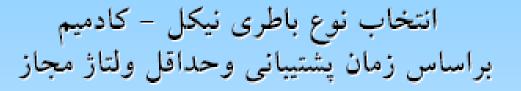


معیارهای انتخاب و محاسبه

معیارهای انتخاب و محاسبات باطری پارامترهای مهم در انتخاب باطری: دما و شرایط محیطی ۱. محدوده تغييرات مجاز ولتاژ مصرف كننده ۲. منحنی بار(منحنی دشارژ) ۳. ۴. انرژی و توان مورد نیاز POWEREN.IR نحوه نگهداری و انبار و بهره برداری ۵. . Ŷ هزينه ها ٧. شرايط تغذيه اصلى ۸. سایر:(اتاق باطری ؛ باطری های موجود ؛ مسائل زیست محیطی ، خدمات پس از فروش ،....)

باطریهای اسیدی	باطریهای نیکل کادمیم	مورد
- 17/0 9 + 170	- ½1Y g + ½To	تغييرات ولتاژ خروجي
		بر اثر شارژ و دشارژ

لميم بأطرق به مصرف صلمه الأسخير للجار للتاحم


انرژی مورد نیاز

· منظور از انرژی واتساعت یا آمپرساعت لازم در طول دوره پشتیبانی بار، است.

- · ظرفیت باطری های در مدلهای مختلف متفاوت است بخصوص باطری های سیلد محدودیت ظرفیت دارند
- باطریهای ساکن اسیدی و بازی از نوع تهویه ای با ظرفیت هایی از
 ۱ آمپرساعت تا ۲۰۰۰ آمپر ساعت هم ساخته می شوند.
- برای ظرفیت های بالاتر از بانک های موازی باطری استفاده می شود.

معیارهای انتخاب و محاسبات باطری

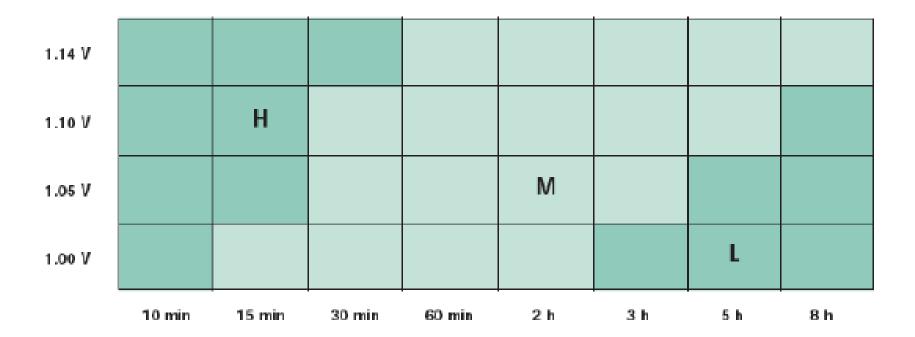


Table 2 - General selection of cell range

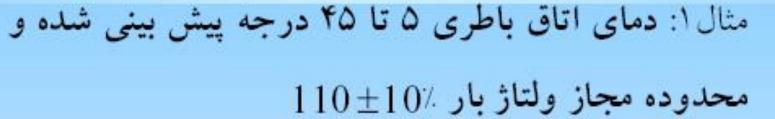
PowerEn.ir

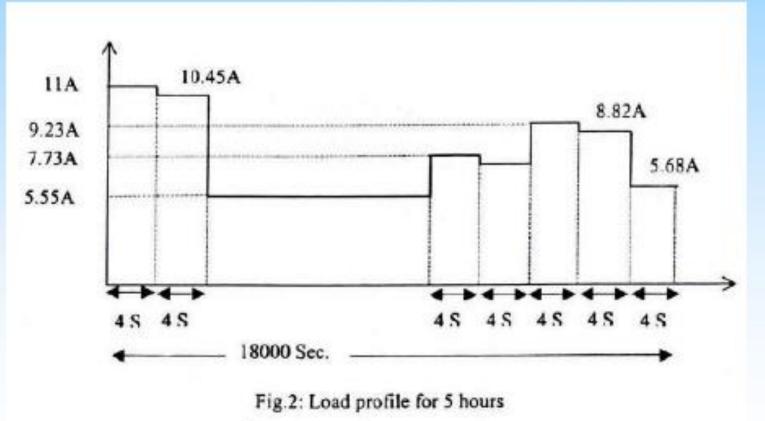
معیارهای انتخاب و محاسبات باطری

باطری نوعH	باطری نوعM	باطری نوع L
از تازکترین صفحات ساخته	برای کاربردهایی که نیاز به	ساخته شده از صفحات
شده برای مصارف ویژه	باطري تقويت شده است	محكم و ضخيم
برای یک جریان نسبتا بالا در یک زمان کوتاه	مصارف الکتریکی با دشارژ ۳۰ دقیقه تا ۳ساعت	یک منبع قابل اعتماد انرژی برای دشارژ های طولانی
عموما براي دشارژ هاي	مصارفی که ترکیبی از	یک جریان الکتریکی نسبتا
کمتر از ۳۰ دقیقه	جریانهای بالا و پایین هستند	کم در مقایسه با حجم کل انرژی ذخیره شده
دفعات دشارژ سريعا تكرار	دفعات دشارژ سريعا تكرار	دفعات دشارژ معمولا دير
شونده و یا دیر به دیر	شونده و یا دیر به دیر	به دیر است
به عنوان باطری استارت و پشتیبان	بیشتر به عنوان باطری های پشتیبان	عموما به عنوان منبع پشتیان وانرژی بزرگ

معیارهای انتخاب و محاسبات باطری

نحوه نگهداری و انبار و بهره برداری: انبار باطرى هاى نيكل كادميم تامدتهاى طولاني امكان پذير است ولی باطری های اسیدی در بهترین شرایط بیش از شش ماه قابل نگهداری نیستند در زمان خرید توجه به زمان تولید باطری اهمیت دارد باطری های سیلد طول عمر کمتری دارند ولی در دوره بهره برداری نیاز به مراقبت چندانی از آنها نیست اتاق باطری مورد نیاز برای هر دو نوع باطری یکسان است ولی برای باطری های سیلد الزامی نیست.




معیارهای انتخاب و محاسبات باطری هزينه ها: - باطری بازی حدود ۵ تا ۱۰برابر گرانتر از نوع اسیدی آنها هستند. باطری سیلد به مراتب گرانتر از نمونههای تهویهای هستند ولی به اتاق باطری نیازی ندارند. - باطرى هاى نيكل – كادميم محدوده تغييرات ولتاژ بالاترى داشته و

شارژرهای مرتبط با آنها گرانتر از نمونههای اسیدی خواهد بود

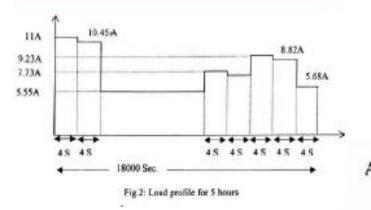
معیارهای انتخاب و محاسبات باطری • شرايط تغذيه اصلى: سرعت شارژ در باطری بازی تقریبا دو برابر باطری های اسیدی است. شارژو دشارژ ناقص عمر باطری بازی را به سرعت کم - می کند. - وقفه طولانی مدت تغذیه و یا خرابی شارژر و دشارژ بیش از حد عمر باطریهای اسیدی را به سرعت کم می

محاسبه باطرى

محاسبه باطرى:

تعداد سلولها در يک بانک باطري تابع محدوده مورد قبول مصرف كنندگان وقابليتهاي موجود سيستم تغذيه است حداكثر ولتاژ مجاز: تعدادباطريها = (حداكثر ولتاژ مجاز حداكثر ولتاژ هر سل) حداقل ولتازمجاز ويا قابل قبول: تعدادباطريها = (حداقل ولتاژ مجاز حداقل ولتاژ هر سل) ولتاژ نامى: تعدادباطريها = (ولتاژ نامي مورد نظر ولتاژ نامي هر سل)

محاسبه تعداد سلها در بانک باطری:


محاسبه باطرى

Number of cells

Minimum voltage of battery charger unit is -10% of nominal 110V DC:

 $110 \times 10\% = 11$ volt 110-11 = 99 volt , minimum cell volt = 1.14 volt $\Rightarrow N = \frac{99}{1.14} \approx 87$ cell

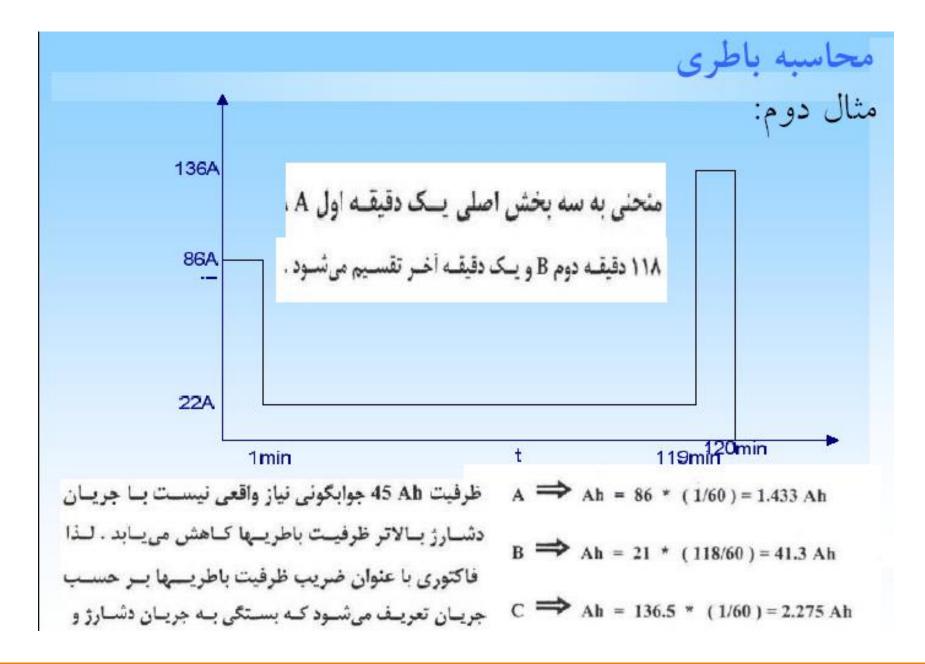
در مد شارژ بالاتر هم صرفا مي توان از يک رگولاتور کاهنده ولتاژ بهره جست - 135 $\cong 1.55 \cong 87 imes 87$

Amper-hours(state "A") =
$$11 \times \frac{4}{3600} + 10.45 \times \frac{4}{3600} = 0.024$$

Amper-hours(state "B") =
$$5.55 \times \frac{17972}{3600} = 27.707$$

Amper-hours(state "C") =
$$7.73 \times \frac{4}{3600} + 7.18 \times \frac{4}{3600} = 0.017$$

Amper-hours(state "D") =
$$9.23 \times \frac{4}{3600} + 8.82 \times \frac{4}{3600} = 0.011$$


Amper-hours(state "E") =
$$5.68 \times \frac{4}{3600} = 0.006$$

Total Amper-hours = 27.765 Ah ≅ 28 Ah

With consider 20 % spare : 1.2 x 28 = 33.6 Ah.

According to data sheet No. 5228: ", minimum temprature is + 5 °C. Therfore according to attachment "2", temprature derating factor is 0.95.

$$\frac{33.6Ah}{0.95} = 35.4Ah$$

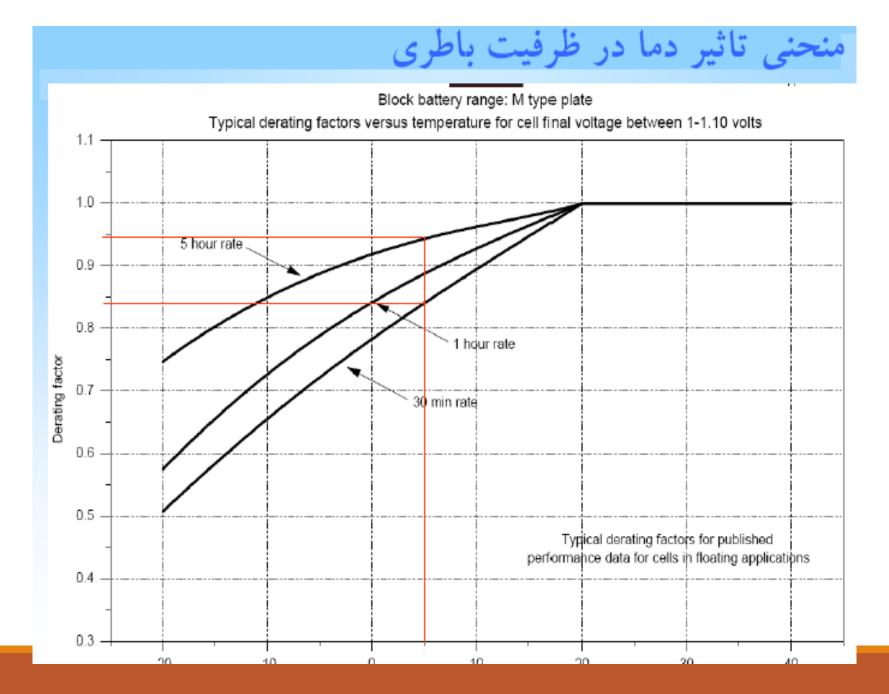
Available amperes at +20°C \pm 5°C (+68°F \pm 9°F)

Final voltage: 1.14 V/cell

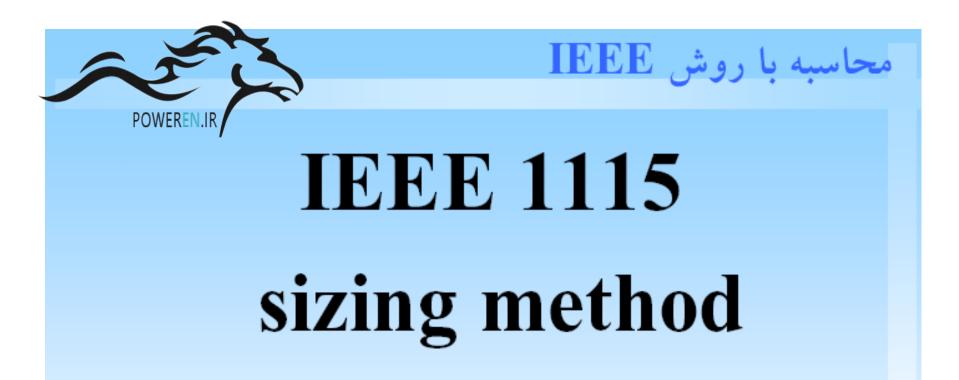
Cell	C ₅	C ₅ Hours									Seconds						
type	Ah	10	8	5	3	2	1.5	1	30	20	15	10	5	1	30	5	1
SBM 11	11	1.06	1.32	2.07	2.79	3.48	4.06	4.75	6.07	7.03	7.74	8.84	10.8	16.1	18.3	21.8	24.2
SBM 15	15	1.45	1.80	2.82	3.80	4.75	5.54	6.48	B.2B	9.59	10.6	12.1	14.8	22.0	24.9	29.8	33.0
SBM 22	<u>_</u> 22	2.13	2.64	4.14	5.59	7.01	8.25	9.50	12.3	14.1	15.3	17.5	21.1	29.8	33.4	38.9	40.2
SBM 30	- ⁽⁷⁾ 30	2.90	3.60	5.64	7.62	9.56	11.2	13.0	16.8	19.2	20.9	23.9	28.7	40.6	45.6	53.1	54.8
SBM 43	43	4.16	5.16	8.08	11.0	13.9	16.6	19.5	25.2	29.0	32.0	36.3	43.8	62.8	70.3	82.1	85.5
SBM 56	56	5.42	6.72	10.5	14.3	18.1	21.6	25.4	32.5	37.3	40.5	46.2	55.2	77.2	B5.9	99.1	102
SBM 65	65	6.29	7.80	12.2	16.6	21.1	25.1	29.5	38.1	43.8	48.3	54.9	66.2	94.9	106	124	129
SBM 84	84	8.12	10.1	15.8	21.4	27.2	32,4	38.1	4B.7	56.0	60.8	69.2	82.8	116	129	149	153
SBM 112	112	10.8	13.4	21.1	28.6	36.2	43.2	50.8	64.9	74.6	81.0	92.3	110	154	172	198	204
SBM 138	138	13.3	16.6	25.9	35.2	44.6	53.2	62.6	80.0	91.9	99.9	114	136	(190)	212	244	252
SBM 161	161	15.6	19.3	30.3	41.1	52.1	62.1	73.0	93.3	107	116	133	159	222	247	285	294
SBM 184	184	17.8	22.1	34.6	46.9	59.5	70.9	83.4	107	123	133	152	181	254	282	326	336
SBM 208	208	20.1	25.0	39.1	53.0	67.3	80.2	94.3	121	139	151	171	205	287	319	368	380
SBM 231	231	22.3	27.7	43.4	58.9	74.7	89.1	105	134	154	167	190	228	319	354	409	422
SBM 277	277	26.8	33.2	52.1	70.6	B9.6	107	126	161	1B5	200	228	273	382	425	490	505
SBM 300	300	29.0	36.0	56.4	76.5	97.0	116	136	174	200	217	247	296	414	460	531	547
SBM 323	323	31.2	38.8	60.7	82.4	104	125	146	187	215	234	266	318	446	495	572	589
SBM 346	346	33.5	41.5	65.0	88.2	112	133	157	201	231	250	285	341	477	531	612	631
SBM 369	369	35.7	44.3	69.4	94.1	119	142	167	214	246	267	304	364	509	566	653	673
SBM 392	392	37.9	47.0	73.7	99.9	127	151	178	227	261	284	323	386	541	601	694	715
SBM 415	415	40.1	49.8	78.0	106	134	160	188	241	276	300	342	409	572	637	735	757
SBM 438	438	42.4	52.6	82.3	112	142	169	199	254	292	317	361	432	604	672	775	799
SBM 461	461	44.6	55.3	86.7	118	149	178	209	267	307	334	380	454	636	707	816	B41
SBM 505	505	48.8	60.6	94.9	129	163	195	229	293	336	365	416	498	697	775	894	922
SBM 555	555	53.7	66.6	104	142	179	214	252	322	370	402	458	547	766	851	982	1013

محاسبه باطرى

Available current at 20 +/- 5°C (77 +/- 9°F) after prolonged float charging (amperes)


	190	211	244	252							
			2	252							
AH= 132 129.5 105.3 89.2 79.6 62.5 40 30.6 25 18.8 11	3.16	1.7	0.34	0.07							
KI= 0.95 0.94 0.76 0.65 0.58 0.45 0.29 0.22 0.18 0.136 0.08	0.0)2									
]										
$K_{I=135} = \frac{135 \times (5/60)}{138} = 0.08$											

محاسبه باطرى


AH136.5 * (1/60) = 2.275 Ah16
$$AH = 21.275/0.08 = 28.5$$
AHAh = 136.5 * (1/60) = 2.275 AhAH = 21.275/0.08 = 28.5

Total = 45 Ah

Total=79

محاسبه باطرى

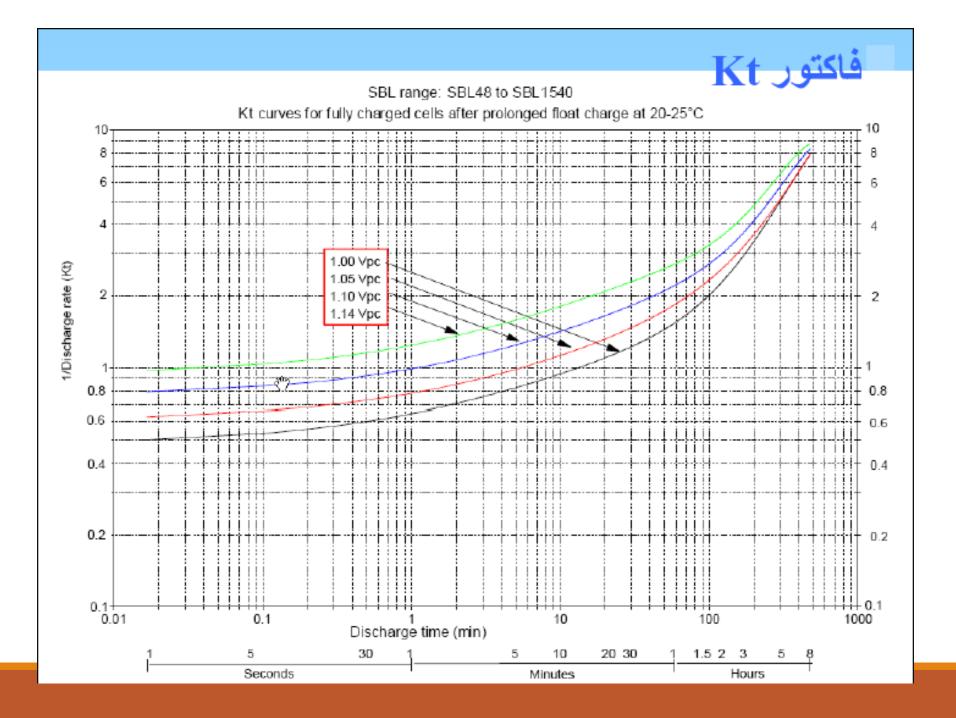
The method of calculation developed by:

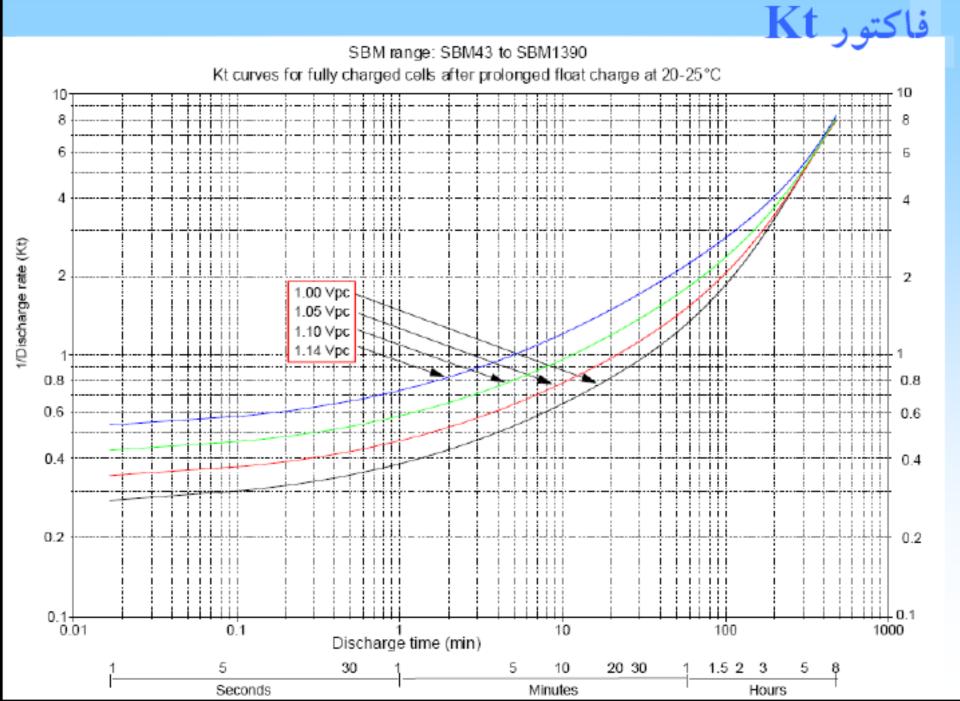
the American Institute of Electrical and Electronic Engineers (IEEE) involves the use of a capacity rating factor, called the Kt factor.

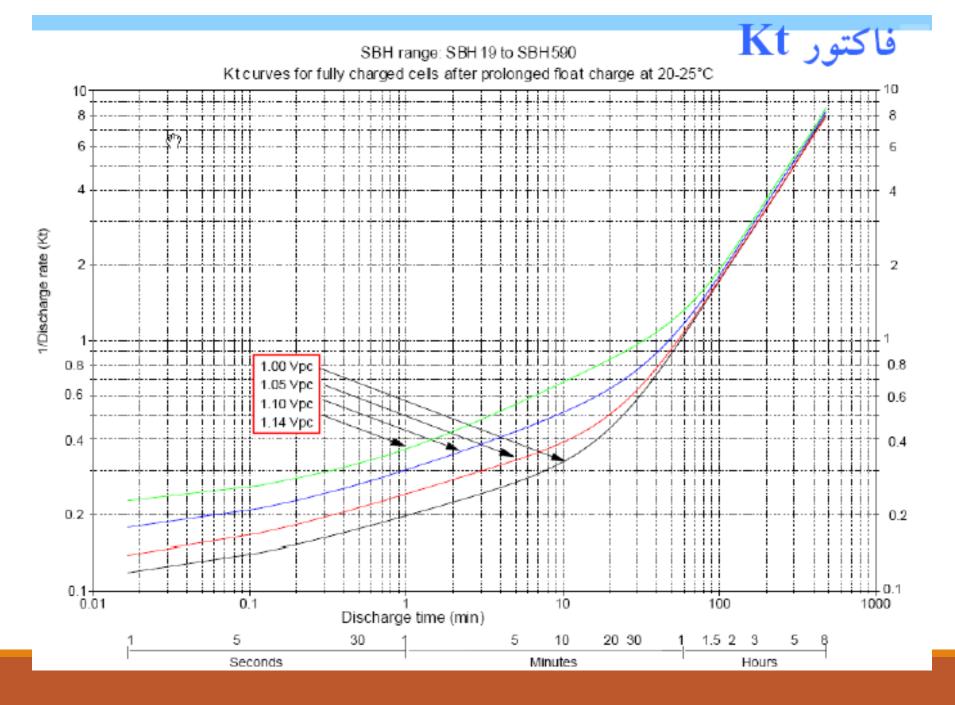
محاسبه با متد IEEE

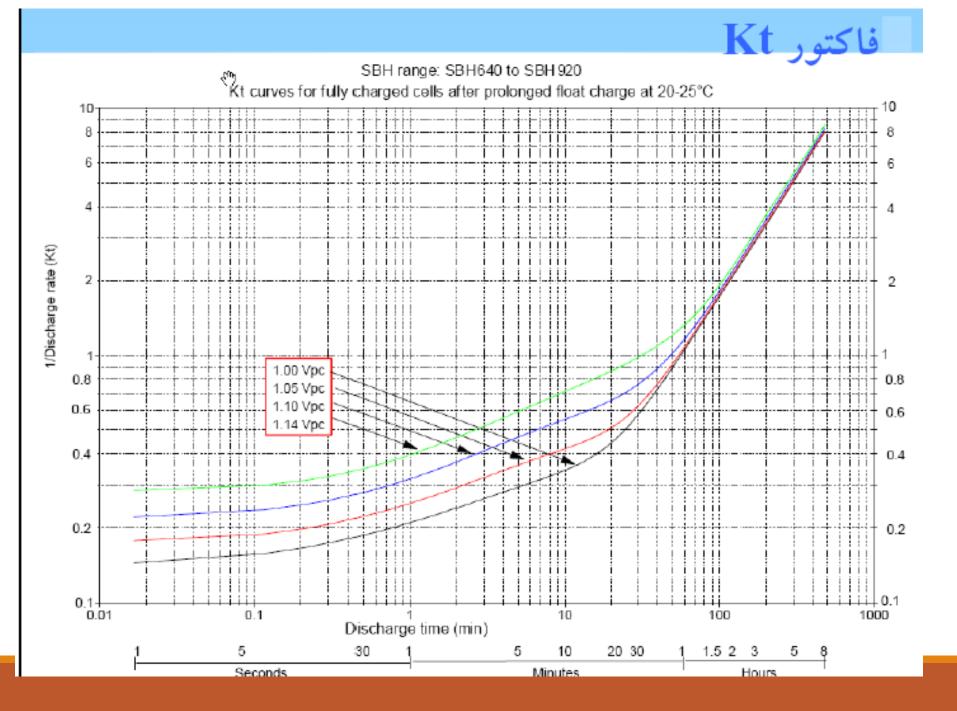
Kt factor:

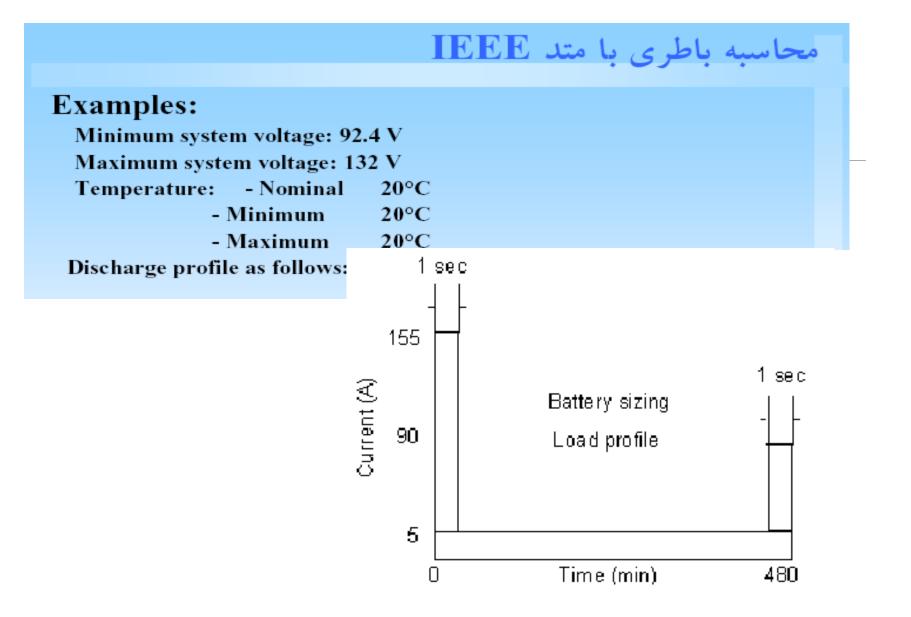
ampere-hour capacity (at the 5 hour discharge rate) of a cell, amperes that can be supplied by that cell for t minutes at 20-25°C

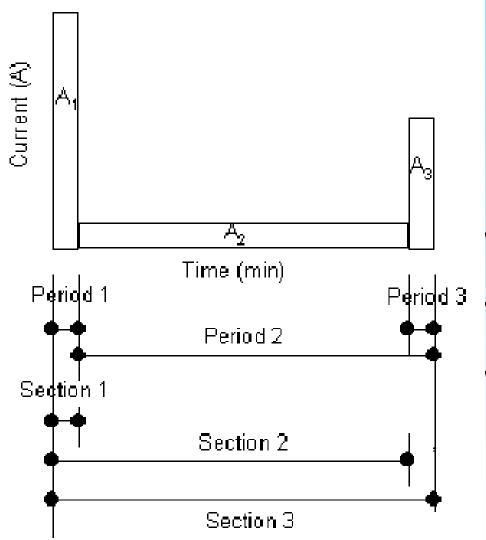





Available current at 20 +/- 5°C (77 +/- 9°F) after prolonged float charging (amperes)


1.14 16.5 25.9 35.1 44.6 53.1 62.5 79.9 91.9 99.8 113 135 190 211 244 252 AH= 132 129.5 105.3 89.2 79.6 62.5 40 30.6 25 18.8 11 3.16 1.7 0.34 0.07	V/cell	8h	5h	3h	2h	1.5h	1h	30m	20m	15m	10m	5m	1m	30s	5 s	1s
AH=132 129.5 105.3 89.2 79.6 62.5 40 30.6 25 18.8 11 3.16 1.7 0.34 0.07	1.14	16.5	25.9	35.1	44.6	53.1	62.5	79.9	91.9	99.8	113	135	190	211	244	252
	AH=	132	129.5	105.3	89.2	79.6	62.5	40	30.6	25	18.8	11	3.16	1.7	0.34	0.07
Kt= 8.36 5.33 3.93 3.09 2.6 2.21 1.73 1.5 1.38 1.22 1.02 0.73 0.65 0.56 0.55	Kt=	8.36	5.33	3.93	3.09	2.6	2.21	1.73	1.5	1.38	1.22	1.02	0.73	0.65	0.56	0.55


$$K_{t=5\,\mathrm{min}} = \frac{138}{135} = 1.02222$$

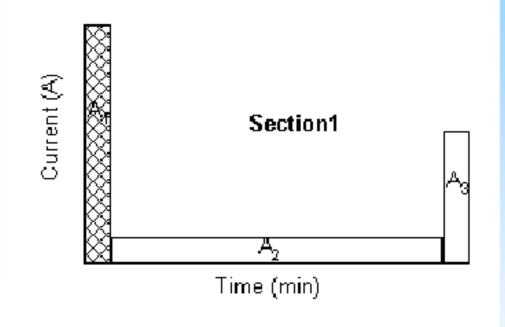

محاسبه باطری با متد IEEE

در این مثال انتخاب مدل H بر سایر مدلها ارجعیت دارد ؟

- تعداد باطریها بر حسب حداکثر ولتاژ مجاز:
 132
 = 88
 1.5
- در این شرایط حداقل ولتاژ مجاز برای هر سل۱/۰۵ولت خواهد بود:

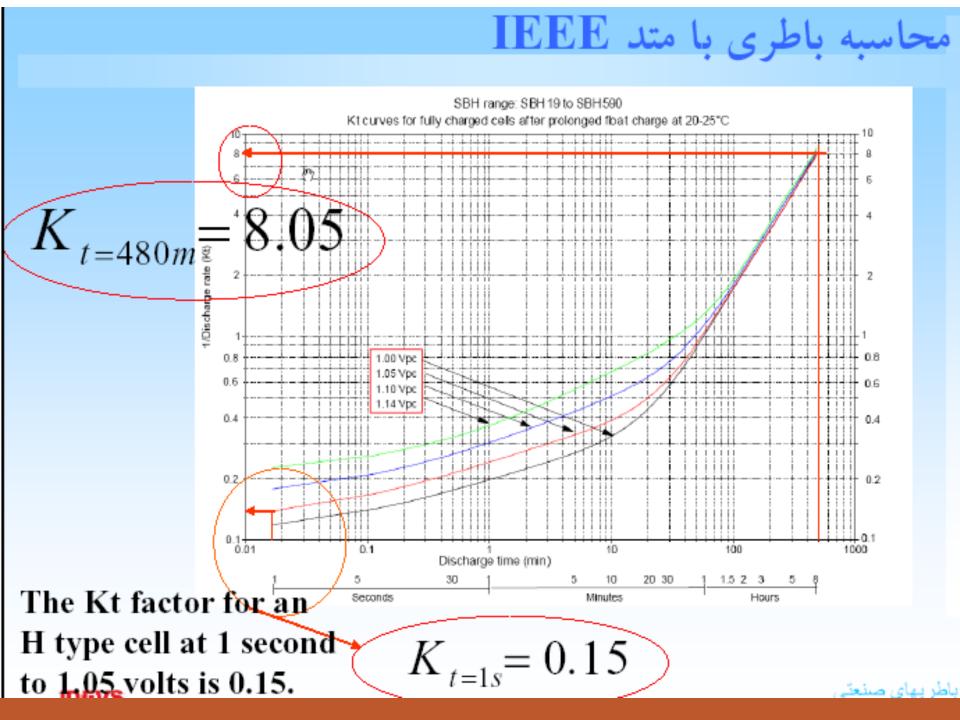
• لذا برای محاسبه ظرفیت بایستی از جدول دشارژ و Kt متناسب با این ولتاژ برای محاسبات بهره جست

 تقسیم منحنی بار به
 بخشهایی که جریان کشی های متفاوت از هم دارند.


T1 (current A1) = 1 sec = 0.017 minute

T2 (current A2) = 480 m - 2 s = 479.97

T3 (current A3) = 1 sec = 0.017 minute


محاسبه باطری با متد IEEE

SECTION 1: 155 amperes for 1 second

So the first part of the calculation is:

- Load A1=155 Amperes
- Change in load A1 0 = 155 A
- Time to end of section = period 1 = 1 second = 0.017 minutes

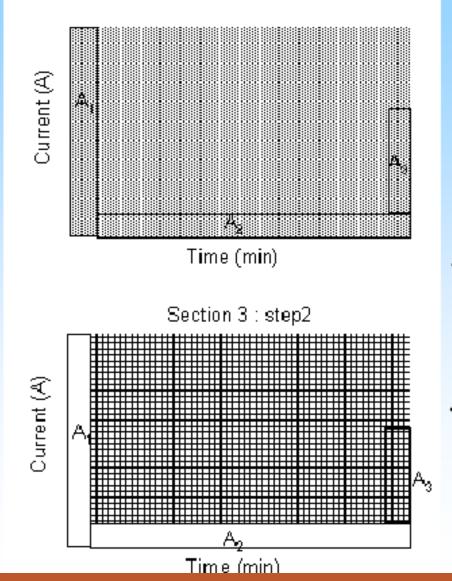
جدول دشارژ باطری و مقادیر Kt

Performance H range for stationary applications:

Performance after prologged float charge of fully charged cells

Available amperes at +20°C \pm 5°C (+68°F \pm 9°F)

Final voltage: 1.05 V/cell

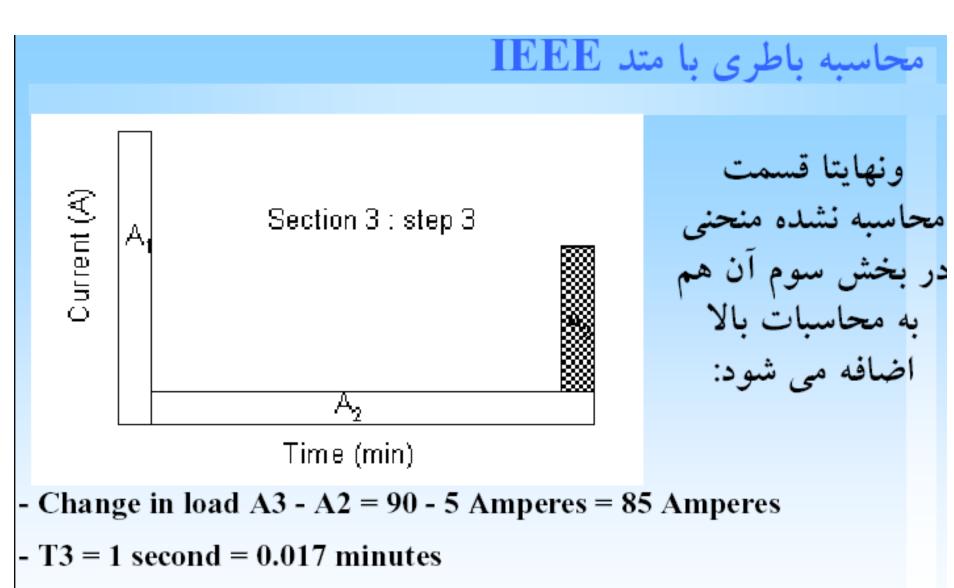

H type	C ₅			Hou	178					Min	Seconds					
	Ah	8	5	3	2	1.5	1	30	20	15	10	5	1	30	5	1
SBH 8.3	8.3	1.03	1.64	2,69	3.97	5.21	7.55	13.4	16.1	17.7	20.0	23.9	35.5	41.7	50.9	55.0
SBH 12	12	1.49	2,36	3.89	5.74	7.54	10.9	19.3	23.3	25.6	28.9	34.5	51.3	60.3	73.6	79.5
SBH 16	16	1.98	3.15	5.18	7.65	10.1	14.6	25.8	31.0	34.1	38.6	46.0	68.4	80.4	98.2	106
SBH 19	19	2.36	3.74	6.16	9.10	11.9	17.3	31.0	38.1	41.8	47.3	56.0	83.3	95.0	117	126
SBH 29	29	3.60	5.71	9.40	13.9	18.2	26.4	47.3	58.1	63.7	72.1	85.5	127	145	179	192
SBH 39	39	4.84	7.68	12.6	18.7	24.5	35.5	63.6	78.2	85.7	97.0	115	171	195	241	258
SBH 49	49	6.08	9.65	15.9	23.5	30.8	44.6	79.9	98.2	108	122	145	215	245	302	325
SBH 59	59	7.32	11.6	19.1	28.3	37.1	53.7	96.2	118	130	147	174	259	295	364	391
SBH 69	69	8.56	13.6	22.4	33.1	43.4	62.8	113	138	152	172	204	303	345	426	457
SBH 79	79	9.80	15.6	25.6	37.8	49.7	71.9	129	158	174	197	233	346	395	488	523
SBH 88	88	10.9	17.3	28.5	42.2	55.3	80.1	144	176	193	219	260	386	440	543	583
SBH 98	98	12.2	19.3	31.8	46.9	61.6	89.2	160	196	215	244	289	430	490	605	649
• Kt=		8.05	5.08	3.08	2.08	1.59	 1.09	0.61							(0.15
SBH 157	157	13.5	30.9	50.9	75.2	98.7	143	256	315	345	391	463	689	785	969	1848
SBH 177	177	21.9	34.9	57.3	84.8	111	161	589	355	389	440	522	776	885	1093	1172
SBH 196	196	24.3	38.6	63.5	93.9	123	178	320	393	431	488	578	860	980	1210	1298
SBH 236	236	29.3	46.5	76.5	113	148	215	385	473	519	587	696	1035	1180	1457	1563
SBH 265	262	32.9	52.2	85.9	127	167	241	432	531	582	659	782	1162	1325	1636	1755
SBH 294	294	36.5	57.9	95.3	141	185	268	480	589	646	731	867	1289	1470	1815	1947
SBH 353	353	43.8	69.5	114	169	222	321	576	707	776	878	1041	1548	1765	2179	2338

محاسبه باطری با متد IEEE

- Thus, the capacity necessary is:
 - current * Kt factor = 155 * 0.151 = 23.41 Ah
 - حالا بایستی به بخش دوم منحنی پرداخت:
 - ولی این استاندارد برای گام بعدی محاسبات تاکید دارد در
 - صورتی که جریان مورد نیاز در بخش n+1 بیشتر از بخش n
 - است. محاسبات بخش n حذف می شود.

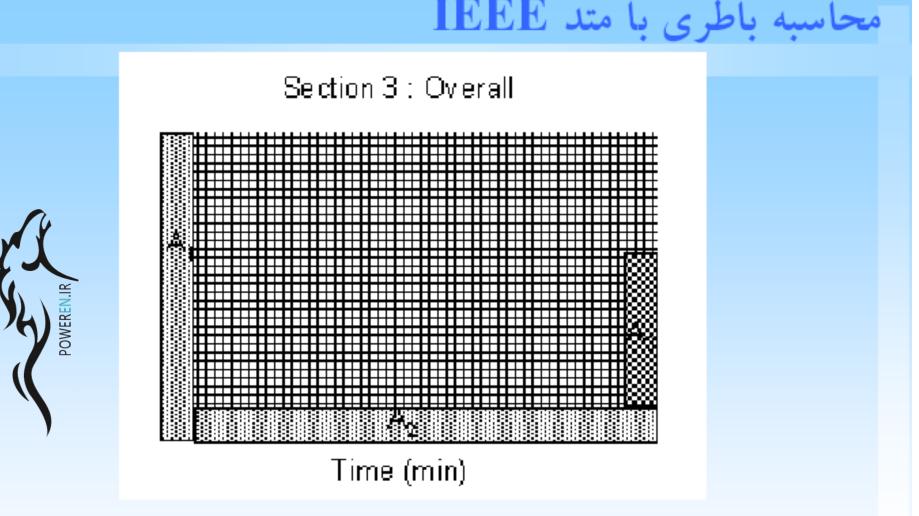
محاسبه باطری با متد IEEE

Section3 : step1


در بخش سه: ابتدا فرض مي شود كه جريان بخش اول در تمام دوره ادامه یابد: - Change in load A1 - 0 = 155 Ah - The Kt at 480 min to 1.05v = 8.065. -AH= I * Kt = 155 * 8.065 = 1250.16 Ah سیس به اندازه اختلاف جریان بخش دوم واول ولی با ضریب منفی برگشت امير ساعت مورد محاسبه قرار مي گيرد.

- Change in load A2 - A1 = 5 -155 = -150 A

-The Kt at 479.98 min to 1.05v = 8.065.


-AH= I * Kt = 150 * 8.065 = -1209.79 Ah

باطريهاي صنعتي

-The Kt factor for an H type cell at 0.017 minutes to 1.05 volts = 0.151

-Thus the capacity necessary is I * Kt = 85 * 0.151 = 12.84 Ah

Step 1: 1250.16 Ah Step 2: -1209.79 Ah Step 3: 12.84 Ah Total capacity = 53.21 Ah

The required cell size is: 53.21 X Design margin 1.00 X Aging factor 1.00 = 53.21Ah.