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Preamble

Linear systems theory is the cornerstone of control theory and a prerequisite for essentially all gradu-
ate courses in this area. It is a well-established discipline that focuses on linear differential equations
from the perspective of control and estimation.

Content
The first set of lectures (1–17) covers the key topics in linear systems theory: system representation,
stability, controllability and state feedback, observability and state estimation, and realization theory.
The main goal of these chapters is to provide the background needed for advanced control design
techniques. Feedback linearization and the LQR problem are also briefly introduced to increase
the design component of this set of lectures. The preview of optimal LQR control facilitates the
introduction of notions such as controllability and observability, but is pursued in much greater
detail in the second set of lectures.

Three advanced foundational topics are covered in a second set of lectures (18–25): poles and
zeros for MIMO systems, LQG/LQR control, and control design based on the Q parameterization
of stabilizing controllers (Q design). The main goal of these chapters is to introduce advanced
supporting material for modern control design techniques. Although LQG/LQR is covered in some
other linear systems books, it is generally not covered at the same level of detail (in particular the
frequency domain properties of LQG/LQR, loop shaping, and loop transfer recovery). In fact, there
are few textbooks in print that cover the same material, in spite of the fact that these are classical
results and LQG/LQR is the most widely used form of state-space control. By covering the ARE in
detail, I set the stage for H-2 and H-infinity.

In writing this book, it is assumed that the reader is familiar with linear algebra and ordinary dif-
ferential equations at an undergraduate level. To profit most from this textbook, the reader would also
have taken an undergraduate course in classical control, but these notes are basically self-contained
regarding control concepts.

Organization and Style
This book was purposely designed as a textbook, and because it is not an adaptation of a reference
text, the main emphasis is on presenting material in a fashion that makes it easy for students to
understand. The material is organized in lectures, and it is divided so that on average each lecture
can be covered in 2 hours of class time. The sequence in which the material appears was selected to
emphasize continuity and motivate the need for new concepts as they are introduced.

In writing this manuscript there was a conscious effort to reduce verbosity. This is not to say
that I did not attempt to motivate the concepts or discuss their significance (on the contrary), but
the amount of text was kept to a minimum. Typically, discussion, remarks, and side comments
are relegated to marginal notes so that the reader can easily follow the material presented without Attention! When a marginal note

finishes with “� p. XXX,” more
information about that topic can
be found on page XXX.

distraction and yet enjoy the benefit of comments on the notation and terminology, or be made aware
that a there is a related MATLAB R� command.

vii
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I have also not included a chapter or appendix that summarizes background material (e.g., a
section on linear algebra or nonlinear differential equations). Linear algebra is a key prerequisite to
this course, and it is my experience that referring a student who is weak on linear algebra to a brief
chapter on the subject is useless (and sometime even counter-productive). I do review advanced
concepts (e.g., singular values, matrix norms, and the Jordan normal form), but this is done at the
points in the text where these concepts are needed. I also take this approach to referring the reader
to MATLAB R�, by introducing the commands only where the relevant concepts appear in the text.

Learning and Teaching using This Textbook
Lectures 1–17 can be the basis for a one-quarter graduate course on linear systems theory. At the
University of California at Santa Barbara I teach essentially all the material in these lectures in one
quarter with about 40 hours of class time. In the interest of time, the material in the Additional
Notes sections and some of the discrete-time proofs can be skipped. For a semester-long course,
one could also include a selection of the advanced topics covered in the second part of the book
(Lectures 18–25).

I have tailored the organization of the textbook to simplify the teaching and learning of the ma-
terial. In particular, the sequence of the chapters emphasizes continuity, with each chapter appearing
motivated and in logical sequence with the preceding ones. I always avoid introducing a concept
in one chapter and using it again only many chapters later. It has been my experience that even if
this may be economical in terms of space, it is pedagogically counterproductive. The chapters are
balanced in length so that on average each can be covered in roughly 2 hours of lecture time. Not
only does this greatly aid the instructor’s planning, but it makes it easier for the students to review
the materials taught in class.

As I have taught this material, I have noticed that some students arrive at graduate school without
proper training in formal reasoning. In particular, many students come with limited understanding
of the basic logical arguments behind mathematical proofs. A course in linear systems provides a
superb opportunity to overcome this difficulty. To this effect, I have annotated several proofs with
marginal notes that explain general techniques for constructing proofs: contradiction, contraposition,
the difference between necessity and sufficiency, etc. (see, e.g., Note 8 on page 75). Throughout
the manuscript, I have also structured the proofs to make them as intuitive as possible, rather than
simply as short as possible. All mathematical derivations emphasize the aspects that give insight
into the material presented and do not dwell on technical aspects of small consequence that merely
bore the students. Often these technical details are relegated to marginal notes or exercises.

MATLAB R�

Computational tools such as the MATLAB R� software environment offer a significant step forward
in teaching linear systems because they allow students to solve numerical problems without being
exposed to a detailed treatment of numerical computations. By systematically annotating the theoret-
ical developments with marginal notes that discuss the relevant commands available in MATLAB R�,
this textbook helps students learn to use these tools. An example of this can be found, e.g., in
MATLAB R� Hint 9 in page 12, which is further expanded on page 48.

The commands discussed in the “MATLAB R� Hints” assume that the reader has version R2007b
of MATLAB R� with Simulink R�, the Symbolic Math Toolbox, and the Control System Toolbox.
However, essentially all these commands have been fairly stable for several versions so they are
likely to work with previous and subsequent versions for several years to come. Lecture 25 assumes
that the reader has installed CVX version 1.2, which is a MATLAB R� package for Disciplined Con-
vex Programming, distributed under the GNU General Public License 2.0 [8].

MATLAB R� and Simulink R� are registered trademarks of The MathWorks Inc. and are used
with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book.
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This book’s use or discussion of MATLAB R�, Simulink R�, or related products does not constitute an
endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB R� and Simulink R� software.

Web

~The reader is referred to the author’s website at www.ece.ucsb.edu/ hespanha for corrections,
updates on MATLAB R� and CVX, and other supplemental material.
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Lecture 1

State-Space Linear Systems

Contents
This lecture introduces state-space linear systems, which are the main focus of this course.

1. State-space linear systems (continuous and discrete time)
2. Block diagrams and interconnections
3. System representation and interconnection in MATLAB R�

1.1 State-Space Linear Systems
A continuous-time state-space linear system is defined by the following two equations:

�x���t� � � � � �A���t���x���t� � ����B�t�u�t�, x ���Rn, u � R
k, (1.1a)

y t C t x t D�t�u�t�, y R
m. (1.1b)

The signals Notation. A function of time (ei-
ther continuous t � �0,�� or dis-
crete t � N) is called a signal.u :�0,��� R

k, x :�0,��� R
n, y :�0,��� R

m,

are called the input, state, and output of the system. The first-order differential equation (1.1a) is
called the state equation and (1.1b) is called the output equation.

The equations (1.1) express an input-output relationship between the input signal u��� and the
output signal y���. For a given input u���, we need to solve the state equation to determine the state
x��� and then replace it in the output equation to obtain the output y���.

Attention! For the same input u���, different choices of the initial condition x�0� on the state equa-
Notation 1. We write u P

� y to
mean that “y is one of the outputs
that corresponds to u,” the (op-
tional) label P specifies the sys-
tem under consideration.

tion will result in different state trajectories x���. Consequently, one input u��� generally corresponds
to several possible outputs y���. �

1.1.1 Terminology and Notation
When the input signal u takes scalar values (k � 1) the system is called single-input (SI), otherwise
it is called multiple-input (MI). When the output signal y takes scalar values (m � 1) the system is
called single-output (SO), otherwise it is called multiple-output (MO).

When there is no state equation (n� 0) and we have simply

y�t� � D�t�u�t�, u � R
k,y � R

m,

the system is called memoryless.

5
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When all the matrices A�t�, B�t�, C�t�, D�t� are constant �t � 0, the system (1.1) is called aNote. The rationale behind this
terminology is explained in Lec-
ture 3.

Linear Time-Invariant (LTI) system. In the general case, (1.1) is called a Linear Time-Varying (LTV)
system to emphasize that time invariance is not being assumed. For example, Lecture 3 discusses
impulse responses of LTV systems and transfer functions of LTI systems. This terminology indicates
that the impulse response concept applies to both LTV and LTI systems, but the transfer function
concept is meaningful only for LTI systems.

To keep formulas short, in the following we abbreviate (1.1) to

�x� A�t�x�B�t�u, y�C�t�x�D�t�u, x � R
n, u � R

k, y � R
m (CLTV)

and in the time-invariant case, we further shorten this to
MATLAB R� Hint 1.
ss(A,B,C,D) creates the
continuous-time LTI state-space
system (CLTI). � p. 6

�x� Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m. (CLTI)

Since these equations appear in the text numerous times, we use the special tags (CLTV) and (CLTI)
to identify them.

1.1.2 Discrete-Time Case
A discrete-time state-space linear system is defined by the following two equations:

x�t�1� � � ���A���t���x���t� � ����B�t�u�t�, x ���Rn, u � R
k, (1.2a)

y�t C t x t D�t�u�t�, y R
m. (1.2b)

All the terminology introduced for continuous-time systems also applies to discrete time, except that
now the domain of the signals is N� �0,1,2, . . .�, instead of the interval �0,��.

In discrete-time systems the state equation is a difference equation, instead of a first-order dif-Attention! One input generally
corresponds to several outputs,
because one may consider sev-
eral initial conditions for the state
equation.

ferential equation. However, the input-output relationship between input and output is analogous.
For a given input u���, we need to solve the state (difference) equation to determine the state x���
and then replace it in the output equation to obtain the output y���.

To keep formulas short, in the sequel we abbreviate the time-invariant case of (1.2) toNote. Since this equation appears
in the text numerous times, we use
the special tag (DLTI) to identify
it. The tag (DLTV) is used to
identify the time-varying case in
(1.2).

x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m. (DLTI)

1.1.3 State-Space Systems in MATLAB R�

MATLAB R� has several commands to create and manipulate LTI systems. The following basic
command is used to create an LTI system.

MATLAB R� Hint 1 (ss). The command sys ss=ss(A,B,C,D) assigns to sys ss a continuous-Note. Initial conditions to LTI
state-space MATLAB R� systems
are specified at simulation time.

time LTI state-space MATLAB R� system of the form

�x� Ax�Bu, y� Cx�Du.

Optionally, one can specify the names of the inputs, outputs, and state to be used in subsequent plots
as follows:

sys_ss=ss(A,B,C,D,...

’InputName’, {’input1’, ’input2’,...},...

’OutputName’,{’output1’,’output2’,...},...

’StateName’, {’input1’, ’input2’,...});

The number of elements in the bracketed lists must match the number of inputs,outputs, and state
variables.

For discrete-time systems, one should instead use the command sys ss=ss(A,B,C,D,Ts), where
Ts is the sampling time, or -1 if one does not want to specify it. �



System Representation 7

P
u y

(a) single block

�

�

P1

P2

u y

y1

y2
(b) parallel

P1 P2
u yz

(c) cascade

�
� P1

u yz

(d) negative feedback

Figure 1.1. Block diagrams.

1.2 Block Diagrams
Note. It is common practice to de-
note the input and output signals
of a system by u and y, respec-
tively. However, when dealing
with interconnections, one must
use different symbols for each sig-
nal, so this convention is aban-
doned.

It is convenient to represent systems by block diagrams as in Figure 1.1. These diagrams generally
serve as compact representations for complex equations.

the directions of the arrows specify which is which. The two-port block in Figure 1.1(a) represents
a system with input u��� and output y���, where

Although not explicitly represented in the diagram, one must keep in mind the existence of the
state, which affects the output through the initial condition.

1.2.1 Interconnections
Interconnections of block diagrams are especially useful to highlight special structures in state-
space equations. To understand what is meant by this, assume that the blocks P1 and P2 that appear
in Figure 1.1 are the two LTI systems

P1 : �x1 ���A1x1���B1u1, y1 ���C1x1���D1u1, x ���Rn1 , u ���Rk1 , y1 ���Rm1 ,

P2 : �x2 A2x2 B2u2, y2 C2x2 D2u2, x R
n2 , u R

k2 , y2 R
m2 .

The general procedure to obtain the state-space for an interconnection consists of stacking the states
of the individual subsystems in a tall vector x and computing �x using the state and output equations
of the individual blocks. The output equation is also obtained from the output equations of the
subsystems.

In Figure 1.1(b) we have u� u1 � u2 and y� y1�y2, which corresponds to a parallel intercon-
nection. This figure represents the LTI system�

�x1
�x2

�� �A
1 0
0 A2

��x
1
x2

�
�
�
B1
B2

�
u, y� �

C1 C2��x1
x2

���D1�D2�u,

with state x� �x�1 x�2�� � R
n1�n2 . The parallel interconnection is responsible for the block-diagonal Notation. Given a vector (or

matrix) x, we denote its transpose
by x� .structure in the matrix

�
A1 0
0 A2

�
. A block-diagonal structure in this matrix indicates that the state-

space system can be decomposed as the parallel of two state-space systems with smaller states.

In Figure 1.1(c) we have u � u1, y � y2, and z � y1 � u2, which corresponds to a cascade
interconnection. This figure represents the LTI system�

�x1
�x2

�� �
A1 0

B2C1 A2

��x
1
x2

���
B1

B2D1

�
u, y� �

D2C1 C2
��x1

x2

�
�D2D1u,
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with state x� �x�1 x�2�� �R
n1�n2 . The cascade interconnection is responsible for the block-triangular

structure in the matrix
�

A1 0
B2C1 A2

�
and, in fact, a block-triangular structure in this matrix indicates

that the state-space system can be decomposed as a cascade of two state-space systems with smaller
states.

Note. How to arrive at equation In Figure 1.1(d) we have u1 � u� y1 and y � y1, which corresponds to a negative-feedback
(1.3)? Hint: Start with the output
equation.

interconnection. This figure represents the following LTI system

�x1 ����
A1�B1�I�D1��1C1

�
x1�B1

�
I��I�D1��1D1

�
u, (1.3a)

y �I�D1��1C1x1��I�D1��1D1u, (1.3b)

with state x1 � R
n1 . Sometimes feedback interconnections are ill-posed. In this example, this would

MATLAB R� Hint 2. To avoid
ill-posed feedback interconnec-
tions, MATLAB R�warns about
algebraic loops when one at-
tempts to close feedback loops
around systems like P1 with
nonzero D1 matrices (even when
I�D1 is invertible).

happen if the matrix I�D1 was singular.

The basic interconnections in Figure 1.1 can be combined to form arbitrarily complex diagrams.
The general procedure to obtain the final state-space system remains the same: Stack the states of
all subsystems in a tall vector x and compute �x using the state and output equations of the individual
blocks.

1.2.2 System Decomposition

+

+ �u yz

(a) �x� x�u, y� x

+

+P3 P4
u yz

(b) LTI system in (1.4)

Figure 1.2. Block diagram representation systems.

Block diagrams are also useful to represent complex systems as the interconnection of simple
MATLAB R� Hint 3. This type
of decomposition is especially
useful to build systems in
Simulink R� .

blocks. This can be seen through the following two examples:

1. The LTI system

�x� x�u, y� x

can be viewed as a feedback connection in Figure 1.2(a), where the integrator system
�
maps

each input z to the solutions y of

�y� z.

2. Consider the LTI system�
�x1
�x2

�� �1
1

0 3

��x
1
x2

���1
5

�
u, y� �

1 0

��x1
x2

�
. (1.4)

Writing these equations asNote. In general, this type of de-
composition is not unique, since
there may be many ways to repre-
sent a system as the interconnec-
tion of simpler systems.

�x2 � 3x2�5u, y2 � x2 (1.5)

and

�x1 � x1� z, y� x1, (1.6)

where z� x2�u, we conclude that (1.4) can be viewed as the block diagram in Figure 1.2(b),
where P3 corresponds to the LTI system (1.5) with input u and output y2 and P4 corresponds
to the LTI systems (1.6) with input z and output y.
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1.2.3 System Interconnections with MATLAB R�

MATLAB R� Hint 4 (series). The command sys=series(sys1,sys2) or, alternatively, Attention! Note the different
order in which sys1 and sys2

appear in the two forms of this
command.

sys=sys2*sys1 creates a system sys from the cascade connection of the system sys1 whose
output is connected to the input of sys2.

For MIMO systems, one can use sys=series(sys1,sys2,outputs1,inputs2), where
outputs1 and inputs2 are vectors that specify the outputs of sys1 and inputs of sys2, respec-
tively, that should be connected. These two vectors should have the same size and contain integer
indexes starting at 1. �

MATLAB R� Hint 5 (parallel). The command sys=parallel(sys1,sys2) or,
alternatively, sys=sys1+sys2 creates a system sys from the parallel connection of the systems
sys1 and sys2.

For MIMO systems, one can use
sys=parallel(sys1,sys2,inputs1,inputs2,outputs1,outputs2), where inputs1 and
inputs2 specify which inputs should be connected and outputs1 and outputs2 specify which
outputs should be added. All four vectors should contain integer indexes starting at 1. �

MATLAB R� Hint 6 (append). The command sys=append(sys1,sys2,...,sysn)creates a
system sys whose inputs are the union of the inputs of all the systems sys1, sys2, . . . , sysn and
whose outputs are the union of the outputs of all the same systems. The dynamics are maintained
decoupled.

�

MATLAB R� Hint 7 (feedback). The command sys=feedback(sys1,sys2) creates a system
sys from the negative feedback interconnection of the system sys1 in the forward loop, with the
system sys2 in the backward loop. A positive feedback interconnection can be obtained using
sys=feedback(sys1,sys2,+1).

For MIMO systems, one can use
sys=feedback(sys1,sys2,feedinputs,feedoutputs,sign), where feedinputs specify
which inputs of the forward-loop system sys1 receive feedback from sys2, feedoutputs spec-
ify which outputs of the forward-loop system sys1 are feedback to sys2, and sign � ��1,�1�
specifies whether a negative or positive feedback configuration should be used. More details can be
obtained by using help feedback. �

1.3 Exercises
1.1 (Block diagram decomposition). Consider a system P1 that maps each input u to the solutions y
of �

�x1
�x2

�� �
1 0
�1 2

��
x

1
x2

���4
1

�
u, y� �

1 3

��x1
x2

�
.

Represent this system in terms of a block diagram consisting only of

• integrator systems, represented by the symbol
�
, that map their input u���� R to the solution

y���� R of �y� u;

• summation blocks, represented by the symbol
�
, that map their input u���� R

k to the output

y�t� ��k
i�1 ui�t�, �t � 0; and

• gain memoryless systems, represented by the symbol g , that map their input u���� R to the
output y�t� � gu�t� � R, �t � 0 for some g � R. �
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Lecture 2

Linearization

Contents
This lecture addresses how state-space linear systems arise in control.

1. Local linearization around an equilibrium point
2. Local linearization around a trajectory
3. Feedback linearization

2.1 State-Space Nonlinear Systems
Linear voltage versus current laws for resistors, force versus displacement laws for springs, force
versus velocity laws for friction, etc., are only approximations to more complex nonlinear relation-
ships. Since linear systems are the exception rather than the rule, a more reasonable class of systems
to study appear to be those defined by nonlinear differential equations of the form

�x� f �x,u�, y� g�x,u�, x � R
n, u � R

k, y � R
m. (2.1)

It turns out that

1. one can establish properties of (2.1) by analyzing state-space linear systems that approximate
it, and

2. one can design feedback controllers for (2.1) by reducing the problem to one of designing
controllers for state-space linear systems.

2.2 Local Linearization around an Equilibrium Point
Definition 2.1 (Equilibrium). A pair �xeq,ueq� � R

n �R
k is called an equilibrium point of (2.1) if

f �xeq,ueq� � 0. In this case,
u�t� � ueq, x�t� � xeq, y�t� � yeq� g�xeq,ueq�, �t � 0

is a solution to (2.1). �

Suppose now that we apply to (2.1) an input

u�t� � ueq�δu�t�, �t � 0
that is close but not equal to ueq and that the initial condition

x�0� � xeq�δxeq

11
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is close but not quite equal to xeq. Then the corresponding output y�t� to (2.1) will be close but not
equal to yeq � g�xeq,ueq�. To investigate how much x�t� and y�t� are perturbed by δu��� and δxeq,
we define

δx�t�� x�t�� xeq, δy�t�� y�t�� yeq, �t � 0

and use (2.1) to conclude that

δy� g�x,u�� yeq � g�xeq�δx,ueq�δu��g�xeq,ueq�.

Expanding g��� as a Taylor series around �xeq,ueq�, we obtain
δy� �g�xeq,ueq�

�x
δx� �g�xeq,ueq�

�u δu�O��δx�2��O��δu�2�, (2.2)

where

�g�x,u�
�x

� ���

gi�x,u�
�x j �i j

� �

R
m�n,

�g�x,u�
�u

� ���

gi�x,u�
�u j �i j

� �

R
m�k.

To determine the evolution of δx, we take its time derivative

�δx� �x� f �x,u� � f �xeq�δx,ueq�δu�

and also expand f as a Taylor series around �xeq,ueq�, which yields

�

δx� � f �xeq,ueq�
�x

δx� � f �xeq,ueq�
�u δu�O��δx�2��O��δu�2�, (2.3)

where

� f �x,u�
�x �

���
fi�x,u�
�x j �i j

� �

R
n�n,

� f �x,u�
�u �

���

fi�x,u�
�u j �i j

� �

R
n�k.

By dropping all but the first-order terms in (2.2) and (2.3), we obtain a local linearization of (2.1)
around an equilibrium point.

Definition 2.2 (Local linearization around an equilibrium point). The LTI system
MATLAB R� Hint 8.
jacobian(f,x) can be used
to symbolically compute the
matrices in (2.5). � p. 48

MATLAB R� Hint 9. Symbolic
computations in MATLAB R� will
be discussed in Lecture 6. � p. 48

�δx� Aδx�Bδu, δy�Cδx�Dδu (2.4)

defined by the following Jacobian matrices
A� � f �xeq,ueq�

�x ,

B� � f �xeq,ueq�
�u ,

C� �g�xeq,ueq�
�x ,

D� �g�xeq,ueq�
�u (2.5)

is called the local linearization of (2.1) around the equilibrium point �xeq,ueq�. �

Attention! The local linearization (2.4) approximates (2.2) and (2.3) well only while δx and δu re-
main small. Therefore a key property that needs to be checked to make sure that a local linearization
is valid is that δu and δx remain small along solutions to the linearized system. �

Attention! The local linearization (2.4) expresses only a relation between perturbations on the in-
put, state, and output of the original system (2.1). Consequently, the input, output, and state of the
local linearization system (2.4) are perturbation values with respect to ueq, yeq, and xeq, respectively
(cf. Figure 2.1). �
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u y

x

nonlinear
system

(a) Nonlinear system

u

ueq

δu
y

yeq

δy

x

xeq

δx

�

�

�
�

�

�
local

linearization

(b) Local approximation

Figure 2.1. Nonlinear system (a) and its local approximation (b) obtained from a local linearization.

Discrete-Time Case
Consider the following discrete-time nonlinear system

x� � f �x,u�, y� g�x,u�, x � R
n, u � R

k, y � R
m. (2.6)

Definition 2.3 (Equilibrium). A pair �xeq,ueq� � R
n �R

k is called an equilibrium point of (2.6) if
f �xeq,ueq� � xeq. In this case,

u�t� � ueq, x�t� � xeq, y�t� � yeq� g�xeq,ueq�, �t � N

is a solution to (2.6). �

Definition 2.4 (Local linearization around an equilibrium point). The discrete-time LTI system

δx� � Aδx�Bδu, δy�Cδx�Dδu,

defined by the following Jacobian matrices
A� � f �xeq,ueq�

�x ,

B� � f �xeq,ueq�
�u ,

C� �g�xeq,ueq�
�x ,

D� �g�xeq,ueq�
�u

is called the local linearization of (2.6) around the equilibrium point �xeq,ueq�. �

2.3 Local Linearization around a Trajectory
Often it is convenient to consider perturbations around an arbitrary solution to (2.1), instead of an
equilibrium point. To do this, suppose that

usol : �0,��� R
k, xsol : �0,��� R

n, ysol : �0,��� R
m

is a solution to (2.1) (not necessarily constant). Assuming that we apply to (2.1) an input

u�t� � usol�t��δu�t�, �t � 0

that is close but not equal to usol�t� and that the initial condition
x�0� � xsol�0��δxsol

is close but not quite equal to xsol�0�. Then the corresponding output y�t� will be close but not equal
to ysol�t�. To investigate how much x�t� and y�t� are perturbed by this, we now define

δx�t�� x�t�� xsol�t�, δy�t�� y�t�� ysol�t�, �t � 0.
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Proceeding as before, we conclude that

�δx� � f �xsol�t�,usol�t��
�x δx� � f �xsol�t�,usol�t��

�u δu�O��δx�2��O��δu�2�,

δy� �g�xsol�t�,usol�t��
�x δx� �g�xsol�t�,usol�t��

�u δu�O��δx�2��O��δu�2�,
with the main difference with respect to (2.2) and (2.3) being that the derivatives are computed along
xsol�t� and usol�t�. By dropping all but the first-order terms, we obtain a local linearization of (2.1)
around a trajectory.

Definition 2.5 (Local linearization around a trajectory). The state-space linear system

�δx� A�t�δx�B�t�δu, δy�C�t�δx�D�t�δu
defined by the following Jacobian matrices

A�t�� � f �xsol�t�,usol�t��
�x , B�t�� � f �xsol�t�,usol�t��

�u ,

C�t�� �g�xsol�t�,usol�t��
�x , D�t�� �g�xsol�t�,usol�t��

�u
is called the local linearization of (2.1) around the trajectory

�
xsol���,usol����. �

Attention! In general, local linearizations around trajectories lead to LTV systems because the par-
tial derivatives need to be computed along the trajectory. However, for some nonlinear systems
there are trajectories for which local linearizations actually lead to LTI systems. For models of ve-
hicles (cars, airplanes, helicopters, hovercraft, submarines, etc.) trajectories that lead to LTI local
linearizations are called trimming trajectories. They often correspond to motion along straight lines,
circumferences, or helices (see Exercise 2.2). �

2.4 Feedback Linearization
In this section we explore another mechanism by which linear systems arise out of nonlinear ones.
We start by restricting our attention to mechanical systems.

2.4.1 Mechanical Systems
The equations of motion of many mechanical systems can be written in the following formNote. These include robot arms,

mobile robots, airplanes, heli-
copters, underwater vehicles, hov-
ercraft, etc.

M�q���B�q, �q� �q�G�q� � F, (2.7)

where q � R
k is a k-vector with linear and/or angular positions called the generalized coordinates

vector,M�q� is a k�k nonsingular symmetric positive-definite matrix called themass matrix, F �RkNote. A symmetric matrix M
is positive-definite if x�Mx � 0,
�x� 0 (cf. Section 8.4).

is a k-vector with applied forces and/or torques called the applied forces vector, G�q� is a k-vector
sometimes called the conservative forces vector, and B�q, �q� is a k� k matrix sometimes called the

Note 1. A force is conservative if
the total work of moving an object
from one point to another is inde-
pendent of the path taken. � p. 14

centrifugal/Coriolis/friction matrix. For systems with no friction, we generally have

�q�B�q, �q� �q � 0, � �q � R
k,

whereas for systems with friction

�q�B�q, �q� �q � 0, � �q � R
k,

with equality only when �q� 0.
Note 1 (Conservative force). A force is conservative if the total workW � �B

A G�q� �dq of moving an
object from point A to point B is independent of the path that the object took. The term “conservative
force” comes from the fact that objects moving under such forces maintain their total mechanical
energy. Typically G accounts for gravity and spring forces. �
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2.4.2 Examples

θ

�

g

m

θ1

θ2

�1

�2

m1

m2

Figure 2.2. Inverted pendulum.
Figure 2.3. Two-link robot manipulator.

Example 2.1 (Inverted pendulum). The dynamics of the inverted pendulum shown in Figure 2.2 are
given by

m�2 �θ � mg�sinθ �b �θ �T,

where T denotes a torque applied at the base and g is the gravitational acceleration. This equation
can be identified with (2.7), provided that we define

q� θ , F � T, M�q�� m�2, B�q�� b,
G�q���mg�sinθ .

When the base of the pendulum is connected to a motor, one can regard the torque T as the control Note. When the pendulum is
attached to a cart and the
control input is the cart’s
acceleration �

z,
we have T � �m��zcosθ . This
makes the system more difficult
to control. Things become espe-
cially difficult around θ ��π�2.
Why?

input. �

Example 2.2 (Robot arm). The dynamics of the robot arm with two revolution joints shown in
Figure 2.3 can be written as in (2.7), provided that we define

q�
�
θ1
θ2

�
, F �

�
τ1
τ2

�
,

where τ1 and τ2 denote torques applied at the joints. For this system

M�q��
�
m2�22�2m2�1�2 cosθ2��m1�m2��21 m2�22�m2�1�2 cosθ2

m2�1�2 cosθ2�m2�22 m2�22

�
B�q, �q�� ��2m2�1�2 �θ2 sinθ2 �m2�1�2 �θ2 sinθ2

m2�1�2 �θ1 sinθ2 0

�
G�q��

�
m2g�2 cos�θ1�θ2���m1�m2�g�1 cosθ1

m2g�2 cos�θ1�θ2�
�
,

where g is the gravitational acceleration [4, p. 202, 205]. �

Example 2.3 (Hovercraft). Figure 2.4 shows a small hovercraft built at Caltech [5]. Its dynamics
can be written as in (2.7), provided that we define

q� ��x
y

θ��
,

�F � ����Fs���Fp���cosθ �F� sinθ
Fs Fp sinθ �F� cosθ

��Fs�Fp�

�� ,



16 João P. Hespanha

x

y

θ

Fp

Fs

Figure 2.4. Hovercraft.

where Fs, Fp, and F� denote the starboard, port, and lateral fan forces. The vehicle in the photograph
does not have a lateral fan, which means that F� � 0. It is therefore called underactuated because
the number of controls (Fs and Fp) is smaller than the number of degrees of freedom (x, y, and θ ).
For this system

M�q��
��m 0 0
0 m 0
0 0 J

�� , B�q��
��dv 0 0
0 dv 0
0 0 dω

�� ,

where m� 5.5 kg is the mass of the vehicle, J � 0.047 kgm2 is its rotational inertia, dv � 4.5 is the
viscous friction coefficient, dω � .41 is the coefficient of rotational friction, and � � 0.123m is the
moment arm of the forces. The geometric center and the center of mass of the vehicle are assumed
to coincide [5]. �

2.4.3 Feedback Linearization Control Design
A mechanical system is called fully actuated when one has control over the whole vector or gen-
eralized forces. For such systems we regard u� F as the control input and we can use feedback
linearization to design nonlinear controllers. In particular, by choosing

F � u� unl�q, �q��M�q�v, unl�q, �q�� B�q, �q� �q�G�q�,
we obtain

M�q���B�q, �q� �q�G�q� � B�q, �q� �q�G�q��M�q�v � �q� v.

In practice, we transformed the original nonlinear process into a (linear) double integrator, whose
state-space model is given by

�x�
�
0 I
0 0

�
x�

�
0
I

�
v, y� �

I 0
�
x, x�

�
q
�q

� �

R
2k. (2.8)

We can now use linear methods to find a controller for v that results in adequate closed-loop perfor-
mance for the output y� q, e.g., a proportional-derivative (PD) controller

v��KPq�KD �q

that leads to the following closed-loop dynamics:

�x�
�
0 I

�KP �KD�
x, y� �

I 0
�
x.

Figure 2.5 shows a diagram of the overall closed-loop system. From an input-output perspective,
the system in the dashed block behaves like the LTI system (2.8).
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−

+

+

uv

unl

�
q
�q

�

B��� �q�G���

M��� M����q�B��� �q�G��� � uKPq�KD �q

Figure 2.5. Feedback linearization controller.

Attention! Measurement noise can lead to problems in feedback linearization controllers. When
the measurements of q and �q are affected by noise, we have

M�q���B�q, �q� �q�G�q� � unl�q�n, �q�w��M�q�n�v,

where n is measurement noise in the q sensors and w is the measurement noise in the �q sensors. In
this case

M�q���B�q, �q� �q�G�q� � B�q�n, �q�w�� �q�w��G�q�n��M�q�n�v, (2.9)

and (with some work) one can show that

�q� �
I�Δ

�
v�d, (2.10)

where

Δ�M�q��1�M�q�n��M�q��,
d �M�q��1

��
B�q�n, �q�w��B�q, �q�� �q�B�q�n, �q�w�w�G�q�n��G�q�

�
.

Since Δ and d can be very large, with feedback linearization controllers it is particularly important
to make sure that the controller selected for v is robust with respect to the multiplicative uncertainty
Δ and good at rejecting the disturbance d in (2.10). �

2.4.4 Feedback Linearization for Systems in Strict Feedback Form
Defining x1 � q and x2 � �q, the equations seen before for a mechanical system can be written as

�x1 � x2

�x2 �M�1�x1�
�
�B�x1,x2�x2�G�x1��u

�
and feedback linearization uses a portion of the control effort u to cancel the nonlinearities in the
x2 equation. This idea can be generalized to larger classes of systems such as those in the so-called
strict feedback form, Note. See Exercise 2.5 for sys-

tems in strict feedback form of or-
der higher than 2.�x1 ���f1���x1�� x2

�x2 f2 x1,x2��u.

For this system we cannot quite cancel the term f1�x1� in the first equation using u, but we can make
it linear by introducing a new variable, Note. This procedure is called

Backstepping and can be signifi-
cantly generalized [10].z2� f1�x1�� x2,

which we take as the second component of the state, instead of x2. In this case, we get

�x1 � z2
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�z2 � � � �f1x1 �x1� �x1� �x2 � � f1
�x1 �x1�� f1�x1�� x2�� f2�x1,x2��u.

Now we can use a portion of u to cancel the nonlinear terms that arise in the equation for z2 and use
the rest to control the resulting linear dynamics:

u� unl�x1,x2�� v, unl�x1,x2� � �� � �f1x1 �x1�� f1�x1�� x2�� f2�x1,x2�,

which leads to

�x1 ���z2
�z2 v.

The reader is referred, e.g., to [9] for a much more detailed discussion on feedback linearization.

2.5 Exercises

θ

�

g

m

From Newton’s law:

m�2 �θ � mg�sinθ �b �θ �T,

where T denotes a torque applied at the
base, and g is the gravitational accelera-
tion.

Figure 2.6. Inverted pendulum

2.1 (Local linearization around equilibria). Consider the inverted pendulum in Figure 2.6 and
assume the input and output to the system are the signals u and y defined as

T � sat�u�, y� θ ,

where “sat” denotes the unit-slope saturation function that truncates u at �1 and �1.
(a) Linearize this system around the equilibrium point for which θ � 0.

is free to rotate all the way to this configuration without hitting the table). (b)

Linearize this system around the equilibrium point for which θ � π (assume that the pendulum

(c) Linearize this system around the equilibrium point for which θ �
π

4 .

Does such an equilibrium point always exist?

(d) Assume that b ���1�2 and mg� � 1�4. Compute the torque T �t� needed for the
pendulum to fall from θ �0� 0 with constant velocity �θ�t� � 1, �t � 0. Linearize the
system around this trajectory. �

2.2 (Local linearization around a trajectory). A single-wheel cart (unicycle) moving on the plane
with linear velocity v and angular velocity ω can be modeled by the nonlinear system

�px � vcosθ , �py � vsinθ , �θ � ω , (2.11)

where �px, py� denote the Cartesian coordinates of the wheel and θ its orientation. Regard this as a
system with input u�

�
v ω

�� � R
2.
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(a) Construct a state-space model for this system with state

x�
��x1x2
x3

���
�� px cosθ ��py�1�sinθ
�px sinθ ��py�1�cosθ

θ

��
and output y�

�
x1 x2

�� � R
2.

(b) Compute a local linearization for this system around the equilibrium point xeq � 0, ueq � 0.

system. (c) Show that ω�t� � v�t� � 1, px�t� � sin t, py�t� � 1� cost, θ �t� � t, �t � 0 is a
solution to the

(d) Show that a local linearization of the system around this trajectory results in an LTI system. Attention! Writing the system in
the carefully chosen coordinates
x1,x2,x3 is crucial to getting an
LTI linearization.

If one tried
to linearize this system in the
original coordinates px, py,θ with
dynamics given by (2.11), one
would get an LTV system.

�

2.3 (Feedback linearization controller). Consider the inverted pendulum in Figure 2.6.

(a) Assume that you can directly control the system in torque, i.e., that the control input is u� T .
Design a feedback linearization controller to drive the pendulum to the upright position. Use the
following values for the parameters: �� 1m, m� 1 kg, b� 0.1Nm�1 s�1, and g � 9.8m s�
2.
Verify the performance of your system in the presence of measurement noise using Simulink.

(b) Assume now that the pendulum is mounted on a cart and that you can control the cart’s jerk,
which is the derivative of its acceleration a. In this case,

T ��m�acosθ ,
�a� u.

Design a feedback linearization controller for the new system.

What happens around θ ��π�2?
Note that, unfortunately, the pendulum needs to pass by one of these points for a swing-up, i.e.,
the motion from θ � π (pendulum down) to θ � 0 (pendulum upright). �

2.4 (Feedback linearization with noise). Verify that (2.10) is indeed equivalent to (2.9), by solving
the latter equation with respect to �. �

2.5 (Feedback linearization for systems in strict feedback form). Extend the procedure outlined in
Section 2.4.4 for systems in strict feedback form of order 2 to systems in strict feedback of any order
n� 2:

�x1 ���f1���x1�� x2
�x2 f2 x1,x2�� x3
...
�xn � fn�x1,x2, . . . ,xn��u. �
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Lecture 3

Causality, Time Invariance, and
Linearity

Contents
This lecture introduces a few basic properties of state-space linear systems and some of their direct
consequences.

1. Basic system properties: causality, time invariance, and linearity
2. Characterization of all outputs: homogeneous and forced responses
3. Impulse response
4. Transfer function for time-invariant systems
5. Discrete-time case

Topics 2–4 are direct consequences of causality, time invariance, and linearity. They apply to
any system that exhibits these properties, even if such systems are not one of the state-space systems
introduced in Lecture 1. For example, they also apply to infinite-dimensional systems.

3.1 Basic Properties of LTV/LTI Systems
In this section we state three basic properties of LTV and LTI systems. All these properties are
simple consequences of results in subsequent lectures, so we will defer their proofs for later.

t t

t t

u y

ū ȳ

(a) Causal system
t t

t t

u y

ū ȳ

(b) Noncausal system

Figure 3.1. Causality.

All state-space systems introduced so far (both LTV and LTI) have the property that the output
before some time t does not depend on the input after time t (cf. Figure 3.1). Such systems are called
causal.

21
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Property P3.1 (Causality). The state-space system (CLTV) is causal in the sense that if u� y
Notation 1. We recall that u� y
means that “y is one of the outputs
that corresponds to u.” � p. 5

then, for every other input ū for which

Note. In words: if the inputs
match on �0,T � then the outputs
must match on �0,T � for appro-
priate initial conditions.

ū�t� � u�t�, �0� t � T

for some time T � 0, the system exhibits (at least) one output ȳ that satisfies

ȳ�t� � y�t�, �0� t � T. �

Attention! The statement of the causality property is not “for every input ū that matches u on �0,T �,
every output ȳ matches y on �0,T �.” In general, only one output ȳ (obtained with the same initial
condition) will match y. �

t

t

t

t

u y

ū ȳ

(a) Time-invariant system
tt

t t

u y

ū ȳ

(b) Not time-invariant system

Figure 3.2. Time invariance.

A key difference between the LTV and LTI systems introduced so far is that the latter have the
property that time-shifting of their inputs results in time-shifting of the output (cf. Figure 3.2). This
property justifies the terminology time-varying versus time-invariant for these systems.

Property P3.2 (Time invariance). The state-space system (CLTI) is time-invariant in the sense thatNote. In words: if the inputs are
time shifted, then the outputs will
also be time shifted, for appropri-
ate initial conditions.

if u� y then, for every scalar T � 0, we have ū� ȳ for

ū�t� � u�t�T �, �t � 0, and ȳ�t� � y�t�T �, �t � 0. �

Attention! Recall that ū� ȳ means that ȳ is one of the outputs corresponding to the input ū. In
general, the input ū has many other outputs (obtained from different initial conditions) that will not
match the time-shifted version of y. Moreover, the initial conditions used to obtain y and ȳ will not
be the same. �

Both the LTV and LTI systems have the property that they can be viewed as linear maps from
their inputs to appropriate outputs. This justifies the qualifier linear in LTV and LTI.

Notation 2. There is some
abuse in the LTV/LTI terminol-
ogy. � p. 22

Property P3.3 (Linearity). The state-space system (CLTV) is linear in the sense that for every

Note. In words: If u1 and u2 have
outputs y1 and y2, respectively,
then αy1� βy2 must be (one of
the) outputs to αu1�βu2, for ap-
propriate initial conditions.

α,β � R, if u1� y1 and u2� y2, then αu1�βu2� αy1�βy2. �

Attention! Recall that αu1�βu2� αy1�βy2 means that αy1�βy2 is one of the outputs cor-
responding to the input αu1� βu2. In general, there may be many other outputs (obtained from
different initial conditions) that will not be of this form. �

Notation 2 (LTV and LTI). We use LTV and LTI to denote the continuous-time systems given by
the equations (CLTV) and (CLTI), respectively, or the discrete-time systems (DLTV) and (DLTI),
respectively. There is some abuse in this terminology because there are many linear time-invariant
and time-varying systems that cannot be expressed by these state-space equations. This is the case,
e.g., of infinite-dimensional systems. �
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3.2 Characterization of All Outputs to a Given Input
Linearity allows one to use a single output y f corresponding to a given input u to construct all
remaining outputs corresponding to u.

1. Let y be another output associated with the given input u. Since we can write the zero input as
0 � u� u, by linearity we conclude that y� y f must necessarily be an output corresponding
to the zero input: Notation. An output correspond-

ing to the zero input is called a ho-
mogeneous response.

�
u� y f
u� y

� 0� y� y f .

2. Conversely, suppose that one is given an output yh corresponding to the zero input. Since
u� u�0, we conclude that y� y f � yh is another output corresponding to u:�

u� y f
0� yh

� u� y f � yh.

The following result summarizes the two observations above.

Theorem 3.1. Let y f be an output corresponding to a given input u. All outputs corresponding to u
can be obtained by

y� y f � yh,

where yh is an output corresponding to the zero input. �

This means that to construct all outputs corresponding to u, it is enough to known how to solve
the following two problems:

1. Find one particular output corresponding to the input u.

2. Find all outputs corresponding to the zero input.

The remainder of this section addresses the first problem.

3.3 Impulse Response

Δ

1
Δ

δΔ�t�

��
0 δΔ�t�dt � 11

0 Δ t
(a) Pulse

Δ

1

ΔδΔ�t� τ�
Δ

τ τ�Δ t
(b) Time-shifted pulse

u�t�
uΔ�t�

t
(c) Step approximation

Figure 3.3. Step approximation to a continuous-time signal.

Consider a linear SISO system and let δΔ denote the unit-area pulse signal δΔ in Figure 3.3(a).
Using δΔ, we can write an approximation to an input signal u : �0,��� R as in Figure 3.3(c):

uΔ�t��
��
k�0

u�kΔ�ΔδΔ�t� kΔ�, �t � 0. (3.1)
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For each τ � 0, let gΔ�t,τ�, t � 0 be an output corresponding to the input δΔ�t� τ�:Note. This assumes we can
choose outputs gΔ�t,τ� for which
the series (3.2) converges. δΔ�t� τ�� gΔ�t,τ�.

Because of (3.1) and linearity

uΔ� yΔ�t��
��
k�0

Δu�kΔ�gΔ�t,kΔ�, �t � 0. (3.2)

Moreover, since uΔ � u as Δ� 0, we conclude that
Note 2. The last equality in (3.3)
is a consequence of the definition
of the Riemann integral. It implic-
itly assumes that the limit in (3.4)
and the integral in (3.3) both ex-
ist. � p. 27

u� y�t� � lim
Δ�0

yΔ�t� � lim
Δ�0

��
k�0

Δu�kΔ�gΔ�t,kΔ� �
� �
0

u�τ�g�t,τ�dτ, �t � 0 (3.3)

is an output corresponding to u, where g is defined by

g�t,τ� � lim
Δ�0

gΔ�t,τ�. (3.4)

output at time t, corresponding to an input pulse of zero length but unit area (a Dirac pulse)

applied at time τ . The function g�t,τ� can be viewed as the

For MIMO systems this generalizes to the following result.

Theorem 3.2 (Impulse response). Consider a continuous-time linear system with k inputs and m
outputs. There exists a matrix-valued signal G�t,τ� �

R
m�k such that for every input u, a corre-

sponding output is given byNotation. This output has the
special property that it is equal
to zero when u � 0, it is called
a forced or zero-state response.
The latter terminology will be-
come clear in Lecture 4.

Note. Equation (3.5) is generally
taken as the definition of impulse
response.

u� y�t� �
� �
0

G�t,τ�u�τ�dτ, �t � 0. (3.5)

The matrix-valued signal G�t,τ� � R
m�k is called a (continuous-time) impulse response. Its entry

gi j�t,τ� can be viewed as the ith entry of an output at time t, corresponding to a pulse of zero length
but unit area (a Dirac pulse) applied at the jth input at time τ . The impulse response G�t,τ� that
appears in (3.5) has several important properties that will be explored below.

Properties (Impulse response).

P3.4 For causal systems, one can choose the impulse response to satisfyNote. Soon we will see that the
impulse response of LTV/LTI sys-
tems is unique. Therefore one
could replace “one can choose the
impulse response to satisfy” by
“the impulse response satisfies.”

G�t,τ� � 0, �τ � t. (3.6)

P3.5 For time-invariant systems, one can choose the impulse response to satisfy

G�t�T,τ�T � � G�t,τ�, �t,τ,T � 0. (3.7)

In particular for τ � 0, t1 � T , t2 � t�TNotation. With some abuse of no-
tation, it is common to write sim-
ply G�t2 ,t1� � G�t2 � t1�, �t2 �
t1 � 0.

G�t2, t1� � G�t2� t1,0�, �t2 � t1 � 0,
which shows that G�t2, t1� is just a function of t2� t1.

P3.6 For causal, time-invariant systems, we can write (3.5) as

u� y�t� �
� t

0
G�t� τ�u�τ�dτ � �G�u��t�, �t � 0, (3.8)

where � denotes the convolution operator.
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Proof. For simplicity we assume a SISO system.

P3.4 By linearity u � 0� y � 0. Since the impulse δ �t� τ� at time τ is equal to u on �0,τ�, it
must have an output that is zero on �0,τ�; i.e.,

δ �t� τ� � 0, �0� t � τ � �ȳ : δ �t� τ�� ȳ and ȳ�t� � 0, �0� t � τ.

Choosing this input to construct the impulse response, we obtain (3.6).

P3.5 By the definition of impulse response

δ �t� τ�T �� y�t�� g�t,τ�T �,
where δ �t� τ�T � is an impulse at time τ �T . By time invariance, the impulse δ �t� τ� at
time τ must have an output ȳ such that

δ �t� τ�� ȳ�t� � y�t�T � � g�t�T,τ�T �.
By using this output to construct the impulse response, we obtain (3.7).

P3.6 Equation (3.8) is obtained by using P3.5 to replace G�t,τ� by G�t� τ� in (3.5). Because of
P3.4 we can further replace the� in the upper integration limit by t, since G�t,τ� � G�t� τ�
is equal to zero for τ � t.

For causal, time-invariant systems, P3.6 provides a convenient way to compute the forced re-
sponse. Due to the closed connection between the (time domain) convolution of signals and the
(frequency domain) product of their Laplace transforms, it is especially easy to compute forced
responses in the frequency domain. This is explored in the following sections.

3.4 Laplace Transform (review)
Given a continuous-time signal x�t�, t � 0 its unilateral Laplace transform is given by

MATLAB R� Hint 10.
laplace(F,t,s) symboli-
cally computes the Laplace
transform of F. � p. 48

MATLAB R� Hint 11.
ilaplace(F,s,t) symbol-
ically computes the inverse
Laplace transform of F. � p. 49

L �x�t��� x̂�s� �
� �
0

e�st x�t�dt, s � C.

The Laplace transform of the derivative �x�t� of the signal x�t� can be related to x̂�s� by

Note 3. The term �x�0� in (3.9)
does not appear in bilateral trans-
forms. � p. 27

L � �x�t��� �̂x�s� � sx̂�s�� x�0�, s � C. (3.9)

Given two signals x�t� and y�t�, t � 0, the Laplace transform of their convolution is given by

Note 4. Why does (3.10)
hold? � p. 28

L ��x� y��t��� L

��
ˆ

t

0
x�τ�y�t� τ�dτ

�
� x̂�s�y�s�. (3.10)

The Laplace Transform is covered extensively, e.g., in [14].

3.5 Transfer Function
Because of Theorem 3.2, the continuous-time linear system has an output

y�t� �
� �
0

G�t� τ�u�τ�dτ, �t � 0.

Taking its Laplace transform, one obtains

ŷ�s� �
� �
0

� �
0

e�stG�t� τ�u�τ�dτ dt.
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Changing the order of integration, one gets

ŷ�s� �
� �
0

� �
0

e�stG�t� τ�u�τ�dt dτ �
� �
0

�� �
0

e�s�t�τ�G�t� τ�dt
�
e�sτ u�τ�dτ. (3.11)

But because of causality,� �
0

e�s�t�τ�G�t� τ�dt �
� �
�τ
e�st̄G�t̄�dt̄ �

� �

0
e�st̄G�t̄�dt̄ � Ĝ�s�. (3.12)

Substituting (3.12) into (3.11) and removing Ĝ�s� from the integral, we conclude that

ŷ�s� �
� �
0

Ĝ�s�e�sτ u�τ�dτ �Ĝ�s�
� �
0

e�sτ u�τ�dτ � ˆ ˆG�s�u�s�.

ˆ
Theorem 3.3. For every input u, the Laplace transform of a corresponding output y is given by
y�s� � ˆ ˆG�s�u�s�. �

This result motivates the following definition.

Definition 3.1 (Transfer function). The transfer function of a continuous-time causal linear time-Notation. For MIMO systems the
transfer function is often called
the transfer matrix.

invariant system is the Laplace transform

Ĝ�s� � L �G�t���
� �
0

e�stG�t�dt, s � C.

of an impulse response G�t2, t1� � G�t2� t1�, �t2 � t1 � 0. �

3.6 Discrete-Time Case
A result absolutely analogous to Theorem 3.2 can be derived for discrete-time systems, except that
now the step approximation is actually exact, so there is no need to take limits and the result appears
as a summation.

Theorem 3.4 (Impulse response). Consider a discrete-time linear system with k inputs and m out-
puts. There exists a matrix-valued signal G�t,τ� �Rm�k such that for every input u, a corresponding
output is given by

u� y�t� �
��
τ�0

G�t,τ�u�τ�, �t � 0. (3.13)

The matrix-valued signalG�t,τ� �Rm�k is called a discrete-time impulse response. Its entry gi j�t,τ�
can be viewed as the ith entry of an output at time t, corresponding to a unit discrete-time pulse
applied at the jth input at time τ . The discrete-time impulse response also satisfies Properties P3.4–
P3.6.

For discrete-time systems the Z -transform plays a role analogous to the Laplace transform
in defining a transfer function, essentially by replacing all the integrals by summations. Given a
discrete-time signal y���, its (unilateral) Z -transform is given by

MATLAB R� Hint 12.
ztrans(F,t,z) computes
the Z -transform of F. � p. 49

MATLAB R� Hint 13.
iztrans(F,z,t) computes
the inverse Z -transform of
F. � p. 49

ŷ�z� � Z �y�t���
��
t�0

z�t y�t�, s � C.

TheZ -transform is covered extensively, e.g., in [14].
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Definition 3.2 (Transfer function). The transfer function of a discrete-time causal linear time-
invariant system is theZ -transform

Ĝ�z� � Z �G�t���
��
t�0

z�tG�t�, z � C

of an impulse response G�t2, t1� � G�t2� t1�, �t2 � t1 � 0. �

ˆ ˆ
Theorem 3.5. For every input u, the Z -transform of a corresponding output y is given by ŷ�z� �
G�z�u�z�. �

3.7 Additional Notes
Note 2 (Impulse response). To prove the last equality in (3.3), we use the fact that given a function
of two variables f �x,y�, Note. Verify that this is so using

the definition of limit of a func-
tion. Hint: Use a contradiction
argument.

lim
z�0

f �z,z� � lim
x�0

lim
y�0

f �x,y�,

as long as the two limits on the right-hand side exist. Using this in (3.3), we conclude that

y�t� � lim
Δ�0

lim
ε�0

��
k�0

Δu�kΔ�gε�t,kΔ� � lim
Δ�0

��
k�0

Δu�kΔ�
�
lim
ε�0

gε�t,kΔ�
�
,

for every t � 0. But limε�0 gε�t,kΔ� is precisely g�t,kΔ�. Therefore

y�t� � lim
Δ�0

��
k�0

Δu�kΔ�g�t,kΔ�, t � 0. (3.14)

We recall now, that by the definition of the Riemann integral,� �
0

f �τ�dτ � lim
Δ�0

��
k�0

Δ f �kΔ�.

Comparing this with (3.14), we conclude that indeed

y�t� �
� �
0

u�τ�g�t,τ�dτ, t � 0. (3.15)

ist.
In this derivation, we assumed that the limit limε�0 gε�t,kΔ� and the integral in (3.15) both ex-

Note 3 (Laplace transform of the derivative). By the product rule,

d
dt

�
x�t�e�st�� �xe�st � sx�t�e�st .

Integrating the above equation from 0 to�, we conclude that�
x�t�e�st

��0 � �̂x�s�� sx̂�s�.

Since limt�� x�t�e�st � 0, whenever x̂�s� exists, we conclude that

�̂x�s� � sx̂�s�� x�0�. �
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Note 4 (Laplace transform of the convolution). Given two signals x�t� and y�t�, t � 0,

L ��x� y��t��� L

�� t

0
x�τ�y�t� τ�dτ

�
�
� �

0

� t

0
e�st x�τ�y�t� τ�dτdt.

Exchanging the order of integration, we obtain

L ��x� y��t���
� �
0

e�sτ x�τ�
���

τ
e�s�t�τ�y�t� τ�dt

�
dτ.

If we then make the change of integration variable t̄ � t� τ in the inner integral, we obtain

L ��x� y��t���
� �
0

e�sτ x�τ�
���
0

e�st̄ y�t̄�dt
�

ˆdτ � x̂�s�y�s�. �

3.8 Exercise
3.1 (Impulse response). Prove Theorem 3.4. �



Lecture 4

Impulse Response and Transfer
Function of State-Space Systems

Contents
This lecture applies the concepts of impulse response and transfer function introduced in Lecture 3
to state-space linear systems.

1. Impulse responses and transfer functions for state-space linear time-invariant systems
2. Elementary realization theory (from transfer function to state-space system)
3. Equivalent state-space systems
4. Discrete-time case
5. State-space systems in MATLAB R�

4.1 Impulse Response and Transfer Function for LTI Systems
Consider the continuous-time LTI system

MATLAB R� Hint 1.
ss(A,B,C,D) creates the
continuous-time LTI state-space
system (CLTI). � p. 6

Note 3. Why? � p. 27

�x� Ax�Bu, y�Cx�Du. (CLTI)

ˆ

Taking the Laplace transform of both sides of the two equations in (CLTI), we obtain

sx̂�s�� x�0� � Ax̂�s��Bu�s�, ˆ ˆy�s� �Cx̂�s��Du�s�.
Solving for x̂�s�, we obtain

ˆ ˆ

ˆ ˆ ˆ
ˆ

�sI�A�x̂�s� � x�0��Bu�s� � x̂�s� � �sI�A��1Bu�s���sI�A��1x�0�,
from which we conclude that

y�s� � Ψ̂�s�x�0��G�s�u�s�, Ψ̂���s� � ��C���sI���A����1,
G s �C sI A �1B�D.

Coming back to the time domain by applying inverse Laplace transforms, we obtain Note. Equation (4.1) confirms the
decomposition seen in Lecture 3
of any output as the sum of a
particular output with a homoge-
neous response.

y�t� �Ψ�t�x�0���G�u��t� �Ψ�t�x�0��
� t

0
G�t� τ�u�τ�dt, (4.1)

where

G�t��L
�1�Ĝ�s��, Ψ�t��L

�1�Ψ̂�s��.
Comparing (4.1) with the equation (3.8) that is used to define the impulse response of a causal,

linear, time-invariant system, we conclude the following.

29
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Theorem 4.1. The impulse response and transfer function of the system (CLTI) are given by
MATLAB R� Hint 14.
tf(sys ss) and zpk(sys ss)

compute the transfer func-
tion of the state-space system
sys ss. � p. 35

G�t� � L
�1�C�sI�A��1B�D

�
and Ĝ�s� �C�sI�A��1B�D,

respectively. Moreover, the output given by (3.8) corresponds to the zero initial condition x�0� �Notation. This output is called
the forced or zero-state response. 0. �

4.2 Discrete-Time Case
Consider the discrete-time LTI system

x� � Ax�Bu, y�Cx�Du. (DLTI)

Theorem 4.2. The impulse response and transfer function of the system (DLTI) are given by

G�t� � Z
�1�C�zI�A��1B�D

�
and Ĝ�z� �C�zI�A��1B�D,

respectively. Moreover, the output given by (3.13) corresponds to the zero initial condition x�0� �
0. �

4.3 Elementary Realization Theory
Definition 4.1 (Realization). Given a transfer function Ĝ�s�, we say that a continuous-time or
discrete-time LTI state-space system�

�x���Ax���Bu,
y Cx Du

or

�
x� � Ax�Bu,
y�Cx�Du,

(LTI)

respectively, is a realization of Ĝ�s� ifNotation. For short, one often
says that �A,B,C,D� is a realiza-
tion of Ĝ�s�. Ĝ�s� �C�sI�A��1B�D. (4.2)

For discrete-time systems, one would replace s by z in (4.2). �

ˆ
ˆ ˆ

In general, many systems may realize the same transfer function, which motivates the following
definition.

Definition 4.2 (Zero-state equivalence). Two state-space systems are said to be zero-state equivalentNote. Why? Because if Ĝ�s� and
u�s� are the same, then ŷ f �s� �
G�s�u�s� will be the same. How-
ever, as we shall see later, the ho-
mogeneous responses may differ
even for the same initial condi-
tions.

if they realize the same transfer function, which means that they exhibit the same forced response to
every input. �

4.3.1 From Realization to Transfer Function
A first question one can ask is, What types of transfer functions can be realized by LTI state-space
systems? To answer this question, we attempt to compute the transfer function realized by (LTI). To
do this, we recall that

detMM�1 � 1 �adjM��, adjM� �cofi j M�,

where adjM denotes the adjoint matrix of M, whose entry cofi j M is the i jth cofactor of M, i.e, the
determinants of the M submatrix obtained by removing row i and column j multiplied by ��1�i� j.
Therefore

C�sI�A��1B�D� 1
det�sI�A�C�adj�sI�A���B�D.
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The denominator det�sI�A� is an n-degree polynomial called the characteristic polynomial of A. Its Notation. The characteristic
polynomial of an n� n matrix A
is the degree n monic polynomial
given by Δ�s�� det�sI�A�. Its
roots are the eigenvalues of A.

MATLAB R� Hint 15. poly(A)
computes the characteristic
polynomial of A, and eig(A)

computes its eigenvalues. � p. 71

roots are the eigenvalues of A. The adjoint adj�sI�A� will contain determinants of �n�1���n�1�
matrices and therefore its entries will be polynomials of degree n� 1 or smaller. The entries of
C�adj�sI �A���B will therefore be linear combinations of polynomials of degree smaller than or
equal to n�1. Therefore all the entries of

1
det�sI�A�C�adj�sI�A���B

will be ratios of polynomials with the degrees of the denominators strictly larger than the degrees of
Note. The degree of the denomi-
nator will never be larger than n,
but it may be smaller due to can-
cellations with common factors in
the numerator.

the numerators. A function of this form is called a strictly proper rational function.

When D� 0, some of the polynomials in the numerators of
1

det�sI�A�C�adj�sI�A���B�D

will have the same degree as the denominator (but not higher). This is called a proper rational
function. We thus conclude that an LTI state-space system can realize only proper rational functions.
It turns out that an LTI state-space system can actually realize every proper rational function.

Theorem 4.3 (MIMO realization). A transfer function Ĝ�s� can be realized by an LTI state-space Note. To prove that that two state-
ments P and Q are equivalent, one
generally starts by showing that
P � Q and then the converse
statement that Q � P. In direct
proofs, to prove that P � Q, one
assumes that P is true and then,
using a sequence of logical steps,
arrives at the conclusion that Q is
also true.

system if and only if Ĝ�s� is a proper rational function. �

4.3.2 From Transfer Function to Realization
We have seen only that being a proper rational function is necessary for Ĝ�s� to be realized by an
LTI system. To prove the converse, we need to show how to construct an LTI system that realizes an
arbitrary given proper rational function Ĝ�s�. This is can be done by the following steps:
1. Decompose the m� k matrix Ĝ�s� as Example. Step 1.

Ĝ�s� �
�

4s�10
2s�1

3
s�2

1
�2s�1��s�2�

s�1
�s�2�2

�

Ĝsp�s��
�

�12
2s�1

3
s�2

1
�2s�1��s�2�

s�1
�s�2�2

�

D� �
2 0
0 0

�

Ĝ�s�� Ĝsp�s��D, (4.3)

where Ĝsp�s� is strictly proper and
ˆD� lim

s��
G�s� (4.4)

is a constant matrix.

The matrix D is part of the state-space realization, and we will choose A,B,C so that

Ĝsp�s� �C�sI�A��1B.

2. Find the monic least common denominator of all entries of Ĝsp�s�: Notation. The monic least com-
mon denominator (lcd) of a family
of polynomials is the monic poly-
nomial of smallest order that can
be divided by all the given ones.

Example. Step 2.

d�s� � �s� 12 ��s�2�2
� s3� 92

s2�6s�2

d�s� � sn�α1sn�1�α2sn�2�� � ��αn�1s�αn.

3. Expand Ĝsp�s� as

Example. Step 3.

Ĝsp�s� �

�
�6�s�2�2 3�s� 12 ��s�2�

s�2
2 �s�1��s� 1

2 �

�
d�s�

N1 �
�
�6 3
0 1

�
, N2 �

�
�24 152
1
2

3
2

�
,

N3 �
�
�24 3
1 1

2

�

Ĝsp�s�� 1
d�s�

�
N1sn�1�N2sn�2�� � ��Nn�1s�Nn

�
, (4.5)

where the Ni are constant m� k matrices.
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4. SelectExample. Step 4.

A�

�
����
� 9
2 0 �6 0 2 0

0 � 9
2 0 �6 0 2

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

���
�
�

B�
�
� 1 0
0 1
0 0
0 0
0 0
0 0

�
�

C�
�
�6 3 �24 152 �24 3

0 1 1
2

3
2 1 1

2

�

A�

����
�
�α1Ik�k �α2Ik�k � � � � � � � � ��αn�1Ik���k �αnIk�k
Ik���k 0k���k 0k��k 0k���k
0k k Ik k � � � 0k k 0k k

.

.. ...
. . .

...
...

0k�k 0k�k � � � Ik�k 0k�k

����

�
nk�nk

, (4.6a)

B�

����
� ..

0k k

Ik���k

.

0k���k
0k k

����

�
nk�k

, C � �
N1 N2 � � � Nn�1 Nn

�
m�nk . (4.6b)

This is called a realization in controllable canonical form for reasons that will become clear
later.

Proposition 4.1. The matrices �A,B,C,D� defined by (4.4) and (4.6) are a realization for Ĝ�s�.
MATLAB R� Hint 16.
tf(num,den) creates a ra-
tional transfer function with
numerator and denominator
specified by num, den. � p. 34

MATLAB R� Hint 17.
zpk(z,p,k) creates a ratio-
nal transfer function with zeros,
poles, and gain specified by z, p,
k. � p. 34

MATLAB R� Hint 18.
ss(sys tf) computes a re-
alization for the transfer function
sys tf. � p. 35

�

Proof of Proposition 4.1. We start by computing the vector Z�s� � �
Z�1 Z�2 � � � Z�

n�� � �sI �
A��1B, which is a solution to

�sI�A�Z�s� � B � ��
s�α1�Z1�α2Z2�� � ��αn�1Zn�1�αnZn � Ik�k

sZ2�Z1 � 0, sZ3�Z2 � 0, . . . , sZn � Zn�1.

From the bottom equations, we conclude that

Zn � 1
s
Zn�1, Zn�1 � 1

s
Zn�2, . . . , Z2 � 1

s
Z1 � Zk � 1

sk�1
Z1,

and, by substituting this in the top equation, we obtain�
s�α1� α2s �� � ��

αn���1sn 2 � αn

sn�1

�
Z1 � Ik�k.

Since the polynomial in the left-hand side is given by d�s�
sn�1 , we conclude that

Z�s� �

�����
Z1

..

Z2
.

Zn

������ 1
d�s�

����� ..

sn�1Ik�k
sn�2Ik�k

.

Ik�k

�����
.

From this, we conclude that

C�sI�A��1B�CZ�s� � 1
d�s�

�
N1 N2 � � � Nn�1

Nn�
�����
sn�1Ik�k

..

.
sn�2Ik�k

Ik�k

����
ˆ

�� Gsp�s�

because of (4.5). Finally, using (4.3), one concludes that Ĝ�s� �C�sI�A��1B�D. �

f o r u m . k o n k u r . i n
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4.3.3 SISO Case
From SISO strictly proper systems, the construction outlined in Section 4.3.2 becomes extremely
simple, and determining a realization can be done by inspection. The following theorem (to be
proved in Exercise 4.4) summarizes this observation.

Theorem 4.4 (SISO realization). The SISO transfer function

ĝ�s� � β1sn�1�β2sn�2�� � ��βn�1s�βn

sn�α1sn�1�α2sn�2�� � ��αn�1s�αn

admits either of the realizations Notation. This realization is said
to be in controllable canonical
form for reasons that will become
clear later.

A�

�

�

���
�α1 �α2 � � � � � � � � ��αn�1 �αn

1 0 0 0
0 1 � � � 0 0
...

...
. . .

...
...

0 0 � � � 1 0

����

�
n�n

, B�

����
�
..

1
0
.

0
0

����

�
n�1

, C � �
β1 β2 � � � βn�1 βn

�
1�n

or Notation. This realization is said
to be in observable canonical
form for reasons that will become
clear later.

Ā�

�

�

���
���α1 1 0 � � � � � � � � �0
α2 0 1 0

�α3 0 0 � � � 0
...

...
...

. . .
...

�αn 0 0 � � � 0

����

�
n�n

, B̄�

�

�
���

..

β1
β2
β3
.

βn

����

�
n�1

, C̄ � �
1 0 � � � 0 0

�
1�n . �

4.4 Equivalent State-Space Systems
Consider the continuous-time LTI system

�x� Ax�Bu, y�Cx�Du.

Given a nonsingular matrix T , suppose that we define Note. This transformation can be
viewed as a change of basis for the
state.x̄� Tx.

The same system can be defined using x̄ as the state, by noting that

�̄x���T �x� TAx�TBu� TAT�1x̄�TBu,

y Cx�Du�CT�1x̄�Du,

which can be written as

�̄x� Āx̄� B̄u, y� C̄x̄� D̄u

for

Ā� TAT�1, B̄� TB, C̄�CT�1, D̄� D. (4.7)

Definition 4.3 (Algebraically equivalent). Two continuous-time or discrete-time LTI systems Notation. Often one also says
that the system on the right can be
obtained from the system on the
left using the similarity transfor-
mation x̄� Tx.

�
�x�x� � Ax�Bu
y�Cx�Du

or

�
¯�̄x�x̄� � Ax̄� B̄u

y� C̄x̄� D̄u,

respectively, are called algebraically equivalent if there exists a nonsingular matrix T such that
(4.7) holds. The corresponding map x̄ � Tx is called a similarity transformation or an equivalence
transformation. �
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Properties. Suppose that two state-space LTI systems are algebraically equivalent.

P4.1 With every input signal u, both systems associate the same set of outputs y.Note. To obtain the same output
we simply need to use solutions
to the state equation related by
x̄� Tx, which are obtained using
initial conditions related by the
similarity transformation: x̄�0� �
Tx�0�.

However, the output is generally not the same for the same initial conditions, except for the
forced or zero-state response, which is always the same.

P4.2 The systems are zero-state equivalent; i.e., both systems have the same transfer function and
impulse response.

This is a consequence of P4.1, but can also be proved directly as follows:

C̄�sI� Ā��1B̄� D̄�CT�1�sI�TAT�1��1TB�D

�C�T�1�sI�TAT�1�T��1B�D�C�sI�A��1B�D.
�

Attention! In general the converse of P4.2 does not hold, i.e., zero-state equivalence does not imply
algebraic equivalence.

�

4.5 LTI Systems in MATLAB R�

MATLAB R� represents LTI systems using either state-space or transfer function models. State-space
models are created using the MATLAB R� function ss() introduced in Lecture 1, whereas transfer
function models are created using the MATLAB R� functions tf() and zpk() described below.

The functions ss(), tf(), and zpk() can also be used to convert between state-space and
transfer function models. However, most MATLAB R� functions that manipulate LTI models acceptAttention! MATLAB R� simula-

tions of a transfer function model
always produce a forced response
(zero initial conditions).

both state-space and transfer function models.

Creation of Transfer Function Models
MATLAB R� Hint 16 (tf). The command sys tf=tf(num,den) assigns to sys tf a MATLAB R�

rational transfer function. The argument num is a vector with the coefficients of the numerator of
the system’s transfer function, and den is a vector with the coefficients of the denominator. The last
coefficient must always be the zeroth one; e.g., to get 2s

s2�3 , one should use

num=[2 0];den=[1 0 3];

For transfer matrices, num and den are cell arrays. Type help tf for examples.

Optionally, one can specify the names of the inputs, outputs, and state to be used in subsequent plots
as follows:

sys_tf=tf(num,den,...

’InputName’, {’input1’, ’input2’,...},...

’OutputName’,{’output1’,’output2’,...},...

’StateName’, {’input1’, ’input2’,...});

The number of elements in the bracketed lists must match the number of inputs, outputs, and state
variables.

For discrete-time systems, one should instead use the command sys tf=ss(num,den,Ts), where
Ts is the sampling time, or -1 if one does not want to specify it. �

MATLAB R� Hint 17 (zpk). The command sys tf=zpk(z,p,k) assigns to sys tf a MATLAB R�

rational transfer function. The argument z is a vector with the zeros of the system, p is a vector with
its poles, and k is the gain; e.g., to get 2s

�s�1��s�3� , one should use

z=0;p=[1,3];k=2;
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For transfer matrices, z and p are cell arrays and k is a regular array. Type help zpk for examples.

Optionally, one can specify the names of the inputs, outputs, and state to be used in subsequent plots
as follows:

sys_zpk=zpk(z,p,k,...

’InputName’, {’input1’, ’input2’,...},...

’OutputName’,{’output1’,’output2’,...},...

’StateName’, {’input1’, ’input2’,...});

The number of elements in the bracketed lists must match the number of inputs, outputs, and state
variables.

For discrete-time systems, one should instead use the command sys tf=zpk(z,p,k,Ts), where
Ts is the sampling time, or -1 if one does not want to specify it. �

Model Conversion
MATLAB R� Hint 14 (tf). The functions tf(sys ss) and zpk(sys ss) compute the transfer Note. These functions essentially

compute C�sI�A��1B�D.function of the state-space model sys ss specified as in MATLAB R� Hint 1 (p. 6).

The function tf(sys ss) returns the transfer function as a ratio of polynomials on s.

The function zpk(sys ss) returns the polynomials factored as the product of monomials (for the
real roots) and binomials (for the complex roots). This form highlights the zeros and poles of the
system. �

MATLAB R� Hint 18 (ss). The function ss(sys tf) computes a state-space realization for the Note. This function uses an algo-
rithm similar to the one described
in Section 4.3.

transfer function sys specified as in MATLAB R�Hints 16 (p. 34) or 17 (p. 34). �

4.6 Exercises
4.1 (Causality, linearity, and time invariance). Use equation (4.1) to show that the system

�x� Ax�Bu, y�Cx�Du (CLTI)

is causal, linear, and time invariant. �

4.2 (Z -transform of a LTI system’ output). Show that the Z -transform of any output to

x� � Ax�Bu, y�Cx�Du (DLTI)

is given by

ŷ�z� � Ψ̂�z�x�0�� ˆ ˆG�z�u�z�,
ˆ
Ψ̂���z� � ��C���zI���A����1z,
G z �C zI A �1B�D. �

¯

¯

4.3 (Observable canonical form). Given a transfer function Ĝ�s�, let �A, B̄,C̄,D̄� be a realization for
its transpose Ḡ�s�� Ĝ�s��. Show that �A,B,C,D�, where A� Ā�, B� C̄�, C� B̄�, and D� D̄� is a
realization for Ĝ�s�.
Note that if the realization �A, B̄,C̄ D̄� for Ḡ�s� is in controllable canonical form, then the realization
�A,B,C,D� for Ĝ�s� so obtained is in observable canonical form. �

4.4 (SISO realizations). This exercise aims at proving Theorem 4.4. Use the construction outlined
in Section 4.3.2 to arrive at results consistent with those in Theorem 4.4.

(a) Compute the controllable canonical form realization for the transfer function

ĝ�s� � k
sn�α1sn�1�α2sn�2�� � ��αn�1s�αn

.
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where xi is the ith element of the state x.
(b) For the realization in (a), compute the transfer function from the input u to the new output y� xi,

Hint: You can compute �sI�A��1b using the technique used in class for MIMO systems, or you
may simply invert �sI�A��1 using the adjoint formula for matrix inversion:

M�1 � 1detM �adjM��, adjM� �cofi j M�,

where cofi j M denotes the i jth cofactor of M. In this problem you actually need only to compute
a single entry of �sI�A��1.

(c) Compute the controllable canonical form realization for the transfer function

ĝ�s� � β1sn�1�β2sn�2�� � ��βn�1s�βn

sn�α1sn�1�α2sn�2�� � ��αn�1s�αn
. (4.8)

(d) Compute the observable canonical form realization for the transfer function in equation (4.8).

Hint: See Exercise 4.3. �

4.5 (Zero-state equivalence). Show that the following pairs of systems are zero-state equivalent, but
not algebraically. equivalent

(a) �
�x����

1 0
0 1

�
x� �10�u

y �1 0 �x

�
�̄x����

1 0
0 2

�
x̄� �10�u

y �1 0 � x̄

(b) �
�x����

1 0
0 1

�
x� �10�u

y �1 0 �x

�
�̄x���x̄�u
y x̄

Hint: To prove that the systems are not algebraically equivalent, you must show that there exists no
similarity transformation that transforms one system into the other. �

4.6 (Equivalent realizations). Consider the following two systems:

�x�
��2 1 2
0 2 2
0 0 1

��x�
��
1

1
0
��u, y� �

1 �1 0
�
x,

�x�
��2 1 1
0 2 1
0 0 �1

��x�
��11
0
��u, y� �

1 �1 0
�
x.

(a) Are these systems zero-state equivalent?

(b) Are they algebraically equivalent? �



Lecture 5

Solutions to LTV Systems

Contents
This lecture studies the properties of solutions to state-space linear time-varying systems.

1. Solutions to homogeneous linear systems — Peano-Baker series and state transition matrix
2. Solutions to nonhomogeneous linear systems — variation of constants formula
3. Discrete-time case

5.1 Solution to Homogeneous Linear Systems
We start by considering the solution to a continuous-time linear time-varying system with a given Note. A state-space linear system

without inputs is called
homogeneous.

initial condition but zero input,

�x� A�t�x, x�t0� � x0 � R
n, t � 0. (5.1)

A key property of homogeneous linear systems is that the map from the initial condition x�t0� � x0
�Rn to the solution x�t� �
a matrix multiplication. Rn at a given time t � 0 is always linear and can therefore be expressed by

Theorem 5.1 (Peano-Baker series). The unique solution to (5.1) is given by

solution (5.2) holds before t0.
Attention! Even when t0 � 0, the

Note. This theorem is a
consequence of Property P5.1
below.

x�t� �Φ�t, t0�x0, x0 � R
n, t � 0, (5.2)

where

Φ�t, t0�� I�
� t

t0
A�s1�ds1�

� t

t0
A�s1�

� s1

t0
A�s2�ds2ds1

�
� t

t0
A�s1�

� s1

t0
A�s2�

� s2

t0
A�s3�ds3ds2ds1�� � � (5.3)

The n� n matrix Φ�t, t0� is called the state transition matrix, and the series in (5.3) is called the
Peano-Baker series. The state transition matrix defined by (5.3) has several important properties
that will be explored below.

Properties (State transition matrix).

d

P5.1 For every t0 � 0, Φ�t, t0� is the unique solution to

dt
Φ�t, t0� � A�t�Φ�t, t0�, Φ�t0, t0� � I, t � 0. (5.4)

Theorem 5.1 is a direct consequence of this property because (5.1) follows from (5.4) and
(5.2).

37
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derivative of each side of (5.3) with respect to time, we obtain Proof. For t � t0, Φ�t0, t0� �
I, because all the integrals in (5.3) are equal to zero. Taking the

d
dt
Φ�t, t0� � A�t��A�

t�
� t

t0
A�s2�ds2�A�t�

� t

t0
A�s2�

� s2

t0
A�s3�ds3ds2�� � �

� A�t�Φ�t, t0�.

This proves that Φ�t, t0� satisfies (5.4).
Proving that the series actually converges for all t, t0 � 0 and that the solution is unique is
beyond the scope of this course. Both results follow from general properties of solutions to
ordinary differential equations and are a consequence of the fact thatΦ �� A�t�Φ is a globally
Lipschitz map for every fixed t [1, Chapter 1]. �

P5.2 For every fixed t0 � 0, the ith column of Φ�t, t0� is the unique solution to

�x�t� � A�t�x�t�, x�t0� � ei, t � 0,

where ei is the ith vector of the canonical basis of Rn.

This is just a restatement of Property P5.1 above.

P5.3 For every t,s,τ � 0,

Φ�t,s�Φ�s,τ� �Φ�t,τ�. (5.5)

This is called the semigroup property.

tsτ

x0

x1 �Φ�s,τ�x0
x2 �Φ�t,τ�x0 �Φ�t,s�x1

Figure 5.1. Semigroup property.

Proof. Take an arbitrary x0 � R
n and consider the solution to

�x� A�t�x, x�τ� � x0.

Its value at times s and t is given by

x1�Φ�s,τ�x0, x2�Φ�t,τ�x0,

respectively. However, we can regard the same x��� as the solution to

�x� A�t�x, x�s� � x1

(cf. Figure 5.1.) Therefore its value at time t is given by

x2 �Φ�t,s�x1 �Φ�t,s�Φ�s,τ�x0 .

By unicity of solution, the two vales for the solution at time t must coincide, so we have

Φ�t,s�Φ�s,τ�x0 �Φ�t,τ�x0, �x0.

Since this must be true for every x0 � R
n, we conclude that (5.5) holds.
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P5.4 For every t,τ � 0, Φ�t,τ� is nonsingular and

Φ�t,τ��1 �Φ�τ, t�.

Proof. From Property P5.3, we have

Φ�τ, t�Φ�t,τ� �Φ�t,τ�Φ�τ, t� � I,
which means that Φ�t,τ� is the inverse of Φ�τ, t� and vice versa, by definition of the inverse
of a matrix.

5.2 Solution to Nonhomogeneous Linear Systems

We now go back to the original nonhomogeneous LTV system

�x� A�t�x�B�t�u, y�C�t�x�t��D�t�u, x�t0� � x0 � R
n, t � 0 (5.6)

to determine its solution.

Theorem 5.2 (Variation of constants). The unique solution to (5.6) is given by

x�t� �Φ�t, t0�x0�
� t

t0
Φ�t,τ�B�τ�u�τ�dτ (5.7)

y�t� �C�t�Φ�t, t0�x0�
� t

t0
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, (5.8)

where Φ�t, t0� is the state transition matrix. �

Equation (5.7) is known as the variation of constants formula. The term Note. This term corresponds to
the system’s output for a zero in-
put.yh�t��C�t�Φ�t, t0�x0

in (5.8) is called the homogeneous response, whereas the term Note. This term corresponds to
the system’s output for zero initial
conditions.

y f �t��
� t

t0
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�

is called the forced response.

Proof of Theorem 5.2. To verify that (5.7) is a solution to (5.6), note that at t � t0, the integral in
(5.7) disappears, and we get x�t0� � x0. Taking the derivative of each side of (5.7) with respect to Note. We recall that

d
dt

� t

a
f �t,s�ds � f �t,t�

��
t

a

� f �t,s�
�t ds.

time, we obtain

�x� dΦ�t, t0�
dt

x0�Φ�t, t�B�t�u�t��
� t

t0

dΦ�t,τ�
dt

B�τ�u�τ�dτ

� A�t�Φ�t, t0�x0�B�t�u�t��A�t��
t

t0
Φ�t,τ�B�τ�u�τ�dτ

which shows that (5.7) is indeed a solution to (5.6). Unicity of solution results from the fact that Note. Unicity for the nonhomo-

� A�t�x�t��B�t�u�t�,

geneous case can also be con-
cluded from the unicity for the ho-
mogeneous case using a proof by
contradiction.

x �� A�t�x�B�t�u�t� is a globally Lipschitz map for every fixed t [1, Chapter 1].
The expression for y�t� in (5.8) is obtained by direct substitution of x�t� in y�t� � C�t�x�t� �
D�t�u.
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5.3 Discrete-Time Case

The (unique) solution to the homogeneous discrete-time linear time-varying system

x�t�1� � A�t�x�t�, x�t0� � x0 � R
n, t � N (5.9)

is given byAttention! As opposed to the
continuous-time case, in discrete
time (5.11) is valid only for t � t0.
Therefore the state transition ma-
trix cannot be used to go back in
time.

x�t� �Φ�t, t0�x0, x0 � R
n, t � t0, (5.10)

where

Notation. Sometimes (5.11) is
written as

Φ�t,t0� �
t�1�
τ�t0

A�τ�,

but this notation can be dangerous
because it does not accurately de-
scribe the case t � t0 and it hides
the fact that the order of the matri-
ces in the product (5.11) is gener-
ally crucial.

Φ�t, t0��
�
I t � t0
A�t�1�A�t�2� � � �A�t0�1�A�t0� t � t0

(5.11)

is called the (discrete-time) state transition matrix.

Properties (State transition matrix).

P5.5 For every t0 � 0, Φ�t, t0� is the unique solution to

Φ�t�1, t0� � A�t�Φ�t, t0�, Φ�t0, t0� � I, t � t0.

The fact that (5.10) is the unique solution to (5.9) is a direct consequence of this property,
which can be proved by induction on t, starting at t � t0.

P5.6 For every fixed t0 � 0, the ith column of Φ�t, t0� is the unique solution to

x�t�1� � A�t�x�t�, x�t0� � ei, t � t0,

where ei is the ith vector of the canonical basis of Rn.

This is just a restatement of Property P5.5 above.

P5.7 For every t � s� τ � 0,

Φ�t,s�Φ�s,τ� �Φ�t,τ�.

Attention! The discrete-time state transition matrixΦ�t, t0�may be singular. In fact, this will always
be the case whenever one of A�t�1�, A�t�2�, . . . , A�t0� is singular. �

Theorem 5.3 (Variation of constants). The unique solution to

x�t�1� � A�t�x�t��B�t�u�t�, y�t� �C�t�x�t��D�t�u�t�, x�t0� � x0 � R
n, t � N

is given by

x�t� �Φ�t, t0�x0�
t�1�
τ�t0

Φ�t,τ �1�B�τ�u�τ�, �t � t0

y�t� �C�t�Φ�t, t0�x0�
t�1�
τ�t0

C�t�Φ�t,τ�1�B�τ�u�τ��D�t�u�t�, �t � t0

where Φ�t, t0� is the discrete-time state transition matrix. �
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5.4 Exercises
5.1 (Causality and linearity). Use equation (5.7) to show that the system

�x� A�t�x�B�t�u, y�C�t�x�D�t�u (CLTV)

is causal and linear. �

5.2 (State transition matrix). Consider the system

�x�
�
0 t
0 2

�
x�

�
0
t

�
u, y� �

1 0
�
x, x � R

2, u,y � R.

(a) Compute its state transition matrix

(b) Compute the system output to the constant input u�t�� 1, �t � 0 for an arbitrary initial condition
x�0� � �

x1�0� x2�0�
��. �
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Lecture 6

Solutions to LTI Systems

Contents
This lecture studies the properties of solutions to state-space linear time-invariant systems.

1. Matrix exponential
2. Computation of matrix exponentials using Laplace transforms
3. Characteristic polynomial
4. Discrete-time case
5. Symbolic computation in MATLAB R�

6.1 Matrix Exponential
By applying the results in Lecture 5 to the homogeneous time-invariant system

�x� Ax, x�t0� � x0 � R
n, t � 0,

we conclude that its unique solution is given by

x�t� �Φ�t, t0�x0, x0 � R
n, t � 0,

where now the state transition matrix is given by the Peano-Baker series,

Φ�t, t0�� I�
� t

t0
Ads1�

� t

t0

� s1

t0
A2ds2ds1�

� t

t0

� s1

t0

� s2

t0
A3ds3ds2ds1�� � �

Since � t

t0

� s1t0
� � ��

sk�2

t0

�t0 sk�
1 Akdskdsk�1 � � �ds2ds1 � �t� t0�k

k!
Ak,

we conclude that

Φ�t, t0� �
��
k�0

�t� t0�k
k!

Ak. (6.1)

Motivated by the power series of the scalar exponential, we define the matrix exponential of a given
MATLAB R� Hint 19. expm(A)
computes the matrix exponential
of M. � p. 48

n�nmatrixM by

eM �
��
k�0

1
k!
Mk,

43
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which allows us to rewrite (6.1) simply asAttention! Equation (6.2) does
not generalize to the time-varying
case in any simple way. In partic-
ular, the state transition matrix of
a time-varying system is not gen-

erally equal to e
�t
t0
A�τ�dτ .

Φ�t, t0� � eA�t�t0�. (6.2)

Attention! Do not fail to notice that eM is defined by (6.1). It is not true that its i jth entry is given
by emi j , where mi j is the i jth entry ofM. �

Going back to the nonhomogeneous case, we conclude from the variation of constants formula
that the solution to

�x� Ax�Bu, y�Cx�Du, x�t0� � x0 � R
n, t � 0 (6.3)

is given by

x�t� � eA�t�t0�x0�
� t

t0
eA�t�τ�B�τ�u�τ�dτ,

y�t� �CeA�t�t0�x0�
� t

t0
CeA�t�τ�Bu�τ�dτ�Du�t�. (6.4)

6.2 Properties of the Matrix Exponential
The following properties are direct consequences of the properties seen before for the state transition
matrix of general time-varying system.

Properties (Matrix exponential).

P6.1 The function eAt is the unique solution to

d
dt
eAt �

AeAt ,
eA�0 � I, t � 0.

P6.2 The ith column of eAt is the unique solution to

�x�t� � Ax�t�, x�0� � ei, t � 0,

where ei is the ith vector of the canonical basis of Rn.

P6.3 For every t,τ � R,Note. This is a consequence
of the semigroup property:
Φ�t,0�Φ�0,�τ� �Φ�t,�τ�.

Attention! In general, eAt eBt �e�A�B�t .

eAteAτ � eA�t�τ�.

P6.4 For every t � R, eAt is nonsingular and�
eAt
��1 � e�At .

�

For LTI systems, the state transition matrix has further important properties that derive from the
Cayley-Hamilton theorem, reviewed next. Given a polynomialAttention! For A � �

1 2
3 4

�
and

p�s� � s2�2s�5,

p�A� � �
1 2
3 4

��
1 2
3 4

�
�2� 1 23 4

�� �
5 0
0 5

�
� �

12�2�5 22�2�2�5
32�2�3�5 42�2�4�5

�
.

p�s� � a0sn�a1sn�1�a2sn�2�� � ��an�1s�an

and an n�nmatrix A, we define

p�A�� a0An�a1An�1�a2An�2�� � ��an�1A�anIn�n,

which is also an n�n matrix.
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Theorem 6.1 (Cayley-Hamilton). For every n�n matrix A, Notation. One often says that
Δ�s� annihilates A.

Δ�A� � An�a1An�1�a2An�2�� � ��an�1A�anIn�n � 0n�n,

where Notation. The characteristic
polynomial of an n� n matrix A
is the degree n monic polynomial
given by

Δ�s�� det�sI�A�.
Its roots are the eigenvalues of A.

Δ�s� � sn�a1sn�1�a2sn�2�� � ��an�1s�an

is the characteristic polynomial of A. �

The reader is referred, e.g., to [1] for a proof of the Cayley-Hamilton theorem.

The following properties of the matrix exponential are a consequence of the Cayley-Hamilton
theorem and are specific to the time-invariant case.

Properties (Matrix exponential, continued).

P6.5 For every n�nmatrix A, there exist n scalar functions α0�t�,α1�t�, . . . ,αn�1�t� for which

eAt �
n�1�
i�0

αi�t�Ai, �t � R. (6.5)

¯ ¯ ¯

Proof. By the Cayley-Hamilton theorem,

where the ai are the coefficients of the characteristic polynomial of A. Therefore

An�a1An�1�a2An�2�� � ��an�1A�anI � 0,

An ��a1An�1�a2An�2�� � ��an�1A�anI.

Using this, we conclude that

An�1 ����a1An�a2An�1�� � ��an�1A2�anA

a1�a1An�1�a2An�2�� � ��an���1A�anI��a2An�1�� � ��an�1A2�anA

� �a21�a2�An�1��a1a2�a3�An 2�� � �� �a1an�1�an�A�a1anI�� � ��an�1A2.

Therefore An�1 can also be written as a linear combination of An�1, An�2, . . . , A, I. Applying
the same procedure for increasing powers of A, we conclude that for every k � 0, Ak can be
written as

Ak � an�1�k�An�1�an�2�k�An�2�� � ��a1�k�A�a0�k�I, (6.6)

for appropriate coefficients ai�k�. Replacing this in the definition of eAt , we conclude that

eAt �
��
k�0

tk

k!
Ak �

��
k�0

tk

k!

n�1�
i�0

āi�k�Ai.
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Exchanging the order of summation, we obtain

¯

Note. Exchanging the order of
summation essentially amounts to
rearranging the order in which we
add the terms of the series. This
is allowed because this series is
absolutely convergent. You may
verify this by noting that the nu-
merator tkai�k� grows only expo-
nentially on k, which is dominated
by the factorial growth of k!

eAt �
n�1�
i�0

� ��
k�0

¯tkai�k�
k!

�
Ai.

Equation (6.5) follows if one defines α i�t��
��

k�0
¯tkai�k�
k! .

P6.6 For every n�nmatrix A,

AeAt � eAtA, �t � R.

This is a direct consequence of P6.5.

6.3 Computation of Matrix Exponentials using Laplace Trans-
forms

We saw in Property P6.1 that eAt is uniquely defined by

d
dt
eAt � AeAt , eA�0 � I, t � 0.

Taking the Laplace transform of each side of the differential equation, we conclude that

L

� d
dt
eAt
�
� L

�
AeAt

� � s�
eAt � eAt

���
t�0 � A�eAt

� �sI�A��eAt � I � �eAt � �sI�A��1.
Therefore we can use inverse Laplace transform tables to compute eAt :Note. Since we are working with

unilateral Laplace transforms, this
method gives values for t � 0. eAt � L

�1��sI�A��1�.

6.4 The Importance of the Characteristic Polynomial
We have seen in Lecture 4 that

�sI�A��1 �
1det�sI�A��adj�sI�A���,

where

det�sI�A� � �s�λ1�m1�s�λ2�m2 � � � �s�λk�mk ,

is the characteristic polynomial of A, whose roots λ i are the eigenvalues of A, and adj�sI�A� is the
adjoint matrix of sI�A whose entries are polynomials in s of degree n�1 or lower.

To compute the inverse Laplace transform of �sI�A��1, we need to perform a partial fraction
expansion of each entry of �sI�A��1. These are of the form

α1sn�1�α2sn�2�� � � � ��αn�1s�αn

�s�λ1�m1�s�λ2�m2 � � �s�λk�mk
� a11

s�λ1
� a12�s�λ1�2 �� � �� a1m1

�s�λ1�m1
�� � �� ak1

s�λk
� ak2

�s�λk�2 �� � ��
akmk

�s�λk�mk
.

The inverse Laplace transform is then given byNote. Recall that if λ i � a� jb,
with ai,bi � R, then
eλ i t � eait

�
cos�bit� � j sin�bit�

�
and therefore �eλ i t � � eait , �t. L

�1
�α1sn�1�α2sn�2�� � � � ��αn�1s�αn

�s�λ1�m1�s�λ2�m2 � � �s�λk�mk

�
� a11eλ1t �a12 t eλ1t �� � ��a1m1t

m1�1eλ1t

�� � ��ak1eλkt �ak2 t eλkt �� � ��akmktmk�1eλkt .



System Representation 47

Thus, when all the eigenvalues λi of A have strictly negative real parts, all entries of eAt converge to Notation. A matrix is called Hur-
witz or a stability matrix if all its
eigenvalues have strictly negative
real parts.

zero as t ��, which means that the output

Note. Here we have shown only
that if A is a stability matrix, then
limt�� eAt � 0, but we show in
Lecture 7 that only stability ma-
trices have this property. � p. 54

y�t� �CeA�t�t0�x0�
� t

t0
CeA�t�τ�Bu�τ�dτ�Du�t�

converges to the forced response

y f �t� �
� t

t0
CeA�t�τ�Bu�τ�dτ�Du�t�.

6.5 Discrete-Time Case
Applying the results of Lecture 5 to the discrete-time homogeneous time-invariant system

x� � Ax, x�t0� � x0 � R
n, t � N,

we conclude that its unique solution is given by

x�t� �Φ�t, t0�x0, x0 � R
n, t � 0,

where now the state transition matrix is simply given by

Φ�t, t0�� At�t0 , �t � t0.

Going back to the nonhomogeneous case, we conclude from the discrete-time variation of constants
formula that the solution to

x� � Ax�Bu, y�Cx�Du, x�t0� � x0 � R
n, t � 0

is given by

x�t� � At�t0x0�
t�1�
τ�t0

At�1�τ Bu�τ�

y�t� �CAt�t0x0�
t�1�
τ�t0CA

t�1�τ Bu�τ��Du�t�.

The matrix power can be computed using Z -transforms as follows. From the definition of the
Z -transform, we conclude that

Z �At�1��
��
t�0

z�tAt�1 � z ��
t�0

z��t�1�At�1 � z� ��
t�0

z�tAt � I
�
� z

�
Z �At �� I

�
.

On the other hand,Z �At�1� � AZ �At �. Therefore we conclude that

A �At � z� �At � I� � �zI�A��At � zI � �At � z�zI�A��1.

Taking inverseZ -transforms, we obtain

At � Z
�1�z�zI�A��1�.

Now, when all eigenvalues of A have magnitude smaller than 1, all entries of At will converge to Notation. A matrix is called
Schur stable if all its eigenvalues
have magnitude strictly smaller
than 1.

zero as t ��, which means that the output will converge to the forced response.
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6.6 Symbolic Computations in MATLAB R�

MATLAB R� is capable of performing symbolic computation using Maple’s engine. This is
especially useful to compute matrix exponentials and Laplace transforms.

MATLAB R� Hint 9 (syms). The command syms x1 x2 defines x1 and x2 as symbolic variables.
From this point forward, any computations involving these variables are performed symbolically
and result in symbolic expressions. One can include in the syms command information about the
types of the variables.

1. The command syms x1 x2 real defines x1 and x2 as symbolic variables in R.

By itself, the command syms lists all symbolic variables. 2. The command syms x1 x2

positive defines x1 and x2 as symbolic variables in �0,��.

For example,

>> A=[1,1;0,1];syms s;Q=inv(s*eye(2)-A)

Q =

[ 1/(s-1), 1/(s-1)^2]

[

0, 1/(s-1)]

defines a new symbolic variable Q that is equal to �sI�A��1 for A� �
1 1
0 1

�
. �

MATLAB R� Hint 8 (jacobian). The function jacobian(f,x) computes the Jacobian of the vec-
tor f of symbolic expressions with respect to the vector x of symbolic variables.

For example,

>> syms px py theta v omega

>> x=[px;py;theta];u=[v;omega]; % state variable and control input

>> f=[v*cos(theta);v*sin(theta);omega]; % system dynamics

>> A=jacobian(f,x),B=jacobian(f,u)

A =

[ 0, 0, -v*sin(theta)]

[ 0, 0, v*cos(theta)]

[ 0, 0, 0]

B =

[ cos(theta), 0]

[ sin(theta), 0]

[ 0, 1]

computes the local linearization of the unicycle considered in Exercise 2.2 in its original coordinates,
as in equation (2.11). �

MATLAB R� Hint 19 (expm). The function expm(M) computes the matrix exponential of M. When
M is a symbolic variable, the computation is carried out symbolically.

For example,

>> A=[1,1;0,1];syms t;Q=expm(A*t)

Q =

[ exp(t), t*exp(t)]

[ 0, exp(t)]

defines a new symbolic variable Q that is equal to eAt for A�
�
1 1
0 1

�
. �

MATLAB R� Hint 10 (laplace). The function laplace(F,t,s) computes the unilateral Laplace
transform of the symbolic expression F on the symbolic time variable t and returns it as a function
of the complex variable s.

For example:
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>> A=[1,1;0,1];syms t s;Q=laplace(expm(A*t),t,s)

Q =

[ 1/(s-1), 1/(s-1)^2]

[ 0, 1/(s-1)]

MATLAB R� Hint 11 (ilaplace). The function ilaplace(F,s,t)computes the unilateral inverse
Laplace transform of the symbolic expression F on the symbolic complex variable s and returns it
as a function of the time variable t.

For example:

>> A=[1,1;0,1];syms t s;Q=ilaplace(inv(s*eye(2)-A),s,t)

Q =

[ exp(t), t*exp(t)]

[ 0, exp(t)]

MATLAB R� Hint 12 (ztrans). The function ztrans(F,t,z)computes the unilateralZ -transform
of the symbolic expression F on the symbolic time variable t and returns it as a function of the com-
plex variable z.

For example:

>> At=[1,t;0,1];syms t z;Q=ztrans(At,t,z)

Q =

[ z/(z-1), z/(z-1)^2]

[ 0, z/(z-1)]

MATLAB R� Hint 13 (iztrans). The function iztrans(F,z,t) computes the unilateral inverse Note. iztrans is especially
useful to compute matrix powers,
because A^t does not work for
a symbolic t.

Z -transform of the symbolic expression F on the symbolic complex variable z and returns it as a
function of the time variable t.

For example:

>> A=[1,1;0,1];syms t z;Q=iztrans(z*inv(z*eye(2)-A),z,t)

Q =

[ 1, t]

[ 0, 1]

6.7 Exercises
6.1. We saw in Section 4.1 that the solution to the time-invariant system (6.3) with t0 � 0 was given
by

y�t� �Ψ�t�x0��G�u��t� �Ψ�t�x0�
� t

0
G�t� τ�u�τ�dt,

where

Ψ�t��L
�1�C�sI�A��1�, G�t��L

�1�C�sI�A��1B�D�.
In view of (6.4), what do you conclude about the relationship between G�t�, Ψ�t�, and eAt?
Hint: Recall that a Dirac pulse has the property that� t2

t1
δ �t� τ� f �τ�dτ � f �t�, �t � �t1, t2�. �

6.2 (Matrix powers and exponential). Compute At and eAt for the following matrices

A1 �
��1 1 0
0 1 0
0 0 1

�� , A2 �
��1 1 0
0 0 1
0 0 1

�� ,

A3 �

�����
2

0 0 0
2 2 0 0
0 0 3 3
0 0 0 3

����
�
. (6.7)
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Lecture 7

Solutions to LTI Systems: The
Jordan Normal Form

Contents
This lecture studies how the Jordan normal form of A affects the solution to state-space linear time-
invariant systems.

1. Jordan normal form
2. Computation of matrix exponentials using the Jordan normal form
3. Eigenvalues with multiplicity larger than 1, block diagram interpretation

7.1 Jordan Normal Form
We start by reviewing the key relevant linear algebra concepts related to the Jordan normal form.

Theorem 7.1 (Jordan normal form). For every matrix A �
covered, e.g., in [12, 17].

C
n�n, there exists a nonsingular change Note. The Jordan normal form is

MATLAB R� Hint 20.
Jordan(A) computes the Jordan
normal form of A. � p. 52

of basis matrix P � C
n�n that transforms A into

J � PAP�1 �

����
�
J1 0 0 � � � � � � � � �0
0 J2 0 0
0 0 J3 � � � 0

.

.. ...
...

. . .
...

0 0 0 � � � J�

�����
,

where each Ji is a Jordan block of the form Attention! There can be several
Jordan blocks for the same eigen-
value, but in that case there must
be more than one independent
eigenvector for that eigenvalue.

Ji �

�����
λi 1 0 � � � � � � � � �0
0 λi 1 0
0 0 λi � � � 0

.

.. ...
...

. . .
...

0 0 0 � � � λi

����

�
ni�ni

,

with each λi an eigenvalue of A, and the number � of Jordan blocks is equal to the total number of
independent eigenvectors of A. The matrix J is unique up to a reordering of the Jordan blocks and

Note 5. How to find the Jordan
normal form of a matrix by
hand? � p. 52

is called the Jordan normal form of A. �

Definition 7.1 (Semisimple). A matrix is called semisimple or diagonalizable if its Jordan normal
form is diagonal. �

51
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Theorem 7.2. For an n�n matrix A, the following three conditions are equivalent:

1. A is semisimple.

2. A has n linearly independent eigenvectors.

3. There is a nonzero polynomialwithout repeated roots that annihilates A; i.e., there is a nonzero
Note. Condition 3 provides a sim-
ple procedure to check for diago-
nalizability. Since every polyno-
mial that annihilates A must have
each eigenvalue of A as a root
(perhaps with different multiplic-
ities), one simply needs to com-
pute all the distinct eigenvalues
λ1, . . . , λk (k � n) of A and then
check if the polynomial p�s� �
�s�λ1�� � ��s�λk� annihilates A.

polynomial p�s� without repeated roots for which p�A� � 0. �

MATLAB R� Hint 20 (jordan). The command [P,J]=jordan(A) computes the Jordan normal
form of the matrix A and returns it into the matrix J. The corresponding change of basis matrix is
returned in P so that J� P�1AP. �

Attention! The computation of the Jordan normal form is very sensitive to numerical errors. To see
this, find the Jordan normal form of the following two matrices (which are very similar):

A1 �
�
0 1
0 0

�
,

A2 � ��10�6 1
0 0

�
. �

Note 5 (Determining the Jordan normal form). The computation of the Jordan normal form can be a
very tedious process. However, the following procedure can be used to efficiently compute by hand
the Jordan normal form of a (small) matrix A.

1. Compute the eigenvalues and eigenvectors of A.

2. List all possible Jordan normal forms that are compatible with the eigenvalues and eigenvec-
tors of A. To do this, keep in mind that

• the number of Jordan blocks associated with an eigenvalue λ must be equal to the
number of independent eigenvectors of A associated with the eigenvalue λ ;

• eigenvalues with multiplicity equal to 1 must always correspond to 1�1 Jordan blocks;

blocks; • eigenvalues with multiplicity equal to 2 can correspond to one 2�2 block

or two 1�1

• eigenvalues with multiplicity equal to 3 can correspond to one 3� 3 block, one 2� 2
block and two 1�1 blocks, or three 1�1 blocks, etc.

3. For each candidate Jordan normal form, check whether there exists a nonsingular matrix P for
which J � PAP�1. To find out whether this is so, you may solve the (equivalent, but simpler)
linear equation

JP� PA

for the unknown matrix P and check whether it has a nonsingular solution.

Since the Jordan normal form is unique (up to a permutation of the blocks), once you find a matrix
J with a Jordan structure and a matrix P for which J � PAP�1, you have found the Jordan normal
form of A.

�

7.2 Computation of Matrix Powers using the Jordan Normal
Form

Given an n�n matrix A, let J � PAP�1 be the Jordan normal form of A. Since

J � PAP�1 � A� P�1JP,
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we conclude that

At � P�1JP P�1JP � � � P�1JP�������������������������������
k times

� P�1JtP� P�1

�
����Jt1

0 � � � � � � � � �0
0 Jt2 0
...

...
. . .

...
0 0 � � �

Jt
������P, (7.1)

where the Ji are the Jordan blocks of A. It turns out that it is easy to compute Jti for a Jordan block
Ji:

Ji �

��
���
λ i

1 0 � � � � � � � � �0
0 λ i 1 0
0 0 λ i � � � 0
...

...
...

. . .
...

0 0 0 � � � λ i

����

�
ni�ni

� Jt
i �

���

�

���
�

λti t λt�1i
t!λt�2i
�t�2�!2!

t!λt�3i
�t�3�!3! � � � t!λt�ni�1

i
�t�ni�1�!�ni�1�!

0 λti t λt�1i
t!λt�2i
�t�2�!2! � � � t!λt�ni�2

i
�t�ni�2�!�ni�2�!

0 0 λti t λt�1i � � � t!λt�ni�3
i

�t�ni�3�!�ni�3�!
...

...
...

. . . . . .
...

0 0 0 0
. . . t λt�1i

0 0 0 0 � � � λti

����

���
�
,

which can be verified by induction on t.

This expression confirms what we had seen before (and provides additional insight) about the
connection between the eigenvalues of A and what happens to At as t ��.

1. When all the eigenvalues of A have magnitude strictly smaller than 1, then all the Jti � 0 as Notation. A matrix is called
Schur stable if all its eigenvalues
have magnitude strictly smaller
than 1.

t ��, and therefore At � 0 as t � �.

2. When all the eigenvalues of A have magnitude smaller than or equal to 1 and all the Jordan
blocks corresponding to eigenvalues with magnitude equal to 1 are 1�1, then all the Jti remain
bounded as t � �, and consequently, At remains bounded as t ��.

3. When at least one eigenvalue of A has magnitude larger than 1 or magnitude equal to 1, but
the corresponding Jordan block is larger than 1�1, then At is unbounded as t ��.

7.3 Computation of Matrix Exponentials using the Jordan Nor-
mal Form

Given an n�n matrix A, we saw that

eAt �
��
k�1

tk

k!
Ak.

Denoting by J � PAP�1 the Jordan normal form of A, we conclude from (7.1) that

eAt � P�1

�����
��k�1

tk

k!

����
�
Jk1 0 � � � � � � � � �0
0 Jk2 0
...

...
. . .

...
0 0 � � �

Jk
�

���������
P� P�1����

������
eJ1t 0 � � � � � � � � �0
0 eJ2t 0
...

...
. . .

...
0 0 � � � eJ�t

����
�����

P,
(7.2)
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where the Ji are the Jordan blocks of A. It turns out that it is also easy to compute eJit for a Jordan
block Ji, leading to

Ji �

��
���
λ i

1 0 � � � � � � � � �0
0 λ i 1 0
0 0 λ i � � � 0
...

...
...

. . .
...

0 0 0 � � � λ i

����

�
ni�ni

� eJit � eλ it

����

���
�

1 t t2
2!

t3
3! � � � tni�1

�ni�1�!
0 1 t t2

2! � � � tni�2
�ni�2�!

0 0 1 t � � � tni�3
�ni�3�!

...
...

...
. . . . . .

...

0 0 0 0
. . . t

0 0 0 0 � � � 1

�����
���

.
(7.3)

This can be verified by checking that the expression given for eJit satisfies eJi�0 � I and

d
dt
eλ it

����
��

1 t t2
2! � � � tni�1

�ni�1�!
0 1 t � � � tni�2

�ni�2�!
0 0 1 � � � tni�3

�ni�3�!
...

...
. . .

. . .
...

0 0 0 � � �
�

1

����
�� λ ieJit � eλ it

����

��

0 1 t � � � tni�2
�ni�2�!

0 0 1 � � � tni�3
�ni�3�!

0 0 0 � � � tni�4
�ni�4�!

...
...

...
. . .

...
0 0 0 � � � 0

����

��

� λieJit �

����
�
0 1 0 � � � � � � � � �0
0 0 1 0
0 0 0 � � � 0
...

...
...

. . .
...

0 0 0 � � � 0

�����eJit � JieJit .

Equations (7.2)–(7.3) confirm what we had seen before (and provide additional insight) about
the connection between the eigenvalues of A and what happens to eAt as t ��.
1. When all the eigenvalues of A have strictly negative real parts, then all the eJit � 0 as t ��,Notation. A matrix is called Hur-

witz or a stability matrix if all its
eigenvalues have strictly negative
real parts.

and therefore eAt � 0 as t ��.
2. When all the eigenvalues of A have negative or zero real parts and all the Jordan blocks cor-
responding to eigenvalues with zero real parts are 1� 1, then all the eJit remain bounded as
t ��, and consequently, eAt remains bounded as t ��.

3. When at least one eigenvalue of A has a positive real part or a zero real part, but the corre-
sponding Jordan block is larger than 1�1, then eAt is unbounded as t ��.

7.4 Eigenvalues with Multiplicity Larger than 1
Diagonalizability is a generic property for real matrices. This means that if one draws entries at
random, the probability of obtaining a matrix that is not diagonalizable is zero. However, in spite
of being so unlikely, nondiagonalizable matrices arise frequently in state-space linear systems. The
explanation for this paradox lies in the fact that certain system interconnections always produce
nondiagonalizable blocks.

Consider the parallel connection in Figure 7.1(a) of two integrators. This system corresponds to
the state-space model

�����
�
�y1 ���u,
�y2 u,
y� y1� y2

�

�����
��
�x�

�
0 0
0 0

�
x�

�
1
1

�
u,

y�
�
1 1

�
x,



System Representation 55

+

+

1
s

1
s

u y

y1

y2
(a) parallel

1
s

1
s

u yz

(b) cascade

Figure 7.1. Block interconnections.

where we chose for state x�
�
y1 y2

��. The Amatrix for this system is diagonalizable with two zero Note. What are the eigenvectors
of A corresponding to the zero
eigenvalue?

eigenvalues with independent eigenvectors.

Consider now the cascade interconnection in Figure 7.1(b) of the same two integrators. This
system corresponds to the following state-space model�����

�
�y1 ���u,
�y2 y1,

y� y2

�

�������
�x�

�
0 1
0 0

�
0

x�
�
1

�
u,

y�
�
1 0

�
x,

where we chose for state x�
�
y2 y1

��. In this case, the A matrix is not diagonalizable and has a
single 2�2 Jordan block.

The following general conclusions can be extrapolated from this example.

1. Cascade interconnections of k identical subsystem systems always lead to A matrices for the
cascade with k� k Jordan blocks, one for each (simple) eigenvalue of the individual subsystems.
The cascade will have larger Jordan blocks if the individual subsystems already have Jordan
blocks larger than 1 �1.
In view of what we saw in Sections 7.2 and 7.3, cascade interconnections can thus have a
significant impact on the properties of continuous-time and discrete-time systems when the
subsystems have poles with a zero real part or magnitude equal to 1, respectively.

2. In contrast, parallel interconnections of identical subsystems do not increase the size of the
Jordan blocks.

Thus, parallel interconnections generally do not significantly change the system’s properties
as far as the boundedness of solutions is concerned.

7.5 Exercises
7.1 (Jordan normal forms). Compute the Jordan normal form of the A matrix for the system repre-
sented by the following block diagram:

+

+
1

s2�ω2

1
s

s
s2�ω2

u yy1

y2

y3 �

Figure 7.2. Block interconnection for Exercise 7.1.
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Part II

Stability
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Lecture 8

Internal or Lyapunov Stability

Contents

This lecture introduces a notion of stability that expresses how the (internal) state of the system
evolves with time.

1. Review of matrix norms
2. Internal or Lyapunov stability
3. Eigenvalue conditions for Lyapunov stability
4. Lyapunov stability theorem (linear matrix
inequalities)
5. Discrete-time case
6. Stability of locally linearized systems
7. Stability tests with MATLAB R�

8.1 Matrix Norms (review)
Several matrix norms are available. The following are the most common matrix norms for an m�n
matrix A� �ai j�.
1. The one-norm,

MATLAB R� Hint 21.
norm(A,1) computes the
one-norm of A.�A�1� max

1� j�n

m�
i�1

�ai j�.

For a (column) vector v� �vi� � R
�, �v�1�

��
i�1 �vi�.

2. The�-norm,
MATLAB R� Hint 22.
norm(A,inf) computes the
�-norm of A.�A��� max

1�i�m

n�
j�1

�ai j�.

For a (column) vector v� �vi� � R
�, �v���max1�i�� �vi�.

3. The two-norm, Notation. In the absence of a
subscript, � � � generally refers to
the two-norm.

MATLAB R� Hint 23. norm(A,
2), or simply norm(A),
computes the two-norm of A.

MATLAB R� Hint 24. svd(A)
computes the singular values of
A, which are the square roots of
the eigenvalues of A�A.

MATLAB R� Hint 25.

�A�2� σmax�A�,

where σmax�A� denotes the largest singular value of A. For a (column) vector v � �vi� �R�,

this norm corresponds to the usual Euclidean norm v�
���

i�1 v
2
i .

59
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4. The Frobenius norm,

�A�F �
�����

m�i�1
n�
j�1

a2i j �
�����

n�
i�1

σi�A�2,

where the σi�A� are the singular values of A. For (column) vectors, the Frobenius norm coin-
cides with the two-norm (and also with the Euclidean norm), but in general this is not true for
matrices.

All matrix norms are equivalent in the sense that each one of them can be upper and lower bounded
by any other times a multiplicative constant:

�A�1�n � �A�2 ��n�A�1, �A���n � �A�2 ��m�A��, �A�F�n � �A�2 � �A�F .

The four matrix norms above are submultiplicative; i.e., given two matrices A and B

�AB�p � �A�p �B�p, p � �1,2,�,F�.

For any submultiplicative norm � � �p, we have

�Ax�p � �A�p �x�p, �x

and therefore

�A�p �max
x�0

�Ax�p
�x�p

.

The one-, two-, and �-norms are also subordinate to the corresponding vector norms; i.e., weNote. For subordinate norms, we
can view the value of �A�p as the
maximum vector norm amplifica-
tion that can result from multiply-
ing a vector by A.

actually have

�A�p �max
x�0

�Ax�p
�x�p

,

p � �1,2,��. (8.1)

The equality in (8.1) arises from the fact that subordinate norms have the property that for every
matrix A there exists a vector x� � R

n for which

�A�
p � �Ax��p�x��p

,

p � �1,2,��. (8.2)

Attention! The Frobenius norm is submultiplicative but not subordinate, which means that

�A�F �max
x�0

�Ax�F�x�F �max
x�0

�Ax�2�x�2 � �A�2.

One can check this, e.g., for the matrix
�
2 0
0 1

�
, for which �A�F ��

5� 2.24, and yet

max
x�0

�Ax�F�x�F � �A�2 � 2.

This example shows that the Frobenius norm typically overestimates how much amplification can
result from multiplying by A. �

forum.konkur.in
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8.2 Lyapunov Stability
Consider the following continuous-time LTV system

�x� A�t�x�B�t�u, y�C�t�x�D�t�u, x � R
n, u � R

k, y � R
m. (CLTV)

Definition 8.1 (Lyapunov stability). The system (CLTV) is said to be

1. (marginally) stable in the sense of Lyapunov or internally stable if, for every initial condition
x�t0� � x0 � R

n, t0 � 0 the homogeneous state response Note. A signal x : �0,�� � R
n

is uniformly bounded if there ex-
ists a constant c � 0 such that
�x�t��� c, �t � 0.x�t� �Φ�t, t0�x0, �t � 0

is uniformly bounded,

2. asymptotically stable (in the sense of Lyapunov) if, in addition, for every initial condition
x�t0� � x0 � R

n, t0 � 0 the homogeneous state response satisfies x�t� � 0 as t � �,
3. exponentially stable if, in addition, there exist constants c,λ � 0 such that, for every initial
condition x�t0� � x0 � R

n, t0 � 0 the homogeneous state response satisfies

�x�t��� ce�λ �t�t0��x�t0��, �t � 0, or

4. unstable if it is not marginally stable in the Lyapunov sense. �

The matrices B���, C���, and D��� play no role in this definition; only A��� matters because this
matrix completely defines the state transition matrix Φ. Therefore one often simply talks about the
Lyapunov stability of the homogeneous system

�x� A�t�x, x � R
n.

Attention!

1. For marginally stable systems, the effect of initial conditions does not grow unbounded
with time (but it may grow temporarily during a transient phase).

2. For asymptotically stable systems, the effect of initial conditions eventually disappears
with time.

3. For unstable systems, the effect of initial conditions (may) grow over time (depending on
the specific initial conditions and the value of the matrixC). �

8.3 Eigenvalues Conditions for Lyapunov Stability
The results in Lecture 7 about matrix exponentials provides us with simple conditions to classify the
continuous-time homogeneous LTI system

�x� Ax, x � R
n (H-CLTI)

in terms of its Lyapunov stability, without explicitly computing the solution to the system.

Theorem 8.1 (Eigenvalue conditions). The system (H-CLTI) is

1. marginally stable if and only if all the eigenvalues of A have negative or zero real parts and
all the Jordan blocks corresponding to eigenvalues with zero real parts are 1�1,

2. asymptotically stable if and only if all the eigenvalues of A have strictly negative real parts, Notation. A matrix is called Hur-
witz or a stability matrix if all its
eigenvalues have strictly negative
real parts.

3. exponentially stable if and only if all the eigenvalues of A have strictly negative real parts, or
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4. unstable if and only if at least one eigenvalue of A has a positive real part or zero real part,
but the corresponding Jordan block is larger than 1�1. �

Attention! When all the eigenvalues of A have strictly negative real parts, all entries of eAt converge
to zero exponentially fast, and therefore �eAt� converges to zero exponentially fast (for every matrix
norm); i.e., there exist constants c,λ � 0 such thatNote. When all Jordan blocks

have multiplicity equal to 1, we
can choose λ to be the largest
(least negative) real part of the
eigenvalues. Otherwise, λ has to
be strictly smaller than that. See
Exercise 8.3.

�eAt� � ce�λ t , �t � R.

In this case, for a submultiplicative norm, we have

�x�t���� eA�t�t0�x0� � �eA�t�t0���x0� � ce�λ �t�t0��x0�, �t � R.

This means that asymptotic stability and exponential stability are equivalent concepts for LTI sys-
tems. �

Attention! These conditions do not generalize to time-varying systems, even if the eigenvalues of
A�t� do not depend on t. One can find matrix-valued signals A�t� that are stability matrices for everyNote. See Exercise 8.4.
fixed t � 0, but the time-varying system �x� A�t�x is not even stable. �

8.4 Positive-Definite Matrices (review)
A symmetric n�nmatrix Q is positive-definite ifNotation. When one talks about

positive-definite, negative-
definite, or semidefinite matrices,
it is generally implicit that the
matrix is symmetric.

x�Qx� 0, �x � R
n��0�. (8.3)

When � is replaced by �, we obtain the definition of a negative-definite matrix. Positive-definite
matrices are always nonsingular, and their inverses are also positive-definite. Negative-definite
matrices are also always nonsingular, and their inverses are negative-definite.

semidefinite or negative-
semidefinite, respectively.When (8.3) holds only for � or �, the matrix is said to be positive-

The following statements are equivalent for a symmetric n�n matrix Q.

1. Q is positive-definite.

2. All eigenvalues of Q are strictly positive.

MATLAB R� Hint 15. eig(A)
computes the eigenvalues of the
matrix A. � p. 71

3. The determinants of all upper left submatrices of Q are positive.

4. There exists a n�n nonsingular real matrix H such that

Q� H �H.

For a positive-definite matrix Q we haveNote. Every n�n symmetric ma-
trix has real eigenvalues and n or-
thogonal (independent) eigenvec-
tors.

Note. In (8.4) we are using the
two-norm for x.

0� λmin�Q��x�2 � x�Qx� λmax�Q��x�2, �x� 0, (8.4)

where λmin�Q� and λmax�Q� denote the smallest and largest eigenvalues of Q, respectively. The
properties of positive-definite matrices are covered extensively, e.g., in [12, 17].

8.5 Lyapunov Stability Theorem
The Lyapunov stability theorem provides an alternative condition to checkwhether or not the continuous-
time homogeneous LTI system

�x� Ax, x � R
n (H-CLTI)

is asymptotically stable.
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Theorem 8.2 (Lyapunov stability). The following five conditions are equivalent:

1. The system (H-CLTI) is asymptotically stable.

2. The system (H-CLTI) is exponentially stable. Notation. A matrix is called Hur-
witz or a stability matrix if all its
eigenvalues have strictly negative
real parts.

3. All the eigenvalues of A have strictly negative real parts.

4. For every symmetric positive-definite matrix Q, there exists a unique solution P to the follow-
MATLAB R� Hint 26.
P=lyap(A,Q) solves
the Lyapunov equation
AP�PA� ��Q. � p. 71

ing Lyapunov equation

Note 6. We will later add a sixth
equivalent condition that will al-
low Q in (8.5) to be only positive-
semidefinite. � p. 105

A�P�PA��Q. (8.5)

Moreover, P is symmetric and positive-definite.

5. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix
inequality holds:

Note. The equation (8.6) is called
a linear matrix inequality (LMI).
The term “linear” comes from the
linearity of the left-hand side in P,
and � refers to the fact that the
left-hand side must be negative-
definite.

A�P�PA� 0. (8.6)

Proof of Theorem 8.2. The equivalence between conditions 1, 2, and 3 has already been proved.

Note. To prove that multiple
statements P1, P2, . . . , P� are
equivalent, one simply needs
to prove a cycle of implica-
tions: P1 � P2, P2 � P3, . . . ,
P��1 � P�, and P� � P1.

We prove that condition 2� condition 4 by showing that the unique solution to (8.5) is given by

P�
� �
0

eA
�tQeAtdt. (8.7)

To verify that this is so, four steps are needed.

1. The (improper) integral in (8.7) is well defined (i.e., it is finite). This is a consequence of the
fact that the system (H-CLTI) is exponentially stable, and therefore �eA�tQeAt� converges to
zero exponentially fast as t � �. Because of this, the integral is absolutely convergent.

2. The matrix P in (8.7) solves the equation (8.5). To verify this, we compute

A�P�PA�
� �
0

A�eA
�tQeAt � eA

�tQeAtAdt.

But
d
dt

�
eA
�tQeAt�� A�eA

�tQeAt � eA
�tQeAtA,

therefore

A�P�PA�
� �
0

d
dt

�
eA
�tQeAt

�
dt

�

�
eA
�tQeAt

��
0

� �
lim
t��eA

�tQeAt
�� eA

�0
QeA0.

Equation (8.5) follows from this and the facts that limt�� eAt � 0 because of asymptotic
stability and that eA0 � I.

3. The matrix P in (8.7) is symmetric and positive-definite. Symmetry comes from the fact that Note. Check that
�
eAt
�� � eA�t

.
(Cf. Exercise 8.5.)

P� �
� �
0

�
eA
�tQeAt

��dt � � �
0

�
eAt
��Q��eA�t��dt � �

�

0
eA
�tQeAtdt � P.

To check that P is positive-definite, we pick an arbitrary (constant) vector z �R
n and compute

z�Pz�
� �
0

z�eA
�tQeAtzdt �

� �
0

w�t��Qw�t�dt,

where w�t�� eAtz, �t � 0. Since Q is positive-definite, we conclude that z�Pz� 0. Moreover,

z�Pz� 0 �
� �
0

w�t��Qw�t�dt � 0,

which can only happen if w�t� � eAtz � 0, �t � 0, from which one concludes that z � 0,
because eAt is nonsingular. Therefore P is positive-definite.
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4. No other matrix solves this equation. To prove this by contradiction, assume that there exists
Note 7. To prove a statement P
by contradiction, one starts by as-
suming that P is not true and then
one searches for some logical in-
consistency.

another solution P̄ to (8.5); i.e.,

A�P�PA��Q, and A�P̄� P̄A��Q.

Then

A��P� P̄���P� P̄�A� 0.

Multiplying the above equation on the left and right by eA
�t and eAt , respectively, we conclude

that

eA
�tA��P� P̄�eAt � eA

�t�P� P̄�AeAt � 0, �t � 0.
On the other hand,

d
dt

�
eA
�t�P� P̄�eAt�� eA

�tA��P� P̄�eAt � eA
�t�P� P̄�AeAt � 0,

and therefore eA
�t�P� P̄�eAt must remain constant for all times. But, because of stability, this

quantity must converge to zero as t � �, so it must be always zero. Since eAt is nonsingular,
this is possible only if P � P̄.

in condition 4, then the matrix P that solves (8.5) also satisfies (8.6). The implication that

condition 4 � condition 5 follows immediately, because if we select Q � �I

To prove that condition 5 � condition 2, let P be a symmetric positive-definite matrix for which
(8.6) holds and let

Q���A�P�PA� � 0.
Consider an arbitrary solution to equation (H-CLTI), and define the scalar signal

v�t�� x��t�Px�t� � 0, �t � 0.
Taking derivatives, we obtain

�v� �x�Px� x�P �x� x��A�P�PA�x��x�Qx� 0, �t � 0. (8.8)

Therefore v�t� is a nonincreasing signal, and we conclude that
v�t� � x��t�Px�t� � v�0� � x��0�Px�0�, �t � 0.

But since v� x�Px� λmin�P��x�2, we conclude thatNote. Here we are using the two-
norm for x.

�x�t��2 � x��t�Px�t�λmin�P�
� v�t�

λmin�P�
� v�0�

λmin�P�
, �t � 0, (8.9)

which means that the system (H-CLTI) is stable. To verify that it is actually exponentially stable, we
go back to (8.8) and, using the facts that x�Qx � λmin�Q��x�2 and that v � x�Px � λmax�P��x�2, we
conclude that

�v��x�Qx��λmin�Q� �x�2 ��λmin�Q�
λmax�P� v, �t � 0. (8.10)

To proceed, we need the Comparison lemma.

Lemma 8.1 (Comparison). Let v�t� be a differentiable scalar signal for which
�v�t� � µ v�t�, �t � t0

for some constant µ � R. Then

v�t� � eµ�t�t0�v�t0�, �t � t0. (8.11)
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Applying the Comparison lemma 8.1 to (8.10), we conclude that

v�t� � e�λ �t�t0�v�t0�, �t � 0, λ �
λmin�Q�
λmax�P� ,

which shows that v�t� converges to zero exponentially fast and so does �x�t�� [see (8.9)].

Proof of Lemma 8.1. Define a new signal u�t� as follows:
u�t�� e�µ�t�t0�v�t�, �t � t0.

Taking derivatives, we conclude that

�

Therefore u is nonincreasing, and we conclude that

u� �µe�µ�t�t0�v�t�� e�µ�t�t0� �v�t� � �µe�µ�t�t0�v�t��µe�µ�t�t0�v�t� � 0.

u�t� � e�µ�t�t0�v�t� � u�t0� � v�t0�, �t � t0,

which is precisely equivalent to (8.11).

8.6 Discrete-Time Case
Consider now the following discrete-time LTV system

x�t�1� � A�t�x�t��B�t�u�t�, y�t� �C�t�x�t��D�t�u�t�. (DLTV)

Definition 8.2 (Lyapunov stability). The system (DLTV) is said to be

1. (marginally) stable in the Lyapunov sense or internally stable if, for every initial condition
x�t0� � x0 � R

n, t0 � 0 the homogeneous state response
x�t� �Φ�t, t0�x0, �t0 � 0

is uniformly bounded,

2. asymptotically stable (in the Lyapunov sense) if, in addition, for every initial condition x�t0� �
x0 � R

n, t0 � 0 the homogeneous state response satisfies x�t� � 0 as t � �,
3. exponentially stable if, in addition, there exist constants c � 0, λ � 1 such that, for every
initial condition x�t0� � x0 � R

n, t0 � 0 the homogeneous state response satisfies
�x�t��� cλ t�t0�x�t0��, �t � t0, or

4. unstable if it is not marginally stable in the Lyapunov sense. �

The matrices B���,C���, and D��� play no role in this definition; therefore, one often simply talks
about the Lyapunov stability of the homogeneous system

x�t�1� � A�t�x, x � R
n. (H-DLTV)

Theorem 8.3 (Eigenvalue conditions). The discrete-time homogeneous LTI system

x� � Ax, x � R
n (H-DLTI)

is

1. marginally stable if and only if all the eigenvalues of A have magnitude smaller than or equal
to 1 and all the Jordan blocks corresponding to eigenvalues with magnitude equal to 1 are
1 �1,
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2. asymptotically and exponentially stable if and only if all the eigenvalues of A have magnitudeNotation. A matrix is called
Schur stable if all its eigenvalues
have magnitude strictly smaller
than 1.

strictly smaller than 1, or

3. unstable if and only if at least 1 eigenvalue of A has magnitude larger than 1 or magnitude
equal to 1, but the corresponding Jordan block is larger than 1�1. �

Theorem 8.4 (Lyapunov stability in discrete time). The following five conditions are equivalent:

1. The system (H-DLTI) is asymptotically stable.

2. The system (H-DLTI) is exponentially stable.

3. All the eigenvalues of A have magnitude strictly smaller than 1.

4. For every symmetric positive-definite matrix Q, there exists a unique solution P to the
following Stein equation (more commonly known as the discrete-time Lyapunov equation)

MATLAB R� Hint 27.
P=dlyap(A,Q) solves the Stein
equation APA��P��Q. � p. 71

A�PA�P��Q. (8.12)

Moreover, P is symmetric and positive-definite.

5. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix
inequality holds:

A�PA�P� 0. �

Attention! In discrete time, in the proof of the Lyapunov stability theorem 8.4 one studies the evo-
lution of the signal

v�t� � x��t�Px�t�, �t � t0.

In this case, along solutions to the system (H-DLTI), we have

and the discrete-time Lyapunov equation (8.12) guarantees that

v�t�1� � x��t�1�Px�t�1� � x�t�A�PAx�t�,

v�t�1� � x�t��P�Q�x�t� � v�t�� x�t�Qx�t�, �t � 0.
From this we conclude that v�t� is nonincreasing and, with a little more effort, that it actually de-
creases to zero exponentially fast. �

Table 8.1 summarizes the results in this section and contrasts them with the continuous-time
conditions for Lyapunov stability.

8.7 Stability of Locally Linearized Systems
Consider a continuous-time homogeneous nonlinear system

�x� f �x�, x � R
n, (8.13)

with an equilibrium point at xeq �
of (8.13) around xeq is given by

�

R
n; i.e., f �xeq� � 0. We saw in Lecture 2 that the local linearization

δx� Aδx, (8.14)

with δx� x� xeq and
A� � f �xeq�

�x .

It turns out that the original nonlinear system (8.13) inherits some of the desirable stability properties
of the linearized system.
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Theorem 8.5 (Stability of linearization). Assume that the function f in (8.13) is twice differentiable.
If the linearized system (8.14) is exponentially stable, then there exists a ball B�R

n around xeq andNotation. When this happens, we
say that xeq is a locally exponen-
tially stable equilibrium point of
the nonlinear system (8.13). The
qualifier “locally” refers to the
fact that the exponentially decay-
ing bound (8.15) needs to hold
only for initial conditions in a ball
B around xeq [9].

constants c,λ � 0 such that for every solution x�t� to the nonlinear system (8.13) that starts at
x�t0� � B, we have

�x�t�� xeq� � ceλ �t�t0��x�t0�� xeq�, �t � t0. (8.15)

�

Proof of Theorem 8.5. Since f is twice differentiable, we know from Taylor’s theorem that

r�x�� f �x��
�

which means that there exist a constant c and a ball B̄ around xeq for which

f �xeq��Aδx
�
� f �x��Aδx� O��δx�2�,

�r�x��� c�δx�2, �x � B̄. (8.16)

Since the linearized system is exponentially stable, there exists a positive-definitematrix P for which

A�P�PA��I.

Inspired by the proof of the Lyapunov stability theorem 8.2, we define the scalar signal

v�t�� δx�Pδx, �t � 0,
and compute its derivative along trajectories to the nonlinear system in equation (8.13):Note. In (8.17) we used the sub-

multiplicative property of the two-
norm. �v���f �x��Pδx�δx�P f �x�

�Aδx� r�x���Pδx�δx�P�Aδx� r�x��
� ��δx��A�P�PA�δx�2δx�Pr�x�

������������δx 2���2δx�Pr�x�
� δx 2 2�P��δx��r�x��. (8.17)

To make the proof work, we would like to make sure that the right-hand side is negative; e.g.,

��δx�2�2�P��δx��r�x���� 12�δx�2.

To achieve this, let ε be a positive constant sufficiently small so that the ellipsoidNotation. The set E was con-
structed so that x�t� � E �
v�t� � ε . E � �x �

centered at xeq satisfies the following two properties.

R
n : �x� xeq��P�x� xeq� � ε�

1. The ellipsoid E is fully contained inside the ball B̄ arising from Taylor’s theorem (cf. Fig-
ure 8.1). When x is inside this ellipsoid, equation (8.16) holds, and therefore

x�t� � E � �v�� �δx�2�2c�P��δx�3 ���1�2c�P��δx���δx�2.
2. We further shrink ε so that inside the ellipsoid E we have

1�2c�P��δx�� 12 � �δx� � 1
4c�P� .

For this choice of ε , we actually have

x�t� � E � �v��12�δx�2. (8.18)

f o r u m . k o n k u r . i n
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B̄ (from Taylor’s
Theorem)

E (inside B̄)

� 1
4c�P�

B (inside E )

xeq

Figure 8.1. Construction of ball B for the proof of Theorem 8.5.

We therefore conclude that
Notation. A set such as E , with
the property that if the state starts
inside the set it remains there for-
ever, is called forward invariant.x�t� � E �

�
v���t� � � � � �ε
�v t 0

� v cannot increase above ε � x cannot exit E .

Therefore if x�0� starts inside E , it cannot exit this set. Moreover, from (8.18) and the fact that
δx�Pδx� �P��δx�2, we further conclude that if x�0� starts inside E ,

�v�� v
2�P�

exponentially fast. The ball B around xeq in the statement of the theorem can be any ball inside E .

and therefore, by the Comparison lemma 8.1, v and consequently δx� x� xeq decrease to zero

When the linearized system is unstable, the nonlinear system also has undesirable properties
(proof in [1, Chapter 6]):

Theorem 8.6 (Instability of linearization). Assume that the function f in (8.13) is twice
differentiable. If the linearized system (8.14) is unstable, then there are solutions that start arbitrarily
close to xeq, but do not converge to this point as t ��.

�

Attention! When the linearized system is only marginally stable, not much can be said about the
nonlinear system merely from analyzing the linearized system. For example, the two systems

�x��x3 and �x��x3 (8.19)

have the same local linearization,

�δx� 0,

around xeq � 0, which is only marginally stable. Yet for the left-hand side system in (8.19), x always
converges to zero, while for the right-hand side system, x always diverges away from the equilibrium
point. �

Example 8.1 (Inverted pendulum). Consider the inverted pendulum in Figure 8.2 and assume that
u� T and y� θ are its input and output, respectively.
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θ

�

g

m

From Newton’s law,

m�2 �θ � mg�sinθ �b �θ �T,

where T denotes a torque applied at the
base and g is the gravitational accelera-
tion.

Figure 8.2. Inverted pendulum.

The local linearization of this system around the equilibrium point for which θ � π is given by
Note. This equilibrium point is
xeq � π, ueq � 0, yeq � π, and
therefore δx � x� xeq � x� π,
δu� u�ueq� u, δy� y�yeq�
y�π.

�δx� Aδx�Bu, δy�Cδx,

where

A�
�
0 1

�
g�

� b
m�2

�
, B�

�
0
1

�
, C�

�
1 0

�
.

The eigenvalues of A are given by

det�λ I�A� � λ
�

λ � b
m�2

�
�

g
� � 0 � λ �� b

2m�2
�
�� b

2m�2

�
�

g�
,

and therefore the linearized system is exponentially stable, because

� b
2m�2

�
�� b

2m�2

�
�

g�

has a negative real part. This is consistent with the obvious fact that in the absence of u the (nonlin-Note. We now know that this con-
vergence is actually exponential. ear) pendulum converges to this equilibrium.

The local linearization of this system around the equilibrium point for which θ � 0 is given byNote. This equilibrium point is
xeq � 0, ueq � 0, yeq � 0, and
therefore δx� x�xeq � x, δu�
u�ueq � u, δy� y� yeq � y.

�δx� Aδx�Bu, δy�Cδx,

where

A�
�
0 1
g
�

� b
m�2

�
, B�

�
0
1

�
, C�

�
1 0

�
.

The eigenvalues of A are given by

det�λ I�A� � λ
�

λ � b
m�2

�
�

g
� � 0 � λ �� b

2m�2
�
�� b

2m�2
�
�

g�
,

and therefore the linearized system is unstable, because

� b
2m�2

�
�� b

2m�2

�
�

g
� � 0.

This is consistent with the obvious fact that in the absence of u the (nonlinear) pendulum does not
naturally move up to the upright position if it starts away from it. However, one can certainly make
it move up by applying some torque u.
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Discrete-Time Case
Consider a discrete-time homogeneous nonlinear system

x� � f �x�, x � R
n,

with an equilibrium point at xeq � R
n; i.e., f �xeq� � xeq. The local linearization of (8.13) around xeq

is given by

δx� � Aδx, (8.20)

with δx� x� xeq and
A� � f �xeq�

�x .

Theorem 8.7. Assume that the function f in (8.13) is twice differentiable.

1. If the linearized system (8.20) is exponentially stable, then there exists a ball B around xeq

such that every solution x�t� to the nonlinear system (8.13) that starts at x�0� � B converges
to xeq exponentially fast as t ��.

2. If the linearized system (8.20) is unstable, then there are solutions that start arbitrarily close
to xeq, but do not converge to this point as t � �. �

8.8 Stability Tests with MATLAB R�

MATLAB R� Hint 15 (eig). The function eig(A) computes the eigenvalues of the matrix A. Alter-
natively, eig(sys) computes the eigenvalues of the Amatrix for a state-space system sys specified
by sys=ss(A,B,C,D), where A,B,C,D are a realization of the system. �

MATLAB R� Hint 26 (lyap). The command P=lyap(A,Q) solves the Lyapunov equation Attention! To solve

A�P�PA��Q,
one needs to use P=lyap(A’,Q).

AP�PA� ��Q. �

MATLAB R� Hint 27 (dlyap). The command P=dlyap(A,Q) solves the Lyapunov equation
Attention! To solve

A�PA�P��Q,
one needs to use
P=dlyap(A’,Q).

APA��P��Q. �

8.9 Exercises
8.1 (Submultiplicative matrix norms). Not all matrix norms are submultiplicative. Verify that this
property does not hold for the norm

�A�Δ� max
1�i�m

max
1� j�n

�ai j�,

which explains why this norm is not commonly used.

Hint: Consider the matrices A� B� �
1 1
0 1

�
. �

8.2. For a given matrix A, construct vectors for which (8.2) holds for each of the three norms � � �1,
� � �2, and � � ��. �

8.3 (Exponential of a stability matrix). Prove that when all the eigenvalues of A have strictly negative
real parts, there exist constants c,λ � 0 such that

�eAt� � ce�λ t , �t � R.

Hint: Use the Jordan normal form. �
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8.4 (Stability of LTV systems). Consider a linear system with a state-transition Φ�t,τ� matrix for
which

Φ�t,0� �
�
et cos2t e�2t sin2t
�et sin2t e�2t cos2t

�
.

(a) Compute the state transition matrix Φ�t, t0�.
(b) Compute a matrix A�t� that corresponds to the given state transition matrix.
(c) Compute the eigenvalues of A�t�.
(d) Classify this system in terms of Lyapunov stability.

Hint: In answering part (d), do not be mislead by your answer to part (c).

8.5 (Exponential of matrix transpose). Verify that

�
eAt
�� � eA

�t .

Hint: Use the definition of matrix exponential. �

8.6 (Stability margin). Consider the continuous-time LTI system

�x� Ax, x � R
n

and suppose that there exists a positive constant µ and positive-definite matrices P,Q � R
n for the

Lyapunov equation

A�P�PA�2µP��Q. (8.21)

be asymptotically stable with stability margin µ .Show that all eigenvalues of A have real parts less

than �µ . A matrix A with this property is said to

Hint: Start by showing that all eigenvalues of A have real parts less than �µ if and only if all
eigenvalues of A�µI have real parts less than 0 (i.e., A�µI is a stability matrix).

�

8.7 (Stability of nonlinear systems). Investigate whether or not the solutions to the following
nonlinear systems converge to the given equilibrium point when they start sufficiently close to it.

(a) The state-space system
�x1 ������x1���x1���x21���x22���
�x2 x2 x2 x21 x22 ,

with equilibrium point x1 � x2 � 0.
(b) The second-order system

�w�g�w� �w�w� 0,

with equilibrium point w� �w � 0. Determine for which values of g�0� we can guarantee con-
vergence to the origin based on the local linearization.

This equation is called the Lienard equation and can be used to model several mechanical
systems, depending on the choice of the function g���. �



Lecture 9

Input-Output Stability

Contents
This lecture introduces a notion of stability that expresses how the magnitude of the output relates
to the magnitude of the input in the absence of initial conditions.

1. Bounded-input, bounded-output (BIBO) stability
2. Time domain conditions for BIBO stability
3. Frequency domain conditions for BIBO stability
4. BIBO versus Lyapunov stability
5. Discrete-time case

9.1 Bounded-Input, Bounded-Output Stability
In Lecture 8 we discussed internal or Lyapunov stability, which is concerned only with the effect
of the initial conditions on the response of the system. We now consider a distinct notion of sta-
bility that ignores initial conditions and is concerned only with the effect of the input on the forced
response. We see below that for LTI systems these two notions of stability are closely related.

Consider the continuous-time LTV system

�x� A�t�x�B�t�u, y�C�t�x�D�t�u, x � R
n, u � R

k, y � R
m. (CLTV)

We saw in Lecture 5 that the forced response of this system (i.e., the output for zero initial conditions)
is given by

y f �t� �
� t

0
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�,

where Φ�t,τ� denotes the system’s state transition matrix.
Definition 9.1 (BIBO stability). The system (CLTV) is said to be (uniformly) BIBO stable if there Attention! BIBO stability

addresses only the solutions
with zero initial conditions.

exists a finite constant g such that, for every input u���, its forced response y f ��� satisfies

Note. The factor g in (9.1) can be
viewed as a system “gain.” Any
norm can be used in (9.1), but
different norms lead to different
gains g.

t
sup
��0,��

�y
f �t��� g sup

t��0,��
�u�t��. (9.1)

9.2 Time Domain Conditions for BIBO Stability
One can analyze the (time dependent) impulse response of an LTV system to determine whether or
not the system is BIBO stable.
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Theorem 9.1 (Time domain BIBO stability condition). The following two statements are equivalent.

1. The system (CLTV) is uniformly BIBO stable.

2. Every entry of D��� is uniformly bounded andNotation. A signal x�t� is uni-
formly bounded if there exists a fi-
nite constant c such that �x�t�� �
c, �t � 0. sup

t�0

� t0
�gi j�t,τ��dτ ��, (9.2)

for every entry gi j�t,τ� of C�t�Φ�t,τ�B�τ�. �

Proof of Theorem 9.1. We start by proving that statement 2� statement 1. To prove that bounded-
ness of D��� and (9.2) constitute a sufficient condition for uniform BIBO stability, we use the fact
that

�y f �t��� �
t0
�C�t�Φ�t,τ�B�τ���u�τ��dτ��D�t���u�t��, �t � 0.

Defining

µ � sup
t��0,��

�u�t��, δ � sup
t��0,��

�D�t��,

we conclude that

�y f �t��� ��
t0
�C�t�Φ�t,τ�B�τ��dτ�δ� µ . �t � 0.

Therefore (9.1) holds with

g� sup
t�0

� t0
�C�t�Φ�t,τ�B�τ��dτ �δ .

It remains to show that this g is finite. To do this, we note thatNote. This is a consequence of
the triangle inequality.

�C�t�Φ�t,τ�B�τ��� �
i, j

�gi j�t,τ��,

and therefore � t0
�C�t�Φ�t,τ�B�τ��dτ ��i, j

� t0
�gi j�t,τ��dτ, �t � 0.

Using (9.2), we conclude that indeed

g� sup
t�0

� t0
�C�t�Φ�t,τ�B�τ��dτ�δ � sup

t�0

�
i j

� t0
�gi j�t,τ��dτ�δ ��.
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It remains to prove that statement 1� statement 2. We prove this implication by showing that if 2
Note 8. To prove an implication
P � Q by contraposition,
one proves instead the equivalent
statement that �Q � �P. In
words: if Q is false, then P must
also be false.
Contraposition can be viewed as a
variation of a proof by contradic-
tion (see Note 7, p. 64), since if
one were to assume that the im-
plication is false, it should be pos-
sible to have Q false and P true,
which is inconsistent with the fact
that �Q � �P.

is false, then 1 must necessarily also be false, i.e., that (CLTV) cannot be BIBO stable. Suppose first
that 2 is false because the entry di j��� of D��� is unbounded. We show next that in this case (9.1) can
be violated no matter what we choose for the finite gain g. To do this, pick an arbitrary time T and
consider the following step input:

uT �τ��
�
0 0� τ � T
e j τ � Y

�τ � 0,

where e j � R
k is the jth vector in the canonical basis of Rk. For this input, the forced response at

time T is exactly

y f �T � � D�T �e j.
We thus have found an input for which

t
sup
��0,��

�uT �t��� 1

and
t
sup
��0,��

�y f �t���� y f �T ���� D�T �e j� � �di j�T ��,

where the last inequality results from the fact that the norm of the vector D�T �e j must be larger
than the absolute value of its ith entry, which is precisely di j�T �. Since di j��� is unbounded, we
conclude that we can make supt��0,�� �y f �t�� arbitrarily large by using inputs uT ��� for which
supt��0,�� �uT �t�� � 1, which is not compatible with the existence of a finite gain g that satisfies
(9.1). This means that D��� must be uniformly bounded for a system to be BIBO stable.
Suppose now that 2 is false because � t0

�gi j�t,τ��dτ (9.3)

is unbounded for some i and j. Also in this case we can show that (9.1) can be violated no matter
what we choose for the finite gain g. To do this, pick an arbitrary time T and consider the following
“switching” input:

uT �τ� �
�
�e j gi j���t,τ� � � �0
�e j gi j t,τ � 0 �τ � 0.

For this input, the forced response at time T is given by

y f �t� �
� t

0
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�,

and its ith entry is equal to � t0
�gi j�t,τ��dτ�di j�t�.

We thus have found an input for which
t
sup
��0,��

�uT �t��� 1

and
t
sup
��0,��

�y f �t���� y f �T ��� � � ��
t0
�gi j�t,τ��dτ�di j�t����.

Since (9.3) is unbounded, also now we conclude that we can make supt��0,�� �y f �t�� arbitrarily
large using inputs uT ��� for which supt��0,�� �uT �t��� 1, which is not compatible with the existence
of a finite gain g that satisfies (9.1). This means that (9.2) must also hold for a system to be BIBO
stable.



76 João P. Hespanha

Time-Invariant Case
For the time-invariant system

�x� Ax�Bu, y�Cx�Du, (CLTI)

we have

CΦ�t,τ�B �CeA�t�τ�B.

We can therefore rewrite (9.2) as

sup
t�0

� t0
�ḡi j�t� τ��dτ ��,

with the understanding that now ḡi j�t� τ� denotes the i jth entry of
CeA�t�τ�B.

Making the change of variable ρ � t� τ , we conclude that

sup
t�0

� t0
�ḡi j�t� τ��� sup

t�0

� t0
�ḡi j�ρ��dρ �

�
�0
�ḡi j�ρ��dρ .

Therefore Theorem 9.1 can be restated as follows.

Theorem 9.2 (Time domain BIBO LTI condition). The following two statements are equivalent.

1. The system (CLTI) is uniformly BIBO stable.

2. For every entry ḡi j�ρ� of CeAρ B, we have� �0
�ḡi j�ρ��dρ ��. �

9.3 Frequency Domain Conditions for BIBO Stability
The Laplace transform provides a very convenient tool for studying BIBO stability. To determine
whether a time-invariant system

�x� Ax�Bu, y�Cx�Du (CLTI)

ˆ

transform,
is BIBO stable, we need to compute the entries gi j�t� of CeAtB. To do this, we compute its Laplace

L �CeAtB� �C�sI�A��1B.
As we saw in Lecture 4, the i jth entry of this matrix will be a strictly proper rational function of the
general form

gi j�s� �
α0sq�α1sq�1�� � ��αq�1s�αq

�s�λ1�m1�s�λ2�m2 � � � �s�λk�mk
,

ˆ

where the λ� are the (distinct) poles of ĝi j�s� and the m� are the corresponding multiplicities. To
compute the inverse Laplace transform, we need to perform a partial fraction expansion of ĝi j�s�,
which is of the form

gi j�s� � a11
s�λ1

� a12�s�λ1�2 �� � ��
a1m1

�s�λ1�m1 �� � �� ak1
s�λk

� ak2�s�λk�2 �� � ��
akmk

�s�λk�mk
.

The inverse Laplace transform is then given by

gi j�t� � L
�1�ĝi j�s�� � a11eλ1t �a12 t eλ1t ���� �a1m1t

m1�1eλ1t

�� � ��ak1eλkt �ak2 t eλkt �� � ��akmkt
mk�1eλkt .

We therefore conclude the following.
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exponentially fast and the system (CLTI) is BIBO stable. 1. If for all ĝi j�s�, all the poles λ�

have strictly negative real parts, then gi j�t� converges to zero

converge to zero and the system (CLTI) is not BIBO stable. 2. If at least one of the ĝi j�s�

has a pole λ� with a zero or positive real part, then �gi j�t�� does not

Although ĝi j is not an entry of the transfer function of (CLTI) (because the D term is missing from
its definition), adding a constant D will not change its poles. Therefore the conclusions above can
be restated as follows.

Theorem 9.3 (Frequency domain BIBO condition). The following two statements are equivalent:

1. The system (CLTI) is uniformly BIBO stable.

2. Every pole of every entry of the transfer function of the system (CLTI) has a strictly negative
real part.

�

9.4 BIBO versus Lyapunov Stability

We saw in Theorem 9.2 that the LTI system

�x� Ax�Bu, y�Cx�Du (CLTI)

is uniformly BIBO stable if and only if every entry ḡi j�t� ofCeAtB satisfies� �0
�ḡi j�t��dt ��. (9.4)

However, if the system (CLTI) is exponentially stable, then every entry of eAt converges to zero
exponentially fast and therefore (9.4) must hold.

Theorem 9.4. When the system (CLTI) is exponentially stable, then it must also be BIBO sta-
ble. �

Attention! In general, the converse of Theorem 9.4 is not true, because there are systems that are
BIBO stable but not exponentially stable. This can happen when the premultiplication of eAt by C
and/or the postmultiplication by B cancel terms in eAt that are not converging to zero exponentially
fast. This occurs, e.g., for the system

�x�
�
1 0
0 �2

�
x�

�
0
1

�
u, y� �

1 1
�
x,

for which

eAt �
�
et 0
0

e�2t

�
is unbounded and therefore Lyapunov unstable, but Note. We see below in Lec-

tures 17 (SISO) and 19 (MIMO)
that this discrepancy between
Lyapunov and BIBO stability is
always associated with lack of
controllability or observability,
two concepts that will be intro-
duced shortly. In this example, the
system is not controllable.

CeAtB� �
1 1

��et 0
0

e�2t��0
1

�� e�2t ,

and therefore the system is BIBO stable. �
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9.5 Discrete-Time Case
Consider now the following discrete-time LTV system

x�t�1� � A�t�x�t��B�t�u�t�, y�t� �C�t�x�t��D�t�u�t�. (DLTV)

We saw in Lecture 5 that the forced response of this system is given by

y f �t� �
t�1�
τ�0

C�t�Φ�t,τ �1�B�τ�u�τ�dτ�D�t�u�t�, �t � 0,

of BIBO stability is essentially identical to the continuous-time one. whereΦ�t,τ� denotes the
system’s discrete-time state transition matrix. The discrete-time definition

Definition 9.2 (BIBO stability). The system (DLTV) is said to be (uniformly) BIBO stable if there
Attention! BIBO stability ad
dresses only the solutions with
zero initial conditions.

exists a finite constant g such that, for every input u���, its forced response y f ��� satisfies

Note. The factor g can be viewed
as the “gain” of the system.

sup
t�N

�y f �t��� gsup
t�N

�u�t��. �

Theorem 9.5 (Time domain BIBO condition). The following two statements are equivalent.

1. The system (DLTV) is uniformly BIBO stable.

2. Every entry of D��� is uniformly bounded and

sup
t�0

t�1�τ�0
�gi j�t,τ����

for every entry gi j�t,τ� of C�t�Φ�t,τ�B�τ�. �

For the following time-invariant discrete-time system

x� � Ax�Bu, y�Cx�Du, (DLTI)

one can conclude that the following result holds.

Theorem 9.6 (BIBO LTI conditions). The following three statements are equivalent.

1. The system (DLTI) is uniformly BIBO stable.

2. For every entry ḡi j�ρ� of CAρ B, we have

��ρ�1
�ḡi j�ρ���� .

3. Every pole of every entry of the transfer function of the system (DLTI) has magnitude strictly
smaller than 1. �

9.6 Exercises
9.1. Consider the system

�x�
���2 0 0
0 1 0
0 0 �1

��x��
�� 1
0
�1

��
u, y� �

1 1 0
�
x�u.

(a) Compute the system’s transfer function.

(b) Is the matrix A asymptotically stable, marginally stable, or unstable?

(c) Is this system BIBO stable? �



Lecture 10

Preview of Optimal Control

Contents
This lecture provides a brief introduction to optimal control. Its main goal is to motivate several of
the questions that will be addressed in subsequent lectures.

1. The linear quadratic regulator (LQR) problem
2. Algebraic Riccati equation (ARE)
3. Optimal state feedback
4. LQR with MATLAB R�

This material is discussed in much greater detail in Lecture 20.

10.1 The Linear Quadratic Regulator Problem
Given a continuous-time LTI system Note. For simplicity, here we as-

sume that the D matrix is zero.
�x� Ax�Bu, y�Cx,

the following criterion as small as possible: the linear quadratic regulation (LQR) problem consists

of finding the control signal u�t� that makes

JLQR�

� �
0

y�t��Qy�t��u�t��Ru�t� dt, (10.1)

where Q and R are positive-definite weighting matrices. The term� �
0

y�t��Qy�t�dt

provides a measure of the output energy, and the term� �
0

u�t��Ru�t�dt

provides a measure of the control signal energy. In LQR one seeks a controller that minimizes both
energies. However, decreasing the energy of the output requires a large control signal, and a small
control signal leads to large outputs. The role of the weighting matrices Q and R is to establish a
trade-off between these conflicting goals.

1. When R is much larger than Q, the most effective way to decrease JLQR is to employ a small
control input, at the expense of a large output.

2. When R is much smaller than Q, the most effective way to decrease JLQR is to obtain a very
small output, even if this is achieved at the expense of employing a large control input.
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10.2 Feedback Invariants
Given a continuous-time LTI system

�x� Ax�Bu, y�Cx, x � R
n, u � R

k, y � R
m, (CLTI)

we say that a functionalNote. A functional maps func-
tions (in this case signals; i.e.,
functions of time) to scalar values
(in this case real numbers).

H
�
x���;u����

that involves the system’s input and state is a feedback invariant for the system (CLTI) if, when
computed along a solution to the system, its value depends only on the initial condition x�0� and not
on the specific input signal u���.
Proposition 10.1 (Feedback invariant). For every symmetric matrix P, the functional

H
�
x���;u������

� �
0

�
Ax�t��Bu�t���Px�t�� x�t��P�Ax�t��Bu�t�� dt

is a feedback invariant for (CLTI), as long as limt�� x�t� � 0. �

Proof of Proposition 10.1. We can rewrite H as

H
�
x���;u���� ��

� �
0
�x�t��Px�t�� x�t��P �x�t� dt

��
� �
0

d
�
x�t��Px�t��

dt
dt � x�0��Px�0�� lim

t��x�t��Px�t� � x�0��Px�0�,

10.3 Feedback Invariants in Optimal Control

as long as limt�� x�t� � 0.

Suppose that we are able to express a criterion J to be minimized by an appropriate choice of the
input u��� in the following form:

J � H
�
x���;u������ �

0
Λ
�
x�t�,u�t��dt, (10.2)

where H is a feedback invariant and the function Λ�x,u� has the property that for every x � R
n

min
u�Rk

Λ�x,u� � 0.

In this case, the control

u�t� � arg min
u�Rk

Λ�x,u�,

will minimize the criterion J, and the optimal value of J is equal to the feedback invariantNote. If one wants to restrict
the optimization to solutions that
lead to an asymptotically stable
closed-loop system, then H needs
to be a feedback invariant only for
inputs that lead to x�t� � 0 (as in
Proposition 10.1).

J � H
�
x���;u����.

Note that it is not possible to get a lower value for J since (1) the feedback invariantH
�
x���;u���� is

never affected by u and (2) a smaller value for J would require the integral in the right-hand side of
(10.2) to be negative, which is not possible, since Λ

�
x�t�,u�t�� can at best be as low as zero.
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10.4 Optimal State Feedback
It turns out that the LQR criterion can be expressed as in (10.2) for an appropriate choice of feedback
invariant. In fact, the feedback invariant in Proposition 10.1 will work, provided that we choose the
matrix P appropriately. To check that this is so, we add and subtract this feedback invariant to the
LQR criterion and conclude that

JLQR�
� �
0

x�C�QC�x�u�Ru dt

� H���x���;u���� � ��
����
0

x�C�QC�x�u�Ru��Ax�Bu��Px� x�P�Ax�Bu� dt

� H x���;u��� �
�

0
x��A�P�PA�C�QC��x�u�Ru�2u�B�Px dt.

By completing the squares as follows, we group the quadratic term in u with the cross-term in u
times x:

�u�� x�K��R�u�Kx� � u�Ru� x�PBR�1B�Px�2u�B�Px,
K� R�1B�P,

from which we conclude that

JLQR � H
�
x���;u������ �

If we are able to select the matrix P so that
0

x��A�P�PA�C�QC��PBR�1B�P�x��u�� x�K�

�R�u�Kx� dt. Notation. Equation (10.3) is
called an algebraic Riccati
equation (ARE).A�P�PA�C�QC�PBR�1B�P� 0, (10.3)

we obtain precisely an expression such as (10.2) with

which has a minimum equal to zero for

Λ�x,u�� �u�� x�K��R�u�Kx�,

u��Kx, K� R�1B�P, (10.4)

leading to the following closed loop:

�x� Ax�BKx� �A�BR�1B�P�x.

The following was proved:

Theorem 10.1. Assume that there exists a symmetric solution P to the following algebraic Riccati
equation (ARE)

MATLAB R� Hint 28. lqr solves
the ARE and computes the opti-
mal state feedback controller gain
K. � p. 82

A�P�PA�C�QC�PBR�1B�P� 0 (10.5)

for which A�BR�1B�P is a stability matrix. Then the feedback law (10.4) stabilizes the closed-loop
Note. Asymptotic stability
of the closed-loop system is
needed because we assumed that
limt�� x�t�Px�t� � 0.

system while minimizing the LQR criterion (10.1). �

Attention! Several questions still remain open.

1. Under what conditions does the LQR problem have a solution?

Intuitively, the answer to this question should be “as long as there exists at least one signal u
that takes y to zero with finite energy.”
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2. Under what conditions does the ARE (10.5) have a symmetric solution that leads to an
asymptotically stable closed-loop system?

One would like the answer to this question to coincide with the answer to the previous one,
because this would mean that one could always solve the LQR problem by solving an ARE.
This is “almost” true. . .

These questions will be resolved in Part VI, where we revisit the LQR problem in much more detail.
�

Attention! The ARE itself already provides some clues about whether or not the closed-loop system
is stable. Indeed, if we write the Lyapunov equation for the closed loop and use (10.5), we get

�A�BR�1B�P��P�P�A�BR�1B�P� � A�P�PA�2PBR�1B�P��Q̄� 0

for Q̄�C�QC�PBR�1B�P� 0. In case P� 0 and Q̄� 0, we could immediately conclude that the
closed loop was stable by the Lyapunov stability theorem 8.2. �

10.5 LQR with MATLAB R�

MATLAB R� Hint 28 (lqr). The command [K,S,E]=lqr(A,B,QQ,RR,NN) computes the optimal
state feedback LQR controller for the process

�x� Ax�Bu

with the criterion

J�
� �
0

x�t��QQx�t��u��t�RRu�t��2x��t�NNu�t�dt.

For the criterion in (10.1), one should select

QQ�C�QC, RR� R, NN� 0.

This command returns the optimal state feedback matrix K, the solution P to the corresponding
algebraic Riccati equation, and the poles E of the closed-loop system. �

10.6 Exercises
10.1 (Hamiltonian). Consider the following LTI SISO system

�x� Ax�bu, y� cx, x � R
n, u,y � R.

(a) Show that when the matrix

O �

����
� ..

c
cA
.

cAn�1
����� � R

n�n

is nonsingular, then the null space of the matrix
�
A�λ I

c

� �R�n�1��n contains only the zero vector,
for every λ � C.

Hint: Prove the statement by contradiction.
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(b) Show that if x�
�
x1
x2

�
, x1,x2 � C

n is an eigenvector of a matrix H � R
2n�2n associated with an

eigenvalue λ � jω over the imaginary axis, then

�
x�2 x�1

�
Hx��Hx��

�
x2
x1�� 0, (10.6)

where ���� denotes the complex conjugate transpose.
Hint: Note that the order of the indexes of x1 and x2 in (10.6) is opposite to the order in the
definition of x.

(c) Show that if x�
�
x1
x2

�
, x1,x2 � C

n is an eigenvector of

H �
�

A �bbT

�cTc �AT

�
associated with an eigenvalue λ � jω over the imaginary axis, then bTx2 � 0 and cx1 � 0.
Hint: Use equation (10.6) in part (b) and do not get the indexes of x1 and x2 exchanged by
mistake.

(d) Show that if for every λ � C the null spaces of the matrices�
A�λ I

c

�
� R�n�1��n and

�
bT

AT �λ I
�
� R�n�1��n

contain only the zero vector, then

H �
�

A �bbT

�cTc �AT

�
cannot have any eigenvalues over the imaginary axis.

Hint: Do the proof by contradiction, using the result stated in part (c).

It may make you happy to know that if you succeeded in solving the exercises above, you have
figured out the main steps in the proof of the following important theorem in optimal control, a
generalization of which we find in Lecture 21:

Theorem 10.2. For every realization A � R
n�n, b � R

n�1, c � R
1�n, for which the matrices Note. In this case, we say that the

triple �A,b,c� is a minimal real-
ization (cf. Lecture 17).

C �
�
b Ab � � � An�1b

�
, O �

����
� ..

c
cA
.

cAn�1
����� � R

n�n

are nonsingular, the Hamiltonian matrix H �
�

A �bbT

�cT c �AT

�
has no eigenvalues over the imaginary

axis. �



84 João P. Hespanha



Part III

Controllability and State Feedback

85





Lecture 11

Controllable and Reachable
Subspaces

Contents
This lecture introduces the notions of controllability and reachability, which are the basis of all
state-space control design methods.

1. Controllable and reachable subspaces
2. Physical examples and block diagrams
3. Controllability and reachability Gramians (LTV systems)
4. Minimum-energy control
5. Controllability matrix (LTI systems)
6. Discrete-time case

11.1 Controllable and Reachable Subspaces
Consider the continuous-time LTV system

�x� A�t�x�B�t�u, y�C�t�x�D�t�u, x � R
n, u � R

k, y � R
m. (CLTV)

We saw in Lecture 5 that a given input u��� transfers the state x�t0� � x0 at time t0 to the state
x�t1�� x1 at time t1 given by the variation of constants formula,

x1 �Φ�t1, t0�x0�
� t1

t0
Φ�t1,τ�B�τ�u�τ�dτ,

where Φ��� denotes the system’s state transition matrix. The following two definitions express how
powerful the input is in terms of transferring the state between two given states.

Definition 11.1 (Reachable subspace). Given two times t1 � t0 � 0, the reachable or controllable-
from-the-origin on �t0, t1� subspace R�t0, t1� consists of all states x1 for which there exists an input
u : �t0, t1� � R

k that transfers the state from x�t0� � 0 to x�t1� � x1; i.e.,

R�t0, t1��
�
x1 � R

n : �u�.�, x1 �
� t1

t0
Φ�t1,τ�B�τ�u�τ�dτ

�
. �

Definition 11.2 (Controllable subspace). Given two times t1� t0� 0, the controllable or controllable-
to-the-origin on �t0, t1� subspace C�t0, t1� consists of all states x0 for which there exists an input
u : �t0, t1� � R

k that transfers the state from x�t0� � x0 to x�t1� � 0; i.e.,

C�t0, t1��
�
x0 � R

n : �u�.�, 0�Φ�t1, t0�x0�
� t1

t0
Φ�t1,τ�B�τ�u�τ�dτ

�
. �

87
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The matrices C��� and D��� play no role in these definitions; therefore, one often simply talks
about the reachable or controllable subspaces of the system

�x� A�t�x�B�t�u, x � R
n, u � R

k, (AB-CLTV)

or of the pair
�
A���,B����.

Attention! Determining the reachable subspace amounts to finding for which vectors x1 � R
n the

equation

x1 �
� t1

t0
Φ�t1,τ�B�τ�u�τ�dτ (11.1)

has a solution u���. Similarly, determining the controllable subspace amounts to finding for which
Note 9. Note that the two equa-
tions (11.1) and (11.2) differ
only by exchanging Φ�t1,τ� with
Φ�t0,τ� and u��� with v��� �
�u���.

vectors x1 � R
n the equation

0�Φ�t1, t0�x0�
� t1

t0
Φ�t1,τ�B�τ�u�τ�dτ � x0 �

� t1

t0
Φ�t0,τ�B�τ�v�τ�dτ (11.2)

has a solution v�����u���. �

11.2 Physical Examples and System Interconnections

R1

C1

R2

C2
u x1 x2

(a) Parallel RC network

K1 K2B1 B2

u

m1 m2

(b) Suspension system

Figure 11.1. Uncontrollable systems.

Example 11.1 (Parallel RC network). The state-space model of the electrical network in Fig-
ure 11.1(a) is given by

�x�
�
� 1

R1C1
0

0 � 1
R2C2

�
x�

�
1

R1C1
1

R2C2

�
u.

The solution to this system is given by

x�t� �
�
e�

t
R1C1 x1�0�

e�
t

R2C2 x2�0�

�
�
� t

0

��� e
� t�τ

R1C1
R1C1

e
� t�τ

R2C2
R2C2

��
�
u�τ�dτ.

When the two branches have the same time constant, i.e., 1
R1C1

� 1R2C2 � ω , we have

x�t� � e�ωt x�0��ω
� t

0
e�ω�t�τ�u�τ�dτ

�
1
1

�
.
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This shows that if x�0� � 0, then x�t� is always of the form

x�t� � α�t�
�
1
1

�
, α�t�� ω

� t

0
e�ω�t�τ�u�τ�dτ,

and we cannot transfer the system from the origin to any state with x1�t� � x2�t�. The reachable
subspace for this system is

R�t0, t1� �
�
α
�
1
1

�
: α � R

�
, �t1 � t0 � 0.

Suppose now that we want to transfer x�0� to the origin. Then we need

0� e�ωt x�0��α�t�
�
1
1

�
, α�t�� ω

� t

0
e�ω�t�τ�u�τ�dτ.

Clearly, this is possible only if x�0� is aligned with �1 1��. The controllable subspace for this system
is also

C�t0, t1� �
�
α
�
1
1

�
: α � R

�
, �t1 � t0 � 0.

However, we shall see shortly that when the time constants are different; i.e., 1
R1C1

� 1
R2C2

, any vector
in R2 can be reached from the origin and the origin can be reached from any initial condition in R2;
i.e.,

R�t0, t1� � C�t0, t1� � R
2. �

Example 11.2 (Suspension system). The state-space model of the mechanical suspension system in
Figure 11.1(b) is given by

� �x�

����
�

b1
m1

� k1
m1

0 0
1 0 0 0
0 0 � b2

m2
� k2

m2
0 0 1 0

�����
x�

����
�

1
2m1
0
1
2m2
0

����
�
u,

where x�
�
�x1 x1 �x2 x2

��, and x1 and x2 are the spring displacementswith respect to the equilibrium
position. We assumed that the bar has negligible mass and therefore the force u is equally distributed
between the two spring systems. �

This and the previous examples are special cases of the parallel connection in Figure 11.2(a),
which is discussed next.

+

+

�x1 � A1x1�B1u

�x2 � A2x2�B2u

u y

y1

y2
(a) parallel

�x1 � A1x1�B1u �x2 � A2x2�B2u
u yz

(b) cascade

Figure 11.2. Block interconnections.

Example 11.3 (Parallel interconnection). Consider the parallel connection in Figure 11.2(a) of two
systems with states x1,x2 � R

n. The overall system corresponds to the state-space model

�x�
�
A1 0
0 A2

�
x�

�
B1
B2

�
u,
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where we chose for state x�
�
x�1 x�2

�� �
R
2n. The solution to this system is given by

x�t� �
�
eA1t x1���0���
eA2t x2 0

��� t

0

�
eA1�t�τ�B1
eA2�t�τ�B2

�
u�τ�dτ.

When A1 � A2 � A and B1 � B2 � B, we have

x�t� �
�
eAtx1���0���
eAtx2 0

���I
I

�� t

0
eA�t�τ�Bu�τ�dτ.

This shows that if x�0� � 0, we cannot transfer the system from the origin to any state with x1�t� �
x2�t�. Similarly, to transfer a state x�t0� to the origin, we must have x1�t0� � x2�t0�. �

Attention! Parallel connections of similar systems are a common mechanism (but certainly not the
only one) that leads to lack of reachability and controllability. Cascade connections, as in Fig-
ure 11.2(b), generally do not have this problem. However, they may lead to stability problems
through resonance, as seen in Lecture 7. �

11.3 Fundamental Theorem of Linear Equations (review)
Given an m� n matrixW , the range or image is the set of vectors y � R

m for which y �Wx has aNote. It is important to recognize
Wx as a linear combination of the
columns of W , with the coeffi-
cients of the linear combination
given by the entries of the vector
x.

solution x � R
n; i.e.,

ImW �

�
y � R

m : �x � R
n, y�Wx

�
.

The image ofW is a linear subspace of Rm, and its dimension is called the rank of the matrixW .
Note. How to compute the image
of a matrixW? A basis for the im-
age is obtained by keeping only its
linearly independent columns.

The rank ofW is equal to the number of linearly independent columns ofW , which is also equal to
the number of linearly independent rows ofW .

The kernel or null space is the set

Note. How to compute the kernel
of a matrix? Solve the equation
Wx � 0 and find the vectors for
which it has a solution.

MATLAB R� Hint 29. svd(W)
can be used to compute bases for
ImW and kerW. � p. 99

kerW �

�
x � R

n :Wx� 0�.
The kernel ofW is a linear subspace of Rn, and its dimension is called the nullity of the matrixW .
The following theorem relates the range and nullity of a matrix.

Theorem 11.1 (Fundamental theorem of linear equations). For every m�n matrix W,

dim kerW �dim ImW � n. �

The Fundamental Theorem of Linear Equations is covered extensively, e.g., in [12, 17].

There exists a simple relationship between the kernel and image spaces. The orthogonal com-
plement V� of a linear subspace V� R

n is the set of all vectors that are orthogonal to every vectorNote. For any subspace V, one
can show that �V��� � V. in V; i.e.,

V
� � �

x � R
n : x�z� 0, �z � V

�
.

Lemma 11.1 (Range versus null space). For every m�n matrix W ,

ImW � �kerW ���, kerW � �ImW ���. �

Proof of Lemma 11.1. Assuming that x � ImW ,

x � ImW ����η : x�Wη
z � kerW � W �z� 0

� �

z�x� z�Wη � 0.
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Therefore x is orthogonal to every vector in kerW �, which means that x � �kerW ���. We thus
conclude that ImW � �kerW ���.
However,

dimkerW ��dim�kerW ��� ��� nnn
dimkerW ��dimImW ��� dimImW � rankW � dimImW � � dim�kerW ���

and therefore ImW cannot be a strict subset of �kerW ���.

11.4 Reachability and Controllability Gramians
The following definitions are useful in characterizing the reachable and controllable subspaces:

Definition 11.3 (Reachability and controllability Gramians). Given two times t1� t0� 0, the reach-
ability and controllability Gramians of the system (AB-CLTV) are defined, respectively, by Note. Both Gramians are sym-

metric positive-semidefinite n�
n matrices; i.e., WR�t0,t1� �
WR�t0 ,t1�� and x�WR�t0 ,t1�x � 0,
�x � Rn. Similarly forWC.

WR�t0, t1��
� � �t1

t0
Φ�t1,τ�B�τ�B�τ��Φ�t1,τ��dτ,

WC�t0, t1��
t1

t0
Φ�t0,τ�B�τ�B�τ��Φ�t0,τ��dτ. �

As the name suggests, the reachability Gramian allows one to compute the reachable subspace.

Theorem 11.2 (Reachable subspace). Given two times t1 � t0 � 0,
R�t0, t1� � ImWR�t0, t1�,

Moreover, if x1 �WR�t0, t1�η1 � ImWR�t0, t1�, the control
u�t� � B�t��Φ�t1, t��η1 t � �t0, t1� (11.3)

can be used to transfer the state from x�t0� � 0 to x�t1� � x1. �

Proof of Theorem 11.2. We start by showing that x1 � ImWR�t0, t1� � x1 �
R�t0, t1�. When x1 � Note. To prove that two sets A

and B are equal, one generally
starts by showing that A �

B and
then that B � A . The former
amounts to showing that

x �A � x �B

and the latter that

x �B � x �A .

ImWR�t0, t1�, there exists a vector η1 �Rn such that

x1 �WR�t0, t1�η1.
To prove that x1 � R�t0, t1�, it suffices to show that the input (11.3) does indeed transfer the state
from x�t0� � 0 to x�t1� � x1, and therefore x1 �
of constants formula for the input (11.3):

R�t0, t1�. To verify that this is so, we use the variation

x�t1� �
� t1

t0
Φ�t1,τ�B�τ�B�τ��Φ�t1,τ��η1�������������������

u�τ�

dτ �WR�t0, t1�η1 � x1.

We now show that x1 �R�t0, t1� � x1 � ImWR�t0, t1�. When x1 � R�t0, t1�, there exists an input u���
for which

x1 �
� t1

t0
Φ�t1,τ�B�τ�u�τ�dτ.

We show next that this leads to x1 � ImWR�t0, t1� � �kerWR�t0, t1���, which is to say that
x�1η1 � 0, �η1 � kerWR�t0, t1�. (11.4)

f o r u m . k o n k u r . i n
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To verify that this is so, we pick some arbitrary vector η1 � kerWR�t0, t1� and compute

x�1η1 �
� t1

t0
u�τ��B�τ��Φ�t1,τ��η1dτ. (11.5)

But since η1 � kerWR�t0, t1�, we have

η�1WR�t0, t1�η1 �
� t1

t0
η�1Φ�t1,τ�B�τ�B�τ��Φ�t1,τ��η1dτ �

� t1t0
�B�τ��Φ�t1,τ��η1�2dτ � 0,

which implies that

B�τ��Φ�t1,τ��η1 � 0, �τ � �t0, t1�.
From this and (11.5), we conclude that (11.4) indeed holds.

A similar result can be proved for the controllable subspace.

Theorem 11.3 (Controllable subspace). Given two times t1 � t0 � 0,
C�t0, t1� � ImWC�t0, t1�.

Note. Cf. Note 9 (p. 88). Moreover, if x0 �WC�t0, t1�η0 � ImWC�t0, t1�, the
control

u�t� � �B�t��Φ�t0, t��η0,

t � �t0, t1� (11.6)

can be used to transfer the state from x�t0� � x0 to x�t1� � 0. �

11.5 Open-loop Minimum-Energy Control
Suppose that a particular state x1 belongs to the reachable subspaceR�t0, t1� of the system (AB-CLTV).
We saw in Theorem 11.2 that a specific control that can transfer the state from x�t0� � 0 to x�t1� � x1
is given by

u�t� � B�t��Φ�t1, t��η1, t � �t0, t1�, (11.7)

where η1 can be any vector for which

x1 �WR�t0, t1�η1. (11.8)

In general, there may be other controls that achieve the same goal, but controls of the form (11.7)
are desirable because they minimize control energy.

To understand why this is so, suppose that ū��� is another control that transfers the state to x1 and
therefore

x1 �
� t1

t0
Φ�t1,τ�B�τ�u�τ�dτ �

�
¯

t1

t0
Φ�t1,τ�B�τ�u�τ�dτ.

For this to hold, we must have � t1

t0
Φ�t1,τ�B�τ�v�τ�dτ � 0, (11.9)

where v� ū�u. The “energy” of ū��� can be related to the energy of u��� as follows:

�
¯

t1t0
�u�τ��2dτ � �

t1

t0
�

u�τ��������������������
B�t��Φ�t1,τ��η1�v�τ��2dτ
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� η�
1WR�t0, t1�η1��

t1t0
�v�τ��2dτ�2η �1�

t1

t0
Φ�t1,τ�B�τ�v�τ�dτ.

Because of (11.9), the last term is equal to zero, and we conclude that the energy of ū is minimized
for v��� � 0; i.e., for ū � u. Moreover, for v��� � 0, we conclude that the energy required for the Note. There may be several vec-

tors η1 for which (11.8) holds,
but they all differ by vectors in
kerWR�t0,t1�, so they all lead to
the same control energy and, in
fact, to the same control, i.e., v�
0.

optimal control u��� in (11.7) is given by� t1t0
�u�τ��2dτ � η �1WR�t0, t1�η1.

These observations are summarized in the following theorem.

Theorem 11.4 (Minimum-energy control). Given two times t1 � t0 � 0,
1. when x1 � R�t0, t1�, the control (11.3) transfers the state from x�t0� � 0 to x�t1� � x1 with the Note. Controls such as (11.3) and

(11.6) are called open loop be-
cause u�t� is precomputed and is
not expressed as a function of the
current state.

smallest amount of control energy, which is given by� t1t0
�u�τ��2dτ � η �1WR�t0, t1�η1, and

2. when x1 � C�t0, t1�, the control (11.6) transfers the state from x�t0� � x0 to x�t1� � 0 with the
smallest amount of control energy, which is given by� t1t0

�u�τ��2dτ � η �0WC�t0, t1�η0. �

11.6 Controllability Matrix (LTI)
Consider now the continuous-time LTI system

�x� Ax�Bu, x � R
n, u � R

k. (AB-CLTI)

For this system, the reachability and controllability Gramians are given, respectively, by

WR�t0, t1��
� � �t1

t0
eA�t1�τ�BB�eA

��t1�τ�dτ � � � �t1�t0

0
eAtBB�eA

�t dt,

WC�t0, t1��
t1

t0
eA�t0�τ�BB�eA

��t0�τ�dτ �
t1�t0

0

The controllability matrix of the time-invariant system (AB-CLTI) is defined to be

e�AtBB�e�A�t
dt.

MATLAB R� Hint 30.
ctrb(sys) computes the
controllability matrix of the
state-space system sys. Alter-
natively, one can use directly
ctrb(A,B). � p. 99

C �
�
B AB A2B � � � �

An�1B n��kn�

and provides a particularly simple method to compute the reachable and controllable subspaces.

Theorem 11.5. For any two times t0, t1, with t1 � t0 � 0, we have
R�t0, t1� � ImWR�t0, t1� � ImC � ImWC�t0, t1� � C�t0, t1�. �

Attention! This result has several important implications.

1. Time reversibility. The notions of controllable and reachable subspaces coincide for
continuous- time LTI systems, which means that if one can go from the origin to some state
x1, then one can also go from x1 to the origin.

Because of this, for continuous-time LTI systems one simply studies controllability and
neglects reachability.
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2. Time scaling. The notions of controllable and reachable subspaces do not depend on the
time interval considered. This means that if it is possible to transfer the state from the
origin to some state x1 in a finite interval �t0, t1�, then it is possible to do the same transfer in
any other

Note. However, time scaling does
not extend from infinite to finite
time intervals. E.g., for the sys-
tem

�x�
�
0 0
0 �1

�
x�

�
1
0

�
u,

it is possible to transfer the state
from

�
1 1

�� to the origin in “infi-
nite time” but not in finite time.

time finite interval �t̄0, t̄1�. Similarly for the controllable subspace.
Because of this, for continuous-time LTI systems one generally does not specify the time in-
terval �t0, t1� under consideration. �

Proof of Theorem 11.5. The first and last equalities have already been proved, so it remains to prove
the middle ones. We start with the second equality.

We start by showing that x1 �R�t0, t1� � ImWR�t0, t1� � x1 � ImC . When x1 � R�t0, t1�, there ex-
ists an input u��� that transfers the state from x�t0� � 0 to x�t1� � x1, and therefore

x1 �
� t1

t0
eA�t1�τ�Bu�τ�dτ.

But we saw in Lecture 6 that, using the Cayley-Hamilton theorem, we can write

eAt �
n�1�
i�0

α i�t�Ai, �t � R

for appropriately defined scalar functions α0�t�,α1�t�, . . . ,αn�1�t� [cf. (6.5)]. Therefore

x1 �
n�1�
i�0

AiB
�� t1

t0
α i�t1� τ�u�τ�dτ

��

C
����
� �t1

t0
α0�t1� τ�u�τ�dτ

...�t1
t0
αn�1�t1� τ�u�τ�dτ

����
�
,

which shows that x1 � ImC .

We show next that x1 � ImC � x1 �R�t0, t1� � ImWR�t0, t1�. When x1 � ImC , there exists a vector
ν � R

kn for which

x1 � C ν. (11.10)

We show next that this leads to x1 � ImWR�t0, t1� � �kerWR�t0, t1���, which is to say that

η�1x1 � η�1C ν � 0, � η1 � kerWR�t0, t1�. (11.11)

Theorem 11.2 that such vector η1 has the property that
To verify that this is so, we pick an arbitrary vector η1 � kerWR�t0, t1�. We saw in the proof of

η�1e
A�t1�τ�B� 0, � τ � �t0, t1�.

Taking k time derivatives with respect to τ , we further conclude thatNote. Check that

dk�η�1
dτk

�eA�t1�τ�B�

��1�kη�1AkeA�t1�τ�B.

(Cf. Exercise 11.1.)

��1�kη�1AkeA�t1�τ�B� 0, � τ � �t0, t1�, k � 0, (11.12)

and in particular for τ � t1, we obtain

η�1A
kB� 0, � k � 0.

It follows that η�1C � 0 and therefore (11.11) indeed holds.
Since the corresponding proofs for the controllable subspace are analogous, we do not present them.
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Example 11.4 (Parallel RC network, continued). The controllability matrix for the electrical net-
work in Figure 11.1(a) and Example 11.1 is given by

C � �
B AB

�� � 1
R1C1

�1
R21C

2
1

1
R2C2

�1
R22C

2
2

�
.

When the two branches have the same time constant, i.e., 1
R1C1

� 1R2C2
� ω , we have

C �
�
ω ���ω2
ω ω2

�
,

and therefore

R�t0, t1� � C�t0, t1� � ImC �
�
α
�
1
1

�
: α � R

�
, �t1 � t0 � 0.

However, when the time constants are different, i.e., 1
R1C1

� 1
R2C2

,

detC � 1
R21C

2
1R2C2

� 1
R1C1R22C

2
2
� 1

R1C1R2C2

� 1
R1C1

� 1
R2C2

�
� 0,

which means that C is nonsingular, and therefore

R�t0, t1� � C�t0, t1� � ImC � R
2. �

11.7 Discrete-Time Case
Consider the discrete-time LTV system

x�t�1� � A�t�x�t��B�t�u�t�, x � R
n, u � R

k. (AB-DLTV)

We saw in Lecture 5 that a given input u��� transfers the state x�t0� � x0 at time t0 to the state
x�t1�� x1 at time t1 given by the variation of constants formula,

x1 �Φ�t1, t0�x0�
t1�1�
τ�t0

Φ�t1,τ�1�B�τ�u�τ�,

where Φ��� denotes the system’s state transition matrix.
Definition 11.4 (Reachable and Controllable subspaces). Given two times t1 � t0 � 0, the reachable
or controllable-from-the-origin on �t0, t1� subspace R�t0, t1� consists of all states x1 for which there
exists an input u : �t0, t0� 1, . . . , t1� 1� � R

k that transfers the state from x�t0� � 0 to x�t1� � x1;
i.e.,

R�t0, t1��
�
x1 � R

n : �u�.�, x1 �
t1�1�
τ�t0

Φ�t1,τ�1�B�τ�u�τ�
�
.

The controllable or controllable-to-the-origin on �t0, t1� subspace C�t0, t1� consists of all states x0 for
which there exists an input u : �t0, t0�1, . . . , t1�1�� R

k that transfers the state from x�t0� � x0 to
x�t1� � 0; i.e.,

C�t0, t1��
�
x0 � R

n : �u�.�, 0�Φ�t1, t0�x0�
t1�1�
τ�t0

Φ�t1,τ�1�B�τ�u�τ�
�
. �
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Definition 11.5 (Reachability and Controllability Gramians). Given two times t1� t0� 0, the reach-
ability and controllability Gramians of the system (AB-DLTV) are defined, respectively, by

WR�t0, t1��
t1�1�
τ�t0

Φ�t1,τ�1�B�τ�B�τ��Φ�t1,τ�1��,

WC�t0, t1��
t1�1�
τ�t0

Φ�t0,τ�1�B�τ�B�τ��Φ�t0,τ�1��. �

Attention! The definition of the discrete-time controllability Gramian requires a backward-in-time
state transition matrixΦ�t0,τ�1� from time τ�1 to time t0 � τ � τ�1. This matrix is well defined
only when

x�τ �1� � A�τ�A�τ �1� � � �A�t0�x�t0�, t0 � τ � t1�1

can be solved for x�t0�, i.e., when all the matrices A�t0�, A�t0� 1�, . . . , A�t1� 1� are nonsingular.
When this does not happen, the controllability Gramian cannot be defined. �

These Gramians allow us to determine exactly what the reachable and controllable spaces are.

Theorem 11.6 (Reachable and Controllable subspaces). Given two times t1 � t0 � 0,Attention! The results regarding
the controllability Gramian im-
plicitly assume that all the matri-
ces A�t0�, A�t0� 1�, . . . , A�t1�
1� are nonsingular.

R�t0, t1� � ImWR�t0, t1�, C�t0, t1� � ImWC�t0, t1�.

Moreover,

1. if x1 �WR�t0, t1�η1 � ImWR�t0, t1�, the control

u�t� � B�t��Φ�t1, t�1��η1, t � �t0, t1�1� (11.13)

can be used to transfer the state from x�t0� � 0 to x�t1� � x1, and

2. if x0 �WC�t0, t1�η0 � ImWC�t0, t1�, the control

u�t� � �B�t��Φ�t0, t�1��η0, t � �t0, t1�1�

can be used to transfer the state from x�t0� � x0 to x�t1� � 0. �

Consider now the discrete-time LTI system

x� � Ax�Bu, x � R
n, u � R

k. (AB-DLTI)

For this system, the reachability and controllability Gramians are given, respectively, byAttention! The controllability
Gramian can be defined only
when A is nonsingular.

WR�t0, t1��
t1�1�
τ�t0

At1�1�τ BB��A��t1�1�τ ,

WC�t0, t1��
t1�1�
τ�t0

and the controllability matrix of (AB-DLTI) is given by At0�1�τ BB��

A��t0�1�τ ,

C �

�
B AB A2B � � � �

An�1B n��kn� .
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Theorem 11.7. For any two times t1 � t0 � 0, with t1 � t0�n, we have Attention! The results regarding
the controllability Gramian im-
plicitly assume that A is nonsin-
gular.

R�t0, t1� � ImWR�t0, t1� � ImC � ImWC�t0, t1� � C�t0, t1�. �

Attention! This result differs from the continuous-time counterparts in two significant ways.

1. Time reversibility. In discrete time, the notions of controllable and reachable subspaces
coincide only when the matrix A is nonsingular. Otherwise, we have

R�t0, t1� � ImC �

C�t0, t1�,
but the reverse inclusion does not hold; i.e., there are states x1 that can be transferred to the
origin, but it is not possible to find an input to transfer the origin to these states.

Because of this, when A is singular, one must study reachability and controllability of discrete-
time systems separately.

2. Time scaling. In discrete time, the notions of controllable and reachable subspaces do
not depend on the time interval only when the intervals have length larger than or equal to n
time steps. When t1� t0 � n, we have

R�t0, t1� � ImC ,

but the reverse inclusion does not hold; i.e., there are states x1 than can be reached in n time
steps, but not in t1� t0 � n time steps.

In discrete-time systems, when one omits the interval under consideration, it is implicitly
assumed that it has length no smaller than n, in which case we have time scaling. �

Discrete-Time Case Proofs

Proof of Theorem 11.6. We start by showing that x1 � ImWR�t0, t1� � x1 �
R�t0, t1�. When x1
�

ImWR�t0, t1�, there exists a vector η1 �Rn such that

x1 �WR�t0, t1�η1.
To prove that x1 � R�t0, t1�, it suffices to show that the input (11.13) does indeed transfer the state
from x�t0� � 0 to x�t1� � x1, and therefore x1 �
of constants formula for the input (11.13):

R�t0, t1�. To verify that this is so, we use the variation

x�t1� �
t1�1�
τ�t0

Φ�t1,τ�1�B�τ�B�τ��Φ�t1,τ�1��η1�������������������������
u�τ�

�WR�t0, t1�η1 � x1.

We show next that x1 �R�t0, t1� � x1 � ImWR�t0, t1�. To prove by contradiction, assume that there
exists an input u��� for which

x1 �
t1�1�
τ�t0

Φ�t1,τ�1�B�τ�u�τ�, (11.14)

but x1 � ImWR�t0, t1� � �kerWR�t0, t1���. Since x1 � �kerWR�t0, t1���, there must be a vector η1 in
kerWR�t0, t1� that is not orthogonal to x1; i.e.,

WR�t0, t1�η1 � 0, η�1x1 � 0.
But then

η�1WR�t0, t1�η1 �
t1�1�
τ�t0

η�1Φ�t1,τ�1�B�τ�B�τ��Φ�t1,τ�1��η1 �
t1�1�τ�t0

�B�τ��Φ�t1,τ�1��η1� � 0,
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which implies that

B�τ��Φ�t1,τ�1��η1 � 0, �τ � �t0, t0�1, . . . , t1�1�.

From this and (11.14), we conclude that

η�1x1 �
t1�1�
τ�t0

η�1Φ�t1,τ�1�B�τ�u�τ� � 0,

which contradicts the fact that η1 is not orthogonal to x1.

Proof of Theorem 11.7. The first and last equalities have already been proved, so it remains to prove
the middle ones. We start with the second equality.

We start by showing that x1 �R�t0, t1� � ImWR�t0, t1� � x1 � ImC . When x1 � R�t0, t1�, there ex-
ists an input u��� that transfers the state from x�t0� � 0 to x�t1� � x1, and therefore

x1 �
t1�1�
τ�t0

At1�1�τ Bu�τ�.

But we saw in Lecture 6 that, using the Cayley-Hamilton theorem, we can write

At �
n�1�
i�0

αi�t�Ai, �t � R

for appropriately defined scalar functions α0�t�,α1�t�, . . . ,αn�1�t� [cf. (6.6)]. Therefore

x1 �
n�1�
i�0

AiB
� t1�1�
τ�t0

αi�t1�1� τ�u�τ�
�
�C

��
� �n�1

i�0 α0�t1�1� τ�u�τ�
...�n�1

i�0 αn�1�t1�1� τ�u�τ�

��� ,

which shows that x1 � ImC .

We show next that x1 � ImC � x1 �R�t0, t1� � ImWR�t0, t1�. When x1 � ImC , there exists a vector
ν � R

kn such that

x1 � C ν � �
B AB A2B � � � An�1B

���� ν0
.
..

νn�1

��
��

�
n�1�
i�0

AiBνi,

where ν is broken into n k-vectors νi. We show that x1 �R�t0, t1� because the n-step control

u�τ� �
�
0 t0 � t � t1�n
νt1�1�τ t1�n� t � t1�1

transfers the system from the origin to

x�t1� �
t1�1�
τ�t0

At1�1�τ Bu�τ� �
t1�1�

τ�t1�n

At1�1�τ Bνt1�1�τ �
n�1�
i�0

AiBνi � x1.

Note that this control requires t1�n� t0.

Since the corresponding proofs for the controllable subspace are analogous, we do not present them.
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11.8 MATLAB R� Commands
MATLAB R� Hint 29 (svd). The command [U,S,V]=svd(W) can be used to compute a basis for the
image and kernel of the n�m matrix W. This command computes a singular value decomposition
of W, i.e., (square) orthogonal matrices Un�n, Vm�m, and a (real) diagonal matrix Sm�m such that Notation. A square matrix U is

called orthogonal if its inverse ex-
ists and is equal to its transpose,
i.e.,UU � �U �U � I.

W� USV�.

1. The columns of U corresponding to nonzero rows of S are an orthonormal basis for ImW.

2. The columns of V (rows of V’) corresponding to the zero columns of S are an orthonormal
basis for ker W. �

MATLAB R� Hint 30 (ctrb). The function ctrb(sys) computes the controllability matrix of the
system sys. The system must be specified by a state-space model using, e.g., sys=ss(A,B,C,D),
where A,B,C,D are a realization of the system. Alternatively, one can use ctrb(A,B) directly. �

11.9 Exercises
11.1. Verify that

dk�η�1eA�t1�τ�B�
dτk

� � �1�kη�1AkeA�t1�τ�B. �
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Lecture 12

Controllable Systems

Contents
This lecture introduces the notion of a controllable system and presents several tests to determine
whether a system is controllable.

1. Controllable system
2. Controllability matrix test
3. Eigenvector test for controllability
4. Popov-Belevitch-Hautus (PBH) test for controllability
5. Lyapunov test for controllability (linear matrix
equality)
6. Feedback stabilization based on the Lyapunov test

12.1 Controllable Systems
Consider the following continuous- and discrete-time LTV systems Notation. In most of this lecture,

we jointly present the results for
continuous and discrete time and
use a slash � to separate the two
cases.

�x� A�t�x�B�t�u � x�t�1� � A�t�x�t��B�t�u�t�, x � R
n, u � R

k. (AB-LTV)

Definition 12.1 (Reachable system). Given two times t1 � t0 � 0, the system (AB-LTV), or simply
the pair

�
A���,B����, is (completely state-) reachable on �t0, t1� if R�t0, t1� �R

n, i.e., if the origin can
be transferred to every state. �

Definition 12.2 (Controllable system). Given two times t1� t0� 0, the system (AB-LTV), or simply
the pair

�
A���,B����, is (completely state-) controllable on �t0, t1� if C�t0, t1� � R

n, i.e., if every state Note. For continuous-time LTI
systems R�t0,t1� �

C�t0,t1�, and
therefore one often talks about
only controllability.

Notation. A system that is not
controllable is called uncontrol-
lable.

can be transferred to the origin. �

Consider now the LTI systems

�x� Ax�Bu � x� � Ax�Bu, x � R
n, u � R

k. (AB-LTI)

We saw in Theorem 11.5 that
Note. In discrete time, this holds
for t1� t0 � n, and nonsingular A.ImC � R�t0, t1� � C�t0, t1�.

Since C has n rows, ImC is a subspace of Rn, so its dimension can be at most n. For controllability,
ImC � R

n, and therefore the dimension of ImC must be exactly n. This reasoning leads to the
following theorem.

101
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Theorem 12.1 (Controllability matrix test). The LTI system (AB-LTI) is controllable if and only ifNote. In discrete time, when A is
singular, we simply have

ImC � R�t0,t1� � C�t0 ,t1�.
In this case rankC � n im-
plies that R�t0,t1� � C�t0,t1� �
R
n. However, one could have

rankC � n. In this case, ImC �
R�t0,t1� � R

n (strict inclusion)
and yet C�t0,t1� � R

n.

rankC � n. �

Although Theorem 12.1 provides a simple test for controllability, there are a few other useful
tests that we introduce next. Some of these actually lead to feedback control design methods.

12.2 Eigenvector Test for Controllability
Given an n�nmatrix A, a linear subspace V of Rn is said to be A-invariant if for every vector v � V

we have Av � V. The following properties of invariant subspaces will be used.

Properties . Given an n� n matrix A and a nonzero A-invariant subspace V � R
n, the following

statements are true.

P12.1 If one constructs an n� k matrix V whose columns form a basis for V, there exists a k� k
matrix Ā such thatNote. For k � 1, this means that

the (only) column of V is an
eigenvector of A. ¯AV �VA. (12.1)

P12.2 V contains at least one eigenvector of A.

Proof. Let A and V be as in the statement of the proposition.

P12.1 Since the ith column vi of the matrixV belongs to V and V is A-invariant, Avi � V. This means
that it can be written as a linear combination of the columns of V ; i.e., there exists a column
vector āi such that

Avi �V āi, �i � �1,2, . . . ,k�.
Putting all these equations together, we conclude that�

Av1 Av2 � � � Avk
�� �

¯ ¯Va1 Va2 � � � ¯V āk� � AV �VA,

where all the āi are used as columns for Ā.

¯

P12.2 Let v̄ be an eigenvector of the matrix Ā in (12.1) corresponding to the eigenvalue λ . Then

AVv̄�VAv̄� λVv̄,

and therefore v�Vv̄ is an eigenvector of A. Moreover, since v is a linear combination of the
columns of V , it must belong to V.

Theorem 12.2 (Eigenvector test for controllability). The LTI system (AB-LTI) is controllable if andNote. This is sometimes stated
“no left-eigenvalue of A in the
left-kernel of B.”

only if there is no eigenvector of A� in the kernel of B�. �

Notation. The eigenvalues corre-
sponding to left-eigenvectors of A
in the left-kernel of B are called
the uncontrollable modes, and the
remaining ones are called the con-
trollable modes.

Proof of Theorem 12.2. We start by proving that if the system (AB-LTI) is controllable, then every
eigenvector of A� is not in the kernel of B�. To prove by contradiction, assume that there exists an
eigenvalue A�x� λx, with x� 0 for which B�x� 0. Then

C
�x�

����� ..

B�

B�A�
.

B��A��n�1

�����
x�

����
� ..

B�x
λB�x
.

λn�1B�x

������ 0. (12.2)

This means that the null space of C has at least one nonzero vector, and therefore, from the funda-
mental theorem of linear equations, we conclude that

dim kerC � � 1 � rankC � rankC � � n�dim kerC � � n,

which contradicts the controllability of (AB-LTI).



Controllability and State Feedback 103

Conversely, suppose now that (AB-LTI) is not controllable, and therefore that Note. To prove that that two state-
ments P and Q are equivalent, one
can start by showing that P �
Q and then that �P � �Q.
Note that the second implication
is precisely equivalent to Q � P
(cf. Note 8, p. 75).

rankC � rankC � � n � dim kerC � � n� rankC � � 1.

It turns out that kerC � is A�-invariant. Indeed, if x � kerC �, then (12.2) holds, and therefore

x � kerC � � C
�A�x�

�����
B�A�

B��A��2
...

B��A��n

�����x�
����
�

0
0
...

B��A��nx

�����
.

But by the Cayley-Hamilton theorem, An can be written as a linear combination of the lower powers
of A�, and therefore B��A��nx can be written as a linear combination of the terms

which are all zero because of (12.2). We therefore conclude that

B�x,A�B�x, . . . ,�A��n�1Bx,

x � kerC � � C
�A�x� 0 � A�x � kerC �,

which confirms that kerC � is A�-invariant.

From Property P12.2, we then conclude that kerC � must contain at least one eigenvector x of A�. But
since C �x� 0, we necessarily have B�x� 0. This concludes the proof, since we also showed that if
the system (AB-LTI) is not controllable, then there must exist an eigenvector of A� in the kernel of
B�.

The following test is essentially an elegant restatement of the eigenvector test.

Theorem 12.3 (Popov-Belevitch-Hautus (PBH) test for controllability). The LTI system (AB-LTI)
is controllable if and only if

rank
�
A�λ I B�� n, �λ � C. (12.3)

Proof of Theorem 12.3. From the Fundamental Theorem of Linear Equations, we conclude that

dim ker
�
A��λ I

B�

�
� n� rank�A�λ I B

�
, �λ � C,

and therefore the condition (12.3) can also be rewritten as

dim ker
�
A��λ I

B�

�
� 0, �λ � C, (12.4)

which means that the kernel of
�
A��λ I
B�

�
can contain only the zero vector. This means that (12.3) is

also equivalent to

ker
�
A��λ I

B� x �
�� �

R
n : A�x� λx, B�x� 0

�
� �0�, �λ � C,

which is precisely equivalent to the statement that there can be no eigenvector of A� in the kernel of
B�.

f o r u m . k o n k u r . i n
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12.3 Lyapunov Test for Controllability
Consider again the LTI systems

�x� Ax�Bu � x� � Ax�Bu, x � R
n, u � R

k. (AB-LTI)

Theorem 12.4 (Lyapunov test for controllability). Assume that A is a stability matrix/Schur stable.
The LTI system (AB-LTI) is controllable if and only if there is a unique positive-definite solution W
to the following Lyapunov equationNote. Opposite to what happens

in the Lyapunov stability theorem
8.2, A� appears now to the right of
W instead of to the left.

AW �WA� ��BB� � AWA��W ��BB� (12.5)

Moreover, the unique solution to (12.5) is equal to

W �
� �
0

eAτ BB�eA
�τ dτ � lim

t1�t0��WR�t0, t1�

� W �
��
τ�0

Aτ BB��A��τ � lim
t1�t0��WR�t0, t1�. (12.6)

Attention! Controllability and reachability are finite-time concepts; e.g., controllability means that
the origin can be reached from any state in finite time. However, there are uncontrollable systems
for which the origin can be reached in infinite time from any state. In view of this, one should
emphasize that the “infinite time” Gramian in (12.5)–(12.6) still provides information only about
(finite time) controllability. Note that the system

�x��x�0 �u

can be transferred to the origin in infinite time (due to asymptotic stability). However, the “infinite
time” Gramian is still equal to zero and therefore is not positive-definite. This is consistent with the
fact that this system is not controllable. �

Proof of Theorem 12.4. We do the proof for continuous time and start by showing that if (12.5) has
a positive-definite solutionW , then the system (AB-LTI) is controllable. The simplest way to do this
is by using the eigenvector test. To do this assume that (12.5) holds, and let x� 0 be an eigenvector
of A� associated with the eigenvalue λ , i.e., A�x� λx. Then

x��AW �WA��x��x�BB�x�� �B�x�2, (12.7)

to where ���� denotes the complex conjugate transpose. But the left-hand side of this equation is
equal

�A�x���Wx� x�WA�x� λ�x�Wx�λx�Wx� 2ℜ�λ �x�Wx.

(12.8)

SinceW is positive-definite, this expression must be strictly negative (note that ℜ�λ � � 0 because
A is a stability matrix), and therefore B�x� 0. We conclude that every eigenvalue of A� is not in the
kernel of B�, which implies controllability by the eigenvector test.

To prove the converse, we assume that (AB-LTI) is controllable. Equation (12.5) can be written as

¯ ¯A�W �WA ��Q, Ā� A�, Q� BB�,

which was the equation that we analyzed in the proof of the Lyapunov stability theorem 8.2. Since
A is a stability matrix, Ā� A� is also a stability matrix, and therefore we can reuse the proof of theNote. This is because A and

A� have the same eigenvalues:
det�λ I�A� � det�λ I�A��.

Lyapunov stability theorem 8.2 to conclude that (12.6) is the unique solution to (12.5).
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The only issue that needs special attention is that in Theorem 8.2 we used the fact that Q� BB� was
positive-definite to show that the solutionW was also positive-definite. Here, Q � BB� may not be
positive-definite, but it turns out that controllability of the pair �A,B� suffices to establish thatW is

Note 6. This reasoning allows us
to add a sixth equivalent condi-
tion to the Lyapunov stability the-
orem 8.2. � p. 105

positive-definite, even if Q is not. Indeed, given an arbitrary vector x� 0,

x�Wx� x�
�� �

0
eAτ BB�eA

�τ dτ
�
x� x�

�� 1
0
eAτ BB�eA

�τ dτ
�
x� x�WR�0,1�x� 0,

becauseWR�0,1� � 0, due to controllability.

Note 6 (Controllability condition in the Lyapunov stability theorem). The results in Theorem 12.4
allow us to add a sixth equivalent condition to the Lyapunov stability theorem 8.2. The full theorem
with the additional condition is reproduced below.

Theorem 12.5 (Lyapunov stability, updated). The following six conditions are equivalent.

1. The system (H-CLTI) is asymptotically stable.

2. The system (H-CLTI) is exponentially stable.

3. All the eigenvalues of A have strictly negative real parts

4. For every symmetric positive-definite matrix Q, there exists a unique solution P to the
Lya- punov equation

A�P�PA��Q. (12.9)

Moreover, P is symmetric, positive-definite, and equal to P�
��
0 eA

�tQeAtdt.

5. There exists a symmetric positive-definite matrix P for which the following Lyapunov matrix Note. The inequality (12.10) is
called a linear matrix inequality
(LMI). The term “linear” comes
from the linearity of the left-hand
side in P and � refers to the fact
that the left-hand side must be
negative-definite.

inequality holds:

A�P�PA� 0. (12.10)

in the Lyapunov stability theorem

6. For every matrix B for which the pair �A,B� is controllable, there exists a unique solution P Note. Opposite to what happens

P instead of on the left. 8.2, A�

appears now on the right of

MATLAB R� Hint 26.
P=lyap(A,B*B’) solves the Lya-
punov equation (12.11). � p. 71

to the Lyapunov equation

AP�PA� ��BB�. (12.11)

Moreover, P is symmetric, positive-definite, and equal to P� ��
0 eAτ BB�eA

�τ dτ . �

Proof of Theorem 12.5. Theorem 12.4 actually states only that if A is a stability matrix, then (12.11)
has a unique symmetric positive-definite solution P. To show that condition 6 is indeed equivalent to
asymptotic stability, one still needs to show that when (12.11) holds for a symmetric positive-definite
matrix P, then the matrix A must be a stability matrix. To show this, assume that (12.11) holds, and
let λ be an eigenvector of A� and let x� 0 be the corresponding eigenvector; i.e., A�x� λx. Then

x��AP�PA��x��x�BB�x�� �B�x�2,

where ���� denotes the complex conjugate transpose. Expanding the left-hand side of this equation,
we obtain

�A�x���Px� x�PA�x� λ�x�Px�λx�Px� 2ℜ�λ �x�Px�� �B�x�2.
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Because of controllability, x cannot belong to the kernel of B�, and therefore 2ℜ�λ �x�Px is strictly
negative. Since P is positive-definite, x�Px is strictly positive, and we conclude that ℜ�λ � � 0. This
shows that A� is a stability matrix, which also means that A is a stability matrix.Note. This is because A and A�

have the same eigenvalues, since
det�λ I�A� � det�λ I�A��.

12.4 Feedback Stabilization based on the Lyapunov Test
Assume that the continuous-time LTI system

�x� Ax�Bu, x � R
n, u � R

k (AB-CLTI)

for every µ �
is controllable. Controllability of the pair �A,B� guarantees that the pair ��µI�����A,B� is controllable

R. This is a consequence of the eigenvector test, because A� and µI A� have exactly
the same eigenvectors:

A�x� λx � ��µI�A��x� � �µ�λ �x
and therefore �λ ,x� is an eigenvalue-eigenvectorpair for A� if and only if ��µ�λ ,x� is an eigenvalue-
eigenvector pair for �µI�A�. From this, we also conclude that by making µ sufficiently large we
can always make�µI�A� a stability matrix.

Suppose that we indeed choose µ sufficiently large so that �µI�A is a stability matrix. From
the Lyapunov test, we conclude that there must exist a positive-definite matrixW such that

MATLAB R� Hint 31.
Equation (12.12)
can be solved using
W=lyap(-mu*eye(n)-A,B*B’)

(cf. MATLAB R� Hint 26, p. 71).

��µI�A�W �W��µI�A�� ��BB� � AW �WA��BB� ��2µW. (12.12)

Multiplying the right-hand side equation on both sides by P�W�1 � 0, we obtain

which can be further rewritten as PA�A�P�PBB�P��2µP,

P�A�BK���A�BK��P��2µP,

K �
1
2
B�P. (12.13)

Since P � 0 and 2µP� 0, we conclude from the Lyapunov stability theorem 8.2 that A�BK must
be a stability matrix. This means that the state feedback control

u��Kx

asymptotically stabilizes the system (AB-CLTI). It turns out that all the eigenvalues of the closed-Note. This is because if we de-
fine v� x�Px, we conclude from
(12.13) that �v � �2µv. There-
fore v converges to zero as fast
as e�2µt . Since P � 0, this
means that �x�2 converges to zero
at the same rate. Therefore �x�
must converge to zero as fast as�
e�2µt � e�µt . See also Exer-

cise 8.6.

loop system actually have their real parts smaller than or equal to �µ . Since we could have chosen
µ arbitrarily large, we conclude that the following result is true.

Theorem 12.6. When the system (AB-CLTI) is controllable, for every µ � 0, it is possible to find
a state feedback controller u ��Kx that places all eigenvalues of the closed-loop system �x� �A�
BK�x on the complex semiplaneℜ�s� � �µ . �

The discrete-time equivalent of this result can be stated as follows.

Theorem 12.7. When the system

x� � Ax�Bu, x � R
n, u � R

k (AB-DLTI)

is controllable, for every µ � 0, it is possible to find a state feedback controller u��Kx that places
all eigenvalues of the closed-loop system x� � �A�BK�x in the complex plane disk �s� � µ . �

Attention! The conditions in Theorems 12.6 and 12.7 are actually necessary and sufficient for con-
trollability. In particular, for example in continuous time, one can also show that if for every µ � 0 it
is possible to find a state feedback controller u��Kx that places all eigenvalues of the closed-loop
system �x� �A�BK�x on the complex semiplaneℜ�s� � µ , then the pair �A,B�must be controllable.

�
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12.5 Exercises
12.1 (A-invariance and controllability). Consider the LTI systems

�x� Ax�Bu � x� � Ax�Bu, x � R
n, u � R

k. (AB-LTI)

Prove the following two statements:

(a) The controllable subspace C of the system (AB-LTI) is A-invariant.

(b) The controllable subspace C of the system (AB-LTI) contains ImB. �

12.2 (Satellite). The equations of motion of a satellite, linearized around a steady-state solution, are
given by �x� Ax�Bu, where x1 and x2 denote the perturbations in the radius and the radial velocity,
respectively, x3 and x4 denote the perturbations in the angle and the angular velocity, and

A� �����
0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 �2ω 0

�1 ���� ,
B�

�����
0

0
1 0
0 0
0 1

����
�
.

The input vector consists of a radial thruster u1 and a tangential thruster u2.

(a) Show that the system is controllable from u.

(b) Can the system still be controlled if the radial thruster fails? What if the tangential thruster
fails?

12.3 (Controllable canonical form). Consider a system in controllable canonical form

A�

����
�
�α1Ik�k �α2Ik�k � � � � � � � � ��αn�1Ik�k �αnIk�k
Ik���k 0k���k 0k���k 0k���k
0k k Ik k � � � 0k k 0k k

.

.. ...
. . .

...
...

0k�k 0k�k � � � Ik�k 0k�k

����

�
nk�nk

,

B�

����
� ..

0k k

Ik���k

.

0k���k
0k k

����

�
nk�k

, C � �
N1 N2 � � � Nn�1 Nn

�
m�nk .

Show that such a system is always controllable. �
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Lecture 13

Controllable Decompositions

Contents
This lecture introduces a family of state-space similarity transformations that highlight the system’s
controllability (or lack thereof).

1. Invariance with respect to similarity transformations
2. Controllable decomposition

13.1 Invariance with Respect to Similarity Transformations
Consider the LTI systems Notation. In this lecture, we

jointly present the results for con-
tinuous and discrete time and use
a slash � to separate the two cases.�x� Ax�Bu � x� � Ax�Bu, x � R

n, u � R
k (AB-LTI)

and a similarity transformation x̄� T�1x, leading to

�̄x� Āx̄� B̄u, Ā� T�1AT, B̄� T�1B. (13.1)

The controllability matrices C and C̄ of the systems (AB-LTI) and (13.1), respectively, are related
by

C̄ � �
B̄ ĀB̄ � � � Ān�1B̄

�� �T�1B T�1AB � � � T�1An�1B
�� T�1C .

Therefore Note. Why? because multiplica-
tion by a nonsingular matrix does
not change the rank of a matrix.

¯

rank C̄ � rankT�1C � rankC ,

because T�1 is nonsingular. Since the controllability of a system is determined by the rank of its
controllability matrix, we conclude that controllability is preserved through similarity transforma-
tions, as formally stated in the following result.

Theorem 13.1. The pair �A,B� is controllable if and only if the pair �A, B̄� � �T�1AT,T�1B� is Note. In fact, we have more than
this. Similarity transformations
actually preserve the dimension
of the controllable subspace, even
when the system is not control-
lable.

controllable. �

13.2 Controllable Decomposition
Consider again the LTI systems

�x� Ax�Bu � x� � Ax�Bu, x � R
n, u � R

k. (AB-LTI)

109
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We saw in Exercise 12.1 that the controllable subspace C of the system (AB-LTI) is A-invariant and
contains ImB. Because of A-invariance, by constructing an n� n̄ matrix V whose columns form aNote. The number of columns of

V is n̄, and therefore n̄ is also the
dimension of the controllable sub-
space.

basis for C, there exists an n̄� n̄ matrix Ac such that

AV �VAc.

Moreover, since ImB� C, the columns of B can be written as a linear combination of the columns
of V , and therefore there exists an n̄� k matrix Bc such that

B�VBc.

When the system (AB-LTI) is controllable, n̄� dimC� n, and the matrixV is square and
nonsingu-lar. Otherwise, letU be an n��n� n̄� matrix whose columns are linearly independent of
each otherNote. The columns of U are vec

tors that complete the columns of
V to form a basis for Rn.

and also linearly independent of the columns of V .

Suppose that we define a nonsingular matrix T by combiningV andU side by side:

T �
�
Vn�n̄ Un��n�n̄�

�
n�n .

We then conclude that

AT � A
�
V U

�� �
AV AU

�� �
VA

c T T�1AU
�� �

T
�
Ac
0

�
T T�1AU

�
.

By partitioning the n��n� n̄� matrix T�1AU as

T�1AU �
�
A12
Au

�
,

we further obtainNotation. This form is often
called the standard form for
uncontrollable systems.

AT � T
�
Ac A12
0 Au

�
, B�VBc � T

�
Bc
0

�
,

which can be rewritten as�
Ac A12
0 Au �� T�1AT, �

Bc
0 �� T�1B. (13.2)

The similarity transformation constructed using this procedure is called a controllable decomposi-
tion and has several interesting properties as stated in the following theorem.

Theorem 13.2 (Controllable decomposition). For every LTI system (AB-LTI), there is a similarity
MATLAB R� Hint 32.
[Abar,Bbar,Cbar,T] =

ctrbf(A,B,C) computes the
controllable decomposition of
the system with realization
A,B,C. � p. 112

transformation that takes the system to the form (13.2), for which

1. the controllable subspace of the transformed system (13.2) is given by

C̄� Im
�
In̄�n̄
0

�
and

2. the pair �Ac,Bc� is controllable. �

Proof of Theorem 13.2. To compute the controllable subspace of the transformed system, we com-
pute its controllability matrix

C̄ �
��

Bc
0

� �
Ac A12
0 Au

��
Bc
0

�
� � �

�
Ac A12
0 Au

�n�1�Bc
0

��
�
�
Bc AcBc � � � � � � � � �An�1

c Bc
0 0 0

�
.
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Since similarity transformations preserve the dimension of the controllable subspace, which was n̄
for the original system,

rank C̄ � n̄.

Since the number of nonzero rows of C̄ is exactly n̄, all these rows must be linearly dependent.
Therefore

Im C̄ � Im
�
In̄�n̄
0

�
.

Moreover,

rank
�
Bc AcBc � � � An�1

c Bc�� n̄.

But since Ac is n̄� n̄, by the Cayley-Hamilton theorem,

rank
�
Bc AcBc � � � An�1

c Bc�� rank�Bc AcBc � � � An̄�1
c Bc�� n̄,

which proves that the pair �Ac,Bc� is controllable.

13.3 Block Diagram Interpretation
Consider now LTI systems with outputs

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m, (LTI)

and let T be the similarity transformation that leads to the controllable decomposition�
Ac A12
0 Au �� T�1AT, �

Bc
0 �� T�1B, �Cc Cu��CT.

In general, the transformed output matrix CT has no particular structure, but for convenience we
partition it into the first n̄ columns and the remaining ones.

Partitioning the state of the transformed system as Notation. The vectors xc and xu
are called the controllable and the
uncontrollable ‘¡ components of
the state, respectively.x̄� T�1x�

�
xc
xu

�
, xc � R

n̄, xu � R
n�n̄,

its state-space model can be written as�
�xc
�xu

�
�
�
Ac A12
0 Au

��
xc
xu

�
�
�
Bc
0

�
u, y� �

Cc Cu��xc
xu

��Du.

Figure 13.1 shows a block representation of this system, which highlights the fact that the input u Note. This is consistent with
statement 1 in Theorem 13.2.cannot affect the xu component of the state. Moreover, the controllability of the pair �Ac,Bc� means

that the xc component of the state can always be taken to the origin by an appropriate choice of u���.

13.4 Transfer Function
Since similarity transformations do not change the system’s transfer function (see Property P4.2),
we can use the state-space model for the transformed system to compute the transfer function T �s�
of the original system Note. In discrete time, the

Laplace transform variable
s should be replaced by the
Z -transform variable z.T �s� � �

Cc Cu
��sI�Ac �A12

0 sI�Au

��1�Bc
0

�
�D.
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0

+

+

+

+

u yxc

xu

Cc

Cu

Bc

A12

�xc � Acxc� v

�xu � Auxu

Figure 13.1. Controllable decomposition. The direct feed-through term D was omitted to simplify the diagram.

Since the matrix that needs to be inverted is upper triangular, its inverse is also upper triangular, and
the diagonal blocks of the inverse are the inverses of the diagonal block of the matrix. ThereforeNote. This could have been de-

duced directly from the block
diagram representation in Fig-
ure 13.1. In computing the trans-
fer function we can ignore initial
conditions, and, in this case, the
xu component of the state plays no
role because it is identically zero.

T �s� � �
Cc Cu

���sI�Ac��1 �
0 s�I�Au��1

��
Bc
0

��Cc�sI�Ac��1Bc�D.

This shows that the transfer function of the system (LTI) is equal to the transfer function of its
controllable part.

13.5 MATLAB R� Commands
MATLAB R� Hint 32 (ctrbf). The command [Abar,Bbar,Cbar,T] = ctrbf(A,B,C) com-
putes the controllable decomposition of the system with realization A,B,C. The matrices returned
are such that

Abar�
�
Au 0
A21 Ac�� TAT�, Bbar�

�
0
Bc�� TB, Cbar� CT�, T� � T�1.

This decomposition places the uncontrollable modes on top of the controllable ones, opposite to
what happens in (13.2). Moreover, the nonsingular matrix T is chosen to be orthogonal.

The command [Abar,Bbar,Cbar,T] = ctrbf(A,B,C,tol) further specifies the tolerance tol
used to select the uncontrollable modes. �

13.6 Exercises
13.1 (Controllable decomposition). Consider an LTI system with realization

A�
��1 0
0 �1

�
, B�

��1
1

�
,

1 0
C �

�
0 1

�
,

2
D�

�
1

�
.

Is this realization controllable? If not, perform a controllable decomposition to obtain a controllable
realization of the same transfer function. �



Lecture 14

Stabilizability

Contents
This lecture introduces the concept of stabilizability.

1. Stabilizable system (definition)
2. Eigenvector-eigenvalue test for stabilizability
3. Popov-Belevitch-Hautus (PBH) test for stabilizability
4. Lyapunov test for stabilizability (linear matrix
inequality)
5. Feedback stabilization based on the Lyapunov test
6. Eigenvalue assignment

14.1 Stabilizable System
We saw in Lecture 13 that any LTI system is algebraically equivalent to a system in the following Notation. In most of this lecture,

we jointly present the results for
continuous and discrete time and
use a slash � to separate the two
cases.

standard form for uncontrollable systems:�
�xc���x���c
�xu xu

�� �A
c A12
0 Au

��x
c
xu

���B
c
0

�
u, xc � R

n̄, xc � R
n�n̄, (14.1a)

y� �
Cc Cu

��xc
xu

�
�Du, u � R

k,m � R
m. (14.1b)

Definition 14.1 (Stabilizable system). The pair �A,B� is stabilizable if it is algebraically equivalent Note. Any controllable system is
stabilizable, because in this case
n̄ � n and the matrix Au does not
exist. Also, any asymptotically
stable system is stabilizable, be-
cause in this case both Ac and Au
are stability matrices.

to a system in the standard form for uncontrollable systems (14.1) with n � n̄ (i.e., Au nonexistent)
or with Au a stability matrix. �

Since for stabilizable systems we have

�xu�x�u � Auxu,

with Au a stability matrix, xu converges to zero exponentially fast, and therefore we have

�xc�x�c � Acxc�Bcu�d, y�Ccxc�Du�n,

where

d�t�� A12xu�t�, n�t��Cuxu�t�, �t � 0
can be viewed as disturbance and noise terms, respectively, that converge to zero exponentially fast
(cf. Figure 14.1).

Attention! Stabilizability can be viewed as an infinite-time version of controllability in the sense
that if a system is stabilizable, then its state can be transferred to the origin from any initial state,
but this may require infinite time. In particular, if the system is not controllable, then xu will indeed
“reach” the origin only as t ��. �

113



114 João P. Hespanha

+

+

+

+

u y

d n

xc
CcBc �xc � Acxc� v

Figure 14.1. Controllable part of a stabilizable system. The direct feed-through term D was omitted to simplify
the diagram.

14.2 Eigenvector Test for Stabilizability
Investigating the stabilizability of the LTI systems

�x� Ax�Bu � x� � Ax�Bu x � R
n, u � R

k (AB-LTI)

from the definition requires the computation of their controllable decompositions. However, there
are alternative tests that avoid this intermediate step.

Theorem 14.1 (Eigenvector test for stabilizability).

1. The continuous-time LTI system (AB-LTI) is stabilizable if and only if every eigenvector of A�

corresponding to an eigenvalue with a positive or zero real part is not in the kernel of B�.

2. The discrete-time LTI system (AB-LTI) is stabilizable if and only if every eigenvector of A�

corresponding to an eigenvalue with magnitude larger or equal to 1 is not in the kernel of
B�. �

Proof of Theorem 14.1. Let T be the similarity transformation that leads the system (AB-LTI) to the
controllable decomposition, and let (14.1) be the corresponding standard form; i.e.,

Ā�
�
Ac A12
0 Au �� T�1AT, B̄�

�
Bc
0 �� T�1B.

We start by proving that if the system (AB-LTI) is stabilizable, then every “unstable” eigenvectorNote. The term “unstable” should
be understood in the appropriate
sense, depending on whether we
are considering continuous or dis-
crete time. In either case, for the
purposes of stabilizability, eigen-
values on the “boundary” are con-
sidered unstable.

of A� is not in the kernel of B�. To prove by contradiction, assume that there exists an “unstable”
eigenvalue-eigenvector pair �λ ,x� for which

A�x� λx, B�x� 0 � � ¯TAT�1��x� λx, �T B̄��x� 0

�
�
A�c 0
A�12 A�u

�
T �x� λT �x,

�
B�c 0

�
T �x� 0

�
�
A�c 0
A�12 A�u

��
xc
xu

�
� λ

�
xc
xu

�
,

�
B�c 0��xc

xu

�� 0, (14.2)

where
�
x�c x�u

�
�� T �x� 0. Since the pair �Ac,Bc� is controllable and

A�cxc � λxc, B�cxc � 0,
we must have xc � 0 (and consequently xu � 0), since otherwise this would violate the eigenvector
test for controllability. This means that λ must be an eigenvalue of Au becauseNote. This is because Au and

A�u have the same eigenvalues:
det�λ I�Au� � det�λ I�A�u�.

which contradicts the stabilizability of the system (AB-LTI) because λ is “unstable.”

A�uxu � λxu,

Conversely, suppose now that the system (AB-LTI) is not stabilizable. Therefore A�u has an “unsta-
ble” eigenvalue-eigenvector pair

A�uxu � λxu, xu � 0.
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Then

Ā�
�
0
xu

�� �
A�c 0
A�12 A�u

��
0
xu

�� λ�
0
xu

�
, B̄�

�
0
xu

�� �
B�c 0

�� 0
xu

�
� 0,

�
0
xu

�
� 0.

We have thus far found an “unstable” eigenvector of Ā� in the kernel of B̄�, so �Ā, B̄� cannot be
stabilizable. To conclude that the original pair �A,B� is also not stabilizable, we use the equivalences
in (14.2) to conclude that

x� �T ���1
�
0
xu

� � �
0
xu

�
� T �x

is an “unstable” eigenvector of A� in the kernel of B�.

14.3 Popov-Belevitch-Hautus (PBH) Test for Stabilizability
For stabilizability, one can also reformulate the eigenvector test as a rank condition, as was done in
Theorem 12.3 for controllability.

Theorem 14.2 (Popov-Belevitch-Hautus (PBH) test for stabilizability).

1. The continuous-time LTI system (AB-LTI) is stabilizable if and only if

rank
�
A�λ I B�� n, �λ � C :ℜ�λ � � 0. (14.3)

2. The discrete-time LTI system (AB-LTI) is stabilizable if and only if

rank
�
A�λ I B�� n, �λ � C : �λ � � 1. �

The proof of this theorem is analogous to the proof of Theorem 12.3, except that now we need
to restrict our attention to only the “unstable” portion of C.

14.4 Lyapunov Test for Stabilizability
Consider again the LTI systems

�x� Ax�Bu � x� � Ax�Bu, x � R
n, u � R

k. (AB-LTI)

Theorem 14.3 (Lyapunov test for stabilizability). The LTI system (AB-LTI) is stabilizable if and Note. The term BB� in (14.4) ap-
pears with opposite sign with re-
spect to the Lyapunov test for con-
trollability, where the Lyapunov
equality was AP�PA��BB� � 0.

Note. Equation (14.4) is known as
a linear matrix inequality (LMI).
The term “linear” comes from the
fact that the left-hand side is lin-
ear in P, and � refers to the fact
that the left-hand side must be
negative-definite.

only if there is a positive-definite solution P to the following Lyapunov matrix inequality

AP�PA��BB� � 0 � APA��P�BB� � 0. (14.4)

Proof of Theorem 14.3. We do the proof for continuous time and start by showing that if (14.4) has
a positive-definite solution P, then the system (AB-LTI) is stabilizable. The simplest way to do this
is by using the eigenvector test. Assume that (14.4) holds, and let x � 0 be an eigenvector of A�

associated with the “unstable” eigenvalue λ ; i.e., A�x� λx. Then

x��AP�PA��x� x�BB�x� �B�x�2,

to
where ���� denotes the complex conjugate transpose. But the left-hand side of this equation is equal

�A�x���Px� x�PA�x� λ�x�Px�λx�Px� 2ℜ�λ �x�Px.

f o r u m . k o n k u r . i n
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Since P is positive-definite and ℜ�λ � � 0, we conclude that
0� 2ℜ�λ �x�Px� �B�x�2,

and therefore x must not belong to the kernel of B�.

To prove the converse, we assume that the system (AB-LTI) is stabilizable. Let T be the similarity
transformation that leads the system (AB-LTI) to the controllable decomposition and let (14.1) be
the corresponding standard form; i.e.,

Ā�
�
Ac A12
0 Au �� T�1AT, B̄�

�
Bc
0 �� T�1B,

We saw in Section 12.4 (regarding feedback stabilization based on the Lyapunov test) that control-
lability of the pair �Ac,Bc� guarantees the existence of a positive-definite matrix Pc such that

AcPc�PcA�c�BcB�c ��Qc � 0
[cf. equation (12.12)]. On the other hand, since Au is a stability matrix, we conclude from the
Lyapunov stability theorem 8.2 that there exists a positive-definite matrix Pu such that

AuPu�PuA�u ��Qu � 0.

Defining

P̄�
�
Pc 0
0 ρPu

�
for some scalar ρ � 0 to be determined shortly, we conclude that

¯ ¯AP̄� P̄A�� B̄B̄� �
�
Ac A12
0 Au

��
Pc 0
0 ρPu

�
�
�
Pc 0
0 ρPu

��
A�c 0
A�12 Au

�
�
�
Bc
0

��
B�c 0

�
��

�
Qc �ρA12Pu

�ρPuA�12 ρQu

�
It turns out that by making ρ positive, but sufficiently small, the right-hand side can be made
negative-definite. The proof is completed by verifying that the matrixNote. This can be proved by com-

pleting the square. See Exer-
cise 14.1.

P� T
�
Pc 0
0 ρPu

�
T �

satisfies (14.4)

14.5 Feedback Stabilization based on the Lyapunov Test
Assume that the continuous-time LTI system

�x� Ax�Bu, x � R
n, u � R

k (AB-CLTI)

is stabilizable. We saw in the Lyapunov test for stabilizability (Theorem 14.3) that this guarantees
the existence of a positive-definite solution P for which

AP�PA��BB� � 0.

Defining K � 1
2B

�P�1, this inequality can be rewritten as�
A� 1

2
BB�P�1

�
P�P

�
A� 1

2
BB�P�1

�
�
� �A�BK�P�P�A�BK�� � 0.
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Multiplying this inequality on the left and right by Q� P�1, we obtain

Q�A�BK���A�BK��Q� 0.

Since Q� 0, we conclude from the Lyapunov stability theorem 8.2 that A�BK must be a stability
matrix. This means that the state feedback control

u��Kx

asymptotically stabilizes the system (AB-CLTI).

Theorem 14.4. When the system (AB-CLTI) is stabilizable, it is always possible to find a state Note. This result justifies the
name “stabilizable.”

Note. As opposed to the anal-
ogous result for controllability,
we now cannot make the closed-
loop eigenvalues arbitrarily fast
(cf. Theorem 12.6).

feedback controller u � �Kx that makes the closed-loop system �x� �A�BK�x asymptotically sta-
ble. �

The discrete-time equivalent of this result is as follows.

Theorem 14.5. When the system

x� � Ax�Bu, x � R
n, u � R

k (AB-DLTI)

is stabilizable, it is always possible to find a state feedback controller u � �Kx that makes the
closed-loop system x� � �A�BK�x asymptotically stable. �

Attention! The conditions in Theorems 14.4 and 14.5 are actually necessary and sufficient for sta-
bilizability. In particular, one can also show that if it is possible to find a state feedback controller
u � �Kx that makes the closed-loop system �x�x� � �A�BK�x asymptotically stable, then the pair
�A,B� must be stabilizable. �

14.6 Eigenvalue Assignment
We saw in Section 14.5 that when a system is stabilizable, it is possible to find a feedback controller
that makes the closed loop asymptotically stable.

When the system is not only stabilizable, but also controllable, we saw in Sections 12.4 that
one can actually make the closed-loop eigenvalues arbitrarily fast. It turn out that for controllable
systems, one has complete freedom to select the closed-loop eigenvalues.

Theorem 14.6 (Eigenvalue assignment). Assume that the system
MATLAB R� Hint 33.
K=place(A,B,P) computes
a matrix K such that the eigenval-
ues of A-B K are those specified
in the vector P. This com-
mand should be used with great
caution and generally avoided
because it is numerically badly
conditioned. � p. 117

�x�x� � Ax�Bu, x � R
n, u � R

k (AB-CLTI)

is controllable. Given any set of n complex numbers λ1, λ2, . . . , λn, there exists a state feedback
matrix K such that the closed-loop system �x�x� � �A�BK�x has eigenvalues equal to the λi. �

The proof of this theorem can be found in [1, Section 4.2 B]. The special case of a SISO system
in controllable canonical form is proved in Exercise 14.2.

14.7 MATLAB R� Commands
MATLAB R� Hint 33 (place). The command K=place(A,B,P) computes a matrix K such that the
eigenvalues of A-B K are those specified in the vector P. The pair (A,B) should be controllable, and
the vector P should have no repeated eigenvalues. This command should be used with great caution
(and generally avoided), because it is numerically badly conditioned. �
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14.8 Exercises
14.1 (Positive definiteness of a partitioned matrix). Consider a symmetric matrix P that can be
partitioned as follows:

P�
�
Q ρS
ρS� ρR

�
,

where Q and R are both square symmetric and positive-definite matrices and ρ is a positive scalar.
Show that the matrix P is positive-definite for a sufficiently small, but positive, ρ .

Hint: Show that we can pick ρ � 0 so that x�Px � 0 for every nonzero vector x, by completing the
squares. �

14.2 (Eigenvalue assignment). Consider the SISO LTI system in controllable canonical form

�x� Ax�Bu, x � R
n, u � R

1, (AB-DLTI)

where

A�

����
�
�α1 �α2 � � � � � � � � ��αn�1 �αn

1 0 0 0
0 1 � � � 0 0

.

.. ...
. . .

...
...

0 0 � � � 1 0

����

�
n�n

, B�

����
�
..

1
0
.

0
0

����

�
n�1

.

(a) Compute the characteristic polynomial of the closed-loop system for

u��Kx, K �
�
k1 k2 � � � kn

�
.

line of this matrix.
Hint: Compute the determinant of �sI�A�BK� by doing a Laplacian expansion along the first

(b) Suppose you are given n complex numbers λ1, λ2, . . . , λn as desired locations for the closed-
loop eigenvalues. Which characteristic polynomial for the closed-loop system would lead to
these eigenvalues?

(c) Based on the answers to parts (a) and (b), propose a procedure to select K that would result in
the desired values for the closed-loop eigenvalues.

(d) Suppose that

A�
��1 2 3
1 0 0
0 1 0

�� , B�
��10
0
��
.

Find a matrix K for which the closed-loop eigenvalues are ��1,�1,�2�. �

14.3 (Transformation to controllable canonical form). Consider the following third-order SISO LTI
system

�x� Ax�Bu, x � R
3, u � R

1. (AB-CLTI)

Assume that the characteristic polynomial of A is given by

det�sI�A� � s3�α1s2�α2s�α3

and consider the 3�3 matrix

T � C

��
1

α1 α2
0 1 α1
0 0 1

�� , (14.5)

where C is the system’s controllability matrix.
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(a) Show that the following equality holds:

B� T

��10
0
�� .

(b) Show that the following equality holds:

AT � T

���α1 �α2 �α3
1 0 0
0 1 0

�� .

Hint: Compute separately the left- and right-hand side of the equation above and then show
that the two matrices are equal with the help of the Cayley-Hamilton theorem.

(c) Show that if the system (AB-CLTI) is controllable, then T is a nonsingular matrix.

(d) Combining parts (a)–(c), you showed that, if the system (AB-CLTI) is controllable, then the
matrix T given by equation (14.5) can be viewed as a similarity transformation that transforms
the system into the controllable canonical form�T�1AT ���α1 �α2 �α3

1 0 0
0 1 0

�� , T�1B�
��10
0
�� .

Use this to find the similarity transformation that transforms the following pair into the control-
lable canonical form

A�

�� 6 4 1
���5 ���4 0
4 3 �1

�� , B�

�� 1
���1
1
�� .

Hint: You may use the MATLAB R�functions poly(A) to compute the characteristic polynomial
of A and ctrb(A,B) to compute the controllability matrix of the pair (A,B). �
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Lecture 15

Observability

Contents
This lecture introduces the notions of observability and constructibility.

1. Observability and constructibility
2. Physical examples and block diagrams
3. Observability and constructibility Gramians (LTV systems)
4. Gramian-based reconstruction
5. Duality (LTI case)
6. Observability tests
7. Discrete-time case

15.1 Motivation: Output Feedback
Consider the continuous-time LTI system

�x� Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m. (CLTI)

We saw in Lecture 14 (Section 14.5) that if the pair �A,B� is stabilizable, then there exists a state
feedback control law

u��Kx (15.1)

that asymptotically stabilizes the system (CLTI), i.e., for which A�BK is a stability matrix. How-
ever, when only the output y can be measured (as opposed to the whole state x), the control law
(15.1) cannot be implemented. In principle, this difficulty can be overcome if it is possible to recon-
struct the state of the system based on its measured output and perhaps also on the control input that
is applied.

When the C matrix is invertible, instantaneous reconstruction of x from y and u is possible by
solving the output equation for x:

x�t� �C�1
�
y�t��Du�t��.

However, this would be possible only if the number of outputs was equal to the number of states (C
is square). When the number of outputs is strictly smaller than the number of states, instantaneous
reconstruction of x from y and u is not possible, but it may still be possible to reconstruct the state
from the input u�t� and output y�t� over an interval �t0, t1�. Two formulations are usually considered.
1. Observability refers to determining x�t0� from the future inputs and outputs u�t� and y�t�,

t � �t0, t1�.

123
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2. Constructibility refers to determining x�t1� from the past inputs and outputs u�t� and y�t�,
t � �t0, t1�.

15.2 Unobservable Subspace
Consider the continuous-time LTV system

�x� A�t�x�B�t�u, y�C�t�x�D�t�u, x � R
n, u � R

k, y � R
m. (CLTV)

We have seen in Lecture 5 that the system’s state x0 � x�t0� at time t0 is related to its input and
output on the interval �t0, t1� by the variation of constants formula:

y�t� �C�t�Φ�t, t0�x0�
� t

t0
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t � �t0, t1�, (15.2)

where Φ��� denotes the system’s state transition matrix. To study the system’s observability, we
need to determine under which conditions we can solveNotation. Given an input/output

pair u�t�,y�t�, t � �t0,t1�, we say
that it is compatible with an ini-
tial state x0 if (15.2) [or equiva-
lently (15.3)] holds.

ỹ�t� �C�t�Φ�t, t0�x0, �t � �t0, t1� (15.3)

for the unknown x0 � R
n, where

ỹ�t� � y�t��
� t

t0
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t � �t0, t1�.

This motivates the following definition.

Definition 15.1 (Unobservable subspace). Given two times t1 � t0 � 0, the unobservable subspace
on �t0, t1� UO�t0, t1� consists of all states x0 � R

n for which

C�t�Φ�t, t0�x0 � 0, �t � �t0, t1�. �

The importance of the unobservable subspace stems from the following properties.

Properties (Unobservable subspace). Suppose we are given two times t1 � t0 � 0 and an in-
put/output pair u�t�,y�t�, t � �t0, t1�.

initial state of the form
P15.1 When a particular initial state x0 � x�t0� is compatible with the input/output pair, then every

x0� xu, xu � UO�t0, t1�
is also compatible with the same input/output pair.

This is because�
ỹ�t� �C�t�Φ�t, t0�x0, ���t � � � � � �t0, t1���
0�C�t�Φ�t, t0�xu, t t0, t1

� ỹ�t� �C�t�Φ�t, t0��x0� xu�, �t � �t0, t1�.

P15.2 When the unobservable subspace contains only the zero vector, then there exists at most one
initial state that is compatible with the input/output pair.

This is because if two different states x0, x̄0 � R
n were compatible with the same input/output

pair, we would have�
ỹ���t� � � � � �C���t���Φ���t, t0���x0, ���t � � � � � �t0, t1���
ỹ t C t Φ t, t0 x̄0, t t0, t1

� 0�C�t�Φ�t, t0��x0� x̄0�, �t � �t0, t1�,

and therefore x0� x̄0 � 0 would have to belong to the unobservable subspace. �

f o r u m . k o n k u r . i n
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These properties motivate the following definition.

Definition 15.2 (Observable system). Given two times t1� t0 � 0, the system (CLTV) is observable Note. Because of property P15.2,
it is possible to uniquely
reconstruct the state of an
observable system from
(future) inputs/outputs.

if its unobservable subspace contains only the zero vector; i.e., UO�t0, t1� � 0. �

The matrices B��� and D��� play no role in the definition of the unobservable subspace; therefore
one often simply talks about the unobservable subspace or the observability of the system

�x� A�t�x, y�C�t�x, x � R
n, y � R

m (AC-CLTV)

or simply of the pair
�
A���,C����.

15.3 Unconstructible Subspace
The “future” system’s state x1� x�t1� at time t1 can also be related to the system’s input and output
on the interval �t0, t1� by the variation of constants formula:

y�t� �C�t�Φ�t, t1�x1�
� t

t1
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t � �t0, t1�.

This formula motivates the following definition.

Definition 15.3 (Unconstructible subspace). Given two times t1 � t0 � 0, the unconstructible sub-
space on �t0, t1� UC�t0, t1� consists of all states x1 for which

C�t�Φ�t, t1�x1 � 0, �t � �t0, t1�. �

The importance of the unconstructible subspace stems from the following simple properties.

Properties (Unconstructible subspace). Suppose we are given two times t1 � t0 � 0 and an in-
put/output pair u�t�,y�t�, t � �t0, t1�.
P15.3 When a particular final state x1 � x�t1� is compatible with the input/output pair, then every

final state of the form

x1� xu, xu � UC�t0, t1�

is also compatible with the same input/output pair.

P15.4 When the unconstructible subspace contains only the zero vector, then there exists at most
one final state that is compatible with the input/output pair. �

Definition 15.4 (Constructible system). Given two times t1 � t0 � 0, the system (CLTV) is con- Note. Because of property P15.4,
it is possible to uniquely
reconstruct the state of a
constructible system from (past)
inputs/outputs.

structible if its unconstructible subspace contains only the zero vector, i.e., UC�t0, t1� � 0. �

15.4 Physical Examples

+

+

�x1 ���A1x1�B1u

y C1x1

�x2 ���A2x2�B2u

y C2x2

u y

y1

y2

Figure 15.1. Parallel interconnections.
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Example 15.1 (Parallel interconnection). Consider the parallel interconnection in Figure 15.1 of
two systems with states x1,x2 � R

n. The overall system corresponds to the following state-space
model

�x�
�
A1 0
0 A2

�
x�

�
B1
B2

�
u, y� �

C1 C2
�
x,

where we chose for state x�
�
x�1 x�2

�� �
R
2n. The output to this system is given by

y�t� �C1eA1t x1�0��C1eA2t x2�0��
� t

0

�
C1eA1�t�τ�B1�C2eA2�t�τ�B2

�
u�τ�dτ.

When A1 � A2 � A andC1 �C2 �C, we have

y�t� �CeAt
�
x1�0�� x2�0�

��� t

0
CeA�t�τ��B1�B2�u�τ�dτ.

This shows that, solely by knowing the input and output of the system, we cannot distinguish be-
tween initial states for which x1�0�� x2�0� is the same. �

15.5 Observability and Constructibility Gramians
The following definitions are useful to characterize the unobservable and unconstructible subspaces.

Definition 15.5 (Observability and Constructibility Gramians). Given two times t1 � t0 � 0, theNote. Both Gramians are sym-
metric positive-semidefinite n� n
matrices.

Note. These Gramians are very
similar to the controllability and
reachability Gramians, except that
now the transposes appear on the
left and the B��� matrix has been
replaced by the C��� matrix.

observability and constructibility Gramians of the system (CLTV) are defined by

WO�t0, t1��
� � �t1

t0
Φ�τ, t0��C�τ��C�τ�Φ�τ, t0�dτ,

WCn�t0, t1��
t1

t0
Φ�τ, t1��C�τ��C�τ�Φ�τ, t1�dτ. �

As the names suggest, these Gramians allow one to compute the unobservable and the uncon-
structible spaces.

Theorem 15.1 (Unobservable and unconstructible subspaces). Given two times t1 � t0 � 0,
UO�t0, t1� � kerWO�t0, t1�, UC�t0, t1� � kerWCn�t0, t1�. �

Proof of Theorem 15.1. From the definition of the observability Gramian, for every x0 �Rn, we have

x�0WO�t0, t1�x0 �
� t1

t0
x�0Φ�τ, t0��C�τ��C�τ�Φ�τ, t0�x0 dτ �

� t1t0
�C�τ�Φ�τ, t0�x0�2dτ.

Therefore

x0 � kerWO�t0, t1� � C�τ�Φ�τ, t0�x0 � 0, �τ � �t0, t1� � x0 � UO�t0, t1�.
Conversely,

x0 � UO�t0, t1� � C�τ�Φ�τ, t0�x0 � 0, �τ � �t0, t1� � x0 � kerWO�t0, t1�.
For the second implication, we are using the fact that, for any given positive-semidefinite matrixW ,
x�Wx� 0 implies thatWx� 0. This implication is not true for nonsemidefinite matrices.
A similar argument can be made for the unconstructible subspace.

This result provides a first method to determine whether a system is observable or constructible,
because the kernel of a square matrix contains only the zero vector when the matrix is nonsingular.Note. Recall from the fundamen-

tal theorem of linear equations
that for an m � n matrix W ,
dim kerW � rankW � n.

Corollary 15.1 (Observable and constructible systems). Suppose we are given two times t1� t0 � 0.
1. The system (CLTV) is observable if and only if rankWO�t0, t1� � n.

2. The system (CLTV) is constructible if and only if rankWCn�t0, t1� � n. �
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15.6 Gramian-based Reconstruction

Consider the continuous-time LTV system

�x� A�t�x�B�t�u, y�C�t�x�D�t�u, x � R
n, u � R

k, y � R
m. (CLTV)

We have seen that the system’s state x0 � x�t0� at time t0 is related to its input and output on the
interval �t0, t1� by

ỹ�t� �C�t�Φ�t, t0�x0, �t � �t0, t1�, (15.4)

where

ỹ�t� � y�t��
� t

t0
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t � �t0, t1�. (15.5)

Premultiplying (15.4) by Φ�t, t0��C�t�� and integrating between t0 and t1 yields� t1

t0
Φ�t, t0��C�t��ỹ�t�dt �

� t1

t0
Φ�t, t0��C�t��C�t�Φ�t, t0�x0dt,

which can be written as

WO�t0, t1�x0 �
� t1

t0
Φ�t, t0��C�t��ỹ�t�dt.

If the system is observable,WO�t0, t1� is invertible, and we conclude that

x0 �WO�t0, t1��1
� t1

t0
Φ�t, t0��C�t��ỹ�t�dt,

which allows us to reconstruct x�t0� from the future inputs and outputs on �t0, t1�. A similar construc-
tion can be carried out to reconstruct x�t1� from past inputs and outputs for reconstructible systems.
This is summarized in the following statement.

Theorem 15.2 (Gramian-based reconstruction). Suppose we are given two times t1 � t0 � 0 and an
input/output pair u�t�,y�t�, t � �t0, t1�.

1. When the system (CLTV) is observable

x�t0� �WO�t0, t1��1
� t1

t0
Φ�t, t0��C�t��ỹ�t�dt,

where ỹ�t� is defined by (15.5).

2. When the system (CLTV) is constructible

x�t1� �WCn�t0, t1��1
� t1

t0
Φ�t, t1��C�t��ȳ�t�dt,

where

ȳ�t�� y�t��
� t

t1
C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t � �t0, t1�. �

f o r u m . k o n k u r . i n
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15.7 Discrete-Time Case
Consider the discrete-time LTV system

x�t�1� � A�t�x�t��B�t�u�t�, y�t� �C�t�x�t��D�t�u�t�, (DLTV)

for which the system’s state x0 � x�t0� at time t0 is related to its input and output on the interval
t0 � t � t1 by the variation of constants formula

y�t� �C�t�Φ�t, t0�x0�
t�1�
τ�t0

C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t0 � t � t1.

Definition 15.6 (Unobservable and unconstructible subspaces). Given two times t1 � t0 � 0, the
unobservable subspace on �t0, t1� UO�t0, t1� consists of all states x0 for which

C�t�Φ�t, t0�x0 � 0, �t0 � t � t1. �

The unconstructible subspace on �t0, t1� UC�t0, t1� consists of all states x1 for which

C�t�Φ�t, t1�x1 � 0, �t0 � t � t1. �

Attention! The definition of the discrete-time unconstructible subspace requires a backward-in-time
state transition matrix Φ�t, t1� from time t1 to time t � t1�1� t1. This matrix is well defined only
when

x�t1� � A�t1�1�A�t1�2� � � �A�τ�x�t�, t0 � τ � t1�1

can be solved for x�t�, i.e., when all the matrices A�t0�, A�t0� 1�, . . . , A�t1� 1� are nonsingular.
When this does not happen, the unconstructibility subspace cannot be defined. �

Definition 15.7 (Observable and constructible systems). Given two times t1 � t0 � 0, the systemNote. It is possible to uniquely
reconstruct the state of an ob-
servable system from (future) in-
puts/outputs.

Note. It is possible to uniquely
reconstruct the state of a con-
structible system from (past) in-
puts/outputs.

(DLTV) is observable if its unobservable subspace contains only the zero vector, and it is con-
structible if its unconstructible subspace contains only the zero vector. �

The matrices B��� and D��� play no role in the definition of the unobservable subspace, therefore
one often simply talks about the unobservable subspace or the observability of the system

x�t�1� � A�t�x�t�, y�t� �C�t�x�t�, x � R
n, y � R

m (AC-DLTV)

or simply of the pair
�
A���,C����.

observability and constructibility Gramians of the system (AC-DLTV) are defined by
Definition 15.8 (Observability and constructibility Gramians). Given two times t1 � t0 � 0, the

WO�t0, t1��
t1�1�
τ�t0

Φ�τ, t0��C�τ��C�τ�Φ�τ, t0�,

WCn�t0, t1��
t1�1�
τ�t0

Φ�τ, t1��C�τ��C�τ�Φ�τ, t1�. �

Theorem 15.3 (Unobservable and unconstructible subspaces). Given two times t1 � t0 � 0,

UO�t0, t1� � kerWO�t0, t1�, UC�t0, t1� � kerWCn�t0, t1�. �

Theorem 15.4 (Gramian-based reconstruction). Suppose we are given two times t1 � t0 � 0 and an
input/output pair u�t�, y�t�, t0 � t � t1.
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1. When the system (DLTV) is observable

x�t0� �WO�t0, t1��1
t1�1�
t�t0

Φ�t, t0��C�t��ỹ�t�,

where

ỹ�t�� y�t��
t�1�
τ�t0

C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t0 � t � t1.

2. When the system (DLTV) is constructible

x�t1� �WCn�t0, t1��1
t1�1�
t�t0

Φ�t, t1��C�t��ȳ�t�,

where

ȳ�t�� y�t��
t�1�
τ�t1

C�t�Φ�t,τ�B�τ�u�τ�dτ �D�t�u�t�, �t0 � t � t1. �

15.8 Duality (LTI)
Consider the continuous-time LTI system

�x� Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m. (CLTI)

So far we have shown the following. Note. Why can we omit “on
�t0,t1�” for controllability? Be-
cause for time-invariant systems,
we have time scalability; i.e., con-
trollability does not depend on the
interval under consideration.

The system (CLTI) is controllable � rankWC�t0, t1� � n, (15.6a)

where WC�t0, t1��
� t1

t0
eA�τ�t0�BB�eA

��τ�t0�dτ.

The system (CLTI) is observable on �t0, t1� � rankWO�t0, t1� � n, (15.6b)

where WO�t0, t1��
� t1

t0
eA
��τ�t0�C�CeA�τ�t0�dτ.

Suppose that we construct the following dual system Note. All matrices were replaced
by their transposes, the B and C
matrices were exchanged, and the
dimensions of the input and the
output were also exchanged.

¯�̄x� A�x̄�C�u, ¯ȳ� B�x̄�D�u, x � R
n, ū � R

m, ȳ � R
k. (15.7)

For this system we have the following.

The system (15.7) is controllable � rankW̄C�t0, t1� � n, (15.8a)

where W̄C�t0, t1��
� t1

t0
eA
��τ�t0�C�CeA�τ�t0�dτ.

The system (15.7) is observable on �t0, t1� � rankW̄O�t0, t1� � n, (15.8b)

where W̄O�t0, t1��
� t1

t0
eA�τ�t0�BB�eA

��τ�t0�dτ.

By matching the conditions (15.6) for the original system (CLTI) with the conditions (15.8) for the
dual system (15.7), we obtain the following result.

Theorem 15.5 (Duality controllability/observability). Suppose we are given two times t1 � t0 � 0.
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1. The system (CLTI) is controllable if and only if the system (15.7) is observable on �t0, t1�.
2. The system (CLTI) is observable on �t0, t1� if and only if the system (15.7) is controllable.
� A

similar result can be obtained for reachability/constructibility.

Theorem 15.6 (Duality reachability/constructability). Suppose we are given two times t1 � t0 � 0.
1. The system (CLTI) is reachable if and only if the system (15.7) is constructible on �t0, t1�.
2. The system (CLTI) is constructible on �t0, t1� if and only if the system (15.7) is reachable.

� Attention! This result has several important implications.

1. Time scaling. The notions of observability and constructibility do not depend on the time

Note. Why? Because we have al-
ready established time scaling for
controllability and reachability of
LTI systems.

interval considered. This means that if it is possible to uniquely reconstruct the state x�t0�
from (future) inputs and outputs on an interval �t0, t1�, then it is also possible to uniquely
reconstruct the state x�t̄0� from inputs and outputs on any other interval �t̄0, t̄1�, and similarly
for constructibility.

Because of this, for continuous-time LTI systems, one generally does not specify the time
interval �t0, t1� under consideration.

2. Time reversibility. The notions of observability and constructibility coincide for continuous-Note. Why? Because we have
already established that control-
lability and reachability coincide
for continuous-time LTI systems.

time LTI systems, which means that if one can reconstruct the state from future inputs/outputs,
one can also reconstruct it from past inputs/outputs.

Because of this, for continuous-time LTI systems, one simply studies observability and omits
constructibility. �

Attention! For time-varying systems, duality is more complicated, because the state transition ma-
trix of the dual system must be the transpose of the state transition matrix of the original system, but
this is not obtained by simply transposing A�t�. �

15.9 Observability Tests
Consider the LTI systemNotation. In this section, we

jointly present the results for con-
tinuous and discrete time and use
a slash � to separate the two cases.

�x�x� � Ax, y�Cx, x � R
n, y � R

m. (AC-LTI)

From the duality theorems in Section 15.8, we can conclude that a pair �A,C� is observable if and
only if the pair �A�,C�� is controllable. This allows us to use all previously discussed tests for
controllability to determine whether or not a system is observable.

To apply the controllability matrix test to the pair �A�,C��, we construct the corresponding con-
trollability matrix

C � �
C� A�C� �A��2C� � � � �A��n�1C���kn��n � O

�,

where O denotes the observability matrix of the system (AC-LTI), which is defined by
MATLAB R� Hint 34.
obsv(sys) computes the
observability matrix of the
state-space system sys. Alterna-
tively, one can use obsv(A,C)

directly. � p. 131
O �

����

� ..

C
CA
CA2
.

CAn�1

����

�
�kn��n

.

Since rankC � rankO � � rankO , we conclude that the system (AC-LTI) is observable if and only
if rankC � rankO � n. Moreover, we saw that in Theorem 15.1 that

UO�t0, t1� � kerWO�t0, t1� � �ImWO�t0, t1���, �t1 � t0 � 0,
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where the second equality is justified by Lemma 11.1. But the observability gramian ImWO�t0, t1�
of the pair �A,C� is equal to the controllability gramian W̄C�t0, t1� of the pair �A�,C�� so

UO�t0, t1� � �ImWO�t0, t1��� � �ImW̄C�t0, t1��� � �ImC �� � kerO,

where the second equality is a consequence of the fact that ImW̄C�t0, t1� is the controllable subspace
of the pair �A�,C��, which can be obtained from the image of the controllability matrix C . One last
application of Lemma 11.1 allows one to conclude that

UO�t0, t1� � �ImC �� � kerO.

The above reasoning leads to the following test.

Theorem 15.7 (Observabilitymatrix test). The system (AC-LTI) is observable if and only if rankO �
n. Moreover,

UO�t0, t1� � kerO. �

All other controllability tests also have observability counterparts.

Theorem 15.8 (Eigenvector test for observability). The system (AC-LTI) is observable if and only Note. Now, we do not need to
work with left-eigenvectors or
left-kernels.

Notation. The eigenvalues corre-
sponding to eigenvectors of A in
the kernel of C are called the
unobservable modes, and the
remaining ones are called the
observable modes.

if no eigenvector of A is in the kernel of C. �

Theorem 15.9 (Popov-Belevitch-Hautus (PBH) test for observability). The system (AC-LTI) is ob-
servable if and only if

rank
�
A�λ I
C

�
� n, �λ � C. �

Theorem 15.10 (Lyapunov test for observability). Assume that A is a stability matrix/Schur stable.
The system (AC-LTI) is observable if and only if there is a unique positive-definite solutionW to the
Lyapunov equation Note. Now equation (15.9) very

much resembles the one in the
Lyapunov stability theorem 8.2.A�W �WA��C�C � A�WA�W ��C�C. (15.9)

Moreover, the unique solution to (15.9) is

W �
� �
0

eA
�τ C�CeAτ dτ � lim

t1�t0��WO�t0, t1�

� W �
��
τ�0

�A��τC�CAτ dτ � lim
t1�t0��WO�t0, t1�. �

Table 15.1 summarizes these results and contrasts them with the corresponding controllability
tests.

15.10 MATLAB R� Commands
MATLAB R� Hint 34 (obsv). The function obsv(sys) computes the observability matrix of the
state-space system sys. The systemmust be specified by a state-spacemodel using, e.g., sys=ss(A,B,C,D),
where A,B,C,D are a realization of the system. Alternatively, one can use obsv(A,C) directly. �

15.11 Exercises
15.1 (Diagonal Systems). Consider the following system

�x�
��1 0 0
0 0 0
0 0 �1

��x, y� �
c1 c2 c3

�
u,

where c1, c2, and c3 are unknown scalars.
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(a) Provide an example of values for c1, c2, and c3 for which the system is not observable.

(b) Provide an example of values for c1, c2, and c3 for which the system is observable.

(c) Provide a necessary and sufficient condition on the ci so that the system is observable.

Hint: Use the eigenvector test. Make sure that you provide a condition that when true the system
is guaranteed to be observable, but when false the system is guaranteed to not be observable.

(d) Generalize the previous result for an arbitrary system with a single output and diagonal matrix
A. �
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Lecture 16

Output Feedback

Contents
This lecture addresses the output feedback problem.

1. Observable decomposition
2. Kalman decomposition
3. Detectability (definition and tests)
4. State estimation
5. Eigenvalue assignment by output injection
6. Stabilization through output feedback (separation theorem)

16.1 Observable Decomposition
Consider the LTI system Notation. In most of this lecture,

we jointly present the results for
continuous and discrete time and
use a slash � to separate the two
cases.

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, y � R

m (AC-LTI)

and a similarity transformation x̄� T�1x, leading to

�̄x�x̄� � Āx̄� B̄u, y� C̄x̄�Du, Ā� T�1AT, B̄� T�1B, C̄�CT. (16.1)

The observability matricesO and Ō of the systems (AC-LTI) and (16.1), respectively, are related by

Ō �

����� ¯

..
¯

C̄
C̄A
.

C̄An�1
����
��

����
� ..

C
CA
.

CAn�1
�����T � OT.

¯

Since the observability of a system is determined by the rank of its observability matrix, which does
not change by multiplication by a nonsingular matrix, we obtain the following result.

if and only if the pair �
Theorem 16.1 (Invariance with respect to similarity transformations). The pair �A,C� is observable

A,C̄� � �T�1AT,CT � is observable. � Note. In fact, we have more than
this. Similarity transformations
actually preserve the dimension of
the unobservable subspace.

As with controllability, it is possible to find similarity transformations that highlight the unob-
servable subspace. In fact, by applying the controllable decomposition theorem 13.2 to the pair
�A�,C��, we obtain the following result.

135
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Theorem 16.2 (Observable decomposition). For every LTI system (AC-LTI), there is a similarity
transformation that takes the system to the formNotation. This form is often

called the standard form for
unobservable systems.

�
Ao 0
A21 Au�� T�1AT, �Bo Bu�� T�1B, �Co 0��CT, (16.2)

where Ao is an �n� n̄���n� n̄� matrix, Au an n̄� n̄ matrix, and Co an m��n� n̄� matrix, for which
MATLAB R� Hint 35.
[Abar,Bbar,Cbar,T] =

obsvf(A,B,C) computes the
observable decomposition of
the system with realization
A,B,C. � p. 141

1. the unobservable subspace of the transformed system (16.2) is given by

ŪO� Im
�
0

In̄�n̄

�
,

where n̄ denotes the dimension of the unobservable subspace UO of the original system, and

2. the pair �Ao,Co� is observable. �

By partitioning the state of the transformed system asNotation. The vectors xo and xu
are called the observable and the
unobservable components of the
state, respectively. x̄� T�1x�

�
xo
xu

�
, xo � R

n�n̄, xu � R
n̄,

its state-space model can be written as follows�
�xo
�xu

�
�
�
Ao 0
A21 Au

��
xo
xu

�
�
�
Bo
Bu

�
u, y� �

Co 0
��xo

xu

�
�Du.

Figure 16.1 shows a block representation of this system, which highlights the fact that the xu com-Note. This is consistent with
statement 1 in Theorem 16.2. ponent of the state cannot be reconstructed from the output. Moreover, the observability of the pair

�Ao,Co� means that the xo component of the state can be uniquely reconstructed from the input and
output.

+

+

u yxo

xu

Co

Bu

Bo

A21

�xo � Aoxo� v

�xu � Auxu

Figure 16.1. Observable decomposition. The direct feed-through term D was omitted to simplify the diagram.

16.2 Kalman Decomposition Theorem
Consider the LTI system

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m. (LTI)

In Lecture 13, we saw that every LTI system can be transformed through a similarity transformation
into the following standard form for uncontrollable systems:�

�xc���
x���
c

�xc̄ xc̄

�
�
�
Ac A12
0 Ac̄

��
xc
xc̄

�
�
�
Bc
0

�
u, y� �

Cc Cc̄��xc
xc̄

��Du,
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in which the pair �Ac,Bc� is controllable [cf. Figure 16.2(a)]. This was obtained by choosing a
similarity transformation�

xc
xc̄

�
� T�1x, T �

�
Vc Vc̄

�
,

whose leftmost columns Vc form a basis for the (A-invariant) controllable subspace C of the pair
�A,B�. Using duality, we further concluded that every LTI system can also be transformed into the
following form standard form for unobservable systems:�

�xo���x���o
�¯ ¯xo xo

�� �
Ao 0

¯A21 Ao

��x
¯

o
xo

���B
¯

o
Bo

�
u, y� �

Co 0
¯

��xo
xo

�
�Du,

in which the pair �Ao,Co� is observable [cf. Figure 16.2(b)]. This is obtained by choosing a similarity
transformation �

¯

xo
xo

�
� T�1x, T �

�
¯Vo Vo
�
,

¯whose rightmost columns Vo form a basis for the (A-invariant) unobservable subspace UO of the
pair �A,C�.

u y
xc

xc̄

(a) Controllable decomposition

u y
xo

¯xo

(b) Observable decomposition

u y
xco

¯xco

xc̄o

¯xc̄o

(c) Kalman decomposition

Figure 16.2. Schematic representation of the structural decompositions.

Suppose now that we choose a similarity transformation

x̄� T�1x, T �
�

¯ ¯Vco Vco Vc̄o Vc̄o
�

such that

¯1. the columns of Vco form a basis for the (A-invariant) subspace C�UO,

2. the columns of
�

¯Vco Vco
�
form a basis for the (A-invariant) controllable subspace C of the pair

�A,B�, and
3. the columns of

�
¯ ¯Vco Vc̄o

�
form a basis for the (A-invariant) unobservable subspace UO of the

pair �A,C�.
This similarity transformation leads to a system in the form����

�
�xco���

x���
co

� ¯ ¯xco xco

�xc̄o���x���c̄o
� ¯ ¯xc̄o xc̄o

����
�

�

����
�
Aco

0 A�o 0
¯ ¯Ac� Aco A�� A�o

0 0 Ac̄o 0
0 0 ¯Ac̄� Ac̄o

���� ¯

������
xco
xco

¯

xc̄o
xc̄o

���� ¯

�
�

�����
Bco
Bco

0
0

����
�u, (16.3a)
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y� �
Cco 0 Cc̄o 0 ¯������

xco
xco

¯

xc̄o
xc̄o

����
��Du. (16.3b)

This similarity transformation is called a canonical Kalman decomposition, and it is represented
MATLAB R� Hint 36.
[msys,T]=minreal(sys)

returns an orthogonal matrix
T such that �TAT�1,TB,CT�1�
is a Kalman decomposition of
�A,B,C�. � p. 148

schematically in Figure 16.2(c). This decomposition has several important properties as stated in
the following theorem.

Theorem 16.3 (Kalman Decomposition). For every LTI system (AB-LTI), there is a similarity trans-
formation that takes it to the form (16.3), for which

1. the pair
������̄

Aco 0
Ac� Aco

�
,
�

¯
Bco
Bco

��
is controllable,

2. the pair Aco A�o
0 Ac̄o

�
, �Cco Cc̄o �

�
is observable,

3. the triple �Aco,Bco,Cco� is both controllable and observable, and

4. the transfer function C�sI � A��1B�D of the original system is the same as the transferNote. In discrete time, the
Laplace transform variable
s should be replaced by the
Z -transform variable z.

¯

¯

Note. Statement 4 of Theo-
rem 16.3 can be concluded
directly from Figure 16.2(c),
since for zero initial conditions
xc̄o and xc̄o remain identically
zero and xco never affects the
output.

function Cco�sI�Aco��1Bco�D of the controllable and observable system. �

16.3 Detectability

We just saw that any LTI system is algebraically equivalent to a system in the following standard
form for unobservable systems:�

�xo���
x���
o

�xu xu

�
�
�
Ao 0
A21 Au

��
xo
xu

�
�
�
Bo
Bu

�
u, xo � R

n�n̄, xu � R
n̄, (16.4a)

y� �
Co 0��xo

xu

��Du, u � R
k,m � R

m, (16.4b)

where n̄ denotes the dimension of the unobservable subspace UO of the original system.

Definition 16.1 (Detectable system). The pair �A,C� is detectable if it is algebraically equivalent toNote. Any observable system is
detectable, because in this case
n̄ � n and the matrix Au does not
exist. Also, any asymptotically
stable system is detectable, be-
cause in this case both Ao and Au
are stability matrices.

a system in the standard form for unobservable systems (16.4) with n̄ � 0 (i.e., Au nonexistent) or
with Au a stability matrix. �

For a continuous-time system, the evolution of the unobservable component of the state is deter-
mined by

�xu � Auxu�A21xo�Buu.

Regarding A21xo�Buu as the input, we can use the variation of constants formula to conclude that

xu�t� � eAu�t�t0�xu�t0��
� t

t0
eAu�t�τ��A21xo�τ��Buu�τ�

�
dτ.

Since the pair �Ao,Co� is observable, it is possible to reconstruct x0 from the input and output,
and therefore the integral term can be perfectly reconstructed. For detectable systems, the term
eAu�t�t0�xu�t0� eventually converges to zero, and therefore one can guess xu�t� up to an error that
converges to zero exponentially fast.



Observability and Output Feedback 139

16.4 Detectability Tests
Investigating the detectability of an LTI system

�x�x� � Ax, y�Cx, x � R
n, y � R

m, (AC-LTI)

from the definition requires the computation of the observable decomposition. However, there are
alternative tests that avoid this intermediate step. These tests can be deduced by duality from the
stabilizability tests.

Theorem 16.4 (Eigenvector test for detectability).

1. The continuous-time LTI system (AC-LTI) is detectable if and only if every eigenvector of A
corresponding to an eigenvalue with a positive or zero real part is not in the kernel of C.

2. The discrete-time LTI system (AC-LTI) is detectable if and only if every eigenvector of A
corresponding to an eigenvalue with magnitude larger than or equal to 1 is not in the kernel
of C. �

Theorem 16.5 (Popov-Belevitch-Hautus (PBH) test for detectability).

1. The continuous-time LTI system (AC-LTI) is detectable if and only if

rank
�
A�λ I
C

�
� n, �λ � C :ℜ�λ � � 0.

2. The discrete-time LTI system (AC-LTI) is detectable if and only if

rank
�
A�λ I
C �� n, �λ � C : �λ � � 1. �

Theorem 16.6 (Lyapunov test for detectability).

1. The continuous-time LTI system (AC-LTI) is detectable if and only if there is a positive-definite
solution P to the Lyapunov matrix inequality

A�P�PA�C�C � 0.

2. The discrete-time LTI system (AC-LTI) is detectable if and only if there is a positive-definite
solution P to the Lyapunov matrix inequality

A�PA�P�C�C � 0. �

Table 15.1 summarizes these results and contrasts them with the corresponding stabilizability
tests.

16.5 State Estimation
Consider the continuous-time LTI system

�x� Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m, (CLTI)

and let

u��Kx (16.5)
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be a state feedback control law that asymptotically stabilizes (CLTI), i.e., for which A�BK is a
stability matrix. When only the output y can be measured, the control law (16.5) cannot be imple-
mented, but if the pair �A,C� is detectable, it should be possible to estimate x from the system’s
output up to an error that vanishes as t � �.

In Lecture 15, we saw that the state of an observable system can be reconstructed from the
its input and output over an interval �t0, t1� using the observability or constructibility Gramians.
However, the formulas derived provide only the value of the state at a particular instant of time,
instead of the continuous estimate required to implement (16.5).

The simplest state estimator consists of a copy of the original system,Notation. This is called an open-
loop state estimator.

�̂x� Ax̂�Bu. (16.6)

To study the performance of this state estimator, we define the state estimation error

e� x̂� x.

Taking derivatives, we conclude that

�e� Ax̂�Bu��Ax̂�Bu� � Ae.

Therefore, when A is a stability matrix, the open-loop state estimator (16.6) results in an error that
converges to zero exponentially fast, for every input signal u.

When the matrix A is not a stability matrix, it is still possible to construct an asymptotically
correct state estimate, but to achieve this we need a closed-loop estimator of the formˆNote. The term L�y� y� is used

to correct any deviations of x̂ from
the true value x. When x̂ � x, we
have ŷ � y and this term disap-
pears.

Note. In Lecture 23, we shall see
that this type of state estimator
can actually be optimal.

ˆ�̂x� Ax̂�Bu�L�y� y�, ŷ�Cx̂�Du, (16.7)

for some output injection matrix gain L � R
n�m. Now the state estimation error evolves according

to

� ˆe� Ax̂�Bu�L�y� y���Ax̂�Bu� � �A�LC�e.
Theorem 16.7. Consider the closed-loop state estimator (16.7). If the output injection matrix gain
L � R

n�m makes A�LC a stability matrix, then the state estimation error e converges to zero expo-
nentially fast, for every input signal u. �

16.6 Eigenvalue Assignment by Output Injection
The following results can also be obtained by duality from the eigenvalue assignment results that we
proved for controllable and stabilizable systems.

L �
Theorem 16.8. When the system pair �A,C� is detectable, it is always possible to find a matrix gain

R
n�m such that A�LC is a stability matrix. �

λ2, . . . , λn, there exists a state feedback matrix L �
Theorem 16.9. Assume that the pair �A,C� is observable. Given any set of n complex numbers λ1,

R
n�m such that A�LC has eigenvalues equal to

the λi. �

Attention! The condition in Theorem 16.8 is actually necessary and sufficient for detectability. In
particular, one can also show that if it is possible to find a matrix gain L that makes A�LC a stability
matrix, then the pair �A,C� must be detectable. �

Attention! The condition in Theorem 16.9 is actually necessary and sufficient for observability. In
particular, one can also show that if it is possible to arbitrarily assign all eigenvalues of A�LC by
choosing L, then the pair �A,C� must be observable. �
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16.7 Stabilization through Output Feedback
Consider again the following LTI system

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m, (LTI)

that is asymptotically stabilized by the state feedback control law

u��Kx, (16.8)

and let

ˆ�̂x�x̂� � Ax̂�Bu�L�y� y�, ŷ�Cx̂�Du

may be tempted to use the state estimate x̂ instead of the actual state x in (16.8),
be a state estimator for which A�LC is a stability matrix. If the state x cannot be measured, one

u��Kx̂.

This results in a controller with the following state-space model

�̂x� � �x̂� ���Ax̂�Bu���L�Cx̂�Du� y�, u������Kx̂

� �̂x x̂� �A�LC BK�LDK�x̂�Ly, u Kx̂ (16.9)

and transfer function

Ĉ�s���K�sI�A�LC�BK�LDK��1L.
To study whether the resulting closed-loop system is stable, we construct a state-space model for the Note. One could have obtained

a state-space model for the
closed-loop system using the state
�x� x̄��� . However, this would
not lead to the simple diagonal
structure in (16.10), and it would
make it more difficult to establish
the asymptotic stability of the
closed-loop system.

closed-loop system with state x̄�
�
x� e���. To do this, we recall that

�e�e� � �A�LC�e
and also that

�x�x� � Ax�Bu� Ax�BKx̂� Ax�BK�e� x� � �A�BK�x�BKe.

From these two equations, we conclude that�
�x���x���
�e e

�
�
�
A�BK �BK
0 A�LC

��
�

x
�e

�
.

(16.10)

The following theorem results from the triangular structure of this matrix.

Theorem 16.10 (Separation). The closed loop of the process (LTI) with the output feedback con- Note. This is called the separa-
tion theorem, because one can de-
sign the state feedback gain K and
the output injection gain L inde-
pendently.

troller (16.9) results in a system whose eigenvalues are the union of the eigenvalues of the state
feedback closed-loop matrix A�BK with the eigenvalues of the state estimator matrix A�LC. �

16.8 MATLAB R� Commands
MATLAB R� Hint 35 (obsvf). The command [Abar,Bbar,Cbar,T] = obsvf(A,B,C) com-
putes the observable decomposition of the system with realization A,B,C. The matrices returned
are such that

Abar�
�
Au A12
0 Ao �� T A T�, Bbar� T B, Cbar� �

0 Co�� C T�, T� � T�1.

This decomposition places the unobservable modes on top of the observable ones, opposite to what
happens in (16.2). Moreover, the nonsingular matrix T is chosen to be orthogonal.

The command [Abar,Bbar,Cbar,T] = obsvf(A,B,C,tol) further specifies the tolerance tol
used for the selection of the unobservable modes. �
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16.9 Exercises
16.1 (Diagonal Systems). Consider the system

�x�
��1 0 0
0 0 0
0 0 �1

��x, y� �
c1 c2 c3

�
u,

where c1, c2, and c3 are unknown scalars.

(a) Provide a necessary and sufficient condition on the ci so that the system is detectable.

(b) Generalize the previous result for an arbitrary system with a single output and diagonal matrix
A.

Hint: Take a look at Exercise 15.1 in Lecture 15. �



Lecture 17

Minimal Realizations

Contents

This lecture addresses the issue of constructing state-space realizations of the smallest possible order
for SISO transfer functions.

1. Minimal realizations
2. Similarity of minimal realizations
3. Degree of a minimal realization (SISO case)

The MIMO case will be discussed later in Lecture 19.

17.1 Minimal Realizations

We recall from Lecture 4 that, given a transfer function Ĝ�s�, we say that Notation. In most of this lec-
ture, we jointly present the re-
sults for continuous and discrete
time and use a slash � to sepa-
rate the two cases. In discrete
time, the Laplace transform vari-
able s should be replaced by the
Z -transform variable z.

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m (CLTI)

is a realization of Ĝ�s� if

Ĝ�s� �C�sI�A��1B�D.

The size n of the state-space vector x is called the order of the realization. We saw in Exercise 4.5 that
a transfer function can have realizations of different orders, which justifies the following definition.

Definition 17.1 (Minimal realization). A realization of Ĝ�s� is called minimal or irreducible if there
MATLAB R� Hint 36.
minreal(sys) computes a
minimal realization of the system
sys. � p. 148

is no realization of Ĝ�s� of smaller order. �

The minimality of a realization is intimately related to controllability and observability, as ex-
pressed by the following theorem.

Theorem 17.1. Every minimal realization must be both controllable and observable. �

Proof of Theorem 17.1. This theorem can be easily proved by contradiction. Assuming that a re-
alization is either not controllable or not observable, by the Kalman decomposition theorem one
could find another realization of smaller order that realizes the same transfer function, which would
contradict minimality. �

143
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17.2 Markov Parameters
It turns out that controllability and observability are not only necessary but also sufficient for mini-
mality. To prove this, one needs to introduce the so-called Markov parameters. We saw in Lecture 6
that

�sI�A��1 � L �eAt��L

� ��
i�0

ti

i!
Ai
�
.

Since

L

� ti
i!

�
� s��i�1�,

we conclude that

�sI�A��1 �
��
i�0

s��i�1�Ai.

Therefore

Ĝ�s� �C�sI�A��1B�D� D�
��
i�0

s��i�1�CAiB. (17.1)

The matricesD,CAiB, i� 0 are called theMarkov parameters, which are also related to the system’s
impulse response. To see how, we recall that

G�t� � L
�1�Ĝ�s��� L

�1�C�sI�A��1B�D� �CeAtB�Dδ �t�.

Taking derivatives of the right-hand side, we conclude that

diG�t�
dti

�CAieAtB, �i� 1, t � 0

from which we obtain the following relationship between the impulse response and the Markov
parameters:

lim
t�0�

diG�t�
dti

�CAiB, �i� 1. (17.2)

The following result basically follows from the formulas derived above.

Theorem 17.2. Two realizations�
�x���Ax���Bu
y Cx Du

�
¯�̄x���Ax̄���B̄u

y C̄x̄ D̄u

¯

are zero-state equivalent if and only if they have the same Markov parameters; i.e.,

D� D̄, CAiB� C̄AiB̄, �i� 0. �

Proof of Theorem 17.2. From (17.1) we conclude that if the Markov parameters are the same then
the two realization have the same transfer function.

Conversely, if two realizations have the same transfer function, then they must have the same D
matrix, since this matrix is equal to the limit of the transfer function as s � �. In addition, they
must have the same impulse response, and we conclude from (17.2) that the remaining Markov
parametersCAiB, i� 0 must also be the same.
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We are now ready to prove one of the key results regarding minimal realizations, which com-
pletely characterizes minimality in terms of controllability and observability.

Theorem 17.3. A realization is minimal if and only if it is both controllable and observable. �

Proof of Theorem 17.3. We have already shown in Theorem 17.1 that if a realization is minimal,
then it must be both controllable and observable. We prove the converse by contradiction. Assume
that

�x� Ax�Bu, y�Cx�Du, x � R
n (17.3)

is a controllable and observable realization of Ĝ�s�, but this realization is not minimal; i.e., there
exists another realization

�̄x� Āx̄� B̄u, y� C̄x̄�Du, x̄ � R
n̄ (17.4)

for Ĝ�s� with n̄ � n. Denoting by C and O the controllability and observability matrices of (17.3),
we have

OC �

����� ..

C
CA
.

CAn�1

����
��

B AB � � � An�1B
��

�����
CB CAB � � � � � � � � �CAn�1B
CAB CA2B
..

CAnB
. ...

...
CAn�1B CAnB � � � CA2n�2B

����
�

�����������������������������������������������
Markov parameters

. (17.5)

Moreover, since (17.3) is controllable and observable, both C and O have rank n, and therefore the Note. The matrix in (17.5) has
rank n because the n columns of
O are linearly independent and
C also has n columns that are
linearly independent. As these
columns of C multiply O , they
give rise to n columns of OC that
are linearly independent. On the
other hand, the rank ofOC cannot
be larger than n, since it is given
by the product of two rank n ma-
trices.

matrix in the right-hand side of (17.5) also has rank n.

Suppose now that we compute

Note. The matrices C̄ and Ō de-
fined in (17.6) are not the control-
lability and observability matrices
of (17.4) because the powers of Ā
go up to n� n̄.

ŌC̄ �

����� ¯

..
¯

C̄
C̄A
.

C̄An�1

����
��

B̄ ĀB̄ � � � Ān�1B̄
��

�����
C̄B̄ ¯C̄AB̄ � � � � � � � � �̄C̄An�1B̄
¯C̄AB̄ ¯C̄A2B̄ ¯

..

C̄AnB̄
. ...

...
¯C̄An�1B̄ ¯C̄AnB̄ � � � ¯C̄A2n�2B̄

����
�

�����������������������������������������������
Markov parameters

. (17.6)

¯
Since (17.3) and (17.4) realize the same transfer function, they must have the same Markov param-
eter (cf. Theorem 17.2), and therefore OC � OC̄ . But since C̄ has only n̄ � n columns, its rank
must be lower than n and therefore

Note. Why? because rankAB �
min�rankA,rankB�.

¯

¯

rankOC̄ � rank C̄ � n̄� n,

which contradicts that fact that rankOC̄ � rankOC � n.

17.3 Similarity of Minimal Realizations
The definition of minimal realization automatically guarantees that all minimal realizations have the
same order, but minimal realizations are even more closely related.

Theorem 17.4. All minimal realizations of a transfer function are algebraically equivalent. �

The following concept is needed to prove Theorem 17.4.

Definition 17.2 (Pseudoinverse). Given a full column rank matrixM,M�M is nonsingular andM�
�

Notation 3. Left and right in-
verses are often called pseudoin-
verses.

�M�M��1M� is called the left inverse ofM. This matrix has the property that M�M � I. Given a full

MATLAB R� Hint 37. pinv(M)
computes the pseudoinverse of
M. � p. 148

row rank matrix N, NN� is nonsingular and Nr � N��NN���1 is called the right inverse of N. This
matrix has the property that NNr � I. �
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Proof of Theorem 17.4. To prove this theorem, let�
�x���Ax���Bu
y Cx Du

�
¯�̄x���Ax̄���B̄u

y C̄x̄ D̄u
x, x̄ � R

n

be two minimal realizations of the same transfer function. From Theorem 17.3 we know that these
two realizations are controllable and observable. Moreover, since the two realizations must have the
same Markov parameters, we must have

OC � ŌC̄ , (17.7)

¯

¯ ¯

where C and O are the controllability and observability matrices of the first system, whereas C̄ and
O are the controllability and observability matrices of the second one (cf. proof of Theorem 17.3).

From the controllability of the first system, we conclude that C is full row rank, and therefore we
can define

T � C̄ C
r � C̄ C

��CC
���1.

To verify that this matrix is nonsingular, we compute

O
�
OT � � O

�
OC̄C

��O
�
O��1 CC

���1 � �O �
O��1O �

OCC
��CC

���1 � I,

where we used (17.7). This shows that T�1 � ¯O�O , and therefore T is invertible. We show next
that this matrix T provides a similarity transformation between the two realizations.

Right-multiplying (17.7) by C r
� C ��C C ���1, we conclude that

O � ŌT �

��� C
CA
...

��
�

�

��
�

¯
C̄
C̄A
...

��
�
T, (17.8)

and therefore

C � C̄T. (17.9)

¯¯
From the observability of the second system, we conclude that Ō is full column rank, and therefore
we can left-multiply (17.8) by Ō�

� �O �O��1 ¯

¯ ¯ ¯
O �, which yields

T � O
�
O � � ¯O �O��1

O
�
O.

Left-multiplying (17.7) by Ō�, we conclude that

TC � C̄ � T
�
B AB � � ��� �

B̄ ĀB̄ � � �� ,
and therefore

TB� B̄. (17.10)

On the other hand, since the two realizations have the same Markov parameters, we also have

OAC � ¯ ¯OAC̄ .

Left-multiplying this equation by Ō� and right-multiplying by C r, we conclude that

TA� ĀT � TAT�1 � Ā. (17.11)

This concludes the proof, since (17.9), (17.10), and (17.11) confirm that T provides a similarity
transformation between the two realizations.
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17.4 Order of a Minimal SISO Realization
Any proper SISO rational function ĝ�s� can be written as Notation. A polynomial is monic

if its highest order coefficient is
equal to 1.

Notation. Two polynomial are
coprime if they have no common
roots.

ĝ�s� � n�s�
d�s� , (17.12)

where d�s� is a monic polynomial and n�s� and d�s� are coprime. In this case, the right-hand side
of (17.12) is called a coprime fraction, d�s� is called the pole (or characteristic polynomial) of ĝ�s�,
and the degree of d�s� is called the degree of the transfer function ĝ�s�. The roots of d�s� are called
the poles of the transfer function, and the roots of n�s� are called the zeros of the transfer function.
Theorem 17.5. A SISO realization

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u,y � R, (LTI)

of ĝ�s� is minimal if and only if its order n is equal to the degree of ĝ�s�. In this case, the pole
polynomial d�s� of ĝ�s� is equal to the characteristic polynomial of A; i.e., d�s� � det�sI�A�. �

Proof of Theorem 17.5. The direct gain D of a realization does not affect its minimality, so we may
ignore it in this proof. We thus take ĝ�s� to be strictly proper.
To prove this theorem, it suffices to show that if ĝ�s� can be written as the following coprime fraction

ĝ�s� � n�s�
d�s� � β1sn�1�β2sn�2�� � ��βn�1s�βn

sn�α1sn�1�α2sn�2�� � ��αn�1s�αn
,

then it has a realization of order n that is both controllable and observable. Minimality then results
from Theorem 17.3. To proceed, consider then the realization in the controllable canonical form
derived in Exercise 4.4:

A�

����
�
�α1 �α2 � � � � � � � � ��αn�1 �αn
1 0 0 0
0 1 � � � 0 0

.

.. ...
. . .

...
...

0 0 � � � 1 0

�����
,

B�

����
�
..

1
0
.

0
0

�����
,

C � �
β1 β2 � � � βn�1 βn

�
.

(17.13)

We have seen in Exercise 12.3 that this realization is controllable. We show that it is observable
using the eigenvector test. Let x� 0 be an eigenvector A; i.e.,

Ax� λx �
�
��n

i�1αixi � λx1
xi � λxi�1, i � �1,2, . . . ,n�.

Therefore �
��n

i�1αiλn�ixn � λnxn
xi � λn�ixn, � i � �1, . . . ,n� �

�
d�λ �xn � 0
xi � λn�ixn, � i � �1, . . . ,n�

Since x� 0, we must have xn � 0, and therefore λ is a root of d�s�. On the other hand,

Cx�
n�

i�1
βixi �

n�
i�1

βiλn�ixn � n�λ �xn.

Since d�s� and n�s� are coprime and λ is a root of d�s�, it cannot be a root of n�s�. From this and
the fact that xn � 0, we conclude thatCx� 0, and therefore the pair �A,C� must be observable.
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To conclude the proof, we need to show that the pole polynomial d�s� is equal to the characteristic
polynomial of the Amatrix of any minimal realization. It is straightforward to show that this is so for
the matrix A in the minimal realization (17.13). Moreover, since by Theorem 17.4 all minimal real-
izations must be algebraically equivalent, it then follows that all minimal realizations have matrices
A with the same characteristic polynomial.

This result has the following immediate consequence.

Corollary 17.1. Assuming that the SISO realization (LTI) of ĝ�s� is minimal, the transfer functionNote. We shall see in Lecture 19
that this result also holds for
MIMO systems. (See Corol-
lary 19.1)

ĝ�s� is BIBO stable if and only if the realization (LTI) is (internally) asymptotically stable. �

17.5 MATLAB R� Commands
MATLAB R� Hint 36 (minreal). The command msys=minreal(sys) computes a minimal real-
ization of the system sys, which can either be in state-space or transfer function form. When sys
is in state-space form, msys is a state-space system from which all uncontrollable and unobservable
modes were removed. When sys is in transfer function form, msys is a transfer function fromwhich
all common poles and zeros have been canceled.

The command msys=minreal(sys,tol) further specifies the tolerance tol used for zero-pole
cancellation and for uncontrollable and unobservable mode elimination.

The command [msys,T]=minreal(sys) also returns an orthogonal matrix T (i.e., T�1 � T�) such
that �TAT�,TB,CT�� is a Kalman decomposition of �A,B,C�. �

MATLAB R� Hint 37 (pinv). The function pinv(M) computes the pseudoinverse of the matrix
M. �

17.6 Exercises
17.1 (Minimal Realization). Consider the LTI system with realization

A�
��1 0
0 �1

�
, B�

�
1 0
0 1

�
, C � ��1 1�

,

2
D�

�
1

�
.

Is this realization minimal? If not, find a minimal realization with the same transfer function. �

17.2 (Repeated eigenvalues). Consider the SISO LTI system

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u,y � R.

(a) Assume that A is a diagonal matrix and B, C are column/row vectors with entries bi and ci,
respectively. Write the controllability and observability matrices for this system.

(b) Show that if A is a diagonal matrix with repeated eigenvalues, then the pair �A,B� cannot be
controllable and the pair �A,C� cannot be observable.

(c) Can you find a SISO minimal realization for which the matrix A is diagonalizable with repeated
eigenvalues? Justify your answer.

(d) Can you find a SISO minimal realization for which the matrix A is not diagonalizable with
repeated eigenvalues? Justify your answer.

Hint: An example suffices to justify the answer “yes” in (c) or (d). �
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Lecture 18

Smith-McMillan Form

Contents
This lecture introduces the concepts of poles and zeros for MIMO transfer functions, which will be
used later in multiple contexts (minimal realizations, fundamental limitations in LQR/LQG control,
signal tracking, etc.)

1. Smith-McMillan form of a transfer matrix
2. McMillan degree, poles, and zeros of a transfer matrix
3. Transmission-blocking property

18.1 Informal Definition of Poles and Zeros
Consider a SISO transfer function Note. For discrete time transfer

functions, the Laplace transform
variable s should be replaced by
the Z -transform variable z.ĝ�s� � n���s���

d s
. (18.1)

The following concepts were introduced in Lecture 17.

1. The poles of ĝ�s� are the values of s �

defined due to a division by zero). C for which ĝ�s� becomes unbounded (technically not

2. The zeros of ĝ�s� are the values of s �

C for which ĝ�s� � 0.

When the polynomials n�s� and d�s� in (18.1) are coprime, then the zeros are simply the roots of Notation. Two polynomial are
coprime if they have no common
roots.

n�s� and the poles are the roots of d�s�. We recall that the number of roots of n�s� (i.e., the number
of poles) is equal to the dimension of a minimal realization for ĝ�s�.

be as follows. The most useful generalizations of these concepts for a MIMO transfer function Ĝ�

s� turn out to

1. The poles of Ĝ�s� are the values of s �

C for which at least one of the entries of Ĝ�s� becomesunbounded.

2. The rank of Ĝ�s� takes the same value for almost all values of s � C, but for some s � C, the

rank of Ĝ�s� drops. These values are called the transmission zeros of Ĝ�s�.
The above is is just an informal definition, because it is not clear how to compute the rank of Ĝ�s�
at the locations of the poles of Ĝ�s�. Therefore this definition does not permit us to determine
whether a pole is also a transmission zero. It turns out that in MIMO systems one can have
transmission zeros “on top” of poles. We shall return to this later.
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The above definition for the poles also does not provide us a way to determine the multiplicity of
poles or zeros. It turns out that also in the MIMO case the total number of poles (with the appropriate
multiplicities) gives us the dimension of a minimal realization. In the remainder of this lecture, we
introduce the formal definitions of poles and zero, which use the so-called Smith-McMillan form of
a transfer function.

18.2 Polynomial Matrices: Smith Form
A real polynomial matrix is a matrix-valued function whose entries are polynomials with real coef-
ficients. We denote by R�s�m�k the set of m� k real polynomial matrices on the variable s.

Given a real polynomial matrix

P�s� �

�����
p11���s��� p12���s��� � � � � � � � � �p1k���s���
p21 s p22 s p2k s

.

.. ...
. . .

...
pm1�s� pm2�s� � � � pmk�s�

����� �
R�s�m�k,

the minors of P�s� of order i are the determinants of all square i� i submatrices of P�s�.Note. For scalar polynomials r �
1, D0�s� � 1, and D1�s� is equal
to the polynomial itself, scaled to
be monic.

The determinantal divisors of P�s� are polynomials

Notation. The monic greatest
common divisor (gcd) of a fam-
ily of polynomial is the monic
polynomial of greatest order that
divides all the polynomials in the
family. Informally, the gcd set of
roots is the intersection of the sets
of roots of all polynomials (sets
taken with repetitions).

�Di�s� : 0� i� r�,

where D0�s� � 1 and Di�s� is the monic greatest common divisor of all nonzero minors of P�s� of
order i. The integer r is called the rank of P�s� and is the maximum order of a nonzero minor of
P�s�. All minors of order larger than r are equal to zero, and therefore there are no divisors of order
larger than r.

The determinantal divisors provide insight into the linear independence of the rows and columns
of P�s�, as s ranges over C.
Lemma 18.1 (Determinantal divisors). For every s0 � C,Note. In words: the rank of P�s�

drops precisely at the roots of
Dr�s�.

rankP�s0�
�
� r s0 is not a root of Dr�s�
� r s0 is a root of Dr�s�.

�

independent rows or columns for some s0 �
Proof of Lemma 18.1. First note that the rank of P�s0� can never exceed r, because if it had r� 1

C, one could use these to construct a nonsingular �r�
1���r�1� submatrix. In this case, P�s� would have a determinantal divisor of order r�1, which
would be nonzero at s0.

At every s0 �C that is not a root ofDr�s�, one can find an r�r submatrix of P�s0� that is nonsingular
and therefore has linearly independent rows and columns. However, at the roots of Dr�s�, all r� r
submatrices are singular and therefore have linearly independent rows and columns.

Example 18.1 (Smith form). The real polynomial matrix

P�s��

�����
s�s�2� 0
0 �s�1�2

�s�1��s�2� s�1
0 s�s�1�

����� (18.2)

has the following minors, determinantal divisors, and invariant factors:
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Order Minors Determinantal divisor Invariant factors
i� 0 None D0�s� � 1
i� 1 s�s�2�,�s�1�2 D1�s� � 1 ε1�s� � 1

�s�1��s�2�,s�1,s�s�1�
i� 2 s�s�2��s�1�2rows 1,2, D2�s� � �s�1��s�2� ε2�s� � �s�1��s�2�
(r � 2) s�s�2��s�1�rows 1,3,

s2�s�2��s�1�rows 1,4,
��s�1�3�s�2�rows 2,3,
0rows 2,4,s�s�1�2�s�2�rows 3,4

The determinantal divisors allow us to define the so-called Smith form of a polynomial matrix.

Definition 18.1 (Smith form). The Smith form of a real polynomial matrix P�s� � R�s�m�k is the Note. For scalar polynomials
(m � k � 1), the Smith form is
the polynomial itself, scaled to be
monic.

Note. Each Di�1�s� divides
Di�s�, and therefore all the εi�s�
are actually polynomials (not
rational functions). Moreover,
each εi�1�s� divides εi�s�.
Note. The product of the invariant
factors equals the highest-order
determinantal divisor: Dr�s� �
ε1�s�ε2�s�� � �εr�s�.

diagonal real polynomial matrix defined by

SP�s��

����

���
�

ε1�s� 0 � � � � � � � � �0 0 � � � � � � � � �0
0 ε2�s� 0 0 0

.

.. ...
. . .

...
...

...
0 0 � � � � � � � � �εr�s� 0 � � � � � � � � �0
0 0 0 0 0

.

.. ...
. . .

...
...

...
0 0 � � � 0 0 � � � 0

����
�
���� R�s�m�k,

where r� rankP�s� and

εi�s�� Di�s�
Di�1�s� , i � �1,2, . . . ,r�,

which are called the invariant factors of P�s�. �

Example 18.2 (Smith form, continued). The Smith form of the real polynomial matrix (18.2) in
Example 18.1 is given by

SP�s� �

�����
1

0
0 �s�1��s�2�
0 0
0 0

����
� .

�

The importance of the Smith form stems from the fact that a matrix can always be transformed
into its Smith form by left- and right-multiplication by very special polynomial matrices. A square
real polynomial matrixU�s� is called unimodular if its inverse is also a polynomial matrix. A matrix
is unimodular if and only if its determinant is a nonzero constant (independent of s). Note. Why? Recall the adjoint

formula for matrix inversion used
in Section 4.3.1.Example 18.3 (Unimodular matrices). The first matrix is unimodular, but not the second

U�s� �
�
1 s
0 2

�
, U�1�s� � 1

detU�s�
�
2 �s
0 1

�� �1 � s

2
0 1

2

�
P�s� �

�
1 1
0 s

�
, P�1�s� � 1

detP�s�
�
s �1
0 1

�� �1 � 1

s
0 1

s

�
�

Theorem 18.1 (Smith form factorization). For every real polynomial matrix P�s� � R�s�m�k with Note. The matrices L�s� and R�s�
can be found using a procedure
similar to Gauss elimination [13,
Section 2.2].

Smith form SP�s�, there exist unimodular real polynomial matrices L�s� � R�s�m�m, R�s� � R�s�k�k

such that

P�s� � L�s�SP�s�R�s�. �
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18.3 Rational Matrices: Smith-McMillan Form
A real rational matrix is a matrix-valued function whose entries are ratios of polynomials with realAttention! Note the curved

brackets �s�, as opposed to square
brackets �s�.

coefficients. We denote by R�s�m�k the set of m� k real rational matrices on the variable s.

Any real rational matrix G�s� � R�s�m�k can be written as
Notation. The monic least com-
mon denominator (lcd) of a family
of polynomials is the monic poly-
nomial of smallest order that is di-
vided by all the polynomials in the
family.

G�s� � 1
d�s�N�s�, (18.3)

where d�s� is the monic least common denominator of all entries of G�s� and N�s� � R�s�m�k is a
polynomial matrix.

Definition 18.2 (Smith-McMillan form). The Smith-McMillan form of the real rational matrix
G�s� � R�s�m�k in (18.3) is the diagonal real rational matrix defined byNote. Each ε i�1�s� divides ε i�s�,

and therefore each ψ i�s� divides
ψ i�1�s�.

Attention! The fractions η i�s�
ψ i�s�

in the diagonal of the Smith-
McMillan form are not necessar-
ily proper. SMG�s�� 1

d�s�SN�s� �

���                                                                                                    � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

�

���
�

η1�s�
ψ1�s� 0 � � � 0 0 � � � 0

0 η2�s�ψ2�s� � � � 0 0 � � � 0
...

...
. . .

...
...

...
0 0 � � � ηr�s�

ψr�s� 0 � � � � � � � � �0
0 0 � � � 0 0 0
...

...
. . .

...
...

...
0 0 � � � 0 0 � � � 0

����

���
�

� R�s�m�k, (18.4)

where SN�s� � R�s�m�k denotes the Smith form of N�s�. All the common factors in the entries ofNote. For scalar rational matrices
(m� k� 1), the Smith-McMillan
form is the rational matrix it-
self, with common factors can-
celed and scaled to have monic
numerator and denominator.

(18.4) should be canceled, which means that the pairs of (monic) polynomials �η i�s�,ψ i�s�� are all
coprime. �

From the Smith form factorization in Theorem 18.1, we know that there exists unimodular real
polynomial matrices L�s� � R�s�m�m, R�s� � R�s�k�k such that

N�s� � L�s�SN�s�R�s�,
from which we conclude the following.

Theorem 18.2 (Smith-McMillan factorization). For every real rational matrix G�s� �R�s�m�k with
Smith-McMillan form SMG�s�, there exist unimodular real polynomial matrices L�s� � R�s�m�m,
R�s� � R�s�k�k such that

G�s� � 1
d�s�N�s� � L�s�SMG�s�R�s�. �

18.4 McMillan Degree, Poles, and Zeros
The Smith-McMillan form is especially useful to define poles and zeros for rational matrices.

Definition 18.3 (Poles and zeros). For a real rational matrix G�s� � R�s�m�k with Smith-McMillan
form (18.4), the polynomial

pG�s�� ψ1�s�ψ2�s� � � �ψr�s�
is called the pole (or characteristic) polynomial of G�s�, its degree is called theMcMillan degree of

MATLAB R� Hint 38. eig and
tzero do not necessarily com-
pute the poles and transmission
zeros of a real rational ma-
trix. � p. 158
(See also MATLAB R� Hint 40,
p. 169)

G�s�, and its roots are called the poles of G�s�. The polynomial
zG�s�� η1�s�η2�s� � � �ηr�s�

is called the zero polynomial of G�s�, and its roots are called the transmission zeros of G�s�. �
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Example 18.4 (Smith-McMillan form). Consider the real rational matrix

G�s��

�����
s���2
s 1 0
0 s�1

s
s�2
s

1
s

0 1

����
�

� 1
s�s�1�N�s�, N�s��

�����
s�s�2� 0
0 �s�1�2

�s�1��s�2� s�1
0 s�s�1�

����
�
.

Since we saw in Example 18.2 that the Smith form of N�s� is given by

SN�s� �

�����
1

0
0 �s�1��s�2�
0 0
0 0

����
�
,

we conclude that the Smith-McMillan form of G�s� is given by

SMG�s� � 1
d�s�SN�s� �

�����
1

s�s�1� 0
0 s�2

s
0 0
0 0

����
�
.

This rational matrix has zero and pole polynomials

zG�s� � s�2, pG�s� � s2�s�1�,
which means that its McMillan degree is 3, and it has a single transmission zero ��2� and three
poles �0,0,�1�. �

Attention! For scalar rational functions

g�s� � k
n���s���
d s

,

where n�s� and d�s� are coprime monic polynomials, the Smith-McMillan form is simply n���s���
d s , and Note. This emphasizes a rather

trivial fact: a scalar rational func-
tion cannot have a zero and a pole
at the same location. However,
we shall see shortly that this is not
true for matrix rational functions.

the zero and characteristic polynomials are zg�s�� n�s� and pg�s�� d�s�, respectively. �

Attention! For square matrices G�s� � R�s�m�m with r � m, one can get some insight into the
zero and pole polynomials without computing the Smith-McMillan form because, due to the Smith-
McMillan factorization in Theorem 18.2, we have

detG�s� � detL�s�SMG�s�R�s� � kdetSMG�s� � k
zG�s�
pG�s� , (18.5)

where k� detL�s�detR�s�.
Unfortunately, when the zero and characteristic polynomials have common roots, the corresponding
poles and zeros do not appear in detG�s�. E.g., the rational function (which is already in the Smith-
McMillan form) Attention! This example shows

that matrix rational functions can
have a pole and a zero at the same
location (“without cancellation”).G�s� �

� 1
s�s�2� 0
0 s�2

s

�
has a zero at �2� and poles at �0,0,2� and McMillan degree 3, but

detG�s� � 1
s2
,

which indicates a double pole at the origin, but “hides” the (unstable) pole and zero at 2.

However, even in this case we may use (18.5) to compute the transmission zeros if we have a way to
directly compute the pole polynomial pG�s�. We shall see in Lecture 19 that this is possible if G�s�
is a transfer matrix for which we have a minimal realization. �
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18.5 Transmission-Blocking Property of Transmission Zeros

Consider a continuous-time real rational transfer matrix

Ĝ�s��C�sI�A��1B�D � R�s�m�k,

with minimal realization

�x� Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m, (CLTI)

ˆ

and let z0 be a transmission zero of Ĝ�s� that is not simultaneously a pole. The rank of its Smith-Note. Recall that unimodal matri-
ces are nonsingular for every s �
C.

McMillan form SMG�s� drops for s� z0, and since there are unimodal polynomial matrices L�s� and
R�s� for which

ˆ ˆG�z0� � L�z0�SMG�z0�R�z0�

(cf. Smith-McMillan factorization in Theorem 18.2), we conclude that the rank of Ĝ�s� also drops
for s � z0. This indicates that the columns of Ĝ�z0� must be linearly dependent. Therefore there
exists a nonzero vector u0 �

ˆ

C
k for which

G�z0�u0 � 0.

Consider the following input and initial condition for the system (CLTI):Note. We shall see in Lecture 19
(Theorem 19.3) that, for minimal
realizations, if z0 is not a pole,
then it cannot be an eigenvalue of
A, and z0I�A is invertible. This
guarantees that the initial condi-
tion proposed in (18.6) is well de-
fined.

u�t� � ez0t u0, �t � 0, x�0� � x0� �z0I�A��1Bu0. (18.6)

By direct substitution, one can verify that

x�t� � ez0t x0 (18.7)

is a solution to (CLTI) (cf. Exercise 18.2). Moreover, using (18.6) and (18.7), we obtain

y�t� �Cx�t��Du�t� � ez0t
�
C�z0I�A��1Bu0�Du0

�
� ez0t Ĝ�z0�u0 � 0, �t � 0.

This reasoning allows us to state the following property of transmission zeros.

Property P18.1 (Transmission blocking). For every transmission zero z0 of the continuous-timeNote. The discrete-time version
of this property will be discussed
in Exercise 18.3.

transfer matrix Ĝ�s� that is not a pole, there exists a nonzero input of the form u�t� � ez0t u0, �t � 0
and appropriate initial conditions for which the output is identically zero. �

Attention! For “fat” transfer matrices corresponding to systems with more inputs that outputs (over-
actuated), for every s0 � C it is always possible to find a vector u0 � C

k for which Ĝ�s0�u0 � 0. For
such systems, the blocking property of transmission zeros is somewhat trivial. �

18.6 MATLAB R� Commands

MATLAB R� Hint 38 (eig and tzero). Contrary to what is advertised, the functions eig(tf) and
tzero(tf) do not necessarily compute the poles and transmission zeros of the transfer function tf.
This occurs when the MATLAB representation of the transfer function contains “uncanceled” poles
and zeros (which may be quite difficult to spot by inspection in the MIMO case). We shall see in
MATLAB R� Hint 40 (p. 169) how to make sure that these functions return the correct values. �
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18.7 Exercises
18.1 (Smith-McMillan form). Compute the Smith-McMillan form of

G�s��
�� s

s�1 0
1

s�1
s�1
s2

0 1
s

�� . �

input and initial condition:
18.2 (Solution to exponential input). Show that x�t� � ez0tx0 is a solution to (CLTI) for the following

u�t� � ez0t u0, �t � 0, x�0� � x0� �z0I�A��1Bu0. �

18.3 (Transmission-blocking property in discrete time). Derive the Transmission-blocking prop-
erty P18.1 for a discrete-time LTI system, which can be stated as follows. Consider a discrete-time
real rational transfer matrix

Ĝ�z��C�zI�A��1B�D � R�z�m�k,

with minimal realization

x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m, (DLTI)

and let z0 be a transmission zero of Ĝ�z� that is not simultaneously a pole. There exists a nonzero
input of the form u�t� � zt0u0, �t � 0 and appropriate initial conditions for which the output is
identically zero. �
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Lecture 19

State-Space Zeros, Minimality, and
System Inverses

Contents
This lecture explores the connection between the poles and zeros of a transfer function (as defined
in Lecture 18) and properties of its state-space realization. It also introduces the notion of system
inverse and its connection to poles and zeros.

1. Poles of transfer functions versus eigenvalues of state-space realizations
2. Transmission zeros of transfer functions versus invariant zeros of state-space realizations
3. Order of minimal realizations for MIMO transfer matrices
4. System inverse, stability of inverse
5. Feedback control of stable systems with stable inverses

19.1 Poles of Transfer Functions versus Eigenvalues of State-
Space Realizations

Consider the LTI system Notation. In most of this lec-
ture, we jointly present the re-
sults for continuous and discrete
time and use a slash � to sepa-
rate the two cases. In discrete
time, the Laplace transform vari-
able s should be replaced by the
Z -transform variable z.

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m, (LTI)

with a real rational transfer matrix

Ĝ�s��C�sI�A��1B�D � R�s�m�k.

The following result has already been presented for SISO systems, but with an appropriate definition
for poles, we can now state it for MIMO systems.

Theorem 19.1. The following inclusion holds:
�
poles of Ĝ�s��� �

eigenvalues of A
�
. � Attention! The matrix A may

have more eigenvalues than the
poles of Ĝ�s�.

Proof of Theorem 19.1. To compute the Smith-McMillan form of Ĝ�s�, we write
Note. We recall that

M
�1 � 1detM �adjM�� ,

adjM� �cofi j M�,
where cofi j M denotes the i jth co-
factor ofM, i.e, the determinant of
the M submatrix obtained by re-
moving row i and column j multi-
plied by ��1�i� j .

Ĝ�s� � 1
Δ�s�

�
C�adj�sI�A���B�Δ�s�D

�
� 1

d�s�N�s�,

where Δ�s� � det�sI �A� is the characteristic polynomial of A, d�s� is the monic least common
denominator of all entries of Ĝ�s�, and N�s� � R�s�m�k is a polynomial matrix. Since C�adj�sI�
A���B�Δ�s�D is a polynomial matrix, d�s�must be equal to Δ�s�, aside from possible cancellations.
Therefore �

roots of d�s��� �
roots of Δ�s��� �

eigenvalues of A
�
.

161



162 João P. Hespanha

The Smith-McMillan form of Ĝ�s� is given by

SMG�s�� 1
d�s�SN�s� �

���                                                                                                    

�

���
�

η1���s���
ψ1 s 0 � � � 0 0 � � � 0

0 η2���sss���ψ2 � � � 0

..

0 � � � 0
. ...

. . .
...

...
...

0 0 � � � ηr���s���
ψr s 0 � � � � � � � � �0

0 0 � � � 0 0 0

.

.. ...
. . .

...
...

...
0 0 � � � 0 0 � � � 0

����

���
�

� R�s�m�k,

where SN�s� � R�s�m�k denotes the Smith form of N�s�, and the ψi�s� are obtained by dividing the
invariant factors εi�s� of N�s� by d�s�. Therefore all the roots of the ψi�s�must also be roots of d�s�.
We thus conclude that�

ˆpoles of Ĝ�s��� �
roots of pG�s�

�� �
all roots of the ψi�s�

�
� �

roots of d�s��� �
eigenvalues of A

�
.

19.2 Transmission Zeros of Transfer Functions versus Invariant
Zeros of State-Space Realizations

Consider the continuous-time LTI system

�x� Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m. (CLTI)

Taking the Laplace transform of each side of the two equations in (CLTI), we obtainNote. We recall that for unilateral
Laplace transforms L � �x�t�� �
sx̂�s�� x�0� (cf. Section 3.4). ˆsx̂�s�� x�0� � Ax̂�s��Bu�s�, ˆ ˆy�s� �Cx̂�s��Du�s�,

which can be rewritten as

ˆ

P�s���x̂�s�
ˆu�s�

�
�
��x�0�

y�s�
�
,

where the real polynomial matrix

P�s��
�
sI�A B
�C

D

� �
R�s��n�m���n�k�

is called the Rosenbrock’s system matrix. This matrix is used to introduce a notion of zeros for
state-space realizations.

Definition 19.1 (Invariant zeros). The invariant zero polynomial of the state-space system (CLTI) isNote. The invariant zero polyno-
mial is precisely the rth-order de-
terminantal divisor Dr�s� of P�s�.

the monic greatest common divisor zP�s� of all nonzero minors of order r� rankP�s�. The roots of
zP�s� are called the invariant zeros of the state-space system (CLTI). �

MATLAB R� Hint 39.
tzero(sys) computes the
invariant zeros of the state-
space system sys, which are
not necessarily the transmission
zeros. � p. 169

Example 19.1 (Invariant zeros). Consider the continuous-time LTI system

�x�
��0 ���1 1
1 2 1
0 1 �1

��x�
��1 0
1 1
1 2

��u, y� �
0 1 0

�
x.

Its Rosenbrock’s system matrix is given by

P�s� �

�����
s

1 ���1 1 0
�1 s�2 1 1 1
0 ���1 s�1 1 2
0 1 0 0 0

����
�
,

forum.konkur.in
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whose 4th-order minors are

�s�1��s�2�,�����������������
“minus” column 5

�s�1��s�2�,�����������������
“minus” column 4

��s�2�,���������
‘‘minus” column 3

0,�������
“minus” column 2

�s�2�;�������
‘‘minus” column 1

therefore, the invariant zero polynomial is zP�s� � s� 2, which means that the state-space system
has a single invariant zero at s��2. �

Invariant zeros also have a blocking property. If z0 is an invariant zero, then the rank of P�s�
drops for s � z0 (cf. Lemma 18.1), which indicates that the columns of P�z0� must be linearly
dependent. Therefore there exists a nonzero vector

�
x�0 �u�0

�� �
C
n�k for which Notation. The vector

�
x�0 �

u�0
�� �

zero direction.
C
n�k is called the invariant

Note. If z0 is not an eigenvalue of
A, then u0 must be nonzero. Why?

P�z0�
�
x0

�u0

�
� 0.

Consider the input and initial condition for the system (CLTI)u�t� � ez0t u0, �t � 0, x�0� � x0.

By direct substitution, we conclude that

is a solution to (CLTI) (cf. Exercise 18.2). Moreover,

x�t� � ez0t x0

y�t� �Cx�t��Du�t� � ez0t
�
Cx0�Du0

�� 0, �t � 0.

This reasoning allow us to state the following property of invariant zeros.

Property P19.1 (Transmission blocking). For every invariant zero z0 of the state-space system
(CLTI) that is not an eigenvalue of A, there exists a nonzero input of the form u�t� � ez0tu0, �t � 0
and appropriate initial conditions for which the output is identically zero. �

In view of this property and the previously observed blocking property of the transmission zeros Attention! Transmission zeros
are defined in the frequency
domain for transfer matrices,
whereas invariant zeros are
defined in the time domain for
state-space realizations.

of a transfer function, it is not surprising that there is a strong connection between transmission and
invariant zeros. Consider the LTI system

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m, (LTI)

ˆ

with a real rational transfer matrix

G�s��C�sI�A��1B�D � R�s�m�k.

Theorem 19.2. The following inclusion holds:
�
transmission zeros of Ĝ�s�� � Attention! The system (LTI) may

have more invariant zeros than the
transmission zeros of Ĝ�s�.

�
invariant zeros of (LTI)

�
. �

Proof of Theorem 19.2. The Rosenbrock’s system matrix can be factored as

P�s��
�
sI�A B
�C

D

�
�n�m���n�k�

� �
sI�A 0n���m
�C

Im m

�
�n�m���n�m�

�
In�n �sI�A��1B
0m�n ˆ

G�s�
�
�n�m���n�k�

.

Therefore, if z0 is a transmission zero of Ĝ�s�, the rank of Ĝ�s� drops at s� z0. In this case, the rank
of P�s� also drops, making z0 an invariant zero of (LTI).
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19.3 Order of Minimal Realizations
Consider the LTI system:

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m (LTI)

with a real rational transfer matrix

Ĝ�s��C�sI�A��1B�D � R�s�m�k.

We just saw that �
poles of Ĝ���s���� � �������

eigenvalues of A
�

(19.1a)�
transmission zeros of Ĝ s invariant zeros of (LTI)

�
. (19.1b)

It turns out that these inclusions actually hold with equality for minimal realizations.

Theorem 19.3. The realization (LTI) is minimal if and only if n is equal to the McMillan degree ofNote. Recall that the McMillan
degree is the degree of the
pole polynomial and therefore the
number of poles of Ĝ�s�.

Ĝ�s�. In this case,

ˆpG�s� � det�sI�A�, ˆzG�s� � zP�s�, (19.2)

ˆ ˆwhere pG�s� and zG�s� denote the pole and zero polynomial of G�s�, respectively, and zP�s� denotes
MATLAB R� Hint 40.
Theorem 19.3 justifies com-
puting the transmission zeros
and the poles of the transfer
function of the system sys

using tzero(minreal(sys))

and eig(minreal(sys)),
respectively. � p. 169

the invariant polynomial of (LTI). Therefore the inclusions in (19.1) hold with equality. �

The proof of this result can be found in [1, pp. 301–305, 397–398] and can be constructed (rather
tediously) by computing a minimal realization directly from the Smith-McMillan form.

This result has the following immediate consequence.

BIBO stable if and only if the realization (LTI) is (internally) asymptotically stable. �

Corollary 19.1. Assuming that the realization (LTI) of Ĝ�s� is minimal, the transfer matrix Ĝ�s� is

Proof of Corollary 19.1. We saw in Lecture 8 that asymptotic stability of (LTI) is equivalent to all
eigenvalues of A having strictly negative real parts. In addition, we saw in Lecture 9 that BIBO
stability of Ĝ�s� is equivalent to the poles of Ĝ�s� having strictly negative real parts. Since forNote. In Lecture 9 we did not yet

have a formal definition of pole,
but that was not a problem since
all we needed was the informal
definition according to which the
poles are the value of s � C for
which some entries of Ĝ�s� be-
come unbounded (note that pole
multiplicity is irrelevant for BIBO
stability).

that these two notions are equivalent.
minimal realization the set of eigenvalues of A is the same as the set of poles of Ĝ�s�, we conclude

Example 19.2. Consider the continuous-time LTI system

�x�
��0 ���1 1
1 2 1
0 1 �1

��x�
��1 0
1 1
1 2

��u, y� �
0 1 0

�
x. (19.3)

For this state-space realization, the eigenvalues of A are at �0,�1,�2�, and we have a single invari-
ant zero at s��2 (cf. Example 19.1).

The transfer function of (19.3) is given by

Ĝ�s� � �
0 1 0

��� s
1 ���1

�1 s�2 1
0 �1 s�1

���1��1 0
1 1
1 2

��
� �

1
s

1
s �� 1s

�
1 1

�
.

Since the Smith form of
�
1 1

�
is simply

�
1 0

�
, the Smith-McMillan form of Ĝ�s� is given by

ˆSMG�s� �
� 1
s 0

�
.
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easy to find in MIMO systems.Therefore this system has no transmission zeros and a single pole at s� 0. For this system, we ob- Attention! Cancellations are not
Note that the eigenvalue of �1
does not appear in a minimal
realization, but does not appear
to “cancel” with any invariant
zero.

serve strict inclusions in (19.1), which can be explained when we perform a Kalman decomposition
of (19.3). This decomposition results in

�̄x�
��0 0 ��

2
0 �1 ��

3
0 0 �2

�� x̄�
���

3
�
3

0 ��
2

0 0
��u, y�

��
3
3 0

�
6
3

�
x,

which shows an uncontrollable (but observable) mode at s � �2 and an unobservable (but control-
lable) mode at s��1. �

Attention! We saw in Section 18.4 that for square transfer matrices Ĝ�s� � R�s�m�m,

ˆ ˆdetG�s� � k
zG�s�
ˆpG�s�

ˆ
for some constant k. If we have available a minimal realization of Ĝ�s�, then it is straightforward
to compute pG�s� using (19.2). This allows us to compute the zero polynomial of Ĝ�s� as

ˆ

zG�s� �1

ˆ
k
det�sI�A�detG�s�.

ˆThe constant k is completely specified by the requirement that zG�s� be monic. �

19.4 System Inverse
Consider the LTI system

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u � R

k, y � R
m. (LTI)

We say that the system Attention! Note the “flipped”
sizes of the input and output
signals.�̄x�x̄� � ¯ ¯Ax̄� B̄u, ȳ� ¯C̄x̄� D̄u, x̄ � R

n̄, ū � R
m, ȳ � R

k (19.4)

�

is an inverse for (LTI) if in both cascade connections in Figure 19.1 the cascade’s output exactly
replicates the cascade’s input for zero initial conditions of all systems.

x���Ax���Bu

y Cx Du

�x̄� ¯ ¯

¯ȳ�
Ax̄� B̄u

C̄x̄� D̄u

u ¯y� u ȳ

(a) left-inverse

�x���Ax���Bu

y Cx Du

�x̄� ¯ ¯

¯ȳ�
Ax̄� B̄u

C̄x̄� D̄u

ū ȳ� u y

(b) right-inverse

Figure 19.1. Cascade interconnections.

Since the definition of the system inverse reflects only responses to zero initial conditions, it can
be completely defined in terms of transfer functions. The system (19.4) is an inverse for (LTI) if and
only if Note. The left equality in (19.5)

corresponds to Figure 19.1(a) and
the right to Figure 19.1(b).ˆ̄G�s�Ĝ�s� � I, Ĝ�s� ˆ̄G�s� � I, (19.5)
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where Ĝ�s� and ˆ̄G�s� are the transfer matrices of (LTI) and (19.4), respectively. From the properties
of matrix inverses, we know that (19.5) is possible only if the system is square (m� k) and, in thisNote. When m� k, it may still be

possible for one of the equalities
in (19.5) to hold. In this case, we
say that the system has a left or a
right inverse. These names are in-
spired by the equations in (19.5)
and not by the connections in Fig-
ure 19.1, where the inverses ap-
pear on the other side.

case, either one of the equalities in (19.5) is equivalent to

ˆ̄

lim

G�s� � G�1�s�.

Attention! The definition of inverse guarantees only that the inputs and outputs of the cascadematch
for zero initial conditions. When the initial conditions are nonzero, these are generally not equal.
However, if both the system and its inverse are asymptotically stable, then the effect of initial con-
ditions disappears and we still have asymptotic matching between inputs and outputs; i.e.,

t

�� �u�t�� ȳ�t��� 0

in Figure 19.1(a) andNote. The system (19.4) in Fig-
ure 19.1(b) can be viewed as an
open-loop controller that achieves
perfect (asymptotic) tracking of
the reference signal ū for the pro-
cess (LTI).

¯limt

�� �u�t�� y�t��� 0

in Figure 19.1(b). �

19.5 Existence of an Inverse
Consider the LTI system

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u,y � R

m. (LTI)

Assuming that the matrix D is nonsingular, from the output equation, we conclude that

y�Cx�Du � u��D�1Cx�D�1y

and therefore

¯

�x�x� � �A�BD�1C�x�BD�1y.

This shows that the state-space system

�x�x� � Ax� B̄y, u� C̄x� D̄y, x � R
n, u,y � R

m (19.6)

with

Ā� A�BD�1C, B̄� BD�1, C̄��D�1C, D̄� D�1

takes y as an input and exactly recovers u at its output (keeping the states of both systems equal atNote. Alternatively, for every in-
put y to (19.6), when one feeds
its output u to (LTI) one recovers
y. In fact, one not only recovers
y from u (or vice versa), but the
state of the system and its inverse
follow exactly the same trajectory.

all times), which means that (19.6) is an inverse of (LTI) and vice versa. This leads to the following
result.

Theorem 19.4 (Invertible system). The system (LTI) has an inverse if and only if D is a nonsingular
matrix. Moreover,

MATLAB R� Hint 41. inv(sys)
computes the inverse of the
system sys. � p. 169

Ĝ�s��1 � ˆ̄G�s�,
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where Note. We shall see in Exer-
cise 19.2 that if (LTI) is a mini-
mal realization, then (19.6) is also
minimal.

Ĝ�s��C�sI�A��1B�D, ˆ̄G�s�� C̄�sI� ¯

ˆ

ˆ ˆ ˆ

A��1B̄� D̄. �

Proof of Theorem 19.4. The fact that nonsingularity of D is sufficient for the existence of an inverse
was proved by explicitly constructing the inverse.

We use a contradiction argument to prove necessity. Assume that the system has an inverse with Note. We recall that the transfer
function of an LTI system is al-
ways proper.

(proper) transfer function Ĝ�s��1, but D is singular. In this case, there exists a nonzero vector v for
which Dv� 0. Therefore all entries of

h�s�� Ĝ�s�v �C�sI�A��1Bv
are strictly proper, because of the absence of a direct feed-through term in h�s�. But then, since
G�s��1 is proper, Ĝ�s��1h�s� is also strictly proper. This contradicts the fact that

G�s��1h�s� � G�s��1G�s�v� v,

which means that this matrix is actually equal to a nonzero constant (independent of s) and therefore
not strictly proper.

19.6 Poles and Zeros of an Inverse
Given a real rational matrix Ĝ�s� � R�s�m�m with Smith-McMillan form

SMG�s� �

���                                                                                                    

�

���
�

η1�s�
ψ1�s� 0 � � � 0 0 � � � 0

0 η2�s�
ψ2�s� � � � 0 0 � � � 0

.

.. ...
. . .

...
...

...
0 0 � � � ηr�s�

ψr�s� 0 � � � � � � � � �0
0 0 � � � 0 0 0

.

.. ...
. . .

...
...

...
0 0 � � � 0 0 � � � 0

����

���
�

� R�s�m�m,

we saw in Theorem 18.2 that there exist unimodular real polynomial matrices L�s�,R�s� � R�s�m�m

such that

ˆ ˆ

ˆ

ˆ ˆ

G�s� � L�s�SMG�s�R�s�.

Since L�s� and R�s� are unimodal, Ĝ�s� has an inverse if and only if SMG�s� is invertible, which
happens only when m� r. In this case,

G�s��1 � R�s��1SMG�s��1L�s��1,

where

ˆSMG�s��1 �

����
�

ψ1�s�
η1�s� 0 � � � 0

0

..

ψ2�s�
η2�s� � � � 0

. ...
. . .

...
0 0 � � � ψr�s�

ηr�s�

����� �
R�s�m�m,

is the Smith-McMillan form of Ĝ�s��1 (up to a change in order of the columns and rows). From
this, we obtain the following generalization to MIMO systems of a fact that is trivial for the SISO
case.
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ˆ

Properties (Inverse). Assume that the system with transfer matrix Ĝ�s� is invertible.
P19.2 The poles of the transfer matrix Ĝ�s��1 are the transmission zeros of its inverse Ĝ�s� and

Note 10. P19.2 allows us to com-
pute the transmission zeros of
G�s� by finding the poles of its in-
verse Ĝ�s��1. � p. 168

vice versa.

P19.3 Ĝ�s��1 is BIBO stable if and only if every transmission zero of Ĝ�s� has a strictly negative

Notation. A system whose trans-
mission zeros have strictly nega-
tive real parts is called (strictly)
minimum phase.

real part.

Note 10. We saw in Section 19.5 that when D is nonsingular, the system

�x�x� � Ax�Bu, y�Cx�Du, x � R
n, u,y � R

m (LTI)

is invertible, and its inverse Ĝ�s��1 has the realization

�x�x� � Āx� B̄y, u� C̄x� D̄y, x � R
n, u,y � R

m,

with

Ā� A�BD�1C, B̄� BD�1, C̄��D�1C, D̄� D�1.

Assuming that (LTI) is a minimal realization, then this realization for the inverse is also minimal and,Note. Why is the realization for
the inverse minimal? See Exer-
cise 19.2.

as we saw in Theorem 19.3, the poles of Ĝ�s��1 are simply the eigenvalues of Ā� A�BD�1C.

Note. This also shows that invert-
ible systems with McMillan de-
gree n have exactly n transmission
zeros.

In view of P19.2, this makes it very simple to compute the transmission zeros of (square) invertible
systems. We just have to compute the eigenvalues of Ā� A�BD�1C. �

19.7 Feedback Control of Stable Systems with Stable Inverses
Consider a system with transfer function Ĝ�s� that is a BIBO stable system with a BIBO stable
inverse. Given an arbitrary desired transfer function Q̂�s� from a reference input r to the output y,
one can always design an open-loop controller that results in this transfer function. Such a control
law is shown in Figure 19.2.

Ĝ�s��1Q̂�s� Ĝ�s�
r u y

Figure 19.2. Open-loop control.

The same desired transfer function can also be achieved with a feedback controller with the

¯

Note. To verify that the closed-
loop transfer function from r to y
in Figure 19.3 is indeed equal to
Q̂�s�, note that the signals labeled
a and b cancel each other, since
a� y and b� u� y.

Note. We shall confirm in Exer-
cise 19.3 that the transfer function
of the controller in the dashed box
in Figure 19.3 is indeed given by
(19.7).

transfer function

Ĉ�s� � Ĝ�s��1�I� Q̂�s���1Q̂�s�. (19.7)

This control law is shown in Figure 19.3.

+−

r ū u y
Ĝ�s�

Ĉ�s�

Ĝ�s��1

I

Q̂�s�
a b

Figure 19.3. Feedback controller that achieves a closed-loop transfer function Q̂�s� from r to y.
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One may ask why one would choose the feedback control in Figure 19.3 instead of an open-loop
control as in Figure 19.2. It turns out that, in general, the closed-loop controller is more robust
with respect to modeling uncertainty. In particular, suppose we have a SISO process with transfer
function ĝ�s� and that both ĝ�s� and ĝ�s��1 are stable. To achieve a desired transfer function

q̂�s� � k
s� k

, k � 0

from a reference r to y, we could either use the open-loop controller

ˆ̄ ˆg�s� � g�s��1q̂�s� � ˆ
k

s� k
g�s��1

in Figure 19.2 or the closed-loop controller

ˆ ˆc�s� � g�s��1 q�s�
1�q�s� � k

s
ĝ�s��1

ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

in Figure 19.3. Since both controllers guarantee the same transfer function q̂�s� from r to y and
q̂�0� � 1, we conclude that both result in zero steady-state error for step responses.

Suppose now that the transfer function ĝtrue�s� of the true plant is not exactly the inverse of the
transfer function ĝcont�s� used to construct the controller. For the open-loop design, we obtain the
following transfer functions from r to y,

and for the closed-loop design, we obtain

gtrue�s� ˆ̄g�s� � gtrue�s�gcont�s��1 ˆ�s�,

gtrue�s�c�s�
1�gtrue�s�c�s� � ˆ ˆ

ˆ ˆ
kgtrue�s�gcont�s��1

s� kgtrue�s�gcont�s��1 . (19.8)

The latter transfer function has the interesting property that no matter what is the mismatch between Attention! Note, however, that
the open-loop controller never re-
sults in an unstable system, as
long as the process remains sta-
ble, whereas the closed-loop con-
troller may become unstable if the
poles of (19.8) leave the left-hand
side complex half-plane.

ĝtrue�s� and ĝcont�s�, the transfer function from r to y is still equal to 1 at s � 0, and therefore the
closed-loop design preserves zero steady-state error for step responses.

19.8 MATLAB R� Commands
MATLAB R� Hint 39 (tzero). The function tzero(sys) computes the invariant zeros of the state-
space system sys.

Contrary to what is advertised, it does not necessarily compute the transmission zeros of the system
(cf. MATLAB R� Hint 40, p. 169). You may verify this by trying this function on the system in
Examples 19.1 and 19.2. �

MATLAB R� Hint 40 (eig and tzero). The functions tzero(minreal(sys)) and
eig(minreal(sys)) return the transmission zeros and poles of the transfer function of the
system sys, which can either be in state-space or transfer function form.

Note that one needs to “insert” the function minreal to make sure that one does indeed get only
the poles and transmission zeros, because otherwise one may get extra poles and transmission zeros.
This is especially important for MIMO systems, for which one cannot find these extra poles and
zeros simply by inspection (cf. Example 19.2). �

MATLAB R� Hint 41 (inv). The function inv(sys) computes the inverse of the system sys. When
sys is a state-space model, inv returns a state-space model, and when sys is a transfer function, it
returns a transfer function. �
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19.9 Exercises

ˆ

19.1 (Transmission zeros). Verify that all transmission zeros of the following transfer matrix have a
strictly negative real part and therefore that both Ĝ�s� and Ĝ�s��1 are BIBO stable:

G�s� �
� s���2
s 1

s�1
s���2

0 s 2
s�3

�
. �

¯

¯

¯

19.2 (Controllability, observability, and minimality of the inverse). Consider the LTI system (LTI)
and its inverse (19.6).

(a) Show that �A,B� is controllable if and only if �A, B̄� is controllable.
(b) Show that �A,C� is observable if and only if �A,C̄� is observable.
(c) Show that �A,B,C,D� is minimal if and only if �A, B̄,C̄,D̄� is minimal.
Hint: Use the eigenvector tests. �

19.3. Verify that the transfer function of the controller in the dashed box in Figure 19.3 is indeed
given by (19.7). �
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Lecture 20

Linear Quadratic Regulation (LQR)

Contents
This lecture introduces the most general form of the linear quadratic regulation problem and solves
it using an appropriate feedback invariant.

1. Deterministic linear quadratic regulation (LQR)
2. Solution to the LQR problem— state feedback
3. LQR in MATLAB R�

A simplified version of this material has already appeared in Lecture 10.

20.1 Deterministic Linear Quadratic Regulation (LQR)
Figure 20.1 shows the feedback configuration for the linear quadratic regulation (LQR) problem. Attention! Note the negative

feedback and the absence of a
reference signal in Figure 20.1.

− y�t� � R
m

z�t� � R
�

u�t� � R
k

processcontroller

Figure 20.1. Linear quadratic regulation (LQR) feedback configuration

The process is assumed to be a continuous-time LTI system of the form

�x���Ax�Bu, x ���Rn, u � R
k,

y Cx, y R
m,

z� Gx�Hu, z � R
�,

and has two distinct outputs.

1. The measured output y�t� corresponds to the signal(s) that can be measured and are therefore Note. Measured outputs are
typically determined by the
available sensors.

available for control.

2. The controlled output z�t� corresponds to the signal(s) that one would like to make as small
Note. Controlled outputs are se
lected by the controller designer
and should be viewed as design
parameters.

as possible in the shortest possible time.

Sometimes z�t� � y�t�, which means that our control objective is simply to make the measured
output very small. At other times one may have

z�t� �
�
y���t���
�y t

�
,

173
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which means that we want to make both the measured output y�t� and its derivative �y�t� very
small. Many other options are possible.

20.2 Optimal Regulation

following criterion as small as possible:
The LQR problem is defined as follows. Find the control input u�t�, t � �0,�� that makes the

JLQR�
� �0

�z�t��2�ρ �u�t��2dt, (20.1)

where ρ is a positive constant. The term � �0
�z�t��2dt

corresponds to the energy of the controlled output, and the term� �0
�u�t��2dt

corresponds to the energy of the control signal. In LQR one seeks a controller that minimizes both
energies. However, decreasing the energy of the controlled output will require a large control signal,
and a small control signal will lead to large controlled outputs. The role of the constant ρ is to
establish a trade-off between these conflicting goals.

1. When we chose ρ very large, the most effective way to decrease JLQR is to employ a small
control input, at the expense of a large controlled output.

2. When we chose ρ very small, the most effective way to decrease JLQR is to obtain a very small
controlled output, even if this is achieved at the expense of employing a large control input.

Often the optimal LQR problem is defined more generally and consists of finding the control
input that minimizes

Note 11. A simple choice for the
matrices Q̄ and R̄ is given
by
Bryson’s rule. �

p. 177 JLQR�
� �
0

z�t��Q̄z�t��ρ u�t��R̄u�t� dt, (20.2)

where Q̄ �R
��� and R̄ �R

m�m are symmetric positive-definite matrices and ρ is a positive constant.

We shall consider the most general form for a quadratic criterion, which is

JLQR�
� �
0

x�t��Qx�t��u�t��Ru�t��2x�t��Nu�t�dt. (J-LQR)

Since z� Gx�Hu, the criterion in (20.1) is a special form of the criterion (J-LQR) with

Q� G�G, R� H �H�ρI, N � G�H

and (20.2) is a special form of the criterion (J-LQR) with

Q� G�Q̄G, R� H �Q̄H�ρR̄, N � G�Q̄H.

20.3 Feedback Invariants
Given a continuous-time LTI system

�x� Ax�Bu, x � R
n, u � R

k (AB-CLTI)
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we say that a functional Note. A functional maps func-
tions (in this case signals, i.e.
functions of time) to scalar values
(in this case real numbers).

H
�
x���;u����

that involves the system’s input and state is a feedback invariant for the system (AB-CLTI) if, when Note. This concept was already
introduced in Lecture 10, where
Proposition 20.1 was proved.

� p. 80
computed along a solution to the system, its value depends only on the initial condition x�0� and not
on the specific input signal u���.
Proposition 20.1 (Feedback invariant). For every symmetric matrix P, the functional

H

�
x���;u������

� �
0

�
Ax�t��Bu�t���Px�t�� x�t��P�Ax�t��Bu�t�� dt

is a feedback invariant for the system (AB-CLTI), as long as limt�� x�t� � 0. �

20.4 Feedback Invariants in Optimal Control
Suppose that we are able to express a criterion J to be minimized by an appropriate choice of the
input u��� in the form

J � H
�
x���;u������ �

0
Λ
�
x�t�,u�t��dt, (20.3)

where H is a feedback invariant and the function Λ�x,u� has the property that for every x � R
n

min
u�Rk

Λ�x,u� � 0.

In this case, the control

u�t� � arg min
u�Rk

Λ�x,u�, (20.4)

minimizes the criterion J, and the optimal value of J is equal to the feedback invariant Note. If one wants to restrict
the optimization to solutions that
lead to an asymptotically stable
closed-loop system, then H needs
to be a feedback invariant only for
inputs that lead to x�t� � 0 (as
in Proposition 20.1). However,
in this case one must check that
(20.4) does indeed lead to x�t� �
0.

J � H
�
x���;u����.

Note that it is not possible to get a lower value for J, since (1) the feedback invariant H
�
x���;u����

will never be affected by u, and (2) a smaller value for J would require the integral in the right-hand
side of (20.3) to be negative, which is not possible, since Λ

�
x�t�,u�t�� can at best be as low as zero.

20.5 Optimal State Feedback
It turns out that the LQR criterion

JLQR�
� �
0

x�t��Qx�t��u�t��Ru�t��2x�t��Nu�t�dt (J-LQR)

can be expressed as in (20.3) for an appropriate choice of feedback invariant. In fact, the feedback Attention! To keep the formulas
short, in the remainder of this
section we drop the time
dependence
�t� when the state x and the input
u appear in time integrals.

invariant in Proposition 20.1 will work, provided that we choose the matrix P appropriately. To
check that this is so, we add and subtract this feedback invariant to the LQR criterion and conclude
that

JLQR�
� �
0

x�Qx�u�Ru�2x�Nu dt

� H�x���;u�����
� �
0

x�Qx�u�Ru�2x�Nu��Ax�Bu��Px� x�P�Ax�Bu� dt
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� H�x���;u�����
� �
0

x��A�P�PA�Q�x�u�Ru�2u��B�P�N��x dt.

By completing the square, we can group the quadratic term in u with the cross-term in u times x:

where �u�� x�K��R�u�Kx� � u�Ru� x��PB�N�R�1�B�P�N��x�2u��B�P�N��x,

from which we conclude that K � R�1�B�P�N��,

JLQR � H
�

x���;u������ �
0

x�
�
A�P�PA�Q��PB�N�R�1�B�P�N���x��u�� x�K��R�u�Kx� dt.

If we are able to select the matrix P so thatNotation. Equation (20.5) is
called an algebraic Riccati
equation (ARE). A�P�PA�Q��PB�N�R�1�B�P�N�� � 0, (20.5)

we obtain precisely an expression such as (20.3) with

which has a minimum equal to zero for

Λ�x,u�� �u�� x�K��R�u�Kx�,

u��Kx, K� R�1�B�P�N��,
leading to the closed-loop system

�x� �
A�BR�1�B�P�N���x.

The following has been proved.

Theorem 20.1. Assume that there exists a symmetric solution P to the algebraic Riccati equation
Notation. Recall that a matrix is
Hurwitz or a stability matrix if
all its eigenvalues have a negative
real part.

Note. Asymptotic stability of
the closed loop is needed,
because we need to make
sure that the proposed input
u�t�
leads to the assumed fact that
limt�� x�t�Px�t� � 0.

MATLAB R� Hint 42. lqr
solves the ARE (20.5) and
computes the optimmmal state
feedback
(20.6).

� p. 176

(20.5) for which A�BR�1�B�P�N�� is a stability matrix. Then the feedback law

u�t���Kx�t�, �t � 0, K� R�1�B�P�N�� (20.6)

minimizes the LQR criterion (J-LQR) and leads to

JLQR�
� �
0

x�Qx�u�Ru�2x�Nu dt � x��0�Px�0�. �

20.6 LQR in MATLAB R�

MATLAB R� Hint 42 (lqr). The command [K,P,E]=lqr(A,B,Q,R,N) solves the algebraic Ric-
cati equation

Example. See Exa ple 22.1.
and computes the (negative feedback) optimal state feedback matrix gain

A�P�PA�Q��PB�N�R�1�B�P�N�� �
0

K� R�1�B�P�N

��that minimizes the LQR criteria

J�

� �
0

x�Qx�u�Ru�2x�Nu dt

for the continuous-time process

�x� Ax�Bu.

This command also returns the poles E of the closed-loop system

�x� �A�BK�x. �
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20.7 Additional Notes
Note 11 (Bryson’s rule). A simple and reasonable choice for the matrices Q̄ and R̄ is given by
Bryson’s rule [7, p. 537]. Select Q̄ and R̄ diagonal, with

Q̄ii � 1
maximum acceptable value of z2i

, i � �1,2, . . . , ��,

R̄ j j � 1
maximum acceptable value of u2j

, j � �1,2, . . . ,k�,

which corresponds to the following criterion

JLQR�
� �
0

� ��
i�1

Q̄ii zi�t�2�ρ
m�
j�1

R̄ j j u�t�2
�
dt.

In essence, Bryson’s rule scales the variables that appear in JLQR so that the maximum acceptable
value for each term is 1. This is especially important when the units used for the different compo-
nents of u and z make the values for these variables numerically very different from each other.

Although Bryson’s rule usually gives good results, often it is just the starting point for a trial-and-
error iterative design procedure aimed at obtaining desirable properties for the closed-loop system.
We shall pursue this further in Section 22.3. �

20.8 Exercises
20.1 (Feedback invariant). Consider the nonlinear system

�x� f �x,u�, x � R
n, u � R

k

and a continuously differentiable functionV :Rn � R, with V �0� � 0. Verify that the functional

H
�
x���;u������

� �
0

�V
�x �

x�t�� f �x�t�,u�t��dt
is a feedback invariant as long as limt�� x�t� � 0. �

20.2 (Nonlinear optimal control). Consider the nonlinear system

�x� f �x,u�, x � R
n, u � R

k.

Use the feedback invariant in Exercise 20.1 to construct a result parallel to Theorem 20.1 for the
minimization of the criterion

J�
� �
0

Q�x��u�R�x�u dt,

where R�x� is a state-dependent positive-definite matrix and Q�x� is a state-dependent nonnegative
function. �
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Lecture 21

The Algebraic Riccati Equation
(ARE)

Contents
This lecture addresses the existence of solutions to the algebraic Riccati equation

1. Hamiltonian matrix
2. Domain of the Riccati operator
3. Stable subspace of the Hamiltonian matrix

21.1 The Hamiltonian Matrix
The construction of the optimal LQR feedback law in Theorem 20.1 required the existence of a
symmetric solution P to the ARE,

A�P�PA�Q��PB�N�R�1�B�P�N�� � 0, (21.1)

convenient to expand the last term in the left-hand side of (21.1), which leads to
for which A�BR�1�B�P�N�� is a stability matrix. To study the solutions of this equation, it is

�A�BR�1N���P�P�A�BR�1N���Q�NR�1N��PBR�1B�P� 0. (21.2)

This equation can be compactly rewritten as�
P �I

�
H
�
I
P�� 0, (21.3)

where

H�
�

A�BR�1N� �BR�1B�

�Q�NR�1N� ��A�BR�1N���

�
�

R
2n�2n

is called the Hamiltonian matrix associated with (21.1).

21.2 Domain of the Riccati Operator
A Hamiltonian matrix H is said to be in the domain of the Riccati operator if there exist square
matrices H�,P � R

n�n such that Notation. Wewrite H �Ric when
H is in the domain of the Riccati
operator.HM �MH�, M�

�
I
P

�
, (21.4)

179 where H�
is a stability
matrix and I is
the n�n
identity matrix.
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Theorem 21.1. Suppose that H is in the domain of the Riccati operator and let P,H� � R
n�n be as

in (21.4). Then the following properties hold.

1. P satisfies the ARE (21.1),Notation. In general the ARE has
multiple solutions, but only the
one in (21.4) makes the closed-
loop system asymptotically sta-
ble. This solution is called the sta-
bilizing solution.

2. A�BR�1�B�P�N�� �H� is a stability matrix, and

3. P is a symmetric matrix. �

Proof of Theorem 21.1. To prove statement 1, we left-multiply (21.4) by the matrix
�
P � I

�
and

obtain (21.3).

To prove statement 2, we just look at the top n rows of the matrix equation (21.4):�
A�BR�1N� �BR�1B�

� �
��

I
P

�
�
�
I
�
�
H�,

from which A�BR�1�B�P�N�� �H� follows.

To prove statement 3, we left-multiply (21.4) by

��P� I�
and obtain

��P� I�H
�
I
P�� �P�P��H�. (21.5)

Moreover, using the definition of H, we can conclude that the matrix in the left-hand side of (21.5)Note. We shall confirm in Exer-
cise 21.1 that the matrix in the
left-hand side of (21.5) is indeed
symmetric.

is symmetric. Therefore

�P�P��H� �H�
��P��P� � �H�

��P�P��. (21.6)

Multiplying this equation on the left and right by eH�
� t and eH�t , respectively, we conclude thatNote. This same argument was

used in the proof of the Lyapunov
stability theorem 8.2.

eH�
� t�P�P��H�eH�t � eH�

� tH�
��P�P��eH�t � 0 � d

dt
eH�

� t�P�P��eH�t � 0,

�t, which means that eH�
� t�P�P��eH�t is constant. However, since H� is a stability matrix, this

quantity must also converge to zero as t � �. Therefore it must actually be identically zero. Since
eH�t is nonsingular, we conclude that we must have P� P�.

21.3 Stable Subspaces
Given a square matrix M, suppose that we factor its characteristic polynomial as a product of poly-
nomials

Δ�s� � det�sI�M� � Δ��s�Δ��s�,
where all the roots of Δ��s� have a negative real part and all roots of Δ��s� have a positive or zero
real parts. The stable subspace ofM is defined by

and has a few important properties, as listed below.V�

� kerΔ��M�

Note. See Exercise 21.3. Properties (Stable subspaces). Let V� be the stable subspace ofM. Then

P21.1 dimV� � degΔ��s�, and
Note. From P21.1, we can see
that the dimension of V� is equal
to the number of eigenvalues ofM
with a negative real part (with rep
etitions).

P21.2 for every matrix V whose columns form a basis for V�, there exists a stability matrix M�
whose characteristic polynomial is Δ��s� such that

MV �VM�. (21.7)
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21.4 Stable Subspace of the Hamiltonian Matrix
Our goal now is to find the conditions under which the Hamiltonian matrix H � R

2n�2n belongs to
the domain of the Riccati operator, i.e., those for which there exist symmetric matricesH�,P �Rn�n

such that

HM �MH�, M�
�
I
P

�
,

where H� is a stability matrix and I is the n� n identity matrix. From the properties of stable
subspaces, we conclude that such a matrix H� exists if we can find a basis for the stable subspace
V� of H of the appropriate form M � �

I P�
��. For this to be possible, the stable subspace has to

have dimension precisely equal to n, which is the key issue of concern. We shall see shortly that the
structure

�
I P�

�� forM is relatively simple to produce.

21.4.1 Dimension of the Stable Subspace of H
To investigate the dimension of V�, we need to compute the characteristic polynomial of H. To do
this, note that

H
�
0 I
�I 0

�� �
BR�1B� A�BR�1N�

�A�BR�1N��� �Q�NR�1N��� �
0 �I
I 0

�
H�.

Therefore, defining J�
� 0 I
�I 0

�
,

H��JH�J�1.

Since the characteristic polynomial is invariant with respect to similarity transformations and matrix
transposition, we conclude that

Δ�s�� det�sI�H� � det�sI� JH�J�1� � det�sI�H��
� det�sI�H� � � �1�2n det���s�I�H� � Δ��s�,

which shows that if λ is an eigenvalue of H, then �λ is also an eigenvalue of H with the same
multiplicity. We thus conclude that the 2n eigenvalues of H are distributed symmetrically with
respect to the imaginary axis. To check that we actually have n eigenvalues with a negative real part
and another n with a positive real part, we need to make sure that H has no eigenvalues over the
imaginary axis. This point is addressed by the following result.

Lemma 21.1. Assume that Q�NR�1N� � 0. When the pair �A,B� is stabilizable and the pair
�A�BR�1N�,Q�NR�1N�� is detectable, then

1. the Hamiltonian matrix H has no eigenvalues on the imaginary axis, and

2. its stable subspace V� has dimension n. �

Attention! The best LQR controllers are obtained for choices of the controlled output z for which
N �G�H � 0 (cf. Lecture 22). In this case, Lemma 21.1 simply requires stabilizability of �A,B� and
detectability of �A,G� (cf. Exercise 21.4). �

Proof of Lemma 21.1. To prove this result by contradiction, let x �
�
x�1 x�2

��, x1,x2 � C
n be an

eigenvector of H associated with an eigenvalue λ � jω , ω � R. This means that�
jωI�A�BR�1N� BR�1B�

Q�NR�1N� jω��A�BR�1N���
��

x1
x2

�
� 0. (21.8)
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Using the facts that �λ ,x� is an eigenvalue/eigenvector pair of H and that this matrix is real valued,
one concludes that

Notation. The symbol � � ��
denotes complex conjugate
transpose.

Attention! The notation used
here

differs from that of
MATLAB R�. Here ���� de-
notes transpose and ���� denotes
complex conjugate transpose,
whereas in MATLAB R�, (�).’
denotes transpose and (�)’
denotes complex conjugate
transpose.

�
x�2 x�1

�
H
�
x1
x2

�
� �x�1 x�2

�
H�
�
x2
x1

�
� �

x�2 x�1
� �Hx���Hx��

�
x2
x1

�
� �

x�2 x�1
�
jω
�
x1
x2

�
�
�
jω
�
x1
x2

��� �x2
x1

�
� jω�x�2 x1� x�

1 x2�� jω�x�1 x2� x�
2 x1� � 0. (21.9)

On the other hand, using the definition of H, one concludes that the left-hand side of (21.9) is given
by

�
x�2 x�1

�� A�BR�1N� �BR�1B�

�Q�NR�1N� ��A�BR�1N�����x
1
x2

�
� �x�1 x�2

���A���BR�1N��� �Q�NR�1N�

BR�1B� ��A�BR�1N��
��

x2
x1

�
��2x�1 �Q�NR�1N��x1�2x�2 �BR�1B��x2.

Since this expression must equal zero and R�1 � 0, we conclude thatNote. This follows from the fact
that for a symmetric positive-
semidefinite matrix M, x�Mx � 0
implies that Mx � 0. This can be
verifies, e.g., by diagonalizing M.

�Q�NR�1N��x1 � 0, B�x2 � 0.

From this and (21.8) we also conclude that

� jωI�A�BR�1N��x1 � 0, � jω�A��x2 � 0.

But then we have an eigenvector x2 of A� in the kernel of B� and an eigenvector x1 of A�BR�1N� in
the kernel of Q�NR�1N�. Since the corresponding eigenvalues do not have negative real parts, this
contradicts the stabilizability and detectability assumptions.

The fact that V� has dimension n follows from the discussion preceding the statement of the lemma.

21.4.2 Basis for the Stable Subspace of H
Suppose that the assumptions of Lemma 21.1 hold and let

V �

�
V1
V2

�
� R

2n�n

be a matrix whose n columns form a basis for the stable subspace V� ofH. Assuming thatV1 �Rn�n

is nonsingular, thenNote. Under the assumptions of
Lemma 21.1, V1 is always non-
singular, as shown in [6, Theorem
6.5, p. 202]. VV�11 �

�
I
P

�
, P�V2V�11

is also a basis forV�. Therefore, we conclude from property P21.2 that there exists a stability matrix
H� such that

H
�
I
P

�
�
�
I
P

�
H�, (21.10)

and thereforeH belongs to the domain of the Riccati operator. Combining Lemma 21.1 with Theo-
rem 21.1, we obtain the following main result regarding the solution to the ARE.
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Theorem 21.2. Assume that Q�NR�1N� � 0. When the pair �A,B� is stabilizable and the pair
�A�BR�1N�,Q�NR�1N�� is detectable,

1. H is in the domain of the Riccati operator,

2. P satisfies the ARE (21.1),

3. A�BR�1�B�P�N�� �H� is a stability matrix, and

4. P is symmetric, Note 12. When the pair �A �
BR�1N�,Q�NR�1N�� is observ-
able, one can show that P is also
positive-definite. � p. 183

where P, H� � R
n�n are as in (21.10). Moreover, the eigenvalues of H� are the eigenvalues of H

with a negative real part. �

Attention! It is insightful to interpret the results of Theorem 21.2, when applied to the minimization
of

JLQR�
� �
0

z�Q̄z�ρ u�R̄u dt, z� Gx�Hu, ρ , Q̄, R̄� 0,

which corresponds to

Q� G�Q̄G, R� H �Q̄H�ρR̄, N � G�Q̄H.

WhenN� 0, we conclude that Theorem 21.2 requires the detectability of the pair �A,Q�� �A,G�Q̄G�.
Since Q̄ � 0, it is straightforward to verify (e.g., using the eigenvector test) that this is equivalent
to the detectability of the pair �A,G�, which means that the system must be detectable through the
controlled output z.

The need for �A,B� to be stabilizable is quite reasonable, because otherwise it is not possible to make
x� 0 for every initial condition. The need for �A,G� to be detectable can be intuitively understood
by the fact that if the system had unstable modes that did not appear in z, it could be possible to
make JLQR very small, even though the state x might be exploding. �

Note 12. To prove that P is positive-definite, we rewrite the ARE

in (21.2) as �A�BR�1N���P�P�A�BR�1N���Q�NR�1N��PBR�1B�P�
0

S� �Q�NR�1N���PBR�1B�P.

H�
�P�PH� ��S,

The positive definiteness of P then follows from the Lyapunov observability test as long as we are
able to establish the observability of the pair �H�,S�.
To show that the pair �H�,S� is observable, we use the eigenvector test. To prove this by
contradiction, assume that x is an eigenvector of H� that lies in the kernel of S; i.e.,

�
A�BR�1�B�P�N���x� λx, Sx� ��Q�NR�1N���PBR�1B�P

�
x� 0.

Since Q�NR�1N� and PBR�1B�P are both symmetric positive-semidefinite matrices, the equation
Sx� 0 implies that

x�
��Q�NR�1N���PBR�1B�P�x� 0 � �Q�NR�1N��x� 0, B�Px� 0.

We thus conclude that

�A�BR�1N��x� λx, �Q�NR�1N��x� 0,

which contradicts the fact that the pair �A�BR�1N�,Q�NR�1N�� is observable. �
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21.5 Exercises
21.1. Verify that for every matrix P, the following matrix is symmetric:

��P� I�H
�
I
P

�
,

where H is the Hamiltonian matrix. �

21.2 (Invariance of stable subspaces). Show that the stable subspace V� of a matrix M is always
M-invariant. �

21.3 (Properties of stable subspaces). Prove Properties P21.1 and P21.2.

Hint: Transform M into its Jordan normal form. �

21.4. Show that detectability of �A,G� is equivalent to detectability of �A,Q� with Q� G�G.

Hint: Use the eigenvector test and note that the kernels of G and G�G are exactly the same. �



Lecture 22

Frequency Domain and Asymptotic
Properties of LQR

Contents
This lecture discusses several important properties of LQR controllers.

1. Kalman’s inequality: complementary sensitivity function, Nyquist plot (SISO), gain and
phase margins (SISO)

2. Loop shaping using LQR
3. LQR design example
4. Cheap control asymptotic case: closed-loop poles and cost

22.1 Kalman’s Equality
Consider the continuous-time LTI process

�x� Ax�Bu, z� Gx�Hu, x � R
n, u � R

k, z � R
�,

for which one wants to minimize the LQR criterion

JLQR�
� �0

�z�t��2�ρ�u�t��2 dt, (22.1)

where ρ is a positive constant. Throughout this whole lecture we assume that Attention! This condition is not
being added for simplicity. We
shall see in Example 22.1 that,
without it, the results in this sec-
tion are not valid.

N � G�H � 0, (22.2)

for which the optimal control is given by

u��Kx, K� R�1B�P, R� H �H�ρI,

where P is the stabilizing solution to the ARE

A�P�PA�G�G�PBR�1B�P� 0.

We saw in the Lecture 20 that under appropriate stabilizability and detectability assumptions, the
LQR control results in a closed-loop system that is asymptotically stable.

LQR controllers also have desirable properties in the frequency domain. To understand why,
consider the open-loop transfer matrix from the process input u to the controller output ū
(Figure 22.1). The state-space model from u to ū is given by

185
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− x

uū
�x� Ax�BuK

Figure 22.1. State feedback open-loop gain.

�x� Ax�Bu, ū��Kx,

which corresponds to the following open-loop negative-feedback k� k transfer matrix

L̂�s� � K�sI�A��1B.

Another important open-loop transfer matrix is that from the control signal u to the controlled output
z,

T̂ �s� � G�sI�A��1B�H.

These transfer matrices are related by the so-called Kalman’s equality:

Kalman’s equality. For the LQR criterion in (22.1) with (22.2), we haveNote. Kalman’s equality follows
directly from simple algebraic
manipulations of the ARE (cf. Ex-
ercise 22.1).

�
I� L̂��s���R�I� L̂�s��� R�H �H� T̂ ��s��T̂ �s�. (22.3)

Kalman’s equality has many important consequences. One of them is Kalman’s inequality,
which is obtained by setting s� jω in (22.3) and using the fact that for real-rational transfer matrices

L̂�� jω�� � L̂� jω��, T̂ �� jω�� � T̂ � jω��, H �H� T̂ � jω��T̂ � jω� � 0.

Kalman’s inequality. For the LQR criterion in (22.1) with (22.2), we have�
I� L̂� jω���R�I� L̂� jω��� R, �ω � R. (22.4)

22.2 Frequency Domain Properties: Single-Input Case
We focus our attention in single-input processes (k� 1), for which L̂�s� is a scalar transfer function.
Dividing both sides of Kalman’s inequality (22.4) by the scalar R, we obtain

�1� L̂� jω��� 1, �ω � R,

which expresses the fact that the Nyquist plot of L̂� jω� does not enter a circle of radius 1 around
Note 13. For multiple input sys-
tems, similar conclusions could
be drawn, based on the multivari-
able Nyquist criterion. � p. 194

significant implications, which are discussed next.

the point �1 of the complex plane. This is represented graphically in Figure 22.2 and has several

Positive gain margin. If the process gain is multiplied by a constant k� 1, its Nyquist plot simply
expands radially, and therefore the number of encirclements does not change. This corresponds to a
positive gain margin of ��.

Negative gain margin. If the process gain is multiplied by a constant 0.5 � k � 1, its Nyquist
plot contracts radially, but the number of encirclements still does not change. This corresponds to a
negative gain margin of 20log10�.5� � �6 dB.
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�1�2
60o

G0� jω�

Im

Re

Figure 22.2. Nyquist plot for a LQR state feedback controller.

Phase margin. If the process phase increases by θ � � �60�,60��, its Nyquist plot rotates by θ ,
but the number of encirclements still does not change. This corresponds to a phase margin of�60�.

Sensitivity and complementary sensitivity functions. The sensitivity and the complementary
sensitivity functions are given by

Ŝ�s�� 1
1� L̂�s� , T̂ �s�� 1� Ŝ�s� � L̂�s�

1� L̂�s� ,

respectively. Kalman’s inequality guarantees that

ˆ

Note. The first inequality results
directly from the fact that �1�
L̂� jω�� � 1, the second from the
fact that T̂�s� � 1� S�s�, and the
last two from the fact that the sec-
ond inequality shows that T̂� jω�
must belong to a circle of radius 1
around the point �1.

�Ŝ� jω��� 1, �T̂ � jω�� 1�� 1, �T̂ � jω��� 2, ℜ�T̂ � jω��� 0, �ω � R. (22.5)

We recall the following facts about the sensitivity function:

1. A small sensitivity function is desirable for good disturbance rejection. Generally, this is
especially important at low frequencies.

2. A complementary sensitivity function close to 1 is desirable for good reference tracking. Gen-
erally, this is especially important at low frequencies.

3. A small complementary sensitivity function is desirable for good noise rejection. Generally,
this is especially important at high frequencies.

Attention! Kalman’s inequality is valid only when N � G�H � 0. When this is not the case, LQR
controllers can exhibit significantly worse properties in terms of gain and phase margins. To some
extent, this limits the controlled outputs that should be placed in z. For example, consider the process
�x� Ax�Bu, y�Cx and suppose that we want to regulate

z� y�Cx.

This leads to G�C and H � 0. ThereforeG�H � 0, for which Kalman’s inequality holds. However,
choosing

z�
�
y
�y

�
�
�
Cx
C �x

�
�
�

Cx
CAx�CBu

�
�
�
C
CA

�
x�

�
0
CB

�
u,

leads to Note. If the transfer function from
u to y has two more poles than
zeros, then one can show that
CB � 0 and H � 0. In this case,
Kalman’s inequality holds also for
this choice of z.

G�
�
C
CA

�
, H �

�
0
CB

�
,

and therefore

G�H � A�C�CB,

which may not be equal to zero. �
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22.3 Loop Shaping using LQR: Single-Input Case
Using Kalman’s inequality, we saw that any LQR controller automatically provides some upperNote. Loop shaping consists of

designing the controller to meet
specifications on the open-loop
gain L̂�s�. A brief review of
this control design method can be
found in Section 22.8.

bounds on the magnitude of the sensitivity function and its complementary. However, these bounds
are frequency-independent and may not result in appropriate loop shaping.

We discuss next a few rules that allow us to perform loop shaping using LQR. We continue to
restrict our attention to the single-input case (k� 1).

Low-frequency open-loop gain. Dividing both sides of Kalman’s equality (22.3) by the scalar
R� H �H�ρ , we obtain

�1� L̂� jω��2 � 1�
H �H

H �H�ρ� �T̂ � jω��2
H �H�ρ

.

Therefore, for the range of frequencies for which �L̂� jω��� 1 (typically low frequencies), the last
term must dominate and therefore,

�L̂� jω���� 1� L̂� jω��� �T̂ � jω���
H �H�ρ

,

which means that the open-loop gain for the optimal feedback L̂�s� follows the shape of the Bode
plot from u to the controlled output z. To understand the implications of this formula, it is instructive

MATLAB R� Hint 43.
sigma(sys) draws the
norm-Bode plot of the system
sys. � p. 194

to consider two fairly typical cases.

1. When z� y, with y�Cx scalar, we have

�L̂� jω��� �T̂ � jω���
H �H�ρ

,

where

T̂ �s��C�sI�A��1B

is the transfer function from the control input u to the measured output y. In this case,

(a) the shape of the magnitude of the open-loop gain L̂� jω� is determined by the magnitudeNote. Although the magnitude of
L̂� jω� mimics the magnitude of
T̂� jω�, the phase of the open-
loop gain L̂� jω� always leads to a
stable closed loop with an appro-
priate phase margin.

of the transfer function from the control input u to the measured output y, and

(b) the parameter ρ moves the magnitude Bode plot up and down (more preciselyH �H�ρ).

2. When z� �
y γ �y

��, with y�Cx scalar, i.e.,

z�
�
y
γ �y

�� �
Cx

γCAx� γCBu

�
� G�

�
C

γCA

�
, H �

�
0

γCB

�
,

we conclude that

T̂ �s� �
�
P̂�s�
γsP̂�s�

�
�
�
1
γs

�
P̂�s�, P̂�s��C�sI�A��1B,

and therefore

�L̂� jω��� �
1� γ2ω2 �P̂� jω���

H �H�ρ
� � 1� jγω� �P̂� jω���

H �H�ρ
. (22.6)

In this case, the low-frequency open-loop gain mimics the process transfer function from u to
y, with an extra zero at 1�γ and scaled by 1�

H�H�ρ
. Thus
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(a) ρ moves the magnitude Bode plot up and down (more precisely H �H�ρ), and
(b) large values for γ lead to a low-frequency zero and generally result in a larger phase mar-

gin (above the minimum of 60�) and a smaller overshoot in the step response. However,
this is often achieved at the expense of a slower response.

Attention! It sometimes happens that the above two choices for z still do not provide a sufficiently
good low-frequency open-loop response. In such cases, one may actually add dynamics to more
accurately shape L̂�s�. For example, suppose that one wants a very large magnitude for L̂�s� at a
particular frequencyω0 to reject a specific periodic disturbance. This could be achieved by including
in z a filtered version of the output y obtained from a transfer function with a resonance close to ω0
to increase the gain at this frequency. In this case, one could define

z�
�� y
γ1 �y
γ2ȳ
�� ,

where ȳ is obtained from y through a system with transfer function equal to

1
�s� ε�2�ω20

for some small ε � 0. Many other options are possible, allowing one to precisely shape L̂�s� over
the range of frequencies for which this transfer function has a large magnitude. �

High-frequency open-loop gain. Figure 22.2 shows that the open-loop gain L̂� jω� can have at
most �90� phase for high-frequencies, and therefore the roll-off rate is at most �20 dB/decade. In
practice, this means that for ω � 1,

�L̂� jω��� c
ω
�

for some constant c. Therefore the cross-over frequency is approximately given by

H �H�ρ
,

c
ωcross

�
H �H�ρ

� 1 � ωcross � c�
H �H�ρ

.

Thus

1. LQR controllers always exhibit a high-frequencymagnitude decay of �20 dB/decade, and
2. the cross-over frequency is proportional to 1��H �H�ρ , and generally small values for

H �H�ρ result in faster step responses.

Attention! The (slow) �20 dB/decade magnitude decrease is the main shortcoming of state feed-
back LQR controllers, because it may not be sufficient to clear high-frequency upper bounds on
the open-loop gain needed to reject disturbances and/or for robustness with respect to process un-
certainty. We will see in Section 23.5 that this can actually be improved with output feedback
controllers. �

22.4 LQR Design Example
Example 22.1 (Aircraft roll dynamics). Figure 22.3 shows the roll angle dynamics of an aircraft
[18, p. 381]. Defining x�

�
θ ω τ

��, we can write the aircraft dynamics as
�x� Ax�Bu,

where

A� ��0 1 0
0 �0.875 ���20
0 0 50

�� , �B�

�
0
0
50
�� .
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roll-angle

roll-rate� = �̇

applied torque

�

�

�θ ���ω
�ω ���0.875ω�20τ
�τ � 50τ�50u

Figure 22.3. Aircraft roll angle dynamics
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(a) Open-loop gain for several values of ρ . This parameter
allows us to move the whole magnitude Bode plot up and
down.
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(b) Open-loop gain for several values of γ . Larger values
for this parameter result in a larger phase margin.

Figure 22.4. Bode plots for the open-loop gain of the LQR controllers in Example 22.1. As expected, for low
frequencies the open-loop gain magnitude matches that of the process transfer function from u to θ (but with
significantly lower/better phase), and at high-frequencies the gain magnitude falls at �20 dB/decade.

Open-loop gains. Figure 22.4 shows Bode plots of the open-loop gain L̂�s� � K�sI�A��1B for
several LQR controllers obtained for this system. The controlled output was chosen to be z ��
θ γ �θ

��, which corresponds to
G�

�
1 0 0
0 γ 0

�
, H �

�
0
0

�
.

The controllers minimize the criterion (22.1) for several values of ρ and γ . The matrix gains
K and the Bode plots of the open-loop gains can be computed using the following sequence of
MATLAB R�commands:

MATLAB R� Hint 44. See
MATLAB R�Hint 42. � p. 176 A = [0,1,0;0,-.875,-20;0,0,-50]; B = [0;0;50]; % process dynamics

G = [1,0,0;0,gamma*1,0]; H = [0;0]; % controlled output z

Q = G’*G; R = H’*H+rho; N = G’*H; % weight matrices

K=lqr(A,B,Q,R,N); % compute LQR gain

G0=ss(A,B,K,0); % open-loop gain

bode(G0);

for the different values of gamma and rho.

Figure 22.4(a) shows the open-loop gain for several values of ρ , where we can see that ρ allows
us to move the whole magnitude Bode plot up and down. Figure 22.4(b) shows the open-loop gain
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for several values of γ , where we can see that a larger γ results in a larger phase margin. As expected,
for low frequencies the open-loop gain magnitude matches that of the process transfer function from
u to θ (but with significantly lower/better phase), and at high frequencies the gain magnitude falls at
�20 dB/decade.
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(a) Step response for several values of ρ . This parameter
allows us to control the speed of the response.
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(b) Step response for several values of γ . This parameter
allows us to control the overshoot.

Figure 22.5. Closed-loop step responses for the LQR controllers in Example 22.1

Step responses. Figure 22.5 shows step responses for the state feedback LQR controllers whose Note. The use of LQR controllers
to drive an output variable to a set
point will be studied in detail later
in Section 23.6.

Bode plots for the open-loop gain are shown in Figure 22.4. Figure 22.5(a) shows that smaller
values of ρ lead to faster responses, and Figure 22.5(b) shows that larger values for γ lead to smaller
overshoots (but slower responses).
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(b) G�H � 0

Figure 22.6. Nyquist plots for the open-loop gain of the LQR controllers in Example 22.1

Nyquist plots. Figure 22.6 shows Nyquist plots of the open-loop gain L̂�s� � K�sI�A��1B for
ρ � 0.01, but different choices of the controlled output z. In Figure 22.6(a) z�

�
θ �θ

��, which
corresponds to

G�
�
1 0 0
0 1 0

�
, H �

�
0
0

�
.
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In this case, H �G � �0 0 0 �, and Kalman’s inequality holds, as can be seen in the Nyquist plot. In
Figure 22.6(b), the controlled output was chosen to be z�

�
θ �τ

��, which corresponds to
G�

�
1 0 0
0 0 �50

�
, H �

�
0
50

�
.

In this case, we haveH �G� �0 0 �2500�, and Kalman’s inequality does not hold. We can see from the
Nyquist plot that the phase and gain margins are very small and there is little robustness with respect
to unmodeled dynamics, since a small perturbation in the process can lead to an encirclement of the
point�1. �

22.5 Cheap Control Case
In view of the LQR criterion

JLQR�
� �0

�z�t��2�ρ�u�t��2 dt,

by making ρ very small one does not penalize the energy used by the control signal. Based on this,
one could expect that, as ρ � 0,

1. the system’s response becomes arbitrarily fast, and

2. the optimal value of the criterion converges to zero.

This limiting case is called cheap control and it turns out that whether or not the above conjectures
are true depends on the transmission zeros of the system.

22.5.1 Closed-Loop Poles
We saw in Lecture 21 (cf. Theorem 21.2) that the poles of the closed-loop system correspond to the
stable eigenvalues of the Hamiltonian matrix

H�
�

A �BR�1B�

�G�G �A� � � R
2n�2n, R� H �H�ρI � R

k�k.

To determine the eigenvalues of H, we use the fact thatNote. Cf. Exercise 22.2.

det�sI�H� � cΔ�s�Δ��s�det
�
R�H �H� T̂��s��T̂ �s�

�
, (22.7)

where c� ��1�ndetR�1 andNote. The transfer matrix T̂�s�
that appears in (22.7) can be
viewed as the transfer function
from the control input u to the
controlled output z.

Δ�s�� det�sI�A�, T̂ �s�� G�sI�A��1B�H.

As ρ � 0, H �H � R, and therefore

det�sI�H� � cΔ�s�Δ��s�det T̂ ��s��T̂ �s�. (22.8)

We saw in Theorem 18.2 that there exist unimodular real polynomial matrices L�s� �R�s����, R�s� �
R�s�k�k such that

T̂ �s� � L�s�SMT �s�R�s�, (22.9)

where

SMT �s��

����
�

η1�s�
ψ1�s� � � � 0 0

.

.. . . .
...

...
0 � � � ηr�s�

ψr�s� 0
0 � � � 0 0

����� �
R�s�

��k

is the Smith-McMillan form of T̂ �s�. To proceed, we should consider the square and nonsquare
cases separately.
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Square transfer matrix. When T̂ �s� is square and full rank (i.e., �� k� r),

det T̂ ��s��T̂ �s� � c̄
η1��s� � � �ηk��s�η1�s� � � �ηk�s�
ψ1��s� � � �ψk��s�ψ1�s� � � �ψk�s�

� c̄
zT ����s�zT �s�
pT � s�pT �s� ,

where zT �s� and pT �s� are the zero and pole polynomials of Ĝ�s�, respectively, and c̄ is the (constant)
product of the determinants of all the unimodularmatrices. When the realization is minimal, pT �s� �
Δ�s� (cf. Theorem 19.3) and (22.9) simplifies to

det�sI�H� � c c̄ zT �s�zT ��s�.
Two conclusions can be drawn.

1. When T̂ �s� has q transmission zeros
ai� jbi, i � �1,2, . . . ,q�,

then 2q of the eigenvalues of H converge to

�ai� jbi, i � �1,2, . . . ,q�.
Therefore q closed-loop poles converge to Note. Recall that the poles of the

closed-loop system are only the
stable eigenvalues of H, which
converge to either ai � jbi or
�ai� jbi, depending on which of
them has negative real part.

��ai�� jbi, i � �1,2, . . . ,q�.

2. When T̂ �s� does not have any transmission zero,H has no finite eigenvalues as ρ � 0. There-
fore all closed-loop poles must converge to infinity.

Nonsquare transfer matrix. When T̂ �s� is not square and/or not full rank, by substituting (22.9)
into (22.8), we obtain

det�sI�H�� c̄Δ�s�Δ��s�det

�����
η1������s���

..

. . . .
...

ψ1 s � � � 0

0 � � � ηr������s���
ψr s

����
�
L

r��s��Lr�s�

����
�

η1�s�

..

. . . .
...

ψ1�s� � � � 0

0 � � � ηr���s���
ψr s

����
�
,

where Lr�s� �

minimal, we obtain R�s���r contains the leftmost r columns of L�s�. In this case, when the
realization is

det�sI�H� � c̄ zT �s�zT ��s�detLr��s��Lr�s�,
which shows that for nonsquare matrices det�sI�H� generally has more roots than the transmission
zeros of T̂ �s�. In this case, one needs to compute the stable roots of

Δ�s�Δ��s�det T̂ ��s��T̂ �
s�to determine the asymptotic locations of the closed-loop
poles.

Attention! This means that in general one wants to avoid transmission zeros from the control input Note. This property of LQR
resembles a similar property of
the root locus, except that now
we have the freedom to choose
the controlled output to avoid
problematic zeros.

u to the controlled output z, especially slow transmission zeros that will attract the poles of the closed
loop. For nonsquare systems, one must pay attention to all the zeros of det T̂ ��s��T̂ �s�. �

22.5.2 Cost
We saw in Lecture 20 that the minimum value of the LQR criterion is given by

JLQR�
� �0

�z�t��2�ρ�u�t��2 dt � x��0�Pρx�0�,

where ρ is a positive constant and Pρ is the corresponding solution to the ARE Note. Here we use the subscript ρ
to emphasize that the solution to
the ARE depends on this parame-
ter.

A�Pρ�PρA�G�G�PρBR�1ρ B�Pρ � 0, Rρ� H �H�ρI. (22.10)

The following result makes explicit the dependence of Pρ on ρ , as this parameter converges to zero.
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Theorem 22.1. When H � 0, the solution to (22.10) satisfiesNote. This result can be found
in [11, Section 3.8.3, pp. 306–
312; cf. Theorem 3.14]. A sim-
ple proof for the SISO case can
be found in [16, Section 3.5.2,
pp. 145–146].

lim
ρ�0

Pρ

�����
�

� 0 ����k and all transmission zeros of T̂ �s� have negative or zero real parts,
���0 � k and T̂ �s� has transmission zeros with positive real parts,
0 �� k.

�

Attention! This result shows a fundamental limitation due to unstable transmission zeros. It shows
that when there are transmission zeros from the input u to the controlled output z, it is not possible
to reduce the energy of z arbitrarily, even if one is willing to spend much control energy. �

Attention! Suppose that � � k and all transmission zeros of T̂ �s� have negative or zero real
parts. Taking limits on both sides of (22.10) and using the fact that limρ�0Pρ � 0, we conclude
that

lim
ρ�0

1
ρ
PρBB�Pρ � lim

ρ�0
ρK�ρKρ � G�G,

where Kρ� R�1ρ B�Pρ is the state feedback gain. Assuming that G is full row rank, this implies thatNotation. A square matrix S is
called orthogonal if its inverse ex-
ists and is equal to its transpose;
i.e., SS� � S�S� I. lim

ρ�0
�
ρKρ � SG,

for some orthogonal matrix S (cf. Exercise 22.3). This shows that asymptotically we have

Kρ � 1�ρ
SG,

and therefore the optimal control is of the form

u� Kρx� 1�ρ
SGx� 1�ρ

Sz;

i.e., for these systems the cheap control problem corresponds to high-gain static feedback of the
controlled output. �

22.6 MATLAB R� Commands
MATLAB R� Hint 43 (sigma). The command sigma(sys) draws the norm-Bode plot of the system
sys. For scalar transfer functions, this command plots the usual magnitude Bode plot, but for MIMO
transfer matrices, it plots the norm of the transfer matrix versus the frequency. �

MATLAB R� Hint 45 (nyquist). The command nyquist(sys) draws the Nyquist plot of the
system sys.

Especially when there are poles very close to the imaginary axis (e.g., because they were actually
on the axis and you moved them slightly to the left), the automatic scale may not be very good,
because it may be hard to distinguish the point �1 from the origin. In this case, you can use the
zoom features of MATLAB R� to see what is going on near �1. Try clicking on the magnifying
glass and selecting a region of interest, or try left-clicking with the mouse and selecting “zoom on
��1,0�” (without the magnifying glass selected). �

22.7 Additional Notes
Note 13 (Multivariable Nyquist criterion). The Nyquist criterion is used to investigate the stability
of the negative-feedback connection in Figure 22.7. It allows one to compute the number of unstable
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+

−

yr
L̂�s�

Figure 22.7. Negative feedback

(i.e., in the closed right-hand side plane) poles of the closed-loop transfer matrix
�
I� L̂�s���1 as a

function of the number of unstable poles of the open-loop transfer matrix L̂�s�.
To apply the criterion, we start by drawing the Nyquist plot of L̂�s�, which is done by evaluating
det
�
I� L̂� jω�� from ω � �� to ω � �� and plotting it in the complex plane. This leads to a Note. The Nyquist plot should be

viewed as the image of a clock-
wise contour that goes along the
axis and closes with a right-hand
side loop at�.

MATLAB R� Hint 45.
nyquist(sys) draws the
Nyquist plot of the system
sys. � p. 194

closed curve that is always symmetric with respect to the real axis. This curve should be annotated
with arrows indicating the direction corresponding to increasing ω .

Any poles of L̂�s� on the imaginary axis should be moved slightly to the left of the axis, because the
criterion is valid only when L̂�s� is analytic on the imaginary axis. E.g.,

L̂�s� � s�1
s�s�3� �� L̂ε �s� � s�1

�s� ε��s�3�
L̂�s� � s

s2�4 � s
�s�2 j��s�2 j� ��

L̂ε�s� � s
�s� ε�2 j��s� ε�2 j� �

s
�s� ε�2�4

for a small ε � 0. The criterion should then be applied to the perturbed transfer matrix L̂ε�s�. If
we conclude that the closed loop is asymptotically stable for L̂ε�s� with very small ε � 0, then the
closed loop with L̂�s� is also asymptotically stable and vice versa.

Nyquist stability criterion. The total number of unstable (closed-loop) poles of
�
I� L̂�s���1 (#CUP) Note. To compute #ENC, we

draw a ray from the origin to� in
any direction and add 1 each time
the Nyquist plot crosses the ray in
the clockwise direction (with re-
spect to the origin of the ray) and
subtract 1 each time it crosses the
ray in the counterclockwise direc-
tion. The final count gives #ENC.

is given by

#CUP� #ENC�#OUP,

where #OUP denotes the number of unstable (open-loop) poles of L̂�s� and #ENC is the number
of clockwise encirclements by the multivariable Nyquist plot around the origin. To have a stable
closed-loop system, one thus needs

#ENC��#OUP. �

Attention! For the multivariable Nyquist criteria, we count encirclements around the origin and
not around �1, because the multivariable Nyquist plot is shifted to the right by adding the I to in
det
�
I� L̂� jω��. �

22.8 The Loop-Shaping Design Method (review)
The goal of this section is to briefly review the loop-shaping control design method for SISO sys- Note. The loop-shaping design

method is covered extensively,
e.g., in [7].

tems. The basic idea behind loop shaping is to convert the desired specifications on the closed-loop
system in Figure 22.8 into constraints on the open-loop gain

ˆL̂�s��C�s�P̂�s�.

The controller Ĉ�s� is then designed so that the open-loop gain L̂�s� satisfies these constraints. The
shaping of L̂�s� can be done using the classical methods briefly mentioned in Section 22.8.2 and
explained in much greater detail in [7, Chapter 6.7]. However, it can also be done using LQR state Attention! The review in this sec-

tion is focused on the SISO case,
so it does not address the state
feedback case for systems with
more than one state. However,
we shall see in Lecture 23 that we
can often recover the LQR open-
loop gain just with output feed-
back. � p. 207

feedback, as discussed in Section 22.3, or using LQG/LQR output feedback controllers, as we shall
see in Section 23.5.
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e+

−
+

+

yur

d

n

P̂�s�Ĉ�s�

Figure 22.8. Closed-loop system

22.8.1 Open-Loop versus Closed-Loop Specifications

We start by discussing how several closed-loop specifications can be converted into constraints on
the open-loop gain L̂�s�.

Stability. Assuming that the open-loop gain has no unstable poles, the stability of the closed-loop
system is guaranteed as long as the phase of the open-loop gain is above �180� at the cross-over
frequency ωc, i.e., at the frequency for whichNotation. The distance between

the phase of L̂� jωc� and�180� is
called the phase margin. �L̂� jωc��� 1.

Overshoot. Larger phase margins generally correspond to a smaller overshoot for the step re-
sponse of the closed-loop system. The following rules of thumb work well when the open-loop gain
L̂�s� has a pole at the origin, an additional real pole, and no zeros

Phase margin overshoot
65��� � 5%
60 ���10%
45� 15%

Reference tracking. Suppose that one wants the tracking error to be at least kT � 1 times smaller
than the reference, over the range of frequencies �0,ωT �. In the frequency domain, this can beNote. Typically one wants to

track low frequency references,
which justifies the requirement for
equation (22.11) to hold in an in-
terval of the form �0,ωT �.

expressed by

ˆ�E� jω��
�R̂� jω�� � kT , �ω � �0,ωT �, (22.11)

where Ê�s� and R̂�s� denote the Laplace transforms of the tracking error e� r� y and the refer-
ence signal r, respectively, in the absence of noise and disturbances. For the closed-loop system in
Figure 22.8,

Ê�s� � 1
1� L̂�s� R̂�s�.

Therefore (22.11) is equivalent to

1
�1� L̂� jω�� � kT , �ω � �0,ωT � � �1� L̂� jω��� 1

kT
, �ω � �0,ωT �.

This condition is guaranteed to hold by requiring that

�L̂� jω��� 1kT �1, �ω � �0,ωT �. (22.12)
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Disturbance rejection. Suppose that one wants input disturbances to appear in the output attenu-
ated at least kD � 1 times, over the range of frequencies �ωD1 ,ωD2 �. In the frequency domain, this Note. Typically one wants to re-

ject low-frequency disturbances
and therefore ωD1 and ωD2 in
(22.13) generally take low values.

can be expressed by

ˆ�Y � jω��
�D̂� jω�� � kD, �

ω � �ωD1 ,ωD2 �, (22.13)

where Ŷ �s� and D̂�s� denote the Laplace transforms of the output y and the input disturbance d,
respectively, in the absence of reference and measurement noise. For the closed-loop system in
Figure 22.8,

Ŷ �s� � P̂�s�
1� L̂�s� D̂�s�,

and therefore (22.13) is equivalent to

�P̂� jω��
�1� L̂� jω�� � kD, �

ω � �ωD1 ,ωD2 � � �1� L̂� jω��� �P̂� jω��
kD

, �ω � �ωD1 ,ωD2�.

This condition is guaranteed to hold as long as one requires that
�L̂� jω��� �P̂� jω��

kD
�1, �ω � �ωD1 ,ωD2�. (22.14)

Noise rejection. Suppose that one wants measurement noise to appear in the output attenuated at
least kN � 1 times, over the range of frequencies �ωN ,��. In the frequency domain, this can be Note. Typically one needs to re-

ject high frequencies noise, which
justifies the requirement for equa-
tion (22.15) to hold in an interval
of the form �ωN ,��.

expressed by

ˆ�Y � � �jω����
�N̂ jω � � kN , �

ω � �ωN ,��, (22.15)

where Ŷ �s� and N̂�s� denote the Laplace transforms of the output y and the measurement noise n,
respectively, in the absence of reference and disturbances. For the closed-loop system in Figure 22.8,

Ŷ �s� � � L̂�s�
1� L̂�s� N̂�s�,

and therefore (22.15) is equivalent to

�L̂� jω��
�1� L̂� jω�� � kN , �

ω � �ωN ,�� �
� � �
1� 1

L̂� jω�
� � �
� 1

kN
, �ω � �ωN ,��.

This condition is guaranteed to hold as long as one requires that��� 1
L̂� jω�

� � �
� 1kN �1, �ω � �ωN ,�� � �L̂� jω��� kN

1� kN
, �ω � �ωN ,��.

above.
Table 22.1 and Figure 22.9 summarize the constraints on the open-loop gain G0� jω� discussed

Attention! The conditions derived above for the open-loop gain L̂� jω� are sufficient for the original
closed-loop specifications to hold, but they are not necessary. When the open-loop gain “almost”
verifies the conditions derived, it may be worth it to check directly whether it verifies the original
closed-loop conditions. �

ˆ

22.8.2 Open-Loop Gain Shaping
In classical lead/lag compensation, one starts with a basic unit-gain controller

C�s� � 1
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closed-loop specification open-loop constraint
overshoot� 10% (� 5%) phase margin� 60� (� 65�)
ˆ�E� jω��

�R̂� jω�� � kT , �ω � �0,ωT � �L̂� jω��� 1kT �1, �ω � �0,ωT �

ˆ�Y � jω��
�D̂� jω�� � kD, �ω � �ωD1 ,ωD2 � �L̂� jω��� �P̂� jω��

kD
�1, �ω � �ωD1 ,ωD2 �

ˆ�Y � jω��
�N̂� jω�� � kN , �ω � �ωN ,�� �L̂� jω��� kN

1� kN
, �ω � �ωN ,��

Table 22.1. Summary of the relationship between closed-loop specifications and open-loop constraints for the
loop shaping design method

�L̂� jω��

ω
ωT

1
kT

�1

ωD2

�P̂� jω��
kD

�1

ωN

kN
1� kN

Figure 22.9. Typical open-loop specifications for the loop-shaping control design.

and “adds” to it appropriate blocks to shape the desired open-loop gainNote. One actually does not
“add” to the controller. To be
precise, one multiplies the con-
troller by appropriate gain, lead,
and lag blocks. However, this
does correspond to additions in
the magnitude (in dBs) and phase
Bode plots.

ˆL̂�s��C�s�P̂�s�,

so that it satisfies the appropriate open-loop constraints. This shaping can be achieved using three
basic tools.

ˆ

1. Proportional gain. Multiplying the controller by a constant k moves the magnitude Bode plot
up and down, without changing its phase.

2. Lead compensation. Multiplying the controller by a lead block with transfer function

Clead�s� � Ts�1
αTs�1 , α � 1

increases the phase margin when placed at the cross-over frequency. Figure 22.10(a) shows
the Bode plot of a lead compensator.Note. A lead compensator also in-

creases the cross-over frequency,
so it may require some trial and
error to get the peak of the phase
right at the cross-over frequency.

3. Lag compensation. Multiplying the controller by a lag block with transfer function

Ĉlag�s� � s�z�1
s�p�1 , p� z

decreases the high-frequency gain. Figure 22.10(b) shows the Bode plot of a lag compensator.Note. A lag compensator also in-
creases the phase, so it can de-
crease the phase margin. To avoid
this, one should only introduce
lag compensation away from the
cross-over frequency.
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22.9 Exercises
22.1 (Kalman equality). Prove Kalman’s equality (22.3).

Hint: Add and subtract �sP� to the ARE and then left- and right-multiply it by �B��sI�A���1 and
�sI�A��1B, respectively. �

22.2 (Eigenvalues of the Hamiltonian matrix). Show that (22.7) holds.

Hint: Use the following properties of the determinant:

det
�
M1 M2
M3 M4�� detM1 detM4 det� 1 M2M�1I�M3M�1

4 �, (22.16a)

det�I�XY� � det�I�YX�. (22.16b)

�

22.3. Show that given two matrices X ,M �R
n�� withM full row rank and X �X �M�M, there exists

an orthogonal matrix S � R
��� such thatM � SX . � Notation. A square matrix S is

called orthogonal if its inverse
exists and is equal to its
transpose;
i.e., SS� � S�S� I.
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1

1
α

1
T

1
αT

ωmax � 1�
αT

φmax

(a) Lead

1
p
zp z

ωmax ��pz

(b) Lag

Figure 22.10. Bode plots of lead/lag compensators. The maximum lead phase angle is given by φmax �
arcsin 1�α

1�α; therefore, to obtain a desired given lead angle φmax one sets α �
1�sinφmax
1�sinφmax .



Lecture 23

Output Feedback

Contents

This lecture addresses the feedback control problem when only the output (not the whole state) can
be measured.

1. Certainty equivalence control
2. Deterministic minimum-energy estimation (MEE)
3. Stochastic linear quadratic Gaussian (LQG) estimation
4. LQG/LQR output feedback
5. Loop transfer recovery (LTR) with design example
6. Optimal set-point control

23.1 Certainty Equivalence

The state feedback LQR formulation considered in Lecture 20 suffered from the drawback that the
optimal control law

u�t� � �Kx�t� (23.1)

required the whole state x of the process to be measured. A possible approach to overcome this
difficulty is to construct an estimate x̂ of the state of the process based solely on the past values of
the measured output y and control signal u, and then use

u�t� � �Kx̂�t�

instead of (23.1). This approach is usually known as certainty equivalence and leads to the architec-
ture in Figure 23.1. In this lecture we consider the problem of constructing state estimates for use in

−
processK

state
estimator

u

y

z

x̂

Figure 23.1. Certainty equivalence controller

certainty equivalence controllers.

201



202 João P. Hespanha

23.2 Deterministic Minimum-Energy Estimation (MEE)

Consider a continuous-time LTI system of the form

�x� Ax�Bu, y�Cx, x � R
n, u � R

k, y � R
m, (CLTI)

where u is the control signal and y is the measured output. Estimating the state x at some time t can
be viewed as solving (CLTI) for the unknown x�t�, for given u�τ�,y�τ�, τ � t.

Assuming that the model (CLTI) is exact and observable, we saw in Lecture 15 that x�t� can be
reconstructed exactly using the constructibility Gramian

x�t� �WCn�t0, t��1
�� t

t0
eA
��τ�t�C�y�τ�dτ �

� t

t0

� t

τ
eA

��τ�t�C�CeA�τ�s�Bu�s�dsdτ
�
,

where

WCn�t0, t��
� t

t0
eA
��τ�t�C�CeA�τ�t�dτ

(cf. Theorem 15.2).

In practice, the model (CLTI) is never exact, and the measured output y is generated by a system
of the form

�x� Ax�Bu� B̄d, y�Cx�n, x � R
n, u � R

k, d � R
q, y � R

m, (23.2)

where d represents a disturbance and nmeasurement noise. Since neither d nor n are known, solving
(23.2) for x no longer yields a unique solution, since essentially any state value could explain the
measured output for sufficiently large noise and disturbances.

Minimum-energy estimation (MEE) consists of finding a state trajectory

�̄x� Ax̄�Bu� B̄d, y�Cx̄�n, x̄ � R
n, u � R

k, d � R
q, y � R

m (23.3)

that starts at rest as t �� and is consistent with the past measured output y and control signal u for
Note 14. In particular, we assume
that x̄�t�� 0 and y�t�� 0, as t�
��.

the least amount of noise n and disturbance d, measured by

JMEE�
� t

��
n�τ��Qn�τ��d�τ��Rd�τ�dτ, (23.4)

where Q � R
m�m and R � R

q�q are symmetric positive-definite matrices. Once this trajectory has
been found, based on the data collected on the interval ���, t�, the minimum-energy state estimate
is simply the most recent value of x̄,

x̂�t� � x̄�t�.

The role of the matrices Q and R can be understood as follows.

1. When we choose Q large, we are forcing the noise term to be small, which means that we
“believe” in the measured output. This leads to state estimators that respond fast to changes
in the output y.

2. When we choose R large, we are forcing the disturbance term to be small, which means that
we “believe” in the past values of the state estimate. This leads to state estimators that respond
cautiously (slowly) to unexpected changes in the measured output.
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23.2.1 Solution to the MEE Problem
The MEE problem is solved by minimizing the quadratic cost

JMEE �
� t

��

�
Cx̄�τ�� y�τ���Q�Cx̄�τ�� y�τ���d�τ��Rd�τ�dτ

for the system (23.3) by appropriately choosing the disturbance d���. We shall see in Section 23.2.2
that this minimization can be performed using arguments like the ones used to solve the LQR prob-
lem, leading to the following result.

Theorem 23.1 (Minimum-energy estimation). Assume that there exists a symmetric positive-definite
solution P to the following ARE

��A��P�P��A��C�QC�PB̄R�1B̄�P� 0, (23.5)

for which �A� B̄R�1B̄�P is a stability matrix. Then the MEE estimator for (23.2) for the criteria Note. The reader may recall that
we had proposed a state estimator
of this form in Lecture 16, but had
not shown that it was optimal.

(23.4) is given by

�̂x� �A�LC�x̂�Bu�Ly, L� P�1C�Q. (23.6)

23.2.2 Proof of the MEE Theorem
Due to the exogenous term y�τ� in theMEE criteria, we need a more sophisticated feedback invariant
to solve this problem.

Proposition 23.1 (Feedback invariant). Suppose that the input u��� � R
k and output y��� � R

m to
(23.3) are given up to some time t � 0. For every symmetric matrix P, differentiable signal β :
���, t� � R

n, and scalar H0 that does not depend on d��� and x̄���, the functional Note. Although H0 must not
depend on d��� and x̄���, it may
depend on u��� and y���, since
these variables are given and are
not being optimized.

Note. Here, by feedback invari-
ant we mean that the value of
H
�
x̄���;d���� does not depend on

the disturbance signal d��� that
needs to be optimized.

H
�
x̄���;d����� H0��

t

��

��
Ax̄�τ��Bu�τ�� B̄d�τ�� �β�τ���P�x̄�τ��β �τ��

� �x̄�τ��β �τ���P�Ax̄�τ��Bu�τ�� B̄d�τ�� �β�τ���dτ� �x̄�t��β �t���P�x̄�t��β �t��
is a feedback invariant for (23.3), as long as limτ���

�
x̄�τ��β �τ��� 0. �

Proof of Proposition 23.1. We can rewrite H as

H
�
x̄���;d���� � H0�

� t

��

��
�̄x�τ�� �β�τ���P�x̄�τ��β �τ��

� �x̄�τ��β �τ���P� �̄x�τ�� �β�τ���dτ� �x̄�t��β �t���P�x̄�t��β �t��
� H0��

t

��

d
�
x̄�τ��β �τ���P�x̄�τ��β �τ��

dτ
dτ� �x̄�t��β �t���P�x̄�t��β �t��

� H0� lim
τ���

�
x̄�τ��β �τ���P�x̄�τ��β �τ��� H0,

as long as limτ���
�
x̄�τ��β �τ��� 0.

If we now add and subtract this feedback invariant to our JMEE criterion, we obtain Note. To keep the formulas short,
we do not explicitly include the
dependency on τ for the signals
inside the integral.

JMEE � H
�
x̄���;d�����H0�

�
x̄�t��β �t���P�x̄�t��β �t��

�
� t

��

�
x̄���A�P�PA�C�QC�x̄� y�Qy�2β�P�Bu� �β�



204 João P. Hespanha

�2x̄���A�Pβ �PBu�C�Qy�P �β��d�Rd�2d�B̄�P�x̄�β ��dτ.
In preparation for a minimization with respect to d, we complete the square to combine all the terms
that contain d into a single quadratic form, which, after tedious manipulations, eventually leads to

JMEE � H
�
x̄���;d�����H0�

�
x̄�t��β �t���P�x̄�t��β �t���� t

��

�
x̄���A�P�PA�C�QC�PB̄R�1B̄�P�x̄

�2x̄����A�P�PBR�1B̄�P�β �PBu�C�Qy�P �β�� y�Qy�2β�P�Bu� �β��β�PB̄R�1B̄�Pβ

� �d�R�1B̄�P�x̄�β ���R�d�R�1B̄�P�x̄�β ���dτ. (23.7)

Suppose now that we pick

1. the matrix P to be the solution to the ARE (23.5),

2. the signal β to satisfy

P �β �� �A�P�PB̄R�1B̄�P�β �PBu�C�Qy� 0
� �β � �A�P�1C�QC�β �Bu�P�1C�Qy, (23.8)

initialized so that limτ��� β �τ� � 0, and
3. the scalar H0 given byNote. Since β depends only on

u��� and y���, the scalar H0 also
depends only on these signals, as
stated in Proposition 23.1. H0�

� t

��

�
y�Qy�2β�P�Bu� �β��β�PB̄R�1B̄�Pβ

�
dτ.

In this case, (23.7) becomes simply

JMEE � H
�
x̄���;d����� �x̄�t��β �t���P�x̄�t��β �t��

�
� t

��

�
d�R�1B̄�P�x̄�β ���R�d�R�1B̄�P�x̄�β ��dτ,

which, since H
�
x̄���;d���� is a feedback invariant, shows that JMEE can be minimized by selecting
x̄�t� � β �t�, d�τ� � R�1B̄�P

�
x̄�τ��β �τ��, �τ � t.

These choices, togetherwith the differential equation (23.3), completely define the optimal trajectory
x̄�τ�, τ � t that minimizes JMEE. Moreover, (23.8) computes exactly the MEE x̂�t� � x̄�t� � β �t� atNote. It is very convenient that

equation (23.8), which generates
β���, does not depend on the fi-
nal time t at which the estimate is
being computed. Because of this,
we can continuously obtain from
this equation the current state es-
timate x̂�t� � β�t�.

the final time t. Note that under the choice of d�τ�, �τ � t, we conclude from (23.3) and (23.8) that

� �̄x� �β� � � �Ax̄���Bu� B̄R�1B̄�P
�
x̄�β

���A�P�1C�QC�β �Bu�P�1C�Qy

�A B̄R�1B̄�P��x̄�β ��P�1C�Q�Cβ � y�.

Therefore x̄�β � 0 as t � � �, because �A� B̄R�1B̄�P is a stability matrix, as stated in Proposi-
Note. Recall that
(cf. Note 14, p. 202) and also that

y � 0

β � 0 as t ���.

tion 23.1.

23.2.3 Dual Algebraic Riccati Equation
In Lecture 21, we studied the solution to ARE’s of the formNote. We are considering here

(21.1) with N � 0.
A�P�PA�Q�PBR�1B�P� 0, (23.9)

for which we wanted A�BR�1B�P to be a stability matrix. To determine conditions for the existence
of an appropriate solution to the new ARE (23.5), it is convenient to left- and right-multiply this
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called the dual algebraic Riccati equation,
equation by S � P�1 and then multiply it by �1. This procedure yields an equivalent equation

AS�SA�� B̄R�1B̄��SC�QCS � 0. (23.10)

The gain L can be written in terms of the solution S to the dual ARE as L� SC�Q.

To solve the MEE problem, one needs to find a symmetric positive-definite solution to the dual
ARE for which �A� B̄R�1B̄�S�1 is a stability matrix. The results in Lecture 21 provide conditions
for the existence of an appropriate solution to the dual ARE (23.5):

Theorem 23.2 (Solution to the dual ARE). Assume that the pair �A, B̄� is controllable and that the
pair �A,C� is detectable. Note. See Exercise 23.1 for an

alternative set of conditions that
also guarantees a solution to the
dual ARE.

is a stability matrix.1. There exists a symmetric positive-definite solution S to the dual ARE (23.10), for which A�LC

2. There exists a symmetric positive-definite solution P � S�1 to the ARE (23.5), for which
�A� B̄R�1B̄�P��A� B̄R�1B̄�S�1 is a stability matrix.

�

following facts:Proof of Theorem 23.2. Part 1 is a straightforward application of Theorem 21.2 for N � 0 and the

1. The stabilizability of �A�,C�� is equivalent to the detectability of �A,C�,

2. the observability of �A�, B̄�� is equivalent to the controllability of �A, B̄�, and

3. A��C�L� is a stability matrix if and only if A�LC is a stability matrix.

The fact that P� S�1 satisfies (23.5) has already been established from the construction of the dual
ARE (23.10). To prove part 2, it remains to show that �A� B̄R�1B̄�S�1 is a stability matrix. To
do this, we rewrite (23.10) as

��A� B̄R�1B̄�S�1�S�S��A��S�1B̄R�1B̄�� � �Y, Y � SC�QCS� B̄R�1B̄�

.

The stability of �A� B̄R�1B̄�S�1 then follows from the Lyapunov stability theorem 12.5,
because the pair ��A� B̄R�1B̄�S�1,Y � is controllable.

Note. Cf. Exercise 23.2

23.2.4 Convergence of the Estimates

The MEE estimator is often written as

ˆ�̂x� Ax̂�Bu�L�y� y�, ŷ�Cx̂, L� SC�Q. (23.11)

Defining the state estimation error e� x� x̂, we conclude from (23.11) and (23.2) that

�e� �A�LC�e� B̄d�Ln.

Since A� LC is a stability matrix, we conclude that, in the absence of measurement noise and
disturbances, e�t� � 0 as t �� and therefore �x�t�� x̂�t��� 0 as t � �.

In the presence of noise, we have BIBO stability from the inputs d and n to the “output” e, so Note. Why? Because the poles of
the transfer matrices from d and n
to e are the eigenvalues of A�LC.

x̂�t� may not converge to x�t�, but at least does not diverge from it.
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23.3 Stochastic Linear Quadratic Gaussian (LQG) Estimation
The MEE introduced before also has a stochastic interpretation. To state it, we consider again the
continuous-time LTI system

�x� Ax�Bu� B̄d, y�Cx�n, x � R
n, u � R

k, d � R
q, y � R

m,

but now assume that the disturbance d and the measurement noise n are uncorrelated zero-mean
Gaussian white-noise stochastic processes with covariance matrices

E�d�t�d��τ��� δ �t� τ�R�1, E�n�t�n��τ��� δ �t� τ�Q�1, R,Q� 0. (23.12)

The MEE state estimate x̂�t� given by equation (23.6) in Section 23.2 also minimizes the asymptoticNote. In this context, the esti-
mator (23.6) is usually called a
Kalman filter.

norm of the estimation error,

MATLAB R� Hint 46. kalman
computes the optimal MEE/LQG
estimator gain L. � p. 211

JLQG� lim
t��E��x�t�� x̂�t��2�.

This is consistent with what we saw before regarding the roles of the matrices Q and R in MEE:

1. A large Q corresponds to little measurement noise and leads to state estimators that respond
fast to changes in the measured output.

2. A large R corresponds to small disturbances and leads to state estimates that respond cau-
tiously (slowly) to unexpected changes in the measured output.

23.4 LQR/LQG Output Feedback

We now go back to the problem of designing an output feedback controller for the continuous-time
LTI process

�x���Ax���Bu� B̄d, x � R
n, u � R

k, d � R
q, (23.13a)

y Cx n, y,n � R
m, (23.13b)

z� Gx�Hu, z � R
�. (23.13c)

Suppose that we designed a state feedback controller

u��Kx (23.14)

that solves an LQR problem and constructed an LQG/MEE state estimator

�̂x� �A�LC�x̂�Bu�Ly.

We can obtain an output feedback controller by using the estimated state x̂ in (23.14), instead of the
MATLAB R� Hint 47.
reg(sys,K,L) computes the
LQG/LQR positive output feed-
back controller for the process
sys with regulator gain K and
estimator gain L. � p. 211

true state x. This leads to the output feedback controller

�̂x� �A�LC�x̂�Bu�Ly� �A�LC�BK�x̂�Ly, u��Kx̂, (23.15)

ˆ

with negative-feedback transfer matrix given by

C�s� � K�sI�A�LC�BK��1L.

This is usually known as an LQG/LQR output feedback controller. Since both A�BK and A�LC
are stability matrices, the separation principle (cf. Theorem 16.10 and Exercise 23.3) guarantees
that this controller makes the closed-loop system asymptotically stable.
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23.5 Loop Transfer Recovery (LTR)
We saw in Lecture 22 that a state feedback controller

u��Kx

for the process (23.13) has desirable robustness properties and that we can even shape its open-loop
gain

L̂�s� � K�sI�A��1B

by appropriately choosing the LQR weighting parameter ρ and the controlled output z.

Suppose now that the state is not accessible and that we constructed an LQG/LQR output feed-
back controller with negative-feedback transfer matrix given by

Ĉ�s� � K�sI�A�LC�BK��1L,

where L� SC�Q and S is a solution to the dual ARE Note. This ARE would arise from
the solution to an MEE problem
with cost (23.4) or an LQG prob-
lem with disturbance and noise
satisfying (23.12).

AS�SA�� B̄R�1B̄��SC�QCS � 0,

for which A�LC is a stability matrix.

In general there is no guarantee that LQG/LQR controllers will inherit the open-loop gain of the
original state feedback design. However, for processes that do not have transmission zeros in the
closed right-hand side complex plane, one can recover the LQR open-loop gain by appropriately
designing the state estimator.

Theorem 23.3 (Loop transfer recovery). Suppose that the transfer matrix

P̂�s��C�sI�A��1B

from u to y is square (k� m) and has no transmission zeros in the closed right half-plane. Selecting Note. B̄�B corresponds to an in-
put disturbance, since the process
becomes �x� Ax�B�u�d�.B̄� B, R� I, Q� σ I, σ � 0,

the open-loop gain for the output feedback LQG/LQR controller converges to the open-loop gain for
the LQR state feedback controller over a range of frequencies �0,ωmax� as we make σ � � �, i.e., Note. In general, the larger ωmax

is, the larger σ needs to be for the
gains to match.

MATLAB R� Hint 48. In
terms of the input parame-
ters to the kalman function,
this corresponds to making
QN � I and RN � σ̄ I, with
σ̄ � 1�σ � 0. � p. 211

C� jω�P� jω� σ � � ������������ L̂� jω�, �ω � �0,ωmax�. �

Attention! The following items should be kept in mind regarding Theorem 23.3.

1. To achieve loop-gain recovery, we need to chose Q� σ I, regardless of the noise statistics.

2. One should not make σ larger than necessary, because we do not want to recover the (slow)
�20 dB/decade magnitude decrease at high frequencies. In practice we should make σ just
large enough to get loop recovery until just above or at cross-over. For larger values of ω , the
output feedback controller may actually behave much better than the state feedback one.

3. When the process has zeros in the right half-plane, loop-gain recovery will generally work
only up to the frequencies of the nonminimum-phase zeros.
When the zeros are in the left half-plane but close to the axis, the closed loop system will not
be very robust with respect to uncertainty in the position of the zeros. This is because the
controller will attempt to cancel these zeros. �
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23.6 Optimal Set-Point Control
Consider again the continuous-time LTI process

�x� Ax�Bu, z� Gx�Hu, x � R
n, u � R

k, z � R
�, (23.16)

but suppose that now one wants the controlled output z to converge as fast as possible to a given
nonzero constant set-point value r, corresponding to an equilibrium point �xeq,ueq� of (23.16) for
which z� r. This corresponds to an LQR criterion of the form

JLQR�
� �
0

z̃�t�� ˜ ˜Q̄z̃�t��ρ u�t��R̄u�t� dt, (23.17)

where z̃� z� r, ũ� u�ueq.

Such equilibrium point �xeq,ueq� must satisfy the equationNote. For � � 1, we can take
ueq � 0 when the matrix A has
an eigenvalue at the origin, and
this mode is observable through z
(cf. Exercise 23.6)

�
Axeq�Bueq � 0
r � Gxeq�Hueq

�
����A B

G H

�
�n�����n�k�

��xeq

ueq

�� �0
r

�
. (23.18)

To understand when these equations have a solution, three distinct cases should be considered.

1. When the number of inputs k is strictly smaller than the number of controlled outputs �, we
have an underactuated system. In this case, the system of equations (23.18) generally does
not have a solution, because it presents more equations than unknowns.

2. When the number of inputs k is equal to the number of controlled outputs �, (23.18) alwaysAttention! This Rosenbrock’s
matrix is obtained by regarding
the controlled output z as the only
output of the system.

has a solution as long as Rosenbrock’s system matrix

P�s��
�
sI�A B
�G H

�
is nonsingular for s� 0. This means that s� 0 should not be an invariant zero of the system,Note. Recall that a transmission

zero of a transfer matrix is always
an invariant zero of its state-space
realizations (cf. Theorem 19.2).

and therefore it cannot also be a transmission zero of the transfer matrix G�sI�A��1B�H.

Intuitively, one should expect problems when s� 0 is an invariant zero of the system, because
when the state converges to an equilibrium point, the control input u�t� must converge to a
constant. By the zero-blocking property, one should then expect the controlled output z�t� to
converge to zero and not to r.

3. When the number of inputs k is strictly larger than the number of controlled outputs �, we
have an overactuated system, and (23.18) generally has multiple solutions.

When P�0� is full row-rank, i.e., when it has n� � linearly independent rows, the �n� ���
�n� ��matrix P�0�P�0�� is nonsingular, and one solution to (23.18) is given byNote. We shall confirm in Exer-

cise 23.4 that (23.19) is indeed a
solution to (23.18).

Note. P�0���P�0�P�0����1 is
called the pseudoinverse of P�0�
(cf. Definition 17.2).

�
ueq
�xeq

�� P�0���P�0�P�0����1
�
0
r

�
. (23.19)

Also in this case, s� 0 should not be an invariant zero of the system, because otherwise P�0�
cannot be full rank.

23.6.1 State Feedback: Reduction to Optimal Regulation
The optimal set-point problem can be reduced to that of optimal regulation by considering an auxil-
iary system with state x̃� x� xeq, whose dynamics are

�̃x� Ax�Bu� A�x� xeq��B�u�ueq���Axeq�Bueq�
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˜ ˜

The last terms on each equation cancel because of (23.18), and we obtain

z̃� Gx�Hu� r� G�x� xeq��H�u�ueq���Gxeq�Hueq� r�.

�̃x� Ax̃�Bu, z̃� Gx̃�Hu. (23.20)

We can then regard (23.17) and (23.20) as an optimal regulation problem for which the optimal
solution is given by

ũ�t� � �Kx̃�t�,
as in Theorem 20.1. Going back to the original input and state variables u and x, we conclude that
the optimal control for the set-point problem defined by (23.16) and (23.17) is given by

u�t� � �K
�
x�t�� xeq

��ueq, t � 0. (23.21)

Since the solution to (23.18) can be written in the form Note. As seen in Exercise 23.6,
the feed-forward term Nr is ab-
sent when the process has an in-
tegrator.

xeq � Fr, ueq � Nr,

for appropriately defined matrices F and N, this corresponds to the control architecture in Fig-
ure 23.2.

−+ +

+r

x

xeq
z

u

ueq

�x� Ax�BuKF

N

Figure 23.2. Linear quadratic set-point control with state feedback

Closed-loop transfer matrices. To determine the transfer matrix from the reference r to the con-
trol input u, we use the diagram in Figure 23.2 to conclude that

ˆ ˆu� Nr̂�KFr̂�K�sI�A��1Bu � û� �
I� L̂�s���1�N�KF�r̂, (23.22)

ˆ

conclude the following:
where L̂�s��K�sI�A��1B is the open-loop gain of the LQR state feedback controller. We therefore

1. When the open-loop gain L̂�s� is small, we essentially have
u� �N�KF�r̂.

Since at high frequencies L̂�s� falls at �20 dB/decade, the transfer matrix from r to u will Note. N�KF is always nonzero,
since otherwise the reference
would not affect the control input
[cf. (23.22)].

ˆ

always converge to N�KF � 0 at high frequencies.
2. When the open-loop gain L̂�s� is large, we essentially have

u� L̂�s��1�N�KF�r̂.
To make this transfer matrix small, we need to increase the open-loop gain L̂�s�.

The transfer matrix from r to the controlled output z can be obtained by composing the transfer
matrix from r to u just computed with the transfer matrix from u to z,

ẑ� T̂ �s��I� L̂�s���1�N�KF�r̂,
where T̂ �s�� G�sI�A��1B�H. We therefore conclude the following:
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1. When the open-loop gain L̂�s� is small, we essentially have

ẑ� T̂ �s��N�KF�r̂,

and therefore the closed-loop transfer matrix mimics that of the process.

2. When the open-loop gain L̂�s� is large, we essentially have

ẑ� T̂ �s�L̂�s��1�N�KF�r̂.

Moreover, from Kalman’s equality, we also have �L̂� jω��� 1�ρ�T̂ � jω�� when �L̂� jω��� 1,
R� ρI, and H � 0 (cf. Section 22.3). In this case, we obtainNote. Since z converges to a con-

stant r, we must have ���ẑ�0�� �
�r̂�0��. Therefore when L̂�0���
1, we must have �N�KF� ��ρ . �ẑ� jω��� �N�KF

                                      ��ρ
� r̂� jω��,

which shows a flat Bode plot from r to z.

23.6.2 Output Feedback
When the state is not accessible, we need to replace (23.21) by

u�t� � �K
�
x̂�t�� xeq

��ueq, t � 0, (23.23)

where x̂ is the state estimate produced by an LQG/MEE state estimator

�̂x� �A�LC�x̂�Bu�Ly� �A�LC�BK�x̂�BKxeq�Bueq�Ly. (23.24)

Defining x̄� xeq� x̂ and using the fact that Axeq�Bueq � 0, we conclude that
Note 15. One could implement
the set-point controller as in
(23.23)–(23.24), but generally
this is a bad idea. � p. 210

�̄x�� �A�LC�BK�x̂��A�BK�xeq�Ly� �A�LC�BK�x̄�L�y�Cxeq�.

This allows us to rewrite the equations for the LQG/LQR set-point controller as
Note. When z � y, we have G ���
C, H � 0, and in this case Cxeq
r. This corresponds to CF � 1
in Figure 23.3. When the pro-
cess has an integrator, we get
N � 0 and obtain the usual unity-
feedback configuration.

�̄x� �A�LC�BK�x̄�L�y�Cxeq�, u� Kx̄�ueq, (23.25)

which corresponds to the control architecture shown in Figure 23.3.

+ − +

+r

y

Cxeq
z

u

ueq

�x���Ax�Bu

y Cx

�̄x��� �A�LC�BK�x̄�Lv

u Kx̄
CF

N

Figure 23.3. LQG/LQR set-point control

Note 15. One could implement the output-feedback set-point controller as in (23.23)–(23.24), but
generally this is a bad idea since this controller exhibits a direct feed-through term from the ref-
erence (and measurement noise) to the control signal, allowing high frequency noise to reach the
actuation signal. Because of this, the controller implementation in (23.25) is generally preferred.
Note that, in the absence of measurement noise and for a constant reference, both implementations
are similar. �
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Closed-loop transfer matrices. The closed-loop transfer matrices from the reference r to the
control input u and controlled output z are now given by

û� �
I�Ĉ�s�P̂�s���1�N�Ĉ�s�CF�r̂,

ŷ� T̂ �s��I�Ĉ�s�P̂�s���1�N�Ĉ�s�CF�r̂,
where

Ĉ�s�� K�sI�A�LC�BK��1L, P̂�s��C�sI�A��1B.
When LTR succeeds, i.e., when

Ĉ� jω�P̂� jω� � L̂� jω�, �ω � �0,ωmax�,
the main difference between these and the formulas seen before for state feedback is that the matrix
N�KF multiplying by r̂ has been replaced by the transfer matrix N�Ĉ�s�CF .

When N � 0, this generally leads to smaller transfer matrices when the loop gain is low, because
we now have

û� Ĉ�s�CFr̂, ŷ� T̂ �s�Ĉ�s�CFr̂,

and Ĉ�s� falls at least at �20 dB/decade.

23.7 LQR/LQG with MATLAB R�

MATLAB R� Hint 46 (kalman). The command [est,L,P]=kalman(sys,QN,RN) computes the
optimal LQG estimator gain for the process Note. As discussed in Sec-

tion 23.3, this LQG estimator
is also an MEE estimator with
cost (23.4), where Q � RN�1

and R � QN�1 (pay attention to
the inverses and the exchange
between Qs and Rs).

�x� Ax�Bu�BBd, y� Cx�n,

where d�t� and n�t� are uncorrelated zero-mean Gaussian noise processes with covariance matrices
E
�
d�t�d��τ��� δ �t� τ�QN, E

�

ˆ

n�t�n��τ��� δ �t� τ�RN.
The variable sys should be a state-space model created using sys=ss(A,[B BB],C,0). This com-
mand returns the optimal estimator gain L, the solution P to the corresponding algebraic Riccati
equation, and a state-space model est for the estimator. The inputs to est are �u; y�, and its outputs
are �y; x̂�. Note. See Example 23.1.

For loop transfer recovery (LTR), one should set

BB� B, QN� I, RN� σ I, σ � 0. �

MATLAB R� Hint 47 (reg). The function reg(sys,K,L) computes a state-space model for a posi-
tive output feedback LQG/LQR controller for the process with state-space model syswith regulator
gain K and estimator gain L. �

23.8 LTR Design Example
Example 23.1 (Aircraft roll dynamics, continued). Figure 23.4(a) shows Bode plots of the open-
loop gain for the state feedback LQR state feedback controller versus the open-loop gain for several
output feedback LQG/LQR controllers obtained for the aircraft roll dynamics in Example 22.1. The
LQR controller was designed using the controlled output z�

�
θ γ �θ

��, with γ � 0.1 and ρ � 0.01
(see Example 22.1). For the LQG state estimators, we used the parameters for the loop transfer
recovery theorem 23.3: B̄� B, R� 1, and Q� σ for several values of σ in the MEE cost (23.4) [or
the corresponding LQG disturbance and noise (23.12)].
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Figure 23.4. Bode plots of the open-loop gain and closed-loop step response for the LQR controllers in
Example 23.1.

The matrix gain L, the LQG/LQR output feedback controller, and the corresponding Bode plot
of the open-loop gain can be computed using the following sequence of MATLAB R� commands.

MATLAB R� Hint 49. See
MATLAB R� Hints 46 (p. 211)
and 47 (p. 211).

R=1; Q=sigma; % weight matrices

Pkal=ss(A,[B B],C,0); % process for the kalman() command

[est,L]=kalman(Pkal,inv(R),inv(Q));% compute LQG gain

P=ss(A,B,C,0); % process for the reg() command

Cs=-reg(P,K,L); % LQG/LQR controller (negative feedback)

bode(Cs*P); % bode plot of the open-loop gain

We can see that, as σ increases, the range of frequencies over which the open-loop gain of the out-
put feedback LQG/LQR controller matches that of the state feedback LQR state feedback increases.
Moreover, at high frequencies the output feedback controllers exhibit much faster (and better!) de-
cays of the gain’s magnitude. �

23.9 Exercises
23.1 (Solution to the dual ARE). Assume that the pair ��A, B̄� is stabilizable and that the pair �A,C�Note. This result is less interest-

ing than Theorem 23.2, because
often �A,C� is not observable, just
detectable. This can happen when
we augmented the state of the sys-
tem to construct a “good” con-
trolled output z, but these aug-
mented states are not observable
through the measured output y.

is observable. Prove the following.

(a) There exists a symmetric positive-definite solution P to the ARE (23.5), for which �A�
B̄R�1B̄�P is a stability matrix.

(b) There exists a symmetric positive-definite solution S� P�1 to the dual ARE (23.10), for which
A�LC is a stability matrix �

23.2. Show that if the pair �A, B̄� is controllable, then the pair

��A� B̄R�1B̄�S�1,Y �, Y � SC�QCS� B̄R�1B̄�.

is also controllable for Q and R symmetric and positive-definite.

Hint: Use the eigenvector test. �
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23.3 (Separation principle). Verify that the LQG/LQR controller (23.15) makes the closed-loop
system asymptotically stable.

Hint: Write the state of the closed loop system in terms of x and e� x� x̂. �

23.4. Verify that a solution to (23.18) is given by (23.19).

Hint: Use direct substitution of the “candidate” solution into (23.18). �

23.5. Verify that the LQG/LQR set-point controller (23.25) makes the closed-loop system asymp-
totically stable.

Hint: Write the state of the closed-loop system in terms of x� xeq and e� x� x̂. �

23.6 (Set-point control with integrator). Show that for a single controlled output (�� 1), we can take
ueq � 0 in (23.18) when the matrix A has an eigenvalue at the origin and this mode is observable
through z. Note that in this case the process has an integrator. �
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Lecture 24

LQG/LQR and the Q
Parameterization

Contents
This lecture shows how a given LQG/LQR controller can be used to parameterize all feedback
controllers capable of stabilizing a given LTI system. This parameterization is subsequently used as
the basis for a control design method based on numerical optimization.

1. Q-augmented LQG/LQR controllers
2. Q parameterization of all stabilizing controllers

24.1 Q-Augmented LQG/LQR Controller
Consider a continuous-time LTI system of the form

�x� Ax�Bu, y�Cx, x � R
n, u � R

k, y � R
m, (CLTI)

where u is the control signal and y is the measured output. We saw in Lecture 23 that an LQG/LQR
output feedback controller is of the form

�̂x� �A�LC�x̂�Bu�Ly, u��Kx̂, (24.1)

where A�LC and A�BK are both stability matrices.

Suppose, however, that instead of (24.1) we use

�̂x� �A�LC�x̂�Bu�Ly, u��Kx̂� v, (24.2)

where v � R
k is the output of an asymptotically stable system driven by the output estimation error Notation. The system (24.3) is

often called the Q system and the
overall controller is called a Q-
augmented LQG/LQR controller.

ỹ� y�Cx̂ � R
m:

�xQ � AQxQ�BQỹ, v�CQxQ�DQỹ, ỹ � R
m, v � R

k, (24.3)

with AQ a stability matrix. We can rewrite (24.2) and the output estimation error as

�̂x��� �A�LC�BK�x̂�Ly�Bv, (24.4a)
u ���Kx̂���v, (24.4b)
ỹ� Cx̂ y, (24.4c)

which corresponds to the negative-feedback control architecture shown in Figure 24.1. We shall see Note. When the transfer matrix of
(24.3) is equal to zero, we recover
the original LQG/LQR controller.

shortly that the resulting Q-augmented LQG/LQR controller defined by (24.3)–(24.4) still stabilizes
the original process (CLTI).

215
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−

y

u

ỹ

�y

v

�x���Ax�Bu

y Cx

�xQ ���AQxQ�BQỹ

v CQx�DQỹ

�x̂��� �A�LC�BK�x̂�L��y��Bv

u ���Kx̂� v

ỹ� Cx̂���y�

Figure 24.1. Q-augmented LQG/LQR controller.

24.2 Properties
The Q-augmented LQG/LQR controller (24.3)–(24.4) has several important properties, which are
explored below.

AQ are all stability matrices. Properties (Q-augmented LQG/LQR controller). Assume that the

matrices A� LC, A�BK, and

P24.1 Consider the interconnection of the process (CLTI) with the system (24.4), taking v as the
input and ỹ as the output. The transfer matrix from v to ỹ is equal to zero.

Attention! In this interconnec-
tion we are excluding the subsys-
tem (24.3). Proof. The output estimation error can be written as

ỹ� y�Cx̂�C�x� x̂�.

In the absence of noise and disturbances, and because A�LC is a stability matrix, we saw inNote. When one includes noise
and disturbance in the process
equations, then e � x � x̂ and
ỹ do not converge to zero, but
both remain bounded as long
as the noise and disturbance are
bounded (cf. Section 23.2.4).

Lecture 23 that the state estimation error e� x� x̂ converges to zero for any process input
u. This means that, for every input signal v to the interconnection of (CLTI) with (24.4), its
output signal ỹ converges to zero. This is only possible if the transfer matrix from v to ỹ is
equal to zero.

P24.2 The controller (24.3)–(24.4) makes the closed-loop system asymptotically stable.

Proof. We have just seen that ỹ always converges to zero when one interconnects (CLTI) with
(24.4). Since ỹ is the input to (24.3) and AQ is a stability matrix, we conclude that the output
v to this system also converges to zero. We thus conclude that the Q-augmented controller
(24.3)–(24.4) has the same asymptotic behavior as the original LQG/LQR controller (24.1).Attention! In the absence of a

reference signal, measurement
noise, and disturbances, the
Q-augmented controller results
in the same asymptotic closed-
loop behavior as the original
one. However, the two may
lead to completely different
transients, as well as different
closed-loop transfer matrices
from noise/disturbances to the
output.

In particular, all signals converge to zero, which means that the closed-loop system must be
asymptotically stable.

To study the closed-loop transfer matrices obtained with the Q-augmented controller, we now
add inputs and outputs to the feedback control loop in Figure 24.1:

1. a vector w�t� of exogenous inputs that may include, e.g., a reference signal r�t�, measurement
noise n�t�, and/or a disturbance signal d�t�, and

2. a vector z�t� of controlled outputs that may include, e.g., the process output, a tracking error,
Attention! This vector of con-
trolled outputs need not be the
same used in the LQR criterion.

and/or the control input.

Figure 24.2 contains an example of the resulting closed-loop system.

Stacking the states x and x̂ of the process and state estimator, respectively, into a single column
vector x̄, we can write the resulting closed-loop dynamics in state-space form as

�̄x� ¯ w
Ax̄� B̄

�
v

�
,

�
z
ỹ

��

C̄x̄� D̄
�
w
v

�
, (24.5)
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+

+

+
+

+ y
u

ỹv

z
w

r
d n

eT
�x���Ax�Bu

y Cx

�xQ ���AQxQ�BQỹ

v CQx�DQỹ

�x̂��� �A�LC�BK�x̂�LeT �Bv

u ���Kx̂� v

ỹ� Cx̂� eT

Figure 24.2. Q-augmented LQG/LQR controller with an exogenous input vector w�t� containing a reference
signal r�t�, an additive disturbance d�t� to the control input, and additive measurement noise n�t�. The con-
trolled output z�t� contains the process output y�t� and the tracking error eT �t�.

�xQ � AQxQ�BQỹ, v�CQxQ�DQỹ. (24.6)

We can view (24.5) as an LTI system with input vector �w� v��� and output vector �z� ỹ���, whose
transfer matrix can be partitioned as�

ˆ
ẑ
y

�� �
P̂zw���s��� P̂zv�s�
P̂ỹw s 0

��
ŵ
v̂

�
,

�
P̂zw���s��� P̂zv�s�
P̂ỹw s 0

�
� ¯C̄�sI�A��1B̄� D̄, (24.7)

ˆ

where ẑ, ŷ,ˆw, and v̂ denote the Laplace transforms of z, ỹ, w, and v, respectively. Because of P24.1,
the transfer matrix from v to ỹ is equal to zero, which explains the zero in the bottom right corner of
the transfer matrices in (24.7).

Properties (Q-augmented LQG/LQR controller, continued).

to the transfer matrix from w to z obtained with the original LQG/LQR controller.P24.3 The transfer matrices P̂zw�s�, P̂zv�s�, and P̂ỹw�s� are all BIBO stable. Moreover, P̂zw�s� is
equal

Proof. When v� 0, the Q-augmented controller reverts to the original LQG/LQR controller,
and therefore (24.5) with v� 0 corresponds precisely to the closed-loop system obtained with
the original controller.

Since the original controller asymptotically stabilizes the process, this means that Āmust be
a stability matrix. Therefore all the transfer matrices P̂zw�s�, P̂zv�s�, and P̂ỹw�s� are BIBO

stable.

equal to the transfer matrix from w to z for the original controller.

input w to the controlled output z is given by Moreover, when v� 0 we have ẑ� P̂zw�s�w,

and therefore the transfer matrix P̂zw�s� must beP24.4 With the Q-augmented controller, the closed-loop transfer matrix T̂ �s� from the exogenous

T̂ �s� � P̂zw�s�� P̂zv�s�Q̂�s�P̂ỹw�s�, (24.8)

ˆ

where Q̂�s��CQ�sI�AQ��1BQ�DQ is the (BIBO stable) transfer matrix of (24.6).

Proof. From (24.6) and (24.7) we conclude that

ẑ� P̂zw�s�w� P̂zv�s�v̂, ˆ ˆy� P̂ỹw�s�w, v̂� ˆQ̂�s�y.
Therefore

ˆ ˆẑ� P̂zw�s�w� P̂zv�s�Q̂�s�P̂ỹw�s�w,
which confirms that the transfer matrix from w to z is indeed given by (24.8).
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24.3 Q Parameterization
We just saw in P24.2 that the controller (24.3)–(24.4) stabilizes the closed loop for every LTI asymp-
totically stable LTI system (24.3). It turns out that this controller architecture has several other
important properties, summarized in the following result:

matrices.
Theorem 24.1 (Q parameterization). Assume that the matrices A� LC and A�BK are stability

1. The controller (24.3)–(24.4) makes the closed-loop system asymptotically stable for every
stability matrix AQ.

2. The closed-loop transfer function T̂ �s� from any given exogenous input signal to any givenNote. Different inputs and out-
puts will correspond to different
transfer matrices T̂0�s�, L̂�s�, and
R̂�s� but the closed-loop transfer
matrices will always be affine in
Q̂�s�.

controlled output can always be written as

T̂ �s� � T̂0�s�� L̂�s�Q̂�s�R̂�s�, (24.9)

where Q̂�s�� CQ�sI�AQ��1BQ �DQ is the (BIBO stable) transfer function of (24.3) and
T̂0�s�, L̂�s�, and R̂�s� are BIBO stable transfer matrices.

3. For every controller transfer function Ĉ�s� that asymptotically stabilizes (CLTI), there existAttention! This realization will
generally not be minimal, but
it is always stabilizable and de-
tectable.

matrices AQ, BQ, CQ, and DQ, with AQ a stability matrix, such that (24.3)–(24.4) is a realiza-
tion of Ĉ�s�. �

The items 1 and 2 are just restatements of the properties P24.2 and P24.4, respectively, but the
new item 3 is nontrivial. The proof of this result can be found, e.g., in [6, Chapter 5].

Theorem 24.1 states that one can construct every controller that stabilizes an LTI process and
every stable closed-loop transfer matrix by Q-augmenting any given LQG/LQR controller by al-
lowing Q̂�s� to range over the set of all BIBO stable transfer matrices with m inputs and k outputs.
Because of this, we say that (24.3)–(24.4) provides a parameterization of all stabilizing controllers
for the process (CLTI) and also that (24.9) is a parameterization of the set of all stable closed-loop
transfer matrices for the process (CLTI).

24.4 Exercises
24.1 (Q-augmented LQG/LQR controller). Show that the controller (24.3)–(24.4) can be realized as�

�̂x
�xQ

�
�
�
A�LC���BK�BDQC BCQ

BQC AQ

��
x̂
xQ

�
�
�
L�BDQ

BQ

�
y

u� ��K�DQC CQ��
x̂
xQ

�
�DQy. �

f o r u m . k o n k u r . i n



Lecture 25

Q Design

Contents

This lecture describes a control design method based on the Q parameterization and numerical opti-
mization.

1. Control specifications for Q design
2. Q design feasibility problem
3. Finite-dimensional optimization: Ritz approximation
4. Q design using MATLAB R� and CVX
5. Q design example

25.1 Control Specifications for Q Design

The idea behind Q design is to take a controller that does not meet all the required specifications for
the closed-loop system and augment it so as to improve its performance. The original controller is
typically designed using LQG/LQR as discussed in Lecture 23, and it is then Q-augmented using
the architecture described in Lecture 24. The search for the Q parameter is done numerically.

Q design can address a wide range of closed-loop specifications, i.e., specifications that can Note. Specifications on
gain/phase margins and the
open-loop gain cannot be directly
addressed by Q design.

be expressed in terms of closed-loop responses or transfer functions. The basic feedback control
architecture is the one considered in Lecture 24 and depicted in Figure 24.2. It consists of

1. a continuous-time LTI system of the form
Note. For simplicity, in Fig-
ure 24.2 we consider an input
disturbance that is additive to the
control input, but more general
disturbances are also allowed
[e.g., as in (23.2)].

�x� Ax�Bu, y�Cx, x � R
n, u � R

k, y � R
m, (CLTI)

where u is the control signal, y is the measured output, d is an input disturbance, and n is the
measurement noise, and

2. a Q-augmented LQG/LQR controller

�̂x��� �A�LC�BK�x̂�LeT �Bv, u����Kx̂� v, ỹ��Cx̂� eT , (25.1a)
�xQ AQxQ�BQỹ, v CQxQ�DQỹ, (25.1b)

driven by the tracking error Note. A stable prefilter that would
be applied to the reference prior to
the subtraction by y would also be
allowed.

eT � r� y,

where r is a reference input.

219
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The matrix gains K and L should make the matrices A�BK and A� LC both stability matrices
and can be designed using the LQG/LQR control design methodology previously discussed. Before
addressing the design of the Q system, we review a few typical closed-loop specifications addressed
by Q design.

To express these specifications, it is convenient to stack all the exogenous inputs in a vector w
and all the controlled outputs of interest in a vector z, e.g.,

w� ��r
d

n��
, �z�

�
y
eY
u
�� .

Time domain specifications. Time domain specifications refer to desired properties of the closed-
loop response to specific exogenous inputs. Typical time domain specifications include the follow-
ing.

1. Norm bounds. For a given test exogenous input wtest�t�, t � 0, a vector z̄�t� containing one orNote. Typically, one needs to con-
sider multiple specifications, cor-
responding to different test inputs
and different entries of the con-
trolled output.

more entries of the controlled output z�t� should satisfy� �0
�z̄�t��dt � c (25.2)

or � �0
�z̄�t��2dt � c (25.3)

or

�z̄�t��� c, �t � 0 (25.4)

for a given constant c � 0. The specification given by (25.2) is generally called an L1 norm
bound, the one given by (25.3) is called an L2 norm bound, and the one given by (25.4) is
called an L� norm bound.

2. Interval bounds. For a given test exogenous input signal wtest�t�, t � 0, the ith entry zi�t� of
the controlled output z�t� should satisfy

smin�t� � zi�t� � smax�t�, �t � 0 (25.5)

for two given time functions smin�t� and smax�t�.
Interval-bound specifications can be used to impose undershoot, overshoot, and settling times
for a step response. In particular, if one selects wtest�t� to be a unit step at the reference input,
sets zi�t� to be the process output, and sets

smin�t� �
�
�punder t � tsettle
1� psettling t � tsettle,

smax�t� �
�
1���pover t � tsettle
1 psettling t � tsettle,

then the interval-bound specification (25.5) guarantees an overshoot no larger than pover, an
undershoot no larger than punder, and a settling time around 1� psettling no larger than tsettle.

Interval-bound specifications are also typically used to guarantee that the control signal does
not exceed safe ranges for typical exogenous inputs. In this case, wtest�t� should be the typi-
cal exogenous input, zi�t� should be the control signal, and the functions smin�t� and smax�t�
should be constants that define the safe range.
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Input-output specifications. Input-output specifications refer to desired properties of the closed-
loop transfer function from a given exogenous input to a given controlled output. Typical input-
output specifications include the following.

1. Frequency domain. The transfer function T̂ �s� from a vector w̄ containing one or more entriesNote. Typically, one needs to
consider specifications for
different transfer functions
between different entries of w
and z.

of the exogenous input w to a vector z̄ containing one or more entries of the controlled output
z should satisfy

�T̂ � jω��� ��ω�, �ω � �ωmin,ωmax�, (25.6)

for a given function ��ω�.
When ωmin � 0, ωmax ��, and ��ω� � γ , �ω � 0, this specification guarantees that�� �0

�z̄�t��2dt�
1
2 � γ��

�0
�w̄�t��2dt�

1
2
,

closed-loop system has zero initial conditions (see, e.g., [6]). In this case, it is said that the Notation. The root mean square

for every w̄�t�, t � 0 when all other entries of the exogenous input w are equal to zero and the
(RMS) gain is often also called
the H-infinity norm of the system.

closed-loop system has root mean square (RMS) gain from w̄ to z̄ no larger than γ .

of the exogenous input w to a vector z̄ containing one or more entries of the controlled

output 2. Impulse response. The impulse response h̄�t� from a vector w̄ containing one or
more entries

z should satisfy

� �0
�h̄�t��dt � ρ ,

for a given constant ρ .
This specification guarantees that

�z̄�t��� ρ sup
τ�0

�w̄�τ��, �t � 0

closed-loop system has zero initial conditions (see, e.g., [6]). In this case, it is said that the Notation. The peak gain is often
for every w̄�t�, t � 0 when all other entries of the exogenous input w are equal to zero and the

also called the L1 norm of the sys-
tem.

closed-loop system has peak gain from w̄ to z̄ no larger than ρ .

Attention! TheQ design method can accommodatemany control specifications not considered here,
e.g., specifications related to the closed-loop response to stochastic inputs. The reader is referred to
[2, Part III] for additional specifications. �

25.2 The Q Design Feasibility Problem
As we saw in Lecture 24, any closed-loop transfer function for the closed-loop (CLTI), (25.1) can
be written as

T̂ �s� � T̂0�s�� L̂�s�Q̂�s�R̂�s�, (25.7)

where

Q̂�s��CQ�sI�AQ��1BQ�DQ

BIBO stable transfer matrices. is the k�m BIBO stable transfer function of the Q system

(25.1b), and T̂0�s�, L̂�s�, and R̂�s� are

Given a family D1,D2, . . . ,DK of time domain and input-output closed-loop specifications, the
Q design method consists of finding a Q system that meets all the specifications, i.e.,

Notation. The statement in (25.8)
is called a feasibility problem,
since its goal is to determine
whether the given set of con-
straints is feasible, in the sense
that it can be satisfied by some
controller.



222 João P. Hespanha

find Q̂�s� BIBO stable (25.8a)

such that T̂0�s�� L̂�s�Q̂�s�R̂�s� satisfies D1,D2, . . . ,DK , (25.8b)

and then using this Q system to construct the Q-augmented LQG/LQR controller (25.1).

To devise efficient numerical procedures to solve the feasibility problem (25.8), it is convenient
for the specifications to be convex. A closed-loop control specification is said to be convex if, given
any two closed-loop transfer functions T̂1�s� and T̂2�s� that satisfy the constraint, the closed-loop
transfer functions

λT̂1�s���1�λ �T2�s�, �λ � �0,1�

also satisfy the constraint.

25.3 Finite-Dimensional Optimization: Ritz Approximation
The key difficulty in solving the feasibility problem (25.8) is that it involves a search over the set of
all BIBO stable transfer matrices. However, this problem can be converted into a numerical search
over a finite number of scalars, suitable for numerical optimization.

The Ritz approximation allows one to convert the infinite-dimensional search over the BIBO
stable transfer matrices into a search over a finite-dimensional space. To achieve this, one starts by
selecting a sequence of k�m BIBO stable transfer functions

Q̂1�s�, Q̂2�s�, . . . , Q̂i�s�, . . . ,

which should be complete in the sense that for every BIBO stable transfer function Q̂�s� there should
Note 16. A possible sequence
with this property is obtained
by selecting all entries of each
Q̂i�s� equal to zero, except for
one entry that is set to be of the
form

� α
s�α

��, � � 0 for some
fixed constant α � 0. � p. 223

be a finite linear combination of the Q̂i�s� arbitrarily close to Q̂�s�. One then restricts the search to
linear combinations of the first N matrices in the sequence; i.e., one restricts Q̂�s� to be of the form

Q̂�s��
N�
i�1

α i Q̂i�s�, α i �R. (25.9)

For this choice of Q̂�s�, the closed-loop transfer function (25.7) can be written as

T̂ �s� � T̂0�s��
N�
i�1

α i T̂i�s�, T̂i�s�� L̂�s�Q̂i�s�R̂�s�, (25.10)

and the feasibility problem (25.8) becomes to

find α1,α2, . . . ,αN �R (25.11a)

such that T̂0�s��
N�
i�1

α i T̂i�s� satisfies D1,D2, . . . ,DK . (25.11b)

If this problem is feasible, then one uses the correspondingQ system to construct the Q-augmented
LQG/LQR controller (25.1). Otherwise, the problem (25.11) may not be feasible for two reasons.

1. The original feasibility problem (25.8) has a solution, but not of the form (25.9). In this case,
one should increase N to enlarge the search space.

2. The original feasibility problem (25.8) has no solution. In this case one needs to relax one or
more specifications.
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Unfortunately, in general it is not possible to determine the cause for (25.11) to be infeasible, and
one simply tries to increase N until the resulting numerical optimization becomes computationally
intractable or until the order of the resulting Q-augmented controller would be unacceptable.

Note 16 (Complete Q sequence). A sequence that is complete in the sense that for every BIBO
stable transfer function Q̂�s� there exists a finite linear combination of the Q̂i�s� arbitrarily close to
Q̂�s� can be obtained by selecting all entries of each Q̂i�s� equal to zero, except for one entry that is
set to be of the form � α

s�α

� �

, �� 0,
for some fixed constant α � 0. This leads to the following sequence for the Q̂i�s�: Note. In general, one chooses the

pole α to fall within the range of
frequencies for which the closed-
loop response is expected to have
an “interesting behavior” (e.g.,
the closed-loop bandwidth from
reference to output or the inverse
of the dominant time constant of
the step response).
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25.4 Q Design using MATLAB R� and CVX
The Q design procedure can be implemented in MATLAB R� with the CVX toolbox using the fol-
lowing four steps, to be discussed next.

the Ritz approximation.
1. Construct the sequence Q̂1�s�, Q̂2�s�, � � � , Q̂N�s� of k�m BIBO stable transfer functions for

function using (25.10).
2. Determine the sequence T̂0�s�, T̂1�s�, � � � , T̂N�s� needed to compute the closed-loop transfer

3. Numerically solve the finite-dimensional convex feasibility problem (25.11).

4. Construct the Q-augmented LQG/LQR controller (25.1).

25.4.1 Q̂i�s� Sequence

can be constructed using the following sequence of MATLAB R� commands:
The sequence Q̂1�s�, Q̂2�s�, � � � , Q̂N�s� for the Ritz approximation considered in Note 16 (p. 223)

% Inputs:

% k - number of rows for the Qi(s)

% m - number of columns for the Qi(s)

% alpha - pole for the Qi(s) in the Ritz expansion

% q - maximum multiplicity for the Qi(s) poles in the Ritz expansion

% Output:

% Qi - cell array with Q1(s), Q2(s), ..., QN(s)

Qi = cell(1,k*m*(q+1));
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N = 0;

for ell = 0:q

for i = 1:k

for j = 1:m

N = N+1;

Qi{N} = ss(zeros(k,m));

Qi{N}(i,j) = (alpha/(tf(’s’)+alpha))^ell;

end

end

end

The output to this script is a cell array Qi with N elements, containing the k�m transfer functions
Q̂i�s�, i � 1 in the Note 16 (p. 223). The sequence contains transfer matrices with α

s�α raised to
powers from 0 to q.

25.4.2 T̂i�s� Transfer Functions

The transfer functions T̂i�s� in (25.11) can be computed directly using Simulink R�. To do
this, one starts by constructing a Simulink R� diagram with the process connected to the Q-
augmented LQG/LQR controller as in Figure 24.2. In this diagram, the exogenous inputs should
come from input ports, and the controlled outputs should be connected to output ports (see Figure
25.1). The Q system should be a Simulink R� state-space block with matrices AQ,BQ,CQ,DQ left
as MATLAB R�variables to be taken from the workspace. The T̂i�s� can then be constructed using
the following

u

3

eT 2

y

1

Q−system

x’ = Ax+Bu

 y = Cx+Du

Process

x’ = Ax+Bu

 y = Cx+Du

LQG/LQR controller

x’ = Ax+Bu

 y = Cx+Du

n 3d 2

r

1

Figure 25.1. Simulink R� diagram to compute the transfer functions T̂i�s�

sequence of MATLAB R� commands:
MATLAB R� Hint 50. When
using MATLAB R�/Simulink R�

to compute these transfer func-
tions, one generally does not
obtain minimal realization, so
one should use minreal(sys)

to remove unnecessary states
(cf. MATLAB R� Hint 36, p. 148).

% Inputs:

% k - number of rows for the Qi(s)

% m - number of columns for the Qi(s)

% Qi - cell array with Q1(s), Q2(s), ..., QN(s)

% Output:

% Ti - cell array with T0(s), T1(s), T2(s), ..., TN(s)

Ti = cell(length(Qi)+1,1); % initialize cell array

% compute T0(s)

[AQ,BQ,CQ,DQ] = ssdata(tf(zeros(k,m))); % set Q = 0 in simulink

[a,b,c,d] = linmod(’augmented_closedloop’); % get T0(s)

Ti{1} = minreal(ss(a,b,c,d)); % store T0

% compute T1(s), T2(s), ...

for i = 1:length(Qi)

[AQ,BQ,CQ,DQ]=ssdata(Qi{i}); % set Q = Qi in simulink

[a,b,c,d]=linmod(’augmented_closedloop’); % get T0(s) + Ti(s)

Ti{i+1}=minreal(ss(a,b,c,d)-Ti{1}); % store Ti(s)

end

The output to this script is a cell array Ti with N+1 elements, containing the T̂i�s�, i� 0 in (25.10).
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25.4.3 Numerical Solution to the Feasibility Problem
The feasibility problem (25.11) can be solved numerically using the MATLAB R� toolbox CVX [8].
Using CVX, the computation of a Q-augmented LQG/LQR controller can be accomplished with the
following sequence of MATLAB R�/CVX commands:

MATLAB R� Hint 51. CVX
minimize directive can be used
to select an optimal controller that
minimizes a particular criterion
among those that satisfy all the
specifications. � p. 227

%% create cell array cell array with Q1(s), Q2(s), ..., QN(s)

{... code in previous sections ...}

%% create cell array with T0(s), T1(s), T2(s), ..., TN(s)

{... code in previous sections ...}

%% CVX problem specification

N=length(Qi);

cvx_begin

variable alpha(N) % declare variables to be optimize

% declare closed-loop specifications through inequalities on alpha(1:N)

{... code in the remainder of this section ...}

cvx_end

%% compute Q system

Q = ss(zeros(size(Qi{1})));

for i=1:N

Q=Q+alpha(i)*Qi{i};

end

Q=minreal(Q);

In the remainder of this section, we discuss how to convert some of the most common closed-
loop control specificationsD1,D2, . . . ,DK into explicit constraints on the parameters α1,α2, . . . ,αN ,
to be used by CVX.

Interval bound time-domain specifications. For a given test exogenous input wtest�t�, t � 0, the
resulting forced controlled output is given by

z�t� �
�
L

�1
�
T̂0�s��

N�
i�1

α i T̂i�s�
�
�wtest

�
�t� � ζ0�t��

N�
i�1

α iζ i�t�,

where

ζ0�t��
�
L

�1�T̂0�s��� wtest
��t�, ζ i�t��

�
L

�1�T̂i�s��� wtest
��t�, �t � 0.

An interval bound on the lth entry of the forced response z�t� to wtest�t�, t � 0 can then be expressed
as

Note 17. In practice, we do not
test (25.12) at every point in the
interval �0,��. Instead, (25.12)
will be enforced on a grid of
sample times (variable ts in the
MATLAB R� code). This grid
should be sufficiently fine and
long that (25.12) is not violated
between samples or after the last
point in the grid. However, a large
grid also increases the computa-
tion time required to solve the fea-
sibility problem.

smin�t� � ζ0,l�t��
N�

i�1
α i ζ i,l�t� � smax�t�, �t � 0, (25.12)

where ζ i,l�t� denotes the lth entry of ζ i�t�, i � 0. The following sequence of MATLAB R�/CVX
commands declares the constraint (25.12) for an exogenous input wtest�t�, t � 0 corresponding to a
step at the jth entry of the exogenous input w�t�:
% Inputs:

% Ti - cell array with T0(s), T1(s), T2(s), ..., TN(s)

% alpha - vector with the alpha_i

% ts - sample times at which the interval bound will be tested

% j - entry of w(t) where step is applied

% l - entry of z(t) that appears in the interval bound
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% step_response_min - lower bound sampled at times ts

% step_response_max - upper bound sampled at times ts

step_response=step(Ti{1}(l,j),ts);

for i=1:N

step_response=step_response+alpha(i)*step(Ti{i+1}(l,j),ts);

end

% interval bound constraint

step_response_min <= step_response;

step_response <= step_response_max;

To enforce a given settling time, overshoot, and undershoot, one would construct the variables
step response min and step response max, which appear in the code above, with the following
MATLAB R� commands:

% Inputs:

% ts - sample times at which the interval bounds will be tested

% overshoot - desired maximum overshoot

% undershoot - desired maximum undershoot

% tsettle - desired settling time

% psettle - percentage defining the settling time

step_response_min=-undershoot*ones(size(ts)); % undershoot

step_response_max=(1+overshoot)*ones(size(ts)); % overshoot

step_response_min(ts>=tsettle)=1-psettle; % settling time

step_response_max(ts>=tsettle)=1+psettle;

Frequency domain input-output specifications. A frequency domain specification on the SISO
closed-loop transfer function from the jth entry of w to the lth entry of z of the form

�T̂l j� jω��� ��ω�, �ω � �ωmin,ωmax�,

can be expressed in terms of the α i as
Note 18. In practice, we do not
test (25.13) at every point in the
interval �ωmin,ωmax�. Instead,
(25.13) is enforced only on a grid
of sample frequencies (variable
ws in the MATLAB R� code). This
grid should be sufficiently fine so
that (25.13) is not violated be-
tween samples. However, a large
grid also increases the computa-
tion time required to solve the fea-
sibility problem.

���̂
T0,l j�s��

N�
i�1

α i T̂i,l j�s�
� � �
� ��ω�, �ω � �ωmin,ωmax�, (25.13)

where T̂i,l j�s� denotes the l jth entry of the closed-loop transfer matrix T̂i�s� from w to z. The follow-
ing sequence of MATLAB R�/CVX commands declares the constraint (25.13):

% Inputs:

% Ti - cell array with T0(s), T1(s), T2(s), ..., TN(s)

% alpha - vector with the alpha_i

% ws - sample frequencies at which the bound will be tested

% j - entry(s) of w(t) for the input(s)

% l - entry(s) of z(t) for the output(s)

% freq_response_max - norm upper bound ell(ws) sampled at frequencies ws

freq_response=reshape(freqresp(Ti{1}(l,j),ws),length(ws),1);

for i=1:N

freq_response=freq_response ...

+alpha(i)*reshape(freqresp(Ti{i+1}(l,j),ws),length(ws),1);

end

abs(freq_response) <= freq_response_max;

Impulse response input-output specifications. An impulse response specification on the SISO
closed-loop transfer function from the jth entry of w to the lth entry of z of the form� �0

�hl j�t��dt � ρ
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can be expressed in terms of the αi as� �
0

���
h0,l j�s��

N�
i�1

αi hi,l j�s�
���
dt � ρ , (25.14)

where hi,l j�t� denotes the l jth entry of the closed-loop impulse response hi�t� from w to z. The
Note 19. In practice, the integral
in (25.14) is computed numeri-
cally using a fine grid of sam-
ple times (variable ti in the
MATLAB R� code). This grid
should be sufficiently fine and
long that the integral in (25.14)
is well approximated by a finite
sum. However, a large grid also
increases the computation time
required to solve the feasibility
problem.

following sequence of MATLAB R�/CVX commands declares the constraint (25.14):

% Inputs:

% Ti - cell array with T0(s), T1(s), T2(s), ..., TN(s)

% alpha - vector with the alpha_i

% ti - equally spaced sample times at which the impulse

% response will be computed

% j - entry(s) of w(t) for the input(s)

% l - entry(s) of z(t) for the output(s)

% rho - upper bound on the L1-norm

impulse_response=impulse(Ti{1}(l,j),ti);

for i=1:N

impulse_response=impulse_response+alpha(i)*impulse(Ti{i+1}(l,j),ti);

end sum(abs(impulse_response))*(ti(2)-ti(1)) <=

rho;

MATLAB R� Hint 51 (minimize). The CVX minimize directive can be used to select an optimal
controller that minimizes a particular criterion from among those that satisfy all the specifications.
For example:

1. To minimize the overshoot, one would add the followingMATLAB R�/CVX commands
before the cvxend directive in the code on page 225:

variable J

step_response <= J

minimize J

2. Tominimize the rootmean square (RMS) gain, onewould add the followingMATLAB R�/
CVX commands before the cvxend directive in the code on page 225:

variable J

freq_response <= J

minimize J

3. To minimize the peak gain, one would add the followingMATLAB R�/CVX commands
before the cvxend directive in the code on page 225:

minimize sum(abs(impulse_response))

However, only a single minimize directive is allowed in a CVX program. �

25.5 Q Design Example
Example 25.1 (Aircraft roll dynamics, continued). Consider the LQG/LQR controller designed in
Example 23.1 for σ � 108. Our goal is to Q-augment this controller to satisfy the following control
specifications.

1. Decrease the peak gain from reference to control input to at most 20 (from about 1476 for the
nonaugmented controller).

2. Decrease the overshoot to at most 10% (from about 16% for the nonaugmented controller).
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3. Keep the 1% settling time below 0.5 s (already satisfied for the nonaugmented controller).

4. Keep the magnitude of the transfer function T̂eT ,r�s� from reference to tracking error belowNote. Specification 4 guarantees
good tracking for low frequencies,
especially for frequencies below
5rad/s, and also zero steady-state
error.

the value of

�T̂eT ,r� jω��� ��ω���
ω
10 ω � 20 rad/s
2 ω � 20 rad/s �ω � 0

(already satisfied for the nonaugmented controller).

For the numerical optimization, the impulse response was sampled from 0 to 2 s with a sampling
time of 0.001 s (see Note 19, p. 227), the step response was sampled from 0 to 4 s with a sampling
time of 0.01 s (see Note 17, p. 225), and the frequency response was sampled from 0.01 to 100
rad/s with 200 points logarithmically spaced produced by the MATLAB R� command logspace

(see Note 18, p. 226).

To augment the original LQG/LQR controller, we used the following sequence for the Ritz
approximation

Q̂i�s� �
� 5
s�5

�i
,

i � �0,1,2, . . . ,10�.

Among all the controllers that satisfied the specifications above, we selected the one with the smallest
peak gain (see MATLAB R�Hint 51, p. 227), which led to a 10-dimensional Q system and 13-
dimensional controller. Figure 25.2 shows the closed-loop step responses and Bode plots from
reference to tracking error of the original and the augmented controller.

�
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Figure 25.2. Bode plots of the closed-loop transfer function T̂eT ,r�s� from reference to tracking error and step
response for the LQG/LQR controller designed in Example 23.1 for σ � 108 and the Q-augmented controller
in Example 25.1. The Q-augmented controller has a peak gain equal to 17.2 and overshoot of 7.5%, whereas
the original LQG/LQR controller has peak gain of 1476 and overshoot of 16%.

25.6 Exercises
25.1 (Convex specification). Show that all the control specifications considered in Section 25.1 are
convex. �
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ARE, see algebraic Riccati equation

BIBO, see Bounded-input, bounded-output sta-
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bounded-input, bounded-output stability (BIBO),

168, 170
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Bryson’s rule, 174, 177

canonical basis, 38
cascade interconnection, 7, 55
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Cayley-Hamilton theorem, 45, 94, 98, 103, 111,

119
centrifugal/Coriolis/friction matrix, 14
certainty equivalence, 201
characteristic polynomial, 31, 45–47, 118, 147,
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cheap control, 192–194

closed-loop poles, 192–193
LQR cost, 193–194

closed-loop state estimator, 140
cofactor, 30, 36
comparison lemma, 64
complementary sensitivity function, 187
complete sequence, 222, 223
conservative force, 14
conservative forces vector, 14
constructibility Gramian, 140, 202

continuous time, 126–127
discrete time, 128–129

constructible system
continuous time, 125, 126
discrete time, 128

continuous-time system, 5
controllability Gramian

continuous time, 91–95

discrete time, 95–98
infinite time, 104

controllability matrix, 93–98, 109, 118, 148
controllability test

controllability matrix, 102
eigenvector, 102, 170, 184, 212
Lyapunov, 104, 106 Popov-
Belevitch-Hautus (PBH), 103

controllable state component, 111
controllable canonical form, 32, 33, 35, 107, 119,

147
controllable decomposition, 109–112
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able subspace
controllable subspace, 107, 110, 137
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discrete time, 95–98
controllable system, 77, 101, 113, 119, 143, 170
controllable-to-the-origin subspace, see control

lable subspace
controlled output, 173, 216, 220, 224
control specification, 219–221, 225–227

convexity, 222, 228
convolution

continuous time, 24
discrete time, 26
Laplace transform, 28

coprime
fraction, 147
polynomials, 147, 153

CVX, 223, 225–228
cvx begin, 225
cvx end, 225
minimize, 227
variable, 225, 227

degree of a transfer function, 147
detectability test

eigenvector, 139
Lyapunov, 139 Popov-Belevitch-
Hautus (PBH), 139

detectable system, 138–140, 184
diagonalizable matrix, 51, 148
discrete-time system, 6
disturbance rejection, 197
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domain of the Riccati operator, 179
duality

controllability/observability, 129–130
reachability/constructibility, 129–130

dual algebraic Riccati equation, 204, 212
dual ARE, see dual algebraic Riccati equation

eigenvalue assignment, 118
output injection, 140
state feedback, 117

eigenvector test
controllability, 102
detectability, 139
observability, 131
stabilizability, 114

equilibrium point
continuous time, 11
discrete time, 13

equivalence transformation, see similarity trans-
formation

exogenous input, 216, 220, 224

feasibility problem, 221, 222
feedback invariant, 79–81, 174–177
feedback linearization, 16–19
forced response, 24, 39
fundamental theorem of linear equations, 90–91,

102, 103

gain margin, 186
generalized coordinates vector, 14
generic property, 54
greatest common divisor (gcd), 154

Hamiltonian matrix, 83, 179–184, 192–193, 199
homogeneous response, 23, 29, 39
homogeneous system, 37, 43, 61, 66
hovercraft, 15
Hurwitz matrix, see stability matrix
H-infinity norm, see root mean square gain

image of a matrix, 90
impulse response, 49

continuous time, 23–25, 27, 29–30
discrete time, 26, 30

infinite-dimensional systems, 22
initial condition, 5–7, 11, 13, 22, 30, 34, 37, 39,

61, 65, 73, 78
input-output model, 5, 6
internal stability, see Lyapunov stability
invariant subspace, 102, 107, 137, 184
invariant zero polynomial, 162
inverse system, 165–170

left inverse, 166
right inverse, 166

inverted pendulum, 15, 18, 19, 69
irreducible realization, see realization

Jordan normal form, 51–55, 62, 71, 184

Kalman
decomposition theorem, 136–138
equality, 185–186, 188, 199
filter, 206
inequality, 186–187

Kalman decomposition, 165
kernel of a matrix, 90

L1 norm, 220, see peak gain
L2 norm, 220
lag compensator, 197–198
Laplace transform, 25, 29, 46

convolution, 28

derivative, 27
lead compensator, 197–198
least common denominator (lcd), 156 left-
inverse matrix, 145
Lienard equation, 72
linearity, 22, 35, 41
linear matrix inequality (LMI), 63, 105, 115
linear quadratic Gaussian estimation (LQG), 206
linear quadratic regulation (LQR), 79–82, 173–

176, 185–192
linear time-invariant (LTI) system, 6
linear time-varying (LTV) system, 6
L� norm, 220
LMI, see linear matrix inequality
local linearization, 11–14

around equilibriumpoint in continuous time,
12, 18, 66–70

around equilibrium point in discrete time,
13, 71

around trajectory, 14, 18–19
loop shaping, 188–189
loop transfer recovery (LTR), 207, 211–212
LQG, see linear quadratic Gaussian estimation
LQG/LQR controller, 206, 207

Q-augmented, seeQ-augmentedLQG/LQR
controller

LQR, see linear quadratic regulation
LTI, see linear time-invariant system
LTR, see loop transfer recovery
LTV, see linear time-varying system
Lyapunov equation, 104, 106

continuous time, 63, 72, 105
discrete time, 66

Lyapunov inequality, 116
continuous time, 63, 105
discrete time, 66

Lyapunov stability
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asymptotic stability, 61, 63, 65, 66, 105,
113, 117, 138, 141

continuous time, 61–65
discrete time, 65–66
exponential stability, 61, 63, 65, 66, 68, 105
instability, 61, 62, 65, 66, 69
marginal stability, 61, 65
stability margin, 72

Lyapunov stability theorem
continuous time, 62–65, 105–106
discrete time, 66

Lyapunov test
controllability, 104
detectability, 139
observability, 131
stabilizability, 115

Markov parameters, 144–146
mass matrix, 14
MATLAB

append, 9
bode, 190, 212
ctrbf, 112
ctrb, 99
dlyap, 71
eig, 31, 62, 71
expm, 48
feedback, 9
freqresp, 226
ilaplace, 49
impulse, 227
iztrans, 49
jacobian, 48
jordan, 52
kalman, 211, 212
laplace, 48
linmod, 224
lqr, 82, 176, 190
lyap, 71
minreal, 148, 224, 225
norm, 59
nyquist, 194
obsvf, 141
obsv, 131
parallel, 9
pinv, 148
place, 117
poly, 31
reg, 211, 212
series, 9
sigma, 194
ssdata, 224
ss, 6, 34, 35, 190, 212, 223
step, 225

svd, 59, 99
syms, 48
tf, 34, 35, 223
zpk, 34, 35
ztrans, 49
Simulink, 8
symbolic computation, 48–49

matrix exponential, 43–46, 49, 53–54, 71
matrix norm, 59–60, 71

submultiplicative, 60, 71
matrix power, 47, 49, 52–53
McMillan degree, 156, 164, 168
measured output, 173
mechanical systems, 14–16

fully actuated, 16
MEE, see minimum-energy estimation
memoryless system, 5
MI, see multiple-input system
MIMO, see multiple-input, multiple-output sys-

tem
minimal realization, see realization
minimum-energy

control, 92–93
estimation (MEE), 202–205

minimum-phase system, 168
MISO, see multiple-input, single-output system
MO, see multiple-output system
monic polynomial, 147
multiple-input, multiple-output system (MIMO),

5
multiple-input, single-output system (MISO), 5
multiple-input system (MI), 5
multiple-output system (MO), 5

negative-definite matrix, 62
negative-feedback interconnection, 8
negative-semidefinite matrix, 62
noise rejection, 197
norm

�-norm, 59
Frobenius norm, 59
H-infinity, see root mean square gain
L1, 220, see peak gain
L2, 220
L�, 220
one norm, 59
two norm, 59

null space of a matrix, see kernel of a matrix
nullity of a matrix, 90
Nyquist

plot, 186, 195
stability criterion, 195

observability Gramian, 140
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continuous time, 126–127

discrete time, 128–129
observability matrix, 130, 135, 148
observability test

eigenvector, 131
Lyapunov, 131 Popov-Belevitch-
Hautus (PBH), 131

observable state component, 136
observable canonical form, 33, 35, 36
observable decomposition, 135–136
observable system, 77, 138, 140, 143, 170

continuous time, 125, 126

discrete time, 128
open-loop state estimator, 140
orthogonal complement, 90
orthogonal matrix, 99, 194, 199
output feedback, 123–124, 140
output injection, 140
overactuated system, 208
overshoot, 196, 220, 226, 227

parallel interconnection, 7, 55, 126
peak gain, 221, 227
Peano-Baker series, 37, 43
phase margin, 187, 196
pole placement, see eigenvalue assignment
pole polynomial, see characteristic polynomial
poles, 156, 161, 164

SISO, 147, 153 Popov-
Belevitch-Hautus (PBH) test

controllability test, 103
detectability test, 139
observability test, 131
stabilizability, 115

positive-definite matrix, 62
positive-semidefinite matrix, 62
prefilter, 219
proofs

by contradiction, 64, 75
by contraposition, 75, 103
direct, 31
equivalence, 31, 63, 103
set equality, 91

proper rational function, 31
proportional-derivative (PD) control, 16
proportional (P) control, 198
pseudoinverse matrix, 145, 208

Q-augmented LQG/LQR controller, 215–219, 224
Q design, 221–228
Q parameterization, 215–218
Q system, 215, 221

range of a matrix, see image of a matrix
rank of a matrix, 90, 145

reachability Gramian
continuous time, 91–95
discrete time, 95–98
infinite time, 104

reachable subspace
continuous time, 87–92
discrete time, 95–98

reachable system, 101
realization, 30

minimal, 83, 143–148, 163–165, 170
order of, 143, 163–165
SISO, 33, 35

real polynomial matrix, 154
determinantal divisors, 154
invariant factors, 155
minors, 154
rank, 154
unimodular, 155

real rational matrix, 156
reference tracking, 196
Riemann integral, 27
right-inverse matrix, 145
Ritz approximation, 222–223
RMS gain, see root mean square gain
robot arm, 15
roll-off rate, 189
root locus, 193
root mean square gain, 221, 227
Rosenbrock’s system matrix, 162, 208

satellite, 107
Schur stable matrix, 47, 53, 66, 131
semigroup property, see state transition matrix
semisimple matrix, see diagonalizable matrix
sensitivity function, 187
separation principle, 141, 206, 212–213
separation theorem, see separation principle
set-point control, 191, 208–211, 213
settling time, 220, 226
SI, see single-input system
similarity transformation, 33, 109–112, 135–138,

145–146
SIMO, see single-input, multiple-output system
Simulink, seeMATLAB
single-input, multiple-output system (SIMO), 5
single-input, single-output system (SISO), 5
single-input system (SI), 5
single-output system (SO), 5
SISO, see single-input, single-output system
Smith

factorization, 155
form, 154–155, 162, 164

Smith-McMillan
factorization, 156
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form, 155–159, 161, 164, 167
SO, see single-output system
square completion, 81, 116, 118, 176
stability matrix, 47, 54, 61, 63, 71, 104, 105,

131, 176
stabilizability test

eigenvector, 114
Lyapunov, 115–117
Popov-Belevitch-Hautus (PBH), 115

stabilizable system, 113–117
stabilization

output feedback, 141
state feedback, 106, 116–117

stabilizing solution to the ARE, 180
stable subspace, 180
standard form for

uncontrollable systems, 110, 113
unobservable systems, 136, 138

state estimation, 139–140
state estimation error, 140
state feedback, 123, 140
state reconstruction

Gramian-based in continuous time, 127
Gramian-based in discrete time, 128

state transition matrix, 41
continuous time, 37–39
discrete time, 40
inverse, 39, 40
semigroup property, 38, 40

Stein equation, see Lyapunov equation, discrete time
step response, 220, 226
strictly proper rational function, 31
strict feedback form, 17–19

time invariance, 22, 24, 35
time reversibility

controllability/reachability, 93
observability/constructibility, 130

time scaling
controllability and reachability, 94
observability/constructibility, 130

time shifting, 22
tracking error, 196
transfer function

continuous time, 25–26, 29–30
discrete time, 27, 30

transmission-blocking property, 208
invariant zeros, 163
transmission zeros, 157–159

transpose of a vector/matrix, 7

unconstructible subspace
continuous time, 125–127
discrete time, 128–129

uncontrollable state component, 111
uncontrollable system

continuous time, 101
under-actuated system, 208
undershoot, 220, 226
unicycle, 18
uniformly bounded signal, 74
unobservable state component, 136
unobservable subspace, 135

continuous time, 124–127
discrete time, 128–129

variation of constants formula
continuous time, 39, 44, 87, 124, 138
discrete time, 40, 47

Z -transform, 26, 35
zero polynomial, 156
zero-state equivalence, 30, 34, 36, 144
zero-state response, 24
zeros

invariant, 162–164, 169, 208
SISO, 147, 153
transmission, 153, 156–159, 162–164, 168–

170, 193, 194, 207, 208




