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Chapter 1 Answers

11.

1.2

1.3.

1.4.

1.10.

1.11.

1.12.

Converting from polar to Cartesian coordinates:
%e"" = icoe(—ar) = —é—

&F = Leosw = -4, :
&% = cos () +isin(§) =4, e'-'i_:cos %}-—jsin(%):—j
5% = ofF =, V3T = /2 {eos (§) +7sin (3)) = 1+J

V3 = V3 =1+, VI = et =15
V3e T =1-j

Converting from Cartesian to polar coordinates:

5 = 5e’%, -2 = 297, 35 =3e77%

1ol =eiE, 145= 2, (}—f}’ﬂeﬂ'i

; _ 53 14 _ G+iv2 _ =ity

il —3) = €%, ’f‘:f—v’;, T.C,-IJ;T—‘JH

-
(a) B = f e~3tdt = 4, Poo = 0, because Eop < 00
(1]
e
(b) zalt) = @3+, [a3(8)] = L. Therefore, B = [mizz(t)lzdt o j 5 oo, Pao =
T i T -00 -0
o = li = i CJ
e [ P fim g [ e = i1 =1
=] L=
(¢} zaft) = cos(t). Therefore, Ee = jza(t)dt = / cos?(t)dt = 0o,
-00 -00
R g 1 [T 71+ cos{2t) :
I e L = e by a0 G Hp
Foo 7—}‘_’.‘30271_1"“(’}“ r]ﬂ‘éom"j:r( 2 s

(d) zy[n] = (,‘2)" uln], tz;[n])? = G)nuﬁn], Therefore, Eoo = z [ = Z !j—l}" = %
n=— o

Py =10, because Eoe < 0. i

(e) zafn] = &8, |za[n][* = 1. Thercfore, Eoo = S lmafn)l? = o0

n=-00

N N
. o, CHANCT N o =
Poo= fim sy 3 lmalell = fim gy 2=l
n==N n=-N
™ ™ g
(f) z3ln) = cos(Zn). Therefore, Boc = Y fzafn]l® = 3 cost(gn) =oe
ne—eo oo
N N =
T 1 or T 1 1+cos(5n)) =
Foo = i, 2N+1"§N°‘”(4"";\5’3L2N+1ﬂ§~( 2 =

1
N-+o0 2

(a) The signal z[n] is shifted by 3 to the right. The shifted signal will be zero forn <1

and n > 7.

(b) The signal z[n] is shifted by 4 to the left. The shifted signal will be zero for n < -6

and n > 0.

(a) Re{ni(t)} = —2 = 2% cos(0t + *) )

(b) Re{za(t)} = vZcos() cos(3t + 27) = cos(3t) = ¥ cos(3t +0)

(c) Re{za(t}} = e sin(3t +7) = et cos(3t + 3)

(d) Re{z4(t)} = —e™ain(100¢) = ¢~ 5in(100t + 7) = €~ cos(100% + §)
() z,(t) is a periodic complex exponential.

() = j&1% = 10+ 5)

The fundamental period of z,(t) is 35 = §-

(b) z2(¢) is a complex exponential multiplied by a decaying exponential. Therefore, za(t)
is not periodic.

{c) z3[n] is a periodic signal. ) )

13[,1] e e;erL = B;'er

23|n) is a complex exponential with a fundamental period of "’7“ =2

(d) 24[n] is a periodic signal. The fundamental period is given by N= m(%] = m{%’“r)‘
By choosing m = 3, we obtain the fundamental period to be 10.

(e) zs5{n] is not periodic. z5n) is a complex exponential with wg = 3/5. We cannot find
any integer m such that m(%’;) is also an integer. Therefore, 25[n] is not periodic.

Z(t) = 2cos(10t + 1) — sin(dt — 1)

Period of first term in RHS = %—'h'- =% .

Period of second term in RHS = =z :
Therefore, the overall signal is periodic with a period which is the least common multiple

of the periods of the first and second terms. This is equal to 7.

zn] =1 FeF ~ %

Period of the first term in the RHS =1

Period of the second term in the RHS = m(‘—-e_’f",-f) =7 (whenm =2)

Period of the third term in the RHS = m(kﬂh’ﬁ) =5 (whenm=1)

Therefore, the overall signal zfn] is periodic with a period which is the least common
multiple of the periods of the three terms in z{n]. This is equal to 35.

The signal z[n) is as shown in Figure $1.12. z[n] can be obtained by flipping uln] ar}d then
shifting the Ripped signal by 3 to the right. Therefore, z{n] = u[-n +3]. This implies that
M = —1and ng = ~3.

1.5.

1.13.

1.14.

1.15.

(c) The sigoal z[n] is flipped. The flipped signal will be zero for n < —4 and n > 2.

(d) 'I.‘he sign_a.l z[n] is flipped and the flipped signal is shifted by 2 to the right. This new
signal will be zero forn < -2 and n > 4.

(e) 'I.‘he sig:?al z[n] is flipped and the flipped signal is shifted by 2 to the left. This new
signal will be zero for n < —6 and n > 0.

(a) z(1 — £) is obtained by flipping z(t) and shifting the fipped signal by 1 to the right.
Therefore, z{1 — t) will be zero for t > —2.
(b) From (a), we know that z(1—t) is zero for ¢ > —2. Similarly, {2~ #) is zero for ¢ > —1.
Therefore, (1 — £) + z(2 — t) will be zero for ¢ > —2.
() z(3) is obtained by linearly compressing z(t) by a factor of 3. Therefore, z(3t) will be
zero for t < 1.
(d) z(t/3) is obtained by linearly stretching z(t) by a factor of 3. Therefore, z(t/3) will be
zero for t < 9.
(a) z:1(t) is not periodic because it is zero for t < 0.
(b) z3[n] = 1 for all n. Therefore, it is periodic with a fundamental period of 1.
(c) z3[n] is as shown in the Figure S1.6.
1 1 i B
AR
‘+I-z-tolzl4l n
-4 -1 -1
Figure S1.6
Therefore, it is periodic with a fundamental period of 4.
(a)
Evlzibnl} = 3@l + 2i[-n)) = ] -
3@ 1 - u[n] —uln — 4] + uf-n] - u[-n - 1))
Therefore, £v{z1[n]} is zero for |n} > 3.
(b) Since z3(t) is an odd signal, Ev{z(t)} is zero for all values of ¢.
()
gl 11 1
Ev{zsn]} = 3(ziln] + z[-n]) = 5((3)"uln - 3] - ()" ul-n - 3]
Therefore, Ev{z3|n]} is zero when |n| < 3 and when |n| = co.
(d)
J 1
Evfzilt)} = 3lzalt) + za(-2}) = a[e"&u{t +2) - eMuf{—t+2)
Therefore, Ev{z4(t}} is zero only when |#] = co.
2
<l [IERE
—2-lo | 23 n
Figure S1.12
'] t 0, < =2
sy = [ ata= [ @ren-srome=gi 2ses
= ) 0, t>2
Therefore,
2
Eia= dt=4
-2
The signal z(t) and its derivative g(t) are shown in Figure 51.14.

x(tli 9@ S 3
L I e e
2.

-1 ) 1] 2 T ny —r
‘ t o ¥
-2 -5 =3

Figure $1.14

Therefore,
gy=3 Y Bt-2%)-3 3 S(t-2%-1)

k=—o0 k=moo

This implies that A} =3, ¢, =0, Az =3, and t = L.
(a) The signal Ta(n], which is the input to 52, is the same as y1[n]. Therefore,
1
wn] = zn-2]+ EI';[TG -3]
1
= yn-21+ Eyl[“ -3]
1
= 2zy[n -2 +4n)fn - 3] + i(?.‘r.';[n = 3]+ 4zy[n — 4])
= 2r)[n — 2]+ 5zy[n — 3] + 25y[n — 4]
The input-output relationship for § is
yin] = 22fn — 2] + 5z[n — 3] + 2z[n — 4]



ntng

; ; i i in which S; and 52
(b) The input-output relationship does not change if the order in whi 1 A are zafn) — poln] = E 22]k]

connected in series is reversed. We can easily prove this by assuming that S, follows 4
S;. 1ln this case, the signal z[n], which is the input to ), is the same as yfr]. : it
Therefore, Let z3[n] be a linear combination of z,[n] and zp[n). That is,
wn] = 2nn]+4znn-1) z3[n] = azi[n] + bza[n)

= 2pin]+ dw[n; 1] ) ] where a anfi b are arbitrary scalars. If z3[n] is the input to the given system, then the

= zzln - 2+ gmaln - 3) + d(zzfn — 3] + 5maln - 4)) corresponding output ys[n] is

= 2z3n — 2} + 5za[n - 3] + 2z3[n — 4] n+ng

: wl = 3 =k
The input-output relationship for § is once again kmn—ny
ning n+ng n+ng
W] = 22fn = 2] + Sxfn — 3] + Zafn - 4] = Y Gall+btnk)=a 3 nl+s Y ol
k=n—np k=n—ng k=n—-no
1 16. (a) The system is not memoryless because y[n] depends on past values of z[n]. = ay[n] + bualn)

(b} The output of the system will be y{n] = §[n}é[n - 2] = 0.
(¢) From the result of part (b}, we may conclude that the system output is always zero for
inputs of the form d[n — k), k € Z. Therefore, the system is not invertible.

Therefore, the system is linear,
(b) Consider an arbitrary input z;[n). Let
1 17. (a) The system is not causal because the output y(t) at some time may depend on future I n
values of 2(t). For instance, y(—=) = z(0). wiln] = : Z z1{k)
=n—no

(b) Consider two arbitrary inputs z;(t) and zo(t). )
be the corresponding output. Consider a second input z2[n] obtained by shifting z,[r]

z1(t) — y1(t) = 11 (sin(t))
22(t) — y2(t) = 22 (sin(t))
Let z3(t) be a linear combination of z,(t) and zz(t). That is,
z3(t) = az\(t) + bra(t)

where a and b are arbitrary scalars. If z3(t) is the input to the given system, then the
corresponding output y3(t) is

z3 (sin(t))
azy (sin(t)) + bz (sin(t))
ay(t) + bia(t)

w(t)

I

Therefore, the system is linear.

1.18. (a) Consider two arbitrary inputs z;[n] and z2[n).

n+no

nfnl —ukl= Y nlk

k=n-ng

1.19. (a) (i) Consider two arbitrary inputs x,(t) and z2(t}).

i(t) — wft) = Pzt - 1)

Za(t) — walt) = 2zt - 1)
Let z3(t) be a linear combination of z,(t) and z2(t). That is,

z3(t) = axy(t) + bxa(t)
where a and b are arbitrary scalars. If z3(t) is the input to the given system. then
the corresponding output y3(t) is
va(8) *zy(t - 1)

t3azy(t — 1) + bza(t — 1))
ay; (2) + bya(t)

]

Therefore, the system is linear.
(ii) Consider an arbitrary input z;(t). Let
n(t) =tn(t-1)
be the corresponding output. Consider a second input z2(t) obtained hv slhifting
zy(t) in time:

z3(t) = 2(t — to)
The output corresponding to this input is
velt) = Paalt = 1) = Pz (6~ 1 - to)

Also note that
wilt—to) = (t —to)’za(t — 1 - to) # ya(t)

Therefore, the system is not time-invariant.

(b) (i) Consider two arbitrary inputs z[n] and z3[n].

nifn] — wilr) =2fln -

zln] — yafn] = #iln - 2]
Let z3[n] be a linear combination of z,[n] and z2|n]. That is,

z3|n] = az\[n] + bz2|n]
where a and b are arbitrary scalars. If z3[n] is the input to the given system. then
the corresponding output y3[n] is
wl] = =i -2

(azy[n — 2] + bza[n — 2))°
= a%z[n - 2 + ¥*zi[n — 2] + 2abzi[n — 2z2(n - 2)
# ayin] + byaln]

Therefore, the system is not linear.

Il

in time:
Zaln] = z[n ~ ]

The output corresponding to this input is

n+no n+ng n-n;+ng

wnll= 3 znfk= 3 mlk-m]= PN
k=n—ng k=n-ng k=n-ny-ng
Also note that
n-ni+ng
nh-ml= 5z
ksn—m-no
Therefore,

w2ln] = wn - ny)
This implies that the system is time-invariant.

{c) If |z[n]| < B, then

y[n) < (2n0 + 1)B
Therefore, C' < (2ng + 1)B.

(1) Consider an arbitrary input z1[n]. Let

wfn] = zifn - 2)
be theA corresponding output. Consider a second input z2{n| obtained by shifting
z)[n] in time:

z2[n] = z1[n — ng)
The output corresponding to this input is

waln) = =ifn - 2] = z}[n - 2 - no)
Also note that
#ln = no) = zi[n — 2 - ng| =

Therefore,

2[n] = wiln - no)
This implies that the system is time-invariant.

(c) (i) Consider two arbitrary inputs z;[n] and z2[n].

zi[n] — wifp] = zi[n + 1) — z[n - 1)
z2n) — gan] = z2[n + 1) — 22[n - 1]
Let z3[n) be a linear combination of z,[n] and za[n). That is,
z3[n} = azy|n] + bzz|n]

where o and b are arbitrary scalars. If z3[n] is the input to the given system, then
the corresponding output ys[n] is
wiln] = za[n +1] - z3[n - 1]

= aznifn+1)+bryfn + 1] — azy[n — 1] - bzy[n - 1)

= a(zi[rn+1] = z1[n - 1]) + b(z2[n + 1] — z3[n - 1))

= ayi[n] + bya[n)
Therefore, the system is linear.

(ii) Consider an arbitrary input zy[n]. Let
nn] =zin+1]-zy[n - 1)
be the corresponding output. Consider a second input z[n} obtained by shifting
£y[n] in time:
z2[n] = z1[n — ng]

The output corresponding to this input is

whl=zh+1 -z -1 =xn+1-n —z[n — 1 — ng)



Also note that
nln—ml = mfn+ l—n.o]—:r:l[n—l—m]

Therefore,
weln} = m{n - no]

This implies that the system is time-invariant.
(d) (i) Consider two arbitrary inputs z,(t) and za(t).

zy(t) — m(t) = Od{z:(4)}
2{t) — w(t) = 0d{za(t)}
Let z3(t) be a linear combination of z1(t) and z2(t). That is,

z3(t) = ez (t) + bxa(t)

where a and b are arbitrary scalars. If 23(t) is the input to the given systein, then

the corresponding output ya{t) is
Od{z3(t)}

Od{az; (t) + bz2(t)}
a0d{z(t)} + bOd{z2(t)} = o) + by (t)

]

y3(t)

Therefore, the system is linear.
(i) Consider an arbitrary input z1(t). Let

wlt) = 0d{=1 ()} = 5@%1}7_‘]

be the corresponding output. Consider 2 second input z2(t) obtained by shifting

zy[n] in time:
z2(t) = 1t - to)

The output corresponding to this input i8

i) = Odtain)) = 2=

7, (t — to) —@i(~t — to)
2

Also note that

wlt—to) = zy(t = to) —'Z-'fl("t + ty) o

Therefore, the system is not time-invariant.

9
x(n-4] xfz-n] 2Bl x[:n;-lJ
L N :
L3 " " 1 Vs
MTIIIIT *‘1””7‘; - ] o
1 ER ° 1z T ol ro
1 =¥y - l =
-1 g
(a) (3] (€3] d)
Laf)+ Lo x{en)
Con gl e | 111
= 2] PO e L
e 1z R -2 06 2 n o lz n
(e) ) J p (9 (k)
i Figure $1.22
) 2uff)
e ul
R T
-2 -l e ! = 4 o ' 2 +
@ *
e (1) Halk)

()
welt) Aoty
-~ B -t
° + €
«©
Figure 51.23
11

1.20. (a) Given
z(t) = &% — y(t) = &M

z(t) = e7% — y(t) = eI

Since the system is linear,
21(t) = J(E 4 %) — (t) = (™ +e %)

Therefore,
zy(t) = cos(2t) — y1(t) = cos(3t)

(b) We know that

2
Using the linearity property, we may once again write

—Jei2t —j2t
-’Bn(t]=cos(2(t+%—])=e eI 4 ele™d

z1(t) = %(e'ie’m +eje™ ) — y(t) = %(e'jer' +ele™ ) = cos(3t - 1)

Therefore,
z1(t) = cos(2(t — 1/2)) — w(t) = cos(3t ~ 1)

1.21. The signals are sketched in Figure 51.21.

z(2-1) 2 ®(2-) . a(2t+]) 2

= -1
x (4-t/2) [ +x(2))uid)
. [
A 8 xN d P} 1 + 3 35 L
Figure S1.21

1.22. The signals are sketched in Figure 51.22.
1.23. The even and odd parts are sketched in Figure 51.23.

10

[n] 2
R o st L
T R AT
2LV R R . m
?vf &%111{;,‘ s . e ﬁ_]‘lﬂihn ut ]
- . (2 = 3 @ 'lh . :] b 3
1-({"\] I 1 "'“ Y " jo{h-]
= | 1 ¢ 1 1 2
_;1-5—1-1o:¢;1: n(c’ 1 »1]01114. n
- ¥y W

Figure S1.24

1.24. The even and odd parts are sketched in Figure 51.24.
1.25. (a) Periodic, period = 2n/(4) = m/2.
(b) Periodic, period = 2n/(x) = 2.
(c) =(t) = {1 + cos(4t — 2r/3)}/2. Periodic, period = 2m/(4) = m/2.
(d) z(t) = cos(4nt)/2. Periodic, period = 2x/(4n) = 1/2.
(e) z(t) = [sin(dntyu(t) — sin(dmt)u(—1)]/2. Not periodic.
(f) Not periodic.
1.26. (a) Periodic, period = 7.
(b) Not periodic.
(c) Periodic, period = 8.
(d) z[n] = (1/2)[cos{3xn/4) + cos(mn/4)]. Periodic, period = 8.
(e) Periodic, period = 16.
1.27. (a) Linear, stable.
(b) Memoryless, linear, causal, stable.
(c) Linear
(d) Linear, causal, stable.
(e) Time invariant, linear, causal, stable.
(f) Linear, stable.
(g) Time invariant, linear, causal.

12



1.28. (a) Linear, stable.

(b) Time invariant, linear, causal, stable.
(c) Memoryless, linear, causal.

(d) Linear, stable.

(e) Linear, stable.

(f) Memoryless, linear, causal, stable.
(g) Linear, stable.

1.29. (a) Consider two inputs to the system such that

1.30.

1.31.

1.32.

z3[n] 5 yln] = Re{zi[n]} and 14[n] 5 wain] = Re{zaln]}-

Now consider a third input z3[n] = z1[n] + zg[n}. The corresponding system output
will be
win] = Re{zsn]}
= Re{m[n]+ z2in]}
= Re{zn]} + Re{z2(n]
= wiln) +y2ln]

Therefore, we may conclude that the system is additive.

Let us now assume that the input-output relationship is changed toy[n} = Rele™z[n]}.

Also, consider two inputs to the system such that
z1[n] 5 ] = Re{e™ 4z [n]}
and ” i
zafn] B 10ln) = Re{e™*zaln]}-
Now consider a third input z3[n] = ziln] + z4[n). The corresponding system output
will be
Re{e’™/*z3[n]}
= cos(en/A)Re{zsln]} — sin(en/4)Zm{zaln])
+cos(rn/4)Re{z[n]} — sin(rn/4)Im {z1[n]}
+ cos(mn/4)Re{za[n]} - sin(xn/4)Tm{za[n]}
= Re{ed™izi[n]} + Re{e™/*z2ln]}
= sl +uin)

wsln]

Therefore, we may conclude that the system is additive.

(a) Invertible. Inverse system: y(t) = z(t + 4). i

(b) Non invertible. The signals z(t) and 21 () = z(t) + 2m give the same output

(c) Non invertible. §[n] and 2d[n] give the same output.

(d) Invertible. Inverse system: y(t) = dz(t)/dt.

() Invertible. Inverse system: y{n] = z{n+1] for n > 0 and yln] = zln] for n < 0.

(f) Non invertible. z[n] and —z[n] give the same result.

(g) Invertible. Inverse system: y[n) = =z[l —n].

(h) Invertible. Inverse system: y(t) = z(t) + dz(t)/dt.

(i) Invertible. Inverse system: yln] = z[n] - (1/2)=[n - 1].

(j) Non invertible. If z{t) is any constant, then y{t) = 0.

(k) Non invertible. 8[n] and 24[n] result in yln] =0.

(1) Invertible. Inverse system: y(t} = z(t/2).

(m)Non invertible. z,{n] = d[n] + §[n = 1) and z2|r| = 8[n] give yn] = é[r].

(n) Invertible. Inverse system: yln] = z(2n].

(a) Note that 22(t) = z1(t) = z(t — 2). Therefore, using linearity we get yolt) = yilt) =
yi(t = 2). This is as shown in Figure S1.31.

(b) Note that z3(t) = z1(t) + z4(t + 1). Therefore, using linearity we get mlt) = w(t)+
y{t + 1). This is as shown in Figure S1.31.

1 ;&‘ g—'[{:‘»
F)
4
o ’-\/ t -1 9 1 z t
-2

Figure 81.81

All statements are true.

(1) z(t) periodic with period T, 11(t) periodic, period T/2.
(2) i(t) periodic, period T z(t) periodic, period 2T

(3) z(t) periodic, period T} yo(t) periodic, period 2T

(4} ya(t) periodic, period T'; x(t) periodic, period T'/2.

1.33. (1) True. z[n] = z[n + Nlwln] = nln + No). i.e. periodic with No = N/2 if N is even,

and with period Np = N if N is odd.

15

1.34.

(b) (i) Consider two inputs to the system such that

2 2
21(8) S () = 51(23 [%}‘l s Toal) S w() = %(t) [d’;t“]} .

Now consider a third input z3(t) = z1(t) + z2(t). The corresponding system
output will be

us(t) =

1 [az()]’
z3(t) | dt
1 dlz1(¢) + 22(8)]]*
z1(t) + z2(t) dt
# nlt) +wmlt)
Therefore, we may conclude that the system is not additive.
Now consider a fourth input z4(t) = az:(t). The corresponding output will be

1 [dz®)]®
Za(t) dt]

e

w(t) =

iive - dz, {t) 2
Toxy(t) [ dt
= an(t)

Therefore, the system is homogeneous.

(1i) This system is not additive. Consider the following example. Let x{r] = 2é[n +
2] + 26[n + 1] + 28[n] and z2{n] = &[n + 2] + 28[n + 1] + 3é[n]. The corresponding
outputs evaluated at n = 0 are

n{0]=2 and [0]=3/2

Now consider a third input z3fn] = z1[n] + za[n] = 38[n + 2] + 44[n + 1] + 5[n].
The corresponding output evaluated at n = 0 is y3[0] = 15/4. Clearly, y3[0] #
tn[0] + y2[0]. This implies that the system in not additive.

No consider an input z4[n] which leads to the output yn]. We know that

zafnlzaln -2
n] = n s, Taln-1#0
walr) { 0, otherwise

Let us now consider another input zg[n) = az4[n]. The corresponding output is
2y[n]z4[n—2]
wsln) = { . S
,

Therefore, the system is homogeneous.

ayfn— 1] #0

= ayy|n].
otherwise walr]

14

(2) False. y;[n] periodic does no imply z[n} is periodic. i.e. let z[n] = g[n] + h[n] where
n even

L; a,
gln] = { TR { (1/2)"
Then y;[n] = z[2n] is periodic but z|n} is clearly not periodic.
(3) True. zin + N] = z[n]; yz[n + No) = y2[n] where Ng = 2N
(4) True. ya|n + N] = y2(n}); z[n + No] = z{n] where No = N/2
(a) Consider '

n even
n odd

]

3 2l = 2i0) + 3 fazln) + 2l
n=l

n=—0co
If z|n] is odd, z[n] + £{~n] = 0. Therefore, the given summation evaluates to zero.
(b) Let y[n] = z;[n)ze[n]. Then
y{=n] = z1[-njza[~n] = ~z[n]za[n} = —y[n].
This implies that y[n] is odd.
(c) Consider

o0

Z :z[n] =

n=—-00

S {zeln] + zo[n])?

3 22inf+2 Y zelnlzin).

n=-00

Using the result of part (b), we know that z.[n]z,[n] is an 0dd signal. Therefore, using
the result of part (a) we may conclude that

2 Z Ze[n)wo[n] = 0.

n=-o00

]
™2
8
JEN
+

Therefore,

E: 2%[n) == Z: z2[n] + Z z2[n).

n=—-00

(d) Consider

[: 2 (t)dt = j_z Z2(t)dt + /w z2(t)dt + 2[_: z.(t)zo(t)d!.

B -0

Again, since z.(t)z,(t) is odd,

f © 22 (t)za()dt = 0.

j: i 22(t)dt = [ ‘: 22(0)dt + jﬂ : 22(t)dt.
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‘Therefore,



1.35. We want to find the smallest Np such that m(2x/N)}No = 2=k or No = kN/m, where k isan o (&) 2
integer. If N has to be an integer, then N must be a multiple of m/k and m/k must be an s u&(t)
integer. This implies that m/k is a divisor of both m and N. Also, if we want the smallest

possible No, then m/k should be the GCD of m and N. Therefore, No = N/ged{m, N). 17 K* 14 /—
a4 +

1.36. (a) If z|n] is periodic e/ +MT = gwonT, where wy = 27 (To. This implies that

= ) o 2 4
2 T k _ : af;
FoNT = 2xk = Fo =g= a rational number. uiét‘l u:(t)
1 1
(b) If T/Ty = p/q then z[n] = e***/?. The fundamental period is g/ged(p, g) and the -
v

fundamental frequency is /

2 2 weT
2 wed(p,q) = 2 Ppged(p,q) = ged(p,q) = ——ged(p4)-
q Pq P P

A
ugle)
E | g !
(<) p/ged(p,q) periods of z(t) are needed. / i /{_!j; G
A

1.37. (a) From the definition of ¢,y (t), we have

oo A
doylt) = f z(t + 7)y(r)dr

i

-0
s
= f_my(—t + 7)z(r)dr Figure S1.38
= Gyal—1).
We have h -
(b) Note from part (a) that ¢sz(t) = daz(—t). This implies that ¢x(2) is even. Therefore, alt) = f w(r)i(t - r)dr = f w(r)b(t — 7)dr.
the odd part of ¢z=() is zero. o o
(¢) Here, doy(t) = ds2(t = T) and dyy(t) = duz2). Therefore,
1.38. (a) We know that 2d(2t) = 8a2(t). Therefore, 0, t<0 L t-7)=0
gl)=4 L t>0 cu(r)d(t —7) =t =T)
undefined fort=0

: |
é’% dal2t) = Al&'.\n 56&,2(1}.

This implies that 1.40. (a) If a system is additive, then

1
a(2) = 58(t). 0= z(t) - z(t) — y(t) —y(t) = 0.
(b) The plots are as shown in Figure 51.38. Also, if a system is homogeneous, then
1.39. We have 0=0.z(t) — y(t).0=0.

Jim ua(1)é(t) = Jlim 124 (0)4(t) = 0-
(b) y(t) = z%(t) is such a system.

Also,
1 t
Aimnuﬁ(t)én(t) = Eé(t). (¢) No. For example, consider y(t) = f z(r)dr with z(t) = u(t)~u({t-1}). Then z({t) =0
fort > 1, buty(t} =1fort> 1. e
17 18

1.41. (a) yjn] = 2z[n]. Therefore, the system is time invariant. Since § is time-invariant,

{b) y[n] = (2n - 1)z[n]. This is not time-invariant because yln— Nol # (2n - Ll - NoJ. 2(t-T) 2 y(t - T).

(¢) yin] = zfn]{1 + (=1)" + 1+ (=1)""*} = 2z[n]. Therefore, the system is time invariaat. Now, if z(t) is periodic with period 7', () = z(t — T'). Therefore, we may conclude

that y{t) = y{t — T). This implies that y(t) is also periodic with period T A similar

42. i tems 5, and Sp connected in series. Assume that if z1(t) and z(!) are
by ) : argument may be made in discrete time,

the inputs to Sy, then y1(t) and y(t) are the outputs, respectively. Also, assume that
if y1(t) and y2(t) are the inputs to S, then 2 (t) and za(t) are the outputs, respectively. (b)

S - :
Since 5y is linear, we may write 1.44. (a) Assumption: If z(t) = O for £ < #p, then y(t) = 0 for t < tg. To prove that: The system
5 is causal.
=3 t
azy () + bxa(t) ay(t) + bya(t), Let, us consider an arbitrary signal z,(t). Let us consider another signal z(¢) which is

where a and b are constants, Since Sy is also linear, we may write the same as z;(t) for t < to. But for ¢ > #o, z2(2) # x1(t). Since the system is linear,

z1(t) = z2(8) —> w1 (8) — 12(2).

Since z,{t) — z2(t) = 0 for t < ty, by our assumption y;(£) — y2(t) = 0 for t < 4y, This
We may therefore conclude that implies that y(t) = ya(t) for ¢ < fo. In other words, the output is not affected by input
values for ¢ > to. Therefore, the system is causal.
Assumption: The system is causal. To prove that: If z(t) = 0 for ¢t < #o, then
y(t) = 0for t < tg.
Let us assume that the signal z(t) = 0 for t < to. Then we may express z(t} as
z(t) = z1(t) — z2(2), where z{t) = z(t) for t < Y. Since the system is linear, the
output to z(t) will be y(t) = yi(t) —y2(t). Now, since the system is causal, v (t) = ya(t)
for t < #o implies that y;(t) = ye(t) for t < tg. Therefore, y(t) = 0 for t < tn.
(b) Consider y(t) = z(t)z(t + 1). Now, z(t) = 0 for t < to implies that y(t) = 0 for £ < to.

oy () + bya(t) 2 az (1) + ba(1),

az;(t) + bxa(t) T azy(t) + bza(t)

Therefore, the series combination of S and S, is linear.
Since §) is time invariant, we may write

alt - To) = gt — To)

and

1 (t — To) 5, z(t — To)- Note that the system is nonlinear and non-causal.
Therefore, (c) Consider y(t) = z(t) + 1. This system is nonlinear and causal. This does not satisfy
n(t—Tb) 5.9 2(t = To). the Cﬂndlltlﬂn of part (a).
: R e (d) Assumption: The system is invertible. To prove that: y[n] = 0 for all n enly if zin] = 0
Therefore, the series combination of S and 5, is time invariant. for all n.
(b) False. Let y(t) = =z{t) + 1 and z(t) = y(t) — 1. These correspond tu two nn;.liucar Consider
systems. If these systems are connected in series, then z(t) = z(t) which s a lincar zfn] = 0 — yln).
system. Since the system is linear,
(c) Let us name the output of system 1 as wn] and the output of system 2 as z[r]. Then, 2zfn) = 0 —» 2y[n).

Since the input has not changed in the two above equations, we require that y{r] =
2y[n]. This implies that y[n] = 0. Since we have assumed that the system is iavertible,
only one input could have led to this particular output. That input must be z|n] = 0.

Assumption: y[r] = 0 for all n if z[n] = 0 for all n. To prove that: The system is

yln] = z[2n] = w2n) + -;—w{2n -1+ %w[2n -2

z[n] + %:I:[ﬂ -1+ %x[u -2

The overall system is linear and time-invariant. invertible.
Suppose that
1.43. (a) We have - 23n) — wln]
2(5) 3 y(0). i

z2{n] — [n].
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Since the system is linear,
2y[n] = zafn} — 1] - wmln] = 0-

By the original assumption, we must conclude that z,[n] = z2{n]. That is, any partic-

ular y[n] can be produced by only one distinct input z,{n]. Therefore, the system is

invertible.

(e) y[n] = =3[n).
1.45. (a) Consider
2i(t) 5 n(t) = daa, (1)

and
2a(8) = w2(t) = daza(8)-

Now, consider z3(t) = az1(t) + bra(t). The corresponding system output will be

ys(t) = /m-".‘;;('i')h(t-%-f)d'r

u[oo 2y (T)h(t + T)dT + bfm za(7)h(t + T)dT

aPnz, (t) + bdnz, (t)
awn (1) + bya(t)

Therefore, S is linear.
Now, consider z4(t) = z1(t — T). The corresponding system output will be

w(t) = fwz4(-r)h(1+r)d'r

—o0

[t}

fm (7 = TYh(t + 7)dT

/m z1(7)h(t + 7 + T)dr

Gnz, (t+T)

Clearly, ya(t) # wmi(t = T). Therefore, the system is not time-invariant.
The system is definitely not causal because the output at any time depends
values of the input signal z(t).
(b) The system will then be linear, time invariant and non-causal.

on future

1.45. The plots are as in Figure 51.46.

stem of Figure P1.47(a) = (the response of the system to
z{n) + z1[n]) — the response of the system to z1[n) = {Response of a linear system L
to z{n] + z;[n}+ zero input response of §) — (Response of a linear system L to xi[n]+
zero input response of §) = (Response of a linear system L to z[n}).

1.47. (a) The overall response of the sy

21

Still non-linear: eg.: If zy[n} = —é[n] and z3[n] = —24[n], then win) = -8[n] +
§[n — 1} — 6 and wfn] = ~26[n) + 28[n — 1] — 6 # 2y1[n]-
(iv) Incrementally linear.

z(t) — z(t) + tdz(t)/dt — 1 and yolt) =1
(v) Incrementally linear
zn] — 2cos(mn)zfn]  and  weln] = cos?(mn)
(d) Let z[n] 5 yjn] and z[n] L zln]. Then, y[n] = z{n] +¢. For time invariance, we require
that when the input is z[n — no, the output be
yln —mno) = z[n— ng] + ¢
This implies that we require
z[n — o) Ly 2fn —na)
which in turn implies that L should be time invariant. We also require that yo[n] =
¢ =constant independent of n. .
1.48. We have

Zp = roei"° = rgcos By + jrosinfo = zo + Yo

(8) 21 = 7o — ¥

(b) z2 = Vx5 + ¥

(c) z3 = —Zo — Jyo = —%0
{d) z4 = —To + I%0

(e) z5 = z¢ + jyo 1
The plots for the pc}i:lts are as shown in the Figure S1.48. Imis}
To, R g2y
!3 3.,21_ L} (O:L‘m 5
Can 0z, %)
s
st G 2t
Z 2,
¢ r (o-1)
G, i) 2,2,

i = =1,
Yoz 2,8 Wy Figure 51.48 vo22, 8= 2

23

(o) )]
Figure S1.46
F=—— - = - — = - - W
—————-— - LNEnR SrTem _i/" S

L RBEe s g
Figure 51.47

(b) If z1[n) = 0 for all n, then y)[n} will be the zero-input response yo[r]. S may then be
redrawn as shown in Figure S1.47. This is the same as Figure 1.48.

(c) {i) Incrementally linear.
zln] — zn] + 2z[n+ 1]  and  woln] =n

(ii) Incrementally linear.

0, n even

(n-1)/2

—

zln] E z(k], n odd.

k=—00

and

_ 2 n even
wolr) = { (n—1)/2, n odd.

(iii) Not incrementally linear. Eg. choose yoln] = 3. Then

n] — yoln] = z[n] - zfn — 1], z[0] =0
vin] - woln] {I[ﬂ]—z[n-—l]~6, x{0}<0.'

22

1.49. (a) Here, r = /T +3 = 2. Also, cos6 = 1/2, sin® = v/3/2. This implies that § = «/3.
Therefore, 1 + jv/3 = 2677/,
(b) 5¢%
(c) 54/ 257 /4
(d) 54_-”"‘-'(“/3} = 5¢7(53.13°}
(e) 8e~7™
) 45N /4
(E) zﬁe—jhfﬂ
(h) e=12x /3
(i) e/
(_]) \/’izj“'ﬂz
(k) 4\/58—,':/12

() jeins
Plot depicting these points is as shown in Figure 51.49.
A Ian
xeh
o

. Sl L AxE”
¥ —* —r
e b X k R

x

T
c *4
*
Figure 51.49

1.50. (a) z =rcosf,y=rsind
(b) We have

= VETR

and
6=sin! | —=t—e| =cos™} et | = tan! [¥
[m] L/Ty = 3]
9 is undefined if 7 = 0 and also irrelevant. 8 is not unique since @ and 6 + 2mx (m €
integer) give the same results.
{c) 6 and 8 + 7 have the same value of tangent. We only know that the complex number
is either zyre’? or zp = red#+™ = 2.

24



1.51. (a) We bave
£ = coa 8 + jsiné. (S1.51-1)

and
¢ = cos@ — jsin®. (S1.51-2)
Summing egs. (51.51-1) and (S1.51-2) we get
cosf = %(ej' +e7).
(b) Subtracting eq. (51.51-2) from (S1.51-1) we get
sinf = zij(e"’ — e,
(¢) We now have e®+¢) = - ¢79e7¢, Therefore,
cos(f + ¢) + jsin(@+¢) = (cos fcos¢ — sinfsing)
+ jlsinfeosg+cosfsing) (g gy gy
Putting 8 = ¢ in eq. (51.51-3), we get
cos20 = cos® 0 — sin 6.
Putting § = —¢ in eq. (S1.51-3), we get
1= cos? 0 + sin” 6.
Adding the two above equations and simplifying
cos? @ = %(1 + cos 26).
(d) Bquating the real parts in eq. (51.51-3) with arguments (6 + ¢) and (8 — ¢) we get
cos(f + ¢) = cosfcos ¢ — sinBsing

and
cos(@ — ¢) = cos § cos ¢ + sinfsing.

Subtracting the two above equations, we obtain
sinfsing = ~[cus(6‘ $) — cos(8 + ¢)]-

(e) Equating imaginary parts in in eq. (S1.51-3), we get
sin(f + ¢) = sinfcos ¢ + cossin .

25

(g) Since ry > 0,r2 > 0 and —1 < cos(fy —B2) £ 1,
(1] = |z21)? i+ -2nr

r2 + 2 + 2ryrp cos(6y — 62)

|1 + 22

IIA

and
2| + |22 2?22 2 |2+ zﬂ‘.
1 2

1 54. (a) For a =1, it is fairly cbvious that

N-1
a*=N
n=
For @ # 1, we may write
N-1 -1
T S SRS Sl ey
n=0
Therefore,
N-1
o™ = 1_°N.
n=0 l-a
(b) For Jaf < 1,
lim o™ =0.
—+00

Therefore, from the result of the previous part,
1
hm Za = E_;;a =Ta
(¢) Differentiating both sides of the result of part (b) wrt a, we get
d [ x d (1
a@“ ) e
& 1

T = foap

(d) We may write

= = of

no_ ok nol
E a" =a E —!_afor1a|<1.
n=k n=0

1.55. (a) The desired sum is
1 — i™10/2

9

jenf2 _ - :
Zoer’ =T an =143
n=i

27

1.52.

1.53.

1.56.

(a) zz° = refre-1? = 2
(b) 2/2* = re?rte? =
(€) z+ 2" =T+ jy+z— 3y =2z = 2Re{z}
(d) z—z" =z + jy — T+ jy = 25y = 2Im{z}
(e) (m +2) =(m +z) +im+w)) =n—jn+2—jw =2+
(f) Consider (az,22)* for e > 0.
(az2129)" = (arirze?@ ¥y = arye irye™7% = azfz;.
For a < 0, a = |ale/™. Therefore,

(az122)" = {lﬂlfzfzc’(a‘+°’+'))' = |ale *r1e7 " ree 7% = azjzj.

(g) For |22| # 0,

: "
(”_1) = Th =it gjoa _ T1€ it

z2 ™ roe~2%  z3

zy _L[faY, (2)
Re{zz} = [(7-2) + (22) } :
Using (g) on this, we get

ret2y = 3[(2) ¢ (8)] - [z
2 z2 z3 2 z223

(a) ()" = (ceM)" = eFe iV = o710 = o7,

(b) Let 23 = 125 and 24 = 2}z2. Then,

(h) From (c}, we get

nf+5n = n+z=2Reln) = Re(nz)
= zj+24 = 2Re{z} = 2Re{zz2}

(<) I#] = Ire??| =1 = fre9| = |2*|
(d) |z 22] = jrirpe? @) = |rirg| = |rulir2] = |21l 22
(e) Since z = z + jy, |2| = V/z% + 4. By the triangle inequality,

Refz} =z < V¢ = el

and

Im{z}=y< VEFP =2l

(f) 2125 + 2} 22| = [2Re{z123}| = |2ryrz cos(8) ~ )| < 2riry = 2z 22
26

(b) The desired sum is

7 9
3 e = Iy T o (14 5).

n=-2 n—0

(c) The desired sum is

N

TS R e .
e 1-(1/2)e"2 5 75

n=0
(d) The desired sum is
S~ (1/2)"e™ S 1[4 .2
T (/2™ = (1/202 Y (12 = o [gﬂg]

n=2 n=0

(e) The desired sum is
Zg:cos(wnﬂ) = lg:é'“-“ + 1%&”"""2 = l(l +7)+ l(l -3 =
n=0 zn:O 2!!:0 : 2

(f) The desired sum is

o

1/2 2} = 172" ™2 ¢ = 2y inns?
B 2,.2,.0(”'” gf”"

. 2 4 2 g

= wHetn T inCE

{a) The desired integral is

4
[“ejﬂiz,ﬂ: L [
0 /2 o

(b) The desired integral is

r /2
fef""“dt— Lk

), = @l 1= Y

(c) The desired integral is

8
./sej*‘JZdz e 1N
2 inf2 2

(d) The desired integral is

e
fme—m:'ndt Aol
o -1+,

(@il ~ e} = -4;1'.
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2.3.

(e} The desired inf is
o o [ e=(145) 4 o~(1=1)t 1/2 1f2:24%)
—t = a2 L R Ry ™ -t —— =
j;e cos(l!)dt-[n [ > dt 1+3’+l—-_-, 5

(£) The desired integral is

00 . o0 e-(z—:j)t_e—(2+:|j)z i 3,/2}- 1!2_1- o i
fu e sin(3t)dt =_£ [__2?“__ B 3 243 13
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Using the given definition for the signal hin], we may write

hik] = (%)H {ulk +3) - ulk — 101}

The signal h{k] is non zero only in the range ~3 < k £9. From this we know that the signal
h{~k] is non zero only in the range —9 < k < 3. If we now shift the signal h{—k] by n to the
right, then the resultant signal h[n — k] will be non zero in the range (R —9) € k < (n+3).
Therefore,

A=n-9, B=n+3

) = (;)”uznl

hy[n] = uln].

Let us define the signals

and

Chapter 2 Answers
2.1. (a) We know that

i) = slol = hlnl = 3 Alklein - A

k=—o0

The signals z[n] and h{n] are as shown in Figure S2.1.

Figure 52.1
From this figure, we can easily see that the above convolution sum reduces to
wln] = Al=1zin + 1]+ R{l)z[r - 1)
= 2z[n+1]+2z{n -1}
This gives
yiln] = 28[n + 1] + 44[n] + 26[n — 1] + 24[n — 2] - 28[n - 4]
(b) We know that ‘

valn) = z[n + 2] » hin] = i hlKlz[n +2 - K]
k=-oc

Comparing with eq. (52.1-1), we see that
y2[n] = wifn + 2}

(c) We may rewrite eq. (S2.1-1} as

wnin] = zln] + h[n) = 2 zlk}h[n — k]
k=-00
Similarly, we may write
valn] = z[n] » hln + 2] = i z{kjh[n + 2 - k]

Comparing this with eq. (S2.1), we see that

wlr] =wnln+2]

30
1111 [RETEEE
B T g gl g 4 s on
Figure 52.4
2.5.  The signal y[n] is
ylnl = zln]» hln] = 3~ zfklafn k]
k=—00

In this case, this summation reduces to

9

9
vl = 3 alklhln — K] = 3 hin — &)

We note that i =y
sfnl=mn-2 and Afn)=hiln+2] From this it is clear that y[n] is a summation of shifted replicas of hfn]. Since the last
Now, replica will begin at n = 9 and h[n] is zero for n > N, y[n] is zero for n > N + 9. Using
yinl = =i}« hin] = sifn— 2] % huln +2) !.ins and the fact that y[14] = 0, we may conclude that N can at most be 4. Furthermore,
5 since y[4] = 5, we can conclude that A[n] has at least 5 non-zero points. The only value of

= Z o[k = hsfn - k+2] N which satifies both these conditions is 4.

k=—0c0

£ . 2.6. From the given information, we have:
By replacing k with m + 2 in the abovr summation, we obtain

o0

= 3 mlmiln—ml =zl s min) yinl = aln)=hln)= Y slkjhln - K

k=-00
m==00

= f: (3) *ul-k - 1Jufn — k- 1

yln] =2 [1 - (%)Mi] u(n] k=—c0

-
= Z(H]‘*uin—k-l]

Using the results of Example 2.1 in the text book, we may write

We know that b ";—T
yln] = z[n} » hin] = '; z[k]hin ~ k] = g(i)*u[n +k-1]

The signals z{n] and y|n] are as shown in Figure 52.4. From this figure, we see that the

Replacing k by p— 1,
above summation reduces to

-
yfr] = a{3lhin - 3] + ={dlhln — 4] + ={5]aln — 5 + zl6lan - 6] + 2{Tlhln — 7] + z[Blhlr - 81 uin} = 3 (30" ul + 5] (52.6-1)
This gives

2 -6, '-1'25<ﬂ S;is For n > 0 the above equation reduces to,

n
=9 94 _n  19<n<23 2
e <n< P O 1
0, otherwis LChp DIl frey S

»=0
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For n < 0 eq. (S2.6-1) reduces to,

vin] = (P = ()Y )P
PRI e

| S | 1ol gn

= (5) llT:l; = (5) 559

Therefore,
_J 3, n<0
wi={ (5" 23

2.7.  (a) Given that
z[n] = é[n - 1],
we see that

yinl= 3 alkloln — 24 = gln — 2] = uln =2~ uln = 6|

k=—co
(b) Given that
z[n] = dfn — 2],
we see that

)= 3 olilln 24 = gfn — 4 = ufn - 4 ~ uin ~ 8

k=—=co

(¢) The input to the system in part (b) is the same as the input in part (a) sttt by 1
to the right. If S is time invariant then the system output obtained in pari (b has to
the be the same as the system output obtained in part (a) shifted by 1 to the right.
Clealry, this is not the case. Therefore, the system is not LTL

{d) If z[n] = u[n], then

o
sinl = 3 slklgln - 2K]
k=—c0
el
= Zg[n - 2Kk)
k=0
The signal g[n — 2k is plotted for k = 0,1,2 in Figure $2.7. From this figure it is clear
that
1, =a=0,1
y[n)=¢ 2, n>1 = 2ulr] — d[n) — 8[n ~ 1]
0, otherwise
33
Therefore.
A=t-5 B=t-4

2.10. From the given information, we may sketch z(t) and h(t) as shown in Figure 52.10.
{a) With the aid of the plots in Figure 52.10, we can show that y(t) = x(t) « h(t) is as
shown in Figure 52.10.

1 4
2(#) l | htt)
4

o [ t o &

i
6 1 btk +

Figure $2.10
Therefore,
1 0<t<a
b o, a<t<l
=3 1ha-r, 1<t<(l+a)
0, otherwise

{b) From the plot of y(2), it is clear that %(zﬂ has discontinuities at 0, o, 1, and 1 + a. If
we want %:l to have only three discontinuities, then we need to ensure that @ = L.

2.11. (a) From the given information, we see that A(t) is non zero only for 0 < # < oo. Therefore,

1

y(t) = z(t) = h(t) = [:h{r)z(t —T1)dr

jwe"'{u[t —r—8)—u(t -7 - 5))dr
0

We can easily show that (u(t — 7 —3) —u(t -7 — 5)) is non zero only in the range
(t —5) <7 < (t~ 3). Therefore, for t <3, the above integral evaluates to zero. For
3 < t €5, the above integral is

t=3 ] — e~ 3t-3)
= My = ——
wo= [ etar =12

For t > 5, the integral is

-3 (1 — e~6)e=3it-5)
t) = eV dr = ———————
y(t) ./. . 3
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2.8.

2.9.

[= =il

23 45 N
Figure S2.7

R e |
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o~ p——s
e

Using the convolution integral,
z(t) + h(t) =£: z(T)h(t — 7)dr = /: h(T)z(t — T)d7.
Given that h(t) = &{t + 2) + 24(t + 1), the above integral reduces to
z(t) » y(t) = z(t + 2) + 2x(t + 1)
The signals z(t + 2) and 2z(t + 1) are plotted in Figure 52.8.

P 2
l/\\’f_&-ﬂ-) /]\‘x(&-rl)
3 |
7 " [s] + A -1 o) 1 t
Figure 52.8
Using these plots, we can easily show that
t+3, -2<t€ -1
BRI ~1<t<0

V=92 2,  o0<i<1

0, otherwise

Using the given definition for the signal (1), we may write
: e, T>5
h(r) = e¥u{—7 +4) + e Fu(r = 5) = ¢ e, T<4
‘Therefore,

0, -S<Tr<—4
If we now shift the signal k(—7) by t to the right, then the resultant signal A(t - 7) will be

€%, <=5
h(—1)={ e, T>—4

e -1, r<ct-5
h(t—71) = { e2zTs, T>t-4
0, (t-5) <7 <(t-4)
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Therefore, the result of this convolution may be expressed as

, —oo<t<3
y(t) = { =2, 3<t<5

| —e=8)e-3(t-8)

(e ™ P 5<t<oo

(b) By differentiating z(t) with respect to time we get

dz(t)
S =82 - 3) — 8¢~ 5)

Therefore,
gt = EO L ) = 20-ya - 3) - Dz - 5).
() From the result of part (a), we may compute the derivative of y(t) to be
0, —0<t<3
d—!:f} R e . 3<tgsh
(e — 1)e~3(t=5} 5<t< o0
This is exactly equal to g(£). Therefore, g(t) = 245,
The signal y(t} may be written as
y(t) = - -+ e Dy (1 46) syl 3) e tu(t) e Mu(t-3) +e =By —6) + -

In the range 0 < ¢ < 3, we may write y(¢) as
y(t) = -+ e OOy 4 6) + e Byt +3) + e u(t)
= et e (48] 4 o(46) 4
= efl+e+et4-)
ooy 1
1-¢3

Therefore, A = —=.

(a) We require that

(é)n“["] -A (%){nﬂ)u[n —1] =4[n]

Putting n = 1 and solving for A gives A = }.
(b) From part (a), we know that

Mol - ghln =1 = 6in)
hfn) » (8[n] - %J[n 1) = dn)
From the definition of an inverse system, we may argue that

oln] = 8n] - %ﬂfn -1
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2.14. (a) We first determine if h;(t) is absolutely integrable as follows

/ |h;(1)ldr=f etar=1
—o0 o

Therefore, h)(t) is the impulse response of a stable LTI system.
(b) We determine if ha(t) is absolutely integrable as follows

f_ * Ihar)ldr = j:c ¥ cos(20)|dr

This integral is clearly finite-valued because ¢™*|cos(2t)] is an exponentially decaying
function in the range 0 < ¢ € co. Therefore, hy(t) is the impulse response of a stable
LTI system.

215. (a) We determine if h[n] is absolutely summable as follows

00 o0 x

3 Ikl = 3 klcos(k)|

k=—o00 k=0
This sum does not have a finite value because the function k| cos(} k)| increases as the
value of k increases. Therefore, ) [n| cannot be the impulse response of a stable LTI
system.

(b) We determine if hy[n] is absolutely summable as follows

oo 10
3 ilkl= ¥ =32

k=-o00 k=-00
Therefore, hz[n} is the impulse response of a stable LTI system.

2.16. (a) True. This may be easily argued by noting that convolution may be viewd as the
process of carrying out the superposition of a number of echos of h{n]. 7%« It wuch
echo will occur at the location of the first non zero sample of z[n]. In ihis vas he
first echo will occur at N;. The echo of h[n] which occurs at n = N, will have its hrst
non zero sample at the time location Ny + N;. Therefore, for all values of n which are
lesser that N + Na, the output y[n] is zero.

(b) False. Consider
vln] = zln]+hln]
00

= 3" ziklhln - K]
k=-00
From this,
yin=1 = 3 afklaln-1-4
k==-00
= z[n)+hln-1]

This shows that the given statement is false.
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This gives
: St
(=1+3)K +4K =1, ='K_3(1+j]

Therefore,

1 ;
t) = b LA 5
w=sa 7 ’

In order to determine the homogeneous solution, we hypothesize that
walt) = Ae*
Since the homogeneous solution has to satisfy the following differential equation

WO | 4yt =0,

we obtain
Ase™ + 4Ae™ = Ae"(s +4) = 0.

This implies that s = —4 for any A. The overall solution to the differential equation
now becomes I
t) = Ae ™t 4+ —— 1IN 459
y(t) = Ae )
Now in order to determine the constant A, we use the fact that the system satisfies the
condition of initial rest. Given that y(0) = 0, we may conclude that

1 =i
— A=
Atsaepn =0 T+ 5

Therefore for t > 0,
1 .
= et (~1+a;):]
y(t) 3“+j)[e +¢ , t>»0
Since the system satisfies the condition of initial rest, y(t) = 0 for ¢ < 0. Therefore,
y(t) = % [-e'“ +ec'1+3”‘] u(t)

(b) The output will now be the real part of the answer obtained in part (a)

y(t) = % [e7* cos 3t + e sin 3t — e~ u(z).
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(c) True. Cousider
y(t) = z(t) « h(2) = F:(r}h(! = 7)dr.
From this,

e fmz{r)h(—t-r)d'r

/00 z(~7)h(~t + 7)dr
2(~t) « h(~1)

This shows that the given statement is true.
(d) True. This may be argued by considering

00

ylt) = z{t) « h(t) = / z(r)h(t — 7)dr.

In Figure 52.16, we plot z(r) and A(t — 7) under the assumptions that (1) z(t) = 0O
for t > Ty and (2) A(t) =0 for t > Ty, Clearly, the product z(r)h(t — 7) is zero if

T 2 4 1= T

Figure 52.16
t =Ty > Ty. Therefore, y(t) =0 for t > T} + Tp.

2.17. (a) We kncfw that y(t) is the sum of the particular and homogeneous solutions to the
given differential equation. We first determine the particular solution y,(t) by using
the method specified in Example 2.14. Since we are given that the input is z(t) =
el =1+t 1) for t > 0, we hypothesize that for ¢ > 0

wlt) = Kel=1435)t,
Substituting for z(t) and y{t) in the given differential equation,

(=1 +35)Kel= 1+t 4 gxcel-14300 _ (=143}
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2.18. Since the system is causal, yln] =0 for n < 1. Now,

vll] = }y[ﬂ]+zu}=o+1=1

w2 = %y[l]+z[2]=4l+o=i
v[3] = %y{2]+z[3]=%+0=r]§

vim] = (!

Therefore,

1

inl = ()" ufn ~ 1)

2.19. (a) Consider the difference equation relating y[n] and win] for Sy
¥ln] = ayfn — 1] + fufn)
From this we may write

wln] = Zufn] - Syln -1

gulrl = gvin -1l

and
1 o
wln = 1) = Zyln 1) - Syfn - 2

Weighting the previous equation by 1/2 and subtracting from the one before, we obtain

win] — %w[n -1 = %y[n] - %y[n -1] - %y[n -1+ :,Z%y{n -2

Substituting this in the difference equation relating wln] and z[n] for 5,
1 a 1 a
Ey[ﬂ] - f_iy[ﬂ -1]- Ev[n =1+ ﬁy[" = 2] =z[n]

That is,
vin] = (a + %)y[ﬂ. -1) - gvy[n - 2] + Bzn]

Comparing with the given equation relating y[n] and z(n), we obtain

1
G—;. =1



(b) The difference equations relating the input and output of the systems 5) and 5, are Now,

1 1 dz(t)
win) = Juln— 1) +2ln)  aad  yfn) = Juin 1)+ uln) G| = [ - rcoarriar
From these, we can use the method specifed in Example 2.15 to show that the impulse which is the desired integral. We now evaluate the value of the integral as
responses of S) and S are £ dzt)
hin] = (%) uln] = sin(2nt)|,_, = 0.
t=1
aad n 2.21. (a) The desired convolution is
taln) = (3) ol
respectively. The overall impulse response of the system made up of a cascade of $yand vl = I[:] * hin]
S5 will be = Y zlklhln -
oo k==0o0
hin] = hi[n]* ha[n] = hyk]hen — K| ’ M
: : t:z-m : = ﬁ“E(a/ﬂ]‘ forn>0
= i(l)k(l)"-*u[n- k] B::f—a"“
£e2.04 = [W]u[n] for a # B.
P BE il DV (b) From (s),
k=0 k=0 a
= G - ()] vin] = a" LZO 1} ufn] = (n + a"ufn].
2.20. (a) (¢) For n < 6,
o0 o0 2 - 1 2 1
[ ug(t) cos(t)dt =f S(t)dt = 1 y[n] =4 {Z(_E)* = Z(‘g)k}‘
—-o0 -0 ki k=0
(b) Forn > 6,
o ey
/Ssin[?.rrt)é(t +3)dt = sin(6m) =0 yln] =4 {go(-g)" - g(—;})*} :
. : Therefore,
(c) In order to evaluate the integral (8/9)(—1/8)44" n<6
ol ={ Qi nSe

5
f ui(1 — 7) cos(2x7)dr,
= (d) The desired convolution is

consider the signal =
2(t) = cos(@nt)[u(t + 5) — u(t — 5)] vinl = 3" zlklhin - &)
We know that gy
el = z[0Jhln] + 2[1)A[n — 1) + z[2J&[n — 2] + z[3)h[n - 3] 4 z[4)h[n — 4]

dt

]

uy(t) »z(t) = f—wul(t = 7)a(r)dr hlnf+ h[n — 1] + hfn — 2] + Aln — 3] + h(n — 4].

jsu:(t 2T This is as shown in Figure $2.21.
-5
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(c) The desired convolution is

i :
3 yid uit) = f” 2(r)hit - 7)dr
ST ;
—] T [ ] I I ] I Le = f sin(nr)A(t — T)dr.
o I io n 0
Figure 52.21 This gives us
0, t<l1
4 4 ™ _ ) (2/x)[1 = cos{x(t — 1}}), 1<t<3
2.22. (a) The desired convolution is i) = (2/7)[cos{x(t - 3)} - 1], 3<t<s
o0 0, <t
w0 = [ atrnte-riar (d) Let
. f ot BN gr 130 BO) = () - 36(¢ - 2),
b where
Then " . () :{ 4/3, 0<t<1
y(t) = = e;: — u(t) a#f ! 0, otherwise
te=Pty(t) a=p" Now,
(b) The desired convolution is ¥(t) = h(t) » 2(t) = [ha(8) » 2(2)) — éz(e —2).
We have

yl(t) =

This may be written as

fm.t(r}h(t — T)dT

Y | _ 4 1 B :
fzh(t = T)dr — /Sh(r - 7)dr. ek /:-I 3(” Fhers E[Eatg ik Ea(t el sl
o 2

Therefore,

y(t) = ;[%at’~ -l-a(:— 1) + bt — b(t = 1)] — %[a(i —2)+bl=at+b=1z(t)

2 5 2
/ e2t-")gr —j eXt=7)gr, t<1
/0'2 He-rg : 58(‘ o (e) =(t) periodic implies y{t) periodic. ", determine 1 period only. We have
e Tidy — =Tldr, 1<¢<3
y(t) = -1 2 -3 t
- ‘J("’)d'r‘ 3<t<6 j:_l{‘—Tfi)d‘f+'/_l(l—t+-r)d-r=%+¢—;1" ~1<t<}
-1 y(t) = 1 ' i
6<t OS5 e 2 1 a
= T)dT + I(!—l—r)gh:: —3t+17/4, p<t<y
Therefore, H
(1/2)[e* — 2e2¢-3) 4 £20-5) <1 The period of y(t) is 2.

(1/2)[e? + eXt=5) — 2¢2t=2) 1€1<3

y(t) = (1/2)[2e3) — 2], 1126 2.23. y(t) is sketched in Figure $2.23 for the different values of 7.
0, b<t 2.24. (a) We are given that hy[n] = 4[n] + é[n — 1]. Therefore,
ha[n] = ho[n] = &[] + 26[n — 1) + &[n — 2).
43
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Figure 52.23
Since
Rln] = hy[n] = [he[n] * ha[n]],
we get
k[n] = hi[n] + 2hy[n— 1]+ hy[n — 2].
Therefore,
R[0] = k(0] = 0] =1,
h{1] = k(1] + 2k [0} = h(l] =3,
A = mi2+ 2]+l = Ml =3,
h[3) = h1[3] + 2 [2] + M (1] = h3 =2
h{4) = h[d] + 2R [3] + k(2] = hf4] =1
h[5] = h[5] + 2h, 4] + k(3] = hy[5) = 0.
hl[nlzﬂfarn<0andn25.
(b) In this case,
y[n] = zn] » hln] = h[n] - hln - 1].
2.25. (a) We may write z[n) as i
aln) = (%) v
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(b) Now,
yin] = z3[n) « wiln] = o] —wafn =1}
Therefore,
2{1-(1/2)"} + 2{1-(1/2)""} = (1/2)»+3, n> -2
ylnl = { 1, n=-3
X otherwise

Therefore, y[n] = (1/2)"*u[n +3].

{c) We have
2[n] = zan] » @3ln] = uln + 3 —ufn+2 =é8n+3.

(d) From the result of part (c), we get
yln] = win]* mifn] =zl + 3] = (1/2)"*3uln + 3].

[ vtoae ‘
f_m f_:z('r)h(t — 1)drdt
sz(f][:h(t — 7)dtdr

[:I[T)Ap.dr

= AzAp

2.27. The proof is as follows.

S
<
i i It

il

™
2.28. (a) Causal because hfn] = 0 for n < 0. Stable because E(‘g}“ =5/4 < o0

n=0

w
(b) Not causal because (] # 0 for n < 0. Stable because 3 (08)" =5 < oo

n=-2
0
(c) Anti-causal because hin] = 0 for n > 0. Unstable because z {(1/2)" = c0
n==oo

3
(d) Not causal because hfr] # 0 for n < 0. Stable because z 5= <o

n=-00
(e) Causal because h[n] =0 for n < 0. Unstable because the second term becomes infimte
as n — oo.
o0
(f) Not causal because h{n] # 0 for n < 0. Stable because S Jhln]l = 305/3 < oo
n-oo
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Now, the desired convolution is
yln] = hin] = z[n]

-1 o0
3 3R/ un — R+ 3]+ 3 (/3)k (/4" ujn ~ k+ 3]

k=-00 k=0

(17323 (/3 (14 uln + k + 4+ S /3R /9 uln - k 4+ 3]
k=0

k=0

i

I

By consider each summation in the above equation separately, we may show that

(12¢/11)3%, n<—4
yln] = (1/11)4‘: n=—4 .
(1/4)™(1/11) + —3(1/4)™ + 3(256)(1/3)", n>-3

(b) Now consider the convolution
wln] = [(1/3)"uln]) = [(1/4)"u[n + 3]
We may show that

Lo, n< -3
nfn] = { —3(1/4)" +3(256)(1/3)", nz2-3

Also, consider the convolution
wain] = [(3)"ul—n — 1]] « [(1/4)"uln + 3]

We may show that o
_ [ a2*/13n, n<—4
vafn] = { (1/49°(1/11), n>-3 "

Clearly, yi[n} + y2[n] = y[n] obtained in the previous part.
2.26. (a) We have

yn] =z n)*z2ln] = i zy[k]z2[n - k]
i(o.s)*u[n +3 -k

k=0

It

This evaluates to

2{1-Q/2*}, nzx-3
0,

yiln) = z1[n] # za[n] = { otherwise
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o
(g) Causal because hin] = 0 for n < 0. Stable because 3 Ja[n]| =1 < co.

n=-co

2.29. (a) Causal because h(t) = 0 for ¢ < 0. Stable because j * bt = /4 < co.
(b) Not causal because h(t) # 0 for ¢ < 0. Unstable because jm [h(t)] = oo.
-%
(c) Not causal because h(t) # 0 for ¢ < 0. a Stable because jwih(mdt =¢!%/2 < oo,
o0
(d) Not causal because h(t) # 0 for ¢ < 0. Stable because f:|h(t]}d: =e2/2 < co.
(e) Not causal because h(t) # 0 for ¢ < 0. Stable because fm |h(t)ldt = 1/3 < o0,

(f) Causal because h{t) = 0 for ¢ < 0. Stable because |h(t)ldt = 1 < co.

—oo

(g) Causal because h(t) = 0 for ¢ < 0. Unstable because j

oo

[R(t)ldt = co.

2.30. We need to find the output of the system when the input is z[n] = d[n]. Since we are asked
to assume initial rest, we may conclude that y{n] = 0 for n < 0. Now,

yln] = z[n] - 2y[n - 1].
Therefore,
y[0) = z{0] - 2[-1] = 1,

1] = z[1] - 29[0) = 2, y[2) =<2 + 2] = -4

and so on. In closed form,
yin = (~2)"ufn]
This is the impulse response of the system.
2.31. Initial rest implies that y[n] = 0 for n < —2. Now
y[n} = z[n] + 2z[n — 2] - 2y[n - 1].
Therefore,
y-2) = L yl-1]=0, ¥[0]=5
v[4) = 56,y[5] = =110, y[n] = ~110(-2)""°  forn = 5.

2.32. (a) I yy[n} = A(1/2)", then we need to verify

Clearly this is true.

48

1



(b) We now require that for n > 0
1\" 1 1 n-1 1\"
2() -2() - (3)"
Therefore, B = —2. :
(c) From eq. (P2.32-1), we know that y[0] = z[0] + (1/2)y[-1] = [0 = 1. Now we also
have
y[ﬂ]-—-A+E = A=1-B=3.
(2) (1) From Example 2.14, we know that
1 1
wt) = [58"‘ = ge_m} u(z).

(i} We solve this along the lines of Example 2.14. First assume that y,(/) is »f the
form Ke for t > 0. Then using eq. (P2.33-1), we get for ¢t > 0

2Ke® 4 2Ke* = e* o g o

P

We now know that y,(t) = te¥ for t > 0. We may hypothesize the homogeneous
solution to be of the form

yn(t) = Ae™2,
Therefore,
1
y2(t) = de™2t 4 Eez‘. fort > 0.

Assuming initial rest, we can conclude that ya(t) = 0 for ¢ < 0. Therefore

w0)=0=4+1 = 4=_

-

Then,
ya(t) = Lo 4 l= u(t)
4 4 g
(ii1) Let the input be z3(t) = aeMu(t) + Be'y(t). Assume that the particular solution

Yp(t) is of the form
Yp(t) = Kyae™ + K,ppe2t

for ¢ > 0. Using eq. (P2.33-1), we get
3Kiae™ + 2K30e® + 2K ae™ + 2K, 8% = o 4+ Be*t
Equating the coefficients of €3 and e on both sides, we get

K, = and K, =

-
o) —-

We now know that (1) = £eH-T) gor ¢ > T, We may hypothesize the homoge-
neous solution to be of the form

w(t) = Ae™™,
Therefore, K
w2(t) = de™2 4+ Tem_”, fort >T.
Assuming initial rest, we can conclude that y2(t) = 0 for ¢t < T. Therefore,

K

W(T)=0=Ae~7 + h o

= A=-§e .

Then,
= [ Kern , E ] gy

Clearly, g(t) = 1 (t - T).
(iii) Consider the input-output pair z1(t) = yi(t) where z;(t) = 0 for t < ty. Note that
dyi(t)

& TWO=z(), w)=0, fort <t

Since the derivative is a time-invariant operation, we may now write
dy(t-1T)

dt
This suggests that if the input is a signal of the form z(t) = z1(t = T), then the
output is a signal of the form yo(t) = y,(t - T). Also, note that the new output

y2(t) will be zero for t < ty + T. This supports time-invariance since z,(t) is zero
for ¢ < ¢y + T. Therefore, we may conclude that the system is time-invariant.

F-T)=2i(t=T), w(t)=0, fort <to.

(a) Consider ,(t) -4 y1(t) and z,(t) 5, ¥2(t). We know that y;{1) = go(1) = 1. Now

consider a third input to the system which is Z3(t) = z,(¢)+z2(t). Let the corresponding
output be y3(¢). Now, note that v3(1) = 1 # y1(1) + g(1). Therefore, the system is
not linear. A specific example follows.

Consider an input signal z,(t) = e?u(t). From Problem 2.33(a-ii), we know that
the corresponding output for ¢ > 0 is
n(t) = zle?' + Ae”%,
Using the fact that n(l) =1, weget fort>0
12 _ €\ —20-1)
y](t]=-4c +(] 4)¢ o
Now, consider a second signal z2(t) = 0. Then, the corresponding output 1=

w2(t) = Be ™™
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Now bypothesizing that yy(t) = Ae~%, we get
W) = Jac* + pet 4 e
for ¢ > 0. Assuming initial rest,
wO)=0=A+a/5+p/4 = A=-(§+g)_
Therefore,
wl(t) = {-;—uc"' + }Bc” - (% + -4’2) c"“‘} u(t).

Clearly, y3(t) = ayy (1) + fyalt).

(iv) For the input-output pair Z1(t) and g1 (), we may use eq. (P2.33-1) and th,
rest condition to write

d__yéft) +2y(t) =z (¢), tt)=01fort< 4.
(82

For the input-output pair T2(t) and (1), we may use eq. (P2.33-1) and the
rest condition to write

dy;zr_” et =z2(t),  wlt) =0 fort <1
(S2.

Scaling eq. ($2.33-1) by & and eq. (52.33-2) by 3 and summing, we get

ad?{am:) *Bya(t)} + Aoy (1) + B (1)) = az (t) + fza(r),
and
w(2) + 32(t) = 0 for ¢ < min(ty, 1;).

By inspection, it is clear that the output is y3(¢) = oy (t) + Bya(t) when the
18 z3(t) = oz (t) + Bza(t). Furthermore, y3(t) = 0 for ¢ < t3, where t3 denot.
time until which z3(t) = 0,

(b) (i) Using the result of (a-ii), we may write
n(t) = % [eﬁ' - e‘"} u(t).

(ii) We solve this along the lines of Example 2.14. First assume that yp(t) is o
form KYe**~T) for t > T, Then using eq. (P2.33-1), we get for t > T

KT g RU-T) 2t g 41

fort > 0. Uﬁnglhﬁcl&nhfl)=l,weguhrt>0
va(t) = e~ 2e-0),

Now consider a third signal z3(t) = =, (¢) +z2(t) = z,(t). Note that the output w
still be y3(t) = y,(¢) for ¢ > 0. Clearly, ys(t) # n(t) +ye(t) for t > 0. Therefore, tl
system is not linear,

(b) Again consider an input signal z,(t) = e®u(t). From part (a), we know that t)
corresponding output for ¢ > 0 with wn(l)=1is
=1 x €Y ~2¢-1)
y;(t)—“c +(1—4)c i

Now, consider an input signai of the form 22(t) = 21 (¢ = T) = X Dy(t — T). The
fort>T,

w(t) = ic’(‘_r) + Ae 2,
Using the fact that ¥2(1) = 1 and also assuming that T < 1, , we get for t > T

() %em-m 5 (l _ 582(1-1)) e=20t-1)

Now note that ) #n(t-T)fort > T, Therefore, the system is not time invariant

(c) In order to show that the system is incrementally linear with the auxiliary condition

specified as y(1) = 1, we need to first show that the system is linear with the auxiliary

For an input-output pair z1(t) and y(t), we may use eq. (P2.33-1) and the fact
that y1(1) = 0 to write

ﬂ’:}# +2u1(t) = 2,(2), wi(l) =o0. (52.34-1)

For an input-output pair z2(t) and ya(t}, we may use eq. (P2.33-1) and the initial rest
condition to write

B, 2nt) = 2a(t),  3a1) =0, (52.34-2)

Scaling eq. ($2.34-1) by o and eq. (S2.34-2) by 8 and summing, we get

d
o () + Bua(8)} + 2{amy () + Bualt)} = azi(t) + Baa(t)
and
wll) = y(l) + (1) = 0.
By inspection, it is clear that the output is y3(t) = ay, (t) + Fya(t) when the input is
z3(t) = az(t)+ Bz (t). Furthermare, y3(1) = 0 = ¥1(1) +32(1). Therefore, the system
is linear.
Therefore, the overall system may be treated as the cascade of a linear system with
an adder which adds the response of the system to the auxiliary conditions alone.
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(d) Lo the previous part, we showed that the system is linear when y(1) = 0. In order to
show that the system is not time-invariant, consider an input of the form z,(t) = e%u(t).
From part (a), we know that the corresponding output will be

nit) = %e‘" + Ae” %,
Using the fact that (1) = 0, we get for ¢t > 0

1
n(e) = 3% - 12,
Now consider an input of the form z(t) = z;(t — 1/2). Note that y2(1) = 0. Clearly,
y2(l) # wi(l = 1/2) = (1/4)(e — €%). Therefore, ya(t) # yi(t = 1/2) for all t. This
implies that the system is not time invariant.
{ej A proof which is very similar to the proof for linearity used in part (c) may be used
here. We may show that the system is not time invariant by using the method outlined
in part (d).
2.35. (a) Since the system is linear, the response y,(t) = 0 for all t.
(b} Now let us find the output y2(t) when the input is z2(¢). The particular solution is of
the form
wt) =Y, t>-1
Substituting in eq. (P2.33-1), we get
2¥ =1.

Now, including the bomogeneous solution which is of the form ya(t) = Ae™?, we get
the overall solution:

) = Ae™ 4+ % t> -1
Since y(0) = 0, we get
ooy _ 45—
wlt)=-3¢*+5 t>-L (82.35-1)
For t < -1, we note that x3(t) = 0. Thus the particular solution is zero in this range
and
yolt) = Be™® t< -l (52.35-2)
Since the two pieces of the solution for y(t) in egs. ($2.35-1) and ($2.35-2) must match
at ¢ = —1, we can determine B from the equation
1 12 _p2
7=3¢ = Be
which yields

(Y1 2wy
yz(il—(z 2&):: , t<-Ll
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2.37. Let us consider two inputs
z3(t) =0, forallt
and
z2(¢) = e*[ult) — u(t — 1)}
Since the system is linear, the response y(t) = 0 for all ¢.
Now let us find the output yo(¢) when the input is zz(¢). The particular solution is of
the form
wlt) = Ye',

Substituting in eq. (P2.33-1), we get

0<t<l

¥ =1

Now, including the homogeneous solution which is of the form yx(t) = Ae=%, we get the
overall solution:

w(t) = Ac® + %e‘. D<t<l.
Assuming final rest, we have y(1) = 0. Using this we get A = —e®/3. Therefore,
() = —%e*’“’ + %c', 0<t<l. (52.37-1)
For t < 0, we note that z(t) = 0. Thus the particular solution is zero in this range and
w(t)=Be™, t<o. (52.37-2)

Since the two pieces of the solution for yo(t) in egs. (52.37-1) and (S2.37-2) must match at
t = 0, we can determine B from the equation
Dol s
i e
which yields
1 1s\
= .
w(t) (3 3¢ ): , t<O

Now note that since z;(t) = z3(t) for ¢ < 0, it must be true that for a causal system
wi(t) = y2(t) for t < 0. However, the results of obtained above show that this is not true.
Therefore, the system is not causal.

2.38. The block diagrams are as shown in Figure $2.38.
2.39. The block diagrams are as shown in Figure 52.39.
2.40. (a) Note that
ity = f " et=Nizf  2)dr = f et ryar.
o -0

Therefore,
h(t) = e~ (Dt - 7).
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Now note that since 1,(t) = x3(t) for t < ~1, it must be true that for a causal system
¥(t) = ya(t) for t < —1. However the results of parts (a) and (b) show that this is not
true. Therefore, the system is not causal.

2.36. (a) Consider an input z,[n] such that z;[n] = 0 for n < n,. The corresponding output will
be
1
yn} = 30 [n=1+zin], wnj=0frn<n,.
y (52.36-1)

Also, consider another input z5[n] such that z3[n] = 0 for n < n,. The corresponding
output will be

wn] = %u{n =1]+22[n], yo[n] =0for n < n,.
(52.36-2)

Scaling eq. (82.36-1) by a and eq. (52.36-2) by 4 and summing, we get
av(n] + Bualn] = Swln = 1] + gm[n - 1)+ azi[n] + Szzfn).

By inspection, it is clear that the output is ys[r] = ayi[n] + Byz[n] when the input is
z3(n] = azi[n]+ Bza[n]. Furthermore, y3(1) = 0 = y;(1) +y2(1). Therefore, the system
is linear.
(b) Let us consider two inputs
zi[n] =0, foralln,
and o
, n<-1
”’[“]={ 1, n>-1"
Since the system is linear, the response to z,[n] is y[n] = 0 for al} n. Now let us find
the output yz(n| when the input is z2[n]. Since y,[0] = 0,

w1l =(1/20+0=0, (2= (1/20+0=0,
Therefore, y2[n] = 0 for n > 0. Now, for n < 0, note that
(0] = (1/2)y2[~1] + £[0].

Therefore, y3[~1] = =2. Proceeding similarly, we get y[~2] = —4, 12[-3] = —8, and
80 on. Therefore, y2[n) = —(1/2)*uf-n - 1].

Now note that since z;[n] = z[n] for n < 0, it must be true that for a causal system
wi{n] = y2[n] for n < 0. However, the results obtained above show that this is not true.
Therefore, the system is not causal.
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Figure 52.38

' aim e

Figure 52.39

(b) We have

y(t)

fm h(r)z(t — 7)dr
fmc":"lj[u(: —T+1)—u(t=7-2)
2

h(7) and z(t — 7) are as shown in the figure below.
Using this figure, we may write

o, t<l
e (r=2) (t-1)
e\ dr =1 — et 1
yl(t) = j; T e 5 <t<4
141
f e~ (7=Agr = o= _ 73], t>4
1=2

2.41. (a) We may write
g[n] = zin] - azrn-1]
a"u[n] — a™u[n - 1]

&[n).
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h(T) Ax-T)

a8l 2z P 12 O F ket

Figure 52.40
(b) Note that g[n] = z[n] « {8[n] - ad[n — 1}}. Therefore, from part (a), we know that
z[n] * {8[n] — edfn — 1]} = d[n]. Using this we may write
z[n]* (8ln - 1] —adln - 2]} = én—1],
z[n] * {Sjn + 1] — adln]} = dn+ 1],
zin] = {§n + 2} —ad[n +1}} = §[n +2).
Now note that

z{n] « h[n] = 48[n + 2] + 26[n + 1] + 8[n) + %ﬂ[n -1}

Therefore,

4z[n] * {0[n + 2] — ad[n + 1]}
2z[n] + {8[n + 1] = ad{n]}

aln] + {3[n] - adfn - 1]}
(1/2)z[n) + {8[n — 1] = ad[n - 2]}

z[n] = hin]

o+

This may be written as

fn] s hln] =zln] » {48 +2] — 4adln + 1) + 26[n + 1]
2ad(n] + d[n] - adln — 1]
4+ (1/2)d[n — 1] - (1/2)d[n — 2]

Therefore,

48[n+ 2] + (2 - 4a)d[n + 1] + (1 - 2a)é[r]
(1/2 - &¥8[n — 1} — (1/2)é[n — 2]

hin]

]

+

2.42. We have %
y(t) = z(t) * h(t) = f wolt=T)dr,
-0.5
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2 44. (a) We have
o0 Ty
z(t) s h(t) = [ z(r)h(t — 7)dr = / z(T)h(t — T)dT.
-0 -1
Note that h(—7) = 0for || > T;. Therefore, h{t—7) =0for 7 > t+Tzand 7 < ~Tp+t.

Therefore, the above integral evaluates to zero either if Ty < —Ta+tor T+t < -T
This implies that the convolution integral is zero if 2 > 1Ty + Tl

(b) (i) We have
Ny

yln] = h[n] *+ z[n] = z h[k]z[r — K.

k=No
Note that z[—k] # 0 for —N3 £ n < —N,. Therefore, z[—k +n] # 0 for —N3+n<
k < —Nz +n. Clearly, the convolution sum is pot zero if —N3 +n < N, and
—Ny +n > No. Therefore, y[n] is nonzero for n < Ny + N3 and n > Ng + Na.
(ii) We can easily show that My = My + M- 1
(c) hin] =0 for n > 5.
(d) From the figure it is clear that

-1
y(t) = ht) » z(t) = fﬂ z(t — 7)d7 + z(t — 6).

Therefore, k
y(0) =] z(r)dr + z(—6).
-2
This implies that z{t) must be known for 1 <t < 2 and for t = —6.

2.45. (a) (i) We have

z{t) - z(t — h) vry y(t) —wl{t = )
h h '
Taking limit as k —+ 0 on both sides of the above equation:

() E o)

(i) Differentiating the convolution integral, we get

Y = %U_::(e-r)h(r)dfl

= [:%[x(t—r)]h(r)dr
= wz‘(t—r)h{r)dr

= z'(t) = h(t).
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.5
w(0) = j: et = L sintun/2).

(a) If wy = 2x, then y(0) = 0.
(b) Clearly, our answer to part (a) is not unique. Any wo = 2kn, k € T and k # 0 will

suffice.
2.43. (a) We first have
E@rOles) = [ [ strhie’ = mate - o)arae
= _{:[zz(f)h(o}g(t S
Also,

2(t) « [b(2) » g(0)]

/ * 2t - o )(r)glo’ — r)do'dr

/w /w z(o)h(T)g(t — 7 — o)drdo

-00

- f- iﬁ(f)h(a)g(t AR

1]

The equality is proved.
(b) (i) We first have
Aof1NE 2 1
wln] = uln] * ky(n] = ——) ==11- (--)""‘1] [n].
! ED( 2 3 [ 2

Now,
yln] = win] * haf] = (n + Vuin)-

(i) We first have
n LI L
gl =t kol = 37 (=3 + 32 (—5)* = vl
1 2|1 ;( 2) 2& ) uln
Now,
yln] = uln] = gln] = uln]  ufn] = (n + u[n].
The same result was obtained in both parts (i) and (ii).

(c) Note that

zfn] * (ha[n] * ha[n]} = (z[n] * haln]) * hiln].
Also note that
zfn] * hyln] = e”uln] - auln ~ 1] = d[n].

Therefore,

z[n] » hy[n] * ka[n] = &[n} + sin8n = sin8n.
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T | t > w el
k) hit) Yt 1é) bit)= la'(i')

Figure 52.45

(iii} Let us name the output of the system with impulse response u; (t) as w(t). Then,
w(t) = z(t) * ui(t) = ='(t) and z(t) = 2'(t) = A(¢).
Since both systems in the cascade are LTI, we may interchange their order as
shown in Figure S2.45.
Then, y(t) = z(¢) » h() and p(t) = y'(t). Since z(t) and p(t) have to be the same,
we may conclude that z‘(t) = h(t) = y'(t).
(b) (i) We have already proved that y'(t) = z'(¢) » h(t). Now we may interchange z(t) and
h(t) in the earlier proofs and they would all still hold. Therefore, we may argue
that y'(t) = z(t) « K'(t).
(ii) Consider

y@) = (=) u(®)] =K ()
= x(t) « [u(t) = wi(t)] * h{t)
= z(t) « h(t).

“This shows that [z(f) » u{t)]h(t) is equivalent to (2} » h{t). Now the same thing
may be written as:

w(t) = [z(t) s u(t)] « H'(t)
= [lz(t) s wa ()] « A(B)] = u(t)

t
= f z' ()Rt — T)dT
= z'(2) » [h(t) * u(t)]
t
= z'(t) tf h(r)dr
(c) Note that z'(t) = &(t) = 5e~u(t). Therefore, the output of the LTI system to z'(t)
will be h(t) — 5sin(wgt). Since this has to be equal to y'(t) = wp cos(wpt), we have

h(t) = wo cos{wyt) + 5sin(wot)-



(d) (3) We have
w(t) = =z(t) s [w(2) = u(t)] * h{t)
= [z(t) vua ()] » [ult) + B(2)]
= z'(t) + s(t)
= fw Z'(r)s(t — 7)dr

{ii) Also,
z(t) = =z(t)» (1)
= (z(t) » u (1)) # u{t)
= f z'(r)u(t — T)dr
(e) In this case
2'(t) = e'ut) + §(t).
Therefore,

ylt) = s(t) + e'u(t) » s(t).

This may be written as

y(t) = [e73 — 27 +1Ju(t)
+ gl -e™
2

- -3—(3‘ —e %) — et = 1u(t).

(f) Using the fact that [6[n] — d[n — 1]] » u[n] = [n] gives:
yin) = faln] - ol — 1]} sfr) = Ffel#] — 2lk = Wsin - &)
&

and

z{n] = [z[n] - z[n — 1]) * u[n] = Z [z{k] — zlk = 1]juln — K]

k=—o0

2.46. Note that 4
_Ig(ti) = —Be~Mu(t — 1) + 28(t — 1) = —3z(t) + 28(t — 1).

Given that
z(t) = 2" u(t = 1) — y(t)

we know that d—ﬁﬂ = —3z(t) + 26(t — 1) must yield —3y(t) + 2h(t - 1) at the output From
the given information, we may conclude that 2h(t — 1) = e~ *u(t). Therefore.

h(t) = %e"“-(“”u(z +1).
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(g) Faloe. For example, if h(t) = e™*u(t), then a(t) = (1 — e™*Ju(t) and

e -0
’o [l—efldt=t+e '10 = 0.

Altbough the system is stable, the step response is not absolutely integrable

oo
(b) True. We may write u[n] = E&[n ~ k]. Therefore,
k=0

sin] = Zh[n — k]
k=0

If s[n] = 0 for n < 0, then h[r] = 0 for n < 0 and the system is causal.

2.49. (a) It is a bounded input. |z[n]| <1 = B, for all n.
(b) Consider

o0
vlo) = 3 al-klhlK
k=—oc0
i (k]
RG]
o0
= 3 kK=o
=—00
Therefore, the output is not bounded. Thus, the system is not stable and ahsolute
summability is necessary.
(c) Let
o, if h(-=t) =0
s ={ A=8  ra-#0

Now, |z{t)] £ 1 for all t. Therefore, x(t) is a bounded input Now,

y(0) = jwzt—v)hmdw

e fm (Bt = 0o

—oo

Therefore, the system is unstable if the impulse response is not absolutely integrable.

'2.50. (a) The output will be axy(t) + bxa{t).
(b) The output will be z1{t — 7).
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2.47. (a) y(t) = 2m(t).
(b) y(2) = yolt) — wl(t - 2).
() y(t) =polt - 1).
(d) Not enough information.
(e) w(t) = w(-t)-
(£) y(t) = w"(t).
The signals for all parts of this problem are plotted in the Figure §2.47.

3 bl gt
1
) th ] P e e 1

(a) )
1“” Hf..{.) g(ﬂ
1 Ve
o =z N
ql i F 4 *? &) -2 o “t oF ;
) Fiéur)e 52.47 ()

2.48. (a) True. If h(t) periodic and nonzero, then
00
j [h()ldt = oo.
—o0

Therefore, h(t} is unstable.
(b) False. For example, inverse of h[n] = d{n — k] is gln] = &[n + k] which is noncausal.
(c) False. For example hin] = u[n] implies that

3 Ihinll = o

n=-=00
This is an unstable system.
(d) True. Assuming that h[n] is bounded and nonzero in the range n; < n < na,
3 mallk)] < co.
k=n,
This implies that the system is stable.
(e) False. For example, k(t) = e'u(t) is causal but not stable.
(f) False. For example, the cascade of a causal system with impulse respense hy[n] =
6fn — 1] and a non-causal system with impulse response ha[n] = f[n + 1] leads to a
system with overall impulse response given by hln] = hy{n] « hajn] = 8[n].
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2.51. (a) For the system of Figure P2.51(a) the resp to an unit imp is

1
win] = n(i]“u[n].
For the system of Figure P2.51(b) the response to an unit impulse is
yz[n] = 0.

Clearly, win] # wa[n].
(b) For the system of Figure P2.51(a) the response to an unit impulse is

1
Yl = (3)"uln] +2.
For the system of Figure P2.51(b) the response to an unit impulse is
1 i
yin] = (3)"uln] + 4.

Clearly, yi1[n] # 12[n}-

2.52. We get
n
>
sln] = hin} * uln] = k:n(k + 1), nz0
0, otherwise.
Noting that
n n+l
d d [1—a*?
Z[k+ eo* = —Z:a* = — [_—] s
peserd dak:o da| 1-¢
we get

sfn]

1-(n+2a™! 1-om*?
[ = (l—a’)]u[ﬂ]

ol e e R L P

2.53. (a) Let us assume that

N
Zakso" =4q.

k=0
Then,

N dk N
Eakar(}le“') = Z Aage®'sf = 0.
k=0 k=0

Therefore, Ae® is a solution of eq. (P2.53-1).
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(b) Consider

Z gt X E 2 ¢ k-1
ty st st k-
Zug-ﬁ;(me‘} = 3 Aapiste +ZAakke s
k=0 k=0 k=0
N WA
= t " " a
= A" st + Ae"Y (s
=0 k=0
N g
9 k t £ k
Ate* *Z_Daga + Ae” agaks K

N
If s; is a solution, then stf = 0. This implies that te** is a solution.
=0
(c) (i) Here,
2 43s5+2=0, = s=-2s=-L

Therefore,
ualt) = Ae” + Be™".
Since y4(0) = 0, ¥'a(0) = 2, A4+B=0and 24+ B =2 Therefore, A = -2,
B=2
ylt) =27t~ 2e7%
(i) Here,

Pr3s+2=0 = y(t)=Ae M +Be "

Since y(0) = 1, ¥'(0) = —1, we have y(t) = €e™".
(iii} y(t) = 0 because of initial rest condition.

(iv) Here,
52+23+1=0=(3+1)2 = s=-1l,0=2

and
y(t) = Ae™t + Bte™".

Since y(0) = 1, #/(0) =1, A =1, B = 2. Therefore,
y(t) = et + 2t
(v) Here,
Pastos—1=0=(s—D(s+1)? = y(t)=Ae'+Be'+ Cte™".

Since y(0) = 1, ¢'(0) = 1, and y"(0) = =2, we get A = 1/2, B = 3/4, O =3/2

‘Therefore, i 3 3
e ! 4 et et
y(t) = 3¢ +3¢ +2£e -
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{11) Here,
2 -2z+1=0
Therefore,

y[a) = A()" + Bn(1)" = A+ Bn.
Since, y[0] = 1, y[1} = O we get A =1, B = -1, and
yn]=1-n.

(iii) Only difference from previous part is initial conditions. Since y[0] =1, y[10] = 21,
weget A=1, B =2 and

yln] =1+ 2n.
({iv) Here,
1
= ——(147).
250 -./E( 7)
Therefore,

1 n Lo
vinl = A=z (140" + Blz770 s
Since y[0) = 0, y[-1] =1, we get A=zl B= i_j";." and

yln] = —%(%)“sin(mrfﬂ.

&l
o0
o

(a) y[0) = z{0] = 1. h[n] satisfies the equation
Mnl= ghla -1, n2l

The auxiliary condition is h{0} = 1. Using the method introduced in the previous
problem, we have z = 1/2. Therefore, h[n] = A(1/2)". Using the auxiliary condition,

hin] = (%) un].
(b) From Figure P2.55(b), we know that if z[n] = §[n}, then
1
wl] = halr] = (3)sir].
This implies that

vln] = hin) = (%) ufn) + 2(3)"ufn - 1]

67

(vi) Here, s = —1% 25 and
y(t) = Ae~te¥t 4 Be~te™ Yt

Since y(0) = 1, v'(0) = 1,
= 0-4)=5"
‘Therefore,

y(t) = e~*[cos 2t + sin 2t].

2.54. (a) Let us assume that

N
Zap’ﬁ =0.

k=0
Then, if y[n] = Az,

N N N
zaky[n -k = Zak(Azg"‘] = Azgzakzn’k =0.
=0 k=0 k=0

Therefore, Az} is a solution of eq. (P2.54-1).
(b) If y|n] = rz"", then

N N
Zuty{n — k| = ZGg(n — k)z" e {82.54-1)
k=0 k=0

Taking the right-hand side of the equation that we want to prove,

N N
RHS = 2 NY ap(N = k"5 4+ (n = N)D ax

N = k=0

= Za"(“ ~ k)znkel (52.54-2)
=0
Comparing egs. (52.54-1) and (S2.54-2), we conclude that the equation is proved.
(¢) (i) Here,
l+§z"+lz_2—0 = z-‘—l )
1 B B gt iR
‘Therefore,

Lin Lin
oln) = Al—3)" + B- "
Since y[0] = 1, y[~1] = —6, we get A= —1, B =2, and

o) = 23" = (=3
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(¢) Plugging eq. (P2.55-3) into eq. (P2.55-1) gives:

n n-1
Y Gr-mam - Y (G elm)

m=—0d m=—00
= ("l

= z[n].

Zh[n — mjzjm] — %Eh[n —m — 1]z[m]

This implies that eq. (P2.55-3) satisfies eq. P(2.55-1).
(d) (i) Given that ag # 0 and that the system obeys initial rest, we get

1
aoyld] =1 =  yl0]=—.
ag
The homogeneous equation is
N
Eakh[ﬂ -k =0
k=0
with the initial conditions
WOl =1/ag,  A{-1] =+ =H-N+1]=0.

(ii) We have
M
hin] =3 bihi[n - K] =0,
k=0

where h,[n] is as above.
(e} Forn> M,

N
Eﬂgh[ﬂ —-kl=0
k=0
with
0] = y[0), - h{M] = y[M].
(f) (i) We get

hin] = 1, neven, n >0
I noddorn<0 ~

(i) We get
1, nevenandn > 0
hn]={ 2, n odd and n >0
0, n<0
(iii) We get

2, n=0,2
hln]= ¢ -1, nevenn>4 .
5 else
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bl 1 m /M
hin] = gloos 5= + V3sin ).

256, (a) In this case, s + 2 = 0 which implies that
y(t) = h(t) = Ae”%.

Since y(0+) =1, A=1and
h(t) = e"2u(t).

Now consider eq. (P2.56-1).
d -] o0
LHS. = —f h(t — 7)z(r)dr + 2[ h(t — 7)z(7)dr
dat)_ o —oo

e [ = 2e-"g(t — r)x(r)dr

-00
= z(t)=R.H.S.
This implies that y(t) does solve the differentizl equation.
{b) Take
y(t) = En.u;[t].
1
Then

»
dezaauhx(fl =4(t).

k=0 I
Integrating between t =07 and t = 0% and matching coefficients, we get = 0 except
a_n = 1/ay. This implies that for 07 <t < o+

() = pouw(®

and

y(0*) = Y0 = =y F (@) =0
d
b dN'ly(t) = 1
dtf-1 | en

(c) The impulse response is
M.yt
h =Y nEmld,
k=0
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(+)
Figure 52.57

(b) The figures corresponding to the remaining parts of this problem are shown in the
Figure §2.57.

2.58. (a) Realizing that zs[n] = gi[n], we may eliminate these from the two given dufference
equations. This would give us

2yaln] — sl ~ 1]+ valn = 3] = zin] = 5zl - 4).

This is the same as the overall difference equation.
(b) The figures corresponding to the remaining parts of this problem are shown in Figure
S2.58.

2.59. (a) Integrating the given differential equation once and simplifying, we get
¢ 4 b
() = -ﬂj yir)dr + ﬁf z{r)dr + 2Lz{2).
a1 J-mo Ay J o0 ay
Therefore, A = —agfa1, B = bifa;, C = bo/ar.

(b) Realizing that z2(t) = y1(t), we may eliminate these from the two given integral equa-
tions. This would give us

pit) = -4-/_‘ yo(r)dr + Ejjmzl(-r)d'r + Cx(1).
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(d) (i) Taking
y(t) = 3 _aur(t)
T

we get

Slerursa(t) + 3artrn (1) + 2acu] = (1)

[
This implies that rpe; = —2 and a_ = 1. Therefore, h(0+) = 0 and R(0Y) =1
constitute the initial conditions. Now,

B 4+35+2=0 = 8=-2,s=-1.
Therefore,

h(t) = Ae™%t + Be ", t2>0.
Applying initial conditions, we get A= -1, B=1. Therefore,
R(t) = (et —e M )u ().
(ii) The initial conditions are h(0*) = 0 and &'(0%)1, Also, s = ~1 % 7. Thercfore
h(t) = [e™ sintju_(t).

M
(e) From part (c), if M > N, then Zbg%'lf‘m will contain singularity terms at t = 0 This
k=0

h(t) = Za,u,.(t) + e

implies that

(f) (i) Now,
z«,u,+1(£) +23 e = Bup () +uo(t).
Therefore, rmaz = 0.'Also
o (2) + a_yuo(t) + 2epuo(t) = 3u;(t) + ualt).
This gives ap = 3 and a—; = —5. The initial condition is h(0*) = =5 and
h(t) = Bua(t) — Se~*u_y(t) = 38(t) — 5e*u{t).

(i) Here, &y = 1, @ = =3, a_y = 13, a_; = —44. Therefore h{0*) = 13 and
K(0") = —44 and

h(t) = u1(2) — 3ug(t) + 18 u_(t) — e~ u_, (2).

2.57. (a) Realizing that z2[n] = w[n], we may eliminate these from the two given difference
equations. This would give us

wln] = —eygln ~ 1] + bozy[n) + byzy[n — 1]

This is the same as the overall difference equation.
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g.( sl

znd

ey Figure 52.58 €7

(c) The figures corresponding to the remaining parts of this problem are shown in Figure
$2.59.

2.60. (a) Integrating the given differential equation once and simplifying, we get

- t t
uit) = g-f my(f)dr-‘;—: f_ % j:r wy(c)dcrdr
t T t
+ ?;f_mfrwz(a)dcdr + %j;mx(f)d'r + %z(t}.

Therefore, A = ~a)/az, B = —ag/az, C = byfa), D = by /a2, E = bo/az.

(b) Realizing that z2(t) = y1(t), we may eliminate these from the two given integral equa-
tions.

(c) The figures corresponding to the remaining parts of this problem are shown in Figure
$2.60.

2.61. (a} (i) From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the inductor and capacitor. Therefore,

z(t) = Lcdﬂ‘;{:) +y(t).
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f)

Figure 52.59

Using the values of L and C we get

““”“’ +y(t) = z(0).

(i) Using the results of Problem 2.53, we know that the homogencous solution of the
differential equation
Py(t) ,  dut)
atr M Tar

will have terms of the form K e**+Kpe* where so and 3, are roots of the equation

+ agy(t) = bx(t).

S +as+a=0.

(It is assumed here that so # s1.) In this problem, a; = 0 and az = 1. Therefore.
the root of the equation are so = j and 8, = —3j.. The homogeneous solution is

wnlt) = Kyt + Kae ™,

And,wy =1 =uwn.
(iii) If the voltage and current are restricted to be real, then K| = K2 = K. Therefore.

yn(t) = 2K cos(t) = 2K sin(t + 7/2).
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(c) (i) From Kirchoff’s voltage law, we know that the input voltage must equal the sum
of the voltages across the resistor, inductor, and capacitor. Therefore,

2(t) = Lcd:":{:) + Rc‘dy(t) +y(t).
Using the values of R, L, and C we get
dy(t) dy(l]
U a2 4 syle) = 520,

{ii) Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation
dy(t dylt
L) 0 B+ aay(t) = bl
will have terms of the form K, e*o+ Koe"!* where 3o and s, are roots of the equation
2 +a1s+a;=0.

(It is assumed here that sp # s1.) In this problem, a) = 2 and ay = 5. Therefore,
the root of the equation are so = —1+2j and 5y = —1 - 2j. The homogeneous
solution is
un(t) = Kye~te! 4 Kpe~te™ ",
And,a=1.
(iii) If the voltage and current are restricted to be real, then K| = K = K. Therefore,

un(t) = 2Ke " cos(2t) = 2K e sin(2t + 7/2).

(a) The force z(t) must equal the sum of the force required to displace the mass and the
force required to stretch the spring. Therefore,

y()

z(t) = + Ky(t) = z(t).

Substituting the values of m and K, we get

d*y(t)

T+ 4y(0) = 25(0).

Using the results of Problem 2.53, we know that the homogencous solution of the
differential equation
dylt) | dy(t)

= T + agy(t) = bx(t).

will have terms of the form K e®' + Kqe®* where sp and s, are roots of the equation

s? 4+ a5 +a2=0.
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#(t)

Figure 52.60

(b) (i) From Kirchoff's voltage law, we know that the input voltage must equal the surm
of the voltages across the resistor and capacitor. Therefore,

dy(t
=(t) = RO 4y,
Using the values of R, L, and C we get
dy(t
B 4 y1e) = =(0).

(ii) The natural response of the system is the homogeneous solution of the above differ-
ential equation. Using the results of Problem 2.53, we know that the homogeneous
solution of the differential equation

dy(t) + ayy(t) = bz(t).

will have terms of the form Ae’°‘ where sq is the root of the equation
s+a; =0.

In this problem, @; = 1. Therefore, the root of the equation are 5o = —1. The
homogeneous solution is
ya(t) = Ke™".

And,a=1.
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(It is assumed here that sq 5 5,.) In this problem, 6, = 0 and a7 = 4. Therefore, the
root of the equation are 3o = +2; and s; = —25. The homogeneous solution is

wa(t) = Kie¥t + Kae™ %t
Assuming that y(t) is real, we have K; = K2 = K. Therefore,
yn(t) = 2K cos(2t).
Clearly, ya(t) is periodic.

(b) The force z{t) must equal the sum of the force required to displace the mass and the
force required to stretch the spring. Therefore,

z(t) = m—— V(t)

+ by(t).
Substituting the values of m and b, we get

ay(t) | wlt) _ z(t)
dt 10000 ~ 1000°
Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation
dy(t)

dt
will have terms of the form Ae®" where sp is the root of the equation

+ a1y(t) = bz(t).

s+a =0

In this problem, a; = 1/10000. Therefore, the root of the equation are sp = — 104,
The homogeneous solution is
wn(t) = Ke 107"
Clearly, ya(t) decreases with increasing t.
(c) (i) We know that the input force z(t) = (Force required to displace mass by y(t)) +
(Force required to displace dashpot by y(t)) + (Force required to displace spring
by y(t)). Therefore,

() = ‘i"é’) +b"“('] + Ky(e).

Using the values of m, b, and K we get

‘ﬁd’;(” + 2‘»’1"9 +2y(8) = z(2).
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(i) Using the results cf Problem 2.53, we know that the homogeneous solution of the
differential equation

J‘;&t} . ,;$ +azy(t) = biz(t).

will have terms of the form Ke*0t+ Kae''! where so and s, are roots of the equation
S +as+ap=0

(It is assumed here that so # 51.) In this problem, a; = 2 and az = 2. Therefore,
the root of the equation are 5o = —1+ j and &) = —1— 3. The homogeneous

solution is )
wn(t) = Kie7tet + Kae~te 7

And,a=1.
(iii) IF the force is restricted to be real, then K = K, = K. Therefore,

yalt) = 2Ke " cos(t) = 2Ke ' sin{t + 7/2).

263. (a) We have

yln) = Amt. borrowed — Amt. paid + Compounded Amt from prev month
100, 0004[n] + 1.01y[n — 1} — Du[n = 1].

Therefore,
yln] = 10lyjn~1]-D, n>0

and y[0] = 100,000 and v = 1.0L.

(b) We have
ypln] = 1.01yp[n — 1]-D.

This implies that yp[n] = 100D. Also the homogeneous solution is of the form

wnln) = AQLOL)".

Therefore,
yln) = ya[n] + yp[n] = A(LO1)" + 100D

Using the initial condition (0] = 100000, we have
A = 100000 ~ 100D.

‘Therefore,
y{n] = (100000 — 1000)(1.01)" + 100D.

(c) We have
y[360] = 0 = (P — 100D){1.01** + 100D.

Therefore, D = 81028.60.

(d) Total payment = $370, 296.
(e) The toughest question in this book!!

2.64. (a) We have y(t) = z(t) » h(t) and z(t) = y(t) * g(t). Therefore, g(t) + h(t) = &{t). Now,

h(t) * g(t)ly—pr = Ehkg"_zﬁ(t ~nT).

k=0
Therefore we want o
S hagnor = { L emd 5
= 0, n=123,---
‘Therefore,
Qi e R
ho’ he’ R LW R

(b) In this case, go = 1, g1 = —1/2, g2 = (~1/2)%, g3 = (~1/2)%, and s0 on. This implies

that ;
= 1
g(t) = 8(t) + —=] &(t-kT).
2 (-3)

(c) (i} Here, A(t) =3 _oké(t—T).

k=0

(ii) If0 < a < 1, then o < 1. Therefore, h(t) is bounded and absolutely integrable
and corresponds to a stable system. If & > 1, then h(t) is not absolutely integrable

making the system unstable.
(iii) Here, g(t) = 1 — ad(t — T). The inverse system is as shown in the figure below.

Figure S2.64

(@) If z;[n} = d[n], y[n] = h[n). If z3[n] = L8[n] + 5(n — N}, yln] = hln].

2.65. (a) The autocorrelation sequences are as shown in Figure S2.65.
(b) The autocorrelation sequences are as shown in Figure 52.65.
(c) We get

¢zyln} = Z h{—K]pezln — k).
k=-o0

Therefore, ¢y (n] may be viewed as

$uzln] = [Al=n]] = dsyin).

g
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n LY
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- 1
a0y L e g o .
R _{"’l"l’ll " ~HE RIS F S £ S s . L A 4
-5 =t
) -
2afE) @) Z3Lt)
4 l ——
*M‘aﬁd £ N ]]r A ¢"‘3w ; élaxq(n] !
[ ‘il $Ip_ 1] *
Jo]t ¢ ol234&  n c i1 n > PR ! Py % +t © 1 2 3 4
-1 I
=1 (&) =t
¢ o Figure S2.66
bl Fafe
d’x‘n,f"l IT ?‘mr "l II ' T] 1 (€) z1(t) * halt) = za(t) # Ra(t) = z1(t) # hs(t) = O for t = 4.
ERED| lr' n T =11 n k54 -lol n 2.67. (a) The autocorrelation functions are:
-1
At e
r il . par={ FOTEE 0550w @ = dnn)
1
s eq Te 5 Pyl s
3 2 (1 1), 0<t<1
8 I ¥ '14 et s
: e t-3, 2<t<3
o Te 1 23 M —4-i-i-t 6 L2z o324 3¢, 3<t<4
Ld) Figure 52.65 d) bayz(t) = t-5, 4 g : g 5 and  Pruzy(t) = oo (1)
5—t 5<t<6
t-17 6<t=7
Also, 0, t>7

byylnl =Y dozln — Kldnalk]:
k

Therefore,dy,[n] may be viewed as =
¢zz[n] > | A[n] = h[hn] =+ dyy[n]- y(T) = -[0 z(r)h(T — 7)dr

T 1/2

{d) ¢hzyln) and ¢y, are as shown in Figure 52.65. < M\ [ /ﬂ ;2(:)4:] .

(b) If the impulse response is h(t) = (T ~ t), then y{t) = ¢=z(t - T).

(€) We have

2.66. (a) The plot of z;{t) is as shown in Figure 52.66. = 12
(b) The plots of z(t) and zo(t) are as shown in Figure 52.66. Therefore, y(t) is at most M*/? [j; 12(t)dt]
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1f we now choose
h(t) = -Tji—-—z(‘r —t).
[ 2(t)dt
(1]

then T
o) = M7 [ 2oy
0

Clearly, y(T) is maximized for the above choice of h(t).
(d) (i} The responses are as sketched in Figure 52.67.

#olo

Lot Bl
-
o
+
)
b

-— AR
3 4
z /\ ' /\

1 FiAFe,
= s 50 T 3 4 5 e~ &
-2

%o} (d)
|
u Modified
© [ L i A4} for
i (4-i)

Figure 52.67

(ii) Let the impulse responses of Ly and L be hry(t) and kg, (t). Then,
Zo(t) * heg(t)e=4

zo(t) * hry (E)=a

z1(t) % hro(t)li=y
23 () * by (=g

B R R b

wowonn

To make the job of the receiver easier, modify Zo(t) as shown in the figure below

81

(b) We have

= z{0}é[n] ~ ={1)8[n — 1] + [=[0]8[ - 1} — =[0}8[n - 1]]
= z{0jwn] — {=[2] - =[0}}é[ — 1)

= z|0}é[n] — z[1)é[n — 1] + ([1)d[n] — z({1}é[n]

= atjwln] - {z[1] - ={0]}8in]

z[njur[n]

{c) We have
' ugln] = wy[n) » wy[n] = 8fn] — 28[n — 1]+ d[n - 2]

and
ugln] = 8[n] — 38[n — 1] +34[n -2 —d[n— 3).

The plots for these signals are as shown in Figure 52.70.

: 3
wfd o g ) ] I
| G | el 7
[ 2z n ° 1 n
[ "%
- ) -3
[ ]
é
3
3
i u_yln) oo
b(-z[h] |T I . ob e (T
o 1 2 n o 1z 3 n
()
Figure 52.70
(d) We have
u_gn}=(n+1), n=20
and

(n+Dn+2)

U—a[ﬂ] = ) n >0

The plots for these signals are as shown in the Figure 52.70.
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2.68.

2.69.

We have
bm(r) = [ plripte 4 rice
< 1f et [ o+ e
< [pmer
Therefore,
(1) S0 = Bypl0) = maxdpplt).
Also,

bt =dpplt—t)) = deplte) = dppl0) = maxenylt).
(a) Let gfr) = z(t — 7). Then
[ stpatriar = -5 0) = =0,
{b) Consider ~(t) = g(t) /(). Then,
[ rua = -r(0) = 40110 500

Alsa, "

[ srsomoe - [ 60O (0 = =g 0)1(0) ~ 90 ©)
which is the same as above.

© [ ” g(r)ua(r)dr = g"(0).

{d) We have
[ _astrnatriar = Fala-05-0lkeo
= 2011 + o(-07 (~eo
= OF0) - 2500 +90)"(0)
Therefore,

F(8)ua(t) = F(O)uz(t) — 2/ (Qhur(e) + " (O)uo(t)

2.70. (a) We have

2.71.

S zimluwlm] = > z(m]{sm] — ém - 1))

m=-o00

= z{0] - z[1].
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(€) The statement is true for k = 1,2,3. Assume it is true for k. Then, for k > 0
upsifr] = urfn] » ueln] = uen] — weln - 1.
By induction, we may now claim that the statement is true for all k > 0.
(F) For k = 1, u_y[n] = uln] which shows that the statement is true. For k = 2,

(n+1)!
ﬂ'

u_z[n] = un] = (n+ 1)uln]

which again shows that the statement is true. Assume that it is true for k—1 > 0.
Then,

u_gopln] = uoeln] — ugln - 1), (82.70-1)
Also,
-2)!
wponlil = SrE et
(n+k-1) (n+k-2) n-2

= g G oD B
Using the above equation with eq. {$2.70-1), we get

(n+&—1)!

(k- 1)! uln)

u_g[n] =

By induction, we may now claim that the statement is true for all k >0

(a) We have
z(t) » [ua () # u{t)] = z(t) =1, forallt,

[x{t) #uy(t)] »u(t) =0»u(t) =0 forallt,

and
[z(2) * uft)] « uy(t) = oo » u (t) = undefined.

(b) We have z(t) = ™!, h{t) = e *u(t}), and g(t) = u (¢} + 5(¢). Therefore,
=2(t) + [h(t) « g(8)) = =(t) = €7,
[z(2) » g(t)] » A1) = 0,

and -
g(t) + [2(2) « h(2)] = g(t) v e™* ] Ldr = undefined.
0
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{c) We have “
o)« i)+ ot = (3) <=5 -
(z[n) * gln]) + hin] = 0+ hln] =0,

and

(el » W) » gfn] = {517 Y 1) oln) =
k=0

(d) Let A(t) = ui(t). Then if the input is z1(t) = 0, the output will be 3 (t) = 0. Now if
z,(t) = constant, then ya(t) = 0. Therefore, the system is not invertible.
Now note that

£ =y if To(t) = OVt
! f_ za(ndrl -{ o RO R

t
Therefore, if l[ ndtl # oo, then only z2(t) = 0 will yield y2(t) = 0 Therefore
—oo

the system is invertibltl!._.m

2
=1
(5

We have 1
dalt) = Kn(t) * [6() — 8t —T))-

Differentiating both sides we get
ar e el g Pt
dt‘s“t - Au(:)c[ﬁ(t) 8§t -T))
= X80+ (60 -5t - T)

1
= Z08() - 8- T))

For k = 1, u_,(t) = u(t). Therefore, the given statement is true for k = 1. Now assume
that it is true for some k > 1. Then,

]
=1
[2]

u_ny{t) = u(t) « u_gl(t)

[';ou:,:(:) = j;u_‘('r)df
fa=m
fk

k(k —1)!

i+
= Eu(t).

r=t20
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3.5. Both z;(1 — t) and z;(t — 1) are periodic with fundemental period Ty = % Since y(t) is
a linear combination of z,(1 — t) and z,{t — 1), it is also periodic with fundemental period
= L’, Therefore, we = wy.

w

Since z1(t) ¢ ay, using the results in Table 3.1 we have
21t + 1) £ g 0T
y(t = 1) £5, ape~ k@) o 2y (—t + 1) E5 a-ke"k@"m]
Therefore,
n{t+D+zm(l-1t) £ u;;e’*(z"‘r‘) + aﬂgc""‘(z”'n) = ¢ ¥ (g +ak)

3.6. (a) Comparing z,(t) with the Fourier series synthesis eq. (3.38), we obtain the Fourier
series coefficients of z,(t) to be

wo{ @ 0sgE100
. 0, otherwise

From Table 3.1 we know that if z;(t) is real, then ax has to be conjugate-symmetric,
i.e, @ = 6° . Since this is not true for z1(t), the signal is not real valued.
Similarly, the Fourier series coefficients of z4(t) are

_ [ cos(kn), 100 < k < 100
|50, otherwise

From Table 3.1 we know that if z2(t) is real, then ax has to be conjugate-symmetric,
ie, ap = a’,. Since this is true for T2 (t), the signal is real valued.
Similarly, the Fourier series coefficients of z3(t) are
o o [ gsinlkn/z), 100k <100
k=10, otherwise
From Table 3.1 we know that if z3(t} is real, then ax has to be conjugate-symmetric,
i.e, ap = a*,. Since this is true for z3(t), the signal is real valued.
(b) For a signal to be even, its Fourier series coefficients must be even. This is true only

for z(t).
3.7.  Given that
FS,
z(t) > ax
we have de(t) 2
FS L =T
alt) = — by = Jdek-
‘Therefore,

[

o = o k#0
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Chapter 3 Answers
3.1. Using the Fourier series synthesis eq. (3.38),
2t) = o1& 4 a_1e IR | oo MEHTI 4 g _ye=333n/TE
QIO | 9 =iRN/BY 4 4jeIYER/ON _ 4= IN2N(B)E
g s G

E ] 4006(31) - Bsm(—é—t)

o L 3r, =«

= 4m{4t) +8cos(T£ + E)

3.2.  Using the Fourier series synthesis eq. (3.95).

z[n) = aa+age"’(2*'m’"+nmge'jﬂ3”-m)" +n4e1-l(2afﬂ)n+G_!e—j4(2w,'Nln
= 14 e/ a2nS)n o e i(x/4) o=2i(2m/Sm
2l (m/3) FH2R/NIR 2:"’("-"3)41,434“(2"'”’“
n
4 3 5)

. A ™ 8 5n
= 1+42sin(—n+ — in{ — —
+ sm(sn+ 4)+dsm{5n+ 6)

4m s 8x
= 14 2c08(=—n+ =
+ oos(5n+4}+4cos(5n+

3.3. The given signal is
aft) = 24 I 4 BRI i OnIN 4 gjemdnLN
g %eﬂ(a-/ﬁu 3 %c-jllﬂffﬁ)l — 2jofSER/ON 4 9jemiS(AR 6}

From this, we may conclude that the fundamental frequency of z{t) is 2n/6 = w/3. The
non-zero Fourier series coeffcients of z(t) are:

1
ag =2, 02=8_2=§. ag=ag=-2j
3.4. Since wy = m, T = 2n/fwy = 2. Therefore,
1.2 §
ay = 5/‘; ;(g)e—Jkrtdt
Now,
1 1 1 2
nq—ifn 1.5&-5_/1 1.5dt =0
and for k # 0
a = l/ll semikntgy - 3 le Se~ikmigy
2 A - 3 ; e
3 ;
= m—;[l — e—jkn]
3 kx
= 2 emik(x/2) gin( o
Ime sin( 2 )
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When & =0,
1 2 . & =
o == z(t)dt = =~  using given information
T Jers T
Therefore,

#. k=0
ap = by &
s k#0
3.8. Since z(t) is real and odd (clue 1), its Fourier series coefficients ay. are purely imaginary and

odd (See Table 3.1}. Therefore, ax = —a_x and ag = 0. Also, since it is given that ap = 0
for |k| > 1, the only unknown Fourier series coefficients are ay and a_,. Using Parseval’s

relation,
”
7). mere= 3 il
T Jers

k=—00

for the given signal we have
i :
3 [ ewra = 3 i
o k=-1
Using the information given in clue (4) along with the above equation,
lasf +laaf=1 = 2aff=1
Therefore,
ay a 1 o) .
=—a_) = — r G = —a_y = ———
NGE 1 1 T
The two possible signals which satisfy the given information are

1% 1 -
(1) = —m IR oI/ i
1(t) ﬁj \/'zje 2sin(nt)

and
72(t) = —T;z?e’(hml + ﬁed(hﬁ)t = V/Zsin(nt)

3.9, The period of the given signal is 4. Therefore,

This gives
=3 a=1-2j, a=-1, a=1+2



3.10. Since the Fourier series coeffiecients repeat every N, we have

e =a15, 02=01 ,and a3=ayr

Furthermore, since the signal is real and odd, the Fourier serics coefficients a; will be purely

imaginary and odd. Therefore, ay = 0 and 3.13
@) = —G_j, az = —a_-z a3y = —d-3
Finally,
a_y =—j, a_g = =27, a3 =-3j
Since the Fourier series coefficients repeat every N = 10, we have a) = a;; = 5. Further-
more, since z[n] is real and even, ay is also rea! and even. Therefore, a; = a_; = 5. We are
also given that
9
1 i
0 Zfﬂ"‘]l = 50.
n=0
Using Parseval’s relation,
2 laf = 50
k=<N>
8
5 el = s0
k=-1
8
lacif? +lail? + a0+ laxl® = 50
k=2
8
ad+ 3 el = 0
k=2

Therefore, ax = 0 for £ = 2,:-- ,8. Now using the synthesis eq.(3.94), we have
8

z[n] = z aged Fhm = E age’{%‘"
E=<N> k=1 3.14.
= 5¢ i» + 5e-7HEn
= 10 cos[%n)

3.12. Using the multiplication property (see Table 3.2), we have

3.15.

F.
PN

3
Z abe = ):Glbt—a

I=<N> k=0

zy[n]z2[n]

5 agh + aubeoy + asbiog + azb_s
EB b+ 2y + g+ 26y
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From tbe given information, we know that y[n] is

yln] = w(%fﬁ =)

1 1 -
ZEnT) . ZemilEnt])
2c’ +5¢

1 1 En—X
—edlEnt T 4 2 a(35n-F)
2e’ o4 2e"

Cormparing this with eq. (53.14-1), we have
H(e) = H(e™) =0

and

H(e'1) = 267, H(e¥%) = 2771

and

From the results of Section 3.8,
oo
y(t) =3 axH (jkwo)e™™ ot
k==c0
where wy = ¥ = 12. Since H(jw) is zero for k| > 100, the largest value of |k| for which
ay is nonzero should be such that
Jklwxo < 100

This implies that |k| < 8. Therefore, for |k| > 8, ax is guaranteed to be zero.
(a) The given signal x,[n] is
zlln] — (_!)n =™ = c;(z:/z)n

Therefore, 1;(n] is periodic with period N = 2 and it's Fourier series coefficients in the
range 0 < k < 1 are
and

ap =0, ay=1

Using the results derived in Section 3.8, the output yy[n] is given by
1

Eakﬂ(ejzrkﬂ,ek[hfz} 3.17.

k=0

0+ a) H(e7™)e'™

0

wn(n]

(b) The signal z2[n] is periodic with period N = 16. The signal z3[n] may be written as

= SO _ (519 3x/4) SRR (5 12)g=3(x/4) =25/ 16)3)n

Zg[n)
= e;‘(z:.-,'ls)(o)n i U/z)gj(rﬂ)aﬂillsl(:ﬂﬁ oy (jlz)e—}'(!f“)cﬂh/lﬂ“a)"

91

Since by is 1 for all values of k, it is clear that by + 2bs_; + 2by_s + 2b_5 will be 6 for all
values of k. Therefore,
z1[n]z2|n] £,

Let us first evaluate the Fourier series coefficients of z(t). Clearly, since xz(t) is real and
odd, aj is purely imaginary and odd. Therefore, ag = 0. Now,

1 ;

E_[ {t)eran/oke gy
Q

1 4

Ej iR B)t g,
o

1
S § S
; kll e

for all k.

8
% =2 /8)kt g
4

Clearly, the above expression evaluates to zero for all even values of k. Therefore,
{ 0, k=0,%2,+4,...
ap =

P k=143, 5.
When z(t) is passed through an LTI system with frequency response H(jw), the output
y(t) is given by (see Section 3.8)
- .
vl = 3 aH(jkuwg)ettent
k=00

where wg = 31? %. Since a; is non zero only for odd values of k, we need to evaluate the
above summation only for odd k. Furthermore, note that

¢ 5 g _ sin(kr)
Hkan) = H(k(x/4) = T2

is always zero for odd values of k. Therefore,
y(t) =0.
The signal z[n] is periodic with period N = 4. Its Fourier series coefficients are

1 L —jimkn
EZI{n!e “

n=0

ok

%, for all k&
From the results presented in Section 3.8, we know that the output yln] is given by

3
3 an H (I / 00k )ik(ze/4n

k=0
%H[eju)ofo £ iH(elflf?))ej(rﬂ)
+£H(EJ(3'I2))EJ(3'/2) + LH(e3%))ed(r)

y[n)
(83.14-1)
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Therefore, them-wo?aniuwiumﬁmdzz[n] in the range 0 < k < 15 are
a3 = (/DI ayy = (j/2)emI10
Using the results derived in Section 3.8, the output yo[n] is given by

a =1,

15
= EugH(e"z"‘-’“)e*p"'m
k=0
0= (j/2)c-’(""")e’(2""5m"“.¥ (j/z)c-;(wfl)e}(?n,’lﬁ)(li\]n

wa(n)

nin(-s-;-u+ D

(c) The signal z3[n]

may be writien as

syl [ (%) u[n]] A5 ap ks

k=-00

where g[n] = (})" u[n) and r{n] E 8[n — 4k]. Therefore, y3[n] may be obtained

k=—00
by passing the signal r[n] through the filter with frequency response H(e’), and then
convolving the result with g[n].
The signal r[n] is periodic with period 4 and its Fourier series cocffients are

a = :-, for all k (See Problem 3.14)

The output g[n] obtained by passing r{n] through the filter with frequency response
H(e™) is

3
qn] = Eakg(cj!ttﬂ’ek{ﬂrn]
k=0
(1/4)(H(E)eP + H(@/D) /D) 4 F(er)erm 4 Fi(e¥n/2) e
0

Therefore, the final output ys[n] = gln] + gn] = 0.

(a) Since complex exponentials are Eigen functions of LTI systems, the input z,(t) = /%
has to produce an output of the form Ae’>, where A is a complex constant. But clearly,
in this case the output is not of this form. Therefore, system §, is definitely not LTI.

(b) This system may be LTI because it satisifies the Eigen function property of LTI systems.

(c) In this case, the output is of the form ys(t) = (1/2)e’5t + (1/2)e~i%. Clearly, the
output contains a complex exponential with frequency —5 which was not present in the
input z3(t). We know that an LTI system can never produce a complex exponential of
frequency —5 unless there was complex exponential of the same frequency at its input.
Since this is not the case in this problem, §; is definitely not LTI.
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3.18. (s) By usmganugummtsimihxlolheonemndinput (a) of the previous problem, we
conclude that 5 is defintely not LTI
(b) The output in this case is to|n] = £il37/2n — g=3(x/2m Clearly this violates the eigen
function property of LTI systems. Therefore, S, is definitely not LTI
(c) The output in this case is ys[n) = gil5¥/2m — 2eix/2)n_ This does not violate the eigen
function property of LTI systems. Therefore, S3 could possibly be an LTI system.

3.19. (a) Voltage across inductor = L%%Q.
Current through resistor = %Eﬂﬁl )
Input current z{t) = current through resistor + current through inductor
Therefore, £ i)
- Lt
z(t) = Rd +y(t).
Substituting for R and L we obtain
dy(t)
—_— 1} = z(t).
ar v ==
(b) Using the approach outlined in Section 3.10.1, we know that the output of this system
will be H(jw)e’® when the input is &3t Substituting in the differential eyuation of

part (a), : -
juH(jw)e + H{jw)e™" = &
Therefore, i
AT ESC

(c) The signal x{t) is periodic with period 2. Since z(t) can be expressed in th. form

: it
2(t) = %e,(h,'z-)l 3 5:"“‘"-"2”',

she non-zero Fourier series coefficients of z(2) are
Spaasel
a) =6-1 = 7
Using the results derived in Section 3.8 (see eq.(3.124)), we have
vt} = aHGE +aHi=je™
1 1
——ejit et
W2t e
(/2 (e e 4 ")
(1/+/2) cos(t — :-)

I
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3.22. (a) () T=1 ao=0 o4 = 4L k0.
-2<t<—1

(i1) Here,
t+2
z(t)=4¢ 1, -l<t<1

2-%, 1<t<?2
T =6, ag = 1/2, and
[0 k even
8 =\ fysin(3)sin(%E),  kodd
(i) T=3,a0 =1, and
3
2x2k?
(W) T =2, a0 = —1/2, e =} = (-1)5, k#0.
(v) T =6, wp =73, and

o = [ 3 sin(k2x/3) + 267 P sin(kn/3)), Kk #0.

o = 25 (2kn/3) - coslkn/3)
k o Jkn/3 '
Note that ap = 0 and Gk cven = 0-
(vi) T =4, wo = 7/2, a9 = 3/4 and
e=7m/2 gin(kn [2) + e~/ sin(kr /4) vk
Gy = T N -

b)T=20a= ﬂT:-_l;ﬁf[e —¢~!] for all k.
(c) T =3, wo = 2%/3, ap = 1 and
9e-imk/3

e
ax = “—r sin(27wk/3) + s

ek

sin(rk).

3.23. (a) First let us consider a signal y(t) with FS coefficients
sin(k= /4)
K=

km
From Example 3.5, we know that y(t) must be a periodic square wave which over one
period is
aof1l <12
vi)={o 12<if<2

Now, note that b = 1/4. Let us define anotber signal z(¢) = —1/4 whose oxnly nonzero
FS cocfficient is cg = —1/4. The signal p(t) = y(t) + z(t) will have FS coefficients

0, k=0
di = ax + €k =y sinlkr/4)

otherwise.
Now note that ag = dge?™/?%. Therefore, the signal z(t) = p(t + 1) which is as shown
in Figure $2.23(a).
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3.20.

3.21.

(a) Current through the capacitor = C22.
Voltage across resistor = RC%—‘-1
Voltage across inductor = wfﬁ‘l
Input voltage = Voltage across resistor + Voltage across inductor + Voltage across
capacitor.
Therefore,

(1) = LC“Z':P

Substituting for R, L and C, we have

+ Rc%ﬂ +y(t)

Fy(e) | dute)
dt

Y +3(0) = 2(2)

(b) We will now use an approach similar to the one used in part (b) of the previous problem.
If we assume that the input is of the form e/“%, then the output will be of the form
H(jw)e®!. Substituting in the above differential equation and simplifying, we obtain

a00) = —w? + jw+1

(c) The signal z(t) is periodic with period 2. Since z(t) can be expressed in the form

z(t) = i.ei(hf‘zx): e i_e—gtax.fzn)z'
23 27

the non-zero Fourier series coefficients of z(t) are

e e
ay=a_,; = 5
Using the results derived in Section 3.8 (see eq.(3.124}), we have

yit) = aH()E" - aH{=j)e
i} 1 :
1/25)(= €t = =~
(1/25)( o = __," )
(—1/2)(t + e
— cos(t)

]

Using the Fourier series synthesis eq. (3.38),

o) = g FETTH | o o= HENTI | g piSl2n/T)E + a_gem5mITH
eI/ _ jemdtam/me g erSia /et 4 De—i5(2R /BN

—25in(%t) + 4ms{%t)

~2cos( 5t ~ /2) +4coe(i—"t).

94
x&) ) i
3/x¢‘l ] -
01
|0fi.=4r;r|j4: onz.'zqrt.?g{'
=%
b ted
Figure 53.23

(b) First let us consider a signal y(t) with F§ coefficients

by = sin(kw/8)
W kR
From Example 3.5, we know that y(¢) must be a periedic square wave which over one
period is
_J i/ It} <1/4
”(*"{o, Vi<l <2

Now note that ax = bxel™. Therefore, the signal z(t) = y(t + 2) which is as shown in
Figure 52.23(b).
(c) The only nonzero FS coefficients are ¢, = a’, = jand ag = a%, = 2j. Using the FS
synthesis equation, we get
I(t) = aleﬂ!wﬂ')t +a_le—j(1:,’7‘)l+azejz{21r;"r]l +a_2e-32(21r,'7‘)z
= jeltamr — jemitamia 4 22 _ e 2/}t

= -2 sin(%t) — 4sin(wt)

(d) The FS coefficients a; may be written as the sum of two sets of FS coefficients by and
¢k, where
be =1, for all k

{ 1, k odd
Cx =

0, k even '

and

The FS coefficients by correspond to the signal
00
wiy= 3 d(t-4k)
k=—00

and the FS coefficients ¢, correspond to the signal
oo
)= Y &N - 2%k).

k=00
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Therefore,

ey =y(t) +plt) = 3 St —ak)+ 3 SCV6(t - 2).

=-00 k=—o0

3.24. (a) We have

1 1 1 2 %
= -3 - =1/2.
ag 2£zdt+2jl(2 t)dt =1/

(b) The signal g(t) = dz(t)/dt is as shown in Figure 53.24.

3(3:]
[ [ z 3 45
— - o
Figure $3.24

The FS coefficients by of g(t) may be found as follows:

1.7 12
=-Jdt—-[ dt=
=g f a3
by = %/ emimktgy — — / eIk gy

- j;,I_—k[i«-.:"""],
(c) Note that
ott) = 20 58,4, = jkrar.
Therefore, ;
ag = jk_wb* rakz{l — eI}

3.25. (a) The nonzero FS coefficients of z(t) are a; = a_; = 1/2.
(b) The nonzero FS coefficients of z(t) are by = b7, = 1/2;.
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() N=6.
ar = 1 + 4cos(nk/3) — 2cos(2xk/3).

(d) N = 12, ax over one period (0 < k < 11) may be specified as: a) = ;% = af,
a5 = -3 = 63, ax = 0 otherwise.
(e) N =4.
ap = 1+ 2(-1)¥1 - \r}oos(

(f) N =12,
e = 1+(1- ‘/_)2001{ )+2{1 ‘/_)oos[——)

+ o201+ LY 1)"+2cm(—>

\/—)f-m(
3.29. (a) N =8. Over one period (0<n<7),
z{n] = 46[n — 1) + 48[n - 7] + 4jé[n — 3] — 478[n - 5.
(b) N = 8. Over one period (0 Sn < 7),

L [ sin(FOP + 50} '*sin{%(“—ﬂ}]
A GRS ) sn(5(F - 5)

z[n] =
(c) N = 8. Over one period (0 S n <7),
zfn] = 1+ (-1)" +2cus(?) +2ws(3%]_
(d) N = & Over one period (0<n <7),
:[n]—2+2cos( ; )+cm(%)+%m(37%n)

3.30. (a) The nonzero FS coefficients of z(t) are ap =1, e =a_ = 1/2.
(b) The nonzero FS coefficients of z(t) are by = b, = e™/*/4/2.
(c) Using the multiplication property, we know that

2
z[n] = x[njy{n) LN & = zagb*_g.
t==2

This implies that the nonzero Fourier series coefficients of z[n] are ¢y = cus(7/4)/2,

ao=c, =eITY2 o =ty = eI,

(c) Using the multiplication property, we know that

o0
2(t) = 2(ty(t) S ee= Y abir.
l=-o0

Therefore,

1 1

cx=apsb = rjé[k—Z]—ql—jﬂk+2}.
This implies that the nonzero Fourier series coefficients of z(t) are ¢; = ¢, = (1/47)
{d) We have
2(t) = sin(4¢) cos(4t) = %sin[ﬁt).

Therefore, the nonzero Fourier series coefficients of z(t) are e2 = ¢.9 = (1/47).

3.26. (a) If z(t) is real, then z(t) = z*(t). This implies that for z(t) real ax = a*,. Since this is
not true in this case problem, z(t) is not real.’
(b) If z(t) is even, then z(t) = z(—t) and @y = a_4. Since this is true for this case, r(t) is

even.
(€} We have
dz(t) rs 27
t) = —— be = jhk=—
9(t) o T =i T ag.
Therefore,

s 0, k=0
%=1 —k(1/2)%(27/Tp),  otherwise

Since by is not even, g(t) is not even.
3.27. Using the Fourier series synthesis eq. (3.38),

2] = ag +azej?(!w,u’h’)n+n_?e—j1(‘2x,f.h')n +a‘e)'4(2r_t’N)n +a_w—34{2w;‘u)n
2 4 2e%/6 RSN | 0 =1w/6=il4x[SIn | I%/3(BR/SIN | =17 [3p=5(B7/5)n

= 2+ 4cos[(4xn/5) + 7 /6) + 2 cos[(Brn/5) + 7 /3
= 2+ 4sin|(4mn/5) + 2x/3] + 2sin|(8xn/5) + 57/6)

3.28. (a) N=1,
S e~ 34"k/7 sin(Smk(7)
k=TT sin(xk/T)

(b) N =6, a) over one period (0 € k < 5) may be specified as: ag = 4/6,

2nk
ay = Ee‘-""-“s_m(Il 1<k<5.
sm( )
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(d) We have

z[n)

sin(z—"n+1r + sin 2«n+:r cos 2
6 4 6 g "

sin 2—’rn+' +l '(h + 2} +sin(T)
3 i 3 sin ="+ sm{;

This implies that the nonzero Fourier series coefficients of z[n] are ¢y = cos(n/4)/2,
a=c,=e M2 g=c, =iy,

(a) g[n] 18 as shown in Figure $3.31. Clearly, g[n] has a fundamental period of 10.

gl

.i.] ‘ 1] .'...“ )

)
'étijqfr&;-lﬁl‘oﬁu.uruu'lél?

-1

Figure $3.31

(b) The Fourier series coefficiennts of g[n] are by = (1/10)[1 — ¢~7(27/10)8%)
(¢) Since g[n] = z[n] — z[n — 1], the FS coeflcients ay and bx must be related as

b = ag — e~ 100kg,
Therefore,
2 e by _ (1/10)[1 = ¢~ it3n/10)8k)
k= 1 e—Jan/100k 1 - e-1x/ 10}k

3.32. (a) The four equations are
aptartaz+az=1 aeo+ja—ex—jaz=10

a9 -a +ay—a3=2 @ -—jo —ay+joz=—1l
Solving, we get ap =1/2, ay = — 1 gy = =1, a3 = = 151,
(b) By direct calculation,

ag = %[l +2e=Ikm _ e-;ks-f‘zl

This is the same as the answer we obtained in part (a) for 0 < k < 3.
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3.33.

3.34.

We will first evaluate the frequency of the system. Consider an input z(t) of the
form ', From the discussion in Section 3.9.2 we know that the response to this input will
be y(t) = H{jw)e™!. Therefore, substituing these in the given differential equation, we get

H(jw)jwel + 47" = &,

Therefore,
H(jw) = J—J+-—4

From eq. (3.124), we know that

o0
y(t) = Y acH(jkun)e™™
k=—00

when the input is 2(2). z(t) bas the Fourier series coefficients o and fundamental frequency
wo. Therefore, the Fourier series coefficients of y(t) are axH (jkwo).
(a) Here, wp = 27 and the nonzero FS coefficients of z(t) are a; = a_; = 1/2. Therefore.

the nonzero FS coefficients of y(t) are
1

by = a1 H{j2n) = by = a H(—j2m) = -2_(4—;J—2'ﬁ‘

1
2 + j2m)’
(b) Here, wy = 27 and the nonzero FS coefficients of z(f) are az = a%y = 1/2j and
a3 = a*; = e7*/%/2. Therefore, the nonzero FS coefficients of y(t) are
Ll
2704 — jam)’
ein/d omin
_€ by =asH(—j6T) = s
204 + j6m) 3 =a-sH(=67) = ~ 5=y

The frequency response of the system is given by

by = a2 H (jdm) = b_g = a_2H{—j4m) =

1
2{a+ j4n)’
by = agH(jbr) =
1 1

o0
i =t ity — 4 5
H(Gw) j:me - 44 jw  4-jw

(a) Here, T =1 and wp = 2 and ag = 1 for all k. The FS coefficients of the output are
: 1 1
b = aeH (kwo) = oo+ T ek

(b) Here, T = 2 and wp = 7 and

_Jo k even
=1L _ kodd
Therefore, the FS coefficients of the output are
0, k even
by = axH (jkwo) = { g
k= axH (jkwo) L e
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3.37. The frequency response of the system may be easily shown to be

1

iy 1 P T e,
Be) = 1-geiw  1-2e73

(a) The Fourier series coefficients of z{n] are

ap = for all k.

1
“iu

Also, N = 4. Therefore, the Fourier series coefficients of yin] are

Ny _ 1 1 i
be = aH(e™Y) = 4 [1 ler 1o Ze'J‘"‘ﬂ] )

(b) In this case, the Fourier series coefficients of z|n] are

ag = %[1 +2cos(kn/3)], for allk.

Also, N = 6. Therefore, the Fourier series coefficients of y[n] are

; 1 1 1
by = ap H{e%IN) = E{x + 2cos(kn/3)] [] my v = 23“1'*."3}

3.38. The frequency response of the system may be evaluated as

H(e) = €% — & 1 1 e 4 e,
For z[n], N = 4 and wy = 7/2. The F§ coefficients of the input z(n} are

ak=z, for all n.

Therefore, the FS coefficients of the output are

b = axH () = 31 = /7 4 eI,

3.39. Let the FS coefficients of the input be ax. The FS coeffients of the output are of the form

w

b = axH(e7*),

here wp = 27/3. Note that in the range 0 < k < 2, H(e?*0) = 0 for k = 1,2. Therefore,

only by has a nonzero value among by in the range 0 < k < 2.

3.40. Let the Fourier series coefficients of z(2) be ax.
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(c) Here, T = 1, wp = 2x and

1/2, k=0
a=¢0 keven, k#0 .
lm;:kﬂ i k odd
Therefore, the FS coefficients of the output are
1/4, k=0
0, keven,k #0
sekla) [ 4 d ] kodd
3.35. We know that the Fourier series coefficient of y(t) are by = H(jkwo)ar, where wp is the
fundamental frequency of z(t) and ay are the FS coefficients of z(t).
If y(t) is identical to (t), then by = a; for all k. Noting that H(jw) = 0 for |w| > 250,
we know that H(jkwg) = 0 for |k| > 18 {because wo = 14). Therefore, o, must be zero for
|k| 2 18.

by = axH (jkwo) =

3.36. We will first evaluate the frequency response of the system. Consider an input z{n| of the
form €™, From the discussion in Section 3.9 we know that the response to this input will
be yr| = H(e’”)e’™. Therefore, substituing these in the given difference equation, we get

() - 2e () = .
Therefore,
H{jw) = 7

— lema’
From eq. (3.131), we know that

U["]= Z G*H(ejﬁwk,'N)ejl‘(Zw,’N)n
k=<N>

when the input is z[n). z[n] has the Fourier series coefficients ax and fundamental frequency

2w /N. Therefore, the Fourier series coefficients of y[n] are axH{ed¥kINY.

(a) Here, N = 4 and the nonzero FS coefficients of z[n] are a3 = 074 = 1/2;. Therefore,
the nonzero FS coefficients of y[n] are

-1

by = “IH(Esj'H] . by = ﬂ-]H(efs"f’q) =

1
2j(1 = (1/4)e~137/4)’
(b) Here, N = 8 and the nonzero FS coefficients of zn| are @3 = a_; = 1/2 and a3 =
a_y = 1. Therefore, the nonzero FS coefficients of y(t) are

b = a H(e™ ) = by = a H{e ™) =

1 1
201 - (1/4)e=37/4)" 2(1 — (1/4)ei™/4)’

by = apH(e?™/?) = bog=a_gH(e ™) =

1 1
(1= (1/&)e~72)" - /e
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(a) z(t — tg) is also periodic with period T. The Fourier series coefficients b of x(t — to)}

are

by

]

L [ Z(t — to)e IR/ TNy
T Jr
—5k(2%/Tto
= il fekind [:(r]e"j*(z’ﬁ)'dr
T T
= e kOxTHog,
Similarly, the Fourier series coefficients of z(t + to) are
cp = e Mg, |
Finally, the Fourier series coefficients of z(t — ta) + z(t + &) are
di = by + cp = e~ Dog, 4 @H(2/Thog, = 2 cos{k2mto/T)a.
(b) Note that Ev{z{t)} = [z(t) + z(—1)]/2. The FS coefficients of z(~t) arc
1
b, gy k(2R TH
k T‘[TI( t)e dt
= lj:(f)e-#(z'ﬂ)’dr
TJr
= &)
Therefore, the FS coefficients of £v{z{t)} are
- ap+be _ ak+o_k
IS T
(¢c) Note that Re{z(t)} = [z(t) + z*(t)}/2. The FS coefficients of z*(t) are

Ck

by = . f 2°(¢)e 2Ty,
TJr
Conjugating both sides, we get
b = l[z(l}e’k(z'm‘df =a_s
TJr

Therefore, the FS coefficients of Re{z(t)} are

ok ag + by il ax + 6%,
T T SRk TR
(d) The Fourier series synthesis equation gives
o
)= 3 el
=-00
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2j(1 = (1/4)ei/4)’



3.41.

3.42.

4.

Diﬂemmingbothﬁdumlm-cgd
&z(t bad [
;’E‘ )o z ‘kankt,(zr,tnm_
==00

ar?

By inspection, we know that the Fourier series coefficients of d%z(t)/dt? are —k¥ra;.
(e) The period of z(3¢) is a third of the period of z(t). Therefore, the signal 2(3 - 1)
is periodic with period T/3. The Fourier series coefficents of z(3¢) are still ay. Using

the analysis of part (a), we know that the Fourier series coefficients of z(3¢ - 1) is
e—Jt(SﬁTiab

Since a; = a_y, we require that z(t) = z(—¢). Also, note that since 8k = Gx4p, We require
that
z(t) = z(!)e'j("faif.
This in turn implies that z(¢) may have nonzero values only for ¢ = 0,%£1.5,£3,+4.5,
0.5

Siucef z(t) = 1, we may conclude that z(t) = &(t) for ~0.5 < ¢ < 0.5. Also, since
-0.5

‘r(t)dt = 2, we may conclude that z(t) = 24(t — 3/2) in the range 0.5 < ¢ < 3/2.
5

0.
Therefore, z(t) may be written as

)= 3 a(t-k3)+2 3 -3k - 372)

k=—0o k==00

(a) From Problem 3.40 (and Table 3.1), we know that FS coefficients of z"(t) are o*,
Now, we know that is z(t) is real, then Z(t) = z*(t). Therefore, a; = a®,. Note that
this implies ag = ag. Therefore, ap must be real.

(b) From Problem 3.40 (and Table 3.1), we know that FS coefficients of z(~t) are a_,. If
z(t) is even, then z(t) = z(—t). This implies that

(S3.42-1)

G =a_;.

This implies that the FS cocfficients are even. From the previous part, we know that
if 2(¢) is real, then

o =a2,. (S3.42-2)
Using eqs. (53.42-1) and (53.42-2), we know that a = ay. Therefore, a, is real for all
k. Hence, we may conclude that ag is real and even.

{c) From Problem 3.40 (and Table 3.1), we know that FS coefficients of z(—t) are a_. If
z(t) is odd, then z(t) = —z(—t). This implies that

ap = —a_y. (S3 42-3)
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1
e /L -
-iIN_ © J\r_ \l t
-1
Figure $3.43

(d) (1) If a; or e, is nonzero, then
z(t) = ay T 4
and )
2(t+tg) = ag et Flera) 4
The smallest value of |ty| (other than Jto] = 0 for which e*?%F% = ] 1y the funda-
mental period. Only then is
Z(t +to) = oy etV 4 ... = z(t).
Therefore, to has to be the fundamental period. .
(2) The period of z(t) is the least common multiple of the periods of e/*(¢7/7) ang
eI@/T). The period of e™2%/T} is T'/k and the period of e/} 4nd T/1. Since
& and | have no common factors, the least common multiple of T'/k and T/! is T

The only unknown FS coefficients are 41, a-1, @2, and a_y. Since z(t) is real a; = o , and
a2 = al,. Since a; is real, a; = a_;. Now, z{t) is of the form

2(t) = A; cos(wot) + Ag cos(2upt + 8),
where wy = 27/6. From this we get
z(t = 3) = Ay cos(wpt — 3wn) + Az cos(2uwgt + 8 — bug).
Now if we need z(t) = —z(t - 3), then 3wy and 6wy should both be odd multiples of .
Clearly, this is impossible. Therefore, a; = a_y = 0 and
z(t) = A cos(wpt).
Now, using Parseval’s relation on Clue 5, we get

- 1
2 lad? =l + o P = 3

k=00
Therefore, |a;| = 1/2. Since o, is positive, we have @y = a_y = 1/2. Therefore, z(t) =
coa(xt/3).
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This implies that the FS coefficients are odd. From the previous part, we know that if
1(t) is real, then g

(S3.42-4)

ay =a’,.

Using eqgs. (S3.42-3) and (53.42-4), we know that ax = —a}. Therefore, ay is imaginary
for all k. Hence, we may conclude that a, is real and even. Noting that eq. (S3.42-3)
requires that ay = —ag, we may also conclude that ag=0.

(d) Note that £v{z(t)} = [x(t) + 2(~1)]/2. From the previous parts, we know that the FS
coefficients of £v{z{t)} will be {ok + a_g]/2. Using eq. (83.43-2), we may write the FS
coefficients of Ev{z(t)} as [or +aj)/2 = Re{a,}.

(e) Note that Od{z(t)} = [z(t) ~ z(~¢)]/2. From the previous parts, we know that the FS
coefficients of Od{=()} will be [ax ~ a_y)/2. Using eq. (S3.43-2), we may write the FS
coefficients of Od{z(t)} as lak — aj]/2 = JIZm{ay}.

3.43. (a) (i) We have
z(t) = E apetFe
odd
Therefore,
(t+T/2) = 3 aetFiern
odd &
Since e7** = —1 for k odd,

#(t+T/2) = —=(1).

(ii) The Fourier series coefficients of z(t) are

1 (T2 (} Skt 1 /7T -
a = -f z(t)e™ dt+—j z(t)e kw0t gy
Tl T Jrs

1 /T )
= F/ [2(8) + z(t + T/2)e~7k7)emikwoty,
a
Note that the right-hand side of the above equation evaluates to zero for even
values of k if (t) = —z(t + T/2).
(b) The function is as shown in Figure $3.43.

Note that T = 2 and wy = . Therefore,

k even

0
ag =
i {;§;+;,?;, k odd

(c) No. For an even harmonic signal we may follow the reasoning of part (a-i) to show that
z(t) = z(t + T/2). In this case, the fundamental period is T/2.
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3.45. By inspection, we may conclude that the FS coefficients of z(t) are

ag, k=0
T =4 Bp+jCy, k>0 .
By - jCy, k<0

(a) We know from Problem 3.42 that if z(t) is real, the FS coefficients of £v{z(t)} are
Re{m}. Therefore,
@ = ag,
We know from Problem 3.42 that if z(¢) is real, the FS coefficients of Od{z(t)} are
JZm{v}. Therefore,

ok = By

7Ck, k>0

Bo =0, ﬂt:{‘jch k<0 °

(b)ay =c_; and 8 = =0k
(¢) The signal is
v(t) = 1+ Eu{z(t)} + %Eu{z(t)] - Od{=(1)).
This is as shown in Figure $3.45.

3 i
/L ey

Vo

R i ST e sy i

Figure §3.45
3.46. (a) The Fourier series coefficients of z(t) are
G = % fT ; z':a,,blc"("*")“"”c'#““'dt
- %Zzﬁbﬂsgk —(n+1)
n i

Zanbk -n

n
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(b) (i) Here, Ty = 3 and wy = 2x/3. Therefore,

e i%&(k —30)+ %ﬁ(k +30))+ —-—2’;’;§;‘3;'; ok

bk _sin{(k — 30)2n/3) _ sin{(k +30)27/3}

= T 30)2a/3 | 3(k+30)2n/3

and ¢330 = 1/3-
(i) We may express z2(t) as

z5(t) = sum of two shifted square waves X cos(20w2).
Here, Ty = 3, wp = 2m/3. Therefore,

%E-J(k-ao)(h,’a) sin{(k — 30)2x/3} 4 Le-steranaera) sin{(k + 30)2 /3}

= (k—30)2x/3 3 {k + 30)27/3
1 s sin{(k = 30)7/3} 1 _jks30)(x/3 sin{(k + 30)7/3}
1 - itk—30)(r/a) ST — SIM/OF | 2 o —jlk+30)(n/3) 1
e k—302m/3 3 (& + 30)27/3
(iti) Here, Tp = 4, wp = 7/2. Therefore,
_n 1 ‘j{mo+e"{xinkwc — cos kuwo}]
= [ié(k ~ 40) + 56(k + 40) T r oo :

Simplifying,
_ 4lik = 40)uwp + e~ {sin(k — 40)uwp — cos(k — 40)wo}]
it AT+ {(k = 0)wo)]
§l(k + 40)wg + e~ {sin(k + 40)wo — cos(k + 40)uwo}]
41 + {(k + 40)wo}?) ’

(¢) From Problem 3.42, we know that by = a*,. From part (a), we know that the FS

coefficients of z(t) = z(t)y(t) = z(t)z"(t) = |z (t)]? will be

From the Fourier series analysis equation, we have

p [T p =
= F/ [=(O)2e IO TR = 3 anahas-
oJa

n=—o00

Putting k = 0 in this equation, we get

Ta L
a [ etepa= 3 ol

n=-00
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(h) Here. i
] = Slefnd + (~1"zir]
For N even, .
ag = i[ag +ai_1;;].
For N eodd,

L = k even
k) = slax +axsxl, ‘
Sk, k odd

3.49. (a) The FS coefficients are given by

1 N-1
oy = "ﬁzm{n]e"i?l
n=0
L - Ean  spadll e
== zinje + % b z[n]e
N n=0 n=N/2
vy2)-1 kN2 4
= %;— 2 .,-:[:*.]c'-"l‘3\!»"A +eN Z z‘[n+N/2]e""_l’& =0
n=0 n=0
T TRy ST, TR
= % z[ﬂ]e"l'ﬁ! = ED z]n}eﬁ'l?\"L
n=0 n=|
=0 for k even.

(b) By adopting an approach similar to part (a}, we may show that

g :
ap = %T [Z {1 - e7fEm2 eIk - & 1% Jaln)ei
n=0

= 0, fork=drrel

() If N/M is an integer, we may generalize the approach of part (2) to show that
ag =

B-1
e
=0

where B = N/M and r = k/m. From the above equation, it is clear that

a; =0, dk=rMrel.

3.50. From Table 3.2, we know that if
z[n] £5 a,

111

3.47. Considering z(t) to be periodic with period 1, the nonzero FS coefficients of z(t) are a; =

a_y = 1/2. If we now consider z(t) to be periodic with period 3, then the the nonzere FS
coefficients of z(t) are by = b_3 =1/2.

3.48. (a) The FS coefficients of z[n — ng] are

N-1
1
i Ivzziﬂ—ﬂu]e*ﬂwnk,‘p)
n=0 :
1 e R j2wnk/N
= e ISR YT afnje sk
n=0
= e frkna/Ng,

(b) Using the results of part (a), the FS coefficients of z[n] — z[n — 1] are given by

Gy = ax — e—jz:k,n‘nak s [1 s e—j‘.!rk,‘n]nk_

(¢) Using the results of part (a), the FS coefficients of z[n] — z[n — N/2] are given by
i 0, k even
P P A B
dp= maflze ]—{ 206, kodd
(d) Note that z{n}+z[n+N/2] has a period of N/2. The FS coefficients of z{n]+zin - N/2]

are given by
-1

” 2 oo -
b= nE,o [zin] +z[n+ 7]] e~ IATmE/N _ 95,
for 0 < k< (N/2-1).
(e) The FS coefficients of z*[—n] are
N-1 ;
Zz.i_n!e-ﬂmtﬂv =a

n=0

ay = N
(f) With N even the FS coefficients of (—1)"z[r] are
1 N-1 2
=5 leﬂlelm’"'mw‘_%) = Gk-nj2
n=0

(g) With N odd, the period of (—1)"z[n] is 2N. Therefore, the FS coefficients are

&

n=0

N-1 N-1
1 iZwn k=N _iRra k=N axik—
*=ﬁ[§,=ln1e PHPUTN 4 T glnle I T e M)

Note that for k odd t—'iﬁ is an integer and k — N is an even integer. Also, for k even,
k — N is an odd integer and e~7*%~¥) = _1_ Therefore,

akt{‘“—‘s’i* odd

0, keven
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then
(~1)°zfn) = SN () Sy g,

In this case, N = 8. Therefore,
(=1)"z[n] €3 ap_s.

Since it is given that ax = —ax_4, we have

zfn] = —(~1)"z[n).
This implies that z[0] = z[+2] = 2[4} =--- = 0.
We are also given that £[1] = z[5] = --- = 1 and z[3] = z[7] = —1. Therefore, one period

of z[n] is as shown in Figure $3.50.

Figure 53.50

3.51. We have a .
SB[ — FTaia) = (—1)Pxfn] £ gy

and therefore,
(~1)"*zfn] £5 —ap_y.

If ax = —ax—q, then z[0] = z[+2) = z[#4] = ... = 0. Now, note that in the signal
pln) = z[n — 1], p|£1] = p[£3] = .- = 0. Now let us plot the signal z[n] = (1 + (=1)")/2.
This is as shown in Figure $3.51.

Clearly, the signal y[n] = z[n]p[n] = pin] because pin] is zero whenever z|n] is zero.
Therefore, y[n] = z[n — 1]. The FS coefficients of y[n] are age /%),

3.52. (a) If z[n] is real, z[n] = z*[n]. Therefore,

G =y zln]e™/N = a}.
.

From this result, we get b_ = b and c_p = —¢;.
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Figure $3.51

(b) If N is even, then
1 —jem_ 1 n
anp = —N—Zz{n]e = FZ(—I] z[n] = real.
n n

(c) If N is odd, then

(N-1)/2
zin] = ael(BriNEn
k=—(N-1)/2
(N-Lf2 -nz
= 3 adCn g Y gpenIRINER (From (a))
k=0 k=1
(N=1)/2 (N-1)/2 :
= e Z (bk_'_jc*}e;&rjn’)kn Z {bt_jCk)E~j(2’r,'.‘\)Jcn
k=1 k=1
(N-1)/2
= a+2 3. bpcos(2mkn/N) - cxsin(2mkn/N).
k=)
If N is even, then
N=1 )
o] = Y aw@NHn
k=0
(N-2)/2
= ﬂo-l'(‘l]“awz+2 Z atej(!x,‘-\‘)kn+a~_iej(21r,‘N)(N~k)':
k=1
(N-2)/2
= o+ (- enp+2 z nke"m"m)k"—ai,e"(h'w)*" (From (a))
k=1
(N-1)/2
= ag+(—1)anp+2 ¥ becos(2nkn/N) — csin(2rkn/N).
k=1
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(a) If N is even, then )
1 i 1
anp = 3 3 2lnle ™ = 5 3 alnl(~1)"
<N> <N>
Clearly, ans is also real if z[n] is real.
{b) If N is odd, only ag is guaranteed to be real.

(a) Let k = pN, pe I. Then,

N-1 N-1 N-1
alpN] = er(ﬁan)pNn =Y e T1=N
=0

n=0 n=0

(b) Using the finite sum formula, we have

l_ejzrk 5
ol = e =0 kFeNpel

{c} Let

qEN-1
ﬂ]k] = eJ[?(,‘N)kn'
where g is some arbitrary integer. By putting k = pN, we may ag

q+N=1

g+N=1 q+N=1
alpN] = Z F2r/NIpNn Z J2mEn z 1=N.
n=q =q n=q
Now,

N=-1
alk] = e,(ar,'mtqzej(zx,m)kn_
n=0

Using part (b), we may argue that alk] = 0 for k # pN,p€ L.

3.55. (a) Note that

n=04=m,

{2 + N], n=0,xm,--- _ | z[Z]
0, 10, otherwise

Zm[ntmi] = otherwise

Therefore, Z(my[n} is periodic with period mN.

ain easily show that

= Zm[nl.

(b) The time-scaling operation discussed in this problem is a linear operation. Therefore,

if zln] = v[n] + win), then, zm[n] = Om[n] + wm[n].

(=) Let us consider

1 m-1 1. m-1
_ 1= emmkosiin _ L sen/mikon § a(2x/miin,
yin] = ge’ o g
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(d) If oy = Age™, then by = Acos(fs) and ¢ = Asin(6). Substituting in the result of

the previous part, we get for N odd:

v-1)/2

zn] = ap+2 ¥ Acos(y)cos(2mkn/N) ~ ci sin(8y) sin(2nkn/N)

k=1
(N-1)/2
2rnk
= +2 Ay cos{—— + b«}.
ap g k { 5 i}
Similarly, for N even,

(N-1)/2

z[n}

e 2mnk
ao + (=1)"anjp +2 )_:: Arcos{—— + 0}

(e) The signal is:
y[n] = de{z[n]} — d.c.{z[r]} + Ev{z} + Od{z} - 204d(z).

This is as shown Figure §3.52.
L'

ag+ (=1)"an;s +2 E A cos(0k) cos(2nkn/N) — cx sin(@k) sin(2rkn/N)
k=1

[ L r T
e T I y
3

£ 6 ]
) 6 1 2 2 ) +
=l "'UL
-L -1
17,

"rJ'L ~Tiz
Figure 53.52
3.53. We have )
. ) —3{2x/N}kn
Gk—NZI[ﬂ]EJ i
<N>
Note that 1
= et
<N>
which is real if z[n) is real.
114

This may be written as [From Problem 3.54]
(2% /mN)kan

il ={ &

Now, also note that by applying time-scaling on z[n], we get

n=0,%N,£2N,---
otherwise.

_ [ elr/mN)kon = 0, &N, 2N, -
Zmyln] = { 0, otherwise.
Comparing eqs. (53.55-1) and (83.55-2), we see that yln] = 2(m[n].
(d) We have
mN-1

1 >
by = = Z Z(m)[n)e 3(2x/mNYen
n=0

(53.55-1)

(83.55-2}

We know that only every mth value in the above summation is nonzero. Therefore,

1 N=1 -
b = ﬁZm[m)[','_’.n]g §(2n /mN)kmn

n=0
e )(nm]e-’(’lnﬂ\'}kn
mN n=0 i
Note that Zm,[nM] = z[n]. Therefore,

N-1
i a;
= — —j(2x/N)kn _ Ok
by, i nE_g:[n}e !

3.56. (a) We have
. FS
z'[n] 4= a

z[n] £ 6 and -

Using the multiplication property,

zfn)z*[n] = |z[n] &5 Z aa) g

(=<N>
(b) From above, it is clear that the answer is yes.
3.57. (a) We have
N-IN-1
z[nly['n] = Z Zakb;ej(h'w](k“’",
k=0 {=0

Putting I' = k + I, we get
(N-1) (k+N-1)

dalinl = 3. aby_el PN,

k=0 =k
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But since both by_g and e/2*/N¥'™ are periodic with period N, we may rewrite this as
N=IN-1 N-1 [N=1 ‘
z[nlyln] = Ezﬂkbr-ke’(h’w)r" = Z [Zaibl—k] HnfNin,
k=0 =0 =0 Lk=0
‘Therefore,

N-1
= zakbl—k-
=0
By interchanging ax and by, we may show that
N-1
o = Eb},m,k.
k=0
(b) Note that since both ax and by are peroidic with period N, we may rewrite the above
summation as
= 9 axbik = 3 bk
<N> <N>
{c) (i} Here,
N1y
=9 5ol - 3]+ 48[l = N + 3okt
t=0

Therefore,

1 1
Ck = 50k-3 + 50k43-N-

(i) Period=N. Also,

1
b = » for all k.

Therefore,

=

== ay.
N =0
(iii) Here, 1
By = ﬁ[l % E-ﬂwk;’! +c—j!rk/]1_

Therefore,

N-1
1 j2x -
—_—E 1+ eI g g gy .
=y a=o[ Jox-t

(d) Period=12. Also,

z[n] €5 ag = ayo = 1/2, Allotheray =0, 0<k <1l
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(c) Here, n = 8. The nonzero FS coefficients in the range 0 < k < 7 for z[n] are ay = a§ =
1/2j. Note that for y[n], we need only evaluate by and bs. We have

3 1
h:%:m.

Therefore, the only nonzero FS coefficients in the range 0 < k < 7 for the periodic
convolution of these signals are c3 = Bazbs and cs = 8agbs.

(d) Here,
P 1 [1 = ed@n/T-nk/ayt | _ pi(3n/74mk/4)4
z{n] & ax = 16 |1 = e-F@n/T—<k[a] T 1 < e 3@x/Txk/A)
and % /2
FS, 1-(1
— = = | —
yln) b 8 [1 = (1/2)=.~,n,u]
Therefore,

z[n] = z[nly[n] &5, 8arh.

3.59. (a) Note that the signal z(t) is periodic with period NT. The FS coefficients of z(1] are

it f 43 f: <ipld(t - pT)| €3NIty
Nl |2

Note that the limits of the summation may be changed in accordance with the limits
of the integration so that we get

e L[W J\ilmb’]'s(i-pﬂ“) e (2m/NT)kt gy
FSNTh | & _

Interchanging the summation and the integration and simplifying

Qi

N=1 NT
(UNT}Z:{p}j 8(t — pT)e 7 @n/N Tkt gy
p=0 °

N-1
(UNT)ZIIP]C—J‘KHIN)H
p=0

N-1
Y1) {um)Z:!ple‘f"'f”"“] ;

=0

Note that the term within brackets on the RHS of the above equation constitutes the
FS coefficients of the signal z(n]. Since, this is periodic with period N. a must also
be periodic with period N.
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and
1 sin7xk/12

FS.
vinl & b = Ry e

0<k<IL

Therefore one period of ¢ is,

1 [sinm(k—z)/u} s‘.n{n(kﬂo;/lz}]_ e

% = 37 | Sk —2)/12)  sn{x(k - 10)/12} Eall

(e) Using the FS analysis equation, we have

N Y abei= 3 sinlylnle M

l=<N> <N>

Putting k = 0 in this, we get

N E abo = E-’Elﬂ]yi"]-

I=<N> <N>

Now let y[n] = z*[n]. Then b, = a*;. Therefore,

N Z wa; = Zx{n}x'[ﬂ}.

1=<N> <N>

Therefore,

NY =3 lzln)l.

I=<N> <N>
3.58. (a) We have
zln+ N] = Ez[r]y[n +N-=r7]
<L>
Since y[n] is periodic with period N, y[n + N —r] = y[n — r]. Therefore,

zln+ N) = Zz[r]y[n — 7] = z[n].
<L>
Therefore, z[n] is also periodic with period N.
(b) The FS coefficients of z[r] are

G % E S axb_ge= 32N

n=<N>k=<N>

1 : .
= 5 E age 2N Z by~ ZRn—RNIN
k=<N> n=<N>
1
—Na;Nb,
N a ¥ O
= Naib.
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{b) If the FS coefficients of z(t) are periodic with period , then
Qg = Ag—N-
This implies that v
z(t) = z(t)e MM,
This is possible only if z(t) is zero for all t other than when (2r/T)Nt = 2rk, where
k € I. Therefore, z(t) is of the form
o0

2ty = 3 glkla(t - KT/N).

k=-—o00

o0
(c) A simple example would be z(t) = 3 &(t — kT).
k=—00
3.60. (&) The system is not LTL (1/2)" is an eigen function of LTI systems. Therefore, the
output should have been of the form K(1/2)", where K is a complex constant.

(b) It is possible to find an LTI system with this input-output relationship. The frequency
response of this system would be H(e™) = (1—(1/2)e™7%)/(1—(1/4}e™7*). The system
is unique.

(c) It is possible to find an LTI system with this input-output relationship. The frequency
response of this system would be H(e™) = (1 - (1/2)e™)/(1- (1/4)¢’*). The system
is unique.

(d) It is possible to find an LTI system with this input-output relationship. The system is
not unique because we only require that H{e/®) =2.

(e) It is possible to find an LTI system with this input-output relationship. The frequency
response of this system would be H(¢’“) = 2. The system is unique.

(f) 1t is possible to find an LTI system with this input-output relationship. The system is
not unique because we only require that H(e/™?) = 2(1 — 7).

(g) It is possible to find an LTI system with this input-output relationship. The system is
not unique because we only require that H(e?™/3) =1 ~ V3.

(h) Note that z[n} and y; [n] are periodic with the same fundamental frequency. Therefore,
it is possible to find an LTI system with this input-output relationship without violating
the Eigen function property. The system is not unique because H (e} needs to be have
specific values only for H(e3?*/12%). The rest of H(e) may be chosen arbitrarily.
Note that z[n] and )[n] are not periodic with the same fundamental frequency. Fur-
thermore, note that y[n] has 2/3 the period of x[n]. Therefore, y[n] will be made up
of complex exponentials which are not present in z[r]. This violates the eigen function
property of LTI systems. Therefore, the system cannot be LTL

—_
=

3.61. (a) For this system,
z(t) = = z(t).

Therefore, all functions are eigenfunctions with an eigenvalue of one
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(b) The following is an eigen function with an eigen value of 1:
z(t) =3 _8(t = kT).
k
The following is an eigen function with an eigen value of 1/2:
Lk
t) = =)eé(t ~ kT).
=(t) gg) 8(t ~ kT)
The following is an eigen function with an eigen value of 2:
z(t) = 3 (2)*8(t ~ kT).
k
(c) If k(2) is real and even then H(w) is real and even.

PEaL - H(jw)e™!
em It — H{—jw)e™ ™ = H(jw)e "

From these two statements, we may argue that

cos(wt) = %[e"“' +e7 I o — H{jw) cos(wt).

Therefore, cos{wt) is an eigenfunction. We may similarly show hat sin{wt) is an eigen-

and

function.
(d) We have
(1) = [u(t) ] - Asie).
Therefore,

t
Ad(E) = [ #{r)dr.
Diflerentiating both sides wrt ¢, we get
Ag'(t) = #lt).

Let ¢{0) = ¢o. Then
B(t) = doet/*.

3.62. (a) The fundamental period of the input is T' = 2x. The fundamental period of the input
is T = x. The signals are as shown in Figure 53.62.

(b) The Fourier series coeffients of the output are

b 2
k= -4k
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Therefore, the system is linear.

Now consider
zq(t) = z(t - to) = walt).

We have
- t—1t
() :tiﬁz(;tz tg) 'Hdz(dt 0) #ylt - to)

Therefore, the system is not time invariant.
(c) For inputs of the form $x(t) = t*, the output is

ylt) = K5 = P (t).

Therefore, ¢ (t) are eigenfunctions with eigenvalue Ag = k2.
{d) The output is
y(t) = 10%719 + 3t + B6%.

3.65. (a) Pairs (a) and (b) are orthogonal. Pairs (c) and (d) are not orthogonal.
(b) Orthogonal, but not orthonormal. Am = 1/wo.
(¢) Orthonormal.

(d) We have .
{e,(m-n}zx o 1]

tg+T
jruwQT = T o2 . pi{m—nlwota
_[ LI TNT T ITNT iy == & (R

to
This evaluates to 0 when m # n and to 5T when m = n. Therefore, the functions are

orthogonal but not orthonormal.
(e} We have

Y Trlzm +2(~0)=(t) - z(~ 1)}t

=t fTr2(:)dt -if " 2o
i) T 4.7

0.

T
f T

it

(f) Consider

! e et WL e o0\l
.[,J_Z—I¢k(t)ﬁ¢'(t}dt_ m]‘]ﬂm(tlﬂ(ﬂ t.

This valuates to zero for k # . For k = [, it evaluates to AgfAx = 1. Therefore, the
functions are orthonormal.
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alk) Yy

<,
5
/
o
=]
5._

-1
Figure 53.62

(¢) The dc component of the input is 0. The dc component of the output is 2/m.

3.63. The average energy per period is
1 24— 2 o _ L+
?j’ix(t)! dt = Ylael? = To = 1T
z 3 k

We want N such that

N-1
E lowl® = O.Sl-f_oﬁ?.
rd) 1-—a

This implies that

1—o? T 1-a?’

1-20°Y +20*  1+0?

Solving,
_ log[1.450" + 0.95)

N
2log

and N ~
m - )r
7 <W< =
3.64. (a) Due to linearity, we have

ult) = Eck/\kd’x(f}-
3

(b) Let
z1(8) — w{t) and  z(t) — wlt).
Also, let
z3(t) = azy(t) + bra(t) — ws(t).
Then,
) = Clazy(t) + bz (8)) + tlaxi(t) + bzo'(1)]
= ay(t) + byal(t)
122
(g) We have
13
/ |t = f ® o)z (t)et
b
= [ TatiY a0
a 7 3
b
= Y e [ il (t)dt
i g b
= Y lail®
(h) We have
ur) = [T e

[* winrsar
§;=1fori=jand0fori#j

3.66. (a) We have

N N
E= f [x(f)— S ault)| 20— 3 aldi(t)|dt
d k=—N

k=-N
Now, let a, = b; + jc;. Then

b
g% =0= 7£ $r(t)z(t)dt + 2b; — [mt)z‘(z)de

and
aE b 1]
e =0=i f $ilt)z" ()t + 26 - f i (t)z(t)d.

Mutliplying the last equation by j and adding to the one before, we get
)
2; + 2jcs = 2 ] (4" (E)dt.
a
This implies that
5
& j 2(6)6° (1)t
a

(b) In this case, a, would be
Y .
6 = Z[, z(t)g; (t)dt.

t



o
(¢) Choosing L e e
o = .—[ z(t)e Iuotde,
To v

5= [
To

1 — kot
= — t)e~TFwotdt.
o beﬁ:r( 5

we have

= 2
z(t) — Z nge""’““k dt
k

==N

Putting §= = 0, we get

(d)ag=2/m, ey =az=0,02= 2(1 = 2V2)/m, ag = (1/7)[2 — dcos{/8) + 4 cos(3x/8)].

(e) We have

f ]Z(aiqs.-(m'h(t) = 3 aidi(t)ldt
o i

1
Zai j; (t)$; (t)dt
XS [eiwe,ma
Zn;ai - EC:G‘ =0

]

() Not orthogonal. Example: /"l%(t)dll(t) = j:tdt =130.
{(g) Here, .
it L etga(tydt=e~ 1.
(h) Here, £{t) = ag + a1t. Therefore,
E= j:{e‘ — ap — ayt){e’ — ag — ayt)dt.

Setting 8E/Jag = 0 = 8E/day, we get ao = 2(2e — 5) and @, = 6(3 — €).
3.67. (a) From eq. (P3.67-1) and (P3.67-4), we get

i j21nbn{x)ei2"“ kz Z a;:;z) ezt

Equating coefficients of &/270t on both sides, we get

bn(z) :41m
a7 ——=bal(x).
125
/’\L\ )
= 1 —a, 2o
Y _
€] «©)
K-'\-) @-i) i)

Figure 53.68
(c) We have

2 M
Nz lzlnl? = }: Zmﬁ[ﬂ]}:nkh[n]

=N ""n=1

- 3wt S i

k=1li=1 n=MN

M M M
= 33 eiAdli =k =3 loil*Ai
i=1

k=1i=1

(d) Let a; = b; + jc;. Then

2 M Na
E = ih[ﬂ]lz’rz(b?ﬂ?)& ZIME(&-—JGW“
n=M i= n=N  i=l
e
=3 2]+ jeidgiln]
a=Ny i=1
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(b) Since s* = 4xjn/k?, ;
2/mnei*/4
T R

_ V2rn(l+4)
= k

For n > 0,

is a stable solution. For n < 0,
_/2ajnlQ - 4)
k
is a stable solution. Also, ba(0) = an and

: & ape=VIm(I+ilzik n>0
B = VBRI g

(c) by = 2. by = (1/25)e "+ by = —(1/2f)e" (1),

T(ky/7/2,t) =2+ e "sin(2nt — 7).
Phase reversed.

3.68. (a) z(6) = () cos(8) = 1r(8)e?® + Lr(B)e=7. It

3.69.

3.70.

3.71.

e,

s

z(f) =
k

—00
then by = (1/2)aks1 + (1/2)ax—1-
(b) z(8) ¢+ by. Then z(8) = r(f + 7/4). The sketch is as shown in Figure 53.68.
(c) bg = . Rest of by is all zero. Therefore, the sketch will be a circle of radius ag as
shown in Figure 53.68.
(d) (i) r(8) = r(—8). Even. Sketch as shown in Figure 53.68.
(ii) (8 + kx) = r(f). Sketch as shown in Figure 53.68.
(iii) (8 + k= /2) = r(6). Sketch as shown in Figure S3.68.

N N
(a) z drln]diim] = Z 8[n — K]8[n — m]. This is 1 for k = wm and 0 for k # m.

n=—N
The'refore‘ orthogonal.
(b) We have
N1 j2m(k—m)
RICTIINCS 1-¢ _fo k#m
Zr Pilnlgraln] = E/NI =) ['1 N = )l = { N, E=m "

Therefore, orthogonal.
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Set 9E[9b, = 0. Then

Ny Nz
= 4] [E {alnlgiin] + =2 [n]es,[nn] ine{ e a:ln]oi.’[n]} :

n=Ny n=N;
Similarly,
1 -
6= IIm E :c[n_.]d::[n] .
n=N;
Therefore,

a; =bi+joi = — Z =[n)¢;[n).
o= M
(e} ¢i[n] = é[n - i]. Then, .

e = Z z{n)é{r — 1] = zfi].

n=Nj

(a) We get

Ty

Omn = T]Tg / z(ty, tg)e I eI G ity
(b} (i) Ty =1,Tz = an = 1/2, a_y,—1 = 1/2. Rest of the coefficients are all zero.
(ii) Here,
_ [ 1/(x*mn), m,n odd
Ao )70y otherwise ~

(a) The differential equation f,(t) and f(2) is

Bdi()
Fod s rw=1o.

The frequency response of this system may be easily shown to be
1
1+ (B/K)jw’
Note that for w = 0, H(jw) = 1 and for w —+ oo, H(jw) = 0. Therefore, the system
approximates a lowpass filter,
(b) The differential equation f4(t) and f(t) is

dfd{t)

H(jw) =

dfalt) | f(t) d.f(f-)‘

The frequency response of this syscem may be easily shown to be

p Jw
H = —
) = S (&/B)
Note that for w = 0, H(jw) = 0 and for w = oo, H(jw) = 1. Therefore, the system
approoximates a highpass filter.



- Chapter 4 Answers
4.1, (a) Let z(t) = e~2=Dy(t - 1). Then the Fourier transform X (jw) of z(t) is:
X(w) = Fc"“")u(c-l)e‘f“'dz
oy
= [ e~ At-Ng=iwtgy

1
e (2 + jw)

]

| X (jw)! is as shown in Figure S4.1.
(b) Let z(t) = e~2¢-3|. Then the Fourier transform X (jw) of z(¢) is:

o0 o
f o2t =it gy
—00
00 > 1 §
= / c'z(“uc"-""‘dt-t-j eAt-Nemiwt gy
1 —o0

e (2 + jw) + e/ (2 — jw)
= ge /(4 +wh)

X(jw)

]

|X (7w} is as shown in Figure 54.1.

T IR TIW“
z
K
o ~Pw ol :-N
(2 Figure S4.1 e

4.2, (a) Let z3(t) = 4(t + 1) + 5(t — 1). Then the Fourier transform Xy (jw) of z(t) is:
Xi(jw) = j [8(¢ + 1) + 8(t — 1))e™?*dt
= e 4+e = 2cosw

|X1(jw)| is as sketched in Figure $4.2.
(b) The signal z2(t) = u(~2 = t) + u(t — 2) is as shown in the figure below. Clearly,

%{u(—i (-2 = 8t —2) - 8t +2)
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Therefore, the nonzero Fourier series coefficients of z2(t) are

=il Ay %é-faejs,:l e %e—jrlae—jﬁut
From Section 4.2, we know that for periodic signals, the Fourier transform consists of
a train of impulses occurring at kwg. Furthermore, the area under each impulse is 2n
times the Fourier series coefficient a;. Therefore, for z3(t), the corresponding Fourier

transform X2(jw) is given by

Xa(jw) = 2magd(w)+ 2ma;d{w — wo) + 21ra.._15{w + wg)
= 2r6(w) + me /B8 (w — 6x} + e /Bé(w + bm)

4.4.  (a) The inverse Fourier transform is

]

o = (1/2n) f * [2r8(w) + 78{w — 47) + b(w + dn)]e?d
(1/2n)[2me?® + ettt 4 xemi17)

14 (1/2)e7*" + (1/2)e™ 4™ = 1 + cos(4n1)

{b) The inverse Fourier transform is
o .
mft) = (1/27) f Xaljw)edw

0
- (1/27) [o 2 du + (1/27) f_ (2o

= (&% = 1)/(rit) — (1 - ™)/ (x]t)
= —(47sin®t)/(nt)

4.5. From the given information,
%0 N
z(t) = (l/2w)/ X{jw)e dw

—oc

) j X GueF XU oy
~ ) |

= (l/21r)f 2e” 34 e du
-3

?(z_:za'/‘z‘)’ sinf3(t — 3/2)]

The signal z(t) is zero when 3(t — 3/2) is a nonzero integer multiple of 7. This gives

t=r?~+g, forke€Z, and k #0.
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Therefore, y
Xa(jw) = j"" [8(t — 2) — 8(t + B]e dt

= e UY _ MY = _275in(2w)

|X1(jw)| is as sketched in Figure 54.2.

N /L’x ;

[P gl
VA LDV AVAY
AR A . sn, = . o i "

Figure S4.2

4.3.  (a) The signal z,(¢) = sin(2xt + x/4) is periodic with a fundamental period of T = 1.
This translates to a fundamental frequency of wy = 2x. The nonzero Fourier series
coefficients of this signal may be found by writing it in the form

1 B
= (2xt+n/d) _ —i(2mt+w/d4)
alt) = 5 (¢ e )
L wpagome _ 1 - -5
= - 2wt _ x4 ~52nt
2j€7 2je e

Therefore, the nonzero Fourier series coefficients of 2(t) are
a = leyu,fdcﬂut G L gmintagiamt
23 : 27

From Section 4.2, we know that for periodic signals, the Fourier transform consists of
a train of impulses occurring at kwp. Furthermore, the area under each impulse is 27
times the Fourier series coefficient ax. Therefore, for z,(t), the corresponding Fourier
transform X (jw) is given by
X1(jw) = 27a6(w —wp) + 2ra_yé(w + wp)
= (n/j)e*Ms(w - 2x) — (x/j)e " Mé(w + 2m)
(b) The signal z4(t) = 1 +cos(6mt+7/8) is periodic with a fundamental period of T = 1/3.

This translates to a fund tal frequency of wy = 6x. The nonzero Fourier series
coefficients of this signal may be found by writing it in the form

1 -
i L s(extensB) _ —j(6nt4n/8)
t) = 14 3 (e—’ e )

ik %ej.,tse,'m_‘_ %e-,‘s,ree-,s-.rz
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4.6.  Throughout this problem, we assume that
=(t) &£5 X1 (Gw)-
{a) Using the time reversal property (Sec. 4.3.5), we have
2(~t) €5 X (~jw)
Using the time shifting property (Sec. 4.3.2) on this, we have
(=t +1) &5 e X (~jw)  and  z(—t — 1) 5 X (—jw)
Therefore,

o) =a(-t+1) +z(-t—1) 5 e X (—jw) + X (—juw)

& 2X(—jw) cosw
{b) Using the time scaling property (Sec. 4.3.5), we have
Fr 1 w
1 = j=
=(3) €5 X € 3)
Using the time shifting property on this, we have

() = z(3(t — 2)) &5 e—z,-u%x (}%;)

(c) Using the differentiation in time property (Sec. 4.3.4), we have

dr|

—dg') & jux (jw)
Applying this property again, we have

&zt

Ig ) £ —w? X (juw).

dt
Using the time shifting property, we have

z3(t) = ——“’f;? D ET, X e,

4.7.  (a) Since X;(jw) is not conjugate symmetric, the corresponding signal 2(¢) is not real.
Since X;({jw) is neither even nor odd, the corresponding signal x, (t) is neither even
nor odd.

(b) The Fourier transform of a real and odd signal is purely imaginary and odd. Therefore,
we may conclude that the Fourier transform of a purely imaginary and odd signal
is real and odd. Since X2(jw) is real and odd, we may therefore conclude thai the
corresponding signal zz(t) is purely imaginary and odd.
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(c) Consider a signal ys(t) whose magnitude of the Fourier transform is [Ya(jw)| = A(w),

and whose phase of the Fourier transform is a{Ya(jw)} = w. Since Ys(w)t = e
[Ya(~jw)| and <{YsGw)} = —<{Ya(-jw}}, we may conclude that the signal ys(t) ) a“'f)
is real (See Table 4.1, Property 4.3.3). :
Now, consider the signal z3(t) with Fourier transform Xs(jw) = Ya(jw)e™? = 4 %‘
7¥3(jw). Using the result from the previous paragraph and the linearity l?roperty
of the Fourier transform, we may conclude that z3(t) has to imaginary. Since the
Fourier transform X3(jw) is neither purely imaginary nor purely real, the signal z3(t)
is neither even nor odd.
(d) Since X,(jw) is both real and even, the corresponding signal x4(t) is real and even. i o l 3 >* g o Y —_Z{‘v':
3.8.  (a) The signal z(t) is as shown in the Figure $4.8. s Figure S4.9
PIEY ‘}(‘t)
4.9.  (a) The signal z(t) is plotted in Figure S4.9.
1t A We see that this signal is very similar to the one considered in the previous problem.
In fact we may again express the signal z(t) in terms of the rectangular puise y(t)
shown above as follows ;
1
/ =(t) =f w()dt - ult = 2.
s 2
-{-{- T i —_ Using the result obtained in part {a) of the previous problem, the Fourier transform
-4 Y, < Yo t X(jw) of z(t) is
: _ 2sin(w/2) 1
Figure 54.8 X(w) = TR +md(w) = FT{ut - E)}
Ve his signal as _ sinw _e7
We may express this sign : = o o
z(t) = [wy(t)d"“ (b) The even part of x(t) is given by
where y() is the rectangular pulse shown in Figure 54.8. Using the integration property Evizlt) = 2{t) + z(~t)
of the Fourier transform, we have — e &
FT. . 1 i G This is as shown in the Figure 54.9.
{3 X ==Y + 7Y (50)4(w!
e Ge) Jw () (i0)8() Therefore, ;
We know from Table 4.2 that FT{Eo{z(®)}) = sinw
. w
Y(jw) = E-im%@ Now the real part of the answer to part (a) is
Therefore, Re {_!"“"} = (1/w)Re (i il _ sinw
i —_— = jlcosw — jsmw)} =
X(iw) = 3%(:;12—) +mé(w) o "
i 5 A . B (c) The Fourier transform of the odd part of z(t) is same as j times i inary part of the
(b) If g{t) = =(t) — 1/2, then the Fourier transform G (jw) of g(t) is given by i Wb ) S g
. . 2sin(w/2) )
Gljw) = X (jw} — (1/2)2né(w) = G Im {sinw _eM) __sinw  cosw
Jw? jw T W w
133 134
Therefore, the desired result is 4.11. We know that

1 W r 1 w
inw cos z(36) €5 1GR3 &5 CHGS)
FT{0dd part ofz{t)} = *‘;"..;‘,i il 329 3703

jw Therefore,
1 w w
Gljw) = FT{z(3t) » 4(3)} = X2 H(=
$10. (a) We know from Table 4.2 that () (z(38) » h(31)} = gXUPIHUZ)
. Now note that
% T, Rectangular function ¥ {juw) [See Figure 54.10] Y (jw) = FT{z(t) » h()} = X () H ()
k.l
From this, we may write
Therefore w, w w
i v =x(53) # (53)
(ﬂ"t—t) &T, (1/27) [Rectangular function ¥ (jw) + Rectangular function ¥'(7)} Using this in eq. (**), we have
o

. 1., . w
E G(jw) = EY(J 5-)
This is a triangular function ¥|(jw) as shown in the Figure 54.10.

A . Ii(iw) and 1
TG lt) = Fv(30)
I
Y Therefore, A = 1 and B = 3.
. ‘ 1 4.12. (a) From Example 4.2 we know that
-1 o : -2 0 z
el i FT, -2
ifzme 1+w?
"y e ) 4™ Using the differentiation in frequency property, we have
= . d 2 djw
i st i) = -
Figure $4.10 i Sl T+ o)
Using Table 4.1, we may i (b) The duality property states that if
FT, ’
& 2 q k g(t) ¥ G{jw)
¢ (28E) D xGu) =50
wt then o
This is as shown in the figure above. X (jw) may be expressed mathematically as G(t) +— 2rg(jw).
7 M Now, since
WRs Seat - FT, A
X(jw)-:{ —jf2m, Uﬁeu:?. te H—[l+w?)2
0. hecleing we may use duality to write
(b) Using Parseval’s relation, - 4j£2 : FT, ape
t
., (sint ‘d_L mX('}Fdw—L {1+ 12)
f_wt i i o _ml I T 2md Multiplying both sides by j, we obtain
4t

2 iopwe
aror = j2awe ™.
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- 4.13. () Taking the inverse Fourier transform of X (jw), wc obtain
L L, Lon
z(t) = 2w+2’re’ + 2ﬂe-‘

The signal z(t) is therefore a constant summed with two complex exponentials whose
fundamental frequencies are 2x/§ rad/sec and 2 rad/sec. These two complex expo-
nentials are not harmonically related. That is, the fundamental frequencies of these
complex complex exponentials can never be integral multiples of a common fundamen-
tal frequency. Therefore, the signal is not periodic.

(b) Consider the signal y(t) = z(t) * h(t). From the convolution property, we know that
Y (jw) = X (jw)H(jw). Also, from h(t), we know that

H(jw) =e ¥ Emﬂ_
w

The function H{jw) is zero when w = kx, where k is a nonzero integer. Therefore,

¥ (jw) = X(jw) H{jw) = 6(w) + 8(w - 5)

This gives
1 1 .
ey —e"s'
v =5z o
Therefore, y(t) is a complex exponential summed with a constant. We know that a
complex exponential is periodic. Adding a constant to a complex exponential does not
affect its periodicity. Therefore, y(t) will be a signal with a fundamental frequency of
27 /5.
(c) From the results of parts (a) and (b), we see that the answer is yes.

4.14. Taking the Fourier transform of both sides of the equation
FH( + jw) X (jw)} = A27%uft),

we obtain

A a1 1
4@+ " \l+45w 2+45w]’
Taking the inverse Fourier transform of the above equation

z(2) = Ae~tu(t) — Ae~Hu(t)

X(jw) =

Using Parseval's relation, we have

[ Xt = 20 [ o

oo
Using the fact that _[ | X (jw)|Pdw = 27, we have

/m |z{t)|?dt = 1
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We see that G{jw) is periodic with a period of 8. Using the multiplication property,
we know that
sint

Xt = o= [#7 {22} + 0]
If we denote FT {¥5!} by A(jw), then

(1/27)[A(jw) + 87 i & (w — 8k)

=—00

X(jw)

]

43" Aljw —8k)

k=—00

X (jw) may thus be viewed as a replication of 4A(jw) every 8 rad/sec. This is obviously
periodic.
Using Table 4.2, we obtain

) 1, =1l
skl { 0,  otherwise
Therefore, we may specify X (jw) over one period as
T [ wj €1
x(""]_{o, 1<jws4

4.17. (a) From Table 4.1, we know that a real and odd signal signal z(t) has a purely imaginary
and odd Fourier transform X (jw). Let us now consider the purely imaginary and
odd signal jx(t). Using linearity, we obtain the Fourier transform of this signal to
be jX(jw). The function jX(jw) will clearly be real and odd. Therefore the ziven
statement is false.

(b) An odd Fourier transform corresponds to an odd signal, while an even Fourier transforo
corresponds to an even signal. The convolution of an even Fourier transform with an
odd Fourier may be viewed in the time domain as a multiplication of an +ven and
odd signal. Such a multiplication will always result in an odd time signal. The Fourier
transform of this odd signal will always be odd. Therefore, the given statement is true.

4.18. Using Table 4.2, we see that the rectangular pulse z,(f) shown in Figure S4.18 has a Fourier
transform X, {jw) = sin{3w)/w. Using the convolution property of the Fourier transform,
we may write

: 7
2(t) = m () * 21 (8) €5 Xa(jw) = Xa(jw) Xu (jw) = (ilﬂfw_])

The signal z2(t) is shown in Figure 54.18. Using the shifting property, we also note that

()

é—mg(t+])iﬂ =

1
2
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Substituting the previously obtained expression for z(t) in the above equation, we have

[A%e% 4 A% — 24%e M u(t)dt = 1

—o0
f” (A% 4 AZe~ — 24%e~%)ds = 1
o

A2 =1
= A=12

We choose A to be +/12 instead of —+/12 because we know that z(t) is non negative.

4.15. Since z(t) is real,

L Re(X(jw)).

Bilsy = 2=l +2’(“‘)

We are given that
IFT{Re{X(jw)}} = Jtje M.

Therefore,

z(t) + z(=t) _
B

Ev{z(t}} = Jtje1el.

We also know that z(t) = 0 for ¢ < 0. This implies that z(—t) is zero for t > 0. We may
conclude that

o(t) = 2tle™™  fort>0

Therefore,
2(t) = 2te™*u(t)

4.16. (a) We may write

z(t) i mé(t — kn/4)

Pyt kw f4
sint
= Wk:z_wwé(t — kn/4)
o
Therefore, g(t) = 3 wé(t — kn/4).
k=—oo
(b) Since g{t) is an impulse train, its Fourier transform G(jw) is also an impulse train.
From Table 4.2,
e R 2k
Gijw) = '7"/4k:z_mé (w - ;ﬁ)
= 8n Y d(w-8K)
k=—co
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and

. 2
%zg(! -1) & Ee"i“’ (M) .
2 w
Adding the two above equations, we obtain
1 " 2
MO = goali+1) + ;—,zg(t ~1) €T cos(w) (Eﬂﬂ) :
W

The signal h(t) is as shown in Figure 54.18. We note that k(t) has the given Fourier
transform H (jw).

3 X
1 ﬂl(fl’ ‘(a
o
[/ 2
-3 0 3 £ % ol € Tt
hit)
sh
U
-3 -5 o 5 3 +
Figure S4.18

Mathematically h(t) may be expressed as

3, [t <1
R R R ES:

hit) =
& -B+I s<ps<T
0, otherwise
4.19. We know that
. ¥ (5
H(jw) = x(é:;

Since it is given that y(t) = e *u(t) — e *u(t), we can compute Y {jw) to be

1 1 1

Y{jw) = - =
) = 5 e T Th e - BeieE T e
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Since. H(jw) = 1/(3 + jw), we have {¢) Using the Fourier transform i o
2y YOw) 4 )
X(jw) = o) = 1/(4 + juw)
Taking the inverse Fourier transform of X (jw), we have

z(t) = e~ Yu(t).

Sinw Sinw
T—w w+w

X (ir)im 28::::..- 5

(d) Using the Fourier transform analysis equation (4.9) we have
1

4.20. From the answer to Problem 3.20, we know that the frequency response of the circut 1s X{w) = T e
1
H{jw) = ——u—. (e) We have
¥ jutl ' ; ;
B 2 i S () = (1/21)te™ P eMu(t) — (1/25)te~ ety q),
t £ te
Teaking this up into parti actions, we may wri Therefore,
: 1 -1 -1 . 112 1/25
H LI + X(jw) = - .
(jw) m[%_%_ﬂu i+‘?3'+i“J @ =34+ 50 " @ -y
Using the Fourier transform pairs provided in Table 4.2, we obtain the Fourer ‘ransform (f) We have i
sinwt || < =

of H(juw) to be () = &L X, () = { 1,

1 - 1 wt 0. otherwise
) men [ t-—}+"?1)¢++ (-4-En ! 2
® = [~ . Jut Ao i
Simplifying, g = dn2x(t—1) Fr ol e <o
i V3 z2(t) w(t—1) 2 Xalg) 0, otherwise *
h(t) = ﬁc f‘sin(—2~t)u(!). 1
(1) = 21(t)z2(2) ¢ X (juw) = X, (ju) » Xa(ju)).
4.21. (a) The given signal is 2x
. Therefore, )
e”® cosfwpt)u(t) = le“"ﬂ“’“'u{t) + sem eIty p) eTry, jw| < w
2 2 X(u) = (1/2x) (3 + u)e‘{”, —r<w< -x
Therefore, : : (1/27) (3% — w)e=3w, < w< 3
X(jw) = - — - : —, 0, otherwise
Ly e = jwo +jw) 2o — jug + Jw) () Using the Pourier tracas :
x :
(b) The given signal is g 10g the Fourier transform analysis eq. (4.9) we obtain
2(¢) = e sin(2t)u(t) + ¥ sin(2t)u(—t). X(w) =% [oosZu - w] .
w w
We have
g ! h) If
G : 1/2) 1/2) (
Tu{t) = e sin2t)u(t) 5 X\ Gu) = —HP UG o
4 . 3-2+jw 34724 w i) = 3 5t - 2%),
Also, k=00
, FT : 1/2j 1/25 then
=2(t) = e sin(2t)u{~2) = —z1(~1) €5 Xy(jw) = - X (—jw) = oy i ey z(t) = 22y (2) + 2 (¢ - 1).
Therefore, Therefore,
S R o¥, i 37 3 : o
B e XU) = XGu)f2 + e =7 3~ 8w~ km)2 + (~1)f).
k=—co
141
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(i) Using the Fourier transform analysis eq. (4.9) we obtain (i) We know that
1 | 270w 2e7iw_ 2 22(t) = zo(t) — zo(~2).
X(w) = — + ==- g Using the linearity and time reversal properties of the Fourier transform we have
: ! i g . : i ke .
(i) =z(t) is periodic with period 2. Therefore, Xajw) = Xo(jw) — Xo(jw) = j [ 2w+ 2e sinw + 2we™" cosw .
o 14 u?
X(jw) = "kz X (gkm)d(w — km), (iii) We know that
Sy
. . Z3(t) = zo(t) + zo(t + 1),
where X (jw) is the Fourier transform of one period of z(t). That is, Using the linearity and time shifting properties of the Fourier transform we have
e 1 1 ~ e=2(14jw) e‘:[l s ¢-1(1+le] ) i e g
b e e Ty e Xa(jw) = Xoljuw) + &% Xo(—ji) = LEE —e71(1 + %)
1+ jw
[ e [t <3 (iv) We know that
422, (a) 2(t) = { 0, otherwise z4(t) = tzo(t).
(b} z(t) = Le 7735t — 4) + LeI™34(t 4 4). Using the differentiation in frequency property

(¢) The Fourier transform synthesis eq. (4.8) may be written as

y d
Xi(w) = j=—Xo(jw).
z(t) = % /_wlz'&'(jw)!e"'x Gu) oty o

Therefore,
—~fe—le=dw _ i g
Ko = L s
(1) = L [sint=3)  cos(t—3)~1 : ; N

z(t) = = aat —W 4.24. (a) (i) .For Re{X(jw)} to be 0, the signal z(¢) must be real and odd, Therefore, signals

in figures (a) and (c) have this property.
(d) z(t) = % sint + 2 cos(2nt) (ii) .For Im{X(jw)} to be 0, the signal z(t) must be real and even. Therefore, signals

in figures (e) and (f) have this property,
(iii) For there to exist a real & such that &% X (jw) is real, we require that z(t + a) be

From the given figure we have

(e} Using the Fourier transform synthesis equation (4.8),

3t sint—sin2t : .
2l = T 4 SRR 2 renl and even sigual. Therefore, signals in figures (a), (b), (c), and (1) kave the
i 48 property.
23, For the given signal zo(¢), we use the Fourier transform analysis eq. (4.8) to evaluate the (iv) For this condition to be true 2(0) = 0. Therefore, signals in figures (a), (b}, (c),
o et anadud i PR (d), and () have this property. 4

corresponding Fourier transform . i
{v) For this condition to be true the derivative of z(t) has to be zeroat t = 0. Therefore,

- : P
Xo(juw) = I—_Eﬁ signals in figures (b), (¢, (), and (f) have this property.
1+ jw (vi) For this to be true, the signal z(t) has to be periodic. Only the signal in figure (a)
‘ has this property,
(i) We know that (b) For a signal to satisfy only properties (i), (iv), and (v), it must be real and odd, and

Z1(t) = zo(t) + zo(—t).
Using the linearity and time reversal properties of the Fourier transform we have z(t) =0, z'(0)=0.
: ) ) 2-2e"'cosw — 2we~! sin The signal shown below i
Xilgi) = Xolji) + Xo(-g0) = 22 e B siny S o A
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=
Figure 54.24

4.25. (a) Note that p(¢) = z(t +1) is a real and even signal. Therefore, Y (jw) is also real and
even. This implies that <V (jw) = 0. Also, since Y(jw) = e“X (jw), we know that
AX{jw) = —w.
(b) We have

X(j0) = ]::z(t)dt =l

(c) We have =
/ X (jw)dw = 2rz(0) = 4.

(d) Let Y (jw) = 2’:“"e”“’. The corresponding signal y(t) is

G L Saeianl
=10  otherwise

Then the given integral is

[ % X (jw)¥ (jw)dw = 20{2(t) » y(O)}ez0 = Tm.

(e) We have
o oo
/ X (eo) P = 2::] |z(t) 2t = 267.
—ao —oc
(F) The inverse Fourier transform of Re{X (jw)} is the Ev{z(t)} which is [z(t) + =(-)}/2.
This is as shown in the figure below. Evixitl}

-3 -2 -1 ol M e |
Figure 54.25

4.26. (a) (i) We have

¥ (juw)

L1}

k 3 1 1
Fooib [(2+iw]’] [4+iw]
am _ 0@ 42
1170 2450 B+iR
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(b) The Fourier series coefficients oy are

o = &f Eyei¥H
<T>

= %{flze'f‘?"'dt = f:e-ﬁ"'“dt}
sin(kx/2) {1 = emiknyemIni2

kx
Comparing the answers to parts (a) and (b), it is clear that

1 2xk
a = fX(J-';—r),

where T = 2.
4.28. (a) From Table 4.2 we know that
o0 o0
pt) = 3 anel™nt L plw) =27 5 awblw - kwo).
n==00 k= —00
From this,
1 e
Y(jw) = - {X(Gw) + Hw)) = 3 X (3le — kuo)).
k=-00
(b) The spectra are sketched in Figure 54.28.

4.29. (i) We have . Si =y i
Xojw) = | X (ju)|ef XUII% = X (ju)e™?*"

From the time shifting property we know that
z,(t) = z(t — @).

(ii) We have i
Xy(je) = | X (ju)le X0 = X (u)e™.

From the time shifting property we know that

zo(t) = z(t + ).

(iii) We have e
Xeljw) = X (jw)le X0 = X*(ju).

From the conjugation and time reversal propertics we know that
x(t) = =" (-1}

Since xz(t) is real, z(t) = z(~t).
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Taking the inverse Fourier transform we obtain
y(t) = i—c'“u(t) - %c'uu(i) + %tc‘mu(t)‘

(ii) We have

Y(w) = X(@w)H(w) = [ﬁ:}ﬁ] [(471:2?)71

(i/4)+ (1/4) _(1/4}+ (1/4)
2w (24w d+jw (44 jw)?

Taking the inverse Fourier transform we obtain
1 1, 1 —a 1, -a
o - u i)+ -te f
y(t) 48 u(t) + 4te {t) 4: u(t) 41.0 u(t)

(iii) We have

Y(jw) X (je) H(jw)

1 1
1+jw) [1-jw
1/2
2, 2
14w 1 -jw

i

Taking the inverse Fourier transform, we obtain
we) = zelt
(b) By direct convoluticn of z(t) with A(z) we obtain
0, t<1
Yty =14 1—e @1, 1<t<s
e(t=5) —e=(=1) >
Taking the Fourier transform of y(t),
2e~ 7% sin(2w)

YOw) = i)
e™12 | ¢~9“2sin(2w)
o

= X(jw)H(w}

4.27. (a) The Fourier transform X (jw) is

== 2 3
X (jw) f ::{t)e"‘“dt:/‘e"”'d:—fze"’“"dt
—oo

255“(‘-)/2) {1 — g3} 32
w
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"'"\/'\/” Lo e 3 2 -te Vv =23 @
Yz

. s g X ded
. o
&in 8w @i, g 2
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; Tl
Gix) W I
-\ ‘e n -

-3 -z -1 © 1 2 3 & oF

Figure se28
(iv) We have
Xaljw) = |X (Gu)le T IXGIHE = X (ju)el™.
From the conjugation, time reversal, and time shifting properties, we know that
z4(t) = z°(~t — d).
Since z{t) is real, z4(t) = z(—t - d).

4.30. (a) We know that
w(t) = cost L Wiiw) = nfflw - 1) + 8w + 1)
and
o(t) = z(t) cost &5 Gliw) = 5= {X () « W)

‘Therefore,
GUw) = JX(lw = 1) + 3X (il + ).
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Since G(jw) is as shown in Figure $4.30, it is clear from the above equation that X (jw)
is as shown in the Figure 54.30.

Tc\q‘ﬂ) ARG
g i .
-1 (=] K W - o | w

Figure 54.30

Therefore,
2sint

z(t) = o
(b) X;(jw) is as shown in Figure 54.30.
4.31. (a) We have
2(t) = cost &5 X(je) = nldlw +1) + 8w — 1)].
(1) We have ;
By () = u(t) €5 Hi(jw) = ot 76(w).

Therefore, :r
Y (jw) = X (jw)H(jw) = }[J(u +1) = é(w — 1}]:

Taking the inverse Fourier transform, we obtain
y(t) = sin(t).

(ii) We have 5
ha(t) = ~25(2) + e~ u(t) € Haliw) = =2+ 350

Therefore, =
Y (jw) = X (jw) H(jw) = ;[é(w-t- 1) = éw = 1]

Taking the inverse Fourier transform, we obtain

y(t) = sin(t).
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(e} We bave )
.y e lwl < 4
Xsljw) = { 0, otherwise

Yaliw) = Xal(jw)H(w) = Xs(jwe ™.
This implies that .
nlt) =zs(t-1) = En-;r(-;-"—)
We may have obtained the same result by noting that X3(4w) lies entirely in the
passband of H(jw).
(d) X4(jw) is as shown in Figure 54.32.

A B4
!
-4 o 4 w
> A
T
Tt ol 4 o
Figure 54.32

Therefore,
Yaljew) = Xaljw)H (jw) = Xa(jw)e ™.
This implies that 5
3 _ (sin(2(t — 1))
ya(t) = 2yt = 1) = ( =y .
We may have obtained the same result by noting that X4(jw) lies entirely in the
passband of H(jw).
4.33. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain
Y (jw) _ 2
X(w) —w?+2jw+8

H(jw) =

Using partial fraction expansion, we obtain

1

. 1
H{w) = 2~ o4
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(iii) We have
2
— et S LS,
ha(t) = 2te~tu(t) &5 Haljw) = Tk
Therefore, A
Y(jw) = X (jw)Hi(jw} = j‘-lﬁ(w +1) = dw -1}
Taking the inverse Fourier transform, we obtain

y(t) = sin(2).
(b) An LTI system with impulse response
1
Ra(t) = 3 1ha(6) + ha(t)
\ will have the same response to z(t) = cos(t). We can find other such impulse responses
by suitably scaling and linearly combining hi1(t}, k2 (t), and ha(t}.
4.32. Note that h(t) = hy(¢ — 1), where
sin 4t
hy(t) = -
The Fourier transform Hy(jw) of hi(t) is as shown in Figure 54.32.

From the above figure it is clear that hy(2) is the impulse response of an ideal lowpass
filter whose passband is in the range |w| < 4. Therefore, A(t) is the impulse response of an
ideal lowpass filter shifted by one to the right. Using the shift property,

: ~3w 4
H(}w)-—*{; . t:l-: 4

(a) We have
Xy (jw) = eI i 6{w — 6) + eI Té(w + 6).

It is clear that
Yi(jw) = X1(jw)H(jw) = 0 = y;(¢) = 0.

This result is equivalent to saying that X;(jw) is zero in the passband of H(jw).
(b) We have

% 7 =1
Xa(je) = % [.Z‘a(i)*{.s(w — 3k) — 8w + ax))] :

Therefore,

Ya(jw) = Xa(jw)H (juw) = ;—r [(1/2) (8w — 3) — 6w + 3)}e ],
This implies that 5
wlt) = %sin{?ot 20
‘We may have obtained the same result by noting that only the sinusoid with frequency
3 in Xz(jw) lies in the passband of H(jw).
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Taking the inverse Fourier transform,
h(t) = e~ 2u(t) — e *u(t).

(b) For the given signal z(t), we have

1
Xjw) = —m—-
Ue) = G op
Therefore,
2 1
(—w? + 2jw + 8) (2 +Jw)t’
Using partial fraction expansion, we obtain

Y(jw) = X(jw)H (jw) =

Taking the inverse Fourier transform,
y(t) = %e—mu(t] - %te'z‘u(t] + t2e " Hu(t) - %ef"u(n.

(c) Taking the Fourier transform of both sides of the given differential equation, we obtain

Y(jw) _ 2(-w?-1)
X(Gw) —o?+vV2Ziw+1

Using partial fraction expansion, we obtain
-2 - 23 i —2 + 2V
ju — —V24iv jw— —2-j\2

Taking the inverse Fourier transform,

H{jw) =

Hijw) =2+

R(t) = 26(8) — V(1 + 27)e V() — VE(L - 2j)e (- Ey(g).
4.34. (a) We have
Y(jw = jw+d
X(Gw) 6-w?+5jw
Cross-multiplying and taking the inverse Fourier transform, we obtain

dyt) | dy(t)

_ dx(t)
e it b 6y(t) = =t 4z(t).
(b) We have
i e B
Ul jw 3+ jw

Taking the inverse Fourier transform we obtain,

h(t) = 2e7%u(t) — e~ >u(t).
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{c)} We have 4.37. (a) Note that

1 1 £ 4

B o ) T ik ol e i z(t) = ny(t) » 7 (),

)= 550 ~ @ S

Therefore, _J 1 jwl < §
=it} = { 0, otherwise

V() = X Gw)H(Gw) = m}l(zTIuT)

Finding the partial fraction expansion of ¥ (jw) and taking the inverse Fourier trans-
sin(w/2)

form, EavIRE
{t) = %e'ﬂ‘u(l} - %c_“u(t). Kby =2 Wi

Also, the Fourier transform X, (jw) of 21(t) is

Using the convolution property we have
4.35. (a) From the given information, L o

. 2
X{jw) = X1 (w) X1 (o) = [2%(2—’] :

: VaTr ot
e
Va? +ut
Also (b) The signal Z(¢) is as shown in Figure 54.37
’ i) = —tant Y tan=t ¥ = —2tan~! ¥ &
<H(jw) = —tan™' — —tan” — 2tan” —. Al

Also, . i 9
H(w) = -1+ - f“jw = A(t) = —8(t) + 20e”"u(?). /\ g
3 4 & £

(b) If @ = 1, we have S T

[HGwll =1, <H(jw)=—2tan"'w. )
Therefore, ; B Wy W
n
y(t):cn&(ﬁ— %)kcos{t— %}+ous(\/§t— T)' /\ /\L
¢ % -3-2-1 b 2 3 4 ré 7
4.36. (a) The frequency response is Figure 54.37
H(jw) = _}_f_(ﬂ"_), . ___M () One possible choice of g(t) is as shown in Figure 54.37.
X(jw) (G +5w)(2+5w) (d) Note that
(b) Finding the partial fraction expansion of answer in part (a) and taking its uverse : . 2 ) -,-,
Fourier transform, we obtain X(jw) = X[jw)‘i E: 8w — kE]) = G{jw)i 2 8w~ ki)),
k==-00 k=—o0
_ 3 e, m
hit) =3 [ + e ult). This may also be written as
(¢) We have o o : A - . : £
Y(iw) _ _(9+35w) Rijw) =5 3 Xrk/2Db(i(w = k5)) = 3 3 CUmk/2(ikw —k3)
X(jw) ~ 8+ 6jw —w?’ k=—co b=y
Cross-multiplying and taking the inverse Fourier transform, we obtain Clearly, this is  possible only if
dyt) | dult) _ qdz(t) Glink[2) = X(jxk/2).
e +6 &t + 8y(t) = 3H--dt + 9z(t).
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4.38. (a) Applying a frequency shift to the analysis equation, we have For n = m + 1 we may use the differentiation in frequency property to write,
. _ 00 AL 00 fuot it gy juaty _t FT 3 ) 1 _de{jw) i
X (jlw - wo)) j_mz(t)c dt [_mz(t)e’ e FT{z(t)e’} Tm41(t) = —zm(t) £ Kmurw) = —i— 7= = [giome

This shows that if we assume that the given statement is true for n = m, then it is true for
1 = m + 1. Since we also shown that the given statement is true for n = 2, we may argue
that it is true for n =2+ 1 =3, n = 3+ 1 = 4, and so on. Therefore, the given statement
Also, is true for any n.

4.41. {a) We have

(b) We have
w(t) = et iy W(jw) = 276(w — wo).

=) 5 - IX(w) » W)

= X(w) » (- wo) o) = o[ L IXGw) Vil
= X(jlw-wo)) =
= =] = X (G6)Y (j(w — 6))d6| & dw
4.39. (a) From the Fourier transform analysis equation, we have 2"'j::2'" [j-oo GAXG=e) }
w - . Y 0 [ L 17 viitw—ane
G(jw) = [ glt)e™de = f X(jt)e i dt. (Si39- 1 ZW«CX(’G) [ij-my(’ o du](w
-0 -o0

_ ) ) (b} Using the frequency shift property of the Fourier transform we have
Also from the Fourier transform synthesis equation, we have

B et g
- L7 v(iw - 0))etdu = 0y,
2(t) = 5 j X(jw)e™ du. mrf_m i v

(¢) Combining the results of parts (a) and (b),

Switching the variables t and w, we have 1 [ _
o) = 3= [ Xuo (v
—o0

#w) = o f * Xttt

,,{:)51? [ = X (j8)e7%d

We may aiso write this equation as
i = ylt)z(t).
o0 .
2rz(—w) = f_mX(jt)e"“"d!- 4.42. z(t) is a periodic signal with Fourier series coefficients ax. The fundamental frequency of
z(t) is wy = 100 rad/sec. From Section 4.2 we know that the Fourier transform X (jw) of
Substituting this equation in eq. (S4.39-1), we obtain x(t) is
00
Gjw) = 2rz(~w). X(jw) = 3 2mard(w ~ 100k).
k=—oco
(b) If in part (a) we bave z(t) = §{t + B), then we would have g(t) = X(jt) = ¢’ and () Since

G(jw) = 2rz{—w) = 278(—w + B) = 2xé(w — B). o i
4 e n L it} = €SP A o S flo s 1(t) = 2(t) cosfunt) & ¥i(5w) = F{X(G(w = wo)) + X + wo))}

When n = 2, zo(t) = te~%u(t) and Xo(jw) = 1/(a + W)t we have
o0
Now, let us assume that the given statement is true when n = m, that is, Yijw) = = Z (ard(w — 100k — wp) + axd{w — 100k + wo)]
— ol . : E=—oo
zm(t) = (?:'l—]!t! u(t) +— Xpl(jw) = W)j;; = ﬂ'*;m lo_kd(w + 100k — wy) + axd(w — 100k + wp)] (S4.42-1)
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4.43.

1.44.

4.46.

1f wo = 500, then the term in the above summation with k = 5 becomes
ra_sé(w) + masb(w).

Since z(t) is real, ag = a*,. Therefore, the above expression becomes 2nRe{as}é(w),
which is an impulse at w = 0. Note that the inverse Fourier transform of 27 Re{as }8(w)
is g1(t) = Re{as). Therefore, we now need to find a H(jw) such that

i (jw)H(jw) = G1(jw) = 2rRe{as}i(w).

We may easily obtain such a H(jw) by noting that the other terms (other than that

for k = 5) in the summation of eq. (54.42-1) result in impulses at w = 100m, m #0.

Therefore, we my choose any H(jw) which is zero for w = 100m, wherem = +1,%£2,---.
Similarly since

va() = =(t) sin(wot) <5 Yalje) = zij{x(j(w — ) = X (G +woll},

we have
o0
YaGjw) = 33 laxb{w — 100k —wo) - axd(w — 100k + wp)]
k=—00
=% 5" la-kdlw + 100k - wo) — agd(w — 100k + wp)) (54.42-2)
k=—00

If wg = 500, then the term in the above summation with k£ = 5 becomes
ks ks
Za_sd(w) — —asé(w).
5 ( 3 (w)

Since z(t) is real, ag = a2 ,. Therefore, the above expression becomes 2nImias}d(w),
which is an impulse at w = 0. Note that the inverse Fourier transform of 2rZm{as }é{w)
is ga(t) = Im{es}. Therefore, we now need to find a H(jw) such that

Ya(jw)H (jw) = Ga(jw) = 2nRe{as}o(w).

We may easily obtain such a H{jw) by noting that the other terms (other than that
for k = 5) in the summation of eq. (54.42-2) result in impulses al w = 100m, m # 0.
Therefore, we my choose any H (jw) which is zero forw = 100m, wherem = +1,£2,--.

(b) An example of a valid H (jw) would be the frequency response of an ideal lowpass filter
with passband gain of unity and cutoff frequency of 50 rad/sec. In this case,

Rit) = @.

Since
1 + cos(2t)

() = cos’t = ——
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Therefore, an LTI system with impulse response h(t) = §5(t) may be used to obtain g(t)
from z(t).
(a) Taking the Fourier transform of both sides of the given differential equation, we have
; Y (ju)10 + jw] = X (ju)[Z(jw) - 1)
Since, Z{jw) = ﬁ_‘—u + 3, we obtain from the above equation
Y (jw) 3 + 2jw

HGw) = Fi0) = T+ 3000 + 30)

(b) Finding the partial fraction expansion of H(jw) and then taking its inverse Fourier
transform we obtain i 1
h(t) = ge"u(t) + ?e"mu(ﬂ

We have
y(t) =z(@) s h(t) = Y{w) = XGw)H(w)

From Parseval's relation the total energy in y(t) is

E

[ wepae= g [ rGoa
00 % oo
| Ba VT TN
= o[ XGPEG P
T J =00
1 [rwetaf? . 1 ue+A.'2X 2
= — X (7 dw+-—*‘f dw
=/ G g [ G
~ Lisiioviza o Ly wel?
~ X (=jen)l8+ oo |X Guoll?A
For real z(t), |X{—jwo}|? = | X (juo)|?. Therefore,
1 :
= ;IX(JIJG)IZA-

Let gy {t) be the response of H)(jw) to z(t)coswct. Let g2(t) be the response of Hu(jw) to
z(¢} sinwct. Then, with reference to Figure 4.30,

y(t) = z(t)e?* = z(t) cos wet + jz(t) sinwel,

and
w(t) = qi(t) + Fg2(t)-
Also,
F(t) = e (t) = [coswet — j sinwet][g1 () + jga(1)]-
Therefore,

Re{f(£)} = qi(t) coswet + ga(t) sinuwet.
This is exactly what Figure P4.46 implements.
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ol
Yi(jw) = wé(w) + ;J(u —2)+ %J(u +2).

Therefore,
a(§) = =(0n(8) = 2(0) cos?(8) &L Valiw) = - (X () # ¥iGe)
This gives
Yatiu) = SX () + X(ilw = 2)) + X +2).
X{jw) and Yz(jw) are as shown in Figure 54.43.

XGw)
A
—1 o \ 7w
T.Gw
Al
Al MMy
R e T i 5 e
Gy
Al
- o TR,
Figure 54.43
Now,
_ sint o G, wj<1
wlt) = nt &5 Yaio) = { 0, otherwise
Also,

9(t) = pa(t) * va(t) 5 Gliw) = Yaljw)Yaljw).
From Figure $4.43 it is clear that

Gliw) = %X(jw}.
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4.47. (a) We have
ae) = M +2M—e)_

Since h(t) is causal, the non-zero portions of h(t) and h(—t) overlap only at ¢t = 0.

Therefore,
0, t<0
h(t) =4 he(th t=0 .

2h,(t), t>0

(84.47—1)

Also, from Table 4.1 we have
he(t) &5 Re{H (jw)}.

Given Re{H(jw), we can obtain h.(t). From k(t), we can recover h(t) (and conse-
quently H(jw)) by using eq. (S4.47-1). Therefore, H{jw) is completely specified by
Re{H(jw).
(b) If
Re{H(jw)} = cost = %e’“ - %e”—“"
then,
1
he(t) = 56(: +1)+ %J(t -1).
Therefore from eq. (54.47-1),
h(t) = 8(t — 1).
(c) We have
ho(t) =

Since h(2) is causal, the non-zero portions of h(t) and h(—1) overlap only at t = 0 and
ho(t) will be zero at ¢ = 0. Therefore,

_ h(t) +h(=¢)
R

0, t<0
h(t) = { unknown, t=0 . (S4.47-2)

2k, (1), >0
Also, from Table 4.1 we have
Bo(t) &5 Tm{H (jw)}.
Given Zm{H(jw), we can obtain ho(t). From ho(t), we can recover h(t) except for
t = 0 by using eq. (54.47-1}. If there are no singularities in h(¢) at t =0, then H(jw)

can be recovered from h(t) even if h{0) is unknown. Therefore H(jw) is completely
specified by Zm{H(jw) in this case.
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4.48. (a) Using the multiplication property we have

hit) = higu(t) £ HGw) = 5= {H(ju) . Liw i wﬁ[w)] } _

The right-hand side may be written as
i 1 i 1
iw) = —H(j it | f =l
H(jw) 2H(Ju] + 77 [ (jw) * “1

That is, . Hein)
N T e Cu
H(Jw}v’rjf_mu_ndn.

Breaking up H(jw) into real and imaginary parts,

Hpijw) +3HiGw) = 25 | o =l

Comparing real and imaginary parts on both sides, we obtain

lj“’ HGW 4 and

Haljul=f T4 Hijw) = -2

(b) From eq. (P4.48-3), we may write

) =ze s

Also, from Table 4.2 §
ult) €5 — + nb{w).
Jjw

Therefore, .
2u(t) - 15 2—.
Juw
Using the duality property, we have
—.2— &L af2u(-w) — 1]
It
or e
= jf2u(~w) - 1].
Therefore, from eq.($4.48-1), we have
Y (jw) = X (jwhH (jw)

where
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(b) We may write o
baylt) = j #(t + T)y(r)ar = z(8) » y(-0).

Therefore,
@y (jw) = X (fw)Y (—jw).

Since y(t) is real, we may write this as
Buylo) = XY ().
{¢) Using the results of part (b) with y(t) = =(t),

B, (juw) = X (jw)X* () = X (G)” 2 0.

(d) From part (b) we have

&,y (jw) = XY™ {(jw)
X ()| H () X (Gw)]*
@2 (jw)H (jw)

1]

1

Also,
Byy(iw) = Y(w¥"(w)

1 /“" Hplgn) +3Hiln) , _ 1 Hiln) = jHatm) o
7= = 3

w -1

—( “dn

1[“ Halim)

os W T

¥ (jw) = X(ju)FT{1/(xt)}

(S4.48-1)

-4 o
H(jw) = j[2u(—w) —1] :{ }."' :i i

= [H{jw)X Gu)l[H Gw) X ()]

= P (J'-"”H(J“)lz

(e) From the given information, we have

e B
S
and
Hiw) = a+jw
A : 2 2-2cosw 2sinw
. (jw) = | X Gw)|* = Foe I .
. i S 2-2cosw _ 2sinw
Oay(jw) = O, (jw) H* (jw) = = e
and

2 —2cosw 2sinw
wt w?

By jw) = DG H(juw)l* = [
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1

el

1 1 ]
t= a-jw|’

1 1
tE|E T E

(c) Let y(t) be the Hilbert transform of z(t) = cos(3t). Then,

Y(w) = X(jw)H(jw) = x[dw — 3) + 6(w + 3)]H(jw) = —jwé(w - 3) + jmb(w + 3)

Therefore,
y(t) = sin(3t).

4.49. (a) (i) Since H(jw) is real and even, h(t) i also real and even.
(ii)

h()] = l%j: H(ju)e-“‘"dwl < %£w|ﬂ(jw]|e"‘“d¢u,
Since H(jw) is real and positive,
WOl s & [ Ao = w0)

Therefore,
max[|h(t)]] = h{0].

(b) The bandwidth of this system is 2W.

(c) We have
B, H(j0) = Area under H{jw).
Therefore,
By, = HHO),/:MH(JU’) :
(d) We have

,, = S f-m"“"“ HGO) 2

= g
MO L f: H{ju)de j: " HGuds B.

{e) Therefore,
Byt = B, 2% 2m
wer = wa o >
4.50. (a) We know from problems 1.45 and 2.67 that
Prylt) = yz(~t)-

Therefore,

Py (jw) = Byz(—iw)-
Since ¢y (t) is real,

Py () = P, ().
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{f) We require that
2
L w4100
G = S
The possible causal and stable choices for H{jw) are
c i 10w : 10 - juw
H, = — = Y
o= §E 2 md M) = 5o

The corresponding impulse responses are
ha(t) = 8(t) + 5e~>u(t)  and  ha(t) = —8(2) + 15¢*u(t).
Only the syster with impulse response hy(t) has a causal and stable inverse.
4.51. (a) H(jw) = 1/G(jw).
(b) (i) If we denote the output by y(t), then we have

Y(i0) = 5.

Since H(j0) = 0, it is impossible for us to have Y(50) = X (j0)H{(50). Therefore,
we cannot find an z(t) which produces an output which looks like Figure P4.50.

(ii) This system is not invertible because 1/H(jw) is not defined for all w.

(€) We have
S ST
1- e-—(l+Ju)T'

H(jw) = Ze—kre—JukT -

k=0

We now need to find a G{jw) such that

H(jw)G(jw) = 1.
Thus G(jw) is the inverse system of H(jw), and is given by
Gjw)=1- e~t1+IT

(d) Since H{jw) = 2 + jw,
Y(w) 1
XGw) 243w
Cross-multiplying and taking the inverse Fourier transform, we obtain

d!:“ﬁ + 2y(t) = =(t).

Gjw) =

(e) We have
—w? +3jw + 2

Bligyee it
() = = eim+ 8
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Therefore, the frequency response of the inverse s
: 1 —w? +6jw+9
6l = Fmy = ZF+ 3w+ 2
The differential equation describing the inverse system is
d?y(t) | ,dy(t) da(t) | dz(t)
bl AL PR, ot A = 6 + 9z(t).
S g tUS e E
Using partial fraction expansion followed by application of the inverse Fourier trans-
form, we find the impulse responses to be
A(t) = 8(t) — 3e~Stuft) + 2te™ult)

and
olt) = 8(t) — e~ u(t) + de ™ ult).

1.52. (a) Since the step response is s(t) = (1 — e~*/?)u(t), the impulse response has to be
h(t) = %e"ﬂu{t].

The frequency response of the system is
1/2
% + jw

H{jw) =

We now desire to build an inverse for the above system. Therefore, the frequency
response of the inverse system has to be

Gjw) = F(;—wi=2[%+ju].
Taking the inverse Fourier transform we obtain
g(t) = 8(t) + 2wy {t).
(b) When sin(wt) passes through the inverse system, the output will be
y(t) = sin{wt) + 2w cos(wt).

We see that the output is directly proportional to w. Therefore, as w increases, the
contribution to the output due to the noise also increases.

(c) In this case we require that |H (jw)| < } when w = 6. Since
1
m
|H(jw)* = 2wl

we require that

1 1
< —=.
a?+36 ~ 16
Therefore, a < 7‘1‘5
165
Therefore,
X ) L + !
wy, = ry - . y T T TR TR N
e 7 Jon + 3@ + jan — jwa) | (2 + dwa(Z 4 jun + ju)
1 1

B Jo) @t Jon —dwn) | (@ ) (2 — 7n — dwn)
2 1

B Tor G e + ) | Gea) (@ -~ Jen - 32)

(d) z(t, t2) = e+ )u(ty +243)
(e) (i) e 9T emiaTs X (jwy, jwe)
(i) Py XG55
(iii) X (Gun, juwn) H (jwy, jor)

ﬂ

POWEREN.IR
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4.53. (a) From the given definition we obtain

o
j / z(ty, ta)e Hrtitentaldy, dey
—00J —c0

L .
’ [j I(tl.tﬂe"’”mdh]c-J""["'dt-z
- —oo

i .
[ X (wy, tz)e™ 24ty
—o0

(]

X (Jon, wz)

]

(b) From the result of part (a) we may write

1

00 00
z(t), t2) = FT"',_,,‘{F’T;‘{XUWJWQ)}} = m[ j X(jw;.;lu)g)f_-‘(“’"‘*“‘*"}ddldw-z
—00d —00

e~ +jwr} g23-jwz)

(© () X(wn,wa) = 7330 =)
os s e (14391))[] =g~ {3 =iwz) e ()] — e (14H2w2)
(ii) X(le,q)=L[—.—§¥—.—T——l' T3 3o l,_;“,, ket +L—(—f%—-)—‘1 L 1-;:: lH_:,“z =
5 i gem(145w1) _g=14iug) (1 — e~ Urrwn )1 — = 4iw2)]
(i) X (jun, w2) = [fETmy (e o
1—g=(1+1v1) + 1—e=(1+iwz)
THgen)(i—dwa) © (T=jwi}{1+jwa)

B - A—
Juz = F{w1+wa)
+:\i“'x(}..ri(-u-u:3)+c—1w:(¢—i(~1 --‘1)_1)]
=3{wr—wa)

(v) As shown in the Figure $4.53, this signal has six different regions in the {t1,t)

plane. ty
Sl

®|0

Figure 54.53

The signal 2(2,,tz) is given by

e,  inregionl

e~ 22, in region 2
2t ; A
oo fmetd, in region 3
=t t) = 2t inregion 4
e, in region 5
e~#2 inregion 6
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Chapter 5 Answers

5.1.  (a) Let zfn] = (1/2)""u{n_ — 1). Using the Fourier transform analysis equation (5.9), the
Fourier transform X (e’) of this signal is

i z[n]e "

n=—co
oo

= /pnleRn

n=1

oo
= Z(Ug)ﬂe—w(nﬂ)
=0

X(e™)

= g7

gor_oo b
(1 - (1/2)e"v)

(b) Let zjn] = [1/2)""‘”. Using the Fourier transform analysis equation (5.9), the Fourier
transform X (e’*) of this signal is

o0

X(ev) = E z[n)e~7em
0 o0
A 2 (1/2)-(n-l)e—jom Ee Z(lfz)n—lc-p.m
n=- n=1

The second summation in the right-hand side of the above equation is exactly the same
as the result of part (a). Now,

0 o0
—— ey gAY s bt
"g_:m(m) o :L;u“/z) +lggum (2)1-<1/2)ew‘

Therefore,

jw i 1 . 1 0.75e 79
x(e) = (L . i
=) (2) T—ame T wne ™ - 135 - cosw’

5.2. (a) Let z{n] = §[n — 1] + 8[n + 1]. Using the Fourier transform analysis equation (5.9), the
Fourier transform X (e?) of this signal is

o0

z z[n]e "

n=-o00

e 4 & = 2co8w

X ()

n
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5.7,

(b) Let zn] = dfn + 2} — é[n — 2. Using the Fourier transform analysis equation (5.9), the
Fourier transform X (e?*) of this signal is

X&)

1
i
pot,
B

5

I

o
]
£

1

®
&
[3

I
&
2,
k=S

We note from Section 5.2 that a periodic signal z{n] with Fourier series representation
a:[n] = Z akejk{zr/N)n
k=<N>
has a Fourier transform

X(ev) = i 2mad (w— %) .

k==00

(a) Consider the signal =[n] = sin(§n + {). We note that the fundamental period of the
signal z;{n) is N = 6. The signal may be written as
nfn) = (1/20) 3D - (1/27)e D = (1/2) T ER = (1/25)e eI EN,
From this, we obtain the non-zero Fourier series coefficients ax of z;[n] in the range
—2<k<3as
a = (1/20e'%, ey ==(1/2)e7 T
Therefore, in the range —n < w < =, we obtain
n
(/7)™ 48(w — 27/6) — e/ 48(w + 27/6)}

X(e) = 21016[@’“%)4’2#5_[5(&)4‘

(b) Consider the signal z3[n] = 2 + cos(§n + §). We note that the fundamental period of
the signal z;[n] is N = 12. The signal may be written as

nifn] = 2+ (1/2)FFE) 4 (1/2)e7 @D =2+ (1/2)e 5 Hm 4 (1/2)e T F eI H,

From this, we obtain the non-zero Fourier series coefficients ax of z,[r] in the range
-5<k<6as 2
e=2 o =(1/2)F, a_,=(1/2)e’".

Therefore, in the range — < w < m, we obtain
X(&¥) = 2magd(w) + 2marb(w - ::—;} + 2ma_16(w + %]
And(w) + w{e™ 88w — n/6) + eI /8b(w + n/6)}

i

169

Using the time shifting property (Sec. 5.3.3) on this, we have
zl-n+ 1} &5 e X(e™)  and  z[-n-1] L o x (o)
Therefore,
syl = zl-n+ 1+ af-n—1] €0 e FmX(e) + e X(e7)
L, ax(e ) cosw
(b) Using the time reversal property (Sec. 5.3.6), we have
z[-n} &5 X(e7)
Using the conjugation property on this, we have
z*[-n] £5 X (&)
Therefore, :
z9[n) = (1/2)(z"[-n] + z[r]} L (/X)) + X))
£ Re{X (™))

(c) Using the differentiation in frequency property (Sec. 5.3.8), we have
. dX{eV)
naln] = j——

Using the same property a second time,

n?z(n} & %{%’i)
Therefore,
23] = nlafn] - nzin] + 1 €5 -ﬂ% s zj%d“) +X(e™)

(a) Consider the signal yy[r] with Fourier transform

10

Yi(e™) = sin(kw).

=1
We see that Y;{e/) is real and odd. From Table 5.1, we know that the Fourier transform
of a real and odd signal is purely imaginary and odd. Therefore, we may say that the
Fourier transform of a purely imaginary and odd signal is real and odd. Using this
observation, we conclude that y;[n) is purely imaginary and odd.
Note now that ) . _

X (&) = e "Y1 ().
Therefore, z;|n] = g (n — 1]. Therefore, z1[n] is also purely imaginary. But zy[n] is
neither even nor odd.
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5.4.

5.5.

5.6.

5.8.

(a) Using the Fourier transform synthesis equation (5.8),

zfn]

(1/27) f : Xy (&) dw

(l/21t)f' [2rd(w) + 7w — 7/2) + 7é{w + x/2)]e’ ™ dur

&0 4 (1/2)eI /D 4 (1/2)e IR/
L + cos(rn/2)

I

]

(b) Using the Fourier transform synthesis equation (5.8),
o] = (1/27) f Xa(6%)em dus

= —(!/2r)ﬁ2je’“"dw+{1/21r)f'2je"“’“dw
- 0

Conta 1—einr  onr -]

= o [ e ]

= —(4/(nm))sin? (n7/2)

From the given information,
o) = (/%) j " X (e
= (1/27) f - | X ()| X N edom gy

= (1/2m) [ '/;e‘?rwelwndw

sin($(n - 3/2))
w(n—3/2)

The signal z[n] is zero when §(n — 3/2) is a nonzero integer multiple of 7 or when
|n| = co. The value of §(n — 3/2) can never be such that it is a nonzero integer multiple
of 7. Therefore, z[n] = 0 only for n = too.

Throughout this problem, we assume that

z(n] £ Xy ().

(a) Using the time reversal property (Sec. 5.3.6), we have

z[—n] £5 X(e7*)
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(b) We note that X2(e™) is purely imaginary and odd. Therefore, 2,[n] has to be real
and odd.

(c) Consider a signal ys[n] whose magnitude of the Fourier transform is |Y3(e’“}| = A(w),
and whose phase of the Fourier transform is <{Y3(e’)} = —(3/2)w. Since [¥3{e¥)| =
|Ya(e™?)| and a{Y3(e™)} = —a{Ya(e~7*)}, we may conclude that the signal y3[n} is
real (See Table 5.1, Property 5.3.4).

Now, consider the signal z3[n] with Fourier transform Xj(e'V) = Yi(e?)el™ =
—Ya{jw). Using the result from the previous paragraph and the linearity property of the
Fourier transform, we may conclude that z3[n] has to real. Since the Fourier transform
X;(e’“:i) is neither purely imaginary nor purely real, the signal z3[n] is neither even
nor odd.

Consider the signal

L =
“’["]‘{u, fn] > 1

From Table 5.2, we know that
FT, i sin(3w/2)
Xq(eV) = —— 21
il & 4E") = [
Using the accumulation property (Table 5.1, Property §.3.5), we have

n 1 i ) oo
PN T e + nXi(€®) 3 blw - 2nk).
k=-00 k=—o0

Therefore, in the range -7 <w < 7,
n

5 mk) 5 L X (67 + 3mé{w).

1-e v

k=—o0
Also, in the range -mr <w < x,
15 2nb(w)
Therefore, in the range —n < w <,
n
1 !
i) =1+ 37 x[k) & ——= X1 (&) + 5rd(w).

— g
ey l—e

The signal z(n) has the desired Fourier transform. We may express z{n] mathematically as
n 1 n< -2
zln] =1+ Zzﬂklﬂ n+3, -1<n<1
k=00 4, n=2



5.9.

5.10.

5.13.

From Property 5.3.4 in Table 5.1, we know that for a real signal z[n].
0d{z(n]} &5 JTm{X ("))
From the given information,

FIm{X ()}

I

‘ jsinw — 7 sin 2w
(/e — e — £ )
Therefcre,
0d{zn]} = IFT(jIm{X(&“)}} = (1/2)(6[n + 1] = §ln — 1) - §fn + 2] + 8[n — 2))

We also know that
z[n] — z[-7]
2

Qd{zn)} =
and that x[n] =0 for n > 0. Therefore,
zin) = 20d{zln]} = éfn + 1]-én+2, forn< 0.

Now we only have to find z[0]. Using Parseval’s relation, we have
1% g duy? S 2
[T ixefas= 3 el
2 ) e

From the given information, we can write

=1
3= (a0t + Y leln)l? = (=l0)? +2

n=-o00

This gives z{0] = £1. But since we are given that z[0] > 0, we conclude that z[0] = L.

Therefore,
z[n} = d[n] + 8ln + 1) = §fn+2).

From Table 5.2, we know that

T\ A, 1
3 uln} T T

Using Property 5.3.8 in Table 5.1,

e FT o . d 1 _ ye
el =n () wiel &5 X =3 {175'_:5} = T-en
Therefore,

i zfn] = X (&%) =2

n=-00

,
e
h-

P sy
B3] -
o
0l
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The plot of 77 {24221} is shown in Figure $5.12. It is clear that if ¥ (%) = Xale™),
then (7/2) S w, < 7.

When two LTI systems are connected in parallel, the impulse response of the overall system
is the sum of the impulse responses of the individual systems. Therefore,

Aln] = ha[n) + haln]-
Using the linearity property (Table 5.1, Property 5.3.2),
H(&™) = Hi(e") + Ha(e™)

Given that hy[r] = (1/2)"uln], we obtain

; 1
ne™ =T~

Therefore,
) —12 457 1 -2
WY = -_— = —_——
Ho(e') = e io g etw 1 e i@ 1—je

Taking the inverse Fourier transform,

hafr] = =2 (%)nu[n].

From the given information, we have the Fourier transform G(e?*) of g[n] to be
G(e) = glo] + glL)e™™

Also, when the input to the system is z{n] = (1/4)"u|n}, the output is g[n]. Therefure

iy _ G&)
H(e™) = X
From Table 5.2, we obtain
X&) = m.

Therefore,
Loey 1 By e
H(e™) = {gl0] + gltle {1 - 37} = gl0) + {glt] — zalOl}e >~ gt]e™®
Clearly, k{n] is a three point sequence.

‘We have )
H(e™) = h[0] + h{l]e™™ + h{2)e ¥
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5.11. We know from the time expansion property (Table 5.1, Property 5.3.7) that

gln] = z@yln) €5 G(&) = X ().

Therefore, G(e?) is ubtained by compressing X(e') by a factor of 2. Since we know that
X () is periodic with a period of 2, we may conclude that G(e’*) has a period which is
(1/2)2x = . Therefore,

G(e”) = G(e“™™)

and o = 7.

5.12. Consider the signal

5.15.

sin fn
zy[n] = (—i) £
nrn
From Table 5.2, we obtain the Fourier transform of z)[n] to be

o EaE
X‘(*”)‘{o. Telol<n

The plot of X {e’) is as shown in the Figure 55.12. Now consider the signal z3[n] =
(z)[n])2. Using the multiplication property (Table 5.1, Property 5.5), we obtain the Fourler
tranform of z3[n] to be

Xa(e?) = (1/2m)[X1 (™) + Xy (&)

This is plotted in the Figure §5.12. ()
¢
1
i Y
A' 1 ‘4:.
xIe 3 Lol X o 3 e
' or § stn @)
T er{singety
1
- © e
Figure S5.12

From Figure 55.12 it is clear that Xa(e9*) is zero for |w| > /2. By using the convolution
property {Table 5.1, Property 5.4), we note that

Y(e) = xz(efw)fr{’“—“{‘"i)} 3

m
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|

H{™) = A{o] + A[1)e 7 + hf2)e~ B
= hjo] - A[1]e7 + h2)e”
We see that H(e?) = H(e~™) only if A1] =0.

We also have
H(@™?) = hio)+ A[1)e™™2 + hl2le ™"/
= h0] - hf2]
Since we are also given that H(e’™/?) = 1, we have
A0} — h[2] = 1. (85.14~1)
Now note that
aln] = hin}+ {(1/4)"u[n]}
= ih[k](ll‘i)""‘uln -k
k=0
Evaluating this equation at n = 2, we have
gl2] = 0 = 2] + (1] - H2)
Since h{1] = 0,
ll—sﬁEﬂl +hj2 =0, (85.14-2)

Solving equations (55.14-1) and (S5.14-2), we obtain
16
hl0] = —= - ——
o= and A
Therefore,
16 1

hin] = — - —=f§[n-2].

fn) = 356l - g70lm =2
Consider z[n] = sin{wen)/(7n). The Fourier transform X (e’) of z[n] is as shown in Figure

§5.15. We note that the given signal y[n] = z[n]z[n]- Therefore, the Fourier transform
Y (e} of y[n] is

Y(e) = — j X(e)X (& 0)do.

2x Jean>

Employing the approach used in Example 5.15, we can convert the above periodic convo-
lution into an aperiodic signal by defining
X(ef), —m<wlm
0, otherwise

X(ev) = {
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Then we may write

Y = o [ :X(ef')xteﬂ”"“)dé.

This is the aperiodic convolution of the rectangular pulse X (e} shown in Figure §5.15

with the periodic square wave X (e?). The result of this convolution is as shown in the

Figure $5.15. e
o 3

20 A © & T an w
S
-l gt <yl
w T{e)
—2u "% ) L™ w
Figure §5.15

From the figure, it is clear that we require —1+4(2w/7) to be 1/2. Therefore, w, = 37/4.

5.16. We may write

. 1 1 3 wk
X(e) = 5= { e vl [mr;:;.s(u ==

where » denotes aperiodic convolution. ‘We may also rewrite this as a periodic convolution

13 )
X(@) = 5 L GeQ(ei 8

where 1
G(e) = —1—
1= ge
and

3
Qi) =2my_blw - 125) for 0 < w < 2.
k=0

(a) Taking the inverse Fourier transform of G(e™) (see Table 5.2), we get g[n] = (1/4)"u[n].
Therefore, @ = }.
(b) Taking the inverse Fourier transform of Q(e?*) (see Table 5.2), we get

1 1, 1 ;
i(x/2)n xn §(3x 20
glal=1Ls3 g

This signal is periodic with a fundamental period of N = 4.
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5.20. (a) Since the LT system is causal and stable, a single input-output pair is sufficient to
determine the frequency response of the system. In this case, the input is z{n] =
(4/5)"ulr] and the output is y[n] = n(4/5)"uin]. The frequency response is given by

. Y(e®)

Wy =

H(e¥) = Xio0)

where X (&) and ¥ (&/) are the Fourier transforms of z{n] and y[n] respectively. Using

Table 5.2, we have

zln) = (;)nu[n] & x (@) = -l——'—%lej;.

Using the differentiation in frequency property (Table 5.1, Property 5.3.8), we have

n dX (e 4/5)e~ M
e (8) i 5 i = 2 -

Therefore, A
(4/5)e=
1= e’

H(e¥) =
(b) Since H(ejw) = Y{e¥)/ X (&), we may write
Y(e™) [1 = %e"""l = X(e™) [(4/5)e) .
Taking the inverse Fourier tranform of both sides
yln] — %y[n- 1]= %x[n]-
5.21. (a) The given signal is
z[n] = uln — 2) —u[n — 6 =d[n-12] +8n—3)+d8n—4+dn- 5].
Using the Fourier transform analysis eq. (5.9), we obtain
X() = e 4 ¥ 4 e~ 4 eI,

{b) Using the Fourier transform analysis eq. (5.9), we obtain

-1
X = 3 Grme

n==00
= Z(EEJ”]"
n=1
e 1
2 (1-3e/)
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(¢) We can easily show that X (e™) is not conjugate symmetric. Therefore, z[n] is not real.
5.17. Using the duality property, we have

(-1 &5 o = ap &5 %(;1]-* = %("1)*.

5.18. Knowing that

(1)*"1 o el
— — T )
2 1—cosw+§ 5H—dcosw
we may use the Fourier transform analysis equation to write
3 b R
Sy Sorein = ~jun
5— dcosw oD (z) ¥
n=—o0
Putting w = —2nt in this equation, and replacing the variable n by the variable k&
&
i 1M e
3\2 ‘
=—o0
By comparing this with the continuous-time Fourier series synthesis equation, it is im-

mediately apparent that a; = _}(%)Ikl are the Fourier series coefficients of the signal
1/(5 — 4cos(2rt}).

1
5—4cos(2nt) <

5.19. (a) Taking the Fourier transform of both sides of the difference equation, we have

o b d s 2 e A
Y(a)P e ze J]_xw).

Therefore,

ey 1 1
H(e) = gy = 1= Ledo = Lo (1= Jei)(1+ 3e77*)

(b) Using Partial fraction expansion,

; 3/5 2/5
H(CJ“‘)=—"'£.— —/_*
b — ket i+§: Ll

Using Table 5.2, and taking the inverse Fourier trasform, we obtain

M) = 3 (%)nu[n] +3 (-%)" ufn].

178

(c) Using the Fourier transform analysis eq. (5.9), we obtain

-3 1 ’
i

n=-00

o 1
e Z(_aw)n
il
o SO N
9 (1- jeiv)
(d) Using the Fourier transform analysis eq. (5.9), we obtain

X (™)

Q
X{e) = ¥ 2*sin(mn/d)e™ "

n=—00

—E?'" sin(rn/4)e™™

]

o0
_%E[(Uz)ngjmﬂeim — (1/2)emrmniteren]
n=0
A s - =
25 |1 (1/2)er /Aeiw 11— (1/2)e~I"/1ei
(e) Using the Fourier transform analysis eq. (5.9), we obtain

X)) = 3 (/2" coslr(n ~ 1)/8le™"

n=-o00

1 o—Inf8 eIm/8
T 2|1 (1/2)e" e i (1/2)e-77/Be=7w
1 [ eJ:r_Mcju c-jl',“ej(d ]

1| Toa/meae © T= (/e e
(f) The given signal is
2[n] = ~36[n +3] — 28[n + 2] — 8ln + 1] + dlr — 1] + 23n — 2] + 3¢[n — 3.
Using the Fourier transform analysis eq. (5.9}, we obtain
X{e¥) = —3e¥v — 267 — SV 4 eI 4 e T 4 e,
(g) The given signal is
zfn] = sin{mn/2) + vos(n) = % ™2 gmimT) 4 "]é-[e’“ +e "
Therefore,

X(e™) = ’;fww —nf2) — w2+ wfBlw ~ D+ Sw+ D], im0l <
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(h) The given signal is

z[n] = sin(57n/3) + cos{Txn/3)
— sin(xn/3) + cos(mn/3)

n

X emga_ —ganay o Ligangs L gmienis
5 [¢” € 1+ z[e’ +e 1.

Therefore,

X(e) = - %{ﬂ(w —n/3) = (w+n/3)]+alf(w—f3) +Ew+=[3)], OL|w| <7

(i} z[n] is periodic with period 6. The Fourier series coefficients of x(n) are given by

5
1 .
e —3{2%/6)kn
a = 65 z[nje It

n=0

4
i 123_ 5(2m6)kn
6

n=0
at 1 - e—jhfk,l'a
= 6|1 = e
Therefore, from the results of Section 5.2

. o 1 1- g 35nk/3 2
xe = 3o () L—:W] L

I==00

() Using the Fourier transform analysis eq. (5.9) we obtain

Dea ot
3 5—3cosw’

Using the differentiation in frequency property of the Fourier transform,

E)!"E(E)m_ 12sinw
k3 & —Bemau)

Therefore,

13 Inl n" o 4 12sinw
1= i S g — - 5
zln} n(:i) (3) 5 3cosw (5-3cosw)?

Siijis sin(::/S) I g :{ 1 ol <

(k) We have
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() This is the Fourier transform of a periodic signal with fundamental frequency :rf?.
Therefore. its fundamental period is 4. Also, the Fourier series coefficients of this
signal are ¢; = (—1)*. Therefore, the signal is given by

3
zln) = Et_l}kejk(f,fz}n R LUV, SR, L LS
k=0
(£) The given Fourier transform may be written as

X(ev) = c-i"'f:u/S)"e'J“‘-(115)2(115)“e‘j”"
n=0

n=0

5§(1/s)"e'5“’" - (1/5)2[1/5)"8‘7‘”"
n=1 n=0

1

Comparing each of the two terms in the right-hand side of the above equation with whe
Fourier transform analysis eq. {5.9) we obtain

2} = (%)n‘lu[n- - (%)"“ .

(g) The given Fourier transform may be written as

2/9 9
X(e™) = —f—+,7f~f
T-le 1+ fe

o) = 3 G)"u{n} P (f%)nu[n].

(h) The given Fourier transform may be written as
1 1 _; 1t3: 5 Qe T,
X{e¥)=1+ ie"“’ + € 2y e s 3¢ ey Erd et

Coemparing the given Fourier transform with the analysis eq. (5.8), we obtain

Therefore,

1 1 1 1 1
= Lgtars L gl i 2 fin ~ | ot 9
z[n] = §[n] + 36[12 1]+ 95[:1 2]+ 276[!1 3+ méin 4] + 24345[13 )

5.23. (a) We have from eq. (5.9) -
X(e®) = 3 aln]=6.

n=—-00

(b) Note that y[n} = z[n + 2] is an even signal. Therefore, ¥ (e/) is real and even This
implies that «¥ (¢/*) = 0. Furthermore, from the time shifting property of the Fourier
transform we have ¥ (&%) = 7% X (). Therefore, <X (e/¥) = e I,
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Also,
za[n) = cos(Txn/2) = cos(xn/2) &5 Xa(e™) = w (8w — 7/2) + 6w + 7/2)},
in the range 0 < |w| < 7. Therefore, if z[n] = z[n]z2[n), then
X (&) = Periodic convolution of X;(e’) and Xa(e’*).

Using the mechanics of periodic convolution demosntrated in Example 5.15, we obtain
in the range 0 < |w| < m,

X(e’“}:{é" 31%<[‘~'i<%‘

otherwise

5.22. (a) Using the Fourier transform synthesis eq. (5.8), we obtain

1 A 1
zin] = —f 7w + — e
27 J_3ms4 2 Japa

1 [sin(37n/4) — sin(wn/4)]

nn

(b) Comparing the given Fourier transform with the analysis eq. (5.8), we obtain
z[n] = §[n] + 38[n — 1] + 26[n — 2} — 48[ — 3] + &[n — 10].

(¢) Using the Fourier transform synthesis eq. (5.8), we obtain

z[n] = _1.f e~ dwf2pivung,,

P
(—I)WH
w(n—3)
(d) The given Fourier transform is

X(e™)

cos? w + sin? (3w)
1 + cos(2w) 5 1 — cos(dw)
2 2

1

; 1 45 1 4 1
= |4 -t g e W 4 el
+4e + i + rid

1 ~3jw
48
Comparing the given Fourier transform with the analysis eq. (5.8), we obtain

=ln) = ) + 26l 2+ Jéln + 2] - 19l — 3] = o[+ )

182

(c) We have from eq. (5.8)
272{0) = f' X () duw.
Therefore, &
[_: X () dw = 4n.
(d) We have from eq. (5.9)
X(e™) = i z[n)(-1)" = 2.

n=—00
{e) From Table 5.1, we have
Ev{zin]} &5 Re(X(e™)}.
Therefore, the desired signal is £v{z[n]} = (z[n]+z[-n])/2. This is as shown in Figure

$5.23. ‘
- evinnl
o gl ; I : | 1
a el o itlils 1eva |
[ -y -1 o 1 4
- Figure 55.23 ~a

(f) {i) From Parseval’s theorem we have

j "X =2x 3 Jzln)? = 28,

n=-00

(i) Using the diffe iation in freq y property of the Fourier transform we ohtain
T dX(e)
nj+— j————.
nan] &= j—
Again using Parseval’s theorem, we obtain

jml%‘gw)l2 =2r Z Inf?|z]n)? = 3167

n=-0

5.24. (1) For Re{X(e™™)} to be zero, the signal must be real and odd. Only signals (b) and (i)
are real and odd.

(2) For Im{X (&)} to be zero, the signal must be real and even. Only signals {d} and (h)
are real and even.
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(3) Assume Y (&™) = & X(e’¥). Using the time shifting property of the Fourier trans-
form we bave yn] = z|n + a]. I Y{e™) is real, then y[n] is real and even (assuming
that z[n] is real). Therefore, z{n] has to be symmetric about a. This is true only for
signals (a), (b}, (d), (¢), (f), and (h}.

(4) Since | X(e)dw = 2mz{0], the given condition is satisfied only if z[0] = 0. This is

srue for signals (b), (¢}, (£), (h), and (i).
(5) X (/) is always periodic with period 2x. Therefore, all signals satisfy this condition.
o0
(6) Since X(e°) = 3 z[n], the given condition is satisfied only if the samples of the

signal add up to zero, This is true for signals (b), (g), and (i)
5.25. If the inverse Fourier transform of X (¢/*) is z[r], then
Z[n] = £u(z-{n}) . ﬂ%ﬂ I Aw)
and
2ol = Od{z[n]) = ﬂ‘zﬂ_‘"‘ &, B(w)

Therefore, the inverse Fourier transform of B(w) is —jTo[n]. Also, the inverse Fourier
transform of A(w)e is gc[n+1]. Therefore, the time function corresponding to the inverse
Fourier transform of B(w) + A{w)e™ will be z.[n + 1] = jzo[n]. This is as shown in the

Figure $5.25. .

xeln) | f ] Il 11. ;., Ve I Ko[n]
1 gl A | | .

. 5 ] * S 5 e |

. = ,11 =l l Syt T

Helnar) - 4 alnl= Desivad. srﬂna.ﬂ-

Figure 85.25

5.26. (a) We may express Xa(e?¥) as
Xa(e™) = Re{Xa(e™)} + Re{Xa (/U /D)) + Re(Xa(2*™))

Therefore,
zfn] = Ev{zi[nl} [1 + 5 4 i)
185
™) 2Lpi0)
@-iy Vp @i )

- [} h (8]
2e/*)
(a-fy\ V2
—= 5 ey

(™)

(&-v) ——

-, L7 w
A
(‘b -ivy L (b v}
-8 Gfy o

Figure $5.27

(a) If zfn] = {-1)",
gln] = 8[n] — &[n = 1].

(b) If z[n] = (1/2)"u[n}, gln] has to be chosen such that

1, n=0

2, n=1
gln} = Q n>1

any value, otherwise

Therefore, there are many possible choices for g[n].
5.20. (a) Let the output of the system be y[n]. We know that
¥ () = X () H ().
In this part of the problem

1
B = T
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(b) We may express X3(e’*) as
Xa(e™) = Im{Xy (@)} + Im{ X ()}
Therefore, ; :
a{n] = Od{z;[n]} [/ + e7™] = 2(-1)"Od{z1{r]}.

(¢) We may express o as
. dx.ae:"}
el | =0 _ 3(=6i/7) _ 6
Xy (em)] 1 x

w=0

(d) Using the fact that H(e™) is the frequency response of an ideal lowpass filter with
cutoff frequency /6, we may draw Xy(e?¥) as shown in Figure 55.26.

5 RelZe(e)} dun 1Tt}
| 1
& | WA S
- -%ho W T w - - mw

Figure S5.26

5.27. (a) W(e™) will be the periodic convolution of X (/) with P(e). The Fourier transforms
are sketched in Figure 55.27.

(b) The Fourier transform of ¥ () of y[n] is ¥ (e) = P(e?*)H (). The LTI system
with unit sample response hin) is en ideal lowpass filter with cutofl frequency /2.
Therefore, Y (e/) for each choice of p[n] are as shown in Figure $5.27. Therefore. y[n]
in each case is:

(i) ylr]=0

™ i 2 1= 7n /2
(ii) yln] = 22imni®  Loeirp/a)
_ min{mn/2 2)
() yin) = =532 — emg)

. s

(iv) yir] = 2 [22m04)]

(v) win] = } [2222))

5.28. Let i
= / X()G()do = 1 + ¢ = V().

Taking the inverse Fourier transform of the above equation, we obtain

glnjz[n] = é[n] + 8[n — 1} = y[n).
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{i) We have
i 1
X(eY) = g
=TT
Therefore,

Y(e)

1 1
[1 - %e“j”] [l - -]fe‘i‘-‘:!
i Al i S
1—tle-sw " 1 — demaw

Taking the inverse Fourier transform, we obtain

vin) =3 (g.) uln] -2 (%)" uln).

i 1
X(&¥) = T

(=l =]
(1-Lemiw)?| [1— gev
4 2

1— te—gw o 1 - Le=gw T = Temwy2
2 4 4

(i) We have

Therefore,

I

Y(e™)

Taking the inverse Fourier transform, we obtain
ol = 4 (l)nu[nl g T S ]
2 4 4 Ny

X(e) =2n 3 dw - (2k+ 1)m).

k=—00

(iii) We have

Therefore,

¥(e)

[h— 3 w2k + 1)1r):| [1——115—13}
2

k=—~o00

%x Z S(w — (2k + 1))

k=-oc

Taking the inverse Fourier transform, we obtain

zn] = ;(-—1)“A
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(b) Given = 2
hfn) = % (%c’""") uln] + % (%c""fz) ufn],

btai
we obtain e 12 12
(&) = T Tefiese T 1= Je e
(i) We have 1
X&) = —7—-
1 - je
Therefore,
‘ 1/2 1/2 1
Wy - et
Yy = [] “Jerfew T 1 ;«#.ﬂ:—w] [1 e

C —_—
W/2e it

A
- - +
1 - (1/2)e/™/2e~3v BEs T (1/2)e~# " 1-

where A = —j/[2(1 = #)), B=1/2,and C = 1/[2{1 + j)]. Therefore,

st = s () vt + gy (3) b+ 3 () o
(1) In this case,

ot = T2 [ (] al

(c) Here,
Y(e¥) = X(e)H(e¥) = -3¢ — &Y 41 -2
eIV 4 2eTB — DTN 4 4e=I™
33 4 e o7 4 26
Therefore,

yfn] = 36[n+5]+dln+4] - dn+ 3] - 34[n + 2]
+8n + 1) + 6[n] + 68[n — 1] — 26[n — 3] +48[n — 5].

5.30. (a) The frequency response of the system is as shown in Figure $5.30.
(b) The Fourier transform X(e?) of z[n] is as shown in Figure $5.30.

(i) The frequency response H(e™) is as shown in Figure 55.30. Therefore, y[n) =
sin(nn/8).

{ii) The frequency response H(e*) is as shown in Figure 85.30. Therefore, y[n] =
2sin{wn/8) — 2cos(xn/4).

(iii) The frequency response H(e) is as shown in Figure 85.30. Therefore, y[n] =
4sin(wn/8) — 1 cos(rn/4).
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in the range 0 < |w| < w. Therefore,
vl = 00 + are/™ + a_1e M = 4 [(1/4) + (/2 VD] conten/4).

(i) The signal z{n] is periodic with period 8. The Fourier series coefficients of the
signal are

7
1 ;
et - j{2x/8)kn
%=3 E z{nle™? .
n=0
The Fourier transform of this signal is

X(e) = i 2mayd(w — 27k/8).

k=-o00
The Fourier transform Y (e/*) of the output is ¥ (™) = X (e?)H (e/*). Therefore,
Y (e®) = 2n[aod(w) + amdlw — 7 /4) + a_18(w + 7/4)]
in the range 0 < |w| < m. Therefore,
yln] =ag + a1 4 g_1e M = % + %cos(ﬂrn/&l).

(iii) Again in this case, the Fourier transform X (e} of the signal z[n] is of the form
shown in part (i). Therefore,

yin] = ap + @™ a1 = % +[(1/4) — (1/2)(1/ VD) cos{mn/4).

(iv) In this case, the output is

sin[r/3(n — 1)] " sinfr/3(n + 1)]
w(rn—1) an+1)

yln) = hir] » 3] =

5.31. (a) From the given information, it is clear that when the input to the system is a complex
exponential cof frequency wy, the output is a complex exponential of the same frequency
but scaled by the |wy|. Therefore, the frequency response of the system is

H(e)=|w|, for0<jw <.

(b} Taking the inverse Fourier transform of the frequency response, we obtain

]

W = 5 f_ :H(eN)efw"dw

1 f° 1ol =

= —we"“"du+—] we M dw
2. 27 Jo
1

= —f wcos(wn)dw
TJo

l[ocs(mr)—l]

-rr n?
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(c
Gl i e
—ffa © LI w
Figure 55.30

(iv) The frequency response H(e™) is as shown in Figure 55.30. Therefore, y[n] =
—sin{wn/4).
(¢) The frequency response H{e’“) is as shown in Figure 55.30.
(i) The signal z[n) is periodic with period 8. The Fourier series coefficients of the

signal are
it
1
_ 1 ~j(2x/8)kn
o = HZ:[ﬂ]e 1(2x/B)kn
n=0
The Fourier transform of this signal is

oo
X(@¥) = 3 2mord(w - 2rk/8).
k=-00
The Fourier transform ¥ (e} of the output is ¥ () = X(e’“)H(e?¥). Therefore,
¥ () = 2x[agd(w) + 618(w — 7/4) + a_ 18w + 7/4)]
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5.32. From the synthesis equation (5.8) we have .
1 .
[5 [ Hl(e’"Jdu] [% j: Hz(c’”)d“} = hy[0lhalo).

hafn) = hafn] &5 H () Hale™),

Also, since

we have 1
35 | H&) (e = ] hafnl -
Therefore, the question here amounts to asking whether it is true that
by [0}h2[0] = [s[n] * ka[n]]—o -
Since hy[n] and haln] are causal, this is indeed true.

5.33. (a) Taking the Fourier transform of the given difference equation we have

i Y{e™) 1
H(e) = ———F = ———.
(™) X(e) 14 e v
(b) The Fourier transform of the output will be ¥ (/) = X (™) H (™).
(i) In this case
1
X&) = 5
() 1- %e‘j""
Therefore,
) 1 1
Y] = ler——| | ———
Gl [l—%e‘w] [1+%r3’”]
1/2 1/2

1- %e‘-‘” 1+ %e‘f“’

Taking the inverse Fourier transform, we obtain
1 /13" T
= (5) v+ 3 (-3) v

1
T,—ju
1+ ze3

1 2
Y(e) = [1_—_1:;?:] .
2

Taking the inverse Fourier transform, we obtain

yln]=(n+1) (-%)nu[n).

(ii) In this case
X(e) =

Therefore,
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(3ii) In this case

X(e™) =14+ %e'-’“.
Therefore,

Y(e) =1.
Taking the inverse Fourier transform, we obtain

vln] = é[n].

(iv) In this case

X(ey=1- Lemso,

2
Therefore,
1 1
wy Frcaedul 0 g
Y(e®) = [I 2° ] [1 + %e""':r
- I+ %:‘J“

Taking the inverse Fourier transform, we obtain

vin) = —d[n] + 2 (- %)"u[n],

G 1-lg-iw 1
Y(*) = [-1+%e'?“] [3 T §¢~Ju:|

1

(c) (i) We have

(14 ge=7%) (14 Fe3)2
Taking the inverse Fourier transform, we obtain

yin] = (n +1) (—%)“u{n] ~in (-E)H el

2

1+ fev 1
1= }e""’ 1+ de~n
1

1-tew

(i1) We have

Y(e¥)

Taking the inverse Fourier transform, we obtain

ool = (3) wlnl
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5.35. (a) Taking the Fourier transform of both sides of the given difference equation we obtain
_¥(e¥)  b4ei
i X(e2) , 1= ae=de’
In order for |H(e?“)| to be one, we must ensure that
b+ e
14567 + 2bcosw =
This is possible only if b = —a.
(b) The plot is as shown Figure §5.35.
(c) The plot is as shown Figure $5.35.

(1~ ae~#|

1+a%—2acosw

L) A
£

= . /\\_/i ’:;a °I \/ ™ Ll V)
’\/ (v )

‘ 1]

Ao g {

I[ﬁfrum

! @)

Figure $5.35

(d) When o = —4,

. R
H) =228

1+ ;:"‘“'
Also,

. i
X(e) = 1—_—;;—
Therefore,

] —Ju
) BN § € i IS
Y = S ema e
B S B
To1- ;e'f"' 14 fe-w

Taking the inverse Fourier transform we obtain

vind = 5 (3) st - 3 (=) wi
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(1i) We have

jwy 1 1
Ted. s {(1+5ew)(1-}e-w)” J

1+ %E_J“’
ysan T8 ye
(1+3e~3)2 " 14 gei¢ 1 Lemaw

Taking the inverse Fourier transform, we obtain

vird =30+ 1) (=3) win+ 3 (<3) uted + 5 (2)

(iv) We have

Y(e) = [1+2e"’“][ - }

1+ femse
1 2e~ 3w
1+ %e"JW 1+ ;lgc’i”

Taking the inverse Fourier transform, we obtain

vln] = (-%) uln] + 2 (-%)Hu[u -3

5.34. (a) Since the two systems are cascaded, the frequency response of the overall system is

H(el¥)

= H(e¥)Ha(e™)
2—eIv
1+ je-s%

Therefore, the Fourier transforms of the input and output of the overall system are
related by

Y(e)  2-em

X&) " T+ fe i
Cross-multiplying and taking the inverse Fourier transform, we get

sl + ol — 3] = 2efn) - zfn - 1),
(b) We may rewrite the overall frequency response as

H(e) = 23
1+ gei

(1+3v3)/3
1= %c!““c—!“’
Taking the inverse Fourier transform we get

hln) = ; (—%)nu{ﬂ] + # (%e'”)"u[nw 1‘—3’@ (%ﬂm)"u;ng,

(1-jv3)/3

1= je—i120e-ju’
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This is as sketched in Figure S5.35.
5.36. (a) The frequency responses "“are related by the following expression:
A 1
G(e™) = Ty
(b) (i) Here, H(e™) = 1 - }e™. Therefore, G(e/*) = 1/(1 - $e77%) and gn] = ()"u[n].
Since
wy _ Y(e™) 1
O = Xem) " T e
the difference equation relating the input z[n] and output vln] is
1
o) = Juln — 1) = =l

(ii) Here, H(e™) = 1/(1 + 1e77%). Therefore, G(e™) = 1 + Le7 and gln] = 4[n) +
$6[n — 1]. Since

G = Y1) 1

- Ze W
X(ow) ~ 1+ 5
the difference equation relating the input z[n] and output y[n)] is
I
y[n] = z[n] + Ez[n -1).
(iii) Here, H({e™) = (1 = }e~#)/(1 + }e™*). Therefore, G(e?) = (1 + Le=7)/(1
1€¢7) and gln] = (})"u[ﬂ] +3(3)"'u[n - 1]. Since
; ju -
el AE l_'"%’_._
X(e™) 1= e
the difference equation relating the input z[n] and output y[n] is

vln) = guin =1} = zfa) + Jaln - 1]
(iv) Here, H(e™)

) = (1 — fe=9% — Lo~} /(1 4 §odu — 4¢79¥). Therefore, G(e?%) =
(14 §e7% — fe=2) /(1 — Le~3 — Le=2%) " Therefore,

i 53 2
Heda e (1/2)em% ~ T+ (1/4)e1=
and
oln] = bn] +2 G) uln] - 2 ( _é) o]
Since Y(e)  (1+5e - Lemhv)
G(eM*) = *F) =

(1= e — le-tw)’
the difference equation relating the input z[n] and cutput v[n] is

yln} = %y[ﬂ -1] - %y[nm 1] =z[n] + ;z{n ~1] - %z[n -12)
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(v) Here, H(e?) = (1-3e™)/(1+ e 7~ }e~?¥). Therefore, G(e/) = (1+3e 7~
ée"""}/(l - ée""'] Since

Y{e) _ (1+ e — je~2v)

€& =X = i)

the difference equation relating the input z{n] and output y[n) is
1 5 1
y[n] - Ey[ﬂ -1} =z[n] + 4—z[n ~-1] - Ez[n -2

(vi) Here, H(e) = 1/(1+ §e™9¥ — Le=%). Therefore, G(e™) = (1+ Se~Iw — Lo-2w)
Since X
Y (e?¢) B

G(e™) = X =+

b ée—?ju)
we have 5 1
g[n} = d[n] + 4—5[11 -1 - §§[n -2]
and the difference equation relating the input z[n] and output y[n] is
1
yln] = z[n] + ;z[n -1 - E:[n -2].

(c) The frequency response of the given system is

4 e _ Lem2jw
H(ev) = - —.
() L+e i 4 je=2w

The frequency response of the inverse system is

w1 el demaw
G(e’)_mw)- 1-Jero

Therefore,

ot = (5)" e (3) i+ 3 (3) -

Clearly, g[n] is not a causal impulse response.

If we delay this impulse response by 1 sample, then it becomes causal. Furthermore,
the output of the inverse system will then be z[r — 1). The impulse response of this
causal system is

o) =sin 1= (3) o)+ (%)Muln— 0+l (;)“’[.ln _y

5.37. Given that
z[n] £5 X ().
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Sinee z[n] is real, X(e™™) = X*(e?). Therefore,
2] = ;;]O'Re{)r(a‘“)}{e"" e 4 %fn'l'm[x(e’”]}{c"”' -y
-z fa ’Ra[X[e’”)}2m(:;{n)dw - jo " Im{X ()} sinfum)dw
Therefore,

B(w)zékc{xte’“)}m(m), and —j'—rIm{X(e-““’)}sin(um].

5.39. Let y[n] = z[n] » An]. Then

Y{eM) = {zfn] * h[n]}e"Fm
= 3 Y zikhln - ke
n=—cok=—oc

= 3z ff Aln — kle™im
k=-o00 n=-00

= ¥ zlkeEH(e)

k=-00

o0
= H(eM) Z z[k]e~ Ik
]
= H(eY)X (V)
5.40. Let y[n] = z[r] » h[n]. Then using the convolution sum

wlo] = f: 2[k]h[—k] (S5.40-1)

k=—co

Using the convolution property of the Fourier transform,
1
ool = o / X(e) H{e)dw (55.40-2)

Now let h[n] = x'[-n]. Then H{e/) = X*(&/¥). Substituting in the right-hand sides of
equations (85.40-1) and (55.40-2) and equating them,

i‘ z[k]z*[k) = %r /: :X(ef“’)x'(ef“)m

k=-oc
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(i) Since
X&) = 3" afn]em,

we may write
00

X (e ) = z z*[nje~7vm,

Comparing with the analysis eq. (5.9), we conclude that

2*[n] E5 X7 (7).

Therefore, ) )
- w L v
Refeln = LT gr, X(eH) 4 Xt
(ii) Since
’ o0
X(ev) = E zlnje“m,
we may write
X(e ) = E: z[~n)e~Ivm,
n= =00

Therefore,

z[—n] £ X(e™).
From the previous part we know that

z*[n] £ X (e~ ),
Therefore, putting these two statements together we get

z*[-n) €5 Xx*(ev).

(iii) From our previous results we know that

Eoialol) = Erlt2lonl g, X(e)+ Xieh)
5.38. From the synthesis equation (5.8) we obtain

ol = o [_ :X{c"”)e’““du

B e O L TP
- 2:/,,’“")” du+hj:):(e Je Iy
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Therefore,

£

3 el = 5 [ i

n=-co
Now let hln] = z*[~n]. Then H(e™) = Z*(es¥). Substituting in the right-hand sides of
equations (55.40-1) and (S5.40-2) and equating them,
e 1 i "
> olHs = o [ X(£9) 2" (7)o,

k=-po

5.41. (a) The Fourier transform X (e’*) of the signal z{n] is

o ) no+N=1
X(@)= 3 alnle = 3 zfnjeiom,
n=-o0 na
Therefore,
| no+N=-1
X(FmEINY = Z z[n]e~H3/Nkn (S5.41-1)
n=ng

Now, we may write the expression for the FS coefficients of Z([n] as

1 _ 1 Rtk ]
o =5 Ei{n]e—’(z"lmh =% E z[n]e™H2n/N)kn
<N> n=ng

(Because z([n] = Z[n] in the range np < n < ng+ N — 1). Comparing the above equation
with eq. (S5.41-1), we get

_ 1 i2mk/N
o = L X (N,
(b) (i) From the given information,

X(e) = l4e™¥ 42w 4 odiw
= e BBy g6/ | e~ 132wy 4 eI/ (1 /20w o e~ (/D)

2e770/2% {e05(3w/2) + cos(w/2))
(i} From part (a),

= _,iv::(e"*f”) = -;-r.ze-l(’ﬂ?"*f" {cos{6mk/(2IV)) + cos(mk/N)}.

5.42. (a) P(e)*) = 2x6(w -- wy) for |w| < 7. This is as shown in Figure §5.42.
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Figure 55.42

(b) From the multiplication property of the Foutier transform we have
. ' Z
G = — / X(&9)P(9)do
S _y
1 /T
et f X(e)2mb(w — B — wo)d8
)

= X(eIo))
5.43. (a) Using the frequency shift and linearity properties,

e:[w—w) X (ev
y(em) = LTI LX),

(b) Let y[r] = v[2n]. Then
oo
Y(e) = E v[2nle” ",
n=—co
Since the odd-indexed samples of v[n] are zero, we may put m = 2n in the above

equation to get
= oo

Y= 3 lmle~tem? = V(1)
m=—00
(Note that the substitution of n by 2m is valid only if the odd-indexed samples in the
summation are zero.}

() z[2n] is a new sequence which consists of only the even indexed samples of z[n]. v[n] is
a sequence whose even-indexed samples are equal to z[n]. The odd-indexed samples of
v[n] are zero. v[2n] is & new sequence which consists of only the even indexed samples
of v[n]. This implies that v[2n] is 2 sequence which consists of only the even indexed
samples of z{n). This idea is illustrated in Figure $5.43.

From part (a), :

: fwf2-7) o2
e = X ;+X{e"" )i

5.44. (a) The signal z;{n] is as shown in Figure S$5.44.
(i) Taking the inverse Fourier transform, the signal z2[n] is

z2[n] = z1[n + 1.
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(a) Comparing the equation for z,(t) with the above equation, we obtain
zy{t) = X(e~IC=/100t),
Therefore z,(t) is as shown in Figure S5.45.
(b) Comparing the equation for z2(t) with the equation for X(e), we obtain
ag(t) = X (0710 = z{-0).
Therefore z5(¢) is as shown in Figure 55.45.
(c) We know that Od{z[n]} = (z[n] — z[-n|}/2. Therefore,
X (™) — X(e¥ — =
) =XED - Y odfalalle ™
n==00

Comparing this with the given equation for z3(t), we obtain

X (em32nIBNy _ X (ei(2n/B)
PE.(C )2 ( )

Therefore z3(t) is as shown in Figure 85.45.
(d) We know that Re{z[n]} = (z[n] + z*[n])/2. Therefore,

Wy . e L) &
MZX_(E_) = 3 Refaln}e "
n=—od
Comparing this with the given equation for z4(t}), we obtain

X(e—jfﬂw,‘ﬁ)t) + X [ej(Z'l/ﬁ)t)
z4(t) = 3 :

Therefore z4(t) is as shown in the Figure §5.45.

5.46. (a) Let z[n] = a™u{n). Then X(e™) = ===~ Using the differentiation in frequency

property, )
na™uln] £5 pAXe) o  met
I T -ae

Therefore, :
(o FT, 4X(e™) wy =
(n+ )a"u[n] ¢ j P + X(e* )—{l’ae‘l‘-’]z'
{b) From part (a), it is clear that the result is true for r = 1 and r = 2. Let us assume
that it is also true for k = r — 1. We will now attempt to prove that the result is true
for k = r. We have

(n+r—-2)!

zralnl = gy o D Xyl =

1
(1-aew)r=t
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(ii) Taking the inverse Fourier transform, the signal z3[n] is

Zo[n] = z1[n — 3/2] = sin(wn/3) + sin(xn/2) cos(3x /4) — cos{wn/2) sin(37 /4).
This is as shown in Figure 55.44.

(b) From part (a),
z2[n] = 21[n 4+ 1] = w(nT + T).

Also,
z3[n] = z3[n - 3/2] = w(nT - 3T/2).

Therefore, @ = —1 and 8 = 3/2.
5.45. From the Fourier transform analysis equation

X&) = i z[n]e™ V",

n=—oc

r{h_h.m} Lefnir
N R o im A A
—lo o &

T L - o &

Refryind Inlxy 0}

N e
1

‘rhilq(-rl‘[

W
S 38 5
e “# ¥, 2_r

Figure 55.45

From the differentiation in frequency property,
a(r - 1)e~
nz,r_1[n) P (_l—:_aTe:);“’—)':T

Therefore,
(n+ 1z, an+1] Fr 1
afr—1) (1 — ae3w)r’
The left hand side of the above expression is

(n+l)zrafn+1] _ (n+r—1)

e e o B

Therefore, we have shown that the result is valid for r if it is valid for r — 1. Since,
we know that the result is valid for r = 2, we may conctude that it is valid for r = 3,
7 =4, and s0 on.

5.47. (a) If X(e%) = X{_ef(”‘l}) then X (e?*) is periodic with a period of 1. But we already
know that X (e/) is periodic with a period of 2r. This is only possible if X (/) is a
constant for all w. This implies that z[n] is of the form ké[n] where k is a constant.
Therefore, the given statemet is true.

(b) If X (&™) = X (&™) then X(e?*) is periodic with a period of 7. We also know that
X(e™) is periodic with a period of 2x. Both these conditions can be satisfied even
if X(e™) has some arbitrary shape in the region 0 < |w| € #/2. Therefore, X (e’)
need not necessarily be a constant. Consequently, z{n] need not be just an impulse.
Therefore, the given statement is false.



(¢) We know from Problem 543 that the inverse Fourier transform of X(e/?) is the
sequence v[n] = (z{n] + €™z[n])/2. The even-indexed samples of v[n| arc identical
to the even-indexed samples of z{n]. The odd-indexed samples of v[n] are zero. If
X(e?¥) = X(e*/2), then z{n] = v{n]. This implies that the even-indexed samples of
z|n] are zero. Consequently, z{n] does not necessarily have to be an impulse. Therefore,
the given statement is false.

(d) From Table 5.1 we know that the inverse Fourier transform of X (e/®) is the time-

expanded signal
z[n/2], n=0,%2,%4,--
zlnl = 0, otherwise
If X(e) = X (e7®), then z[n] = z(3)[n]. This is possible only if x{n] is an impulse.
Therefore, the given statement is true.

5.48. (a) Taking the Fourier transform of both equations and eliminating W (e7¥), we obtain
Y{ev) _ 3—je
X(e™) (1= fet)(1 - femv)

H(ev) =
Taking the inverse Fourier transform of the partial fraction expansion of th above

expression, we obtain
e 13"
h[n] =4 (5) un] = (Z) uln].

Yy 3 e
X(e®) 1= e )1 - fei)’

Cross-multiplying and taking the inverse Fourier transform, we obtain

(b) We know that
H{e¥) =

uin) = Syl — 1]+ Sfn — 2} = 32ln) - J2n - 1)

5.49. (a) (i) Consider the signal z[n] = azy[n] + bxz[n], where a and b are constants Then,
X(e*) = aX1(e?) + bXa(e/*). Also let the responses of the system Lo r;lnl and
z2[n] be y;[n] and yy[n], respectively. Substituting for X (e7*) in the equation given
in the problem and simplifying we obtain ¥ (/) = aY; (/) + b¥2(e?*). Therefore,
the system is linear

(ii) Consider the signa! zi[n] = z[n — 1]. Then, X)(e’) = e™“X(e’). Let the
response of the system to this signal be y;[n]. From the given equation,

dXi(e?)
dw

e 12X (&) + e X () - %”’“)] +je I X ()

Yi(e™)

2X0() + 74X () —

£ e Y (e)

Therefore, the system is not time invariant.
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(b) From the given information,

o Y(E) _ (L—3e7)?
H(C’ ) x(e,,_,) = 2(1 — _:_C-Ju)g.
We now want to find X(e/*) when ¥ (&%) = (1/2)¢™7%/(1 + 4e~7*). From the above

equation we obtain )
e 3(1 — lemiw)?

(1— de3@)2(1 + Lemiw)’
Taking the inverse Fourier transform of the partial fraction expansion of the above
expression, we obtain

z[n] = i—; (—%)"_l uln — i)+ g (%)n-iu[n -1+ %ﬂ (%)ﬂ-l ufn - 1].

5.51. (a) Taking the Fourier transform of h[n] we obtain

X(e) =

Ji ] w % - %C-N
H(eM) = Y (V) X(e) = W.
Cross-multiplying and taking the inverse Fourier transform we obtain
3 1 3 1
—Zyn - Zyln =2 = =zn] - =z[n - 1].
yln] - Jur = 1]+ gln = 2 = 5zln] - gz(n - 1]
(b) (i) Let us name the intemediate output w[n] (See Figure 85.51).

¢ {n)

Figure $5.51

We may then write the following difference equations:
1 1
yin] + zyln = 1] = Juln] + win - 1]
2 4
and 1 1
win] — Ew[ﬂ -1} = z[n} - iz[n -1].
Taking the Fourier transform of both these equations and eliminating W(e’), we
el : R 1,-2jw
Y(e?) 1t gem —ge?
X(ew) 1—te2e

Cross-multiplying and taking the inverse Fourier transform we obtain

H(e™) =

yn] - %y[n -2 = %:[n] + gz[n -1} - %z[n -2l
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(iii} If z{n] = &[n), X(¢™) = 1. Then,
Y(e¥) =2+ v

Therefore, y[n] = 25[n] + é[n - 1].
(b) We may write
; 1 +x /4 :
Yy = & f“ X (&) H (D) ds,
2 w—x/4

where H(e’) is as shown in the Figure $5.49.

)
|

T © My w
Figure 55.49

Using the multiplication property of the Fourier transform and Table 5.2. we obtain

2 sin(nn/4)
yln] = 2z[n]———.

5.50. (a) (i) From the given information,

Y(e) _ o L

HEe™) = 3 = = Fe9) (1 - fee)

Taking the inverse Fourier transform, we obtain

hin] = 3 G)"u[n] —2 (%)nu[n].

(ii) From part (a), we know that

Y(e¥) _ 1- e
X@) T 0= Jem) (1= femy

Cross-multiplying and taking the inverse Fourier transform

vinl = g5l — 1]+ gsuin — 2} = 2fn] = Szln ~ 1]

206

(i1) From (i)
¥(e™) _ §+fe - jer
X{ew) ~  1-feww

H(e¥) =

(iii) Taking the inverse Fourier transform of the partial fraction expansion of H(e¥),
we obtain n -
21 ¥ 7 (1
hln] = 28n] - —= | —= =
[n] In] % ( 2) uln] + T (2) u[n).

5.52. (a) Since hin] is causal, the nonzero sample values of h[n] and h|—n] overlap only at n = 0.

Therefore,
h[=]/2, n>0
h i
Ev{hfn]} = Aol hl=n] +2”{ s { A[0)], n=0 .
h[-n}/2, n<0
In other words,

2£v{h[n]}, n>0
hln) =< Ev{k[0]}, n=0 (85 52-1)
0, n<0

Now note that if
Aln] &5 H(ew)
then
Eulhfn)) = ARl A= +2"['"] EL, RefH(e)).

Clearly, we can recover £v{k|n]} from Re{H(e’)}. From Ev{h[n]} we can use eq.($5.52-
1) to recover h[n]. Obviously, from h[n] we can once again obtain H(e’). Therefore,
the system is completely specified by Re{H(e*)}.

(b) Taking the inverse Fourier transform of Re{H(e’*)}, we obtain

Evihlnl} = 8fn) + S8fn - 2] + Toln+ 2]

Therefore,

h[n] = d[n] + adln — 2],
and

H(e“) =1+ ae™ 7%,

(¢) Since hn] is causal, the nonzero sample values of hln] and h|~n] overlap only at n = 0.

Therefore,
Aln)/2, n>0
_ hin] = h[-n] e
i v peage { [l)h[—n]/z e
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5.55.

(d)

|
|
‘ 5.53. (a) The analysis equation of the Fourier transform is
\
\
|
\

(b)

In other words,

some value, n=0 (S5.52-2)

n<0

0,

20d{h[n]}, n>0
h[n] = {

Now note that if s :
hin] & H(e™)

then
Od{hin]} = M‘—zﬂ L, SIm{H(E™)).

Clearly, we can recover Od{h[n]} From Im{H(e)}. From Od{h[n]} we can use
€q.(S5.52-2) to recover hn| (provided h[0] is given). Obviously, from h[n] we can unce
again obtain H({ei*). Therefore, the system is completely specified by Zm{H(c/*}}
and A[0].

Let Tm{H(e’*)} = sinw. Then,

Od{z[n]} = —;-J[n— 1] - 380n + 11

Therefore,

hin] = K[0}§[n] + é[n — 1).
We may choase two different values for h[0] (say 1 and 2) to obtain two different systems
whose frequncy responses have imaginary parts equal to sinw.

00
X(e) = Z z[n]e™ ",
n=—00

Comparing with eq. (P5.53-2), we have

. | Fa

= L y(eitzminy,

XK = g X (/o)

From the figures we obtain
Xl{ei“} =1—e ¥ 4 2e7 %
and
XoleH) = —cB¥ — & — 1 + €T 4 eI 4 gemHY — g TIR 4 90T
Now, ) )
X.(e’“’*"”) =1 — eIk | gem3imk/2

and

xg(ejﬂw&ﬂ]] =1 e-jx.k,f? +2=—ijk{2 = xl(ej(hk,’ﬂ)_
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(a) (i) From Table 5.2, we have

X(e) =2n i 8w — 2xk).

==00

(i) When M =1, P(¢™) = ¢ 4+ 1+ ¢7¥ =1+ 2cosw.
(iii) When M = 10, we may use Table 5.2 to find that

(b) The plots are as shown in Figure 85.55.

&-i)

s'm(21w/2).

P =—CR

Tl
3 Mz
iy

G-i)

Figure S5.55

(c) We have W(e?®) = '—ﬂﬂw@ The plots are as shown in Figure 55.55

8in®(w/2)

(d) The plots are as shown Figure §5.55.
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5.54. (a) From eq. (P5.541) it is clear that to compute X [k] for one particular value of k, we
need to perform N complex multiplications. Therefore, in order to compute X [k] for
N different values of k, we need to perform N.N = N? complex multiplications.
(b) (i) Since fln] = z[2n], we have f[0] = z[0], f[1) = =(2], -+, F{(N/2) = 1} = =[N - 2].
Since z[n] is nonzero only in the range 0 < n < N — 1, f[n} is nonzero only in the
range 0 <n < (N/2) - 1.
Similarly, since g[n] = z[2n + 1), we have g[0] = z[1], g[1] = =(3}, - -+, g[(N/2) -
1] = z[N). Since z[n] is nonzero only in the range 0 < n < N ~ 1, g[n] is nonzerc
only in the range 0 < n < (N/2) - 1.
(ii) We may rewrite eq. (5.54-1) as

5 L N1 L N
X =5 Y smwit e Whg 3 el Wit

n=0 n=

Since W = WF), we may rewrite the above equation as

g (N/2)-1 (Nf2)-1
XM = % 3 fWEL+WER D olnWik
_n=0 o n=0 e
= 1P + IWEGIK (Sl
(1ii) We have
i 2 (N/2)=1 5 s
P+ N =5 3 TWELWa = Pl
n=0
Similarly,

Gk + N/2) = G[k].

(iv) Since F[k] is a N/2 point DFT, we may use an approach similar to the one in part
(a) to show that we need N2/4 complex multplications to compute it. Similarly we
may show that the computation of F[k) requires N?/4 multiplications. From eg.
(85.54-1), it is clear that we need N?/2 + N complex multiplcations to compute
X[K).

(¢) By decomposing gfn] and f[n] into their odd and even indexed samples, we can bring
down the number of computations to N2/4 + N/2. Repeating this decomposition
logz N times, we make the required computation N log, N. We tabulate below the

computations required by the direct method and the FFT methed for values of N.

N

Direct method | FFT method |
32 1024 160
256 65536 2048
1024 1048576 10240
4096 16777216 49152

5.56. (a) We have

s EMS

X(e, e7)

oo
Z z[m, ﬂ]e—J(WImM")
m=

oo
£l E z[m,n]cﬂ"’"" e Iwin
n o0 Lm=-=00

X(e#, et

s

n:

I

—o0

Therefore, we may write
X m) = o [ X, )t dn
From this we obtain
z[m,n) = #/_:fiX(ej”"e’"")e’”"”e’“’“dwld‘dz.
(b} We may easily show that
X(en, e7) = A(e)B(e™).

(€) We use the result of the previous part in many of the problems of this part.

(i) X(e1,e09) = emIwighiva,

(i} X (e, e%7) = [‘:1_:-;:_':‘?'—”-] [(n_-}_:-:_-'l]]
(iif) X (e, e992) = [m] [w‘;mé(w; - ¥ _Omk) 4w E San + & - 27rk):'.

k=—00

(iv) Here z[n,m] = {u[m + 1) - u[m: 2JHuln + 4) — u[n — 5]}. Therefore,
X(e, ) = [sin('{m/’z)l [sin[awlfz)] :

sin(wo/2) sin(wy /2)
(v) From the definition of the 2D Fourier transform we obtain
PP i ol ki OO BN L i |
1 —e2w1 | ] — e=slwi+un) 1 — e— (31 +ws)

(vi) From the definition of the 2D Fourier transform we obtain

25T (ben - 2 4 2ml)bwn - & 4 20r) -

l=—oar=—00

Slwr + 2 + 2n)d(ws + § + 2mr)]

X (e, eivr)
(d} (i) X(e?lr=Wi) eilwn—Wa)y

(i) X (e, ed?)
(i) ke [ [ X (&, )00, 010 atap
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- Hapler b Answers

6.1.  The signal z(z) may be brokes up into a sum of the two complex exponentials z)(t) =
(1/2)er %0 and z,(t) = (1/2)e~rt-#  Gince complex exponentials are Eigen functions
of LTI systems, we know that when z,(t) passes through the LTI system, the output is

nlth = =1(H (o) = 2, (2)|H (jup) e/ <H0w)
= (1/2)[H ()it +dutahGiuo))
Similarly, when the input is 24(t), the output is
a(t) = (1/2)] (=)o~ 3est+ b= (=500

But since A[n] is given to be real, |H (jup)] = |H(=juy)| and <H (juy) = —<H (~jup).

Therefore, : :
2(t) = (1/2)|H (jup) e ot to+<H o))

Using linearity we may argue that when the input to the LTI system is z(t) = z,(t) + z,(t),
the output will be y(t) =y () = v2(t). Therefore,

5 i ~<qH (3
1) = Gl eont + o+ i) = 8 ) e (et =222 4 )
(a) From y(¢), we have 4 = |H (Fuwg)|.
(b) From y(t), we have tg = =SH0i)
6.2, The signal z[n| may be broken up into a sum of the two complex exponentials z|[n] =
(1/2j)ewon+eo yng Z2[n] = (—1/2f)e~Jwon—to_ gince complex exponentials are Eigen fune-

tions of LTI systems, we know that when z[n] passes through the LTI system, the output
is

vilnl = mifn]H(e0) = 2y [n)| B ein) o220
(1/25)  (e3%) oot <titeio)
Similarly, when the input is z4[n], the output is

valn] = (=1/25)|H (e™3) e Sowms o~ ahie=sme)

But since A(t) is given to be real, [H(e?®)] = |H (e=*0)| and dH(elwe) = —<qH(e %),
Therefore,

]

wan) = {=1/25)| H (&7 |o~Hlwot +o+ati(eiva))

Using linearity we may argue that when the input to the LT[ system is z[n] = zi[n] + z3[n],
the output will be y[n] = y, [n] + ¥2[n]. Therefore,

)= V" aalegn + o + <B(ebe)) = (e (wut - )| #)

Now nate that if we require that v[n] = |4 (e7®)z[n - ng), then rp = ~<H(e’*) /wy has
to be an integer. Therefore, <H(e70) = —ngwy. Now also, note that if we add an integer
multiple of 2x to this <H(e?), it does not make any difference. Therefore, we require in
general that <H(e#0) = —np(wg + 2kx).
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1
“Sh ~We O e 3;.?';!-& “e g W

hilt)

e
7 t i, t
Figure $6.5

Taking the inverse Fourier transform, we have
A(t) hy ()t 4 b (4)e=s2uet
2hy (2) cos(2u,t)

Therefore, g(t) = 08 (2uw,t).

(b) The impulse response hy(t) is as shown in Figure $6.5. As we increases, it is clear
that the significant central lobe of hy(t) becomes more concentrated around the origin.
Consequently h(z) = 2h1(2) cos(%w,t) also becomes more concentrated about the origin.

- The frequency response H(e’") is as shown in Figure S6.6.
(a) Consider the signal &y fn] = sin(wen)/(xn). Its Fourier transform H,(e'*) is as shown
in the figure below.
Heh)
4

he?)

—IT =T, -] Fay W

h()

— Alr i
B n
Figure se-«i\mg (assuming I €I)

Clearly,

H(e) = Hy(erlo-),
Taking the inverse Fourier transform, we have
Aln] = hy[n]e’™ = yfa)(-1)".
Therefore, g[n] = (~1).
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6.3.  (a) We have
G = L2del | VIFa? 1
{1+ jw] V14 w? -
Therefore, 4 = 1.
(b) We have
<H(jw) = tan™! (~w) — tan~!ew) = 2tan~!(w).
Therefore, the group delay is

d ¥ 2
T(w) = —EQHUw) s g i

Clearly, 7(w) > 0 for w > 0. Therefore, statement 2 is trye.

6.4.  (a) The signal cos(mm /2) can be broken up into a sum of two complex exponentials =
(1/2)eimn/2 gnq 22[n] = (1/2)e=7/2. Prom the given information, we know that
Zi[n) passes through the given LTI system, it experiences a delay of 2 samples
the system has a real impulse Tesponse, it has an even group delay function. Ther
the complex exponential Ta[n] with frequency —wy also experiences a group dela

samples. The output y[n] of the LTI System when the input is z[n) = zy[n) + o,
therefore

y[n]z2z;[n—2}+2:;>[n—2] = 2cos (;—T(n ‘2)) = 2cos (gn - Jr)

(b) The_ signal zfn] = sin{zfn + §) is the same as =8in(%n — I). This signal may
again be broken up into complex exponentials of frequency 7/2 and -n/2. We

vin] = 2:[n—2]=2$in(1;(n‘-2j+::-')
- T s
= 2xm(-2—n-77r+4-)
- 25in(%n—w+g)

= 2sin (z:;nL ?)

6.5. The frequency response H(jw) is as shown in Figure $6.5.
(a) Consider the signal h(t) = sin{wet)/(xt). Its Fourier transform A (jw) is as shown
Figure S6.5.
Clearly,
H{jw) = B\ (j(w - 2u,)) + Hi (e + 2ur)).
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(b) The impt{.lse response h[n] is as shown in Figure $6.6. As W, increases, it is clear
that the significant central lobe of hi[n] becomes more concentrated around the origin.
Consequently hln] = hy[nj(=1)" also becomes more concentrated about the origin.

6.7. The frequency response magnitude [ (jw)| is as shown in Figure 86.7. The frequency
response of the bandpass filter G(jw) will be given by

GUw) = FT{2h(¢) 0s(4000mt)
= H(w - 40007)) + H(jw + 40007))
This is as shown in Figure 6.7

~4oasr ~eml -lsef Twer e Gess e

~&os - —yosenr

0
Figure 6.7\ %ee  GoooTr
oot fvoo i

6.8. Taking the Fourier transform of both sides of the first difference equation and simplify'mg‘

M
f Zbke“-'“’"
e - e 5

1- Zme"f""‘
k=t

Taking the Fourier transform of both sides of the second difference equation and simpli-
fying, we obtain the frequency response Hy(e?) of the second filter.

M

Do (= 1)kbgeuk
k=0

vy = Y(e)
Hy(e™) = Y{e-"—‘-‘) = N .
1= 3" (= 1)kaye-juk

k=1
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6.9.

6.10.

This may also be written as

M

Zbkc-j(u—r)t

t:oN =4 H{ej(u—r))‘
1= apedlo-mit

k=1

Hi(e) =

Therefore, the frequency response of the second filter is obtained by shifting the fre-
quency response of the first filter by =. Although the location of the passband changes, the
tolerances will be the same in the second flter. The first filter has its passband hetween
—wp and wp. Therefore, the second filter will have its passband between m — wp and 7+ wp.

Taking the Fourier transform of the given differential equation and simplifying, we obtain
the frequency response of the LTI system to be

X0z -

X(w)  S5+iw

Taking the inverse Fourier transform, we obtain the impulse response Lo be

h(t) = 2¢”5uft).

H(jw) =

Using the result derived in Section 6.5.1, we have the step response of the system
2
s(t) = h(t) » ult) = 5{1 — e u(t).
The final value of the step response is
2
s(o00) = :

We also have 2
s(to) = 3[1 ~ 5],

Substituting s{ta) = {2/5)[1 — 1/¢?}, in the above equation, we obtain to =  see

We use Example 6.5 to guide us through this problem.
(a) We may rewrite Hy(jw) to be
3 1 .
H(jw) = (jw+40) (jw +0.1).

We may then treat each of the two factors as individual first order systems and draw
their Bode magnitude plots. The final Bode magnitude plot will then be a sum of these
two Bode plots. This is shown in the Figure 56.10.

Mathematically, the straight-line appraximation of the Bode magnitude plot is

—20, w<<O1

20 logyq |H (jw)l = { 20logio(w)s 0.1 <<w<<40 .
32, w>>40
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(b) We may rewrite the frequency response Hy(jw) as

for Hy(jw). The figure shows that Hi(jw) has the break frequencies wy = ',

i g 0.02
H;Uw):(gw+50) (W)

Again usiog an approach similar to the one used in Example 6.5, we may draw the

Bode magnitude plot by treating the first and second order factors separately. This

gives us a Bode magnitude plot (using straight line) approximations as shown helow:
Mathematically, the straight-line approximation of the Bode magnitude plot is

Q, w<<l
20logo |H (jw)| = § —40legpw 1<<w<<50 .
—0logow — 34, w50

Using the Bode magnitude plot specified in Figure P6.12(a), we may obtain an exjressien
v -8

and wy = 40. The frequency response rises at 20 dB/decade after wi- At w,. toes s I8
canceled by a —20 dB/decade contribution. Finally, at w3, an additional —20 dB/decade
contribution results in the subsequent decay at the rate of —20 dB/decade. Therefore, we
may conclude that

Ajw +w1)

m (86.12-1)

HGw) =

We now need to find A. Note that when w = 0, 20 logyo |[H1 (70} = 2- Therefore, H1(50) =
0.05. From eq. (36.12-1). we know that

Hi(50) = A/320.
Therefore, A = 640. This gives us
6400w + 1)
) = Go 8w + 40)°

Using a similar approach on Figure P6.12(b), we obtain
Syl
B = Gw +8)%

Since the overall system (with frequency response H(jw)) is constructed by cascading
systems with frequency responses H,(jw) and Hz(jw),
H(jw) = Hi(jw)Hz(jw)-
Using the previously obtained expressions for H(jw) and Hi{jw),

Hatiw) = H(jw) _ 0.01(jw + 40)
29) = Gy ~ Gt DGw +8)
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20 I‘-_g w TG4

6.11.

20 [N e dBldicads
a . .fn

00 (;J(radlk_)

-28 |
Figure 56.10
(b) Using a similar approach as in part (a), we obtain the Bode plot to be as shown in
Figure S6.10.
Mathematically, the straight-line approximation of the Bode magnitude plot is
20, w<<02
20logyp HGw) = { ~20logyelw) +6, 02 <<w << 50
—28, w>>50
(a) We may rewrite the given frequency response Hy(jw) a8
; 2
Hy(jw) = 2l == s "
{jw + 0.5) (jw + 50)

7 (jw)? + 50.55w + 25
‘We may then use an approack similar to the one used in Example 6.5 and in Problem

6.10 to obtain the Bode magnitude plot (with straight line approximations) shown in
Figure 56.11.

R loa..!.lq'-ai pr "3.- JXC:'-AP'

6.13.

6.14.

Figure S6.11

Mathematically, the straight-line approximation of the Bode magnitude plot is
20, w << 0.5

20logo |H (jw)| = { —20logyglw) + 14, 0.5<<w<<50 .
—40log;o(w) + 48, w>> 50
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Using an approach similar to the one used in the previous problem, we obtain

. 320
Hijw) = 7
Gw) (§w + 2)(jw + 80) "
(a) Let us assume that we desire to construct this system by cascading two systems with
frequency responses Hi (jw) and Hz(jw), respectively. We require that

H(jw) = Hy(jw) H2(jw)-
We see that H;(jw) and Hz(jw) may be defined in different ways to obtain H(jw). For

instance

Hi(jw) = and  Hp{jw) =

oL 8
(jw+2) (jw + 80)
and

10

. 32
H‘I(JU)=m and M) =

are both valid combinations.

(b) Let us assume that we desire to construct this system by connecting two systems with
frequency responses H; (jw) and Ha(jw) in parallel. We require that

H(jw) = Hi{jw) + Hz(jw).
Using partial fraction expansion on H(jw), we obtain

160/39 160/39

H(jo) = 25779) ™ G + 80

From the above expression it is clear that we can define H(jw) and Hy(yw) in only
one way.
Using an approach similar to the one used in Problem 6.12, we have

50000(jw + 0.2)%
(Gw + 50)(jw + 10)°

The inverse to this system has a frequency response

H(jw) =

1 0.2 x 1074 (jw + 50) (jw + 10)

Hi(jw) = = =
(jw) Gl G 1027

We will use the results from Section 6.5 in this problem.
(a) We may write the frequency response of the system described by the given differential

equation as
ak

HiGw) = G e+t
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6.16.

6.19.

6.20.

6.21.

This may be rewritten as
. 1/4
=—
() = GoRE + 250 + 1
From this we obtain the damping ratio to be { = 1. Therefore, the system is critically
damped.
(b) We may write the frequency response of the system desgribed by the given differential
equation as

7
Hali) = SGoy v o+ 5

This may be rewritten as

! 0,
Hylio) = o aemi@ + 1

From this we obtain the damping ratio to be { = 2/5. Therefore, the system is under-
damped.

(c) We may write the frequency response of the system described by the given differential
equation as

1
jw) = —_——————
Ha(jw) (jw)? + 20jw + 1
This may be rewritten as
P AR
sw) = GOy a0E@ + 1
From this we obtain the damping ratio to be ¢ = 10. Therefore, the system is over-
damped.
(d) We may write the frequency response of the system described by the given differential
equation as :
74 {(1/3)jw
50w)? +4jw+5
The terms in the numerator do not affect the ringing behavior of the impulse response
of this system. Therefore, we need to only consider the denominator in order to de-
termine if the system is critically damped, underdamped, or overdamPed, We see that
this frequency response has the same denominator as the one obtained in part {(b).
Therefore, this system is still underdamped.

Hj(jw) =

The system of interest will have a difference equation of the form
yin] = eyln — 1] = bz[n].
Making slight modifications to the results obtained in Section 6.6.1, we determine the step

response of this system to be
1 — gn+!
b (_IT) ufn}. -
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Let us first find the differential equation governing the input and output of this circuit
Current through resistor and inductor = Current through capacitor = C%—Z

Voltage across resistor = Rc%ﬂ.

Voltage across inductor = LC‘%{;Q. .

Total input voltage = Voltage across inductor + Voltage across resistor + Voltage across
capacitor

‘Therefore,

dy(t)

a(t) = L6 d(t)

+ RC T w(t).
The frequency response of this circuit is therefore
. 1
Hw) = [ RGw + 1

We may rewrite this to be

1
H{jw) = 5
oz (752 + 2(R/2)V/Cl Lo +1

Therefore, the damping constant ¢ = (R/2),/C/L. In order for the step response tn have
no oscillations, we must have ¢ > 1. Therefore, we require

L

Let us call the given impulse response hln]. It is casily observed that the signal Iy[n] =
h[n + 2] is real and even. Therefore, (using properties of the Fourier transform) we know
that the Fourier transform Hj(e’) of hy[n] is real and even. Therefore Hy(e?™) Las sero
phase. We also know that the Fourier transform H{e/) = Hy(e*)e~%%, Since H.i¢'1 s
zero phase, we have

<H(e¥) = —2.

Therefore, the group delay is
T(w) = idﬂ(e’-“') =2

Note that in all parts of this problem Y (jw) = H(jw)X(jw) = —2jwX (jw). Therefore,

it} = —2dz(t)/dt.

(a) Here, «(t) = ¢*. Therefore, y(t) = —2dz(t)/dt = —2je?'. This part could also have
been solved by noting that complex exponentials are Eigen functions of LTI systems.
Then, when z(¢) = e7*, y(t) should be y(t) = H(j1)}e? = —2je’t.

(b) Here, z(t) = sin(wpt)u(t). Then, dz(t)/dt = wp cos{wot)u(t)+sin{wt)d(t) = wo cos(wot)ult).

Therefore, y(t) = —2dz(t)/dt = —2wg cos{wot)u(t).
(¢} Here, Y (jw) = X(jw)H{jw) = —2/(6 + jw). Taking the inverse Fourier transform we
obtain y(t) = —2e~%u(t).
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6.17.

6.18.

6.23.

The final value of the step response will be b/(1 — a). The step response exhibits oscillatory
behavior only if |a| < 1. Using this fact, we may easily show that the maximum overshoot
in the step response occurs when 1 = 0. Therefore, the maximum value of the step response
is

b
e [ ] =}
= a( a) =b
Since we are given that the maximum, overshoot is 1.5 times the final value, we have
b 1
1.5—— = -,
i b = a 3
Also, since we are given that the final value us 1,
b 3
=% 1 = b= 7

Therefore, the difference equation relating the i.npj.lt. and output will be
1 3
—yln - 1} = =x[n].
yin] + 3vln — 1) = galn]

We will use the results derived in Section 6.6.2 to solve this problem.
(a) Comparing the given difference equation with eq. (6.56), we obtain

r==, and cos@ = —1.

2
Therefore, § = m, and the system has an oscillatory step response.
(b) Comparing the given difference equation with eq. (6.56), we obtain
1

r=—= and

s a=1
2 cos

Therefore, & = 0, and the system has a non-oscillatory step response.

Let us first find the differential equation governing the input and output of this circuit
Current through resistor = Current through capacitor = C U
Voltage across resistor = RC %ﬂ.

Total input voltage = Voltage across resistor + Voltage across capacitor
Therefore,

T

dy(t
(1) = RC% +ylt).
The frequency response of this circuit is therefore

i il
EDel = norw

Since this is a first order system, the step response has to be non oscillatory.
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(d) Here, X(jw) = 1/(2 + jw). From this we obtain x(t) = e Zu(t). Therefore, y(t) =
—2dz(2)/dt = de~2u(t) — 25(2).

Note that 3
A I —“Ir<w<in
H = w fw<
() { 0, otherwise
(a) Since :r‘(t) = cos(2nt +6), X (jw) = e’'xd(w—27) +e~#¥x8(w+2x). This is zero outside
the region —37 < w < 37. Thus, Y (jw) = H(jw)X (jw) = (Fw/37)X (jw). This implies
that y(t) = (1/3x)dz(t)/dt = (—2/3)sin(2xt + 6).
(b) Since z(t) = cos(4nt + 8), X {(jw) = e*xé(w — 4n) + e"#°né(w + 47). Therefore, the
nonzero portions of X (jw) lie outside the range —3m < w < 3m. This implies that
Y (jw) = X(jw)H (jw) = 0. Therefore, y(t) = 0.
(€) The Fourier series coefficients of the signal z(t) are given by

1 2
ag = — z(t)e Tkt

Tod<r>

where Ty = 1 and wy = 2r/Tp = 2m. Also,

X(jw) =2x i axd(w — kuwp).

k=-o00

The only impulses of X (jw) which lie in the region —3n < w < 37 are at w = 0, 2m,
and 27. Defining the signal zj,(t) = ap + a1e?*™ + a_1e77*™, we note that y(t) =
{1/3x)dziy(t)/dt. We can also easily show that ap = 1/m, ay = ¥ = —1/(4j).
Putting these into the expression for zj5(¢) we obtain zip(t) = (1/7) + (1/2)sin(2xt).
Finally, y(t) = (1/3n)dzp(2)/dt = (1/3) cos(2xt).

(a) From the given information, we have

m={g bk
Using Table 4.2, we get
hoft) = sm(wﬁt)_
wt
(b) Here,
Hy(Gw) = H,(jw)ei”r.
Using Table 4.1, we get
hy(t) = halt + 7).
Therefore,
sinfwe(t + TH

halt) = n(t+T)
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(¢) Let us consider a frequency resp Ho(jw) given by

(b) If h(t) is not specified to be real, then <H(jw) does not have to be an odd function.

Holjw) = { Lo l<we/2 Therefore, the value of k; in eq. (56.24-1) does not have to be zero. Given only |H(j)|
9 0, otherwise and v(w), ko cannot be determined uniquely. Therefore, k(t) cannot be determined
uniquely.
Clearly, 1
He(jw) = E—-[Ho(jw) « W(jw)), 6.25. (a) We may write Ha(jw) as
s
where . Ho(jw) = (1 - jw) & 1 - jw
W(jw) = j2n8(w — we/2) — j2rd(w + we/2). Ly O+ 501 - 30) OBl

Therefore, from Table 4.1 Therefore,

i H,(jw) = ~H=w].
et = haetote) = (22202 (-2eintt/o). bl el

and
d4Hg(jw) 1
. ralw) = -2
6.24. 1f 7(w) = k1, where k) is a constant, then T [
: . Since T4(0) = 1 # 2 = 74(1), 7a(w) is not a constant for all w. Therefore the frequenc
=— S6.24-1) A a\th Ta d equency
<H{jw) = ~kw+ kg ( X response has nonlinear phase.

where ka is another constant. (b) In this case, Hy(jw) is the frequency response of a system which is a cascade combination
(a) Note that if h(t) is real, the phase of the Fourier transform <H{jw) has to be an odd of two systems, each of which has a frequency response Ha(jw). Therefore,

function. Therefore, the value of kz in eq. (56.24-1) will be zero.

Also, let us define Ho(jw) = |H(jw)l- Then, Hy(jer) = <Ha(jw) + <Ha(jw)

sin(200mt and !
ho(t) = _(_ﬂ_._]._ Ta(w) = _2d<lH.,(Jw) 2
do 14w
i — 5. Hence, <H (jw) = —5w. Th " s
(i) Here k; = 5. Hence, < (Jw) 5. Then, 7 Since 73(0) = 2 # 4 = (1), my(w) is not a constant for all w. Therefore, the frequency
Hijw) = [H(w)le*H0 = Ho(jw)e ™ response has nonlinear phase.
i {c) Iu this case, H.(jw) is again the frequency response of a system which is a cascade
erefore, sin[2007(2 — 5)] combination of two systems. The first system has a frequency response H,(jw), while
h(t) = ho(t —5) = _ﬂ{cT.ﬁ_ the second system has a frequency response Ho(jw) = 1/(2 + jw). Therefore.
(ii) Here k; = 5/2. Hence, <H (jw) = —(5/2)w. Then, aHy(jw) = <Ha(jw) + <Ho(jw)
H(jw) = |H(j)|eH0) = Ho(ju)e E/2. and
iy _daH.(w) daHo(jw) _ 1 2
Therefore, g clw) = dw Tt Tadd drr
sin[2007 (t —
h(t) = holt — 5/2) = -T(t-_-s——m— Since 7.(0) = (3/2) # (3/5) = 7(1), n(w) is not a constant for all w. Therefore, the

frequency response has nonlinear phase.
(iii) Here ky = —5/2. Hence, <H(jw) = (5/2)w. Then,

: 6.26. (a) Note that H(jw) = 1 = Ho(jw), where Hp(jw) is
H(jw) = |[H(ju)eH0) = Holjw)e! /M. e
; 1, 0< |w| €we
Ho(jw) = { 4 !
Therefore, . 0 0, th
e b = MREORG F 5/2)] e
a {t +5/2) Therefore,

h{t) = é(t) - ho(t).
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by,
From Table 4.2, we have } b
sin(wt S e e
piecs ) s
holt) = —=— Figure 56.27
Therefore, .
A(t) = §(t) - “_———'“E:C‘). (¢) Since z(t) = e™*u(t),
I
X(jw) = —.
O = v
(b} A sketch of k() is Figure 56.26. Clearly, as w. increases, h(t) becomes more concen- Therefore,
trated about the origin. : Y (jw) = X (jw)H (jw) = .____;..ﬁ._..
(¢) Note that the step response is given by (1 +jw)(2 + Jw)
(d) Taking the inverse Fourier transform of the partial fraction expansion of Y (jw), we

s(t) = h(t) s u(t) = u(t) = u(t) * ho(t)- Ao
ot -2t
Also, note that ho() is the impulse response of an ideal lowpass filter. If so(t) = y(t) = e ult) — e™Fu(t).
u(t) » ho(t) denotes the step response of the lowpass filter, we know from Figure 6.14 (e) (i) Here,

that sp(0) = 0 and se = 1. Therefore, Y(jw) = {;:ju})z
Jw,
= u(0+) — so{0+) = 1= (1/2) = 1/2 = ; 5
5(0+) = u(0+) — so(0+) (1/2) =1/ Taking the inverse Fourier transform of the partial fraction expansion of Y (jw), we
and obtain
s(c0) = uloe) ~ so(00) = 0. y(t) = e u(t) — te™Hu(t).
. ; i : . : s (ii) Here,
6.27. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain Y 1
W) = ———,
: Y {(jw) 1 1+ jw)
H(jw) = X0 =335 Taking the inverse Fourier transform of ¥ (jw), we obtain
The Bode plot is as shown in Figure 6.27. y(t) = e tu(t).
(b) From the expression for H(jw) we obtain (i) Here,
: 1
o s e ) Y = ——.
aH(jw) = —tan” (w/2). (jw) T FYmy
Therefore, Taking the inverse Fourier transform of the partial fraction expansion of ¥ (jw), we
) = __ddH(jw) 2 obtain i
duwr 1+u? y(t) = etu(t) + 5o Mu(t) - te M u(t).
6.28. (a) The Bode plots are as shown below
227
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(b) We may write the frequency response of (iv) as

; 1/10 1
HU“’"H;‘u'E‘
Therefore,
h(t) = Setuft) - L4
~10° 10
and

11 s 1
s(t) = ==(1- - —u(t).
S(0) = hie) » u(t) = 500 = e™)ult) - cuft)
Both h(t) and s(t) are as shown in Figure S6.28.
We may write the frequency response of (vi) as

910 1
H(jw) = 1+jw 10
Therefore,
h(t) = —e~tu(t) + —5(1)
= 10% 10
and

(6) = AO) +ult) = T5(1 = alt) + hute)
»e l?yth h(t) and s(t) are as shown in Figure S6.28.
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Figure $6.29

-29. (a) (i) The Bode plot is as shown in Figure $6.29. Clearly, the system has phase lag. Tt
also has no amplification at any frequencies (i.e., |H(jw] never exceeds 0 dB).
(i) The Bode plot is as shown in Figure $6.29. Clearly, the system has phas lead. It
has amplification at approximately frequencies which exceed 0.1 rad/sec
(b) (i) The Bode plot is as shown in Figure $6.29. Clearly, the system has phase lag. It
also has no amplification at any frequencies (i.e., |H(jw| never exceeds 0 dB).
(1) The Bode plot is as shown in Figure $6.29. Clearly, the system has phase lag. It
has some amplification at frequencies near 0.1 rad/sec.
(iti) Tke Bode plot is as shown in Figure 56.29. Clearly, the system has both phase lag
and phase lead. It also has amplification for a band of frequencies.
30. We know that -~ ”
10z(108) &5 X (Jﬁ) !
Therefore, the Bode plot shifts by 1 decade to the left. The shape remains unaltered.
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6.31. (a) The Bode plot is as shown in Figure $6.31.
(b) Since
i‘g L jwX (),
the frequency response of a different;
shown in the figure below.
(c) (i) The Bode plot is as shown in Figure 56.31.
(i) Here, wy, =10 and ¢ = 3. The Bode plot is as shown in Figure $6.31.

6.32. (a) One possible choice for the compensator frequency response is

500+ 1)
H (jw) = W
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ator is H(jw) = jw. Therefore, its Bode plot is as
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Therefore, the overall frequency response is
1
Hljw) = ————-
(5w) T By
The Bode plot for this frequency response is as shown in Figure 56.32
{b) One possible choice for the compensator frequency response is
50jw(ly + 1)
Hi) = B
(32 + D)5 + DG + 1)
“herefore, the overall frequency response is
Jw

(3 +1)(F5 + (s +1)

The Bode plot for this frequency response is as shown in Figure $6.32.

H(jw) =

§.33. (a) From Figure P6.33, we may write
Y (jw) = X (jw) - H{jw)H (jw) = Houldw) X (jw).-
Therefore,
Hap(jw) = 1 = H(jw) (56.33-1)

If H(jw) corresponds to an ideal lowpass Blter with cutoff frequency wip, then Hou(jw)
is as shown in Figure $6.33.
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(d) From the tolerances derived in the previous part, it is clear that Ho.(jw) is not neces-
sarily highpass.

6.35. Since z[n] = cos(won + #), we have
X(e)=n Yy (08w~ wo — 2nl) + 75 (w + wy — 27l)].
l==00

Let wf, be the principal value of wy in [-m, 7). Then

00
Yiew) = X(eW)H () =7 3 [ jupdlw —wo ~ 2al) = &1 juhdlw + wo — 2ml)).

=—c0

It follows that
y[n] = —wp sin(won + ).

If =7 < wp €, then
yin] = —wo sin(won + 6).
6.36. Let H,(e™) = |H(e’*)]. Then from Table 5.2 we know that

_ sin(mn/2)
=—__

hy[n}

If 1(w) = - L <H(e) = k (where k is 2 constant), then aH(e™) = —kw + ki, where
k) is a constant. If A[n] is real, then <H(e™) is an odd function, and therefore we may
conclude that k; = 0. Therefore,
H{e™) = | H{)|&HFE) = Hy(e)e .
Taking the inverse Fourier transform we obtain
= N sinf(n — k)/2]
k)= h[n—k = )
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Clearly, Hop{jw) corresponds to an ideal highpass filter with cutoff frequency wip.
Also,

hoslt) = 80 = h(0) = o0) - 22285,

This is as shown in Figure 56.33.

(b) If H{jw) corresponds to an ideal highpass filter with cutoff frequency why, then from
eq.(S6.33-1) it is clear that Hou(jw) is as shown in Figure $6.33. Clearly, Ho(jw)
corresponds to an ideal lowpass filter with cutoffl frequency whp.

(c) If we replace H(jw} with a discrete-time lowpass filter with frequency response H (&)
as shown in Figure $6.33, then the overall frequency response still is

Hop(e™) =1 - H{e™).
Therefore, H(e’) is as shown in Figure $6.33. Clearly, it is highpass.
6.34. (a) From the previous problem,
Hoy(jw) =1 = H{jw).
This is sketched in Figure 56.34. Clearly, it is approximately highpass.
(b) ::r: ;:\;e Hjw) = Hy(jw)e’®=). Therefore, |H(jw)| = |H1(jw)|. Therefore, it is still

(¢) We bave
Holjw) = 1 = H(jw) = 1 - Hi(jw)e ™).

Therefore, )
[Hou(jw)] = |1 = Hi(juw)er ™).

We also have ;
1 - |Hy(Gw)] € 11— Hi(jw)e®@)] < 1+ |Hi(Gw)l.

Therefore, Hoy(jw) is between the two curves sketched in Figure $6.34.

234

(a) If 7(w) = 5. then from the above result,

Aln) = sin[x(n — 5)/2]
- mn-5)

(b) If 7(w) = 5/2, then from the result derived at the beginning of this problem

sin[r(n — 5/2)/2)

b} = m(n —5/2)

(e) If 7{w) = —=5/2, then from the result derived at the beginning of this problem

sinfm(n + 5/2)/2]

Ml w(n +5/2)

The results of all the parts of this problem are sketched in Figure S6.36.
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Figure S6.36

6.37. (a) We have
X 1—Leivw
|H ()] = |i e .

1- e
(b) We have
aHE@) = ale ]+ [1 E %ej“] = [1 = %c"“’]
= e+« [1 - %cos(w) - %sin(w)] -a [1 - %cos(w) + .% Sin(u)]
L gin(w) ]

= —w-2tan”t | 25
1 - 3 cos{w)
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(c) Using the result of the previous part, we can show with some algebraic manipulation

that
) daH(e) 3
W) = = — ———,
dew 3 —cosw

This is as sketched below
(d) Let z[n] = cos(wn/3). We may write this as z[n] = €/™"/3/2 4+ ¢7/™*/3/2. From the
result of part (c), we know that the delay suffered by a complex exponential of frequency
w/3is f
i
— ==L
i — cos(x/3)
Similarly, we know that the delay suffered by a complex exponential of frequency —=/3
is also 1. Therefore, the output of the system is y[n] = &™("~1)/3/2 4 g=an(n=1/3 9 =
cos(m(n — 1)/3).
We may express H(e/”) as
1
H(&¥) = o [H (%) » {276(w — 7/2) + 278(w + 7/2)}]
and

w | L lw| < we
Hl(ej)_{ﬂ, we < |w|<x 7

Using the properties of the Fourier transform, we obtain
h[n] = hy[n] (2 cos(mn/2)},

chere
b sin(wen)
hin] = e

(a) When w, = 7/5, hin] = 2200/5) cos(rn /2). This is as shown in Figure $6.38.

™

(b) When w. = /4, h[n] = 293_"%:1.’12 cos(mn/2). This is as shown in Figure S6.38

() When w, = x/3, hln) = 25423 co5(;rm/2). This is as shown in Figure S6.38.
As w, increases, k[n] becomes more concentrated about the origin.

6.39. The plots are as shown in Figure 56.39.
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6.40. We may write A;|n] as
L 2
Hy(e?v) = E hy[n]e™ e
n=—oo
el
= 3 hyf2njein
n=—oco
oo
= E hlne=7%m
n=—o0
= H(&%)
Therefore, Fye™) is H(e) compressed by a factor of two. This is as shown in Figure
56.40, ()
l
e I I l l .-
-7 lo T w
Hl(&j“)

Figure 56.40

Therefore, H\{e’) corresponds to a band-stop filter.
6.41. (a) Taking the Fourier transform of both sides of the given difference equation, we obtain

Y(e™) 1-e v
X(e*)  1- Joe=iv 4 fe-hw

H(e*) =

Taking the inverse Fourier transform of H (&) we obtain
k[n} = (%) cos(mn/d)uln] - (2v2 — 1) (%)ﬂsin(wn/-i)ujn].

(b) The log-magnitude and phase of the frequency response are as shown in Figure S6.41.

6.42. (a) We get
5/4 + cosw

[ (e7¥)] = |Ha(e)| = 76 + (/2 coem
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Figure 56.41
and
<Hy(e™) = tan™! (———l ji{i;?z‘;‘;}w)) and  <Hy(e’) = tan”' (1—-:' ‘ lw-u- \""._“')

Comparing tangents of these angle in the range 0 < w < 7, we get
AHy(e™) > <H (e).

(b) We get

i) = (=) ot + (—%)“Vl uln— 1}

This is as sketched in Figure 56.42.
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Figure S6.42
(c) We get .
o _ [ 24 ;
Hy(ev) = (-—_l e (1/2)3'1”) Hy(e™).
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(b) Since :
yln] = a[n}e™™
and ;e
Ale¥) = X () Hple™),
we obtain

Y(e) = Hple“@ N X ().
Therefore, the frequency response of the overall system is Hip(e?™™™). If Hiple!) is
lowpass, then Hip{e~)) is highpass.
All three first order factors in this frequency response are of the form :"_n:—‘au a >

0. Therefore, none of these factors contributes an oscillatory component to the step
response. Therefore, the step response of the overall system is non oscillatory.

(i) The factor |T‘£lr7 contributes an oscillatory component to the step respouse. There-
fore, the step response of the overall system is oscillatory.

(iii) Consider the second order factor W For this, we get r = % and s 4 = -
Since @ # 0, this second order factor contributes an oscillatory component to the step
response. Therefore, the step response of the overall system is oscillatory.

6.45. (i

6 46. (a) We have

T hlnje "

n=-00

Hie™)

A[0) + AfL)e ™% 4+ + h[N; LjomietN=1012 4 . BN = 122N

Since h[HFL +n) = R[2ZL — n], we may write
N-1

(o BT v [hlme"“‘”"’f“ + R[] ot )
Foo 4 A 4 h[o]a‘-"“’"!!'*’]
= e HN-I [‘M[O]oos(w(N -1/ + 2h[1}cos{u(N—;i -1
FRppp h!yT-H]
= e IwIN=-1/2 4(y)
where

() = [24(0]cos(l = 1)/2) + 2h{1] cosluo( T 1]+ -+ ,‘!{V(Z:}_,l

is a real-valued function.
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Therefore,

Jre i Ve 35 ol ikt
Glen I (1+(1/2)=—‘“5w)
and
fy| _ (5/4) +oosw
oG (5/4) + cosw =

6.43. () If hpyln] = (~1)"higln] = 7 hipfn), then
th(eju) = Hlp(eﬂwii))-

;l'iherefore, Hjp(e’™) is as shown in Figure $6.43. Clearly, it corresponds to a highpass
ter.

Hlei)

2N /.

o ™ w
Figure 56.43

(b) Now let us define h{n) = (—1)"hpy{n}, where hpp[n] is the impulse response of a highpass
filter. Then
H(e™) = Hyp(e™ ™).

Therefore, if th(ej“) is as shown in Figure $6.43, then H({e/*) is lowpass.
6.44. (a) Note that (—1)" = ¢/™. From the figure we have
in] = (alnle’™  hln]) ™.
We may write this as
yln] = a[n)e™,
where a[n] = (z[n)e’™™ « hyy[n]). Taking the Fourier transform of a[n], we obtain
A(e¥) = X (@) Hig(e™).

Suppose that the input to the system is now z|[n — ng). Let the corresponding output
be yi[n]. Then we may write
win] = bnle’™",
where b[n] = (z[n — ngle’™ » hyy[n]). Taking the Fourier transform of b[n], we obtain
B(e™) = X (e ) Hy(e?)e 7™ = A(e)e 7",

Therefore,
bln] = a[n — ng).
Consequently, y1[n} = y[n — no}. Therefore, the system in time invariant.
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(b) One such example is hjn] = é[n} + 25[n — 1] + 3é[n — 2} + 28[n — 3] + §|n — 4].
(c) We have

H(e)

]

Z hin]e™m

n=—co
h{0] + h[1]e™ +--- + h[";'” ~ 1m0 4 h{gle"‘“”"z
4o+ AN = 1)o7 Nl

Since A§ +n] = h[§ — n - 1], we may writc
H(e) = e N=172 [hgleriN=1/2 4 pfpJele( "5 )
+oo s h[i:- —1]e /2 4 h[% - 1)e™
oee b R{1Jem O D 4 pfoled 5]

N -

e
3 )

o -2 [2hi0]cos(w{N —1)/2) + 2h[1] cosfuw(
iy 25{% - l]cos(w/2)]
= ¢ NN 4(w)

where

N-1

Alw) = [Zh[[!] cos{w(N — 1)/2) + 2hk[1] cos[w( 1))+ 4+ 2.’:[1; -1 cns(w,‘?)}

is a real-valued function.
(d) One such example is h[n] = §[n] + 26[n — 1] + 2d[n - 2] + §[n - 3.
6.47. (a) Taking the Fourier transform of both sides of the given difference equation, we have

¥ (e2v)

H(e?) = X =)

= b[1 + 2acosw].

(b) We want H(e’°) = b1 + 2a} = 1. Thercfore, b = 1/(1 + 2a).
(<) ]Sl' a = 1/2, then b= 1/2. Therefore, H(e?*) = }[1 + cosw]. This is plotted in Figure
6.47.
6.48. (a) Here, .
H(e™) = bre™ + bye™ 2% = 2bye™7%/% cos(w/2)

‘Therefore, :
[H{e)| = 2lba] cos(w/2)[.

244



x ity —Wg O fify g W

-1 W z W o
~T Figure 56.48 7 2
(b) Here, : :
H(eM) = by + bae™* = 2bpe™7%/% cos(3w/2).
Therefore,
|H(&)] = 2|bol| cos(3w/2)].
(c) Here,
H(e™) = by + bre ™ + bpe™ 1™ 4 bge ™™ = 2bge 3312 cos(w) casiw/2)
Therefore,
[H (&7)] = 2fby]| cos(w)|| cos(w/2)]-
(d) Here,

H(e™) = by + bie ™ + bye ™% 4 bge ™7 = —2bpe ™/ sin(w) sin(w/2).

Therefore,
[H ()] = 2{bol| sin(w)]| sin(w/2)}-

The plots for the frequency response magnitudes are shown in Figure 56.48.

6.49. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain

3 9
BUe) = Zrmim v
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(d) The approximate frequency response may be expressed as

p o = S 7 1 1
H(jw) = Hi(j) - Hajw) = 350 — 1
The differential equation relating the input and cutput of the approximate system is

1 dz(t) 9
+y) = T
The magnitude of the frequency responses of the exact and approximate systems are
plotted in Figure $6.49. Clearly, they are identical for low frequencies. The step re-
sponses of the exact and approximate systems are also plotted in Figure 56.49. Clearly,
they are identical for ¢ approximately greater than 1.

dy(t)
e z().

6.50. (a) We have
Y (jw) = X (jw) H{jw) = [SGw) + W (jw)] H{jw).

Therefore,
elw) = |SGw) - Y (jw)? = [S(jw) = [S(iw) + W (jw)] H G
(b) From part (a), we obtain

efw) = |SGw)? + B (jw)|S(iw) + W(iw)|? - 2Re{ 5 (jw) [S(jw) + W (jw)] } H (jw)

= [SGw)I? + HHGw) SGw) + W ()l - 2H () [ISGw)® + RelS" (juw)W (jw)}]

Therefore,

De[w)
OH (jw)

= 2 (ju)|S(jw) + W(jw)l? - 2 [|S(w)|? + Re{ 5" ()W (1w)}]

i ’a‘ ';_. = 0, then
[iSGw) + Re{S"(jw)W (7w)}]
[SGw) + W (ju)? ‘

Note that is S{jwo) + W {jwp) = 0, then X (juwp) = 0 and ¥ (jwg) = 0 no matier what
the value of H(jwq)-

(c) 1f S(jw) and W{jw) are non-overlapping, then Re{5"(jw)W (jw)} = 0 for all w and so

H(jw) =

S 1 for W{jw) = 0,8(jw) #£0

BGw) -0
H(jw) =S mowpop =0 for W{jw) #0,5(jw) =0
0O(arbitrarily), for W(jw) = 0,8(jw) =0

Clearly, this is an ideal frequency selective filter.
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Taking the inverse Fourier transform of the pastial fraction expansion of H(jw}, we
obtain the impulse response to be

h(t) = e tu(t) — e~ "Ou(t).

Therefore, the step response is

s(t) = h(t) » u(t) = [1 —e Tt = Tlﬁ + Ilt")"-ml u(t).

The final value of this response is 9/10. Therefore, the time-constant 7 is the time at
which the response reaches 9/(10¢). Therefore,

9 ol w8
[10 ol T

is the equation that we need to solve.
(b) We may write H(jw) as

1 1
H o\ cnatil g ks i iy jw) — Halj
Guw) =17 T 105 3 Hi(jw) — Ha(juw)

Therefore, H (jw) may be viewed as the parallel interconnection shown in Figure 56.49.

D g o
.._--mut-: > X, - )

Figure S6.49

The first time constant is 7, = 1 and the second time constant is 75 = ﬁ

{c) Dominant time constant is * = 1. This approximately satisfies the equation of part

(a).
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Figure S6.51

(d) In this case,

1, <l
Hijw)=14 4 1<<2
0, |wlz2

This is as shown in Figure S6.50.
(a) We may write H(jw) as
H(jw) = Hyp(jw) * [§(w — we) + 8w + wp)],

where Hip(jw) is the frequency response of an ideal lowpass filter with cutoff frequency
%. Therefore,

A(t) = 2hip(t) cos(uwnt),

where

sin(wt/2)

hp(t) = ——L—=

1p(t) =

(b) We have

3 1 i w107
Hi(jw) = ——F and H; =
1(jw) T+i% 1 2(jw) T+ig

Therefore the Bode diagrams for these two filters are as shown in Figure S6.51.
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Figure $6.52

(c) Since H(jw) = Hi(jw)Halsw),
20logyg | (jw)] = 2010g10 | H: (jw)| + 2010810 | H2(ju)l:

Therefore, the Bode diagram for the bandpass filter is the sum of the two Bode diagrams
sketched in part (b}

6.52. (a) Since
~0.1H{jw)| £ [16Gw)} - HGw)] < 0UHG,

we have

0.9/H ()} £ 1G(w)] £ L1HGw)l.

Therefore,
0.9k} < |Gljw)} < 11w,

This is sketched in Figure 56.52.
(b) From Figure P6.52(b) we have

y(t) = 5 [ale) - st = ).

Therefore, :
Y{jw) = T [X(w) = e T X (juw)]
and
. s A
g ;%:% = %ll -7 = TE"“'T"E sin(wT/2).
Therefore, .
|Gw)| = ?lsin(wa‘l)L,
u |GGl _ |sin(wT/2)|
W WT/2
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where so(to) = A/10 and so(t1) = 9A4/10. Now,
Jim sip(t) = ll_l..'l':".lo sip(tfa) = A
We now need to find the times ¢z and ¢3 at which sip(t) is A/10 and 9A/10, respectively.

1f sip(t2) = A/10, then so(ta/a) = A/10. This implies that t2 = atg. Also, if 5{,“3.) =
9A/10, then so(ta/a) = 9A/10. This implies that t3 = at,. Therefore, the new rise-time

15 o

7l =ty tp = oty ~ to) = 87 =

We
7! is sketched in Figure S6.54 as a function of we-

L

¥

‘I/‘Tr/:ﬁll.
e

e

©
- Figure 56.54

6.55. We have

1B = I_-HS]/:-)W (56.55-1)

Also, | B(j0)[? = 1. Therefore, |B(jw,)|* = 1/2. From €q.(S6.55-1), we conclude that

N
Wy, =1 = wp = We-
We

Also, since |B(juw,)|* = 1/100, we may use €q.($6.55-1) to conclude that

w N2V 5
(") =90 = w =99
We

Therefore, the transition ratio is

Y _ (09)t/2V =~ 10V,
wp

This is sketched in Figure $6.55.

6.56. (a) The conditioning system with frequency response H)(jw) boosts the fr .
are going to be most affected by the noise. Therefore, its frequency response is chosen

to have a magnitude plot as shown in Figure 6.56(a). Therefore,
1w 2

(1 + w)z

(1 + E)

where wg = 27(5000) rad/sec and wy = 27(10000) rad/sec.

equencies that

Hiljw) =
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For |G(jw)| to be within +10% of |, we require the above ratio to be greater than
0.9. It can be easily shown that for T = 1072, the above ratio falls below 0.9 for
wT/2 = #/20, that is, w =~ 31.4 rad/sec. Therefore, the magnitude of the frequency
response of the approximate system remains within +10% of the ideal differentiator for
|lw| < 31.4 rad/sec.

6.53. If s(t) denotes the step response and h(t) the impulse response, then

IEA(t) > 0, then 24 > 0. This implies that s(t) is a monotonically non-decreasing function.

6.54. (a) The cutoff frequency 27 x 10? rad/sec in Hiy(jw) maps to the frequency we = 27 x 10%/a
rad/sec in Ho(jw). Therefore,
27 x 107
Wi

(b) We know from Table 4.1 that
Fr 1 W
z(at) «— ;X(JE)'
Therefore,
=1 W wet
o) = 2h01610) = 55t (57552
(c) We know that
€
so(t) = f ho(T)dr.
-o0

Also,
t
s1p(t) :j: hp(t)dT.

Therefore,

13
aplt) = 2 [ holr/ayer
Let v/ = 7/a. Then,
tfa
sip(t) = f holr')dr' = sq(t/a) = so(twe/(2x x 10%)).
(d) Let
tl—l»rg: a(t) = A

Then,
7 =1t —to,
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S
>

N

g * F?gur: SGE":

(b) The higher frequencies would appear boosted. This would make it sound like the
“treble” was higher.

(c) The system with frequency response Hy(jw) should undo the effects of Hy(yw). There-
fore, it has to be the inverse system of H) (jw). The Bode plot for Hz(jw) would be as
shown in Figure S6.56.

Py e

0dB ——\——
1248 |

St.un ia
i‘ig::l;néﬁjﬁ

c

Therefore,
SN2
(1+ UJ—:’)
e
(1 + ﬁ)
where wy = 2m(5000) rad/sec and w; = 2m(10000) radfsec. The input z(t) and the
output y(£) of Ha(jw) are related by the following differential equation

LAY 280y Leml), 2 o
wi dif wy dt '

Hy(jw) =

w? d? wy dt

6.57. If s{n] denotes the step response and k[n] the impulse respocse, then
hin} = s[n] — s[n - 1]-
If hln] > 0, then s[n] = s[n — 1]. This implies that s[n] is a monotonically non-decreasing
function.
6.58. (a) The sequence of operations shown in Figure 6.58(a) may be interpreted as follows:
G(e™) H(e?™) X (e7)
R(e™) Gle )H (&) = H(e ™)X (e ) H(e™)
S(E) = R{e) = HE)X (@) H(e) = Hi(e™) X (™)

n

n
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Therefore,

Hi(e¥) = H(&“)H(e ™).
If hin] is real, then H(e?) = H*(e~#*). Then
Hi(e*) = |H(E
Therefore,
hi[n) = h[r] * h{-n].
Also, )
|E ()| = [H(*)?  and  aHi(e™)=0.
(b) The sequence of operations shown in Figure 6.58(a) may be interpreted as follows:
Gle™) H(e¥)X (&)
R(e™) = X(e™)H(¥) : :
Y(e*) = G)+ R(e ) = X(¢“)H (&) + H{e )]

i

Therefore,
Hay(e™) = H{e™) + H(e™™).

If h|n) is real, then H(e™) = H* (e=7¢). Then
Hy(e) = 2Re{ H(e™)} = 2| H{e™)| cos(<H ().

Therefore, :
ha[n] = @L‘tg_{'l]

Also,
|Ha(e™) = 21H ()| cos(<H (&)

(c) The plots for |Hi(e™)] and |H, (e7)| are shown in Figure 56.58.
Clearly, Method A is preferable because the magnitude of the zero-phase filter does
not depend on the phase of hn].
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6.61. (a) We have . )
G(e) = H()H(e™) = |H{e) e .

Therefore,

1G(e™)| = [H (™).
It follows that the tolerance limits on |G(e?")] are given by
(-2 < IGENSA+a), 0Swsa
0 < [Ge™) <, wSwsT

(b) If & << 1and & << 1, then (1-&)? = 1 — 2§ and (14+6,)2 = 1+ 281 Also, 83 < &2
Therefore, the passband ripple fncreases and the stopband ripple decreases.

(c) If IV filters are cascaded, then the overall frequency response is
Gle) = IH(E,N)!NE;'NQH(J")_
Therefore, ) :
1Ge) = |H ().
The tolerance limits are now:
-6 < IGEINs+a)", 0swsw
0 < IG(E) <8, wLwsT
I£6, << 1, then (1-8)" = 1-Né and (1 +&)V = 14 N Therefore, the tolerance
limits on |G(e’¥)| are given by
1-N& < |G(E¥)|<1+N&, 0Zwsw
0 < [GE <, wlwsT
6.62. (a) From Figure P6.62(a) we have
W(e) = [2X () — X{e™}H ()] H(e™).
Therefore, "
WLe™) _ 1o goeiv ju
X(o) = [2 - H{e™)] H(&™).
Let H{e™) = 1+ 6;. Then G(e™) = 2~ 1-4]1+&]=1 ~ 8. Let H(e™) = 1 =41
Then G(e) =2~ 1+ &][1-&] =1 §3. Therefore,

Gle™) =

1-8<GE@) <1, 0ZwSu

Therefore, A = 1 — &2 and B = 1. Let H(e?¥) = —&. Then G(e’) = 2+ a0 ] =
_24y — 6. Let H(e/*) =& Then G(e/) = [2- b3)(62] = 262 — 63. Therefore,

26, - B <G S22 ~8, wSwim

Therefore, C = —2d; — 63 and D = 28 - 82
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6.59. (a) We have .
Hate’™) — H(e™)
S [halnle™™ - hlm)e™")

n==-00

S (hatn) — hinjye "

n=-00

E(e*)

It

]

It

Therefore, ¢[n] = hq[n] — h[n].

(b) Noting that E{e’) is the Fourier transform of [n], we may use Parseval’s theorem to
obtain

&= 2]—1"/::[5(:1”){2@ = 3 Jeinl

n==-00

(c) We have

i 3 lelnl?

-
[}

= Y |hdln] - hin]®
e | &

= Y lhan] - AP+ D Ihaln]® + 5 lkaln)i?
n=0 n=-00 n=N

The last two terms in the right-hand side of the above equation are constant. The
N-1

only variable term Z|h4{n] — hin){® is minimized when hq4[n] = Aln] in the range

n=0

0€EnsN-1
6.80. The development is identical to that in Problem 6.50. We have

e(e’™)

]

1$(e™) — Y(e™)?

IS(e7) — H(e™)[S(e™) + W ()]
IS + H2 ()18 () + W ()
—2H()[|S(7)]? + Re{ S ()W (e™)}]

where H(e?) is assumed to be real. With Be(e)[8H (e*) = 0, we obtain

[18(e7)? + Re{S* (e™)W (e)}] )

H(e™) = 150 + W (=)

If for some wy, S(e?0) = W (e?°) = 0, then Y (e/0) = 0 regardless of the value of H(el°).
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(b)]fél<<ta.ndig<<l.:henAz]-J},le+J‘{,Cx—zaqand.D:?,&g.
Therefore, the passband ripple is ller and the stopband ripple is larger.

(c) From part (a), we have
IG(e™)} = 12 = H()|H (™).
Since |2 — H{e/*)| €2+ |[H(e™)| and |2 — H(e?)| = 2 ~ [H(e¥)|, we may write
[2 - |H()] 1H(e™)] < G(e™) < [2+ |H )] [Hte™)|
(S6.62-1)

If H(e’) = 1, then from the above equation we obtain

1< G(e¥) £ 3.
If H{e) = 0, then from the eq. (S6.62-1) we obtain

0<Gle™) 0.

Therefore, the filter is a good approximation of a lowpass filter in the stopband. But in
the passband, for some 8{w) it is possible to obtain extremely large ripple. Therefore,
overall it is not a good approximation for a lowpass filter.

(d) In Figure P6.62(a) if we attach a N point delay to H(e), then the equivalent filter
will be a real filter that is a good approximation to a lowpass filter. We have seen that
in such a case the overall system is also a good approximation to lowpass.

6.63. (a) Let g[n} = nh[n]. Then,
o dH(E)
G(e) =3 e
Using Parseval’s theorem (an also noting that g[n] is real)
P O 2
Y ot = o [ 16
n=—00
Therefore, g
= 1 |dH(e™)
- 242001 - -
D-Znh{n]—zwk o §

n=-cc

(b) Replacing H(e?*) by |H(e™)|&® in the result of part (a),
]. G

2= 5f

Sl

o

o) dl” (e )i fi 9w ds(wj r
%) 2l | 0wy )
+ [H ()| dw

|H(e™)] o, d00) [*
—— I i duw
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Let M(w) = [H(e™)] and @(w) = =) Also note that M(w) = M(-w). M'(w) =
M'(-w) and &(v) = &'(~w). Therefore,

e f " (M) + MO + (M (w) = M ()8 (w) [} .
2x fg

Now since the integrand is positive for all w, it is sufficient to minimize the integrand
to minimize D. Therefore,

Zo (M) + MO + M) - MW} =0,

Simplifying this, we obtain
MU W) (w)=0 = &) =0
However, since 8{w) is odd, the only function that satisfies 6'(w) = 0 is 8(w) = 0

6.64. (a) From Table 5.1 we know that when a signal is real and even, then its Fourier transform
is also real and even. Therefore, using duality, we may say that if the Fourier transform
of a signal is real and even, then the signal is real and even. Therefore, hen] = holom},

By using the time shift property, we know that if H(e'¥) = H(e2%)e %M then

hn] = k,n - M].

{b) We have
RIM + 1] = A [M + n = M] = h,[n).

Also,
A[M —n] = k(M -n- M= he[-n].

Since h.[n] = h,[-n),
h[M +n] = h{M —n).

(c) Since hn] is causal, h{—kj = 0 for k > 0. But due to the symmetry property,

h{=k] = he[—k — M] = h.[k + M) = hlk + 2M).

Therefore,
hlk +2M]=0 for k > 0.

It follows that
hfn]=0 forn > 2M.

6.65. (a) We have

jwy)2 = 1 o R
I[B(e™)? = T aa(o/D) ~ oy = /).
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Figure 56.66

(d) In order for k[n] to be the impulse response of an identity system, we require that
k[n] = &[n]. From part (c), we know that

h[n] = ho[n} i 8[n - kNJ.

=-00

Therefore, the necessary and sufficient condition for h[n] to be d[n] is

holt) =  and kN =0 for k= £1,42,....
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(b) If B(e™) = acos(w/2), then
[[B(e™)* = aa® cos?(w/2).
If we want this to be the same as part (a), then aa® = 1. Therefore,
= &),

(¢} Taking the Fourier transform of the given difference equation we obtain

H(Cwl = Y(e) =a+ fe 7 = C“M-"ZIQQM /2 4 ﬁe"“""?].

X(emw)

Comparing with
; 1 1
Wy = @30} | L gusz 1 jup
Ble)=e L)e’ + 3¢ }

we find that H{e'“) = B(e/~} when

0=B=%. y=1

6.88. (a) Since hyfn] = &?2™*/Npy[n] we have
Hy(e) = Ho(e?-2mk/N)y
Below are shown the sketches of Hi(e?”) for N = 16 in Figure 56.66.

N
(b) Overall frequency response of the system is Hou(e?) = Z.Hk(ed'“). For this to b

k=0
an identity system, we require that Hoy(e) = 1 for all w. Therefore, we want th
non-zero portions of the Hy(e/“)s to be non-overlapping and yet cover the region fron
=7 to 7. We see that this is achieved by having w, = = /N.

N-1
(c) Since H,, () = ZH,‘(;J”), we have
k=0
N-1 N-1 N-i
hgyln) = th[n} = Zho[nleﬂ'"""“ = hufﬂlzﬂ"z'h’w—
k=0 k=0 k=0

Therefore,

N-1
rln] = Eeihkn,fﬂ= N, n=0,%N,+2N, ..
= 0, otherwise

00
Therefore, rn) = N Z d[n — kN] and is as sketched in Figure S6.66.

k=-o00
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Chapter 7 Answers

7.1. Fror.n the Nyquist sampling theorem, we know that only if X (jw) = 0 for |w| > wy/2 will
be signal be recoverable from its samples. Therefore, X(jw) =0 for |w] > 5000,

7.2.  From the Nyquist theorem, we know that the sampling frequency in this case must be at
least u,J= 20007. In other words, the sampling period should be at most T = 2x f(w,) =
1x 1073, Clearly, only (a) and (c) satisfy this condition.

7.3. (a) sz can easily show that X(jw) = 0 for w| > 4000x. Therefore, the Nyquist rate for

this signal is wy = 2(40007) = 8000,
(b) From Table 4.2 we know that, X (jw) is a rectangular pulse for which X(jw) = 0 for
|w| > 4000x. Therefore, the Nyquist rate for this signal is wy = 2(40007 ) = 80007.
(c) From Tables 4.1 alnd 4.2, we know that X(jw) is the convolution of two rectangular
pulses each of which is zero for {w| > 4000x. Therefore, X (ju) = 0 for jw| > BOOOT
and the Nyquist rate for this signal is wy = 2(80007) = 160007,
T4. If the signal z(z) has a Nyquist rate of wy, then its Fourier transform X(jw) = 0 for
|w| > wof2.
(a) From chapter 4,
Y8 ==2(t) +2(t - 1) ¥ Gu) = X(Gw) + e X (jus),
Clearly, we can only guarantee that Y'(jw) = 0 for lw| > wo/2. Therefore, the Nyquist
rate for y(t) is also wy.
(b) From chapter 4,
dz(t) rr

y(t) = o T YUw) = jeX (w).

Clearly, we can only guarantee that Y(jw) =0 for |uw] > wy/2. Therefore, the Nyquist
rate for y(t) is also wy.

() From chapter 4,
¥(t) = 22(t) 0 ¥ () = (1/27)[X () « X (jo).

Cleafly. We can guarantee that ¥ (jw) = 0 for lw| > wy. Therefore, the Nyquist rate for
y(t) is 2wp.
{d) From chapter 4,

¥{t) = 2(8) cos{unt) ¢ ¥ (ju) = (1/2)X (j(w - wn)) + (1/2)X (j(e + wo)}.

Clearly, we can guarantee that Y(jw) =0 for [w| > wo + wo/2. Therefore, the Nyquist
rate for y(2) is 3uwy.

260



Using Table 4.2 -

(1) €5 %’;‘ S 8w - k2n/T):

k=-00
From Table 4.1,
o0 - -] 2 B g
pe—1) & 2—;.:'3‘-' 3w k?'Tl) = 2?" T blw- k?’l)cﬂ*%.
k=-00 k=-00
Since y(2) = z(t)plt — 1), we have
Y (jw) = (1/2m)[X (Gw) * FT{plt -V}

am 3 X - kg0 E

k=—00

I}

It

Therefore, Y (jw) consists of replicas of X(jw) shifted by k2n/T and added to 2 ather
(see Figure §7.5). In order Lo recover z(t) from y(t), we need to be able Lo et one
replica of X (jw) from ¥ (jw)-

X(je)
A

e g
Figure S7.5
th-32

From the figure, it is clear that this is possible if we multiply ¥ (7w) with
RS [ & |w| € we
Hw) = { 0,  otherwise
where (wp/2) < we < (2n/T) ~ {wo/2)-
7.6. Consider the signal w(t) = zy(t)z2(t). The Fourier transform W (jw) of wit) 1 given by

W) = o= lXale) + XaGel-

Since X1(jw) = 0 for lwl Z wr and X2(w) = 0 for ko| = wa, we may conclude that
W (jw) =0 for |wl 2 w1 + w2 Consequently, the Nyquist rate for wit) is ws = Awn +w2)-
Therefore, the mazimum sampling period which would still allow w(t) to be recovered 1S
T = om/(ws) = 7/l + ws)-
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Therefore, ( /)

1 2 sin(w!

= __tJUT s\ = T2 LS

Ha(jw) T Holjw) 4 T
- 5. (a) Yes, aliasing does occur in this case. This may be easily shown by considering the
sinusoidal term of z(t) for k = 5. This term is a signal of the form y(t) = (1/23" singhat).
If z(t) is sampled as T = 0.2, then we will always be sampling y(t) at exactly its
sero-crossings (This is similar to the idea presented in Figure 7.17 of your 1exthook).
Therefore, the signal y(t) appears to be identical to the signal (1/2)® sin(0m1; @r all
time in the sampled signal. Therefore, the sinusoid y(t) of frequency 57 iy ahased into

a sinusoid of frequency 0 in the sampled signal

(b) The lowpass filter performs band limited jnterpolation on the signal £{t). But since
aliasing has already resulted in the loss of the sinusoid /2y sin(57t), the output will

be of the form
4 1 k
=) =3, (5) sin{knt).
k=0

The Fourier series representation of this signal is of the form

a 0, k=0
=3 e dETY, where ok = ik, 1Sksd
k=4 J(12)7 -4<k < -1

-9, The Fourier transform X (jw) of z(t) is as shown in Figure S7.9.

—a200 © 2000 w

[}

Figure S7.9

We know from the cesults on impulse-train sampling that

Gliu) = 3 3 XGlw—ken):

k=-00

where T = 27 fws = 1/75. Therefore, G(jw) is as shown in Figure S7.9- Clearly, GUw) =
(YT X (gw) = 75X (jw) for lwl 507.
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We note that o
zi(t) = ha(t) { Y. =(nT)é(t - .m} )

From Figure 7.7 in the textbook, we know that the output of the zero-order hold may be
written as 43
zq(t) = holt) * { S a(nT)s( »m}.

n=—0C

where ho(t) is as shown in Figure S7.7- By taking the Fourier transform of the two above
equations, we have

Xlw) = Hile)X0)

Xoljw) = Holiw)Xplsw)
We now need to determine a frequency response Hg(jw) for a filter which produces z3 (1)
at its output when zo(t) is its input. Therefore, we need

Xo(jw)Haljw) = X1(jw)-

The triangular function hy(t) may be obtained by convolving two rectangular pulses as
shown in Figure S7.7.
holt)

Y

- T T ok

Figure S7.7

Therefore,

() = {(/VThalt + T/2)} * {(1/VT)helt + T/2)}-
Taking the Fourier transform of both sides of the above equation,

Hu(Gu) = we T Holju)Holie):
Therefore,
XiGw) = Hiliw)Xele)
= LT HoGu) Holi) Xs)

- LT HAGXl)
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£.10. (a) We know that z(t) isnot a band-limited signal. Therefore, it connot undergo impulse-

train sampling without aliasing.

(b) From the given X (jw) it is clear that the signal z(t) which is bandlimited. That is,
X (juw) = 0 for |w| > wo. Therefore, it must be possible to perform impulse-train
sampling on this signal without experiencing aliasing. ‘The minimum sampling rate
required would be be w, = 2wo. This implies that the sampling period can at most be
T = 2n fw, = 7w

(c) When z(t) undergoes impulse train sampling with T = 2 fwo, We would obtain the
signal g(t) with Fourier transform

Gliw) ﬂ% T X(jw - k2w/T)).

k=-c0

This is as shown in the Figure S7.10. 2w

e

ol w w
alged
—we O We  2wg PR
Figure 57.10

It is clear from the figure that no aliasing occurs, and that X (jw) can be recover
by using a filter with frequency response
i T 0<w<w
H - s Sws
G { 0, otherwise

Therefore, the given statement is true.

7.11. We know from Section 7.4 that
. 1 &
Xq(e¥) = ik)‘_: X (jlw - 27K)(T).
= =00

(a) Since Xq(e?v) is just formed by shifting and summing replicas of X (jw), we may ar
that if Xg{e™) is real, then X (jw) must also be real.

(b) Xg4(e/) consists of replicas of X (jw) which are scaled by 1/T. Therefore, if Xal
has a maximum of 1, then X (jw) will have a maximum of T = 0.5 % 107%

(c) The region Inf4 < wl £ in the discrete-time domain corresponds to the re
37 /(4T) < jw} € /T in the continuous-time domain. Therefore, if Xqle?) = |
3n/4 < |w| < m, then X (jw) = 0 for 15007 = |w| < 20007. But since we already
X{jw) = 0 for [w| = 2000%, we have X (juw) =0 for \w| = 15007
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7.18.

T.19.

d} In this case, sipee ¥ i discrete-time frequency domain cpmspopds to _20001( in the
continuous-time frequency domain, this condition yranslates to XGw) =0 (w—2000m)).

“rom Section 7.4, W& know that the discrete and continuous-time frequencies ﬂ and w are
elated by §1 = wT. Therefore, in this case for 1= §f- we find the corresponding value of
stobew= §‘£+ — 3000x /4 = 7507

For this problem, we ust an approach similar to the one used in Example 7.2. We assume

that

= sin(nt/T) -

z(t g

The overall cutput is
sin[(x/T)( — 2T)]
= ik oA
yelt) = =t =21 ey 7}
From z(t), we obtain the corresponding discrete-time signal z4ln] to be
1
z4ln) = z(nT) = i;é[n].

Also. we obtain from yelt), the corresponding discrete-time signal yaln] to be

3} -2
yaln) = velnT) = %‘%H

We note that the right-hand side of the above equation is always zero when 7t # 2. When
n =2, we may evaluate the value of the ratio using L’ Hospital’s rule to be 1/T Therefore,

yaln = 8t =
We conclude that the impulse response of the filter is
haln] = 8ln = 2]

For this problem, we use an approach similar to the one used in Example 7.2. We assume

s o sin(xt/T)
) =—m "

The overall output is

d T, _ (x/T) cos|(n/T)(t ~ T/2)) _ asinl(x/TIE — T,'Z}]V
welt) = =~ 3= e -T/2) = — T/
From z.(t), we obtain the corresponding diserete-time signal z4fn] to be

zdn] = 2elnT) = ifﬂnl,

265

mh

~a © T
Figure §7.17

—Ar -

This is as shown in Figure S7.17.
From eq. (7.49) we know that the Fourier transform of the decimated impulse response
1s

Hy (@) = Hole")
In other words, Hy(e¥) 18 Hp(e™™) expanded by 2 factor of 2. This is as shown in the ﬁgure
above. Therefore, hyfn] = h|2n] is the impulse response of an ideal lowpass filter with a
pas:;ba.nd gain of unity and a cutofl frequency of /2.

From Figure 7.37, it is clear interpolation by & factor of 2 results in the {'{equcncy rlesporme
getting compressed by 2 factor of 2. Interpolation also results in a magmtud.? scaling by 3
factor of 2. Therefore, in this problem, the in impulse response will correspond
10 an ideal lowpass filter with cutofl frequency x/ and 3 passband gain of 2.

The Fourier transform of z{n) is given by

1,  lwlse
X@= { 0, otherwise

This is as shown in Figure S7.19. ) . :
(a) When wt < 3r/5, the Fourier transform Xy (e¥) of the output of the zero-insertion
system is 88 shown in Figure §7.19. The output wi(e™) of the lawx?ass f;lte: is as
shown in Figure §7.19. The Fourier transform of the output of the decimation system
y (&™) is an expanded of stretched out version of W (&), This is as shown In Figure
§7.19.
Therefore, : sin(&mn;'i!)
) = 3 .

yiﬂ nn

(b) When w1 > 3x/5, the Fourier transform X (e) of the output of the zero-':nsel:t.ion-
system is a8 shown in Figure 57.19. The output W(ev) of the lowpass filter 3§ A%

shown in Figure §7.19.
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Also, we obtain from yc(t), the corresponding discrete-time signal yqln] to be

(x/T) coslx(n — 1/2)) _ sin[x(n — 1/2))

ydln] = velnT) = 172 e TPV

The first term in the right-hand side of the above equation is always zero because cos{r(n~

1/2)) = 0. Therefore,
Y, sin[x(n ~ 1/2)]
wle) = ~SgE =107
We conclude that the impulse response of the filter is
s _sin[r(n -1/2))
haln) = =@ - 1727

7.15. In this problem we aré interested in the lowest rate which z{n] may be sampled without the
possibility of aliasing. We use the approach used in Example 7.4 to solve this problem. To
find the lowest rate at which z[n] may be sampled while avoiding the possibility of aliasing,

we must find an N such that

2% In S
L2l — &=
N"Q(T):}N‘S'

Therefore, N can at most be 2.

7.16. Although the signal z1[n] = 2sin{wn/2)/(7n) satisfies the first two conditions. it does
not satisfy the third condition. This is because the Fourier transform X, (&) of this
signal is 8 rectangular pulse which is zero for /2 < jw| < ©/2 We also note that the

signal z[n] = 4[sin{mn/2)/ (wn)]? satisfies the first two conditions. From our nUmMerous
encounters with this signal, we koow that its Fourier transform X (e7%) is given by the
periodic convolution of X 1 () with itself. Therefore, X (i) willbe a triangular function
in the range 0 < | € = This obviously satisfies the third condition as well. Therefore,

the desired sigoal is z{n] = 4[si1\(’rn,'2),'(wn)]".

7.17. In this problem, we wish to determine the effect of decimating the impulse response of the
given filter by a factor of 2. As explained in Section 7.5.2, the process of decimation may
be broken up into two steps. In the first step we perform impulse train sampling on h(n]

to obtain

hpln] = 5_: A[2KkY6[n — 2K]-

k=-o0

The decimated sequence is then obtained using
hy[n] = hi2n] = hyl2n).
Using eq. (7.37), we obtain the Fourier transform Hy(e™) of hy[n] to be

Hyle) = Q/DHE) + (/D HE™):
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by |, Figure S7.19
£

The Fourier transform of the output of the decimation system Y (&%) is an exp2
or stretched out version of W(eM). This is as shown in Figure 57.19. Therefore,

yinl = 136[!1].

7.20. (a) Suppose that X(e3) is as shown in Figure $7.18, then the Fourier transform X
of the output of 5.4, the Fourier transform X 1(e?*) of the output of the lowpass
and the Fourier transform Xp(e™) of the output of S are all shown it the

below. Clearly this system accomplishes the fltering task.
Xk

X df_““\)

p A ;
1 e
Joe o
A
Xgle)
w
~wy | Wy Figure S7.20 3 '

— 4, ° [T

(b) Suppose that X (&) is as shown in Figure §7.20, then the Fourier transform
of the output of S5, the Fourier transform X, (e*) of the output of the firs
filter, the Fourier transform X Ale?) of the output of Sa, the Fourier transforr
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of the output of the first lowpass filter are all shown in the figures below. Clearly this
system does not accomplish the filtering task.

- 21. (a) The Nyquist rate for the given signal is 2 x 50007 = 10000x. Therefore, in order to be
able to recover z(t) from zp(t), the sampling period must at most be Tmaz = iﬁ%@}‘ =
2 x 10~ sec. Since the sampling period used is T = 10* < Tz, () can be recovered
from zy(t).
(b) The Nyquist rate for the given signal is 2 x 150007 = 300007. Therefore, in order to be
able to recover z(t) from zp(t), the sampling period must at most be Traz = 555507 =
0.66 x 10~* sec. Since the sampling period used is T = 10~* > Tmaz, 2(t) cannot b
recovered from z,(t).
(c) Here, Zm{X (jw)} is not specified. Therefore, the Nyquist rate for the signal z(t) is
indeterminate. This implies that one cannot guarantee that z(t) would be recoverable
from z,(t).
(d) Since z(t) is real, we may conclude that X (jw) = 0 for fw| > 5000. Therefore, the
answer to this part is identical to that of part (a).
(e) Since z(t) is real, X (jw) = 0 for Jw| > 150007, Therefore, the answer to this part is
identical to that of part (b).
If X (jw) = O for jw| > wy, then X (jw)*X (jw) = 0 for |w| > Zun. Therefore, in this part,
X (jw) = 0 for |w| > 7500w. The Nyquist rate for this signal is 2 x 7500 = 15000
Therefore, in order to be able to recover z(t) from z,(t}, the sampling period must
at most be Tmes = sligs = 133 % 107* sec. Since the sampling period used is
T = 10~ < Tinaz, Z(t) can be recovered from zy(t).
(g) If |X (jw)| = 0 for w > 50007, then X(jw) = 0 for w > 5000x. Therefore, the answer
to this part is identical to the answer of part (a).

(f

+.22. Using the properties of the Fourier transform, we obtain
Y (jw) = X1(jw) Xz2(jw).

Therefore, ¥V (jw) = 0 for |w| > 10007. This implies that the Nyquist rate for y(t) 18
2 % 10007 = 20007. Therefore, the sampling period T' can at most be 27/(2000x) = 1077
sec. Therefore we have to use ' < 1072 sec in order to be able to recover y(t) from y,(t}.

7.23. (a) We may express p(t) as
plt) = p(t) —mlt - &),

where pi(t) = 3 (t— k24A). Now,

k=<=00
.D.[ju):-g 3 4w - w/A).
k=-o0
Therefore, :
P(jw) = Pyljw) = e 2 Pi(jw)
269
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Figure 57.24

Clearly, S(jw) consists of impulses spaced every 2n/T.
(a) If A =T/3, then

s = ¥ iiiﬂ(ui"—”ﬁagu — k2 /T) — 2mb(w).

k=—00
Now, since w(t) = s{t)z(t),

W(jw) = % o ﬂ%ﬂ)ﬂj(u — k27 /T)) - 22 X (ju).

Therefore, W {jw) consists of replicas of X (jw) which are spaced 27 /T apart. [n order
to avoid aliasing, wp should be less that w/T". Therefore, Tmar = T/wat.
(b) If A = T/3, then

o
. 4sin(27k/4
Sgw = 3 S‘—“(k"ﬁa(w — k22/T) — 2rélw).
k==-oc
We note that S(jw) = 0 for k = 0,£2,%4,---. This is as sketched in Figure S7.24
Therefore, the replicas of X (jw) in W (jw) are now spaced 4n (T apart. In order to
avoid aliasing, was should be less that 2a/T. Therefore, Tmaz = 2 fwm.

7.25. Here, z,(kT) can be written as

o . k i
2, (kT) = n;ﬁr(nT)%‘rﬂ,

Note that when n # k,
sinfr(k — n)l _

w(k—n) O
and when n = &,
sinfr(k —n)] _ "

alk —m)
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Figure S7.23

is as shown in Figure §7.23.
Now,
] 1 ;
Xp(iw) = 5= [X(Gw) * Plaw).-

Therefore, X,(jw) is as sketched below for A < 7/(2wpr). The corresponding Y (ju) is

also sketched in Figure 57.23.
{b) The system which can be used to recover z(t) from z,(t) is as shown in Figure $7.23.
{¢) The system which can be used to recover z(t) from z(t) is as shown in Figure S7.23.
(d) We see from the figures sketched in part (a) that aliasing is avoided when wy < /A,

Therefore, Amaz = 7fwps.

7.24. We may express s{t) as s{t) = §(t) — 1, where 5{t) is as shown in Figure S7.24.
‘We may easily show that

SGwy= 3 93‘{3—?9—/-36(‘»—#27/2*).
k=-~co

From this, we obtain

S(jw) = Sljw) - 2mblw) = 3 w — k2n/T) — 2ré(w).

k=—00

4sin(2rkA/T)
k 8
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Therefore,
z,(kT) = z(kT).

7.26. We note that

Pljw) = ?,I—,Tzé(u — k2w [T}.

Also, since 2,(t) = z(t)p(t),

Xp{jw}

S X (w) s P))
- ;:X{j(u — k2n/T)).

This is sketched in Figure S7.26.
O

-umy -y o 2y Gy

DA
A =
oo N/l M o Tty dor T

-4 o 5 s & Figure S7.26
==y
hNote that as T increases, 17’5- — wy approaches zero. Also, we note that there is aliasing
when

2
2“’1"“’2<%—W2<u)'}_‘

If 2wy — w > 0 (as given) then it is easy to see that aliasing does not occur when
2
0= —% —wp S 2wy —wy.

For maximum T, we must choose the minimum allowable value for 2% — w; (which is zero}.
‘This implies that T, =2 ] i in Fig

is implies ‘maz = 2 Jwy. We plot X, (jw) for this case in Figure S7.26. Therefore,
A=T,uw=2n/T, and w, = wp — w.

7.27. (a) Let X,(jw) denote the Fourier transform of the signal z,(t) obtained by multiplying

z{t) with e~7“o! Let X,(jw) be the Fourier transform of the signal z,(t) obtained at
the output of the lowpass filter. Then, X (jw), X2(jw), and Xp(jw) are as shown in
Figure 57.27.

(b) The Nyquist rate for the signal zo(t) is 2 x (w2 — w))/2 = wy — w1, Therefore, the
sampling period T must be at most 27 /(wy — w)) in order to avoid aliasing
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() A system that can be used to recover 2(t) from z,(t) is shown in Figure §7.27. {b) The Fourier series coeffici £ zfn]
ies coefficients of z[n| are
7.28. (a) The fundamental frequency of z(t) is 207 rad/sec. From Chapter 4 we know that the
Fourier transform of z(t) is given by . { ?5 {%]:ﬂ. k=0,£1,42,--- ,49
o ’F (5) ' k=10
X (jw) = 2m ;m“*“(“’ - 20mk). 7.29. From Section 7.1.1 we know that
This is as sketched below. The Fourier transform X (jw) of the signal z.(t) is also Xpljw _
sketched in Figure §7.28. P k_z_:mX(J w = k2n/T)).
Note that 1
X(e™), Y (&), Yp(jw), and Ye(j in Fi
Plw) = m e Z S — 2k /(5 x 10-%) . B (iw) e(jw) are as shown in Figure 57.29.
7.30. (a) Since z.(t} = 4(¢), we have
dy.(t
and o 1 _ , ydt( L sty = o)
plaw) = o= {X,(Jw) + P(ju)]- Taking the Fourier transform we obtain
Therefore, Xp(jw) is as shown in the F:gu:e §7.28. Note that the impulses from adjacent . ) )
replicas of X (jw) add up at 200m. Now the Fourier transform X (e?) of the sequence Jw¥Y (jw) + Y (jw) = 1.
z([n) is given by i ( Therefore,
= X, (3w, —qr-
() pld )Iu_n'r Ye(jw) = .;_‘ and ve(t) = et (t)
Jw+1 i ol

This is as shown in the Figure §7.28.
Since the impulses in X (¢7*) are located at mulhples of a 0.1, the signal x(n] is
periodic. The fundamental period is 27/(0.17) =

(b) Since y(t) = e~*u(?),
y[n] = ye(nT) = e T u(n].

Therefore,
1
V(') = —e—
(@) 1-eTew’
213
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Kp(l'u) I{JW)_TPUNH) for —x € Q £ x. From this we get
- : 1 1
Jadiin'y /\4 /\ o o o V(o) = V() == P
) “m.' }n '"w‘ . ™ e _ H
" for —=x/T < w < = /T. In this range, ¥ (jw) = Yc(jw). Therefore,
Tte™): w—: A xpg,...\ (ol
Hoj YC(J“’) YT
2 cwh = % 5 —F
ﬂ ) 1- gt
—an 5 W, am —4mw“ 44’:;9* en
7.32. Let pln ): 8[n — 1 — 4k]. Then from Chapter 5,

k=00

T gu = Tl #Ged
Ple) = e Z 8w - 2rk/d) = = Z eI (s 2k [4).

} T o t-—oo .L»—m
"%m" tﬂ'/,#s‘ Therefore,
Gle™) = zi f P(e??) X (/=) d8
T ew
) 3
Figure S7.29 &= %Ze'ﬂ"*"‘x(eﬂ“"?*‘-"‘))
k=0
Also, . w
s Wi 1 o alnthd Since X (™) = 0 for /4 < |w| < 7, G(e’¥) is as shown in Figure S7.32.
()= Fiom " —eTem ¢ " ; 2
Therefore, /\ /\
hn]:&n—e'Tén—l. T .
o) = 8fr] - <75l = 1) 0% R e —,

7.31. In this problem for the sake of clarity we will use the variable {2 to denote discrete frequency.

Taking the Fourier transform of both sides of the given difference equation we ublain

i,
o - L0 ] N AYASAVATAVL VAV

FX@E 1= e s bt
G g i ¢ o am
Given that the sampling rate is greater than the Nyquist rate, we have
Figure $7.32

X&) = %Xc(jﬂ,'T). for-m<Q < .
Clearly, in order to isolate just X(e’) we need to use an ideal lowpass filter with cutoff

Therefore, frequency /4 and passband gain of 4. Therefore, in the range |w| <,

: L X (i)
Yt = T 4,  |w)<w/4
= He={5 h<lien
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o0
733 Letyln] = z[n] 3~ é[n - 3k). Then

k=-00

3
el o
Y (e =3§ X (e7=2ek/3))

k=0

Note that sin(rn/3)/(xn/3) is the impulse response of an ideal lowpass filter with cutoff
frequency =/3 and passband gain of 3. Therefore, we now require that y[n] when passed
through this filter should yield z[n]. Therefore, the replicas of X(e’) contained in Y (e2)
should not overlap with one another. This is possible only if X (e*) = 0 for 7/3 < lw] < 7

7.34. In order to make X (efv) occupy the entire region from —7 to m, the signal z[n] must be
downsampled by a factor of 14/3. Since it is not possible to directly downsample by a non-
integer factor, we first upsample the signal by a factor of 3. Therefore, after the upsampling
we will need to reduce the sampling rate by 14/3 x 3 = 14. Therefore, the overall system
for performing the sampling rate conversion is shown in Figure $7.34

Zevo - ,\ e
——3 Tnterkion (vl _QL:L Pay ] Décdmalion il
w{n] LT |

*[g), m=0,23, ¢,
Figure S7.34

wfn) e 4lnl= plign)

0, ofkawise

7.35. (a} The signals z,[n] and zqfn] are sketched in Figure §7.35.
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This may be written as
9(t) = ap(t) + by (t - A).

Therefore,
Gliw) = (a + be~IwA) py (jw),

with P (jw) is specified in eq. (S7.37-1). Therefore,
o0
GUw) =W 3~ [a+be W51 - kW),
k=-00

We now have
i) = z(t)p(e) £ ).
Therefore,
Yilw) = 5 (Gliw) + X (Gu)-
This gives us
W& —IKAWY yp
Yiiw) = 32 37 la+ be MaW)x (j(u — kW)
k=-oo

In the range 0 < w < W, we may specify ¥, (jw) as
Yi(jw) = g (e + )X (jw) + (a + be AW X (jlw - W)
Since Ya(jw) = Y (jw)H, (jw), in the range 0 < w < W we may specify ¥;(jw) as
Vi) = B2 [(a+ 51X (o) + (0 + be™4%) x (0 - ).
Since ya(t) = z(t)p(t), in the range 0 < w < W we may specify ¥3(jw) as
Yalju) = g (2X ) + (14 e72%) X (it = W)

Given that 0 < WA < 7, we require that ¥z(jw) + V3(jw) = KX{(jw) for 0 < w < W.
That is,

%’ [(2 + ja + 76} X (jw)] + 25; [(1 4+ e778W 4 4o +3beT I8 X (j(w - W))] = K X (jw).

This implies that
L4 e78% 4 ja 4 jbe=18W _ g

Solving this we obtain
a=1, b= -1,

when WA = /2. More generally, we get

(1 + cos(WA)) _Ll+cos(Wa)
tan(WA) sin(WA)

except when WA = /2. Figally, we also get K = $3{1/(2 + je + 7b)].

a =sin(WA) + and b=
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7.36.

7.37.

7.38.

(b) Xp(e’~) and X(e?”) are sketched in Figure §7.35.
(a) Let us denote the sampled signal by Zp(t). We have

(1) = i z(nT)d(t — nT).

n=—o0

Since the Nyquist rate for the signal z(t) is 2x /T, we can reconstruct the sign:
zp(t). From Section 7.2, we know that

(1) = zy(¢) x h(t),

where
_ sin(xt/T)
e T
Therefore,
dz(t dh(t
-d+]- = zp(t) » ‘%
Denoting %Eﬂ by g(t), we have
dz(t -
Tﬁl =zp(t) 2 g(t) = 3 z(nT)g(t - nT)
n==00
Therefore,
_ dA(t) _ cos(mt/T Tsin(nt/T)
glt) = —= = = E
t t mt2
{b) No.
We may write p(t) as
Pt} = py(t) + py(t - A),
where
mt) = 3" dte - 2ek/w)
k=—00
Therefore,
Pliw) = (1 + e=18«) p, (w),
where
Pw) =W 3" §tw - kw). (87.37.
k=-oo

Let us denote the product p()f(2) by g(t). Then,

9(t) = P F() = pr (&) 7 () + py (2 - B)f().
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Figure §7.38

The Fourier transforms X(jw), P(jw), and ¥ (jw) are as shown in Figure S7.38
Clearly, we cannot have A = 0. Also, from the figures above it is clear that we require
2rA 1
TT+8) = 3T + &)
This implies that
A

In
ql

Also from the figures, it is clear that

W TS _ &

E T+a°

(2) Using Trigonometric identities,
wy 2 Wy L[y i
cos ( 2 1 +¢) = cos (?t) cos(¢) — sm(it) sin(g).
Therefore,
w,
t) = —sin[ == i
a(t) sin ( > t) sin(g).

(b) By replacing w, with 2n/T, and t by NT in the above equation, we get

9(nT) = —gin (227-;!17‘) sin(g)
= —sin(nn)sin(g).
Clearly, the right-hand side of the above equation is zero for 5 = 0,1, +2,-..
(¢) From parts (a) and (b), we get

oo

nlt)= 3 z(nT)é(t ~nT) = i J(tknT){ms (%ni") cos(¢) +g(nT)}

n=—og n=-o0

= Z 4(t - nT) cos (?n?‘) cos{¢)

n=—o0

280



When this signal is passed through a lowpass filter, we are in effect performing
band-limited interpolation. This results in the signal

y(t) = cos (St) cos(9)-

7 40. (a) The Fourier transform V(jw) is 2s shown in Figure 57.40. Ild'“\

aedt Vi rdt
@ q 1 o @ ) B
- ° Py _yf ..,;[,o i @
wel? Rigwy b
., med
ot Td T 1

-3 -wr 30y
it rradd] m.reﬁ-

(A 1. T ‘L\“"t T_,__..—-.m—f* 1 G

—upd -l -broi 20T 10 Il
B Y el —= s FILTER
O % I S
) —ner —ooe L e mn 2
Figure S7.40

(b) The Fourier transform I{jw) is

o
I(jw) = ?,I—’,' T bw - 20k/T).
k==-0c0
This is as shown in Figure 57.40.
(¢) The Nyquist rate for v(t) is 2wo. Therefore,
o
Ties:

The cutof frequency of the lowpass filter has to be wp-

k.
Tmez = —-
=2uwy = o

(d) Now, =
11
jw) = == i(w — 2mk/T)).
Rjw) = o 3 VG0 = 2mk/T)
Since wo = 2w(60) rad/sec, we have 27 /T = 1207 + 207 = 1407 Therefore. R(jw) is

as shown in Figure S7.40.
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(c) We require a T which avoids aliasing. Therefore, T < 7 fwag. We also require that

1
Hegliw) = s ooy "WM SW <wy.
But,
A T T
HW[JW)=¥H(¢J“’TL -7 fwsg

For these to be consistent, we need A = T and
L3 B R e T
e )= 1+ ae~T/To

for -x < Q<.
7.42. In this problem, to avoid confusion we use the variable 0 to indicate discrete-time frequency.
Using Parseval’s theorem and the fact that X (jw) = 0 for Jw] = wp, we get

= 2 e 2
Eo= [ mota = o [ 1xeGu)Pas
oo LI
Also, using Parseval's theorem we have

Es= Eirn] =_f X (e5?)2d0.

n=—co

But since X (e7?) = ;.XE(JQIT) for —m < ) < 7, we may write
Ba= —— [ x.oymide
4= gz | X L/TI AR

Replacing Q/T by w, we get
R
27T JowT
Also, since 2m/T > 2wy, we may rewrite the above equation as

1 o
Ba=gap [ WeliolPdo = 25

7.43. Throughout this problem, to avoid confusion we use the variable §2 to indicate discrete-time
frequency.
“Taking the Fourier transform of both sides of the given differential equation, we get

Ye(yw) _ 1
Xc(jw) —w?+4jw+3d

H(jw) =
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Therefore, vy(t) obtained by passing r(t) through a lowpass filter with cutofl fre-
quency 2x(20) rad/sec is
v,(t) = %ws(i&(}xl - ¢)-

Therefore,
wg =20m,  ¢a = -9, and A, = 7

(e) Here, 2r/T = 120 — 20x = 100x. Therefore, R(jw) is as shown in Figure §7.40.
It follows that
v,(t) = = ws(Zﬂﬂt + ).

and :
we=20m, ¢,=¢, and A":T'

7.41. In this problem, to avoid confusion we use the variable € to indicate discrete-time fre-
quency.

(a) The Nyquist rate for the signal z(t) is 2was. Therefore, the sampling theorem states
that z(2) has to be sampled at least every 7 /wp. In this part, T < 7 /wy. Therefore,
ve(t) will be equal to x(t) as long as y[n] = z[n]. Now,

sln] = z(nTp) + az(nTo = To)
= z[n] +azfn - 1]

Therefore, if we require y[n] = z[n] then,

Y (). - X (") it
5(@T) ~ X(e’) + ae X () 1+ ae

HE@™ =
Therefore, the difference equation for the filter hfn] is
yn] + ayn - 1] = sin].
(b) From Figures P7.41(a) and (b), we have
Helie) = ZHET), (s741-1)

where He,(jw) is the system response of the overall continuous-time system. Since we
require that y.(t) = z(t),

gors s Y. (jw) ” 1
Heq(jw) = o)~ TTac R (87.41-2)

Comparing this with eq.(S7.41-1), we get A = Tp.
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Taking the inverse Fourier transform of the partial fraction expansion of H(jw), we obtain
h(t) = —e-‘um - —e-ﬂ‘um

Now, z,(t) = 3 z{n)é{t — nT). Therefore, X, (jw) = X (e/T). Also,

n=-00
X (jw) = TXp(jw) =TX(e™7) for —-7/T<w<w/T
and 0 otherwise. From this we get
Yiljw) = HG)TX{ET)  for  —n/T<w<=/T
and 0 otherwise. Then, one period of Yp(jw) may be specified as

Y, (jw) = %Yc(jw} = H{jw)X(eT) for —1/T <w<m/T

Therefore, one period of Y (¢'?) is
Y(e®) = X(NHGEQYT), for —-m<Q<m
Denoting the frequency response of the equivalent system, by H{e’), we have
H{e™) = HGQYT), for—m<Q<m

Note that H(e’”) represents the Fourier transform of the sequence h[n] obtained by low-
pass filtering A(t) (with a filter of cutoff frequency m/T’) and sampling the result every T
Therefore,

R R I T N e =

7.44. (a) We have

wp(t) = i cos (2‘,’;—") §(t - kT).

k=—0co

If wy = 2x/NT, then

S cos(wokT)4(t — kT)

wit) =
k=—0c
= E cos(wot)é(t — kT)
k=—00
= cos(wgt) 3 &(t = kT).
k=-c0
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Let the range of T be Tinin < T € Tinar. Then with T, we want to obtain
the smallest frequency w; and with Tpn,z, we want to obtain the largest frequency wy.
Therefore,
27 2w

Toms = N and Tm=m-

(b) Let c(t) = cos(wot) and p(t) = Y &(t - kT}. Then

k=—o0
Yolje) = 5 [Cljw) » Piw).

This is as shown in Figure S7.44.

Tpgw)
(I 1 o et |
_'_g — . '3 ':-’ﬁ%‘ﬂ; - é‘rg_:'b:
Figure S7.44

(¢) To avoid aliasing in Y (jw), we require that 2wy < 2x/T. Therefore, 47 /NT < 27/T.
This implies that N > 2. Therefore, the minimum value of N is 3. By inspection of
¥ (7w), we obtain ws < we < 47/(3T). This keeps the sinusoid at frequency wp while
rejecting contributions from cosines centered around 2x/T and —2x/T.

(d) We have

—we Sw S w

Glw) ={ arbitrary,  otherwise

7.45. (a) The Nyquist rate for the signal z.(¢} is 4r x 10%. Therefore, the maximum value of T'
that can be used to sample z.(t) is
2

= —— -5
Tm_4xx10‘ S
(b) We have
n oo
yn) =T Y z[k] =T ¥ z(kuln - k] = T{zn} » uln)}.
k=-00 k==-00
Therefore,
hin] = Tuln].
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Figure S7.47

In order to be able to recover z[n] from zp[r], it is clear that we need to pass 7,[n]
through a lowpass filter with cutoff frequency 7 /3 and passband gain 3. Therefore,

3sin(mn/3)

sln) = mpln)e 2T

= 3sin(nn/3)

= {*gw.-:[sk]&[n =}
- sin[r(n - 3k)/3]
= Y =T 5

k==00

7.48. In Figure 87.49, we plot the signal cos{mn/4).

™ T e 1L
T

Figure S7.48

Note that the signal g[n] contains every fourth sample of z[n]. If the signal r[n] were
cos|r(n +2)/4} (see Figure $7.48), then g[n] would be zero for all n. Therefore, there would
be no way of recovering z{n] from g[n]. Therefore, ¢ should never be = /2 in order for the

given equation to be true.

7.49. (a) Let the signals z4,[n] and z4,[n] be inputs to system A. Let the corresponding outputs
be z,,[n] and z,,[n]. Now, consider an input of the form zg,[n] = ayz4,[r] + az74[n]-
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() We have
Jim yln] = Hm T 3~ k] = TX(eP).

k=—c0
Also,
rl_':‘l:cn‘l"zp(t) = X¢(50).

Therefore, eq. (P7.45-2) requires that
TX(%) = X(50).

Now,

X(e™) = X, (juw/T)
and
- 1 ‘
Xp(w) = Tkgz_jmxct;(u = 2k/T)).
To avoid aliasing at w = 0 in X,(w), we require that (27/T) > 27 x 10° This implies
that T < 107*. With this condition,
X(&°) = (1/T)X,(50).

7.46. We have

= N sinfwe(mN - kN))
[mN] = Mo e L i
w=iadl t:Z_:I*N] 2w mN —kN)

]

il sin 2m(m — k)
> lkn) In(m = K)

k=-c0
Note that [sin[27(m — k)])/[27(m - k)] is 1 when m = k, and zero otherwise Therefore.
zr[mN] = z[mN).
7.47. Let us define a signal
oo el
zp[n] = z[n] z &fn — 3k] = Z z[3k)é[n — 3k].
k=-00 k=-00

From Section 7.5.1, we know that the Fourier transform of zp[n] is
12
X, (™) = & (w—27/3)
Nk Rt

Since X (e?*) = 0 for n/3 < jw| < «, there is no aliasing among the replicas of X (¢7%) in
Xp(e?). This is shown in the Figure §7.47.
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This gives an output which is

Epl] = a1 Z4, [n/N] + agzqy [n/N], n=0+N, 2N,
o 0, otherwise ;

Therefore, 2, [n] = ayz,, ] + @22y, [n]. This implies that the system is linear.

(b) Let us consider a signal z4[n] as shown in Figure $7.49. The output of the system
Zy[n] is then as -ahown in the figure. Let us now define a new input Z4,[n] = z4ln - 1]
The corresponding output z,, [n] is shown in the Figure $7.49. Clearly, z,, [n] # z,[n).
Therefore, the system in not time invariant.

(¢) We have X,(e?) = Xy(e’*¥). This is as shown in Figure S7.49.

(n
o ?lt ) a np [n) xp, fl\] '# 1-,;[“- I:]
. P o o g o
e 1 2 P 4 7 =5 A l
Xp(éj“] ELFW)
AN
—_5 o % -4 ! “73
Figure S7.49

(d) X(e?) is as sketched in Figure $7.49.

7.50. (a) We have
hofn] = ufn] — u[n — N].

This is as shown in the Figure $7.50,

s

o N-|

Figure S7.50
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(b) We require that H(e)Ho(e?) = N for Juw| < w,/2 and zero otherwise. Here. w,/2 =

#/N. But
b 1~ el
Hole™) = T 5o
Therefore, 7
o ond=is TN
”“‘”"{o,' T emseise
{c) We have

el = 7y thafn] + Bo[—n)-

(d) Again we have H(e') = N/H (") for |w] < 7/N and zero otherwise. But from part

2 H() = (1/NY) Hole ).

Therefore,
i

2 | L=
H(e) = { g’ |T-_e'_"“'

' Wl<w/N ,
(x/N) Sl < 7

(a) This is possible only of h{kL] = 0 for k = £1,%2,-- and A[0] = 1.

(b) N must be odd. In this case, & is an integer. If IV is even, « is not an in?eg.er.‘ If o were
an integer, shifting h[n] by a would make h[r] an even sequence. This is impossible
with N even.

(¢} N can be odd or even. This time, « is allowed to be fractional, Thus, an even length
filter can be designed which is a linear-phase causal symmetric FIR filter.

v.51,

7.52. (a) Since,

X(jw) = X (jw)P(jw),

we have

Z(t) = =(t) « p(t).
(b) Taking the inverse Fourier transform of P(jw), we have
1 o ( 21rk)
t) = — f{t—-—1.
(1) "’%;z_:m T
From part (a), we have

(t) p(e) + =(t)

1 = ( 2%k
—_— r|t—-—
et B4 gt

k==o00

I
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Chapter 8 Answers 8.4.

8.1. Using Table 4.1, take the inverse Fourier transform of ¥ (j{w —wc)). This gives
y(t) = 2z(t)el".
Therefore, .
m(t) = 2/t
2.2, (a) The Fourier transform Y (jw) of y(t) is given by
Y (jw) = X (§{w — we))-
Clearly ¥ (jw) is just a shifted version of X (jw). Therefore, z{t) may be recovered
from y(t) simply by multiplying y(t) by e™?“<'. There is no constraint that needs to be

placed on w, to ensure that z(t) is recoverable from y(t). 8.5.

(b) We know that
u(t) = Re{y(t)} = z(t) cos(wct).
The Fourier transform Y;(jw) of y1(t) is as shown in Figure 58.2

Yiliu) = SX (i = ) + XUl + )

1)
Klglewwe))
4 q/xu'tm- wd)

™
d B oM

g 000 T

=y

-WetieeoTl
Figure S8.2

If we want to prevent the two shifted replicas of ¥ (jw) from overlapping, then we
need to ensure that Juwc| > 10007,
8.2  When g{t) is multiplied by cos(20002), the output will be
1 5
7, (t) = g(t) cos(2000xt) = z{t) sin(2000m1) cos(2000rt) = iz(tlsm[wﬁﬂm).
The Fourier transform of this signal is
1
4
This implies that X (jw) is zero for jw| < 2000w. When y(t) is passed through a lowpass
filter with cutoft frequency 2000w, the output will clearly be zero. Therefore y(t) = 0.

Xy (jw) = X (j{w - 4000m)) - z%xu(w +40007)).
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Figure 57.52 > Aliasing’

Noting that z(t) is time-limited so that x{t} = 0 for [¢| > 7/wp, we assume that z(t) is
as shown in Figure $7.52. Then, #() is as shown in the figure below. Clearly, z(t) can
be recovered from Z(t) by multiplying it with the function
_[wo, S m/wg
wit) = { 0, otherwise

(c) If z{t) is not constrained to be zero for {t| > #/wy, then Z(t) is as shown in Figure
§7.52. Clearly, there is “time-domain aliasing” between the replicas of z(t) in Z(t).
Therefore, z(t) cannot be recovered from Z(t).

POWEREN.IR
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Consider the signal
¥(t) = g(t)sin(400xe)

= sin(200xt) sin®(400xt) + 2sin’(400xt)

= sin(200mt)[(1 — cos(800mt))/2] + 2sin(400xt)((1 — cos(800x1)/2]

= (1/2)sin(2007t) — (1/4){sin{10007t) — sin(600mt)}

+sin{4007t) — (1/2){sin(1200xt) — sin(400mt)}
If this signal is passed through a lowpass filter with cutoff frequency 400x, then the output
will be
w1 (t) = sin(200mt).

The signal z(t) is as shown in the Figure 58.5.

(k)
S .
4 ~—" o \/[-\\ £2
g A e Enrelope of wW(t)
A
7 4

Figure 58.5

The envelope of the signal w(t) is as shown in the Figure 58.5. Clearly. is we want
to use asynchronous demodulation to recover the signal z(t), we need to ensure that 4 is
greater than the height h of the highest sidelobe (see Figure $8.5). Let us now determine
the height of the highest sidelobe. The first zero-crossing of the signal z(t) occurs at time
1p such that

10007ty =7, * = o= 1/1000.
Similarly, the second zero-crossing happens at time ¢; such that
10007ty = 27, = t; = 2/1000.

The highest sidelobe occurs at time (fo + £1)/2, that is, at time 2; = 3/2000. At this time,
the amplitude of the signal z(t) is
sin(37/2) 2000
ty) = ——— = ———.
=(t2) = =75 2000 3
Therefore, A should at least be % The modulation index corresponding to the smallest
permissible value of A is

Max. value of z(t) 1000 3

™ = Min. possible value ofA  2000/3% 2
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8.6. Let us denote the Fourier transform of sin(wct)/(xt) by H(jw). This will be a rl‘ftanglflaf
pulse which is nonzero only in the range |w| < w.. Taking the Fourier transfors: of the first
equation given in the problem, we have

Gljw) = FT{z(t)cos(w.t)} — FT{z(t) cos{wet) } H (jw)
= FT{z(t)cos(wt)}{1 — H{jw)}
= (1/2) [X((w - we)) + X (Glw +we))] {E = H{jw)}
G({jw) is as shown in Figur