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Chapter 1 

Basic Concepts 

1.1 General 

Modern power systems are characterized by extensive system interconnections 
and increasing dependence on control for optimum utilization of existing re­
sources. The supply of reliable and economic electric energy is a major deter­
minant of industrial progress and consequent rise in the standard of living. The 
increasing demand for electric power coupled with resource and environmental 
constraints pose several challenges to system planners. The generation may have 
to be sited at locations far away from load centres (to exploit the advantages of 
remote hydro power and pit head generation using fossil fuels). However, con­
straints on right of way lead to overloading of existing transmission lines and an 
impetus to seek technological solutions for exploiting the high thermal loading 
limits of EHV lines [1]. With deregulation of power supply utilities, there is a 
tendency to view the power networks as highways for transmitting electric power 
from wherever it is available to places where required, depending on the pricing 
that varies with time of the day. 

Power system dynamics has an important bearing on the satisfactory 
system operation. It is influenced by the dynamics of the system components 
such as generators, transmission lines, loads and other control equipment (HVDe 
and SVC controllers). The dynamic behaviour of power systems can be quite 
complex and a good understanding is essential for proper system planning and 
secure operation. 

1.2 Power System Stability 

Stability of power systems has been and continues to be of major concern in 
system operation [2-7]. This arises from the fact that in steady state (under 
normal conditions) the average electrical speed of all the generators must remain 
the same anywhere in the system. This is termed as the synchronous operation of 
a system. Any disturbance small or large can affect the synchronous operation. 
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For example, there can be a sudden increase in the load or loss of generation. 
Another type of disturbance is the switching out of a transmission line, which 
may occur due to overloading or a fault. The stability of a system determines 
whether the system can settle down to a new or original steady state after the 
transients disappear. 

The disturbance can be divided into two categories (a) small and (b) 
large. A small disturbance is one for which the system dynamics can be analysed 
from linearized equations (small signal analysis). The small (random) changes in 
the load or generation can be termed as small disturbances. The tripping of a line 
may be considered as a small disturbance if the initial (pre-disturbance) power 
flow on that line is not significant. However, faults which result in a sudden 
dip in the bus voltages are large disturbances and require remedial action in the 
form of clearing of the fault. The duration of the fault has a critical influence 
on system stability. 

Although stability of a system is an integral property of the system, for 
purposes of the system analysis, it is divided into two broad classes [8]. 

1. Steady-State or Small Signal Stability 
A power system is steady state stable for a particular steady state op­
erating condition if, following any small disturbance, it reaches a steady 
state operating condition which is identical or close to the pre-disturbance 
operating condition. 

2. Transient Stability 
A power system is transiently stable for a particular steady-state oper­
ating condition and for a particular (large) disturbance or sequence of 
disturbances if, following that (or sequence of) disturbance(s) it reaches 
an acceptable steady-state operating condition. 

It is important to note that, while steady-state stability is a function 
only of the operating condition, transient stability is a function of both the 
operating condition and the disturbance(s). This complicates the analysis of 
transient stability considerably. Not only system linearization cannot be used, 
repeated analysis is required for different disturbances that are to be considered. 

Another important point to be noted is that while the system can be 
operated even if it is transiently unstable, small signal stability is necessary at 
all times. In general, the stability depends ·upon the system loading. An increaSe 
in the load can bring about onset of instability. This shows the importance of 
maintaining system stability even under high loading conditions. 
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Figure 1.1: System Operating States 

3 

1.3 States of Operation and System Secu­
rity - A. Review 

Dy Liacco [9], and Fink and Carlson [10] classified the system operation into 5 
states as shown in Fig. 1.1. The system operation is governed by three sets of 
generic equations- one differential and two algebraic (generally non-linear). Of 
.the two algebraic sets, on~ set comprise equality constraints (E) which express 
balance between the generation and load demand. The other set' consists of 
inequality constraints (I) which express limitations 'of the physical equipment 
(such as currents and voltages must not exceed maximum limits). The classifi­
cation of the system states is based on the fulfillment or violation of one or both 
sets of these constraints. 

1. Normal Secure State: Here all equality (E) and inequality (I) con­
straints are satisfied. In this state, generation is adequate to supply the 
existing load demand and no equipment is overloaded. Also in this state, 
reserve margins (for transmission as well as generation) are sufficient to 
provide an adequate level of security with respect to the stresses to which 
the system may be subjected. The latter may be treated as the satisfactio~ 
of security constraints. 

2. Alert State: The difference between this and the previous state is that 
in this state, the security level is below some threshold of adequacy. This 
implies that there is a danger of violating some of the inequality (I) con­
straints when subjected to disturbances (stresses). It can also be said that 
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security constraints are not met. Preventive control enables the transition 
from an alert state to a secure state. 

3. Emergency State: Due to a severe disturbance the system can enter 
emergency state. Here I constraints are violated. The system, however, 
would still be intact, and ewt:lrgency control action (heroic measures) could 
be initiated to restore the system to alert state. If these measures are 
not taken in time or are ineffective, and if the initiating disturbance or a 
subsequent one is severe enough to overstress the system, the system will 
break down and reach 'In Extremis' state. ' 

4. '...In Extremis State: Here both E and I constraints are violated. The 
~iolation of equality constraints implies that parts of system load are lost. 
Emergency control action should be directed at avoiding total collapse. 

5. Restorative State: This is a transitional state in which I constraints are 
met from the emergency control actions taken but the E constraints are 
yet to be satisfied. From this state, the system can transit to either the 
alert or the I1-ormal state depending on the circumstances. 

In further developments in defining the system states [11], the power system 
emergency is defined as due to either a 

(i) viability crisis resulting from an imbalance between generation, loads and 
transmission whether local or system-wide or 

(ii) stability crisis resulting from energy accumulated at sufficient level in 
swings of the system to disrupt its integrity. 

'In Extremis' state corresponds to a system failure characterized by the loss of 
system integrity involving uncontrolled islandings (fragmentation) of the system 
and/ or uncontrolled loss of large blocks of load. 

It is obvious that the objective of emergency control action should be 
to avoid transition from emergency state to a failure state (In Extremis). The 
knowledge of system dynamics is important in designing appropriate controllers. 
This involves both the detection of the problem using dynamic security assess­
ment and initiation of the control action. 

1.4 System Dynamic Problems - Current Sta­
tus and -Recent Trends 

In the early stages of power system development, (over 50 years ago) both steady 
state and transient s~ability problems challenged system 'planners. The develop­
ment of fast acting static exciters and electronic voltage regulators overcame to 
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a large extent the transient stability and steady state stability problems (caused 
by slow drift in the generator rotor motion as the loading was increased). A 
parallel development in high speed operation of circuit breakers and reduction 
of the fault clearing time and reclosing, also improved system stability. 

The regulation of frequency has led to the development of turbine speed 
governors which enable rapid control of frequency and power output of the gener­
ator with minimum dead band. The various prime-mover controls are classified 
as a) primary (speed governor) b) secondary (tie line power and frequency) and 
c) tertiary (economic load dispatch). However, in well developed and highly 
interconnected power systems, frequency deviations have become smaller. Thus 
tie-line power frequency control (also termed as automatic generation control) 
(AGC) has assumed major importance. A well designed prime-mover control 
system can help in improving the system dynamic performance, particularly the 
frequency stability. 

Over last 25 years, the problems of low frequency power oscillations have 
assumed importance. The frequency of oscillations is in the range of 0.2 to 2.0 
Hz. The lower the frequency, the more widespread are the oscillations (also 
called inter-area oscillations). The presence of these oscillations is traced to fast 
voltage regulation in generators and can be overcome through supplementary 
control employing power system stabilizers (PSS). The design and development 
of effective PSS is an active area of research. 

Another major problem faced by modern power systems is the problem 
of voltage collapse or voltage instability which is a manifestation of steady-state 
instability. Historically steady-state instability has been associated with angle 
instability and slow loss of synchronism among generators. The slow collapse of 
voltage at load buses under high loading conditions and reactive power limita­
tions, is a recent phenomenon. 

Power transmission bottlenecks are faced even in countries with large 
generation reserves. The economic and environmental factors necessitate gener­
ation sites at remote locations and wheeling of power through existing networks. 
The operational problems faced in such cases require detailed analysis of dynamic 
behaviour of power systems and development of suitable controllers to overcome 
the problems. The system has not only controllers located at generating stations 
- such as excitation and speed governor controls but also controllers at HVDC 
converter stations, Static VAR Compensators (SVC). New control devices such 
as Thyristor Controlled Series Compensator (TCSC) and other FACTS con­
trollers are also available. The multiplicity of controllers also present challenges 
in their design and coordinated operation. Adaptive control strategies may be 
required. 
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The tools used for the study of system dynamic problems in the past 
were simplistic. Analog simulation using AC network analysers were inadequate 
for considering detailed generator models. The advent of digital computers has 
not only resulted in the introduction of complex equipment models but also the 
simulation of large scale systems. The realistic models enable the simulation of 
systems over a longer period than previously feasible. However, the 'curse of 
dimensionality' has imposed constraints on on-line simulation of large systems 
even with super computers. This implies that on-line dynamic security assess­
ment using simulation is not yet feasible. Future developments on massively 
parallel computers and algorithms for simplifying the solution may enable real 
time dynamic simulation. 

The satisfactory design of system wide controllers have to be based on 
adequate dynamic models. This implies the modelling should be based on 'par­
simony' principle- include only those details which are essential. 

References and Bibliography 

1. N.G. Hingorani, 'FACTS - Flexible AC Transmission System', Conference 
Publication No. 345, Fifth Int. Conf. on 'AC and DC Power Transmis­
sion', London Sept. 1991, pp. 1-7 

2. S.B. Crary, Power System Stability, Vol. I: Steady-State Stability, 
New York, Wiley, 1945 

3. S.B. Crary, Power System Stability, Vol. II : Transient Stability, 
New York, Wiley, 1947 

4. E.W. Kimbark, Power System Stability, Vol. I: Elements of Sta­
bility Calculations, New York, Wiley, 1948 

5. E.W. Kimbark, Power System Stability, Vol. III: Synchronous 
Machines, New York, Wiley, 1956 

6. V.A. Venikov, Transient Phenomenon in Electric Power Systems, 
New York, Pergamon, 1964 

7. R.T. Byerly and E.W. Kimbark (Ed.), Stability of Large Electric 
Power Systems, New York, IEEE Press, 1974 

8. IEEE Task Force on Terms and Definitions, 'Proposed Terms and Defini­
tions for Power System Stability', IEEE Trans. vol. PAS-101, No.7, July 
1982, pp. 1894-1898 

9. T.E. DyLiacco, 'Real-time Computer Control of Power Systems', Proc. 
IEEE, vol. 62, 1974, pp. 884-891 



1. Basic Concepts 7 

10. L.R. Fink and K. Carlsen, 'Operating under stress and strain', IEEE Spec­
trum, March 1978, pp. 48-53 

11. L.R. Fink, 'Emergency control practices', (report prepared by Task Force 
on Emergency Control) IEEE Trans., vol. PAS-104, No.9, Sept. 1985, pp. 
2336-2341 



A
Typewritten Text
"This page is Intentionally Left Blank"



Chapter 2 

Review of Classical Methods 

In this chapter, we will review the classical methods of analysis of system stabil­
ity, incorporated in the treatises of Kimbark and Crary. Although the assump­
tions behind the classical analysis are no longer valid with the introduction of 
fast acting controllers and increasing complexity of the system, the simplified 
approach forms a beginning in the study of system dynamics. Thus, for the sake 
of maintaining the continuity, it is instructive to outline this approach. 

As the objective is mainly to illustrate the basic concepts, the examples 
considered here will be that of a single machine connected to an infinite bus 
(SMIB). 

2.1 System Model 

Consider the system (represented by a single line diagram) shown in Fig. 2.1. 
Here the single generator represents a single machine equivalent of a power plant 
(consisting of several generators). The generator G is connected to a double 
circuit line through transformer T. The line is connected to an infinite bus 
through an equivalent impedance ZT. The infinite bus, by definition, represents 
a bus with fixed voltage source. The magnitude, frequency and phase of the 
voltage are unaltered by changes in the load (output of the generator). It is to 
be noted that the system shown in Fig. 2.1 is a simplified representation of a 
remote generator connected to a load centre through transmission line. 

~T HI----L-ine------lV~_----1~ W. Bw 

Figure 2.1: Single line diagram of a single machine system 

The major feature In the classical methods of analysis is the simplified 
(classical) model of the generator. Here, the machine is modelled by an equiv-
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alent voltage source behind an impedance. The major assumptions behind the 
model are as follows 

1. Voltage regulators are not present and manual excitation control is used. 
This implies that in steady- state, the magnitude of the voltage source is 
determined by the field current which is constant. 

2. Damper circuits are neglected. 

3. Transient stability is judged by the first swing, which is normally reached 
within one or two seconds. 

4. Flux decay in the field circuit is neglected (This is valid for short period, 
say a second, following a disturbance, as the field time constant is of the 
order of several seconds). 

5. The mechanical power input to the generator is constant. 

6. Saliency has little effect and can be neglected particularly in transient 
stability studies. 

Based on the classical model of the generator, the equivalent circuit of 
the system of Fig. 2.1 is shown in Fig. 2.2. Here the losses are neglected 
for simplicity. Xe is the total external reactance viewed from the generator 
terminals. The generator reactance, xg , is equal to synchronous reactance Xd 

for steady-state analysis. For transient analysis, Xg is equal to the direct axis 
transient reactance x~. In this case, the magnitude of the generator voltage Eg 
is proportional to the field flux linkages which are assumed to remain constant 
(from assumption 4). 

Figure 2.2: Equivalent circuit of the system shown in Fig. 2.1 

For the classical model of the generator, the only differential equation 
relates to the motion of the rotor. 
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The Swing Equation 

The motion of the rotor is described by the following second order equa-
tion 

(2.1) 

where 

J is the moment of inertia 
Om is the angular position of the rotor with respect to a stationary axis 
Tm is the net mechanical input torque and 
Te is the electromagnetic torque 

By multiplying both sides of the Eq. (2.1) by the nominal (rated) rotor speed, 
Wm , we get 

(2.2) 

where M = JWm is the angular momentum. It is convenient to express Om as 

(2.3) 

where Wm is the average angular speed of the rotor. 8m is the rotor angle with re­
spect to a synchronously rotating reference frame with velocity Wm . Substituting 
Eq. (2.3) in Eq. (2.2) we get 

(2.4) 

This is called the swing equation. Note that M is strictly not a constant. 
However the variation in M is negligible and M can be considered as a constant. 
(termed inertia constant). 

It is convenient to express Eq. (2.4) in per unit by dividing both sides 
by base power SB. Eq. (2.4) can be expressed as 

M Jl8m - -
S B dt2 = Pm - Pe (2.5) 

where Pm and Pe are expressed in per unit. The L.H.S. of Eq. (2.5) can be 
written as 

M Jl8m JWm (WB) (2) Jl8 Jw! Jl8 (2H) Jl8 (2.6) 
SB dt2 = SB WB P dt2 = SBWB dt2 = WB dt2 
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where 

a is the load angle = am ~ 
P is the number of poles 

W B is the electrical angular frequency = ~ Wm 

H is also termed as the inertia constant given by 

H = ! Jw,! = kinetic energy stored in megajoules 
2 BB Rating in MV A 

The inertia constant H has the dimension of time expressed in seconds. 
H varies in a narrow range (2-1O) for most of the machines irrespective of their 
ratings. 

From Eq. (2.6), the per unit inertia is given by 

- M 2H 
M=-=-

BB WB 
(2.7) 

The above relation assumes that a is expressed in radians and time in 
seconds. If a is expressed in electrical degrees, tl- ~n the per unit inertia is 

M' _ 2H 7r _ 2H 7r _ H 
- WB '180 - 27rIB '180 - 180lB 

where IBis the rated frequency in Hz. 

(2.8) 

For convenience, in what follows, all quantities are expressed in per unit 
and no distinction will be made in the symbols to indicate per unit quantities. 
Thus, Eq. (2.4) is revised and expressed in p.u. quantities as 

(2.9) 

From Fig. 2.2, the expression for Pe is obtained as 

(2.1O) 

The swing equation, when Pe is expressed using Eq. (2.1O), is a nonlinear 
differential equation for which there is no analytic solution in general. For 
Pm = 0, the solution can be expressed in terms of elliptic integrals [1]. It is 
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to be noted that the swing equation reduces to the equation of a nonlinear 
pendulum when Pm = O. 

Invariably, numerical methods have to be used for solving the swing 
equation. However simple techniques exist for the testing of system stability 
when subjected to small and large disturbances. These will be taken up in the 
following sections. 

2.2 Some Mathematical Preliminaries [3, 4] 

A nonlinear continuous time dynamic system is deno~ed by the state equation 

:i; = f{x, u) (2.11) 

where x and f are column vectors of dimension 'n'. u is a vector of dimension 
'r' in general. u can be viewed as input vector. If u is a constant vector, the 
system is said to be autonomous. If the elements of u are explicit functions of 
time, t, then the system is said to be non-autonomous. If the initial condition 
is specified, i.e. 

(2.12) 

then the solution to Eq. (2.11) is expressed as ifJt(xo ) to show explicitly the de­
pendence on initial condition. (Note that since u is constant it can be treated· as 
parameter and the dependence of the solution on u need not be shown explicitly) 

f is called the vector field and <Pt{xo ) is called the trajectory through Xo. 

<Pt{x) where x E Rn is called the flow 

For non-autonomous systems, the trajectory is also a function of time t 
and is expressed as <Pt{xo, to) which indicates the solution passes through Xo at 
to· 

In what follows, the attention will be focussed only on autonomous sys­
tems as power systems can be modelled as autonomous systems. 

With some mild restrictions on f, the solution of Eq. (2.11) has the 
following properties 

1. The solution exists for all t 

2. At any time t, <Pt{x) = <Pt{Y) if and only if x = y. Also as <P(tl +t2) = <Ptl.<Pt2' 
it follows that a trajectory of an autonomous system is uniquely specified 
by its initial condition and that distinct trajectories do not intersect. 

3. The derivative of a trajectory with respect to the initial condition exists 
and is nonsingular. For t and to fixed, <Pt{xo) is continuous with respect 
to initial state Xo. 
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Equilibrium Points (EP) 

An equilibrium point Xe of an autonomous system is a constant solution 
such that 

Xe = </Jt(xe) 

This implies that equilibrium point satisfies 

0= f(xe , u) 

Eq. (2.14) shows that Xe is a function of u. 

(2.13) 

(2.14) 

In general, there are several equilibrium points which are obtained as 
real solutions of Eq. (2.14). 

Stability of Equilibrium Point 

An equilibrium point, Xe is said to be asymptotically stable if all nearby 
trajectories approach Xe as t -+ 00. It is unstable if no nearby trajectories remain 
nearby. An unstable equilibrium point is asymptotically stable in reverse time 
(as t -+ -00). An equilibrium point is non-stable (also called saddle point) if 
at least one of the nearby trajectories approach Xe in forward time (as t -+ 00) 
and if at least one trajectory approaches Xe in reverse time ( as t -+ -00). 

The stability of an equilibrium point can be judged by the solution of 
the linearized system at Xe. 

Letting 
x = Xe + Llx 

and substituting in Eq. (2.11) gives 

• • A· f( ) [8 f (X, u)] A x = Xe + uX = Xe, U + 8 uX 
x X= Xe 

From Eqs. (2.14) and (2.16) we get 

Lli; = [A(xe, u)] Llx 

(2.15) 

(2.16) 

(2.17) 

where A is a nxn matrix whose elements are functions of Xe and u. The ijth 
element of [A] is given by 

For a given Xe and u, the matriX' A is constant. 
linearized state equation (2.17) is given by 

Llx(t) eA(t-to) Llx(to) 

(2.18) 

The solution of the 

= ct eA1tvl + c2eA2tv2 + ... + cneAntvn 

(2.19) 

(2.20) 
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where Cl, C2 ••. en are constants depending on the initial conditions. Ai and Vi 

are the ith eigenvalue and the corresponding eigehvector of matrix [A]. It is 
assumed that all eigenvalues are distinct. 

From Eq. (2.20) it can be seen that if !R[Ai] < 0 for all Ai, then for all 
sufficiently small perturbations from the equilibrium point X e , the trajectories 
tend to Xe as t -+ 00. Hence, Xe is asymptotically stable. 

If !R[Ai] > 0 for all Ai then any perturbation leads to the trajectory 
leaving the neighbourhood of Xe' Hence Xe is unstable. If there exists i and j 
such that ~[Ai] < 0 and ~[Aj > 0] then Xe is a saddle point. If ~[Ai] i- 0 for all 
Ai then the equilibrium point is said to be hyperbolic. 

No conclusion can be drawn regarding stability of an equilibrium point if it is 
not hyperbolic and has no Ai with real part greater than zero. 

A stable or unstable equilibrium point with no complex eigenvalues is called a 
'node'. 

Remarks 

1. For all practical purposes, an equilibrium point which is not stable, can 
be termed as unstable. For a hyperbolic equilibrium point, the number of 
eigenvalues with positive real parts determines its type. A type 1 Unstable 
EP (UEP) has one eigenvalue in the RRP of the's' plane. An EP with all 
eigenvalues in the R.H.P. is called a source. 

2. Equilibrium points are also termed as fixed points. A Stable EP (SEP) is 
also called a sink. 

Steady-state Behaviour 

The steady state behaviour of an autonomous system is obtained from 
the asymptotic behaviour of the system trajectories assuming that the difference 
between the trajectory and its steady state is called 'transient'. 

It is obvious that stable equilibdum points are subsets of steady state 
behaviour. In addition, a system may also exhibit limit cycles. A limit cycle 
is an isolated periodic solution (with the trajectory forming a closed curve in 
state space). 

There can be more complex behaviour such as chaos which does not have 
any fixed pattern in the steady state solution. In general, chaotic systems exhibit 
sensitive dependence on initial conditions and the spectrum of the steady state 
solution has a broad-band noise like component [4]. 
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2.3 Analysis of Steady State Stability 

The swing eqnation for system shown in Fig. 2.1 is 

(2.21) 

where 

(2.22) 

Equation (2.21) is same as Eq. (2.9) except for the addition of a damping 

term D~!. It is assumed that D is small but positive. It can be ignored when 

the solution of the swing equation is required only for a short period (say 1 
to 2 seconds) following a disturbance. Hence D can be neglected in transient 
stability analysis but needs to be considered in steady state stability analysis. 

Equation (2.21) can be expressed in the state space form as 

where 

dXI 

dt 
dX2 

dt 
D Pmax . Pm 

--X2 - -- SIll Xl + -
M M M 

d~ 
Xl =~, X2 = dt 

The equilibrium points for the sytem of Eq. (2.23) are given by 

(2.23) 

(2.24) 

From the power angle curves shown in Fig. 2.3, it can be seen that there 
are two values of ~ corresponding to a specified value of Pm (when Pm < Pmax ) 
when the range of ~ is confined to -180° < ~ < 180°. Thus, there are two 
equilibria given by 

(2.25) 
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Pe 
P

max 
-----

Figure 2.3: Power angle curve 

It can be shown by linearizing Eq. (2.23) that X8 is a stable equilibrium 
point and Xu is the unstable equilibrium point. The criterion for stability is an 
algebraic one given by 

Proof: Let Yl = ~Xl' Y2 = ~X2 
Then, 

[ .J [01][ J Yl = K D Yl 

Y2 -M -M Y2 

where 
K = Pmax cos 8e 

8e is the angle at equilibrium (88 or 8u ) 

The eigenvalues of the linearized system are given by 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

If K is positive then both eigen values have negative real parts. If K is negative 
one of the eigenvalues is positive real. For small D, and K > 0 eigenvalues are 
complex given by 

). = -(]' ± jw (2.30) 
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where 

D VK D2 
a = 2M' w = M - 4M2 

Hence, for the stability of the equilibrium point, a necessary condition is 

K>O (2.31) 

Remarks 

1. The expression for K in the general case is given by 

K = dPe (6 ) 
d6 e 

(2.32) 

This shows explicitly the dependence of K on (6e ). In general, Pe can 
be a non-sinusoidal function of 6, although for the special case considered 
(neglecting losses and saliency) the power angle curve is sinusoidal. 

2. For 6e = 6s , K > 0 while for 6e = 6u , K < O. Hence Xs is a stable 
equilibrium point while Xu is unstable (a saddle point). 

3. The two equilibrium points come closer as Pm (also equal to the steady 
state power output of the generator) is increased. The maximum power 
supplied by the generator (steady-state stability limit) is equal to Pmax and 
occurs at 6* = 900 (in this particular case). The condition for stability can 
also be stated as 

(2.33) 

The loci of eigep.values in the s plane as Pm is varied is shown in Fig. 2.4. 
Fig. 2.4 (a) shows the loci of eigenvalues calculated at SEP (Stable Equilibrium 
Point). The eigenvalues are initially complex and split into two real values. One 
of them reaches origin as Pm is increased to Pmax (when K = 0). The other 

eigenvalue approaches (7fI-). 
Figure 2.4 (b) shows the loci for UEP (Unstable Equilibrium Point). 

Here both eigenvalues are real. As Pm increases, both move towards the origin. 

At Pm = Pmax one of the values is exactly zero whiie the other is ( - ~). 

It is to be noted that for Pm > Pmax there is no equilibrium. 

Comments 

1. The stability criterion given in (2.26) is an algebraic one. While this 
is simple and convenient (avoids computation of eigenvalues) it is to be 
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K=O 

/ 

1m 

K=O 
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--o--~~~~--~------- ~ 0 

-D Re -D Re 
-

M M 

(a) at SEP (b) at UEP 

Figure 2.4: Loci of eigenvalues 

noted that this is derived from dynamic analysis. Hence the extension 
of this criterion to more complex dynamics (with the relaxation of some 
of the assumptions given earlier) is not valid. For the general case, the 
mathematical analysis involving linearization of the system and checking 
of the system stability cannot be avoided. (It is to be noted that in simple 
cases, the stability of linear systems can be directly determined, without 
recourse to eigenvalue computations, i.e. Routh-Hurwitz and Nyquist cri­
teria. However, these still require the knowledge of system equations). 

2. It is interesting to note that the limit of steady state stability using the 
classical model is also equal to the maximum power transferred in the 
network (neglecting losses). In other words the steady state stability limit 
is also the network limit. As it would be practical to maintain stability 
margin, the network limit must be larger than the maximum power output 
of the generator. 

3. The criterion of d£e > 0, can also be derived from 'physical' arguments. If 
Pm is suddenly increased by a small amount, the rotor initially accelerates 
(as 8 cannot change suddenly). As the velocity and consequently 8 in­
crease, the electric power output also increases (ifthe system is stable) for 
an equilibrium to be reached. For this to be possible, Pe should increase 
with increase in 8 . Similar arguments apply if Pm is suddenly decreased. 

It is to be noted that such 'physical' arguments, although intuitively 
appealing, can sometimes lead to false conclusions. It will be shown in chapter 
7 that the consideration of detailed model of the synchronous generator leads to 
different criteria for stability than given by (2.26). 
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Figure 2.5: Power angle curve for Example 2.1 

Example 2.1 

A generator is connected to an infinite bus through an external impedance 
of jXe. The generator is represented by a voltage source EgLd in series with a 
reactance xg. If Eg = Eb (infinite bus voltage) = 1.0, Xe = -0.5, Xg = 0.3 (all in 
p.u.), for Pb = 1.0 p.u., find the equilibrium values of 8, in the range of (-71", 71"). 
Test their stability (Pb is the received power at the infinite bus). Assume infinite 
bus angle as zero. 

Solution 

The expression for the electrical power output, Pe is given by 

p. - EgEbSin8 _ D 
e - -..rb 

(xe + Xg) 

Substituting the values for E g, Eb, Xe and xg, 

Pe = -5sin8 

The power angle curve is shown if Fig. 2.5. For Pb 
equilibrium points are 

Testing for stability, • 

dPe I ' -5 cos8e < 0 
d8 6=6J 

dPI = -5 cos8; > 0 
d8 6=~ 

Pe - 1.0 pu., the 
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Hence, 8~ = -11.54° is an unstable equilibrium point (UEP) and 8~ = -168.46° 
is a stable equilibrium point (SEP). 

Note that whenever (xe + Xg) > 0, the SEP corresponds to the solution 
with smaller absolute value of 8, while for (xe + Xg) < 0, SEP corresponds to the 
solution with larger absolute value of 8. The current supplied by the generator 
(and losses) are higher for the case with larger (absolute) angle. Hence, it 
is fortunate that, for all practical purposes, the external reactance is positive 
(inductive), viewed from generator .terminals. This results in lower losses as 
compared to the case if the net reactance was capacitive. 

Note that, negative Xe can result from overcompensation of the trans­
mission line reactance using series capacitors (although this is never done in 
practice). 

Example 2.2 

Repeat example (2.1) if the external impedance connected to the gener­
ator, Ze = 0.1 + jO.2. The rest of the data is same as before. 

Solution 

The expression for the received power, Pb, can be obtained as 

R _ EgEb sin(8 + a) _ E?R 
b - \ Z \ \ Z \2 

where Z = Ze + jXg = R + jX =\ Z \ L</>, a = 90 - </>. 

Note: tan a = ~, \ Z \= (R2 + X2)~, </> = tan- 1 ~ 

The sending end power, Pe is given by Pe = \El~ + fti sin(8 - a) 

Substituting values for Eg = Eb = 1.0, R = 0.1, X = 0.5, \ Z \ = 0.5~, a = 11.3° 
we get two values for (8 + a) as 

44.9° =* 8; = 33.6° 

135.1° =* 8; = 123.8° 

It can be checked that d~e (8 = 8~) > 0 while ~ (8 = 8;) < O. Hence 

8~ = 33.6° is a SEP while 8~ = 123.8° is an UEP. 
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Example 2.3 

Repeat example 2.2 if Pb = 1.546 

Solution 

The equilibrium values for 8, in this case are 

8! = 80° - 11.30 = 68.7° 

82 = 1000 
- 11.3° = 88.7° e 

It can be checked that at both values of 8, the system is stable. There are two 
SEPs in this case. 

Note: The system is stable for 8 ~ 90° + a = 101.3°, while the maximum 
received power corresponds to 8 = 90 - a = 78.7°. 

Example 2.4 

Find the level of series compensation that will maximize the received 
power in a single machine system shown in Fig. 2.6. The generator impedance 
is assumed to be Zg = Rg + jxg. 
Assume Eg = Eb = 1.0, Re = 0.1, Xe = 1.0, Xg = 0.1, Rg = 0.0. 

Generator 

Figure 2.6: System diagram for Example 2.4 

Solution 

Let Z = R + jX = Ze + Zg = (Rg + Re) + j(xg + Xe - xc). The receiving end 
power is maximum when 

-1 R 
8 = 90 - a, a = tan X 

Hence, Pb for this condition is given by 

EgEb EtR E2 2 
Pbm = TZT - (I Z 1)2 = R[cOS ¢ - cos ¢] 

where Eg = Eb = E and 1 Z 1= R/ cos¢ 

Pbm is a function of ¢ which is variable as Xc varies. Pbm is maximized 

for cos ¢* = ~ or ¢* = 60°. The maximum received power is given by 
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R - E2 _ 1.0 - 2 
bmax - 4R - 4 x 0.1 - .5 pu 

This corresponds to 8* = 90 - a* = 90 - 30° = 60°. The optimum value of Xc is 
given by 

X~ = -Rtan¢* + Xe + Xg = -v'3R + Xe + Xg = 0.927 pu 

Example 2.5 

Consider the system shown in Fig. 2.7. The generator G has negligible 
impedance while the SVC can be represented by a voltage source Es in series 
with a reactance Xs. Obtain expression for 1 V 1 and Pe as function of E, Es 
and 8. 

Solution 

At the SVC bus, the system external to the SVC can be represented by 
a Thevenin's equivalent shown in Fig. 2.8(a). The combined equivalent circuit 
of the external system and the SVC is shown in Fig. 2.8(b). 

ELQ 

Figure 2.7: System diagram for Example 2.5 

The current flowing into SVC is Is. Since this current is purely reactive (there 
are no losses), the phase angle of Es is same as that of VTh. It can be shown 
that 

VTh = Ecos(8/2)L8/2 

(The phasor diagram for the condition when SVC is open circuited is shown in 
Fig. 2.9). The current magnitude is given by 

1 Is 1= (E cos(8/2) - Es) 
(xs + x/2) 

The voltage V has the phase angle of 8/2 and its magnitude is given by 
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jx/2 jx/2 

-

(a) (b) 

Figure 2.8: (a) Thevenin's equivalent for the external system (Example 2.5) 
(b) Combined equivalent circuit including SVC 

ELfJ 

-=-...--L.--------.... 'ELO 

Figure 2.9: Phasor diagram with SVC on open circuit (Example 2.5) 

x 
_ _ ES2 Exscos(8/2) 

V - Es+ I Is I Xs - (xs + x/2) + (xs + x/2) 

The expression for Pe is 

P
e 

= EV sin(8/2) 
x 

Substituting the expression of V in the above expression gives 

EEs. E 2xs sin 6 
Pe = ( 2) sm(8/2) + (2 ) x + Xs X Xs +x 

Note that if Xs = 0, then Pe reduces to 

EEs . ( ) Pe = --sm 6/2 
x 
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Comparing this with the expression for Pe in the absence of SVC, given by 

E2 
Pe = -sin8 

2x 

it is seen that the SVC results in doubling of the maximum power if Es = E. 
(Note that Xs = 0 corresponds to an ideal SVC). 

Example 2.6 

In the above example, if E = Es = 1.0, x = 0.5, Xs = 0.2. Find the 
stability limit for Pe and the corresponding 8. Repeat for the case when Xs = 0.0. 

Solution 

(a) Pe = Asin(8/2) + B sin 8 
E Es E 2x s 

where A = 2 = 1.111, B = ( 2) = 0.444 
x + Xs x x + Xs 

The power is maximum when 

dP 1 
d8 = 0 = 2Acos(8/2) + Bcos8 

Let x = cos(8/2), then 

dP = 0 ==> 2Bx2 + A2 x - B = 0 
dt 

The solution of this quadratic equation for x is given by 

A ~2 --+ - +8B2 

2 4 x = ----'-----
4B 

(only the positive solution for x is considered so that 8/2 remains less t~n 
90°). Substituting the values, 

8* 
x* = cos 2 = 0.4606 ==> 8* = 125.2° 

and 

Pemax = 1.111 sin 12~.2 + 0.444 sin 125.2 = 1.3492 p.u. 

The power angle curves for this case is shown in Fig. 2.10. (Curve a) 
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Figure 2.10: Power angle curve for Example 2.6 

(b) For Xs = 0.0, 

P. EEs. a 2. a 
e = --sm- = sm-

x 2 2 
Pe is maximum when a = 1800 and the maximum power at stability limit 
is 

Pemax = 2.0 p.u. 

The power angle curve for this case is also shown in Fig. 2.10. (Curve b) 

Example 2.7 

A generator is supplying power to a load centre through a transmission 
line as shown in Fig. 2.1. The power output of the generator is increased slowly 
while maintaining the magnitudes of the voltages VI and V2 constants at 1.0 
p.u. by manual control (of both generator excitation and infinite bus voltage). 
Find the steady state stability limit of power that can be transmitted. Assume 
Xt = 0.1, Xl = 0.4, ZT = jO.1, Xg = 0.3. 

Solution 

The equivalent circuit for the system is shown in Fig. 2.11 where 

Xl = xg , X = Xt + X" X2 = ;S[ZT] 

Note that the system is lossless. The expression for power Pe is given by 

P
e 

= EgEb sin a 
(Xl +X+X2) 
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jXl jx jX2 
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Figure 2.11: Equivalent circuit for Example 2.7 

However, the above expression cannot be used directly as Eg and Eb are un­
known. The phasor diagram at the stability limit (8 = 90°) is shown in Fig. 
2.12. It is easy to see that at the stability limit, 

EgVl . EgV2 . 
Pe = -- sm(90 - (It) = ( ) sm(90 - ( 2 ) 

Xl X + Xl 

from which, 

VI V2 
- COSOI = ( ) cos O2 
Xl X + Xl 

(A) 

Also, 

P
e 

= Eb VI sinOl = Eb V2 sin O2 
(X + X2) X2 

from which, 

VI sin 01 V2 sin 02 
(X + X2) X2 

From the two relations (A) and (B) we have 

where 

sinOl = asin02 } 
COSOI = bcos O2 

Substituting (C) in the following equation 

sin2 01 + cos2 01 = 1 

(B) 

(C) 

(D) 
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we get, 
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Figure 2.12: Phasor diagram at stability limit (example 2.7) 

a2 sin2 (h + b2 cos2 
(}2 = 1 

(a2 - b2
) sin2 

(}2 = 1 - b2 

In the example, Xl = 0.3, X2 = 0.1, X = 0.5, VI = V2 = 1.0 

= 0.5 + 0.1 = 6 0 b = 0.3 = 0 375 
a 0.1 . , 0.8 . 

(1 - b2 ) 
sin(}2 = (a2 _ b2) = 0.1548, (}2 = 8.91° 

sin (}l = 6 sin (}2 = 0.9288, (}l = 68.25 

The stability limit is also given by 

Pemax 
ViV2 . -- sm((}l - (}2) 

X 

1.
5
0 sin(68.25° - 8.91°) = 1.7204 pu. 

O. 

Eg and Eb can be calculated from 

P. 
_ EgVI () _ EbVisin(}1 

emax - -- cos I - ( ) 
Xl X + X2 
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The values are Eg = 1.393, Eb = 1.111. It can be verified that 

p. _ EgEb 
emax - (Xl + X + X2) 

2.4 Analysis of Transient Stability 

The transient stability pertains to stability under large disturbances. Hence the 
nonlinearities of the model have to be considered in the analysis. As analytic 
solutions are not available for the swing equation, numerical methods have to 
be used. 

2.4.1 Numerical solution - Point-by-Point Method: 

Point-by-point (also called step-by-step) solution allows the numerical solution 
of the swing equation. In this method, one or more variables are assumed to 
remain constant or to vary according to assumed laws throughout a short interval 
of time !l.t. 

The swing equation, neglecting damping term can be written as 

do 
dt 

dw 

dt 

where P a = Pm - P e is the accelerating power. 

(2.34) 

If over an interval (say k th , defined from the instant t(k-3/2) to t(k-I/2)) 

the accelerating power Pa is assumed to be constant (at the value computed at 
t(k-l)) then 

!l.t 
W(k-I/2) = W(k-3/2) + M Pa(k-l) (2.35) 

If the speed calculated at t(k-I/2) is assumed to be constant throughout the 
interval from t(k-l) to tk (see Fig. 2.13), then 

(2.36) 

Defining 
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ro 

(a) (b) 

Figure 2.13: Discretization of accelerating power and speed (point by point 
method) 

we can express 

(2.37) 

Eq. (2.37) enables the computation of angle directly without recourse to the 
computation of the speed. 

In executing step-by-step method, it is to be noted that if a discontinuity 
in the accelerating power occurs at the beginning of the interval (due to fault or 
switching action) then average value of Pa must be used. For example, if a fault 
occurs at to, then 

(2.38) 

2.4.2 Equal area Criterion 

To check the stability of a single machine infinite bus (SMIB) system, there is 
a simple and direct method which does not require the solution of the swing 
equation following disturbance{s). This method is known as equal-area criterion 
for stability. The assumptions used in applying this criterion are 

1. Constant mechanical power 

2. No damping 

3. Classical machine model 

The basis for this method is that if the system is stable {in tr4e first 
swing)the rotor angle (after the disturbance) reaches a maximum value {assum-
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ing that the rotor initially accelerates) and then oscillates about the final steady 
state value. (It is also assumed that a stable steady state equilibrium exists for 
the post-disturbance system). Hence the stability is checked by monitoring the 

deviation of the rotor speed (~!) and ensuring that it becomes zero following 

the disturbance. 

Let the swing equation be given by 

(2.39) 

Multiplying both sides by ~! and integrating with respect to time, we get 

[t d6 rP6 [t d6 
M -d d 2 dt = {Pm - Pe)-d dt 

tott to t 
(2.40) 

or 

(2.41) 

It is assumed at t = to, the system is at rest (equilibrium state) and the speed 
deviation is zero. The R.H.S. of Eq. (2.41) can be interpreted as the area 
between the curves Pm versus 6 and the curve Pe versus 6 . Pm versus 6 is a 
horizontal line as Pm is assumed to be constant. The curve of Pe versus 6 (power 
angle curve) is shown in Fig. 2.14. If the system is to be stable, then 

d61 =0 
dt O=Oma", ' 

(2.42) 

This implies that the area denoted by 

(2.43) 

must have a positive portion Al for which Pm > Pe and a negative portion A2 
for which Pm < Pe. The magnitudes Al and A2 must be same as 

(2.44) 

Hence the nomenclature of equal-area criterion for stability. 

Remarks 

1. The equal area criterion is also applicable for a two machine system (with­
out an infinite bus) as it can be converted into a single machine equivalent. 
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Figure 2.14: Equal area criterion for stability 

2. It will be shown later (in chapter 13) that equal- area criterion for stability 
is a special case of the direct method for stability evaluation using energy 
functions. 

3. Mathematically, the problem of determination of transient stability can 
be viewed as checking whether the initial system state for the post-fault 
condition, lies in the region of stability surrounding the post-fault stable 
equilibrium point. Every SEP has a region of stability (which may be 
unbounded) or attraction, in which a trajectory approaches SEP as t -t 00. 

A trajectory starting outside the region of stability will not approach SEP 
and may even be unbounded. The determination of stability boundary is a 
complex task. The use of energy functions (discussed in chapter 13) helps 
to approximate the stability boundary for a given fault or disturbance. 

Example 2.8 

Transform a two machine system shown in Fig. 2.15 to an equivalent 
single machine system 

G 1 GI~1--+--Ir G G 2 

Local Load Local Load 

Figure 2.15: A two machine system (Example 2.8) 
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Solution 

The swing equations for the two machines are 

M d?-81 
1 dt2 = Pm1 - Pel (A) 

M d?-82 
2 dt2 = Pm2 - Pe2 (B) 

/ 
It can be shown, in general, that both Pel and Pe2 are functions of a single 
variable (812 = 81 - 82 ). The expressions can be derived from the equivalent 
circuit shown in Fig. 2.16 where loads are represented as constant admittances 
Y1 and Y2. Neglecting local loads and losses in the transmission line (Z = jx), 
the expressions for Pel and Pe2 are given by 

Eg1Eg2 . 
Pel = -Pe2 = ( ) sm812 

Xg1 + X + Xg2 

MultiplyingbothsidesoftheEq. (A) by M2 andEq. (B) by M1 and subtracting, 
we get 

d?-812 
M1M2 dt2 = (M2Pm1 - M1Pm2 ) - (M2Pe1 - M1Pe2) (C) 

If Pel = - Pe2, we can simplify (C) as 

z 

Figure 2.16: Eqivalent circuit (Example 2.8) 

M d?-812 = peq _ peq 
eq dt2 m e 

where 

M M1M2 peq = M2Pm1 - M1Pm2 peq p p 
eq = M

j 
+ M2' m M1 + M2 ' e = e1 = - e2 
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Note that if XgI and Xg2 are small compared to x, the local loads can be accounted 
by subtracting them from the respective mechanical powers. 

Example 2.9 
" 

A single ~achine is connected to a load centre through a transmission line 
as shown in Fig. 2.17. The load centre is represented by a reactance connected 
to an infinite b~s. The generator is initially operating with Pe = 1.0 pu. and 
the magnitude of voltages VI and V2 are 1.0 p. u. each. Find the maximum step 
increase in the mechanical power that will not cause transient instability. Use 
equal area criterion. Assume Xg = 0.3, Xt = 0.1, x = 0.4, X2 = 0.1. 

J"t I 

Figure 2.17: System diagram fotExample 2.9 

Solution 

At the initial operating point, 

where (h and (J2 are angles of the voltages Vi and V2. Substituting values of 
Pe = 1.0, VI = V2 = 1.0, Xt + x = 0.5, we get 

(}l - (J2 = 30° 

The current i in the line, referred to t:2 is 

ie- j(}2 = 1.0L30 - 1.0LO = 1 0 + ·027 
jO.5 .. J. 

Ebe-j(}2 V2 - jX2ie-j(}2 = 1.0 - jO.1(1.0 + jO.27) 

= 1.032L -5.56° 

Hence, (J2 = 5.56° and (}l = 35.56°. 

EgLO = VI + jxgi = 1.0L35.56 + jO.3(1.0 + jO.27) d5
.
56 

= 1.121L51.1° 

The power Pe is given by the expression 
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D. 

D. 

D. 

0.2 

Figure 2.18: Application of equal area criterion {Example 2.9} 

Pe = Pmax sin8 where Pmax = 1.121 . 1.032/0.9 = 1.285 

The initial value of Pm = Pmo = 1.0. If Pm is increased from Pmo to 
Pm1 , the stable equilibrium value of 8 changes from 80 {51.1°} to 81 (see Fig. 
2.18). 

When there is a step increase in Pm the machine accelerates and over­
shoots the equilibrium angle 81. Let the maximum angle reached be 8max. For 
critically stable case, 8max = 11" - 81 (see Fig. 2.18). From equal area criterion, 
the ares Al and A2 are equal 

!n
0l 

(Pml - Pmax sin8}d8 
00 

-Pmax[cos 80 - cos8d + Pm1 (81 - 80 ) 

A2 = {7r-
0

1 (Pmax sin8 - Pmt}d8 
iO I 

2Pmaxcos81 - Pm1 (11" - 28t) 

Equating Al and A2, we get 

Since, 

Pm1 
sin8t{11" - 81 - 80 } 

Pmax sin81, 

(cos 81 + cos 80 ) 
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The solution of this nonlinear equation is 

The maximum step increase = 0.215 p.u. 

Example 2.10 

Find the critical clearing angle and time for a three phase fault at the 
generator terminals in Example 2 . .,. The generator is initially supplying power 
of 1.0 p. u. Assume that the postfault system is identical to the pre-fault system. 
Additional data: H = 4 fB = 50Hz. 

Solution 

The power angle curve is shown in Fig. 2.19. During fault, Pe = 0 and 
after the fault is cleared 

Pe = PmtI,$ sino, Pmax = 1.285 

For the critically cleared fault, the two areas Al and A2 (shown in Fig. 2.19) 

160 180 

Figure 2.19: Application of equal area criterion (Example 2.10) 

must be equal and omax = 1r - 00 
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Equating Ai and A2 , 

Solving for de (critical clearing angle), we get 

cos de = sindo{7r - 260 } - cos do 

Substituting do = 0.892 rad, we can solve for de as 

de = 64.60 = 1.127 rad 

During the fault, 

Substituting d = dc, we can solve for the critical clearing time, te 

sec 

2.5 Simplified Representation of Excitation 
Control 

In the 'classical' approach for dynamic analysis, the excitation controllers were 
neglected. This is in view of the fact that slow manual control was used till early 
fifties for voltage regulation. With the introduction of electronic regulators and 
field forcing, it was necessary to include the effect of continuous excitation control 
using automatic voltage regulators based on feedback principle. 

The terminal voltage Vg, in general, varies as a function of the power 
output Pe of the generator. An approximate linear relationship between Vg and 
Pe can be expressed as 

{2.45} 

where bp may be termed as power regulation coefficient of the network. Note 
that bp > 0, as the voltage decreases with increase in power. The coefficient 
bp depends on the method of regulation used. \Inder ideal conditions with fast 
{instantaneous} regulation of the terminal voltage, bp = O. However, the voltage 
regulation has to act through the field circuit having a large time constant and 
bp is non-zero. 
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Assuming that the generator is connected to an infinite bus (of voltage 
Eb) through (net) reactance of X e, the power transmitted is given by 

P. VgEb. () 
e = -- SIn 

Xe 

Vgo(l - bpPe)Ebsin(} 

(2.46) 

where () is the angle between the terminal voltage and infinite bus. 

The expressions for Pe can be obtained from Eq. (2.46) as 

P. 
_ PN max sin () 

e-
1 + PNmaxbpsin(} 

(2.47) 

Pe is maximum when () = 900 and is given by 

P. - PNmax 
emax-l bP + p Nmax 

(2.48) 

where 

The maximum power that can be delivered by the generator increases as PNmax 

(the maximum power flow in the network) increases and bp decreases. The 
variation of Pemax as a function of bp is shown in Fig. 2.20 for two different 
values of Xe. The maximum value of P emax occurs at bp = 0 and is equal to 
PNmax' 

The voltage regulation can be accounted by modelling the generator as 
a voltage source Eg behind a reactance xg. In the absence of AVR (manual 
control) Xg = Xd. For ideal regulator, Xg = O. For electronic regulators, Xg ~ x~. 

It is possible to relate Xg to bp and other system parameters. This follows 
from the Eq. (2.48) and the following equation. 

EgEb 
P emax =( +) Xe Xg 

(2.49) 

Given the operating conditions, such as the values of Eb and the power 
factor, it is possible to express Xg as a function of bp. The typical variation of 
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Xd -----------------------~------

/ 

Pemax 

Xel < Xe2 

.. --._---
Xe2 

---------- -----

Figure 2.20: Variation of Pemax 

with bp 

Figure 2.21: Variation of Xg with bp 

Xg with bp is shown in Fig. 2.21. 

Remarks 

This approach of reducing the equivalent reactance of the synchronous 
machine from Xd to Xg to account for voltage regulation is only accurate in 
determining the power limit in the absence of oscillatory instability. It will be 
shown in chapter 7 that systems with fast acting exciters and high gain AVR are 
usually prone to oscillatory instability. This implies that the simplified analysis 
of excitation controllers is not valid and detailed generator models need to be 
considered. The detailed component models - synchronous machine, excitation 
and prime-mover controllers, loads, transmission lines and SVC are taken up in 
the next three chapters. 

Example 2.11 

Find the steady state stability limit of power delivered if Xd = 1.0, 
Xq = 1.0, Xe = 1.0, Eb = 1.0. The terminal voltage Vg is maintained at 1.0 
p.u. Assume ideal regulator. The phasor diagram is shown in Fig. 2.22. The 
expression for power Pe is 

p. - EqEbSin8 _ VgEb . 0 
e- ---sm 

(xq + xe) Xe 
(A) 

Eq is the voltage behind x q. Eq from phasor diagram is given by 

o 
Vgcos 2" 

Eq = ( 0) 
cos 8- 2" 

(B) 
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Figure 2.22: Phasor diagram for Example 2.11 

From (A), 

E = Vg(Xq + xe) sinO 
q Xe sino 

(0) 

Pe is maximum when 0 = 90°. For this case, Equating the two expressions for 
Eq, we get 

o 
cos -

2 
o 

cos(a - -) 
2 

For the data given, 

= 
(Xq + xe) sinO 

Xe sino 

- 2 sin ~ cos(a - ~) = sino - sin(a - 0) 

sin(a - 0) 

0* = 116.6°, Pemax = 1.0 ' p.u. 

tan 0* = - (xq + xe ), 900 < 0* < 1800 
Xq 

It is interesting to note that the critical angle (corresponding to stability 
limit) is greater than 90°. The power angle curve, Pe versus c5 is shown in Fig. 
2.23. 
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Chapter 3 

Modelling of Synchronous Machine 

3 .1 Introduction 

Simple models of the synchronous generators are not adequate for accurate de­
scription of the power system dynamics. In this chapter, detailed models of 
synchronous machine are developed from the basic equations using phase vari­
ables and application of Park's transformation. Park's transformation results 
in time-invariant machine equations which are easier to handle. 4-lso there is a 
close connection between Park's variables and the phasors describing voltages 
and currents in steady state. 

In this chapter, the derivation of the machine model is accompanied by 
its representation using per unit quantities and equivalent circuits on d- and q­
axes. Measurement of machine parameters and representation of saturation are 
also discussed. The application of the model for transient analysis is outlined at 
the end. 

The literature on synchronous machines dates back to several decades. 
However, there are certain aspects on which there is no universal acceptance. 
Firstly there are two conventions - originally proposed and modified (according 
to IEEE committee report [11] published in 1969) on the orientation of axes 
and direction of currents. In this book, the latter convention is used along with 
power-invariant Park's transformation. A more serious problem is the lack of 
unanimity in the definition of transient reactances and time constants when more 
than one damper winding (in the q-axis) is used. This can lead to confusion. 
We have used definitions according to IEC recommendations. This appears to 
be accepted more widely. The assumptions previously used in the computation 
of machine parameters based on test data can also be dispensed with, according 
to Canay [21]. 
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Figure 3.1: Synchronous machine 

3.2 Synchronous Machine 

The synchronous machine considered is shown in Fig. 3.1. This shows a three 
phase armature windings (a, b and c) on the stator and four windings on the 
rotor including the field winding 'f'. The amortisseur (or damper) circuits in 
the salient pole machine or the eddy-current effects in the rotor are represented 
by a set of coils with constant parameters. Three damper coils, 'h' in the d­
axis and g, k on the q-axis are shown in Fig. 3.1. The number of damper 
coils represented can vary from zero (in the simplest model) to five or more 
using Jackson-Winchester model [7]. However the most detailed model used 
extensively in power system dynamic studies is limited to 3 damper coils. (It is 
also easier to obtain the parameters of this and simpler models). 

The following assumptions are used in the derivation of the basic equa­
tions of the machine. 

1. The mmf in the airgap is distributed sinusoidally and the harmonics are 
neglected. 

2. Saliency is restricted to the rotor. The effect of slots in the stator is 
neglected. 

3. Magnetic saturation and hysteresis are ignored. 

The representation of the saturation will be considered later in this chapter. 
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In what follows, the machine is assumed to have two poles. There is no 
loss of generality in doing this as the rotor angle () {with respect to a stationary 
axis} is assumed to be the electrical angle and the equations are invariant with 
respect to the number of poles. The mechanical angle ()m is related to () by 

2 
()m = -() p 

3.2.1 Flux Linkage Equations 

The stator and rotor flux linkages are given by 

where 

[ia ib iel, .,p~ = [.,pa .,pb .,pel 
[i I ih ig ik]; .,p~ = [.,pI .,ph .,pg .,pk] 

{3.1} 

{3.2} 

{3.3} 

The matrices [L8S] and [Lrr] are symmetric and also [Lrs] = [Lsr]t. From two 
reaction theory, it is possible to express the inductance coefficients as follows. 

Laao Labo Labo 

[Lss] = Labo Laao Labo + 

Labo Labo Laao 

cos 2() cos (2() _ 2;) cos (2() + 2;) 

Laa2 cos (2() _ 2;) cos (28 + 2;) cos 2() {3.4} 

cos (2() + 2;) cos 2() cos (2() _ 2;) 

[ Lf 
Llh 0 L] [L,,] = rh Lh 0 
0 Lg 
0 Lgk Lk 

(3.5) 
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Mal cosO MahCOSO 

[Lsr] = Mal cos (0 _ 2;) Mah cos (0 _ 2;) 

Mal cos (0 + 2;) Mah cos (0 + 2;) 

Mag sinO Mak sinO 

Mag sin (0 _ 2;) Mak sin (0 _ 2;) (3.6) 

Mag sin (0 + 2;) Mak sin (0 + 2;) 

Note that [Lsr] is a function of 0 and is time varying if the rotor rotates at 
constant speed. [Lss] is also a function of 0 if Laa2 =I- O. This is true for salient 
pole machines. 

3.2.2 Voltage Equations 

The voltage equations for the stator and rotor coils are given below. 

d'lj;s [R ]. - dt - s ~s = Vs (3.7) 

-d:/ _ [Rr]ir = Vr (3.8) 

where 
t _ [ ] Vs - Va Vb vc , V~ = [-VI 0 0 0] 

[~ 0 II [ Rs ] = ~ Ra = R a(U3] 
0 

If 
0 0 

~.J [ Rr ] 
Rh 0 

= 0 Rg 
0 0 

[U3] is a unit matrix of dimension 3. 
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Note: Generator convention is used in expressing the voltage equations. The 
currents are assumed to be leaving the coil at the terminals and the terminal 
voltages are assumed to be voltage drops in the direction of the currents. This 
is contrary to the motor convention (see Fig. 3.2) 

- d \j1 

dt 

+ 

.. 

(a) Generator convention 

d\j1 

dt 

.. 

v 

(b) Motor convention 

Figure 3.2: Generator and motor conventions 

Because of the generator convention, the sign associated with vf is neg­
ative (to sustain a field current in steady state). Note that both vf and if are 
assumed to be positive in steady state. 

3.2.3 Torque Equation 

It is assumed that the inertia of the turbines (prime mover) can be clubbed with 
that of the generator'rotor (by assuming the shaft to be rigid). In this case, the 
equation of motion of the rotor is given by 

where 

J is the combined moment of inertia of the rotor 
D is the damping (assumed to be viscous) coefficient 
Tm is the mechanical torque in the direction of rotation 
Te is the electrical torque opposing the mechanical torque 

(3.9) 

Note that for a two pole machine, 8m = 8. For P =1= 2, the Eq. (3.9) can be 
transformed to 

(3.10) 
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The electrical torque Te is given by 

where 

8W' P8W' P 
Te = - 80m = -"2 80 ="2 T~ 

T: = -~ is the electrical torque of the equivalent two pole machine, 
W' is the co-energy expressed as 

W' = ~ [i! i~] [Lss Lsr 1 [ ~s 1 
2 Lrs Lrr ~r 

(3.11) 

(3.12) 

Substituting Eq. (3.12) in Eq. (3.11) and noting that [Lrrl is a constant matrix, 
we get 

T ' = _~ [.t [8L
ss] . + 2·t [8L

sr] . ] 
e 2 ~s 80 ~s ~s 80 ~r (3.13) 

Substituting Eq. (3.11) in Eq. (3.10) we get 

where 

J' -

D' 

T' m = 

J,d
2
0 D,dO = T' _ T' 

dt2 + dt m e 
(3.14) 

J (
2)2. h . 1 . . . P IS t e eqUlva ent mertIa 

D. (! ) 2 is the equivalent damping coefficient 

2~m, is the mechanical torque of the equivalent two pole 

machine 

The above equation represents the transformation of 'P' pole machine 
2 

to a 2 pole machine. The mechanical torque is reduced by a factor of p. The 

inertia and damping are reduced by factor of (!) 2. However, since all the 

equations are expressed in per unit (to be introduced later) there is no loss of 
generality in assuming that the machine has two poles (as stated earlier). 

3.3 Park's Transformation 

The combined voltage equations (for the stator and the rotor) can be expressed 
as 
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where 

~ = 

[ L ] = [LSS Lsr 1 ' 
Lrs Lrr 

-[R][L]-l1/1 - V } 

[L]-l1/1 

vt = [v! v;] 

Alternatively, the voltage equations can also be expressed as 

di = [L]-l [-[R]i _ dO [OL] i-V] } dt dt 00 
1/1 = [L]i 

49 

{3.15} 

{3.16} 

Although it is possible to solve the Eqs. {3.15} or {3.16} numerically, it 

is almost impossible to obtain analytical solution even when iJ = dd
O 

is constant. 
t . 

This is due to the fact that the inductance matrix [L] is time varying and the 
computation of inverse of [L] is required. 

It would be advantageous if the time-varying machine equations can be 
transformed to a time invariant set. This would result in the simplification of 
the calculations both for steady state and transient conditions. R.H.Park [6] 
introduced the following transformation 

[ ~: 1 = lep] [ ~:] {3.17} 

where fa can be either stator voltage, current or flux linkage of the stator winding 
a {a = a, bore}. [Cp] is defined by 

kd cos 0 kq sinO ko 

[Cp] = kd cos (0 - ~) kq sin (0 _ 2;) ko {3.18} 

kdCOS (0 + 2;) kq sin (0 + 2;) ko 
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where kd, kq and ko are constants appropriately chosen. In original Park's 
transformation kd = 1.0, kq = -1.0 and ko = 1 

The inverse transformation is given by 

where 

[ 

kl cos 0 kl COS ( 0 - 27r /3} kl cos( 0 + 21r /3} 1 
[Cpr l = k2sinO k2sin(O-27r/3) k2sin(O+ 21r/3} 

k3 k3 k3 

221 
kl = 3kd' k2 = 3kq' k3 = 3ko 

3.3.1 Transformation of Flux Linkages 

where U4 is a unit matrix of order 4 and 'I/1~qO = ['I/1d 'I/1q '1/10] 

The L.H.S. of Eq. (3.20) can be expressed as 

Substituting (3.21) in (3.20) we get 

[ ~dqr 0 1 = [Cpl 0 1 [Lss Lsr 1 [ Cp 
'I' 0 U4 Lrs Lrr 0 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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where 

3 
Ld = Laao - Labo + '2 Laa2 

3 
Lq = Laao - Labo - '2 Laa2 (3.23) 

Lo = Laao + 2Labo 

(~:/) (~:h) o o 

o o (~:g) (~:k) (3.24) 

o o o o 

(~Malkd) 0 0 

(~Mahkd) 0 0 

[L~s] = (3.25) 

0 (~Magkq) 0 

0 (~Makkq) 0 

Remarks 

1. [L~s]t -I [L~r] unless 
2 2 k2 = ~ (3.26) kd = 3' q 3 
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2. The mutual inductance terms between the stator and rotor coils in the 
q-axis are negative for kq < 0 unless Mag and Mak are both negative. It is 
to be noted that when the q-axis is lagging the direct axis (in the direction 
of rotation) as assumed in Fig. 3.1, Mag and Mak are positive. These 
terms are negative only if q-axis is assumed to be leading the d-axis. 
Hence, if d-axis is assumed to lead q-axis, it would be convenient to choose 
positive value of kq • 

3. Note that there is no transformation of the rotor currents and flux linkages. 
Hence the self inductance matrix of rotor coils is not altered. 

4. Eq. (3.22) shows that stator coils 'a', 'b' and 'c' are replaced by fictitious 
'd', 'q' and '0' coils from Park's transformation. Out of these, '0' coil 
(in which zero-sequence current io flows) has no coupling with the rotor 
coils and may be neglected if io = O. Since the (transformed) mutual 
inductance terms between d, q coils and the rotor coils are constants, it 
can be interpreted that d and q coils rotate at the same speed as the rotor. 
Furthermore, as mutual inductances between the d-coil and the rotor coils 
on the q-axis are zero, it can be assumed that d-coil is aligned with the 
d-axis. Similarly, it can be assumed that q coil is aligned along with the 
q-axis. This is shown in Fig. 3.3. 

5. The following trigonometric identities are useful in the derivation of the 
transformed equations 

cosO + cos (0 _ 2;) + cos (0 + 2;) - 0 

sinO + sin (0 - 2;) + sin (0 + 2;) - 0 

cos20 + cos2 (0 _ 2;) + cos2 (0 + 2;) 3 
- 2 

sin20 + sin2 (0 _ 2;) + sin2 (0 + 2;) 3 
- 2 

Although the physical interpretation of Park's transformation is useful in gaining 
an intuitive understanding of its implications, it must be understood that it is 
not essential in the mathematical analysis of the synchronous machine. This is 
true of any mathematical transformation whose main objective is to simplify the 
analysis. From this point of view, the major benefit of Park's transformation 
is to obtain the machine equations in time-invariant form which simplifies the 
analysis. The transformation of stator voltage equations will clarify this point. 



3. Modelling oj Synchronous Machine 53 

Figure 3.3: Synchronous machine with rotating armature windings 

3.3.2 Transformation of Stator Voltage Equations 

Applying Park's transformation, Eq. (3.7) can be rewritten as 

- ![Cp'ljlclqo] - [Rs][Cp]iclqo = [Cp]vclqo 

The first tm"r . on the L.H.S. of Eq.{3.27) can be expressed as 

where, 

o 

dCp -kd sin (0 _ 2;) kq cos (0 _ 2;) 0 = [Cp][Pd 
dO 

-kd sin (0 + 2;) kq cos (0 + 2;) 0 

where 

[P.j= [\ 

kq 

~ I kd 
0 

kq 
0 0 

(3.27) 

(3.28) 

(3.29) 
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Substituting (3.28) in (3.27), we get 

d'I/Jdqo . 
-[Cp]-;u - O[Cp][PI)'l/Jdqo - [Rs][Cp]idqo = [Cp]vdqo (3.30) 

From (3.30), we obtain 

- d~~qo _ 8[PI]'l/Jdqo - [Cprl[Rs][Cp]idqo = vdqo 

d'I/Jdqo O· [ ]4/. '-- dt - PI 'l'dqo - Ra~dqo - Vdqo (3.31) 

after substituting fo:r; [Ra] = Ra [U3] 

Eq. (3.31) can be expanded as 

d'I/Jd .kq . 
- dt - 0 kd 'l/Jq - Ra'l.d - Vd 

(3.32) 

The rotor voltage equations are unchanged and can be written in the expanded 
form from Eq. (3.8) as 

dt, + Rfif - vf 

dlfl + Rhih - 0 
(3.33) 

~ R' t + g~g - 0 

dtJ + Rkik - 0 

3.3.3 Transformation of the Torque Equation 

After applying Park's transformation to Eq. (3.13) the electrical torque is ex­
pressed as 
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sin 28 sin (28 - 2;) sin (28 + 2;) 

[
8Laa] 88 = - 2Laa2 sin (28 _ 2;) sin (28 + 2;) sin 28 (3.35) 

sin 28 

[8~;r ] = -Mal sin (8 - 2;) -Mah sin (8 _ 2;) 

- Mal sin (8 + 2;) -Mah sin (8 + 2;) 
Mag cos 8 Mak cos 8 

(3.36) 

where 

[ 

0 ~ 
[1',) = ~ ~ ~ 1 

(3.37) 

(3.38) 
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After some manipulations, the expression for electrical torque reduces to 

Since 

(3.40) 

(3.41) 

Utilizing (3.40) and (3.41) in Eq. (3.39), 

Te = ~kdkq [iq {1/Jd - (Ld - ~Laa2) id} - id {1/Jq - (Lq + ~Laa2) iq}] 

(3:42) 

(3.43) 

as 

3.3.4 Choice of constants kd' kq and ko 

The transformation lOp] defined by Eq. (3.18) is most general as no assumptions 
are made regarding the constants kd, kq and ko . However, original Park's 
transformation used 
kd = 1, kq = -1, ko = 1 

Since same transformation is applied for currents and voltages, it can be 
shown that' in general, 

(3.44) 

Proof: L.H.S. of Eq. (3.44) can be expressed as 

(3.45) 
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[Cp]t[Cp] is a diagonal matrix given below 

(3.46) 

Power Invariant Transformation 

A transformation [Cp] is said to be power invariant if it is orthogonal, 
i.e. 

(3.47) 

The choice of kd, kq and ko to get power invariant transformation are 

(3.48) 

We will assume only positive values of the constants thereby defining a power 
invariant Park's transformation given by 

v'2 cos 0 v'2 sinO 1 

1 
[Cp] = v'3 v'2cos (0 _ 2;) v'2sin (0 _ 2;) 1 (3.49) 

v'2 cos (0 + 2;) v'2 sin (0 + 2;) 1 

The major advantage of a power invariant transfonnation is that the 
mutual inductances in the transformed network are equal. 

For example 

and 

For kd = /I, Md/ = M!d = lIMa! 

In what follows, we will use a power invariant transfonnation by selecting 
the following values 
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As mentioned earlier, the positive value of kq indicates that q-axis is lagging the 
direct axis, whereas in the original transformation by Park, q-axis is assumed to 
lead d-axis. Although an IEEE committee report in 1969 [11] recommended a 
revision of the old convention (of q leading d) usage in power industry is often 
based on the old convention. 

It should also be noted here that the use of generator convention in 
expressing the stator voltage equations is consistent with the choice of d-axis 
leading q-axis. Similarly the earlier motor convention is consistent with q-axis 
leading d-axis. To summarize, the basic differences in the two conventions are 
shown in Table 3.1. 

Table 3.1 Comparison Between Conventions 

Features Convention 
Original Revised 

Current direction motor generator 
Orientation of 'q' leading 'd' 'd' leading 'q' 
axes 
Constants kd = 1.0, kq = -1 kd = kq = J213 

Note that although the armature currents, even in the original conven­
tion, are considered to flow out of the generator, the signs associated with these 
currents (in flux calculations) are negative (consistent with the motor conven­
tion). As mentioned before, the revised convention is adopted in the book. 

3.4 Analysis of Steady State Performance 

The major advantage of Park's transformation is that the machine equations 
are reduced to time-invariant form which simplifies their solution. Thus, Park's 
transformatio~ can be considered as a particular case of transformation based 
on Floquet-Liapunov theory which applies to linear time-varying system with 
periodic coefficients [16]. {Note that the syst~m equations for the stator and 
rotor windings are linear if the rotor velocity (J is assumed to be constant and 
magnetic saturation is neglected) Park's transformation results in linear time­
invariant form (with the assumption O=constant) given in Eqs. (3.32) and (3.33). 

If the applied voltages Vd, Vq and VI are constants, the flux linkages 
and currents (in Park's variables using d-q reference frame) are also constants 
in steady state. Consequently, the electrical torque, Te , is also a constant in 
steady state. If the applied torque Tm (constant) is equal to Te, then (neglecting 
damping the assumption of constant velocity in steady state is valid. 
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3.4.1 Analysis of an Unloaded Generator 

In steady state, for an unloaded generator, 

. vI 
"'1=-

RI 

The flux linkages, from Eq. (3.22) are 

where 

¢d Ldid + Mdfil + Mdhih } 
¢I Mdfid + Llil + Llhih 
¢h = Mdhid + Llhil + Lhih 

Mdf - ';;'Mal ' Mdh = ';;'Mah 

Mqg ';;'Mag , Mqk = ';;'Mak 
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(3.50) 

(3.51) 

(3.52) 

Note that the reciprocity ofthese mutual inductances (Mdf = MId etc.) 
results from the use of power-invariant Park's transformation (In original Park's 
transformation Mdf = Mal while MId = ~Mal' The reciprocity is achieved 
only in per unit quantities with the choice of appropriate base quantities for the 
stator and rotor circuits. The selection of the per unit quantities is discussed in 
the next section). 

Substituting (3.50) in (3.51) and (3.52), we have, in steady state 

Vlo Vlo } ¢I = ¢Io = LI RI' ¢ho = Llh RI 

Mdfvlo 
¢d = ¢do = RI ' ¢qo = 0, ¢go = ¢ko = 0 

(3.53) 

Substituting (3.53) in (3.32), we get 

Vdo - 0 } Wfd! Vqo = Wo¢do = I Vlo 
(3.54) 
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where W = Wo in steady state. Note that the subscript '0' indicates the value at 
the operating point. It is also assumed that under normal conditions, Wo = WB 
(the rotor runs at the rated speed). 

The induced voltages in the stator are given by 

Va - Vi[VdoCOS{Wot+6) + vqosin{wot + 6)] 

Vb - Vi [Vdo cos (wot + 6 - 2;) + Vqo sin (wot + 6 - 2;)] (3.55) 

Vc = Vi [Vdo cos (wot + 6 + 2;) + Vqo sin ( wot + 6 + 2;) ] 
where 6 = (J - wot= constant in steady state (Note that Vo = io ="po = 0). The 
induced voltages in the stator are equal to the terminal voltages under no-load 
conditions. From Eq. (3.54), only the second terms in R.H.S. of Eq. (3.55) are 
non-zero. The voltages are sinusoidal and balanced. The magnitude (rms value) 
of the line to line voltage is 

woMd/ 
VL-L = -n:-v/o (3.56) 

The electrical torque in an unloaded gene~tor in steady state is zero. (as cur­
rents are zero). 

3.4.2 Analysis of a Loaded Generator 

A synchronous machine connected to a sinusoidal balanced voltage source de­
livers electric power determined by the prime-mover output. The currents and 
flux linkages in the machine are functions of Tm and V (rms line-to-line voltage 
at the terminals). 

Without loss of generality, let the voltage sources at the generator ter­
minals be defined as 

Va - fsVSinwot 

Vb - Vivsin (wot _ 2;) (3.57) 

Vc - Ii V sin ( wot + 2;) 
Defining 

(J = wot + 6 (3.58) 
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the d- and q-axis components of the terminal voltages can be calculated as 

Vdo = - V sin a, Vqo = V cos a 
Neglecting armature resistance, 

Since ih = ig = ik = 0 in steady state, 

. Vdo 
'tqo=--L' 

Wo q 

The operating value of Te is 

[ 
VIol Vqo - WoMd,/ R/ 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

Substituting from (3.59) to (3.61) in the above expression and assuming Wo = WB, 

VdoXd,/V/o VdoVqo(Xd - Xq) 

WBXdR/ WBXdXq 

VE/dosino V
2
sin2o(xd - Xq) 

= + -----'--'=-----'~ 
WBXd 2WBX dXq 

(3.63) 

where 

Since, Te = Tm in steady state, the angle a can be evaluated from the knowledge 
of Tm , V and E/do • 

Remarks 

1. The expression for Teo in (3.63) is identical to the expression for power 
output in steady state divided by the rated frequency WB. 

2. The currents i a , ib and ic in the armature are sinusoidal as id and iq are 
constants. 

3. If the voltages at the terminal are unbalanced, Vd .and Vq are no longer 
constants and contain second harmonic components. In such a case, the 
currents id, iq also contain second harmonic components. The phase cur­
rents contain third harmonic components. 
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3.5 Per Unit Quantities 

It is common to express voltages, currents and impedances in per unit by choos­
ing appropriate base quantities. The advantages of an appropriate per unit 
system are 

1. The numerical values of currents and voltages are related to their rated 
values irrespeCtive of the size of the machine. 

2. The per unit impedances on the machine base lie in a narrow range for a 
class of machines of similar design. 

3. The number of parameters required is minimized. 

It is to be noted that the base quantities for the stator and rotor circuits 
can be independently chosen with certain restrictions which result in per unit 
mutual reactances being reciprocal. If power invariant Park's transformation is 
used, the constraints imply selecting the same base power for all the circuits. 

3.5.1 Stator Base Quantities 

The base quantities for the stator d-q windings are chosen as follows 

Base power, S B - Three phase rated power 
Base voltage, VB - Rated line to line voltage (RMS) 
Base current, I B - v'3 x Rated line current 

Base impedance, ZB - t! - Rated line to neutral voltage 
~ - Rated line current 

Base flux linkages, 1/IB - -
WB 

ZB 
Base inductance, L B 

1/IB = -
IB WB 

W B is the base angular frequency in radians/sec. (This is also the rated angular 
speed for a 2 pole machine) 

The stator equations in per unit, based on the quantities defined above, 
are 

-JB dil- :B i(;q - RaId = Vd} 
ldi(; w- --; -

-WB Tt + wB1/Id - Ra~q = Vq 

(3.64) 

where the per unit quantities are indicated by the bar over the variables. For 
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example 

Remarks 

1. The base voltage and current used in the previous literature are 

VB Peak rateq voltage per phase 
I B Peak rated line current 

The choice of these base quantities are consistent with the original Park's 
transformation. This is because the per unit voltage (or current) in the 
old system is identical to that in the revised system defined above (which 
is consistent with the power-invariant version of Park's transformation) 

2. The base impedances in both systems are identical. This fact combined 
with the identity of per unit quantities implies that the equations (in per 
unit) in both systems are identical (except for the differences in the ori­
entation of d- and q-axes) thus eliminating the confusion about different 
versions of Park's transformation. 

3. Anderson and Fouad [19] use different base quantities for voltage and cur­
rent along .with power-invariant Park's transformation. They define VB as 
(rms) rated line to neutral voltage and IB as rms line current. Although 
this results in identical base impedance as defined before, the per unit volt­
ages, currents and fluxes are different which leads to different equations 
using inconvenient factors (of v'3). 

4. The choice of base quantities for the rotor is related to the choice of sta­
tor base quantities. Although in the original Park's transformation, the 
mutual inductances are not reciprocal, the selection of appropriate base 
quantities for the rotor will result in reciprocal per unit mutual induc­
tances. 

5. The expression for the base three phase power in the old system is 

3 
PB = BB = 2"VBI B 

which leads to per unit power expression of 

- P - -
P = PB = Vdid + vqiq 

(It is assumed that the zero sequence power is zero). In the revised (new) 
system, 

PB =BB = VBIB 

which leads to the same per unit power expression given above. 
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6. If the operating frequency is same as ~e frequency, the per unit 
inductances are identical to per unit corresponding reactances. Then 
Xd = L d, xd,f = Md,f etc. 

3.5.2 Rotor Base Quantities 

The base power and frequency are same as for the stator circuits. The base 
currents for the rotor circuits in the d-axis are chosen such that the base field 
current or base d-axis damper current (in h coil) produce the same mutual flux 
(in the airgap) as produced by base current flowing in the stator d-axis coil. 
Similar conditions apply for q-axis coils. The mutual flux linkages in the d-axis 
are given by 

(3.65) 

where Lau is the leakage inductance of the stator. I/B and IhB are the base 
currents in the field and damper windings (in d-axis). 

From Eq. (3.65), 

where Lad = Ld - Lau 

The base flux linkages for the rotor circuits are chosen that 

""/BI/B = ""BIB = ""hBhB 

(3.66) 

(3.67) 

Similar relations apply for q-axis coils also. The base currents and flux linkages 
for the g and k coils are given by 

19B 
Laq Laq 

- M IB, hB = M IB 
qg qk 

(3.68) 

""gB 
""BIB 'ifJkB = ""BIB 

19B 
, 

IkB 
(3.69) 

where 

Laq = Lq - Lau 

Remarks 

1. The per unit system is chosen such that the per unit mutual reactanc~ 
Md,f and Mdh are equal and can be expressed as 

Md,f = Mdh = Lad = Ld - Lau 

Similarly 
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2. The choice of rotor base quantities is not unique. In general, the per unit 
mutual inductances can be expressed as 

Mdf = Mdh = Ld - LCI 
Mqg = Mqk = Lq - Lc2 

where Lel and Lc2 can be arbitrarily chosen (assuming magnetic linearity). 
It is only when representing saturation that it is convenient to define the 
per unit mutual inductances as given earlier. The leakage inductance of the 
stator La(Tl is normally assumed to be constant (unaffected by saturation) 
while the mutual inductances are functions of the mutual flux linkages 
(considering saturation). 

3. The selection of base quantities for the rotor circuits can be avoided if 
it is assumed that the rotor quantities can be referred to the stator us­
ing appropriate turns ratio (which are not always uniquely defined). The 
equivalent circuit referred to the stator can then be described in per unit 
quantities (on the stator base). This is explained in the next section. 

3.5.3 An Alternative Approach 

Consider a set of tn' coupled coils. The flux linkage of kth coil is given by 

n 
'l/Jk = L Lkjij 

j=l 

By expressing 'l/Jk and ij in per unit given by 

Eq. (3.70) can be rewritten as 

where Lkj is the per unit mutual inductance given by 

- L kj 
Lkj= ~IjB 

<rkB 

Similarly the per unit Ljk is given by 

- L"k 
Ljk = ./ hB 

<rjB 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

(3.74) 
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If Ljk = L kj , the reciprocity in per unit mutual inductances require 

IjB _ IkB \.I. \.I k 
--- v3 v 
'ifJkB 'ifJ;B ' 

(3.75) 

which implies same base power for all the coils. It is assumed that the base 
frequency is same for all the coils. 

If it is assumed that the measurements are carried out at the terminals 
of one coil (which may be labelled as 1 without loss of generality), the mutual 
flux between coils 1 and j can be expressed as 

.1. L (I; B) (I B ) . L'·' 
'f'Ij = Ij IB IjB 'tj = Ij'tj (3.76) 

where 

., ( IB ) • (Nj ) . . 2 3 
'tj = IjB 'tj = NI 't;, 3 = , , ... , n 

can be considered as the current in coil j referred to coil 1 using the turns 

ratio (~).The base current and flux in coil are defined as IB and'ifJB dropping 

the subscript 1. Equation (3.76) suggests the possibility of first referring the 
quantities to coil 1 using turns ratio (if specified) and then expressing them 
in per unit with respect to the base quantities defined for coil 1. Thus LI ; is 
expressed as 

-Remarks 

1. If turns ratios are known, the base currents (and fluxes) for coil j 
(j = 2, 3, ... , n) are defined in terms of the base quantities for coil 1 and 
the turns ratios. 

2. If turns ratio are not explicitly defined, it is possible to choose base quan­
tities such that 

L~j = Ll - h, j = 2, 3, ... , n 

where 11 is the leakage inductance of coil 1. The advantage of this choice 
is that the (n - 1) per unit mutual inductances are made equal and the 
total number of circuit parameters are reduced. 

3. From equations (3.73) and (3.74), it is obvious that per unit mutual in­
ductances can be made equal even if Llej =1= Ljk by proper choice of base 
quantities. 
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Example : A two winding transformer 

Consider a two winding transformer shown in Fig. 3.4. The transformer is 
assumed to be lossless. The equivalent circuit of the transformer is shown in 
Fig. 3.5. The following equation applies for the secondary circuit of the ideal 
transformer 

di2 
V2 = e2 + l.1"'"& 

elN2 1 Nl di~ 
= Nl + 2 N2 It 

In the above equation, the relationships of the ideal transformer, namely 

N2 ., N2. 
e2 = Nl el, '2 = Nl '2 

are used. 

The equation for the primary side of the transformer is 

_ £ dil Mdi2 _ £ di1 M,di~ _ 1 dil 
VI - 1 dt + dt - 1 dt + dt - 1 dt + el 

where 

M' - M (~~) = £1 - It 

= M' (di1 di~) 
el dt + dt 

Expressing (3.78) and (3.79) in per unit and selecting 

N2 Nl 
V2B = -VIB, hB = -lIB 

Nl N2 

N 1 : N2 

• • 

Figure 3.4: A two winding transformer 

(3.78) 

(3.79) 
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i~ _ N
I

: N2 
.--_-J - -i I +.--+-+-. + 

i 2 

VI e L 

Figure 3.5: Equivalent circuit of two winding transformer 

we get 

(3.80) 

where 

,(Nl)2 ViB - It I" _ JL -, M' 
12 = N2 12, ZIB = lIB' It = ZIB' 2 - ZIB' M = ZIB 

where l~ is the leakage inductance of the secondary refeqed to the primary. 
From Eq. (3.80) the equivalent circuit of Fig. 3.5, simplifies to that shown in 
Fig. 3.6. 

The above analysis shows that the application of per unit system can 
be viewed as first referring all the secondary quantities to the primary side 
by utilizing the turns ratio and then scaling the variables with base quantities 
defined on the primary side. This interpretation relates the base quantities on 
both sides using the turns ratio. 

In coupled coils, it is not always necessary nor feasible to determine the 
turns ratio (For example, the damper windings 'h', 'g' and 'k' are fictitious and 
introduced to represent the effects of eddy currents induced in the generator 
rotor). In such cases, the effective turns ratio can be defined as 

N2 M 
neff = Nl = (£1 -It) (3.81) 



3. Modelling of Synchronous Machine 69 

l' 
2 

----- -i 1 + i 2 

-, 
M 

Figure 3.6: Equivalent circuit in per unit quantities 

where 11 is the leakage inductance of the primary winding. If magnetic saturation 
is not to be considered, there is no significance in defining a separate leakage 
inductance 11 and it can be arbitrarily chosen (even equal to zero). The leakage 
inductance 12 can be obtained as 

(3.82) 

3.6 Equivalent Circuits of Synchronous Ma­
chine 

There are two equivalent circuits corresponding to the two axes d and q. On 
the d-axis there are three coupled coils namely, armature d-coil, field winding, f, 
and damper winding, h. As explained earlier, by application of per unit system, 
all the quantities get referred to the armature side. The equivalent circuit on 
the d-axis is shown in Fig. 3.7. 

All the reactances are expressed in per unit. Xau is the armature leakage 
reactance. x Ie and Xhc can be viewed as the leakage reactances of the field and 
the damper winding (h) respectively. X re represents the fact that per unit mutual 
reactance xlh (between the field and damper) is not equal to Xad. Actually 

Xlh = Xad + Xre = Xd - Xau + Xre (3.83) 

It can be shown that the equivalent circuit of Fig. 3.7 can be transformed 
to the simplified form shown in Fig. 3.8. Here k is defined as 

k = (Xd - xe)2 

Xad 
(3.84) 
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Figure 3.7: Equivalent circuit -d axis 

I 
I f 

X he= kXhe 

Figure 3.8: Transformed d-axis equivalent circuit 

and Xc is obtained from 

1 1 1 
---=-+-
Xc - X atT Xad X rc 

(3.85) 

Instead of XflO" a new reactance Xc appears and the mutual reactances X/h,Xdh 

and xd/ are all equal to Xdc. While this simplified equivalent circuit is often used, 
error is committed by assuming Xc ~ XflO'. Thi, is inaccurate and gives wrong 
results in predicting field quantities [20, 21]. For example, for turbo alternators 
Xc is much larger than XflO' and for salient pole machines Xc can be negative [21]. 
Canay [21] has proposed a simple test for the determination of Xc. 

The equivalent circuit on the q-axis is shown in Fig. 3.9. Here, as both 
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.. 

+ 

Figure 3.9: Equivalent circuit- q-axis 

damper windings are short circuited, there is no loss of generality in assuming 

Xqg = Xqk = Xgk = Xaq = Xq - XaO' (3.86) 

Also, for linear magnetic circuits, XGO' can be arbitrarily selected. This follows 
from the fact that the only quantity of interest in the q-axis is the driving point 
(operational) impedance defined by 

wq{s) _ xq{l + sT:)(1 + sT;') _ () 
-( -) - , ) ") - Xq S Iq s {1 + sTqo {1 + sTqo 

(3.87) 

where T:o and T: are the open and short circuit transient time constants, r;~ and 
r:; are the open and short circuit subtransient time constants. Eq. (3.87) shows 
that only five parameters (including Xq) are required to define the operational 
impedance and the equivalent circuit (neglecting armature resistance). Thus the 
role of leakage reactance XaO' is only required in accurately representing magnetic 
saturation. In the absence of saturation, any value of XaO' can be used. 

This argument does not hold for the d-axis equivalent circuit where Xc 

is uniquely defined. This is because of the presence of field circuit excitation. 
The d-a.xis flux linkage Wd{S) can oe expressed as 

(3.88) 

where 
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T;o, T; are open and short circuit subtransient time constants. T~ and T~ are 
open and short circuit transient time constants. 

G(s) is defined by 

G(s) = (1 + sT~) I 

(1 + sTdo){l + s~o) 
(3.89) 

In Eq. (3.88), Efd is related to vf by 

Efd = ~~ vf (3.90) 

This scaling of the field voltage is done for convenience - and has the effect of 
equating the generator open circuit voltage (in steady state) to Efd ( 1 pu Efd 

results in 1 pu generated voltage on open circuit). 

The calculation of self and mutual (per unit) reactances from the equiv­
alent circuit parameters is straight forward and is given below 

Xd/ - Xdh = Xad = Xd - Xau 

Xfh - Xad + Xrc , xf = Xfh + xfc, Xh = Xfh + Xhc 

Xqg - Xqk = Xgk = Xaq = Xq - Xau 

Xg - Xaq + x gu , Xk = Xaq + Xku 

3.7 Determination of Parameters of Equiv­
alent Circuits 

It is assumed that B.a, Xau (leakage reactance of the armature) and Xd, Xq 

(synchronous reactances) are known. In addition there are five parameters in 
the d-axis equivalent circuit: 

and four parameters of the equivalent circuit in the q-axis: 

3.7.1 Direct Axis Equivalent Circuit 

The transient and subtransient quantities can be determined from measurements 
according to lEe or ASA recommendations. These are 
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and T" d 
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where x~ and x~ are transient and subtransient reactances of the machine in 
d-axis. The transfer function Xd(S} is completely defined by the quantities 
x~, x~, T~, -r;; and Xd. This follows from the expression for the inverse of Xd(S} 
given below which represents the basic definition of x~ and x~ in accordance 
with lEe or ASA standards 

1 1 ( 1 1) sT~ ( 1 1) sT; (3.91) 
Xd(S}=Xd+ X~-Xd 1+sT~+ x~-x~ 1+sr;; 

Relating (3.91) to 

We have the following relations 

(3.93) 

," , "Xd (3 9 ) TdoTdo = TdTd -,,- . 4 
xd 

These equations can be used to exactly calculate T~ and T:lo if T~ and T; are 
known or vice versa. There is no need to make any simplifying assumptions. 

It can be shown that 

X (s) x = xde{1 + sT~e)(1 + sT:le) = X (s) 
d + e (1 + sT~o)(1 + sT;') de 

where 

Xde Xd+Xe (3.95) 

(' ") {' " } 
T' T" Xd Td+Td +xe Tdo+Tdo {3.96} de + de = 

Xd+Xe 

, " T' T" {x~ + xe} (3.97) TdeTde = 
do do (Xd + Xe) 

It is also possible to calculate x~e and x~e (from the expression for the inverse 
of Xde (s)) and these are 

X~ = (3.98) 
, mi' ( Xde)" Tdo + .l.do - 1 + -,-, Tde 

xde 

{3.99} 
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It is to be noted that x~ =f=. (x~ + xe). It is convenient to determine the pa­
rameters for the simpler equivalent circuit (shown in Fig. 3.8) and compute the 
parameters of Fig. 3.7 based on the relations (3.84) and (3.85). It is necessary 
that Xc (which is not a leakage reactance) is determined from design calculations 
or measurements. 

Eq. (3.91) represents the admittance of the equivalent circuit shown in 
Fig. 3.10. In this circuit, the voltage corresponds to 1/Jd{S) and the current is 
Id{S). The circuit shown in Fig. (3.10) is also equivalent to that shown in Fig. 
(3.1)) where Xc is included in series and 

" " Xdc = Xd - Xc, xdc = xd - Xc (3.100) 

By using relations (3.95) to (3.99) where -Xc is substituted for Xe, the quantities 
x~, x~, Tdc and T'clc are obtained. The expressions for X/O, It/o, x~ and ~o 
are 

I 
I 

XhO 
Xfl) 

Xd 

~oClls ~CIls 
s 

s 

Figure 3.10: Representation of Xd( s) by an equivalent circuit 

I 
I 

Xhc Xfc 

Xdc 

~CIls ~CIls 
s 

s 

Figure 3.11: Alternate representation of Xd(S) 
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, 
X/o - (3.101) 

, 1/ , 
, XdXd"" Xho () 

Xho - x'd _ X~ , flho = WB~ 3.102 

The expressions for X/e, R!/, x~ and Rh (for the equivalent circuit of Fig. 3.8 
or 3.11) are , , 

, Xdcxdc Ii!. x /e 
X /e - Xdc - x~ , / = wBT~ 

, 1/ , 
xdcxdc x 

x, ..., - he 
he - , 1/, ILh - -;::;:;n 

xdc - xdc WB1dc 

The calculations of the parameters of the equivalent circuit in Fig. 
summarized below 

Step 1: Compute T~ and T'rlo from Eqs, (3.93) and (3.94) 

Step 2: Compute 

Xdc - Xd - Xc 

" " xdc - Xd - Xc 

Step 4: Calculate x'dc from 

, xdc(T~ - T'~) 

xd< = Too + r.;. - (1+ :t) 7"":' 

Step 5: Calculate the parameters 
( )Xad Xre - Xe-Xaq -

Xdc 
,1/2 

Xhe XdcXdc (Xad) -
(X~ - X~) Xdc , 

(:~)2 X/e 
XdcXdc 

-
(Xdc - X~) 

Rh 
Xhe 

-
WBT'~ 

R/ - ~ 
WBT~ 

(3.103) 

(3.104) 

3.8 are 
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It can be shown that the time constant T;c in the expression. (3.89) is given by 

(3.105) 

Calculation of Transient and Subtransient Quantities from Equivalent 
Circuit Parameters 

The open circuit time constants TJo and 1";0 can be calculated from the 
equivalent circuit parameters of Fig. 3.8. These are obtained as the negative 
reciprocals of the roots of a characteristic equation 

~ (x't Xh) ~ [XdC(X'tc + xhc) + X'tCXhC]_ 
1+ R' +R' + 2 R'R', -0 

WB I h W B I h 

If it is assumed that Rh > > R't, then 

~ _ xfc+ Xdc 
wBRf wBRf 

1 [, XfcXdC] 
R' xhc + ( I ) 

WB hc Xdc + xlc 

The transient reactance, x~ can also be approximated as 

2 I 
I ~ x*x~ 

Xd = Xd - -f = Xc + I 
XI Xdc + xlc 

The short circuit transient time constant T~ can be approximated as 

I 

T ' - T' xd d - do Xd 

(3.106) 

(3.107) 

(3.108) 

(3.109) 

(3.110) 

Many publications use the approximations (3.107) to (3.110) without examining 
their validity. The basic assumptions behind these approximations are 

1. In computing transient quantities, the damper circuit is assumed to be 
open, i.e. Rh -t 00 

2. In computing the subtransient quantities, the field circuit is assumed to 
have zero resistance. 

Obviously these assumptions are not valid in all the cases. Unfortunately, the old 
practices (of using the approximations) still continue in industry. F.P. DeMello 
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and L.H. Hannett [24] even claim that it is a matter of definitions, the only 
requirement being consistent with the definitions. For example, they state that 
Tdo and ~o are to be defined by the expressions given in (3.107) and (3.108) 
rather than as the roots of the characteristic equation (3.106) which govern 
the response of the machine fluxes under open circuit. While this argument is 
certainly valid, it does create confusion to have two sets of definitions. There is 
a need for standard definitions of Tdo and T~. Recent .Literature [21, 22, 23, 25, 
27] stress the use of logical definition of the time constants based on the machine 
responses. 

3.7.2 Quadrature Axis Equivalent Circuit 

The parameters of the q-axis equivalent circuits that are to be determined are 

These are obtained from the measured or calculated data on x~, x;, T~ and 
T;. It is assumed that Xq and Xaq are known. The procedure for calculation 
of the q-axis equivalent circuit parameters is similar to that given for the d-axis 
equivalent circuit parameters. The steps are given below: 

Step 1: Compute 

Xaq = Xq - Xau 

" II 
Xqu = Xq - Xaq 

S C T ' dT"f tep 2: ompute qo an qo rom 

, " xqT!. (1 _ Xq Xq) T" 
Tqo + Tqo. ,q + ,+" q 

Xq Xq Xq 

Step 3: Compute T~u and T~~ from 
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Step 4: 

, xaq{T~O' - ~~) 
XqO' = () 

T ' Til 1 Xaq qo + qo - + -,-, 
XqO' 

Step 5: Calculate the parameters 

, " 
XkO' 

XqO'XqO' 
- , " XqO' -xqO' , 

XgO' 
XaqXqO' 

-
Xaq - x40' 

Rk 
XkO' 

- ~ WB qO' 

Rg - ~ 
wBT~O' 

Remarks 

T" qO' 

1. The open circuit time constants T~o and ~~ can be determined from the 
equivalent circuit parameters. These are obtained as negatives of the re­
ciprocals of the roots of the characteristic equation 

1 + ~ (X9 + Xk) + s: [xaq{xgO' + XkO') + X90'XkO'] = 0 
WB Rg Rk wB RgRk 

If Rg » Rk, T~o and ~~ can be approximated as 

T" qo 

Xg _ XgO' + Xaq 

wBRg - wBRg 

-W-B
1
-R-

k 
[XkO' + -=-{x-:-,,:,-,-:_X x'::';';~'-O'"7"")] 

(3.111) 

The assumptions are similar to that used in connection with the calcula­
tion of transient and subtransient quantities in" the d-axis. However the 
justification for these assumptions for the q-axis is suspect as the difference 
between T~o and r;;o is much less than the difference between T~ and T~ 

2. Unfortunately, the practice of making the assumptions both for d- and'q­
axis parameters, appears to continue. This can lead to inaccurate results 
in the prediction of machine performance. 
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One way out of this difficulty is the determination of transfer function 
Xd(S) and Xq(s) directly from measurements using frequency response 
tests [29-32] 

3. A most frequently used assumption is that X/h = Xad. This is inaccurate 
as Xad = Xd - Xau. In the absence of magnetic saturation, there is no 
restriction in selecting 

x /h = xdJ = Xdh = Xdc = Xd - Xc 

(all the three mutual reactances are assumed to be equal). However, the 
value of Xc must be accurately determined either by calculations or test 
(Note that for some machines Xc may be even be negative). 

For the q-axis equivalent circuit there is no restriction on the choice of 

Xgk = Xqg = Xqk = Xag = Xq - Xau 

Neglecting saturation., Xau can even be assumed to be zero or selected arbitrarily. 

3.7.3 Measurement of Characteristic Reactance Xc 

Xc can be determined from measurements during 3-phase sudden short circuit 
test on the machine. Immediately after the short circuit applied at t = 0+, the 
field current variation with time is shown in Fig. 3.12. The AC component has 
a frequency of W B. Defining the ratio, 

a = Ip (t = 0+) 
I/o 

(3.112) 

where Ip is the peak (amplitude) value of the AC component and I/o is the 
initial (prefault) current in the field winding. 

It can be shown (with approximations, x~c ~ x~ - Xc and wBTJc » 1), that 

(3.113) 

Xc can be solved from (3.113) as 

(3.114) 



80 Power System Dynamics - Stability and Control 

oL-~------~----------~----~ o 01 02 

Figure 3.12: Field current variation following sudden short circuit 

where 

c= 

A check on the measurement is that the AC component of the field current 
cannot be too small. The ratio a has a minimum value given by 

3.7.4 Examples 

Example 3.1 

In the IEEE First Benchmark model for SSR [50], the generator has the 
following data. 
Xd = 1.79, Xau = 0.13, x~ = 0.169, x~ = 0.135, T~ = 4.3, T;o = 0.032, 
Xq = 1.71, x~ = 0.228, x; = 0.2, T;o = 0.85, T~~ = 0.05, JB = 60 Hz. 

Compute the equivalent circuit parameters using (a) exact calculation and (b) 
approximate method (also termed as standard method [22]). 

Solution 

Even in the exact method, since Xc is not specified, it is assumed that 
Xc = Xau· 
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(a) d-axis 

X a cr 

O---/VYV\~J"------'-J -----.J 
> > 
~> X k 0' :> X g cs 

l ,~ ~ ~ ~ ~ R" ~ 
o 

(b) q - axis 

Figure 3.13: Equivalent Circuits 

The equivalent circuits for both d- and q-axis are shown in Fig. 3.13. The 
approximate (standard) method uses the assumptions 

1. In computing the transient quantities, the damper winding in the d-axis 
(or the high resistance damper in the q-axis) is assumed to be open 

2. In computing the subtransient quantities, the resistance of field winding 
(or the low resistance damper winding in the q-axis) is neglected 

The calculation of the equivalent circuit parameters based on these assumptions 
are given in Table 3.2 

The results are shown in Table 3.3. 

Example 3.2 [21] 

A salient pole machine has the following data in the d-axis. 
7 I" I 

Xd = 1.7 , xd = 0.254, xd = 0.155, Xuu = 0.089, Xc = -0.0776, Td = 0.87, 
1d = 0.07, fB = 50 Hz. 
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Table 3.2 Equivalent circuit Parameters-Standard Method 

d-axis q-axis 
Xad = Xd - Xau Xaq = Xq - Xau 

_ (X~ - Xau) (X~-Xau) 
Xfu - ( ') Xad Xgu = (Xq-x~) Xaq 

Xd -Xd 
/I 

_ (x~ -Xau) ( , ) _ (Xd -xau ) ( , ) 
Xhu - ( ,_ ") Xd - Xau Xku - ( ,_ ") Xq - Xau 

Xd Xd Xq Xq 
I 2 I 2 

R - 1 ~ Xad R - _1_ ~ Xaq 
f - wBT~· Xd· (Xd-X~) 9 - wBT~ • Xq· (Xq-x~) 

/I ( I )2 /I ( I ) 
R - 1 ~ Xd-Xau R - 1 ~ xg-xau 

h - --=rr.. II k - -;;;;;;r:r. I· (' ") WBTd Xd (x' -xd ) WB q Xq X-'L-X-'L 

Table 3.3 Numerical Values of Parameters (Example 3.1) 

d-Axis Standard Exact with q-Axis Standard Exact 
Parameters assumption Parameters 

Xc = Xau 

Xhu 0.00574 0.00546 Xku 0.245 0.329 
xfu 0.0399 0.0618 Xgu 0.104 0.0942 
Rh 0.00371 0.00407 Rk 0.0182 0.0141 
Rf 0.00105 0.00141 Rg 0.00526 0.00819 

Calculate the equivalent circuit parameters for the d-axis using 

a) standard method 

b) Exact method with the assumption Xc = Xau 

c) Exact method 

Solution 

The results are shown in Table 3.4. (Note that for the exact method, 
the subscript c should substitute for a) Note also that Xc and Xrc are negative 
in this case. In general, this is true for salient pole machines. 

Example 3.3 [21] 

(a) Obtain the expressions for Xd(S) and G(s) in terms of circuit parameters 
in d-axis 

(b) Calculate the time constants T~o' T;o' T~ and T; if Xd = 1.803, xdf = Xdh 

= Xad = 1.571, Xfh = 1.6624, xf = 1.8334, Xh = 1.674, Rf = 0.000856, 
Rh = 0.00871, In = 60 Hz Also compute x~ and x~. 
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Table 3.4 d-Axis Parameters (Example 3.2) 

Parameters Standard Exact Exact 
Xc = Xuu 

Xrc - -0.152 -

Xhu(Xhc) 0.110 0.672 0.105 
xfu(xfc) 0.183 0.328 0.200 

Rh 0.00763 0.0266 0.00736 
Rf 0.000979 0.000956 0.00106 

Solution 

(a) The expression for Xd(S) can be obtained as 

(i) 

'l/Jd(S) I 
Id(S) Efd=O 

xd(l + als + a2s2) (1 + sTdHl + sT;) 
(1 + bls + ~s2) = Xd (1 + sTdoHl + sT;o) 

From the equivalent circuit in Fig. 3.13, we have 

1 
Xuu + 1 1 1 

-+ +~--=--~ 

Xud (Xhu+RhsWB) (Xfu+RfsWB) 

xd(l + alS + a2s2) 
(1 + blS + b2s2 ) 

where 
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(ii) 
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Tdo and T;o are obtained as the negative reciprocals of the roots of 
the equation 

Similarly Td and T; are obtained as the negative reciprocals of the 
roots of the equation 

Note: The calculations are identical if in the equivalent circuit of Fig. 
3.13, Xacr is replaced by Xc and Xhcr and xfcr are replaced by x~c and 
xfc respectively. 

From the equivalent circuit of Fig. 3.13, we can obtain 

G( ) - RfwB 
s - R x 

XadS (Xfcr + fsWB) 

where 

(b) Substituting the values, the time constants are obtained as 

Td = 1.497 sec, T; = 0.035, sec Tl = 0.00353 sec 
Tdo = 6.14 sec, T;o = 0.047 sec 

The reactances, x~ and x~ are obtained by applying Eqs. (3.93) and (3.94). 

These are x~ = 0.327, x~ = 0.442 
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3.8 Measurements for Obtaining Data 

The synchronous machine data mainly refer to the parameters of the equivalent 
circuits on the two axes. Test procedures are designed to obtain this data. Most 
of these presume that there are only two rotor windings per axis (model 2.2) 

Classification of Machine Models [32] 

Depending on the degree of complexity, the machine models are classified de­
pending upon the number of rotor circuits on each axis. Model (i, j) refers to 
a synchronous machine having 'i' number of rotor circuits on the d-axis and 'j' 
number of rotor circuits on the q-axis. Thus mudel (1.0) refers to the case when 
all damper windings are neglected and only the field winding (on the d-axis) 
is considered. Model (2.2) is the most commonly used detailed model although 
models (3.2) and (3.3) have also been proposed [7,32]. On the other hand, m9del 
(0.0) refers to the classical model neglecting flux decay and damper windings. 

Short Circuit Tests [26] 

IEEE Standard No.1l5 [26] describes in detail the short circuit tests which were 
first proposed in 1948. The latest revision of the test code was done in 1983. 

A typical test is a three phase short circuit applied to the terminals of a 
synchronous machine which is running at rated speed on open circuit. The open 
circuit voltage can be chosen at any value within R~)ecifications. For determina­
tion of the reactances, the tests are performed for several voltage levels in a range 
typically up to about 0.5 to 0.6 p. u. of rated terminal voltage. The oscillograms 
of the armature currents are obtained and the variations in the peak to peak 
current magnitudes with time are plotted on semi-logarithmic paper. Generally, 
two slopes in the current variation are identified. The projection of each slope 
to zero time (when the fault is applied) will determine the initial magnitude of 
the current, which, when divided into the voltage magnitude before the fault, 
gives a reactance. The initial, smaller value is the subtransient reactance (x~) 
and the second larger value is the transient resistance (x~). The slopes are also 
used to derive the time constants T~ and T~. There is no procedure in IEEE 
Standard No.1l5 for a similar test to obtain quantities in the q-axis. 

Decrement Tests: [23, 24, 27] 

These tests involve sudden changes imposed on either stator or field windings. 
In the method described in [24], the machine armature currents are interrupted 
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under two initial operating conditions {i} id = 0 and {ii}iq = O. The conditions 
can be achieved by under-exciting or over exciting the machine at some percent­
age of the full load. Achieving an exact loading condition for either id = 0 or 
iq = 0 is unnecessary provided an accurate measurement of the rotor angle is 
available. 

Decrement tests proposed by Shackshaft [23, 27] have been used at Cen­
tral Electricity Generating Board in U.K. There are two types of tests 

a} Stator decrement tests 

b} Rotor decrement tests 

In a stator decrement test, the machine under test is operated at zero 
load and is excited totally from the power system, i.e. its field current is zero. 
The generator is then suddenly disconnected from the system and the subsequent 
variation of stator voltage and the current in the field winding {if closed} can be 
used to determine the machine parameters. 

In a rotor decrement test with the stator on open circuit, the machine is 
excited via its field winding and the excitation supply is then suddenly shorted 
out. From the decay of the field current and stator voltage, some of the param­
eters can be obtained. 

Frequency Response Tests [25, 29-32] 

An alternative approach to the determination of machine parameters is through 
frequency response testing. Both {a} standstill and {b} on-line frequency re­
sponse tests are used. 

Conceptually, this approach involves viewing the machine model as a 
two port network in the d-axis and one port network in the q-axis. {See Fig. 
3.14.} This representation enables even the most detailed model {3.3} to be 
considered. Also, these networks can be viewed as linear R-C networks whose 
immittance functions have certain properties. For example the function Xd{ s} 
can be expressed as 

Xd{S} = xd{l + sTt}(l + sT2)(1 + ST3) 
(1 + sT4)(1 + sT5)(1 + sT6 ) 

(3.115) 

with 3 rotor windings in d-axis. From the properties of the immittance function, 
we have 
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Id If Iq - -
¢d ! ! Vd 

,.. 
d-axis 

'lj;q + 
q-axis 

network ,.. network 
~ 

(a) d-axis (b) q-axis 

Figure 3.14: Representation of d-axis and q-axis models 

For model (2.2), the above inequality can be expressed as 

Similarly for the q-axis, we have 

The standstill frequency response (SSFR) test is convenient to use and 
the details are given in [29]. In addition to the determination of the transfer 

functions ~(s), v'lq (s), with field winding shorted, Coultes and Watson [29] also 
d q 

recommend the measurement of two more transfer function ~: (s) and ~ (s), the 

former with the field winding open and the latter with the field shorted. The 
measurements also enable the computation of X rc in the d-axis equivalent circuit 
of Fig. 3.7. 

V, 
The direct axis operational impedance, I; (s) is measured using anyone 

of the two possible connections shown in Fig. 3.15. In the first connection 
(a), the magnetic axes of phase a and field are aligned (8 = 0). In the second 
connection (b), the magnetic axis of field winding is at 900 to that of phase a 
(8 = 900

). 

It can be shown for connection (a) that, 

(3.116) 

(3.1L 7) 
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v 

v 

(a) (b) 

Figure 3.15: Two connections for measuring direct axis impedances 

Proof 

From the stator equations, with W = 0, we have 
S 

--Wd(S) - RaId(s) Vd(S) 
Wn 

S 
--Wq(s) - RaIq(s) = Vq(s) 

Wn 

With field winding shorted, we have 

Wd(S) = Xd(s)Id(s) 

Substituting (3.120) in (3.118), we get 

Vd(S) -s 
-r ( ) = -Xd(S) +Ra 

d S Wn 

From Fig. 3.15 (a), we have 

Vb(s) Vc(s) } V(s) Va(s) - Vb(s) 

Ia(s) - -I(s) } Ib(s) - Ic(s) = kI(s) 

Since () = 0, 

If [-ICOS(OO) + ~COS(-1200) + ~COS(1200)] 

-J[I 

(3.118) 

(3.119) 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

(3.124) 
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Ii [-I sin(O) + ~ sin( -120°) + ~ sin(1200)] 

o 

Ii [Vacos(O) + Vbcos(-1200) + Vccos(1200)] 

Ii [Va - Vb] = liV 

Ii [Vasin(O) + Vbsin(-1200) + Vc sin(1200)] 

o 
From, (3.124) and (3.126) we get 

Vd(S) = _~ V(s) = -Zd(S) 
1d(s) 3 l(s) 

Substituting in (3.121), we also have 
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(3.125) 

(3.126) 

(3.127) 

For quadrature axis measurement, the rotor is turned 90° electrically (8 = 90°). 
It can be shown in this case, that 

Vq(S) S 
-- = -z (s) = --x (s) -Ra 
1q(s) q WB q 

(3.128) 

3.9 Saturation Models 

Magnetic materials used in the stator and rotor of Sy nchronous machine exhibit 
saturation. This implies that the machine inductances are not constants but 
depend on the levels of flux in different parts of the machine. An exact analysis 
of saturation can be very complex and impractical to use in large scale system 
studies [32, 41]. 

There are several saturation models proposed in the literature [34-43] 
but they tend to be highly empirical and lack theoretical justification although 
recent developments [33, 41, 42] are aimed at achieving better representation 
of saturation in a machine. Sauer [33] has presented algebraic constraints that 
must be satisfied by saturation models of loss less fields. This has relevance to the 
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development of theoretically sound saturation models based on fundamental laws 
that lead to a typical dynamic model. Harley et al [43] present a comparative 
study of the saturation models used in stability studies involving synchronous 
machines. 

Most of the different methods proposed in the literature consider that 
the mutual inductances in a machine are subject to saturation. Thus, 

Xads = SdXad (3.129) 
xaqs = SqXaq (3.130) 

where the subscript's' indicates saturated value while Xad and Xaq are unsatu­
rated (linear) reactances. Sd and Sq are nonlinear factors that depend on flux 
levels. The a.c3sumptions are that the leakage inductances are unaffected by sat­
uration. However, some methods consider saturation of field flux leakage path 
while a.c3suming only constant armature leakage reactance. 

Saturation factor Sd, is normally derived from open circuit saturation 
curve. Since data on Sq is generally not available, it is a.c3sumed that Sq = 1 for 
salient pole machines and Sd = Sq for round rotor machines. The determination 
of Sd is explained with reference to the O.C.C. and air-gap line shown in Fig. 
3.16. The abscissa represents the mmf (Fd). At no load, Fd depends only on If 
(the field current). The ordinate represents the flux level'I/Jad which corresponds 
to an internal voltage component Eq behind a leakage or Potier reactance (Note 
that the open circuit voltage is identical to Eq). 

occ 

Figure 3.16: Direct axis open circuit characteristics 

The value of unsaturated Xad is given by 
DE 

Xad = OD (3.131) 
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1.0 f-------~ 

'Pad 

Figure 3.17: Variation of Sd 

The saturated reactance, Xads is given by the slope of the line oe, when 
OB = 'l/Jad =Eq. 

which gives 

DC DC 
Xads = OD = Xad DE = Sd· Xad 

DC BA 
Sd= DE = BC 

(3.132) 

(3.133) 

Similar procedure can be used to determine Sq if the saturation curve 
is available. The variation of Sd with 'l/Jad{Eq) is shown in Fig. 3.17. Some 
saturation models consider Sd as a function of the total airgap flux 'l/Jt, given by 

(3.134) 

Minnich et al [41] have proposed that the reactances Xads and Xqs can be ex­
pressed in terms of product of two nonlinear functions, i.e. 

Xads = Xad· Fd1 {1 Vp I) . Fd2{'l/Jqp) 

Xqs = xq . Fql{1 Vp I) . Fql.('l/Jqp) 

(3.135) 

(3.136) 

1 Vp 1 is the magnitude of the total voltage or flux behind an internal reactance 
(called for convenience as the Potier reactance, although it is not the same 
defined originally). Vp and 'l/Jqp are defined by 

Vp = Vi + j1axp 

'l/Jqp = 'l/Jq - Iqxp = -Vd - Iqxp 

as in steady state, {at rated speed}, 

'l/Jq = -Vd 

{3.137} 

{3.138} 
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It has been observed that saturation is a strong function of the voltage 
1 Vp I. In [41] the authors fit the saturation function F2 using a quadratic, while 
Fi is defined by a look-up table (as power series fit is inadequate). 

Instead of using saturation factors to modify the inductance values, some 
models introduce a 'saturation current' which reduces the d-axis mmf for salient 
pole machines or the total mmf for round rotor machines. However this model 
is not preferred as it fails to distinguish between the degrees of saturation in the 
two axes [43]. 

The effect of saturation on Xq is important from the point of view of 
determining the correct rotor angle. The accurate modelling of saturation (in 
both axes) is also necessary for the accurate prediction of field excitation required 
for a specified generator power output. 

An important phenomenon resulting from saturation is the cross-coupling 
between d- and q-axis coils (termed as the cross-magnetizing phenomenon). Due 
to saturation, d-axis current Id produces q-axis flux linkages and vice versa. 
Also, the field and the q-axis coil in the armature get coupled. The cross­
magnetization arises from the fact that when the machine is loaded, the per­
meability is not symmetric around d-axis. The effects of various saturation 
models on generator swing curves are investigated in [43] and the results are 
interesting. Although the studies were carried out without considering machine 
controllers (both excitation and governor), the conclusions indicate that using 
saturated, but constant values of reactances gives reasonably accurate results. 
Thus, the complication of modifying the reactances at every solution step may 
not be essential. While this result is significant particularly for large scale sys­
tem studies, it needs to be checked thoroughly with extensive experimentation. 
Unfortunately, there are no detailed reports of comparative studies on saturation 
models in synchronous machines. 

3.10 Transient Analysis of a Synchronous 
Machine 

The transient response of a synchronous machine can be considered under the 
following conditions 

(a) connected to a voltage source 

(b) connected to an external network 

When the machine is running at constant speed and saturation is neglected, the 
machine equations are linear. Neglecting the armature resistance, and assuming 
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the machine is running at rated speed they are 

{3.139} 

{3.140} 

{3.141} 

WB dt 

Machine connected to a voltage source 

If it is assumed that the machine is connected to a balanced sinusoidal voltage 
of rated frequency, then Vd and Vq are constants. It is seen that the equation 
{3.139} is not coupled to the rest and can be solved as 

'lj;d{t} = CICOswBt+c2sinwBt+Vq 

'lj;q(t} = -C2 coswBt + Cl sinwBt - Vd 

Cl and C2 are determined from the initial conditions of 'lj;d and 'lj;q as 

Cl = 'lj;d{O} - Vq 

C2 = -'Ij;q{O} - Vd 

{3.142} 

{3.143} 

Eqs. (3.140) and (3.141) can be solved independently by substituting for the 
rotor currents in terms of flux linkages. The relevant equations are 

[ ~; 1 = [:; :~ :;: 1 [ ~; 1 
'lj;h Xdh Xfh Xh Zh 

{3.144} 

[ 
'lj;q 1 [Xq Xqg Xqk 1 [ iq 1 'lj;g = Xqg Xg Xgk ~g 
'lj;k Xqk Xgk Xk Zk 

{3.145} 

From {3.144} and {3.145}, it is possible to obtain 

if a1'lj;,+a2'1j;h+blVJd} 
ih = a2'1j;, + a3'1j;h + b2'1j;d 

{3.146} 
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If, 

then 

where 

Similarly, if 

then, 
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Xdf = Xdh = x fh = xdc = xd - Xc } 

xf = Xdc + xfc, Xh = Xdc + Xhc 

1 Xl Xdc 

al - Xfc - X}c (Xdc + xd 
Xdc Xl --

(Xdc + xd XfcXhc 

1 Xl Xdc 

a3 - Xhc - X~c (Xdc + xd 

b
l 

= _ Xdc ~, 
(Xdc + xd XcXfc 

b2 = _ Xdc Xl 

(Xdc + Xl) XcXhc 

Xqg 

Xg 

1 1 1 1 -=-+-+­
Xl Xc xfc Xhc 

= Xqk = Xgk = Xaq = Xq - Xau } 

= Xaq + x gu , Xk = Xaq + Xku 

1 X2 Xaq 

Xgu - x~u (xaq + X2) 

as -
X2 Xaq 

XguXku (Xaq + X2) 

1 X2 Xaq 

Xku - x~u (Xaq + X2) 

X2 Xaq 

XguXau (xaq + X2) 

X2 Xaq 

XkuXau (xaq + X2) 

(3.147) 

(3.148) 

(3.149) 
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where 
1 1 1 1 
-=-+-+­
X2 Xau Xgu Xku 

Substituting Eqs. (3.146) and (3.147) in (3.140) and (3.141), we obtain, 

d1/Jf 

dt 

d1/Jh 

dt 

~: ~ -wBRg[a,,,,, + a,"'_J - wBRgb3",. } 

dt = -wBR k[as1/Jg + a61/Jk] - wBR k b41/Jq 
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(3.150) 

(3.151) 

Eqs. (3.150) and (3.151) are decoupled and can be solved independently. Here 
1/Jd, 1/Jq and E fd are treated as input variables. The solutions for the rotor flux 
linkages also include sinusoidal terms at fundamental frequency in light of Eqs. 
(3.142) and (3.143). The solution for the currents id and iq are obtained in terms 
of flux linkages as 

id = C 11/Jd + C 21/Jf + C 31/Jh 

iq = C 41/Jq + C s 1/Jg + C61/Jk 

If the reactances are as defined in (3.148) and (3.149), then 

C
1 

= ~ _ Xl Xdc C
2 

= _ ~ Xdc 

Xc X~ (Xdc + xd' XfcXc (Xdc + xI) 

C
3 

- _ ~ Xdc C4 = _1_ _ X2 Xaq 

- XhcXc {Xdc + xd' Xaq X~u (Xaq + X2) 

C
S 

- _ X2 Xaq C
6 

= _ X2 Xaq 

- XauXgu (Xaq + X2)' XauXku (Xaq + X2) 

The electrical torque can be computed from 

Te ~ 1/Jdi q - 1/Jqi d 

(3.152) 

(3.153) 

(3.154) 

It can be seen that the torque consists of sinusoidal components of fundamental 
frequency and second harmonic in addition to constant components. 

Remarks 

1. The analysis assumed the armature resistance as zero which enabled the 
machine equations to be decoupled. First, 1/Jd and 1/Jq are solved and the 
solution is utilized to solve for the rotor flux linkages in the direct axis and 
quadrature axis separately. 
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2. If armature resistance is to be considered, then the machine equations 
cannot be decoupled. The three sets of Equations (six in all), (3.139) to 
(3.141) have to be solved simultaneously. 
The armature resistance is never zero, hence the sinusoidal components 
in the flux linkages and torque eventually decay to zero. If the solution 
is required for a short period immediately following a disturbance, it is 
in order to simplify the solution by assuming Ra = 0 as the armature 
resistance is usually very small. 

3. The sinusoidal component in id and iq result in second harmonic compo­
nents in the armature currents ia , ib and ic in addition to the dc compo­
nents. It is usually presumed that this so called dc component decays with 
the time in the presence of armature resistances. 
However, it can be shown that the sinusoidal components in id and iq have 
a frequency slightly differing from the rated frequency. This implies thalt 
the 'dc' components in the armature currents are not really dc (unidirec­
tional) but decaying sinusoidal components of very low frequency (say 0.02 
Hz). Note that the radian frequency of oscillation in id and iq is obtained 
as the imaginary part of the complex eigenvalue of the matrix [F] defined 
by the machine equations expressed as 

x = [F]x + [G]u (3.155) 

where the state vector x and input vector u are defined by 

xt ['ljId 'ljIq 'ljIf 'ljIh 'ljIg 'ljIk] 

ut 
- [Vd Vq Efd] 

Note also that the choice of state vector is not unique. The currents can 
also be chosen as state variables. However, the simplification that arises 
when Ra = 0, is not obvious in this case. 

4. The 'dc' components in the armature currents lead to sinusoidal compo­
nents of rated frequency (or very close to rated) in the electrical torque. 
Generally, fast variations in the torque have little influence on the motion 
of the rotor (due to its inertia) unless shaft torsional modes are considered. 

In stability studies, where swing curves (variation of rotor angle 8 with 
time) are of importance, it is acceptable to ignore the transients in the stator. In 
this case, the stator is described by algebraic equations. Neither 'l/Jd, 'l/Jq or'id, iq 
can be considered as state variables as they can change suddenly in response to 
step changes in the terminal voltages Vd and vq. 
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Analysis of Machine connected to an External N et­
work 

In most of the cases, the normal operation of a synchronous machine in a power 
system is when it is connected to an external network consisting of transmission 
lines, transformers, loads and other components. In such cases, it is not possible 
to assume that the terminal voltages are specified or known. The network can 
be modelled by an electrical circuit consisting of lumped elements of linear R, L 
and C. Thus it is advantageous to obtain a circuit equivalent for the machine 
stator which can then be combined with the equivalent circuits for the external 
network. 

A circuit model for a synchronous machine which is applicable for trarl­
sient analysis is given in [13]. The stator is represented by a three phase equiva­
lent circuit shown in Fig. 3.18 . The inductance matrix for the circuit is defined 
as 

(3.156) 

n 

Figure 3.18: Equivalent circuit of stator 

It can be shown that if subtransient saliency is absent, i.e. x~ = x; = x", 
then the elements of [L~] are constants (independent of the rotor angle). Also, 
[L~] is a cyclic symmetric matrix with all the off-diagonal terms as L:b• It can 
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also be shown that the sub transient inductance is given by 

L" -L" - "-" " d - q - L - Laa - Lab (3.157) 

When subtran8.~lit saliency is present, by introducing a 'dummy' rotor coil in the 
q-axis, {or d-axls} with appropriately chosen parameters, it is possible to modify 
[L~] (which is dependent on 0 in the presence of subtransient saliency) and obtain 
a new constant matrix. Note that the introduction of an open 'dummy' coil has' 
no effect on the machine performance. 

The current source Is in Fig. 3.18 is defined by 

(3.158) 

in the absence of a dummy coil, and modified to 

-Is = [L~]-I{[Lsr][Lrrrl""r + [Mc]L;I[Mc]tis} (3.159) 

in the presence of a dummy coil. [Mc] is the vector of mutual inductances 
between the dummy coil and the stator windings. Lc is the self inductance of 
the dummy coil. 

It can be shown [16] that tl: sub transient saliency results when 

L _ 81 - 82 -I- 0 
aa2 2 r (3.160) 

where 

_ {Ma/Lh - MahL/h)Ma/ + {MahL/ - M::t/L/h)Mah 
81 -- 2 

L/Lh - L/h 
(3.161) 

{MagLk - MakLgk)Mag + (MakLg - MagLgk)Mak ) 
82 = 2 (3.162 

LgLk - Lgk 

The inductances used in the above expressions are defined in section 3.2. 

The vector [Mel is defined as 

[Melt = [Mac sino Mac sin (0- 2;) Mac sin (0+ 2;)] 
(It is assumed that the dummy rotor coil is on q-axis) 

With the dummy coil considered, the saliency is avoided if 

M2 
82 + L~ = 81 - 2Laa2 (3.163) 
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This equation determines the parameters of the dummy coil. As there is only 
one equation in two parameters, one of the parameters, say Lc can be arbitrarily 
assigned a value, say Lq • Then Mac is determined from Eq. (3.163). 

The current vector Is can be viewed as vector of dependent current 
sources (dependent on the rotor flux linkages and stator currents). The depen­
dence on stator currents may be problematic; in such a case, the dummy coil 
can be treated as closed with a high resistance. The current vector Is can be 
expressed as 

(3.164) 

where 'l/Jc, the flux linkage of the dummy coil becomes an additional state vari­
able. 

Remarks 

1. It is assumed in the derivation of Eqs. (3.159) and (3.164) that the dummy 
coil has no coupling with other rotor coils (for convenience). 

2. Note that when the dummy coil is open, then 

(3.165) 

3. The assumption about closed dummy coil is 1.n approximation; however the 
degree of approximation (or accuracy) is controlled by selecting arbitrarily 
large resistance for the dummy coil. 
It is convenient to define an (open circuit) time constant Tc for the dummy 
coil which should be theoretically zero, but can be given an arhitrarily 
small value. Numerical experiments on realistic systems indicate a value 
of Tc < 0.001 sec is adequate for transient analysis while Tc < 0.01 sec is 
satisfactory for stability studies. 

4. The equivalent circuit of Fig. 3.18 can be combined with the external 
stationary network to obtain the differential equations. If network (and 
stator) transients are ignored, then the resulting equations are algebraic. 

Torque Equation 

The electrical torque in the machine can be derived as [13] 

(3.166) 

where 
(3.167) 



100 Power System Dynamics - Stability and Control 

It is assumed that [L~] is a constant matrix (as discussed earlier). 

Example 3.4 

A synchronous generator is operating at rated speed and on no-load. 
The open circuit voltage is 1.0 pu. There is a sudden three phase short circuit 
at the generator terminals at t = O. 

(a) Obtain expression for id, iq, if and Te as function of time. Assume that the 
transients in the armature are neglected. Also neglect armature resistance. 

(b) Repeat (a) iftransients in the armature are considered (with Ra = 0) 

(c) Plot id , i q , if and Te as functions of time for the data in Example 3.3(b). 
Assume x~ = x~ 

Solution 

The fault at the generator terminals is simulated by considering the 
superposition of two voltage sources; the first is the prefault voltage at the 
terminals (Vdo and vqo ) and the second is equal and opposite to the first (see 
Fig. 3.19) 

AVd = -Vdo, AVq = -vqo 

The net currents are obtained by superposition of the currents due to the two 
sources taken one at a time. The first source (Vdo and vqo ) result in prefault 
currents, Under no load conditions, these are 

ido = 0, iqo = 0, 
. Efdo 
~fo =--

xdf 

(a) Neglecting transients in the armature and with Ra = G, 
'ljJdo = Vqo = E fdo , 'ljJqo = -Vdo = 0 
The response due to A Vd and AVq are obtained from 

Alq(s) = 

It can be derived that 

I 
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Figure 3.19: Application of superposition theorem (Example 3.4) 

where 

G'( ) _ Xad s(l + Tls) 
s - " , 

wBR, (1 + sT~)(l + sTela) 

Substituting for Id(S), 

fl.I (s) = _ fl.VqXad (1 + sTt} I 

, wBR,Xd (1 + sT~)(l + s~ ) 
Taking inverse Laplace transforms, we get 

as 
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id{t) ida + did{t) = did{t), iq{t) = iqo + diq{t) = 0 

'l/Jd{t) - 'l/Jda + d'I/Jd{t), 'l/Jq{t) = 'l/Jqo + d'I/Jq{t) = 0 
Te - 'l/Jdiq -'l/Jqid = 0 

(b) Neglecting armature resistance, 

From the above equations, we get 

Taking inverse Laplace Transform, 

2 WBVqo 
S(82 + W~) 

VqoWB 
82+W~ 

d'I/Jd{t) - Vqo[-l+ COSWBt] 
d'I/Jq{t) - Vqo sinwBt 
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from which 

~id(t) [ [1 e 1) -~ e 1 ) -7 1 - - + ,... - - e Td + II -,... e d x 
Xd Xd Xd Xd Xd 

+ -.; coswt] Vqo 
Xd 

~Iq(s) 
~Wq(S) 

Xq(S) 

VqoWB [1 e 1) sT, C 1) s~ 1 
s2+w~ Xq + x~ - Xq 1 + sT~ + x~ - x~ 1 + ST~' 

From which 

~. (t) '" Vqo sinwBt 
Zq '" " Xq 

~If(s) 
Xad s(l + sTd 

= ---
(1 + sT~o)(l + sT;o) ~Id(S) wBRf 

WBVqoXad (1 + sTl) 
xdRf(s2 + w~) (1 + sT~)(l + sT;) 

from which 

[ 

t ( T) _t T ] . v oXad - rr I? 1 
~~f(t) = ~'R e d - 1- -II e d - -II cosWBt 

WB 4 fXd Td Td 

Since, 
Vqo = xadifo 

and 

. . (Xd - X~) [-¢,- ( Tl) --;j:rr Tl ] !::3.zf(t) ~ zfo x~ e"d - 1 - T; e d - T; coswBt 

The electrical torque is expressed as 
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Figure 3.20: Variation of id and if with armature transients neglected (Example 
3.4) 

(c) The variations of id and if with time, when armature transients are ne­
glected are shown in Fig. 3.20. The variations of id, i q , if and Te with 
armature transients considered are shown in Fig. 3.21. 

The following points can be noted from the example 

(i) The field current and torque have sinusoidal components of fundamental 
frequency. The latter also has a second harmonic component. 
The armature currents ia , i ib and ic also have second harmonic compo­
nents. 

(ii) The electrical torque during short circuit is zero if armature transients are 
neglected. This implies ifTm > 0 (in a loaded generator) the rotor contin­
ues to accelerate from the instant of fault. 
However, with armature transients included, the initial torque can be of 
such value that the machine initially decelerates. This is termed as 'back­
swing' [51]. The effect of this phenom.enon is that the critical clearing time 
for a fault is higher than what is computed neglecting the backswing. 

(iii) The effect of the armature resistance (which was neglected in the exam­
pIe) can be considered approximately, by noting that the machine response 
(with armature transients) includes a term determined by the mode (eigen­
value) calculated from the equation [2] 

8
2 + 2a8 + w1 = 0 
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Figure 3.21: With armature transients considered (Example 3.4) 
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where 

The roots of the quadratic equation are 

S = -0'. ± jJw~ - 0'.2 = -0'. ± jw 

The response for id and iq includes terms 

e-at cos wt and e-at sin wt 
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It is to be noted that w < WB. The armature currents ia , ib and ic include 
terms 

e-at COS{WB - w)t and e-at sin{wB - w}t 

which are not unidirectional. 
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Chapter 4 

Excitation and Prime Mover 
Controllers 

The synchronous generator is provided with two automatic (feedback) controllers 
for the regulation of the terminal voltage and frequency. These controllers in­
directly influence the reactive power and active power outputs of the generator 
respectively. The regulation of the voltage is the faster of the two controllers 
and has bearing on the system stability much more than the regulation of speed. 

In this chapter, we will look at the modelling of the excitation and prime 
mover controllers for the purposes of stability analysis of power systems. For 
each control system, the models are grouped into a few standard types which 
are conveniently handled in computer simulation and analysis [1-31. The block 
diagram structure of each standard type is well defined such that an equipment 
belonging to that type is characterized by a set of parameters. 

4.1 Excitation System 

The main objective of the excitation system is to control the field current of 
the synchronous machine. The field current is controlled so as to regulate the 
terminal voltage of the machine. As the field circuit time constant is high (of 
the order of a few seconds), fast control of the field current requires field forcing. 
Thus exciter should have a high ceiling voltage which enables it to operate 
transiently with voltage levels that are 3 to 4 times the normal. The rate of 
change of voltage should also be fast. Because of the high reliability required, 
unit exciter scheme is prevalent where each generating unit has its individual 
exciter. 

There are three distinct types of excitation systems based on the power 
source for exciter. 

1. DC Excitation Systems (DC) which utilize a DC generator with com­
mutator. 
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V REF E FD 

ESS 

Figure 4.1: Functional block diagram of excitation control system 

2. AC Excitation Systems (AC) which use alternators and either station­
ary or rotating rectifiers to produce the direct current needed. 

3. Static Excitation Systems (ST) in which the power is supplied through 
transformers and rectifiers. 

The first two types of exciters are also called rotating exciters which are 
mounted on the same shaft as the generator and driven by the prime mover. 

4.2 Excitation System Modelling 

The general functional block diagram of an excitation system (for all the three 
types defined earlier) is shown in Figure 4.1. The modelling of the various 
components of the excitation system is described below. 

4.2.1 Terminal voltage Transducer -and load compen­
sation 

This is shown in Figure 4.2. The terminal voltage of the generator is sensed and 
transformed to a dc quantity. Although the filtering associated with the voltage 
transducer may be complex, it is usually modelled as a single time constant TR. 
In many systems, TR is very small and can be assumed to be zero for simplicity. 
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Figure 4.2: Transducer and Load Compensation 

The purpose of the load compensation is to synthesize a voltage which 
differs from the terminal voltage by the voltage drop in an impedance (Rc+ jXc). 
Both voltage and current phasors must be used in computing Vc. The objectives 
of the load compensation are as follows. 

a) sharing of reactive power among units which are bussed together with zero 
impedance between them. In this case, Rc and Xc are positive and'the 
voltage is regulated at a point internal to the generator. 

b) when the generating units are connected in parallel through unit trans­
formers, it may be desirable to regulate voltage at a point beyond the ma­
chine terminals to compensate for a portion of the transformer impedance. 
In this case both Rc and Xc are negative values. 

In most cases, Rc is negligible and can be ignored. 

4.2.2 Exciters and Voltage Regulators 

The modelling of various excitation systems has been reported in two IEEE 
Committee reports [1, 2]. Modern Automatic Voltage Regulators (AVR) are 
continuously acting electronic regulators with high gain and small time con­
stants. 

The exciters can be of the following types 

1. Field controlled dc generator - commutator 

2. a) Field controlled alternator with non-controlled rectifier (using diodes) 

i) with slip rings and brushes (stationary rectifier) 
ii) brushless, without sliprings (rotating rectifier) 

b) Alternator with controlled rectifier 

3. Static exciter with 

a) potential source controlled rectifier in which the excitation power is 
supplied through a potential tr~sformer connected to generator ter­
minals 
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b) Compound source (using both current and voltage transformers at 
the generator terminals) with 

(i) non-controlled rectifier (control using magnetic elements such as 
saturable reactors) 

(ii) controlled rectifier (for controlling the voltage) 

Historically, DC generator-commutator exciters were first to be used. 
The DC generator may be self-excited or separately excited (using a pilot ex­
citer). The voltage regulator for DC excitation systems were based on rotating 
amplifier (amplidyne) or magnetic amplifiers. 

AC and static excitation systems invariably use electronic regulators 
which are fast acting and result in the phase control of the controlled recti­
fiers using thyristors. In type 2(a) exciters, field control of the alternator is 
achieved using controlled rectifier with power source derived from the alterne.tor 
output. With brushless exciters, the field circuit of the alternator is mounted 
in the stationary member and is supplied through a controlled rectifier from a 
permanent magnet generator. The armature of the alternator is on the rotor and 
connected directly to rotating diode rectifier and thus sliprings are eliminated. 

The performances of the exciters type 2(b) and 3(a) are expected to 
be similar as in both systems, the generator field is directly supplied through 
controlled rectifiers which have fast response. The only difference is that of the 
power source for the rectifiers (and the generator field) - in 2(b) it comes from the 
alternator (hence a part ofthe AC excitation systems) and in 3(a) it comes from 
static elements (potential transformer) and thus belongs to the static excitation 
systems. 

In the first IEEE committee report published in 1968 [1], excitation 
systems were classified not according to their power source but in an arbitrary 
manner. However the IEEE Type 1 excitation system defined in that report 
represents a majority of the excitation systems in service and is widely used. 
It essentially represents rotating exciters but with some modifications can also 
represent static exciters. This is shown in Figure 4.3. Here, VR is the output of 
the regulator, which is limited. The regulator transfer function has single time 
constant TA and a positive gain of KA. The saturation function SE = !(EFD) 
represents the saturation of the exciter. 

It is to be noted that the limits on VR also imply limits on EFD. Actually 
the latter are usually specified, and the former can be found from the equation 
(in steady state) 

VR - (KE + SE)EFD = 0 } 
EFDmin ~ EpD ~ EPDmax 

(4.1) 
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Figure 4.3: IEEE Type 1 Excitation system 

IEEE Type 1 can also represent the sLatic excitation system (3(a)) by specifying 
the following parameters 

KE = 1, TE = 0, BE = 0 and VRMAX = KpVr (4.2) 

Eq. (4.2) shows that the upper limits on the regulator and exciter out­
puts are directly related to the terminal voltage (Vr) of the generator. 

4.2.3 Excitation System Stabilizer (ESS) and Tran­
sient Gain Reduction (TGR) 

This is used for increasing the stable region of operation of the excitation sys­
tem and permit higher regulator gains. It is to be noted that feedback control 
systems, of which the excitation system is an example, often require lead/lag 
compensation or derivative (rate) feedback. 

The feedback transfer function for ESS is shown in Figure 4.4. This can 
be realized by a transformer (assumed to be ideal) whose secondary is connected 
to a high impedance (see Figure 4.5). The turns ratio of the transformer and 
the time constant (L/ R) of the impedance determine KF and TF according to 
the relations 

Figure 4.4: Excitation System Stabi1i£er(ESS) 
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Figure 4.5: Realization of ESS 
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nL 
R 

(4.3) 

(4.4) 

The time constant is usually taken as 1 second. Instead of feedback 
compensation for ESS, a series connected lead/lag circuit can also be used as 
shown in Figure 4.6. Here Tc is usually less than TB. Hence, this means of 
stabilization is termed as Transie;nt Gain Reduction (TGR). The objective of 
TGR is to reduce the transient gain or gain at higher frequencies, thereby mini­
mizing the negative contribution of the regulator to system damping. However if 
Power System Stabilizer (PSS) is specifically used to enhance system damping, 
the TGR may not be required. A typical value of the transient gain reduction 
factor (TB /Tc) is 10. 

-----toll + sTc I · 
.1+sTB. 

Figure 4.6: Transient Gain Reduction(TGR) 

4.2.4 Power System Stabilizer (PSS) 

The stabilization provided by PSS is not to be confused with that by ESS. While 
ESS is designed to provide effective voltage regulation under open or short circuit 
conditions, the objective of PSS is to provide damping of the rotor oscillations 
whenever there is a transient disturbance. The damping of these oscillations 
(whose frequency varies from 0.2 to 2.0 Hz) can be impaired by the provision of 
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high gain AVR, particularly at high loading conditions when a generator is con­
nected through a high external impedance (due to weak transmission network). 

While detailed discussion of PSS will be taken up separately in chapter 
8, it is worth noting here that the input signal for PSS is derived from speed/ 
frequency, or accelerating power or a combination of these signals. The PSS de­
sign in a multi-machine environment can be complete, as several rotor oscillation 
frequencies have to be considered. In any case, the stabilizer is designed to have 
zero output in steady state. Also the output is limited in order not to adversely 
affect the voltage control. The stabilizer output Vs is added to the terminal 
voltage error signal. 

4.3 Excitation Systems- Standard Block Di­
agram 

The second IEEE committee report published in 1981 [2], distinguished between 
the excitation systems based on their power source. This classification is more 
logical and can avoid gross approximations in the representation of different 
excitation systems. 

4.3.1 DC Excitation System 

The type DC 1 which represents field controlled DC commutator exciters with 
continuously acting voltage regulators, is shown in Figure 4.7. This is similar 
to the IEEE Type 1 excitation system. The block with the transfer function 
(1 + sTc)/(1 + STB) represents Transient Gain Reduction (TGR) as TB > Te· 
This has the similar function as Excitation System Stabilizer (ESS) which is 
used in the feedback path. Normally, either TGR (in the forward path) or ESS 
is used. By choosing TB = Te, the TGR is neglected. Similarly by choosing 
KF = 0, ESS is avoided. 

4.3.1.1 Derivation of the Transfer Function for separately Ex­
cited DC Generator 

Consider the DC exciter shown in Figure 4.8. The equation for the field circuit 
of the exciter is 

(4.5) 

The exciter voltage Ex is a nonlinear function of If as shown in Figure 4.9. The 
speed of the exciter is assumed to be constant as it is normally driven by the 
generator shaft. 
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Figure 4.7: Type DC1-DC commutator exciter 

Figure 4.8: Separately excited DC generator 

From Figure 4.9, we can express 

{4.6} 

{4.7} 

Rg is the slope of the exciter saturation curve near Ex = o. It is convenient to 
express II in per unit of lIb where 

I EXb 
Ib=­

Rg 
(4.8) 

Exb is the rated voltage which is defined as the voltage which produces rated 
open circuit voltage in the generator neglecting saturation. 
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Figure 4.9: Exciter load saturation curve 

Tuns, in per unit quantities, Eqs. (4.6) and (4.5) are reduced to 
- - , -
If = Ex +SEEx (4.9) 

- _-Rf KfdEx 
Es - If Rg + Rg dt (4.10) 

where 

Es =VR 

~'quations (4.9) and (4.10) represent the exciter block diagram shown in Figure 
4.10. Here 

TE = 
Kf (4.11) 
Rg 

SE 
RfS~ (4.12) 

Rg 

Kp; ---
Rf (4.] :~) 
Rg 

EFD - Ex (4.14) 
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Figure 4.10: Block diagram of separately excited DC generator 

4.3.1.2 Self Excited DC Generators 

Figure 4.11 shows the schematic diagram of the self-excited exciter.' Ea repre­
sents the voltage of the amplifier in series with the exciter shunt field. Hence, 

{4.15} 

Using this relation along with the block diagram given in Figure 4.10 and noting 

Figure 4.11: Self Excited DC Generator 

that 

{4.16} 
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We can reduce the block diagram of the self-excited exciter to that given in 
Figure 4.10 with the modified value of KE as 

Kk = R, -1 
Rg 

(4.17) 

The field resistance R, is periodically adjusted to maintain VR = 0 in steady 
state. For this case, from Eq. (4.1), we get 

(4.18) 

where SEo is the value of saturation function SE at the initial operating point. 
It is to be noted that KE is generally negative for self-excited exciter. 

4.3.2 AC Excitation System 

Type AC 1 (Field controlled alternator rectifier, with non-controlled rectifiers) 
excitation system is shown in Figure 4.12. This is different from earlier repre­
sentation [1] in that a) the armature reaction of the alternator (KDIFD) and b) 
rectifier regulation (FEX) are considered. The constant KD is a function of the 

\ 

.K F 

1 +sT F 

V
RMAX 

V 
FE 

I--_V_E_--.--_-.{ n}-- E FD 

Figure 4.12: Type AC1-Alternator-rectifier excitation system 

alternator synchronous and transient reactances. The constant Kc is a function 
of the commutating reactance. The function FEX is defined as follows 
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Figure 4.13: Exciter Saturation Characteristics 

(4.19) 

Th sig:l.al VFE is proportional to the exciter field current. This signal is also 
used <.s input to the Excitation System Stabilizer (ESS). 

4 3 
., 

• .J Saturation Function 

The eXl 't~r !'Iaturation function BE is defined as a multiplier of per unit exciter 
voltage tc, rc-.p;:esent the increase in exciter field current (expressed in per unit) 
due to saturation. It applies both to DC and AC exciter. The exciter saturation 
characteristics are shown in Figure 4.13. At a given exciter voltage (EFD), 
the quantities A, Band C are defined as the exciter field currents required on 
(a) constant resistance load .';lturation curve (b) air-gap line and (c) ncrload 
saturation curve respectively. B'or DC-commutator exciters, BE is defined as 

S 
A-B 

E=---
B 

(4.20) 

When exciter field resistance is significantly different from the base resistance 
va.lue, the adjusted value of Sk sh0uld be used instead of BE (Note: Bk is defined 
in 4.9). 

For alternator-rectifier exciters, SE is defined using no-load saturation 
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curve, as 
C-B 

BE= -B=--

125 

(4.21) 

The no-load saturation curve is used in the case of alternator-rectifier exciters as 
the exciter regulation effects are taken into account by the synchronous reactance 
and commutating reactance voltage drops, considered separately. 

Mathematically the saturation function, BE, is modelled as 

(4.22) 

The constants Ax and Bx can be found if BE is specified at two different values 
of EFD. Usually, BE is specified at or near ceiling voltage and at a lower value, 
commonly at 75% of that level. 

4.3.4 Static Excitation System 

In these systems, transformers are used to convert voltage (and also current 
in compounded systems) to the required level of the field voltage. Controlled or 
uncontrolled rectifiers are then used to provide the dc voltage for the generator 
field. Although negative field voltage forcing is used, many of the excitation 
systems used do not permit negative field current. This aspect is normally 
ignored in computer simulation but can be significant sometimes (particularly 
in asynchronous operation). As the exciter ceiling voltage tends to be high in 
static exciters, field current limiters are used to protect the exciter and field 
circuit. However, this protection is also not modelled except in special cases. 

The block diagram of the potential source, controlled- rectifier excitation 
system is shown in Figure 4.14. The internal limiter following the summing 
junction can be neglected, but field voltage limits which are dependent on both 
VT and IFD must be considered. For transformer fed systems Kc is small and 
can be neglected. 

The block-diagram given in Figure 4.14 is also similar to that of alter­
nator supplied controlled rectifier excitation system. The only difference is that 
the field voltage limits are not dependent on the generator terminal voltage VT 

in the case of alternator supplied system. 

4.4 System Representation by State Equa­
tions 

For digital computer simulation (and also for state space analysis of the overall 
system), it is necessary to describe the system by state equations. Given the 
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Figure 4.14: Type ST1-Potential source controlled rectifier exciter 

block diagram representation of the system, it is possible to derive the state 
equations. 

The choice of the state variables is not unique for a given transfer func­
tion. However, the minimum number of state variables required, is invariant. If 
the zeroes of the transfer function do not coincide with the poles, the minimum 
number of state variables is equal to the total number of poles. 

4.4.1 Derivation of State Equations from Transfer 
Functions 

It is assumed that the number of zeroes of a transfer function does not exceed 
the number of poles. Any general function can be expressed as a product of 
simpler functions with not more than two poles and two zeroes. These can be 
real or complex. Let the second order transfer function be expressed as 

(4.23) 

This can also be expressed as 

(4.24) 

and 

(4.25) 
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Defining the state variables as 

Xl = Z 

X2 = Xl = i 

127 

(4.26) 

the Eq. (4.25) represents a simplified block diagram (or signal flow 
graph) in which the dynamic blocks are only integrators. TIns is shown in 
Figure 4.15. The state equations are readily written below as 

(4.27) 

(4.28) 

From Eq.( 4.24), we get 
Y = (Xl + alX2 + a2x2) (4.29) 

Substituting from Eq. (4.28), (4.29) can be finally expressed as 

1 
-

~ 

u K +~>- 1 X2 1 Xl 

~ 
- -
s s 

=Z 

-

'---
b1 I+---
~ 

Figure 4.15: Block diagram representation of Eqn 4.25 

(4.30) 

If all the poles and zeroes of a transfer function are real, the simplest 
transfer function (as a factor of the overall transfer function) is given by 

T(s) = K(1 + sTt} 
(1 + sT2 ) 

(4.31) 
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This function can be represented by a block diagram shown in Figure 4.16. From 
the diagram, the equations are 

x = ~ (-x + K{T2 - Tdu) 
T2 T2 

(4.32) 

y =x+ (K~~) u (4.33) 

It is to be noted that if Tl = 0 then 

y=x (4.34) 

It is also to be noted if Tl = T2 , there is a pole-zero cancellation. In this case 
x = 0 and y = K u. 

1 
- --T2 

-
U K{T2 -Td +~ 1 x + 

T.2 
- E 
s 2 + 

y 

KTI --
T2 

Figure 4.16: Block diagram representation of Eq.{4.31) 

4.4.2 Inclusion of Limits 

There are two types of limiters 

1. Windup Limiter 

2. Non-Windup Limiter 

As the behaviour of these limiters are different, it is necessary to indicate the 
type of the limiter in the block diagram using the convention shown in Figure 
4.17. 
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In the case of the windup limiter, the output variable (y) of the transfer 
function is not limited and is free to vary. In this case the limiter can be treated 
as a separate block whose input is y and the output is z. If 

1 
F(s) = 1 + sT 

the equations with the windup limiter are 

H 

IY f u 

·1 
u y 

F (s) F (s) 
] ~z z 

L 
L 

(a) (b) 

Figure 4.17: (a)' Windup limiter (b) Non-windup limiter 

dy u-y 
= 

dt T 
(4.35) 

If 

L ~ y ~ H, then z = y } 
y > H, then z = H 
y < L, then z = L 

(4.36) 

In the case of the non-windup limiter, the output of the transfer function 
is limited and there is no separate block for the limiter. The equations in this 
case are 

If 

then, 

otherwise, 

/ = (u - y)jT 

y = H and / > 0, 
y = L and / < 0, 

dy =0 
dt 

dy =/ 
dt 

(4.37) 
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and 
(4.38) 

Note that 

1. Windup limiter can result in slow response as the output z of the limiter 
does not change until y comes within the limits. 

2. Generally, all integrator blocks have non-windup limits. 

4.4.3 Examples 

Example 1: IEEE Type 1 Excitation System 

This system is shown in Figure 4.3 and has been widely used. The 
equations for the system are given below 

dEFD 1 
-- TE (- [KE + SE{EFD)] EFD + VR) 

dt 
dV2 1 [ KF ] - - -V2+-EFD 
dt TF TF 

dVI 1 
- - [-VI + VT] 
dt TR 

VERR VREF - VI 

VF 
KF 
-EFD - V2 
TF 

FR 
1 

TA [-VR + KA{VERR + Vs - VF)] 

If VR > VRMAX set VR=VRMAX 

If VR = VRM AX and FR > 0, set d!ftR = 0 
If VR < VRMIN set VR = VRMIN 

If VR = VRMIN and FR < 0, set dftR = 0 

Otherwise, ~R = FR 

It is to be noted that the limiter is represented as a non-windup limiter. 

Example 2 : Static Excitation System 

( 4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

(4.45) 

This is shown in Figure 4.14. Many modern excitation systems can be 
represented by the block diagram shown in the figure. The equations are given 
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below for the case neglecting Kc. The internal limits are also neglected. The 
system includes TGR instead of ESS. 

If 

VTVRMIN ~ VA ~ VTVRMAX, then 

EFD = VA 

If VA> VTVRMAX, then 
If VA < VTVRMIN, then 

EFD = VTVRMAX 

EFD = VTVRMIN 

4.5 Prime-Mover Control System 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

( 4.50) 

The regulation of frequency in the system requires the speed control of prime­
mover using governor. However, parallel operation of generators requires a droop 
characteristic incorporated in the speed-governing system to ensure stability and 
proper division of load. Hence, to maintain constant frequency, an auxiliary 
control is required which responds to a load unbalance. Also, it is necessary for 
the prime-mover control to adjust the generation according to economic dispatch. 

Thus, different prime-mover controls are classified as (a) primary (speed­
governor), (b) secondary (load frequency control) and (c) tertiary (involving 
economic dispatch). With increase in the system size due to interconnections, 
the frequency variations (in normal conditions) become less and less and load 
frequency control assumes importance. However, the role of speed governors in 
rapid control of frequency cannot be underestimated. 

In stability studies, the secondary and tertiary controls are usually ne­
glected. Only speed-governing systems including turbines need to be repre­
sented. In this section, both turbine and governor models are presented based 
on the IEEE report published in 1973 [3]. 
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Figure 4.18: Hydroturbine model 

4.5.1 Modelling of Turbines 

4.5.1.1 Hydraulic Turbine 

The hydraulic turbine is approximately represented by the block diagram shown 
in Figure 4.18. The time constant Tw is called the water starting time or water 
time constant. The equation for Tw is 

(4.51) 

where L is the length of the penstock, V is the water velocity, HT is the total head 
and 9 is the acceleration due to gravity. For more accurate models, travelling 
wave phenomenon in penstock need to be considered. However, this is not 
required in stability studies. 

The input PGV for the turbine comes from the speed-governor. It is the 
gate opening expressed in per unit. Values for Tw lie in the range of 0.5 to 5.0 
seconds with the typical value around 1.0 sec. 

It is to be noted that hydroturbine has non-minimum phase characteristic 
and results in slower response. The response to a unit step input is shown in 
Figure 4.19 and is compared to the response, if the zero in the R.H.P. for the 
transfer function shown in Figure 4.18, did not exist. 

4.5.1.2 Steam Turbine System 

There are six common steam turbine systems given below 

(i) Nonreheat 

(ii) Tandem Compound, Single Reheat 

(iii) Tandem Compound, Double Reheat 

(iv) Cross Compound, Single Reheat with two LP turbines 

(v) Cross Compound, Single Reheat with single LP turbine 

(vi) Cross Compound, Double Reheat 
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Figure 4.19: Response of a hydroturbine to a unit step input 

Tandem compound has only one shaft on which all the turbines, High Pressure 
(HP), Intermediate Pressure (IP) and Low Pressure (LP) turbines are mounted. 
Sometimes there is a Very High Pressure (VHP) turbine also. Cross compound 
systems have two shafts driving two independent generators. The configura­
tions corresponding to (ii) Tandem Compound, Single Reheat and (iii) Cross 
Compound, Single Reheat are shown in Figure 4.20. This does not show the 
extraction of steam taken at various turbine stages to heat feedwater, as this has 
no major significance in stability studies. The block diagrams for the steam tur­
bine systems given in Figure 4.20 are shown in Figure 4.21. All compound steam 
turbines use governor controlled valves at the inlet to the high pressure turbine, 
to control the steam flow. The steam chest, reheater and crossover piping all 
introduces delays. The time constants TCH and TRH and Tco represent these 
delays. The fractions FHP, F[p, FLP represent fractions of the total turbine 
power developed, in the HP,IP and LP turbines respectively. Typical values for 
TCH, TRH and Tco are 

TCH 0.1 - 0.4 s 

TRH 4 -11 s 

Tco 0.3 - 0.5 s 

The typical values of FHP, F[p and FLP are 0.3, 0.3 and 0.4 respectively, the 
sum adding to unity. 
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Figure 4.20: Steam system configurations 

Speed-Governing Systems 

There are two types of speed-governing systems, namely 

a) Mechanical-Hydraulic 

b) Electro-Hydraulic 

SHAff 

HP. LPSHAFf 

IP, LPSHAFf 

In both types, hydraulic motors are used for positioning the valve or gate control­
ling steam or water flow. The speed sensing and conditioning (at low power) for 
electro-hydraulic governors is done using electronic circuits while for mechanical­
hydraulic governors, it is done using mechanical components. 

4.5.2.1 Hydroturbines 

The mechanical-hydraulic speed-governing system for a hydro turbine consists 
of a speed-governor, a pilot valve and servomotor, a distributor valve and gate 
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(b) Cross compound, single reheat 

Figure 4.21: Steam turbine models 

servomotor and governor controlled gates. A functional block diagram is shoWJl 
in Figure 4.22. Because of the effects of water inertia on hydroturbine, a dashpot 
feedback is required for stable performance. 
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Figure 4.22: Speed governing system for hydroturbines-functional block diagram 

An approximate nonlinear model for the hydro-governing system is shown 
in Figure 4.23. The typical values and ranges of parameters are given in Table 
4.1. It is to be noted that Tn and 8 are computed from 

TR = 5Tw, 8 = 1.25Tw/H 

where H is generator inertia constant, Tw is the water starting time. 

Table 4.1 Typical Values of Parameters 
for Governors of Hydroturbines 

Parameter Typical Value Range 
Tn 5.0 2.5-25 
TG 0.2 0.2-0.4 
Tp 0.04 0.03-0.05 
8 0.3 0.2-1.0 
(J 0.05 0.03-0.06 

The electro-hydraulic governor has essentially same dynamic performance 
as that of mechanical-hydraulic governor. Hence a common simplified block di­
agram for the speed governing system for hydro-turbine is employed in stability 
studies and is shown in Figure 4.24. The parameters of this block diagram can 
be determined from those defined in Figure 4.23. 

TB ~ 
Tl, T3 = 2" ± V -f - TA (4.52) 
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Figure 4.23: Model of Speed governing system for hydro turbines 

where 

TA (~) TRTG 

TB (~) [(a + 8)TR + TG] 

The other parameters are given as 

1 
K=-, T2 =O 

a 
(4.53) 

Po is the initial power (load reference determined from automatic generation 
control). The output of the governor is PGV which is expressed as power refer­
ence in per unit. It is to be noted that K is the reciprocal of a (steady state 
speed regulation expressed in per unit). 

4.5.2.2 Steam Turbines 

The mechanical-hydraulic governing system for a steam turbine consists of a 
speed governor, a speed relay, a hydraulic servomotor and governor controlled 
valves. A functional block diagram is given in Figure 4.25. 

A functional block diagram for the electro-hydraulic governor is shown 
in Figure 4.26. The feedback from steam Bow (or pressure in the first stage 
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Figure 4.24: General model of speed governor of hydro turbines 

Speed 
Changer 
Positio n 

Speed control mechanism 
r-----------~------------I 
I I 
I I 
I I 

Speed Servo I 
I 

Relay Motor I 
I I 
I I 
I I 
I ------------------------- I 

Speed Speed 

Governor 

Governor Val ve 
Controlled 
Valves Posi tion 

Figure 4.25: Mechanical-hydraulic speed governing system for steam turbines­
functional block diagram 

turbine) and the servomotor feedback loop provide for improved linearity over 
the mechanical-hydraulic governor system. 

A simplified, general model for the speed-governing systems for steam 
turbine is shown in Figure 4.27. Typical values of time constants (in seconds) 
are given below. 

Mechanical-hydraulic governor 
Electro-hydrualic governor 

Tl = 0.2 - (}.3, T2 = 0, T3 = 0.1 
Tl = T2, T3 = 0.025 - 0.15 

Note that when Tl = T2, the value of Tl or T2 has no effect as there 
is pole-zero cancellation. For studies involving the dynamic performance for 
midterm and long term, it is essential also to model boiler controls in addition 
to automatic generation <;:ontrol (AGe). In this context, it is relevant to note 
that there are two basic modes of energy control in fossil fueled steam generator 
units -
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Figure 4.26: Electro-hydraulic speed governing system for steam turbines­
functional block diagram 
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Figure 4.27: General model for speed governor for steam turbine 

1. Boiler following (or turbine leading) mode 
2. Turbine following (or boiler leading) mode 

In the first mode of control which is applicable to many drum-type boilers 
(and also a few once-through boilers), changes in the power are initiated by 
turbine control valves and boiler controls respond to changes in steam flow and 
pressure. The response to small changes in power demand are rapid as turbine 
utilizes the stored energy in the boiler. However large changes can be detrimental 
to the boiler operation as large excursions in steam pressure and flow result 
following changes in the valve position. 

In the second mode of control, (boiler leading turbine) the turbine cO!l.trol 
valves are made to regulate boiler pressure and changes in generation are made 
through boiler controls. The fast action of the turbine control valves can be 
utilized to maintain the boiler pressure almost constant. However, in this mode, 
the response of the turbine power to a change in load demand is slow as the 
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Figure 4.28: Basic structure of prime mover and energy supply system 

lags in the fuel system and boiler storage affect the response. A compromise 
between the two desired objectives - (a) fast response and (b) constraints of 
regulating pressure and temperatures for maintaining boiler safety is achieved 
by the adoption of control modes termed as coor~iiI\ated, integrated or direct 
energy balance. The need for close coordination \b~tween boiler and turbine 
controls is more crucial for once - through boilers than drum type boilers [14]. 
A recent development is to use turbine leading mode for small changes in steam 
pressure and switch to boiler leading mode for large changes. 

The basic structure of the overall prime mover and energy supply controls 
is shown in Figure 4.28. The mechanical power Pm is a function of the steam 
pressure (PT), control valve flow area (CY) and intercept valve flow area (IV). 
The boiler outputs, IT and rhs (steam flow rate) are modelled as functions of 
CV and fuel, air and feedwater flows. The pressure effects of the reheater are 
included in the turbine model. 

The speed/load control block represents the turbine control logic in re­
sponse to changes in speed/load reference (LR), speed(w), steam pressure (PT) 
and possibly in the case of fast valving applications, in response to changes in 
the electrical power (Pe ) and generator current (I). 

The boiler turbine controls establish the load reference LR in response 



4. Excitation and Prime Mover Controllers 141 

to the load demand (LD) set either manually or by AGe. Other inputs to the 
control logic are plant frequency (f), Fr and ms' In its simplest form, the boiler 
and turbine controls are decoupled, with power changes implemented directly 
through load reference (LR) and boiler controls responding to changes in Fr 
and ms. 

4.6 Examples 

Example 4.1 

A generator equipped with a static excitation system is on no load (open Cir­
cuited). The terminal voltage VT in this case, is related to EFD by the transfer 
function 

1 
VT= EFD 

1 + sT~o 
The overall system block diagram is shown in Figure 4.29. The system is initially 

1 

1 + sT~o 

VT EFDMAX 
,--

-
EF + l+sTc KA 

E 
- 1 +STB l+sTA 

VF -
EFDMIN 

SKF 

l+sTF 

Figure 4.29: System block diagram(Example 4.1) 

in steady state with EFD = VT = 1.0. Obtain the response of EFD for a step 
increase in VREF by 0.2 pu, for the two cases 
(a) T~ = 5 s (b)T~o = 1 s 
The excitation system data: KA = 400, TA = 0.025s, TB = lOs, 
EFDMAX = 6.0, EFDMIN = -6.0, TF = LOs 

(i) KF = 0.0, Tc = 10 s (No TGR or ESS) 
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(ii) KF = 0.0, Te = 1 s (No ESS, only TGR) 

(iii) KF = 0.03, Te = 10 s (No TGR, only ESS) 

(iv) KF = 0.03, Te = 1 s (TGR and ESS are included) 

(Note that with KF = 0.0, the effect of ESS is not considered, with TB = Te, 
there is a pole zero cancellation and TGR is not considered) 

Solution 

The system equations can be obtained from the block diagram represen­
tation given in Figure 4.30 which is equivalent to that shown in Figure 4.29. 
These are 

dVA 1 
dt 

- TA [-VA + KAVB] 

VB 
Te 

- XB+TBVI 

VI VREF - VF - Vr 
dVr 1 
dt 

- 1" [-Vr + EFD] 
do 

VF 
KF 
-EFD-XF 
TF 

dXF 1 [ KF] 
dt 

- -xF+-EFD 
TF TF 

dXB 
;B [-XB + (1- ~~) VI] dt 

= VA if EFDMIN ~ EFD ~ EFDMAX } 
= EFDMIN if EFD < EFDMIN 
= EFDMAX if EFD > EFDMAX 

The initial conditions for the four state variables are obtained as 

VA(O) [ Tc] VA(O) = EFD(O) = 1.0, XB(O) = KA 1- TB 

KF 
XF(O) = TF EFD(O), Vr(O) = 1.0 

The reference voltage VREF is calculated as 

VA (0) 
VREF = Vr(O) + KA 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

(4.58) 

(4.59) 

(4.60) 

(4.61) 
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VT 

EFDMAX 

EFDMIN 

Figure 4.30: Block diagram indicating state variables (Example 4.1) 

The system equations can be simulated using any numerical integration 
method (say modified Euler's method). The results (variation on EFD with 
time) for case (a) are shown in Figure 4.31 while for case (b) are shown in 
Figure 4.32. The disturbance is initiated at t = 0.5 s. ~ach figure shows the 
results for the four different conditions, namely (i) with no TGR or ESS (ii) 
with TGR (iii) with ESS (iv) with both TGR and ESS. 

The results show that either TGR or ESS is necessary to improve the 
response which tends to be oscillatory and takes more time to settle (particularly 
for case (b)) without TGR and ESS . For this example, ESS gives slightly better 
results compared to TGR. There is no real advantage in having both TGR and 
ESS . The presence of both TGR and ESS has the effect of preventing the AVR 
hitting the upper limit during the transient but the settling time is actually 
increased, particularly for case (a). 

It is interesting to observe that the response time of the excitation system 
is within 0.5s even when T~o = 5 s. The use of TGR or ESS helps in reducing 
the settling time when T~o is small. Although this example refers to the noload 
operation ofthe generator, the results can be related to system operation under 
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Figure 4.31: Variation of Eld (Example 4.1 - case (a)) 

'5 

load. In this case Tdo is to be replaced by a generator time constant TG, where 

Td < TG < Tdo 

The final steady state value of EF D or VT is given by the relation 

VREF = VT + i: = EFD ( 1 + ~A) 
Substituting the value of VREF = 1.2025, we get 
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Figure 4.32: Variation of E/d (Example 4.1 - case (b)) 

Example 4.2 

The generator is initially operating with VT = 1.0, EFD = 2.2, while 
supplying load. The generator breaker trips suddenly at t = O. Obtain the 
response of the excitation system. The data is as given in Example 4.1 with 
KF = 0.0 and (i) Tc = 10 s (no TGR) (ii) Tc = 1 s (with TGR). 

Solution 

The reference voltage in this example is given by 
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The initial conditions for the state variables are 

VA(O) = 2.2, XB(O) = 0.00495 (with TGR) 
VT(O) = 1.0, XF(O) = 0 

The results of the simulation for cases (a) and (b) are shown in Figure 
4.33 and 4.34 respectively. The variations of both EFD and VT are shown. It is 
interesting to observe that although the response is non-oscillatory with TGR, 
it is slow compared to the case without TGR (particularly for T~o = 5 s) Also 
the peak values reached are higher in the case with TGR. Thus the advantages 
of using TGR are suspect. 

, 004 
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,~~~~--~~~~~~~~ 

a 02 04 06 08 1 12 14 16 18 2 
llme(sec) 

(i) Variation of lit (without TGR) 

, o3.-----~-

, 0' 
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Figure 4.33: Variation of Efd (Example 4.2 - case (a)) 
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Figure 4.34: Variation of Efd {Example 4.2 - case (b)) 

It is to be noted that without AVR the terminal voltage would have 
reached the value of 2.2 pu (the same as Efd{O)), neglecting saturation. 

Example 4.3 

A generator is driven by a hydroturbine and is delivering a constant 
power load. The governor i.nput ~w (incremental per unit speed) is determined 
from the differential equation 

dw 
2H dt = Pm - Pe (4.62) 

The overall system representation (neglecting limits) including the governor, 
.. 
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turbine and generator rotor is shown in Figure 4.35. The permanent speed 
droop is neglected in modelling the governor. For the system to be stable, show 
that 

where 

w 

+ E 
ef 

Solution 

{3 < 1 - 1.5a 
I-a 

1 +STR 
s8TR 

Tw 
{3 = 28H 

1 
--
2Hs 

l-sTw 

1 +0.5sTw 

Figure '1:.35: Hlock diagram (Example 4.3) 

(4.63) 

P e 

-
E 

+ 

Pm 

From small signal analysis (using incremental quantities) the character­
istic equation for the third order system shown in Figure 4.35 can be expressed 
as 

(4.64) 

Applying Routh-Hurwitz criterion, the condition for stability can be obtained 
as 

8TRHTw 
(TR - Tw) - TR{2H8 - Tw) > 0 

(2H8 -Tw) > 0 

(TR -Tw) > 0 

As TR > 0, H > 0, the inequalities (4.66) and (4.67) imply 

8 > 0, a < 1, {3 < 1 

(4.65) 

(4.66) 

(4.67) 
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The inequality (4.65) can be expressed as 

0.5a 
1-a--->0 

1-fJ 

After some manipulations, the above criterion can be reduced to 

Remarks 

fJ < 1 - 1.5a 
1- a 
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1. The governor tr::.r..sfer function shown in Figure 4.35 is an approximation 
of what is shown in Figure 4.23. This can be seen from the fact that a 
system with feedback transfer function H (s) can be approximated as 

T s = G(s) ~ _1_ 
() 1 + G(s)H(s) H(s) 

(4.68) 

where T(s) is the overall transfer function, G(s) is the transfer function in 
the forward path. 

Applying this to the block diagram in Figure 4.23, the governor transfer 
function: is approximately given by 

1 
T( s) ~ --6;;-s=T=-R-

u+--­
l+sTR 

Letting u = 0 (neglecting permanent speed droop), the transfer function 
is same as that given in Figure 4.35. 
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Chapter 5 

Transmission Lines, SVC and Loads 

In this chapter, the modelling of the elements of the AC network, external to 
synchronous generators, is discussed. The AC network primarily consists of 
transformers, transmission lines, shunt and series reactive compensation devices 
and loads. In power system modelling, a transformer is represented by leakage 
impedances connected in series. Shunt reactors, shunt and series capacitors are 
also represented by linear impedances. 

In recent times, Static Var Compensators (SVC) are used for fast reactive 
power control in power systems. The major benefits are improvement of system 
stability and voltage regulation. It is necessary to model these devices in stability 
studies. 

5.1 Transmission Lines 

Transmission lines are basically distributed parameter devices. For the study 
of fast switching transients, it is necessary to model them in some detail. For 
example, the frequency response of a line can be approximated by cascaded 
connection of 1f networks - a lumped parameter model. However for power 
system dynamic performance studies involving frequencies below fundamental 
(synchronous frequency), the representation by a single 1f circuit is adequate. As 
a matter of fact, for studies involving low frequency transients, the transmission 
lines can be assumed to be in quasi-steady state - the voltages and currents can 
be assumed to be sinusoidal with slowly varying amplitudes and phase angles. 

A basic assumption in the modelling of three phase transmission lines 
is that they are symmetric. This implies that the self impedances of all the 
three phases are equal. Also, the mutual impedances between any two phases 
are equal. An additional assumption is that the line parameters are constant -
the network is linear. It can be shown that, in steady state, a symmetric three 
phas'~ linear network connected to synchronous generators has only fundamental 
frequency voltages or currents. On the othpr hand, a lack of symmetry leads to 
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unbalanced currents (with negative sequence components) which can result in 
third harmonic voltage generation. 

The symmetry is disturbed during unbalanced faults such as single line 
to ground or line to line faults. However, their duration is brief and the presence 
of harmonics can be neglected. 

5.1.1 Modelling of Transmission Network 

A single phase 1f equivalent of a transmission line is shown in Fig. 5.1. However 
it is to be noted that the coefficient matrices, inductance [L], resistance rRl and 
capacitance [C] are all 3x3 matrices. These are defined as 

il [L] [R] i2 
------+- fVV\. /'ff'tfM -" 

I ~[J 
0 -

J~[C] 
VI I I~ 

0 0 

Figure 5.1: A single phase 1f equivalent of a transmission line 

[ 
L8 Lm Lm 1 [Rs Rm 

[L] = Lm La Lm ,[R] = Rm Rs 
Lm Lm La Rm Rm 

The network equations are 

rL] :: + [R]i = VI - V2 

1 [C]dVl . . 
- - =ZI-Z 
2 dt 

1 [C]dV2 _. . 
- - -Z-Z2 
2 dt 

(5.1) 

(5.2) 

(5.3) 

where VI, V2, iI, i2 and i are three dimensional vectors, with phase variables as 
elements. For example, 

·t [. . 
Z = Za Zb 

v~ = [VIa Vlb 

V~ = [V2a V2b 
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5.1.2 Transformation to D-Q components 

If generator is described by variables in d-q components, using Park's transfor­
mation, it stands to reason that the external network equations should also be 
expressed in d-q components-. However, there is one problem and that is Park's 
transformation is not unique and each generator has individual d-q components 
(corresponding to the individual transformation). 

For a connected network, it is obvious that the entire network is to be 
transformed using a single transformation with reference to a common, syn­
-::hronously rotating reference frame. Such a transformation is termed as Kron's 

usformation defined as 

[ 

f 1 [COS 00 sin 00 f: = Vi cos{Oo - ¥) sin{Oo - ¥) 
fe cos{Oo + ¥) sin{Oo - ¥) 

(5.4) 

where fbQo = [JD fQ fo] 

It is to be noted that f can be any variable, voltage or current. 00 is 
defined as 

(5.5) 

where Wo is the average (synchronous) frequency in the network in steady state 
and, is a constant. The difference between Kron's transformation [CK] and 
Park's transformation [Cp] lies in 00 being replaced by 0 in Park's transforma­
tion. 0 is defined by 

(5.6) 

It is to be noted that a is dependent on the generator and not a common variable. 
[C K] is defined such that 

(5.7) 

In other words, [CK] is an orthogonal matrix and satisfies the condition for a 
power invariant transformation. 

where 

The relationship between [Cp] and [CK] is given by 

[Cp] = [CK][Td 

sinO 0 1 
coso 0 
o 1 

{5.8} 

(5.9) 
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It is to be noted that [T1] is also an orthogonal matrix. Actually, [Ttl defines 
the transformation between Park's and Kron's variables, as 

(5.10) 

where Jd,/q are Pd.l"k's components and /D,/Q are Kron's components (with 
respect to a synchronously rotating reference frame). Note that subscripts D,Q 
are associated with Kron's transformation. This convention will be followed 
throughout. 

Applying Kron's transformation to Eq. (5.1) results in 

L diD L' R' 
1 dt + Wo 1 ZQ + 1 Z D = V1D - V2D (5.11) 

L diQ L' R' 
1 dt - Wo I'D + 1 'Q = V1Q - V2Q (5.12) 

L dio R' 
0dt + oZo = V10 - V20 (5.13) 

The last equation can be neglected if no zero sequence voltages or currents are 
present. Lll R 1, Lo and Ro are defined by 

L1 = Ls - Lm, Lo = Ls + 2Lm 

R1 = Rs - Rm, Ro = Rs + 2Rm 

It is to be noted that L1 and R1 are positive sequence (or negative sequence) 
quantities. Applying Kron's transformation to Eqs. (5.2) and (5.3) gives 

1C dV1D woc . . 2 1 (it + 2 1V1Q = 'lD - 'D (5.14) 

1 dV1Q Wo .. 
2C1 ----cit - 2 C1 VlD = ZlQ - 'tQ (5.15) 

1C dV2D woc .. 2 1 (it + 2 1 V2Q = ZD - '2D (5.16) 

1 dV2Q Wo .. 
2C1 ----cit - 2 C1 V2D = zQ - 't2Q (5.17) 

The zero sequence variables are normally neglected and their equatIOns can be 
omitted. C1 is positive sequence capacitance given by 
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Denoting 
i = iQ + jiD, ih = VIQ + jVlD, V2 = V2Q + jV2D 

Eqs. (5.11) and (5.12) can be expressed as 

Ll :! + {Rl + jWoLdi = VI - V2 

rom Eq. (5.10), we have 

fD = cos Ofd + sinofq } 
fQ = - sinofd + cos ofq 

rrom Eq. (5.20), we can obtain 

fQ + jfD = ei°(fq + jfd) 

From Eq. (5.21), we can express Eq. (5.19) as 

where 

,implifying Eq. (5.22) we get 

.vherC! 

do 
W = Wo + dt 
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(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

Eq. (5.23) can also be derived directly from applyi.lg Park's transformation. 
Eq. (5.21) is a very useful relation and can be represented by a phasor diagram 
shown in Fig. 5.2. 

').1.3 Steady State Equations 

. eglecting transients, the equations that are applicable in steady state arE: Ot/­
tined by neglecting variations in D-Q components. These complex equations 
,e 

(5.24) 
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D-axis 
d- axis 

- axis 

Q- axis 

Figure 5.2: Phasuc diagram showing relationship between dq and DQ variables 

C1 A A A 

jWoTV1 = 11 - I {5.25} 

C1 A A A 

jWOTV2 = 1-12 {5.26} 

These equations describe a single phase circuit shown in Fig. 5.3 with sinusoidal 
excitation. (It is to be noted that the constancy of i D and iQ implies sinusoidal 
currents in the line). In Fig. 5.3, Z and Yare defined by 

For long transmission lines, an exact 1r equivalent shown in Fig. 5.4 is applicable 

i1 
~ 

Z 

--j 
V11 

y 
"2 

Figure 5.3: Positive sequence cercuit for steady state 

in steady state, where 

Z' = Z sinh v'zY y' = Y tanh{ v'zY /2) 
.JZY' h/ZY /2) 
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Z' 

Y' 
2" 

y, 
'2 

Figure 5.4: An exact 11" equivalent for steady state 
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Rl, L1 and C1 are calculated by multiplying the positive sequence R, Land C 
parameters per unit length by the length of the line. 

The AC system consisting of transmission lines, transformers and other 
impedance elements can be represented by a single phase equivalent network (in I 

positive sequence parameters). The equations for such a network are expressed 
conveniently using a bus admittance matrix as 

[Y]V = I (5.27) 

where I are current injections at the nodes. At generator nodes, I consists of 
armature currents and at load nodes, I consists of load currents (treated as 
injections). At a given bus, both the generators and loads may be present in 
which case, algebraic sum of generator and load currents is to be considered. 

5.2 D-Q Transformation using a - /3 Vari­
ables 

Stationary three phase symmetric matrices can be decoupled through transfor­
mation involving constant real matrices. The most well known among these is 
Clarke's transformation using a - f3 variables. Using a power invariant trans­
formation given by 

(5.28) 
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where 

Ii 0 
1 

v:'3 
[Gc] = 1 1 1 

-y'6 -y12 v:'3 
1 1 

-\1'6 v'2 y'3 
Eq. (5.1) is transformed to three decoupled equations given below 

L dia R· 
I dt + I Za = VIa - V2a (5.29) 

L di{3 R· 
I dt + IZ{3 = VI{3 - V2{3 (5.30) 

L dio R· 0dt + oZo = Vlo - V20 (5.31) 

The advantage of using Clarkes a, fJ, 0 components is that a three phase 
network is transformed to three decoupled networks 'c1, 'fJ' and zero sequence. 
Out of these, the 'a' and 'fJ' networks are identical and zero sequence network 
can be generally neglected (in the absence of zero sequence currents). Thus, the 
circuit shown in Fig. 5.1 is transformed to two decoupled circuits shown in Fig. 
5.5. Although the two circuits are identical, it is to be noted that the currents 
and voltages are different in the 'a' and 'fJ' circuits. 

(a) a - sequence (b) ~ - sequence 

./:'-'igure 5.5: Sequence Networks 

The transformation from afJo to DQo components is given by 

[ ~ ] = [T,] [ ~n (5.32) 
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where 

[ 

cosOo sin 00 0 1 
[T2] = - sin 00 cos 00 0 

o 0 1 

It is to be noted that [T2 ] is similar to [Ttl in that 8 is replaced by 00 , It is not 
difficult to see that transformation from afJo to dqo component is given by 

(5.33) 

where 

[

cosO sinO 0 1 
[T3] = - sin 0 cos 0 0 

o 0 1 

The advantage of using afJ variables for a stationary network is that the 
state (differential) equations for the network can be obtained on a single phase 
basis. For the single phase 'a' network, the general equations are 

(5.34) 

where Xo are the state variables which consist of inductor currents and capacitor 
voltages (Note that only those inductors which form part of cotree (links) and 
capacitors which form part of tree are considered). The equations for 'fJ' network 
can be expressed as 

(5.35) 

The structure of Eq. (5.35) follows from the fact that 'fJ' network is 
identical to the 'a' network. U o and ufJ are input variables (in a, fJ components) 
which may include voltage and current sources in the network. It is convenient 
to apply D-Q transformation to Eqs. (5.34) and (5.35). Expressing Xo and xfJ 
in terms of XD and xQ as 

.£0 = cosOoxD+sinOoxQ } 
xfJ = -sinOoXD +cosOoxQ 

the transformed network equations are 

XD = [AN]XD - woxQ + [BN]UD 

xQ = [AN]XQ + WoXD + [BN]UQ 

where UD and uQ are input variables transformed to D-Q components. 

(5.36) 

(5.37) 

(5.38) 
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5.3 Static Var compensators 

Fast control of reactive power is important for ~aintaining security during power 
system operation. Traditionally, the reactive power control depended on me­
chanically switched shunt capacitors and reactors which only help in maintaining 
the desired voltage profile in the system during slowly changing load conditions. 
However, disturbances such as faults followed by line switching or generator 
tripping can result in system stability and voltage problems. If the system has 
to operate close to stability limits in steady state, (with minimum margins), fast 
control of reactive power is essential. In the past, dynamic shunt compensators 
such as synchronous condensers and saturable reactors were used, although in­
frequently as the transmission systems were conservatively designed with large 
stability margins. 

In recent years, thyristor controlled statIC var compensators are being 
used for fast reactive power control [1-8]. Advances in high power semicon­
ductors, microelectronics and digital controls which are already used in HVDC 
transmission systems have made this improvement possible. SVCs were origi­
nally developed for power factor compensation of fast changing loads (such as arc 
furnaces) in early 1970's but later (before the end of the decade) were adapted 
for dynamic shunt compensation of AC transmission lines. They are extremely 
fast in response (about 2-3 cycles) and free from the problems of synchronous 
condensers (such as loss of synchronism and increased maintenance due to ro­
tating parts). 

SVCs are used for 

1. Increasing power transfer in long lines 

2. Stability improvement (both steady state and transient) with fast acting 
voltage regulation 

3. Damping of low frequency oscillations (corresponding to electromechanical 
modes) 

4. Damping of subsynchronous frequency oscillations (due to torsional modes) 

5. Control of dynamic overvoltages 

5.3.1 Types of SVC and Controllers 

There are three basic types of SVCs [5] 

(a) Variable impedance type 
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(b) Current source type 

(c) Voltage source type 

V ref 

CONTROL 

TCR Fixed Capacitors 

Figure 5.6: Schematic diagram of FC-TCR 

5.3.1.1 Variable Impedance Type SVC 
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The SVCs in use to-day are variable impedance type made of Thyristor Con­
trolled Reactor (TCR) in parallel with either Fixed Capacitor (Fe) or Thyristor 
Switched Capacitor (TSC). A FC-TCR type of SVC is shown in Fig.5.6. Both 
FC and TCR are supplied from a step down transformer. TCR is phase con­
trolled by controlling the firing angle a in the range from 900 to 1800

• A typical 
waveform of phase current is shown in Fig. 5.7. 

The instantaneous current iTCR over half a cycle is given by 

ZTCR V;; (cos a - coswt), a < wt < a + CT } 

0, a + CT < wt < a + 7r 

(5.39) 

where V is the rms voltage, XL is the fundamental frequency reactance of the 
reactor, a is the delay angle, CT is the conduction angle. The fundamental fre­
quency current It can be obtained as 

It = BTcn(CT)V (5.40) 
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where 

05 

-05 

-1 

v 

a 

v _ Voltage across TeR 
I = TeR phase current 

-1 5 0~-~50-~10:-0 ---C15~0 --:2-'-:OO--2=50:----::'300-::-----::350~-4-'-OO----c'450 

Figru.-e 5.7: TCR current waveform 

B () 
a - sina 

TeR a = X 
7r L 

It is to be noted that a, given by 

a=2(7r-a) 

can vary from 0 to 7r radians as a is decreased from 7r to 7r /2. 

(5.41) 

TCR produces odd harmonics. To eliminate triplen harmonics, TCR is 
connected in delta. The line current harmonics are of the order 6n ± 1 where n is 
an integer. To reduce harmonic content further, twelve pulse operation is used 
in which there are two branches of TCR, fed from two transformer secondaries, 
one connected in star and the other connected in delta. To prevent remaining 
harmonics from entering the system, some of the fixed capacitor banks can be 
connected as series tuned filters. 

Instead of fixed capacitors, thyristor switched capacitors (TSC) can be 
used which result in the reduction in the reactor size (and consequently harmon­
ics) and better performance of SVC under system fault conditions. 

5.3.1.2 Voltage Source Type SVC 

A basic scheme is shown in Fig. 5.S. This shows a six pulse Voltage Source 
Converter (VSC) with capacitor on its DC side. VSC produces a set of three 
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AC voltages from the input DC (capacitor) voltage. By controlling the switch­
ing instants of the GTO devices, the magnitude of the output voltages can be 
controlled. The voltages are essentially in phase with the supply voltage. By 
varying the magnitude of the output v01tage, the reactive current can be regu­
lated. 

Line 

Six Pulse VSC 

Figure 5.8: Advanced SVC using voltage source converter 

A six pulse VSC produces a set of three square voltage waveforms. The 
voltage waveforms are shown in Fig. 5.9. The output voltages contain harmon­
ics. By combining a number of six pulse VSC into a multi-pulse configuration, 
voltage distortion can be reduced. 

This type of SVC has been termed as an advanced type SVC [9,10] and 
also as Static Condenser (STATCON) [11]. The variable impedance type SVC 
is also said to belong to the first generation FACTS (Flexible AC Transmission 
System) controllers. STATCON is a second generation FACTS controller and is 
expected to be commercially available before the year 2000 [12]. 

5.3.2 SVC Control Characteristics 

The steady state control characteristics of a variable impedance type SVC is 
shown in Fig. 5.10. Here, the voltage is measured at the high voltage side of the, 
transformer (or network bus) feeding the SVC and the current is the reactive 
current, considered to be positive when SVC is inductive (absorbing reactive 
power). In the control range, the SVC voltage is not maintained constant. The 
slope of the control characteristics is positive (3 to 5%) and heips in (a) stabl€. 
parallel operation of more than one SVC connected at the same or neighbouring 
buses and b) prevent SVC hitting the limits too frequently. 
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Figure 5.9: Voltage waveforms in a six pulse VSC 

v 

Capacitive Inductive I 
svc 

Figure 5.10: Steady state control characteristics of variable impedance SVC 
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The reference voltage of the SVC is chosen such that, under normal 
operating conditions, SVC delivers close to zero reactive power so that the full 
control range of SVC is available for use whenever there is a transient. Thus, 
slow coordination between a SVC and other reactive power control devices (such 
as mechanically switched capacitors and reactors) is necessary. 

Figure 5.11: Equivalent circuit for SVC in control range 

It is to be noted that when the SVC hits the capacitive limit, it behaves 
like a fixed capacitor. Similarly, when it hits the inductive limit, it behaves as 
a fixed inductor. In the control range, the SVC can be modelled as a nonlinear 
voltage source Es in series with a fictitious, fixed inductor Xs (see Fig. 5.11). 
The phase angle of the voltage source is same as that of the bus voltage Va. The 
value of the inductor is related to the slope of the control characteristic. 

The block diagram of SVC control is shown in Fig. 5.12. Both terminal 
voltage and SVC current are used as control signals (K is the slope of the control 
characteristic shown in Fig. 5.1O) The auxiliary control signal VF is used for 
damping of oscillations. It can be derived from bus frequency, line current, or 
synthesized generator rotor velocity. The regulator is proportional-integral type 
with provision for gain reduction in case of control instability under abnormal 
system conditions. The linearizer transfer function F-1(a} is the inverse of 

F(a) = 2(1r - a) + sin2a 
1rXL 

(5.42) 

GPG is the gate pulse generator which produces firillg pulses for individual TCR 
valves synchronized with the supply voltage. 

The steady state control characteristic for a STATCON is shown in Fig. 
5.13. The reactive current can be maintained constant even at low voltages. Also 
a STATCON can be designed with higher transient ratings than steady state 
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Tse Blocking 

V F Gain Reduction 
ToTse 

Figure 5.12: Block diagram of SVC controller 

and deliver more reactive power compared to a SVC (FC-TCR type) where the 
reactive power is severely limited by the size of the capacitor and the bus voltage 
level. 

5.3.3 Modelling of SVC 

For steady state analysis, it is adequate to model the steady state control char­
acteristics of SVC. Even for transient stability studies, where low frequency phe­
nomena are of interest, and AC network transients are neglected, steady state 
representation of SVC may be adequate as a first approximation. However to 
model the damping contribution of SVC, it is necessary to consider the dynamics 
of SVC controller. A typical transfer function modelling of the SVC controller 
is shown in Fig.' 5.14. Here the output is Bsvc and the delays introduced by 
the GPG are modelled approximately by the transfer function 

e-STd 

Gc{s) = 1 T + s s' 
(5.43) 

where Td is approximately T /12 for a six pulse converter and Ts is T /4 where 
T is the period of supply voltage. Tm represents the transducer time constant. 
Filters are neglected in this model. 

The output of SVC is a time-varying susceptance Bsvc. The inclusion 
of this in the network results in a time varying admittance matrix which can be 
problematic. The inclusion of a single SVC in the network can be handled by 
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v 

Leading Lagging I 
STATCON 

Figure 5.13: Steady state control characteristics of STATCON 
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the use of compensation theorem which enables the calculation of SVC current 
using Thevenin's equivalent of the network at the SVC bus. This equivalent has 
to be updated at every time step when SVC current is to be calculated. 

5.4 Loads 

The importance of load modelling in stability studies is well known. However, 
the major problem in the evaluation of power system dynamic performance is 
not posed by the complexity in load models, but the difficulty in obtaining 
data. Hence, in the early days, when AC network analyzers were used for study, 
the simplicity in load representation (by treating them as constant impedances) 
was common for convenience in calculations. Even when AC network analyzers 
were replaced by digital computer programs, the practice of modelling loads as 
constant impedances was continued and justified for the following reasons. 

(i) For the study of first swing stability of generators feeding radially into a 
load centre, the load representation is less critical. 

(ii) The use of constant impedance loads result in linear network equations 
which simplify the solution 

(iii) Data on the response of system loads to disturbances are not available and 
difficult to obtain on the system 

Regarding the last item, it is to be noted that several attempts have been made 
by different utilities to obtain the load data by measurements at high voltage 
substations [13-17]. 
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Figure 5.14: Model of SVC controller 

The significance of load modelling is keenly felt in voltage stability anal­
ysis. The problem of voltage collapse is critically dependent on the response of 
the system load. 

The system load is a mix of the following classes (or components) 

(a) Residential 

(b) Commercial 

( c) Industrial 

(d) Agricultural (irrigation pumps) 

(e) Power plant (auxiliary motors) 

Each class of loads listed above can be further subdivided into subclasses. For 
example, the industrial loads consist of (i) aluminium refining pot lines (ii) steel 
mills with arc furnaces (iii) large motors and (iv) small industrial motors. 

The advantage of a component based approach is the possibility of using 
standard model for each component and avoiding the need for system measure­
ments. 

The load models can also be divided into 

A) static loads 

B) dynamic loads 

In general, motor loads are treated as dynamic loads. 
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5.4.1 Static Load Representation 

At any given bus, it is of importance to develop an aggregated static model. 
There are two ways of static load represention. 

1. Polynomial Representation 

Both active and reactive power loads are represented by quadratic poly­
nomials given by 

~ = ao + al (~) + a2 (~) 2 

go = bo ~ bl (~) + b2 ( ~) 2 

(5.44) 

(5.45) 

where Po, Qo are Initial values of power and reactive power at initial value of 
voltage Va. The coefficients ao, al and a2 are the fractions of the constant power, 
constant current and constant impedance components in the active power loads. 
Similar comments apply to the coefficients bo , bl and b2 • Also it is to be noted 
that 

ao +al + a2 = 1 

bo + bl + b2 = 1 

The problem with constant power type loads is that it is not applicable for cases 
involving severe voltage drops. As voltage approaches zero, the load current is 
also expected to reach zero. Hence exponential load representation is more valid 
for a larger voltage excursion. 

2. Exponential Representation 

This can include not only voltage dependence but also the effect of frequency 
variations. In general, the active power can be represented as [20] 

(5.46) 

where 
CI is the frequency dependent fraction of active power load 
mpl is the voltage exponent for frequency dependent component of active power 
load 
mp2 is the voltage exponent for frequency independent component of active 
power load 
!::l.f is the per unit frequency deviation (from nominal) 
kp is the frequency sensitivity coefficient for the active power load. 
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The reactive power load is expressed as 

Q (v)mQl (Q) (v)mQ2 
Po = C2 VO (1 + kq1 tl.f) + P: - C2 VO (1 + kq2 tl.f) (5.47) 

where 
C2 is the reactive load coefficient-ratio of initial uncompensated reactive load to 
total initial active power load Po. 
mql is the voltage exponent for the uncompensated reactive load 
mq2 is the voltage exponent for the reactive compensation term 
kql is the frequency sensitivity coefficient for the uncompensated reactive power 
load 
kq2 is the frequency sensitivity coefficient for reactive compensation 

The second term on the R.H.S. of Eq. (5.47) represents to a first approx­
imation, the effect of reactive compensation and losses in the subtransmission 
and distribution system between the bus and the various loads. The first term 
is made up of individual load components using their power factors. The second 
term is based on the difference between this value and the initial reactive power 
at the bus (specified in the power flow data). 

It is to be noted that the reactive power is normalized by dividing by Po 
rather than Qo. This is done to avoid difficulty when Qo = 0 due to cancellation 
of reactive power consumption by shunt capacitance. 

5.4.2 Dynamic Load Representation 

5.4.2.1 Induction Motor Model 

The simplest induction motor model is to consider only the dynamics of the 
rotor inertia described by 

dWm 1 
dt = 2H [TE(S) - TM(Wm)] (5.48) 

where Wm is the per unit motor speed. The per unit mechanical torque TM is a 
function of Wm given by 

TM = TMo(Aw~ + BWm + c) 

The per unit electrical torque TE IS a function of the motor slip S and is com­
puted from the steady state equivalent circuit shown in Fig. 5.15. H is the 
inertia constant of the mot-::;r. TE is given by the expression 

2 Rr 
TE =12 S 
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Figure 5.15: Steady state equivalent circuit of an induction motor 

+ 
~ I 

E 

Figure 5.16: Stator equivalent circuit for an induction motor 

If rotor flux transients are to be included, the model is modified. The 
stator equivalent circuit is shown in Fig. 5.16 where E' is a complex voltage 
source defined by 

dE' = -j27rfSE' - ~[E' - j(X - X')It] 
dt To 

(5.49) 

where 

vt -E' 
It = Rs + jX' = iQ + JiD 

f is the operating frequency, X and X' are given by 
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Using D-Q components, Eq. (5.49) can also be expressed in terms of real vari­
ables E'v and EQ as 

(5.50) 

where Ws = 211" f 

The electrical torque TE is given by 

T E'· E" E = D'tD + Q'tQ (5.51) 

5.4.2.2 General Load Model 

The dynamic response of loads to step changes in the bus voltage (particularly 
for small changes) can be measured and a general (aggregated) load model can 
be formulated. A typical response of active power load to a voltage step is 
shown in Fig. 5.17. This does not show the long term response affected by the 
automatic tap changers on low voltage transformers. 

VI .--.---.-4-------

Figure 5.17: Load responce for a step change in voltage 

The differential equation describing this response can be expressed as [27] 

(5.52) 
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The load behaviour is determined by two load functions and a time constant 
Tp. Ps is called the static load function and is applicable in steady state. kp is 
called the dynamic load function. 

The transient and steady state power increments !:::..Po and !:::..Ps (shown 
in Fig. 5.17) can be obtained as 

1 
- P{t;;) - P(tt) = Tp [Kp{Vo) - Kp{Vt}] 

P{t;;) - P{oo) = Ps{Vo) - Ps{Vd 

where 
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Chapter 6 

Dynamics of a Synchronous 
Generator Connected to Infinite Bus 

Chapters 3, 4 and 5 presented the models of the major components of the power 
system that determine its dynamic behaviour. The most important component 
is the synchronous generator with its associated controls - excitation and prime 
mover. If the major objectives of dynamic analysis are to predict system stabil­
ity, then it is often adequate to consider only the excitation system and ignore 
the prime-mover controls. 

In this chapter, the dynamics of a synchronous generator is illustrated by 
taking up the example of a single machine connected to an infinite bus (SMIB). 
Although this is the simplest system example that can be considered, it is not 
entirely unrealistic. For example, a remote power station connected to a load 
centre through a long transmission line can be approximated by SMIB system. 
Although a power station consists of more than one generator, it is acceptable 
to assume that, for disturbances external to the power station, the generators 
can be represented by an equivalent machine. Also, in a multi-machine system, 
it is possible to ignore the dynamics of other machines than the one under study, 
as a first approximation. This is conveniently done by representing the external 
system for a generator by its Thevenin's equivalent. While the accuracy of this 
approximation depends on the system data, type of the study considered etc, the 
simplification of a SMIB system enables one to gain insights into the dynamic 
b~haviour of a synchronous generator. 

6.1 System Model 

The system considered is shown in Fig. 6.1. This shows the external network 
(represented by a black box) with two ports. One port is connected to the 
generator terminals while the second port is connected to a voltage source EbLO 
(representing the infinite bus). Both the magnitude Eb and the phase angle of the 
voltage source are assumed to be constants. Also, there is no loss of generality in 
assuming the phase angle of the bus voltage as zero (reference bus). (However, 



178 Power System Dynamics - Stability and Control 

in a general case, where the voltage source is Thevenin's equivalent, both the 
voltage magnitude and angle may be treated j:l.S variable). 

fa ---
EXTERNAL 

TWO PORT 

NETWORK 

A ·6 A ·6 Vi = (Vq + jVd)e1, Ia = (iq + j id)e1 

Figure 6.1: External two port network 

One of the major assumptions in the analysis of dynamic performance 
involving low frequency « 5 Hz) behaviour of the system, is to neglect the 
transients in the external network. This simplifies the analysis as the network 
is modelled by algebraic equations based on single phase representation (see 
chapter 5). The network equations are conveniently expressed using voltage (and 
current) phasors with D-Q components (expressed on a synchronously rotating 
or Kron's reference frame). 

If network transients are to be neglected, it is logical to ignore the tran­
sients in the stator windings of the synchronous machine, which are connected 
to the external network. This implies that stator equations are also reduced to 
algebraic. The use of stator flux linkages or currents as state variables is not 
possible. Thus the equations given in Chapter 3 have to be modified. Also, the 
degree of detail used in modelling a synchronous machine can vary depending 
on the requirements and the data available. 

6.2 Synchronous Machine Model 

6.2.1 Stator Equations 

The stator equations in Park's reference frame are described in Chapter 3. Ex­
pressed in per unit, these are 

1 d~d W . 
---- - -~q - Ra~d = Vd (6.1) 

WB dt WB 

1 d~q -w . 
-- dt + -~d - Ra~q = Vq (6.2) 

WB WB 
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It is assumed that the zero sequence currents in the stator are absent. 
If stator transients are to be ignored, it is equivalent to ignoring the rid and 
p'I/Jq terms in Eqs. (6.1) and (6.2) (Note that p is the differential operator it). 
In addition, it is also advantageous to ignore the variations in the rotor speed 
w. This can be justified on the grounds that under disturbances considered the 
variations in the speed are negligible. (Actually, in some cases neglecting rid 
and p'I/Jq terms go together with neglecting variations in w - see E)J:. 6.1) With 
these assumptions, Eqs. (6.1) and (6.2) can be expressed as 

-(1 + Smo)'l/Jq - Raid = vd 

(1 + Smo)'l/Jd - Raiq = Vq 

where Smo is the initial operating slip defined as 

S 
_ WO -WB 

mo -
WB 

Example 6.1 

(6.3) 

(6.4) 

(6.5) 

Prove that, if the armature flux linkage components, with respect to a 
synchronously rotating reference frame, are constants, then the transformer emf 
terms (pt/Jd and riq) and terms introduced by the variations in the rotor speed 
cancel each other. 

Solution 

Let 'l/JD and 'l/JQ be the components of armature flux linkages w.r.t. a 
synchronously rotating reference frame (rotating at speed wo ). The flux linkage 
components in d-q axes are related to 'l/JD and 'l/JQ by 

(A) 

Taking derivatives, we get 

(p'I/Jq + jrid)ei6 + j('l/Jq + j'I/Jd) ~! ei6 = 0 (B) 

From the above, we can derive, (by separating real and imaginary parts) 

W{P'I/Jq - (Sm - Smo)'l/Jd = o} 
wBP'I/Jd + (Sm - Smo)'l/Jq = 0 

In deriving these equations, M is expressed as 

d8 
dt = WB(Sm - Smo) 

(C) 



180 Power System Dynamics - Stability and Control 

I The stator differential equations (6.1) and (6.2) can be written as 

1 d~d . 
---d - (1 + 8m)~q - Ra~d - Vd 

WB t 
1 d~q ( ) . 

- WB dt + 1 + 8m ~d - Ra~q = Vq 

Utilizing (C) in the above, we get Eqs. (6.3) and (6.4) which shows that trans­
former emfs cancel with the changes in the rotational emfs due to variation in 
the rotor speed (or slip 8m ). 

In most of the cases, it will be assumed that the initial operating slip is zero 
[the operating frequency is the rated (nominal) frequency]. 

6.2.2 Rotor Equations 

Since the stator Eqs. (6.3 and 6.4) are algebraic (neglecting stator transients), 
it is not possible to choose stator currents id and iq as state variables (state 
variables have to be continous functions of time, whereas id and iq can be dis­
continuous due to any sudden changes in the network - this point will be made 
clear later). As rotor windings either remain closed (damper windingss) or closed 
through finite voltage source (field winding), the flux linkages of these windings 
cannot change suddenly. This implies that if id changes suddenly, the field and 
damper currents also change suddenly in order to maintain the field and damper 
flux linkages continuous. The flux linkage immediately after a disturbance re­
mains constant at the value just prior to the disturbance. (This property is 
termed as the theorem of constant flux linkages in the literature - see Kimbark 
[1]). 

The previous discussion shows that rotor winding currents cannot be 
treated as state variables when stator transients are neglected. The obvious 
choice of state variables are rotor flux linkages or transformed variables which 
are linearly dependent on the rotor flux linkages. 

Depending on the degree of detail used, the number of rotor windings and 
corresponding state variables can vary from one to six. In a report published 
in 1986 by an IEEE Task Force [2], following models are suggested based on 
varying degrees of complexity. 

1. Classical model (Model 0.0) 

2. Field circuit only (Model 1.0) 

3. Field circuit with one equivalent damper on q-axis (model 1.1) 
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4. Field circuit with one equivalent damper on d-axis 

(a) Model 2.1 (one damper on q-axis) 

(b) Model 2.2 (two dampers on q-axis) 

5. Field circuit with two equivalent damper circuits on d-axis 

(a) Model 3.2 (with two dampers on q-axis) 

(b) Model 3.3 (with three dampers on q-axis) 

It is to be noted that in the classification of the machine models, the first 
number indicates the number of windings on the d-axis while the second number 
indicates the number of windings on the q-axis. (Alternately, the numbers rep­
resent the number of state variables considered in the d-axis and q-axis). Thus, 
the classical model which neglects damper circuits and field flux decay, ignores 
all state variables for the rotor coils and is termed model (0.0). 

In Chapter 3, it was assumed that the synchronous machine is repre­
sented by model (2.2). This model is widely used in the literature and for which 
data are supplied by manufacturers of machines or obtained by tests described 
in IEEE Standard No. 115 [3]. Model 3.3 is claimed to be the most detailed 
model applicable to turbo alternators, while models (2.1) and (1.1) are widely 
used for hydro generators [2]. It is to be noted that while higher order models 
provide better results for special applications, they also require an exact deter­
mination of parameters. With constraints on data availability and for study of 
large systems, it may be adequate to use model (1.1) if the data is correctly 
determined [4]. 

In what follows, model (1.1) is assumed for the representation of syn­
chronous machine. 

6.3 Application of Model 1.1 

The stator and rotor flux linkages are given by 

(6.6) 

(6.7) 

(6.8) 

(6.9) 
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Solving (6.7) and (6.9) for if and i g , we get 

. t/JJ Xad. 
~J = - - -~d 

xJ xJ 

. t/Jg Xaq . 
~g = - - -~q 

Xg Xg 

Substituting Eqs. (6.1O) and (6.11) in (6.6) and (6.8) respectively, we get 

where 

./. ,. E' 'f'q = Xq~q - d 

2 
, xad 

Xd=Xd- -
xJ 

X2 
X' =x _-..!!:!1. 

q q x 
9 

E' = Xadt/JJ 
q xJ 

E~ = _ Xaqt/Jg 

Xg 

The voltage equations for the rotor windings are 

1 dt/JJ R . 
-- = - J~f+vJ 
WB dt 

~ dt/Jg - -R . 
WB dt - g~g 

Substituting Eqs. (6.1O) and (6.16) in Eq. (6.18), we get 

dE' 
-q 
dt 

(6.1O) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 
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In deriving the above Eq. (6.14) and the following relations are used 

Xad 
Efd = Rf vf (6.23) 

T' - ~ (6.24) 
do - wBRf 

Substituting Eqs. (6.11), (6.17) in Eq. (6.19) it is possible to obtain the following 
equation after some manipulations 

where 

dE' 1 
dt

d 
- - [-E~ - (xq - x~)iq] 

T~o 
(6.25) 

(6.26) 

It is to be noted that in model 1.1, it is convenient to define the equivalent 
voltage sources Ed and E~ which are used as state variables instead of 'l/Jf and 
'l/Jg. The advantages of this will be self evident when we consider the stator and 
torque equations. 

Stator Equations 

Substituting Eqs. (6.12) and (6.13) in Eqs. (6.3) and (6.4) and letting 
Smo = 0, we get 

E' + '0 R 0 q Xd'td - a'tq = Vq 

E' '0 u 0 d - xq'tq - ""a'td = Vd 

If transient saliency is neglected by letting 

X~ = x~ = x' 

(6.27) 

(6.28) 

(6.29) 

we can combine Eqs. (6.27) and (6.28) into a single complex equation given by 

(6.30) 

The above equation represents an equivalent circuit of the stator shown in Fig. 
6.2{a). This shows a voltage source (E~ + jE~) behind an equivalent impedance 
(Ra + jx'). 

The variables (D-Q) in Kron's frame of reference are related to the vari­
ables (d-q) in Park's frame of reference by 

(6.31) 
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where f can represent voltage or current. Applying (6.31) to (6.30), we get 

(EQ + jE'v) - (Ra + jx')(iQ + jiD) = Vo + jVD (6.32) 

Eq. (6.32) also represents an equivalent circuit of the stator shown in Fig. 6.2 
(b). 

Unfortunately no equivalent circuit for the stator exists when transient 
saliency is considered. This can pose a problem in the network calculations 
in multimachine systems. The ways of handling saliency will be discussed in 
chapter 12. For a single machine system however, saliency does not pose any 
problem. 

Rotor Mechanical Equations 

The rotor mechanical equations in per unit can be expressed as 

(6.33) 
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2H 
where M = WB ' Te is electrical torque given by 

(6.34) 

D is the damping term and T m is the mechanical torque acting on the rotor. 
Substituting Eqs. (6.12) and (6.13) in (6.34), we get, 

(6.35) 

If transient saliency is ignored (xd = x~) then the third term in the above 
expression is identically zero. 

Eq. (6.33) can be expressed as two first order equations as 

do 
dt 

2H
dSm 

= 
dt 

where the generator slip, Sm is defined below 

Note that 4ft is defined as 

W-WB 
Sm= --=­

WB 

(6.36) 

(6.37) 

(6.38) 

do 
dt = W - Wo (6.39) 

Normally, the operating speed is considered to be the same as the nominal or 
rated speed. In this case, Smo = O. D is the per unit damping, given by 

(6.40) 

Network Equations 

It is assumed that the external network c0nnecting the generator ter­
minals to the infinite bus is linear two port. This includes any complex rep­
resentation of the external system with several transmission lines, transformers 
and loads. The loads are assumed to be of constant impedance type. A typical 
network is shown in Fig. 6.3 which shows a generator transformer, a transmis­
sion line, a shunt load and a Thevenin's impedance, Zb connected between the 
end of the line and infinite bus (equivalent voltage source). The shunt load is 
connected somewhere between the two ends of the line. The transmission can be 
made up of several lines connected in parallel. Equivalent circuit of the system 
of Fig. 6.3 is shown in Fig. 6.4. Zt is the leakage impedance of the generator 
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VI 

Hf----+----t---t--c=Z=::Jb 

Load 

Figure 6.3: A typical network diagram 

Zt 

1v. Y3 Y2 

Figure 6.4: Equivalent circuit of the system in Figure 6.3 

transformer, Zl and Z2 are series impedances of the two line sections, Yl and Y2 

are the shunt admittances of the line sections (represented by 1r equivalents). Y3 
includes both line and load admittances. Actually Yl and Y2 can also include 
the admittances of load connected at the sending end and receiving end of the 
line respectively. 

Whatever may be the configuration of the external network, it can be rep­
resented by the two port network parameters. As only the first port, connected 
to the generator terminals is of interest, the voltage there can be expressed as 

A fa A 

Vt = -+h12Eb 
Yn 

(6.41) 

where Yn is the short circuit self admittance of the network, measured at the 
generator terminals, h12 is a hybrid parameter (open circuit voltage gain). In 
general, both Yn and h12 are complex. For a simple network consisting of only 
series impedance (Re + jxe), it is not difficult to see that 

.1 R . - = e+:Jxe, 
Yn 

h12 = 1.0 + jO.O (6.42) 
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In the general case, let 

1 . 
- =ZR+JZr, 
Yn 

(6.43) 

Eq. (6.41) can be expressed as 

{vq + jVd)t?° = {ZR + jzr)(iq + jid)t?° + {hI + jh2 )Eb (6.44) 

Multiplying both sides of the above equation by e-;o, we get 

(vq + jVd) = {ZR + jzr)(iq + jid} + {hI + jh2}Ebe-;O {6.45} 

Equating real and imaginary parts, we get 

Vq = zRiq - Zrid + hlEb cos 0 + h2Eb sino 

Vd = Zriq + ZRid + h2Eb cos 0 - hlEb sino 

{6.46} 

{6.47} 

The above equations can be substituted in Eqs. (6.27) and (6.28) and solved for 
id and iq in terms of state variables E~, E~ and o. 
Solution of Network Equations: An example 

The simplest external network is a series impedance {Re+jxe}. If Re = 0, 
then 

z.n = 0, Zr = X e , hI = 1.0, h2 = ° (6.48) 

Substituting these values in Eqs. {6.46} and {6.47} we get, 

Vq = -Xeid + Eb cos 0 (6.49) 

Vd = Xeiq - Eb sino {6.50} 

If Ra = 0, the substitution of the above equations in Eqs. {6.27} and (6.28) 
gives 

{6.51} 

i - Eb sino + E~ {6.52} 
q - {xe + x~} 

Eqs. {6.51} and {6.52} can be substituted in Eqs. (6.22), {6.25} and (6.35) to 
eliminate the non-state variables and express the eq1iations in the form 

where 

xt 
m 

u t 
m 

= 

= 

[0 8m E~ E~] 

[E/d Tm] 

{6.53} 
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It is to be noted that Eb is treated as a parameter. Eld and Tm are inputs 
from the excitation and turbine-governor system respectively. If the dynamics 
of the controllers are ignored, then E'd and Tm are also treated as parameters. 
Otherwise E'd and Tm are treated as outputs of dynamic systems represented 
by differential equations which are to be appended to Eq. (6.53). 

6.4 Calculation of Initial Conditions 

The system equations (6.53) are nonlinear and have to be solved numerically. In 
solving these equations it is assumed that the system is at a stable equilibrium 
point (SEP) till time t=O, and a disturbance occurs at t=O or later. It is 
necessary to calculate the initial conditions Xo at time t=O based on the system 
operating point determined from load (power) flow. 

From power flow calculations in steady state, we get the real and reactive 
power (Pt and Qt), the voltage magnitude (Vi) and angle (0) at the generator 
terminals. Here 0 is the angle with respect to the slack (infinite) bus. 

In steady state, th~~erivatives of all the state variables, x = O. From 
this condition, we get 

E,do + (Xd - X~)ido 

-(xq - x~)iqo 

(6.54) 

(6.55) 

T. T. E,· + E'· + (' , ) . . (6 56) mo = eo = qo~qo do~do xd - Xq ~do~qo . 

In the above equations, the subscript '0' indicates the operating values. It is to 
be noted that, in general, the initial slip Smo cannot be determined from Eq. 
(6.36). It has to be specified separately. As mentioned earlier, it can be taken 
as zero. 

Substituting Eqs. (6.54) and (6.55) in Eqs. (6.27) and (6.28), we get 

Eldo + Xdido - Raiqo = Vqo 

-xqiqo - Raido = Vdo 

From the above, one can obtain 

E,do + (Xd - Xq)ido - (Vqo + jVdo) + (Ra + jXq)(iqo + jido ) 

(6.57) 

(6.58) 

- VtL-8 + (Ra + jXq)iaL-8 (6.59) 

Defining 
(6.60) 



6. Dynamics of a Synchronous Generator Connected to Infinite Bus 189 

We can express, 
(6.61) 

Eq. (6.60) can be used to fix the position of q-axis. The phasor diagram shown 
in Fig. 6.5 represents the Eqs. (6.60) and (6.61). The d- aJ.d q-axis components 
of the armature current (id, i q ) and the terminal voltage (Vd, vq ) are also shown 
in the diagram. 

Reference 

Figure 6.5: Phasor Diagram 

The procedure for the computation of the initial conditions is given below 

1. Compute lao from 
A Pt - jQt 
lao = IaoL<po = VioL -(Jo 

2. Compute Eqo and &0 from 

(Note that Pt , Qt, Vio and (Jo are obtained from the power Bow analysis 
in steady state) 
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3. Compute 

4. Compute 

Example 6.2 

Power System Dynamics - Stability and Control 

ido - -laosin{80 - 4>0) 
iqo lao cos{80 - 4>0) 

Vdo = - Vio sin{80 - ( 0) 

Vqo Vio cos{80 - ( 0) 

Efdo = Eqo - {Xd - Xq)ido 

E~o - Efdo + {Xd - xd)ido 

E~o -{xq - x~)iqo 
T. E,· E'· (' ').. T. eo qo~qo + do~do + xd - Xq ~do~qo = mo 

A generator is connected to an infinite bus through an external impedance 
of jXe. If Eb = Vio = 1.0 p.u. Pt = 1.0 p.u. Find the initial conditions. Assume 
Xe = 0.25 p.u. 
The generator data: Xd = 1.8, Xq = 1.7, xd = 0.17, x~ = 0.23, Ra = 0.0, 

T~ = 0.4 sec, T~ = 0.1 sec, H = 4 sec, JB = 60 Hz. 

Solution 

The generator terminal bus angle 00 is found from 

P
t 

= ViEb sin 00 

Substituting values, 

ia -

Eqo 

-

-

Eqo 

Xe 

sin 00 = 0.25, 00 = 14.48° 

Vt - Eb LO = 1.0L14.48° - 1.0L9° = 1.008L7.240 

jXe jO.25 

vtLOo + jxqia 
1.0L14.48° + j1.7 . 1.008L7.24° 

2.090L68.91° = EqoL80 

2.090, 80 = 68.910 

The initial armature current components are 

ido = -la sin{80 - 4>0) = -1.008sin{68.91-7.24) 
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-0.8873 

iqo = Ia cos(eSo - <Po) = 1.008 cos(68.91 - 7.24) 
0.4783 

E/do Eqo - (Xd - xq)ido = 2.090 + 0.1 . 0.8873 
2.179 

E~o = E/do + (Xd - X~)ido = 0.7327 

E~o -(xq - x~)iqo = -0.7031 

Teo = E'· E'· (' ')". qo'tqo + do'tdo + Xd - Xq "do'tqo 

= 1.0 

(Check: Teo = Pt + I~Ra) 
The initial slip, Smo can be assumed to be equal to zero. 

6.5 System Simulation 

The synchronous machine is represented by model 1.1. Magnetic saturation is 
either neglected or considered by using saturated values of mutual inductances, 
Xdc (or Xad) and Xaq. (In chapter 3, it was mentioned that the saturation mod­
elling during dynamic simulation may not be significant). 

The machine equations are 

deS 
WB(Sm - Sma) (6.62) = dt 

dSm 1 
(6.63) -- - 2H [-D(Sm - Smo) + Tm - Tel 

dt 
dE' 1 

[-E~ + (Xd - X~)id + E/d] -q = 
T~o 

(6.64) 
dt 

dE' 1 [-E~ - (xq - x~)iq] _d - (6.65) 
dt T~o 

The electrical torque, Te is expressed in terms of state variables Ed and E~ and 
non-state variables id and iq • The expression for Te is 

(6.66) 

The non-state variables id and ~q can be obtained from the stator alge. 
braic Egs. (6.27), (6.28) and the network Eqs. (6.46) and (6.47). Substituting 
the for~er in the latter, we can solve for id and iq from the following linear .. 
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equations 

where 
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h(o) = hlEbCOSO + h2Ebsino 

12(0) = h2Eb cos 0 - hlEb sino 

(ZR + jZI) is the input impedance of the external network viewed from the 
generator terminals with the infinite bus shorted. (h1 + jh2) is the voltage 
gain at the generator terminals with armature open circuited. (Alternatively, 
(h 1 + jh2)Eb is Thevenin voltage source viewed from the generator terminals). 
The use of these hybrid parameterR enables the consideration of any complex 
network connected between the generator and the infinite bus. 

Example 6.3 

Obtain the hybrid parameters for the two port network shown in Fig. 6.4. 
Define 

Then, 

Define 

Then, 

1 
---::1;- + Z2 

Y2+-
Zb 

1 

1 
ZR + jZI = 1 + Zt 

Yl+-
Zl 

H3 
1/Y2 

(1/Y2 + Zb) 

H2 
1/Y3 -

(1/Y3 + Z2) 

Hl = 
l/Yl 

(l/Yl + Zd 
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The machine equations, eliminating non-state variables (from Eq. 6.67) can be 
expressed as Eq. (6.53) which is reproduced below. 

where 
xt 

m 

ut 
m 

= 
= 

[a 8m E~ E~] 

[E/d Tm] 

If the generator controllers (excitation and prime-mover) are neglected 
then there are no additional dynamic equations. If controller dynamics are 
considered, then the following equations are to be included along with Eq. (6.53) 

(6.68) 

(6.69) 

The inputs to the excitation controller, U e , are generally, the terminal 
voltage Vi, reference voltage Vre/ and slip 8m (if PSS is to be considered). 
The inputs to prime-mover controller uP' are slip 8m and speed reference wre/. 
Combining Eqs. (6.53), (6.68) and (6.69) and eliminating non-state variable, Vi, 
we can write the overall system equations as 

where 
xt = [xt xt xt] 

9 m e P 

u~ - [Vre/ wre/] 

If prime-mover controller is not considered then 

x~ = [x~ x~] 

u~ = [Vre/ Tm] 

(6.70) 

Actually, Eq. (6.53) can be viewed as a special case of Eq. (6.70) which is 
applicable for a detailed model of the generator including controllers. 
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Numerical Integration of System Equations 

It is assumed that the system is initially in steady state with operating 
conditions determined from power flow analysis. With the knowledge of Pt , Qt 

(power output at the terminals of the generator), Vi and () (voltage magnitude 
and phase angle), it is possible to determine the initial conditions (see section 
6.4). The initial operating values of Xg and ug satisfy 

0= f{xgo , ugo ) 

The disturbances that can be considered are 

(a) step change in ug 

(b) step change in network parameters caused by faults and switching 

(c) step change in Eb 

(6.71) 

The system responses to the disturbances is obtained by numerical inte­
gration of the nonlinear system differential equations. There are several numer­
ical methods and a brief discussion is given in Appendix A. A simple explicit 
method is the modified Euler (also called as Heun's method) outlined below. 

This is a single step method in which, given the initial values for an 
interval (tn-I, tn ), the end values are obtained as follows 

1. Predict Xg{tn) from 

Xgp{tn) = xg{tn-d + hf(x;-l, u;-I) (6.72) 

(The superscript indicates the instant at which the variables are evaluated) 

2. 
(6.73) 

h is the step size which should be sufficiently small both from the accuracy 
and numerical stability considerations. 

It is to be noted that the state variables are continuous, although the currents 
and voltages in the network can be discontinuous when a fault or switching 
occurs. 

Example 6.4 

In example 6.2, Ze (the electrical impedance) changes to jO.5 at t = O. 

F· d' . d d
2
8 t t 0+ III ~d, ~q an dt2 a = . 
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Solution 

The expressions for id and iq (with loss less network) are given in (6.51) 
and (6.52). 

At t = 0+, d = 68.91°, E~ = 0.7324, E~ = -0.7031 

Eb cos d - E~ cos 68.91 - 0.7327 
id(t = 0+) - = = -0.5565 

(xe + x~) (0.5 + 0.17) 

iq(t = 0+) _ E~ + Eb sind = sin 68.91 - 0.7031 = 0.3150 
(xe + x~) (0.5 + 0.23) 

Te - 0.7327.0.3150 + 0.5565.0.7031 + 0.06 .0.5565.0.3150 

- 0.6326 

cPd( = 0+) = WB (To _ T.) = 377(1.0 - 0.6326) = 1731 rad/sec2 
dt2 t 2H m e (2 . 4) . 

Example 6.5 

The system is shown in Fig. 6.6. The switch is closed at t = O. Xe = 0.192 
(with switch open) and Xe = 0.055 with switch closed. 

Figure 6.6: System diagram (Example 6.5) 

The generator data: Xd = 1.93, Xq = 1.77, x~ = 0.23, x'q = 0.50, Tdo = 5.2 sec, 

T;o = 0.81 sec, H = 3.74 
Assume Eb = 1.0. Calculate swing curves for the following cases 

(i) Pt = 0.9, Qt = 0.6 

(ii) Pt = 0.9, Qt = -0.02 

(iii) Pt = 0.3, Qt = 0.02 

(iv) Pt == 0.3, Qt = -0.36 
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(The data is taken from Dunlop and Parikh5 ) 

Solution 

The results (swing curves) are shown in Figs. 6.7 to 6.10 for all the 4 
cases considered. The variations of the terminal voltage are also shown in the 
Figures. The initial values of state variables and id, i q , E/d and vt are given in 
Table 6.1 
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Figure 6.7: Case (i) (Example 6.5). 
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Figure 6.8: Case (ii) (Example 6.5). 

It is interesting to observe that 
-

(a) the responses of the rotor angle (following the disturbance) are mainly os-
cillatory in all the cases. However, there is also a Significant unidirectional 
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Figure 6.9: Case (iii) (Example 6.5). 
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Figure 6.10: Case (iv) (Example 6.5). 

Table 6.1 Initial Values for Example 6.5 

Variable Case (i) Case (ii) Case (iii) Case (iv) 
6 44.10° 69.73° 30.27° 71.38° 
E' q 1.111 0.6813 0.9312 0.3893 
E' d -0.4568 -0.6126 -0.3273 -0.6145 
id -0.9221 -0.7813 -0.1536 -0.1535 
~q 0.3597 0.4824 0.2577 0.4838 
Efd 12.6787 2.0094 1.1923 0.6503 
Vi 1.0928 0.9804 1.0022 0.9232 
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component in case (iv). The oscillations are damped in all the cases and 
the decay is fastest in case (iii). 

(b) The response of the terminal voltage has mainly a slowly varying unidi­
rectional component in all the cases except (iii) 

(c) While the rotor angle is reduced (in steady state) in all the cases, the 
terminal voltage is reduced in cases (i) and (iii) while increased in cases 
(ii) and (iv) following the disturbance. The rotor angle is reduced as the 
external reactance is reduced as the power transfer remains at the same 
level as before. However Qt is increased as the reactance is reduced, since 
E fd remains at the same level as before. With positive Qt, the increase 
in Qt has the effect of reducing the terminal voltage, while with negative 
Qt, the increase (implying the reduction in the magnitude) has the effect 
of increasing the voltage magnitude. 

Example 6.6 

A single line diagram of the system is shown in Fig. 6.11. The system data (on 
a 1000 MVA base) are given below. 

Generator: Ra = 0.00327, Xd = 1.7572, Xq = 1.5845 x~ = 0.4245, x~ = 1.,04, 
TJo = 6.66, T~o = 0.44, H = 3.542, f B =:= 50 Hz. 

Transformer: Rt = 0.0, Xt = 0.1364 

Figure 6.11: System diagram (Example 6.6) 

Transmission line: (per circuit) R, = 0.08593, Xl = ,0.8125, Be = 0.1184 
(These parameters are representative of a 400 kV, 400 km long line with 50% 
shunt compensation) 
Excitation System : Static exciter with single time constant AVR is used. 
KA = 4,00, TA = 0.025, Efdmax = 6.0, Efdmin = -6.0 • 
Operating Data: Eb = 1.0, Pt = 0.6, Qt = 0.02224, lit = 1.,05, () = 21.65° 
XTh = 0.13636 (represents Thevenin's impedan.ce of the receiving end system). 
Simulate the system response for the following conditions 
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A. Step increase in Vref by 0.1 pu 

B. Step increase in Tm by 0.1 pu 

C. Step increase in Eb by 0.1 

D. A three phase fault at the sending end of one of the circuits of the trans­
mission line followed by clearing at the end of 4 cycles (The faulted line 
connecting buses 1 and 2 is tripped to clear the fault). 

Solution 

The initial conditions are calculated as 80 = 61.5°, Smo = 0.0, 
E~o = 0.9699, E~o = -0.2316, ido = -0.3823, iqo = 0.4253 
The variations of 8, Sm, E~, E~, Efd, lit and Te for the four cases (A to D) are 
shown in Figures 6.12 to 6.15. 

It is interesting to observe that 

(a) The disturbances (B) and (D) result in the net system damping becoming 
negative. For the case (B) the power output is increased by 0.1 pu and for 
case (D) the transmission is weakened after the fault clearing. 
It will be seen in chapter 8 that the Power System Stabilizer (PSS) can 
help damp the low frequency oscillations. 

(b) For case (D), if a switching station is provided at the midpoint of the 
transmission line and only one line section connecting the midpoint to bus 
1 is tripped following the fault clearing, it is seen from the swing curve for 
this case (shown in Fig. 6.16) that the net damping is positive. 

(c) For case (C) it is seen that the rotor angle increases with increase in Eb. 
This may appear to be surprising. Actually if there is no AVR and the 
field voltage E fd is maintained constant, then the rotor angle decreases 
with increase in E b• (see Fig. 6.17). Without AVR, the terminal voltage 
rises, but with AVR it is held constant which requires reduction of the 
field voltage in steady state. It is clear, that with increase in Eb, reactive 
power output of the generator reduces (and becomes negative). 

6.6 Consideration of other Machine Models 

Sections 6.3 to 6.5 considered the application of synchronous machine model 1.1 
as this is considered to be reasonably adequate. Simpler models are conveniently 
considered as special cases with the modification of machine parameters. This 
is simpler than writing separate sets of equations ;.Jr each wodel. 
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Figure 6.12: Response to step increase in Vre/ (Example 6.6 - Case A) 
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Figure 6.15: Response to a three phase fault (Example 6.6 - Case D) 
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Figure 6.16: Swing curve with line sectioning (Example 6.6 - Case D) 

6.6.1 Simpler Models 

Model (1.0) can be handled by letting 

(6.74) 

Note that with x~ = xq , Eq. (6.65) reduces to 

dE~ 1 [ '] T.1I ( ') • dt = T -Ed' £Ido = - Xq - Xq 'qo = 0 
qo 

With the initial condition at zero, E~ remains at zefO throughout the simulation 
as long as T~o > o. The actual value of T~o is unimportant and can be set at 
any arbitrary (convenient) value (say 1.0 sec). 
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Figure 6.17: Response to step increase in Eb without AVR (Example 6.6) 

For the consideration of classical model (O.O) in addition to the constraints (6.74) 
it is necessary to set 

T~o = large value (say 1000 sec) (6.75) 

If saliency is not to be considered, then it is necessary to set 

(6.76) 

With the constraints (6.74) to (6.76), the model reduces to that of a voltage 
source E~ behind a transient reactance of x~. The large value of T~o ensures 
that E~ remains practically constant (neglecting flux decay) .. 

Note that the constraint (6.76) can also be included i~ model- (1.0) and has the 
effect of neglecting saliency while considering flux decay. The term 'saliency' has 
been used rather loosely here. The normal defi,nition ,of saliency applies when 
Xd f=. xq• The saliency that we need to consider in dynamic analysis, depends 
on the model used. The 'dynamic saliency' has been defined [11] in this context 
to distinguish it from the usual definition of saliency. Table 6.2 indicates the 
constraints which have to be satisfied for no. dynamic saliency with different 
machine models. 

Note: With one rotor winding on the q-axis there is only oiIe reactance and 
one time constant (open circuit) which can be defined. Logically (in relation to 
d-axis), ~hese. should be labelled as x~ (transient reactance) and T~o. However 
many authors use the symbols x~ (subtransient reactance) and T~~ with model 
(2.1). 
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Table 6.2. Constraints for No Dynamic Saliency 

Machine Model Constraints 
Classical {O.O} x -x' -x' q - q - d 

1.0 x -x' -x' q - q - d 
1.1 x' = x~ 
2.1 

:f /I 

x =xd 
2.2 

~ /I 

Xq =xd 

6.6.2 Application of Model 2.2 

The appropriate rotor state variables in this case are the rotor flux linkages; 
although several authors use hybrid versions (E~ and E~ in addition to 1/Jk and 
1/Jh) [12] 

Stator Equations 

The stator flux linkages are given by 

1/Jd = Xdid + xdfi I + Xdhih 

1/Jq = xqiq + xqgig + Xqkik 

{6.77} 

{6.78} 

It is possible to eliminate il and ih from Eq. {6.77} by expressing them in terms 
of 1/J1' 1/Jh and id' The expressions for il and ih are obtained from 

[ 
~f ] = [XI Xlh ]-1 {[ 1/J1 ]_ [ Xdf ] id} 
'th x Ih Xh 1/Jh Xdh 

Similarly ig and ik in Eq. {6.78} can be substituted from 

[ 
~g ] = [Xg Xgk ]-1 { [ 1/Jg ]_ [ Xqg ] i } 
'tk Xgk Xk 1/Jk Xqk q 

Eliminating rotor currents, Eq. {6.77} and {6.78} reduce to 

" . " 1/Jd - Xd'td + 1/Jd 
II. " 

1/Jq - xq'tq + .,pq 

where 

1/J~ = (X(Xh - Xd~X)h}.,p1 + (Xt XI - Xd(t)h}.,ph 
XIXh - Xlh XIXh - Xlh 

{6.79} 

{6.80} 

{6.81} 

{6.82} 

- G11/J1 + G21/Jh {6.83} 
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(6.84) 

" x/l - Xd - C1Xd/ - C2Xdh (6.85) 
I" 
'q - Xq - C3Xqg - C4Xqk (6.86) 

In comparison with Eqs. (6.12) and (6.13), Eqs. (6.81) and (6.82) could be 
expressed as 

(6.87) 

(6.88) 

Substituting the above in Eqs. (6.3) and (6.4) and letting Smo = 0, we get 

(6.89) 

(6.90) 

If subtransient saliency is neglected, i.e. x~ = x~ = x" then the above equations 
represent an equivalent circuit shown in Fig. 6.18 . 

+ 
(E ll ·E") rv 

q + J d 

• II 

JX 
'-----0 

~----------------------o 

Figure 6.18: Stator equivalent circuit (model 2.2) 

Although Eqs.{6.89) and (6.90) are similar to Eqs. (6.27) and (6.28), 
there is no specific advantage in selecting .e;; and E~ as state variables. Some 
authors use combinations of Ed' .e;; and E~, E; as state variables [13, 14]. 
Although this is acceptable, it is to be noted that the equations for E~ and Ed 
will be different, in general, from Eqs. (6.64) and (6.65). The terms involving 
other state variables will also enter into the equations. In specific cases, it is 
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possible that C1 = 0 (implying that the damper winding in the d-axis completely 
shields the field winding from d-axis winding in the armature). Similarly C3 = 0 
when 'k' winding acts as a perfect shield between q-winding and g-winding. In 
such cases, E~ is only a function of 1/Jh and E~ only a function of 1/Jk' The 
significance of this is, that in the event of a fault or disturbance affecting the 
armature, there is no instantaneous change in the field current (or current in 
the g-winding). 

It is obvious that the machine equations should be formulated for the 
general case with no assumptions regarding the parameters. Hence, the best 
choice for state variables is rotor flux linkapes which are basic variables as op­
posed to the derived variables (such as E~ and E~). A major problem with 
formulations of machine equations given in several publications [12-14] is that 
the equations are expressed using the so called 'stability constants' (transient 
and subtransient reactances and time constants). From the discussions in chap­
ter 3, it should be clear that such restrictions (the use of stability constants) 
are unnecessary and confusing (the latter in view of the fact that there is still 
no agreement on the definitions of T~o' T~~ and x~ and x~). Hence it would be 
advisable to use circuit parameters (self and mutual reactances, resistances) in 
the equations that are derived from fundamental laws. 

Rotor Equations 

The basic equations in the rotor flux linkages (using per unit quantities) 
are 

__ WB[-Rfiff:;Efd] } 

-wBRhih 

(6.91) 

~ R" } JfL. = -WB g~g 
Tt = -wBRk~k 

(6.92) 

Eliminating the rotor currents using Eqs. (6.79) and (6.80), we can express the 
above equations as 

d1/Jf 
a11/Jf + a21/Jh + b1Efd + ~id (6.93) 

dt 
d1/Jh 

a31/Jf + a41/Jh + +b3id (6.94) 
dt 

d1/Jg 
a51/Jg + a61/Jk + +b4iq (6.95) 

dt 
d1/Jk 

a71/Jg + as1/Jk + +b5iq (6.96) = 
dt 
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where 

al 
wBRfxh wBRfxfh 

Dl 
a2 = 

Dl 

a3 
WBRhXfh 

a4 =-
WBRhXf 

-
Dl Dl 

Dl 2 - XfXh-Xfh 

a5 
WBRgXk WBRgXgk 

-
D2 

a6 = 
D2 

a7 
WBRkXgk 

as =-
WBRkXg 

D2 D2 

D2 2 - XgXk - Xgk 

Xd/ 
wBRgC31 b5 = WBRkC4 

Electrical Torque 

The new expression for electrical torque can be obtained by substituting 
Eqs. (6.81) and (6.82) in the basic expression for the torque given by 

Te - 'if;diq - 'if;qid 
" II /I" 

'if;diq - 'if;qid + (Xd - Xq)idiq 

- E~iq + E~id + (x~ - X;)idiq (6.97) 

'if;~ and 'if;; can be substituted from expressions (6.83) and (6.84). The final 
expression for Te can be written as 

Te = (Cl'if;f + C2'if;h)iq - (C3'if;g + C4'if;k)id + (x~ - x;)iqid (6.98) 

The last term is due to subtransient saliency. 

6.6.3 Application of Model 2.1 

This model differs from model (2.2) in that only one damper winding (say g) 
is considered in the q-axis. The equations are identical to those given in the 
previous section except for the following 

C''if; a' _ Xqg 
3 gl 3 - X 

9 
(6.99) 

wBRg'if;g b' . - - + 4~ql 
Xg 

(6.100) 
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Also, there is no equation for "pk. The torque equation is modified by putting 
C4 = 0 and substituting C~ instead of C3 in Eq. (6.98). The sub transient 
reactance x; is obtained as 

" C' Xq = Xq - 3Xq9 

(Note that transient reactance x~ is not defined here. As mentioned earlier, this 
convention appears to be widely used). 

6.7 Inclusion of SVC Model 

The Static Var Compensator (SVC) is provided in the system to enhance power 
transfer, improve stability and voltage regulation. As mentioned in Chapter 5, 
the response of SVC is fast because of thyristor controllers. When only low 
frequency behaviour is to be studied, it is in order to neglect the SVC controller 
dynamics and model SVC by its control characteristics shown in Fig. 6.19. This 
shows three regions of operation 

vsvc 

~~~~~ Vi 

"', 

(cap) (ind) 

/ 
/ 

Figure 6.19: SVC control characteristics 

(i) Control region: 
V1 < Vsve < l/2, 11 < Isve < 12 

(ii) Capacitive limit: 
Vsve < V1, Bsve = Be 

(iii) Inductive limit: 
Vsve > V2, Bsve = -(BL - Be) 

ISVC 
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where BL = gL = max[BTeR] 

All the three regions of operation of SVC can be modelled by an equiv­
alent circuit shown in Fig. 6.20{a). However, the circuit parameters vary de­
pending on the region of operation of SVC as given below. 

Region (i): 
Esve = Vre/L¢sve, Xsve = K 

(K is the slope of the control characteristics in the control region) 

Region (ii): 

Region (iii): 

1 
Esve = 0, Xsve = -­

Be 

Esve = 0, 
1 

Xsve= B B 
L- e 

(6.101) 

(6.102) 

(6.103) 

6.7.1 Network Solution with SVC : Application of 
Compensation Theorem 

The model of SVC in control region (i) is nonlinear and with limits considered, 
it is also time-varying. If one SVC is to be considered, the network solution with 
SVC can be considerably simplified by applying compensation theorem. 

In this approach, the SVC is treated as a time-varying current source 
which can be computed from the solution of a simple network shown in Fig. 
6.20{b). Here the network external to the SVC is modelled by a time-varying 
Thevenin's equivalent. If the network impedances are constant, Zeq remains 
constant. Zeq is found as the impedance of the network seen at the SVC termi­
nals when all the sources in the network are removed (the voltage sources are 
shorted and the current sources are open circuited). VTh is found as the SVC 
terminal voltage with SVC current set to zero. 

From Fig. 6.20{b), the SVC current can be computed as 

I
A Veq - Esve 
sve= . 

Zeq + JXsve 
(6.104) 

The magnitude of the SVC terminal voltage is 

Va =1 Vsve 1=1 Esve + jisveXsve 1 (6.105) 
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1\ + 
Esvc ru 

jX svc 

'----0 

+ 
Esvc ru 

L----------------O 
(a) SVC Equivalent circuit 

jX svc Zeq 

v svcl!i svc 

(b) Combined equivalent circuit 

Figure 6.20: Equivalent Circuits 

1\ 
v svc 

If Esvc = 0, the solution of Eq. (6.104) is straightforward as Veq and Zeq are 
known at any given time instant. The magnitude of Esvc for the control region 
(i) is known but the phase angle is dependent on Vsvc (see Eq. 6.101). 

Calculation of 4>svc in Control Region 

It can be shown that 4>svc is obtained from the solution of a quadratic 
equation given by 

a tan2 4>svc + btan ¢svc + c = 0 (6.106) 

Proof 
From Eq. (6.104) and (6.105), we can express 

Vsvc = (I - A)Veq + AEsvc (6.107) 

where 
A = Zeq = ALa 

Zeq + jXsvc 
(6.108) 

Separating real and imaginary components in Eq. (6.107) we get, 

Vscos¢svc = x+zcos{¢svc +a) (6.109) 



214 Power System Dynamics - Stability and Control 

Va sin4>svc = y + zsin(4)svc + a) 

where 

x !R[(1 - ArVeq], y = ~[(1 - A)Yeq] 

z - I AEsvc I 
From Eqs. (6.109) and (6.110), we get 

tan4>svc = 
y + z cos a sin 4>svc + z sin a cos 4>svc 
x + zcos a cos 4>svc - zsinasin4>svc 
ysec4>svc + zcosatan4>svc + zsina 
x sec 4>svc + z cos a - z sin a tan 4>svc 

After some manipulations and using the identity 

sec2 4> = 1 + tan2 4> 

We can finally derive Eq. (6.106), where 

a - x2 - z2 sin2 a 

b - -2xy 
c - y2 _ z2 sin2 a 

Once 4>svc is found, Isvc is readily calculated. 

Network Solution 

(6.110) 

(6.111) 

The network solution is carried out in two steps. In the first step, the 
voltage solution is obtained by putting isvc = O. The voltage calculated at the 
SVC bus, at the end of the first step is same as VTh. 

The knowledge of Yeq and Zeq (which has been calculated in advance and 
stored) enables the computation of i svc as described earlier. 

The network is solved again with the injection of isvc at the SVC bus 
(all other sources put equal to zero). The second solution does not require much 
computations as the current vector is sparse. 

The voltages at all the buses are obtained from the addition (superposi­
tion) of the voltages calculated in the two network solutions. 

Remarks 

1. It is assumed that the generator stator is represented by a constant impe­
dance (neglecting dynamic saliency). Even if dynamic saliency is present, it 
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can be handled by the introduction of a dummy rotor coil in the quadrature 
axis {see Chapter 3}. Dynamic saliency results in time-varying impedance 
{with respect to network or common reference frame}. Also, the impedance 
needs to be expressed {as a 2x2 matrix} in D-Q axes. In this case, it can 
be shown that <Psvc can be obtained by solving a quartic equation. 

2. Zeq changes whenever there is a change in the network configuration. 

3. If Zeq is a purely reactive {inductive} impedance, then <Psvc is identical to 
the phase angle of Veq , which is known. This eliminates the need for the 
solution of the quadratic equation {6.106}. 
Even if quadratic equation is to be solved, the correct value of <Psvc is 
obtained as that solution which is closer to the phase angle of Veq. 

Example 6.7 

For the system considered in Example 6.6, a SVC of rating ±300 MVAR 
is connected at the midpoint of the transmission lines. The SVC data are 
It = -0.3, 12 = 0.3 {on a 1000 MVA base}, Vref = 1.03584, K = 0.1. 

Simulate the system response for the following conditions 

{B} step increase in Tm by 0.1 pu 

{D} A three phase fault at the sending end of one of the circuits followed by 
clearing at the end of 4 cycles {TO compare with Example 6.6, both the 
line sections, one connecting SVC bus to bus 1 and the other connecting 
SVC bus to bus 2 are assumed to trip. The postfault configuration include 
only one circuit as in Example 6.6}. 

The operating data is same as in Example 6.6 as the SVC output before the 
disturbance is assumed to be zero {Note that Vref is same as the SVC bus 
voltage in this case}. 

Solution 

The initial conditions for the generator are same as in Example 6.6. The 
variations of 8, Sm, E~, E~, Efd, Vi, Te and Vsvc for the cases {B} and {D} 
are shown in Figures 6.21 to 6.22. 

It is interesting to observe that the oscillations are damped in both the 
cases showing the improvement introduced by SVC. With SVC, more power 
can be transferred without losing stabilIty. Also, SVC permits operation with 
weaker AC network {after the fault is cleared}. 
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Figure 6.21: Response to step increase in Tm with SVC (Example 6.7) 
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Figure 6.22: Response to three phase fault with SVC (Example 6.7) 
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Chapter 7 

Analysis of Single Machine System 

With classical model of the synchronous machine, the steady state instability at 
the limiting power is characterized by a slow monotonic increase (or decrease) in 
the rotor angle, resulting in loss of synchronism. With the advent of automatic 
voltage regulators (AVR) it was felt that the steady state stability limit can be 
enhanced as the AVR acts to overcome the armature reaction. A simplified rep­
resentation of the effect of AVR is the reduction of generator reactance from Xd 

to a much smaller value (around x~). It is to be noted that without AVRs mod­
ern turbo-generators cannot operate at full rated power, as their synchronous 
reactances are around 2.0 pu. Also, the transient stability is improved by fast 
acting exciters with high gain AVRs. Unfortunately, such fast acting excitation 
systems can result in negative damping of the rotor oscillations induced by small 
disturbances such as random load changes. Thus, system operators started ob­
serving spontaneous power oscillations of low frequency in interconnecting ties 
or long transmission lines. These oscillations have been observed in several sys­
tems and are of major concern in system operation. This is mainly due to the 
fact that the problem is aggravated at peak loading conditions and high external 
impedance (connected to a generator). 

In this chapter, an analysis of a single machine system is presented. The 
emphasis is on highlighting the factors that influence the oscillatory instability. 

7.1 Small Signal Analysis with Block Dia­
gram Representation 

Consider a single machine system shown in Fig. 7.1. For simplicity, we will 
assume a synchronous machine represented by' model 1.0 neglecting damper 
windings both in the d and q axes. (It is possible to approximate the effects of 
damper windingss by a nonlinear damping term, if necessary). Also, the arma­
ture resistance of the machine is neglected and the excitation system represented 
by a single time-constant system shown in Fig. 7.2. 
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Figure 7.1: A single machine system 

+ KE 

+ 

Figure 7.2: Excitation system 

The algebraic equations of the stator are 

-xqiq = Vd 

The complex terminal voltage can be expressed as 

From which 
(Vq + jVd) = (iq + jid)(Re + jXe) + Ebe- j6 

Separating real and imaginary parts, Eq. (7.3) can be expressed as 

Vq - Reiq - Xeid + Eb cos 8 
Vd - Reid + Xeiq - Eb sin 8 

Substituting Eqs. (7.4) and (7.5) in Eqs. (7.1) and (7.2), we get, 

(7.1) 

(7.2) 

• (7.3) 

(7.4) 

(7.5) 

[ (x~ ~,) -(x~; x,) 1 [ :: 1 ~ [ E,_ c;: :;::; 1 (7.6) 
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The expressions for id and iq are obtained from solving (7.6) and are given below 

id = ~ [ReEb sin 8 + (xq + Xe)(Eb cos 8 - E~)] (7.7) 

'tq ~ [(Xd+Xe)Eb sin8-Re(Eb cos8-E~)] (7.8) 

where 
A = (Xd + xe)(Xq + xe) + R~ 

Linearizing Eqs. (7.7) and (7.8) we get 

where 

I:l.id = C11:l.8 + C2I:l.E~ 
I:l.iq = C31:l.8 + C4I:l.E~ 

~ [ReEb cos 80 - {xq + Xe)Eb sin 80 ] 

1 
C2 = - A (xq + xe) 

C3 - ~ [{Xd + Xe)Eb cos 80 + ReEb sin80 ] 

Re 
A 

(7.9) 

(7.10) 

(7.11) 

Linearizing Eqs. (7.1) and (7.2), and substituting from Eqs. (7.10) and (7.11), 
we get, 

xdC11:l.8 + (1 + XdC2)I:l.E~ 
-xqC31:l.8 - xqC41:l.E~ 

(7.12) 

(7.13) 

It is to be noted that the subscript '0' indicates operating value of the variable. 

7.1.1 Rotor Mechanical Equations and Torque Angle 
Loop 

The rotor mechanical equations are 

d8 
= 

dt 

2H
dSm 
dt 
Te -

WB{Sm - Smo) 

-DSm+Tm - Te 

E~iq - {xq - xd)idiq 

(7.14) 

(7.15) 

(7.16) 
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Linearizing Eq. (7.16) we get 

!::..Te = [E~o - {xq - X~)ido]!::..iq + iqo!::..E~ - {xq - x~)iqo!::..id (7.17) 

Substituting Eqs. (7.10) and (7.11) in Eq. (7.17)' we can express !::..Te as 

where 

Kl EqoC3 - {xq - x~)iqoCl 

K2 - EqoC4 + iqo - {xq - x~)iqoC2 

(7.18) 

(7.19) 

(7.20) 

Eqo = E~o - {xq - X~)ido (7.21) 

Linearizing Eqs. (7.14) and (7.15) and applying Laplace transform, we get 

(7.22) 

(7.23) 

The combined Eqs. (7.18), (7.22) and Eq. (7.23) represent a block dia­
gram shown in Fig. 7.3. This represents the torque-angle loop of the synchronous 
machine. 

For classical machine model, !::..E~ = 0 and the characteristic equation 
given by 

(7.24) 

For stability, both D and K 1 should be positive. If D is negligible, the roots of 
the characteristic equations are 

(7.25) 

where Wn is the natural (radian) frequency of oscillation of the rotor. Typically, 
the frequency of oscillation lies in the range of 0.5 to 2.0 Hz although extreme 
values of 0.1 Hz at the low end and 4 Hz at the high end are also possible. 

7.1.2 Representation of Flux Decay 

The equation for the field winding can be expressed as 

,dE~ , , 
TdoTt = Efd - Eq + {Xd - xd)id (7.26) 
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AE' 
q 

1 
2Hs 

Figure 7.3: Torque-angle loop 

Linearizing Eq. (7.26) and substituting from Eq. (7.10) we have 

Taking Laplace transform of (7.27) we get, 

where 

{1 + sTJoK3)tlE~ = K3tlE/d - K3K4tl8 

1 

[1 - {Xd - Xd)C2] 

-{Xd - Xd)C1 

Eq. (7.28) can be represented by the block diagram shown in Fig. 7.4. 

7.1.3 Representation of Excitation System 
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(7.28) 

(7.29) 

(7.30) 

The block diagram of the excitation system considered is shown in Fig. 7.2. 
The linearized equations of this system can also be represented by the same 
block diagram omitting the limiter. For the present analysis we can ignore the 
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+ 

Figure 7.4: Representation of flux decay 

auxiliary signal Va. The perturbation in the terminal voltage Vi can be expressed 
as 

Vdo Vqo 
tl. Vi = ~tl.Vd + ~tl.Vq 

Vto Vto 
(7.31) 

Substituting from Eqs. (7.12) and (7.13) in (7.31), we get 

tl. Vi = Kstl.a + K6tl.E~ (7.32) 

where 

Ks (Vdo) (vqo) , - Vio XqC3 + Vio xdCl (7.33) 

K6 - - (~:) XqC4 + (~:) (1 +X~C2) (7.34) 

Using Eq. (7.32) the block diagram of the excitation system is shown in 
Fig. 7.5. The coefficients Kl to K6 defined in Eqs. (7.19), (7.20), (7.29), (7.30), 
(7.33) and (7.34) are termed as Heffron-Phillips constants. They are dependent 
on the machine parameters and the operating conditions. Generally Kl, K2, K3 
and K6 are positive. K4 is also mostly positive except for cases when Re is high. 
Ks can be either positive or negative. Ks is positive for low to medium external 
impedances (Re + jXe) and low to medium loadings. Ks is usually negative for 
moderate to high external impedances and heavy loadings. 

7.1.4 Computation of Heffron-Phillips Constants for 
Lossless Network 

For Re=O, the expressions for the constants Kl to K6 are simplified. As the 
armature resistance is already neglected, this refers to a lossless network on the 
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(dV f + d V ) re s 

KE 

I 

dE 
q 

Figure 7.5: Excitation system block diagram 

stator side. The expressions are given below. 

Kl 
EbEqo cos 60 (xq - x~) E· . 6 - ( ) + ( ') bZqo sm 0 Xe + Xq Xe + xd 

K2 
(xe + Xq) . Eb sin60 

( ,)~o= ( ') Xe + xd Xe + xd 

K3 
(xe + x~) 
(Xd + xe) 

K4 
(Xd - x~) . 

- ( , ) Eb sm60 
xd+xe 

K5 
-XqvdoEb cos 60 X~VqoEb sin 60 

(xe + Xq)Vto (xe + x~)Vto 

K6 Xe (vqo) 
(xe + x~r Vto 

It is not difficult to see that for Xe > 0, the constants K 1, K2, K 3, K4 and K6 
are positive. This is because 60 is generally less than 900 and iqo is positive. K3 
is independent of the operating point and less than unity (as x~ < Xd). Note 
that Xe is generally positive unless the generator is feeding a large capacitive 
load (which is not realistic). 

It is to be noted that Heffron-Phillips constants can also be defined for 
any general network connected between the generator and the infinite bus. For 
a general two-port network, the voltage at the generator port can be expressed 
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Vt = (Vq + jVd)eiO = (~) (iq + jid)eio + hl2EbLO 
Yll 

where Y11 is short circuit admittance (at the generator terminals) and hl2 is a 
hybrid parameter (open circuit voltage gain). Expressing 

~ = Re + jxe, hl2 = hl + jh2 
Yll 

lit = (Re + jXe)(iq + jid)eio + E~ab 

1 h2 
8b = tan- hl = constant 

The expressions for the constants given earlier are still valid if 80 is replaced by 
(80 - 8b) and Eb replaced by E~ 

7.1.5 System Representation 

The system block diagram, consisting of the representation of the rotor swing 
equations, flux decay and excitation system, is obtained by combining the com­
ponent blocks shown in Figs. 7.3 to 7.5. The overall block diagram is shown in 
Fig. 7.6. Here the damping term (D) in the swing equations is neglected for 
convenience. (Actually D is generally small and neglecting it will give slightly 
pessimistic results). 

From Fig. 7.6, the electrical torque compound /:!,.Te2 is related to /:!"8 by the 
following relation 

/:!"Te2(S) = - K;~4 1 1 TE K4 /:!"8(s) 

l 
S + ~(1 + K5

K
E) 1 

do s2+S(TE + K3T/w)+(1+K3K6KE)/K3T~oTE 
(7.35) 

For a static exciter, TE is very small. If TE ~ 0, the transfer function /:!":~2 can 

be approximated as 

/:!"Te2(S) '" _ K2K4 (1 + K5 K E/K4) (7.36) 
/:!"8(s) - T/w [s + (1 + K3K6KE)/K3T~0] 

For large values of KE, Eq. (7.36) can be further approximated as 

/:!"Te2(S) '" _ K2K5K E K2K5/ K6 (7.37) 
/:!"8(s) - (T~os + K6KE) sT~0/(K6KE) + 1 
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~Tel 

Figure 7.6: Overall block diagram 

7.2 Characteristic Equation (CE) and Ap­
plication of Routh-Hurwitz Criterion 

The characteristic equation (CE) for the system shown in Fig. 7.6 can be ob­
tained by combining the transfer function given in Eq. (7.35) with the following 
equation 

(7.38) 

The characteristic equation is a 4th order polynomial expressed as 

(7.39) 

where 
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The application of Routh-Hurwitz criterion enables steady state stability to be 
determined by the coefficients of the characteristic equation (without having to 
determine the roots). The application for Eq. (7.39) can indicate limits on the 
AVR gain K E • 

For static exciters, TE 
degree given by 

o and the characteristic equation reduces to third 

where 

K3T~o 
wBKI 

2H 

b3 _ WB [Kl(1+K3K 6K E) _ K2K 4(1+ K5K E)] 
2H K3T~o T~ K4 

The criteria for stability are obtained by forming Routh array given by 

a 

b3 

For steady state stability, b1, a and b3 must be positive where 

a = ~ _ b3 = wBK2K 3K 4 (1 + K5K E) 
b1 2H(1 + K3K6KE) K4 

b3 > 0 implies, 

(Kl - K2K3K4) + K3KEK6 (Kl - Kt
5

) > 0 

(7.40) 

The above inequality is applicable as both terms in the L.H.S. are generally 
positive, i.e. 

Kl - K2K3K4 > 0 

Kl - K2K 5 > 0 
K6 

(7.41) 

(7.42) 
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Hence the major criterion for stability is that a > 0 which implies 

K4 
Ks+ KE > 0 
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(7.43) 

When Ks is positive, (7.43) applies and the system is stable. When Ks is 
negative the inequality (7.43) puts an upper limit on KE given by 

K4 
KE<-­

-Ks 
(7.44) 

In. deriving (7.44) it is assumed that K4 > O. However, it can be seen that for 
large values of KE, if Ks > 0, then a > O. This follows from the fact that 

Thus, the major criterion for stability for large values of KE is given by 

Ks > 0 (7.45) 

Stability Criterion for System Neglecting AVR 

It is worthwhile investigating stability for a system neglecting AVR but consid­
ering field flux decay. In this case the equation can be obtained as 

a 2 0 s + CIS + C2S + Ca = (7.46) 

where 

1 
CI = 

T~QKa 
wBKI 

C2 = 2H 

Ca 
WB (KI - K2K aK 4) 

-
2H T~QKa 

The application of Routh criterion gives CI > 0, Ca > 0 and 

(7.47) 

CI > 0 is applicable as Ka > O. Ca > 0 implies 

(7.48) 
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(7.4 7) can be expressed as 
WB 
2HK2K3K4 > 0 (7.49) 

As K2 > 0, the criterion for stability is 

(7.50) 

For Re = 0, the expression for K4 is positive for 00 < 900
• However for Re =I- 0, 

the expression for K4 can be obtained as 

(7.51) 

If, 
(7.52) 

then, K4 < O. However, unless local resistive load is considered at the generator 
terminals, the external resistance Re will be less than the limit given above. 

For K4 < 0, there will be two roots of the CE in the right half plane (RHP). 
However for K4 > 0 and Kl - K2K3K4 < 0, (Kl > 0) there will be only one 
root in the RHP. 

7.3 Synchronizing and Damping Torques 
Analysis 

The concepts of synchronizing and damping torques are basic in the power 
system analysis. Assuming that the generator rotor is oscillating sinusoidally, 
restoring torques are set up to oppose the motion. The component of torque in 
phase with the rotor angle 0 is called as the synchronizing torque while the com­
ponent of torque in phase with the rotor velocity deviation (or slip) is termed 
the damping torque. Mathematically, the synchronizing torque coefficient (Ts) 
is defined as 

Ts = lR [~~e (jW)] (7.53) 

Similarly, the damping torque coefficient (TD) is defined as 

(7.54) 

Since 

[
ATe(S)] 
AO(s) 

(7.55) 



7. Analysis of Single Machine System 

We can derive 

Similarly, Ts can also be expressed as 

W 
Ts = --S' 

WE 
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(7.56) 
W 

[ ~Te(jw)] ~w(jw) 
(7.57) 

The significance of the concepts of synchronizing and damping torques 
is the postulate that the small rotor oscillations are governed by an approximate 
second order differential equation given by 

Mp2~8+ TVp~8+Ts~8=0 
WE 

where M is the inertia constant (:~), p the differential operator, ! 
(7.58) 

It is to be noted that the accuracy of this approximation depends on the 
nature of the electrical network connected to the generator. 

The significance of Eq. (7.58) is that for stability of rotor oscillations, 
both Ts and Tv should be positive calculated at all possible frequencies of 
oscillations. An initial estimate for the frequency of oscillation is given by Eq. 
(7.25). 

For Tv < 0 and Ts > 0, there will be two complex roots which will lie 
in the RHP. For Tv > 0 and Ts < 0 or for both Ts and Tv negative, there will 
be one real root in the RHP. 

7.3.1 Application: Case 1 : System without AVR 

When AVR is not considered, the electrical torque (~Te) is given by the expres­
sion 

From the above, Ts and Tv can be obtained as 

K2 K3K4 
Ts = Kl - 1 +w2T,2K2 

do 3 

{7.59} 

(7.60) 
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AT el AS 

(a) K 4> 0 (b) K 4 < 0 

Figure 7.7: Phasor diagram 

(7.61) 

For Ts and TD to be positive for all frequencies of oscillations, it is necessary 
that 

(7.62) 

K4 > 0 for TD > 0 

The first condition applies for high oscillation frequencies such that 
wTdoK3 > > 1 . The second applies for low frequencies such that wT/toK3 < < 1. 
The third condition applies for all frequencies. 

It is to be noted that the above conditions for stability are identical to 
those given by Routh Criterion. K4 < 0 indicates negative damping. Fig. 7.7 
shows the phasors A8, Aw, ATel , ATe2 and ATe. (a) shows the phasor relations 
for the case when K4 > 0 and (b) for the case when K4 < O. It is obvious that 
with K4 < 0 the damping torque is negative although the synchronizing torque is 
increased (compared to case (a)). The negative synchronizing torque component 
introduced by ATe2 (for K4 > 0) results from the demagnitizing action of the 
armature reaction which weakens field flux. 



7. Analysis of Single Machine System 235 

7.3.2 Case 2: Fast excitation system (TE ~ 0) 

For TE ::: 0 the electrical torque (~Te) can be approximated as (see Eq. 7.36) 

(7.63) 

In deriving the above expression, it is assumed that KsK6KE > > 1 and hence 

By combining Eq. (7.63) with Eq. (7.59) it is not difficult to get the following 
conditions for stability 

(K5+:~»OforTD>0 (7.65) 

For large values of KE, the conditions reduce to 

(7.66) 

K5 >0, for TD > 0 (7.67) 

These conditions are related to those obtained by applying Routh's criterion. 

Example 7.1 

A synchronous generator is connected to an infinite bus through an ex­
ternal reactance Xe = 0.4 pu. Compute the Heffron-Phillips constants, Kl to 
K6 at the operating point 

(a) Pg = 0.5, Vi = 1.0, Eb = 1.0 

(b) Pg = 1.0, Vi = 1.0, Eb = 1.0 
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The machine data: Xd = 1.6, Xq = 1.55, xd = 0.32, Tdo = 6.0, H = 5, 
D = 0, f B = 60 Hz. 

Solution 

The data given assumes machine model (1.0). The initial conditions are 
calculated from the operating point and the constants K 1 to K6 are obtained 
from using the expressions given in section 7.1.4. 

(a) Vt = 1.0Ll1.53, fa = 0.5025, Eqo = 1.3279, 80 = 47.240, ido = -0.3328, 
iqo = 0.3765, Vdo = -0.5836, Vqo = 0.8120 
Kl = 0.9346, K2 = 1.0198, K3 = 0.3600, K4 = 1.3053, K5 = 0.0500, 
K6 = 0.4511 

(b) Vt = 1.0L23.57, fa = 1.0215, Eqo = 2.0382, 80 = 73.080
, ido = -0.8960, 

iqo = 0.4906, Vdo = -0.7605, Vqo = 0.6494 
Kl = 1.1060, K2 = 1.3288, K3 = 0.3600, K4 = 1.7009, K5 = -0.1002, 
K6 = 0.3608 

Note: K3 is independent of operating point. K5 is positive for case (a) and 
negative for case (b). All other constants are positive. If AVR is not considered, 
then the conditions for stability are 

Kl > 0, Kl - K2K3K4 > 0 

The value of (Kl - K 2K 3K4) is 0.4554 for case (a) and 0.2924 for case (b). 

If AVR is to be considered, the condition for stability is primarily 

K4 
KE<--

-K5 

For case (b), this implies that KE < 16.98 

Example 7.2 

For the system given in Example 7.1, plot the variations of-
K 1, (Kl - K2K3K4) and K5 with variations in Xe. (All other parameters having 
same values as before). 

Solution 

The variations in K 1, (Kl - K 2K 3K4) and K5 are shown in Fig. 7.8. It 
is interesting to observe that 

(i) Kl > 0 for both cases. As expected, Kl reduces with increase in Xe. The 
reduction is faster for case (b) Pg = 1.0 
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(ii) (Kl - K 2K 3 K4) is positive for case (a) while for case (b) it becomes neg­
ative for Xe exceeding 0.7 

(iii) K5 > 0 for case (a) when Xe < 0.8. However, K5 < 0 for case (b) even for 
Xe = 0.1. K5 reduces with increase in Xe' 

Example 7.3 

Repeat Example 7.2 if Xe = 0.4 and Pg is varied from 0.5 to 1.5 p.u. 

Solution 

The variations of K 1, (Kl - K2K3K4) and K5 with variation in Pg are 
shown in Fig. 7.9. It is interesting to observe that 

(i) Kl > 0 and remains practically constant. 
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(ii) (Kl - K2K3K4) reduces with increase in Pg • It reaches the value of zero 
as Pg approaches 1.5 pu. 

(iii) K5 reduces as Pg increases. K5 crosses zero as Pg approaches the value of 
0.7 p. u. and remains negative as P..C/ is further increased. 

o.,---~--~---.--~----, 

",. 0 

-~':-. --O::'::7--~O':-----;'':-' --,:':".---,:',. ~~':-'-~O~7--0::'::.--~11~-~13:---~15 
P, P, 

(a) Variation of Kl (b) Variation of K5 

~':-'--:':"--~.'--~-~'~'-~15 
P, 

Figure 7.9: Variation of parameters with Pg (Example 7.3). 

Example 7.4 

For the system shown in Fig. 7.10, compute the constants Kl to K6 for 
the two operating points (a) Pg = 1.0 (b)Pg = 1.1. For both cases, assume 
that Vi = Eb = 1.0. The system data are RE = 1.0, XE = 5.0, the machine data 
is same as in Example 7.1. 
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X E 
G "vl---I--_....J 

Figure 7.10: System for Example 7.4 

Solution 

From the discussion given in section 7.1.4, the external network is a 
special case of a two-port network for which the parameters are calculated as 

1 1 1 RE 
Yn = RE + jXE = Re + jXe' h12 = R; + jXE 

The system shown in Fig. 7.10 is equivalent to the system shown in Fig. 7.1 
with infinite bus voltage replaced by 

(a) The initial conditions are calculated as 
Vi = 1.0LO, Ia = 1.0, Eqo = 1.8446, do = 57.170, ida = -0.8403, 
iqo = 0.5421, Vda = -0.8403, Vqo = 0.5421 
The constants are obtained from using the expressions given in section 
7.1.3. They are 
Kl = 0.1971, K2 = 2.1575, K3 = 0.4490 K4 = 0.2629, K5 = 0.0068, 
K6 = 1.0650 

(b) The initial conditions are 
Vi = 1.0L30, ia"l= 1.1003, Eqo = 1.998, do = 88.580

, i do = -0.9527, 
iqo = 0.5506, Vda = -0.8534, Vqo = 0.5213 
The constants are 
Kl = 0.0345, K2 = 2.2571, K3 = 0.4490 K4 = 0.1826, K5 = -0.0649, 
K6 = 1.0613 ' 
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7.4 Small Signal Model: State Equations 

7.4.1 Simplified Model 

It is possible to express the system equations in the state space form. From the 
block diagram, shown in Fig. 7.6, the following system equations can be derived 

x = [A]x + [B](~Vref + ~Vs) (7.68) 

where 

0 WB 0 0 

Kl D K2 
0 

2H 2H 2H 

[A] = K4 1 1 
-Tdo 

0 ---
TdoK3 T' do 

KEK 5 0 KEK 6 1 
--- ---

TE TE TE 

[B]t = [0 0 0 ~:] 

The damping term D, is included in the swing equation. The eigenvalues 
of the matrix should lie in LHP in the's' plane for the system to be stable. 
The effect of various parameters (for example, KE and TE) can be examined 
from eigenvalue analysis. It is to be noted that the elements of matrix [A] are 
dependent on the operating condition. 

Example 7.5 

For the system considered in Example 7.1, compute the eigenvalues for 
the two operating conditions and (i) without A VR (ii) with AVR of TE = 0.05 
sec, KE = 200. 

Solution 

The system matrix [A] is defined in Eq. (7.68). The substitution of the 
parameter values and calculation of eigenvalues using MATLAB program gives 
the following results 
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(a) Pg = 0.5 

(i) Without AVR 
-0.1185 ± j5.9302, -0.2259 

(ii) With AVR 
-0.1512 ± j5.5407, -10.0803 ± j14.3810 

(b) Pg = 1.0 

(i) Without AVR 
-0.1702 ± j6.4518, -0.1225 

(ii) With AVR 
0.5091 ± j7.1562, -10.7405 ± j12.1037 

It is interesting to observe that 

(i) The complex pair of eigenvalues corresponding to low frequency rotor os­
cillations is affected by AVR in different ways for cases (a) and (b). In the 
first case (Pg = 0.5), the damping is slightly increased with AVR while 
the frequency of oscillation is slightly decreased. This is equivalent to the 
statement that while AVR can contribute damping torque (with K5 > 0) 
the synchronizing torque is slightly decreased. 
For the case (b), the net damping becomes negative while the frequency of 
oscillation increases slightly. This is mainly due to the fact that K5 < 0, 
in this case. 

(ii) There is a negative real eigenvalue in the case without AVR which moves 
towards the origin as Pg is increased. However the inclusion of a single 
time constant excitation system results in another complex pair in the left 
half plane, further away from the imaginary axis compared to the rotor 
mode. The loci of eigenvalues for the case without AVR are shown in 
Fig. 7.11 as Pg is varied from 0.5 to 1.7 (for Xe = 0.4). The variations 
with Xe (varied from 0.1 to 1.0) for Pg = 1.0, are shown in Fig. 7.12. 
It is interesting to note that while the complex pair remains in the left 
half plane, the real eigenvalue crosses imaginary axis into RHP as either 
Pg or Xe is increased. This shows that instability in the case when AVR 
is absent, is mainly due to monotonic increase (or decrease) in the rotor 
angle when small perturbations are present. 

Example 7.6 

For Example 7.5, plot the loci of the critical eigenvalues as KE is varied 
from 0 to 400. 



242 Power System Dynamics - Stability and Control 

.~ .. 
.* * ••• • Pg .05 

* o 
5 P. 17 

g 

Pg .05 

\ 
-025 -02 

P
g
.1.5 

\ 
-015 -01 -005 

real part 

x._04 

P .17 
g 

005 0.1 015 02 

Figure 7.11: Eigenvalue loci for variation in Pg (Example 7.5). 

3 

2 

o 

\ 
x .01 . . 

: • .. 
* .. 

x •• 01 

/-

P .10 , 

X._1D 

\ 
O~--~----~ __ "~-+~+-~--+-~--~~ 

-15 -1 -05 0 05 15 
reel pa1 

Figure 7.12: Eigenvalue loci for variation in Xe (Exatnple 7.5). 

Solution 

The loci of the complex critical eigenvalues are shown in Fig. 7.13. For 
case (a) (with Pg = 0.5), the damping increases at first as KE is increased from 
zero but starts decreasing as KE is further increased. However the locus remains 
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in the LHP. For case (b), the damping starts decreasing as KE is increased from 
zero and the eigenvalue crosses imaginary axis as K E is increased beyond 17.0. 
Although the locus turns around as KE is further increased, it remains in the 
RHP. 

The difference in the loci for the two cases can be attributed to the fact 
that while K5 < 0 for case (b) it is positive for case (a). Thus instability is 
expected in case (b) for sufficiently large values of K E. 

(Note that only one of the critical eigenvalues is shown in Fig. 7.13. The 
other is the complex conjugate whose locus is the mirror image about the real 
axis). 

Example 7.7 

For the system of Example 7.4, compute the eigenvalues (i) without and 
(ii) with AVR (KE = 200,TE = 0.05 sec). 

Solution 

(a) Pg = 1.0 

(i) Without AVR 
-0.2395 ± j2.7247, 0.1078 

(ii) With AVR 
-0.0063 ± j2.6102, -10.1793 ± j24.7821 
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(b) Pg = 1.1 

(i) Without AVR 
-0.6246 ± j1.4174, 0.8780 

(ii) With AVR 
0.0753 ± j2.5280, -10.2609 ± j24.6505 

Note that 

(i) Case (a) corresponds to the case with no power transmission on the tie 
line. (Pg is just adequate to meet the local load). For case (b), the power 

flow on the line is 1~ of the local load. 

(ii) The frequency of oscillation is less when compared to the system of Ex­
ample 7.1. Also the frequency reduces as power flow increases on the line. 

(iii) While AVR stabilizes the system for case (a), the mode of instability for 
case (b) shifts from one of monotonic instability to oscillatory instability 
when AVR is present. 

Example 7.8 

For Example 7.7, plot the loci of the critical eigenvalues as KE is in­
creased from 0 to 400. 

Solution 

The loci of the complex critical eigenvalues for the cases (a) and (b) are 
shown in Fig. 7.14. The results are similar to those shown in Fig. 7.13 in 
the sense that for the case (operating point) when K5 < 0, the increase in KE 
beyond a limit results in oscillatory instability. 

7.4.2 Detailed Models 

The analysis given above considered only the synchronous machine model 1.0 
and simple excitation system model. It is possible to consider more detailed 
models both for the machine and controllers (both excitation and prime-mover). 

In general, the linearized machine model can be expressed as 

xm = {Am]xm + [Bml]dim + [Bm2]dE/d + [Bm3]dTm (7.69) 

} where 
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For machine modell.1, the state vector Xm is say 

x~ = [b..fJ b..Sm b..E~ b..E~] 

The various coefficient matrices are 

0 WB 0 0 

0 
D _ iqo Zdo 

2H 2H 2H 

[Am] = 1 
0 0 

-T~o 0 

0 0 0 
1 

T~o 

0 0 

245 
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(31 - (E~o + (Xd - x~)iqo)/2H 

(32 (E~o + (Xd - X~)ido)/2H 

Controller Equations 

In general, the controller (including excitation and prime-mover) can be de­
scribed by the following equations 

where Xc is the state vector for the control system and 

~Sm is expressed as 

[~Vref ~Wref] 

- [~Vq ~Vd] 

(7.70) 

where e2 is a column vector equal to the second column of the unit matrix of 
same dimension as that of vector X m . (It is assumed that irrespective of the 
machine model, ~Sm is always the second variable among the state variables 
corresponding to the machine. The first variable is ~8). 

~Efd and ~Tm are outputs of the controllers expressed as 

~Efd = cfxc, ~Tm = C~xc 

where C1 and C2 are column vectors of same dimension as that of Xc' There is 
no loss of generality if Xc vector is so arranged such that 

cf = [1 0 0 ....... 0] 

In other words C1 is the first column of the unit matrix of same dimension as 
that of vector Xc' 

Note: Power System Stabilizer (PSS) (to be discussed in the next chapter) 
can also be treated as a part of the excitation controller. Also, if prime-mover 
controller is ignored, then C2 can be put equal to zero. 

Equations (7.69) and (7.70) can be combined to give 

Xg = [Ag]xg + [Bgd~im + [Bg2]~Vm + [Eg]uc (7.71) 
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where 

B~l = [B:nl [0]] 

B~2 = [[0] B~d 
E~ [[0] E~] 
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(7.72) 

It is to be noted that ~im and ~vm are related by the following equations 

A - [ ~Vq]_ [ ] A • [ ~E~ ] 
uVm - ~Vd - - Zg U~m + ~Ed (7.73) 

where 

The armature resistance is usually very small and can be neglected in the above 
equations. 

Network Equations 

For a single generator connected to infinite bus through an external 
network, the following equation in ~vm can be derived 

or 

~Vm = [Z]~im + [A]~8 (7.74) 

The derivation of Eq. (7.74) is quite straightward for a two port network 
connecting the generator to the infinite bus. However, the form given in Eq. 
(7.74) applies even if nonlinear voltage dependent load and SVC are considered 
at an intermediate bus. 
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Representation of Nonlinear Load 

For example, consider a system shown in Fig. 7.15 which shows a nonlinear load 
and a SVC at bus 3. The load can be described by 

(v)mp 
PL = PLo Vo (7.75) 

(v)mq 
QLo Vo (7.76) 

The load current h can be expressed as 

Figure 7.15: System diagram 

(7.77) 

where 

VL = VqL + jVdL, 

Note that the magnitude of the load bus. voltage is denoted by V (without the 
subscript L). 

Substituting Eqs. (7.75) and (7.76) in Eq. (7.77) and linearizing, it is possible 
to express b..h as 

b..h = b..lqL + jb..1dL = (GLo + jBLo)(b..VqL + jb..VdL) 

+ A1. [{mp - 2)PLo - j{mq - 2)QLo] ~ (7.78) 
VLo 0 
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where 

G + 'B PLo - jQ~o 
Lo J Lo = V:2 

o 

Note that if the load is of constant impedance type, both mp and mq have value 
of 2 and the second term is the R.H.S. of Eq. (7.78) is zero. 

B:y expressing ~ V as 

~V = (VdLO) ~V; + (VqLO) ~V; (7.79) Vo dL Vo qL 

it is possible to express (7.78) in the form 

[ 
~IdL 1 = [BLO + b1 GLo + g1 1 [ ~VqL 1 (7.80) 
~IqL GLo + g2 -BLo - b2 ~VdL 

[YL] [ ~VqL 1 
~VdL 

b' 

b1 _ b' (V ~o ), g1 = b' (V ~o ) 

g' -\- [(mp'- 2)PLo cos 00 + (mq - 2)QLo sinOo] 
Vo 

g2 = g' (VqLO) ~ = _g' (VdLO) 
Va ' Vo 

00 is the initial angle of the load bus voltage with respect to q axis. It is to be 
noted that, b1 =1= b2 and similarly g1 =1= g2. Hence Eq. (7.80) cannot be expressed 
as a single equation in phasors. 

Representation of SVC 

For a study of the low frequency behaviour of the system, it is not nec­
essary to model the network transients. Similarly, the fast dynamics of SVC 
controller can be neglected and SVC represented by its steady state control 
characteristics. Only auxiliary control utilizing bus frequency or other signals 
need to be considered. 

Neglecting auxiliary control, the control characteristics of SVC can be 
expressed as 

I~ . [V - v;.ef ] V Bve = -J -
k V 

(7.81) 



250 Power System Dynamics - Stability and Control 

where k is the slope of the control characteristics, V is the voltage phasor cor­
responding to the SVC bus. V is the magnitude of V. Eq. (7.81) shows that 
Isve lags V by 900 if V > Vref. 

Eq. (7.81) can be expressed as 

Iqs + jIdS = -~ [1 - V~f] (Vq + jVd) (7.82) 

Linearizing Eq. (7.82), we get 

f:..Iqs+jf:..IdS = _jIso(f:..Vq+jf:..Vd) - JkV.v;ref (cos(Jo+J sin(Jo)f:..V 
Vo 0 

This can be written as 

[ 
-Bs + bs 9s 1 [ f:..Vq 1 

9~ Bs - b~ f:..Vd 
(7.83) 

[Ysve] [ ~~ 1 
where 

Bs 

bs b' - l'ref . LJ (VdO) s--- Slnuo -
kYo Vo 

9s 
, _ l're! . LJ (Vqo) 9s - -- Slnuo -

kYo Vo 

As bs =1= b's and 9s =1= 9's, Eq. (7:83) cannot be reduced to a single phasor 
equation. 

Derivation ofEq. (7.74) for system of Fig. 7.15 

The Eq. (7.74) can be derived as follows. The generator armature cur­
rent f:..im can be expressed as 

(7.84) 

where 
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.6. vm can be expressed as 

where 

Eliminating .6. V3 from Eq. (7.84), we get 

. .6. V3 = [Z']Dim + [Z'][Y2].6. V:! 

where 

[Z'] = [Y2 + YL + ysVc]-l 

Substituting (7.86) in (7.85) we can derive 

.6.Vm = [Zl + Z'].6.im + [Z'][Y2] [ =;: ~:!: ].6.6 

From the above, the coefficients in Eq. (7.74) are easily derived. 

Derivation of System Equations 
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(7.85) 

(7.86) 

The system equations are obtained by eliminating .6.im and .6.vm from 
Eq. (7.71). Eqs. (7.73) and (7.74) are used to eliminate .6.im and .6.vm . .6.im 
can be expressed as 

(7.87) 

where 

[ZT] = [Z] + [Zg] 

[GE] and el are defined from 

[ 
.6.E' ] .6.E~ = [GE]xg, .6.6 = elxg 

Substituting Eq. (7.87) in (7.74) we get 

.6.vm = [Fv]Xg (7.88) 
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where 

(Fv] = [Z][Fi] + [A]e! 

Substituting Eqs. (7.87) and (7.88) in Eq. (7.71) we get the system equation 

Xg = [AT]xg + [Eg]uc (7.89) 

where 

Example 7.9 

A synchronous generator is connected to an infinite bus through a line 
of reactance (xe = 0.6). At the midpoint of the line, a SVC is connected. The 
SVC is initially supplying no reactive power. The operating data is: 
Eb = Vi = 1.0, Pg = 1.0. 
Plot the loci of the critical eigenvalues as K E is varied from 0 to 400 for the 
following cases (i) k = 0.001 (ii) k = 0.1 
Assume TE = 0.05sec. The machine data is same as that given in Example 7.1. 

Solution 

The initial conditions are calculated as Vi = 1.0L36.87, fa = 1.0541, 
Eqo = 2.1686, 80 = 82.49, ido = -0.9479, iqo = 0.4611, Vdo = -07148, 
Vqo = 0.6994. 

The loci of the critical eigenvalue for the two cases are shown in Fig. 
7.16. This also shows the case when SVC is not considered. The effect of SVC 
is to reduce the effective length of the line (or reduction of xe) which results in 
the eigenvalue locus being shifted to the left. 

Without SVC, the critical AVR gain (which results in\instability) is 
around 8; with SVC, the critical gain is 17.0 with k = 0.1 and increases to 28.7 
with k = 0.001. Thus voltage control at SVC is beneficial in reducing the neg­
ative damping due to AVR. However, the contribution of the voltage controller 
at SVC is limited. For improved system damping, additional (auxiliary) control 
loop has to be used with control signal derived from bus frequency or synthesized 
from voltage and current signals measured at SVC [12]. 

7.5 Nonlinear Oscillations - Hopf Bifurca­
tion 

The small signal stability analysis based on linearized system models indicates 
only whether the relevant equilibrium point (or operating point) is stable. It 
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Figure 7.16: Loci of critical eigenvalue with variation in AVR gain (Example 
7.9). 

does not indicate whether there would be stable (persistent) oscillations if the 
equilibrium point is unstable. In practical systems, both stable (with finite 
amplitudes) or unstable (with growing amplitude) oscillations of power flow in 
transmission lines have been observed. In general, unstable oscillations (due to 
fast acting static exciters and high gain AVRs) are common. The increasing 
amplitude of oscillations can lead to loss of synchronism. 

The existence of stable nonlinear oscillations is indicated by supercritical 
Hopf bifurcation [13, 14]. Given the nonlinear equations 

i: = f{x, f..t) (7.90) 

The equilibrium point Xe is a function of f..t. Hopf bifurcation is indicated if the 
linearized system has a complex pair of eigenvalues crossing imaginary axis at 
f..t = f..to· The stability of the oscillations is determined from Hopf bifurcation 
theorem [15]. If the oscillations are stable (stable limit cycle or periodic orbit), 
the Hopf bifurcation is said to be supercritical, otherwise subcritical. With static 
excitation systems, the Hopf bifurcation is mostly sub critical. However with high 
line resistance, the bifurcation could be supercritical. Persistent oscillations have 
been observed in such cases in the past and damper windingss designed to damp 
the oscillations. 

The problem of oscillatory instability (which can lead to loss of syn­
chronism) introduced by static excitation systems can be solved utilizing Power 
System Stabilizers (PSS). This is discussed in the next chapter. 
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Chapter 8 

Application of Power System 
Stabilizers 

8.1 Introduction 

High performance excitation systems are essential for maintaining steady state 
and transient stability of modern synchronous generators, apart from providing 
fast control of the terminal voltage. Bus fed static exciters with thyristor con­
trollers are increasingly used for both hydraulic and thermal units [1, 2]. They 
are characterized by high initial response and increased reliability due to ad­
vances in thyristor controllers. The block diagram of a typical static exciter is 
shown in Fig.8.l. The time constant TA of the regulator is negligible. The other 
time constant TR, in the range of 0.01 to 0.02 sec, is necessary for filtering of 
the rectified terminal voltage waveform. 

The other time constants associated with the exciter are negligible and 
the voltage regulator and the exciter can be modelled as a gain in series with 
an optional block of Transient Gain Reduction (TGR). The role of TGR is 
primarily to provide satisfactory operation on open circuit [3]. The Automatic 
Voltage Regulator (AVR) gain is typically around 200 pu/pu. The exciter ceiling 
is typically 8.0 pu. These parameters permit the exciter to reach 90% of the 
ceiling voltage (from the rated-load field voltage) within 25 ms for a sustained 
drop in the terminal voltage not exceeding 5%. 

It is well established that fast acting exciters with high gai~ AVR can 
contribute to oscillatory instability in power systems. This type or-instability 
is characterized by low frequency (0.2 to 2.0 Hz) oscillations which can persist 
(or even grow in magnitude) for no apparent reason (see Fig. 8.2). There are 
several instances of such occurrences which have been r~corded and studied [4, 
5, 6, 7]. This type of instability can endanger system security and limit power 
transfer. The major factors that contribute to the instability are 

(a) loading of the generator or tie line 

(b) power transfer capability of transmission lines 



258 

1 

1820 

1720 

~ 174Q. 

c: 1700 
... 
; 16 
o a. 

1620 
.!! -~ 1580 
c: 

u 154 <t 

Power Systrm Dynamics - Stability and Control 

TGR V RMAX 

+ 
V RM1N 

Figure 8.1: Block diagram of static exciter 

ti 1500 
;2 

1460~~ __ ~-L __ ~~ __ ~~ __ ~~ __ ~~ __ ~ 

o 10 20 30 40 50 60 70 80 90 100 110 120 
Time in ' seconds 

Figure 8.2: Oscillatory instability [22] 
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(c) power factor of the generator (leading power factor operation is more prob­
lematic than lagging power factor operation) 

(d) AVR gain. 

A cost efficient and satisfactory solution to the problem of oscillatory 
instability is to provide damping for generator rotor oscillations. This is con­
veniently done by providing Power System Stabilizers (PSS) which are supple­
mentary controllers in the excitation systems. The signal Vs in Fig. 8.1 is the 
output from PSS which has input signal derived from rotor velocity, frequency, 
electrical power or a combination of these variables. The objective of designing 
PSS is to provide additional damping torque without affecting the synchronizing 
torque at critical oscillation frequencies [3]. 

PSS have been used for over 20 years in Western systems of United States 
of America and in Ontario Hydro. In United Kingdom, PSS have been used in 
Scotland to damp oscillations in tie lines connecting Scotland and England [8]. 
It can be generally said that need for PSS will be felt in situations when power 
has to be transmitted over long distances with weak AC ties. Even when PSS 
may not be required under normal operating conditions, they allow satisfactory 
operation under unusual or abnormal conditions which may be encountered at 
times. Thus, PSS has become a standard option with modern static exciters and 
it is essential for power engineers to use these effectively. Retrofitting of existing 
excitation systems with PSS may also be required to improve system stability. 

This chapter presents the various aspects for the application of PSS 
with emphasis on the tuning procedures. The coverage includes not only on 
the current practices but also on recent developments and future trends. The 
stabilization through SVC and HVDC controllers are also discussed. 

8.2 Basic concepts in applying PSS 

A brief review of the basic concepts of stabilization is undertaken here. The 
power system, in general, is described by a set of nonlinear differential and 
algebraic equations. These can be expressed as . 

d 
pX = F{X, Z), p = dt 

Y = H{X, Z) 

0= G{Y, Z) 

(8.1) 

(8.2) 

(8.3) 

The oscillatory instability can be viewed as stability of the operating point, 
subjected to small, random perturbations which are always present. The analysis 
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can be performed by linearizing the system equations around the operating point 
(X = X o, y = Yo, Z = Zo). Here X are the state variables, Y represent active 
and reactive power injections (at buses), Z represent voltage magnitudes and 
angles at various buses. 

Expressing 

X = Xo + .6.X, Y = Yo + .6.Y, Z = Zo + .6.z. (8.4) 

it is possible to obtain the following equation 

p.6.X = [A].6.X (8.5) 

where 

[
aF aF (aG aH aG)-l aG aH] 

[A] = ax - az ay az + az ayaX (8.6) 

It is to be noted that the elements of A are functions of the operating point. 

The stability of the operating point can be judged by the location of the 
eigenvalues of the matrix A. If all the real parts of the eigenvalues are negative, 
the system is stable. If one or more has positive real part, then the system 
is unstable. While this criterion of stability is valid for very small perturba­
tions (which may not be true in practice), it is interesting to note that several 
analytical studies [5, 6, 7] show excellent correlation between theory and field 
tests. The criterion indicates problem areas but cannot provide estimates for 
amplitudes of the oscillation observed. 

To give more insight into the problem, we can take up a multi-machine 
system where generators are modelled by the 'classical' model, neglecting flux 
decay, saliency, damper windings and governor effects. In this case, the lin­
earized system equations can be written as 

[M]p2.6.8 = -[K].6.8 (8.7) 

where [M] is diagonal matrix with Mjj = ~j (Hj is the inertia constant of 

lh synchronous machine). Kij = apei/a8j, where Pei is the power output of 
ith machine, 8j is the rotor angle of lh machine referred to a rotating reference 
frame (with the operating speed wo ). If the network can be reduced by retaining 
only the internal buses of the generators and the losses in the reduced network 
can be neglected, 

RE- 1 
K-- = -' _J cos{8- - 8-) ~-

'J x- - 'J x--
'J 'J 

(8.8) 
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where Xij is the reactance of the element connecting the generator buses i and 
j. Ei and Ej are the generator voltages. The approximation assumes that the 
voltages are around 1.0 pu. and the bus angle difference (in steady-state) are 
small. The matrix [K] is singular and has rank ~ (m -'1) where m is the size of 
K (also equal to the number of generators). This enables the reduction of the 
number of angle variables by one by treating relative angles (with respect to a 
reference machine which can be chosen as the ~rst machine) as state variables. 

The solution of equation (8.7) can, in general, be expressed as 

m-1 

6.8R - " v;. (c· cos W ·t + d· sin w ·t) -L.....tJJ J J J (8.9) 
j=l 

where 6.8R = [6.821 6.831 .•... 6.8mdt is the vector of relative angles (6.8i1 

= 6.8i - 6.8r), C1, •. ·, Cm-1, d1, d2,.·., dm - 1 are scalars depending on the 
initial conditions, Vi, V m-1 are vectors. The structure of a vector Vi depicts the 
participation of various machines in the oscillation mode whose frequency is Wj. 

It is to be noted that for a 'm' machine system, there are (m - 1) oscillatory 
modes whose frequency varies in the range of (0.2 to 3 Hz). The frequencies 
are obtained as square roots of the non-zero and real eigenvalues of the matrix 
[M]-l[K]. 

In a practical system, the various modes (of oscillation) can be grouped 
into 3 broad categories [9]. 

A. Intra-plant modes in which only the generators in a power plant partici­
pate. The oscillation frequencies are generally high in the range of 1.5 to 
3.0 Hz. 

B. Local modes in which several generators in an area participate. The fre­
quencies of oscillations are in the range of 0.8 to 1.8 Hz. 

C. Inter area modes in which generators over an extensive area participate. 
The oscillation frequencies are low and in thG range of 0.2 to 0.5 Hz. 

The above categorization can be illustrated with the help of a system 
consisting of two areas connected by a weak AC tie (see Fig. 8.3). Area 2 is 
represented by a single generator G4 • The area 1 contains 3 generators G1 , G2 , 

and G3 • The generators G1 and G2 are connected in parallel and participate 
in the intra-plant oscillations which have higher frequency due to the lower 
reactance between the two machines and also smaller inertias. In local mode 
oscillation, G1 and G2 swing together and against G3 • In oscillations due to inter 
area mode, all generators G 1 to G 4 participate and have the lowest frequency. 
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Figure 8.3: A sample power system 

It is to be noted that the distinction between local modes and inter area 
modes applies mainly for those systems which can be divided into distinct areas 
which are separated by long distances. For systems in which the generating 
stations are distributed uniformly over a geographic area, it would be difficult 
to distinguish between local and inter area modes from physical coru,iderations. 
However, a common observation is that the inter area modes have the lowest 
frequency and highest participation from the generators in the system spread 
over a wide geographic area. 

The PSS are designed mainly to stabilize local and inter area modes. 
However, care must be taken to avoid unfavourable interaction with intra-plant 
modes [10] or introduce new modes which can become unstable. 

Depending on the system configuration, the objective of PSS can differ. 
In Western U.S.A, PSS are mainly used to damp inter area modes without 
jeopardizing the stability of local modes. In other systems such as Ontario 
Hydro, the local modes were the major concern. In general, however, PSS must 
be designed to damp both types of modes. The procedures for tuning of PSS 
depend on the type of applications. 

If the local mode of oscillation is of major concern (particularly for the 
case of a generating station transmitting power over long distances to a load 
centre) the analysis of the problem can be simplified by considering the model of 
a single machine (the generating station is repr_esented by an equivalent machine) 
connected to an infinite bus (SMIB). With a simplified machine model (1.0), and 
the excitation system, the analysis can be carried out using the block diagram 
representation given in Chapter 7. The instability arises due to the negative 
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damping torque caused by fast acting exciter under operating conditions that 
lead to Ks < O. The objective of PSS is to introduce additional damping torque 
without affecting the synchronizing torque. 

8.3 Control Signals 

The obvious control signal (to be used as input to the PSS) is the deviation 
in the rotor velocity. However, for practical implementation, other signals such 
as bus frequency [11], electrical power [9], accelerating power [12, 13] are also 
used. The latter signal is actually synthesized by a combination of electrical and 
mechanical power signals. The mechanical power signal can be obtained from 
the gate position in a hydraulic turbine or steam pressures in steam turbine. 
Nevertheless, it is difficult to measure mechanical power. It can be argued that 
if mechanical power variations are slow, then a signal derived from the electrical 
power approximates accelerating power. However, this can pose problem during 
rapid increases of generation for which PSS action leads to depression in the 
voltage, endangering security. 

A recent development is to synthesize accelerating power signal from 
speed and electrical power signals. This is shown in Fig. 8.4 [13]. A similar 
approach is used at Ontario Hydro and the PSS utilizing these signals are termed 
as Delta-P-Omega stabilizers [14]. It is claimed that the new control signal has 
eliminated the problem of torsional interactions and improved reliability. 

Ms Pm + 

l+sT PSS) 

+ 

1 
1------'---- P 

e 
l+sT 

Figure 8.4: Synthesis of accelerating power signal 

The choice of control signal for PSS can be based on the following criteria 

(a) The signal must be obtained from local measurements and easily synthe­
sized. 

(b) The noise content of the signal must be minimal. Otherwise complicated 
filters are required which can introduce their own problems. 
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(c) The PSS design based on a particular signal must be robust and reject 
noise. This implies that lead compensation must b~ kept to a minimum 
to avoid amplifying the noise. 

All the control signals considered- rotor speed, frequency, electrical power 
are locally available. The speed signal can be obtained from a transducer using 
a tooth wheel mounted on the shaft. Alternately it can be obtained from the 
angle of the internal voltage which can be synthesized. The bus frequency signal 
can be obtained by measuring the period using zero crossing detection. The 
power signal can be derived from a Hall effect transducer. 

The speed signal is inherently sensitive to the presence of torsional os­
cillations at frequencies in the range of 8 to 20 Hz. This can lead to negative 
damping of the torsional mode [15]. An initial solution to this problem was inge­
nious - to relocate the speed pick up at the node of the first torsional frequency. 
However, this was not a general solution (for example in 4 pole nuclear units 
in Ontario Hydro, the node of the first torsional mode of oscillation is located 
inside the turbine casing and hence inaccessible). A practical solution is to pro­
vide a torsional filter tuned to the frequency of the critical mode. However, this 
filter introduces another mode of oscillation, the damping of which reduces with 
increasing stabilizer gain [16]. 

Speed signal can also lead to negative damping of intra-plant modes if 
the PSS is not properly designed. In reference [10], the average speed instead 
of individual speed is suggested as a suitable control signal in a plant whenever 
more than one unit operate. 

The frequency signal is insensitive to intra-plant modes and hence there 
is no danger of destabilising intra-plant modes. The frequency signal is also less 
sensitive to torsional frequency components. However, the frequency signal is 
prone to noise caused by nearby loads such as arc furnaces [6, 10]. 

The acceleration signal (based on accelerating power) results in mini­
mum lead compensation requirements. The signal is also insensitive to torsional 
modes. Both these factors imply that torsional filters may be dispensed with 
completely or their design simplified. 

8.4 Structure and tuning of PSS 

The block diagram of the PSS used in industry is shown in Fig. 8.5. It consi.3ts 
of a washout circuit, dynamic compensator, torsional filter and limiter. The 
function of each of the components of PSS with guidelines for the selection of 
parameters (tuning) are given next. 

, ( 
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Figure 8.5: Block diagram of PSS 

It is to be noted that the major ~bjective of providing PSS is to in­
crease the power transfer in the network, which would otherwise be limited by 
oscillatory instability. The PSS must also function properly when the system is 
subjected to large disturbances. 

8.4.1 Washout Circuit 

The washout circuit is provided to elimina.te steady-state bias in the output of 
PSS which will modify the generator terminal voltage. The PSS is expected to 
respond only to transient variations in the input signal (say rotor speed) and 
not to the dc offsets in the signal. This is achieved by subtracting from it the 
low frequency components of the signal obtained by passing the signal through 
a low pass filter (see Fig. 8.6). 

+ 
u----r-----------------~~ -

I-----i~ U 

1 

Figure 8.6: Washout circuit 

The washout circuit acts essentially as a high pass filter and it must pass 
all frequencies that are of interest. If only the local modes are of interest, the 
time constant Tw can be chosen in the range of 1 to 2. However, if inter area 
modes are also to be damped, then Tw must be chosen in the range of 10 to 20. 
A recent study [1] has shown that a value of Tw = 10 is necessary to improve 
damping of the inter area modes. There is also a noticeable improvement in the 
first swing stability when Tw is increased from 1.5 to 10. The higher value of 
Tw also improved the overall terminal voltage response during system islanding 
conditions. 
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8.4.2 Dynamic Compensator 

The dynamic compensator used in industry is made up to two lead-lag stages 
and has the following transfer function 

T(s) = Ks(1 + sTt}(1 + sT3 ) 

(1 + sT2 )(1 + ST4) 
(8.10) 

where Ks is the gain of PSS and the time constants, TI to T4 are chosen to 
provide a phase lead for the input signal in the range of frequencies that are of 
interest (0.1 to 3.0 Hz). With static exciters, onl~ one lead-lag stage may be 
adequate. In general, the dynamic compensator can be chosen with the following 
transfer function 

T( ) = KsN(s) 
s D(s) 

(8.11) 

where 

N(s) 1 + alS + a2s2 + .... apsP 

D(s) 1 + bls + ~S2 + .... bpsP 

The zeros of D (s) should lie in the left half plane. They can be complex or 
real. Some of the zeros of N (s) can lie in the right half plane making it a 
non-minimum phase. 

For design purposes, the PSS transfer function is approximated to T(s), 
"the transfer function of the dynamic compensator. The effect of the washout 

circuit and torsional filter may be neglected in the design but must be considered 
in evaluating performance of PSS under various operating conditions. 

There are two design criteria. 

1. The time constants, Tl to T4 in equation (8.10) are to be chosen from the 
requirements of the phase compensation to achieve damping torque 

2. The gain of PSS is to be chosen to provide adequate damping of all critical 
modes under various operating conditions. It is to be noted that PSS is 
tuned at a particular operating condition (full load conditions with strong 
or weak AC system) which is most critical. Although PSS may be tuned 
to give optimum damping under such condition, the performance will not 
be optimal under other conditions. The critical modes include not only 
local and inter area modes, but other modes (termed as control or exciter 
modes) introduced by exciter and/or torsional filter. 

The basis for the choice of the time constants of the dynamic compen­
sator can be explained with reference to the block diagram of the single machine 
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Figure 8.7: Stabilizer with speed input: system block diagram 

system when PSS is included (see Fig. 8.7). If PSS is to provide pure damping 
torque at all frequencies, ideally the phase characteristics of PSS must balance 
the phase characteristics of GEP at all frequencies. As this is not practical, the 
following criteria are chosen to design the phase compensation for PSS. 

(a) The compensated phase lag (phase of P(s) = GEP(s) PSS(s)) should pass 
through 90° at frequency around 3.5 Hz (For frequency input signal this 
can be reduced to 2.0 Hz). 

(b) The compensated phase lag at local mode frequency should be below 45°, 
preferably near 20° 

(c) The gain of the compensator at high frequencies (this is proportional to 
T1T3 /T2T4 ) should be minimized. 

The first criterion is important to avoid destabilization of intra-plant 
modes wit~ higher frequencies. It is also preferable to have the compensated 
phase to be lagging at inter area modes so that PSS provides some synchronizing 
torque at these frequencies. The time constant of the washout circuit can also 
affect the compensated phase lag. The third criterion is required to minimize 
the noise amplification through PSS. 

The plots of the phase angle <p of the compensator of Eq. (8.10), with 
variation in frequency are shown in Fig. 8.8 for different values of the centre 
frequency fe defined by 

f -~ 1 
e - 211" ...jTl T2 

(8.12) 
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It is assumed that 

Tl T3 
-=-=n 
T2 T4 

The plots of Fig. 8.8 (a) are obtained for n = 10. Fig. 8.8 (b) shows similar 
plots, but for n = 2. Since the two lead-lag stages are assumed to be identical, 
the phase angle <P is twice that for a single stage. The figure 8.8 shows the phase 

angle (~) corresponding to a single stage. 
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Figure 8.8: Variation of phase angle of compensator 

10' 10' 

The results given in Fig. 8.8 show that the peak value of the phase 
lead provided by the compensator occurs at the centre frequency (fc). Also, 
increasing n increases the phase lead. Depending on the phase compensation 
required, Ie and n can be selected. A single stage of lead-lag network is adequate 
whenever the requirements of the phase lead are moderate. 

The determination of the 'plant' transfer function can be done analyt­
ically or experimentally from field tests. In the former case, GEP{s) can be 
obtained from the fact that 

GEP{s) = ~Te I 
~VS ~w=O 

(8.13) 

where Vs is the output of the PSS. The condition ~w = 0, can be enforced by 
selecting arbitrarily very high values of inertias and calculating the frequency 
response over a range of frequencies. There are computer programs to compute 
eigenvalues or frequency response for a large system [17-19]. 
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Figure 8.9: Simplified model of SMIB system 

For a SMIB system with machine model (1.0), GEP{s) can be determined 
from the block diagram shown in Fig. 8.9. From this, GEP{s) is obtained as 

GEP{s) = K2K3EXC{S) 
(I + sTdoK3) + K3K6EXC{S) 

(8.14) 

where EXC{s) is the transfer function of the excitation system. 

The transfer function GEP{s) cannot be determined exactly from the 
field tests as the rotor velocity variations can never be avoided in practice. 
However, it is shown below that GEP{s) can be determined from the following 
approximate relationship 

GEP{s) ~ K2 ~vt{s) 
K6 ~Va{s) 

(8.15) 

By measuring the transfer function between the terminal voltage and stabilizer 
output (Va) it is possible to experimentally determine the phase characteristics 
of the plant. 

Derivation of Eq. 8.15 
The simplified model of the SMIB (single machine infinite bus) without PSS can 
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Figure 8.10: Simplified model of SMIB system without PSS 

be obtained as shown in Fig. 8.10. From this figure, the transfer function from 
Va to vt can be obtained as 

where M = 2H 
K Ie is the effective complex synchronizing torque 

If K5 is zero, then 

GEP{s) = K2 ~vt(s) 
K6 ~Vs(s) 

(8.16) 

K5 represents the effect of the rotor angle changes in terminal voltage which has 
he following characteristics. 

1. With no load on the generator, K5 is positive and approaches zero as the 
transmission system becomes weaker. 

2. Under load, K5 is positive for strong systems but passes through zero and 
becomes negative as the system becomes weak. 
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Hence K5 can be assumed to be zero and the approximation ofGEP{s) by R.H.S. 
of equation (8.15) is valid. 

The comparison between the exact and the approximate computation of 
GEP{s) is shown in Fig. 8.11 for a representative system. 
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Figure 8.12: Root loci with variation in stabiliser gain 

Once GEP(s) is determined, the PSS time constants are adjusted (by 
trial and error) such that the criteria given earlier are satisfied. The performance 
of the PSS can also be checked by root locus plots. See Fig. 8.12 for an example. 
The root loci with variation in stabilizer gain are drawn for two different values 
of fe and for a fixed value of the ratio n. In addition to fe, it is possible to vary 
the ratio of TdT2 and T3/T4 independently to get a better performance. It is 
observed that either the local mode or the other mode (called the exciter mode 

_ irrespective of its source) gets destabilized as the PSS gain Ks is increased. 

The studies carried out by Larsen and Swann [9] indicate that depending 
. upon the input signal used, PSS is to be tuned for a particular system condition 
L.,hich has the highest stabilizer loop gain and greatest phase lag. Full load on 

the generator yields the highest loop gain. For speed and power input stabilizers, 
the strongest AC system results in the highest loop gain and greatest phase lag. 
For frequency input stabilizers, the highest loop gain occurs with weakest AC 
ftansmission system. 

To set the gain of the PSS, root locus analysis is performed. The optimal 
PSS gain is chosen for the particular tuning condition as the gain that results in 

, the maximum damping of the least damped mode. From studies carried out in 
[9], the optimum gain (Kopt ) is related to the value of the gain (K/) that results 
in instability. For speed input stabilizers Kopt = 1/3K/, for frequency input 
stabilizers Kopt = 2/3K/: For power input stabilizers Kopt = 1/8K/. These 
thumb rules are useful while implementing PSS in the field without having to 
do root locus studies. 

.1 
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It is to be noted that for input signals other than rotor speed, the block 
diagram shown in Fig. 8.7.is not valid. In such cases, the diagram is as given 
in Fig. 8.13, where X is an arbitrarily chosen control (input) signal. Sx{s) is 
defined as the input signal sensitivity factor and F B x (s) is defined as the input 
signal feedback factor. For power input stabilizer, 

RX(s) 

F B x(s) ~ 

+ 

S x (s) I: PSS J!:S) GEP(s) 
Aro + AX AV 

Figure 8.13: Stabilizer loop with arbitrary input X 

FBp{s) = GEP{s) 

(8.17) 

A T ep 

(8.18) 

For the general case, the plant transfer function in the stabilizer path is 
given by 

Px{s) = !l.Tep (s) = Sx{s)PSSx{s)GEP{s) 
!l.w 1 - FBx{s)PSSx{s) 

(8.19) 

For speed input stabilizer, Sx = 1.0, FBx = O. Hence 

Pw{s) = PSSw{s)GEP{s) (8.20) 

To summarize, the tuning procedure for thE: dynamic compensator, the 
following steps are carried out. 

1. Identify the plant GEP{s) 

2. Choose the time constants from the phase compensation technique de­
scribed earlier and from the knowledge of GEP{s). 

3. Select the PSS gain such that it is a fraction of the gain corresponding 
to instability. This can be determined from root loci to maximize the 
damping of the critical (least damped) mode. 
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8.4.3 Torsional Filter 

The torsional filter in the PSS is essentially a band reject or a low pass filter to 
:l.ttenuate the first torsional mode frequency. The transfer function of the filter 
::an be expressed as 

W 2 

FILT(s) = 2 2( n 2 
S + Wns +Wn 

(8.21) 

For stabilizers derived from accelerating power, torsional filter can have 
a simple configuration of a low pass filter independent of the frequency of the 
torsional mode to be filtered out. 

Torsional filter is necessitated by the adverse interaction of PSS with 
the torsional oscillations. This can lead to shaft damage, particularly at light 
generator loads when the inherent mechanical damping is small. Even if shaft 
damage does not occur, stabilizer output can go into saturation (due to torsional 
frequency components) making it ineffective. The criteria for designing of the 
torsional filter are: 

1. The maximum possible change in damping of any torsional mode is less 
than some fraction of the inherent torsional damping. 

2. The phase lag of the filter in the frequency range of 1 to 3 Hz is minimized. 

8.4.4 Linaiter 

The output of the PSS must be limited to prevent the PSS acting to counter 
the action of AVR. For example, when load rejection takes place, the AVR acts 
to reduce the terminal voltage when PSS action calls for higher value of the 
terminal voltage (due to the increase in speed or frequency). It may even be 
desirable to trip the PSS in case of load rejection. 

The negative limit of PSS output is of importance during the back swing 
of the rotor (after initial acceleration is over). The AVR action is required to 
maintain the voltage (and thus prevent loss of synchronism) after the angular 
separation has increased. PSS action in the negative direction must be curtailed 
more than in the positive directi.0fi. Ontario Hydro uses a -0.05 pu. as the lower 
limit and 0.1 to 0.2 as the higher limit. Recent studies have shown [1] that 
higher negative limit can impair first swing stability. 

It is of interest to note that discontinuous excitation control is employed 
at Ontario Hydro in order to improve transient stability [2]. This control termed 
as Transient Stability Excitation Control (TSEC) operates using a signal derived 
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from the rotor angle and augments the PSS output. The operation is permitted 
only if the following conditions are satisfied simultaneously 

(a) a drop in the terminal voltage in excess of the preset value 

(b) field voltage is at positive ceiling 

( c) rise in speed above a preset value. 

The effect of TSEC is to maintain the maximum permissible terminal 
voltage over the entire positive swing of the rotor angle. However, the angle 
signal is used only during the transient period of about 2 seconds following a 
severe disturbance. The operation of TSEC is discontinued when either the 
speed drops below a threshold value or the exciter comes out of saturation. 
The output of the TSEC is allowed to decay exponentially. The reason for 
discontinuous control arises from the fact that the continuous use of the angle 
signal is deleterious to steady state stability. 

8.5 Field implementation and operating ex-
• perlence 

The tuning of power system stabilizer can be performed using extensive analyti­
cal studies covering various aspects. While such studies are useful in optimizing 
the performance of PSS, satisfactory operation of PSS can be obtained by tuning 
the PSS using field test results as described below [9,20]. 

1. Measure the open loop frequency response without PSS. This involves 
obtaining the transfer function between the terminal voltage and the AVR 
input (Va) in frequency domain. As described earlier, the transfer function 
is approximately related to GEP(s). 

2. Select PSS time constants by trial and error such that desired phase com­
pensation is obtained. The guidelines for selecting the phase compensation 
are: 

(a) Check that the compensated system (GEP(s) PSS(s)) has some phase 
lag at inter area modes 

(b) Verify the stabilizer time constant settings by field test which involves 
determination of points on a root locus. The local mode oscillations 
are stimulated by step changes to AVR reference, line switching or 
low level sinusoidal modulation (at local mode frequency) of the volt­
age reference. The effect of the PSS can be measured by comparing 
the damping with zero PSS gain and few low values of the gain which 
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cause a noticeable change. The waveform recorded can give informa­
tion on the frequency and damping ratio. 

Modern test equipment such as HP 5423A Structural Dynamic Analysis 
(SDA) which use random noise signals and microprocessor based instru­
mentation help in simplifying the measurements and reducing the burden 
on the operator [20]. 

3. Perform the gain margin test. This consists of slowly increasing the sta­
bilizer gain until instability is observed which is characterized by growing 
oscillations at a frequency greater than the local mode. The oscillation can 
be monitored from PSS output. Once instability is detected the stabilizer 
is switched out of service. Reduction of stabilizer output limits during the 
test will ensure that safe operation of the generator is maintained. 

During the gain margin test, torsional oscillations should be monitored to 
check that the torsional filter is giving satisfactory performance. 

4. The PSS gain can now be set to a lower value and a fraction of the in­
stability gain. Typically the gain is set to 1/3 of the instability gain (for 
speed input stabilizers). 

Operating Experience with PSS 

The early operating experience with speed input stabilizers showed the 
need for torsio~ filtering to eliminate umavourable interactions at torsional ~ 
frequencies. Also, improper design can lead to destabilization of intra-plant 
modes. The frequency input stabilizers are susceptible to noise generated by arc 
furnace loads located close to the power stations. 

The presence of the torsional filter can introduce additional control (or 
so called exciter) mode whose damping reduces as stabilizer gain is increased 
[16]. Replacing speed signal by synthesized accelerating power signal [2] can 
help overcome this problem. 

The overall performance of properly tuned stabilizers is excellent. On­
tario Hydro statistics [2] showed a mean time to failure of about 5.7 years in 
107 stabilizer years of operation. Built-in protection features have mitigated 
the consequences of stabilizer failure in recent years. Dynamic test facilities 
incorporated into the stabilizers permit routine testing. 
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8.6 Examples of PSS Design and Applica­
tion 

Example 8.1 

The system data is taken from Example 7.1 given in chapter 7. The 
system consists of a single machine connected to an external impedance of 0 + 
jO.4. The generator is initially supplying power of 1 pu with terminal voltage at 
l.0 pu. The infinite bus voltage is l.OLO.Oo. A static exciter with a single time 
constant AVR is considered (KE = 200, TE = 0.05). Design a speed input PSS 
at this operating condition: 

Solution 

The phase angle of GEP (jw) as a function of w is shown in Fig. 8.14. 
The phase angle decreases as frequency increases. At the rotor oscillation fre­
quency of about 7 rad/sec, thl; phase lag is 350

• At the cut off frequency of 3.5 
Hz (22 rad/sec), the phase lag is around 1200

• 
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Figure 8.14: Phase angle of GEP(Jw) 

A compensator transfer function 

T(s) = (1 + sTdKs 
. 1 + ST2 

with a centre freque~cy of 3.5 Hz is selected. The maximum phase lead (which 
occurs at 3.5 Hz) is selected as 300 so that the compensatec;i phase lag is 900 at 



278 Power System Dynamics - Stability and Control 

Figure 8.15: Phase angle of compensator T(Jw) 

3.5 Hz. The ratio n = ~~ , has to satisfy 

tan-1 TIWc - tan-1 T2Wc = 30° (8.22) 

where 
(8.23) 

Sl,lbstituting (8.23) in (8.22), we have 

1 
tan-1 Vii - tan-1 - = 30° 

Vii 
(8.24) 

The solution of the above equation is n = 3. The time constants Tl and T2 are 
selected as 

Tl = 0.078 s, T2 = 0.026 s 

The phase lead provided by the PSS at the rotor oscillation frequency is 
around 19°. This results in the compensated phase lag of about 16° at 7 rad/ sec. 
The phase angle of the compensator is shown in Fig. 8.15 and the compensated 
phase LT(s)GEP(s) is shown in Fig. 8.16. The washout circuit time constant 
Tw is selected as 2.0 s a.s the PSS is mainly designed for damping local mode of 
frequency around 1 Hz. The overall PSS transfer function is 

PSS(s) = Tws Ks(1 + sTr} 
(1 + sTw) (1 + sT2 ) 
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Figure 8.16: Compensated phase angle 

/' 
To select the appropriate value of the PSS gain (Ks) root locus plot is 

obtained as Ks is varied. Fig. 8.17 shows the loci of two roots (eigenvalues), 
one corresponding to the local (rotor) mode and other corresponding to the 
exciter mode. The root corresponding to the exciter mode moves to the right 
and crosses imaginary axis at around Ks = 74. The root corresponding to the 
local mode moves to the left as Ks increases from zero .and for higher PSS gain, 
the frequency of oscillation continues to decrease until the complex root splits 
into two real roots. The optimum PSS gain is chosen such that critical mode 
has maximum damping ratio. From Fig. 8.17 the optimum PSS gain is 16. 

It is to be noted that GEP (jw) is a function of the operating point. 
The plots of the variation of angle of GEP(jw) as a function of frequency for 
three other operating points (a)Pg = 0.5, Xe = 0.4, (b)Pg = 0.5, Xe = 0.8, 
(c)Pg = 1.0, Xe :.... 0.8, are shown in Fig. 8.18. The plot for the operating 
point Pg = 1.0, Xe = 0.4 (shown in Fig. 8.14) is also given in Fig. 8.18 for 
comparison. It is seen that the phase lag of GEP (jw) is maximum for full 
load and strong system (xe = 0.4) conditions. Hence PSS designed for the 
operating condition Pg = 1.0, Xe = 0.4' is expected to operate satisfactorily at 
other operating conditions. The eigenvalues of the system with PSS for the four 
operating conditions are given in Table 8.1. 

Example 8.2 

Obtain the responses of the system of Ex'ample 8.1 for a three phase fault' 
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Figure 8.17: Root loci with variation in stabilizer gain 
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Figure 8.18: Variation of phase of GEP{Jw) for: different operating points 

at the generator terminals followeq by clearing after 4 cycles. < The operating 
<point is Pg = 1.0, Xe = 0.4. The system is initially at equilibrium. Compare the 
responses with and without PSS. Assume the post fault system identical to the 
pre-fault system. The limits on PSS output'are ±0.05 pu and the l~its on Efd 
are ±6.0 pu. ! 
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Table 8.1 Eigenvalues with and without PSS (Example 8.1) 

S1. Without With PSS 
PSS . 

No Pg = 1.0 Pg = 1.0 Pg = 1.0 Pg = 0.5 Pg = 0.5 
Xe = 0.4 Xe = 0.4 Xe = 0.8 Xe = 0.8 Xe = 0.4 

1,2 -10.74 ± -5.39 ± -8.29 ± -8.38 ± 18.02 -7.00 ±j15.66 
j12.10 j13.67 j16.82 

3,4 0.51 ± -3.44 ± j6.56 -1.00 ± j5.19 -1.06 ± j 4.68 -2.17 ± j4.89 
j7.16 

5 - -0.5294 -0.5236 -0.5218 -0.5326 
6 - -39.82 -38.80 -38.49 -39.13 

Solution 

The results of the simulation without PSS are shown in Fig. 8.19. The 
fault is assumed to occur at 1 s. The figure shows the variation of rotor angle 
(6), E~, Te, Vi and Efd. 

The plot of the rotor angle shows oscillatory instability as the operating 
point is unstable. The oscillations in 6, Te and Vi are increasing in magnitude. 
The dominant frequency of oscillation is about 1 Hz corresponding to the rotor 
(swing) mode. There is also a second harmonic component in Te and Vi. The 
results of simulation with PSS included are shown in Fig. 8.20. The variation of 
the PSS output is also given. It is interesting to observe that the oscillations are 
well damped and steady state is reached in little over 2 s after the occurrence 
of the disturbance. 

Example 8.3 

The system diagram and data are given in Example 7.4. The generator repre­
sents the equivalent for the area connected to a very strong system (represented 
by infinite bus) through a tie line of impedance 0 + j5. The initial power flow 
over the tie line is 10 % of the local load supplied by the generator. Design a 
speed input PSS at the operating condition Pg = 1.1, Vi = 1.0. 

Solution 

The phase angle of GEP (jw) as a function of w is shown in Fig. 8.21. 
This shows that the phase lag of GEP (jw) is within limits and the PSS does 
not need to provide any phase lead. The choice of Tl and T2 are immaterial 
providM n = 1 (There is a pole-zero cancellation in the compensator). 
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Figure 8.21: Phase angle of GEP(Jw) (Example 8.3) 
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Table 8.2 Eigenvalues With and Without PSS (Example 8.3) 

Sl.No. Without With 
PSS PSS 

1,2 -10.26 ± j 24.65 -9.14 ± j 24.25 
3,4 0.075 ± j 2.53 -1.05 ± j 2.34 
5 - -0.1035 

The PSS gain is selected from the plot of root loci shown in Fig. 8.22. 
This shows two modes - a low frequency inter area mode and higher frequency 
exciter mode which gets destabilized as PSS gain is increased. The optimum 
gain is Ks = 10. 

The washout circuit time constant is chosen as 10 s as the inter area 
mode has a low frequency « 0.5Hz). The PSS transfer function is 

100s 
PSS(s) = (1 + lOs) 

The system eigenvalues with and without PSS are given in Table 8.2. 

Example 8.4 

Obtain the response of the system of Example 8.3 for a step increase in 
v"ef by 0.05 pu. The system is initially in equilibrium with Pg = 1.1, XE = 5.0. 
Compare the responses with and without PSS. Assume the limits on Vs (PSS 

. output) as ±0.05 and on E fd as ±6.0 pu. 

Solution 

The results of the simulation for the case without PSS are shown in 
Fig. 8.23. The step increase in v;.ef occurs at 1 sec. The plots of variation of 
d, E~, Te, Vi and E fd are given in Fig. 8.23. The results show that the system 
is marginally unstable and the oscillations continue even beyond 10 s. 

The rotor angle decreases as v;.ef is increased. E~ and Vi also increase as 
expected. The electrical torque Te increases initially and settles down to previous 
value (neglecting the superimposed oscillations). The field voltage Efd hits the 
ceiling initially and settles down (neglecting oscillations) to a slightly lower value 
(compared to the initial operating value) as the demagnetizing current is reduced 
on account of decrease in the rotor angle. . 

The results of simulation with PSS considered are given in Fig. 8.24. 
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The output of PSS is also given for this case. The oscillations are damped out 
within 3 s after the occurrence of the disturbance. The PSS output is negative 
initially as the rotor decelerates following the step increase in Vre/. As the action 
of the PSS is countering the increase in Vre/, the initial overshoot in lit is slightly 
less than the value reached in the case without PSS. However there is a larger 
undershoot with PSS on account of the negative output of PSS which lasts for 
over 1 s. This shows that in damping rotor oscillations PSS can cause some 
fluctuations in the terminal voltage during the transient. The limiting of PSS 
output is essential in reducing the voltage fluctuations. 

Example 8.5 

Consider the system of Example 6.6 (in chapter 6). The generator is 
assumed to be equipped with a PSS with the following parameters -
Ks = 15, Tl = 0.75, T2 = 0.3, Tw = 10. Limits on Vs = ±0.05. 
Obtain the responses of the system for case D with PSS included (The dis­
turbance considered is a three phase fault near the sending end of one of the 
transmission circuits followed by clearing of the fault in 4 cycles by tripping of 
the line). 

Solution 

The results of the simulation with PSS considered are shown in Fig. 8.25. 
The oscillations are well damped and new steady state is reached within 3 sec 
after the disturbance. The results should be compared with those shown in Fig. 
6.15 (without PSS). The system is unstable without PSS. The limits on Va are 
active in this case (as in Example 8.2) also as the disturbance is large. However 
the PSS is effective in spite of the limits imposed on its output. As a matter of 
fact, the satisfactory limits are essential in reducing voltage fluctuations during 
the transient following the fault clearing. 
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Figure 8.25: Simulation results with PSS (Example 8.5) 

Remarks 

1. The optimum gain of PSS is a function of the AVR gain. Smaller AVR 
gains permit larger PSS gain. However it is l.dvantageous to have large 
AVR gain for rapid control of voltage during load rejection. High AVR 
gains and ceilings on the exciter voltage are beneficial in improving tran­
sient stability. 

2. Phase lead is usually required from PSS. However with static exciters and 
high gain AVRs, speed input PSS may be required to provide just a pure 
gain. 

3. In practically all the cases, increasing PSS gain results in destabilizing a 
. mode other than the swing (rotor) mode. The results of PSS design given 
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in both Example 8.1 and 8.3 show an exciter mode that is destabilized 
at high PSS gains. In example 8.1, the instability gain is Ks = 74. The 
results of the simulation for a three phase fault (see Example 8.2) with 
PSS gain set at Ks = 72, are shown in Fig. 8.26. 

It is interesting to observe in this case, that although the rotor oscillations 
are well damped, there are significant oscillations in Vi, E~ and Efd. The 
frequency of these oscillations correspond to the exciter ~ode of about 3.5 
Hz at Ks = 72. Such behaviour is typical in cases where 'exciter mode is 
poorly damped. 

4. The optimal gain Ks = 16 in Example 8.1 is little above ~ ofthe instability 

gain. This shows that the thumb rules given in reference [9] are not general 
and depend on 'the type of excitation system considered. 
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(e) Variation of Efd (f) Variation of Vs (PSS output) 

Figure 8.26: Simulation results with high PSS gain (Example 8.2) 

8.7 Stabilization through HVDe converter 
and sve controllers 

It is well established now that the stability characteristics of the interconnected 
systems can be improved by power modulation of DC links [21]. This concept 
utilizes the fast controllability of power flow in a DC link. The control signals 
used are bus frequency deviations or power flow in the parallel AC tie. With 
weak AC systems, active and reactive power modulation can be implemented 
by providing controllers at both rectifier and inverter stations. The modulation 
of extinction angle at the inverter in response to the AC voltage (magnitude) 
signal can avoid voltage instability. 

Small signal power modulation implemented at Pacific DC Intertie has 
helped prevent inter area mode of 1/3 Hz from reducing the power transfer 
capability of a parallel AC tie [22, 23]. The power or current modulation has 
now become a standard practice to improve dynamic or transient stability. 

Static Var Compensator (SVC) connected a~ the midpoint of a transmis­
sion line can help to increase the power transfer capability of the line. If auxiliary 
controllers are provided, utilizing signals from locally available measurements, 
the small signal stability can be improved [24, 25]. 

8.8 Recent developments and future trends 

Research efforts in academic institutions and industry have been directed at bet­
ter approaches to tuning of PSS using analytical techniques. One such direction 
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is the applications of modern control theory techniques such as pole assignment 
and optimal control [26, 27]. It is possible to get better performance from PSS 
if it is viewed as a dynamic compensator with general structure (with complex 
poles and zeros with possibility of non-minimum phase characteristics). 

Another direction of investigation is the possibility of coordinated tuning 
of PSS in several locations using the general multi-machine system model. This 
is of particular relevance in damping of several inter area modes [34, 35]. In this 
context, it is required to examine the effectiveness ofPSS at a particular location. 
Based on the concept of eigenvalue sensitivities, it is possible to determine the 
machines where PSS will have the maximum effect on damping of a specific 
mode [28]. 

The coordinated tuning of PSS and HVDC jSVC auxiliary controllers 
would require analytical studies using mathematical models, as tuning based on 
field tests would be impractical. In a large system, it would be also advantageous 
to do selective modal analysis [29]. 

The present practice in tuning PSS is to select a tuning condition (of the 
system) and select the parameters for satisfactory performance under all possible 
operating conditions. There can be situations when this is unrealistic. In such 
cases, self-tuning regulator principle based on constructing a simplified model in 
real time with parameter estimation and automatic tuning of PSS is desirable 
[30, 31]. The development of digital control makes it possible to synthesize 
control signal from sampled (instantaneous) voltage and current measurements 
[32, 33] and implement adaptive control strategies [34]. With a microcomputer 
control and static exciters, it should be possible to integrate the functions of 
voltage regulation and power system stabilization. 
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Chapter 9 

Analysis of Multimachine System 

The small signal analysis of multimachine power systems is examined in this 
chapter. The methods for formulation of the system model are presented in 
some detail. The analysis for large systems has to necessarily concentrate on 
the critical modes of oscillation (typically interarea modes) which are important. 
The computational issues in the evaluation of small signal stability are also 
discussed. 

9.1 A Simplified System Model 

The electromechanical modes in a system are highlighted by considering only 
classical models of generators. In addition, the following assumptions simplify 
the analysis. 

1. The losses in transmission lines are neglected. 

2. The voltage magnitudes at all buses are constant. 

3. The loads are static. 

As the voltages at all buses are assumed to be constant, only the real 
power flow equations need to be considered. At any bus j, (not the generator 
internal bus), the injected power Pj is given by 

where nj is set of load buses connected to bus j, mj is the set of generator 
(internal) buses connected to bus j. Plj is the power consumed in the load 
connected at bus j. Xij is the reactance of the line connecting bus i and j. X~k is 
the transient reactance (in direct axis) of generator k. The saliency is neglected 
in the analysis. 
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At the kth generator internal bus, 

p. _ Ek Vj sin(ok - OJ) 
ek - , 

xdk 
(9.2) 

Linearizing the power flow equations, it is not difficult to see that the deviation 
in the power flow in a line (llPij) is related to the change in the relative angle 
across the line, llOij. 

where 

ViVj cos Oij 
9ij = 

Xij 

(9.3) 

Comparing llP with current flow and 6,,0 with voltage drop, the lin­
earized Eqs. (9.1) and (9.2) represent a linear resistive network described by 

(9.4) 

where ll09 is a vector of rotor angle deviation corresponding to m (number of 
generators) internal buses. llOI represents deviations in other bus angles. llPe 

is the vector of deviations in the electrical power outputs of generators. The 
second entry on R.H.S. of Eq. (9.4) is zero as the active loads are assumed 
to be constant on account of constant voltages at load buses. The frequency 
dependency will be considered later. 

It is not difficult to see that the matrix [G] is singular. It represents 
indefinite conductance matrix of a network with no connection to ground. As an 
example consider a 3 generator, 4 bus system shown in Fig. 9.1. The linearized 
power flow equations represent a resistive 7 bus network shown in Fig. 9.2. The 
[G] matrix for this network is given by 

[ " 
0 0 -91 

[G] ~ -!' 
92 0 0 
0 93 0 
0 0 (91 + 912 + 913) 

-92 0 -912 
0 -93 -913 
0 0 0 

0 0 

o I -92 0 0 
0 -93 0 

-912 -913 0 
(912 + 923 + 924 + 92) -923 -924 

-923 (93 + 913 + 923 + 934) -934 
-924 -934 (924 + 934) 
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3 4 

Figure 9.1: System diagram 

P g3 
e3--t--c==t---j-----c==:J---j 

G3 
3 4 

Figure 9.2: A resistive network representing equation 9.4 

Each row or column of [G] adds up to zero. From superposition theorem, 
we can derive an expression for b.Pek as 

m 

b.Pek = L G~b.Oj 
j=1 

{9.5} 

where Gr/j is the short circuit transfer admittance between generator buses j and 
k. As b.Pek = 0 if all the angle deviations are equal, i.e. b.oj = b.o, j = 1,2 .. :rn, 
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we can obtain, 
m 

'LGf:; = 0 (9.6) 
j=l 

Gf:; is the element of the reduced conductance matrix [GR] obtained from [G: 
after eliminating all the buses except the generator internal buses. This followf 
from Eq. (9.4). 

Generator Equations and COl Reference 

Utilizing the classical model of generators, the swing equations for gen· 
erator k can be expressed as 

where 

D' _ Dk 
k--

WB 

(9.7) 

wliere Dk is the per unit damping. For simplicity, it will be assumed that the 
damping is uniform, Le. 

D' Dk 
--.!s.. = -- = constant = a 
Mk 2Hk 

Defining the Centre ofInertia (COl) whose angle 80 is defined by 

80 = ~ (t Mk8k) 
r k=l 

(9.8) 

where Mr = 'Er=l Mk is the total inertia. The equation for COl is given by 

where 

m m 

Mr{p + a)wo = L Pmk - L Pek = PeOl 
k=l k=l 

_ d8
0 

d 
Wo = Tt, P= dt 

In the electrical network, 

m n 

'L Pek = 'L P,j + P,oss 
k=l j=l 

(9.9) 

{9.10} 
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For lossless network and with constant active power loads, PeGI is a constant 
when the mechanical powers are constant. ;Eq. (9.9) can also be written as 

Mr(p2 + ap)8o = PeGI 

Substituting Eq. (9.11) in (9.7), we get 

(9.11) 

2 Mk 
Mk(p + ap)Bk = Pmk - Pek - -PeOI, k = 1,2 ... m (9.12) 

Mr 

where Ok is the rotor angle relative to COl defined by 

(9.13) 

From the above definition of Ok, it can be shown that albthe relative angles with' 
respect to cor are not independent and the following relation applies. 

(9.14) 

Also, 
0i - OJ = 8i - 8j (9.15) 

Linearizing Eq. (9.12), (assuming PeGI as constant) we get 

Mkp2b.Ok + aMkPb.Ok = -I::!.Pek. k = 1,2, ...... m (9.16) 

Utilizing Eq. (9.6), (9.5) can be expressed as 

m 

b.Pek = L -G{:j(b.8k-b.8j) 
j=l,j# 

rn 

L -G~(b.Ok - b.Oj) 
j=I,Hk 

(9.17) 

Eq. (9.15) is utilized in deriving (9.17). If a = 0, the linearized system equations 
can be written in the matrix form as 

(9.18) 

in addition to the scalar equation 

Mrp2b.8o = 0 (9.19) 

where [G]n is a reduced (to generator internal buses) symmetric matrix with 
elements GnU, k) = G~ = Gf:J. The rank of this matrix is less than or equal to 
(m - 1). 
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Remarks 

1. For lossless network and constant active power loads 

!:!J.PCOI = 0 

In this case, we also have (with zero damping) 

[M]p2!:!J.8 = -[G] R !:!J.8 

2. In light of Eq. (9.14) the number of independent angle variables on COl 
reference frame are reduced to only m, namely fh, fh .... (Jm-l and 80 • 

3. There are n second order differential equations describing the system. Thus 
there are 2n system eigenvalues out of which two are zero (for zero damp­
ing) in light of 

If a i- 0, then one of the eigenvalues is -a, while the second is zero. 

4. Even if !:!J.PCOI i- 0, it can be shown that 

m-l 

!:!J.PCOI = L 'Yk!:!J.(Jk 
k=l 

The system equations can be written as 

!:!J.y = [A]!:!J.y 

where 

[A] = [All 0 1 
A21 A22 

The eigenvalues of [A] are the eigenvalues of [All] and [A22]. The latter is 
2x2 matrix given by 

[
-a 0 1 [A22] = 1 0 

This shows that the system equations on COl reference has the advantage 
of bringing out the system structure. 
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5. The assumption about uniform damping is required to decouple the system 
equations into two sets, when APeoT = o. 

Solution of Equation (9.18) 

Defining the transformation from 0 to f3 given by 

Eq. (9.18) can be expressed as 

p2Af3 

where 

_[Mtl/2[G]R[Mtl/2 Af3 
-[K)Af3 

(9.20) 

(9.21) 

is also a symmetric matrix as both [G]R and [M] are symmetric matrices. [M) is 
a diagonal matrix of inertia coefficients. The rank of [K] is same as that of [G]R. 
The eigenvalues of [K] are real and at least one of them is zero. It is to be noted 
that -in the resistive network described by Eq. (9.4), the individual element 9ij 
can be positive, zero or negative depending on whether the magnitude of (8i - 8j) 
is less than, equal or greater than 90° (but less than 180°). It can be shown that 
if the operating point is a stable equilibrium point, the (m - I) eigenvalues of 
[K] are each positive. The matrix [K) can be expressed as 

[K] = [P)[D][P)t 

where [P) is a matrix of normalized eigenvectors of [K]. It is assumed that the 
eigenvalues of [K] are distinct. [P) is an orthogonal matrix with the property 

[p)-I = [P)t 

D is a diagonal matrix of the eigenvalues of [K). It can be shown that each non­
zero eigenvalue is equal to square of the radian frequency of an electromechanical 
(low frequency) oscillatory mode. Thus there are at most (m -1) modes in a m 
machine system (Note that an infinite bus is an idealization of a large generator 
with negligible reactance and infinitely large inertia). 

Remarks 

1. When damping is nonuniform, there will be coupling between E9. (9.11) 
and (9.12). However, only (2m - 1) variables ( OI, O2 ..• Om-I, OI, O2 ••. 

Om-I and wo ) need to be considered. The variable 80 does not appear in 
the equations and is obtained by integrating W00 
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2. The frequency dependent load models can be considered where 1he loads 
are linearly proportional to bus frequency, i.e. 

do· 
PLj = PLjo + kj d: 

where OJ is the bus angle at load bus j 
From the network representation given in Fig. 9.2, I:::..oj can be expressed 
as 

m-I 

1:::..0j = L RjkGfkl:::..Ok 
k=l 

where Rjk = R(j, k) is the element of the bus resistance matrix [R] defined 
by 

[R] = [G,]-I 

where [G'] is the matrix slerived from [G] by deleting the row and column 
corresponding to a reference generator (internal bus). 

3. The use of COl is not essential in writing state space equations. 

Linearized State Space Equations 

The linearized state space equations for the system can be obtained from 
the network analogy with I:::..w (pl:::..o) analogous to voltage and I:::..P analogous to 
current, the network consists of GLC elements - C (capacitor) corresponding 
to inertia (M), G (conductance) corresponding to damping (or frequency de­
pendent loads) and L (inductance) corresponding to reciprocal of Gij' As an 
example, the analogous network for the system shown in Fig. 9.1 is shown in 
Fig. 9.3. It is assumed that there is a frequency dependent load at bus 4. 

The unreduced network is shown in Fig. 9.3{a). The reduced net­
work eliminating buses 1, 2 and 3 is shown in Fig. 9.3 (b). The element 
K 12, K13, K 14, K23, K24 and K34 are reciprocals of inductances (Notice that 
these are identical to elements of the reduced matrix [GR] which includes buses 
GI , G2, G3 and 4). The variable 1:::..0 is analogous to flux linkage. The equations 
for the network shown in Fig. 9.3 (b) are obtained as 

d , 
-I:::..Pel MI dt I:::..WI + DIl:::..wI = 

d , 
-I:::..Pe2 M2 dt I:::..w2 + D21:::..w2 -

d , 
-I:::..Pe3 M3 dt I:::..w3 + D31:::..w3 -
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(a) Unreduced network 

D' 1 / 
~- 0; 

'\ K24 

K34 4 

K4 

(b) Reduced network 

Figure 9.3: An electrical network analogue for small signal analysis 
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d 
~Wl- ~W2 dt~012 -

d 
~Wl-~W3 dt~013 -

d 
~Wl-~W4 dt~014 -

~Pel =. K12~012 + K13~013 + K14~014 
~Pe2 - -K12~012 + K23(~013 - ~012) + K24(~014 - ~012) 

~Pe3 - -K13~013 + K23(~012 - ~013) + K34(~014 - ~013) 

K4~W4 - K14~014 + K24(~014 - ~012) + K34(~014 - ~013) 

The algebraic equations are used to eliminate the non-state variables ~Pel' 
~Pe2, ~Pe3 and ~W4 in the state equations. These are expressed as 

x = [A]x 

where 

Remarks 

1. The applicability of network analogue for the derivation of system state 
equations arises on account of the assumptions made earlier that the sys­
tem is lossless and all buses are PV buses. The latter assumption is quite 
stringent and can be unrealistic. 

2. The frequency dependence of the loads is considered easily from the net­
work analogy. 

3. The system is stable if all the damping terms (in generators and loads) are 
positive and Kij > 0 for all i and j. (These are sufficient conditions). 

9.2 Detailed Models: Case I 

In the previous section, a simplified system model was considered, where genera­
tors are represented by classical models. In this section, model 1.0 is assumed for 
synchronous machines by neglecting damper windings. In addition, the following 
assumptions are made for simplicity. 

1. The loads are represented by constant impedanees. 

2. Transient saliency is ignored by considering Xq = x'd. 
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3. Mechanical power is assumed to be constant. 

Neglecting saliency, the stator of a synchronous machine is represented 
by the equivalent circuit shown in Fig. 9.4. The only difference between the 
classical model and here is that E~ is treated as a state variable influenced by 
field excitation. 

o 

(
. ..) j /) 
Iq+J1d e 

Figure 9.4: Stator equivalent circuit 

I 

I 18 \ 
Eqrn ~ m \f---I 

Reduced 

Network 

Figure 9.5: Reduced network (with generator internal buses) 

From assumption (1), the load buses can be eliminated and the network 
reduced to only the internal buses of the generator. (see Fig. 9.5) 

The electrical power output of generator k is given by 

m 

Pek = L E~k[Gjk cos Okj + Bjk sin okj]E~j (9.22) 
j=l 

where Okj = Ok -OJ, (Gjk+jBjk ) is an element ofthe reduced admittance matrix 
of the network. 
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Generator Equations 

The machine equations (for kth machine) are 

- T~ [-E~k + (Xdk - xdk)idk + E Idk] 
dok 

- WB{Smk - SmktJ) 
1 

2Hk [-Dk{Smk - Smko) + Pmk - Pek] 

(9.23) 

(9.24) 

(9.25) 

Pmk and Pek are used instead of Tmk and Tek' for convenience. Actually there 
is no difference between Pek and Tek as the frequency variations are neglected 
in the network calculation. 

At the generator internal bus, the complex power is given by 

Pek + jQek - E~k(iqk'- jidk) (9.26) 

Thus, idk is expressed by 

- E~kiqk - jE~kidk 

. -Qek 
~dk = ---g­

qk 
where the expression for Qek is obtained as 

m 

Qek = L E~k[Gjk sin8kj - Bjk cos 8kj]E~j 
j=1 

Linearizing Eq. (9.27), we get 

A • Qeko A r.tI AQek 
U~dk = (E' )2 u.t!Jqk - --P:;--

qko qko 

(9.27) 

(9.28) 

(9.29) 

Linearizing Eqs. 
erators we have 

o . 
(9.23) to (9.25), and combining the equations for all the gen-

where 
X~ = [AE~1 A81 ASm1'" AE~k A8k ASmk ... AE~m A8m ASmm] 
[Ag] = Diag [Ag1 A g2 ... Agm] 
[Bg] = Diag [Bg1 B g2 ... Bgm] 
[Eg] = Diag [Eg1 Eg2 ... Egm] 
AS! = [APe1 AQe1 ... APek AQek .. · APem AQem] 
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1 [ (Xdk - x~k) 1 b _ (Xdk - x~k) 
ak = T' -1 + (Eq'ko)2 Qeko, k - - T' E' do do qko 

Linearizing expression (9.22) and (9.28), we can express 

b..Se = [Fdb..E~ + [F2]b..8 
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(9.31) 

where [Fd and [F2] are (2m x m) matrices. It is not difficult to see that [F2] is 
a singular matrix as all the columns add up to zero. This comes about as the 
expressions in Pek and Qek depend only on the differences in the rotor angles. 
Thus, state space description is simplified by considering the state vector as 

Xb = [b..Eql b..81m b..Sm1 .. · b..E~k b..8km b..Smk ··· b..E~m b..Smm] 

Here, b..8km = b..8k - b..8m and one of the angle variables is dispensed with. The 
system equation can be expressed as 

XG = [AG]XG + [BG]b..Se + [EG]b..Efd (9.32) 

[AG] is (3m - 1) x (3m - 1) matrix, [BG] is (3m - 1) x 2m matrix and [EG] 
is (3m - 1) x m matrix. They differ from [Ag], [Bg] and [Eg] in that (a) the 
entries for [Agm], [Bgm] and [Egm] are different and (b) the last column of [AG] 
has entries in rows corresponding to b..8km , which are each equal to -WB. 

[Agm], [Bgm] and [Egm] are given by 

[Agm] ~ [a; -2t 1, [Bgrn] = [-2~rn ~ 1, [Egm] ~ [ 1'~ 1 
Using relative angles instead of absolute angles, Eq. (9.31) is reduced to 

(9.33) 

where [F~] is a (2m x m - 1) matrix obtained from [F2 ] by subtracting the last 
column of [F2 ] from all the remaining columns (and deleting the last column). 
b..8' is a vector of relative angles whose kth element is (b..6k - b..8m) = b..8km . 

The final system equations are obtained by substituting Eq. (9.3J) in 
(9.32). We have 

XG = {[AG] + [BG][F]}XG + [EG]b..Efd (9.34) 
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where 

[Cd and [C2] are defined by 
[Cd = Diag [Cn ... Clk ... Clm] 
[C2] = Diag [C2l .•. C2k ••• C2(m-1)] 

Clk and C2k are row vectors of dimension 3, defined by 

Clk = [1 0 0], C2k = [0 1 0] 

Clm is a row vector of dimension 2. 

Clm = [1 0] 

C2(m-l) is a row vector of dimension 5 given by 

C2(m-l) = [0 1 0 0 0] 

If excitation controllers are to be considered, then the system matrix will be 
augmented by the inclusion of controller dynamics. In this case, b..E!d is a 
vector of output variables from the excitation controllers and can be expressed 
in terms of the state variables of the controllers. 

9.3 Detailed Model : Case II 

The assumption about loads as constant impedances, is restrictive if nonlinear 
load characteristics or load dynamics are to be considered. The dynamics of SVC 
or HVDC controllers can be viewed as part of load dynamics as SVC and HVDC 
converter buses are treated as load buses. Of course, the controller dynamics 
are unique and distinct from typical loads such as induction motors. 

Generator Equations 

In order to preserve the structure of the power system network, (retaining 
the load buses), the generator representation as given in the previous section 
needs to be slightly modified. The generator equations are expressed as 

(9.35) 

where U c is the vector of small perturbations in the reference input variables 
of the generator controllers (b.. Vre! and b..T m or b..wre!). b.. Vg are the small 
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deviations in the generator terminal voltage expressed in polar or rectangular 
coordinates defined below 

The two expressions are related by 

It is easy to see that 

[Pt 1 = [P] 

The output variables of the generator can be small deviations in the 
power output or currents (referred to Kron's reference frame). If currents are 
used, then 

(9.36) 

Example: If synchronous machine is represented by model 1.1, neglecting 
prime-mover dynamics and considering only a single time constant exciter, the 
state variables are 

The nonzero elements of matrix [Ag] are given by 
Ag(1,2) = WB 

-D 
Ag(2, 2) = 2H 
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A (2 3) = - Vgo sin(oo - Ogo) 

9 , 21lx' 
d 

A (2 4) = _ Vgo cos(oo - Ogo) 
9 , 21lx' 

q 

1 [1 + (XdX-'dXd)] Ag {3,3) = - T' 
do 

1 
Ag{3,5) = T 

do 

1 [ (Xq - X~)] Ag{4,4) = -T' 1 + I 
qo Xq 

1 
Ag {5,5) = - TE 

Similarly, the nonzero elements of [Bg) and [Eg) are given by 

1 [E~o sin(oo - Ogo) + Edo (~_ 0 )+ 
Bg(2,2) = - 21l I I cos Uo go 

xd Xq 

BP(3 1) = (Xd - xd) sin{oo - Ogo) 
9 , x'T' 

d do 
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BP(3 2) = (Xd - xd) cos(80 - Ogo) 
9 1 X' T' 

d do 

BP(5 2) = _ KE 
9 1 TE 

1 
Eg(2) = 2H 
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[Eg] is a column vector in this case as U c is a scalar equal to Do v;.ef. KE 
and TE are the gain and time constant of the excitation system. The armature 
resistance is neglected in deriving the expressions. The superscript p indicates 
polar coordinates are used. 

The nonzero elements of [Og] and [Dg] are given below 

o (1 1) = 1 Vgo sin 80 cos( 80 - Ogo) _ Vgo sin( 80 - Ogo) cos 80 
9 1 Qgo + , , 

Xq xd 

o (1 3) = _ cos 80 
9 1 , 

Xd 

o (1 4) = sin80 

9 1 , 
Xq 

C (2 3) = sin80 

9 1 , 

Xd 

o (2 4) = cos 80 

9 1 , 

Xq 
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If x~ = x~ = x', then some of the expressions given above are simplified. These 
are 

D (1 1) _ - sinOgo 
9 , - x' , 

D (2 1) = -cosOgo 
9 , x" 

D (2 2) = _ sinOgo 

9 , x' 

Cg{1, 1) = IQgo + Vg,o sinOgo 
x 

( ) _ Ygo 
Cg 2,1 - -IDgo + -, cos Ogo 

X 

The matrices [B~] and [D~] are obtained as 

[B;] = [B:)[P] 

[D;] = [D:)[P] 

The superscript r indicates that rectangular coordinates are used. 

Network Equations 

The linearized network equations can be expressed either using admit­
tance matrix (and DQ variables) or using Jacobian matrix (obtained from power 
balance equations). Using the former, we can express as 

[YDQ]LlVQD = LlIDQ (9.37) 

where each element of [YDQ] is a 2x2 matrix. For example 

Y (..) = [Bij Gij 1 DQ ~,J G .. -B .. 
'3 '3 
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~VQD(i) and ~IDQ(i) are vectors with elements 

AV; (.) [~VQi 1 A (0) [~IDi 1 
u QD 2 = ~VDi ' uIDQ 2 = ~IQi 

Note that the voltages are expressed with ~VQi preceding ~VDi. On 
the other hand, the currents are expressed with ~IDi preceding ~IQi. This is 
deliberately done so that the matrix [YDQ] is a real symmetric matrix (if phase 
shifting transformers are not considered). 

If power balance equations are used, the linearized equations can be 
expressed as 

[J]~VP = ~S 
where J is Jacobian matrix defined by 

[ ~ ~~ :~ I J(i,j) = 
1 {)Qi {)Qi 
--
Vj {)O j {)Vj 

(9.38) 

Pi and Qi are power injections at bus i,Oi and Vi are the angle and 
magnitude of the voltage at bus i. 

It is also possible to use rectangular coordinates instead of polar coordi­
nates. In this case, Jacobian matrix is different than what is given above. 

It is convenient to use Eq. (9.37) as the admittance matrix is unchanged 
with change in the operating point. On the other hand, Jacobian matrix is 
dependent on the operating point. 

If load dynamics are neglected, the effect of the static loads are consid­
ered by modifying the diagonal entries of the matrix [YDQ]. The similar thing 
applies for the effect of SVC also, when only steady state control characteristics 
are to be considered. 

Derivation of System Equations 

Let the number of generators in the system be m g , the number of loads 
m, and the number of static var compensators be ms. Let the number of buses 
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in the network be n. Eq. (9.37) can be rewritten as 

(9.39) 

where Pa is a 2nx2mg matrix with elements 

Pa( i, j) = [~ ~ 1 
if generator j is connected to bus i, otherwise 

Pa(i,j) = [~ ~ 1 
Similarly [Ps] and [PL] can be defined. Ps(i,j) or PL(i,j) is a unit 

matrix of dimension 2 if SVC 'j' (or load j) is connected to bus i. Otherwise 
Ps(i,j) or PL(i,j) is a null matrix. Notice that the signs associated with I:l.Is 
and I:l.h are negative as the SVC and load currents are assumed to flow away 
from the bus (load convention). 

From the discussion given in chapter 7, both I:l.Is and I:l.h can be ex­
pressed as 

I:l.Is = [Ys]1:l. Vs 

I:l.h = [YLJI:l. VL 

(9.40) 

(9.41) 

where both [Ys] and [YL] are block diagonal matrices. I:l. Vs and I:l. VL can be 
expressed as 

The generator current vector I:l.Ia is a collection of the quantities I:l.Ig1 , I:l.Ig2 '" 
I:l.Igmg and can be expressed as 

I:l.Ia = [Ca]Xa - [Ya]I:l.Va (9.42) 

where 
Xat = [X9tl xt xt ] g2'" gmg 
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After some manipulations, Eq. (9.39) can be expressed as 

(9.43) 

where 

is modified admittance matrix. Actually the modification affects only the diago­
nal elements corresponding to buses where generator, load or SVC are connected. 
In deriving this, the following relation is also used 

(9.44) 

After solving for 6.VQD from Eq. (9.43), we can express 6.VG as 

(9.45) 

The collection of all the generator equations is expressed by 

XG = [AG]XG + [BG]6.VG + [EG]Uc (9.46) 

Substituting Eq. (9.45) in (9.46) gives 

XG = [AT]XG + [EG]Uc (9.47) 

where 
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9.4 Inclusion of Load and SVC Dynamics 

The dynamics of SVC and load (say induction motor) can be included if neces­
sary, by expressing their equations in the form 

Xs - [As]xs + [Bs] 6. Va + [Es]ucs } 
-6.1s = [Cs]xs + [Ds]6. Vs 

(9.48) 

Xl - [Azlxl + [Bzl6. Vi + [E,]Ucl } 
-6.1, [Cz1x, + [D,] 6. Vi (9.49) 

6.& - [ 6.I! 1 6.I!2···· 6.I!ma] 
6.1i - [6.1;1 6.!f2····6.1fm/] 

Note that Eqs. (9.48) and Eq. (9.49) ar:e similar in structure to the generator 
equations except for the sign change associated with the currents. 

The system equations can be obtained using similar procedure outlined in the 
previous section. 

The equation (9.43) gets modified to 

[YbQ] 6. VQD = [PG][CG]XG + [Ps][Cs]Xs + [PL][CL]XL (9.50). 

where jYbQ] is a modified admittance matrix similar to that defined earlier. [Ys] 
and [YL] in this case are defined by -
[Ys] = Diag [-Dsl - Ds2 ..... - Dsms] 
[Yi] = Diag [-Dll - D,2 ..... - D'm/] 

The collection of the generator, SVC and load equations can be expressed 

where 

x = [A]X + [B]6. V + [E]Uc } 
6.1 = [C]X + [D]6. V 

[A] = Diag [AG As ALl 
[As] = Diag [Asl As2 ... AsmJ 
[AL] = Diag [All A,2 ... A'm/] 
[B] = Diag [BG Bs BL] 
[Bs] = Diag [Bsl Bs2 ... Bsms] 

(9.51) 
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[Bd = Diag [Bll BI2 ... B,m/] 
[C] = Diag [CG Cs Cd 
[Cs] = Diag [Csl Cs2 ··.Gsm$] 
[CL ] = Diag [Cll C,2 .. .G,m/] 
[E] = Diag [EG Es EL] 
[Es] = Diag [Esl Es2 ... Esm.] 
[EL] = Diag [Ell EI2 ... E,m/] 
AVt = [AV& AV§ AVi] 
AV§ = [AYatl AYat2 .... AYa~] 
AVl = [AVzi AVi~·· .. AVi~J 

A V can be expressed as 

where 

pt 
G 

pt 
L 

From Eqs. (9.50) and (9.52), we can derive 

This can be substituted in Eq. (9.51) to give 

where 
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(9.52) 

(9.53) 

(9.54) 

9.5 Modal Analysis of Large Power Systems 

In recent years, computer programs for the eigenvalue analysis of large power 
systems have been developed. Notable among them are 

(i) AESOPS (Analysis of Essentially Spontaneous Oscillations in Power 
Systems) [6] 
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(ii) PEALS (Program for Eigenvalue Analysis of Large Systems) [7] 

The first program was developed under sponsorship of Electric Power Research 
Institute (EPRI) in U.S.A. and is capable of handling systems having upto 200C 
buses, 3600 lines and 350 generators. The second program is claimed to have the 
capability of handling systems having up to 12,000 buses and 1000 generators. 

The major objective of both programs is to compute low frequency elec­
tromechanical (rotor) modes. It is obvious that in a large system, not all the 
eigenvalues are of interest. Also, the computation of all eigenvalues would re­
quire an enormous amount of computer time. Without considering sparsity, the 
number of computations required in eigenvalue calculation is proportional to n3 

where n is the size of the matrix. Hence only critical eigenvalues (which lie close 
to the imaginary axis and likely to cross into the RHP as the system operating 
conditions are changed) need to be determined. 

The computation of an eigenvalue and the corresponding vector of matrix 
[AT] can be viewed as the solution of a set of nonlinear equations given by 

(9.55) 

where Ai is the eigenvalue and Vi is the corresponding eigenvector. [In] is a 
unit matrix of order n. There are n equations in n unknowns - Ai and 
(n - 1) elements of the eigenvector. (one nonzero element of the vector Vi can 
be arbitrarily chosen as 1.0). Thus, the solution of Eq. (9.55) which determines 
Ai and Vi, is equivalent to solving a load flow. While there may be thousands 
of state variables (and eigenvalues) there may be only few critical modes which 
have to be computed. 

The formation of system matrix [AT] in power systems can be viewed as 
the elimination of non-state variables Z in the following general equations 

x - [A]X + [B]Z 
Q = [C]X + [D]Z 

(9.56) 
(9.57) 

These equations are applicable irrespective of the complexity of the sys­
tem considered. The matrices [A], [B] and [C] are block diagonal, each block 
corresponding to the individual dynamic devices. The matrix [D] is obtained 
from network admittance [Y] and is generally sparse. The system matrix [AT] 
is obtained from Eqs. (9.56) and (9.57) as 

(9.58) 

The matrix [AT] is generally full although the matrices on the RHS of.(9.56) an< 
(9.57) are sparse. For the determination of an eigenvalue and the eigenvector 



9. Analysis of Multimachine System 

it is convenient to express the equations as 

where Xi is the eigenvector corresponding to Ai. 

Iterative Scheme for Computation of Eigenvalue 
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(9.59) 

The matrix [A] is block diagonal. If we wish to compute an eigenva.lQe 
which has its origin in a block (corresponding to a dynamic device, say a gener­
ator), then the matrix can be partitioned as 

[A] = [A1 0 1 o AR 

where R indi~tes the rest of the blocks. Note that [AR] is also a block diagonal 
matrix with n~ber of blocks reduced by one compared to [A]. If [Ad corre­
sponds to a generator with classical model, then there are two state variables 
(~Sm1 and ~8d and [Ad can be expressed as 

(9.60) 

By defining, 

[B'] = [[0] [Bd)' [G'] = [ [~~] 1 

where [B1], [B2 ], [G1] and [G2 ] are defined from 

[B) = [ ~~ l' [G) = [G1 G2 ] 

it is possible to express Ai as the solution of the equation 

(9.61) 
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where det stands for the determinant, Inl is the unit matrix of order nl {same 
as the size of [Ad}. Also 

The equation {9.61} is based on the assumption that 

The derivation of Eq. {9.61} follows from Schur's formula for partitioned matri­
ces,according to which, 

det[F] = det[D] . det[A - BD-1C] = det[A] det[D - CA- 1 B] {9.62} 

where 

[F] = [~ ~ 1 {9.63} 

Schur's formula is applied to the matrix defined in Eq. {9.59} which is rearranged 
as 

Eq. {9.59} can be reduced {using the above matrix} to 

AiXn = [AI - B'D'-I{Ai}C']Xil 

{9.64} 

{9.65} 

where Xii is the subset of Xi corresponding to the state variables defined in 
block 1 {At}. An iterative technique can be used to solve for Ai and {nl - 1} 
elements of Xii from Eq. {9.65}. As a special case, when nl = 1 ,Eq. {9.64} 
reduces to a scalar equation expressed as 

{9.66} 

One way of solving the above equation is by using a fixed point iteration 

{9.67} 

where k indicates the iteration number. Startirtg .with the initial estimate of 
Aii {9.67} can be used to improve the estimate until convergence is obtained. 
A better iterative scheme is based on Newton's method. In reference [10] it is 
shown that the heuristic approaches for the computation of eigenvalues given 
in AESOPS and PEALS programs are based on approximation of Newton type 
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algorithm for iterative solution of (9.66). Better algorithms are possible based 
on better approximations which converge faster. 

Selective Modal Analysis [12-14] 

Selective Modal Analysis (SMA) is a framework for the study of selected 
modes for the analysis of small signal stability in large power systems. The 
modes considered are swing (rotor) modes involving low frequency (0.1-2 Hz) 
oscillations. 

SMA involves model reduction by retaining only the relevant state vari­
ables depending on the selected modes and eliminating the rest. For example, if 
only swing modes are to be considered, then the retained variables are a (rotor 
angle) and Sm (slip) for all the machines. In general, the unreduced system can 
be modelled as 

(9.68) 

where the vector r is the vector of variables retained. In this particular case, 

(9.69) 

Eq. (9.68) is represented by the block diagram shown in Fig. 9.6. This shows two 
subsystems - one significant and the other less significant and their interaction. 
The transfer function matrix of the less signi~cant dynamics is given by 

(9.70) 

The SMA procedure involves the reduction of the system model in an 
iterative fashion, starting with the crude reduced model ' 

r = [Adr = [~]r (9.71) 

At kth stage of iteration, the dynamic block [H(s)] is replaced by a static gain 
matrix [Mk+l]. This results in the reduced mouel 

(9.72) 

The initial value of [M] is null matrix. If'm' is the number of modes to be 
retained in the reduced model (m ~ nr where nr is the size of vector r), then 
[Mk+1] is selected to satisfy 

[Mk+l][V:l V:2 v:m ] = [H().~)V~l .... H().~)v~d (9.73) 
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r--------------------------------------------
I 
I 
I 

I 
LESS SIGNIFICANT DYNAMICS ~ ______________ ~ _____________________________ J 

Figure 9.6: Interaction of significant and less significant subsystems 

where Vri is the part of the right eigenvector corresponding to the eigenvalue >"i 
that is retained with the state variable vector r. If m = 1, then 

[Mk+1]V~l = [H{>..f)]V:l 

This implies that 

[Mk+1] = [H{>..f)] for m = 1 (9.74) 

The solution for [Mk+1] exists in general as the eigenvectors are independent. 
I There are infinitely many solutions for m < nr . In these cases, the solution can 
be selected such that it miniII}izes the sum of the norms of the errors between 
[Mk+l] and [H{>"~)] for i = 1,2 ... m. 

The convergence of the SMA procedure depends on the choice of the 
significant variables. This can be based on the 'participation factors' of the 
variables for the mode considered. Let ith mode be specified by its eigenvalue 
>"i and the associated right and left eigenvectors Vi and Wi respectively. Let the 
vectors be normalized such that 

~=1 

The response of the system model given by 

x = [A]x 

is obtained, as 
n 

x{t) = L (Xivie),i t 

i=l 

(9.75) 
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where Qi are constants determined by x(O). Premultiplying both sides of Eq. 
(9.75) by wL we get 

wfx(t) = Qi(wfvi)e.\;t = Qi (i)Wi(k)Vi(k)]) e.\;t (9.76) 
k=l 

Wi (t) and Vi (k) are the kth entries of the ith left and right eigenvectors. The 
participation factor Pki of the kth state variable in the ith mode is defined by 

(9.77) 

As a consequence of the eigenvector normalization defined above, the 
participation factors sum to unity both across the state variables and across 
modes. Physically, the term vi(k) reflects the activity of the kth state variable 
when ith mode is excited, while the term wi(k) weighs the contribution of this 
activity to the ith ID'Jde. Mathematically, the participation factor Pki is the 
sensitivity gAi , where akk is the kth diagonal element of [A]. 

akk 

The participation ratio, Pi in the ith mode is defined as 

LrPki 
Pi=--

LzPki 
(9.78) 

where the sums in the numerator and denominator involVes participation factors 
of state variables in vectors rand z respectively. The SMA algorithm converges 
locally to a mode of the full system if and only if 1 Pi I> 1. This result is proved 
in reference [12] for case m = l. 

For the general case (when nr ~ m > 1) SMA algorithm has good convergence 
properties when 1 Pi I» 1 for the m modes of interest and « 1 for the 
remaining modes [14]. 

9.6 Case Studies 

Two case studies, one on a two area system reported in [15] and [17] and the 
other on a ten machine system widely reported in the literature, are presented 
here. 

9.6.1 Two Area System 

The single line diagram of the system is shown in Fig. 9.7. It is a 4 generator, 
10 bus system with a total connected load of 2734 MW. The two areas are 
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Figure 9.7: A two-area system 

connected by three AC tie lines. The system and operating data are given in 
Tables 9.1 to 9.4. The transmission line data (on 100 MVA base) are given in 
Table 9.1. The load flow data and results are given in Table 9.2. The machine 
and excitation system data are given in Tables 9.3 and 9.4 respectively. 

Table 9.1: Transmission line data on 100 MVA base 

From To Bus Series Re- Series Reac- Shunt Sus-
Bus Number sistance tance (Xs) ceptance 
Humber (Rs) pu pu (B) pu 
1 101 0.001 0.012 0.00 
2 102 0.001 0.012 0.00 
3 13 0.022 0.22 0.33 
3 13 0.022 0.22 0.33 
3 13 0.022 0.22 0.33 
3 102 0.002 0.02 0.03 
3 102 0.002 0.02 0.03 
11 111 0.001 0.012 0.00 
12 112 0.001 0.012 0.00 
13 112 0.002 0.02 0.03 
13 112 0.002 0.02 0.03 
101 102 0.005 0.05 0.075 
101 102 0.005 0.05 0.075 
111 112 0.005 0.05 0.075 
111 112 0.005 0.05 0.075 
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Table 9.2: Load Flow Data and Results 

Bus Voltage Angle Real Reactive Real Reactive Shunt 
No. (mag) (deg) Power Power Power Power Susceptance 

(pu) Gen Gen Load Load (pu) 
(pu) (pu) (pu) (pu) 

1 1.03 8.2154 7.0 1.3386 0.0 0.0 0.0 
2 1.01 -1.5040 7.0 1.5920 0.0 0.0 0.0 
11 1.03 0.0 7.2172 1.4466 0.0 0.0 0.0 
12 1.01 -10.2051 7.0 1.8083 0.0 0.0 0.0 
101 1.0108 3.6615 0.0 0.0 0.0 0.0 0.0 
102 0.9875 -6.2433 0.0 0.0 0.0 0.0 0.0 
111 1.0095 -4.6977 0.0 0.0 0.0 0.0 0.0 
112 0.9850 -14.9443 0.0 0.0 0.0 0.0 0.0 
3 0.9761 -14.4194 0.0 0.0 11.59 2.12 3.0 
13 0.9716 -23.2922 0.0 0.0 15.75 2.88 4.0 

Table 9.3: Machine data 

Variable Machine Machine Machine Machine 
at Bus 1 at Bus 2 at Bus 11 at Bus 12 

X, (pu) 0.022 0.022 0.022 0.022 
Ra (pu) 0.00028 0.00028 0.00028 0.00028 
Xd (pu) 0.2 0.2 0.2 0.2 
X~ (pu) 0.033 0.033 0.033 0.033 
T~o (sec) 8.0 8.0 8.0 8.0 
Xq (pu) 0.19 0.19 0.19 0.19 
X~ (pu) 0.061 0.061 0.061 0.061 
T~o (sec) 0.4 0.4 0.4 0.4 
H (sec) 54.0 54.0 63.0 63.0 
D (pu) 0 0 0 0 

The loads are modelled as constant impedances. The eigenvalues of the system 
matrix are shown in Table 9.5. There are 20 eigenvalues as the size of the total 
system matrix is 20 with 5 state variables per generator. The first column shows 
the eigenvalues of the full matrix with all the rotor angle deviations included as 
state variables. Due to errors in the load flow (mismatch in powers =1= 0) and 
other numerical errors in the computations, the two eigellvalues which should 
be zero are calculated as complex pair of very small magnitude (#18 and #19). 
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Table 9.4:Excitation system data 

Variable Machine Machine Machine Machine 
at Bus 1 at Bus 2 at Bus 11 at Bus 12 

KA (pu) 200 200 200 200 
TA (sec) 0.02 0.02 0.02 0.02 

Table 9.5: Eigenvalues - Two area System 

No. Eigenvalues Comments 
Original Matrix Reduced Matrix 

1 -39.9893 -39.9893 
2 -39.4922 -39.4922 

3,4 -24.5058 ± j20.6749 -24.5058 ± j20.6749 
5,6 -25.0383 ± j11.9973 -25.0383 ± j11.9973 
7 -11.5835 -11.5835 
8 -11.1735 -11.1735 

9,10 -0.7594 ± j7.2938 -0.7594 ± j7.2938 Swing mode 1 
11,12 -0.7365 ± j6.6899 -0.7365 ± j6.6899 Swing mode 2 
13,14 -0.0044 ± j4.4444 -0.0044 ± j4.4444 Swing mode 3 

(interarea mode) 
15 -4.5727 -4.5727 
16 -4.4802 -4.4802 
17 -4.1121 -4.1121 

18,19 0.0 ± j 0.0017 O.O,{O.O) 
20 -4.2449 -4.2449 

Table 9.6: Participation Factors 

Variable Mode #1 Mode #2 Mode #3 
(WI = 7.29) (W2 = 6.69) (W3 = 4.44) 

l:lSml -0.18 ± jO.14 0.004 ± jO.OO1 -0.06 ± jO.15 
l:lSm2 -0.27 ± jO.14 0.00 ± j 0.00 -0.062 ± jO.07 
l:lSm3 -0.00 ±jO.OO 0.24 ± jO.03 -0.068 ± jO.13 
l:lSm4 -0.04 ±jO.OO 0.30 ± j 0.08 -0.061 ± jO.07 

The matrix is reduced by deleting the row and column corresponding to l:l81 and 
expressing all the other rotor angles relative to that of generator #1. The matrix 
is also modified by entering -w B in the column for l:lSml in rows corresponding 
to l:l8i i = 2, 3 ... m where m is the number of generators. The eigenvalues of the 
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- 19x19 reduced matrix are also shown in Table 9.5. This shows that the second 
eigenvalue also comes out as zero (the other zero eigenvalue has been separated 
by the matrix reduction). It is to be noted that the second eigenvalue is zero due 
to the damping (D) being zero for all the generators. If damping is non-zero, 
the second eigenvalue will be real and non-zero. 

It is to be noted that for this system with 4 generators, there are three 
swing modes of frequencies 7.3, 6.7 and 4.4 (all expressed in rad/sec). The last 
mode is an interarea mode. The participation factors of the variables Smi, i = 1 
to 4 in all the three swing modes are given in Table 9.6. This shows that 
generators 1 and 2 participate in mode 1 while the generators 3 and 4 participate 
in mode 2. Both modes 1 and 2 may be termed as local modes while mode 3 
in which all the generators participate, is the interarea mode. It is interesting 
to observe that while the local modes are damped, the interarea mode is poorly 
damped and requires stabilization using PSS. 

Table 9.7 Eigenvalues-Ten machine system 

No. Eigenvalues Comments 
Original Matrix Reduced Matrix 

1,2 -0.2541 ± j 8.6811 -0.2541 ± j8.6811 Swing mode 1 
3,4 -0.1865 ± j 8.2509 -0.1865 ± j8.2509 Swing mode 2 
5,6 -0.1823 ± j 8.3340 -0.1823 ± j8.3340 Swing mode 3 
7,8 -0.1698 ± j 7.1939 -0.1698 ± j7.1939 Swing mode 4 
9,10 -0.1624 ± j 6.9901 -0.1624 ± j6.9901 Swing mode 5 
11,12 -0.1636 ± j 6.3584 -0.1636 ± j6.3584 Swing mode 6 
13,14 -0.1609 ± j 6.2241 -0.1609 ± j6.2241 Swing mode 7 
15,16 -0.1939 ± j 5.9474 -0.1939 ± j5.9474 Swing mode 8 
17,18 -0.1560 ± j 3.6521 -0.1560 ± j3.6521 Swing mode 9 

19 -0.6715 -0.6715 
20,21 0.0084, -0.0012 0.0000,(0.0) 

22 -0.0897 -0.0898 
23 -0.2901 -0.2901 
24 -0.2663 -0.2663 

25,26 -0.1575 ± jO.031O -0.1575 , -0.0338 
27 -0.2285 -0.2285 
28 -0.2197 -0.2197 
29 -0.1863 -0.1863 
30 -0.1370 -0.1370 
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9.6.2 Ten Machine System 

The data for this system is taken from reference [16] and is given in Appendix C. 
The machines are represented by model 1.0 and the AVR is neglected. The loads 
are modelled as constant impedances. The eigenvalues of the original (3Ox30) 
matrix and the reduced (29x29) matrix are shown in Table 9.7. The first 18 
eigenvalues are complex and correspond to 9 swing modes in the system. The 
radian frequency of oscillation varies from 3.65 to 8.68. 

As damping in the machines was neglected, the reduced matrix gives 
zero eigenvalue correctly instead of the complex pair. The reduced matrix also 
brings out the real eigenvalues correctly (particularly #25 and 26). There are 
practically no differences in the complex eigenvalues (corresponding to swing 
modes) obtained from original or reduced matrix. 
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Chapter 10 

Analysis of Subsynchronous 
Resonance 

The application of series capacitors for long distance power transmission helps in 
improving power transfer and is economical compared to addition of new lines. 
Series capacitors have been used extensively in Western U.S.A. and Sweden. 

While it has been known that series capacitors can cause self excited 
oscillations at low frequencies (due to low X/R ratio) or subsynchronous fre­
quencies (due to induction generator effect), the problem of self excited torsional 
frequency oscillations (due to torsional interactions) was experienced at Mohave 
power station in U.S.A. in December 1970 and October 1971. The problem 
of self excitation due to torsional interaction is a serious problem and led to 
detailed analysis and study. 

The general problem of oscillations at subsynchronous frequencies has 
been termed as SubSynchronous Resonance (SSR). It has been found that this. 
problem can also surface with radial operation of a HVDC link connected to 
turbine generator [22] and with Static Var Compensator (SVC) [24]. 

10.1 SSR in Series Compensated Systems 

Consider a turbine-generator supplying a series compensated system shown in 
Figure 10.1. The electrical system has a resonant frequency (J er) given by 

(10.1) 

where X" is the subtransient reactance of the generator and Xr is the leakage 
reactance of the transformer. Since, in general, Xc < X E , fer is less than the 
synchronous frequency fa. It is assumed that the reactances are calculated at 
the frequency fa. 
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For more complex systems than the one shown in Figure 10.1, there will be 
several resonant frequencies. All of these can be calculated with the knowledge 
of system data. 

TURBINE GEN 

Figure 10.1: A series compensated system 

A balanced three phase set of armature currents'.of frequency fer produce 
a rotating magnetic field in the air gap, which rotates with same frequency in 
a direction determined by the sequence of currents. Positive sequence currents 

, produce a field which rotates in the same direction as the rotor while negative 
sequence currents cause a field which rotates in the opposite direction. The 
frequency of the currents induced in the rotor windings is given by 

fr = fer ± fo {1O.2} 

The negative sign is associated with the positive sequence currents while positive 
sign is associated with the negative sequence currents. The induced rotor cur­
rents affect the rotor magnetic field and also result in subsynchronous frequency 
torques on the rotor (caused by interaction with steady magnetic field of the 
rotor). 

The variations in the rotor magnetic field result in changes in the gener­
ator emf even if the rotational speed (w) remains constant. The emf generated 
in the stator has frequencies (fs) given by 

fs = fr ± fo {1O.3} 

Substituting Eq. {1O.2} in {1O.3} shows that one value of fs is same as 
fer. While the other frequency is (fo+ fr) called the supersynchronous frequency. 
The emf generated at subsynchronous frequency is of such phase as to tend to 
sustain the flow of armature currents at the same frequency resulting from an 
electrical transient. Alternatively it can be said that the generator presents a 
negative resistance for the flow of subsynchronous frequency. currents. 

• 
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The turbine generator has several rotors corresponding to different stages 
of steam turbines, generator and rotating exciter (if any). These are connected 
by shaft sections which are not rigid and act as springs. That is, when an exter­
nal torque is applied to one end of the shaft it twists. The torque transmitted by 
the shaft can be assumed to be directly proportional to the difference between 
the angular positions of the shaft at the two ends. The torsional system consist­
ing of six masses is shown in Figure 10.2. This shows a mechanical system of 
mass, spring and dash pots. The system, considered in isolation, has resonant 
frequencies of oscillation termed as torsional modes. (The frequencies usually lie 
in the range of 10 to 45 Hz). When a transient electrical torque is applied (at the 
generator mass) the response of the torsional system depends on the frequen­
cies contained in the torque transient. If one of the frequencies in the applied 
torque is close to one of the torsional frequencies, the oscillations in the gener­
ator rotor (with respect to a synchronously rotating reference) have significant 
amplitudes and result in emfs generated in the stator windings. These emfs also 
are at sub and super synchronous frequencies and the subsynchronous frequency 
component tends to sustain the armature currents (and the rotor oscillations). 

O)t 0)2 0)3 0)4 0)5 0)6 

"'" DJ2 "'" 0'23 "'" D34 "'" D~5 "'" D56 "'" 
M1 M6 

K 12 K 23 K34 K45 K 56 

~D1 ~o'2 ~o'3 ~o'4 ~D5 ~D6 

Figure 10.2: Torsional system with six masses 

To summarize, it can be said that there is a major problem of subsyn­
chronous resonance (SSR) in series compensated systems. A general definition 
of SSR has been given in IEEE committee reports [3,4] 

Subsynchronous Resonance (SSR) 

"Subsynchronous resonance is an electric power system condition where 
the electric network exchanges energy with a turbine at one or more of the 
natural 'f~equencies of the combined system below the synchronous frequency of 
the system" . 
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There are two aspects of the SSR problem. These are 

1. Self Excitation (also called steady state SSR) 

2. Transient torques (also called transient SSR) 

Self Excitation 

Subsynchronous frequency currents entering th~ generator terminals pro­
duce subsynchronous frequency terminal voltage components. These voltage 
components may sustain the currents to produce the effect that is termed as 
self excitation. There are two types of self excitation,~One involving only rotor 
electrical dynamics and the other involving both rotor electrical and mechanical 
dynamics. The first one is termed as induction generator-effect while the second 
one is called torsional interaction . 

i . 
I : Induction Generator Effect 

As the rotating mmf produced by the subsynchronous frequency arma­
ture currents is moving slower than the speed of the rotor, the resistance of the 
rotor (at the subsynchronous frequency) viewed from the armature terminals is 
negative (The slip of the machine viewed as an induction generator is negative). 
When the magnitude of this negative resistance exceeds the sum of the armature 
and network resistances at a resonant frequency, there will be self excitation. 

Torsional Interaction 

Generator rotor oscillations at a torsional mode frequency, fm induce 
armature voltage components at frequencies (fern) given by 

fem = fo ± fm (10.4) 

When fem is close to fer (electrical resonant frequency defined in Eq. 10.1), the 
subsynchronous torques produced by the sub synchronous voltage component 
can be sustained. This interplay between electrical and Il,1echanical systems is 
termed as torsional interaction. 

The torsional interaction can also be viewed as the insertion of negative 
resistance in the generator armature viewed from the terminals. This effect is 
much more significant compared to the induction generator effect. This can 
cause shaft damage as experienced at Mohave generating station. 

Transient Torque 

System disturbances resulting from switching in the network can excite 
oscillatory torques on the generator rotor. The transient electrical torque, in 
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general has many components including unidirectional, exponentially decaying 
and oscillatory torques from subsynchronous to multiples (typically second har­
monic) of network frequency. Due to SSR phenomenon, the subsynchronous 
frequency cpmponents of torque can have lar.ge amplitudes immediately follow­
ing the disturbance, although they may decay eventually. Each occurence of 
these high amplitude transient torques can result in expenditure of the shaft life 
due to fatigue damage. Fatigue is defined as the process of progressive local­
ized permanent structural change occuring in a material subjected to conditions 
which produce fluctuating stresses and strains at some point or points and which 
may culminate in cracks or complete fracture after a sufficient number of fluctu­
ations. It is a cumulative process when additional events add to previous fatigue 
life expenditure. If there are a sufficient number of events causing high transient 
torques, the accumulated fatigue may reach a threshold where the probability of 
fatigue crack initiation in areas of high stress concentration will be significant. 
Once initiated, cracks may propagate to sizes which result in irreversible shaft 
damage and eventual break. 

The fatigue life N, of a component is defined as the number of stress or 
strain cycles of a specified magnitude that can be withstood before failure occurs. 
The S-N diagram is a plot of cyclic stress amplitude against the number of cycles 
to failure. The fatigue limit (also called endurance limit) is the limiting value 
of the median fatigue strength as the number of cycles (N) becomes very large. 
Hence stress below fatigue limit results in negligible fatigue life expenditure. A 
typical S-N'diagram for a particular shaft section is shown in Figure 10.3. 

3.0 

2.0 

t
Shaft 
w;~)e 

1.0 

103 105 107 

Cycles to failure 

Figure 10.3: A typical SIN curve 

The torsional mode damping (defined as the rate of decay of torsional 
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oscillations at a torsional mode frequency) is the most important factor that 
is responsible for the shaft life expenditure due to an event causing transient 
torques. The damping is measured by logarithmic decrement which is defined 
as the natural logarithmic ratio of the successive peaks of oscillations. The 
decrement factor (a) is equal to the mode frequency in hertz multiplied by log­
dec. 

The damping is either due to mechanical or electrical origin. The me­
chanical damping includes factors such as windage, bearing friction and hys­
teresis loss. The damping due to steam forces on the turbine blades results in 
damping which increases with the load. The net decrement factor (a) for a mode 
is the sum of the mechanical damping (am) and electrical damping (ae ), i.e. 

a = am +ae 

ae generally tends to be negative with series compensated systems. The problem 
of transient torques arises from the reduction in a and the possibility of shaft 
life expenditure. A major event that can cause high amplitude torques is the 
reinsertion of capacitors after the clearing of fault (The series capacitors are 
bypassed during a fault and automatically reinserted after the fault is cleared). 

10.2 Modelling of Mechanical System 

The mechanical system consisting of rotors of generator, exciter and turbines, 
shafts can be viewed as a mass-spring-damper system (see Fig. 10.2). The 
equation for ith mass (connected by elastic shaft sections to mass (i - 1) and 
mass (i + 1)) is given by 

M.d
2
8i D~d8i D~. (d8i _d8i- 1 ) D~. (d8i _ d8i+ 1 ) 

z dt2 + Z dt + z,z-l dt dt + z,z+l dt dt + 
Ki,i-l (8i - 8i -d + Ki,i+l (8i - 8i+d = Tmi - Tei 

(10.5) 

Combining all the equations, for a N mass system, 

[M] p28 + [D'] p8 + [K] 8 = Tm - Te = T (10.6) 

where [M] is a diagonal matrix, [D'] and [K] are tridi~gonal symmetric matrices. 
Tm and Te are the N vectors of mechanical and electrical torques. Te has only 
one non-zero element corresponding to the generator rotor (neglecting rotating 
exciter). Also, the mechanical torque directly acting on the generator rotor is 
zero. It is not difficult to see that the matrix [K] is singular (the columns add 
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up to zero). It is to be noted that the damping is usually small and assumed to 
be viscous. The inertia Mi is given by 

M. _ 2Hi 
z -

WB 

Alternative Representation Using Electrical Analogy 

The mechanical system equations can also be written from analogy to 
an electrical (RLC) network. Defining the per unit slip of a mass (Md as 

We can express 

Wi -WB 
Si=--­

WB 

dSi 
2Hi dt + Di(Si - Sio) + Di,i-l(Si - Si-d 

+ Di,Hl(Si - SHd + 1i,i-l + Ti,Hl = Tmi - Tei 

dTi,i-l 
dt 

dTi,Hl 
dt 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(10.11) 

where 1i,i-l is torque in the shaft section connecting mass i and (i -1).It is not 
difficult to see that the inertia (2H) is analogous to a capacitance, slip analogous 
to voltage and torque analogous to current. The spring constant in pu (KWB) is 
analogous to the reciprocal of inductance. The per unit damping coefficient (D) 
is analogous to conductance. Note that Di = D~WB. For the six mass system 
shown in Fig. 10.2, the electrical analogue is shown ill Fig. lOA. There is no loss 
of generality in assuming Sio (slip at the operating point) as zero. Actually at 
equilibrium point all the slips will be equal (So). If So is not zero, it is equivalent 
to saying that the voltage of the reference bus in Fig. lOA is nonzero. This has 
no effect, particularly when linearized analysis is done. 

Note that the state variables for the network shown in Fig. lOA are only 
11 given by 
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Figure 10.4: An electrical analogue for the torsional system of Fig. 10.2 

The additional state variable (required when writing equations for the electrical 
system) is 8m (rotor angle corresponding to the generator rotor). The equation 
for 8m is given by 

d8m ( ) dt = WB 8m - Smo (10.12) 

where Sm is the generator rotor slip. (This variable has been used in the previous 
chapters). In this formulation (using electrical network analogy) only one rotor 
angle (corresponding to the generator) belongs to the set of state variables. 
Hence, whenever there is no ambiguity, the subscript 'm' can be dropped for the / 
angle (only 8 is used in earlier chapters). 

10.3 Analysis of the Mechanical system 

10.3.1 Analogy with Electrical Network 

Considering only small perturbations around the operating (equilibrium) point, 
the linearized mechanical system equations are represented by the electrical 
network shown as in Fig. 10.5. The one port passive network consists of only 
elements R, L, and C. In deriving this network, the mechanical torques are 
treated as constants, hence the current sources corresponding to small variations 
in the torque vanish. The only current source is !1Te (connected at tIle generator 
bus). The impedance function (in Laplace domain) at the generator bus is 
defined as 

(10.13) 
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ONE PORT 

PASSIVE Dm 

NETWORK 

Figure 10.5: Linearized system of Fig. 10.4 

If the damping is neglected, the impedance function Zm{s) corresponds 
to that of L-C network and can be expressed as 

( ) _ (s21-l~ + 1){s21-l~ + 1) .... {s21-l~_1 + 1) 
Zm S - 2HTS{s2).r + l)(s2).~ + 1) .... {s2).~_1 + 1) 

(1O.14) 

where 

The poles of this function belong to the set of eigenvalues of the mechanical 
system. There are (N -1) complex pairs (with real part equal to zero) given by 

Sk = ±jwk, Wk = ).~, k = 1, 2 ... {N - 1) (1O.15) 

where Wk is the radian frequency. The zeroes of the impedance function occur 
at (radian) frequencies, 

1 
Ik = -, k = 1,2 ... {N -1) 

I-lk 
(1O.16) 

It is known from the properties of the impe,dance function of a L-C network, 
that 

0<,1 < WI < 12 < W2···· < 'Yk < Wk···· < IN-l < WN-l (1O.17) 

The impedance function of (1O.14) can also be expressed as 

(1O.18) 
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a
N

_
1 

Figure 10.6: Realization of L-C impedance function 

All the residues ai, i = 1, 2 .. (N - 1) are positive. The impedance function of 
(10.18) represents the equivalent circuit shown in Fig. 10.6. Here there are N 
impedances connected in series. For torsional mode i, the impedance consists 

of an inductance ai in parallel with a capacitance of~. The equation for this 
parallel combination is given by 

2 i 
.Ai ASi ~8 _ AT. -pu. + -- - -u. e 
ai WBai 

(10.19) 

where ~Si and ~8i are the slip and angle corresponding to the torsional mode 
~. ~Si is the voltage across capacitor (see Fig. 10.7). Noting that 

p~8i = WB~Si 

+ 1------' 

Figure 10.7: Modal equivalent circuit 

We can express Eq. (10.19) as 

2Hi p2 ~8i + Ki~8i = -~Te 
WB 

_ where HZ = .;k is the modal inertia 

Ki = w~ai is the modal spring constant 

(10.20) 
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:The generator rotor slip (and angle) can be expressed as 

N-l 

/)"8m = /)"8° + L /)"8i (1O.21) 
i=l 

N-l 

/),.6 - /)"6° + L /)"6i (10.22) 
i=l 

where /)"8° and /)"6° are the slip and angle components corresponding to the 
mode zero. 

If damping is present, it is hypothesized that Zm{s) can be represented 
as the equivalent circuit shown in Fig. 10.8. ni is the damping associated with 
mode i. The damping associated with mode zero is. 

(1O.23) 

Dl 

Note: Inductance ai = WB1Ki 

Figure 10.8: Realization of R-L-C impedance function 

Remarks 

1. The mode zero corresponds to the frequency zero (determine,l 'rom the 
analysis of the mechanical system alone). However interaction with elec­
trical system results in a nonzero frequency (normally in the range of 0.2 
to 2.0 Hz). The low frequency oscillations studied in the chapters 7 to 9 
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correspond to the mode zero. It is obvious from Eqs. (10.21) and (10.22) 
that, in the absence of torsional oscillations, only zeroth mode is present 
in which all rotors participate. As there is no relative motion among ro­
tors (in the absence of torsional oscillations), it is in order to club all the 
turbine inertias together with the generator rotor. Thus the analysis of 
mode zero alone is accurately done in the previous chapters. 

2. Some authors model the mechanical system in terms of modal parameters 
(inertias, damping and spring constants). One of the reasons for this is that 
the damping is normally known in terms of modal damping (determined 
from decrement tests). Also the 'N' second order equations (for N modes 
including mode zero) are all uncoupled. 

3. Neglecting damping, Zm(s) has the properties of the immittance function 
of a single port LC network. These are 

(i) Zm(s) is an odd function of s, that is Zm(s) = -Zm(-s) 

(ii) It has only one simple pole at S = 0 

(iii) As s -+ 00, there is a zero 

(iv) Zm(s) has only simple poles and zeroes; all are located on the imag­
inary axis in the's' plane and they are interlaced 

(v) The residues at all poles are real and positive 

10.3.2 Determination of modal inertia from transfor­
mation 

The modal inertia (Hi) and spring constant (Ki) of ith mode were defined ear­
lier in terms of the circuit parameters (see Fig. 10.7) determined from the 
impedance function Zm (s ). This is a novel approach not discussed previously in 
the literature. The usual method of obtaining the modal parameters is through 
transformation of Eq. (10.6). 

Neglecting damping Eq. (10.6) reduces to 

where T is the applied torque vector. 

A transformation defined by 
8 = [Q]8m 

can be substituted in Eq. ,(10.24) and we get 

[M][Q]p28m + [K][Q]8m 
;= T 

(10.24) 

(10.25) 

(10.26) 
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Premultiplying both sides of the above equation by [Q]t, we have 

(10.27) 

or 
(10.28) 

By proper choice of [Q], both [Mm] and [Km] can be diagonal matrices. However, 
there is no unique choice of [Q] which has this property (of reducing [Mm] and 
[Km] to diagonal matrices). 

The transformation matrix [Q] can be obtained from the properties of eigen­
vectors of real symmetric matrices. A real symmetric matrix (such as [K]) has 
only real eigenvectors (corresponding to real eigenvalues) and these are mutually 
orthogonal. That is if [P] is a matrix whose columns are eigenvectors of a real 
symmetric matrix [K'] where 

(10.29) 

then 

where [DIl is a diagonal matrix. As eigenvectors are not unique, the matrix [DIl 
is also not unique. It can be made a unit matrix if the Euclidean norm of each 
eigenvector is chosen as unity. 

It can also be shown that 
[K'][P] = [p][n] (10.30) 

where [n] is a diagonal matrix of eigenvalues of [K'] which are actually the 
squares of the radian frequencies of the torsional modes (w~, k = 1, 2 ... N where 
WN = 0 corresponding to mode zero). Premultiplying both sides of Eq.(1O.30) 
by [P]t we have, 

where [n'] is a diagonal matrix. 

If [Q] is chosen such that 

then, 

[p]t[Mr~[M][Mr~[p] 
[P]t[P] = [Dd 

(10.31) 

(10.32) 



346 Power System Dynamics - Stability and Control 

Also, 

[Q]t[KHQ] - [p]t[Mr![KHM]-! [P] 
_ [P]t[K'][P] = [0'] (10.33) 

As [P] is not unique, [Q] is also not unique. However if each vector of [Q] 
is selected such that its element corresponding to the generator rotor is unity, 

1 

(which is equivalent to selecting each eigenvector of [K'] with element Ml in 
the row corresponding to the generator rotor) then [Dl] is the diagonal matrix 
of modal inertias. This is because for each mode, the linearized equation can be 
expressed as 

i 2' i . M p t::..0' + Kit::..& = -t::..Te, z = 0, 1, 2 ... (N - 1) (10.34) 

(Note that Ko = 0, MO = 2tf: as superscript 0 corresponds to mode zero). 

Remarks 

1. The modal inertias from the above procedure are same as that defined 
from circuit parameters. 

2. Several publications do not stress the importance of unique choice of [Q] 
matrix for the determination of modal inertias. The importance of the 
choice is that R.H.S. of Eq.(10.34) is same for all the modes (that is each 
modal inertia is acted upon by the same (electrical) torque resulting from 
the generator interaction with the external electrical network. 

3. It can be shown that [Q] is also the matrix of eigenvectors of the matrix 
[M]-l[K]. However the latter is not a symmetric matrix. In general, the 
vectors of matrix [Q] are not orthogonal. 

4. The radian frequency of torsional mode i is given by 

5. The column vectors of the matrix [Q] are also called mode shapes. The 
elements of a vector determine the participation of different masses (in 
relation to that of the generator rotor) in a particular mode of torsional 
oscillations. 
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10.3.3 Determination of modal inertias from Ym(jw) 

It was shown in section (10.3.1) I at Zm(s) can be expressed in terms of partial 
fractions as 

(10.35) 

where Hi is the modal inertia of mode i. The modal spring constant Ki is given 
by 

Each factor in the expression (10.35) can be further expressed as 

S 1 1 
2Hi(s2 + wt) = 4Hi(s - jWi) + 4Hi(s + jWi) 

When s = jWil the admittance function Ym(s) (reciprocal of Zm(s)) is zero. 
Actually Y m (jw) can be expressed as 

Ym(jw) = jB(w) (10.36) 

The frequencies corresponding to the zero crossing of B (w) are the modal fre­
quencies. 

Hi can be determined as 

(10.37) 

Let 

B(w) = (w - wi)B'(w) 

, Eq. (10.37) can be expressed as 

(10.38) 

Hence the modal inertia is obtained from the slope of B (w) at the modal fre­
quency. 
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10.4 Analysis of the Combined System 

The input variable for the (linearized) mechanical system is !:l.Te which is ob­
tained from the electrical system equations. In Laplace domain, the electrical 
torque !:l.Te can be related to the generator rotor slip by 

!:l.Te(s) = Y. ( ) 
!:l.Sm ( s ) e S 

(10.39) 

The combined system (mechanical and electrical) is represented (at the generator 
port) as shown in Fig. 10.9. The equations for this equivalent network is given 
by 

Ye(S) 

\ 
Figure 10.9: Combined system (mechanical and electrical) 

\ 

(10.40) 

where 

The system eigenvalues are the solutions of the scalar equations 

(10.41) 

For the eigenvalues corresponding to torsional modes, the following approxi~ate 
equations are applicable 

Ym(jWk) + Ye(jWk) = 0 (10.42) 

where Wk is the frequency of the kth torsional mode. Actually, 

Y.( . ) T ( ) . TSe(Wk) 
e JWk = De Wk - J WE 

Wk 
(10.43) 
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where TDe and TSe are the damping and synchronizing torque coefficients (cal­
culated from the analysis of the electrical torque). Similarly, one can define 

Substituting (10.43) and (10.44) in (10.42), one gets 

TS(Wk) = TSm(Wk) + TSe(Wk) = 0 

(10.44) 

(10.45) 

The above equation determines the oscillation frequencies. Variations of TSm 
and Ts for a typical case are shown in Fig. 10.10. This shows that TSe has very 
little effect on the zero crossing of Ts (the determination of oscillation frequencies 
corresponding to torsional modes). The instability of a torsional mode (Wk) is 
determined from the criterion 

(10.46) 

The above equation is equivalent to the net damping (a) being negative, that is 

a = am +ae < 0 (10.47) 

where a = iff" Hi is the modal inertia. The equation (10.47) is approximat~ 
and assumes that the oscillation frequency is unaffected by the electrical system 
[7]. 
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Figure 10.10: Variations of TSm and Ts with frequency 

Computation of Ye(s) : Simplified Ma­
chine Model 

The variation in the electrical torque (~Te) is to be expressed in terms of the 
variations in generator rotor slip (~Sm). For a single machine system, this 
relationship is easily derived. In order to illustrate the computation, and for 
simplicity, it is initially assumed that the machine is represented by the simplified 
model of a frequency dependent voltage source behind a constant inductance. 
This is equivalent to neglecting flux decay (assuming E~ as constant), damper 
circuits and transient saliency (xq = x~ = x'). Hence 

(10.48) 

Since 

iq = iD sino + iQ cos 0, 

we have 
(10.49) 

as 

id = i D cos 0 - iQ sin 0 
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It is convenient to express network equations in D-Q axes (Kron's reference 
frame). This formulation is also easily extended for multi:rr.achine system. For 
a single machine system, it is possible to write 

[ 
ZDD{S) ZDQ{S) 1 [ .6.ID{s) 1 = [ .6.ED 1 
ZQD{S) ZQQ{S) .6.IQ{s) .6.EQ 

(1O.50) 

For the classical model of the machine 

.6.EQ + j.6.ED = E'eiOo {.6.Sm + j.6.O) (1O.51) 

This follows from the fact that 

and E' is a constant (actually E~, which does not vary since flux decay is ne­
glected). 

Computation of Impedances in the D-Q axes 

It is convenient to relate the impedances in the D-Q axes to the impedances 
in the a - f3 variables by noting 

Z{s)Ia{s) } 
Z{s)I,8{s) 

ED and EQ are related to Ea and E,8 by 

ED 
EQ 

Ea cos (}o - E,8 sin(}o } 
Ea sin (}o + E,8 cos (}o 

Taking Laplace transforms on both sides of the above equation, we get 

(1O.52) 

(1O.53) 

ED{S) = ~[Ea{S-jWo)+Ea{S+jWo)]- 2~[E,8{S-jWo)-E,8{S+jWo)] (1O.54) 

EQ{s) = 2~ [Ea{s - jwo) - Ea{s + jwo)] + ~[E,8{S - jwo) + E,8{s + jwo)] (1O.55) 

From the above equations, we get 

EQ{s) + jED{S) = jEa{s + jwo) + E,8{s + jwo) 

EQ{s) - jED{S) = -jEa{s - jwo) + E,8{s - jwo) 

(1O.56) 

(1O.57) 
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Substituting from Eq. (10. 52) in the above equations, we get 

EQ{s) + jED(S) jZ(s + jWo)Ia(s + jwo) + Z(s + jWo)I{1(s + jwo) 

= Z(s + jw~)[IQ{s) + jID{s)] (1O.58) 
EQ{s) - jED{S) = Z{s - jWo)[IQ(s) - jID(s)] (10.59) 

From Eqs. (10.58) and (10.59) we can derive 

ZDD(S) - ZQQ{s) = ~[Z(s - jwo) + Z(s + jwo)] 

ZDQ(S) - -ZQD(S) = ~[Z(s - jwo) - Z(s + jwo)] 

Computation of t:lTe 

(10.60) 

(10.61) 

From the Eqs. (1O.48) to (1O.61), the following expression can be derived 
after some manipulations 

t:lTe(s) - E'[ido - B(s)E']t:lc5(s) + (E')2G(s)t:lSm 

- E' {[ida - B(s)E']w: + E'G(S)} t:lSm (10.62) 

where 

B(s) = ~[Z-l{s + jwo)] 

G{s) = ~[Z-l(s + jwo)] 

Example: If Z(s) = R + Ls + dB, then 

B(s) 
woC[l - LC(s2 + w~)] 

(10.63) 
[1 + RCs + LC(s2 - w~))2 + w~(2LCs + RC)2 

G(s) 
C{RC(s2 + w~) + s[l + LC(S2 + w~)]} 

(1O.64) 
[1 + RCs + LC(s2 - w~))2 + w~(2LCs + RC)2 

Computation of Frequency Response 

The a - {3 variables are related to D-Q variables from the relation 

(10.65) 

where f can be current, voltage or flux. 
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Let the currents (under bala.nced conditions) in a - (3 sequence be 

ia{t) = Ip sin{wt + ¢) } 
ip{t) = Ipcos{wt + ¢) 

where wand ¢ are constants. Then 

ip + jia = (Ipdl/»dwt 

Applying (1O.65), we get 

(iQ + jiD) = (Ipdl/»d(w-wo)t 

In Laplace domain, Eq. (1O.68) is given by 

"I/> " (Ip e1 ) 
IQ + JID = ["( )] s - J w - Wo 
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(1O.66) 

(1O.67) 

(1O.68) 

(1O.69) 

If the current is applied to a single port network shown in Fig. 10. 11, the voltage 
(response) is given by 

(IQ + jID) 

1 

Figure 10.11: A single port network 

VQ + jVD = Z(s + jWo)(IQ + jID) 

Substituting for the current from Eq.{10.69), we can obtain the steady state 
response in time domain as 

VQ + jVD = (Ipdl/»Z(jw)d(w-wo)t 

From the above, we get response in a - {3 quantities 

vp + jVa = {Ipdl/»ZUw)dwt 

(1O.70) 

(1O.71) 

The above Eq. could also have been obtained directly from the response of a - {3 
sequence networks. 

Eq. (1O.70) shows that the frequency response using D-Q variables is 
computed in the same manner as obtained from the a - {3 sequence networks. 
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10.6 Computation ofYe(s): Detailed Machine 
Model 

The computation of torque coefficients using a detailed machine model is out­
lined below. The synchronous machine stator equations can be expressed as 

{10.72} 

where p = 9t, W is the rotor speed {in radians per second}. The armature 
. resistance is neglected ir. the above equations. Noting that 

{'ljJq + j'IjJd} = ('ljJQ + j'IjJD}e~j6 } 
{vq + jVd} = {vQ + jVD}e-J6 

Eq. {10. 7~} can be expressed in terms of D-Q variables as 

In deriving {10.74} the following relation is used 

do 
W=W +­

o dt 

{10.73} 

{10.74} 

It is interesting to note that Eq. {10.74} is linear while Eq. {10.72} is nonlinear 
(involving product of wand flux). 

From expressions given in chapter 3, 

'ljJq Xq(p}iq 

Wd - Xd{p}id + G(p}Efd 

Linearizing Eqs. {10.74} to (10.76) and noting that 

t:.iq + j t:.id 

t:.'ljJQ + jt:.'ljJD 

- -j{iqo + jido}t:.O + e-j6o {t:.iQ + jt:.iD} 

j{'ljJQo + j'IjJDo}t:.O + ei6o {t:.'ljJq + jt:.'ljJd} 

It is possible to express in Laplace domain 

{10.75} 

{10.76} 
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where 

Zf(s) 

. Zi(s) 

zg(S) 

Z£(S) 

!:!...1/JDo - ~1/JQo - ~(wocost5o + ssint5o)ido Xq(s) 
WO WB WB 

+~( -Wo sin 150 + S cos t5o)iqoXd(S) 
WB 

!:!...1/JQo + ~1/JDo + ~(wosint5o - scost5o)idoXq(S) 
Wo WB WB 

-~(wocost5o + ssint5o)iqoXd(S) 
WB 

- ~ (wo cos 150 + S sin 150 ) sin t5oXq(s) 
WB 

-~( -Wo sin 150 + S cos 150 ) cos t5oXd(S) 
WB 

-~(wo cos 150 + S sin 150 ) cos t5oXq(s) 
WB 

+~( -Wo sin 150 + S cos 150 ) sint5oXd(s) 
WB 

~(wosint5o - scost5o)sint5oXq(s) 
WB 

1 . 
+-(wo cos 150 + S smt5o) cos t5oXd(S) 

WB 

~(wosint5o - scost5o)cost5oXq(s) 
WB 

- ~ (wo cos 150 + S sin 150 ) sin t5oXd(S) 
WB 

-~(-wosint5o + scost5o)G(s) 
WB 

~(wocost5o +ssint5o)G(s) 
WB 

Eq. (10.77) can be combined with the netwurk equation 

[;~:~:~ ;~~~:~ 1 [ ~~~ 1 ~ [ ~~~ 1 
to solve for !:::"ID and !:::"IQ in terms of !:::,.t5 and !:::"Efd. 
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(10.78) 

Note that the elements of the impedance matrix in Eq. (10.78) are 
defined in (10.60) and (10.61). 

The incremental torque !:::"Te is given by 

!:::"Te = 1/Jdo!:::"iq - 1/Jqo!:::"id + iqo!:::"1/Jd - ido!:::"1/Jq (10.79) 
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After some manipulations, 

(10.80) 

In deriving (10.80), !:lid, !:liq, !:l'I/Jd and !:l'I/Jq are expressed first in terms of !:l6 
and !:lEfd. Then !:l6 is expressed as 

10.7 Analysis of Torsional Interaction - A 
Physical Reasoning 

In SSR phenomenon, the torsional interaction (TI) is much more important and 
complex than the inductkm generator effect. Thus it is convenient to ignore the 
flux decay, damper circuits and transient saliency in the analysis of TI. 

Assuming that the generator rotor oscillates (about a constant speed of 
wo) sinusoidally the per unit speed (w) is given by 

(10.81) 

where Wm is the oscillation frequency of the rotor about a synchronously rotating 
axis in radians per second. 

The single phase equivalent circuit (a - sequence) of the generator stator 
is shown in Fig. 10.12. This consists of a voltage source (eaJ behind a transient 
inductance. eo is given by 

eo = wE'sin(wot + 6) (1O.82) 

Since 

d6 
dt = (w - Wo}WB 

Substituting from (1O.81) gives 

6 = 60 - (~::) coswmt (1O.83) 

If it is assumed that the amplitude (A) of the rotor oscillation is very small, the 
induced voltage in the stator, eo, consists of three sinusoidal components, one 
of frequency fo, and other two components of frequencies fo ± fm. This follows 
from substituting Eqs. (1O.81) and (1O.83) in (1O.82) and noting that 

AE' AE' 
eo(t} = WoE' sin(wot + 6} + -2- cos[(wo - wm}t + 6] - -2- cos[(wo + wm}t + 6) 
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+ 
e a 

Figure 10.12: a-sequence stator equivalent circuit 

We also note that 

AE' AE' 
-2- cos[(wo - wm)t + 0] ~ -2- cos[(wo - wm)t + 00 ] 

since, 

Also, 

woE' sin(wot + 0) ~ woE'[sin(wot + 00 ) + (0 - 00 ) cos(wot + 00 )] 

= woE'sin(wot + 00 ) - w;AE' {cos [(wo - wm)t + 00 ] + cos[(wo + wm)t + oo]} 
Wm 

Thus, 

The subsynchronous frequency component of the voltage source, eo is 

e~ub = - 2
AE

' (wo - wm) cos[( Wo - wm)t + 00 ] 
Wm 

It can be easily derived that 

eiJub = 2
AE

' (wo - wm) sin[(wo - wm)t + ooJ 
Wm ," 
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When these voltages are applied to the a and f3 sequence networks respectively, 
the subsynchronous frequency currents flow (in steady state) and are given by 
the expression 

(ipub + ji~ub) = Z-l[j(wo - Wm)](epub + je~ub) 

If Z(s) = R + Ls + ch-
Z[j(wo - wm)] = R + j [(wo - wm)L - (wo _lw

m
)C] = ZsubL<psub 

If the resonance frequency fer defined by 

1 
fer = 27rVLC 

is close to (fo - fm), the impedance is small. It is resistive when (fo - fm) = fer 
and capacitive when fer > (fo - fm), otherwise it is inductive (when fer < 
(fo - fm))' 

The d-q component of the currents are given by 

(. + " ) _ -j(wot+o) (. + .. ) 
~q J~d - e ~f3 J~Q 

Then 
'sub AE' ( ) - ( A.) ~q = - 2 Z Wo - Wm sm wmt + o/sub 

Wm sub 
(10.85) 

The component of the torque T:ub, due to subsynchronous frequency currents, 
is given by 

T sub E' -sub A(E')2 ( ) . ( A.) 
e = ~q = - 2 Z Wo - Wm SIll wmt + o/sub 

Wm sub 
(10.86) 

The supersynchronous frequency voltage components e~up and epup result in 
supersynchronous frequency currents given by 

·sup 
~Q 

·sup 
~f3 

AE'(wo + wm) [() ] - 2 Z cos Wo + Wm t + do - <Psup 
Wm sup 

AE'(wo+ wm) . [( ) 1: ] 
- 2 Z SIll Wo + Wm t + Uo - <Psup 

Wm sup 
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where Zsup L <Psup is the network impedance at supersynchronous frequency, viewed 
from generator (internal) bus. The magnitude of Zsup tends to be large com­
pared to Zsub and <Psup is usually positive (the impedance is inductive). 

The quadrature axis component (i~UP) due to the supersynchronous cur­
rents can be obtained as 

(10.87) 

The component of the torque due to the supersynchronous currents, T:up is 
given by 

T sup _ E'·sup _ A{E')2{wo + wm) . ( t _ ,/.. ) 
e - Zq - 2 Z SIn Wm 'rsup 

Wm sup 
(10.88) 

Note that both torque components, T;ub and T;up have same frequency Wm, the 
frequency of oscillation of the generator rotor. The damping torque coefficient 
TD is given by 

T - {E')2 [(wo - wm) ,/.. (wo + wm) ,/.. 1 
D - - -2-- Z COS'rsub - Z cos'rsup 

Wm ~ ~ 
(10.89) 

The net damping tends to be negative due to the fact that 

Zsub «Zsup and 
<Psub ~ 0 while <Psup ~ 900 

in series compensated system when a torsional os~illation frequency is approxi­
mately equal to the complement of the electrical resonance frequency, that is 

fo - fm ~ fer 

Fig. 10.13 shows the phasor diagram giving the position of the torque 
components in relation to the rotor velocity. What is interesting is that the 
supersynchronous frequency currents in the network give rise to positive damp­
ing torque (although of small amplitude). It is the subsynchronous frequency 
component of network currents that cause negative damping. The smaller the 
oscillation frequency, higher is the negative damping. Thus the first torsional 
mode (with the smallest frequency) can cause the most severe problem if network 
impedance is minimum at that mode. 
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Ts'Ub 
e 

TS'UP 
e 

Figure 10.13: Phasor diagram 

10.8 State Space Equations and Eigenvalue 
Analysis 

10.S.1 Analysis of Induction Generator Effect 

The induction generator effect is present even if the generator rotor is assumed 
to rotate at constant speed. Hence only the electrical system equations need 
to be considered for the analysis. In the absence of magnetic saturation and 
neglecting excitation system (treating Efd as constant) the system equations 
are linear. 

Synchronous Machine 

Only the stator and rotor electrical equations are to be considered as the 
generator angle () and rotor slip (Sm) are treated as constants. 

The stator equations are 

(10.90) 

The rotor electrical equations (assuming machine modell.1) 

pE~ = ¥[-E~ - (xq - x~)iql } 

pE~ = Tr [-E~ + (Xd - X~)id + Efdl 
do 

(10.91) 

Note that p = ft in the above equations. Eqs. (10.90) and (10.91) can be 
expressed as 

(10.92) 
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(10.93) 

where 
x! [1/Jd 1/Jq Ed E~] 
u! [VD vQ] 
y! [iD iQ] 

[Ae] is a matrix whose elements depend on Sm. The nonzero elements of [Ae] 
are given by 

RaWB A ( ) ( ) RaWB ---, -, e 1,2 = -WB, Ae 1,4 = --,-, 
xd xd 

WB, Ae(2,2) = - Ra~B, Ae(2,3) = _ Ra~B 
Xq Xq 

1 (Xq ) () Xq -T---' , - 1, Ae 3,3 = -T---" 
qo Xq qoXq 

1 Xd Xd 
Ae(4,1) - T' (,-1), Ae(4,4)=-T---" 

do Xd doxd 

The nonzero elements of [Bel] are functions of 8 given by 

Bel(l,l) = -WB cos 8, Bel(1,2) =wBsin8 

Bel (2, 1) = -WB sin 8, Bel (2,2) = -WB cos 8 

The nonzero element of the column vector [Be2] is 

B e2 (4) = T) 
do 

[Ce] is a 2 x 4 matrix whose elements are functions of 8. They are 

cos 8 sin 8 
Ce(1,l) - -Ce(1,4) = -, , Ce(1,2) = Ce(l, 3) = -, 

xd Xq 

sin 8 cos 8 
Ce(2,1) -Ce(2,4) = --, , Ce(2, 2) = Ce(2, 3) = -, 

xd Xq 

In deriving Eqs. (10.92) and (10.93) 'the following expressions are used to elim-
inate id and iq ,-

Network Equations 

The network equations can be expressed using D-Q variables. For a two 
port network with one port connected to an infinite bus, the equations are 

(10.94) 
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where 

U~l = [iD iQ], U~2 = [ED EQ] 

ED and EQ are D and Q components of the infinite bus voltage. For the simple 
network shown in Fig. 10.14, 

X~ = [VCD VCQ], 

components of the capacitor voltage 

[AN] = [:B -~B l' [BNd = [WBOXc WBOX
C 
l' [BN2] = [0] 

The combined system (machine and network) equations can be obtained after 

R XL 

0 

1 
... 

1 EQ +j Fn 
i Q + j iD 

VCQ+jV CD 
v

Q
+ j VD 

0 0 

Figure 10.14: A simple series compensated network 

eliminating the variables U e and UNl. Note that 

UNI = Ye = [Ce]xe (10.95) 

and the expression for U e depends upon the network. For the network shown in 
Fig. 10.14, we have 

VD = ED + VCD + RiD + ~~piD + XLiQ } 

vQ = EQ + vCQ + RiQ + ~piQ - XLiD 

The above Eq. can be expressed as 

where 

XL 
Ue = UN2 + XN + [F]Ye + -PYe WB 

[F] = [ R XL 1 
-XL R 

(10.96) 

(10.97) 
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Noting that, 

PYe = [Ce]pxe = [CeAe]xe + [CeBel]Ue + [CeBe2]Efd (10.98) 

We can derive an expression for U e, as 

(10.99) 

where 

The final system equations are 

XE = [AE]XE + [BEI]Efd + [BE2]UN2 (1O.100) 

where 

X1; = [x~ xk] 

For the network shown in Fig. 10.14, we have 

[Ae] + [Bel HFd 

[B ] = [ [Be2] + ~;[Bel H Ce Bd 1 
EI [0] 

[B ] - [ [Bel H] 1 
E2 - [BN2] 

The eigenvalues of the matrix [AE] should lie in the left half plane if induction 
generator effect does not lead to self excitation, that is the sum of network and 
armature resistances (R and Ra) is greater than the negative resistance (intra­
d uced by the induction generator effect) at the electrical resonant frequency. 

The inclusion of network transients by considering differential equations 
for the network is essential in the analysis of both induction generator effect and 
torsional interactions. 
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10.8.2 Analysis of Torsional Interactions (TI) 

In analyzing TI, it is necessary to model the resonant multimass mechanical 
system in addition to the electrical system. 

The mechanical system equations can be expressed as 

Xm [Am]xm + [Bml]Te + [Bm2]Um 

Ym [Cm]xm 

where U m is equal to the vector of mechanical torques applied at different turbine 
rotors, if prime mover dynamics are not included in the equations. If turbine­
governor dynamics are to be considered, U m is the input variable corresponding 
to speed reference. Te is the electromagnetic torque of the generator applied only 
at the generator rotor mass. (The exciter is either assumed to be static exciter 
or the electromagnetic torque at the rotating exciter is neglected for simplicity). 
Ym consists of generator rotor angle and slip. 

For a four mass system shown in Fig. 10.15, the state vector Xm is given 
by 

where TLG, TIL, THI are the shaft torques, Sm, SLP, SIP and SHP are the rotor 
slips (of different rotors) and 8 is the generator rotor angle. As discussed earlier 
the equations can be obtained from analogy with a R-L-C electric circuit. 

The nonzero elements of [Am] are 

Am(1,2) = WB 

Am(2,2) 
Dm 1 ---, Am(2, 3) = 2Hm 2Hm 

Am(3, 2) -KLG, Am(3, 4) = KLG 

Am(4, 3) 
1 DLP 

- - 2HLP = -Am(4, 5), Am(4, 4) = - 2HLP 

Am(5, 4) -KIL, Am(5, 6) = KIL 

Am(6, 5) 
1 DIP 

- 2HIP = -Am(6, 7), Am(6, 6) = - 2HIP 

Am(7, 6) -KHI, Am(7, 8) = KHI 

Am(8, 7) 
1 DHP 

- ---, Am(8, 8) = - 2HHP 2HHP 
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( 
THI TIL T LG -- - --

SHP SIP SLP Sm 

~DHP ~~P ~DLP ~Dm 

Figure 10.15: A four mass system 

The initial slips are assumed to be zero in deriving the equations. Also 
the shaft damping terms are neglected {as they are usually small}. The column 
vector, Bml is given by 

B:nl = [0 - 2~m 0 0 0 0 0 0] 

The matrix [Bm2] is not relevant if the mechanical torques are constant {see 
below}. 

Derivation of Linearized System Equations 

Although the mechanical system equations are linear, the coupling be­
tween the mechanical and electrical equations are nonlinear. Hence it is neces­
sary to linearize the equations for small signal stability analysis. The linearized 
mechanical equations are 

~Xm = [Am]~xm + [Bmd~Te 
The torque equation, in terms of state variables '1:e , is given by 

{X' x' } .1. E' .1. E' 
Te = d - q 1/J 1/Jd + ~ + ~ 

x'x' q x' x' d q q d 

The expression for ~Te is given by 

~Te = [Cme]xe 

where [Cme] is a row vector whose elements are 

{x~ - x~} .1. Edo 
Cme {1} = " 'f'qo +-, 

XdXq Xq 

{1O.101} 

{1O.102} 
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(X~ - X~) E~o 
Cme (2) " ""do + -, 

XdXq Xd 

Cme (3) _ ""~o, Cme (4) = "";0 
Xq xd 

The linearized machine electrical equations are 

b..xe [Ae]b..xe + [Bel]b..ue + [Be2 ]b..Efd + [Be3]b..Ym 

b..Ye = [Ce]b..xe + [Cem]b..Ym 

where 

Ym = [ ;m 1 = [[12] 0] xm = [Cm]xm 

where [12] is a unit matrix of order 2. 

[Cem] = [a~e] [Pm], [Pm] = [Xeo Q] 

(1O.103) 

(1O.104) 

Note that Pm consists oftwo columns. The first column is the operating value of 
vector Xe. The second column is a null vector. The linearized excitation control 
system equations (if considered) can be expressed as 

b..xc = [Ac]b..xc + [Bcd [ ~~~ 1 + [Bc2]b..Sm (1O.105) 

(1O.106) 

where el is a column vector with the first entry at 1 and the rest as zeroes. For 
a simplified model of a static exciter shown in Fig. 10.16 there are two state 
variables, the first one corresponding to E fd and the other corresponding to 
PSS. For the system shown in Fig. 10.16, the various matrices are 
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Figure 10.16: A static exciter with PSS 

The linearized equations for the generator (including mechanical, electrical and 
excitation controller) can be expressed as 

where 

[AG] = 

xh 
uh -

[Ae] 

[0] 

[AG]~xG + [BG]~uG 
- [CG]~xG 

[xt xt xt ] e c m 

[VD VQ] = ue , t [. YG = 'tD iQ] = Ye 

[Be2ei] [Be3Cm] 

[Ac] [BaCm] , [B~2] = [Q Bc2] 

[BmlCme] [0] [Am] 

[Bb] = [[B!d [B~d [0]] 

(1O.107) 

(10.108) 
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The linearized network ~quations from Eq. (10.94) are 

(10.109) 

For the network shown in Fig. 10.14, we can express 

pb..YG = [GG]b..xG = [GGAG]xG + [GGBG]uG 

It is possible to eliminate the variables b..uG and b..uNl and combine the network 
and the generator equations. The system equations can be expressed as 

XT = [AT]xT (10.110) 

where 

t [t t ] xT = xG xN 

The derivation of Eq. (10.110) is left as an exercise. The stability of torsional 
oscillations can be determined from the eigenvalues of matrix [AT]. 

Remarks 

1. The use of D-Q variables in describing the network enables extension to 
systems with multiple generators. 

2. The system model is derived by combining component models and the 
use of appropriate interface variables. The interface between the gener­
ator and the network is at the generator terminals and uses voltage and 
current variables. The generator currents are determined from the gen­
erator equations while the voltages are obtained from the network (and 
generator) equations. 

3. The methodology for forming the system matrix is general and flexible to 
accommodate varying component models and the inclusion of new subsys­
tems (such as SVC or HVDC controllers). 
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10.9 Simulation ot: SSR 

While steady state SSR problem is conveniently studied by the characterization 
of operating point stability based on small signal analysis, the study of transient 
torques requires the consideration of nonlinear models. This is due to the fact 
that transient torques which can damage shafts arise from large disturbances 
such as faults and reinsertion of series capacitors. 

Since the inclusion of network transients is essential for the analysis of 
SSR, the simulation used in connection with transient stability evaluation is 
inadequate. Also it is necessary to model the torsional dynamics considering 
multimass rotor representation with elastic shafts. Thus, special purpose simu­
lation programs become necessary. 

However, in the recent years, EMTP (Electro-Magnetic Transient Pro­
gram) which was initially developed for the study of high frequency lightning 
induced transients in transmission lines and subsequently extended for the study 
of switching transients, has become a general tool for the simulation of power 
systems whenever network transients have to be modelled. The incorporation 
of detailed synchronous machine and control system models has now made it 
possible to simulate transients with subsynchronous frequency oscillations. 

10.10 A Case Study 

A case study on IEEE First Bench Mark (FBM) model [13] is presented in this 
section. This consists of a single series compensated transmission line connect­
ing a synchronous generator to a large system. See Fig. 10.17. The network 
parameters on the generator base of 892.4 MVA are given in Table 10.1. The 
synchronous machine data are given in Table 10.2. The shaft inertias and the 
spring constants are given in Table 10.3. There are six inertias corresponding 
to six rotors-four turbines, generator and rotating exciter. 

Table 10.1 Network Parameters in Per Unit on the Generator Base 

Parameters Positive Zero 
Sequence Sequence 

R 0.02 0.50 
XT 0.14 0.14 
XL 0.50 1.56 

X sys 0.06 0.06 
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Figure 10.17: IEEE FBM system diagram 

Table 10.2 Synchronous Machine Parameters 

d-Axis Value q-Axis Value 
Parameters Parameters 

Xau 0.130 Xau 0.130 
Xd 1.790 Xq 1.710 
x' 0.169 x, 0.228 d H " 0.135 0.200 xd Xq 

Tdo 4.300 ~f 0.850 
T" 0.032 0.050 do °00 

Table 10.3 Rotor Inertias and Spring Constants 

Mass Inertia Shaft section Spring Constant 
Constant (H) pu Torque/Rad. 

HP 0.092897 HP-IP 19.303 
IP 0.155589 IP-LPA 34.929 

LPA 0.858670 LPA-LPB 52.038 
LPB 0.884215 LPB-GEN 70.858 
GEN 0.868495 GEN-EXC 2.822 • 
EXC 0.0342165 

Infinite 
Bus 

The generator is assumed to be operating at no load (Pg = 0, Qg = 0). 
The infinite bus voltage is assumed to be 1.0 pu. The AVR is neglected in 
the study. The nominal value of series compensation is assumed to be 70% 
(Xc = 0.35 pu). 
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10.10.1 Induction Generator Effect 

To study the induction generator e:ffect, the system is modelled using state 
equations as in section 10.8.1. The machine is represented by model (1.1) for 
simplicity. This requires only the subset of parameters given in Table 10.2 (the 
subtransient reactances and time constants are not required). 

An eigenvalue analysis is carried out with changing level of series com­
pensation. The locus of the critical mode with variation in the level of series 
compensation is obtained for the three cases given below 

(a) with the nominal machine parameters 

(b) with T~o = 0.43 s, other parameters at nominal values 

(c) with T~o = 0.085 s, other parameters at nominal value 

The loci for the three cases are shown in Fig. 10.18. All the eigenvalues for 
Xc = 0.35 pu are shown in Table 10.4. 

lt was observed during eigenvalue analysis that the results are indepen­
dent of the initial value of the rotor angle (80 ), 

Remarks 

1. The radian frequency of the critical network mode reduces with increase 
in the value of Xc. This frequency U:ub) is the complementary frequency 
defined by 

Induction generator effect T~o = 4.35, T~ = 0.855 

3OO! 
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(c) T~ = 0.085 

Figure 10.18: Loci of the network mode 

f: vb = fo - fer 

where the electrical resonant frequency (fer) is defined in Eq. (10.1). As 
Xc increases, fer increases and f:vb decreases. 

2. The damping of the critical network mode reduces with increase in Xc 
and can even become negative at higher values of Xc. This is due to the 
fact that the generator rotor circuits (field and the damper) offer higher 
negative resistances corresponding to lower values of the slip or rotor fre­
quencies. (Note that the frequency of the currents induced in the rotor 
circuits is f: ub ). 

3. The resistances of the rotor circuits affect the damping of the critical net­
work mode. Higher the resistance, greater the negative damping at in­
creased levels of series compensation (see Fig. 10.18). The quadrature 
axis damper has a greater effect than the field circuit on the direct axis. 
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Table 10.4 Eigenvalues (Neglecting mechanical system) 

S1. Case (a) Case (b) Case (c) 
No. 

Tdo = 4.3, T' = qo Tdo = .43, T' -qo - Tdo = 4.3, T' = qo 
0.85 0.85 0.085 

1,2 -4.4188 ± j612.37 -4.8076 ± j612.36 -5.9788 ± j612.25 
3,4 -3.2674 ± j141.54 -1.5622 ± j141.55 3.0097 ±j142.94 
5 -4.1916 -4.1940 -41.123 
6 -0.9589 -9.5865 -0.9588 

Table 10.5 The Transformation Matrix [Q] 

Rotor Column Column Column Column Column Column 
#1 #2 #3 #4 #5 #6 

HP -2.0824 -2.9408 6.0260 -1.3927 176.64 1.0000 
IP -1.5644 -1.7303 2.0624 0.0700 -224.25 1.0000 

LPA -0.9178 -0.4019 -1.3839 0.8103 25.399 1.0000 
LPB 0.2993 1.0571 -0.5753 -1.6117 -4.7335 1.0000 
GEN 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 
EXE 2.6806 -26.7648 -1.5206 -0.6072 -0.2119 1.0000 

Table 10.6 Modal Quantities 

Mode Mode Mode Mode Mode Mode 
#1 #2 #3 #4 #5 #0 

Frequency 98.7248 126.9921 160.5289 202.8517 298.1878 0.00 
(radjsec) 
Inertia 2.70 27.80 6.92 3.92 11297 2.894 
(Hi) 
Spring 139.627 2376.4 945.894 856.303 5328600 0.00 
constant 
(Ki) 

10.10.2 Study of Torsional Interaction 

The frequency of torsional modes, modal inertias and spring constants were 
computed using the transformation matrix [Q] given in Table 10.5. The results 
are shown in Table 10.6. The first five columns of the matrix [Q] are eigenvectors 
of modes 1 to 5 respectively. The last column is the eigenvector of mode zero . 

• 
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This shows that all the rotors participate equally in mpde zero, as expected. The 
modal inertia for mode zero is the sum of all the inertias of the six rotors. It 
is interesting to note that both modal inertia and the spring constant for mode 
#5 are very large compared to the rest of the modes. Due to this, the external 
network has negligible influence on mode #5. 

The variation of the synchronizing torque coefficient Tsm , which is de­
fined as 

(10.111) 

as a function of W is shown in Fig. 10.19. The zero crossing of Tsm(w) oc­
curs at the torsional resonant frequencies. The modal inertia (Hi) can also be 
determined as 

Hi = _ WB dTSml 
4w dw W = Wi 

where Wi is the modal frequency. The above expression follows from (10.38) and 
the relation (10.111). It is observed from Fig. 10.19 that the pole and zero near 
the frequency 298 rad/ sec are practically indistinguishable. 
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Figure 10.19: Variation of TSm 

The computations of TSe and TDe are carried out from the knowledge of 
Ye(s) which can be based on either simplified machine model or detailed model. 
In the simplified machine model (see section 10.5), the flux decay and damper 
windings are neglected and the stator is represented by a voltage source behind 
a constant reactance x, = x~. The variations of TSe and TDe as functions of W 

are shown in Fig. 10.20. 
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Figure 10.20: Variation of Tse and TDe. using simplified model 

The variations of TSe and TDe when detailed machine model is consid­
ered, are shown in Fig. 10.21. It is interesting to observe that the simplified 
model also gives accurate representation of the negative damping introduced by 
the network in the vicinity of the frequency 140 rad/sec, which is a function of 
the series compensation level. 

The eigenvalue analysis of the overall system has been carried out. For 
the nominal value of Xc = 0.35 pu all the eigenvalues are given in Table 10.7 for 
the two cases (i) with machine model (1.1) and {ii)with machine model (2.2). 
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Figure 10.21: Variation of TSe and TDe using detailed machine model{1.1) 

It is observed that torsional modes 1 to 4 are negative damped due 
to torsional interaction. The negative damping of the mode 4 is marginal as 
its frequency is not close to the critical network mode (#1) frequency. With 
machine model (1.1), mode 3 is most affected while with model (2.2), the mode 
2 is most affected. This is due to the fact the frequency of the network mode #1 
depends on the machine model. With machine model (2.2), the network mode 
has a frequency of 136.93 rad/sec compared to 141.24 rad/sec with machine 
model (1.1). This shows that the subtransient reactances affect the network 
mode. The damping of the network mode #1 is also affected by the presence of 
the additional damper windings due to the induction generator effect. 
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Table 10.7 Eigenvalues of the combined system 

Sr. No. Machine Machine Comments 
model (1.1) model (2.2) 

1,2 -1.4521 ± jl0.264 -1.5605 ± jlO.431 Torsional mode # 0 
3,4 0.02266 ± j 99.626 0.02082 ± j99.812 Torsional mode # 1 
5,6 0.02633 ± j127.14 0.04673 ± j127.17 Torsional mode # 2 
7,8 0.04135 ± j 160.35 0.02368 ±jI60.41 Torsional mode # 3 
9,10 0.00241 ± j 202.86 0.00095 ± j202.91 Torsional mode # 4 
11,12 O.OOOO± j 298.18 0.0000 ± j298.19 Torsional mode # 5 
13,14 -3.3951 ± j 141.24 -2.9000 ± j 136.93 Network mode # 1 
15,16 -4.4197 ± j 612.41 -4.7118 ± j 616.61 Network mode # 2 

17 -0.9590 -0.9683 
18 -1.2155 -1.2142 
19 - -20.259 
20 - -33.152 

The frequency of the network mode #1 (21.8 Hz) is the complement of 
the electrical resonant frequency (38.2 Hz) as mentioned earlier. Its frequency 
is subsynchronous. There is also a supersynchronous network mode (#2) of 
frequency 98.2 Hz. 
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Figure 10.22: pamping of torsional modes (Machine model 2.2) 

The variations of the real parts of the eigenvalues corresponding to the 
torsional modes as series compensation is varied are shown in Figs. 10.22 and 
10.23 for machine models (2.2) and (1.1) respectively. The imaginary parts 
(radian frequencies) are not affected by the external network. The loci of the 

I 
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Figure 10.23: Damping of torsional modes (Machine model 1.1) 

network mode #1 in)he complex plane as series compensation is varied are 
shown in Figs. l~and 10.25 for machine model (2.2) and (1.1) respectively. 
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Figure 10.24: Locus of network mode #1 (machine model 2.2) 

Remarks 

1. Due to Torsional Interaction (TI), the damping of each torsional mode 
(except mode zero) is significantly affected in the vicinity of a certain level 
of series compensation (which results in the frequency /;ub coinciding with 
the torsional frequency). For mode 1, this occurs at the highest level of 
series compensation and for mode 4, this occurs at the lowest level of 
compensation. 
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Figure 10.25: Locus of network mode #hm,~chine model 1.1) 

2. The electrical resonant frequency (fer) and consequently f~u.b depend on 
the machine model selected. The model (2.2) gives a slightly lower value 
of fer and consequently a higher value of J;u.b as compared with model 
(1.1) for the same level of compensation. 

3. The negative damping of torsional modes is dependent on the machine 
model selected. The machine model (1.1) results in slightly higher values 
of negative damping. . 
The damping of zeroth mode increases as the level of compensation is in­
creased. Here also model (2.2) results in slightly better damping compared 
to model (1.1). 
To summarize, the model (1.1) gives slightly pessimistic results compared 
to model (2.2) regarding torsional damping. 

4. The network mode #1 (f:u.b) is affected both in frequency and damping as 
compensation level is increased. It is interesting to note that at compen­
sation levels which cause SSR, the network mode has increased (positive) 
damping. 

The maximum TI occurs in the neighbourhood of compensation level of 90% 
which leads to SSR for mode 1. . 

It is interesting to compare Fig. 10.25 with Fig. 10.23. The torsional 
interaction results in damping of the network mode and undamping of the tor­
sional mode. 
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10.10.3 Simulation 

A case study of the system simulation using IEEE First Benchmark Model is 
presented here [32]. The simulation is carried out to study the response of 
the system to a three phase to ground fault through a reactance at location 
F indicated in Fig. 10.17. The fault is initiated at the instant when phase-A 
voltage at 'F' is zero. The fault reactance XF is 0.04 pu in each phase. The fault 
in phase A is cleared at the first current zero 75 milliseconds after the initiation 
of the fault. Faults in phase B and C are cleared at the subsequent current 
zeroes in their respective phases. The series capacitor is selected at Xc = 0.371 
pu. The generator is initially operating at Pg = 0.9 pu at a power factor of 0.9 
lagging (at the generator terminals). 
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The generator current, terminal voltage and capacitor voltage all in 
phase A, are shown in Fig. 10.26. The electromagnetic torque and the shaft 
torques are shown in Fig. 10.27. 

The results show that the shaft torque in GEN-EXC section is increasil.Lg 
with time indicating self excitation due to torsional interaction. The second 
torsional mode is excited and is undamped. The results given here are agreement 
with those given in [13]. 

The simulation can be used to evaluate transient torques in shafts when 
\ there is a major disturbance such as fault followed by clearing. 
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Chapter 11 

Countermeasures for 
Subsynchronous Resonance 

The problem of SSR can be classified as 

1. Steady state problem due to self excitation. The causes are 

a. Torsional Interaction 

b. Induction generator effect 

2. Transient torques which can cause fatigue damage to rotor shafts. 

The steady state problem should be avoided by proper planning. "How­
ever it may not be possible to identify all critical operating conditions (which 
give rise to self excitation) while planning. The problem of transient torques is 
mainly solved by providing proper filtering (to limit the magnitudes of torques) I 

and damping (with auxiliary devices). 

In addition to the devices required for damping SSR, it is also necessary 
to provide protective measures and relaying to monitor conditions that can lead 
to damage. 

11.1 System Planning Considerations 

There are several things that can be considered during system planning. These 
are listed below 

(i) Series versus Shunt Compensation 
The use of shunt compensators do not result in electrical resonant fre­
quencies below synchronous frequency. Actually, it can be shown that 
resonance due to shunt capacitor is at supersynchronous frequencies. It 
was shown in chapter 10, that supersynchronous frequency currents result 
in positive damping of torsional modes. As a matter of fact, the low (and 
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resistive) network impedance at supersynchronous frequency, increases the 
damping. 

However, the shunt compensation cannot completely replace series com­
pensation. The use of series compensation tends to be economical and 
more flexible. The location of series capacitors in a line is not critical 
(compared to that of shunt compensation which should be located at the 
midpoint of the line for maximum effectiveness). It is advantageous to 
use both series and shunt compensation where possible. The controllable 
shunt compensation (using SVC) not only helps to regulate the line voltage 
but also reduce the level of series compensation required. 

(ii) Turbine-Generator Modifications 
There are limitations on what can be acheived here. For example, it is 
impractical (due to constraints on shaft and bearing size) to design ma­
chines for which the lowest torsional (mode) frequency is greater than 
synchronous frequency. The torsional mode frequencies of the turbine­
generator can be varied only within small limits. However, this has not 
much impact on the SSR problem as changes in the network due to future 
growth/line outages affect the critical electrical resonance frequency. 

Another factor that has a critical bearing on SSR problem is the mechanical 
damping of torsional modes. It would be desirable to increase this damping 
but is considered as impractical. Another means of limiting shaft torques 
is through the use of slip couplings which has not been investigated. 

Pole-face A:t;nortisseur Windings can be added to reduce the net neg­
ative resistance of the generator at subsynchronous frequencies (to control 
the induction generator effect). It is relatively inexpensive to install pole­
face amortisseur windings in new machines. However, retrofitting on old 
machines is not feasible. Also, the windings are not effective to control 
torsional interaction and transient torques. 

(iii) System Modifications 
The steady state SSR problem is mainly due to the coincidence of elec­
trical resonant frequency (fer) with the complement of a torsional mode 
frequency (f 0 - f m). It is thus possible to adjust the series compensation to 
avoid this coincidence. As the problem is more severe at lower frequency 
torsional modes, reducing the level of series compensation helps. This 
can also be done during system operation by bypassing some capacitor 
segments. 

It is also possible to have coordinated series capacitor use with load­
ing. As the mechanical damping decreases with the load, (power output 
of the generator), it is practical to insert capacitors only when the loading 
exceeds the min,imum loading. As series capacitors are mainly required 
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at higher loadings, this procedure of coordinating the capacitor use with 
load is consistent with the dual objectives of improved stability limit and 
avoidance of steady state SSR problem. 

(iv) Series Capacitor Protection and Reinsertion 
It is not economically feasible to use capacitors that can withstand fault 
currents. Thus, it is necessary to protect the capacitor banks against 
overcurrents (and voltages) by bypassing them. In earlier schemes of pro­
tection, a spark gap flashes over as the voltage crosses a predetermined 
level. However, from system stability considerations, it is also necessary 
to reinsert the capacitors within a few (3 to 5) cycles after fault clearing. 
This can be done by opening the bypass switch. This process of reinser­
tion of capacitors produces transient voltages across the capacitors. When 
these voltages exceed the spark gap setting, the gap may reflash resulting 
in failure to reinsert the capacitors. The setting of the spark gap deter­
mines the protective level of the capacitor. While higher gap setting is 
desirable for successful reinsertion, lower setting is necessary to reduce the 
transient torques during faulted period. A dual gap (or extended range 
dual gap) protection scheme helps, to achieve both objectives of capacitor 
bypass at lower fault levels (even for remote system fault) and successful 
reinsertion. 

In recent schemes, the capacitor overvoltages are limited by using a 
highly nonlinear metal oxide resistor in parallel with the capacitor. (see Fig. 
11.1). The resistor is sized such that very small currents flow through it dur­
ing normal capacitor voltages. During faults, the resistor provides parallel path 
for the current and the voltage across the capacitor reaches a saturation level. 
Thus, the capacitor is automatically bypassed and reinserted without any hitch. 
A case study showed that a 15 MW-sec nonlinear resistor applied for 5 cycles 
reduces the capacitor voltage from 3.5 to 2.2 pu with a corresponding reduction 
in the peak shaft torque from 3.7 to 1.7 pu. 

Series Capacitor 

o--~------~ ~----~---o 

.,.... 
S Reactor 

Nonlinear 
Resistor 

Figure 11.1: Series capacitor protection 
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11.2 Filtering Schemes 

11.-2~1- ~ Static BIo'eking Filter (SBFJ 

This is inserted in series with the generator step-up transformer winding on the 
neutral end of the transformer high voltage winding (see Fig. 11.2). It can also 
be placed on the high voltage side of the transformer winding. The SBF is a 
three phase filter made up of separate filters connected in series. Each section of 
the filter is a high Q, parallel resonant circuit tuned to block electric currents at 
(complementary) frequencies corresponding to each of the torsional mode. Thus, 
this filter provides an excellent transient torque control if properly tuned. The 
static blocking filter was first installed at Navajo Generating station in Western 
U.S.A. in 1976. 

Bypass 
Switch 

Transfonner Neutral 

Thyrite 

Figure 11.2: Static Blocking Filter 

Static blocking filter can provide solution to both steady state and tran­
sient torque problems. Since each ~qter is tuned to protect an individual gen-
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erating unit, the filter performance is not much affected by system changes. 
However, the tuning of the filter is affected by changes in the system frequency 
and temperature sensitivity of the filter capacitor. A disadvantage of the filters 
is that they take up space in the switch yard. Also there is the requirement of 
increased insulation level of the generator transformer. 

11.2.2 Bypass Damping Filter 

The bypass damping filter is connected in parallel across the series capacitor 
in each phase (see Fig. 11.3). The filter is useful for countering induction 
generator effect as it can introduce significant positive resistance in the circuit 
for su})synchronous oscillation frequencies up to 90% of the system frequency. 
Howft~er, the effectiveness of the filter reduces at the higher frequencies. 

Damping 
Resistor 

O,--'-----------ll-------..L--O 

Series Capacitor 

Figure 11.3: Bypass Damping Filter 

The damping resistor is connected in series with a parallel combination 
of a reactor and capacitor which is tuned at the system frequency. Thus the filter 
has a very high impedance at the system frequency and the power losses in the 
resistor are limited (under normal conditions). The damping resistor becomes 
effective at subsynchronous frequencies. The damping filter can be expensive at 
high voltage levels. but in distribution or subtransmission circuits where series 
capacitors are used (e.g. in resonant link fault current limiting circuits) the filter 
has been applied. 

11.3 Damping Schemes 

11.3.1 Supplementary' Excitation Damping Control 
(SEDC) 

This is aILextension of the PSS concept applied for damping torsional frequency 
oscillations. It has been mentioned in chapter 8 that PSS used for damping low 
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frequency oscillations is deleterious for torsional (mode) oscillations. This arises 
from the fact that the net phase shift between the input speed signal and the 
electromagnetic torque is such that the damping torque is negative at torsional 
frequencies. 

For damping torsional modes, it is also necessary to utilize the concept 
of observability. The speed signal can be measured from both ends a)from the 
rotating exciter and b)the front (standard) end at H.P. turbine. The mode 
shapes for a particular six mass rotor system are shown in Fig. 11.4. This shows 
the relative amplitudes of oscillation at different rotors for modes 1 to 5. The 
modes are numbered in ascending order as their natural frequencies. Thus, the 
mode 1 has the lowest natural frequency while mode 5 has the highest frequency. 
Typically, mode 5 is unaffected by torsional interaction. 

O-----lOI--------lOI--------lOI--------lOI------O 
HP IP LPA LPB GEN EXC 

~ .....:::::J _____ -~ 

MODEl 

~ I === ___ 1 =====~;//~ 
MODE 2 

MODE 4 

7~~~----J7-~ 
MODE 5 

Figure 11.4: Mode shapes for a six mass system 
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The mode shapes also indicate the phase of the measured variable in 
relation to the generator speed. For example, the observed variable (at the 
exciter end) for mode 2 is of oppusite phase compared to the generator motion. 
Also, it is seen from Fig. 11.4, that modes 1 and 2 are best observed from the 
exicter end while 3 and 4 are best observed from front standard. This will enable 
maximum signal to noise ratio in the control signals. Thus, although all modes 
are theoretically observable at each rotor location, from a practical viewpoint, 
it is advisable to use both control signals (from the two measurements). Also it 
is impractical to use a single dynamic compensator for damping all the modes. 

The control objectives are met by parallel processing each mode as shown 
in Fig. 11.5. Each mode is isolated from the relevant speed signal measurement, 
by bandpass filtering at each torsional frequency. The necessary phase and 
gain compensation are provided individually for each component mode and the 
output of SEDe is obtained by summing the control signal for all the modes. 

Figure 11.5: SEDe modal control structure 

The phase compensation designed at Navajo generating station [7] in 
1975, utilized two first order phase delay networks to allow compensation within 
±2400. Such a large variation was found necessary to account for the variability 
of phase produced by a bandpass filter around its centre frequency and lack 
of knowledge of this frequency at the time of its manufacture. The bandpass 
filter was designed with a sharp cutoff to eliminate interference between adjacent 
signal channels. A desirable feature in the design of the SEDe is its applicability 
to turbo-generators of different design. The SEDe tuned for different centre 
frequencies (of tlu band pass filters) are required for different generators. 
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The rating of SEDe required while acting alone, to overcome TI and 
avoid self excitation at Navojo was found to be equal to the rating of the unit. 
Hence, the SEDe was designed to supplement the Blocking Filters which were 
designed as the main countermeasure for SSR problem (both steady state and 
transient). The use of SEDC improves the margin of torsional stability at the 
extremes of operating condition . 

• 
Tests carried out at Jim Bridger generating station showed that SEDe 

with optimized phase settings {for resonant conditions} provide greater damping 
as resonance is approached. (see Fig. 11.6). This is to be compared with the 
case with no SEDe for radial operation. Fig. 11.6 shows the modal damping 
versus percentage compensation for (a) without and (b) with SEDe. 

a-withSEDC 

b - without SEDC 

b 

% Series Compensation 

Figure 1US: Modal damping vs series compensation 

11.3.2 NGH Damping Scheme [8, 9] 

This scheme was proposed by N.G. Hingorani to damp subsynchronous frequency 
currents in transmission lines and was first installed at Southern California Edi­
son's Lugo substation in U.S.A. in 1984 [10, 11]. 

The basic concept of NGH-SSR damping scheme can be explained with 
reference to Fig. 11.7. If a sinusoidal voltage of frequency fa is combined with a 
De voltage, it is seen that, for the combined voltage, some half cycles are longer 
than the nominal half cycle ~eri~ of-~:-If.a sinusoidal voltage of frequency 

fe < fa is considered instead of the De voltage, again it is observed that the 
combined voltage has some half cycles which are longer Than ~. Similarly 

any combination of a base signal of frequency fa with De and subsynchronous 
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frequencies would result in some half cycles longer than the nominal half cycle 
period. 

15,----r--~----,----r---.._-_, 

, 
, ' 

-05 I I 

, ' , ' 
, I 
, I 

" I 
Til TIT I 
--,~<-~>-~ 
2 I I 2 I 2 

(a) Fundamental frequency combined with DC 

-05 

" :: '--' : " , 
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Vs = Subsynchronous, VT = Total 

(b) Fundamental frequency combined with subsynchronous frequency 

Figure 11.7: Effect of presence of DC and subsynchronous frequency 

The voltage across the series capacitor is a combination of fundamental 
frequency, DC and subsynchronous frequency components. The basic principle 
ofNGH damping scheme is to dissipate capacitor charges whenever the measured 
half cycle period exceeds the nominal. This is done by inserting a resistor across 
the capacitor through thyristor switches (see Fig. 11.8). The thyristor stops 
conducting whenever the capacitor voltage (and the thyristor current) reaches 
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zero. Thereafter, the measurement of half cycle period restarts from a new 
voltage zero. No thyristor fires for half cycles which are shorter than the set 
period. Two thyristors are needed for the two polarities. For high voltages, the 
thyristor shown in Fig. 11.8 actually represents a series string of thyristors. The 
resistor value is not critical although lower its ohmic value, the more effective it 
is (except when it is too low). It is recommended tha.t the resistor's ohmic value 
within 5 to 10 percent of the capacitor ohmic value will give satisfactory results. 

Resistor 

Thyristor 
Control 

Capacitor 
Voltage 

O-'--------lI--------L--10 

Series Capacitor 

Set Time 

Figure 11.8: Basic NGH - ssn damping scheme 

Thyristor Control 

A conceptual firing control scheme for thyristors is shown in Fig. 11.9. 
A pulse generator continuously generates a train of pulses at a rate high enough 
so that pulse count can be used as a measure of the half cycle period. A sig­
nal proportional to the capacitor voltage is fed into an amplifier/clamp which 
produces a square wave signal between two zero crossings for one polarity of 
the input wave, thus representing the length of each half wave. The gate allows 
the pulses to go through for the duration of the half wave. The counter, which 
is reset by the square wave, counts the number of pulses from voltage zero so 
that whenever the count exceeds the set value, the counter releases the firing 
pulse to its thyristor string. A common pulse generator may be used for the two 
thyristor strings in each phase. 

The operation of the controller is independent for each phase. The con­
troller is simple and does not require detection of specific subsynchronous signals. 
The control signal can be obtained at the platform level. Alternately, it can be 
generated as the difference of two voltage signals from the measuring devices 
(on each side of the capacitor) of the voltage with respect to ground. In this 
case, the control circuitry could be located at the ground level and firing pulses 
transmitted through optical links. 
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Figure 11.9: Thyristor control for NGH-SSR damping scheme 

The objectives of the NGH damping scheme are 

a) reduce transient torques 

b) suppress steady state (self excitation) SSR problem 

c) suppress offset of series capacitors 

d) protect the series capacitors 

The scheme may be designed for any or all of the above purposes. If 
transient torque control is of major concern, the set period can be larger than 
the nominal half cycle period so that in steady state and with small perturbations 
the thyristors will not fire. The thyristors will fire only during large disturbances 
such as faults followed by clearing. If steady state SSR problem is of major 
concern, the set period can be slightly less than the nominal half period; then 
the thyristor will conduct during steady state at the tail end of each half cycle 
of the capacitor voltage; this will provide detuning effect against gradual build 
up of oscillations. There will be continuous power loss in this case, but is very 
small and of minor consequence. 

The thyristors can help to protect the capacitors (and themselves) by 
firing if the instantaneous forward voltage exceeds a set level. The resistor 
limits the discharge current from the capacitor. The capacitor and thyristor 
protection can also be implemented by employing nonlinear zinc oxide resistors 
across the thyristors (see Fig. 11.10). The protection level of the zinc oxide 
resistor can be selected such that it (in series with the linear resistor) provides 
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adequate protection for the capacitor. The bypass switch helps to relieve the 
thyristor/resistor when their duty exceeds safe limits. The bypass switch is also 
required when capacitor is to be bypassed and reins~rted under normal operating 
conditions. 

o---~ 

Bypass Switch 

Figure 11.10: Thyristor and capacitor protection 

NGH scheme is a passive scheme-it does not require feedback signals. 
The requirement of thyristors are well within the state of the art. For example, 
a 1000 A, 30 ohm capacitor may require a 80 kV thyristor string with a resistor 
duty of 20-50 MJ per phase. 

The studies carried out on NGH scheme [9] indicate that it is an effective 
countermeasure for both steady state and transient SSR problems. However it 
was found that some undamping can result for torsional modes which are 'off 
tune' (not in resonance with the electrical system). It is suggested that the 
use of SEDC can help to overcome this problem. In summary, the studies 
show that NGH scheme with appropriate SEDC is beneficial in applying series 
compensation over a wider range (0-75%) whereas SSR problem limited the 
compensation level to 15%. 

11.3.3 Dynamic Stabilizer [12-15] 

This is a device based on the use of a modulated shunt reactance connected 
to the isolated phase bus of a turbine-generator unit. The modulation of the 
reactance is done with the help of thyristor control which acts in response to a 
signal based on the generator rotor velocity deviation. See Fig. 11.11. 
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Figure 11.11: Dynamic stabilizer 
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The shunt susceptance of the TCR (Thyristor Controlled Reactor) is 
given by the relation 

() 
a - sina 

Ba =----
7rX[. 

(11.1) 

where a is the conduction angle, XL is the reactance (at fundamental frequency) 
of the shunt reactor. The conduction angle a is related to the firing angle a by 
the relation 

a = 2(7r - a) ( 11.2) 

The firing angle a is modulated around a quiscent point in response to the 
oscillation of the generator rotor. In the absence of the rotor oscillations, the 
dynamic stabilizer appears as a continuous reactive load. 

The design of the dynamic stabilizer is such that it generates sufficient 
current of appropriate phase to compensate for the critical subsynchronous fre­
quency currents in the generator armature due to the network resonance. A 
simple explanation of the working of dynamic stabilizer based on the simplified 
analysis presented in chapter 10 is given below. 

The a-sequence network for a single machine (connt-vted to an infinite 
bus through a series compensated line) system is shown in Fig. 11.12. This is 
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based on the assumptions a) flux decay and damper windings are neglected b) 
transient saliency is neglected (Lq = L~ = L'). 

+ 

~i sg 

L 

Figure 11.12: a - sequenc.e network 

c R 

The current through the dynamic stabilizer (in steady state) is given by 

is = -jBsVa 

where Va is the voltage (phasor) at the generator terminals, and 

1 
Bs= -­

wLs 

If Bs is modulated around a quiscent point, then 

!:::..is = -j!:::..BsVa 

It was shown in chapter 10, that if 

w = 1 + Asinwmt 

then 
e = E'sinw t + esub + eSup 
a 0 a a 

where 
sub AE' ( ) ( ) ea = - -2 - Wo - Wm cos Wo - Wm t 

Wm 

and 
sup _ AE' ( ) ( ) ea - -2- wo+wm cos wo+wm t 

Wm 

(11.3) 

(11.4) 

(11.5) 

(11.6) 

(11. 7) 

It is aSRullled that the generator is operating at no load, (00 = 0) which is the 
worst operating condition since modal damping is minimum. 
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Assumill~ that LIte susceptance is modulated using a control signal de­
rived from gener:,,tor rotor velocity, 

(11.8) 

where rn is the gain to be selected. 

The instantaneous current !lis is given by 

/}'i; = !lBsE'sin(wot-~) = -!lBsE'coswot (11.9) 

In deriving the abuve expression, the sub and super synchronous frequency com­
ponents of voltage are ignored (as they are small) and the fundamental frequency 
terminal volt age is assumed to be same as the fundamental frequency component 
of eo: (as load current is assumed to be zero). 

Snbstituting Eq. (11.8) in (11.9) we get, 

(11.10) 

where 

rnA , . ( ) TE sm Wo-Wm t 

- rr;A E' sin(wo + wm)t 

The subsynchronous frequency current !li~ub flows through the generator arma­
ture and the network. The current !li~~b flowing through the armature is given 
by 

A 'sub CrnAE'. [( ) "'] 
uZsg = 2 sm Wo - Wm t + 'I" 

where C and <p are defined by 

zsub 
CL,<p = N 

zsub + zsub 
N q 

(11.11) 

(11.12) 

7.~"') i~ t he network impedance, viewed from tltp generator terminals, COIIl­

pUled at subsynchronous frequency, (wo - wm ), Similarly, Z~ub is the generator 
impedcUlce at subsynchronous frequency, The operating value of the shunt re­
'wt alt(,p Lso can be clubbed with the network. Fo!' resonance conditions, Z~ub is 
f ,q)dcit in' alld 

Z sub + Zsub "" R N 9 - , (11.13) 
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Thus, C is large at resonance and ¢ ~ -~. With ¢ = -~, 

A ·sub CmAE' ( ) 
UZ sg = - 2 cos Wo - Wm t 

The component of the electromagnetic torque due to this component of current, 
can be shown to be given by 

(11.14) 

If m is negative, then the torque is entirely damping (in phase with ~w). This 
shows that the control strategy must be to reduce the shunt reactor current if 
the speed is increased. 

The interesting thing to note about the operation of the dynamic sta­
bilizer is that under the worst (resonant) conditions, even a small modulation 
in the reactor current results in large oscillating current in the generator arma­
ture due to amplification occuring at resonance. The amplification would be 
maximum if the stabilizer is located at a point in the system when all inductive 
reactance is on one side of stabilizer while all the capacitive reactance is on other 
side. 

The advantages of dynamic stabilizer are 

1. The connection as a shunt device eliminates the requirement to carry con­
tinuous generator load current (as compared to blocking filters) 

2. The operation is not sensitive to variations in the system frequency or 
ambient temperature. 

3. Maintenance requirements are expected to be minimal. 

The disadvantages of dynamic stabilizer are 

1. It does not provide protection against induction generator or transient 
torque problems. The damping is provided only when rotor oscillations 
are present. 

2. Stabilizer introduces harmonic currents which can be minimized by (a) 
connecting the thyristor controlled reactors (TCR) in delta and (b) pro­
viding two secondary windings, one connected in delta and other connected 
in star to eliminate 5th and 7th harmonics (This arrangement is termed as 
12 pulse operation of TCR). 
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The first dynamic stabilizer was installed at San Juan generating station. This is 
a 12 pulse TCR and has short time rating of about 20% of that of the generating 
unit. 

The dynamic stabilizer is essentially similar to the Static Var Compen­
sator (SVC). The only difference is that SVC also has fixed or thyristor switched 
capacitor and voltage control in addition to any auxiliary control. The damping 
of torsional oscillations can also be done by providing an auxiliary (supplemen­
tary) controller with appropriate design. As the SVC is normally installed at a 
location away from the generator, the required control signal can be synthesized 
from locally measured variables of line currents and voltages. The generator 
rotor velocity can also be sensed by computing the frequency of the (internal) 
generated voltage [20]. 

11.4 Relaying and Protection 

During system operation, care has to be taken to protect the turbine-generator 
against failures or malfunctioning of filtering and damping devices used as coun­
termeasures for SSR problem. There are two types of relays used to detect dan­
gerous torsional instability conditions and subsynchronous frequency currents 
and activate the tripping of the generating unit. These are 

A. Torsional Motion Relay 

B. Armature Current SSR Relay 

11.4.1 Torsional Motion Relay 

This relay detects excessive mechanical stresses in the turbine-generator (T-G) 
shaft and operates to disconnect the machine from the transmission network. 
The input speed signals for the relay are derived from toothed wheels at each 
end of the T-G shaft. Narrow band filters tuned to the torsional (mode) fre­
quencies are used to obtain signals that are proportional to the respective modal 
oscillations. From the knowledge of mode shapes and fatigue life of the shaft 
material, the relay can be used to compare the shaft stress with a predetermined 
standard. The main objective of this relay is to protect against self excitation 
caused by torsional interaction (TI). It is too slow to provide protection against 
high transient torques. 

This relay has been applied at Navajo plant in U.S.A. and has protected 
a generating unit from growing oscillations on one occasion when SEDC mal­
functioned. 
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11.4.2 Armature Current SSR Relay 

This relay is used to detect subsynchronous oscillations in armature current and 
can b8 applied for protection of generators against both induction generator 
effect and torsional interaction. It is to be noted that growing armature currents 
also results in growing shaft torques. 

A combined modulation and filtering scheme is used for the extraction 
of the SSO (Subsynchronous Oscillations) component from the input currents. 
A functional block diagram of the signal extraction is shown in Fig. 11.13. The 
multiplier circuits perform synchronous modulation and produce components 
wi th frequencies (J 0 - fer) and (J 0 + fer) w here fer is the frequency of the oscil­
lations present in the currents. The relay is equipped with two level detectors 

Precision 
3cj> 

Voltage 
Generator 

Figure 11.13: Signal extraction for SSO 

Wide Band To 
Filter 

15 -45 Hz Tnp 
Detection 
CircUit 

and adjustable time delay. The minimum pick-up level is about 3% of the rated 
generator current. 

Long time delays are required to avoid unnecessary trips. Thus, the 
relay cannot provide transient torque protection. Also, the torsional instability 
caused by PSS is not detected by this relay. 

Improvements in the design of the SSR relay provide for selective dis­
crimination of low amplitude sustained or growing SSO and fast response for 
high amplitude fault currents. For adequate protection, the low amplitude sus-



taillcd currents should be detpctcd l)l'l'l\~ 0.01 pH of rated armature currcllt and 
response time within 75 ms f(lf tIl(' liig,b·&t amplitude fault currents (excE'edill~; 
3.0 pu). 

11.4.3 Torsional Monitor 

This device provides data to assess the severity of slmft torsional vibrations rc­
suIting from subsynchronous oscillations. The turbine-generator is continuou:'lly 
monitored by the device but no protection is provided. 

The first monitor was installed at Navajo plant. The records of shaft 
torques are ~enerated by the monitor following any transient electrical distur­
bance. Improvements ill the design of monitors provide for estimation of the 
shaft fatigue damage ill addition to the recording of torque oscillations. This 
helps in restoring to service of the T-G units, that have tripped off line due to 
SSR relay operation, faster (if the damage is marginal). 

References and Bibliography 

1. IEEE Committee Report, "Countermeasures to Subsynchronous Reso­
nance problems", IEEE Trans. vol. PAS-99, No.5, 1980, pp.1810-1818 

2. IEEE Committee Report, "Series capacitor controls and settings as coun­
termeasures to subsynchronous resonance", IEEE Trans. vol. PAS-101, 
No.6, 1982, pp.1281-1287 

3. RG. Farmer, A.L. Schwab and Eli Katz, "Navajo project report on sub­
synchronous resonance analysis and solution", IEEE Trans. vol. PAS-96, 
No.1, 1977, pp.1226-1232 

4. A.L. Courts, N.G. Hingorani and G.E. Stemler, "A new series capacitor 
protection scheme using nonlinear resistors", IEEE Trans. vol. PAS-97, 
July / Aug. 1978,pp.1042-1052 

5. J.M. Undrill and F.P.Demello, "Subsynchronous oscillations, Part II:Shaft­
system dynamic interactions", IEEE Trans. vol. PAS-95, July/Aug. 1976, 
pp.1456-1464 

6. C.E.J. Bowler and D.H. Baker, "Concepts of supplementary torsional 
damping by excitation modulation", IEEE Pl) blication, 'Symposium on 
Countermeasures for Subsynchronous Resonance' No.81 TH 0086-9-PWR, 
1981 

7. C.E.J. Bowler and R.A. Larsen, "Operatill. experience with Supplemen­
tary Excitation Damping Controls", IEEE Publicauon 'Symposium on 



406 Power System Dynamics - Stability and Control 

Countermeasures for Subsynchronous Resonance', No. 81 TH 0086-9-
PWR,1981 

8. N.G. Hingorani, "A new scheme for sub synchronous resonance damping 
of torsional oscillations and transient torque - Part I", IEEE Trans. vol. 
PAS-100, No.4, 1981, pp.1852-1855 

9. R.A. Hedin, K.B. Stump and N.G. Hingorani, "A new scheme for Subsyn­
chronous Resonance damping of torsional oscillation and transient torque 
- Part II", IEEE Trans. vol. PAS-lOO, No.4, 1981, pp.1856-1863 

10. N.G. Hingorani et aI, "Prototype NGH Subsynchronous Resonance damp­
ing scheme - Part I - Field installation and operating experience", IEEE 
Trans. vol. PWRS-2, No.4, 1987, pp.1034-1039 

11. 1.S. Benko, B. Bhargava and W.N. Rothenbuhler, "Prototype NGH Sub­
synchronous Resonance damping Scheme - Part II - Switching and short 
circuit tests", IEEE Trans. vol. PWRS-2, No.4, 1987, pp.1040-1049 

12. T.H. Putman and D.G. Ramey, "Thec:y of the modulated reactance so­
lution for subsynchronous resonance", IEEE Trans. vol. PAS-101, No.6, 
1982, pp.1527-1535 

13. O. Wasynczuk, "Damping Subsynchronous Resonance using reactive power 
control", IEEE Trans. vol. PAS-100, No.3, 1981, pp.1096-1104 

14. D.G. Ramey et aI, "Dynamic Stabilizer verification tests at San Juan sta­
tion", IEEE Trans. vol. PAS-lOO, No.12, 1981, pp.5011-5019 

15. A.E. Hammad and M. EI Sadek, "Application of a thyristor controlled 
VAR compensator for damping subsynchronous oscillations in power sys­
terns", IEEE Trans. vol. PAS-103, No.1, 1984, pp.198-212 

16. O. Wasynczuk, "Damping Subsynchronous Resonance using energy stor­
age", IEEE Trans. vol. PAS-101, No.4, 1982, pp.905-914 

17. C.Chen, O. Wasynczuk and N.A. Anwah, "Stabilizing Subsynchronous 
Resonance using transmission current feedback" , IEEE Trans. vol. PWRS-
1, No.4, 1986, pp. 34-41 

18. Abdel-Aty Edris, "Series compensation schemes reducing the potential of 
Subsynchronous Resonance", IEEE Trans. on Power Systems, vol. 5, 
No.1, 1990, pp. 219-226. 

19. L.N. Hannett and F.P.DeMello, "Mechanical countermeasures to subsyn­
chronous torsional instability", IEEE Trans. on Power Systems, vo1.5, 
No.4, '990, pp.1l46-1150 

20. K.R. Padiyar and R.K. Varma, "Static VAR systems auxiliary controllers 
for damping torsional oscillations", Int. J. Elec. Power and Energy Sys­
tems, vo1.12, No.4, 1990, pp.271-286 



Chapter 12 

Simulation for Transient Stability 
Evaluation . 

i. 

Transient stability of a system refers to the stability (generators remaining in 
synchronism) when subjected to large disturbances such as faults and switching 
of lines. Hence, linearized analysis is not applicable and the nonlinear equations 
of the system have to be solved in stability evaluation. As analytical solutions 
do not exist even for a simple system, it has been the practice to numerically 
solve the system equations. In the early days, AC network analyzer was used 
in conjunction with step by step method of solving swing equations. With the 
advent of digital computers, several production grade computer programs have 
been developed which can handle not only large power systems (with hundreds 
of generators) but also consider detailed generator controller and load models. 
In addition, models of protection system (relaying) are also incorporated into 
them such that the present day programs can be termed as simulation programs 
rather than transient stability programs. In other words, checking transient 
stability is only one of the many objectives of running a simulation program 
which can give lot more information such as predict the dynamic performance 
of the system involving low frequency transients (typically less than 5 Hz). 

There are three modes of simulation depending on the varying details of 
component models. These are 

1. Short term simulation « 10 sec) 

2. Mid term simulation (up to 5 minutes) 

3. Long term simulation (20 minutes or longer) 

Short term simulation has to consider rapidly changing electrical vari­
ables (including swinging among generators) while in long term simulation, the 
slow oscillations in frequency and power (after the fast electrical transients such 
as iriter machine oscillations have decayed) are of importance. 

The short term )limulation program is usually referred to as transient 
stability program. The~boiler and load frequency controller models are neglected 
in short termsnnulation. 
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In this chapter, techniques for short term simulation are discussed with 
the objective of evaluating transient stabili':Y. While simulation of single machine 
system has been covered in chapter 6, thi;=; chapter considers the simulation of 
multi-machine systems. 

12.1 Mathematical Formulation 

The system equations are differential algebraic as the generator stator and net­
work transients are neglected and described by algebraic equations. The gener­
ator and controller equations are nonlinear dynamic equations given by 

i: = f(x,y) (12.1) 

where y consists of generator terminal voltages (expressed in rectangular or 
polar coordin~tes). It is assumed that the generator voltages are sinusoidal 
and represented as slowly varying phasors which are determined from network 
(including stator) algebraic equations given by 

0= g{:c, y,p) (12.2) 

where pis (1.jet of p;>,rameters (such as load powers). It is to be noted that there 
are as many equatiolls as the number of unknowns y. Thus Eq. (12.2) refers 
to power balance in the network and y is the vector of bus voltages (including 
generator terminal buses). Also, as the network changes due to switching or 
fault, Eq. (12.2) also changes in structure. 

There are two major issues concerning the solution of DAE (Differential 
Algebraic Equations) of type (12.1) and {12.2} namely 

a) Existence of a solution of the algebraic equations (12.2) 

b} Methods of solution 

It is usually assumed that the solution of differential equation (12.1), 
given y, exists. It is also assumed that the initial conditions, Xo and Yu (from 
the operating point) are known at time t = to. Yo may be determined from power 
flow analysis (steady state solution) and Xo computed from the knowledge of Yo 

and power outputs of generators. 

If it is assumed that the solution of the algebraic equation {12.2} exi3ts, 
and y can be solved in terms of x as 

y = h(x,p} (12.3) 
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The substitution of Eq. (12.3) in (12.1) results in a vector differential equation 

i: = J(x, h(x,p)) = F(x,p) (12.4) 

The solution of Eq. (12.4) by numerical methods is relatively straightforward. 
Unfortunately, when 9 is nonlinear, an exact solution of y is not feasible and the 
reduction to Eq. (12.4) is not practical. 

It must be noted that multiplicity of solutions of Eq. (12.2) is not a 
major problem as the required solution is determined from considerations of 
continuity. For example, if Yo is the solution at t = to, the solution at t = to + h, 
must be close to Yo as h -+ O. The lack of existence of a solution creates problem 
as the simulation comes to a halt. In such cases, it is fruitful to note that the 
algebraic equations for the network are actually obtained as approximations to 
the network models with fast (parasitic) dynamics given by 

eiJ = g(x, y,p) (12.5) 

where to is small and approximated to zero. However, the computer programs 
available do not provide any special procedures when lack of solution is encoun­
tered. Incidentally, the lack of convergence in solving nonlinear equations, using 
an iterative method does not necessarily indicate lack of solution. Some meth­
ods overcome the problem of failure of network solution either by modifying load 
models or adopting a non-iterative approach for network solution. This will be 
discussed later. 

12.2 Solution Methods 

The requirements in the solution method of DAE can be stated as follows [1]. 

1. Sufficient accuracy for engineering purposes: Typically errors of several 
percent are tolerable in transient stability studies. 

2. Reliability : the numerical methods used should be free from instability 
and convergence problems. As stated earlier, numerical breakdown results 
in failure of simulation. 

3. Economy of computer storage 

4. Flexibility: in terms of modelling details, incorporation of new models, 
simulation of new components etc. ' 

5. Ease of maintenance : The program should be easy to maintain and up­
date. This feature is related to flexibility given above. 
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The total computing time depends on the calculations required at each step and 
step size(s) used. In general, smaller steps are required for'better accuracy and 

_ improved reliability. 

The solution approach to DAE (12.1) and (12.2) can be classified as 

A. Partitioned (Alternating) 

B. Simultaneous (Combined) 

12.2.1 Partitioned Solution of DAE 

This is a traditional approach used in most of the available simulation programs. 
The differential equations (12.1) are solved separately for x by numerical inte­
gration and the algebraic equations (12.2) are solved separately for y. These 

, solutions are alternated with each other in some manner. In solving for x, the 
knowledge of y is required which may be only approximately available. Simi­
larly, in solving for y, x may not be known accurately. This can lead to interface 
errors, the elimination of which would require iteration of the process of solution 
at each step. This is not to be confused with iterative solution of either differen­
tial or algebraic equations independently. Thf're is strong motivation to reduce 
the computations at each step and hence 'rface errors are not completely 
eliminated. 

Partitioned solution approach 
pending on the numerical integratiOll 

'ided into two categories de-
j,u(i l •. 

a) Explicit 

b) Implicit 

A brief discussion of the integration methods is given next. 

12.2.2 Numerical Integration of Differential Equations 

Consider a continuous time system of equations 

x=f(x,t) (12.6) 

(Note: If y in (12.1) is expressed as a function of time t then it can be 
expressed in the above form). 

The solution of the above equation can be expressed as 

(12.7) 
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where Xo is the initial value of x at time t = to. 

The integration algorithms generate a sequence of points x o, Xl, X2 ..... at 
time to, tl, t2 .. · ..... with approximation 

(12.8) 

It is usually assumed that the points are uniformly spaced with size h > 0, that 
IS 

tk = to + hk for k = 0, 1,2, ..... . (12.9) 

An integration algorithm generates Xk+l given Xk at t = tk' The different algo­
rithms vary depending on how f(x, t) is approximated in the interval (tk, tk+r). 
The simplest method (Euler) is based on the approximation that f is a constant. 
This can be done in two ways. In the Forward Euler method, f is approximated 
as constant evaluated at time tk' Thus xk+1 can be calculated frolJ1 

(12.10) 

In Backward Euler method, f is evaluated at t = tk+1' Thus Xk+l is given by 

(12.11) 

Forward Euler method belongs to the class of explicit methods where Xk+l is 
obtained by explicit calculations and no solution of equations is involved. Back­
ward Euler method belongs to the class of implicit methods where solution of 
equations is required to compute Xk+l. 

Implicit methods are numerically stable, that is, the propagation of error in 
the process of integration does not cause the solution to blow up. For explicit 
methods, numerical stability is guaranteed only if step size h is chosen sufficiently 
small. 

The problems of numerical instability can be illustrated if a system of linear 
equations 

x = [A]x, x(to) = Xo (12.12) 

is considered. 

By applying Forward Euler method, Xk+l can be expressed as 

(12.13) 

For numerical stability, the eigenvalues (Aj, j = 1,2, ..... n) of the matrix [F] 
must satisfy 

IAjl<1 (12.14) 
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Using Backward Euler method, Xk+l can be expressed as 

(12.15) 

The eigenvalues of [H] should also lie in a unit circle in the complex plane for 
stability. 

If [A] is a diagonal matrix with elements aj (j=1,2, ...... n) which could be com-
plex, the condition (12.14) can be expressed as 

\ 1 + haj \ < 1, j = 1,2, ....... n (12.16) 

For Backward Euler method, the condition for numerical stability (with [A] 
diagonal matrix) can be expressed as 

\1-ajh\>1, j=1,2,3, ....... n (12.17) 

The stability regions for Forward and Backward Euler methods in aj h plane 
are shown in Figs. 12.1 and 12.2 respectively. From Fig. 12.2 it is obvious 
that if aj (the eigenvalues of [AD lie in left half plane, Backward Euler method 
is numerically stable for all values of the step size h. On the other hand, the 
step size for Forward Euler method will be determined by the eigenvalues of the 
matrix [A] having the largest magnitude. (:'.Jnte that, for real eigenvalues, the 
time constant corresponds to the reciproc. ~ "f the eigenvalue. Hence the step 
size is determined from the smallest tiwe Culcstallt of the system). This can be 
problematic in systems (termed as stiff systems) which have a wide range of 
eigenvalues. In such systems, the fast dynamics disappear much before steady 
state is reached (as the settling time is determined from large time constants). 

Although implicit methods require more computations per step (due to the re­
quirement of solution of algebraic equation at each step), the step size in stiff 
systems can be selected on the basis of accuracy only and not determined by 
considerations of numerical stability. This means that overall computations can 
be reduced using implicit integration methods. 

In power systems, the presence of excitation systems with small time constants 
can require small time step sizes if explicit methods are used. Hence in the 
recent times, implicit methods such as trapezoidal rule have become popular 
and widely used. Using trapezoidal rule of integration, Xk+ 1 can be expressed 
as 

(12.18) 

Another classification of integration methods is based on whether previous values 
of x are required in integrating over step k. Hence integration methods are 
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termed as (a) single step if only Xk is required in computing Xk+l or (b) multi­
step if values of x earlier than instant tk are required in computing xk+1. The 
advantages of multi-step methods over single step methods are that for a given 
accuracy, less computations per step are required. However, they are not self 
starting and the first few values have to be calculated using a single step method. 
Whenever there is a discontinuity (arising from network switching) the previous 
values cannot be used and new starting values are to be computed. 

12.2.3 Simultaneous Solution of DAE 

In this approach, implicit integration is used to convert Eq. (12.1) to an algebraic 
equation involving variables Xk+1 and Yk+l, the values at the end of the kth 

interval. These algebraic equations are lumped together with the set (12.2) and 
solved simultaneously. As Eqs. (12.1) and (12.2) are solved simultaneously, 
there is no interface error. 

12.3 Formulation of System Equations 

The major component of system dynamics is contributed by the generator and 
the associated controllers. The other components described by dynamical equa­
tions include induction motor loads, HVDe links and sve controllers. In what 
follows, only generator dynamics are considered for simplicity. 
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Figure 12.2: Region of Stability - Backward Euler method 

12.3.1 Generator Representation 

It will be assumed that synchronous machine is represented by model 1.1 (that 
is considering a field coil on the d-axis and a damper coil on the q-axis). The 
machine differential equations are (see chapter 6) 

dE~ 1, , . 
-d = -T' [-Eq + (Xd - Xd)zd + E/d] 

t do 

Neglecting stator transients, the stator equations are 

E ' ,. R' q + XdZd - aZq = Vq 

E' ,. R' d - XqZq - aZd = Vd 

From the above equations, id and iq are solved as 

[ 
iq ]_ 1 [Ra X~] [ E~ - Vq ] 
id - R~ + x~x~ -x~ Ra E~ - Vd 

(12.19) 

(12.20) 

(12.21) 

(12.22) 

(12.23) 

(12.24) 

(12.25) 

(12.26) 
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These can be substituted in Eqs. (12.19) to (12.20) and the machine rotor 
electrical equations can be expressed as 

Xn [An]xn + [BntJEfd + [Bn2] [ ~: 1 
[E~ E~] 

The mechanical equations (12.21) to (12.23) can be expressed as 

xk = [8 Sm] 

(12.27) 

(12.28) 

Te = Te(XR, vq , Vd) (12.29) 

When Eq. (12.26) is substituted in Eq. (12.23) Te becomes a nonlinear function 
of E~, E~ and Vd, vq . 

The excitation system including PSS can be represented by the equations 

XE = [AElxE + [BE1]UPSS + [BE211ft 

Efd = Efd(XE) 

(12.30) 

(12.31) 

where UPss is the input signal to the PSS. Ifit is derived from rotor velocity then 
UPSS = Sm· 1ft is the terminal voltage magnitude. The nonlinearity introduced 
by non-windup limiters is considered by modifying the coefficient matrices in 
(12.30). In general Efd is a linear function of XE except when windup limits on 
E fd are to be considered. 

The turbine-governor system can be represented by the equations 

XT = [AT]XT + [BTl]Sm + [BT21P~f 

Tm = Tm(XT) 

(12.32) 

(12.33) 

where p;,:f is the reference power set by Load Frequency Control (LFC) or 
Automatic Generation Control (AGC). 

The generator equations comprise a) Rotor electrical b) Mechanical c) Excitation 
system and d) Turbine-governor equations described above. The intercormec­
tions among the various subsystems of the generator are shown in Fig. 12.3. It 
is to be noted that Vq and Vd are derived from the knowledge of the phasor ia 
(expressed with reference to a common reference frame) and the machine rotor 
angle 8, as given below 

(12.34) 
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From this we get 

and 1ft can be expressed as 
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Vq = 1ftcos{O - 8) } 
Vd = 1ft sin{O - 8) 

(12.35) 

(12.36) 

where 0 is the bus angle at the generator terminals (obtained from network 
solution). 

In Fig. 12.3, iI, hand h are nonlinear functions of the input variables. These 
can be obtained from equations given earlier. 
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Figure 12.3: Interconnections among subsystems 

12.3.2 Inclusion of Generator Stator in the Network 

A major assumption in the modelling of AC network is that it is symmetric. 
Hence for steady state analysis, the network can be represented on a single 
phase basis using phasor quantities (for slowly varying sinusoidal voltages and 
currents in the network). Thus the generator stator can also be represented on 
a single phase basis. 

Eq. (12.26) can be expressed as a single equation in phasor quantities if transient 
saliency is neglected, that is, x~ = x~. In this case (see also chapter 6), 

(12.37) 
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The armature current phasor ia can also be represented on a synchronously 
rotating reference frame as 

A •.. (. ")_18 1 [A, A] 
la=ZQ+JZD= Zq+JZdt"" = R . ,E-Vt 

a +JX 
(12.38) 

where 

E' = EQ + jEb = (E~ + jE~)ei8 
A '8 '0 

Vt = VQ + jVD = (vq + jVd)d = Vtd 

Eq. (12.38) represents an equivalent circuit shown in Fig. 12.4 where 

1 
Yg = Ra + jx' (12.39) 

A A, (E~+jE~)ei8 
Ig = E Yg = (12.40) 

Ra + jx' 

It is to be noted that ig is a function of state variables (E~, E~ and 8) only. 
Hence it does not change suddenly whenever there is a network switching. The 
equivalent circuit shown in Fig. 12.4 can be readily merged with the AC network 
(external to the generator). 

12.3.3 Treatment of Transient Saliency 

If transient saliency is to be considered, the stator cannot be represented by 
a single phase equivalent circuit shown in Fig. 12.4. This is because, in gen­
eral, Eq. (12.26) when transformed to a synchronously rotating reference frame 
results in 

[ 
~Q 1 = [yDQ(t)] [ E~ - vQ 1 
ZD 9 ED - VD 

(12.41) 
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where 

DQ _ 1 [ cos 8 
[Yq (t)] - R2 + x' x' sin8 

a d q 

- sin 8] [Ra, X~] x 
cos 8 -Xq Ra 

[

COS 8 sin8] 
- sin8 cos 8 

(12.42) 

[YgDQ] is a function of 8, and as 8 varies with time, is a time varying 
matrix. This poses problems as the overall network matrix including [YFQ] in 
real quantities (twice the size of the matrix in complex quatities) is not constant 
but time varying. This implies the network matrix has to be factored at every 
step which increases computational complexity. 

Hence, there is need for special techniques to handle transient saliency. There 
are two ways of doing this, namely 

(i) Using a dependent source (application of compensation theorem) 

(ii) Using a dummy rotor coil 

(i) Use of a dependent source 
The stator equations can be rewritten as 

where 
E' (' '). de = - Xq - Xd '/,q 

(12.43) 

(12.44) 

The above equations can be expressed as a single equatioil in phasor quan­
tities. 

(12.45) 

The equivalent circuit of Fig. 12.4 applies if 

(12.46) 

where 

A jEd' ejO 
I - e 

sal - R + . .I' 
a JXd 
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It is to be noted that the transient saliency is replaced by introducing a 
dependent current SOurce isal which is a function of the terminal voltge Vi 
and 8. It is not difficult to see that, in this approach, the choice of Yg and 
correspondingly Isal is not unique. Dommel and Sato [2] choose Yg as 

Ra - j~(x~ + x~) y. - --..,,-=-=----"---

9 - R~ + x~x~ (12.4 7) 

i sal can be derived as 

i = _ . ~ (x~ - x~) (E* _ V*)ei28 (12.48) 
sal J 2 (R~ + x~x~) 

where '*' denotes complex conjugate. 
In reference [2], the saliency is handled by iterative solution (improving 
on i sal until convergence is obtained). It is claimed that the choice of 
Yq given in (12.47) speeds up convergence and two or three iterations are 
normally sufficient. As initial guess for the terminal voltage, the value at 
the previous instant (say tk) is used, except that the angle is changed by 
the same amount by which 8 has changed from tk to tk+l. 

(ii) Use of a dummy rotor coil 
The motivation for this approach is that if E~c is a state variable, (pro­
portional to flux linkage of a dummy coil in the q-axis) then the problem 
of iterative solution for transient saliency is eliminated. In other words, 
the dependent source isal can be eliminated. This is an approximate treat­
ment of transient saliency, but the degree of approximation can be directly 
controlled to get acceptable accuracy. 

Consider a rotor dummy coil in the q-axis which is linked only with the q­
axis coil in the armature, but has no coupling with other coils. Just as E~ 
is a fictitious voltage source proportional to -'l/Jg, E~c can be considered as 
another voltage source proportional to the flux linkage -'l/Jc of the dummy 
coil. The differential equation for E~c can be expressed as 

dE~c 1[ , (' I)"] () dt = Tc -Edc - Xq - Xd ~q 12.49 

where Tc is the open circuit time constant of the dummy coil, which can 
be arbitrarily selected. In comparing Eq. (12.49) with Eq. (12.44) it is 
readily seen that the latter is a steady state solution of the former. As Tc 
tends to zero the solution of (12.49) is given by (12.44). From numerical 
experiments, it is observed that, Tc need not be smaller than 0.01 sec for 
acceptable accuracy [10]. This is of similar order as the time constant of a 
high resistance damper winding. Using implicit integration methods, the 
step size chosen need not be constrained by the value of Tc chosen. 
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12.3.4 Load Representation 

Loads are represented as static voltage dependent models given by 

(12.50) 

(12.51) 

where fp and fQ are any general nonlinear functions. In many stability pr~ 
grams, fp and fQ are represented as 

(12.52) 

{12.53) 

If ao = al = bo = b1 = 0, then we say that loads can be represented by constant 
impedances. The load at a bus can be represented by the equivalent circuit 
shown in Fig. 12.5 where Yi is given by 

(12.54) 

where subscript '0' indicates operating values, Yi is chosen such that 11 is zero 

Figure 12.5: Load equivalent circuit 

at the operating point. During a transient, h is calculated from 

(12.55) 

In general, this is a nonlinear function of VL ancl results in the overall network 
equations being nonlinear. For constant impedance load models, II is identically 
equal to zero. 
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12.3.5 AC Network Equations 

The AC network consists of transmission lines, transformers, shunt reactors, 
capacitors and series capacitors. Only quasi-steady state response of the AC 
network is considered for stability evaluation, neglecting transients. Also, it 
is assumed that the network is symmetric. Hence a single phase representa­
tion (positive sequence network) is adequate. The network equations can be 
expressed using bus admittance matrix Y N as 

(12.56) 

where V is a vector of complex bus voltages and IN is a vector of current 
injections. At a bus j, the component of IN is given by 

(12.57) 

12.3.6 System Algebraic Equations 

The generator and load equivalent circuits at all the buses can be integrated into 
the AC network and the overall system algebraic equations can be obtained as 
follows 

[Y]V = I (12.58) 

where [Y] is the complex admittance matrix which is obtained from augmenting 
[Y N] by inclusion of the shunt admittance Yg and Yi at the generator and load 
buses. I is the vector of complex current sources the lh element of which can 
be expressed as 

(12.59) 

It is to be noted that in general, Ij is a function of bus voltage ~. Hence 
the solution of Eq. (12.58) has to be obtained by an iterative process. The 
initial estimate for Vk can be assumed as Vk-l (the previous instant). Also 
if transient saliency is neglected or represented by using a dummy coil, Igj is 
only a function of the state variables E~j' E{ij and dj. In this case, the iterative 
solution of Eq. (12.58) is required only if loads are nonlinear (not represented 
by constant impedances). 

It must be noted that transient saliency does not introduce nonlinear­
ity. It only results in time varying generator impedance. Nonlinearity of Eq. 
(12.58) is mainly due to nonlinear voltage dependent loads which are modelled 
as constant admittances in parallel with nonlinear current sources. 

Eq. (12.58) can also be expressed in real variables as 

[yDQ]VDQ = [DQ (12.60) 
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where the elements of ~fQ, ~DQ and IiDQ can be expressed as 

Gij 1 
-B·· ' Z) 

The arrangement of the variables in Eq. (12.60) is deliberate such that [YDQ] 
is a symmetric matrix if [Y] is symmetric (Note [Y] is symmetric if no phase 
shifting transformers are considered). 

12.3.7 System Differential Equations 

The differential equations for a generator are expressed as 

Xgi = !(Xgi, vgfQ) (12.61) 

where Xgi is a vector of state variables for generator 'i' including machine vari­
ables E~p E~i' 8i and other variables corresponding to excitation system and 

turbine-governor. Vq~Q are the D and Q-axes components of the generator ter­

minal 'voltage ~qi . . It is interesting to note that the generator equations are 
decoupled and the interconnection is provided through AC network variables. 

The equations corresponding to all the generators in the system can be 
combined and solved either simultaneously (with multiple processors) or sequen­
tially (using a single processor). 

If a HVDC link or SVC or any controllable device is considered, the 
differential equations for these devices can also be expressed in the general form 

Xcj = !(xcj, ~~Q) j = 1, 2 ...... nc (12.62) 

where nc is the number of such devices in the system. The equations for dynamic 
loads can also be expressed in the above form. 

12.4 Solution of System Equations 

The algorithm for numerical solution of the system equations has to tackle the 
problem of computing Xk and Vk at the end of step' k' given the initial conditions 
Xk-l and V k - 1· 

12.4.1 Partitioned solution 

Explicit or implicit methods are used to numerically integrate the differential 
equations of the type given in Eqs. (12.61) and (12.62). In doing this values of 
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Vg and Vc are required in the time interval (tk"":l' tk). In general, the bus voltage 
vector V is required. One approach is to predict the values of V by extrapolation. 
One extrapolation formula [1] for Vb based on two previous values, is 

V;2 
Vk = k-l 

Vk-2 
(12.63) 

Extrapolation is necessary to avoid the solution of the algebraic equations more 
than once in a step. This reduces the computations per step considerably as net­
work solution is a major component in the computational procedure. However 
the interface error is not eliminated. 

The solution of differential equations can be partitioned into subsets 
corresponding to the subsystems as shown in Fig. 12.3. This procedure not 
only helps in attaining a flexible program structure, but can also improve the 
numerical performance particularly when implicit integration method (such as 
trapezoidal) is used. There can be an optimal sequencing in the integration 
of the equations which reduces error. For example, solving excitation system 
first results in the computation of E fd which can be used subsequently in the 
solution of rotor electrical equations. The solution for E~ and E~ can be used to 
compute electrical torque which is the input to the mechanical system including 
turbine-governor. 

After the solution of Xb the network equations can be solved from 

(12.64) 

Note that the current source vector I is a function of Ek (obtained from a subset 
of state variables Xk) and Vk. It is convenient to solve (12.64) by factorizing [Y] 
and expressing (12.64) as 

(12.65) 

Sparsity oriented triangular factorization [5] results in sparse triangular matrices 
[L] and [U] since [Y] is sparse. The solution for Vk is obtained from forward and 
backward substitution as 

(12.66) 

Whenever h is a function of Vk (in case of nonlinear loads) the Eq. (12.64) is 
conveniently solved using Gauss-Jacobi method where the initial estimate of Vk 

is used to compute h and solve the equation using triangularized admittance 
matrix. This process is iterated until convergence iE, obtainet~ in the solution of 
Vk. The number of iterations are same as in the cas~ when h'.l impedance matrix 
is used, typically five to seven. However, the use of triangularized admittance 
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matrix instead of impedance matrix results in less memory and computations. 
Also if [Y] is symmetric matrix, the lower triangular matrix [L] is the transpose 
of the upper triangular matrix [U] and need not be'computed and stored. 

Newton's method can also be used to solve Eq. {12.6.1}. Here the network 
equations have to be used in the real form (using D-Q variables). At each 
iteration of Newton's method, the following linear equations have to be solved 

(12.67) 

where [Jk] is the Jacobian matrix calculated at step k and Fk is the mismatch 
which should be zero at the solution. The Jacobian matrix differs from [Y] 
(real admittance matrix) only in the self (diagonal) terms made of 2x2 blocks. 
However updating the Jacpbian matrix at every iteration is not practical. Even 
updating at every step is not recommended. The use of Very DisHonest Newton 
(VDHN) method involves maintaining Jacobian matrix constant for several time 
steps. The updating of Jacobian can be based on the number of iterations 
required for convergence. Increase in the number of iterations required, signals 
the need to update Jacobian: 

It is to be noted that the use of decoupled Jacobian is not recommended 
as, in transient stability studies, the decoupling between P - () and Q - V is not 
WI lid during transient swings caused by large disturbances. 

12.5 Simultaneous Solution 

The system equations can be expressed as 

x = !(x, V) 

J{x, V) - [Y]V = 0 

(12.68) 

(12.69) 

Implicit method of integration is used to discretize Eq. (12.68). For example, 
using trapezoidal rule, we get 

- h 
Fxk = Xk - Xk-l - "2[!{Xk, Vk) + !{Xk-l, Vk-d] = 0 (12.70) 

Combining this with Eq. (12.69) and linearizing, we get 

(12.71) 

where 
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[Jk ] = 8Fvk = _[Y] 8h 
N 8Vic + 8Vk 

425 

m is the number of dynamic subsystems (number of gen.erators if no other dy­
namic devices are considered), IN is the network Jacobian. 

Eq. (12.71) can be solved as follows 

Fh = FVk - Ck[A~rlF:z:k 

[LN] = [J~] - Ck[A~rlBk 

-[L~]~Vk = Fh 

~Xk = [A~rl{F:z:k - Bk~Vic) 

(12.72) 

(12.73) 

(12.74) 

(12.75) 

In exact Newton's method, not only the Jacobian [Jk] varies with each step, but 
also varies with each iteration in step. However in VDHN method, the Jacobian 
is not updated unless the system configuration is changed or the number of 
iterations in a step increase above a threshold value. Although the convergence 
is slow with VDHN method, there is a significant reduction in the number of 
computations at each step. 

12.6 Case Studies 

The results of transient stability evaluation for three test systems are presented 
in this section. The test systems selected are 

(1) IEEE Transient Stability Test Systems [8] 

(a) 17 generator, 162-bus system 

(b) 50 generator, 145-bus system 

(2) 10 generator, 39-bus New England Test System [9] 
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The results are obtained from a PC-based computer program 'STEPS' (Structure 
preserving (or Sparse) Transient Energy based Program for Stability), specif­
ically developed for power system simulation for transient stability, in which, 
computation of structure-preserving energy function is an important feature 
[10]. It will be shown in the next chapter that the scanning of energy function 
is a much simpler method for monitoring system transient stability compared 
to scanning a large number of swing curves. In addition, the applicption of a 
structure-preserving (or sparse) transient energy function enables direct stability 
evaluation using potential energy boundary surface or controlling UEP (unsta­
ble equilibrium point) method of determining critical energy. The application 
of energy function methods is considered separately in chapter 13. 

12.6.1 17 Generator System 

All the generators are represented by classical morels and the loads are modelled 
as constant impedances. The disturbance considered is a three phase fault at 
bus #75 cleared by opening line between bus #75 and #9. This is a benchmark 
test reported in [S]. 

The simulation shows that the critical clearing time lies in the range (0.354-0.355 
s). The swing curves (rotor angle with respect to Centre of Inertia) for all the 
17 generators are shown in Figures 12.6 to 12.S. TlJe results for both stable and 
unstable cases are given. The instability arises from generator 16 (connected to 
bus #130) going out of step. The results are in agreement with those given in 
[S]. 

12.6.2 50 Generator System 

The generators are represented by classical models and the loads are modelled 
as constant impedances. The disturbance considered is a three phase fault at 
bus #7 cleared by opening line between bus #7 and bus #6. 

The simulation shows that critical clearing time lies in the range (O.lOS-
0.109 s). The swing curves for critical generators are shown in Fig. 12.9 which 
displays both stable and unstable cases. The instability is due to machines 
connected at buses 104 and 111 going out of step with respect to the remaining 
machines. The results are in agreement with those given in [S]. 

12.6.3 10 Generator System 

The system data is taken from [10]. The machines are represented by two-axis 
models (1.1). The generators are assumed to be provided with static exciters. 
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The loads are modelled as constant impedances for simplicity. The disturbance 
considered is a three phase fault at bus #14 cleared by opening line between 
bus #14 and bus #34. The critical clearing time lies between 0.34 and 0.35 s. If 
the machines are represented by classical models, then the critical clearing time 
reduces to a value between 0.26 and 0.27 s. 

The swing curves for all the ten machines represented by classical models are 
shown in Figs. 12.10 and 12.11. The swing curves in the case when generators 
are modelled in detail are shown in Figs. 12.12 and 12.13. The variations in the 
field voltages for all the generators in the latter case are shown in Figs. 12.14 
and 12.15. 

It is interesting to observe that the mode of instability is unaltered whether 
the machines are represented by classical or detailed models. In both cases 
the instability is due to separation of machine 2 ~hich decelerates while other 
machines accelerate. It is also observed that groups of generators located close 
to each other or forming a radial system are coherent. Thus generators 1 and 
3, 4 and 5, 6 and 7 form three coherent groups. It is interesting to observe t.hat 
the variations of Efd within coherent groups are similar. 

12.7 Dynamic Equivalents and Model Re­
duction 

In large systems, it is not only desirable to reduce the complexity by reducing 
the order of the model, but is often necessary on account of the computational 
constraints particularly for on-line applications. In this case, the non-availability 
of data can also be a problem. 

In nonlinear simulations for stability evaluation, we are mainly concerned 
about the impact of large disturbances in a particular area called the study 
system. The system external to the study system is not of direct interest in 
stability studies and is of consequence only insofar as it affects the response of 
the study system to disturbances within the study system. Hence it is desirable 
to represent the external system by dynamic equivalents. In the past, Ward 
type equivalents based on distribution factors used in power flow studies was 
extended for dynamic studies [11]. Subsequent developments led to two types 
of dynamic equivalents. 

1. Modal equivalents [12,13,17] 

2. Coherency-based equivalents [14-16] 
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Figure 12.6: Swing Curves - 17 Generator system 
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Figure 12.8: Swing Curves - 17 Generator system 
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Figure 12.13: Swing Curves - 10 Generator system (Detailed Model) 
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The dynamic equivalents based on modal analysis involve a two stage 
procedure of 

(a) construction of matrices which represent equivalents of the external system 

(b) Interfacing these matrices with the transient stability simulation of the 
study system to simulate the complete system 

The construction of the modal equivalent produces linear equations of the form 

X 

!:lIT 

[A]x + [B]!:l VT 

[c]x + [D]!:l VT 

(12.76) 

(12.77) 

where VT and IT are terminal bus voltage and current injection at terminal bus 
respectively (expressed in rectangular coordinates). 

In general, these equations cannot be interpreted as representing mod­
els of physical devices. Furthermore, model reduction based on modal analysis 
requires computation of eigenvalues and eigenvectors which can be time con­
suming. 

Coherency based equivalents involve a two stage procedure of 

(a) Identification of coherent groups in the external system 

(b) Dynamic aggregation of a coherent group of generating units into an equiv­
al~nt generating unit that exhibits the same speed, voltage and total me­
chanical and eletrical power as the group during any disturbance where 
the units in the group remain coherent. 

A coherent group of generating units is defined as a group of generators oscil­
lating with the same angular speed and terminal voltages in a constant complex 
ratio for a set of disturbances. Thus, all the units in a coherent group can be at­
tached to a common bus, if necessary through a complex ratio (involving phase 
shift) transformer. 

Identification of coherency can be based on heuristics such as the concept 
of e!~ctrical distance [14] or utilizing a simplified and linearized power system 
model [15]. The coherent groups are identified in the latter approach using linear, 
simulation for specific disturbances. The justification for the use of simplified 
models are based on the following assumptions. 

1. The coherent gr,oups of generators are independent of the size of the distur­
bance. Therefore, coherency can be--determined by considering a linearizoo 
system model. 
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2. The coherent groups are independent of the amount of detail in the gener­
ator model. Therefore a classical synchronous machine can be considered 
for the identification of the coherent groups. 
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Chapter 13 

Application of Energy Functions for 
DIrect Stability Evaluation 

13.1 Introduction 

Transient stability evaluation using digital simulation requires solution of nonlin­
ear differential algebraic equations over a time interval (following the initiation 
of a large disturbance such as a three phase fault) extending to several seconds. 
This is computationally burdensome particularly in view of the fact that, even 
for a given system configuration and loading conditions with a specified gener­
ation pattern (an operating point), the transient stability is also a function of 
the disturbance (or contingency). Thus, several credible contingencies need to 
be considered to evaluate transient stability of a system. 

Thus, there is a need for a fast (or direct) method for stability evaluation 
which does not require extensive solution of differential-algebraic equations. For 
a two machine system (or a SMIB system), the equal area criterion is a direct 
method which can determine stability based only on the knowledge of the system 
state (angle and velocity) at the time of clearing. An extension of this approach 
to multimachine systems is formulated using energy functions. 

The application of energy functions to power system has a long history. 
The earliest work was reported by Magnusson in 1947 [1]. An energy integral 
criterion was proposed by Aylett in 1958 [2]. As Lyapunov's function is a gen­
eralization of energy functions, the works by Gless [3], EI-Abiad and Nagappan 
[4] were the first application of Liapunov's method for power system stability. 
There were several developments since then, which are summarized in the mono­
graphs by Pai [5,6]. There are also state of the art papers [7-9] which survey the 
current research efforts in the area. 

Liapunov's method, although general in nature, suffered from conserva­
tiveness of results when applied to practical systems. There were also barriers 
in extending the method to more complex systems with detailed models. For. 
example, even with classical generator models and constant impedance type, 
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loads (which enabled reduction of the network to generator internal buses) the 
presence of transfer conductances prevents the use of Liapunov functions un­
less gross approximations are used. (It is to be noted that even if transmission 
system is assumed to be lossless, the network reduction results in large transfer 
conductances) . 

Recent developments in this field have been a tmed at solving the prob-
lems of . 

1. Accurate determination of critical clearing time for a given fault 

2. Application to detailed generator and load models 

3. The inclusion of controllers such as excitation, HVDC and SVC 

4. Applications to on-line dynamic security 'assessment 

The inclusion of load models and network based controller models (such as 
HVDC and SVC) has been made feasible due to the development of Structure 
Preserving Energy Functions (SPEF) defined on structure preserving system 
models [12-19]. Previously the loads were represented as constant impedances 
and the network was reduced to retain only the internal buses of generators 
(represented by classical models). This procedure is not desirable even if loads 
can be modelled as constant impedances as the reduced network admittance 
matrix has transfer conductances and energy functions cannot be strictly defined 
for such systems. 

13.2 Mathematical Formulation 

Consider that a power system is described by nonlinear differential equations 

x = fr(x), to < t < tF (13.1) 

It is assumed that a fault occurs at time tF. There is no loss of generality in 
assuming tF = O. Also, it is assumed that the system is in equilibrium prior to 
the instant of fault. During the fault, the system is described by 

x = fF{X), (13.2) 

where tc is the instant of clearing of fault. The postfault system is described by 
the equation 

x=f(x) tc ~ t < 00 (13.3) 

The postfault dynamics is generally different than the prefault dynamics since 
the clearing of the fault is usually accompanied by disconnection of line{s). 
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x • s 

/ 

Faulted Trajectory 

Figure 13.1: Definition of critical clearing time 

Assuming that a stable equilibrium point (SEP) exists for the postfault 
system, the problem of transient stability evaluation is to determine whether the 
initial state (for the post fault system) lies in the region of attraction (stability) 
around the SEP. If x(tc ) E A(xs ) where A(xs ) is the region of stability around 
the SEP (xs ) the system is stable. 

There are two steps in this evaluation 

i) characterization of the boundary of stability region, 8A(s) 

ii) computation of post-fault initial state x(tc ) and comparison with 8A(s). 

The fault-on trajectory normally traverses the boundary of stability (see Fig. 
13.1) at a time t = tcr. If the clearing time tc < tcr , the system is transiently 
stable. Thus, tcr is termed as critical clearing time for a given fault. This is a 
function of X(tF), the initial condition for the faulted trajectory, (also identical 
to SEP of the pre-fault system assuming equilibrium prior to the fault) and the 
faulted system. 

The boundary of the region of attraction is expressed in terms of stable 
manifolds MS(Xi) of the unstable equilibrium points (of type 1) lying on the 
boundary. A type 1 UEP has only one dimensional unstable manifold MU(Xi). 
It can be shown that [10), under some conditions, 

8A(xs) = U MS(Xi) 

Xi EEl n8A 

(13.4) 
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where E1 is the set of type 1 equilibrium points. 

Stable and unstable manifolds of a hyperbolic equilibrium point, Xi, (the 
system Jacobian evaluated at the hyperbolic EP has the property that its eigen­
values lie either in RHP or LHP) are defined as 

MS(Xi) = {x I 4>(3), t) --+ Xi as t --+ co} 
W'(Xi) = {X I 4>(x, t) --+ Xi as t --+ -co} 

where 4>(x, t) is a solution curve (trajectory) starting from X at t = 0. Thus, 

4>(x,O) = X 

The stability region is defined by 
~ 

A(xs) = {x I lim 4>(x, t) = xs} 
t~oo 

(13.5) 

The sufficient conditions that guarantee the result of Eq. (13.4) are [10] 

1. All the equilibrium points on the stability boundary are hyperbolic. 

2. The intersection of MS(Xi) and MU(xj) satisfies the transversality condi­
tion for all the equilibrium points Xi, Xj on the stability boundary. 

3. There exists a C 1 function (continuous with continuous derivatives) W : 
Rn --+ R'such that 

(i) W(4)(x, t» ~ ° at X ¢ E where E is the set of equilibrium points. 
The equality is satisfied only at some points on the trajectory and 
not over a finite time interval. 

(ii) W(4)(x, t» is bounded implies 4>(x, t) is bounded. W is termed as the 
energy function. 

The assumptions 1 and 2 are generic properties of dynamical systems (true for 
almost all dynamic systems). The transversality condition means that at every 
point of intersection between the two manifolds, the tangent spaces of the two 
manifolds span the tangent space Rn. - -

Condition (i) in assumption (3) implies that every trajectory must either 
go to infinity or converge to one of the equilibrium points. It guarantees that 
bounded oscillatory trajectories such as limit cycles or chaotic motions do not 
exist. Because of condition 3(i), the energy function on the stable manifold of a 
UEP Xi, reaches its minimum value at Xi. 

The region of attraction is unbounded if the system does not have a 
source (EP with all the eigenvalues of the Jacobian lying in the RHP). If the 
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stability region is bounded, the energy function achieves a local maximum at a 
source on the stability boundary 8A(xs }. 

The transversality condition is not satisfied in case of a saddle to saddle 
connection (or heteroclinic orbit). An example of this is shown in Fig. 13.2 
where a trajectory connects two UEPs. There can also be a homo clinic orbit 
which is a trajectory connecting a UEP with itself. 

(a) HeterocIinic orbit (b) Homoclinic orbit 

Figure 13.2: An example where transversality condition is not satisfied 

The energy function can be used to approximate the stability region. The 
bounded region 

W(X} ~ Wcr (13.6) 

is an estimate of the stability region if W cr (termed as critical energy) is suitably 
chosen. There are two ways in which W cr can be selected. These are 

(13.7) 

W cr is chosen as the minimum value of W evaluated at all UEPs on the stability 
boundary. The UEP at which this minimum occurs is termed as the critical 
(closest) UEP. This gives an underestimate of the stability region (see Fig. 13.3). 
This is because, in most cases, we need to predict the exit point p of the faulted 
system trajectory at the stability boundary. The exit point lies on the stable 
manifold of a UEP that is termed as the controlling UEP, XC, which is close to 
the faulted system trajectory. Thus an accurate estimate of stability boundary 
is given by 

(B) W cr = W(xc), Xc is the controlling UEP (13.8) 

Stability Criterion 
This is a two step procedure given below 

Step 1 Compute the controlling UEP lying on the boundary 8A(xs ). Calculate 
Wcr· 
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Figure 13.3: Critical and controlling UEP 

Step 2 At the instant of clearing of thp. fault, compute W(te ). If W(te) ~ Wcr, 
the system is transiently stable. When W(te) = Wcr, the clearing time is 
said to be critical. 

The issues that are important in the application of energy functions for direct 
stability evaluation are 

(i) Formulation of an appropriate energy function 

(ii) Determination of W cr 

(iii) Approximate determination of W (te) without having to integrate the faulted 
"'ystem equations. 

These issues are discussed in the following sections. The equivalence of equal 
area criterion to the criterion in terms of energy function is shown in the next 
section. 

13.3 Energy Function Analysis of a Single 
Machine System 

Consider a single machine connected to an infinite bus as shown in Fig. 13.4. 
The synchronous machine is represented by the classical model of a voltage 
source Eg behind a reactanrp, xg• The equivalent circuit is shown in Fig. 13.5. 
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The swing equation for the machine is given by 

x 
g 

p 
e 

X, 

Figure 13.4: A single machine system 

> 

Figure 13.5: Equivalent circuit for system in Fig. 13.4 

(13.9) 

The electric power output of the machine can be derived from the equiv­
alent circuit of Fig. 13.5 as 

(13.1O) 

where 

G+jB = . 1 
Rl + J{xg + Xt + Xl) 

Substituting Eq. (13.10) in (13.9), we have 

J28 
M dt2 = Pm - ~(8) (13.11) 

where 

Pm Pm-GE~ 
~ - -GEgEb cos 8 - BEgEbsin8 

It is to be noted that B is negative (due to inductive susceptance). 
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Multiplying both sides of Eq. (13.11) by (~) and integrating, we have 

~M( ~!) 2 + j[1{(6) - P{n1d6 = constant = kl 

(13.12) 

The L.H.S. of (13.12) can be expressed as the sum of kinetic energy Wk and 
potential energy Wp given by 

Wk(:) - !M( d6)2 (13.13) 
2 dt 

Wp(6) - BEgEbCOs6 - GEbEgsin6 - P:"'6 (13.14) 

Wk+Wp - W{x) = constant = kl (13.15) 

where xt = [6 d6] 
at 

There is no loss of generality in expressing energies with reference to a SEP xS , 

such that 
W{xs ) =0 

Thus Eq. (13.15) can be revised to 

~M( ~!) 2 +BEgEb[COSo _ COS as] - GEgEb[sinO - sinos] 

-p:",{o - as) = constant = k2 

The constant k2 is determined from the initial condition W(t = tel. 

Remarks 

(13.16) 

(13.17) 

1. The energy function, W (x) is defined for the postfault system. The initial 
condition for this corresponds to t = te where te is the fault clearing time. 

2. The initial energy (k2) at t = te, is determined from the integration of the 
faulted system equation. 

Equivalence with Equal Area Criterion 

The criterion for stability using an energy function is given by 
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where WeT = W(xu) = Wp (8u) 
where Xu is an appropriate (controlling) UEP. Fig. 13.6 shows the power angle 
curves for (i) the prefault (ii) faulted and (iii) post fault systems. For conve­
nience, G = 0 is assumed in drawing these curves. 

From Fig. 13.6 it is easy to see that the area (A2 + A 3) is given by 

At the time of fault clearing, the kinetic energy is given by 

hOc, , 
Wk(t = te) = (Pm - Pe,)d8 = Al 

01 

where ,8r is the initial (prefault), angle. 

p 

~r-----~~--r-----~~----~ 

5_ 

Figure 13.6: Power angle curves 

The potential energy at the time of clearing is given by 

h
Oc 

Wp(t = t e) = (P~ - P:n)d8 = A2 
Os 

Using Eq. (13.18) to (13.20) in the stability criterion gives 

Al +A2 ~ A2 +A3 

Al ~ A3 

(13.18) 

(13.19) 

(13.20) 

(13.21) 

Thus, the stability criterion using energy function is equivalent to the equal area 
criterion for stability. 
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Remarks 

1. The damping was neglected in the above analysis. Thus, the energy func­
tion remains constant along the post fault trajectory (at a value equal to 
the energy gained during the fault). 

2. If damping were to be considered then 

. 2 

W{t) =.W{te) -1: n(~~) dt 

which implies 

dW = _n(d5)2, 
dt dt 

(13.22) 

As j is not identically zero along the post fault trajectory, Eq. (13.22) 
satisfies the condition 3{i) defined in the previous section. 

3. There is only one UEP on ,the stability boundary for a single machine 
system in most of the cases. For a lossless system (G = 0) this is given 
by 5'/), = 7r - 58 and normally lies along the faulted system trajectory. The 
potential energy along fault-on trajectory reaches a local maximum when 
5 = 5'/),. This shows that even without the knowledge of 5'/)" it is possible to 
compute Wer by tracking the potential energy during fault-on conditions 
and capturing its maximum value. (However, this is not generally true 
for multimachine systems as fault-on trajectory is not expected to exactly 
pass through controlling UEP). 

For a single machine system, the kinetic energy goes to zero along the 
postfault trajectory at the instants when the potential energy is maximum. 
Also, for a system with no damping, the oscillations don't decay and the 
exchange between the potential and kinetic energies is continually taking 
place. -

4. The controlling UEP need not always lie along the faulted trajectory. For 
example, in a single machine system if fault resistance is present, it is 
possible (though improbable) that the machine decelerates during the fault 
and comes closer to the UEP, 5~ = -(7r + 58). See Fig. 13.7 (a). However 
for small damping (n ~ 0), this UEP is not the controlling UEP. It can be 
shown that the system although stable in the first swing, will be unstable 
in the back (reverse) swing. See Fig. 13.8 for a typical swing curve. This 
follows from the fact that Wp{5~) > Wp{5'/),) {see Fig. 13.7 (b)). This 
example shows the need for correct identification of the controlling PEP 
for the determination of accurate value of Wer. 

• 
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Figure 13.7: (a) Equilibrium points iri-a single machine system 

Ii' 
u 

Figure 13.7: (b) Potential energy variation 

13.4 Structure Pres'erving Energy Function 

The extension of energy function, defined for a single machine system in the 
previous section, to multimachine power systems is complicated by the following 
factors 

1. The existence of global energy functions for multimachine systems with 
transfer conductance is doubtful [34]. This is not surprising as the presence 
of transfer conductance can result in the existence of unstable limit cycles 
around SEP, which reduce the region of attraction (stability). 
The path dependent energy component due to transfer conductances can 
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t 

Figure 13.8: A swing curve 

be utilized in the numerical computation but has no theoretical validity. 

2. The number of UEPs on the stability boundary increase considerably with 
the system size and the computation of the controlling UEP (or critical 
energy) can be a problem. 

3. The inclusion of voltage dependent load models and detailed generator 
models with A VR need to be considered to increase the scope of application 
of energy functions for practical systems. 

The first and third factors listed above, can be, accounted. fpr if structure­
preserving model of power systems is used in the formulation of energy functions 
[12]. This not only enables consideration of detailed load models (and inclusion 
of sve and HVDe controllers), but can also overcome the problem of transfer 
conductances which can be significant if reduced network model is used. Qn 
the other hand, transmission losses in EHV transmission network are small and 
can be neglected. With the retention of load buses (and voltage dependent load 
models), it can be shown that energy functions exist if following assumptions 
are used 

1. The transmission network is lossless 

2. The synchronous machines are represented by classical model 

3 .. The active power load at any bus is constant (independent of the voltage). 

It will be shown later that the assumption 2 can be relaxed to consider two axis 
model with flux decay and a damper winding. Also the first and last assumptions 
can be relaxed by introducing path dependent components ~f energy functions 
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that can be numerically evaluated. The accuracy of this approach is good if the 
path dependent terms are small (in relation to other terms). 

System Equations 

Consider a n-bus system having m machines supplying nonlinear voltage 
dependent loads. In addition to the assumptions 1 and 2 mentioned earlier, it 
is also assumed that the damping is negligible. This results in a conservative 
system with no dissipation of energy. 

The motion of ith machine with respect to the COl (Centre of Inertia) reference 
frame is described by the differential equations 

M· 
- Pmi - Pei - M~ Peol 

where 

m m 

MT = L Mi, Peol = L(Pmi - Pei) 
i=l i=l 

From the definition of the COl variables given by 

We have, 

m 

OJ = 6; - 60 , MT60 = L Mi6i 
;=1 

m m 

L MiOi = 0 and L MjWi = 0 
i=l i=l 

(13.23) 

(13.24) 

(13.25) 

(13.26) 

In the load model considered here, both active and reactive powers are assumed 
to be arbitrary functions of respective bus voltages. Thus, the equations for the 
system loads can be written as 

Pzi fpi(Vi) 

Qli = fqi(Vi) 

The power Bow equations for the lossless system, are given below. 

The active power injected into the network at bus i is 

gli + g2i, i = 1, 2 .... m } 
= g2i, i=m+l,m+2, ...... n 

(13.27) 

(13.28) 

(13.29) 
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The reactive power injection at bus i is 

where 

91i 

93i 

93i + 94i, i = 1,2 .... m } 
94i, i = m + 1, m + 2, .... n 

n Ei Vi sin{ <Pi - (Ji) 
I Xdi 

92i = L Vi"V;Bij sin <Pij 

Vi2 - EiVi COS{(Ji - <Pi) 
I xdi 

j=i 
n 

94i = L ViVjBij cos <Pij 
j=i 

(13.30) 

YBUS is the admittance matrix of the network (without including the machine 
reactances). It is assumed that the generator i is connected to bus i. <Pi is the 
angle of bus i, with respect to COr. 

The power flow equations at bus i can be written as 

Pi + Pli = Pi + !pi{Vi) = 0 

Qi + Qli = Qi + !qi{Vi) = 0 

A Structure Preserving Energy Function 

where 

Consider the energy function (defined for the post-fault system) 

W{w, (J, V, <p, t) = Wi (w) + W2((J, V, <p, t) 

Wi{w) 

W2((J, V, <p, t) 

m 

- - L Pmi((Ji - (Jio) 
i=i 

(13.31) 

(13.32) 

(13.33) 
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m 

L:[(Et + Vi2 
- 2EiVicos(Bi - <pd) 

i=1 
221 

-(Eio + Vio - 2EioViocos(Bio - <PiO))]-2 f xdi 
1 n n 

-2" L: L: Bij(ViVj cos <Pij - VioVjo cos <Pijo) 
i=1 j=1 

WI is termed as kinetic energy and W2 as potential energy. It can be proved 
by direct verification, that the system energy is constant along the post-fault 
trajectory. 

Proof 
Taking partial derivatives of W with respect to Vi, <Pi, t, Bi and Wi respectively, 
one can show 

1 
- Vi (Qli + Qi) = 0 from Eq. (13.32) 

_ EiVisin(Bi - <Pi) ~B .. V;.Tl:. A. .. 
f + ~ IJ J Y i sm o/IJ, 

xdi j=1 
i = 1,2, .. m 

n 

- L: Bij Vi Vj sin <Pij, i = (m + 1), ... n 
j=1 

- Pi 
oW tR.d<Pi = at . h dt 

1=1 

oW 
- Pmi + Pei and 

OBi 
oW 

MiWi = 
OWi 

Using Eq. (13.31), we have 

~ OWi d<Pi oW = ~(R' Po) d<Pi = 0 
~ O<Pi dt + ot ~ h + I dt 

and using Eq. (13.26)' we get 

f (OW dWi + oW dBi ) _ 
i=1 OWi dt OBi dt 

m 

~)MiWi - Pmi + Pei)Wi 
i=1 
m fl.,J.. 

- L:-' PcorWi =0 
i=1 MT 

(13.34) 

(13.35) 

(13.36) 

(13.37) 

(13.38) 

(13.39) 
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Hence, from Eqs. 13.34, 13.38 and 13.39, we get 

dW 
dt 

This shows that the total energy of the system is conserved. 

Remarks 

(13.40) 

1. It is assumed that the system models are well defined in the sense that the 
voltages at the load buses can be solved in a continuous manner at any 
given time during the transient. This implies that the system trajectories 
are smooth and there are no jumps in the energy function. 

2. Consider the term W22. For constant ~i' the integral can be expressed as 
a path independent term given by 

(13.41) 

If Pzi is not a constant, then W22 has to be integrated numerically. Using 
trapezoidal rule of integration 

3. The terms W 24 and W25 represent the energy in the machine reactances 
and transmission line reactances. It can be shown that this energy can 
be expressed as/half the sum of reactive power loss in each element of the 
network (including machine reactances). Thus, 

(13.43) 

where Qgi is the reactive power output (at the internal bus) of generator 
i, n, is the total number of elements in the network (including machine 
reactances) . 

The R.H.S. of Eq. (13.43) is easily calculated at the end of power flow so­
lution at each step, during the transient. Also, the overall energy function 
computations are simplified. 
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Note that the energy component W23 is path independent as the integral 
can be obtained as function of bus voltage Vi. For example, if 

Qli = bo + b1 V + ~ V2 

then, 

iVi Qli Vi ) ~ (2 2) -d1l; = b In- + b1(1I; - 11; + - ~ - ~ 11; Z 0 11; "0 2 Z zo 
~o Z W 

where In indicates natural logarithm. 

13.5 Structure-Preserving Energy Function 
with Detailed Generator Models 

In the previous section, a SPEF was formulated for systems with classical models 
for generators. Simplified (classical) generator models are acceptable only if 
the transient stability could be determined within the time frame of less than a 
second (before AVR can respond). However, for large systems with low frequency 
interarea modes of oscillations, this premise is not correct. Hence, it becomes 
necessary to look for the formulation of energy function with more detailed 
generator models. In what follows, an energy function is presented and derived 
for machine model (1.1) including AVR. The presence of AVR contributes a 
component of energy which is path dependent. 

A Structure-Preserving Energy Function 

where 

Consider the following function defined for the post fault system 

11 

W(O,w,E~,E~, V,¢>,t) = Wl(W) + :LW2i 
i=l 

1 m 
W1(w) = - :LMiW; 

2 i=l 
m 

W21 (O) = - :LTmi(Oi - Oio) 
i=l 

n t d¢>i 
W22(t) L 1. !Pi(Vi)didt 

i=l to 

W23(V) = f i~ !qi(~i) dXi 
i=l Vio Xz 

(13.44) 
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m 

L[E~~ + Vi2 
- 2E~i Vi COS(Oi - lPi) 

i=l 

-(E~~o + Vi~ - 2E~io Vio COS(Oio - lPio))]( 2
1
, ) xdi 

1 n n 

-2" LLBij(ViVjcoslPij - VioVjo cos lPijo) 
i=l j=l 

m 

- - LfV?(cos2(Oi - lPd -1) - Vi~(cos2(Oio - lPio) -1)] x 
i=l 

m 

L[E~~ + Vi2 + 2E~i Vi &in(Oi - lPi) -
i=l 

(E~o + Vi~ + 2E~io Vio sin(Oio - lPio))] (2 \) 
Xq$ 

The subscript '0' in the above expressions indicates quantities at initial equilib­
rium (operating point). 

It can be proved that the time derivative of W is non-positive along the 
post-fault trajectory. That is 

(13.45) 

Proof 
Partial differentiation of W2 with respect to E~i' E~i' Vi, lPi' Oi and t yields the 
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following expressions after some algebraic manipulations. 

Since 

Thus, 

aW2 

aEdi 
aW2 

aVi 
aW2 

a~i 
aW2 

aOi 

aW2 
at 

, d:~i 
Tdoi • t Efdi 

- (Xdi - Xdi ) + (Xdi - Xdi) 

- 0 

-Pmi + Pei 

n d'" m E dE' _ L fpi(Vi) _o/_i - L fdi , qi 
i=l dt i=l (Xdi - xdi ) dt 

(13.46) 

(13.47) 

(13.48) 

(13.49) 

(13.50) 

(13.51) 

(13.52) 

(13.53) 
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Remarks 

1. The first five terms in the potential energy (W21 to W2S) are the same 
as those defined in the previous section, except that in term W24, E~i is 
replaced by Ei (for the classical model) 

2. The term W26 accounts for transient saliency and is identically zero if 
x~ = x~ 

3. The terms W27, W28 and W211 arise due to the presence of the damper 
windings in the the quadrature axis. If this winding is neglected, then 
E~ = 0 and 

4. If Efd = constant (AVR is neglected), then 

(13.55) 

becomes a path-independent function of E~. If AVR is considered, then 
Efd is variable and the terms W29 has to be computed by numerical inte­
gration. Using trapezoidal rule, we have 

Note that any type of excitation system can be considered as E/di is treated 
as a variable parameter in the energy function. 

5. If E fd and the active load Pz are constants then the energy function defined 
is a general (global) Liapunov function having the properties stated in 
section 13.2 

6. The governor and prime mover dynamics have generally minor effects on 
the first swing stability. However if these effects are included, the me­
chanical power (torque) will be time-varying and the term W21 is modified 
to 

(13.56) 

A Simpler Expression for SPEF 

For the analysis of first swing stability, it is convenient to introduce two 
extra (path-dependent) terms in the potential energy such that the total energy 
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W remains constant along the post-fault trajectory. Thus a modified energy 
function, defined below, is introduced 

13 

W' = WI + W~ = Wt{w) + L W2i (13.57) 
i=1 

where 

m t (dE' 0)2 
W212 ~ [0 [T~od{Xdi - X~i)] dt dt 

W213 = t, {IT;.d (Xqi - x;,J] ( d:t' )' dt 

Although the number of terms are increased by two, some simplifications are 
possible by grouping the terms. It can be shown that 

() W "m rt · ( dE~i ) dt w.' 2 29 + W210 + W212 = L..ti=l Jto 'l.di dt = 25 

(3) W21l + W213 = - I:~1 It: iqi ( dffti ) dt = W26 

Thus, a simpler expression for the energy function is obtained as 

w' = Wl{W) + W21 + W22 + W23 + W~4 + W~5 + W~6 

W24 
(13.58) 

(13.59) 

(13.60) 

(13.61) 

where W24' W 25 and W26 are defined above. Note that for the classical model, 
both W25 and W 26 are zero. For one-axis model, W26 = O. 

It is to be noted that W25 accounts for both the field coil and effects 
of AVR, while W26 accounts for the damper winding on the q-axis. The term 
W24 accounts for the energy stored in all the reactances including the transient 
reactances of the machine. With transient saliency considered, the energy stored 
in the machine reactances is given by 

1 ( , .2 , 0 2) "2 Xd'l.d + Xq'l.q 

If x~ = x~ = x', then this component reduces to ~x' ~ where I~ = i~ + i~ 
The expression for SPEF given in this and the previous section have 

considered the datum (reference) at the value corresponding to the initial (pre­
fault) operating point. There is no loss of generality in doing so as the critical 
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value of W will also change appropriately. To explain this, consider the stability 
criterion 

(13.62) 

where W is defined as 

W(X) = W*(x),- W*(xs) (13.63) 

such that, W(xs) = 0 and WCT is the value of W computed at the controlling 
UEP. 

Let 

W'(x) 
W~T 

W*(x) - W*(xJ) and 
- WCT + W*(Xs) - W*(XJ) 

then the stability criterion of (13.6) is transformed to 

W'(t = t) < W' C - CT 
(13.64) 

(Note that W* denotes the energy expression involving only x). W~ is the value 
of W' evaluated at the controlling UEP. 

If there are no path-dependent terms in the energy expressions, there is 
no difference between the use of stability criterion (13.62) or (13.64). However, 
whenever path-dependent terms are present, it is convenient (and accurate) 
to use (13.64) rather than (13.62), particularly when WCT is determined from 
the PEBS (Potential Energy Boundary Surface) method described in the next 
section. 

13.6 Determination of Stability Boundary 

For all practical purposes, the determination of stability boundary for a partic­
ular fault is equivalent to determining W CT (the critical energy) for that fault. 
The critical energy can be determined from computing 

a) Controlling UEP 

b) Potential Energy Boundary Surface 

It will be assumed, for simplicity, that the generators are represented by classical 
models. However, the analysis can be extended for more complex models., 
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13.6.1 Controlling UEP 

In this method, the critical energy is determined as 

(13.65) 

where x: is the type 1 UEP lying on the stability boundary and whose stable 
manifold is intersected by the fault-on trajectory. As the rotor velocity deviation, 
w, is zero at any equilibrium point, the critical energy is the same as potential 
energy W2 evaluated at the value 6: corresponding to the controlling UEP. 

The determination of controlling UEP can be complex. There are several 
approaches to the determination of controlling UEP. Two prominent approaches 
which have been applied for large systems are 

1. Mode of Disturbance (MOD) or Instability (MOl) [9] 

2. BCU (Boundary Controlling UEP) method. (Also termed as exit point 
method) [27] 

The second approach is related to PEBS method. 

Mode of Disturbance Method 

This method relies on the approximate determination of candidate UEPs 
first. For a given mode of instability (determined by machines having advanced 
angles) the approximate UEP is given by 

or = Of if i ¢ I } 
= 1f - 0: if i E I 

(13.66) 

where I is the set of generators with advanced rotor angles. Of is the angle of 
ith generator at SEP. 

It is necessary to correct the approximate UEP given in (13.65) to ac­
count for the constraint 

Hence the determination of approximate OU is modified as follows 

(i) Indentify two groups according to the chosen mode of instability 
Group I: Advanced generators 
Group II: Rest of the generators 
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(ii) Compute 

01-11 

(iii) Compute 

(vi) Calculate 

Of Of + ~O I for i E I 

Of - Of +~OII for i E II 

Selection Among Approximate UEPs 

This is based on the assumption that the controlling UEP is closest to 
the trajectory at the time of fault clearing. The distance to UEP is measured 
in terms of the normalized potential energy margin defined by 

~VPEm = ~WPE _ W~E - Wj,E 
WKE lcorr WKE Icorr 

(13.67) 

where W~E is the potential energy evaluated at a candidate UEP and Wj,E is 
the potenti(~.l energy evaluated at the instant of clearing of the fault. The kinetic 
energy WKE is corrected to account for only that component of kinetic energy 
that leads to system seperation. Thus 

WKE lcorr= ~Meq(W;q)2 (13.68) 

where 
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The superscript c indicates the value computed at the clearing time. 

Computation of UEP 

The selection of the approximate UEP (among the candidates) is used 
to determine the starting point for the determination of the exact UEP which 
is found from the solution of the nonlinear equations given by 

(13.69) 

These equations can be solved directly using Newton-Raphson method. The 
starting point is determined as a point along the ray connecting the SEP Os, to 
the approximate UEP i)u at which the potential energy is maximum (the point· 
lying on PEBS). Note that i)u is selected from among the candidate UEPs and 
has the minimum normalised potential energy margin. 

Instead of solving Eq. (13.69) directly, the exact UEP can also be deter­
mined by formulating a nonlinear least squares minimization problem with the 
objective function defined as 

m 

F(O) = L H(O) (13.70) 
i=l 

where m is the number of generators. 

The minimization can be carried out using 

a) Davidon-Fletcher-Powell (DFP) algorithm or 

b) Gauss-Newton technique 

BCU Method 

BCU stands for Boundary of stability region based Controlling Unstable 
equilibrium point. This method is based on the relationship between the stability 
boundary of the (post-fault) classical power system model and the stability 
boundary of the following (post-fault) reduced system model defined as 

. Mi 
Oi = fi(O) = Pmi - Pei - Mr Peol (13.71) 

The state variables of this reduced system are rotor angles only with dimension 
of (m - 1) while the dimensions of the original system is 2(m - 1). It is easy to 
see that if i) is an equilibrium point of (13.71) then (i),0) is an equilibrium point 
of the original system. Under the condition of small transfer conductances, it 
can be shown that 
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(i) (Os) is a SEP of the reduced system if and only if (Os, 0) is a SEP of the 
original system. 

(ii) (O'lJ is a type-k equilibrium point of the reduced system if and only if 
(0:,0) is a type-k equilibrium point of the original system. 

(iii) If the one-parameter transversality condition is satisfied, then (0) is on the 
stability boundary 8A(Os) of the reduced system if and only if (0,0) is on 
the stability boundary 8A(Os, 0) of the original system. 

The above results establish a relationship between the stability boundary 8A(Os) 
and the stability boundary 8A(Os, 0) and suggest a method of finding the con­
trolling UEP of the original system via the location of controlling UEP of the 
reduced system. 

One version of the BCU method involves the following steps for the 
determination of the controlling UEP 

STEP 1: From the fault-on trajectory, detect- the exit point 0* which is the 
point where the projected trajectory O(t) exits the stability boundary of 
the reduced system. This exit point corresponds to the point at which the 
first local maximum of the potential energy WPE is reached. 

STEP 2: Use the point 0* as the initial condition and integrate the post-fault 
reduced system of (13.71) to find the first local minimum of 

m 

L II fi(O) II, say at O~ 
i=l 

STEP 3: Use the point 0; as the initial guess to solve 

n 

L II Ii (0) 11= 0, say at O~ 
i=l 

The controlling UEP of the original system is given by x: = (O~, 0). 

The reduced system equations may be stiff and suitable integration method has 
to be used in Step 2. 

Recent tests on realistic systems indicate that MOD method is not always 
reliable. In comparison, the BCU method, when properly tuned to the/system, 
provides a good compromise in reliability and computational speed. . 
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13.6.2 PEBS (Potential Energy Boundary Surface) 

It is possible to express the differential equations for the conservative system as 

: ~aY'f." } (13.72) 

For a single machine system, the variation of potential energy with the rotor 
angle 8 is shown in Fig. 13.7 (b). It is assumed that the stability region extends · 
from 8~ < 8 < 81.£ (not always true!) and the potential energy reaches local 
maximum at the boundary (8~ and 81.£). 

(Note: 81.£ is the controlling UEP most of the time and always lies on the 
stability boundary. 8~ does not always lie on the stability boundary). 

It is conjectured that even for multimachine systems, the stability region 
is inside a potential bowl. In other words, at the stability boundary, WPE 

reaches a local maximum. 

The Potential Energy Boundary Surface (PEBS) is made up of surfaces 
in the angle space which contain UEPs that lie on the stability boundary. It is 
characterized by the fact that at any point on the PEBS, the directional deriva­
tive of W P E is zero along the direction of the normal (perpendicular) to PEBS. 
This implies that if the projected trajectory intersects PEBS orthogonally, then 
the potential energy reaches a local maximum at the intersection point. An 
example of a PEBS for a 3 machine system in the two dimensional space of (it 
and ()2 is shown in Fig. 13.9 [21]. 

PEBS is also viewed as the rim of the potential bowl at the bottom of 
whiGh lies the SEP (of the post-fault system). A point on PEBS satisfies the 
following equation 

m 

L gi (())h (()) = 0 (13.73) 
i=l 

where 9i(()) is·the ith component of the normal to PEBS at the point () on it. 

There is some ambiguity in the way PEBS is defined by different authors. 
Athay et al [20] use the following equation to characterize PEBS 

m 

L h(())(()i - ()l) = 0 (13.74) 
i=l 

This is a particular case of the Eq. (13.73). 
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Figure 13.9: Equipotential curves for a 3-machine system and PEBS[21] 

The advantage of PEBS as originally defined by Kakimoto et al [21] is 
that a simple procedure for the computation of stability boundary can be given. 
The computation of the critical clearing time is given below 

Step 1 Integrate the fault-on trajectory until WPE reaches a local maximum. This 
value is an estimate of the true Wer. 

Step 2 From the fault-on trajectory, determine the instant when W = W cr. This 
is the CCT (Critical Clearing Time, tcr). Fig. 13.10 shows this graphically. 

It is meaningful to view PEBS as the stability boundary of a reduced 
gradient system (in the angle space only) given by 

ih = h(O) = - aWPE (13.75) 
aOi 

Chiang et al [25] show that the PEBS defined as the stability boundary 
of the reduced dynamical system is consistent with the geometric construction 
procedure suggested in the paper by Kakimoto et al [21]. This is in view of the 
fact that the stability boundary for (13.75) is given by 

(13.76) 
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Energy 

WPE 

time 

Figure 13.10: Determination of tcr using PEBS 

Angle space 

•• a 
~_-+ __ Projection of 

stability boundary 

: 

Figure 13.11: Relationship between PEBS and projection of the stability bound­
ary 

where ()i is the type 1 UEP lying on the stability boundary and M S indicates 
the stable manifold of ()i. It is easy to see that PEBS defined above intersects 
the level surface WPE(()) = G, orthogonally as the vector field is orthogonal to 
the level surface. 

However, PEBS is not identical to the projection of the stability bound­
ary of the original system in the subspace characterized by w = O. The PEBS 
intersects the projection of the stability boundary of the original system at the 
UEPs that lie on the stability boundary (see Fig. 13.11). 

An important result given in [25] is stated below. 

Theorem: Let (Ott,O) be a UEP on the stability boundary oA(Os, 0) of the orig­
inal system. Then the connected constant energy surface oW (Ott, 0) intersects 
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the stable manifold MS(OU, 0) only at the point (01£,0); moreover the connected 
component of the set W(O, w) < W(OU,O) does not contain any pbint which 
belongs to the stable manifold MS(OU, 0). 

The graphical illustration of this theorem is shown in Fig. 13.12 . 

,a~o) 

.....-..=-·aw( Ef,O} 

Figure 13.12: Illustration of the theorem 

Chiang et al [25] also show the PEBS method can give either optiniistic 
or slightly pessimistic results depending upon the point of intersection of the 
fault-on trajectory with the PEBS. They propose a modified PEBS method as 
follows: 

Step 1: From the fault-on trajectory, detect the point 0* at which the projected 
trajectory O(t) crosses the PEBS. 

Step 2: Find the equilibrium point of the system whose stable manifold con­
tains the point 0*, say 01£. The value of WPE(OU) is the critical energy 
Wcr· 

. Note that in the original PEBS method, WeT = WPE(O*). This modifi­
cation is the basis of the BCU method described earlier. The calculation of 01£ 
is implemented using the procedure given below 

(i) Use the point 0* as the initial condition and integrate the post-fault gra­

dient system (13.74) until the local minimum of 8YfitE is achieved, say at 
0°. 

(ii) Find the equilibrium point of the post-fault gradient system using 0° as the 
initial guess. The solution is the required 01£. This procedure is illustrated 
in Fig. 13.13. The computed exit point (PEBS crossing) is 0* while the 
correct PEBS crossing is oe. If 0* ~ oe then 0° ~ 01£. . 
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Figure 13.13: IllUstration of BCU method 

13.7 Extended Equal Area Criterion (EEAC) 

. A simple, yet reasonably relia!lle approach for direct stability evaluation is sug­
gested in [43,44]. This is based on the conjecture that "the loss of synchronism 
of a multimachine system, whenever it occurs, is triggered off by the machine's 
irrevocable separation into two groups; hence, the idea of subdividing the sys­
tem machines into the 'critical group', generally comprising a few machines, and 
the remaining group, comprising the majority 6f machines". This conjecture is 
supported by theoretical analysis of Chiang et al [10] where it is shown that the 
controlling UEP lying on the stability boundary is usually of type 1. 

Based on the conjecture, it is further assumed that the system stability 
can be assessed by replacing of the machines of each group by an equivalent and 
finally the two equivalent machines replaced by a SMIB system. The equal area 
criterion is then applied to this SMIB system for stability assessment. 

The formulation of EEAC method is giyen below. The generators are 
represented by classical models and loads by constant impedances. There is no 
need for the use of COl reference frame. 

13.7.1 Formulation 

The machine equations are given by . . 

(13.77) 
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where 
m 

Pei=E;Yi,icos{3ii+ 2: EiEjYijCOS(Oi-Oj-{3ij) (13.78) 
j=l,#i 

Yij L{3ij is the ilh element of the reduced admittance matrix [Y]. The other 
symbols are as defined earlier. 

Denoting S to be the set of critical machines and A, the set of remaining 
machines, we assume that 

(13.79) 

Based on (13.78), we can derive two swing equations for the two equivalent 
machines representing the two groups Sand A. These are, 

Msgs = 2:(Pmk - Pek), Ma8a = 2:(Pml - Pel) (1'3.80) 
~s ~A 

where 

Finally, setting 
0= Os - oa 

and using Eq. (13.80), we can derive 

\... M 8 = Pm - [Pc + Pmax sin( 0 - a)] = Pm - Pe 

13.7.2 Approximation of Faulted Trajectory 

(13.81) 

(13.82) 

The use of Taylor series helps to compute critical time based on critical clearing 
angle, without having to integrate faulted system equations. 

Taylor series contains only even derivatives of o. Truncating the series 
aft~r t 4 term, yields 

o 0 1 2 1 .. 4 (13 83) 
= o+ryt + 241:t . 

where'Y denotes the seco~d order derivative of 0 at t = 0+ (immediately after 
the fault) and ;Y its fourtkderlvative also at t = 0+. 

\ " 

Athay et al [20] have ph:iposed an alternative approximation of faulted 
trajectory" (although not in the context ofEEAC). They assume that during the 
fault, the swing equation can be aPP'!oximated as 

(13.84) 

where the constants a, b and 'fJ can be determined from initial conditions. 



13. Application of Energy Functions for Direct Stability Evaluation 473 

13.7.3 Identification of Critical Cluster 

The procedure for the identification of the critical cluster is given below 

1. Draw up a list of candidate critical machines. 
This can be done using initial acceleration criterion which consists of 
a) classification of machines in a decreasing order of their initial accelera­
tions and b) selection of machines which have accderations close to that 
of the top machine. 

2. Consider candidate critical clusters composed of one, two ... machines and 
obtained by successively combining the candidate critical machines. 

3. Compute the corresponding candidate CCT: The smallest one is the actual 
CCT; the actual critical cluster is precisely that which furnishes the CCT. 

The reliable identification of critical clusters is not a simple task and improve­
ments in the above procedure have been suggested [45]. 

13.8 Case Studies 

Two case studies, one each on the 17 generator IEEE transient stability test 
system and the 10 generator New England system are presented in this section. 
Structure preserving energy function (SPEF) is used and the critical energy 
determined from PEBS method. Several disturbances are considered, in some 
of which, the prefault and postfault network configurations are same. Both 
classical and detailed machine representations are included. 

13.8.1 17 Generator System 

All the machines are represented by classical models and loads are modelled 
as constant impedances. The disturbances considered are three phase faults at 
different buses followed by line clearing. The critical energy is computed by 
PEBS method which is obtained as the peak of the potential energy during 
fault-on trajectory. (The energy is calculated for the postfault system). 

The comparison of critical clearing times obtained by prediction and simulation 
are given in Table 13.1 for 15 different disturbances. For faults at bus #15 
and bus #131, the postfault network is assumed to be same as the prefault 
network. It is interesting to observe that for all the disturbances considered, the 
predicted critical clearing times are in very good agreement with those obtained 
from simulation. Thus, the use of PEBS method with SPEF gives accurate 
results. 
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Table 13.1 17 Generator System: tcr and WeT 

S1. No. Fault Line Cleared Critical clearing time 
bus # (from bus # Prediction Simulation WeT 

to bus #) teT tcr 
1. 75 75-9 0.34-0.35 0.35-0.36 25.43 
2. 95 95-97 0.30-0.31 0.30-0.31 7.11 
3. 52 52-79 0.34-0.35 0.35-0.36 8.46 
4. 93 93-91 0.24-0.25 0.24-0.25 9.66 
5. 110 110-141 0.27-0.28 0.26-0.27 14.02 
6. 15 15-11 0.25-0.26 0.25-0.26 17.72 
7. 1 1-2 0.21-0.22 0.21-0.22 18.39 
8. 124 124-109 0.34-0.35 0.36-0.37 40.98 
9. 112 112-120 0.19-0.20 0.20-0.21 14.52 
10. 70 70-149 0.23-0.24 0.23-0.24 13.61 
11. 126 126-127 0.25-0.26 0.26-0.27 68.72 
12. 130 75-130 0.30-0.31 0.30-0.31 11.29 
13. 27 27-25 0.35-0.36 0.35-0.36 72.58 
14. 15 - I 0.21-0.22 0.22-0.23 12.69 
15. 131 - 0.25-0.26 0.25-0.26 20.80 

For the fault at bus #75, the variations of total (W), kinetic (Wd and potential 
(W2 ) energies with time are shown in Fig. 13.14. Both stable and unstable 
cases are considered. It is interesting to observe that while W is approximately 
constant (as expected) after the fault is cleared, the kinetic energy Wi continues 
to increase when the system is unstable. The increase in Wi is not monotonic 
but superimposed with oscillatory component. The variation in potential energy, 
W2 are of similar nature except that W2 continues to decrease. If transmission 
line resistances (which are included in this example) are neglected, W would be 
exactly constant after the fault is cleared. 

The variations of the components of the potential energy are shown in Fig. 
13.15. These components are defined as 

m 

- LTmi((Ji - (Jio) 
i=i 
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Figure 13.14: Plots of W, Wi, W 2 (17 Generator system) 
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Figure 13.15: Plots of W 21 , W 22 , W23 and W24 (17 generator system) 
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where 

For classical model of the machine, T mi (mechanical torque of ith machine) 
is approximated by Pmi and Edi = O. Also, E~i remains constant during a 
transient. 

From Fig. 13.15, it is observed that the components W23 and W24 are bounded. 
In this example W21 also appears to be bounded while W 22 is unbounded for 
the unstable case. The oscillations in W24 are due to intermB.<:hine oscillations 
during the transient. The compcnent W23 is small compared to others. 

13.8.2 10 Generator System 

The disturbance considered is a threp. phase fault at bus #14 followed by clearing 
line between bus #14 and bus #34. The effect of generator modelling on critical 
clearing time is investigated. The results are shown in Table 13.2. 

Table 13.2. 10 Generator System Fault at Bus # 14 

Machine Model Prediction Simulation 
teT WeT teT 

I. Classical 0.25-0.26 11.27 0.26-0.27 
II. One-Axis 

Saliency Neglected: 
(i) Without AVR 0.18-0.19 6.07 0.19-0.20 
(ii) With AVR 0.36-0.37 26.54 0.37-0.38 
Saliency Included: 
(i) Without AVR 0.16-0.17 5.10 0.16-0.17 
(ii) With AVR 0.35-0.36 27.59 0.36-0.37 

III. Detailed 
(i) Without AVR 0.16-0.17 4.06 0.17-0.18 
(ii) With AVR 0.34-0.35 18.75 0.34-0.35 

The results show that the PEBS method predicts accurately the critical clearing 
time in practically all the cases considered. The effect of AVR on improving 
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transient stability is significant. The machine 'model (1.0) (one axis model) is 
accurate compared to model (1.1) (two axis model). This is not surprising as 
the damper winding mainly helps in damping rotor oscillations. The classical 
model gives higher critical clearing time than the model (1.1) neglecting AVR. 
This is due to the fact that flux decay is neglected in the classical model. The 
performance of static exciter with gain KA = 25, ( TA = 0.025 s, Efdmax 

= 10, Ejdmin = -10) is better than just maintaining constant field flux. 

It is interesting to note that the effect of including transient saliency (xq '1= x~) 
with model (1.0) is to slightly reduce the critical clearing time. 

The variations of WI, W2 and W with time for the case, when machines are 
represented by classical models, are shown in Fig. 13.16. The \ mponents of 
the potential energy - W2I, W 22 , W23 and W24 are shown in Fig. 13.17. In this 
case, both W 2I and W22 are unbounded when the system is unstable. It is 
interesting to observe that the oscillations in W 2I and W24 are in antiphase. It 
is to be noted that for this system, the transmission losses are neglected. 

The variations of WI, W 2 and W when the generators are represented by de­
tailed models (including AVR) are shown in Fig. 13.18. The components of the 
potential energy W21, W22, W23 and W24 are shown in Fig. 13.19. The remaining 
components W25 and W26 are shown in Fig. 13.20. W25 and W 26 are defined as 

These components are identically zero when classical model is considered. W26 

is small when the system is stable, but continues to increase with time when the 
system is unstable. 

The variations in the remaining energy components are not qualitatively 
different when compared to those for the case with classical machine models. 
It is observed from the examples presented, that energy function based meth­
ods are useful in predicting transient stability. However, it is to be noted that 
direct methods are incapable of predicting oscillatory instability (or dynamic 
instability) caused by fast acting excitation systems and lack of inherent system 
damping. Thus, it is stated that direct methods predict only 'first swing' sta­
bility (although the concept of first swing is somewhat vague in multimachine 
systems). Actually with classical machine models, ('.)nstant active power loads 
and lossless transmission network, energy function method can predict system 
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Figure 13.16: Plots of W, WI, W2 (10 generator system - classical model) 



Figure 13.17: Plots of W 21 , W 22 , W23 and W24 (10 generator system - classical 
model) 
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Figure 13.18: Plots of W, W 1, W2 (10 generator system - detailed model) 



Figure 13.19: Plots of W21! W22! W23 and W24 (10 generator system - detailed 
model) 
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Figure 13.20: Plots of W25 and W26 (10 generator system - detailed model) 
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stability accurately and there is no need to qualify that only first swing stability 
is predicted. Although, the application of energy function is not mathematically 
justified for power systems with excitation system models, the results from the 
examples show that direct methods based on SPEF give accurate prediction of 
critical clearing time. Thus, the application of structure preserving energy func­
tions offer promise as effective tools for on-line dynamic security assessment and 
devising emergency control strategies. 

The use of SPEF is desirable ev~n when the loads are modelled as con­
stant impedances. Firstly the problem of path dependent component of energy 
function is minimized with structure preserving model. Secondly, in large sys­
tems, the retention of the structure of the system results in sparse bus admittance 
matrix and there could be computational advantages using sparsity. 

References and Bibliography 

1. P.C. Magnusson, "Transient energy method of calculating stability", AIEE 
Trans. Vol. 66, 1947, pp. 747-755. 

2. P.D. Aylett, "The energy integral-criterion of transient stability limits of 
power systems", Proc. IEE (London), Vol. 105C, No.8, 1958, pp. 527-536. 

3. G.E. Gless, "Direct method of Lyapunov applied to transient power system 
stability", IEEE Trans. Vol. PAS-85, No.2, 1966, pp. 159-168. 

4. A.H. EI-Abiad and K. Nagappan, "Transient stability regions of multi­
machine power systems", IEEE Trans. Vol. PAS-85, No.2, 1966, pp. 
169-178. 

5. M.A. Pai, Power system stability - analysis by the direct method 
of Lyapunov, New York, N.Y:North Holland, 1981. 

6. M.A. Pai, Energy function analysis for power system stability, 
Kluwer Academic Publishers, 1989. 

7. M. Ribbens-Pavella and F.J. Evans, "Direct methods for studying dynam­
ics of large-scale electric power systems - a survey", Automatica, Vol. 32, 
January 1985, pp. 1-21. 

8. P.P. Varaiya, F.F. Wu and R.L. Chen, "Direct methods for transient sta­
bility analysis of power systemji: recent results", Proc. of IEEE, Vol. 73, 
1985, pp. 1703-1715. 

9. A.A. Fouad and V. Vittal, "The transient energy function method", Int. 
J. of Elec. Power and Energy Syst., Vol. 10, No.4, 1988, pp. 233-246. 



13. Application of Energy Functions for Direct Stability Evaluation 485 

10. H.D. Chiang, F.F. Wu and P.P. Varaiya, "FoundatIons of direct methods 
for power system transient stability analysis", IEEE Trans. on Circuits 
and Systems, Vol. CAS-34, No.2, 1987, pp. 160-173. 

11. IEEE Committee Report, "Application of direct methods to transient sta­
bility analysis of power systems", IEEE Trans. Vol. PAS-104, May 1985, 
pp. 1629-1636. 

12. A.R. Bergen and D.J. Hill, "A structure preserving model for power system 
stability analysis", IEEE Trans. Vol. PAS-100, No.1, 1981, pp. 25-35. 

13. N. Narasimhamurthi and M.R. Musavi, "A general energy function for 
transient stability analysis of power systems", IEEE Trans. on Circuits 
and Systems, Vol. CAS-31, No.7, 1984, pp. 637-645. 

14. N.A. Tsolas, A .. Arapostathis and P.P. Varaiya, "A structure preserving 
energy function for power system transient stability analysis" , IEEE Trans. 
on Circuits and Systems, Vol. CAS-32, No. 10, 1985, pp. 1041-1049. 

15. KR. Padiyar and h.S.Y. Sastry, "Application of topological energy func­
tion for the direct stability evaluation of power systems with voltage de­
pendent loads", Conf. Proc. 83 CH 1962-0, IEEE Systems Man and 
Cybernatics Society, 1983. 

16. T.V. Cutsem and M. Ribbens-Pavella, "Structure preserving direct meth­
ods for transient stability analysis of power systems", Proc. 29th Conf. on 
Decision and Control, Fort Lauderdale, FL., December 1985 

17. A.R. Bergen, D.J. Hill and C.L. de Marcot, "Lyapunov functions for mul­
timachine power systems with generator flux decay and voltage dependent 
loads", Int. J. of Elec. Power & Energy Syst. Vol. 8, No.1, 1986, pp. 
2-10. 

18. KR. Padiyar and H.S.Y. Sastry, "Topological energy function analysis of 
stability of power systems", Int. J. of Elec. Power & Energy Syst., Vol. 9, 
No.1, 1987, pp. 9-16. 

19. KR. Padiyar and KK Ghosh, "Direct stability evaluation of power sys­
tems with detailed generator models using structure-preserving energy 
functions", Int. J. of Elec. Power & Energy Syst., Vol. 11, No.1, 1989, 
pp. 47-56. 

20. T. Athay, P. Podmore and S. Virmani, "A practical method for direct 
analysis of transient stability", IEEE Trans. Vol. PAS-98, pp. 573-584. 

21. N. Kakimoto, Y. Ohsawa and M. Hayashi, "Transient stability analysis 
of electric power systems via Lure type Lyapunov function, Part I: New 
critical value for transient stability; Part II: Modification of Lure type 



486 Power System Dynamics - Stability and Control 
--------------------------~~--~~----------~----------

Lyapunov function with effect of transfer conductances", Tran., IEE of 
Japan, Vol. 98, No. 5/6, 1978, pp. 62-71; 72-79. 

22. M. Ribbens-Pavella, P.G. Murthy and J .L. Horward, "The acceleration 
approach to practical transient stability domain estimation in power sys­
tems" , Proc. of the 20th IEEE Conf. on Decision and Control, San Diego, 
CA, 1981, pp. 471-477. 

23. B. Toumi, R. Dhifaorei, Th van Cutsem and M. Ribbens-Pavella, "Fast 
transient stability assessment revisited", IEEE Trans. on Power Systems, 
Vol. PWRS-1, No.2, 1986, pp. 211-220. 

24. A.A. Fouad and S.E. Stanton, "Transient stability of multimachine power 
systems, Part I:Investigation of system trajectories", IEEE Trans. Vol. 
PAS-lOO, 1981, pp. 3408-3414. 

25. H.D. Chiang, F.F. Wu and P. Varaiya, "Foundations of PEBS method for 
power system transient stability analysis", IEEE Trans. on Circuits and 
Systems, Vol. CAS-35, June 1988, pp. 712-728. 

26. P.W. Sauer, A.K. Behera, M.A. Pai, J.R. Winkelman and J.H. Chow, "Tra­
jectory approximations for direct energy methods that use sustained faults 
with detailed power system models" , IEEE Trans. on Power Systems, Vol. 
4, No.2, 1989, pp. 499-506. 

27. H.D. Chiang, F.F. Wu and P. Varaiya, "A BCU method for direct analysis 
of system transient stability", IEEE PES Summer Meeting, 91 SM 423-
4,PWRS, 1991, IEEE Trans. on Power Systems, Vol. 9, No.3, 1994, pp. 
1194-1208. 

28. P.W. Sauer, K.D. Demaree and M.A. Pai, "Stability limits load supply 
and interchange capability", IEEE Trans. Vol. PAS-102, Nov. 1983, pp. 
3637-3643. 

29. M.A. El-Kady, C.K. Tang, V.F. Carvalho, A.A. Fouad and V. Vittal, "Dy­
namic security assessement utilizing the transient energy function method" , 
IEEE Trans. on Power Systems, Vol. PWRS-1, 1986, pp. 284-29l. 

30. J. Tong, H.D. Chiang and T.P. Conneen, "A sensitivity-based BCU method 
for fast derivation of stability limits in electric power systems", IEEE 
Trans. on Power Systems, Vol. 8, No.4, 1993, pp. 1418-1428. 

31. F.A. Rahimi, M.G. Lauby, J.N. Wrubel and K.L. Lee, "Evaluation of the 
transient energy function method for on-line dynamic security analysis", 
IEEE Trans. on Power Systems, Vol. 8, No.2, 1993, pp. 497-507. 

32. G.A. Maria, C. Tang and J. Kim, "HYBRID transient stability analysis", 
IEEE Trans. on Power Systems, Vol. 5, No.2, 1990, pp. 384-391. 



13. Application of Energy Functions for Direct Stability Evaluation 487 

33. KR. Padiyar and KK Ghosh, "Dynamic security assessment of power sys­
tems using structure-preserving energy functions", Int. J. of Elec. Power 
& Energy Syst., Vol. 11, No.1, 1989, pp. 39-46. 

34. H.D. Chiang, "Study of the existence of energy functions for power systems 
with losses", IEEE Trans. on Circuits and Systems, Vol. CAS-36, Nov. 
1989, pp. 1423-1429. 

35. C.J. Tavora and O.J.M. Smith, "Characterization of equilibrium and sta­
bility in power systems", IEEE Trans. Vol. PAS-91, No.3, 1971, pp. 
1127-1130. 

36. KR. Padiyar and H.S.y' Sastry, "Fast evaluation of transient stability 
of power systems using a structure preserving energy function", Electric 
Machines and Power Systems, Vol. 11, 1986, pp. 421-441. 

37. KR. Padiyar and KK Ghosh, "Integrating direct methods in power sys­
tem dynamic simulation I rogram", J. of Institution of Engineers (India), 
Electrical Engg. Division, (Pt EL6), Vol. 69, 1988, pp. 7-13. 

38. KR. Padiyar and KK Ghosh, "A novel structure preserving energy func­
tion for direct stability evaluation of power systems with known modes 
of instability", Elec. Machines and Power Systems, Vol. 13, 1987, pp. 
135-148. 

39. KR. Padiyar and K.K. Ghosh, "A new structure preserving energy func­
tion incorporating transmission line resistance", Elec. Machines and Power 
Systems, Vol. 14, No.4, 1988, pp. 324-340. 

40. KR. Padiyar and H.S.Y. Sastry, "A structure preserving energy function 
for stability analysis of AC IDC systems", Sadhana (Proc. in Engg. Sci­
ences, Indian Academy of Science) Vol. 18, part 5, 1993, pp. 787-799. 

41. KR. Padiyar and P.P. Varaiya, "A network analogy for power system 
stability analysis" , preprint, Dec. 1983. 

42. KR. Padiyar and Vijayan Immanuel, "Modelling of SVC for stability eval­
uation using structure preserving energy function" , Int. J. of Elec. Power 
and Energy Syst., Vol. 16, No.5, 1994, pp. 339-348. 

43. Y. Xue, Th.Van Cutsem and M.Ribbens-Pavella, "Extended equal area 
criterion: justifications, generalizations, applications", IEEE Trans. on 
Power Systems, VolA, No.1, 1989, pp. 44-52. 

44. Y. Xue, L. Wehenkel, R. Belhomme, P. Rousseaux, M. Pavella, E. Euxibie, 
B. HeilbrOIill and J.F. :".asigne, "Extended equal area criterion revisited", 
IEEE Trans. on Power Systems, Vol.7, No.3, 1992, pp. 1012-1022. 



488 Power System Dynami~8 ~ Stability and Comrol 
~I 

45. Y. Xue and M. Pavella, "Critical-cluster identification in transient stability 
stuPie's'~, lEE Proc. (London) Part C, Vo1.140, No.6, 1993, pp. 481-489. 

46. IEEE Committee Report; "Transient sta.bility test systems for direct sta­
bility methods", IEEE Trans. on Power Systems, Vol. 7, Feb. 1992, pp. 
37-43. 

47. Vijayan Immanuel, Application of structure preserving energy func­
tions for stability evaluation of power systems with static var 
compensators, Ph.D. Thesis submitted to Indian Institute of Science, 
Bangalore, August 1993. 



Chapter 14 

Transient Stability Controllers 

Transient stability is important from the viewpoint of maintaining system secu­
rity - that is, the incidence of a fault should not lead to tripping of generating 
unit(s) due to loss of synchronism and the possibility of a cascaded outage lead­
ing to system black out. Unlike steady state or small signal stability which has 
to be continuously maintained at all times, the transient stability is a function 
of the disturbance. The improvement of transient stability can be achieved not 
only by adequate system design but also from the use of control action which 
is not continuous, but is initiated following a disturbance and is temporary in 
nature. An example is the operation of dynamic braking using shunt or se­
ries connected resistors. Such controllers are termed as discrete supplementary 
controllers [1] as opposed to primary controllers which are speed governor and 
excitation systems in addition to protective relaying. In this chapter, the factors 
that affect transient stability of power systems are discussed and the application 

- of discrete supplementary controls is reviewed. 

14.1 System Design for Transient Stability 

Transient Stability Criteria 

The transient stability criteria chosen by different utilities can vary to 
some extent. However, in most cases the criteria include the ability of the system 
to withstand a three phase bus fault at critical locations such as terminals of 
heavily loaded generators and lines carrying large amounts of power. Although 
three phase bus faults are convenient to specify, the statistical data indicate 
single line to ground (S-L-G) faults are most prevalent on HV and EHV lines 
[2]. On 500 kV lines the incidence single phase to ground faults is more than 
90% of the total number of faults compared to three phase faults which occur 
about 1 % of the total number. The misoperation of relay can result in double 
contingency faults which are more common than three phase faults. However, 
three phase faults are more severe and transient stability criteria usually include 
ability to withstand 
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(a) Three phase faults cleared by primary protection 

(b) Single line to ground faults cleared by back up protection (due to stuck 
primary breaker) 

Effects of System Parameters 

The dominant system parameters that affect transient stability are 

1. Generator reactances and inertia 

2. Transmission system reactance under normal and contingency (postfault) 
conditions 

3. Switching devices, their number, arrangement and speed of operation 

The critical clearing time (Tc) for a three phase fault at the generator 
high voltage bus varies approximately as [3] 

(14.1) 

where k is a proportionality constant, H is the inertia constant, Xt is transformer 
reactance, Xd and x~ are direct-axis synchronous and transient reactances. 

Eq. (14.1) shows that transient stability is improved by increasing H 
and reducing the reactances. Unfortunately with modern generators of large 
ratings with improved cooling and increased power output per unit weight, the 
inertia is lower while reactances are higher. For a 2-pole machine, the inertia 
H may be lower than 2.0 and Xd larger than 2.0 pu (all expressed on generator 
base). Generators with superconducting field windings (yet to be commercially 
introduced) are expected to have lower reactances. 

The reactances of the external network (viewed from the generator ter­
minals) also affect transient stability limits. The reactance under normal oper­
ating condition can be reduced by introducing additional circuits (an expensive 
solution), series or shunt capacitors and higher voltage of transmission. The 
reactance under contingency condition (following fault clearing by line tripping) 
can be reduced by introducing high tension bussing with switching stations at 
intermediate locations along the line and insertion of series capacitors. Diverting 
of power flow to a parallel HVDe link also helps to relieve a contingency. As 
most faults are of transient nature, it is desirable to have circuit breakers with 
high speed redosing feature. As most of the faults are of single phase to ground 
type, single phase tripping and auto-redosing is quite attractive. 
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Switching Time 

. Figure 14.1: Variation of stability limit with switching time 

The introduction of quick opening circuit breakers of high interrupting 
capacities has resulted in major improvements in transient stability limits. The 
typical variation of stability limit with switching time is shown in Fig. 14.1 which 
clearly shows the importance of fast clearing of faults. Modern circuit breakers 
open within 3 cycles (inclusive of relaying time). This has eliminated the need 
to introduce neutral resistors (effective in limiting generator acceleration during 
unbalanced faults involving ground). 

Effects of Excitation and Prime-Mover Control 

The excitation control helps to overcome the armature reaction following 
a fault and acceleration of the generator rotor. The demagnetizing current 
increases during the fault and is high even after the fault is cleared, due to 
increase in the rotor angle. High initial response excitation systems with large 
ceilings (for field forcing) contribute to first swing stability. However they also 
affect the damping of subsequent swings. 

For steam turbines, the governor action has small but beneficial influence 
on the first swing stability. This is due to the fact that rotor speed change is not 
appreciable in the first half second or so which is critical for first swing stability. 
(The governor is provided with deadband so that it does not respond to minor 
fluctuations in speed). On the other hand, the governor action for hydroturbines 
is not beneficial due to water inertia effects, but is small as in the case of steam 
turbine governors. 

Modern steam turbine speed control systems have the capability of fast 
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actuation of control valve and intercept valve closure (within a fraction of a 
second). These features were primarily meant to control turbine overspeed under 
load rejection conditions and they can also be triggered by special logic upon 
detection of abrupt loss of power output during faults. The valves are reset at 
slower opening speeds following a finite delay of about a second. 

With moderate speeds of response, excitation systems are not as effective 
as fast turbine valving in enhancing first swing stability. However this applies 
to steam turbines. For hydro turbines, other arrangements such as dynamic 
braking (use of braking resistors) may be required. 

14.2 Discrete Supplementary Controls 

As mentioned earlier, discrete controls refer to initiation of control action only 
after the detection of a fault or contingency condition. It does not include 
continuous control action due to excitation and turbine-governor systems. 

In an IEEE committee report published in 1978 [1], the following controls are 
listed 

1. Dynamic braking 

2. High speed circuit breaker reclosing 

3. Independent pole tripping 

4. Discrete control of excitation systems 

5. Controlled system separation and load shedding 

6. Series Capacitor insertion 

7. Power modulation of HVDe lines 

8. Turbine bypass valving 

9. Momentary and sustained fast valving 

10. Generator tripping 

With the introduction of SVCs and FACTS devices such as Control­
lable Series Compensation (CSC), Thyristor Controlled Phase-angle Regulators 
(TCPR), fast control to maintain system security is feasible. Along similar lines 
as HVDC converter controls, FACTS controllers based on high power semicon­
ductor devices such as Thyristors can be programmed to provide discrete control 
action in the event of a major disturbance which may threaten transient stability 
of the system. 
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Figure 14.2: Application of shunt braking resistor 

In the following sections, some of the discrete controls, which have been 
in use or have the potential for future applications, are reviewed. 

14.3 Dynamic Braking [5-9] 

This concept involves the use of braking resistors, mostly connected in shunt, 
which are switched in, following a fault clearing, to correct the temporary im­
balance between the mechanical power input and electrical power output of 
generators. In principle, the use of braking resistors of suitable size and appro­
priate logic to implement controllable duration of resistor insertion can overcome 
the problem of transient stability. However, the cost of resistor capable of dissi­
pating the required amount of energy and associated switching equipment is a 
deterrent as there have been very few applications so far. Peace River in British 
Columbia, Canada and Chief Joseph Substation of Bonneville Power Adminis­
tration in Western U.S.A. are few of the modern applications of the concept. 

Fig. 14.2 shows typical location of shunt connected resistors at the send­
ing end of a long double circuit transmission line. 

When the inertia of the sending end generator is small compared to that 
of the receiving end, series braking resistors are also effective in controlling the 
relative angle. Consider a two machine system shown in Fig. 14.3. The equation 
governing the relative angle 012 = 01 - 02, is given by 

(14.2) 
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r x 

Figure 14.3: Application of series connected brake 

where M1 and M2 are inertias of machines 1 and 2 defined by 

M1 = 2H1, M2 = 2H2 
WB WB 

Multiplying Eq. (14.2) by Meq where 

We get 

where 

P'eq 
m 

peq 
e 

M _ M1M2 
eq - M1 +M2 

M rP812 = p'eq _ peq 
eq dt2 m e 

Pm1 M2 Pm2 M1 
M1+M2 M1+M2 

Pe1M2 Pe2M 1 
-

M1+M2 M1+M2 

(14.3) 

(14.4) 

Neglecting generator impedances, the expressions for Pel and Pe2 can be ob­
tained as 

Pe2 

where Z = v'r2 + x2, a = sin-1~, E1 and E2 are generator voltages. 

(14.5) 

(14.6) 

. M1 
For E1 = E2 = 1.0, x = 1.0, M2 = 10, the power angle curve (of p:q vs 

812) is plotted in Fig. 14.4 for different values of~. For nonzero r, the peaks of 
the curves occur at 8> 90°. (This is to be compared with shunt resistor, where 
peak occurs at 8 < 90°). 
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Figure 14.4: Power angle curve with series connected brake 

Series braking resistors can be inserted by connecting them between the 
neutral and ground on the high voltage (line) side of the step-up transformers. 
This simplifies t·he design of the resistors-from the insulation point of view. The 
other advantages of series connected dynamic brake are 

1. Speed of insertion is related to opening of a circuit breaker across the 
resistor as opposed to the closing of a breaker as in the case of the shunt 
resistor. This permits faster action of the brake and is effective in reducing 
the severity of the fault in case of prolonged faults by stuck breakers. It is 
to be npted that serjes braki~g resistors are inserted aB soon as the fault is 

.. detected while shunt braki~g resistors are switched on as soon as the fault 
is cleared. 

2. The displacement of the peak value of p:q beyond 612 > 90° is beneficial 
as it allows more time for the synchronizing torques to act. 

3. The size and cost of series braking resistor tend to be smaller than that of 
the shunt resistor because of factors listed above. 

The effectiveness of the series braking resistors is considerably reduced 
if Ml and M2 are comparable. This is due to the fact that both machines are 
decelerated equally when Ml = M2 and the relative deceleration is zero. 

The application of 1400 MW shunt dynamic brake at BPA's Chief Joseph 
substation resulted in the increase in the transient stability limit of power flow 
on Pacific Northwest - Southwest (PNW-SW) intertie [6]. The influence of the 
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Figure 14.5: Influence of brake size on stability limit 

brake size on the stability limit is shown in Fig. 14.5. (This is shown for a 
particular disturbaIl;ce of a three phase fault on a 500 k V line). This shows an 
increase of 900 MW in stability limit for a brake size of 1400 MW. 

Brake Control Scheme 

The control logic for switching of the brake can be explained with refer­
ence to the stability boundaries drawn in the phase plane (rotor relative speed 
!fit versus rotor angle 8) shown in Fig. 14.6. This is applicable to a single ma­
chine system connected to an infinite bus. The closed curve 'A' represents the 
stability boundary of the postfault system. If the system state at the instant of 
fault clearing lies within the region of stability bounded by A, there is no need 
for a brake. The outer curve 'B' corresponds to the region in which the appli­
cation of the brake can result in the trajectory entering the stability region A. 
The region bounded by 'B' (excluding that bounded by 'A') can be subdivided 
into three regions 

I. the region predominantly in the fourth quadrant where the brake is switched 
off 

II. the shaded region in which the brake is switched on once until the postfault 
trajectory enters the stability region (crosses A). However to reduce the 
oscillations in the rotor angle, the brake may be kept on until the speed 

( ~!) goes to zero. 

III. the rest of the region where the brake is switched on until it enters region 
I when it is switched off. The post Iault trajectory then enters region II 
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Figure 14.6: Stability boundaries in phase plane 
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when the brake is switched on second time until it is switched off after the 
speed goes to zero. 

At Chief Joseph substation in BPA system, the braking resistor is.con­
nected to the 230 k V bus through a normally closed 230 k V oil circuit breaker and 
normally open 230 kV vacuum switch. The controllers located at Chief Joseph 
and John Day substations detect a sudden decrease of power in the plant out­
put with a simultaneous decrease in bus voltage. When either of the controllers 
detects sudden drop of more than 300 MW and a simultaneous decrease in the 
bus voltage greater than 10% of the normal bus voltage, an output is produced 
which closes the 230 kV vacuum switch to apply the brake. The brake is applied 
for the duration of about 0.5 second. Since the required duration of the brake 
application was relatively constant, there was no need to make any speed related 
measurements to switch off the brake. 
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Discrete control of Excitation Systems 
[18-22] 

Fast acting static exciters with high ceiling voltages coupled with high gain 
AVRs can improve transient stability. However they can also result in oscilla­
tory instability by negative damping of low frequency rotor oscillations. Power 
System Stabilizers (PSS) with control inputs derived from rotor speed, power 
or terminal frequency are used to modulate the generator voltage and damp 
oscillations. The application of PSS does not result in improvement of transient 
stability. 

The improvement in transient stability can be achieved by the provision 
of discrete signals to control excitation during a transient disturbance. Ontario 
Hydro has developed a scheme [20] where a signal proportional to the rotor 
<plgle l~ uSed (during the transient period) iIJ. addition to the terminal.vo~ta:ge 
and rotor speed signals. The rotor angle signal cannot be used continuously as 
it results in dynamic instability. 

Fig. 14.7 shows the block diagram representation of the excitation con­
trol scheme. The angle signal is derived by integrating the speed signal (used as 
input signal for PSS). The angle signal is generated during a transient distur­
bance by closing the switch S when there is a sudden drop in terminal voltage 
followed by the rise in rotor speed above a preset valu~. The relay contact S 
is opened when the speed drops below the preset level or the exciter comes out 
of saturation. The output of the integrator will then decay exponentially with 
time constant T. The value of this constant is chosen such that the output is 
proportional to the rotor angle for the relevant oscillation frequencies. 

The effect of the discrete control is to maintain the field voltage and 
consequently the terminal voltage at a high level during the positive swing in 
the rotor angle. However, the terminal voltage is limited to 1.15 pu. From 
studies carried out, the discrete control of excitation was found to be as effective 
as fast valving scheme in a particular application where the interarea mode 
dominates over local modes. 

The rise in the terminal voltage to 1.15 pu during the transient dis­
turbance (with the application of discrete control) which may last for about 1 
second, also affects the transformers (step-up transformer and those feeding the 
auxiliaries). The differential protection applied to transformer windings may 
have to be modified to account for increased magnetizing current during the 
operation of the discrete control. 

The major motivation for the discrete control of excitation was to over-
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Figure 14.7: Discontinuous excitation control 

come the limitations imposed by the PSS action which reduces excitation when 
the rotor speed deviation is negative. Alternative schemes are possible which give 
priority to improving the first swing transient stability immediately following a 
large disturbance. Bang-bang control of excitation not only provides maximum 
field voltage when desired, but also helps to damp postfault trajectories [18-19]. 

14.5 Momentary and Sustained Fast Valv­
ing [22-25] 

Modern steam turbine driven generators are available with ratings up to 1300 
MW. These have low inertia constants and high reactances which complicate 
the problem of transient stability. Fast valving is a means of decreasing turbine 
mechanical power when a unit is being accelerated due to a transmission system 
fault. It can be initiated by load unbalance relays, acceleration transducers or 
by relays that recognize only severe transmission faults. The fast valving is not 
designed to operate for remote faults. 

Fast valving is a natural extension of the inherent capabilities of the 
modern electro-hydraulic (EH) turbine control system. Normal speen control 
and valve operation are not fast enough to limit overspeed to a desirable level 
following a major load rejection (greater than 20 % of full load). The EH 
overspeed control anticipates rotor acceleration by monitoring the mismatch 
between turbine driving power and generator load and initiates fast closure of 
control and intercept valves (within 0.1 to 0.2 sec) when mismatch exceeds the 
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limit (approximately 40 %). The fast closure is achieved by means of special 
solenoid operated disc dump valves which (when actuated) release the hydraulic, 
fluid from the bottom of the pistons causing the valves to close rapidly. 

The EH overspeed control systems have been modified to incorporate 
the fast valv.ing function. Upon detection of a fault condition of sufficient sever­
ity, fast closure of intercept valves is initiated followed by immediate reopening 
thereby momentarily reducing unit accelerating power and improving stability. 
This is termed as momentary fast valving. It is to be noted that normal speed 
governor action also acts to limit rotor acceleration but has little effect within 
the time span of (about 1 second) first swing stability. 

The steam flow path through a modern fossil-fired, tandem-compound, 
single-reheat turbine generator unit is shown in Fig. 14.8 [24]. High pressure 
steam enters the high-pressure (HP) turbine through main inlet stop valves, 
control valves and connecting piping. Reheat steam flows into the intermediate­
pressure (IP) turbine through reheat stop valves, intercept valves and connecting 
piping. 

The simplest way to reduce turbine power rapidly is to "fast valve" only 
the intercept valves which control approximately 70 % of the total unit power. 
During the closing and reopening of the intercept valves, the large reheater 
volume acts as a cushion, absorbing steam flow ahead of the intercept valves fo]: 
several seconds with negligible effect on the throttle flow. Reheater safety valves 
may operate limiting reheater pressure to approximately 10 % above full load 
pressure. Reopening after a fast closure is inherently delayed for approximately 
one second (to allow for restoration of the oil to the hydraulic cylinder) and then 
takes up to 10 seconds for full reopening. This results in the power output being 
restored to its prior value. 

The momentary fast valving may not be adequate if the postfault system 
is not strong. In this case, it is also desirable to reduce the power output in 
steady state. Sustained fast valving is the rapid closure of intercept valves with 
simultaneous repositioning of control valves and immediate partial reopening 
followed by full reopening of intercept valves at a predetermined rate. Thus 
the unit output can be reduced to a desired level without a tripout and full 
output can be restored within minutes after the disturbance. When a large unit 
is tripped off line, it can take hours or days before the unit can be put back on 
line. 

The fast closing of control valves (in addition to intercept valves) result­
ing in the sudden stoppage of main stream flow would impose a severe transient 
on the boiler and control systems. Potential problems include the lifting of 
boiler safety valves, combustion and feedwater control problems, turbine ther-
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Figure 14.8: Steam flow path 

mal stresses, transient thrust unbalance and overloading of the last few HP 
stages. Closing only of the control valves would have all the previous drawbacks 
and the disadvantage of slow intermediate (IP) and low pressure (LP) power 
decay due to uncontrolled expansion of the steam stored in the reheater. 

Fast Valving Logic 
The logic is incorporated in the overspeed protection controller (OPe) shown 
in Fig. 14.8. Mechanical power input is measured with a reheater pressure 
transducer and compared to electric power output of the generator (measured 
by a Hall effect transducer). If the electrical power is suddenly lost, a power 
unbalance exists. If the unbalance exceeds A % and reheater pressure exceeds 
preset level then two possibilities arise 

(i) If the main generator breaker (MGB) is closed indicating a system fault 
condition and partial load loss, fast va1ving of intercept valves is initiated. 
At the same time, the closing signal initiates intercept valve reopening 
with an adjustable time delay, provided the MGB has remained closed. 

(ii) If the MGB is open, a signal is sent to the overspeed contro110gic to close 
turbine control and intercept valves. A typical power response to fast 
va1ving is shown in Fig. 14.9. 

14.6 Discrete Control of HVDC Links [26-
28] 

Modern HVDC converter stations use thyristor valves for conversion and are 
controlled to maintain power flow in the line at a preset value determined from 
load dispatch. As fast control of power flow is achievable due to thyristor con­
trollers, modulation of power is feasible and is implemented at several HVDC 
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Figure 14.9: Power response to fast valving 

links. While continuous, small-signal power modulation is beneficial in improv­
ing steady-state stability, discrete control of power can result in improving tran­
sient stability. The power flow can even be reversed under the influence of the 
control signal that is generated on the detection of the disturbance. The power 
can be ramped up (or down) within 0.1 to 0.2 sec. The control signal can be 
generated from (a) power flow in parallel AC ties or (b) rate of change of power 
in AC line or (c) frequency deviation at either end of the HVDC interconnection. 

14.7 Series Capacitor Insertion [29-34] 

Consider a two machine system shown in Fig. 14.10. Each machine represents 
an equivalent generator for an area and the two areas are interconnected by a 
double circuit AC intertie. Suppose that a short circuit occurs at point X in one 
of the circuits (as shown in the figure) and is cleared without reclosure. The 
power angle curves for the case with the switch closed are shown in Fig. 14.11. 
The curve N applies when all the lines are in service. Curve F is applicable 
during short circuit and curve PF refers to the postfault system condition when 
the faulted line section is disconnected. The initial operation is at 8 = 80 • The 
transient stability limit (Lt) is found by adjusting the height of L1 for equality 
of areas Al and A2 , while simultaneously adjusting the clearing angle 8cI to 
satisfy a fixed clearing time. 

Fig. 14.12 shows the effect of inserting a series capacitor dimensioned to 
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Figure 14.11: Power angle curves with switch closed 

give the same transfer reactance between the two areas when all line sections are 
in service. The capacitor is inserted by opening the switch at the instant when 
the fault is cleared. The transient stability limit is now L2 (found by equating 
areas A3 and ~) which is much higher than L1. If it is assumed that Oc1 ~ 00 

then the transient skbility limit is identical to the steady state >stability limit 
of the normal system. 

Switched capacitors have been applied to the 500 kV, double circuit AC 
ip,tertie between Pacific Northwest and Southwest which is paralleled by ±400 
kV (now upgraded to ±500 kV) HYDC intertie. The AC intertie is compensated 
by fixed series compensation in addition to switched series capacitors. In case of 
loss of the parallel HVDC link, the rapid insertion of switched series capacitors 
enable the AC line to temporarily carry without instability the additional load 
initially carried by the DC link. 

For a specified transient stability limit, a judicious combination of switched 
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and fixed series capacitors result in smaller rating of the capacitors when com­
pared to the case when all are fixed (or unswitched). The insertion of series 
capacitors also reduces angular swing and the voltage fluctuations (!,t the load 
especially those·near the electrical centre of the system. 
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Figure 14.12: Power angle curves with switch open 

Tran~ient stability is also improved by either switching in shunt capaci­
tors or switching off shunt reactors. But the rating of the shunt devices required 
will be in the range of 3-6 times the rating of the switched series capacitors for 
the same increase of stability limit. 

The application of thyristor controllers with shunt capacitors and re­
actors constitute Static Var Compensators (SVC) which are first generation 
FACTS devices. The voltage and auxiliary controllers of SVC help in improving 
stability [35-38]. 

An important new FACTS device is Controlled Series Compensation 
(CSC) using thyristor switched capacitors (TSC) and thyristor co~trolled re­
actors (TCR) (see Fig. 14.13). In addition to discrete control of capacitors 
(switching in or out), continuous control is also possible using phase control of 
TCR connected across a capacitor [43,M]. With appropriate control strategies, 
the transient stability of the system can be improved. 

Another important FACTS controller is Static Phase Shifter (SPS) or 
Thyristor Controlled Phase angle Regulator (TCPR). This device with appropri­
ate control can improve transient stability by temporarily modifying the power 
angle curve. Although, unlike CSC, the maximum power flow is unaffected by 
phase shifter, the phase angle control results in a· significant improvement of 
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Figure 14.13: Components of controlled series compensation 

transient stability [45-47]. As a matter of fact, a generator connected to a AC 
transmission line through a static phase shifter with a range of 3600 phase shift 
can operate in asynchronous mode just as if it were connected to a HVDC line. 

Another simple approach of providing phase shift when there is immi­
nent loss of synchronism, is to disconnect two groups of generators and then 
reclose with 1200 phase rotation [39]. Transient stability is improved because 
fast valving or excitation control is allowed more time to become effective. 

14.8 Emergency Control Measures 

There are occasions when the discrete controllers discussed in the previous sec­
tions are unable to prevent instability of the system. If no further action is 
taken, then the system may break apart due to uncontrolled tripping of genera­
tors (from out of step protection) and formation of islands which are unstable. 

There are two emergency control measures (to be used as last resort) to 
prevent catastrophic failure of power systems leading to blackouts. These are 

1. Controlled system separation and load shedding 

2. Generator tripping 

14.8.1 Controlled System Separation and Load Shed­
ding 

The objective here is to achieve a near balance between load and generation 
within each island formed by tripping the transmission line connecting the areas. 
Controlled system separation is applied in the fonowing situations 
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(a) to prevent transmission line overloading following disturbances and loss of 
other lines 

(b) when oscillatory instability occurs between load/generation areas during 
certain system conditions. Interties between areas can be programmed 
to open if rate and magnitude of power oscillations over the tie exceed 
permissible values. 

However interties should not be opened until the benefits of maintaining 
power interchange among areas are exhausted and the need of the hour is to 
retain as much of the system intact as possible. Thus, controlled system sepa­
ration goes together with load shedding when there is deficit of generation and 

, generator tripping when there is excess. 

The controlled system separation may often be done manually since the 
response time for the operator intervention is adequate to prevent collapse in 
many syste~s. When automatic separation is applied, voltage, current, power or 
frequency transducers are used to detect limit violations. Controlled separation 
is not widely used to improve system stability. This is because the boundaries 
for system separation are not well defined for all possible system conditions. It 
has been applied in the Western System in U.S.A. to reduce the effects of severe 
disturbances in one area, on the rest of the areas which are connected as a ring 
(or doughnut). 

Load shedding programs have been used by many utilities, in distribu­
tion systems or major industrial loads. The objective is to prevent frequency 
decay and maintain equilibrium between generation and load when there is loss 
of generation. Load shedding can help in preventing interties from opening due 
to transmission overloads. Load shedding is initiated by underfrequency re­
lays based on discrete underfrequency values or rates of frequency decay. Load 
shedding is generally done in three to six steps to prevent excessive load drop­
ping after frequency levels off at an acceptable value. The underfrequency relay 
settings are based on the limitations on the underfrequency operation of turbine­
generators and power plant auxiliaries. 

14.8.2 Generator Tripping 

The selective tripping of generators for transmission line outages has been used 
extensively to improve stability. Generating tripping is one form of power control 
and can be compared to fast valving and dynamic braking. If' N' number of 
identical generating units in parallel are connected to an infinite bus through an 
external reactance of X e , the tripping of one unit is equivalent to decreasing Xe 

by the ratio N ;. 1. This improves both steady state and transient stability. 
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Generator tripping has been mainly employed to improve stability of 
remote generation. It can also be used to improve interconnected system opera­
tion where tripping of an intertie can lead to instability. In western U.S.A., the 
tripping of Pacific HVDC intertie can lead to instability, under certain condi­
tions. The automatic tripping of certain hydrogenerators in the Northwest helps 
in controlling the power flow on the parallel 500 k V AC ties, thereby averting 
transient instability. 

Generator tripping is initiated from a transfer trip scheme or by arrang­
ing the protection scheme at the power plant such that, when a transmission line 
is tripped following a line fault, one or more generators are also automatically 
tripped. 

The impact of tripping and consequent full load rejection on a thermal 
unit needs to be studied because of the response of the prime mover and the 
action of over speed controller can vary. When a thermal unit is tripped, the 
unit will normally go through its standard shutdown and start-up cycle and full 
power may not be available for some hours. To overcome this problem, one 
method is to connect the station load to the unit tripped. The unit can then 
be rapidly reloaded after the disturbance is cleared. This requires that the unit 
and its controls be specifically designed for this mode of operation in which 
case, the unit can be resynchronized to the system and full load restored within 
about 15-30 minutes. However, it is essential that frequent tripping of thermal 
generators be avoided. 
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Chapter 15 

Introduction to Voltage Stability 

Voltage has always been considered as an integral part of the power system 
response and is an important aspect of system stability and security. Thus, 
voltage instability and collapse cannot be separated from the general problem of 
system stability. However, in the recent years, the analysis of voltage stability 
has assumed importance, mainly due to several documented incidents of voltage 
collapse in France, Japan, Belgium and Florida [1]. There are several factors 
which contribute to voltage collapse such as increased loading on transmission 
lines, reactive power constraints, on-load tap changer (OLTC) dynamics and 
load characteristics. 

In contrast to voltage stability, the problem of loss of synchronism due 
to uncontrolled generator rotor swings is termed as angle stability. Loss of 
synchronism may also be accompanied by voltage instability. However in the 
present context, voltage instability implies an uncontrolled decrease in voltage 
triggered by a disturbance, leading to voltage collapse and is primarily caused 
by dynamics connected with the load. Although the frequency may increase on 
voltage collapse, the generators normally remain in synchronism. 

The problem of voltage stability has received considerable attention in 
the recent years. There are several aspects of the problems related to voltage 
profile in a system and it is important to distinguish them to avoid confusion. 
What is presented here is an attempt to define the problem of voltage instability 
and to outline the methods of analysis. 

15.1 What is Voltage Stability? 
It is to be clearly understood that the problem of low voltages in steady stp,te 
conditions, should not be confused with voltage instability. As a matter of fact, 
it is possible that the voltage collapse may be precipitated even if the initial 
operating voltages may be at acceptable levels. 

Voltage collapse may be fast (due to induction motor loads or HVDC 
converter stations) or slow (due to on-load tap changers and generator excitation 
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limiters). Voltage stability is sometimes also termed as load stability. The 
terms voltage instability and voltage collapse are often used interchangeably. 
It is to be understood that the voltage stability is a subset of overall power 
system stability and is a dynamic problem. The voltage instability generally 
results in monotonically (or aperiodically) decreasing voltages. Sometimes the 
voltage instability may manifest as undamped (or negatively damped) voltage 
oscillations prior to voltage collapse. 

A CIGRE Task Force [2] has proposed the following definitions for volt­
age stability. 

Small-disturbance Voltage Stability 

A power system at a given operating state is small-disturbance volt­
age stable if, following any small disturbance, voltages near loads are identical 
or close to the pre-disturbance values. The concept of small-disturbance voltage 
stability is related to steady-state stability and can be analyzed using small­
signal (linearized) model of the system. 

Voltage Stability 

A power system at a given operating state and subjected to a given 
disturbance is voltage stable if voltages near loads approach post-disturbance 
equilibrium values. The disturbed state is within the region of attraction of the 
stable post-disturbance equilibrium. 

The concept of voltage stability is related to transient stability of a power 
system. The analysis of voltage stability usually requires simulation of the sys­
tem modelled by nonlinear differential-algebraic equations. 

Voltage Collapse 

Following voltage instability, a power system undergoes voltage col­
lapse if the post-disturbance equilibrium voltages near loads are below accept­
able limits. Voltage collapse may be total (blackout) or partial. 

The absence of voltage stability leads to voltage instability and results 
in progressive decrease of voltages. When destabilizing controls (such as OLTC) 
reach limits or due to other control actions (undervoltage load shedding), the 
voltages are stabilized (at acceptable or unacceptable levels). Thus abnormal 
voltage levels in steady state may be the result of voltage instability which is a 
dynamic phenomenon. 

There are other concepts such as power controllability and maximum 
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, . loadability which are related to the voltage problem but should not be confused 
.' .. with voltage stability. 

The power uncontrollability is a steady state problem accompanied 
by low voltages, when switching in more load results in reduced load power. 
A related concept is maximum power transfer capability or maximum 
loadability which is connected to power system static properties - such as 
transmission network impedances viewed from the load bus and load impedance. 
Maximum load ability is not necessarily a stability. limit. In this context it is 
necessary to make a distinction between nominal load power (at nominal 
frequency and voltage) and consumed load power actually consumed at the 
operating voltage and frequency. 

The voltage instability and collapse may occur in a time frame of frac­
tion of a second. In this case the term 'transient voltage stability' is used. 
Sometimes, it may take up to tens of minutes in which caSe the term 'long-term 
voltage stability' is used. 

15.2 Factors affecting voltage instability and 
collapse 

The voltage collapse occurs invariably following a large disturbance or large 
load increase in a heavily stressed power system. This results in an increased 
reactive power consumption and voltage drop. The voltage drop causes initial 
load reduction triggering control mechanisms for load restoration. It is the 
dynamics of these controls that often lead to voltage instability and collapse. 

Transient Voltage Instability 

Induction motors supplying loads with constant torques draw constant 
power independent of applied voltage. However, during faults or periods of low 
voltage, they decelerate as the electrical torque is not adequate to meet the 
required mechanical torque. Following the clearing of the fault, the motor may 
not regain the original speed and continue to decelerate leading to stalling of 
motors which in turn aggravates the lo~ voltage problem. 

This phenomenon can be explained with reference to the torque-slip char­
acteristics of an induction motor shown in Fig. 15.1. Under normal operating 
conditions, the peak torque is Tp1 and the motor operates stably at slip 81. 

During a fault the peak torque Tp2 is less than the load torque Tm and the mo­
tor decelerates. If the fault is cleared before the slip increases to 82, the motor 
regains its original speed. On the other hand if the motor slip goes beyond 82, 
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Figure 15.1: Torque-slip characteristics 

the motor fails to recover even after the fault is cleared and the motor continues 
to decelerate and will stall eventually. Stalled motors draw large currents which 
can depress the voltages and lead to stalling of other motors in the vicinity. 

Th~r-e is a critical clearing time for a given fault to avoid stalling of 
motors. This can be obtained from solving the equation for the slip given by 

dS 
2Hm dt = Tm - Te (15.1) 

where Hm is 'the motor inertia. 

Transient voltage stability is also associated with HVDC links, particu­
larly inverter terminals conD.ected to AC systems with low short circuit capacity. 
The characterlstics of reactive power consumption at the inverter and the shunt 
capacitor compensation are factors affecting voltage instability. Constant volt­
age control instead of constant extinction angle (CEA) control at the inverter 
can result in improved voltage stability [3,4]. 

Long Term Voltage Instability 

On-load tap-changing (OLTC) transformers and distribution voltage reg­
ulators act wit¥U a time frame of tens of seconds to tens of minutes to regulate 
the load voltages. This results in the restoration of voltage sensitive loads. An­
other form of load restoration is due to the thermostatic control of heating or 
cooling loads. 

An important factor in long term voltage stability is the current limiting 
at generators. Generator field and armature windings have overload capabilities 
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of duration up to few minutes. Field current is limited by overexcitation limiters 
which can be modelled as shown in Fig. 15.2 [5]. If the field current exceeds 
the high setting (Ifmax2) the current is ramped down without a time delay to 
its continuous limit. (see Fig. 15.3). If the field cm;rent exceeds the continuous 
limit (Ifmaxd but is below the high setting, the current is ramped down to its 
continuous limit after a time delay dependent 0Ii' the level of the field current 
and the excitation limiter settings. 

If mllXl 

Figure 15.2: Model of over excitation limiter 

I fmax2 

"-__ I f maxi 

tl time 

Figure 15.3: Over excitation limiter characteristics 

Once the current is limited at 'one generator, the required reactive power 
has to be supplied by the remaining generators farther away (from the load 
centre) leading to cascading of current limiting. Field current limiting and loss 
of terminal voltage control can result in armature overcurrent that must be 
relieved by the operation of protection. A typic~ generator Q-V diagram is 
show:n in Fig. 15.4 [2]. 
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Comparison of Angle and Voltage Sta­
bility 

As mentioned earlier, the analysis of power system stability in the past per.:. 
tained to the power angle dynamics expressed in terms of swing equations of -
synchronous generators. In the context of voltage or load stability and dynam­
ics related to it, the stability of the system based on power angle dynamics can 
be termed as angle stability where the major concern is the loss of syncl!rbrtism. 
On the other hand, in the analysis-of voltage stability, the major concern is 
the voltage collapse, although the generators may remain in synchronism. Both 
situations - loss of synchronism and voltage collapse can affect system security 
and lead to stability crisis, thereby threatening the integrity of the system. 

The simplest system for the analysis of angle stability is the Single Ma­
chine Infinite Bus (SMIB) System. This has be~n discussed in detail. It is to be 
noted that in this system, the power re~eived at the infinite bus in steady st~te 
is determined from the power output of the generator. As there is no load bus 
in the simple two bus SMIB system, there is no load dynamics to be considered. 
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Only the generator dynamics affect (angle) stability. However it is to be noted 
that loss of synchronism in a SMIB system is accompanied by voltage instabil­
ityat the generator terminal bus. (see Figs. 15.5 and,15.6) The disturbance 
considered is increase in Tm by 0.01 at t = 1s. If AVR is not considered, there 
is aperiodic or monotonic decrease in terminal voltage. On the other hand, 
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b-wllh AVR 
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Figure 15.5: Swing curves 

with fast acting excitation system and high gain A VR, there is oscillatory in­
stability which can lead to subsequent loss of synchroni~m. It is to be noted 
that negatively damped oscillations in the rotor angle are also accompanied by 
voltage oscillations which increase in amplitude. When the generator loses syn­
chronism, the terminal voltage has large oscillations with increasing frequency. 
However, voltage stability is normally associated with load buses. Thus, the 
simplest system that can be considered for the study of voltage stability is the 
Single Machine Load Bus (SMLB) system shown in Fig. 15.7. 

Analysis of SMLB System 

The system shown in Fig. 15.7 contains an equivalent machine of several 
coherent generators (swinging together). The load is initially considered to be 
of static type - with voltage dependent active and reactive power characteristic. 
A shunt capacitor is connected across the load for reactive power compensation .. 

The synchronous machine can be modelled with only field flux decay 
considered (neglecting damper windings). The excitation system is assumed to 
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be represented by a simple transfer function given by 

KE 
Efd = 1 T (Vref - vt) 

+SE 

8 9 

(15.2) 

The limiters are ignored as only small signal analysis is carried out. The electrical 
torque Te is given by 

T. E'" ( ')"" e = q'/,q - Xq - xd '/,d'/,q 

The stator equat~ons (neglecting armature resistance) are 

E' + ," q Xd'/,d - Vq 

-xqiq - Vd 

(15.3) 

(15.4) 
(15.5) 
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The network and load equations are 

Vq = -xeid + Reiq + VqL 

Vd = Reid + Xeiq + VdL 

. PL -+ j{QL - VLB~) .1 2 2 
VqL + JVdL = (' ., ) ,VL = yVdL +VqL 

'tq - J'td 

Linearizing Eqs. (15.3) to (15.10) and simplifying, it can be shown that 

Aid - YdAE~ 
Aiq - YqAE~ 

and 
ATe = K2AE~ 

I 
~ 
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(15.6) 

(15.7) 

(15.8) 

(15.9) 

(15.10) 

(15.11) 

(15.12) 

(15.13) 

It is interesting to note that the torque deviation ATe depends only on AE~ in 
this case in contrast to a SMIB system where 

(15.14) 

Thus, a SMLB system cannot exhibit angle instability. The power output 
of the generator (as well as electrical torque in per unit) is determined by the 
load power. In the absence of angle dy~amics, the only relevant dynamics is that 
c<;>l:responding to the field flux decay and excitation system (see block diagram 
of Fig. 15.8). Here K3 and K6 are analogous to Heffron-Phillips constants. 

The characteristic equation for the system shown in Fig. 15.8 is given 
by 

S + --+- s+ . = 2 (1 1 ) 1 + K3K 6K E 0 
T~oK3 TE T~oK3TE 

If KEK6K3 > > 1, then the criteria for stability are 

1 1 
T ' K + -T > 0, K6 > 0 

do 3 E 

If the generator is represented by the classical model of a constant volt­
age source Eg behind a constant reactance xg , there is no possibility of voltage; 
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.~gure 15.8: Block diagram of voltage control-loop 
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Figure 15.9: A simplified SMLB system 

instability and collapse as there is no voltage dynamics that can lead to insta­
·bility. The system with the generator internal bus is shown in Fig. 15.9. If the 
network is assumed to be lossless for simplicity, and the load is considered to be 
of unity power factor, the received active power and load voltage are given by 
the following expressions . -

E~ sin 20 
P - 2X (1 - BeX ) = PL (15.15) 

Egcoso 
(1- BeX 

v - (15.16) 

where X =.xg + Xe. 

The plot of voltage Vasa function of P is shown in Fig. 15.10, for the following 
parameters 

Eg = 1.0, X = 0.5, Be = 0.0 and 0.1 

. This is termed as the 'nose' curve. Similar curve can be obtained even if 
::':. the load has reactive power component. It is observed that for a constant power 
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Figure 15.10: PV diagram at the load bus 

load of P = Po, there are two voltage solutions VI and 112. In the literature, it is 
often-menticmed that the high, voltage solution VI is stable while the 19w voltage 
solution 112 is unstable. This statement requires an explanation based on system 
dynamics which is often ignored. It is also mentioned that the operation in the 
lower portion of the nose curve (BC) is unstable. 

As mentiqned earlier, if the generator is represented by the classical 
mod~l, it is incorrect to say that the region BC is unstable unless load dynamics 
is considered. Even if detailed generator. dynamics is considered, it is unlikely 
that the voltage instability can arise. The only statement that can be made 

/, 

is that in the region BC, there is power uncontrollability and the maximum 
loadability is determined by point B. 

Dynamics of Load Restoration 
~ 

It is assumed that the load is voltage sensitive and there is a control 
mechanism.(using OLTC or voltage regulator) to restore the load, which can be 
modelled by the equation 

(15.17) 

wher~ Po is the nominal load power that is to be maintained at all voltages . 
. Since P is a function of V, the stability of the equilibrium point ~~ dete~IhiI!~d 
from the criterion '. " "." .. ' -

dP 
'dV ~ 0, 
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The system is stable at operating point D (V = V1) and unstable at 
operating point E(V = V2). The region of , attraction for the equilibrium point D 
is ADBE. The voltage instability'and collapse can result following a distrubance 

J"t~ if the transient voltage falls below 112. The probabiiity of this i~creases as the 
operating power Po is close to the maximum power Pmax . Alternately, if (V - V*) 
is below a specified margin, it can be said that the system is prone to voltage 
instability and collapse. 

At the load bus, the following equations apply, using the Jacobian 

(15.19) 

where 

oP oP oQ oQ 
J1 = 08' J2 _ oV' J3 = 08' J4 -. oV 

If J3 i= 0, it can be shown that . 

dP . 
dV = J2 - J1J:;1 J4 (15.20) 

The RHS of Eq. (15.20) is zero if the determinant of the Jacobian is zero 
(the Jacobian}s singular). Thus, determinant of the Jacobian can also indicate 
proximity to voltage collaps\;l:, . 

A better index for the evaluation of voltage stability margin is obtained 
: . if it is recognized that Eq. (15.17) can be expressed as . . 

dV oW 
Tpdi = - OV (15.21) 

where W = J:; (Po - P)dV is termed as potential energy. The energy rpargin 
defined by .\ 

J
Va 

!::..W = (Po - P)dV 
. VI 

(15.22) 
I 

can be used as an index for voltage security. A little reflection shows that when 
active power is treated as constant, the reactive power versus voltage (Q - V) 
curve can be used for evaluating the margin. In this case, Eq. (15.17) is replaced 
by 

~~ = ~ [Q(V) - Qo] 
q 

(15.23) 

.:, and Eq. '-(15.22) is replaced by 

J
Va 

!::..W' = (Qo - Q)dV 
VI 

(15.24) 
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It is to be noted, in general, that the following equation applies at the lqad bus 

(15.25) 

where Q is the received reactive power and Qc is the reactive power supplied 
by the reactive compensator at the load bus. It is assumed that 

(15.26) 

Instead of Eq. (15.23), the reactive power compensator may be described by the 
equation 

~ dQc = V; - V 
Tc dt 0 

(15.27) 

In this case the criterion for stability is 

dV 
dQc > 0 (15.28) 

Remarks 

Based on the discussion given above the following points are worth noting 

1. In contrast to SMIB system, in SMLB system, the swing equation has no 
role to play in stability analysis. 

2. While the voltage dynamics in the generator can contribute to voltage 
instability, the primary factor is the dynamics of load restoration at the 
load bus. The voltage collapse may take several seconds or minutes based 
on the time constants Tp or Tq. 

3. If load dynamics is ignored, the underside of the nose curve does not 
indicate voltage instability. It only indicates power uncontrollability. 

4. The modelling of load (restoration) dynamics can vary depending upon 
the physical characteristics of the controller. 

5. It has been observed during incidents of voltage collapse, the disabling of 
OLTC helps to overcome voltage instability. This fact is easily explained 
from the analysis given above. 

6. The proximity to voltage collapse can be measured by several indices. 
Many of them utilize the fact that the load flow Jacobian is close to being 
singular (the determinant of the Jacobian is close to zero). 

7. Although static analysis (neglecting system dynamics) can be used as an 
approximation in the study of voltage stability, particularly in long term 
voltage stability, dynamic analysis is essential for accurate prediction of 
the phenomenon. 

The analysis of voltage stability will be taken up in the next section. 
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A'rra~sis of Voltage Instability and Col­
lapse 

Simulation [6,7] 

As mentioned earlier, voltage instability is a dynamic phenomenon and 
the system is described by nonlinear differential algebraic equations. For the 
study of voltage- stability under large disturbances, it is necessary to simulate 
the system. Midterm stability programs that can simulate the system upto 
a few minutes can be utilized for this purpose provided that they can model 
the load characteristics accurately and also include the dynamics of OLTC and 
overexcitation limiters. The representation of OLTCs can significantly increase 
the simulation time frame as they have an intrinsic time delay of the order of 
30 s and an additional 1-5 s is taken for each subsequent tap movement [6]. 
It is also necessary to model correctly step size, initial tap position and tap 
range. If AVR line drop compensation is used to control voltages remote from 
the generator terminals, they have a major effect on the reactive power outputs 
of a set of generating units and this needs to be represented as weJl in addition 
to overexcitation limiters, 

Load representation should include not only static loads which are volt­
age dependent but also dynamic loads such as induction motors and thermostatic 
loads. 

All the reactive compensation devices - switched shunt reactors, capaci­
tors, SVC (with limiting action) need to be represented adequately. In addition, 
special protection schemes such as under voltage load shedding, OLTC blocking, 
reactor tripping and generator runback should be modelled [6]. 

Small Signal (Linear) Analysis 

There are two approaches here - static analysis (considering only alge­
braic equations) and dynamic analysis (considering system dynamics). It is to 
be understood that static analysis is an approximation which may give rea­
sonably accurate results in identifying critical situations. By defining'Voltage 
Collapse Proximity Indicators (VCPI) it is possible to implement security as­
sessment. The sensitivity information can be used to devise corrective measures 
to overcome the problem of voltage collapse. 

The system equations are 

x -=- J(x,y) 
o 0= g(x,y) 

(15.29) 

(15:30) 

The load flow equations are included in (15.30). Linearizing Eqs. (15;30) and 
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(15.30) we get 

where 

(15.32) 

[JSys] is termed as the system Jacobian matrix and is distinct from the load 
flow Jacobian matrix [JFd. All the eigenvalues of the system Jacobian matrix 
should lie in the LHP (Rep'i) < 0) for the equilibrium (operating) point to be 
stable. 

It is assumed that the system Jacobian matrix is dependent on a param­
eter IL (say load at a specified bus) which is varied. For IL < ILc, the equilibrium 
point is stable. At IL = ILc, the critical value of the parameter, a bifurcation is 
said to occur [8] and the equilibrium point becomes unstable for IL = ILc. At 
IL = ILc, the system Jacobian matrix can have either 

(a) a real eigenvalue which is zero or 

(b) a complex pair on imaginary axis 

The loci of the critical eigenvalues for the two cases are shown in Fig. 
15.11. In the first case, instability is due to the crossing of a real eigenvalue into 
the RHP and the bifurcation is said to be of saddle-node type. In the flecond 
type, the instability is due to the crossing of a complex pair into the RHP .. md 
it is termed as Hopf bifurcation. 

If it is assumed that the voltage instability and collapse is due to saddle­
node bifurcation, then the system Jacobian matrix is singular at the critical 
value of the parameter IL = ILc as one of its eigenvalues is zero. In this case, 
static analysis based on the rank properties of the system Jacobian matrix can 
give accurate results. 

Another implicit assumption used in the static analysis is that the rank 
properties of the system Jacobian matrix are related to that of the load flow 
Jacobian matrix. Venikov et al [9] showed that the rank of load flow Jacobian 
matrix is equal to the rank of system Jacobian provided that 

1. The active power and voltage magnitude are specified at each generator 
bus 

2. Loads are of constant power (P and Q) type 

3. The slack node is an infinite bus 
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Figure 15.11: Loci of critical eigenvalues 

With these conditions, the determinant of the load flow Jacobian matrix is 
identical to the product of all the eigenvalues of the system Jacobian matrix. 
It is shown in [10] that in general, the system Jacobian matrix can have a zero 
eigenvalue even when the load flow Jacobian matrix is nonsingular. The load 
level which produces a singular load flow Jacobian matrix should be considered 
as an optimistic upper bound on maximum loadability. 

Using the load flow Jacobian matrix, [hF] defined by 

[hF]'[ !::..() 1 = [JPO Jpv 1 [ !::..() 1 = [ !::..P 1 
!::..V JQo JQv!::..V !::..Q 

{15.33} 

The rank of [hF] is identical to that of the reduced Jacobian matrix [JR] defined 
by 

[JRJ = [JQv - JQoJpJ Jpv] (15.34) 

provided that Jpo is nonsingular. This follows from Schur's formula 

(15.35) 

Reference [11] suggests a singular value decomposition of the reduced Jacobian 
matrix [JR] and the use of the smallest singular value, (In as a measure of the 
proximity of voltage stability limit. 

A n x n matrix [AJ can be expressed by its singular value decomposition 

n 

[A] = [U][D][V]t = L (JiUi V[ (15.36) 
i=l 
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where [U] and [V] are n x n orthogonal matrices with columns Ui and Vi, 

(i = 1,2 ... , n) respectively. [D] is a diagonal matrix of singular values (Ji, 

i = 1,2 ... ,n. Also (Ji ~ 0 for all i. Without loss of generality, it can be assumed 
that 

(Jl ~ (J2 ~ (J3 ~ •.••• ~ (In ~ 0 (15.37) 

For a real symmetric matrix, the absolute values of eigenvalues are the singular 
values. In general, (Ji is the square root of the eigenvalue of the matrix [AAt] or 
[AtA]. 

The singular value decomposition is well conditioned and the singular 
values are insensitive to perturbation in the matrix elements. Given the system 
of linear equations 

[A]x = b 
the solution can be expressed as 

n tb 
X = [Ar1b = [U DVtr1b = L '!!LVi 

i=l (Ji 

If fj.P = 0, Eq. (15.33) can be expressed as 

[JR]fj.V = fj.Q 

Applying (15.39) to the solution of (15.40) it is seen that 

(15.38) 

(15.39) 

(15.40) 

1. The smallest value (In is an indicator of proximity to the voltage stability 
limit 

2. The right singular vector Vn , corresponding to (In is an indicator of affected 
(sensitive) bus voltages 

3. The left singular vector Un corresponding to (In is an indicator of the most 
sensitive direction for changes in the reactive power injections 

Reference [5] uses eigenvalue analysis based on the reduced Jacobian matrix for 
the study of voltage stability. 

\ ~ \ \ 

\ 
In reference [12] it is shown that voltage instability can occur due to 

Hopf bifurcation which cannot be predicted from stJ.tic analysis. The instablity 
is caused by the exciter mode which can be damped by suitable design of a 
stabilizer. 

The results given in [4] show that the voltage instability at the inverter 
bus is due to Hopf bifurcation while the instability at the rectifier bus is nor­
mally due to saddle-node bifurcation. While the results obtained from static 
analysis are in agreement with the results obtained from dynamic analysis if the 
bifurcation is of saddle-node type, the static analysis can give very optimistic 
and hence misleading results if the bifurcation is Hopf. 
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15.5 

Power System Dynamics - Stability and Control 

Integrated Analysis of Voltage and An­
gle Stability 

The use of fast acting excitation systems with high gain voltage regulators gives 
rise to the problem of undamped low frequency oscillations. This proDffiIIi has 
been viewed as a part of the angle stability problem (see chapter 7) and the small 
signal stability analysis of a SMIB system based on Heffron - Phillips constants 
was presented by De Mello and Concordia [14]. 

As discussed earlier, a SMIB system cannot exhibit voltage instability 
and a SMLB system cannot exhibit angle instability. A three bus system con­
sisting of a generator bus, load bus ~nd an infinite bus is the smallest system 
that can exhibit both voltage and angle instabilities. The work of [14] can be 
extended to such a system and the results based on a detailed study are reported 
in [15]. 

2 jO.l 1 

jO.075 3 

Generator Infinite Bus 

. Load 

Figure 15.12: 3 bus system for study. 

Consider the system shown in Fig 15.12. The load is assumed to be 
constant power type with constant power factor; The active power received by 
the infinite bus is kept constant at 1.0 pu. Using Heffron - Phillips constants, it 
is posible to obtain the region of stability (ROS) for a given load in the KE - TE 

. (regulator gain and time constant) plane. The ROS for PI = 3.43 is shown in 
Fig. 15.13. The ROS is bounded by ABC and a straight line (corresponding to 
constant KE) DC. This is typical and it was observed that ROS shrinks as the 
load is increased. 

. It can be shown that instability for operating points above the line ABC 
is due to undamped oscillations (HB) and the instability below line DC is mono­
tonic due to saddle node bifurcation (SNB). For a constant regulator gain (below 
the maximum), low values of TE resulted in instability of the swing mode. At 
high values of TE, instability is due to the exciter mode. There is a range of TE 

. for which the system was stable. The loci of both swing and exciter modes for 
KE = 350 as TE varied, are shown in Fig. 15.14. This shows that the system is 
stable for 1.215 < TE < 5.050. 
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Figure 15'.14: Root Loci of 3 bus 2 line system at KE = 350.0, Pt = 3.430 pu. 
TE is changing. 

'. The simulation results for a small disturbance for KE =,350, TE = 7.0 
are shown in Fig 15.15. This shows the exciter mode instability affects on the 

, load bus voltage and not the power swing in the line connecting the infinite bus 
t,o the generator. The voltage oscillations increase in magnitude while the power 
swings are damped. The simulation results for -Kit = Ot5, TE = 1.0 are shown iIi. 
Fig. 15.16. This shows siniiIar ~esults with exciter mode instabi~ty not affecting 
power swings. There is monotonic collapse in the load bus voltage due to SNB. 
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(b) Growing oscillations in load bus 
voltage for KE = 350.0 and . 

TE = 7.0 sec .. 

Figure 15.15: System response at high gain and high time constant of the exciter 
at Pz = 3.43 pu 
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Figure 15.16: System response at low gain and high time constant of the exciter 
at Pl = 3.43 pu 

The results for the 3 bus '~ystem can be extended to multimachine system 
also. Following conclusions can b'e reached on t.lte natire of instability. 

1. As the system loading is increased, wi~p. ',normal 6peration of -AVRs; the 
\ ......... , 

I 

i 
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initial instability is due to the swing mode which can be stabilised by 
damping controllers. 

2. The voltage instability appears to be the result of unstable exciter mode at 
higher loadings which is affected by the regulator gain and time constant. 

Low gains and high time constants can result in the instability of the 
exciter mode, the nature of the instability dependent on the gain. Below 
a critical gain, the instability is due to SNB while at higher gains, the 
instability occurs at higher time constants. 

If it is assumed that an equivalent generator can represent all the genera­
tors (which remain in synchronism) in a multimachine system, the equiva­
lent KE and TE are affected by the overexcitation limiters. Under abnor­
mal conditions, increase in TE (slowing down of the exciter response) or 
decrease in the effective KE can cause voltage instability. 

3. The increase in the load results in shrinking of the region of stability 
(ROS). 

Interestingly, these conclusions are not much affected even with dynamic 
modelling of loads. 

Attempts have been made recently [16, 17] to decouple voltage and angle 
stability analysis if it is assumed that the generators remain in synchronism 
following a disturbance. Ignoring the rotor swing dynamics has little effect on 
the prediction of instability of modes leading to voltage instability. 

15.6 Control of Voltage Instability 

Voltage instability along with angle instability pose a threat to the system se­
curity. Uncontrolled load rejection due to voltage collapse can cause system 
separation and blackouts. Hence the system must be planned in such a way as 
to reduce the possibility of voltage instability. Also the system must be operated 
with adequate margin for voltage stability. In the event of voltage instability 
due to unforeseen contingencies, the system -::ontrol must prevent widespread 
voltage collapse and restore the loads as quickly as possible. 

The incidence of voltage instability increases as the system is operated 
close to its maximum loadability limit. Environmental and economic constraints 
have limited the transmission network expansion, while forcing the generators 
to be sited far away from the load centres. This has resulted in stressing the 
existing transmission network. 
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The present trend is to operate the existing transmission facilities opti­
mally to utilize the inherent margins available. .The concept of Flexible AC 
Transmission System (FACTS) is an important step in this direction. The 
availability of FACTS controllers such as SVC, Controlled Series Compensation 
(CSC), Static Condenser (STATCON) permit operation close to the thermal 
limit of the lines without jeopardizing security. 

The reactive power compensation close to the load centres as well as at 
the critical buses in the network is essential for overcoming voltage instability. 
The location,' size and speed of control have to be selected properly to have 
maximum benefits. The SVC and STATCON provide fast control and help 
improve system stability. 

The design of suitable protective measures in the event of voltage in­
stability is also necessary. The application of under voltage load shedding [13], 
controlled system separation and adaptive Qr intelligent control are steps in this 
direction. 
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Appendix A 

Numerical Integration 

The computer simulation of power system dynamics involves primarily the nu­
merical integration of the set of ordinary differential equations describing the 
system. These equations can be expressed as 

dx 
dt = f(x, u) (A.I) 

where u is a vector of input variables which are either constants or specified 
functions of time. For example, u may consist of voltage and speed references 
at every generator. 

The initial value of x, is specified at the initial time to (which may be 
chosen as zero) and the problem is to determine the values of x at future times. 
This problem is termed as initial value problem as opposed to boundary value 
problem in which some of the dependent variables may be specified at different 
times. It will be assumed that the equation (A.I) has a unique solution in the 
range, to < t < tmax where tmax -+ 00. Actually, if the function f satisfies 
Lipschitz condition given by 

1 f(x,u) - f(x*,u) I:::; L 1 x - x* 1 (A.2) 

where L is a constant (called Lipschitz constant) the existence of a unique solu­
tion with the initial condition x(to) = Xo is guaranteed. 

A.I Numerical Approximation of the Solu­
tion 

There are two basic approaches to the numerical approximation of solution of 
differential equations. One is to represent an approximate solution by the sum of 
a finite number of independent functions, for example a truncated power series 
or expansion in terms of orthogonal functions. The second and more important 
approach is the difference method. The solution is approximated by its value at 
a sequence of discrete points called the mesh points. We will assume that these 
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points are equally spaced, i.e. tk = .kh (-to = 0), where h is the spacing between 
adjacent points. However, spacing or step size h, will affect the error (in the 
numerical approximation) and this may differ from one region of the interval 
(0 - tmax ) to the other. Consequently, we may use a variable step size in which 
case 

(A.3) 

A difference method is also called a step by step method and provides an algo­
rithm for computing the approximation at step k to X(tk) in terms of values of x 
at tk-l and preceding points. There are two types of errors in this approximation 

1. Truncation Error resulting from the difference in the exact solution and 
the solution given by the algorithm 

2. Round-off Error due to the fact that numbers cannot be represented 
exactly in the numerical processes involved (due to the finite precision of 
numbers represented on digital computers). 

A major concern about numerical approximation is accuracy-how well the nu­
merical solution approaches the exact solution. The concept of convergence of a 
numerical method implies that any desired degree of accuracy can be achieved 
for any problem satisfying Lipschitz condition by selecting a small enough step 
size. It is assumed here that the round-off errors can be kept under control by 
selecting higher precision as the step size is reduced. 

Another basic concept is stability of a numerical method, which guar­
antees that small changes in the initial values only produce bounded changes in 
the numerical approximation provided by the method. If there exists an ho > 0 
for each differential equation such that a change in the starting values by a fixed 
amount produces a bounded change in the numerical solution for all 0 ~ h ~ ho, 
then the method is stable. Stability does not require convergence, although the 
converse is true. For example, the "method" Xk = Xk-l, k = 1,2 ... N is stable 
but not convergent for any but the trivial problem x = o. 

The concepts of convergence and stability are associated with the limiting 
process as h -+ O. In practice, the numher of steps are finite and we are interested 
in knowing whether the errors introduced at each step (truncation and round-off) 
have small or large effects on the solution. In this context, absolute stability 
(A-stability) is defined as follows. A method is absolutely stable for a given 
step size and a given differential equation, if the change due to a perturbation 
of size 8 in one of the mesh (discrete) values Xk is not larger than 8 in all 
subsequent values X n , n > k. This definition is dependent on the problem, hence 
a test equation 

x =.AX (AA) 
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is considered where A is a complex constant. The region of absolute stability 
is the set of values of h (real non-negative) and A for which a perturbation in 
a single value Xk will produce a change in subsequent values which does not 
increase from step to step. 

A.2 Types of Methods 

The numerical methods for integration of differential equations can be classified 
as 

1. Single-step algorithms 

2. Multi-step algorithms 

In the first class of methods, the computation of Xk requires only the information 
on Xk-l (in addition to the evaluation of derivatives in the time interval tk-l 

to tk). In multi-step algorithms, past information about the trajectory is also 
used. A m-step algorithm uses the m previous points Xk-l,Xk-2,Xk-m and the 
values of derivatives at these points to estimate Xk. 

The order of an algorithm (single step or multi-step) refers to the ac­
curacy of the algorithm when the solution of the equation can be expressed as 
a polynomial (Note that any analytic funtion can be approximated arbitrar­
ily closely by a high-order polynomial). An algorithm of pth order is free of 
truncation error for systems whose solution is a polynomial of order p or less. 

Higher order single-step algorithms tend to be computationally ineffi­
cient, particularly if the computations per evaluation of derivative function f 
is high. In general, there are p evaluations of f for each step in a pth order 
single-step algorithm. In contrast, multi-step algorithms require only one new 
function evaluation per step and therefore more efficient per step than a compa­
rable single-step algorithm. However, single-step algorithms can allow a larger 
step size due to extra function evaluations per step and are self-starting. 

There is another classification of numerical methods for integration, 
namely 

A. Explicit 

B. Implicit 

In explicit methods, the algorithm gives an explicit solution of Xk at the end of 
kth step. Implicit methods in general require solution of algebraic equations for 
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the calculation of Xk. Although this requires more computations per step, in 
general, implicit algorithms are more stable and can tolerate larger step-size. In 
stiff systems where both slow and fast dynamics are present, the considerations 
of numerical stability require very small step sizes (even when one is interested 
in capturing only slow dynamics) if explicit algorithms are used. Thus, if only 
slow transients are of interest, implicit algorithms are computationally efficient 
as larger sizes of steps can be used. 

A.3 Integration Algorithms 

In this section only some representative algorithms both explicit and implicit, 
single-step and multi-step are described. For an exhaustive coverage of various 
algorithms reader IS referred to books [1,2] on numerical solution of ordinary 
differential equations. In what follows, the differential equations are assumed to 
be of the form 

x=f(x,t) (A.5) 

The numerical algorithm is to compute Xk in terms of previous value(s) and 
derivatives evaluated at discrete points. 

Single Step Algorithms (Runge-Kutta Methods) 

First Order: Forward Euler 
The algorithm is given by 

Backward Euler 

(A.6) 

(A.7) 

Note that while forward Euler method is explicit, the backward Euler method 
is implicit. 

Second Order: 
Trapezoidal 

This is an implicit method and used extensively in power system studies. 

Modified Euler-Cauchy Algorithm 

(A.8) 

Xk = Xk-l + hf (Xk-l + ~ f(Xk-l, tk-t), tk-l + ~) (A.9) 

This is an explicit method. 
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Modified Euler-Heun Algorithm 

h 
Xk = Xk-l + 2"[J(Xk-l, tk-t} + !(Xk-l + h!(Xk-l, tk-t), tk)] (A.lO) 

This is also an explicit method. 

Fourth order Runge-Kutta 

This is an explicit algorithm that uses intermediate points in the interval 
(tk-l, tk) to calculate state at time tk. 

Defining 

kl = !(Xk-l, tk-d 

k2 = ! (Xk-l + ~kl, tk-l +~) 

k3 ! (Xk-l + ~k2' tk-l +~) 
k4 !(Xk-l + hk3, tk) 

the final state is calculated from 
h 

Xk = Xk-l + 6"[k1 + 2k2 + 2k3 + k4] 

Multi-Step Algorithms 

A general form for an m step algorithm is given by 

Xk = alXk-l + a2xk-2 + ..... amXk-m 

+h[bo!(Xk, tk) + bt/(Xk-l, tk-d + b2!(Xk-2, tk-2) 

+ ..... bm!(Xk-m'tk-m)] 

(A.ll) 

(A.12) 

where tk-i are evenly spaced with time step h. Different choices of the coefficients 
ai and bi lead to different integration algorithms. If bo = 0, the algorithm is 
explicit; otherwise, it is implicit. 

Adams-Bashforth 

The pth order Adams-Bashforth algorithm is generated by setting 
m = p, bo = 0 and ai = 0 for i = 1,2 .... p. The remaining coefficients are chosen 
such that the algorithm is exact for polynomials of order p. Since bo = 0, this is 
an explicit algorithm. 

The first, second, third and fourth order algorithms are given below 
First order 

(A.13) 
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Second order 

(A.14) 
, Third order 

h 
Xk = Xk-l + 12 [23!(Xk-l, tk-tl - 16f(Xk-2, tk-2) + 5f(Xk-3, tk-3)] (A.15) 

Fourth order 

h 
Xk - Xk-l + 24 [55f(Xk-l, tk-d - 59f(Xk-2, tk-2) 

+37f(Xk-3, tk-3) - 9f(Xk-4, tk-4)] (A.16) 

It is to be noted that the first order algorithm is identical to forward Euler's 
method. 

Adams-Moulton 

The pth order Adams-Moulton algorithm is generated by setting 
m = p - 1 and ai = 0 for i = 1, 2 ... (p - 1). The remaining coefficients are 
chosen such that the algorithm is exact for polynomials of order p. The pth 
order Adams-Moulton algorithm is a (p - 1) step algorithm. Since bo =1= 0, this 
is an implicit algorithm. 

The first to fourth order Adams-Moulton algorithm are given below 
First order 

, Second order 

Third order 

Xk = Xk-l + 1h2 [5f(Xk, tk) + 8f(Xk-ll tk-d - f(Xk-2, tk-2)] 

Fourth order 

(A.17) 

(A.18) 

(A.19) 

h 
Xk = Xk-l + 24 [9f(Xk, tk) + 19f(Xk-l, tk-l) - 5f(Xk-2, tk-2) + f(Xk-3, tk-3)] 

(A.20) 
It is to be noted that the first and second order algorithms are identical to 
backward Euler and trapezoidal algorithms respectively. 

Predictor-Corrector methods involve the sequential application of Adams­
Bashforth and Adams-Moulton algorithms. The former is used to predict the 
value of Xk and the latter is used to correct it. 
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Gear's Algorithm 

The pth order Gear's algorithm is obtained by setting m = p and bi = 0 
for i = 1,2 .... p. The remaining coefficients are chosen such that the algorithm 
is exact for polynomials of order p. Since bo i= 0, it is implicit in nature. 

First order Gear's algorithm is identical to backward Euler algorithm. 
The second to fourth order algorithms are given below 

Second Order 

Third Order 

Fourth Order 

1 
Xk = 25 [48xk-l - 36xk-2 + 16xk-3 - 3Xk-4 + 12hf(xk, tk)] 

A.4 Error Analysis 

(A.21) 

(A.22) 

(A.23) 

The local error to is defined as the error at each step of the algorithm. Assuming 
the exact solution of the equation (A.5) at time t = tk as ¢tk (Xk-l, tk-d where 
the initial condition is x = Xk-l at t = tk-l, the local error is given by 

(A.24) 

where Xk is generated by the numerical integration algorithm. The local error 
includes both truncation and round-off errors. For a pth order algorithm, the 
local truncation error is given by 

(A.25) 

where ak is a real constant dependent on both f and Xk, but independent of h. 

The local round-off error tOr depends on the number and type of arith­
metic operations per step and is independent of the step size. The magnitude of 
the round-off error depends on the hardware (of the digital computer) used. The 
local round-off error can be reduced by increasing the precision of the floating­
point representation. Typically, single-precision representations use 32 bits and 
are accurate to about 7 decimal places; double-precision representations use 64 
bits and are accurate to about 15 decimal places. 
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Error 

E 

h min h 

Figure A.1: Error as function of step size (Euler's method) 

Global Errors 

The global errors are accumulations of local errors per unit time. If 
h < < 1, the total number of integration steps are 

N=!.: 
h 

The global round-off error is given by 

N 
Er =N€r = h 

(A.26) 

(A.27) 

The global truncation error, neglecting the dependence of ak qn Xk is given by 

(A.28) 

for a pth order algorithm. 

The total error E = Er + Et , as a function of step size h, where p = 1, is 
shown in Fig. A.l. This shows that the error decreases at first as h is reduced; 
but there is an optimum value of h(hmin} at which the total error is minimum. 
Most of the times, the requirements on accuracy permit values of h much above 
hmin. If better accuracy is required, which dictates that Emin be reduced, the 
precision of numbers used in the computer has to be increased. For every ten­
fold decrease in h, more than one decimal digit of precision must be added if it 
is assumed that the round-off error is constant per step. 
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Variable step size 

A practical integration routine should automatically adjust the step-size 
h such that it satisfies the user supplied error tolerance. This way, the total 
computations can be minimized and also the accumulated round-off error. This 
is achieved by estimating the error at each step and reducing or increasing the 
step size as required. Variable step-size is easily implemented in single step 
algorithms. Sometimes, integration routines also incorporate variable order of 
the algorithm. 

References 

1. L. Lapidus and J .H. Seinfeld, Numerical Solution of Ordinary Dif­
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2. C.W. Gear, Numerical Initial Value Problems in Ordinary Differ­
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Appendix B 

Data for 10 Generator System 

The data for the 39 bus, 10 generator system is given here. This is adapted from 
[1]. The single line diagram of the system is shown in Fig. B.1. The machine 
data, line data, load flow and transformer data are given in tables B.1 to B.4 
respectively. The AVR data is given below. 

Table B.l Machine Data 

Gen Ra Xd X, 
d Xq X, 

q H T~o T~o Tc D 

# 
1 0.0 0.2950 0.0647 0.2820 0.0647 30.3 6.56 1.5 0.01 0.0 
2 0.0 0.0200 0.0060 0.0190 0.0060 500.0 6.0 0.7 0.01 0.0 
3 0.0 0.2495 0.0531 0.2370 0.0531 35.8 5.7 1.5 0.01 0.0 
4 0.0 0.3300 0.0660 0.3100 0.0660 26.0 5.4 0.44 0.01 0.0 
5 0.0 0.2620 0.0436 0.2580 0.0436 28.6 5.69 1.5 0.01 0.0 
6 0.0 0.2540 0.0500 0.2410 0.0500 34.8 7.3 0.4 0.01 0.0 
7 0.0 0.2950 0.0490 0.2920 0.0490 26.4 5.66 1.5 0.01 0.0 
8 0.0 0.2900 0.0570 0.2800 0.0570 24.3 6.7 0.41 0.01 0.0 
9 0.0 0.2106 0.0570 0.2050 0.0570 34.5 4.79 1.96 0.01 0.0 
10 0.0 0.2000 0.0040 0.1900 0.0040 42.0 5.7 0.50 0.01 0.0 

Note: Tc is the time constant of the dummy' coil considered to represent 
transient saliency. 

AVR Data: KA = 25, TA = 0.025, v;.max = 10, v;.min = -10 
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Table B.2 Line Data 

Bus No. RL XL Be 
From To 

37 27 0.0013 0.0173 0.3216 
37 38 0.0007 0.0082 0.1319 
36 24 0.0003 0.0059 0.0680 
36 21 0.0008 0.0135 0.2548 
36 39 0.0016 0.0195 0.3040 
36 37 0.0007 0.0089 0.1342 
35 36 0.0009 0.0094 0.1710 
34 35 0.0018 0.0217 0.3660 
33 34 0.0009 0.0101 0.1723 
28 29 0.0014 0.0151 0.2490 
26 29 0.0057 0.0625 1.0290 
26 28 0.0043 0.0474 0.7802 
26 27 0.0014 0.0147 0.2396 
25 26 0.0032 0.0323 0.5130 
23 24 0.0022 0.0350 0.3610 
22 23 0.0006 0.0096 0.1846 
21 22 0.0008 0.0135 0.2548 
20 33 0.0004 0.0043 0.0729 
20 31 0.0004 0.0043 0.0729 
19 2 0.0010 0.0250 1.2000 
18 19 0.0023 0.0363 0.3804 
17 18 0.0004 0.0046 0.0780 
16 31 0.0007 0.0082 0.1389 
16 17 0.0006 0.0092 0.1130 
15 18 0.0008 0.0112 0.1476 
15 -16 0.0002 0.0026 0.0434 
14 34 0.0008 0.0129 0.1382 
14 15 0.0008 0.0128 0.1342 
13 38 0.0011 0.0133 0.2138 
13 14 0.0013 0.0213 0.2214 
12 25 0.0070 0.0086 0.1460 
12 13 0.0013 0.0151 0.2572 
11 12 0.0035 0.0411 0.6987 
11 2 0.0010 0.0250 0.7500 



B. Data for 10 Generator System 549 

Table B.3 Load Flow Data 
Bus No. V ¢ PG QG PL QL 

1 .98200 .00000 5.04509 1.36036 .09200 .04600 
2 1.03000 -9.55016 10.00000 1.95746 11.04000 2.5000 
3 .98310 3.20174 6.50000 1.59104 .00000 .00000 
4 1.01230 4.61664 5.08000 1.58151 .00000 .00000 
5 .99720 5.57217 6.32000 .95582 .00000 .00000 
6 1.04930 6.62654 6.50000 2.76414 .00000 .00000 
7 1.06350 9.46958 5.60000 2.35485 .00000 .00000 
8 1.02780 3.16537 5.40000 .63019 .00000 .00000 
9 1.02650 9.04654 8.30000 .84790 .00000 .00000 
10 1.04750 -2.47597 2.50000 1.46483 .00000 .00000 
11 1.03829 -7.79710 .00000 .00000 .00000 .00000 
12 1.02310 -4.89487 .00000 .00000 .00000 .00000 
13 .99576 -8.07759 .00000 .00000 3.22000 .02400 
14 .95894 -9.35310 .00000 .00000 5.00000 1.84000 
15 .95660 -8.29471 .00000 .00000 .00000 .00000 
16 .95688 -7.56925 .00000 .00000 .00000 .00000 
17 .95140 -9.97400 .00000 .00000 2.33800 .84000 
18 .95276 -10.5017 .00000 .00000 5.22000 1.76000 
19 1.01028 -9.92054 .00000 .00000 .00000 .00000 
20 .95988 -4.71314 .00000 .00000 .00000 .00000 
21 .99046 -2.98024 .00000 .00000 2.74000 1.1500 
22 1.01550 1.62430 .00000 .00000 .00000 .00000 
23 1.01344 1.34841 .00000 .00000 2.74500 .84660 
24 .98179 -5.45955 .00000 .00000 3.08600 .92200 
25 1.02088 -3.68918 .00000 .00000 2.24000 .47200 
26 1.01822 -4.76321 .00000 .00000 1.39000 .17000 
27 1.00150 -6.92554 .00000 .00000 2.81000 .75500 
28 1.02204 -.95906 .00000 .00000 2.06000 .27600 
29 1.02143 1.95588 .00000 .00000 2.83500 .26900 
30 .98832 -.62515 .00000 .00000 6.28000 1.03000 
31 .95760 -5.69316 .00000 .00000 .00000 .00000 
32 .93795 -5.68713 .00000 .00000 .07500 .88000 
33 .95912 -5.47342 .00000 .00000 .00000 .00000 
34 .96168 -7.20767 .00000 .00000 .00000 .00000 
35 .96683 -7.32475 .00000 .00000 3.20000 1.5300 
36 .98196 -5.55956 .00000 .00000 3.29400 .32300 
37 .99086 -6.73437 .00000 .00000 .00000 .00000 
38 .99197 -7.71437 .00000 .00000 1.58000 .30000 
39 .98770 .34648 .00000 .00000 .00000 .00000 
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Table B.4 Transformer Data 

Bus No. RT XT Tap 
From To 

39 30 0.0007 0.0138 1.0 
39 5 0.0007 0.0142 1.0 
32 33 0.0016 0.0435 1.0 
32 31 0.0016 0.0435 1.0 
30 4 0.0009 0.0180 1.0 
29 9 0.0008 0.0156 1.0 
25 8 0.0006 0.0232 1.0 
23 7 0.0005 0.0272 1.0 
22 6 0.0000 0.0143 1.0 
20 3 0.0000 0.0200 1.0 
16 1 0.0000 0.0250 1.0 
12 10 0.0000 0.0181 1.0 

/ 

7 
7 

Figure B.1: 39 Bus, 10 generator test system 
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The load flow results are given for the case when transmission losses are ne­
glected. This is assumed in the examples given in chapters 12 and 13. The 
network losses are included in the example given in Chapter 9. 

Reference 

1. A.K. Behera, Transient stability analysis of multimachine power 
systems using detailed machine models, Ph.D Thesis, University of 
Illinois at Urbana-Champaign, 1988 
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Appendix C 

List of Problems 

1. A generator is supplying power to an infinite bus through an external 
reactance of 0.8 pu. The terminal voltage is maintained at 1.0 pu through 
field control. If Eb = 1.0, Xg = 0.2 pu, 

(a) find the equilibrium points when supplying power of 1.0 pu. Test 
their stability. 

(b) find the maximum power supplied if the voltage regulation is manual. 

( c) Repeat (b) if the voltage regulation is achieved using an ideal AVR. 

2. Consider the system shown in C.1. 

The generator is represented by a voltage source Eg L8 in series with reac­
tance xg• 

Figure C.l: 

(a) If IVtI = IV21 = 1.0 pu and Pg = Pb = 1.0 pu, (PL = 0.0, QL = 0.0), 
find the value of 8 corresponding to equilibrium. Test the stability of 
all the equilibrium points. Assume Xg = 0.3, Xl = 0.5 and X2 = 0.2. 

(b) Find the steady state stability limit of power. Assume V l and V2 
are maintained at 1.0 pu by slow control as the power is increased. 
Assume PL = QL = 0.0. 

3. In figure C.l, the load at the intermediate bus is assumed to be of co,nstant 
impedance type with ZL = 1.0 + JO.O pu. 
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If Xl = X2 = 0.25 and Xg = 0 (VI = EgLo) obtain expression for Pg and 1l 
as functions of o. Assume Eb = Eg = 1.0 pu. 

Find the received power at the staibility limit. Can the received power be 
higher than this limit? Explain. 

4. In figure C.I, the load is assumed to be of constant power type with 
PL = 1.0 and QL = 0.5. Find the equilibrium points if Pg = 2.0 and test 
their stability. Assume Eg = Eb = 1.0 pu, Xl = x2 = 0.25, Xg = 0.0. 

What is the maximum power output of the generator and the critical 
\ angle? 

5.' For the system shown in figure C.I, a controllable reactive source is con­
nected at the intermediate bus instead of the load and can be mod­
elled as a voltage source Es in series with the reactance XS. Assume 
Xl = X2 = 0.25, Xg = 0.0, Eb = Eg = 1.0 pu. Obtain the expression 
for Pg as a fucntion of o. What is the maximum power output of the 
generator and the critical angle? Assume Es = 1.0, Xs = 0.1. 

6. If in problem 5, a fixed capacitor (Be = 0.5) is connected at the interme­
diate bus instead of controllable reactive source, obtain expression for Pg 

as a function of o. 
7. A salient pole generator is connected to an infinite bus through an exter­

nal reactance (xe) of 0.5 pu. The field \';l!tage is adjusted such that the 
terminal voltage is 1.0 pu when the power output is 1.0 pu. 

(a) What is the expression for power (Pg ) as a function of 0 in steady 
state? 

(b) Repeat (a) in transient state. 

(c) What is the maximum power supplied in steady state? Assume 
Xd = 1.0, Xq = 0.6, x~ = 0.35, Eb = 1.0. 

8. Consider a two area system shown in figure C.2. Each area is represented 
by an equivalent generator and load at unity power factor. The generator 
reactances can be neglected. 

(a) Write the equation for 1512 = 01 - 02. 

(b) If Pml is reduced to 10 at t = 0, find the expression for 012 assuming 
linearity. 

Data: X = 0.5,PLl = 10,PL2 = 20,Pml = 1l,Pm2 = 19,Hl = 25, 
H2 = 60,/B = 50 Hz, E = 1.0. 
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ELQ2 

1---+-----
X-----+---I6) H 2 

E 

p 
m2 

Figure C.2: 

9. A synchronous generator is delivering 1.0 pu power at 0.9 pf (lagging) 
through a circuit breaker to an infinite bus having a voltage of 1.0 pu. If 
the circuit breaker is opened, how long may it be kept open before being 
closed without loss of synchronism? Assume Xg = 0.4, H = 3.0,IB = 50 
Hz. 

10. Consider the system shown in figure C.3. The generator is initially sup­
plying power of 1.0 pu with the terminal voltage at 1.0 pu. 

If a three phase fault occurs at the sending end of one of the lines followed , 
by tripping, find the critical angle. 

X Tl = 0.1 X Ll= 0.2 X T2= 0.1 

&-HHr-------I~~H EbLU 

X =02 g . 
X L2= 0.2 

Figure C.3: 

11. For the system shown in figure C.2, the load PLI is decreased suddenly 
and PL2 is increased simultaneously by the same amount at t = O. What 
is the maximum step change in the loads that can be permitted without 
loss of synchronism? Assume the data given in problem 8. 

12. Consider the system shown in figure C.4. The reactance of each line section 
is 0.8 and is compensated 50 % by using series capacitors. Following a 
fault in one of the sections, it is tripped. Neglecting the effect of the fault, 
compute the transient stability limit 

(a) if the switch S remains closed. 

(b) if the switch S is opened as soon as the line is tripped. 
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Figure- C.4: 

13. A synchronous generator rated at 10 MVA, 11KV, 50 Hz is running at 
rated speed on no load. The field current is initially zero and the field 
voltage (Efd = 1.0) is suddenly applied at t = O. Neglecting damper 
windings, obtain expression for va(t). 

Data: Xd = 1.0,Xq = 0.6,Rf = O.OOl,Ra = O.O,xcif = 0.9,xf = 1.05. 

14. The generator described in problem 13 is connected to a positive sequence 
voltage source of 11 KV. The mechanical input power is 0.8 pu and 
E fd = 1.2 pu. Compute steady state values of id, iq, W d, W q, P and Q 
(at terminals). What is RMS line current in amperes? 

Is the answer affected by the presence of damper windings? 

15. Repeat problem 14 if the voltjl.ge at the generator terminals has a negative 
sequence component which is 10 % of the I)ositive sequence component. 
Assume field flux to be constant. Dops - :-essure of damper windings 
affect the answers? 

16. The generator described in problem 13 is connected to a positive sequence 
current source of 1.0 pu. If Tm = 0.8,Efd = 1.2, find the steady state 
values of id, iq, Vd, vq, P and Q. 

17. A generator has positive sequence currents flowing in the armature with 
ia = 0.8156sinwBt. If Efd = 1.2 and shaft power is zero, obtain the 
expression for Va in steady state. 

Data: Xd = 1.75,xdf = 1.55,xf = 1.80,xq = 1.75,Rf = O.OOl,Ra = 0.0, 
JB = 50 Hz. 

18. A synchronous generator is initially running at rated speed on no load 
with open circuit voltage of 1.0 pu. A sudden three phase short circuit 
occurs at the terminals at t = o. Neglecting armature transients and effect 
of damper windings, obtain expressions for id(t), iq(t) and if(t). Assume 
the generator data same as that given in probelm 17. 

19. A synchror..ous generator has positive sequence currents flowing in the 
armature with id(t) = 0.8156 sin 100n"t. The rotor angle with respect to 
a stationary axis is f} = 98n"t. Neglecting damper windings and assuming 
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constant field flux linkages, obtain expressions for va(t) and Te(t). Neglect 
pWd and pWq terms. 

Data: Xd = 1.75, Xq = 1.65, x~ = 0.25, Ra = 0.0, E/d = 1.0. 

20. Obtain the expression for G(s) and compute the time constants T~o' T~, T~o 
and T~. T.!J.e d-axis equivalent circuit has the following parameters 
Xc = 0.3, Xfj = 1.8, x'tc = 0.25, R't = 0.001, R~ = 0.025, Xhc = 0.0, 
IB = 50 Hz. 

21. Obtain the expression for Xd( s) and compute the reactances x~, x~ from 
the d-axis equivalent circuit parameters :- Xc = 0.3, Xd = 1.8, 
x~c = 0.18,xfc = 0.25,R't = 0.OOO8,R~ = 0.022,IB = 50 Hz. What are 
the time constants T~ and T~? 

22. Obtain the~xpression for Xq{s) .and compute the time constants T~o, T~, T~~ 
and T~' and reactances x~ and x~. The q-axis equivalent circuit parameters 
are Xau = 0.2, Xq = 1.7, Xgu = 0.33, Xku = 0.11, Rg = 0.008, 
Rk = 0.010, IB = 50 Hz. 

V RMAX 

v 

Figure C.5: 

23. Consider an excitation system whose block diagram is shown in figure C.5. 

(a) Write the state equations for this excitation system. 

(b) In steady state, E/d = 2.5, Vi = 1.0. Find the equilibrium values of 
the state variables and Vre/. 

(c) If there is a step decrease in Vi by 0.1, obtain the response of E/d as 
a function of time. Assume the following data. 
TA = 0.02, TE = 0.8, TF = 1.0, KA = 400, KF = 0.03, 
VRMAX = 4.0, VRMIN = -4.0. 
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24. When the generator is on no load the transfer function between Vi and 
Efd is given by 

1 
Vi(s) = 1 T' Efd(S) 

+S do 

. For the excitation system shown in figure C.5 

(a) Obtain the root locus as KA is varied if T~o = 5.0, KF = O. Assmne 
other data ~ given in problem 23. 

(b) At what value of KA is the system just on verge of instability? 

(c) Obtain the root locus with variation in KF if KA = 400. 

25. Consider the excitation system shown in figure C.6. 

V ref + 1 +sT c 

1 +sT B 

v 

Figure C.6: 

E fd max 

E fd min 

(a) Neglecting TGR, obtain the root locus as KA is varied. Assmne 
generator on no load and TE = 0.8 s, TA = 0.02 s, Tdo = 5.0 s. 

(b) Obtain the root locus as KA is varied with TGR considered. Assmne 
TB = 10 s, Tc = 1.0 s. 

26. For the excitation system shown in figure C.6 

(a) Write the state equations. 

(b) In steady state, Efd = 2.5, Vi = 1.0. Find the equilibrimn values of 
state variables and Vref . Assmne TB = 10 s, Tc = 1.0 s, TA = 0.02 
s, TE = 0.8 s, KA = 400. 

(c) If there is a step decrease in Vi by 0.1, obtain the response of Efd as 
a function of time. Assume Efdmax = 4.0, Efdmin = -4.0. 

27. Write the state equations for PSS whose block diagram is shown in figure 
C.7. 

28. The speed governing system for a hydrogenerator can be approximately 
reperesented as shown in figure C.8. If H = 4.0, Tw = 1.0 s, TR = 5.0 s 
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v s max 
s m sTw Ks (1 + sT 1) 1 + sT 3 
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- f----- v s 
1 +sT w 

ro ref + 

(1 +sT2 ) 

Figure C.7: 

1 + sT R 

sOT R 

2Hs 

Figure C.8: 

(a) Obtain the root locus as d is varied. 

1 + sT 4 

l-sT w 

1 + O.5sT w 

(b) What is the value of d if the damping ratio is 0.7. 

29. Consider the system shown in figure C.9. 

-
v . 

smrn 

1--....--;.. Pm 

+ 

P e 

(a) With X = 0.5, E = 1.0, plot Vasa function of P for (i) Be = 0.0 
and (ii) Be = 0.5. What is the maximum power supplied in both 
cases? 

(b) If the load (P) is of constant current type given by P = V, what is 
the power drawn for (i) Be = 0.0 and (ii) Be = 0.5. 

30. An induction motor load has the following data. 
Rs = Rr = 0.02, Xs = Xr = 0.5, Xm = 28.5, Hm = 0.44. 

(a) With the applied voltage at 1.0 pu, obtain the torque slip character­
istic. Assume f B = 50 Hz. 

(b) The motor is initially operating at a slip = 0.012. The terminal 
voltage is suddenly reduced to zero at t = 0 due to a fault. What 
is the maximum duration of the fault for which the motor does not 
stall? Assume the load torque (Tm) as constant and the voltage is 
restored to its prefault value of 1.0 pu when the fault is cleared. 
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vLo 
x 

Figure C.g: 

,. 

Figure C.lO: 

31. Consider the system shown in figure C.lO. The generator is represented 
by a voltage source EgLo in series with the reactance X g. Obtain the 
differential equations for the network in D-Q variables. 

32. A synchronous generator is connected to an infinite bus through an ex­
ternal impedance of JO.5 pu. The generator is supplying power of 1.0 
pu with terminal voltage Vi at 1.0 pu. Compute the operating values of 
0, E~, E~, Efd, Vd, vq. 

Data: Xd = 1.7, Xq = 1.7, x~ = 0.25,' x~ = 0.45, TJo = 6.5 sec, 
T~o = 0.7 sec, H = 4.0, D = 0.0, Ra = 0.0, f B = 50 Hz, Eb = 1.0. 

33. In probelm 32, the system is initially in equilibrium and at t = 0, the 
external impedance is suddenly changed to JO.3 pu 

(a) Compute the values of id, iq, Vi and Te at t = 0+. 

(b) What is the value of 0 in steady state if 

1. there is no AVR and 
ii. there is high gain AVR 

34. A synchronous generator is connected to an infinite bUB-through an exter­
nal impedance of JO.35 pu. In equilibrium state, id = -0.8, E fd = 2.2, 
and Eb = 1.0. Compute E~, E~, 0, Vd and vq. 
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Data: Xd = 1.75, Xq = 1.65, xd = 0.25, x~ = 0.45, Tdo = 6.0 sec, 
T~o = 0.8 sec, H = 4.0, D = 0.0, Ra = 0.0, f B ;= 50 Hz. 
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35. For the system described in problem 34 the infinite bus voltage is suddenly 
increased to 1.1 pu at t = 0 

(a) Compute id, iq , lit and ~ at t = 0+. 

(b) Assuming high gain AVR, compute E fd in steady state. 

36. (a) Compute the Heffron-Phillips constants for the system described in 
problem 32. Assume machine model (1.0). 

(b) Compute the upper limit on AVR gain, if any, beyond which there 
is instability. Assume fast acting exciter and neglect the effect of 
damper winding. 

( c) What is the frequency of the rotor oscillations on the verge of insta­
bility? 

37. A synchronous generator is connected to an infinite bus through an ex­
ternal impedance of JO.4 pu. The generator is initially operating with 
Pg = 1.0, lit = 1.0 and Eb = 1.0. The generator data: Xd = 1.6, 
Xq = 1.55, xd = 0.32, Tdo = 6.0 sec, x~ = 0.32, T~o = 0.8 sec, 
H = 5.0, D = 0.0, Ra = 0.0, fB = 60 Hz. 

(a) Compute the jnitial conditions. 

(b) Simulate the system and obtain responses of E~, Ed, 8m , 8, lit and 
Te if there is a step increase in E fd of 0.2 pu. 

(c) Repeat (b) if x~ = 1.55. 

38. Repeat problem 37 if the operating data is changed to Pg = 0.5, 
lit = 1.0, Eb = 1.0. 

39. For the operating data given in problem 38 (and generator data given in 
problem 37) 

(a) Si:qtulate the system if there is a step illcrease in Tm by 0.2 pu. 

(b) What is the maximum step increase in Tm possible without losing 
synchronism? 

40. The generator in problem 37 is equipped with a static exciter having data 
: TB = Tc = 10 s, KA = 200, TA = 0.025 s, Efdmax = 6.0,Efdmin = -6.0. 
With the same operating conditions as in problem 37 simulate the system 
for 

(a) Step increase in Vref by 0.2 pu 
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(b) Step increase in Tm by 0.1 pu 

(c) Repeat (a) and (b) if x~ = 1.55. 

41. Repeat problem 40 if the operating data is changed to Pg = 0.5, 
vt = 1.0, Eb = 1.0. 

42. For the system of problem 37, there is a sudden increase in Eb of 0.1 pu. 
Simulate the system 

(a) Without AVR (constant Efd) 

(b) With AVR (data given in problem 40) 

43. There is a sudden three phase fault at the terminals of the generator 
of problem 37. The fault is cleared in three cycles and the post fault 
configuration i~ same as the prefault one. Simulate the system . 

(a) Wi~hout AVR 

(b) With AVR of data given in problem 40. 

What is the critical clearing time in both cases. 

44. Consider the system shown in figure C.11. The generator data (on its own 
base) : Xd = 1.0, Xq = 0.6, x~ = 0.3, x~ = 0.2, T~o = 5.0 sec, T~o = 0.12 
see, H = 4.0, D = 0.0, Ra = 0.0, f B = 50 Hz. The generator has a 
static exciter whose data is given in problem 40. The transformer leakage 
reactance (on its own base) is 0.15 pu. Each circuit of the transmission line 
has R = 0.0216, x = 00408, b = 0.184 (R is the series resistance, x is the 
series reactance, b is the shunt susceptance) on 1000 MVA base. X2 = 0.18 
pu (on 1000 MVA base). The generator and transformer are each rated at 
5200 MVA. The system is initially operating with vt = 1.03, 
~ = 2.0, Qb = 0.0. 

~~I--l -----Ir~~ Eb/JJ 

E P b P=3.0 

Q=O.O 

P=4.0 

Q=O.O 

Figure C.11: 

IE / 7 Qb 
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.. . . 

(a) Compute initial conditi~ns 
(b) Simulate the system for a step increase in Vrel of 0.2 pu 
(c) Simulate the system for a step increase in Eb of 0.1 pu. 
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45. For the system shown in figure C.ll, there is a three phase fault at the 
receiving end of one of the lines which is cleared by tripping the line at 
the end of 3 cycles. Assuming the system data given in problem 44, 

(a) Simulate the system 
(b) What is the critical clearing time? 

46. Consider the system shown in figure C.12. The generator is represented 
by model (1.0) with the data: Xd = 1.6, Xq = 1.55, x~ = 0.32, T~o = 6.0 
sec, H = 5.0, D = 0.0, Ra = 0.0, f B = 50 Hz. Exciter data : TE = 0.025 
s,O < KE < 400. 

v/~ x E 

61 H Eb 10 

-- E b= 1.0 
Pg 

GE 

Figure C.12: 

(a) Compute the constants Kl to K6 if Pg = 1.0, lit = 1.0, 
XE = 0.3, GE = 0.0. 

(b) Plot the loci of eigenvalues if KE is varied from 0 to 400. 

47. Repeat problem 46 if Pg = 1.0, lit = 1.0, GE = 0.5 and XE = 0.6, other 
data remaining the same. 

48. Repeat problem 46 if Pg = 0.5, lit = 0.9, other data remaining the same. 

49. Design PSS for the system of problem 46. Assume PSS transfer function 

PSS(s)= Ks sTw(l+sTd 
(1 + s Tw) (1 + s T2) 

Assume KE = 200, Tw = 2.0. 
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50. Repeat problem 49, if the operating data is that given in problem 47. 

51. Repeat problem 49, if the operating data is that given in problem 48. 

52. Test the performance of PSS designed in problem 49, if there is a three 
phase fault at the generator terminals followed by clearing after 0.05 s. 
Assume post fault system same as the prefault system. The limits on Vs 
are ±0.05 pu. 

53. Repeat problem 52 if the PSS is designed in problem 50 is used along with 
the system given in problem 47. 

54. A turbogenerator shaft has six masses with the following data : 
Inertias: Hl = 0.021, H2 = 0.727, H3 = 1.54, H4 = 1.558, 
H5 = 0.284, H6 = 0.104 (all in seconds). 
Shaft spring constants (in pu) : Kl2 = 32.1, K23 = 86.2, K34 = 113.16, 
K45 = 105.7, K56 = 39.5. 

(a) Compute modal inertias and frequencies. 

(b) Compute mode shapes (columns of [Q] matrix). 

55. A generator is connected to an infinite bus through a series compensated 
line. The generator data: Xd = 1.0, Xq = 0.66, x~ = 0.35, 
x~ = 0.32, T~o = 7.5 sec, T~o = 0.06 sec, Ra = 0.005 (includes gener­
ator step-up transformer), JB = 50 Hz. The reactances of the step-up 
transformer and receiving end reactances are Xt = 0.17, Xr = 0.20. The 
transmission line has the parameters x = 0.75, bc = 0.50 and R = 0.329 
(where x, bc and R are the series reactance, shunt susceptance and resis­
tance respectively). Series capacitive reactance (xc) is variable (0 - 0.7). 

(a) Write system state equations including network transients. Assume 
constant (rated) rotor speed. . 

(b) Obtain the locus of the critical network mode that is affected by 
induction generator effect as Xc is varied from 0 to 0.7 pu. 

56. In problem 55, consider the speed of the generator variable with total in­
ertia (HT) = 3.3 s. Assuming generator output as Pt = 0.0, 
Qt = -0.25 obtain linearized state space equations. Assuming transmis­
sion line resistance as variable, with Xc = 0.65, obtain the limits (minimum 
and maximum) on the transmission line resistance such that the system is 
stable. 

57. The system corresponding to IEEE Second Benchmark Model (SBM) is 
shown in figure C.13. The system data is (on a 100 MVA base) are given 
below. 



c. List of Problems 

Transformer 

Transmission line 

RT = 0.0002, XT = 0.02. 

RI = 0.0074, XLI = 0.08. 
R2 = 0.0067, XL2 = 0.0739. 
Rsys = 0.0014, XSYS = 0.03, fn = 60 Hz. 

The generator subtransient reactances are x~ = x~ = 0.0333. 
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(a) Write the network equations. Assume that the generator is modelled 
by a constant voltage source behind subtransient reactance. 

(b) With Xc varied from 10% to 90% of XLI, plot the variation of the 
frequencies of the network modes. 

Infinite Bus 

Figure C.13: 

58. For the generator in IEEE SBM, there are four rotor intertias correspond­
ing to exciter, generator, LP and HP turbines. The modal quantities are 
given below. 

Mode fn (Hz) Hn (sec) an (rad/sec) 

1 24.65 1.55 0.05 
2 32.39 9.39 0.05 
3 51.10 74.80 0.05 

The mode shapes are given below. 

Rotor Mode 1 Mode 2 Mode 3 

EXC 1.307 1.683 -102.6 
GEN 1.000 1.000 1.000 
LP -0.0354 -1.345 -0.118 
HP -1.365 4.813 0.05-.t4 
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Compute the inertias (H), spring constants (K) and damping (D) for the 
mechanical system. 

59. The unit # 2 in IEEE SBM (system # 2) has the 3 rotor inertias and the 
following modal data 

Rotor mode shapes 

Rotor 

GEN 
LP 
HP 

The modal parameters are 

Mode 1 

1.000 
-0.601 
- 1.023 

Mode 2 

1.000 
-4.33 
11.56 

Mode 1 : Hn = 2.495 s, in = 24.65 Hz, an = 0.025. 

Mode 2 : Hn = 93.960 s, in = 44.99 Hz, an = 0.025. 

Compute inertias, spring constants and damping for the mechanical sys­
tem. 
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