defined

as active high . When it is considered in terms of negative logic, it is defined as active low .

 Active‐low inputs or outputs are recognized by the presence of the small‐triangle polarity‐

indicator symbol. When positive logic is used exclusively throughout the entire system, the

small‐triangle polarity symbol is equivalent to the small circle that designates negation. In

this book, we have assumed positive logic throughout and employed the small circle when

drawing logic diagrams. When an input or output line does not include the small circle, we

define it to be active if it is logic 1. An input or output that includes the small‐circle symbol

is considered active if it is in the logic‐0 state. However, we will use the small‐triangle

polarity symbol to indicate active‐low assignment in all drawings that represent standard

diagrams. This will conform with integrated‐circuit data books, where the polarity symbol

is usually employed. Note that the bottom four gates in Fig. 10.1 could have been drawn

with a small triangle in the output lines instead of a small circle.

 Another example of a graphic symbol for an MSI circuit is shown in Fig. 10.3 . This

is a 2‐to‐4‐line decoder representing one‐half of IC type 74155. Inputs are on the left

and outputs on the right. The identifying symbol X/Y indicates that the circuit converts

from code X to code Y . Data inputs A and B are assigned binary weights 1 and 2

equivalent to 2 0 and 2 1 , respectively. The outputs are assigned numbers from 0 to 3,

corresponding to outputs D 0 through D 3 , respectively. The decoder has one active‐low

input E 1 and one active‐high input E 2 . These two inputs go through an internal AND

 FIGURE 10.3
 Standard graphic symbol for a 2‐to‐4‐line decoder (one‐half of IC type 74155)

1

2

13

3
2

1

2

3

1

0

5

6

7

4

D0

D1

D2
E1

E2
D3

A

B

& EN

X/Y

Section 10.2 Qualifying Symbols 491

gate to enable the decoder. The output of the AND gate is labeled EN (enable) and is

activated when E 1 is at a low‐level state and E 2 at a high‐level state.

 1 0 . 2 Q U A L I F Y I N G S Y M B O L S

 The IEEE standard graphic symbols for logic functions provide a list of qualifying symbols

to be used in conjunction with the outline. A qualifying symbol is added to the basic outline

to designate the overall logic characteristics of the element or the physical characteristics

of an input or output. Table 10.1 lists some of the general qualifying symbols specified in

the standard. A general qualifying symbol defines the basic function performed by the

device represented in the diagram. It is placed near the top center position of the rectan-

gular‐shape outline. The general qualifying symbols for the gates, decoder, and adder were

shown in previous diagrams. The other symbols are self‐explanatory and will be used later

in diagrams representing the corresponding digital elements.

 Some of the qualifying symbols associated with inputs and outputs are shown in

 Fig. 10.4 . Symbols associated with inputs are placed on the left side of the column

labeled symbol . Symbols associated with outputs are placed on the right side of the

column. The active‐low input or output symbol is the polarity indicator. As mentioned

 Table 10.1
 General Qualifying Symbols

 Symbol Description

 & AND gate or function

 Ú 1 OR gate or function

 1 Buffer gate or inverter

 = 1 Exclusive‐OR gate or function

 2k Even function or even parity

element

 2k + 1 Odd function or odd parity element

 X/Y Coder, decoder, or code converter

 MUX Multiplexer

 DMUX Demultiplexer

 a Adder

 q Multiplier

 COMP Magnitude comparator

 ALU Arithmetic logic unit

 SRG Shift register

 CTR Counter

 RCTR Ripple counter

 ROM Read‐only memory

 RAM Random‐access memory

492 Chapter 10 Standard Graphic Symbols

 FIGURE 10.4
 Qualifying symbols associated with inputs and outputs

EN

D

J, K, R, S, or T

←

�

�

CT � 15

Active-low input or output

Logic negation input or output

Dynamic indicator input

Three-state output

Open-collector output

Output with special amplification

Enable input

Data input to a storage element

Flip-flop inputs

Shift right

Shift left

Countup

Countdown

Contents of register equals binary 15

DescriptionSymbol

→

Section 10.3 Dependency Notation 493

previously, it is equivalent to the logic negation when positive logic is assumed. The

dynamic input is associated with the clock input in flip‐flop circuits. It indicates that the

input is active on a transition from a low‐to‐high‐level signal. The three‐state output has

a third high‐impedance state, which has no logic significance. When the circuit is enabled,

the output is in the normal 0 or 1 logic state, but when the circuit is disabled, the three‐

state output is in a high‐impedance state. This state is equivalent to an open circuit.

 The open‐collector output has one state that exhibits a high‐impedance condition. An

 externally connected resistor is sometimes required in order to produce the proper logic

level. The diamond‐shape symbol may have a bar on top (for high type) or on the bottom

(for low type). The high or low type specifies the logic level when the output is not in

the high‐impedance state. For example, TTL‐type integrated circuits have special outputs

called open‐collector outputs. These outputs are recognized by a diamond‐shape symbol

with a bar under it. This indicates that the output can be either in a high‐impedance state

or in a low‐level state. When used as part of a distribution function, two or more open‐

collector NAND gates when connected to a common resistor perform a positive‐logic

AND function or a negative‐logic OR function.

 The output with special amplification is used in gates that provide special driving

capabilities. Such gates are employed in components such as clock drivers or bus‐oriented

transmitters. The EN symbol designates an enable input. It has the effect of enabling all

outputs when it is active. When the input marked with EN is inactive, all outputs are

disabled. The symbols for flip‐flop inputs have the usual meaning. The D input is also

associated with other storage elements such as memory input.

 The symbols for shift right and shift left are arrows pointing to the right or the left,

respectively. The symbols for count‐up and count‐down counters are the plus and minus

symbols, respectively. An output designated by CT = 15 will be active when the contents

of the register reach the binary count of 15. When nonstandard information is shown

inside the outline, it is enclosed in square brackets [like this].

 1 0 . 3 D E P E N D E N C Y N O TAT I O N

 The most important aspect of the standard logic symbols is the dependency notation.

Dependency notation is used to provide the means of denoting the relationship between

different inputs or outputs without actually showing all the elements and interconnections

between them. We will first demonstrate the dependency notation with an example of the

AND dependency and then define all the other symbols associated with this notation.

 The AND dependency is represented with the letter G followed by a number. Any

input or output in a diagram that is labeled with the number associated with G is consid-

ered to be ANDed with it. For example, if one input in the diagram has the label G 1 and

another input is labeled with the number 1, then the two inputs labeled G 1 and 1 are

considered to be ANDed together internally.

 An example of AND dependency is shown in Fig. 10.5 . In (a), we have a portion of

a graphic symbol with two AND dependency labels, G 1 and G 2. There are two inputs

labeled with the number 1 and one input labeled with the number 2. The equivalent

494 Chapter 10 Standard Graphic Symbols

 FIGURE 10.5
 Example of G (AND) dependency

X

Y

X

Y

A

B

C

A

B

C

G1

G2

1

1

2

(a) Block with G1 and G2

&

&

&

(b) Equivalent interpretation

interpretation is shown in part (b) of the figure. Input X associated with G 1 is considered

to be ANDed with inputs A and B, which are labeled with a 1. Similarly, input Y is

ANDed with input C to conform with the dependency between G 2 and 2.

 The standard defines 10 other dependencies. Each dependency is denoted by a letter

symbol (except EN). The letter appears at the input or output and is followed by a

number. Each input or output affected by that dependency is labeled with that same

number. The 11 dependencies and their corresponding letter designation are as follows:

 G Denotes an AND (gate) relationship

 V Denotes an OR relationship

 N Denotes a negate (exclusive-OR) relationship

 EN Specifi es an enable action

 C Identifi es a control dependency

 S Specifi es a setting action

 R Specifi es a resetting action

 M Identifi es a mode dependency

 A Identifi es an address dependency

Section 10.4 Symbols for Combinational Elements 495

 The V and N dependencies are used to denote the Boolean relationships of OR and

exclusive‐OR similar to the G that denotes the Boolean AND. The EN dependency is

similar to the qualifying symbol EN except that a number follows it (for example, EN 2).

Only the outputs marked with that number are disabled when the input associated with

 EN is active.

 The control dependency C is used to identify a clock input in a sequential element

and to indicate which input is controlled by it. The set S and reset R dependencies are

used to specify internal logic states of an SR flip‐flop. The C, S, and R dependencies

are explained in Section 10.5 in conjunction with the flip‐flop circuit. The mode M

dependency is used to identify inputs that select the mode of operation of the unit. The

mode dependency is presented in Section 10.6 in conjunction with registers and coun-

ters. The address A dependency is used to identify the address input of a memory. It is

introduced in Section 10.8 in conjunction with the memory unit.

 The Z dependency is used to indicate interconnections inside the unit. It signifies the

existence of internal logic connections between inputs, outputs, internal inputs, and inter-

nal outputs, in any combination. The X dependency is used to indicate the controlled

transmission path in a CMOS transmission gate.

 10 .4 SYMBOLS FOR COMBINATIONAL ELEMENTS

 The examples in this section and the rest of this chapter illustrate the use of the standard

in representing various digital components with graphic symbols. The examples demon-

strate actual commercial integrated circuits with the pin numbers included in the inputs

and outputs. Most of the ICs presented in this chapter are included with the suggested

experiments outlined in Chapter 9 .

 The graphic symbols for the adder and decoder were shown in Section 10.2. IC type

74155 can be connected as a 3 * 8 decoder, as shown in Fig. 10.6 . (The truth table of this

decoder is shown in Fig. 9.7.) There are two C and two G inputs in the IC. Each pair must

be con nected together as shown in the diagram. The enable input is active when in the

low‐level state. The outputs are all active low. The inputs are assigned binary weights 1, 2,

and 4, equivalent to 2 0 , 2 1 , and 2 2 , respectively. The outputs are assigned numbers from 0

to 7. The sum of the weights of the inputs determines the output that is active. Thus, if the

two input lines with weights 1 and 4 are activated, the total weight is 1 + 4 = 5 and output

5 is activated. Of course, the EN input must be activated for any output to be active.

 The decoder is a special case of a more general component referred to as a coder .

A coder is a device that receives an input binary code on a number of inputs and produces

a different binary code on a number of outputs. Instead of using the qualifying symbol

 X/Y, the coder can be specified by the code name. For example, the 3‐to‐8‐line decoder

of Fig. 10.6 can be symbolized with the name BIN/OCT since the circuit converts a 3‐bit

binary number into 8 octal values, 0 through 7.

 Z Indicates an internal interconnection

 X Indicates a controlled transmission

496 Chapter 10 Standard Graphic Symbols

 Before showing the graphic symbol for the multiplexer, it is necessary to show a

variation of the AND dependency. The AND dependency is sometimes represented by

a shorthand notation like G 0
7 . This symbol stands for eight AND dependency symbols

from 0 to 7 as follows:

 G0, G1, G2, G3, G4, G5, G6, G7

 At any given time, only one out of the eight AND gates can be active. The active AND

gate is determined from the inputs associated with the G symbol. These inputs are

marked with weights equal to the powers of 2. For the eight AND gates just listed,

the weights are 0, 1, and 2, corresponding to the numbers 2 0 , 2 1 , and 2 2 , respectively.

The AND gate that is active at any given time is determined from the sum of the

weights of the active inputs. Thus, if inputs 0 and 2 are active, then the AND gate that

is active has the number 2 0 + 2 2 = 5. This makes G 5 active and the other seven AND

gates inactive.

 The standard graphic symbol for a 8 * 1 multiplexer is shown in Fig. 10.7 (a). The

qualifying symbol MUX identifies the device as a multiplexer. The symbols inside the

block are part of the standard notation, but the symbols marked outside are user‐

defined symbols. The function table of the 741551 IC can be found in Fig. 9.9. The AND

dependency is marked with G 0
7 and is associated with the inputs enclosed in brackets.

These inputs have weights of 0, 1, and 2. They are actually what we have called the

selection inputs. The eight data inputs are marked with numbers from 0 to 7. The net

weight of the active inputs associated with the G symbol specifies the number in the

data input that is active. For example, if selection inputs CBA = 110, then inputs 1 and

2 associated with G are active. This gives a numerical value for the AND dependency

of 2 2 + 2 1 = 6, which makes G 6 active. Since G 6 is ANDed with data input number 6,

it makes this input active. Thus, the output will be equal to data input D 6 provided that

the enable input is active.

 FIGURE 10.6
 IC type 74155 connected as a 3 * 8 decoder

2

3

4

5

6

7

1

0

11

1013

15

2

14

3

4

1

2
1

9

12

D0

D1

D2

D3
7

D4
6

D5
5

D6
4

D7

A

B

C

G EN

X/Y

Section 10.5 Symbols for Flip‐Flops 497

 Figure 10.7(b) represents the quadruple 2 * 1 multiplexer IC type 74157 whose func-

tion table is listed in Fig. 9.17. The enable and selection inputs are common to all four

multiplexers. This is indicated in the standard notation by the indented box at the top

of the diagram, which represents a common control block . The inputs to a common

control block control all lower sections of the diagram. The common enable input EN

is active when in the low‐level state. The AND dependency, G 1, determines which input

is active in each multiplexer section. When G 1 = 0, the A inputs marked with 1 are active.

When G 1 = 1, the B inputs marked with 1 are active. The active inputs are applied to

the corresponding outputs if EN is active. Note that the input symbols 1 and 1 are

marked in the upper section only instead of repeating them in each section.

 1 0 . 5 S Y M B O L S F O R F L I P ‐ F L O P S

 The standard graphic symbols for different types of flip‐flops are shown in Fig. 10.8 .

A flip‐flop is represented by a rectangular‐shaped block with inputs on the left and

outputs on the right. One output designates the normal state of the flip‐flop and the

 FIGURE 10.7
 Graphic symbols for multiplexers

D0

D1

D2

D3

D4

D5

D6

D7

S

A

B

C

MUX
EN

0

2

G
0
7

5

6
Y

W

(a) IC type 74151 8 � 1 MUX

12
7

6

5

4

3

2

1

0

13

14

15

1

2

3

4

9

10

11

7

A1
Y1

Y2

Y3

Y4

B1

A2

B2

A3

B3

A4

B4

MUX

Strobe

Select

EN

G1

1

1

4

7

9

12

(b) IC type 74157 quadruple 2 � 1 MUX

13

14

10

11

6

5

3

2

1

15

498 Chapter 10 Standard Graphic Symbols

other output with a small‐circle negation symbol (or polarity indicator) designates the

complement output. The graphic symbols distinguish between three types of flip‐flops:

the D latch, whose internal construction is shown in Fig. 6.5; the master–slave flip‐flop,

shown in Fig. 6.9; and the edge‐triggered flip‐flop, introduced in Fig. 6.12. The graphic

symbol for the D latch or D flip‐flop has inputs D and C indicated inside the block. The

graphic symbol for the JK flip‐flop has inputs J, K, and C inside. The notation C 1, 1 D,
1 J, and 1 K are examples of control dependency. The input in C 1 controls input 1 D in a

 D flip‐flop and inputs 1 J and 1 K in a JK flip‐flop.

 The D latch has no other symbols besides the 1 D and C 1 inputs. The edge‐triggered

flip‐flop has an arrowhead‐shaped symbol in front of the control dependency C 1 to

designate a dynamic input. The dynamic indicator symbol denotes that the flip‐flop

responds to the positive‐edge transition of the input clock pulses. A small circle outside

the block along the dynamic indicator designates a negative‐edge transition for trigger-

ing the flip‐flop. The master–slave is considered to be a pulse‐triggered flip‐flop and is

 FIGURE 10.8
 Standard graphic symbols for flip‐flops

1D

C1

D latch

C1

1D

Positive-edge-triggered
D flip-flop

1J

1K

C1

1J

1K

C1

Negative-edge-triggered
JK flip-flop

Positive-edge-triggered
JK flip-flop

1J

1K

C1

Master-slave JK flip-flop Master-slave D flip-flop

1D

C1

Section 10.6 Symbols for Registers 499

indicated as such with an upside‐down L symbol in front of the outputs. This is to show

that the output signal changes on the falling edge of the pulse. Note that the master–

slave flip‐flop is drawn without the dynamic indicator.

 Flip‐flops available in integrated‐circuit packages provide special inputs for setting

and resetting the flip‐flop asynchronously. These inputs are usually called direct set and

direct reset. They affect the output on the negative level of the signal without the need

of a clock. The graphic symbol of a master–slave JK flip‐flop with direct set and reset is

shown in Fig. 10.9 (a). The notations C 1, 1 J, and 1 K represent control dependency, show-

ing that the clock input at C 1 controls inputs 1 J and 1 K . S and R have no 1 in front of

the letters and, therefore, they are not controlled by the clock at C 1. The S and R inputs

have a small circle along the input lines to indicate that they are active when in the

logic‐0 level. The function table for the 7476 flip‐flop is shown in Fig. 9.12.

 The graphic symbol for a positive‐edge‐triggered D flip‐flop with direct set and reset

is shown in Fig. 10.9 (b). The positive‐edge transition of the clock at input C 1 controls

input 1 D . The S and R inputs are independent of the clock. This is IC type 7474, whose

function table is listed in Fig. 9.13.

 1 0 . 6 S Y M B O L S F O R R E G I S T E R S

 The standard graphic symbol for a register is equivalent to the symbol used for a group

of flip‐flops with a common clock input. Fig. 10.10 shows the standard graphic symbol

of IC type 74175, consisting of four D flip‐flops with common clock and clear inputs.

The clock input C 1 and the clear input R appear in the common control block. The

inputs to the common control block are connected to each of the elements in the lower

sections of the diagram. The notation C 1 is the control dependency that controls all the

1 D inputs. Thus, each flip‐flop is triggered by the common clock input. The dynamic

input symbol associated with C 1 indicates that the flip‐flops are triggered on the positive

edge of the input clock. The common R input resets all flip‐flops when its input is at a

low‐level state. The 1 D symbol is placed only once in the upper section instead of

 FIGURE 10.9
 IC flip‐flops with direct set and reset

2

4

1

1

2 6

3 5

4

16

3

15

14

S

(a) One-half 7476 JK flip-flop (b) One-half 7474 D flip-flop

S

R

1D

C1
1J

C1

1K

R

500 Chapter 10 Standard Graphic Symbols

repeating it in each section. The complement outputs of the flip‐flops in this diagram

are marked with the polarity symbol rather than the negation symbol.

 The standard graphic symbol for a shift register with parallel load is shown in

 Fig. 10.11 . This is IC type 74195, whose function table can be found in Fig. 9.16. The

qualifying symbol for a shift register is SRG followed by a number that designates the

number of stages. Thus, SRG 4 denotes a four‐bit shift register. The common control

block has two mode dependencies, M 1 and M 2, for the shift and load operations, respec-

tively. Note that the IC has a single input labeled SH / LD (shift/load), which is split into

two lines to show the two modes. M 1 is active when the SH / LD input is high and M 2 is

active when the SH / LD input is low. M 2 is recognized as active low from the polarity

indicator along its input line. Note the convention in this symbology: We must recognize

that a single input actually exists in pin 9, but it is split into two parts in order to assign

to it the two modes, M 1 and M 2. The control dependency C 3 is for the clock input. The

dynamic symbol along the C 3 input indicates that the flip‐flops trigger on the positive

edge of the clock. The symbol /1 S following C 3 indicates that the register shifts to the

right or in the downward direction when mode M 1 is active.

 The four sections below the common control block represent the four flip‐flops. Flip‐

flop QA has three inputs: Two are associated with the serial (shift) operation and one

 FIGURE 10.10
 Graphic symbol for IC type 74175 quad flip-flop

Q

Q�

Clear

Clock

R

C1

1

9

2

3

7

6

10

11

15

14

1D
4

5

12

13

Section 10.6 Symbols for Registers 501

with the parallel (load) operation. The serial input label 1, 3 J indicates that the J input

of flip‐flop QA is active when M 1 (shift) is active and C 3 goes through a positive clock

transition. The other serial input with label 1, 3 K has a polarity symbol in its input line

corresponding to the complement of input K in a JK flip‐flop. The third input of QA

and the inputs of the other flip‐flops are for the parallel input data. Each input is denoted

by the label 2, 3 D . The 2 is for M 2 (load), and 3 is for the clock C 3. If the input in pin

number 9 is in the low level, M 1 is active, and a positive transition of the clock at C 3

causes a parallel transfer from the four inputs, A through D, into the four flip‐flops, QA

through QD . Note that the parallel input is labeled only in the first and second sections.

It is assumed to be in the other two sections below.

 Figure 10.12 shows the graphic symbol for the bidirectional shift register with paral-

lel load, IC type 74194. The function table for this IC is listed in Fig. 9.19. The common

control block shows an R input for resetting all flip‐flops to 0 asynchronously. The mode

select has two inputs and the mode dependency M may take binary values from 0 to 3.

This is indicated by the symbol M 0
3, which stands for M 0, M 1, M 2, M 3, and is similar

to the notation for the G dependency in multiplexers. The symbol associated with the

clock is

 C4>1 S >2 d

 C 4 is the control dependency for the clock. The /1 S symbol indicates that the register

shifts right (down in this case) when the mode is M 1 (S 1 S 0 = 10). The /2 d symbol

 FIGURE 10.11
 Graphic symbol for a shift register with parallel load, IC type 74195

QA

QB

QC

QD

SRG4
Clear

SH/LD

Clock

R

C3/1

M2 [LOAD]

M1 [SHIFT]

J

K

A

B

C

1

9

10

2

3

4

5

6

7
D

15

14

13

12

11
QD

1, 3J

1, 3K

2, 3D

2, 3D

502 Chapter 10 Standard Graphic Symbols

indicates that the register shifts left (up in this case) when the mode is M 2 (S 1 S 0 = 10).

The right and left directions are obtained when the page is turned 90 degrees counter-

clockwise.

 The sections below the common control block represent the four flip‐flops. The first

flip‐flop has a serial input for shift right, denoted by 1, 4 D (mode M 1, clock C 4,

input D). The last flip‐flop has a serial input for shift left, denoted by 2, 4 D (mode M 2,

clock C 4, input D). All four flip‐flops have a parallel input denoted by the label 3, 4 D

(mode M 3, clock C 4, input D). Thus, M 3 (S 1 S 0 = 11) is for parallel load. The remaining

mode M 0 (S 1 S 0 = 00) has no effect on the outputs because it is not included in the

input labels.

 1 0 . 7 S Y M B O L S F O R C O U N T E R S

 The standard graphic symbol of a binary ripple counter is shown in Fig. 10.13 . The

qualifying symbol for a ripple counter is RCTR . The designation DIV 2 stands for the

divide‐by‐2 circuit that is obtained from the single flip‐flop QA . The DIV 8 designation

is for the divide‐by‐8 counter obtained from the other three flip‐flops. The diagram

represents IC type 7493, whose internal circuit diagram is shown in Fig. 9.2. The com-

mon control block has an internal AND gate, with inputs R 1 and R 2. When both of

these inputs are equal to 1, the content of the counter goes to zero. This is indicated by

 FIGURE 10.12
 Graphic symbol for a bidirectional shift register with parallel load, IC type 74194

QA

QB

QC

QD

SRG4
Clear

Clock

R

C4/1 /2

1

9

11

10

A

15

14

13

12

S1

S0

2

3

4

5

6

7

B

C

D

Serial input

Serial input

0

1
M 0

3

1, 4D

3, 4D

3, 4D

3, 4D

3, 4D

2, 4D

Section 10.7 Symbols for Counters 503

the symbol CT = 0. Since the count input does not go to the clock inputs of all flip‐flops,

it has no C 1 label and, instead, the symbol + is used to indicate a count‐up operation.

The dynamic symbol next to the + together with the polarity symbol along the input

line signify that the count is affected with a negative‐edge transition of the input signal.

The bit grouping from 0 to 2 in the output represents values for the weights to the

power of 2. Thus, 0 represents the value of 2 0 = 1 and 2 represents the value 2 2 = 4.

 The standard graphic symbol for the four‐bit counter with parallel load, IC type 74161,

is shown in Fig. 10.14 . The qualifying symbol for a synchronous counter is CTR followed

by the symbol DIV 16 (divide by 16), which gives the cycle length of the counter. There

is a single load input at pin 9 that is split into the two modes, M 1 and M 2. M 1 is active

when the load input at pin 9 is low and M 2 is active when the load input at pin 9 is high.

 M 1 is recognized as active low from the polarity indicator along its input line. The count‐

enable inputs use the G dependencies. G 3 is associated with the T input and G 4 with

the P input of the count enable. The label associated with the clock is

 C5>2, 3, 4 +

 This means that the circuit counts up (the + symbol) when M 2, G 3, and G 4 are active

(load = 1, ENT = 1, and ENP = 1) and the clock in C 5 goes through a positive transition.

This condition is specified in the function table of the 74161 listed in Fig. 9.15. The paral-

lel inputs have the label 1, 5 D, meaning that the D inputs are active when M 1 is active

(load = 0) and the clock goes through a positive transition. The output carry is designated

by the label

 3CT = 15

 This is interpreted to mean that the output carry is active (equal to 1) if G 3 is active

(ENT = 1) and the content (CT) of the counter is 15 (binary 1111). Note that the outputs

 FIGURE 10.13
 Graphic symbol for ripple counter, IC type 7493

QA

QB

QC

QD

RCTR

R1

R2

12

9

8

11

0

2

CT

A
14

1

2

3 & CT � 0

DIV2

DIV8

�

�B

504 Chapter 10 Standard Graphic Symbols

have an in verted L symbol, indicating that all the flip‐flops are of the master–slave type.

The polarity symbol in the C 5 input designates an inverted pulse for the input clock.

This means that the master is triggered on the negative transition of the clock pulse and

the slave changes state on the positive transition. Thus, the output changes on the posi-

tive transition of the clock pulse. It should be noted that IC type 74LS161 (low‐power

Schottky version) has positive‐edge‐ triggered flip‐flops.

 1 0 . 8 S Y M B O L F O R R A M

 The standard graphic symbol for the random‐access memory (RAM) 74189 is shown

in Fig. 10.15 . The numbers 16 * 4 that follow the qualifying symbol RAM designate

the number of words and the number of bits per word. The common control block is

shown with four address lines and two control inputs. Each bit of the word is shown in

a separate section with an input and output data line. The address dependency A is

used to identify the address inputs of the memory. Data inputs and outputs affected

by the address are labeled with the letter A . The bit grouping from 0 through 3 provides

the binary address that ranges from A 0 through A 15. The inverted triangle signifies

three‐state outputs. The polarity symbol specifies the inversion of the outputs.

 The operation of the memory is specified by means of the dependency notation. The

RAM graphic symbol uses four dependencies: A (address), G (AND), EN (enable), and

 C (control). Input G 1 is to be considered ANDed with 1 EN and 1 C 2 because G 1 has a

1 after the letter G and the other two have a 1 in their label. The EN dependency is used

 FIGURE 10.14
 Graphic Symbol for 4‐Bit Binary Counter with Parallel Load, IC Type 74161

3CT � 15

CT � 0Clear

Clock

Load

ENT

ENP

A

B

C

D

QA

QB

QC

QD

[1]

[2]

[4]

[8]

1, 5D

M1

G3

G4

C5/2, 3, 4 �

M2 15
Output carry

1

9

10

7

2

4

5

6

3

13

12

11

14

CTR DIV16

Problems 505

to identify an enable input that controls the data outputs. The dependency C 2 controls

the inputs as indicated by the 2 D label. Thus, for a write operation, we have the G 1 and

1 C 2 dependency (CS = 0), the C 2 and 2 D dependency (WE = 0), and the A dependency,

which specifies the binary address in the four address inputs. For a read operation, we

have the G 1 and 1 EN dependencies (CS = 0, WE = 1) and the A dependency for the

outputs. The interpretation of these dependencies results in the operation of the memory

as listed in the function table of the 74189 RAM (see Web Search Topics).

 P R O B L E M S

 10.1 Figure 9.1 shows various small‐scale integration circuits with pin assignment. Using this

information, draw the rectangular‐shaped graphic symbols for the 7400, 7404, and 7486 ICs.

 10.2 Define the following in your own words:

 (a) Positive and negative logic. (b) Active high and active low.

 (c) Polarity indicator. (d) Dynamic indicator.

 (e) Dependency notation.

 10.3 Show an example of a graphic symbol that has the three Boolean dependencies— G, V,

and N . Draw the equivalent interpretation.

 10.4 Draw the graphic symbol of a BCD‐to‐decimal decoder. This is similar to a decoder with

4 inputs and 10 outputs.

 FIGURE 10.15
 Graphic symbol for 16×4 RAM, IC type 74189

4

6

10

12

7

9

11

5
S1

S2

S3

S4

RAM 16 � 4
0

2

15

14

13

2

1

3

A0

A1

A2

A3

D1

D2

D3

D4

CS

WE

G1

1EN [READ]

1C2 [WRITE]

A

A, 2D A

0
15

506 Chapter 10 Standard Graphic Symbols

Bidirectional shift register

Three-state inverter

Three-state buffer

Universal shift register

7483 adder

74151 multiplexer

74155 decoder

74157 multiplexer

7476 flip-flop

7474 flip-flop

74161 flip-flop

74194 shift register

74175 quad flip-flops

74195 shift register

7494 counter

74161 counter

74LS161 flip-flop

74189 RAM

BCD-to-decimal decoder

Random access memory

 10.5 Draw the graphic symbol for a binary‐to‐octal decoder with three enable inputs, E 1, E 2,

and E 3. The circuit is enabled if E 1 = 1, E 2 = 0, and E 3 = 0 (assuming positive logic).

 10.6 Draw the graphic symbol of dual 4‐to‐1‐line multiplexers with common selection inputs

and a separate enable input for each multiplexer.

 10.7 Draw the graphic symbol for the following flip‐flops:

 (a) Negative‐edge‐triggered D flip‐flop. (b) Master–slave RS flip‐flop.

 (c) Positive‐edge‐triggered T flip‐flop.

 10.8 Explain the function of the common control block when used with the standard graphic

symbols.

 10.9 Draw the graphic symbol of a four‐bit register with parallel load using the label M 1 for

the load input and C 2 for the clock.

 10.10 Explain all the symbols used in the standard graphic diagram of Fig. 10.12 .

 10.11 Draw the graphic symbol of an up–down synchronous binary counter with mode input

(for up or down) and count‐enable input with G dependency. Show the output carries

for the up count and the down count.

 10.12 Draw the graphic symbol of a 256 * 1 RAM. Include the symbol for three‐state outputs.

 R E F E R E N C E S

 1. IEEE Standard Graphic Symbols for Logic Functions (ANSI/IEEE Std. 91‐1984). 1984.

New York: Institute of Electrical and Electronics Engineers.

 2. K ampel, I. 1985. A Practical Introduction to the New Logic Symbols . Boston: Butterworth.

 3. M ann, F. A. 1984. Explanation of New Logic Symbols . Dallas: Texas Instruments.

 4. The TTL Data Book, Volume 1. 1985. Dallas: Texas Instruments.

W E B S E A R C H T O P I C S

507

 Appendix

 Semiconductors and CMOS
Integrated Circuits

 Semiconductors are formed by doping a thin slice of a pure silicon crystal with a small

amount of a dopant that fits relatively easily into the crystalline structure of the silicon.

Dopants are differentiated on the basis of whether they have either three valence elec-

trons or five valence electrons. A silicon crystalline structure is such that each silicon

atom shares its four valence electrons with its four nearest neighbors, thereby completing

its valence structure. The atoms of a dopant with five valence electrons, referred to as a

n‐type dopant, fit in the physical structure of the crystal, but their fifth electrons are held

only loosely by their parent atoms in the bonded structure. Consequently, an applied

electric field can cause such electrons to flow as a current. On the other hand, a dopant

atom with only three valence electrons, a p‐type dopant, has a vacant valence site. Under

the influence of an applied electric field, an electron from a neighboring silicon atom in

the bonded structure can jump from its host and fill a vacant dopant site, leaving behind

a vacancy at its host. This migration, visualized as a leapfrogging of electrons from hole

to hole, establishes a current.

 Current is due to the movement of electrons, which are negative charge carriers. Cur-

rent is measured, however, in the opposite direction of flow, by convention—since the

days of Benjamin Franklin. (Think of current as being the motion of an equivalent

positive charge moving in the opposite direction of an electron, whose charge is nega-

tive). Holes move in the direction of current, although the underlying physical movement

of electrons is in the opposite direction. Thermal agitation causes both types of charge

carriers to be present in a semiconductor. If the majority carrier is a hole, the device is

said to be a p‐type device; if the majority carrier is an electron, the device is said to be

an n‐type device. Bipolar transistors rely on both types of carriers. Metal‐oxide silicon

semiconductors rely on a majority carrier, either an electron or a hole, but not both. The

type and relative amount of dopant determine the type of a semiconductor material.

508 Appendix Semiconductors and CMOS Integrated Circuits

 The basic structure of a metal‐oxide semiconductor (MOS) transistor is shown in

 Fig. A.1 . The p‐channel MOS transistor consists of a lightly doped substrate of n‐type

silicon material. Two regions are heavily doped with p‐type impurities by a diffusion pro-

cess to form the source and drain . The source terminal supplies charge carriers to an

external circuit; the drain terminal removes charge carriers from the circuit. The region

between the two p‐type sections serves as the channel . In its simplest form, the gate is a

metal plate separated from the channel by an insulted dielectric of silicon dioxide.

A negative voltage (with respect to the substrate) at the gate terminal causes an induced

electric field in the channel that attracts p‐type carriers (holes) from the substrate. As

the magnitude of the negative voltage increases, the region below the gate accumulates

more positive carriers, the conductivity increases, and current can flow from source to

drain, provided that a voltage difference is maintained between these two terminals.

 There are four basic types of MOS structures. The channel can be p or n type, depend-

ing on whether the majority carriers are holes or electrons. The mode of operation can

be enhancement or depletion, depending on the state of the channel region at zero gate

voltage. If the channel is initially doped lightly with p ‐type impurity (in which case it is

called a diffused channel), a conducting channel exists at zero gate voltage and the

device is said to operate in the depletion mode. In this mode, current flows unless the

channel is depleted by an applied gate field. If the region beneath the gate is left initially

uncharged, a channel must be induced by the gate field before current can flow. Thus,

the channel current is enhanced by the gate voltage, and such a device is said to operate

in the enhancement mode.

 The source is the terminal through which the majority carriers enter the device. If

the majority carrier is a hole (p‐type channel), the source terminal supplies current to

the circuit; if the majority carrier is an electron (n‐type channel), the source removes

current from the circuit. The drain is the terminal through which the majority carriers

leave the device. In a p ‐channel MOS, the source terminal is connected to the substrate

and a negative voltage is applied to the drain terminal. When the gate voltage is above

a threshold voltage VT (about -2 V), no current flows in the channel and the drain‐to‐

source path is like an open circuit. When the gate voltage is sufficiently negative below

 VT, a channel is formed and p ‐type carriers flow from source to drain. p ‐type carriers are

positive and correspond to a positive current flow from source to drain.

 FIGURE A.1
 Basic structure of MOS transistor

����

gate (�)

(a) p-channel

n-type substrate

p p ����

gate (�)

drain (�) source drain (�) source

(b) n-channel

p-type substrate

n n

Appendix Semiconductors and CMOS Integrated Circuits 509

 In the n ‐channel MOS, the source terminal is connected to the substrate and a

positive voltage is applied to the drain terminal. When the gate voltage is below the

threshold voltage VT (about 2 V), no current flows in the channel. When the gate volt-

age is sufficiently positive above VT to form the channel, n ‐type carriers flow from

source to drain. n ‐type carriers are negative and correspond to a positive current flow

from drain to source. The threshold voltage may vary from 1 to 4 V, depending on the

particular process used.

 The graphic symbols for the MOS transistors are shown in Fig. A.2 . The symbol for

the enhancement type is the one with the broken‐line connection between source and

drain. In this symbol, the substrate can be identified and is shown connected to the

source. An alternative symbol omits the substrate, and instead an arrow is placed in the

source terminal to show the direction of positive current flow (from source to drain in

the p ‐channel MOS and from drain to source in the n ‐channel MOS).

 Because of the symmetrical construction of source and drain, the MOS transistor can

be operated as a bilateral device. Although normally operated so that carriers flow from

source to drain, there are circumstances when it is convenient to allow carriers to flow

from drain to source.

 One advantage of the MOS device is that it can be used not only as a transistor, but

as a resistor as well. A resistor is obtained from the MOS by permanently biasing the

gate terminal for conduction. The ratio of the source–drain voltage to the channel

current then determines the value of the resistance. Different resistor values may be

constructed during manufacturing by fixing the channel length and width of the MOS

device.

 Three logic circuits using MOS devices are shown in Fig. A.3 . For an n ‐channel MOS,

the supply voltage VDD is positive (about 5 V), to allow positive current flow from drain

to source. The two voltage levels are a function of the threshold voltage VT. The low level

is anywhere from zero to VT, and the high level ranges from VT to VDD. The n ‐channel

gates usually employ positive logic. The p ‐channel MOS circuits use a negative voltage

for VDD, to allow positive current flow from source to drain. The two voltage levels are

both negative above and below the negative threshold voltage VT. p ‐channel gates usu-

ally employ negative logic.

 The inverter circuit shown in Fig. A.3 (a) uses two MOS devices. Q1 acts as the load

resistor and Q2 as the active device. The load‐resistor MOS has its gate connected to VDD,

 FIGURE A.2
 Symbols for MOS transistors

drain

gate

source

substrate G

D

S

drain

gate

source

substrate G

D

S

(a) p-channel (b) n-channel

510 Appendix Semiconductors and CMOS Integrated Circuits

thus maintaining it in the conduction state. When the input voltage is low (below VT), Q2

turns off. Since Q1 is always on, the output voltage is about VDD. When the input voltage

is high (above VT), Q2 turns on. Current flows from VDD through the load resistor Q1 and

into Q2 . The geometry of the two MOS devices must be such that the resistance of Q2,
when conducting, is much less than the resistance of Q1 to maintain the output Y at a

voltage below VT.

 The NAND gate shown in Fig. A.3 (b) uses transistors in series. Inputs A and B must

both be high for all transistors to conduct and cause the output to go low. If either input

is low, the corresponding transistor is turned off and the output is high. Again, the series

resistance formed by the two active MOS devices must be much less than the resistance

of the load‐resistor MOS. The NOR gate shown in Fig. A.3 (c) uses transistors in parallel.

If either input is high, the corresponding transistor conducts and the output is low. If all

inputs are low, all active transistors are off and the output is high.

 A . 1 C O M P L E M E N TA RY M O S

 Complementary MOS (CMOS) circuits take advantage of the fact that both n ‐channel

and p ‐channel devices can be fabricated on the same substrate. CMOS circuits consist

of both types of MOS devices, interconnected to form logic functions. The basic cir-

cuit is the inverter, which consists of one p ‐channel transistor and one n ‐channel

transistor, as shown in Fig. A.4 (a). The source terminal of the p ‐channel device is at

 VDD, and the source terminal of the n ‐channel device is at ground. The value of VDD

 FIGURE A.3
 n ‐channel MOS logic circuits

A

Q1

Q2

Y � A�

VDD

(a) Inverter (b) NAND gate

VDD

B

A

Y � (AB)�

A B

Y � (A � B)�

VDD

(c) NOR gate

Section A.1 Complementary MOS 511

 FIGURE A.4
 CMOS logic circuits

(a) Inverter (b) NAND gate

(c) NOR gate

A

p

n

Y � A�

VDD

Y � (A � B)�

A

B

VDD

Y � (AB)�

B

VDD

A

512 Appendix Semiconductors and CMOS Integrated Circuits

may be anywhere from +3 to +18 V. The two voltage levels are 0 V for the low level

and VDD for the high level (typically, 5 V).

 To understand the operation of the inverter, we must review the behavior of the MOS

transistor from the previous section:

 1. The n ‐channel MOS conducts when its gate‐to‐source voltage is positive.

 2. The p ‐channel MOS conducts when its gate‐to‐source voltage is negative.

 3. Either type of device is turned off if its gate‐to‐source voltage is zero.

 Now consider the operation of the inverter. When the input is low, both gates are at

zero potential. The input is at -VDD relative to the source of the p ‐channel device and

at 0 V relative to the source of the n ‐channel device. The result is that the p ‐channel

device is turned on and the n ‐channel device is turned off. Under these conditions, there

is a low‐impedance path from VDD to the output and a very high impedance path from

output to ground. Therefore, the output voltage approaches the high level VDD under

normal loading conditions. When the input is high, both gates are at VDD and the situa-

tion is reversed: The p ‐channel device is off and the n ‐channel device is on. The result is

that the output approaches the low level of 0 V.

 Two other CMOS basic gates are shown in Fig. A.4 . A two‐input NAND gate consists

of two p ‐type units in parallel and two n ‐type units in series, as shown in Fig. A.4 (b). If

all inputs are high, both p ‐channel transistors turn off and both n ‐channel transistors

turn on. The output has a low impedance to ground and produces a low state. If any input

is low, the associated n ‐channel transistor is turned off and the associated p ‐channel

transistor is turned on. The output is coupled to VDD and goes to the high state. Multiple‐

input NAND gates may be formed by placing equal numbers of p ‐type and n ‐type

transistors in parallel and series, respectively, in an arrangement similar to that shown

in Fig. A.4 (b).

 A two‐input NOR gate consists of two n ‐type units in parallel and two p ‐type units in

series, as shown in Fig. A.4 (c). When all inputs are low, both p ‐channel units are on and

both n ‐channel units are off. The output is coupled to VDD and goes to the high state. If any

input is high, the associated p ‐channel transistor is turned off and the associated n ‐channel

transistor turns on, connecting the output to ground and causing a low‐level output.

 MOS transistors can be considered to be electronic switches that either conduct

or are open. As an example, the CMOS inverter can be visualized as consisting of two

switches as shown in Fig. A.5 (a). Applying a low voltage to the input causes the upper

switch (p) to close, supplying a high voltage to the output. Applying a high voltage

to the input causes the lower switch (n) to close, connecting the output to ground.

Thus, the output Vout is the complement of the input Vin. Commercial applications

often use other graphic symbols for MOS transistors to emphasize the logical behav-

ior of the switches. The arrows showing the direction of current flow are omitted.

Instead, the gate input of the p ‐channel transistor is drawn with an inversion bubble

on the gate terminal to show that it is enabled with a low voltage. The inverter circuit

is redrawn with these symbols in Fig. A.5 (b). A logic 0 in the input causes the upper

transistor to conduct, making the output logic 1. A logic 1 in the input enables the

lower transistor, making the output logic 0.

Section A.1 Complementary MOS 513

 CMOS Characteristics

 When a CMOS logic circuit is in a static state, its power dissipation is very low. This is

because at least one transistor is always off in the path between the power supply and

ground when the state of the circuit is not changing. As a result, a typical CMOS gate

has static power dissipation on the order of 0.01 mW. However, when the circuit is

changing state at the rate of 1 MHz, the power dissipation increases to about 1 mW, and

at 10 MHz it is about 5 mW.

 CMOS logic is usually specified for a single power‐supply operation over a voltage

range from 3 to 18 V with a typical VDD value of 5 V. Operating CMOS at a larger power‐

supply voltage reduces the propagation delay time and improves the noise margin, but

the power dissipation is increased. The propagation delay time with VDD = 5 V ranges

from 5 to 20 ns, depending on the type of CMOS used. The noise margin is usually about

40% of the power supply voltage. The fan‐out of CMOS gates is about 30 when they are

operated at a frequency of 1 MHz. The fan‐out decreases with an increase in the

 frequency of operation of the gates.

 There are several series of the CMOS digital logic family. The 74C series are pin and

function compatible with TTL devices having the same number. For example, CMOS

IC type 74C04 has six inverters with the same pin configuration as TTL type 7404. The

high‐speed CMOS 74HC series is an improvement over the 74C series, with a tenfold

increase in switching speed. The 74HCT series is electrically compatible with TTL ICs.

This means that circuits in this series can be connected to inputs and outputs of TTL ICs

without the need of addi tional interfacing circuits. Newer versions of CMOS are the

high‐speed series 74VHC and its TTL‐compatible version 74VHCT.

 The CMOS fabrication process is simpler than that of TTL and provides a greater

packing density. Thus, more circuits can be placed on a given area of silicon at a reduced

cost per function. This property, together with the low power dissipation of CMOS cir-

cuits, good noise immunity, and reasonable propagation delay, makes CMOS the most

popular standard as a digital logic family.

 FIGURE A.5
 CMOS inverter

Vin Vout

VDD � 5 V

A Y

VDD

(a) Switch model (b) Logical model

514 Appendix Semiconductors and CMOS Integrated Circuits

 A . 2 C M O S T R A N S M I S S I O N G AT E C I R C U I T S

 A special CMOS circuit that is not available in the other digital logic families is the

 transmission gate . The transmission gate is essentially an electronic switch that is con-

trolled by an input logic level. It is used to simplify the construction of various digital

components when fabricated with CMOS technology.

 Figure A.6(a) shows the basic circuit of the transmission gate. Whereas a CMOS

in verter consists of a p ‐channel transistor connected in series with an n ‐channel transis-

tor, a transmission gate is formed by one n ‐channel and one p ‐channel MOS transistor

connected in parallel.

 The n ‐channel substrate is connected to ground and the p ‐channel substrate is con-

nected to VDD. When the N gate is at VDD and the P gate is at ground, both transistors

conduct and there is a closed path between input X and output Y . When the N gate is

at ground and the P gate is at VDD, both transistors are off and there is an open circuit

between X and Y . Figure A.4(b) shows the block diagram of the transmission gate. Note

that the terminal of the p ‐channel gate is marked with the negation symbol. Figure A.4(c)

demonstrates the behavior of the switch in terms of positive‐logic assignment with VDD

equivalent to logic 1 and ground equivalent to logic 0.

 The transmission gate is usually connected to an inverter, as shown in Fig. A.7 . This

type of arrangement is referred to as a bilateral switch . The control input C is connected

directly to the n ‐channel gate and its inverse to the p ‐channel gate. When C = 1, the

 FIGURE A.6
 Transmission gate (TG)

TGX

P

N

Y

P

X

X

Y

Y

VDD

(a) (b)

(c)

Closed switch

N � 1
P � 0

X Y

Open switch

N � 0
P � 1

N

Section A.2 CMOS Transmission Gate Circuits 515

switch is closed, producing a path between X and Y . When C = 0, the switch is open,

disconnecting the path between X and Y .

 Various circuits can be constructed that use the transmission gate. To demonstrate its

usefulness as a component in the CMOS family, we will show three examples.

 The exclusive‐OR gate can be constructed with two transmission gates and two

inverters, as shown in Fig. A.8 . Input A controls the paths in the transmission gates and

input B is connected to output Y through the gates. When input A is equal to 0, transmis-

sion gate TG1 is closed and output Y is equal to input B . When input A is equal to 1,

 TG2 is closed and output Y is equal to the complement of input B . This results in the

exclusive‐OR truth table, as indicated in Fig. A.8 .

 Another circuit that can be constructed with transmission gates is the multiplexer.

A four‐to‐one‐line multiplexer implemented with transmission gates is shown in

 Fig. A.9 . The TG circuit provides a transmission path between its horizontal input and

 FIGURE A.7
 Bilateral switch

TGX Y

C

 FIGURE A.8
 Exclusive‐OR constructed with transmission gates

TG1

A

B

TG2

Y

A B TG1 TG2 Y

0
0
1
1

0
1
1
0

0
1
1
0

close
close
open
open

open
open
close
close

516 Appendix Semiconductors and CMOS Integrated Circuits

output lines when the two vertical control inputs have the value of 1 in the uncircled ter-

minal and 0 in the circled terminal. With an opposite polarity in the control inputs, the path

disconnects and the circuit behaves like an open switch. The two selection inputs, S1 and S0,

control the transmission path in the TG circuits. Inside each box is marked the condition

for the transmission gate switch to be closed. Thus, if S0 = 0 and S1 = 0, there is a closed

path from input I0 to output Y through the two TG s marked with S0 = 0 and S1 = 0. The

other three inputs are disconnected from the output by one of the other TG circuits.

 FIGURE A.9
 Multiplexer with transmission gates

Y

S0

S1

I0

I1

I2

I3

TG
(S1 � 1)

TG
(S0 � 1)

TG
(S1 � 0)

TG
(S0 � 0)

TG
(S0 � 1)

TG
(S0 � 0)

Section A.3 Switch‐Level Modeling With HDL 517

 The level‐sensitive D flip‐flop commonly referred to as the gated D latch can be

constructed with transmission gates, as shown in Fig. A.10 . The C input controls two

transmission gates TG . When C = 1, the TG connected to input D has a closed path

and the one connected to output Q has an open path. This configuration produces an

equivalent circuit from input D through two inverters to output Q . Thus, the output fol-

lows the data input as long as C remains active. When C switches to 0, the first TG dis-

connects input D from the circuit and the second TG produces a closed path between

the two inverters at the output. Thus, the value that was present at input D at the time

that C went from 1 to 0 is retained at the Q output.

 A master–slave D flip‐flop can be constructed with two circuits of the type shown in

 Fig. A.10 . The first circuit is the master and the second is the slave. Thus, a master–slave

 D flip‐flop can be constructed with four transmission gates and six inverters.

 A . 3 S W I T C H ‐ L E V E L M O D E L I N G W I T H H D L

 CMOS is the dominant digital logic family used with integrated circuits. By definition,

CMOS is a complementary connection of an NMOS and a PMOS transistor. MOS

transistors can be considered to be electronic switches that either conduct or are open.

By specifying the connections among MOS switches, the designer can describe a digital

circuit constructed with CMOS. This type of description is called switch‐level modeling

in Verilog HDL.

 The two types of MOS switches are specified in Verilog HDL with the keywords nmos

and pmos . They are instantiated by specifying the three terminals of the transistor, as

shown in Fig. A.2 :

 nmos (drain, source, gate);
 pmos (drain, source, gate);

 Switches are considered to be primitives, so the use of an instance name is optional.

 FIGURE A.10
 Gated D latch with transmission gates

TG

TG

C

D Q�

Q

518 Appendix Semiconductors and CMOS Integrated Circuits

 The second module, set forth in HDL Example A.2, describes the two‐input CMOS

NAND circuit of Fig. A.4 (b). There are two PMOS transistors connected in parallel,

with their source terminals connected to PWR. There are also two NMOS transistors

connected in series and with a common terminal W1 . The drain of the first NMOS is

connected to the output, and the source of the second NMOS is connected to GRD.

 The connections to a power source (VDD) and to ground must be specified when MOS

circuits are designed. Power and ground are defined with the keywords supply1 and

 supply0 . They are specified, for example, with the following statements:

 supply1 PWR;
 supply0 GRD;

 Sources of type supply1 are equivalent to VDD and have a value of logic 1. Sources of

type supply0 are equivalent to ground connection and have a value of logic 0.

 The description of the CMOS inverter of Fig. A.4 (a) is shown in HDL Example A.1.

The input, the output, and the two supply sources are declared first. The module instan-

tiates a PMOS and an NMOS transistor. The output Y is common to both transistors

at their drain terminals. The input is also common to both transistors at their gate

terminals. The source terminal of the PMOS transistor is connected to PWR and the

source terminal of the NMOS transistor is connected to GRD.

 HDL Example A.1

 // CMOS inverter of Fig. A.4(a)
 module inverter (Y, A);
 input A;
 output Y;
 supply1 PWR;
 supply0 GRD;
 pmos (Y, PWR, A); // (Drain, source, gate)
 nmos (Y, GRD, A); // (Drain, source, gate)
 endmodule

 HDL Example A.2

 // CMOS two-input NAND of Fig. A.4(b)
 module NAND2 (Y, A, B);
 input A, B;
 output Y;
 supply1 PWR;
 supply0 GRD;
 wire W1; // terminal between two nmos
 pmos (Y, PWR, A); // source connected to Vdd
 pmos (Y, PWR, B); // parallel connection

Section A.3 Switch‐Level Modeling With HDL 519

 Transmission Gate

 The transmission gate is instantiated in Verilog HDL with the keyword cmos . It has an

output, an input, and two control signals, as shown in Fig. A.6. It is referred to as a cmos

switch. The relevant code is as follows:

 cmos (output, input, ncontrol, pcontrol); // general description

 cmos (Y, X, N, P); // transmission gate of Fig. A.6 (b)

 Normally, ncontrol and pcontrol are the complement of each other. The cmos switch

does not need power sources, since VDD and ground are connected to the substrates of

the MOS transistors. Transmission gates are useful for building multiplexers and flip‐

flops with CMOS circuits.

 HDL Example A.3 describes a circuit with cmos switches. The exclusive‐OR circuit

of Fig. A.8 has two transmission gates and two inverters. The two inverters are instan-

tiated within the module describing a CMOS inverter. The two cmos switches are

instantiated without an instance name, since they are primitives in the language. A test

module is included to test the circuit’s operation. Applying all possible combinations

of the two inputs, the result of the simulator verifies the operation of the exclusive‐OR

circuit. The output of the simulation is as follows:

 A = 0 B = 0 Y = 0

A = 0 B = 1 Y = 1

A = 1 B = 0 Y = 1

A = 1 B = 1 Y = 0

 nmos (Y, W1, A); // serial connection
 nmos (W1, GRD, B); // source connected to ground
 endmodule

 HDL Example A.3

 //CMOS_XOR with CMOS switches, Fig. A.8

 module CMOS_XOR (A, B, Y);
 input A, B;
 output Y;
 wire A_b, B_b;
 // instantiate inverter
 inverter v1 (A_b, A);
 inverter v2 (B_b, B);
 // instantiate cmos switch
 cmos (Y, B, A_b, A); //(output, input, ncontrol, pcontrol)
 cmos (Y, B_b, A, A_b);
 endmodule

520 Appendix Semiconductors and CMOS Integrated Circuits

 WEB SEARCH TOP ICS

 Conductor

 Semiconductor

 Insulator

 Electrical properties of materials

 Valence electron

 Diode

 Transistor

 CMOS process

 CMOS logic gate

 CMOS inverter

 // CMOS inverter Fig. A.4(a)
 module inverter (Y, A);
 input A;
 output Y;
 supply1 PWR;
 supply0 GND;
 pmos (Y, PWR, A); //(Drain, source, gate)
 nmos (Y, GND, A); //(Drain, source, gate)
 endmodule
 // Stimulus to test CMOS_XOR
 module test_CMOS_XOR;
 reg A,B;
 wire Y;
 //Instantiate CMOS_XOR
 CMOS_XOR X1 (A, B, Y);
 // Apply truth table
 initial
 begin
 A = 1'b0; B = 1'b0;
 #5 A = 1'b0; B = 1'b1;
 #5 A = 1'b1; B = 1'b0;
 #5 A = 1'b1; B = 1'b1;
 end
 // Display results
 initial
 $monitor ("A =%b B= %b Y =%b", A, B, Y);
 endmodule

521

 Answers to Selected Problems

 C H A P T E R 1

 1.2 (a) 32,768 (b) 67,108,864 (c) 6,871,947,674

 1.3 (a) (4310)5 = 580 (b) (198)12 = 260

 1.5 (a) 6 (b) 8 (c) 11

 1.6 8

 1.7 (62315)8

 1.9 22.3125 (all three)

 1.12 (a) 10000 and 110111 (b) 62 and 958

 1.19 (a) 010087 (b) 008485 (c) 991515 (d) 989913

 1.24 (a) 6 3 1 1 Decimal

 0 0 0 0 0

 0 0 0 1 1

 0 0 1 1 2

 0 1 0 0 3

 0 1 1 0 4 (or 0101)

 0 1 1 1 5

 1 0 0 0 6

 1 0 1 0 7 (or 1001)

 1 0 1 1 8

 1 1 0 0 9

522 Answers to Selected Problems

 1.29 Steve Jobs

 1.31 62 + 32 = 94 printing characters

 1.32 bit 6 from the right

 1.33 (a) 897 (b) 564 (c) 871 (d) 2,199

 C H A P T E R 2

 2.2 (a) x (b) x (c) y (d) 0

 2.3 (a) B (b) z(x + y) (c) x�y� (d) x(w + y) (e) 0

 2.4 (a) AB + C� (b) x + y + z (c) B (d) A�(B + C�A)

 2.9 (a) xy + x�y�

 2.11 F(x, y, z) = �(1, 4, 5, 6, 7)

 2.12 (a) 10100000 (c) 00011101 (d) 01001110

 2.14 (b) (x� + y�)� + (x + y)� + (y + z�)�

 2.15 T1 = A�(B� + C�)

 T2 = A + BC = T 1
=

 2.17 (a) �(3, 5, 6, 7) = �(0, 1, 2, 4)

 2.18 (c) F = y�z + y(w + x)

 2.19 �(1, 3, 5, 7, 9, 11, 13, 15) = �(0, 2, 4, 6, 8, 10, 12, 14)

 2.22 (a) AB + BC = (A + C)B (b) x� + y + z�

 C H A P T E R 3

 3.1 (a) xy� + x�z� (b) xy� + z� (c) x� + y�z (d) x�y + x�z + yz

 3.2 (a) x�y� + xz (b) y + x�z

 3.3 (a) xy + x�z� (b) x� + yz (c) z� + x�y

 3.4 (a) y (b) BCD + A�BD� (c) ABD + ABC + CD

 (d) wx + w�x�y

 3.5 (a) xz� + w�y�z + wxy (d) BD + B�D� + A�B or BD + B�D� + A�D�

 3.6 (a) B�D� + A�BD + ABC� (b) xy� + x�z + wx�y

 3.7 (a) x�y + z (c) AC + B�D� + A�BD + B�C (or CD)

 3.8 (a) F(x, y, z) = �(3, 5, 6, 7) (b) F (A, B, C, D) = �(1, 3, 5, 9, 12, 13, 14)

 3.9 (a) Essential: xz and x�z�; Nonessential: w�x and w�z�

 (b) F = B�D� + AC + A�BD + (CD or B�C)

 3.10 (c) F = BC� + AC + A�B�D

Answers to Selected Problems 523

 Essential: BC�, AC

 Nonessential: AB, A�B�D, B�CD, A�C�D

 3.11 (a) F = A�B�D� + AD�E + B�C�D�

 3.12 (b) F = (A + D�)(B� + D�)

 3.13 (a) F = xy + z� = (x + z�)(y + z�)

 3.15 (b) F = B�D� + CD� + ABC�D = �(0, 2, 6, 8, 10, 13, 14)

 3.17 F� = AC� + BC� + BD

 3.19 (a) F = (w + z�)(x� + z�)(w� + x� + y�)

 3.30 F = (A { B)(C { D)

 3.35 The HDL description is available on the Companion Website.

 Line 1: Dash not allowed, use underscore: Exmpl_3.

 Terminate line with semicolon (;).

 Line 2: inputs should be input (no s at the end).

 Change last comma (,) to semicolon (;). Output is declared but does not

appear in the port list, and should be followed by a comma if it is in-

tended to be in the list of inputs. If Output is a mispelling of output and

is to declare output ports, C should be followed by a semicolon (;) and

F should be followed by a semicolon (;).

 Line 3: B cannot be declared as input (Line 2) and output (Line 3). Terminate the

line with a semicolon (;).

 Line 4: A cannot be an output of the primitive if it is an input to the module

 Line 5: Too many entries for the not gate (only two allowed).

 Line 6: OR must be in lowercase: change to “or”.

 Line 7: endmodule is mispelled. Remove semicolon (no semicolon after endmodule).

 C H A P T E R 4

 4.1 (a) F1 = A + B�C + BD� + B�D

 F2 = A�B + D

 4.2 F = ABC + A�D
 G = ABC + A�D�

 4.3 (b) 1024 rows and 14 columns

 4.4 (a) F = x�y� + x�z�

 4.6 F = xy + xz + yz

 4.7 (a) w = A x = A { B y = x { C z = y { D

 4.8 w = AB + AC�D�

524 Answers to Selected Problems

 4.10 Inputs: A, B, C, D; Outputs: w, x, y, z

 z = D

 y = C { D

 x = B { (C + D)

 w = A { (B + C + D)

 4.12 (b) Diff = x { y { Bin

 Bout = x�y + x�Bin + yBin

 4.13

 4.14 30 ns

 4.18 w = A�B�C�

 x = B { C

 y = C

 z = D�

 4.22 w = AB + ACD

 x = B�C� + B�D� + BCD

 y = C�D + CD�

 z = D�

 4.28 (a) F1 = �(0, 5, 7)

 F2 = �(2, 3, 4)

 F3 = �(1, 6, 7)

 4.29 x = D0
=D1

=

 y = D0
=D1 + D0

=D2
=

 4.34 F(A, B, C, D) = �(1, 6, 7, 9, 10, 11, 12)

 4.35 (a) When AB = 00, F = D

 When AB = 01, F = (C + D)�

 When AB = 10, F = CD

 When AB = 11, F = 1

 4.39 The HDL description is available on the Companion Website.

 4.42 (c) The HDL description is available on the Companion Website.

 Sum C V
 (a) 1101 0 1
 (b) 0001 1 1
 (c) 0100 1 0
 (d) 1011 0 1
 (e) 1111 0 0

Answers to Selected Problems 525

 4.50 The HDL description is available on the Companion Website.

 4.56 assign match = (A == B); // Assumes reg [3: 0] A, B;

 4.57 The HDL description is available on the Companion Website.

 C H A P T E R 5

 5.4 (b) PQ� + NQ

 5.7 S = x { y { Q

 Q(t + 1) = xy + xQ + yQ

 5.8 A counter with a repeated sequence of 00, 01, 10

 5.9 (a) A(t + 1) = xA� + AB

 B(t + 1) = xB� + A�B

 5.10 (c) A(t + 1) = xB + x�A + yA + y�A�B�

 B(t + 1) = xA�B� + x�A�B + yA�B�

 5.11

 5.12

 5.13 (a)

 (b)

 5.15 DQ = Q�J + QK�

 Present state: 00 00 01 00 01 11 00 01 11 10 00 01 11 10 10

 Input: 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0

 Output: 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1

 Next state: 00 01 00 01 11 00 01 11 10 00 01 11 10 10 00

 Present state

 Next state
 0 1

 Output
 0 1

 a f b 0 0

 b d a 0 0

 d g a 1 0

 f f b 1 1

 g g d 0 1

 State: a f b c e d g h g g h a
 Input: 0 1 1 1 0 0 1 0 0 1 1
 Output: 0 1 0 0 0 1 1 1 0 1 0

 State: a f b a b d g d g g d a
 Input: 0 1 1 1 0 0 1 0 0 1 1
 Output: 0 1 0 0 0 1 1 1 0 1 0

526 Answers to Selected Problems

 5.16 DA = Ax� + Bx

 DB = A�x + Bx�

 5.18 JA = KA = (BF + B�F�)E

 JB = KB = E

 5.19 (a) DA = A�B�x_in

 DB = A + C�x_in� + BCx_in

 DC = Cx_in� + Ax_in + A�B�x_in�

 y_out = A�x_in

 5.23 (a) RegA = 125, RegB = 125

 (b) RegA = 125, RegB = 30

 5.26 (a)

 Q(t + 1) = JQ� + K�Q

 When Q = 0, Q(t + 1) = J

 When Q = 1, Q(t + 1) = K�

 module JK_Behavior (output reg Q, input J, K, CLK);
 always @ (posedge CLK)
 if (Q == 0) Q <= J;
 else Q <= ~K;
 endmodule

 5.31 The HDL description is available on the Companion Website.

 Note: The statements must be written in an order that produces the effect of con-

current assignments.

 C H A P T E R 6

 6.4 0110; 0011; 0001; 1000; 1100; 1110; 0111; 1011

 6.8 A = 0010, 0001, 1000, 1100. Carry = 1, 1, 1, 0

 6.9 (b) JQ = x�y; KQ = (x� + y)�

 6.14 (a) 4

 6.15 30 ns; 33.3 MHz

 6.16 1010 S 1011 S 0100

 1100 S 1101 S 0100

 1110 S 1111 S 0000

Answers to Selected Problems 527

 6.17 DA0 = A0 { E

 DA1 = A1 { (A0E)

 DA2 = A2 { (A1A0E)

 DA3 = A3 { (A2A1A0E)

 6.19 (b) DQ1 = Q1
=

 DQ2 = Q2Q1
= + Q8

=Q2
=Q1

 DQ4 = Q4Q1
= + Q4Q2

= + Q4
=Q2

=Q1

 DQ8 = Q8Q1
= + Q4Q2Q1

 6.21 JA0 = LI0 + L�C

 KA0 = LI0
= + L�C

 6.24 TA = A { B

 TB = B { C

 TC = AC + A�C� (not self@starting)

 = AC + A�B�C (self@starting)

 6.26 The clock generator has a period of 12.5 ns. Use a 2‐bit counter to count four pulses.

 6.28 DA = A { B

 DB = AB� + C

 DC = A�B�C�

 6.34 The HDL description is available on the Companion Website. Simulations results

for Problem 6.34 follow:

Name
0 60 120

CLK

SI
SO

 6.35 (b) The HDL description is available on the Companion Website.

 6.37 The HDL description is available on the Companion Website.

 6.38 (a) The HDL description is available on the Companion Website.

528 Answers to Selected Problems

 6.42 Because A is a register variable, it retains whatever value has been assigned to it

until a new value is assigned. Therefore, the statement A 6 = A has the same

effect as if the statement was omitted.

 6.45 The HDL description is available on the Companion Website. Simulations results

for Problem 6.45 follow:

Name
0 70 140 210 280

clock

reset_bar

start

y_out

 6.50 (b) The HDL description is available on the Companion Website. Simulations

results for Problem 6.50 follow:

0 30 60 90

clock
reset_b

count[2: 0] 0 1 2 4 6 10 102 4 6

 C H A P T E R 7

 7.2 (a) 213 (b) 231 (c) 226 (d) 221

 7.3 Address: 1 0001 1011 = 011B (hex)

 Data: 100 1011 1100 = 4BC (hex)

Answers to Selected Problems 529

 7.7 (a) 7 * 128 decoders, 256 AND gates (b) x = 46; y = 112

 7.8 (a) 8 chips (b) 18; 15 (c) 3 * 8 decoder

 7.10 0001 1011 1011 1

 7.11 101 110 011 001 010

 7.12 (a) 0101 1010; (b) 1100 0110; (c) 1111 0100

 7.13 (a) 6 (b) 7 (c) 7

 7.14 (a) 0101010

 7.16 24 pins

 7.20 Product terms: yz�, xz�, x�y�z, xy�, x�y, z

 7.25 A = yz� + xz� + x�y�z

 B = x�y� + yz + y�z�

 C = A + xyz

 D = z + x�y

 C H A P T E R 8

 8.1 (a) The transfer and increment occur concurrently, i.e., at the same clock edge.

After the transfer, R2 holds the contents that were in R1 before the clock

edge, and R2 holds its previous value incremented by 1.

 (b) Decrement the content of R3 by one.

 (c) If (S1 = 1), transfer content of R1 to R0. If (S1 = 0 and S2 = 1), transfer

content of R2 to R0.

 8.7 RTL notation:

 S0: Initial state: if (start = 1) then (RA d data_A, RB d data_B, go to S1).

 S1: 5Carry, RA6 d RA + (2>s complement of RB), go to S2.
 S2: If (borrow = 0) go to S0. If (borrow = 1) then RA d (2>s complement

of RA), go to S0.

530 Answers to Selected Problems

 Block diagram and ASMD chart:

 The HDL description is available on the Companion Website. Simulations results for

Problems 8.7 follow:

Name
0 40 80 120

clock
reset_b

state[1: 0]

start
Load_A_B
Subtract
carry
borrow
Convert

data_A[7: 0]
RA[7: 0]
data_B[7: 0]
RB[7: 0]

done
borrow
result[7: 0]

0 x

00

00

0

0 1

50

32

2

50

20

0

30

1e

14

1

14

20

2

226

e2
20

0

30

1e 32

1

50

2 0

00

0 50

32

1 2

32

50

50

Controller
Subtract

start

reset_b
clock

Datapath

Reg_A

borrow

carry

data_A

result

Convert

Load_A_B

done

data_B

...

...
Reg_B

...
result

8 8

8

 S0
 done

1

start

reset_b

Reg_A <= data_A
Reg_B <= data_B

Reg_A <= ~Reg_A + 1

S2

borrow

Reg_A <= Reg_A + ~ Reg_B + 1

1

 S1
 Subtract

Load_A_B

Convert

Answers to Selected Problems 531

 8.8 RTL notation:

 S0: if (start = 1) AR d input data, BR d input data, go to S1.

 S1: if (AR [15]) = 1(sign bit negative) then CR d AR (shifted right, sign

 extension).

 else if (positive non‐zero) then (Overflow d BR([15] { [14]), CR d BR(shifted

left)

 else if (AR = 0) then (CR d 0).

 S0
 done

1

start

reset_b

AR <= data_A
BR<= data_B

AR > 0

CR <= BR << 1

 S1

Ld_AR_BR

AR < 0 Div_AR_x2_CR

Mul_BR_x2_CR

Clr_CR

1

1

CR <= {AR[15], AR[15: 1]}

CR <= 0

Note: Division by 2 of a
negative number
represented in 16-bit 2s
complement format

Note: Multiplication by
2 of a positive number
represented in 16-bit 2s
complement format

Controller

start

reset_b
clock

Datapath
AR

AR_lt_0

data_AR

AR_gt_0

done

data_BR

...

...
BR

...
CR

16 16

AR_eq_0

Div_AR_x2_CR

Mul_BR_x2_CR

Clr_CR

Ld_AR_BR

 The HDL description is available on the Companion Website. Simulations results

for Problem 8.8 follow:

532 Answers to Selected Problems

0 60 120 180 240

0

0000

0

0000

0

0

0

0000

0

20

50

50

20

50

0032

20

0014

40

40

0

0000

0

0

0

0000

0

0

0000

20

20

20

0014

50

50

50

0032

100

100

0064

0

0

0000

0

0

0

0000

65516

50

50

0032

50

65516

ffec

65526

fff6

10 2
fffe

65534

1

ffff

65535

65535

20

0014

20

20

Name

reset_b

clock

start

AR_lt_0

AR_gt_0

AR_eq_0

state

Ld_AR_BR

Div_AR_x2_CR

Mul_BR_x2_CR

Clr_CR

done

data_AR[15: 0]

AR[15: 0]

AR[15: 0]

AR_mag[15: 0]

data_BR[15: 0]

BR[15: 0]

BR[15: 0]

BR_mag[15: 0]

CR[15: 0]

CR[15: 0]

CR_mag[15: 0]

Overflow

Reset on-the-fly

Multiply by 2 and xfer to CR Divide by 2 and xfer to CR

 8.9 Design equations:

 DS_idle = S_2 + S_idle Start'

 DS_1 = S_idle Start + S_1(A2 A3)'

 DS_2 = A2 A3 S_1

 The HDL description is available on the Companion Website. Simulations results

for Problem 8.9 follow:

Answers to Selected Problems 533

 8.11 DA = A�B + Ax

 DB = A�B�x + A�By + xy

 8.16 RTL notation:

 s0: (initial state) If start = 0 go back to state s0, If (start = 1) then

 BR d multiplicand, AR d multiplier, PR d 0, go to s1.

 s1: (check AR for Zero) Zero = 1 if AR = 0, if (Zero = 1) then go back to s0

(done) If (Zero = 0) then go to s1, PR d PR + BR, AR d AR - 1.

 The internal architecture of the datapath consists of a double‐width register to

hold the product (PR), a register to hold the multiplier (AR), a register to hold

the multiplicand (BR), a double‐width parallel adder, and single‐width parallel

adder. The single‐width adder is used to implement the operation of decrement-

ing the multiplier unit. Adding a word consisting entirely of 1s to the multiplier

accomplishes the 2’s complelment subtraction of 1 from the multiplier. Fig-

ure 8.16 (a) below shows the ASMD chart, block diagram, and controller of othe

circuit. Figure 8.16 (b) shows the internal architecture of the datapath. Figure

8.16 (c) shows the results of simulating the circuit.

0 60 120 180 240Name

reset_b
clock

Start
A2
A3

state[2: 0]

set_E
clr_E
set_F
clr_A_F
incr_A

A[3: 0]
E
F

1

0

2 1

0 1 2 3 4 5 6 7 8 9 a b

2

c

4

d

1

0 1

2

534 Answers to Selected Problems

Controller
start

reset_b
clock

Datapath
AR

zero

data_AR

done

data_BR

...

...
BR

...
PR

16 16

 s0
 done

1

start

reset_b

AR �� data_A
BR �� data_B
PR �� 0

 s1

Ld_regs

Add_decr

Ld_regs

ZeroAdd_decr
1

PR �� PR � BR
AR �� AR �1

16

PR
Note: Form Zero as the output of an OR gate whose inputs
are the bits of the register AR.

(a) ASMD chart, block diagram, and controller

Zero

Start

reset_b
clock

s0 � s1�

D

Controller

done

Ld_regs

Add_decr

Answers to Selected Problems 535

(b) Datapath

AR

data_AR

Add_decr

Ld_regs

16

1 0

16
......

1 0

16

1616

16

All 1’s

mux

mux

data_BR

Ld_regs mux
1 0

16

16

32

PR

BR

32

...All 0’s

16
32

......

Note: all registers have active-low
asynchronous reset

32
0

Ld_regs10

32

Add_decr1 0
mux

mux

0 40 80 120 160 200Name

reset_b

clock

start

Ld_regs

Add_decr

zero

state

data_AR[7: 0]

data_BR[7: 0]

AR[7: 0]

BR[7: 0]

done

PR[15: 0]

0

0 5

0 20

4 3

40

20

5

2

60

1

80

3

0

100

(c) Simulation results

20

4

0

3

9 18

2 1

27

0

36 0

4

9

9

4

536 Answers to Selected Problems

 8.17 (2n - 1)(2n - 1) 6 (22n - 1) for n Ú 1

 8.18 (a) The maximum product size is 32 bits available in registers A and Q.

 (b) P counter must have 5 bits to load 16 (binary 10000) initially.

 (c) Z (zero) detection is generated with a 5‐input NOR gate.

 8.20 2(n + 1)t

 8.21

State codes: G1 G0
S_idle
S_add
S_shift
unused

0
0
1
0

0
1
0
0

Q[0]

Mux_1

Mux_2

2 � 4 Decoder

C

D

C

D

0

Zero�

1

E�

s1 s0

s1 s0

Start

0

0

0

clock

reset_b

G1

G0

Start

Shift_left

0

1

0

2

0

3

1

2

3

1

2

3

Load_regs

Add_regs

 8.30 (a) E = 1 (b) E = 0

 8.31 A = 0110, B = 0010, C = 0000.
 A*B = 1100 A � B = 0110 A && C = 0

 A + B = 1000 A¿B = 0100 � A = 1

 A - B = 0100 &A = 0 A 6 B = 0
 �C = 1111 � � C = 1 A 7 B = 1

 A & B = 0010 A �� B = 1 A != B = 1

Answers to Selected Problems 537

 8.39

 Block diagram and ASMD chart:

 The HDL description is available on the Companion Website. Simulation results for

Problem 8.39 follow:

Controller
Add_decr

Ld_regs

Start

reset_b
Clock

Datapath
AR

Zero

...

BR
...

PR
...

data_AR

PR

done

data_BR

16

1616

Zero

1

1

S1

S0
done

Add_decr

reset_b

Ld_regs

PR �� PR � BR
AR �� AR � 1

AR �� data_A
BR �� data_B
PR �� 0

Start

538 Answers to Selected Problems

Name 0 30 60 90 120

reset_b

clock

start

Ld_regs

Add_decr

zero

state

data_AR[7: 0]

data_BR[7: 0]

AR[7: 0]

BR[7: 0]

done

PR[15: 0]

0

0 5

0

4

20 0

0 5

0 20

4 3

40

5

20

2

60

1

80

3

0

100

20

9

4

539

 Index

 A
 ABEL, 332

 Absorption theorem, 45

 Abstract behavioral model, 109

 Adders and subtractors (experiment)

 adder–subtractor (four-bit), 456 – 457

 full adder, 455

 half adder, 455

 magnitude comparator, 457

 parallel adder, 455 – 456

 Additive identity, 40

 Algebraic manipulation, of Boolean

function, 48 – 49

 Algorithmic state machine and

datapath (ASMD) charts,

 370 – 371

 controller and datapath hardware

design, 376

 control logic, 379 – 381 , 396 , 398

 design examples, 371 – 381

 register transfer representation,

 377 – 378

 state table, 378 – 379

 timing sequence, 374 – 376

 Algorithmic state machines (ASMs),

 363 – 371

 algorithmic state machine and

datapath (ASMD) charts,

 370 – 371

 design examples, 371 – 381

 binary code assignment, 365 – 366

 block, 368 – 369

 chart, 365 – 368

 conditional box and examples, 367

 control logic, 364

 control unit, 364

 datapath unit, 364

 decision box of an ASM chart, 366

 Mealy-type signals, 366 – 368

 simplifi cations, 369

 state and decision boxes of, 366

 style of state box, 365 – 366

 timing considerations, 369 – 370

 always block, 358

 always statement, 164 , 176 , 217 , 219 , 228 ,

 290 , 354 – 355 , 382

 American Standard Code for

Information Interchange

(ASCII), 24 – 26

 Analog-to-digital converter, 2

 ANDed with an expression, 53

 AND gate, 30 , 32 – 33 , 42 , 46 – 47 , 50 ,

 57 – 58 , 60 , 65 , 90 , 113 , 321 , 323

 ANDing of maxterms, 55

 AND-invert graphic symbol, 92

 AND-invert symbol, 90 – 91

 AND–NOR diagrams, 98 – 99

 AND–OR diagrams, 90 , 98 – 99

 AND–OR–INVERT function,

 97 – 98

 Application-specifi c integrated circuit

(ASIC), 68

 Arithmetic addition, 39

 Arithmetic operations, 5

 ASCII NAK (negative acknowledge)

control character, 27

 assign statement, 115 , 164 , 171 , 228 ,

 354 – 355 , 361

 Associative law, 39

 algebraic proofs of, 45

 Asynchronous sequential circuit, 191

 B
 Backspace (BS) control, 26

 Base- r system, 4 , 10

 Base-8 system, 4

 BCD adder, 144 – 146

 BCD code, 22 – 23

 BCD ripple counter, 269 – 271

 BCD synchronous counter, 275

 begin keyword, 115 , 177 , 217

 Behavioral modeling, 174 – 176

 Bidirectional shift register, 264 , 352

 Bilateral switch, 514 – 515

 Binary adder–subtractor, of

combinational circuits, 133 – 144

 binary adder, 136 – 138

 binary subtractor, 141 – 142

 carry propagation, 138 – 141

 full adder, 135 – 136

 half adder, 134

 overfl ow, 143 – 144

 Binary and decimal numbers

(experiment)

 BCD count, 444 – 445

 binary count, 443

540 Index

Binary and decimal numbers (cont.)
 counts, 446

 oscilloscope, 444

 output pattern, 445

 Binary cell, 27

 Binary-coded decimal (BCD), 130 – 131

 additions, 20 – 21

 code, 22 – 23

 Binary codes, 2 , 18 – 27

 8, 4, −2, −1 code, 22 – 23

 addition of decimal numbers, 21

 ASCII character code, 24 – 26

 BCD code, 20 – 23

 2421 code, 22 – 23

 error-detecting code, 26 – 27

 excess-3 code, 22 – 23

 Gray code, 23 – 24

 subtraction of decimal numbers, 21

 Binary digit, See Bit

 Binary information processing, 29 – 30

 Binary information processing, of

digital logic circuits, 30

 Binary logic:

 defi nition of, 30 – 31

 logic gates, 31 – 33

 Binary multiplier, 146 – 148

 Binary multiplier, HDL description of,

 402 – 411

 behavioral description of a parallel

multiplier, 409 – 411

 datapath unit, 403

 testing the multiplier, 405 – 409

 Binary multiplier (experiment),

 478 – 480

 block diagram, 478

 checking the multiplier, 479

 control of registers, 478 – 479

 datapath design, 479

 design of control, 479

 multiplication example, 479

 Binary numbers, 3 – 6 , 9 – 10

 arithmetic operations, 5 – 6

 complement of, 10 – 11

 sum of two, 6

 Binary operator:

 *, 39

 +, 39

 •, 40

 defi nition, 38

 Binary ripple counter, 267 – 269

 Binary signals, 3 , 32

 Binary storage, 27 – 30

 Binary synchronous counter, 271 – 272

 with parallel load, 276 – 278

 up–down, 272 – 275

 Bipolar transistors, 507

 Bit, 2 , 5

 Blocking assignments, 219 – 220 , 355

 Block statement, 115

 Boolean algebra, 30 , 47 , 126

 application in gate-type circuits, 42

 axiomatic defi nition of, 40 – 43

 basic defi nitions, 38 – 40

 basic theorems, 43 – 45

 canonical forms, 51 – 58

 conversion between, 55 – 56

 duality, 43

 maxterms, 51 – 52

 ANDing of, 55

 defi nition, 55

 product of, 54 – 55

 miniterms, 51 – 52

 defi nition, 55

 sum of, 52 – 53

 operator procedure, 45 – 46

 standard forms, 56 – 58

 two-valued, 41 – 43

 Boolean expressions, for HDL, 115 – 116

 Boolean function, 126

 algebraic manipulation, 48 – 49

 complement of, 49 – 50

 defi nition, 46

 implementation with gates, 48

 multilevel NAND circuit, 93 – 95

 with NAND gates, 90 – 91

 NOR implementation, 95 – 97

 16 possible functions, 58 – 60

 product-of-sums form of, 84 – 88

 sum-of-products form, 84 – 88

 in truth table, 46

 two-level implementation of, 91 – 93

 Boolean function simplifi cation

(experiment)

 Boolean functions in sum-of-

minterms form, 449

 complement, 449

 gate ICs, 448

 logic diagram, 448

 Bubble, 60

 Buffer circuit, 60

 Built-in system functions, 178

 Byte, 5 , 26

 C
 Carriage return (CR) control, 26

 Cascaded NAND gates, 63

 case expression, 176 , 382

 case items, 175

 case statement, 175 , 362 , 403

 casex construct, 176

 casex statement, 362

 casez construct, 176

 Central processing unit, 2

 Characteristic tables, for fl ip-fl op, 201 – 202

 Chip, 66

 Clear operation, 351

 Clocked sequential circuits, 191

 Clock generator, 191

 Clock-pulse generator (experiment),

 474 – 475

 circuit operation, 473 – 474

 IC timer, 473

 Clock pulses, 191

 Closed structure, 42

 2421 code, 22 – 23

 Code converters (experiment)

 Gray code to equivalent binary, 452

 nine’s complementer, 452

 seven-segment display, 452 – 453

 Coeffi cients, of binary number system, 4

 Combinational circuits:

 analysis procedure, 126 – 129

 binary adder–subtractor, 133 – 144

 binary adder, 136 – 138

 binary subtractor, 141 – 142

 carry propagation, 138 – 141

 full adder, 135 – 136

 half adder, 134

 overfl ow, 143 – 144

 binary multiplier, 146 – 148

 block diagram, 125 – 126

 decimal adder, 144 – 146

 decoders, 150 – 155

 combinational logic

implementation, 154 – 155

 deriving output Boolean functions,

 127 – 128

 design procedure, 129 – 133

 code conversion example, 130 – 133

 encoders, 155 – 157

 priority, 156 – 157

 feedback path, 127

 hardware description language

(HDL) of, 164 – 181

 behavioral modeling, 174 – 176

 datafl ow modeling, 171 – 174

 example of test bench, 176 – 181

 gate-level modeling, 164 – 169

 three-state gates, 169 – 170

 magnitude comparator, 148 – 150

 multiplexer, 158 – 164

 used in design of digital systems, 126

 Combinational circuits (experiment)

 decoder implementation, 450 – 451

 design example, 450

 majority logic, 450

 parity generator, 450

 Combinational programmable logic

device (PLD), 321

 Comma, 179

 Commutative law, 39 , 42

Index 541

 Complementary metal-oxide

semiconductor (CMOS), 67

 Complementary MOS (CMOS) circuits,

 510 – 513

 bilateral switch, 514 – 515

 characteristics, 513

 CMOS fabrication process, 513

 CMOS logic circuit, 513

 construction of exclusive-OR with

transmission gates, 515

 74C series, 513

 four-to-one-line multiplexer, 515

 IC type 74C04, 513

 propagation delay time, 513

 static power dissipation of, 513

 transmission gate, 514 – 517

 Complements, 10 – 14 , 44 , 55 , 87

 diminished radix, 10 – 11

 radix, 11 – 12

 subtracion with, 12 – 14

 Computer-aided design (CAD) systems,

 67 – 68 , 118

 Computer-aided design of VLSI circuits,

 67 – 68

 Consensus theorem, 49

 Control characters, 25

 Controller, register-and-decoder

scheme for the design of a, 411

 Control logic, 396 – 402

 ASMD charts, 379 – 381 ,

 396 , 398

 block diagram, 393

 D fl ip-fl op, 401

 Gray code, 397 – 398

 inputs Start and Zero

decisions, 396

 one fl ip-fl op per state, 401 – 402

 one-hot assignment,

397 , 401 – 402

 sequence-register-and-decoder

(manual) method, 398 – 401

 state assignment, 398

 steps when implementing, 397

 Counters:

 defi ned, 255

 HDL for:

 ripple, 288 – 290

 synchronous, 287 – 288

 Johnson, 282 – 283

 ring, 280 – 282

 ripple:

 BCD, 269 – 271

 binary, 267 – 269

 symbols, 502 – 504

 synchronous:

 BCD, 275

 binary, 271 – 272

 binary counter with parallel load,

 276 – 278

 up–down binary, 272 – 275

 with unused states, 278 – 280

 Counters (experiment)

 binary counter with parallel load,

 462 – 463

 decimal counter, 461

 ripple counter, 461

 synchronous four-bit binary

counter, 461

 Count operation, 351

 Crosspoint, 317

 D
 Datafl ow modeling, of combinational

logic, 171 – 174

 Datapath unit, 364

 Decimal adder, of combinational

circuits, 144 – 146

 Decimal equivalent, of binary

number, 4

 Decimal number system, 4

 Declaration of module, 112

 Decoders, 150 – 155

 combinational logic implementation,

 154 – 155

 default keyword, 176

 Degenerate forms, of gates, 98 – 99

 Delay control operator, 218

 DeMorgan’s theorem, 45 , 49 – 50 , 55 , 62 ,

 84 , 91 – 92

 Dependency notation, 493 – 495

 Depletion mode, 508

 Design entry, 109

 Design of combinational circuits,

 129 – 133

 D fl ip-fl op, 198 – 200 , 255 , 263

 analysis, 210

 characteristic table, 202

 in combinational PAL, 330

 in control logic, 401

 graphic symbol for the

edge-triggered, 200

 hold time, 199

 master–slave, 517

 positive-edge-triggered, 203

 setup time, 199

 Diffused channel, 508

 Digital age, 1

 Digital integrated circuits, 66 – 67

 fan-in, 67

 fan-out, 67

 noise margin, 67

 power dissipation, 67

 propagation delay, 67

 Digital logic circuits:

 binary information process, 30

 symbols for, 32

 Digital logic family, 66 – 67

 Digital logic gates, 60 – 65

 extension of multiple inputs, 62 – 63

 positive and negative logic, 63 – 65

 Digital logic gates (experiment)

 NAND circuit, 447 – 448

 propagation delay, 447

 truth table, 446

 universal NAND gate, 447

 waveforms, 446 – 447

 Digital systems, 1 – 3

 information-fl ow capabilities, 30

 Digital versatile disk (DVD), 3

 Diminished radix complement, 10 – 11

 $display task, 178 – 179 , 181

 Distributive law, 39 , 42 , 54 , 57

 D latch, 195 – 196 , 457

 Documentation language, 109

 Don’t-care conditions, 88

 Don’t-care minterms, 88 – 90

 Dopants, 507

 Drain terminal, 508

 Duality principle, 43

 Dual theorem, 44

 E
 Edge-sensitive cyclic behavior, 354

 Edge-triggered D fl ip-fl op, 330

 Eight-bit alphanumeric character

code, 28

 Eight-bit code, 27

 8, 4, –2, –1 code, 22 – 23

 Electrically erasable PROM, 320

 Electronic design automation (EDA), 68

 else statement, 222

 Emitter-coupled logic (ECL), 67

 Encoders, 155 – 157

 priority, 156 – 157

 End-around carry, 13

 end keyword, 115 , 177 , 217

 endprimitive, 117

 endtable, 117

 Enhancement mode, 508

 Erasable PROM, 320

 Error-detecting and

error-correcting codes:

 Hamming, 312 – 315

 single-error correction and double-

error detection, 315

 ETX (end of text), 26

 Event control expression, 175

 Event control operator, 218

 Excess-3 code, 22 – 23 , 130

 Exclusive-NOR function, 103

542 Index

 F
 Fan-in, 67

 Fan-out, 67

 Fault-free circuit, 110

 Fault simulation, 110

 Field, 39

 Field-programmable gate array

(FPGA), 68 , 299 , 329 – 330 , 438 ,

 480 – 482 , See also Xilinx FPGA

 File separator (FS) control, 26

 $finish statement, 178

 $finish system, 115

 Finite state machine (FSM), 364

 Five-variable K-map, 84

 Flash memory devices, 320

 Flip-fl op, defi ned, 192

 Flip-fl op circuits, 259

 ASMD, 371

 characteristic table, 201 – 202

 Clear_b input, 256

 clear or direct reset, 203

 clock response in, 197

 D fl ip-fl op, 198 – 200 , 255 , 263

 analysis, 210

 characteristic table, 202

 in combinational PAL, 330

 graphic symbol for the

edge-triggered, 200

 hold time, 199

 master–slave, 517

 positive-edge-triggered, 203

 setup time, 199

 direct inputs, 203

 input equation, 209 – 210

 JK fl ip-fl op, 200 – 201 , 263

 analysis, 210 – 213

 characteristic equation, 203

 characteristic table, 202

 master–slave, 198 , 517

 positive-edge-triggered, 199

 signal transition, 197

 symbols, 497 – 499

 T (toggle) fl ip-fl op, 200 – 201

 analysis, 213 – 214

 characteristic equation, 203

 characteristic table, 202

 Flip-fl op input equations, 209 – 210

 Flip-fl ops (experiment)

 D latch, 457

 IC type fl ip-fl op, 459 – 460

 master–slave D fl ip-fl op, 458

 positive-edge-triggered fl ip-fl op, 459

 SR latch, 457

 forever loop, 359

 fork … join block, 226

 for loop, 360

 Four-bit data-storage register, 257

 Four-bit register, 256

 Four-bit universal shift register, 265

 Four-digit binary equivalent, 9

 Four-to-one-line multiplexer, 163

 Four-variable Boolean functions, map

minimization of, 80 – 84

 Four-variable K-map, 80 – 84

 Franklin, Benjamin, 507

 Full-adder (FA) circuit, 261 – 262

 Functional errors, 109

 Functional verifi cation, 181

 Function blocks, 332

 G
 Gate delays, 113 – 115

 Gate instantiation, 112

 Gate-level minimization, 73

 AND–OR–INVERT

implementation, 99 – 100

 don’t-care conditions, 88 – 90

 exclusive-OR (XOR) function,

 103 – 108

 odd function, 104 – 106

 parity generation and checking,

 106 – 108

 hardware description language

(HDL), 108 – 118

 Boolean expressions, 115 – 116

 gate delays, 113 – 115

 user-defi ned primitives (UDPs),

 116 – 118

 map method:

 fi ve-variable K-map, 84

 four-variable K-map, 80 – 84

 prime implicants of a function,

 82 – 84

 three-variable K-map, 75 – 76

 two-variable K-map, 74 – 75

 NAND circuits, 90 – 91

 nondegenerate forms, 98 – 99

 OR–AND–INVERT

implementation, 100

 product-of-sums simplifi cation,

 84 – 88 , 90

 tabular summary and example,

 100 – 102

 Gates with multiple inputs, 33

 Gate voltage, 508

 General-purpose digital computer, 2

 Giga (G) bytes, 5

 Graphical user interfaces (GUIs), 1

 Graphic symbols, 32

 Gray code, 23 – 24 , 397 – 398

 Gray code to equivalent

binary, 452

 H
 Half adder, 167

 Hamming code, 312 – 315

 Hand-held devices, 190

 Hardware description language (HDL),

 68 , 108 – 118

 algorithmic-based behavioral

description, 381

 of binary multiplier, 402 – 411

 Boolean expressions, 115 – 116

 circuit demonstrating, 111

 combinational circuits, 164 – 181

 behavioral modeling, 174 – 176

 datafl ow modeling, 171 – 174

 example of test bench, 176 – 181

 three-state gates, 169 – 170

 description of design example,

 381 – 391

 gate delays, 113 – 115

 for ripple counter, 288 – 290

 RTL description, 381 – 385

 structural description, 381 , 386 – 391

 switch-level modeling, 517 – 520

 for synchronous counter, 287 – 288

 testing of design description, 385 – 386

 transmission gate, 519 – 520

 user-defi ned primitives (UDPs),

 116 – 118

 Hardware signal generators, 115

 HDL-based design methodology, 3

 Heuristics, 30

 Hexadecimal (base-16) number system,

 4 – 5 , 8 – 10

 High-impedance state, 162 – 163

 Holes, 507

 Horizontal tabulation (HT) control, 26

 Huntington postulates, 42

 I
 7493 IC, 439 , 442 – 443

 IC type 74194, 470

 IC type fl ip-fl op, 459 – 460

 Identity element, 39

 if-else statement, 174

 if statement, 222

 if-then statement, 353

 Implicit combinational logic, 116

 Incompletely specifi ed functions, 88

 initial block, 177 , 179 , 358

 initial statement, 115 , 177 , 217 – 219

 input declaration, 117

 3-input NAND gate, 63

 3-input NOR gate, 63

 Input–output signals for gates, 33

 Input–output units, 2

 Instantiation of module, 112

Index 543

 integer k, 360

 integer keyword, 176

 Integrated circuits:

 computer-aided design of VLSI

circuits, 67 – 68

 digital integrated circuits, 66 – 67

 fan-in, 67

 fan-out, 67

 noise margin, 67

 power dissipation, 67

 propagation delay, 67

 levels of integration, 66

 Integrated circuits (ICs), 438 – 439

 required for experiments, 442

 Internet, 2

 Inverse of an element, 39

 Inverter circuit, 509

 Inverter gate, 66

 Invert-OR graphic symbol, 93

 iPod Touch™, 1

 J
 JK fl ip-fl op, 200 – 201 , 263 , 371

 analysis of, 210 – 213

 characteristic equation, 203

 characteristic table, 202

 K
 Karnaugh map, 73

 Kilo (K) bytes, 5

 K-map, See Karnaugh map

 L
 Laboratory experiments:

 adders and subtractors (experiment 7)

 adder–subtractor (four-bit),

 456 – 457

 full adder, 455

 half adder, 455

 magnitude comparator, 457

 parallel adder, 455 – 456

 binary and decimal numbers

(experiment 1)

 BCD count, 444 – 445

 binary count, 443

 counts, 446

 oscilloscope, 444

 output pattern, 445

 binary multiplier (experiment 17),

 478 – 480

 block diagram, 478

 checking the multiplier, 479

 control of registers, 478 – 479

 datapath design, 479

 design of control, 479

 multiplication example, 479

 Boolean function simplifi cation

(experiment 3)

 Boolean functions in

sum-ofminterms form, 449

 complement, 449

 gate ICs, 448

 logic diagram, 448

 clock-pulse generator

(experiment 15), 474 – 475

 circuit operation, 473 – 474

 IC timer, 473

 code converters (experiment 5)

 Gray code to equivalent binary, 452

 nine’s complementer, 452

 seven-segment display, 452 – 453

 combinational circuits (experiment 4)

 decoder implementation, 450 – 451

 design example, 450

 majority logic, 450

 parity generator, 450

 counters (experiment 10)

 binary counter with parallel load,

 462 – 463

 decimal counter, 461

 ripple counter, 461

 synchronous four-bit binary

counter, 461

 digital logic gates (experiment 2)

 NAND circuit, 447 – 448

 propagation delay, 447

 truth table, 446

 universal NAND gate, 447

 waveforms, 446 – 447

 fl ip-fl ops (experiment 8)

 D latch, 457

 IC type fl ip-fl op, 459 – 460

 master–slave D fl ip-fl op, 458

 positive-edge-triggered

fl ip-fl op, 459

 SR latch, 457

 lamp handball (experiment 14)

 circuit analysis, 472

 counting number of losses, 472 – 473

 IC type 74194, 470

 lamp Ping-Pong game, 473

 logic diagram, 470 – 472

 playing the game, 472

 memory unit (experiment 13)

 IC RAM, 467 – 468

 memory expansion, 469

 ROM simulator, 469

 testing RAM, 468 – 469

 multiplexer design (experiment 6)

 design specifi cations, 453 – 454

 parallel adder and accumulator

(experiment 16)

 block diagram, 475

 carry circuit, 476

 checking the circuit, 477

 circuit operation, 477 – 478

 control of register, 475 – 476

 detailed circuit, 477

 sequential circuits (experiment 9)

 design of counter, 460 – 461

 state diagram, 460

 up–down counter with enable, 460

 serial addition (experiment 12)

 serial adder, 466 – 467

 serial adder–subtractor, 467

 testing the adder, 467

 shift registers (experiment 11)

 bidirectional shift register, 465

 bidirectional shift register with

parallel load (IC type 74157),

 465 – 466

 feedback shift register, 464 – 465

 IC shift register, 463

 ring counter, 463 – 464

 Verilog HDl simulation experiments

and rapid prototyping with

FPGAs:

 experiment 1, 482 – 483

 experiment 2, 483 – 484

 experiment 4, 484

 experiment 5, 484

 experiment 7, 484

 experiment 8, 485

 experiment 9, 485

 experiment 10, 485

 experiment 11, 485 – 486

 experiment 13, 486

 experiment 14, 486

 experiment 16, 486

 experiment 17, 486 – 487

 Lamp handball (experiment)

 circuit analysis, 472

 counting number of losses, 472 – 473

 IC type 74194, 470

 lamp Ping-Pong game, 473

 logic diagram, 470 – 472

 playing the game, 472

 Lamp Ping-Pong game, 473

 Large-scale integration (LSI)

devices, 66

 Latches, 193 – 196 , 220 – 223

 D latch, 195 – 196 , 457

 NAND latch, 194

 NOR latch, 194

 SR latch, 193 – 195 , 457

 Latch-free design, 425 – 426

 Level-sensitive cyclic behavior, 354

 Load operation, 351

544 Index

 Logic-circuit diagram, 46 – 47

 Logic circuits, 3

 Logic families, of digital integrated

circuits, 67

 Logic gates, 31 – 33

 Logic simulators, 125

 Logic synthesis, 109 , 361 – 363

 M
 Macrocells, 330 – 331

 Magnitude comparator, 148 – 150

 Map minimization method:

 fi ve-variable K-map, 84

 four-variable K-map, 80 – 84

 prime implicants of a function, 82 – 84

 three-variable K-map, 75 – 76

 two-variable K-map, 74 – 75

 Mask programming, 320

 Master–slave fl ip-fl op, 198

 D fl ip-fl op, 458 , 517

 Mathematical system, postulates of a, 39

 Maxterms, 51 – 52

 ANDing of, 55

 defi nition, 55

 product of, 54 – 55

 Mealy model of fi nite state machine,

 214 – 217

 Mealy_Zero_Detector, 226 – 227

 Medium-scale integration (MSI)

circuits, 66 , 126 , 439

 Memory chips, 66

 Memory decoding:

 coincident, 309 – 312

 internal construction, 307 – 309

 Memory registers, 29

 Memory unit, 2 , 29

 Memory unit (experiment)

 IC RAM, 467 – 468

 memory expansion, 469

 ROM simulator, 469

 testing RAM, 468 – 469

 Metal-oxide semiconductor (MOS), 67

 Metal-oxide silicon semiconductors, 507

 basic structure, 508

 types of, 508

 Miniterms, 51 – 52

 defi nition, 55

 don’t-care, 88 – 90

 and prime implicants, 83

 sum of, 52 – 53

 Minterm, 51

 Module, 111

 module … endmodule keyword pair,

 116 , 169

 $monitor statement, 178 , 180

 $monitor system task, 179

 Moore model of fi nite state machine,

 214 – 217

 Moore-type zero detector sequential

circuit, 228

 Most signifi cant bit (MSB), 358

 Multiple-IC MSI design, 126

 Multiplexer design (experiment),

 453 – 454

 Multiplexers, 158 – 164

 design with, 411 – 422

 testing of ones counter, 421 – 422

 N
 Name association mechanism, 178

 NAND circuits, 90 – 91 , 447 – 448

 NAND gate, 58 , 60 , 63 , 66 , 90 – 93 ,

439 , 510

 NAND latch, 194

 NAND–NAND diagrams, 98 – 99

 N bits, 27

 N- channel MOS, 509 – 510

 Negative-logic OR gate, 65

 Negative logic polarity, 64

 negedge keyword, 219 , 222 , 354

 Netlist, 109

 Nine’s complementer, 452

 nmos keyword, 517

 Noise margin, 67

 Nonblocking assignments, 219 – 220 , 355

 Nondegenerate forms, of gates, 98 – 99

 NOR gate, 60 , 63 , 66 , 90 , 510

 NOR latch, 194

 NOR–NOR diagrams, 98 – 99

 NOT gate, 30 , 32 , 42 , 58 , 113

 N -type dopant, 507

 Number-base conversions, 6 – 8

 O
 Octal number system, 4 , 8 – 10

 Odd function, 62

 One-hot assignment, 397 , 401 – 402

 Open Verilog International (OVI), 110

 OR–AND diagrams, 98 – 99

 OR–AND–INVERT function, 98

 ORed with xx ', 54

 OR gate, 30 , 32 – 33 , 42 , 46 – 47 , 50 , 57 – 58 ,

 60 , 65 , 90 , 113 , 316 , 323

 OR–NAND diagrams, 98 – 99

 output declaration, 117

 P
 Parallel adder and accumulator

(experiment)

 block diagram, 475

 carry circuit, 476

 checking the circuit, 477

 circuit operation, 477 – 478

 control of register, 475 – 476

 detailed circuit, 477

 Parallel-load control, 264

 parameter statement, 224

 Parity bit, 26

 Parity error, 26 – 27

 P- channel MOS, 509

 pmos keyword, 517

 Polarity indicator, 65

 Port list, 112

 posedge keyword, 219 – 222 , 354

 Positive-edge-triggered fl ip-fl op, 459

 Positive integers, 14

 Positive-logic AND gate, 65

 Positive logic polarity, 64

 Postulates of a mathematical system, 39

 Postulates of Boolean algebra,

 43 – 44

 Power dissipation, 67

 Predefi ned primitives, 112

 Prime implicants of a function,

 82 – 84

 primitive … endprimitive

keyword pair, 116

 Primitive gates, 165

 primitive keyword, 117

 Processor registers, 29

 Product-of-maxterms form, 87

 Product of sums, 57

 Product-of-sums form, of Boolean

function, 84 – 88 , 90

 Program, 1

 Programmable array logic (PAL),

 299 , 321

 buffer–inverter gate, 325

 commercial, 325

 fuse map of, 328 – 329

 programming table, 327

 Programmable logic array (PLA)

 Boolean functions implemented

in, 322

 custom-made, 324

 fuse map of, 323

 internal logic of, 322

 programming table, 323

 size of, 324

 Programmable logic device (PLD), 66 ,

 68 , 299

 Programmable read-only memory

(PROM), 320

 Propagation delay, 67 , 110 , 447

 P -type device, 507 – 508

 Q
 Qualifying symbols, 491 – 493

Index 545

 R
 Race-free design, 422 – 425

 Radix complement, 11 – 12

 R -allowable digits, 5

 Random-access memory (RAM),

 299 – 307

 memory description in HDL,

 303 – 304

 symbol, 504 – 505

 timing waveforms, 304 – 306

 types of memories, 306 – 307

 write and read operations, 302 – 303

 Read-only memory (ROM), 299 ,

 315 – 321

 block diagram, 316

 combinational circuit

implementation, 318

 example of 32×8, 316

 hardware procedure, 317

 inputs and outputs, 316

 internal binary storage of, 317

 truth table of, 317

 types, 320

 Record separator (RS) control, 26

 Rectangular-shape symbols, 488 – 491

 Register (s), 27

 defi ned, 255

 of excess-3 code, 27

 four-bit, 256

 HDL for, 284 – 287

 loading or updating, 257

 with parallel load, 257

 shift, 258 – 266

 serial addition, 261 – 263

 serial transfer of information,

 259 – 261

 universal, 263 – 266

 symbol, 499 – 502

 transfer of information among, 28 – 30

 Register transfer level (RTL), 3

 algorithmic state machines (ASMs),

 363 – 371

 block, 368 – 369

 chart, 365 – 368 , 370 – 371

 relationship between control

logic and data-processing

operations, 364

 simplifi cations, 369

 timing considerations, 369 – 370

 combinational circuit functions, 354

 control logic, 396 – 402

 in HDL, 354 – 363

 fl owchart for modeling, verifi cation,

and synthesis, 363

 logic synthesis, 361 – 363

 loop statements, 358 – 361

 operators, 355 – 358

 procedural assignments, 355

 HDL descriptions:

 of binary circuits, 402 – 411

 of combinational circuits,

 381 – 391

 latch-free design, 425 – 426

 with multiplexers, 411 – 422

 notation, 351 – 354

 procedural assignments, 355

 propagation delays, 353

 race-free design, 422 – 425

 sequential binary multiplier,

 391 – 396

 type of operations, 353

 Verilog HDL for, 426

 reg keyword, 168 , 175 , 177 , 179 ,

 220 – 221 , 360

 repeat loop, 358

 Ripple_carry_4_bit_adder, 169

 Ripple counter:

 BCD, 269 – 271

 binary, 267 – 269

 HDL for, 288 – 290

 S
 Schematic capture, 68

 Schematic entry, 68

 Semiconductors, 507

 Sensitivity list, 175

 Sequential binary multiplier:

 ASMD chart, 394 – 396

 interface between the controller and

the datapath, 393

 numerical example for binary

multiplier, 396

 register confi guration, 392 – 393

 registers needed for the data

processor subsystem, 395

 Sequential circuits (experiment)

 design of counter, 460 – 461

 state diagram, 460

 up–down counter with enable, 460

 Sequential programmable devices,

 329 – 346

 AND–OR sum-of-products

function, 330

 complex programmable logic device

(CPLD), 329 , 331

 confi guration, 331

 fi eld-programmable gate array

(FPGA), 329 – 330 , 332

 input–output (I/O) blocks, 330

 registered, 330

 sequential (or simple) programmable

logic device (SPLD), 329

 Serial addition (experiment)

 serial adder, 466 – 467

 serial adder–subtractor, 467

 testing the adder, 467

 Set of elements, 38

 Set of natural numbers, 39

 Set of operators, 38

 Set of real numbers, 39

 Shift-left control, 264

 Shift operation, 351

 Shift registers (experiment)

 bidirectional shift register, 465

 bidirectional shift register with

parallel load (IC type 74157),

 465 – 466

 feedback shift register, 464 – 465

 IC shift register, 463

 ring counter, 463 – 464

 Shift-right control, 264

 Signals, 2

 assignment of, 64

 Signed binary numbers, 14 – 18

 arithmetic addition, 16 – 17

 arithmetic subtraction, 17 – 18

 signed-complement system, 15

 signed-magnitude convention, 15

 Signed-complement system, 15 , 21

 Signed-magnitude convention, 15

 Signed-10’s-complement system, 21

 Silicon crystalline structure, 507

 Simple_Circuit, 112 – 113

 Simple_Circuit_ prop_delay, 114

 Single-pass behavior, 217

 Small-scale integration (SSI) circuits,

 439

 Small-scale integration (SSI) devices, 66

 Software programs, 68

 Source terminal, 508

 Spartan ™ , 333 , 339 – 344

 SR latch, 193 – 195 , 457

 Standard cells, 126

 Standard form of Boolean algebra,

 56 – 58

 Standard product, 51

 Standard sums, 51

 State table, 378 – 379

 STX (start of text), 26

 Sum of products, 56 , 62 , 88 , 91

 Sum terms, 57

 supply1 and supply0 keyword, 518

 Switching algebra, 43

 Switch-level modeling, 517 – 520

 Symbols, 61 , 171

 !, 171

 %, 178

 &, 171

546 Index

Symbols (cont.)
 &&, 171

 ∑, 53

 * /, 111

 +, 171

 / *, 111

 = =, 171

 @, 174 – 175 , 354 , 425 – 426

 ̂ , 171

 |, 171

 “| ” , 174

 –, 171

 ?:, 171

 (&), (/), and (~), 115

 ⊕, 58

 active-low input or output, 492

 adder (∑), 491

 AND gate or function (&), 491

 arithmetic logic unit (ALU), 491

 arithmetic operators (+, –, *, /), 356

 buffer gate or inverter, 491

 coder, decoder, or code converter

(X/Y), 491

 for combinational elements, 495 – 497

 contents of register equals binary

 15 , 492

 countdown, 492

 counter (CTR), 491

 for counters, 502 – 504

 countup, 492

 data input to a storage element, 492

 demultiplexer (DMUX), 491

 for digital logic circuits, 32

 dynamic indicator input, 492

 enable input, 492

 even function or even parity element

(2k), 491

 exclusive-OR gate or function

(= 1), 491

 exponentiation operator (**), 356

 fl ip-fl op inputs, 492

 for fl ip-fl ops, 497 – 499

 logic negation input or output, 492

 magnitude comparator (COMP), 491

 of MOS transistor, 509

 multiplexer (MUX), 491

 multiplier (∏), 491

 odd function or odd parity element

(2k+1), 491

 open-collector output, 492

 OR gate or function (≥1), 491

 output with special amplifi cation, 492

 (∏), 55

 for RAM, 504 – 505

 random-access memory (RAM), 491

 read-only memory (ROM), 491

 for registers, 499 – 502

 ripple counter (RCTR), 491

 semicolon (;), 112 , 174

 shift left, 492

 shift register (SRG), 491

 shift right, 492

 slashes (//), 111

 three-state output, 492

 Verilog HDL operators, 356

 Synchronous counter:

 BCD, 275

 binary, 271 – 272

 with parallel load, 276 – 278

 up–down, 272 – 275

 HDL for, 287 – 288

 Synchronous sequential circuit, 191

 Synchronous sequential logic:

 clocked sequential circuits, analysis

of, 204 – 217

 design of, 236 – 245

 D fl ip-fl ops, analysis of, 210

 fl ip-fl op input equations, 209 – 210

 JK fl ip-fl ops, analysis of, 210 – 213

 Mealy and Moore models of fi nite

state machines, 214 – 217

 state diagram of, 207 – 209

 state equation of, 205 – 206

 state table of, 206 – 207

 structural description of, 228 – 230

 T fl ip-fl ops, analysis of, 213 – 214

 design procedure:

 excitation table, 239 – 241

 logic diagram of three-bit binary

counter, 245

 maps for three-bit binary

counter, 245

 using D fl ip-fl ops, 238 – 239

 using JK fl ip-fl ops, 241 – 243

 using T fl ip-fl ops, 243 – 245

 HDL models:

 behavioral modeling, 217 – 220

 fl ip-fl ops and latches, 220 – 223

 state diagram, 223 – 227

 sequential circuits, 190 – 192

 state assignment, 235 – 236

 state reduction, 231 – 235

 storage elements:

 fl ip-fl ops, 196 – 204

 latches, 193 – 196

 System primitives, 116

 T
 table, 117

 Tera (T) bytes, 5

 Test bench, 109

 T fl ip-fl ops, analysis of, 213 – 214

 Theorems of Boolean algebra, 43 – 45

 proofs, 44 – 45

 Thermal agitation, impact on

semiconductor, 507

 Three-input exclusive-OR gate, 64

 Three-input NAND gate, 91

 Three-state buffer gate, 162

 Three-state buffers, 163

 Three-state gates, 162 – 164 , 169 – 170

 Three-variable K-map, 75 – 76

 $time, 178

 timescale compiler, 113

 Timing diagrams, 32

 Timing verifi cation, 110 , 181

 Transfer function, 60

 Transfer of information, among

registers, 28 – 30

 Transistors, 2

 Transistor–transistor logic (TTL), 67

 Trigger, 196

 tri keyword, 170

 Truth table, 31 , 46 , 52 – 53 , 86 , 109 , 129

 and Boolean algebra, 45

 for the 16 functions of two binary

variables, 58

 ROM, 317

 T_Simple_Circuit_prop_delay, 114

 T (toggle) fl ip-fl op, 200 – 201

 analysis, 213 – 214

 characteristic equation, 203

 characteristic table, 202

 Two-level gating structure, 57

 Two-level implementation, 56 – 57

 of Boolean function, 91 – 93

 Two-to-one-line multiplexer, 163 , 174

 Two-valued Boolean algebra, 41 – 43

 defi nition, 41

 rules of binary operation, 41 – 42

 Two-variable K-map, 74 – 75

 U
 Unidirectional shift register, 264

 Universal gate, 90

 Universal NAND gate, 447

 Universal shift register, 263 – 266

 User-defi ned primitives (UDPs),

 116 – 118

 V
 Vectors, 166

 Verifi cation, 181

 Verilog 2001, 426

 Verilog 2005, 426

 Verilog HDL, 68 , 115 , 118 , 332 ,

 354 , 438

Index 547

 flowchart, 363

logical and relational operators, 357

logic operators for binary words, 357

 looping statements, 358 – 361

 operator precedence, 359

 operators, 355 – 358

register transfer operation, 354

 switch-level modeling in, 517 – 520

 Verilog module, 112

 Verilog statements, 115

 Verilog system tasks, 178 – 181

Very large-scale integration (VLSI)

circuits, 66 – 67 , 126

 gate array, 332

 VHDL, 332

 Virtex ™ , 333 , 344 – 346

 Voltage-operated logic circuits, 31

 W
 while loop, 359

 Wired-AND gate, 97

 Wired logic, 97

 wire keyword, 112 , 170 , 179

 $write, 178

 X
 XC2000, 333

 XC3000, 333

 XC4000, 333

 Xilinx FPGA:

 basic architecture, 333

 configurable logic block

(CLB), 334

 distributed RAM, 334

 enhancements, 337 – 339

interconnect lines of,

 334 – 336

I/O block (IOB), 337

 series, 333

 Spartan II, 340 – 344

 Spartan XL chips, 339 – 340

 Virtex, 344 – 346

 XOR gate, 323

 XOR operation, 315

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	1 Digital Systems and Binary Numbers
	1.1 Digital Systems
	1.2 Binary Numbers
	1.3 Number-Base Conversions
	1.4 Octal and Hexadecimal Numbers
	1.5 Complements of Numbers
	1.6 Signed Binary Numbers
	1.7 Binary Codes
	1.8 Binary Storage and Registers
	1.9 Binary Logic

	2 Boolean Algebra and Logic Gates
	2.1 Introduction
	2.2 Basic Definitions
	2.3 Axiomatic Definition of Boolean Algebra
	2.4 Basic Theorems and Properties of Boolean Algebra
	2.5 Boolean Functions
	2.6 Canonical and Standard Forms
	2.7 Other Logic Operations
	2.8 Digital Logic Gates
	2.9 Integrated Circuits

	3 Gate-Level Minimization
	3.1 Introduction
	3.2 The Map Method
	3.3 Four-Variable K-Map
	3.4 Product-of-Sums Simplification
	3.5 Don't-Care Conditions
	3.6 NAND and NOR Implementation
	3.7 Other Two-Level Implementations
	3.8 Exclusive-OR Function
	3.9 Hardware Description Language

	4 Combinational Logic
	4.1 Introduction
	4.2 Combinational Circuits
	4.3 Analysis Procedure
	4.4 Design Procedure
	4.5 Binary Adder–Subtractor
	4.6 Decimal Adder
	4.7 Binary Multiplier
	4.8 Magnitude Comparator
	4.9 Decoders
	4.10 Encoders
	4.11 Multiplexers
	4.12 HDL Models of Combinational Circuits

	5 Synchronous Sequential Logic
	5.1 Introduction
	5.2 Sequential Circuits
	5.3 Storage Elements: Latches
	5.4 Storage Elements: Flip-Flops
	5.5 Analysis of Clocked Sequential Circuits
	5.6 Synthesizable HDL Models of Sequential Circuits
	5.7 State Reduction and Assignment
	5.8 Design Procedure

	6 Registers and Counters
	6.1 Registers
	6.2 Shift Registers
	6.3 Ripple Counters
	6.4 Synchronous Counters
	6.5 Other Counters
	6.6 HDL for Registers and Counters

	7 Memory and Programmable Logic
	7.1 Introduction
	7.2 Random-Access Memory
	7.3 Memory Decoding
	7.4 Error Detection and Correction
	7.5 Read-Only Memory
	7.6 Programmable Logic Array
	7.7 Programmable Array Logic
	7.8 Sequential Programmable Devices

	8 Design at the Register Transfer Level
	8.1 Introduction
	8.2 Register Transfer Level Notation
	8.3 Register Transfer Level in HDL
	8.4 Algorithmic State Machines (ASMs)
	8.5 Design Example (ASMD Chart)
	8.6 HDL Description of Design Example
	8.7 Sequential Binary Multiplier
	8.8 Control Logic
	8.9 HDL Description of Binary Multiplier
	8.10 Design with Multiplexers
	8.11 Race-Free Design (Software Race Conditions)
	8.12 Latch-Free Design (Why Waste Silicon?)
	8.13 Other Language Features

	9 Laboratory Experiments with Standard ICs and FPGAs
	9.1 Introduction to Experiments
	9.2 Experiment 1: Binary and Decimal Numbers
	9.3 Experiment 2: Digital Logic Gates
	9.4 Experiment 3: Simplification of Boolean Functions
	9.5 Experiment 4: Combinational Circuits
	9.6 Experiment 5: Code Converters
	9.7 Experiment 6: Design with Multiplexers
	9.8 Experiment 7: Adders and Subtractors
	9.9 Experiment 8: Flip-Flops
	9.10 Experiment 9: Sequential Circuits
	9.11 Experiment 10: Counters
	9.12 Experiment 11: Shift Registers
	9.13 Experiment 12: Serial Addition
	9.14 Experiment 13: Memory Unit
	9.15 Experiment 14: Lamp Handball
	9.16 Experiment 15: Clock-Pulse Generator
	9.17 Experiment 16: Parallel Adder and Accumulator
	9.18 Experiment 17: Binary Multiplier
	9.19 Verilog HDL Simulation Experiments and Rapid Prototyping with FPGAs

	10 Standard Graphic Symbols
	10.1 Rectangular-Shape Symbols
	10.2 Qualifying Symbols
	10.3 Dependency Notation
	10.4 Symbols for Combinational Elements
	10.5 Symbols for Flip-Flops
	10.6 Symbols for Registers
	10.7 Symbols for Counters
	10.8 Symbol for RAM

	Appendix
	Answers to Selected Problems
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

