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Chapter 1

Basic Concepts

1.1 General

Modern power systems are characterized by extensive system interconnections
and increasing dependence on control for optimum utilization of existing re-
sources. The supply of reliable and economic electric energy is a major deter-
minant of industrial progress and consequent rise in the standard of living. The
increasing demand for electric power coupled with resource and environmental
constraints pose several challenges to system planners. The generation may have
to be sited at locations far away from load centres (to exploit the advantages of
remote hydro power and pit head generation using fossil fuels). However, con-
straints on right of way lead to overloading of existing transmission lines and an
impetus to seek technological solutions for exploiting the high thermal loading
limits of EHV lines [1]. With deregulation of power supply utilities, there is a
tendency to view the power networks as highways for transmitting electric power
from wherever it is available to places where required, depending on the pricing
that varies with time of the day.

Power system dynamics has an important bearing on the satisfactory
system operation. It is influenced by the dynamics of the system components
such as generators, transmission lines, loads and other control equipment (HVDC
and SVC controllers). The dynamic behaviour of power systems can be quite
complex and a good understanding is essential for proper system planning and
secure operation.

1.2 Power System Stability

Stability of power systems has been and continues to be of major concern in
system operation [2-7]. This arises from the fact that in steady state (under
normal conditions) the average electrical speed of all the generators must remain
the same anywhere in the system. This is termed as the synchronous operation of
a system. Any disturbance small or large can affect the synchronous operation.
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For example, there can be a sudden increase in the load or loss of generation.
Another type of disturbance is the switching out of a transmission line, which
may occur due to overloading or a fault. The stability of a system determines
whether the system can settle down to a new or original steady state after the
transients disappear.

The disturbance can be divided into two categories (a) small and (b)
large. A small disturbance is one for which the system dynamics can be analysed
from linearized equations (small signal analysis). The small (random) changes in
the load or generation can be termed as small disturbances. The tripping of a line
may be considered as a small disturbance if the initial (pre-disturbance) power
flow on that line is not significant. However, faults which result in a sudden
dip in the bus voltages are large disturbances and require remedial action in the
form of clearing of the fault. The duration of the fault has a critical influence
on system stability.

Although stability of a system is an integral property of the system, for
purposes of the system analysis, it is divided into two broad classes [8].

1. Steady-State or Small Signal Stability
A power system is steady state stable for a particular steady state op-
erating condition if, following any small disturbance, it reaches a steady
state operating condition which is identical or close to the pre-disturbance
operating condition.

2. Transient Stability
A power system is transiently stable for a particular steady-state oper-
ating condition and for a particular (large) disturbance or sequence of
disturbances if, following that (or sequence of) disturbance(s) it reaches
an acceptable steady-state operating condition.

It is important to note that, while steady-state stability is a function
only of the operating condition, transient stability is a function of both the
operating condition and the disturbance(s). This complicates the analysis of
transient stability considerably. Not only system linearization cannot be used,
repeated analysis is required for different disturbances that are to be considered.

Another important point to be noted is that while the system can be
operated even if it is transiently unstable, small signal stability is necessary at
all times. In general, the stability depends upon the system loading. An increase
in the load can bring about onset of instability. This shows the importance of
maintaining system stability even under high loading conditions.
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Figure 1.1: System Operating States

1.3 States of Operation and System Secu-
rity - A Review

Dy Liacco [9], and Fink and Carlson [10] classified the system operation into 5
states as shown in Fig. 1.1. The system operation is governed by three sets of
generic equations- one differential and two algebraic (generally non-linear). Of
the two algebraic sets, one set comprise equality constraints (E) which express
balance between the generation and load demand. The other set consists of
inequality constraints (I) which express limitations of the physical equipment
(such as currents and voltages must not exceed maximum limits). The classifi-
cation of the system states is based on the fulfillment or violation of one or both
sets of these constraints.

1. Normal Secure State: Here all equality (E) and inequality (I) con-
straints are satisfied. In this state, generation is adequate to supply the
existing load demand and no equipment is overloaded. Also in this state,
reserve margins (for transmission as well as generation) are sufficient to
provide an adequate level of security with respect to the stresses to which
the system may be subjected. The latter may be treated as the satisfaction
of security constraints.

2. Alert State: The difference between this and the previous state is that
in this state, the security level is below some threshold of adequacy. This
implies that there is a danger of violating some of the inequality (I) con-
straints when subjected to disturbances (stresses). It can also be said that
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security constraints are not met. Preventive control enables the transition
from an alert state to a secure state.

3. Emergency State: Due to a severe disturbance the system can enter
emergency state. Here I constraints are violated. The system, however,
would still be intact, and emergency control action (heroic measures) could
be initiated to restore the system to alert state. If these measures are
not taken in time or are ineffective, and if the initiating disturbance or a
subsequent one is severe enough to overstress the system, the system will
break down and reach ‘In Extremis’ state.

4 In Extremis State: Here both E and I constraints are violated. The
violation of equality constraints implies that parts of system load are lost.
Emergency control action should be directed at avoiding total collapse.

5. Restorative State: This is a transitional state in which I constraints are
met from the emergency control actions taken but the E constraints are
yet to be satisfied. From this state, the system can transit to either the
alert or the normal state depending on the circumstances.

In further developments in defining the system states [11], the power system
emergency is defined as due to either a

(1) viability crisis resulting from an imbalance between generation, loads and
transmission whether local or system-wide or

(i) stability crisis resulting from energy accumulated at sufficient level in
swings of the system to disrupt its integrity.

‘In Extremis’ state corresponds to a system failure characterized by the loss of
system integrity involving uncontrolled islandings (fragmentation) of the system
and/or uncontrolled loss of large blocks of load.

It is obvious that the objective of emergency control action should be
to avoid transition from emergency state to a failure state (In Extremis). The
knowledge of system dynamics is important in designing appropriate controllers.
This involves both the detection of the problem using dynamic security assess-
ment and initiation of the control action.

1.4 System Dynamic Problems - Current Sta-
tus and -Recent Trends

In the early stages of power system development, (over 50 years ago) both steady
state and transient stability problems challenged system planners. The develop-
ment of fast acting static exciters and electronic voltage regulators overcame to
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a large extent the transient stability and steady state stability problems (caused
by slow drift in the generator rotor motion as the loading was increased). A
parallel development in high speed operation of circuit breakers and reduction
of the fault clearing time and reclosing, also improved system stability.

The regulation of frequency has led to the development of turbine speed
governors which enable rapid control of frequency and power output of the gener-
ator with minimum dead band. The various prime-mover controls are classified
as a) primary (speed governor) b) secondary (tie line power and frequency) and
c) tertiary (economic load dispatch). However, in well developed and highly
interconnected power systems, frequency deviations have become smaller. Thus
tie-line power frequency control (also termed as automatic generation control)
(AGC) has assumed major importance. A well designed prime-mover control
system can help in improving the system dynamic performance, particularly the
frequency stability.

Over last 25 years, the problems of low frequency power oscillations have
assumed importance. The frequency of oscillations is in the range of 0.2 to 2.0
Hz. The lower the frequency, the more widespread are the oscillations (also
called inter-area oscillations). The presence of these oscillations is traced to fast
voltage regulation in generators and can be overcome through supplementary
control employing power system stabilizers (PSS). The design and development
of effective PSS is an active area of research.

Another major problem faced by modern power systems is the problem
of voltage collapse or voltage instability which is a manifestation of steady-state
instability. Historically steady-state instability has been associated with angle
instability and slow loss of synchronism among generators. The slow collapse of
voltage at load buses under high loading conditions and reactive power limita-
tions, is a recent phenomenon.

Power transmission bottlenecks are faced even in countries with large
generation reserves. The economic and environmental factors necessitate gener-
ation sites at remote locations and wheeling of power through existing networks.
The operational problems faced in such cases require detailed analysis of dynamic
behaviour of power systems and development of suitable controllers to overcome
the problems. The system has not only controllers located at generating stations
- such as excitation and speed governor controls but also controllers at HVDC
converter stations, Static VAR Compensators (SVC). New control devices such
as Thyristor Controlled Series Compensator (TCSC) and other FACTS con-
trollers are also available. The multiplicity of controllers also present challenges
in their design and coordinated operation. Adaptive control strategies may be
required.
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The tools used for the study of system dynamic problems in the past
were simplistic. Analog simulation using AC network analysers were inadequate
for considering detailed generator models. The advent of digital computers has
not only resulted in the introduction of complex equipment models but also the
simulation of large scale systems. The realistic models enable the simulation of
systems over a longer period than previously feasible. However, the ‘curse of
dimensionality’ has imposed constraints on on-line simulation of large systems
even with super computers. This implies that on-line dynamic security assess-
ment using simulation is not yet feasible. Future developments on massively
parallel computers and algorithms for simplifying the solution may enable real
time dynamic simulation.

The satisfactory design of system wide controllers have to be based on
adequate dynamic models. This implies the modelling should be based on ‘par-
simony’ principle- include only those details which are essential.
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Chapter 2

Review of Classical Methods

In this chapter, we will review the classical methods of analysis of system stabil-
ity, incorporated in the treatises of Kimbark and Crary. Although the assump-
tions behind the classical analysis are no longer valid with the introduction of
fast acting controllers and increasing complexity of the system, the simplified
approach forms a beginning in the study of system dynamics. Thus, for the sake
of maintaining the continuity, it is instructive to outline this approach.

As the objective is mainly to illustrate the basic concepts, the examples
considered here will be that of a single machine connected to an infinite bus
(SMIB).

2.1 System Model

Consider the system (represented by a single line diagram) shown in Fig. 2.1.
Here the single generator represents a single machine equivalent of a power plant
(consisting of several generators). The generator G is connected to a double
circuit line through transformer T. The line is connected to an infinite bus
through an equivalent impedance Zr. The infinite bus, by definition, represents
a bus with fixed voltage source. The magnitude, frequency and phase of the
voltage are unaltered by changes in the load (output of the generator). It is to
be noted that the system shown in Fig. 2.1 is a simplified representation of a
remote generator connected to a load centre through transmission line.

A

% o
G gg Line V2 zp -
‘: : ) nI. us

Figure 2.1: Single line diagram of a single machine system

The major feature in the classical methods of analysis is the simplified
(classical) model of the generator. Here, the machine is modelled by an equiv-
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alent voltage source behind an impedance. The major assumptions behind the
model are as follows

1. Voltage regulators are not present and manual excitation control is used.
This implies that in steady- state, the magnitude of the voltage source is
determined by the field current which is constant.

2. Damper circuits are neglected.

3. Transient stability is judged by the first swing, which is normally reached
within one or two seconds.

4. Flux decay in the field circuit is neglected (This is valid for short period,
say a second, following a disturbance, as the field time constant is of the
order of several seconds).

5. The mechanical power input to the generator is constant.

6. Saliency has little effect and can be neglected particularly in transient
stability studies.

Based on the classical model of the generator, the equivalent circuit of
the system of Fig. 2.1 is shown in Fig. 2.2. Here the losses are neglected
for simplicity. z. is the total external reactance viewed from the generator
terminals. The generator reactance, x4, is equal to synchronous reactance z4
for steady-state analysis. For transient analysis, z4 is equal to the direct axis
transient reactance z/;. In this case, the magnitude of the generator voltage E,
is proportional to the field flux linkages which are assumed to remain constant
(from assumption 4).

Xg Xe

ANV VW

+ +
05 O o

Figure 2.2: Equivalent circuit of the system shown in Fig. 2.1

For the classical model of the generator, the only differential equation
relates to the motion of the rotor.
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The Swing Equation

The motion of the rotor is described by the following second order equa-
tion

d*0
where
J  is the moment of inertia
0,, is the angular position of the rotor with respect to a stationary axis
T,, is the net mechanical input torque and
T, is the electromagnetic torque

By multiplying both sides of the Eq. (2.1) by the nominal (rated) rotor speed,
W, We get
d?0,,

M dt?

=P, -P, (2.2)

where M = Jwy, is the angular momentum. It is convenient to express 6, as
O = Wt + 0 (2.3)

where wy, is the average angular speed of the rotor. 4y, is the rotor angle with re-
spect to a synchronously rotating reference frame with velocity wy,. Substituting
Eq. (2.3) in Eq. (2.2) we get

d®6m,

M dt?

=Py —P, (2.4)

This is called the swing equation. Note that M is strictly not a constant.
However the variation in M is negligible and M can be considered as a constant.
(termed inertia constant).

It is convenient to express Eq. (2.4) in per unit by dividing both sides
by base power Sp. Eq. (2.4) can be expressed as
M d%,, _

;_9_—3__(1{2_— = pm - Pe (25)

where P, and P, are expressed in per unit. The L.H.S. of Eq. (2.5) can be
written as
M dn _Jun (0n) (2) 5 July 5 _ (01
Sp dt2 ~ Sp P/ dt2  Spwpdt? \wg/ dt?

(2.6)
wpB



12 Power System Dynamics - Stability and Control

where

6  is the load angle = 5m§
is the number of poles

P
wp is the electrical angular frequency = 2 Wm

H  is also termed as the inertia constant given by

1 Jw?, __ kinetic energy stored in megajoules

H= 2 Sp Rating in MV A

The inertia constant H has the dimension of time expressed in seconds.
H varies in a narrow range (2-10) for most of the machines irrespective of their
ratings.

From Eq. (2.6), the per unit inertia is given by

- M 2H

M=—=-— 2.7

5 = on (2.7)

The above relation assumes that § is expressed in radians and time in
seconds. If § is expressed in electrical degrees, then the per unit inertia is

M r 2w H (2.8)
" wp'180  2nfp’180  180fm :

where fp is the rated frequency in Hz.

For convenience, in what follows, all quantities are expressed in per unit
and no distinction will be made in the symbols to indicate per unit quantities.
Thus, Eq. (2.4) is revised and expressed in p.u. quantities as

d%s

From Fig. 2.2, the expression for P, is obtained as

p= TP s (2.10)
(zg + z¢)

The swing equation, when P, is expressed using Eq. (2.10), is a nonlinear
differential equation for which there is no analytic solution in general. For
Py = 0, the solution can be expressed in terms of elliptic integrals [1]. It is
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to be noted that the swing equation reduces to the equation of a nonlinear
pendulum when P, = 0.

Invariably, numerical methods have to be used for solving the swing
equation. However simple techniques exist for the testing of system stability
when subjected to small and large disturbances. These will be taken up in the
following sections.

2.2 Some Mathematical Preliminaries [3, 4]

A nonlinear continuous time dynamic system is denoted by the state equation
z = f(z, u) (2.11)

where z and f are column vectors of dimension ‘n’. u is a vector of dimension
‘r’ in general. u can be viewed as input vector. If u is a constant vector, the
system is said to be autonomous. If the elements of u are explicit functions of
time, ¢, then the system is said to be non-autonomous. If the initial condition
is specified, i.e.

z(to) = Zo (2.12)

then the solution to Eq. (2.11) is expressed as ¢;(z,) to show explicitly the de-
pendence on initial condition. (Note that since u is constant it can be treated. as
parameter and the dependence of the solution on u need not be shown explicitly)

f is called the vector field and ¢:(z,) is called the trajectory through z,.
¢+(z) where z € R" is called the flow

For non-autonomous systems, the trajectory is also a function of time ¢
and is expressed as ¢;(z,, t,) which indicates the solution passes through z, at
to-

In what follows, the attention will be focussed only on autonomous sys-
tems as power systems can be modelled as autonomous systems.

With some mild restrictions on f, the solution of Eq. (2.11) has the
following properties

1. The solution exists for all ¢

2. At any time ¢, ¢¢(z) = ¢¢(y) if and only if z = y. Also as @y, 14,) = ¢4, -1,
it follows that a trajectory of an autonomous system is uniquely specified
by its initial condition and that distinct trajectories do not intersect.

3. The derivative of a trajectory with respect to the initial condition exists
and is nonsingular. For ¢ and t, fixed, ¢:(z,) is continuous with respect
to initial state z,.
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Equilibrium Points (EP)

An equilibrium point z, of an autonomous system is a constant solution
such that

Te = ¢t(Te) (2.13)
This implies that equilibrium point satisfies
0= f(ze, u) (2.14)

Eq. (2.14) shows that z. is a function of u.

In general, there are several equilibrium points which are obtained as
real solutions of Eq. (2.14).

Stability of Equilibrium Point

An equilibrium point, z. is said to be asymptotically stable if all nearby
trajectories approach z. as t — oo. It is unstable if no nearby trajectories remain
nearby. An unstable equilibrium point is asymptotically stable in reverse time
(as t = —00). An equilibrium point is non-stable (also called saddle point) if
at least one of the nearby trajectories approach z. in forward time (as t — 0o0)
and if at least one trajectory approaches z. in reverse time ( as ¢t & —o0).

The stability of an equilibrium point can be judged by the solution of
the linearized system at z..

Letting
T =2+ Az (2.15)
and substituting in Eq. (2.11) gives
& = g + Ad = f(ze, u) + [M] Az (2.16)
a.’L’ T == T,

From Egs. (2.14) and (2.16) we get
Az = [A(ze, u)] Az (2.17)

where A is a nzn matrix whose elements are functions of z, and u. The ijt*
element of [A] is given by
Ofi

Aij(ze, u) = 55]7(%, u) (2.18)

For a given z, and u, the matrix A is constant. The solution of the
linearized state equation (2.17) is given by

Az(t) = At Ag(t,) (2.19)

= ety + cpe*?tug + - - + cpetu, (2.20)
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where ¢, ¢2...cp are constants depending on the initial conditions. A; and v;
are the i!* eigenvalue and the corresponding eigehvector of matrix [4]. It is
assumed that all eigenvalues are distinct.

From Eq. (2.20) it can be seen that if R[);] < 0 for all );, then for all
sufficiently small perturbations from the equilibrium point z., the trajectories
tend to z. as t — oco. Hence, z, is asymptotically stable.

If R[A;] > 0 for all ); then any perturbation leads to the trajectory
leaving the neighbourhood of z.. Hence z. is unstable. If there exists ¢ and j
such that R[\;] < 0 and R[\; > 0] then z, is a saddle point. If R[A;] # 0 for all
A; then the equilibrium point is said to be hyperbolic.

No conclusion can be drawn regarding stability of an equilibrium point if it is
not hyperbolic and has no A; with real part greater than zero.

A stable or unstable equilibrium point with no complex eigenvalues is called a
‘node’.

Remarks

1. For all practical purposes, an equilibrium point which is not stable, can
be termed as unstable. For a hyperbolic equilibrium point, the number of
eigenvalues with positive real parts determines its type. A type 1 Unstable
EP (UEP) has one eigenvalue in the RHP of the ‘s’ plane. An EP with all
eigenvalues in the R.H.P. is called a source.

2. Equilibrium points are also termed as fixed points. A Stable EP (SEP) is
also called a sink.

Steady-state Behaviour

The steady state behaviour of an autonomous system is obtained from
the asymptotic behaviour of the system trajectories assuming that the difference
between the trajectory and its steady state is called ‘transient’.

It is obvious that stable equilibrium points are subsets of steady state
behaviour. In addition, a system may also exhibit limit cycles. A limit cycle
is an isolated periodic solution (with the trajectory forming a closed curve in
state space).

There can be more complex behaviour such as chaos which does not have
any fixed pattern in the steady state solution. In general, chaotic systems exhibit
sensitive dependence on initial conditions and the spectrum of the steady state
solution has a broad-band noise like component [4].
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2.3 Analysis of Steady State Stability

The swing equation for system shown in Fig. 2.1 is

d?6 dé
it — = Py, — Prag Si 2.21
Mdt2 +Ddt P, sin (2.21)
where 2B
g4b
=97 2.22
max (wg + ze) ( )

Equation (2.21) is same as Eq. (2.9) except for the addition of a damping

d
term D—. It is assumed that D is small but positive. It can be ignored when

the solution of the swing equation is required only for a short period (say 1
to 2 seconds) following a disturbance. Hence D can be neglected in transient
stability analysis but needs to be considered in steady state stability analysis.

Equation (2.21) can be expressed in the state space form as

e
a =
dzo D Praz . P,
—f = gy — — 2
7 ik IY; sinz, + i (2.23)
where
;=290 T —(—ié
1 — 0y &2 — dt

The equilibrium points for the sytem of Eq. (2.23) are given by

(L‘2=0

(2.24)
T1 = Sin

From the power angle curves shown in Fig. 2.3, it can be seen that there
are two values of § corresponding to a specified value of P, (when Py, < Ppqaz)
when the range of 0 is confined to -180° < § < 180°. Thus, there are two
equilibria given by

3'(13 = Zs= (6.9:0)
(2.25)
22 = 1z, =(0y,0)
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Figure 2.3: Power angle curve

It can be shown by linearizing Eq. (2.23) that z, is a stable equilibrium
point and z, is the unstable equilibrium point. The criterion for stability is an
algebraic one given by

dP,
Z 50 2.2
ik (226)
Proof : Let Yy = Al‘l, Y2 = A.’L‘Q
Then,
. 0 1
[91]=[ K D [yl] (2.27)
Y2 M I Y2
where
K = Ppaz cosée (2.28)

de is the angle at equilibrium (4, or 4,)

The eigenvalues of the linearized system are given by

D D? K

If K is positive then both eigen values have negative real parts. If K is negative
one of the eigenvalues is positive real. For small D, and K > 0 eigenvalues are
complex given by

A=—-0tjw (2.30)
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where
D K D?
o= —., W= —_

2M° M 4M?

Hence, for the stability of the equilibrium point, a necessary condition is

K>0 (2.31)
Remarks
1. The expression for K in the general case is given by
dP,
K = =2 (8) (2.32)

This shows explicitly the dependence of K on (f.). In general, P, can
be a non-sinusoidal function of §, although for the special case considered
(neglecting losses and saliency) the power angle curve is sinusoidal.

. For 6 = é,, K > 0 while for § = §,, K < 0. Hence z, is a stable
equilibrium point while z,, is unstable (a saddle point).

. The two equilibrium points come closer as P, (also equal to the steady
state power output of the generator) is increased. The maximum power
supplied by the generator (steady-state stability limit) is equal to P4, and
occurs at §* = 90° (in this particular case). The condition for stability can

also be stated as
ds < 6*

(2.33)

The loci of eigepvalues in the s plane as P, is varied is shown in Fig. 2.4.
Fig. 2.4 (a) shows the loci of eigenvalues calculated at SEP (Stable Equilibrium

Point). The eigenvalues are initially complex and split into two real values
of them reaches origin as P, is increased to Ppg, (when K = 0). The

eigenvalue approaches (—‘MD—) .

. One
other

Figure 2.4 (b) shows the loci for UEP (Unstable Equilibrium Point).
Here both eigenvalues are real. As Pp, increases, both move towards the origin.

D
At P,, = Pp,a, one of the values is exactly zero while the other is <—ﬂ)

It is to be noted that for P, > Py, there is no equilibrium.

Comments

1. The stability criterion given in (2.26) is an algebraic one. Whil
is simple and convenient (avoids computation of eigenvalues) it is

e this
to be
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(a) at SEP (b) at UEP

Figure 2.4: Loci of eigenvalues

noted that this is derived from dynamic analysis. Hence the extension
of this criterion to more complex dynamics (with the relaxation of some
of the assumptions given earlier) is not valid. For the general case, the
mathematical analysis involving linearization of the system and checking
of the system stability cannot be avoided. (It is to be noted that in simple
cases, the stability of linear systems can be directly determined, without
recourse to eigenvalue computations, i.e. Routh-Hurwitz and Nyquist cri-
teria. However, these still require the knowledge of system equations).

It is interesting to note that the limit of steady state stability using the
classical model is also equal to the maximum power transferred in the
network (neglecting losses). In other words the steady state stability limit
is also the network limit. As it would be practical to maintain stability
margin, the network limit must be larger than the maximum power output
of the generator.

The criterion of dr > 0, can also be derived from ‘physical’ arguments. If
P, is suddenly increased by a small amount, the rotor initially accelerates
(as 0 cannot change suddenly). As the velocity and consequently 4 in-
crease, the electric power output also increases (if the system is stable) for
an equilibrium to be reached. For this to be possible, P, should increase
with increase in § . Similar arguments apply if P, is suddenly decreased.

It is to be noted that such ’physical’ arguments, although intuitively

appealing, can sometimes lead to false conclusions. It will be shown in chapter
7 that the consideration of detailed model of the synchronous generator leads to
different criteria for stability than given by (2.26).
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5Pe

1
/!' | 180°

Figure 2.5: Power angle curve for Example 2.1

Example 2.1

A generator is connected to an infinite bus through an external impedance
of jz.. The generator is represented by a voltage source /4 in series with a
reactance 4. If E; = E (infinite bus voltage) = 1.0, z. = —0.5, £, = 0.3 (all in
p.u.), for P, = 1.0 p.u., find the equilibrium values of 4, in the range of (-, ).
Test their stability (P, is the received power at the infinite bus). Assume infinite
bus angle as zero.

Solution

The expression for the electrical power output, P, is given by
_ EgEb sin ¢ .

b
(ze +zy)

€

Substituting the values for E,, E, z. and x,,
P, = —5sind
The power angle curve is shown if Fig. 2.5. For B, = P, = 1.0 pu., the
equilibrium points are
ol = —11.54°, 62 = -168.46°
Testing for stability, .

dFP,
dé
dP
@ sz

= -5 cosd, < O

=51

= -5 cosd> > 0
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Hence, 6} = —11.54° is an unstable equilibrium point (UEP) and 2 = —168.46°
is a stable equilibrium point (SEP).

Note that whenever (z. + z4) > 0, the SEP corresponds to the solution
with smaller absolute value of 4, while for (z.+1z4) < 0, SEP corresponds to the
solution with larger absolute value of §. The current supplied by the generator
(and losses) are higher for the case with larger (absolute) angle. Hence, it
is fortunate that, for all practical purposes, the external reactance is positive
(inductive), viewed from generator terminals. This results in lower losses as
compared to the case if the net reactance was capacitive.

Note that, negative z, can result from overcompensation of the trans-
mission line reactance using series capacitors (although this is never done in
practice).

Example 2.2

Repeat example (2.1) if the external impedance connected to the gener-
ator, Z, = 0.1 4+ 70.2. The rest of the data is same as before.

Solution

The expression for the received power, P,, can be obtained as

_ E Eysin(6+0) EZR

P
’ [Z] [Z ]

where Z =Z, + jzg =R+ jX =|Z| L, a =90 - ¢.

R
Note: tanar = —, | Z |= (R® + X?)%, ¢ =tan™" %—
E2R
The sending end power, P, is given by P, = I-Zg? + %Zl?lﬁ sin(d — «)

Substituting values for E; = E, = 1.0, R=0.1, X =05, | Z | =0.5], a =11.3°
we get two values for (§ + o) as

Si+a = 449° = §. =33.6°

2+a = 1351° = 62=123.8°

It can be checked that %1;5(5 =4:) > 0 while %—(6 = §%) < 0. Hence

6. = 33.6° is a SEP while 62 = 123.8° is an UEP.
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Example 2.3
Repeat example 2.2 if P, = 1.546
Solution

The equilibrium values for §, in this case are
5. = 80°—-11.3%=68.7°
62 = 100°-11.3°=88.7°

It can be checked that at both values of 4, the system is stable. There are two
SEPs in this case.

Note: The system is stable for § < 90° + a = 101.3%, while the maximum
received power corresponds to § = 90 — a = 78.7°.

Example 2.4

Find the level of series compensation that will maximize the received
power in a single machine system shown in Fig. 2.6. The generator impedance
is assumed to be Z; = Ry + jz,.

Assume Ey = Ey = 1.0, R, = 0.1, . = 1.0, z, = 0.1, R, = 0.0.

l Re i%e —ix¢ E
@ | ANV || gEbLQ

Generator

Figure 2.6: System diagram for Example 2.4

Solution

Let Z=R+jX = Z.+ Zy = (Rg+ Re) + j(zg + ze — zc). The receiving end
power is maximum when

R
§ =90~ =tan~! =
@ a=tan 5

Hence, P, for this condition is given by
_ EyE, ElR _E?
1zl (z) R
where E, = Ey = E and | Z |= R/ cos ¢

Py [cos ¢ — cos? @]

Py, is a function of ¢ which is variable as z. varies. Py, is maximized

1
for cos ¢* = 5 OF ¢* = 60°. The maximum received power is given by
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E? 1.0

iR Ixo01 opu

Pbmaa: =
This corresponds to §* = 90 — a* = 90 — 30° = 60°. The optimum value of z. is
given by
zp = —Rtan¢* +z, + x4 = —V3R + z, + x4 =0.927 pu

Example 2.5

Consider the system shown in Fig. 2.7. The generator G has negligible
impedance while the SVC can be represented by a voltage source F; in series
with a reactance X;. Obtain expression for | V' | and P, as function of E, E,
and 4.

Solution

At the SVC bus, the system external to the SVC can be represented by
a Thevenin’s equivalent shown in Fig. 2.8(a). The combined equivalent circuit
of the external system and the SVC is shown in Fig. 2.8(b).

/\
E/S . vV .
JX JX
Generator
P c

Figure 2.7: System diagram for Example 2.5

The current flowing into SVC is I,. Since this current is purely reactive (there

are no losses), the phase angle of ES is same as that of V. It can be shown
that

Virn = E cos(6/2)26/2

(The phasor diagram for the condition when SVC is open circuited is shown in
Fig. 2.9). The current magnitude is given by
(E cos(§/2) — Ey)

(zs + 2/2)

lIs |=

The voltage V has the phase angle of §/2 and its magnitude is given by
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jo/2 jo/2 iz
/YVVL o — YW, EAATATA
I,
. N + .

(a) (b)

Figure 2.8: (a) Thevenin’s equivalent for the external system (Example 2.5)
(b) Combined equivalent circuit including SVC

E/§

Virn = Ecosé/248

5/2
3/2

E/0

Figure 2.9: Phasor diagram with SVC on open circuit (Example 2.5)

B2 ¢/2)
B B 5y Ez;cos(d/2
V=E+|IL|z,= (zs +2/2) ' (z, +2/2)

The expression for P, is
EV sin(d/2)
T

P, =

Substituting the expression of V in the above expression gives
E?z,siné

EE, .
Pe =07 sm(6/2) + m

(z + 2z,)
Note that if £, = 0, then P, reduces to

P, = Ef’ sin(6/2)
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Comparing this with the expression for P, in the absence of SVC, given by
2
P, = E sin ¢
2z

it is seen that the SVC results in doubling of the maximum power if E;, = E.
(Note that z, = 0 corresponds to an ideal SVC).

Example 2.6

In the above example, if £ = E; = 1.0, £ = 0.5, 5 = 0.2. Find the
stability limit for P, and the corresponding §. Repeat for the case when z, = 0.0.

Solution
(a) P, = Asin(§/2) + Bsind
EB a1, B=

T + 2z,
The power is maximum when

E?z,

——— = (.444
z(z + 2z,)

where A =

dP 1
= 0= -2-Acos(6/2) + Bcos d

Let £ = cos(d/2), then

dP 9 A
"&?'O = 2Bz +§a:—B—0

The solution of this quadratic equation for z is given by

A [ar
—-2"+ “4—+SB

4B

Tr =

(only the positive solution for z is considered so that §/2 remains less than
90°). Substituting the values,

*

z*t = cos%— = 0.4606 == &* = 125.2°

and

12
Peppaz = 1.1118in 5

+0.444 sin125.2 = 1.3492 p.u.

The power angle curves for this case is shown in Fig. 2.10. (Curve a)
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Figure 2.10: Power angle curve for Example 2.6

(b) For z, = 0.0,

EE ) )

P, = —gin— = 2sin -
A - sin o sin 5
P, is maximum when § = 180° and the maximum power at stability limit

18

Peppoz = 2.0 p.u.

The power angle curve for this case is also shown in Fig. 2.10. (Curve b)

Example 2.7

A generator is supplying power to a load centre through a transmission
line as shown in Fig. 2.1. The power output of the generator is increased slowly
while maintaining the magnitudes of the voltages V7 and V, constants at 1.0
p.u. by manual control (of both generator excitation and infinite bus voltage).
Find the steady state stability limit of power that can be transmitted. Assume
z;=0.1, z; =04, Zr = jO.1, z,, =0.3.

Solution

The equivalent circuit for the system is shown in Fig. 2.11 where
Ty =29, T=Tt+ T, T2 = S[Z7]
Note that the system is lossless. The expression for power P, is given by

_ E4Eysiné
- (:El +z+ :Ez)

[
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JT1 jz JT2

W

+
+

Figure 2.11: Equivalent circuit for Example 2.7

However, the above expression cannot be used directly as Fy4 and E} are un-
known. The phasor diagram at the stability limit (6 = 90°) is shown in Fig.
2.12. 1t is easy to see that at the stability limit,

E, V1 . E V2 .
P =1 - S —] -
e - sin(90 — 6,) @+a) sin(90 — 65)
from which,
Wi
—cosf, = 0 A
z cos 0, (z+z1)cos o (A)
Also,
_EWVW; sin 8 _ EyV,8in 6y
e (.’L‘ + (Itz) a To
from which,
V1 sin 91 Vz sin 02
= (B)
(:I: + :L'z) To
From the two relations (A) and (B) we have
sinf; = asinfy
cosf; = bcos by } (€)

where
a_ﬁ(l"*'x?) b_K2_ 7
Vi zo Vi(z+z1)

Substituting (C) in the following equation
sin? 0; + cos? 6, = 1 (D)
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b

Figure 2.12: Phasor diagram at stability limit (example 2.7)

we get,
a?sin?6, + b% cos? 0y = 1
(a® — b?)sin? 0, =1 -2

In the example, z; = 0.3, 20 =0.1, 2 =05, V=V, = 1.0

0.5+0.1 0.3
= 5T =60, b= 5 =035
(1-b%

sinfy = = 0.1548, 6, =8.91°

(a? — b?)
sinf; = 6sinfy = 0.9288, 6, = 68.25
The stability limit is also given by

e .
Permezr = lx 2 sin(6; — 62)

= %—'gsin(6825°—8.91°)=1.7204 pu.

E, and Ej, can be calculated from

E9V1 EbVi sin01
0sf = ————
T (z+ z2)

P, emaz =
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The values are E; = 1.393, Ej = 1.111. It can be verified that

E E,
(z1+z+ z2)

Pema:c:

2.4 Analysis of Transient Stability

The transient stability pertains to stability under large disturbances. Hence the
nonlinearities of the model have to be considered in the analysis. As analytic
solutions are not available for the swing equation, numerical methods have to
be used.

2.4.1 Numerical solution - Point-by-Point Method:

Point-by-point (also called step-by-step) solution allows the numerical solution
of the swing equation. In this method, one or more variables are assumed to
remain constant or to vary according to assumed laws throughout a short interval
of time At.

The swing equation, neglecting damping term can be written as

@ _
dt
(2.34)
dv _ P
d M

where P, = P,, — P, is the accelerating power.

If over an interval (say k**, defined from the instant t(k-3/2) tO tk—1/2))
the accelerating power P, is assumed to be constant (at the value computed at
t(k—l)) then

At

Wik-1/2) = Wk-3/2) T 37 Fatk-1) (2.35)

If the speed calculated at t(;_1/7) is assumed to be constant throughout the
interval from ¢;_,) to tx (see Fig. 2.13), then

(sk = é(k——l) + (U(k__l/g)At (236)
Defining
Adg = b — O(k—1)
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Figure 2.13: Discretization of accelerating power and speed (point by point
method)

Wwe Can express
(At)?
M
Eq. (2.37) enables the computation of angle directly without recourse to the

computation of the speed.

Ady, = A‘s(k-—l) + Pa(k—l) (2.37)

In executing step-by-step method, it is to be noted that if a discontinuity
in the accelerating power occurs at the beginning of the interval (due to fault or
switching action) then average value of P, must be used. For example, if a fault

occurs at t,, then

Aby = -(%493 &(éi) (2.38)

2.4.2 Equal area Criterion

To check the stability of a single machine infinite bus (SMIB) system, there is
a simple and direct method which does not require the solution of the swing
equation following disturbance(s). This method is known as equal-area criterion
for stability. The assumptions used in applying this criterion are

1. Constant mechanical power
2. No damping
3. Classical machine model

The basis for this method is that if the system is stable (in the first
swing)the rotor angle (after the disturbance) reaches a maximum value (assum-
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ing that the rotor initially accelerates) and then oscillates about the final steady
state value. (It is also assumed that a stable steady staté equilibrium exists for
the post-disturbance system). Hence the stability is checked by monitoring the

deviation of the rotor speed (E) and ensuring that it becomes zero following

the disturbance.

Let the swing equation be given by

M- =P, =P, -P, (2.39)

dé
Multiplying both sides by @ and integrating with respect to time, we get

tdb st ds
M / o /to(P - Pt (2.40)
or 6 9 5
1 /d
M (?1?) _ /6 (P~ Pu)de (2.41)

It is assumed at t = t,, the system is at rest (equilibrium state) and the speed
deviation is zero. The R.H.S. of Eq. (2.41) can be interpreted as the area
between the curves P, versus J and the curve P, versus § . P, versus § is a
horizontal line as F%, is assumed to be constant. The curve of P, versus § (power
angle curve) is shown in Fig. 2.14. If the system is to be stable, then

do

- =0, 2.42
dt 0=bmaz ( )
This implies that the area denoted by
Jma:c
A= (Pm — Pe)dd (2.43)
8o

must have a positive portion A4; for which P, > P, and a negative portion Ay
for which P, < P,. The magnitudes A; and As must be same as

A=A -4, =0 (2.44)
Hence the nomenclature of equal-area criterion for stability.

Remarks

1. The equal area criterion is also applicable for a two machine system (with-
out an infinite bus) as it can be converted into a single machine equivalent.
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Figure 2.14: Equal area criterion for stability

2. It will be shown later (in chapter 13) that equal- area criterion for stability

is a special case of the direct method for stability evaluation using energy
functions.

. Mathematically, the problem of determination of transient stability can

be viewed as checking whether the initial system state for the post-fault
condition, lies in the region of stability surrounding the post-fault stable
equilibrium point. Every SEP has a region of stability (which may be
unbounded) or attraction, in which a trajectory approaches SEP ast — oo.
A trajectory starting outside the region of stability will not approach SEP
and may even be unbounded. The determination of stability boundary is a
complex task. The use of energy functions (discussed in chapter 13) helps
to approximate the stability boundary for a given fault or disturbance.

Example 2.8

Transform a two machine system shown in Fig. 2.15 to an equivalent

single machine system

Gl® @GZ
j L

Local Load Local Load

Figure 2.15: A two machine system (Example 2.8)
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Solution

The swing equations for the two machines are

d2é
Mlgt-% = Pp1— Py (4)

d?s
271%52 P2 — Pey (B)

It can be shown, in general, that both P,; and Peo a1/-e functions of a single
variable (812 = &; — d2). The expressions can be derived from the equivalent
circuit shown in Fig. 2.16 where loads are represented as constant admittances
Y; and Y2. Neglecting local loads and losses in the transmission line (Z = jz),
the expressions for P, and P,y are given by

Pi=—-Pog—= ———2_ 3%
el e2 (Il:gl +IB+$92)

sin 512

Multiplying both sides of the Eq. (A) by M; and Eq. (B) by M, and subtracting,
we get

—— = (Mszl - M1Pm2) - (MgPel - Mlpeg) (C)

If P,y = —Peg, we can simplify (C) as
jxgl

__NVV\___{:—_}___/VW\_____

+

By £ @ HYl HY2 @Egzlﬁz

Figure 2.16: Eqivalent circuit (Example 2.8)

M, 202 _ p_ pe
where
M M. M. - M, P,
Mg = T Pl = 2lm1 - m2, Pg? = Py = —Pey

M +M’ ™™ M, + M,
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Note that if z4; and 243 are small compared to z, the local loads can be accounted
by subtracting them from the respective mechanical powers.

Example 2.9

A single machine is connected to a load centre through a transmission line
as shown in Fig. 2.17. The load centre is represented by a reactance connected
to an infinite bus. The generator is initially operating with P, = 1.0 pu. and
the magnitude of voltages V) and V; are 1.0 p.u. each. Find the maximum step
increase in the mechanical power that will not cause transient instability. Use
equal area criterion. Assume 4 = 0.3, z; = 0.1, £ = 0.4, =2 =0.1.

O =

—

% I

Figure 2.17: System diagram for Example 2.9

Solution
At the initial operating point,
V'A%

— 2 M —
P, = @+ 2) sin(6; — 02)

where 6, and 6, are angles of the voltages Vi and V5. Substituting values of
P.=10, i =V, =10, z; + = = 0.5, we get

0, — 6, = 30°

The current I in the line, referred to Vs is

fe-itr . 10430100, 0. o7
j0.5 ‘
Eye % = V, — jgofe3% =1.0 — j0.1(1.0 + 50.27)
= 1.032/-5.56°

Hence, 62 = 5.56° and 6; = 35.56°.

E 6 = Wi+ jzgl =1.0/35.56 + j0.3(1.0 4 50.27) €556
1.121/51.1°

The power P, is given by the expression
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14

Figure 2.18: Application of equal area criterion (Example 2.9)
P, = Ppozsind  where P, =1.121 . 1.032/0.9 = 1.285

The initial value of P,, = Ppo = 1.0. If P, is increased from P, to
P,,1, the stable equilibrium value of § changes from 68,(51.1°) to d§; (see Fig.
2.18).

When there is a step increase in P,, the machine accelerates and over-
shoots the equilibrium angle d;. Let the maximum angle reached be dp,45. For
critically stable case, 040 = ™ — 6; (see Fig. 2.18). From equal area criterion,
the ares A; and A, are equal

6
A1 = / I(Pml - Pmaz sin 5)d(5
= —Ppaz[cos 8o — co8 1] + Pri (61 — d5)

w—41

Ay = /6 (Praz $in 6 — Py1)dé
= 2Il’mmrJ co8 81 — P (7 — 26;)
Equating A; and Aj, we get
Ppa(m — 8, — 85) = Praz[cos d; + cos d,)

Since,

Ppi = Ppagsind,
sind (mr — 8, — &) = (coséd; + cosdy,)
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The solution of this nonlinear equation is

dy ~T71° Py =1.215
The maximum step increase = 0.215 p.u.
Example 2.10

Find the critical clearing angle and time for a three phase fault at the
generator terminals in Example 2... The generator is initially supplying power
of 1.0 p.u. Assume that the postfault system is identical to the pre-fault system.
Additional data: H =4 fp =50Hz.

Solution

The power angle curve is shown in Fig. 2.19. During fault, P, = 0 and
after the fault is cleared

Pe = Pm Sin(s, Pmaz = 1.285
For the critically cleared fault, the two areas A; and Ay (shown in Fig. 2.19)

14 T T T T T T T
N\

120 @\ o

1

o8

a®

[Xid

odl /7/

oz

Figure 2.19: Application of equal area criterion (Example 2.10)

must‘be equal and gz =T — 4,
O
Al = A‘ Pmda = Pm(ac - 60) = Pmaz Sinao(éc - 60)

T—0o
Ay = /5 (Prnaz 8in8 — Pp)d8 = Ppaz[cos 8. + €08 §,] — Pr(m — 66 — b¢)



2. Review of Classical Methods 37

Equating A; and Ajg,
8indg(dc — 8o) = [cos b, + co8dy] — S8indo(m — dp — 8¢)
Solving for 4, (critical clearing angle), we get
cos §; = sind,(m — 26,) — cos d,
Substituting d, = 0.892 rad, we can solve for §. as
8, = 64.6° = 1.127 rad
During the fault,

1 Pt? H
J = LA =
6°+2 M’ TfB

Substituting d = 4., we can solve for the critical clearing time, ¢,

- ZH(JC_JO)_
tc—-d ~Pofp =0.11 sec

2.5 Simplified Representation of Excitation
Control

In the ‘classical’ approach for dynamic analysis, the excitation controllers were
neglected. This is in view of the fact that slow manual control was used till early
fifties for voltage regulation. With the introduction of electronic regulators and
field forcing, it was necessary to include the effect of continuous excitation control
using automatic voltage regulators based on feedback principle.

The terminal voltage Vj, in general, varies as a function of the power
output P, of the generator. An approximate linear relationship between V; and
P, can be expressed as

V, = Vyoll = byP) (2.45)

where b, may be termed as power regulation coefficient of the network. Note
that b, > 0, as the voltage decreases with increase in power. The coefficient
b, depends on the method of regulation used. WUnder ideal conditions with fast
(instantaneous) regulation of the terminal voltage, b, = 0. However, the voltage
regulation has to act through the field circuit having a large time constant and
b, is non-zero.
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Agsuming that the generator is connected to an infinite bus (of voltage
Ep) through (net) reactance of z, the power transmitted is given by

E
P, = Yg—bsina

Te
Vol = byP,)Eysin
_ 2
_ YeoEosind _ VeoByy p ing (2.46)
Te Te

where 6 is the angle between the terminal voltage and infinite bus.
The expressions for P, can be obtained from Eq. (2.46) as

_ PNnmagsing
"~ 1+ PNmagbpsin8

P, (2.47)

P, is maximum when § = 90° and is given by

P Nmaz
P, =— 4
emaz 1+ bp PNmaz (2 8)

where

VaoF
Pnrez = g0

Te

The maximum power that can be delivered by the generator increases as Pymaz
(the maximum power flow in the network) increases and b, decreases. The
variation of Pemes a8 a function of b, is shown in Fig. 2.20 for two different
values of .. The maximum value of Pepqy occurs at by, = 0 and is equal to

PNma:z:-

The voltage regulation can be accounted by modelling the generator as
a voltage source E; behind a reactance z4. In the absence of AVR (manual
control) z4 = 4. For ideal regulator, 4 = 0. For electronic regulators, z, ~ .

It is possible to relate z, to b, and other system parameters. This follows
from the Eq. (2.48) and the following equation.

E,E,

P = 2.49
emax (ze + xg) ( )

Given the operating conditions, such as the values of E, and the power
factor, it is possible to express z, as a function of b,. The typical variation of



2. Review of Classical Methods 39

P Nmaxz Xg pommmmom oo e P
-— s
Permaz ,/
Tel < Te2 Xg //
T /"/
T—— /
Xy Lo / /
\ me2 d /
K‘\—' v , ’
/
7
bp b P

Figure 2.20: Variation of Py Figure 2.21: Variation of z, with b,
with b,

Ty with by is shown in Fig. 2.21.
Remarks

This approach of reducing the equivalent reactance of the synchronous
machine from z4 to x4 to account for voltage regulation is only accurate in
determining the power limit in the absence of oscillatory instability. It will be
shown in chapter 7 that systems with fast acting exciters and high gain AVR are
usually prone to oscillatory instability. This implies that the simplified analysis
of excitation controllers is not valid and detailed generator models need to be
considered. The detailed component models - synchronous machine, excitation
and prime-mover controllers, loads, transmission lines and SVC are taken up in
the next three chapters.

Example 2.11

Find the steady state stability limit of power delivered if z4 = 1.0,
zg = 1.0, z = 1.0, Ey = 1.0. The terminal voltage V, is maintained at 1.0
p.u. Assume ideal regulator. The phasor diagram is shown in Fig. 2.22. The
expression for power P, is
_ E'qu sin § _ VgEb
 (zgt+Te) e
E, is the voltage behind z4. F4 from phasor diagram is given by

sin (A)

e

/]
Vg cos 2

[7]
cos (5 - 5)

Eq = (B)
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Eq
Ve
S
) (¢}
E,

Figure 2.22: Phasor diagram for Example 2.11

From (A),

Vy(zq + x) sinf

E, = :
7 Te sind

(C)

P, is maximum when @ = 90°. For this case, Equating the two expressions for
E4, we get

€83  (zq+z)sind
cos(é—g) T, sind
-(z—;j;—e) sind = 2sin g— cos(d — —g—) =gind — sin(d — )
Zq . . _
—(xq e sind = sin(d — 0)

For the data given,

6* =116.6°, Pepgr = 1.0 "p.u.

tané"::——(f;—q—:—wi)—, 90° < 6* < 180°
q

It is interesting to note that the critical angle (corresponding to stability
lnit) is greater than 90°. The power angle curve, P, versus ¢ is shown in Fig.
2.23.
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Figure 2.23: Power angle curve (Example 2.11)
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Chapter 3

Modelling of Synchronous Machine

3.1 Introduction

Simple models of the synchronous generators are not adequate for accurate de-
scription of the power system dynamics. In this chapter, detailed models of
synchronous machine are developed from the basic equations using phase vari-
ables and application of Park’s transformation. Park’s transformation results
in time-invariant machine equations which are easier to handle. Also there is a
close connection between Park’s variables and the phasors describing voltages
and currents in steady state.

In this chapter, the derivation of the machine model is accompanied by
its representation using per unit quantities and equivalent circuits on d- and g-
axes. Measurement of machine parameters and representation of saturation are
also discussed. The application of the model for transient analysis is outlined at
the end.

The literature on synchronous machines dates back to several decades.
However, there are certain aspects on which there is no universal acceptance.
Firstly there are two conventions - originally proposed and modified (according
to IEEE committee report [L1] published in 1969) on the orientation of axes
and direction of currents. In this book, the latter convention is used along with
power-invariant Park’s transformation. A more serious problem is the lack of
unanimity in the definition of transient reactances and time constants when more
than one damper winding (in the g-axis) is used. This can lead to confusion.
We have used definitions according to IEC recommendations. This appears to
be accepted more widely. The assumptions previously used in the computation
of machine parameters based on test data can also be dispensed with, according
to Canay [21].
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q-axis

Figure 3.1: Synchronous machine

3.2 Synchronous Machine

The synchronous machine considered is shown in Fig. 3.1. This shows a three
phase armature windings (a, b and c) on the stator and four windings on the
rotor including the field winding ‘f’. The amortisseur {or damper) circuits in
the salient pole machine or the eddy-current effects in the rotor are represented
by a set of coils with constant parameters. Three damper coils, ‘h’ in the d-
axis and g, k on the g-axis are shown in Fig. 3.1. The number of damper
coils represented can vary from zero (in the simplest model) to five or more
using Jackson-Winchester model [7]. However the most detailed model used
extensively in power system dynamic studies is limited to 3 damper coils. (It is
also easier to obtain the parameters of this and simpler models).

The following assumptions are used in the derivation of the basic equa-
tions of the machine.

1. The mmf in the airgap is distributed sinusoidally and the harmonics are
neglected.

2. Saliency is restricted to the rotor. The effect of slots in the stator is
neglected.

3. Magnetic saturation and hysteresis are ignored.

The representation of the saturation will be considered later in this chapter.
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In what follows, the machine is assumed to have two poles. There is no
loss of generality in doing this as the rotor angle § (with respect to a stationary
axis) is assumed to be the electrical angle and the equations are invariant with
respect to the number of poles. The mechanical angle 6,, is related to 8 by

2
O = 39 (3.1)

3.2.1 Flux Linkage Equations

The stator and rotor flux linkages are given by

Ps = [Las]is + [Lsrlir (3:2)
¢r = [Lrs]is + [er]'ér (3-3)
where
’ig = [’ia ’ib ic], 1/1§ = ["pa "pb "/"c]
Zi = [’if i ’ig ik]; 1/’: = ["pf /78 "/Jg "/’k]

The matrices [Lys] and [L,.] are symmetric and also [Lys] = [Ls]t. From two
reaction theory, it is possible to express the inductance coefficients as follows.

Laao Labo Labo
[Lss] = | Lgbo Laao Labo +

Labo Labo Laao

[ cos 26 cos (20 - 37—‘:) cos (20 + 2_71) ]
3 3
2 2
Lgg2 | cos (20 - —371) cos (20 + ?ﬂ) cos 20 (3.4)
cos (20 + 2%) cos 20 cos (20 - 2—;—)

Ly Ly 0 0
Lw Ly 0 0
00 0 L, Lg
0 0 Ly L

[Lor] = (35)
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r M, cost M,y cos

27 27
[Lor] = M, cos (0 - —3—) My, cos (0 - —3—)

3

2 2
M, cos (0 + —W) M), cos (9 + %)

Mgy sin @ M,y sin

. 2 ] 27
Mg sin (0 - —5—) M,y sin (0 - ~§—) (3.6)

Mg sin (0 + %E) My, sin (0 + —23£>

Note that [L,,] is a function of 8 and is time varying if the rotor rotates at
coustant speed. [L;] is also a function of 6 if Lge # 0. This is true for salient
pole machines.

3.2.2 Voltage Equations

The voltage equations for the stator and rotor coils are given below.

d .
_ d‘/;s — [Rolis = vs (3.7)
d .
- :i/:r — [Rr]zr = U (38)
where
vt =[vg v v, vt =[-v; 0 0 0]
R, 0 0
[B,]=]|0 R 0 |=R,Us
0 0 R,
R, 0 0 O
o R, 0 0
[ B ] 0 0 R, O

0 0 0 R

[Us] is a unit matrix of dimension 3.



3. Modelling of Synchronous Machine 47

Note: Generator convention is used in expressing the voltage equations. The
currents are assumed to be leaving the coil at the terminals and the terminal
voltages are assumed to be voltage drops in the direction of the currents. This
is contrary to the motor convention (see Fig. 3.2)

(a) Generator convention (b) Motor convention

Figure 3.2: Generator and motor conventions

Because of the generator convention, the sign associated with vy is neg-
ative (to sustain a field current in steady state). Note that both vy and iy are
assumed to be positive in steady state.

3.2.3 Torque Equation

It is assumed that the inertia of the turbines (prime mover) can be clubbed with
that of the generator rotor (by assuming the shaft to be rigid). In this case, the
equation of motion of the rotor is given by

PO i _

where

is the combined moment of inertia of the rotor

is the damping (assumed to be viscous) coefficient

is the mechanical torque in the direction of rotation

is the electrical torque opposing the mechanical torque

PO

Note that for a two pole machine, 8, = 6. For P # 2, the Eq. (3.9) can be

transformed to
2 d26 do
—P- <J—dt2 + DE) =Ty —T, (3'10)
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The electrical torque T, is given by
oaw’ PoW' P T

T —_ _— —— e = .1
©= %0 2 00 2 (3.11)
where
T, = —%— is the electrical torque of the equivalent two pole machine,
W' is the co-energy expressed as
1 Lgs L 3
L 88 sr s
W_z[z,, zr][L” Ler] (3.12)
Substituting Eq. (3.12) in Eq. (3.11) and noting that [L,,] is a constant matrix,
we get
1 oL oL
T, = -5 [ig [ a;“] is + 23t [T{H z‘,} (3.13)
Substituting Eq. (3.11) in Eq. (3.10) we get
d?0 dé
17 7 [ et} — f T’ .1
J g+ D =T - T, (3.14)
where
2 2
J = J (F) is the equivalent inertia
2 2
D = D. (F) is the equivalent damping coefficient
27,
T = —P"i, is the mechanical torque of the equivalent two pole
machine

The above equation represents the transformation of ‘P’ pole machine

to a 2 pole machine. The mechanical torque is reduced by a factor of P The
2

2
inertia and damping are reduced by factor of (ﬁ) . However, since all the

equations are expressed in per unit (to be introduced later) there is no loss of
generality in assuming that the machine has two poles (as stated earlier).

3.3 Park’s Transformation

The combined voltage equations (for the stator and the rotor) can be expressed
as
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W~ R~

(3.15)
i = Ly
where
_ LSS LST _ Rs O
[L]“[L,s L} [R]‘[o m]
v =yl ¥l it =[is %]
v* = [v] vf]
Alternatively, the voltage equations can also be expressed as
di do [OL
d _ [—[R]z’ _ 4 [—} i- v]

v = [L)

Although it is possible to solve the Egs. (3.15) or (3.16) numerically, it
. . . . . . - df
is almost impossible to obtain analytical solution even when @ = — is constant.

This is due to the fact that the inductance matrix [L] is time varying and the
computation of inverse of [L] is required.

It would be advantageous if the time-varying machine equations can be
transformed to a time invariant set. This would result in the simplification of
the calculations both for steady state and transient conditions. R.H.Park [6]
introduced the following transformation

fa. fd
o | =ICP]| fq (3.17)
fe fo

where f,, can be either stator voltage, current or flux linkage of the stator winding
a (a=a, borc). [Cp] is defined by

[ kqcosf kqsinf ko T

2r

[Cp] = k4 cos (0 - ?) kqsin (9 - ?) ko (3.18)

Lkdcos(¢9+2—37£) kqsin(0+2?7r) ko
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where kg, kg and k, are constants appropriately chosen. In original Park’s
transformation kg = 1.0, kg = —1.0 and k, = 1

The inverse transformation is given by

fd fa
fo | =[CPI™" | fo (3.19)
fo fe

where
’ kicos@ kicos(6—2n/3) kicos(0+2x/3)
[Cp]™! = | kpsin@ kosin(d — 27/3) kosin(0 + 27/3)
k3 ks k3

2 2 1
ky=——, ky=——, k3= ——
T3k T 3k T 3k,

3.3.1 Transformation of Flux Linkages
¥ | _|Cp 0O Ydgo
LT al ] o

where Uy is a unit matrix of order 4 and ¢}, = [¥a ¥g o]

The L.H.S. of Eq. (3.20) can be expressed as
vz alTalle] e
where il = [ig ig o]
Substituting (3.21) in (3.20) we get
] - 1% ][5 (% 2l
¥r | 0 Us Lys Lyr 0 Ug iy

— [ C;]"L“CP C;lLar z.dqa
L.sCp L.y iy

[ L, L., ][ iago
= . 3.22
| L, Ly || (3-22)
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where

3
Ld = Laaa - Labo + 5

2
3

Lq = Lago = Labo — ELaa2

La = Laao + 2Labo

L] =

[L:-s] =

Remarks

1. [Lg,]* # [Ly] unless

Laa2

(3.23)

(3.24)

(3.25)

(3.26)
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2. The mutual inductance terms between the stator and rotor coils in the
g-axis are negative for k; < 0 unless My, and M,y are both negative. It is
to be noted that when the g-axis is lagging the direct axis (in the direction
of rotation) as assumed in Fig. 3.1, My, and M, are positive. These
terms are negative only if g-axis is assumed to be leading the d-axis.
Hence, if d-axis is assumed to lead g-axis, it would be convenient to choose
positive value of k.

3. Note that there is no transformation of the rotor currents and flux linkages.
Hence the self inductance matrix of rotor coils is not altered.

4. Eq. (3.22) shows that stator coils ‘a’, ‘b’ and ‘¢’ are replaced by fictitious
‘d’, ‘q’ and ‘0’ coils from Park’s transformation. QOut of these, o’ coil
(in which zero-sequence current i, flows) has no coupling with the rotor
coils and may be neglected if i, = 0. Since the (transformed) mutual
inductance terms between d, q coils and the rotor coils are constants, it
can be interpreted that d and q coils rotate at the same speed as the rotor.
Furthermore, as mutual inductances between the d-coil and the rotor coils
on the g-axis are zero, it can be assumed that d-coil is aligned with the
d-axis. Similarly, it can be assumed that q coil is aligned along with the
g-axis. This is shown in Fig. 3.3.

5. The following trigonometric identities are useful in the derivation of the
transformed equations

cosl9+cos(0—2?7r)+cos<0+g?’1) = 0
sin0+sin(0—-231)+sin(0+2?7r) =0
cos20+cos2(0——2—37£)+cos2(0+2?7r) = g
sin20+sin2(o—-231)+sin2 (o 335) -3

Although the physical interpretation of Park’s transformation is useful in gaining
an intuitive understanding of its implications, it must be understood that it is
not essential in the mathematical analysis of the synchronous machine. This is
true of any mathematical transformation whose main objective is to simplify the
analysis. From this point of view, the major benefit of Park’s transformation
is to obtain the machine equations in time-invariant form which simplifies the
analysis. The transformation of stator voltage equations will clarify this point.
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d-axis

Figure 3.3: Synchronous machine with rotating armature windings

3.3.2 Transformation of Stator Voltage Equations

Applying Park’s transformation, Eq. (3.7) can be rewritten as

d .
~ 5 1CP¥ago] = [Rs][CPliago = [Cplvago (3.27)
The first terr - on the L.H.S. of Eq.(3.27) can be expressed as
d -d[C d
~ L 10rbaael = 0% g~ 1001 e (3.28)
where,
[ —kgsind kqcos@ 0
27 27
dc —ksi il -2
d_ep_ — kd Sin (0 3 > kq COS (0 3 ) 0 — [CP][PI] (3.29)
—kgsin (0 + 371) kq cos (9 + 2_7r) 0
5 3 3 J
where L
0 4 9
by
(P]=| _Fd
T 0 0
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Substituting (3.28) in (3.27), we get

e G P e - (Re)[CPlia = [Crlva  (3:30)

dt
From (3.30), we obtain
d ; - ]
- 1/:1?—0 — 8[P1]Yago — [Cr] ™' [Rs][Crlidgo = vago
d . .
__'lz%q_o_ _ 0[P1]’l/)dqo — Raquo = Vdgo (3.31)

after substituting for [R,] = R,[Us]
Eq. (3.31) can be expanded as

dy, -k . )
—-—a—tg - 0-,51#,1 —Raig = vy

di < kg )
Hemi =

The rotor voltage equations are unchanged and can be written in the expanded

form from Eq. (3.8) as
d . )
—g}# + Rpiy = vy

Wh 4 Ryip, = 0
d—fff+Rgi, =0

%&+Rkik = 0 |

3.3.3 Transformation of the Torque Equation

| (3.33)

After applying Park’s transformation to Eq. (3.13) the electrical torque is ex-
pressed as

[z‘f,qo[cp]t [655’] [CPliago + 2i%,[CP]* [a;;,] z',] (3.34)

T, = -

DO =
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sin 260 sin (20 - _2_7_r.) sin (20 + -21) ]
3 3
OLss] ) 2w ) 2w .
[ 30 ] = —2L4,2 | sin (20 —5-) sin (20 + —3—> sin 26 (3.35)
sin (20 + ?-71) sin 20 sin (20 - 2_71')
L 3 3/ 4
[ ~M,sind —M,; siné
[3;6”] _ | —Mggsin (0 - 2?77) —~ M, sin (0 - —2375>
L — M sin (0 + 2?”) —M,;, sin (0 + %7[)
Mg cos M cos @ ]
27 27
Mg cos (9 - ?) M,y cos (0 - ‘?;“) (3.36)
2
Mg cos (0 + —;—) M, cos (0 + 2%)
oL
%] (7] = ~8LaiCrlP
where
k
[P,) ; LI (3.37)
o) = 0 0 .
Ky
0 0 O
oL, 0 0 $kaMag 3kqMgy
[Cp]* [———6 ; ] = | —3k,My; —3kMap O 0 (3.38)

0 0 0 0
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After some manipulations, the expression for electrical torque reduces to

3 M, My,. 3 . . ([ Meg. Mg .
T = Skak [iq (“‘a_fif + iy + —Laazzd) —iq (“‘ai"g + =

2 ka ke 72 kq kg F
3.
Since
. Maf . Mah .
= —af 4

Pa Lgia + kq 15+ ka ih (3.40)
My, | My,

Yo = Lig+ 4 Yig+ k“’“zk (3.41)

q q

Utilizing (3.40) and (3.41) in Eq. (3.39),
T. = gkqu [iq {'t/)d - (Ld - :—;-Lmz) id} - iq {'l/Jq - (Lq + gLaa2> iq}]
(3:42)
= Shaylioh ~ iavd (3.43)
3

3
Lq - ELM2 = Lq + ELM2 = Lgqa0 — LabO

3.3.4 Choice of constants k4, k; and k&,

The transformation [Cp] defined by Eq. (3.18) is most general as no assumptions
are made regardirig the constants k4, k; and k, . However, original Park’s
transformation used

kdzl,kq':'l,ka:l

Since same transformation is applied for currents and voltages, it can be
shown that in general,

. . .3 . . .
P = Vala + Vply + Veie = 5 (kgvdzd + kquzq) + 3k2v,i, (3.44)

Proof: L.H.S. of Eq. (3.44) can be expressed as

'Uttzbciabc = 'Uctiqo [Cp ]t[CP ]idqo (3.45)
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[Cp}t[Cp] is a diagonal matrix given below

t ika 30 2 0
[CrI'[CPl=| O 3gk; O (3.46)
0 0 3k2

(7]

Power Invariant Transformation

A transformation [Cp] is said to be power invariant if it is orthogonal,
ie.

[Cplt =[Cp]™ (3.47)

The choice of kg4, kq and k, to get power invariant transformation are

W AR S
kd_:l:\/;, ky=%y3. ko =3 (3.48)

We will assume only positive values of the constants thereby defining a power
invariant Park’s transformation given by

[ /2 cosf V2sin @ 1 W

[Cp] = 1 1 V2cos (0 - 2%) v2sin (0 - —2—;—) 1 (3.49)

>

V2 cos (0+ 2;—) v2sin (0+2?1r) 1

The major advantage of a power invariant transformation is that the
mutual inductances in the transformed network are equal.

For example

M, 3
Mdf = af and Mfd = 5 afkd

For k‘d = \/g, Mdf = Mfd = \/%-Maf

In what follows, we will use a power invariant transformation by selecting

the following values
2 1
kd = § = kq, ko = \/;
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As mentioned earlier, the positive value of k; indicates that q-axis is lagging the
direct axis, whereas in the original transformation by Park, g-axis is assumed to
lead d-axis. Although an IEEE committee report in 1969 [11] recommended a
revision of the old convention (of q leading d) usage in power industry is often
based on the old convention.

It should also be noted here that the use of generator convention in
expressing the stator voltage equations is consistent with the choice of d-axis
leading g-axis. Similarly the earlier motor convention is consistent with g-axis
leading d-axis. To summarize, the basic differences in the two conventions are
shown in Table 3.1.

Table 3.1 Comparison Between Conventions

Features Convention

Original Revised
Current direction | motor generator
Orientation of ‘q’ leading ‘d’ ‘d’ leading ‘q’
axes
Constants kg =10,kg=-1| kg=k; =23

Note that although the armature currents, even in the original conven-
tion, are considered to flow out of the generator, the signs associated with these
currents (in flux calculations) are negative (consistent with the motor conven-
tion). As mentioned before, the revised convention is adopted in the book.

3.4 Analysis of Steady State Performance

The major advantage of Park’s transformation is that the machine equations
" are reduced to time-invariant form which simplifies their solution. Thus, Park’s
transformation can be considered as a particular case of transformation based
on Floquet-Liapunov theory which applies to linear time-varying system with
periodic coefficients [16]. (Note that the system equations for the stator and
rotor windings are linear if the rotor velocity 6 is assumed to be constant and
magnetic saturation is neglected) Park’s transformation results in linear time-
invariant form (with the assumption f=constant) given in Eqs. (3.32) and (3.33).

If the applied voltages vq, vq and vy are constants, the flux linkages
and currents (in Park’s variables using d-q reference frame) are also constants
in steady state. Consequently, the electrical torque, T, is also a constant in
steady state. If the applied torque Ty, (constant) is equal to T, then (neglecting
damping the assumption of constant velocity in steady state is valid.
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3.4.1 Analysis of an Unloaded Generator

In steady state, for an unloaded generator,

. . . . . ) vf
ig=1,=0, =4, =19 =0, if=— (3.50)
q 9 f Ry
The flux linkages, from Eq. (3.22) are
Ya = Lgiq+ Mgpiy + Mgpip

vy Mgypiq+ Lyig + Lypin (3.51)
Uy, Maniqg + thif + Lpip

i

Vg = Lqiqg + Mggig + Mgy
Py = Mgprg + Lgk'ig + Lyig

3 3
My = \/;Maf’ Mdh=\/§Mah

3 3
qu = §Mag7 qu= EMalc

Note that the reciprocity of these mutual inductances (Mg = My etc.)
results from the use of power-invariant Park’s transformation (In original Park’s
transformation My = M,s while Mg = %Ma 7- The reciprocity is achieved
only in per unit quantities with the choice of appropriate base quantities for the
stator and rotor circuits. The selection of the per unit quantities is discussed in
the next section).

where

Substituting (3.50) in (3.51) and (3.52), we have, in steady state
Vo Vfo
V=1 =Ls R, Yho = Lin R;

Mgv
Ya=vao = =8 tio =0, Yoo = Yro =0

(3.53)

Substituting (3.53) in (3.32), we get

v = 0
M, 3.54
Vgo =~ wo"/)do = go};f_d['v fo ( )
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where w = w, in steady state. Note that the subscript ‘o’ indicates the value at
the operating point. It is also assumed that under normal conditions, w, = wp
(the rotor runs at the rated speed).

The induced voltages in the stator are given by

Vg = \/-g' [vdo cos(wot + 8) + vgo sin(wst + 5)]
v = \/g [vdo cos (wot +4— 2—;) + vgo 8in (w,,t +46 - 2%)] (3.55)

2 2 ] 27
\/; [vdo cos (wot +464+ -3—) + vgo 8in (wot +40+ ?)]

where § = § — w,t= constant in steady state (Note that v, = i, = 9, = 0). The
induced voltages in the stator are equal to the terminal voltages under no-load
conditions. From Eq. (3.54), only the second terms in R.H.S. of Eq. (3.55) are
non-zero. The voltages are sinusoidal and balanced. The magnitude (rms value)
of the line to line voltage is

Ve

wonf

Vfo (3.56)

The electrical torque in an unloaded genergtor in steady state is zero. (as cur-
rents are zero).

Vi-L =

3.4.2 Analysis of a Loaded Generator

A synchronous machine connected to a sinusoidal balanced voltage source de-
livers electric power determined by the prime-mover output. The currents and
flux linkages in the machine are functions of Tj,, and V (rms line-to-line voltage
at the terminals).

Without loss of generality, let the voltage sources at the generator ter-

minals be defined as
\
Vg = J?:;V Sin th
vy = \/gV sin (wat - 2%) y (3.57)
2. . 27
Ve = \/;Vsm (w,,t + —3-) )
Defining

0=wit+ 48 (3.58)
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the d- and g-axis components of the terminal voltages can be calculated as

Vo = —V'8ind, vg =V cosd (3.5.(;)
Neglecting armature resistance,

WoWdo = Vg0, —Wo¥qo = Vdo (3.60)

Since i, = 14 = 4 = 0 in steady state,

. _ Yo o1 _ Yfo
g0 = woLq’ ldo = woLd [vqo wOMdf Rf] (361)

The operating value of T is

Teo = ¢do'iqo - "/)qo'ido (3-62)

Substituting from (3.59) to (3.61) in the above expression and assuming w, = wp,

T — _YdoTdVo _ VdoVgo(Td — Zq)
e wpTqRy WBTdTq
_ VEjgsind + V28in26(zq — z4) (3.63)
WBZI4 2wpzTdz,

where

E¢yy = %ff—’vfo, T4 = wpMys

zq = wply, z4=wply

Since, T, = Ty, in steady state, the angle d can be evaluated from the knowledge
of Ty,, V and Egg,.

Remarks

1. The expression for T, in (3.63) is identical to the expression for power
output in steady state divided by the rated frequency wpg.

2. The currents i,, %y and . in the armature are sinusoidal as i4 and i, are
constants.

3. If the voltages at the terminal are unbalanced, vy and v, are no longer
constants and contain second harmonic components. In such a case, the
currents %4, %, also contain second harmonic components. The phase cur-
rents contain third harmonic components.
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3.5 Per Unit Quantities

It is common to express voltages, currents and impedances in per unit by choos-
ing appropriate base quantities. The advantages of an appropriate per unit
system are

1. The numerical values of currents and voltages are related to their rated
values irrespective of the size of the machine.

2. The per unit impedances on the machine base lie in a narrow range for a
class of machines of similar design.

3. The number of parameters required is minimized.

It is to be noted that the base quantities for the stator and rotor circuits
can be independently chosen with certain restrictions which result in per unit
mutual reactances being reciprocal. If power invariant Park’s transformation is
used, the constraints imply selecting the same base power for all the circuits.

3.5.1 Stator Base Quantities

The base quantities for the stator d-q windings are chosen as follows

Base power, Sp
Base voltage, Vp
Base current, Ip

il

Three phase rated power
Rated line to line voltage (RMS)
v/3 x Rated line current

_ Rated line to neutral voltage
- Rated line current

i

i

Base impedance, Zg =

Base flux linkages, ¥p =

5% S5

Base inductance, Lp = o ~
B B

wp is the base angular frequency in radians/sec. (This is also the rated angular
speed for a 2 pole machine)

The stator equations in per unit, based on the quantities defined above,
di - = = _
~ 05 S — e~ Rala = %4
_ (3.64)
1 d + = = _
~wg 1/2 + u%‘/’d - Ryig = 74

where the per unit quantities are indicated by the bar over the variables. For
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example

Remarks

1. The base voltage and current used in the previous literature are

VB = Peak rated voltage per phase
Ip Peak rated line current

The choice of these base quantities are consistent with the original Park’s
transformation. This is because the per unit voltage (or current) in the
old system is identical to that in the revised system defined above (which
is consistent with the power-invariant version of Park’s transformation)

2. The base impedances in both systems are identical. This fact combined
with the identity of per unit quantities implies that the equations (in per
unit) in both systems are identical (except for the differences in the ori-
entation of d- and g-axes) thus eliminating the confusion about different
versions of Park’s transformation.

3. Anderson and Fouad [19] use different base quantities for voltage and cur-
rent along with power-invariant Park’s transformation. They define Vg as
(rms) rated line to neutral voltage and I as rms line current. Although
this results in identical base impedance as defined before, the per unit volt-
ages, currents and fluxes are different which leads to different equations
using inconvenient factors (of v/3).

4. The choice of base quantities for the rotor is related to the choice of sta-
tor base quantities. Although in the original Park’s transformation, the
mutual inductances are not reciprocal, the selection of appropriate base
quantities for the rotor will result in reciprocal per unit mutual induc-
tances.

5. The expression for the base three phase power in the old system is

3
Py =Sp = 3Valp

which leads to per unit power expression of
S

(Tt is assumed that the zero sequence power is zero). In the revised (new)
system,
Pp=Sp=Vglp

which leads to the same per unit power expression given above.
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6. If the operating frequency is same as the-base frequency, the per unit
inductances are identical to per unit corresponding reactances. Then
Zqg= Lg, Ty = Mdf etc. ~

3.5.2 Rotor Base Quantities

The base power and frequency are same as for the stator circuits. The base
currents for the rotor circuits in the d-axis are chosen such that the base field
current or base d-axis damper current (in h coil) produce the same mutual flux
(in the airgap) as produced by base current flowing in the stator d-axis coil.
Similar conditions apply for g-axis coils. The mutual flux linkages in the d-axis
are given by

Yad = (Lg — Lag)IB = MgsIsp = MynlpB (3.65)
where L, is the leakage inductance of the stator. Iyp and Iyp are the base
currents in the field and damper windings (in d-axis).

From Eq. (3.65),

Lad Lad

Irg= 2271 Ing = I .66

8= 3,18 =018 (3.66)
where Lyg = Lg — Lyo

The base flux linkages for the rotor circuits are chosen that

YsBltp = ¥YBlp = Yrplnp (3.67)

Similar relations apply for g-axis coils also. The base currents and flux linkages
for the g and k coils are given by

= —27 Iip =4 .
;) T T Ip (3.68)
Yplp Yplp
YgB Ts YiB Ton (3.69)
where
Remarks

1. The per unit system is chosen such that the per unit mutual reactances
Mgy and Mgy are equal and can be expressed as

Mdf = Mdh = Lad = I—Jd - Eaa
Similarly
qu = qu = f‘aq = Lg = Lqo
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2. The choice of rotor base quantities is not unique. In general, the per unit

mutual inductances can be expressed as
My = Mg =Lg— Lo
My = Mgy =Ly~ Lo

where L. and L. can be arbitrarily chosen (assuming magnetic linearity).
It is only when representing saturation that it is convenient to define the
per unit mutual inductances as given earlier. The leakage inductance of the
stator Lg,, is normally assumed to be constant (unaffected by saturation)
while the mutual inductances are functions of the mutual flux linkages

(considering saturation).

3. The selection of base quantities for the rotor circuits can be avoided if
it is assumed that the rotor quantities can be referred to the stator us-
ing appropriate turns ratio (which are not always uniquely defined). The
equivalent circuit referred to the stator can then be described in per unit

quantities (on the stator base). This is explained in the next section.

3.5.3 An Alternative Approach

Consider a set of ‘n’ coupled coils. The flux linkage of k** coil is given by

n
Y = Z Ly (3.70)

j=1

By expressing 1 and i; in per unit given by

P = Y = (3.71)

ks’ 7 I

Eq. (3.70) can be rewritten as

_ n L . . n S
Ye=2 (ﬂ jB) ij = 2 Lisis (3.72)
j=1 YkB j=1
where Ly; is the per unit mutual inductance given by
i, Ly
Lyj = ——LI; 3.73
kj ¢kB J ( )

Similarly the per unit L, is given by
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¥ Ejk = Ekj, the reciprocity in per unit mutual inductances require
I; Irg .
—“= === V4 VEk 3.75
Vs $m (3.75)

which implies same base power for all the coils. It is assumed that the base
frequency is same for all the coils.

If it is assumed that the measurements are carried out at the terminals
of one coil (which may be labelled as 1 without loss of generality), the mutual
flux between coils 1 and j can be expressed as

Lip Ip\ . .
L (_1_) B 3.76
¢1] 15 Ip (Ij ) 3 15%35 ( )

. IB . N . .
i = (7,_) ¥ (NJT) i §=2,3,...,n

can be considered as the current in coil j referred to coil 1 using the turns

where

ratio (%{-).The base current and flux in coil are defined as Ip and yp dropping

the subscript 1. Equation (3.76) suggests the possibility of first referring the
quantities to coil 1 using turns ratio (if specified) and then expressing them
in per unit with respect to the base quantities defined for coil 1. Thus L; is

expressed as :
- L.
L= ¢—1;IB (3.77)

-Remarks

1. If turns ratios are known, the base currents (and fluxes) for coil j
(1 =2, 3,..., n) are defined in terms of the base quantities for coil 1 and
the turns ratios.

2. If turns ratio are not explicitly defined, it is possible to choose base quan-
tities such that

Lj=Li-l, §j=23,..,n

where [; is the leakage inductance of coil 1. The advantage of this choice
is that the (n — 1) per unit mutual inductances are made equal and the
total number of circuit parameters are reduced.

3. From equations (3.73) and (3.74), it is obvious that per unit mutual in-
ductances can be made equal even if Lg; # Lj; by proper choice of base
quantities.
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Example : A two winding transformer

Consider a two winding transformer shown in Fig. 3.4. The transformer is
assumed to be lossless. The equivalent circuit of the transformer is shown in
Fig. 3.5. The following equation applies for the secondary circuit of the ideal
transformer

diy
vy = 82+lzd—t
61N2 N 1 d‘i’g
= —= — == 3.78
. N PN @ (3.78)
In the above equation, the relationships of the ideal transformer, namely
ez = &e iy = £V—2i2
2 va1 1, ¢2 Nl
are used.
The equation for the primary side of the transformer is
diy dis di; ,di diy
=Lli—+M—==L—+M-—-"==— 3.79
nEMgtYE T g T T T 3.79)
where
N;
M = M (J_Vi) =L -l
di,  dif
= M (= _2)
o (dt +

Expressing (3.78) and (3.79) in per unit and selecting

2 Ny
Vop = —V; =7
28 = V1B, Irp N, 1B

N11N2

| |

[ —O0

Figure 3.4: A two winding transformer
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1 i 1
Lo < N;:N, 2
4 LNt + — + 12
v, €, g €, v,
@©,-1) - -
o— —o

Figure 3.5: Equivalent circuit of two winding transformer

we get
_ s di _
o o= | Htl + e
o oan & } (3.80)
V2 = € — 27,32
where

o d
el——Mdt(h-l-zz)

Ni\? Vie - | Lo, M
llz:(F:)l2’ZlB:ﬁ_,ll:Z—llg,iI:?f;,M,:z—;

where [ is the leakage inductance of the secondary referred to the primary.
From Eq. (3.80) the equivalent circuit of Fig. 3.5, simplifies to that shown in
Fig. 3.6. '

The above analysis shows that the application of per unit system can
be viewed as first referring all the secondary quantities to the primary side
by utilizing the turns ratio and then scaling the variables with base quantities
defined on the primary side. This interpretation relates the base quantities on
both sides using the turns ratio.

In coupled coils, it is not always necessary nor feasible to determine the
turns ratio (For example, the damper windings ‘h’, ‘g’ and ‘k’ are fictitious and
introduced to represent the effects of eddy currents induced in the generator
rotor). In such cases, the effective turns ratio can be defined as

N M (3.81)
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_ -

1y + 1,
kY, [ - v
A& 1 M 2
o— ©

Figure 3.6: Equivalent circuit in per unit quantities

where [; is the leakage inductance of the primary winding. If magnetic saturation
is not to be considered, there is no significance in defining a separate leakage
inductance /; and it can be arbitrarily chosen (even equal to zero). The leakage
inductance /5 can be obtained as

Iy = (L1 - 1) £2_(L712:£2 - 1] (3.82)

3.6 Equivalent Circuits of Synchronous Ma-
chine

There are two equivalent circuits corresponding to the two axes d and q. On
the d-axis there are three coupled coils namely, armature d-coil, field winding, f,
and damper winding, h. As explained earlier, by application of per unit system,
all the quantities get referred to the armature side. The equivalent circuit on
the d-axis is shown in Fig. 3.7.

All the reactances are expressed in per unit. z,, is the armature leakage
reactance. ¢, and zp. can be viewed as the leakage reactances of the field and
the damper winding (h) respectively. z,. represents the fact that per unit mutual
reactance z ¢, (between the field and damper) is not equal to z.q. Actually

Tfh = Tad + Tre = Td = Tao + Tre (3.83)

It can be shown that the equivalent circuit of Fig. 3.7 can be transformed
to the simplified form shown in Fig. 3.8. Here k& is defined as

k= (’”" = z‘)2 (3.84)

Zod
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vy - A
Ry
™ °
O U ©
_ 23
g q
Figure 3.7: Equivalent circuit -d axis
1 U
Ra Xe Xe= kxfc Rf = ka
o—AAN TAAA'AY
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R h& kR¢
—*) o
® —
"o @

Figure 3.8: Transformed d-axis equivalent circuit

and z. is obtained from

11
_r .t (3.85)
Te—ZTae Tad Trc

Instead of z,,, a new reactance z. appears and the mutual reactances s, Tdn
and z4 are all equal to z4.. While this simplified equivalent circuit is often used,
error i8 committed by assuming z, ~ Z,,. This is inaccurate and gives wrong
results in predicting field quantities [20, 21]. For example, for turbo alternators
Z. is much larger than z,, and for salient pole machines . can be negative [21].
Canay [21] has proposed a simple test for the determination of z..

The equivalent circuit on the g-axis is shown in Fig. 3.9. Here, as both
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R X

a ago

oMM TATAVAVAN
-
Iq
Xio Xgo
v
9 g xaq

—(

a) —

il qﬁ

g

Figure 3.9: Equivalent circuit- q-axis

damper windings are short circuited, there is no loss of generality in assuming

Also, for linear magnetic circuits, z,, can be arbitrarily selected. This follows
from the fact that the only quantity of interest in the g-axis is the driving point
(operational) impedance defined by

Ugls) _ moll +sTY(L+T])
I(s) 1+ sTéo)(l + sT;',,) -

o(8) (3.87)

where T, and T are the open and short circuit transient time constants, T;'o and

T;’ are the open and short circuit subtransient time constants. Eq. (3.87) shows
that only five parameters (including z,) are required to define the operational
impedance and the equivalent circuit (neglecting armature resistance). Thus the
role of leakage reactance z,, is only required in accurately representing magnetic
saturation. In the absence of saturation, any value of z,, can be used.

This argument does not hold for the d-axis equivalent circuit where z
is uniquely defined. This is because of the presence of field circuit excitation.
The d-axis flux linkage ¥4(s) can be expressed as

Ty(s) = Xa(s)14(s) + G(s)Eya(s) (3.88)
where

_zq(l+ sTYH(1 + sTy)
Xa(s) = (1+ sT)(1 + 5T




72 Power System Dynamics - Stability and Control

T, T; are open and short circuit subtransient time constants. T%, and T} are
open and short circuit transient time constants.

G(3) is defined by

1+ sT'd'c)
G(s) = ; 3.89
) = TFsT) 1 + o7 (3.89)
In Eq. (3.88), Eyq is related to vy by
_ Zdf
Efd = R_f vy (390)

This scaling of the field voltage is done for convenience - and has the effect of
equating the generator open circuit voltage (in steady state) to E¢q ( 1 pu Eyq
results in 1 pu generated voltage on open circuit).

The calculation of self and mutual (per unit) reactances from the equiv-
alent circuit parameters is straight forward and is given below

Tdf = Tdh = Tad = Td — Tao
Tfh = Zad+Tre; Tf =ZTfh+ Tfey Th = Tfh + The
ZTgg = ZTgk = Tgk = Taqg = Tq ~ Tac

Ty = Toqg+ Tgo, Tk = Taq + Tko

3.7 Determination of Parameters of Equiv-
alent Circuits

It is assumed that R,, z,, (leakage reactance of the armature) and z4, z,
(synchronous reactances) are known. In addition there are five parameters in
the d-axis equivalent circuit:

Trey Thes Tfer Bn  and Ry
and four parameters of the equivalent circuit in the g-axis:
Tgo, Thoy By and Ry

3.7.1 Direct Axis Equivalent Circuit

The transient and subtransient quantities can be determined from measurements
according to IEC or ASA recommendations. These are
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J
g, x4, T) and Tj

where z/; and z,; are transient and subtransient reactances of the machine in
d-axilg. The ,tra.nsfer function X4(s) is completely defined by the quantities
zhzg, Ty T; and z4. This follows from the expression for the inverse of Xg4(s)

given below which represents the basic definition of z; and xz in accordance
with IEC or ASA standards

1 1 1 1\ T} 1 1\ Ty
—_— = ——— i — 5V 3.91
Xa(s) x4 + (mg :vd) 1+ 8T} + (a:d :L{,) 1+ sT; (3:91)

Relating (3.91) to

zq(l + sT)(1 + .ST;’)

X4(8) = L 3.92
a(s) (1+ 3T ) (1 + sT5) (3.92)
We have the following relations
T, + T, = 244 (1 -ty ﬂ’-) T, (3.93)
:L‘d xd (L'd

' " 1" T4
TaoTao = TaTy 7 (3.94)

d

These equations can be used to exactly calculate T, and T;'o if T} and T, are
known or vice versa. There is no need to make any simplifying assumptions.

It can be shown that
Tae(l + 8TS) (L + sTy,)

X = ael = X,
a(8) +%e = = T Y (1 + 5T ae(s)
where
Tde = T4+ Te (3.95)
" T +T, T +T,
" 7" (L'” +x
Téere = Téono %;?:;3‘ (3 '97)

It is also possible to calculate z;, and a:ze (from the expression for the inverse
of Xg4e(8)) and these are

r _ .
o, = Tae(Tge — Tge) (3.98)
T + T~ (1+ 5‘—’5) T
Zge

n

Tge = :1::;+:L'e (3.99)
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It is to be noted that i}, # (z}; + z.). It is convenient to determine the pa-
rameters for the simpler equivalent circuit (shown in Fig. 3.8) and compute the
parameters of Fig. 3.7 based on the relations (3.84) and (3.85). It is necessary
that z. (which is not a leakage reactance) is determined from design calculations
or measurements.

Eq. (3.91) represents the admittance of the equivalent circuit shown in
Fig. 3.10. In this circuit, the voltage corresponds to 94(s) and the current is
I4(s). The circuit shown in Fig. (3.10) is also equivalent to that shown in Fig.
(3.11) where z. is included in series and

"

Tge =Td — Tey, Tge = zd -z, (3.100)

By using relations (3 95) to (3.99) where —z, is substltuted for z., the quantities
Tiger Tger Ty and Ty, are obtained. The expressions for z},, R}, 7, and R},
are

[~

Figure 3.11: Alternate representation of X4(s)
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) TdTy _ T
xfo = Tg— z&, fo = w_—-BTé (3101)
' !
ho = 44, R = The 3.102
Tho 7 - ho wsT, (3.102)
The expressions for =, R, z}, and R} (for the equivalent circuit of Fig. 3.8
or 3.11) are
TdcT g, The
o _ZdcTge — _fc_ )
zfc = Tde — x:ic7 f (UBTéc (3 103)
7 n
The = —dde R = The (3.104)

/ "
Tl — T g, wpTy,

The calculations of the parameters of the equivalent circuit in Fig. 3.8 are

summarized below

Step 1: Compute T}, and T, from Eqgs, (3.93) and (3.94)
Step 2: Compute
Tge = Td— ¢

" n

Tge Tq— Te

Step 3: Compute T}, and T'd'c from
Toe+To = (Ti+Tq) Ta/Tae ~ (Too + Tho) To/Tac
TiTie = TioTaoTac/Tac
Step 4: Calculate z/;, from
' Tac(Tge — Tld’c)
Tge =
T}, + T — (1+z+','°) T
Zdc

Step 5: Calculate the parameters

Zad
ZTre = (zc—xw)a
T4 (Tad\’
The = o |—
(e — Zg) \Tac
rr = TdeTly, (z,d)2
fe (Tac — z)p,) \Zac
The
B = T
z
Ry = fe

wBTéc
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It can be shown that the time constant T,;'c in the expression.(3.89) is given by

S The
de Rpwp

(3.105)

Calculation of Transient and Subtransient Quantities from Equivalent
Circuit Parameters

The open circuit time constants T}, and T;’o can be calculated from the
equivalent circuit parameters of Fig. 3.8. These are obtained as the negative
reciprocals of the roots of a characteristic equation

/ / 2 ! ! 1
S fL’f (L‘h S wdc(a:fc + fL‘hc) + :L'fc:lrhc
1 _— 5 —a e == .
+wB ( i+ ,)+w28 [ R}Rh' 0 (3.106)

If it is assumed that R}, >> R/, then

z z + Tgc
T o~ i T 3.107
do wBR} wBR'f ( )
" 1 :LJ Tdc
Ty o~ —— |gh L 3.108
do WBR;LC [(L'hc (zdc+$,fc) ( )

The transient reactance, z!; can also be approximated as

9 '
Y Ldc xdcz‘f ¢
Tg=%g— =T+ —F"F 3.109
4=Td= ¥ ot o, (3.109)
The short circuit transient time constant 7 can be approximated as
z,l
T) =Th,=2 (3.110)

Td

Many publications use the approximations (3.107) to (3.110) without examining
their validity. The basic assumptions behind these approximations are

1. In computing transient quantities, the damper circuit is assumed to be
open, i.e. Rp = o0

2. In computing the subtransient quantities, the field circuit is assumed to
have zero resistance.

Obviously these assumptions are not valid in all the cases. Unfortunately, the old
practices (of using the approximations) still continue in industry. F.P. DeMello
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and L.H. Hannett {24] even claim that it is a matter of definitions, the only
requirement being consistent with the definitions. For example, they state that

", and T;'o are to be defined by the expressions given in (3.107) and (3.108)
rather than as the roots of the characteristic equation (3.106) which govern
the response of the machine fluxes under open circuit. While this argument is
certainly valid, it does create confusion to have two sets of definitions. There is
a need for standard definitions of T}, and T7,. Recent literature [21, 22, 23, 25,
27] stress the use of logical definition of the time constants based on the machine
responses.

3.7.2 Quadrature Axis Equivalent Circuit

The parameters of the g-axis equivalent circuits that are to be determined are
Ty, Thoy By and Ry

These are obtained from the measured or calculated data on :c;, z;, T; and

T,. It is assumed that x4 and 74, are known. The procedure for calculation
of the g-axis equivalent circuit parameters is similar to that given for the d-axis
equivalent circuit parameters. The steps are given below:

Step 1: Compute

Taq = Tq— Tao
n ”n

Step 2: Compute Ty, and T;'o from

/ " _ (L'q :L'q .'t:q 1"
Tgo +Tgo. = —,T,;+ (1 -t F) I,

o !
Ti T = TiT,

Step 3: Compute T, and T, from

n\ Tog

" n, T
qua +T = (Té +T, );:_q - (T(;a + Tyo E

7 _ 7 T qo
TooTye = TooTgoy, -
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Step 4:
maq(Téa - T;Ia)

4 z 1
Tl + Ty — (1 + —‘ﬂ) Tyo

L
Loo =

T
T q0

Step 5: Calculate the parameters

z, xll

_ 99"q0
wkﬂ' — I _ It
xqa :z;qo

!
zaqzqa
— ol
Tag a:qa'

Tko
Rk = TII
wp q0

T

— g9
Rg - weT!
B+ go

Remarks

1. The open circuit time constants Ty, and T;:, can be determined from the
equivalent circuit parameters. These are obtained as negatives of the re-
ciprocals of the roots of the characteristic equation

2
8 T Tk 8% | Zaq(ZTgo + ZTko) + TgoTko
1+ — [ 4+ 5 )4 2|28 g =0 (3.111
s <R9+Rk)+w23[ R, Ry ] (3.111)

If Ry >> Ry, Ty, and T;'o can be approximated as

T o~ _T1 _ Teot Tag
1" 1 Tgol

T o~ L g, 4 Zee%e
i wpRy (Tag + Tgo)

The assumptions are similar to that used in connection with the calcula-
tion of transient and subtransient quantities in'the d-axis. However the
justification for these assumptions for the g-axis is suspect as the difference
between Ty, and T;'o is much less than the difference between 7%, and Tj,

2. Unfortunately, the practice of making the assumptions both for d- and g-
axis parameters, appears to continue. This can lead to inaccurate results
in the prediction of machine performance.
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One way out of this difficulty is the determination of transfer function

Xa4(s) and X4(s) directly from measurements using frequency response
tests [29-32]

3. A most frequently used assumption is that z s, = z,4. This is inaccurate
a8 Toqy = T4 — Tae- In the absence of magnetic saturation, there is no
restriction in selecting

Tfh = Tdf = Tdh = Tde = Td — Tc

(all the three mutual reactances are assumed to be equal). However, the
value of z, must be accurately determined either by calculations or test
(Note that for some machines z. may be even be negative).

For the g-axis equivalent circuit there is no restriction on the choice of
zgk = zqg = zqk = xag = zq — Tao

Neglecting saturation, z,, can even be assumed to be zero or selected arbitrarily.

3.7.3 Measurement of Characteristic Reactance z,

z. can be determined from measurements during 3-phase sudden short circuit
test on the machine. Immediately after the short circuit applied at ¢ = 0%, the
field current variation with time is shown in Fig. 3.12. The AC component has
a frequency of wp. Defining the ratio,

-0t
a= 5’_(_t_"_0__l (3.112)
Iy,

where I, is the peak (amplitude) value of the AC component and Iy, is the
initial (prefault) current in the field winding.

It can be shown (with approximations, 7/, ~ /) — z. and wgT}, >> 1), that

o~ 2274 (Ea = 20 (3.113)
g, (zh—zc)

z. can be solved from (3.113) as

’ _ n

ge=1z, |1- (2q = 24) (3.114)
d c "

(@a-a) (5) - =4
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3 —

n .
[ ol 02
t

Figure 3.12: Field current variation following sudden short circuit

where

2g -2 —az.]

-z -

cC= 14+ ———'—,"d—,,‘—‘——d'
az,T,wp

A check on the measurement is that the AC component of the field current
cannot be too small. The ratio a has a minimum value given by

Tq— :L':i 1

Umin = —— 57— 7
:L'd Td WwB

3.7.4 Examples

Example 3.1

In the IEEE First Benchmark model for SSR [50}, the generator has the
following data.
€4 = 1.79, Zop = 0.13, ! = 0.169, z; = 0.135, T}, = 4.3, Ty = 0.032,
zq = 1.71, o} = 0.228, z, = 0.2, T}, = 0.85, T, = 0.05, fz = 60 Hz.

Compute the equivalent circuit parameters using (a) exact calculation and (b)
approximate method (also termed as standard method [22]).

Solution

Even in the exact method, since z. is not specified, it is assumed that
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Riog
Xao Xic Xfe B
‘o AAYAAN AAAAN IV VY L__AAAA °
g
A Xhe
¥ (s) < OV, (5) o %ﬁ Eqy(s)
S ad B X4
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Figure 3.13: Equivalent Circuits

The equivalent circuits for both d- and ¢-axis are shown in Fig. 3.13. The
approximate (standard) method uses the assumptions

1. In computing the transient quantities, the damper winding in the d-axis
(or the high resistance damper in the g-axis) is assumed to be open
2. In computing the subtransient quantities, the resistance of field winding

(or the low resistance damper winding in the g-axis) is neglected

The calculation of the equivalent circuit parameters based on these assumptions
are given in Table 3.2
The results are shown in Table 3.3.

Example 3.2 [21]

A salient pole machine has the following data in the d-axis.
zq=1.77, 2/, = 0.254, z, = 0.155, x4, = 0.089, z. = —0.0776, T, = 0.87,
T, =0.07, fp = 50 Ha.
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Table 3.2 Equivalent circuit Parameters-Standard Method

d-axis q-axis
Tad = &g — Tag Log = Tg — Tgo
’
- (zd - wao‘) . (z:l_z‘“’)z
e T amay) T | e T
" "
_ (my=%ea)( o (T, —Tac) ;4
The = (zé—wd") (zd — Tog) | Tho = (%"wqﬂ) (xq — Tag)
Re= _Ll_ % % R, — _l_ % i
f= wBTd’ 'xd”’ (zg—xy) (2 wBTé‘zq”'ia:q—z(]i
T ~Teq)? 1z, (zh—Tas)
Ry= 1,5 Gactes) | p 1 Zq (%
P el % agmay) | * T weTy E(mep)

Table 3.3 Numerical Values of Parameters (Example 3.1)

d-Axis Standard | Exact with | g-Axis Standard | Exact
Parameters assumption | Parameters
Te = Tao
The 0.00574 0.00546 Tko 0.245 0.329
Zfo 0.0399 0.0618 Zgo 0.104 0.0942
Ry, 0.00371 0.00407 Ry 0.0182 0.0141
| Ry 0.00105 0.00141 R, 0.00526 0.00819

Calculate the equivalent circuit parameters for the d-axis using

a) standard method
b) Exact method with the assumption z, = 4,
c) Exact method

Solution

The results are shown in Table 3.4. (Note that for the exact method,
the subscript ¢ should substitute for o) Note also that z. and z,. are negative
in this case. In general, this is true for salient pole machines.

Example 3.3 [21]

(a) Obtain the expressions for X;(s) and G(s) in terms of circuit parameters
in d-axis

(b) Calculate the time constants T}, T;'o, T; and T;' ifzg =1.803, z4 = zTgp,
= @aq = 1571, zsp = 1.6624, = 1.8334, z; = 1.674, Ry = 0.000856,
Ry, = 0.00871, fp =60 Hz Also compute 2/, and .



3. Modelling of Synchronous Machine

83

Table 3.4 d-Axis Parameters (Example 3.2)

Parameters | Standard | Exact Exact
Te = Tao
Tre - -0.152 -
ZTho(The) 0.110 0.672 0.105
Tfo(Tfc) 0.183 0.328 0.200
Ry, 0.00763 0.0266 0.00736
R; 0.000979 | 0.000956 | 0.00106

Solution

(a) The expression for X4(s) can be obtained as
(i)
Pa(s)
Xa(s) =
( ) Id(s) EdeO

z4(l + a8+ azs?) - 1+ sTy(1+ ST‘I;)
(L+brs+bos?)  “(1+sT.)(1 +sT))

From the equivalent circuit in Fig. 3.13, we have

1

Xd('g) = Ige + 1 i 1
+

— +
R R
Tod (% + th> (arfa + fwB)
s s
z4(1 + a1s + azs?)
(1+ b1s + bas?)

where
by = (Taa +xfcr) + (Ted + Tho) __Zf + Th
wpR¢ wphRy, wpR; wpRy
1
by = m [Tad(Zfs + Tho) + ZTfoTho)
Lfo Tho
a = by + + ——
1 TagV1 T Togd (waB Rth>
ay = Zagbo+ ZodZ folho

Rthw%
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T;, and T:i'o are obtained as the negative reciprocals of the roots of
the equation

14+b1s+bys?=0

Similarly T and T:l' are obtained as the negative reciprocals of the
roots of the equation

1+a18+a28=0

Note: The calculations are identical if in the equivalent circuit of Fig.
3.13, z, is replaced by z. and zp, and zs, are replaced by x}w and
'y, respectively.

(i)

20,
G(s) = iy 1T =0

From the equivalent circuit of Fig. 3.13, we can obtain

R
G(s) = f “’BR x
fwB
TadS (a:fa + )
1
1 R R
— 4 (m,a + ’wB) + (z,w+ th)
Tad s s
Tho
1
( e Rth) _ (1 +sTh)
(L+bis+bas?) (14 sTh)(1+sTy,)
where
The
T, = Fho_
! Rywp

(b) Substituting the values, the time constants are obtained as

T, =1.497 sec, T; =0.035, sec T =0.00353 sec
T), = 6.14 sec, T; = 0.047 sec

The reactances, z/; and :z;:; are obtained by applying Egs. (3.93) and (3.94).

These are z; = 0.327, z/, = 0.442
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3.8 Measurements for Obtaining Data

The synchronous machine data mainly refer to the parameters of the equivalent
circuits on the two axes. Test procedures are designed to obtain this data. Most
of these presume that there are only two rotor windings per axis (model 2.2)

Classification of Machine Models [32]

Depending on the degree of complexity, the machine models are classified de-
pending upon the number of rotor circuits on each axis. Model (i, 7) refers to
a synchronous machine having ‘4’ number of rotor circuits on the d-axis and ‘5’
number of rotor circuits on the q-axis. Thus moudel (1.0) refers to the case when
all damper windings are neglected and only the field winding (on the d-axis)
is considered. Model (2.2) is the most commonly used detailed model although
models (3.2) and (3.3) have also been proposed [7,32]. On the other hand, model
(0.0) refers to the classical model neglecting flux decay and damper windings.

Short Circuit Tests [26]

IEEE Standard No.115 [26] describes in detail the short circuit tests which were
first proposed in 1948. The latest revision of the test code was done in 1983.

A typical test is a three phase short circuit applied to the terminals of a
synchronous machine which is running at rated speed on open circuit. The open
circuit voltage can be chosen at any value within specifications. For determina-
tion of the reactances, the tests are performed for several voltage levels in a range
typically up to about 0.5 to 0.6 p.u. of rated terminal voltage. The oscillograms
of the armature currents are obtained and the variations in the peak to peak
current magnitudes with time are plotted on semi-logarithmic paper. Generally,
two slopes in the current variation are identified. The projection of each slope
to zero time (when the fault is applied) will determine the initial magnitude of
the current, which, when divided into the voltage magnitude before the fault,
gives a reactance. The initial, smaller value is the subtransient reactance (:c'c;)
and the second larger value is the transient resistance (z};). The slopes are also
used to derive the time constants T and T),. There is no procedure in IEEE
Standard No.115 for a similar test to obtain quantities in the g-axis.

Decrement Tests: [23, 24, 27]

These tests involve sudden changes imposed on either stator or field windings.
In the method described in [24], the machine armature currents are interruptec
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under two initial operating conditions (i) ¢q = 0 and (ii)¢q = 0. The conditions
can be achieved by under-exciting or over exciting the machine at some percent-
age of the full load. Achieving an exact loading condition for either iy = 0 or
tg = 0 is unnecessary provided an accurate measurement of the rotor angle is
available.

Decrement tests proposed by Shackshaft [23, 27] have been used at Cen-
tral Electricity Generating Board in U.K. There are two types of tests

a) Stator decrement tests

b) Rotor decrement tests

In a stator decrement test, the machine under test is operated at zero
load and is excited totally from the power system, i.e. its field current is zero.
The generator is then suddenly disconnected from the system and the subsequent
variation of stator voltage and the current in the field winding (if closed) can be
used to determine the machine parameters.

In a rotor decrement test with the stator on open circuit, the machine is
excited via its field winding and the excitation supply is then suddenly shorted
out. From the decay of the field current and stator voltage, some of the param-
eters can be obtained.

Frequency Response Tests [25, 29-32]

An alternative approach to the determination of machine parameters is through
frequency response testing. Both (a) standstill and (b) on-line frequency re-
sponse tests are used.

Conceptually, this approach involves viewing the machine model as a
two port network in the d-axis and one port network in the g-axis. (See Fig.
3.14.) This representation enables even the most detailed model (3.3) to be
considered. Also, these networks can be viewed as linear R-C networks whose
immittance functions have certain properties. For example the function X4(s)
can be expressed as

_ zg(l + sT)(1 + sTo)(1 + sT3)

Xa(s) = (1 + sT3)(1 + sT5)(1 + sT¢)

(3.115)

with 3 rotor windings in d-axis. From the properties of the immittance function,
we have

T3<Teg<To<Ty<Ti <Ty
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I Iy Iq
" } | d-axis WVa gy q-axis
d network a network
(a) d-axis (b) q-axis

Figure 3.14: Representation of d-axis and g-axis models

For model (2.2), the above inequality can be expressed as
Ty < Tyo < Ty < Tl
Similarly for the g-axis, we have

1" 1 7’ 7]
T, <Tp <Ty < Ty

The standstill frequency response (SSFR) test is convenient to use and
the details are given in [29]. In addition to the determination of the transfer

functions %(s), %(s), with field winding shorted, Coultes and Watson [29] also
q

v I
recommend the measurement of two more transfer function I—f(s) and Tf;(s), the
d d
former with the field winding open and the latter with the field shorted. The
measurements also enable the computation of z,. in the d-axis equivalent circuit
of Fig. 3.7.

. . . Va, . .
The direct axis operational impedance, I—d(s) is measured using any one
d

of the two possible connections shown in Fig. 3.15. In the first connection
(a), the magnetic axes of phase a and field are aligned (6§ = 0). In the second
connection (b), the magnetic axis of field winding is at 90° to that of phase a
(@ = 90°).

It can be shown for connection (a) that,

Va(s) :_gg(s):_zd(s) (3.116)

Xa(s) = =2 [Za(s) - Rl (3.117)
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Figure 3.15: Two connections for measuring direct axis impedances

Proof
From the stator equations, with w = 0, we have
s
—E‘I’d(s) — RoIa(s) = Vals) (3.118)
~-¥g(s) = Ralgls) = Vqs) (3.119)
With field winding shorted, we have
T 4(s) = Xa(s)a(s) (3.120)
Substituting (3.120) in (3.118), we get
Va(s) -—s
= —X 121
From Fig. 3.15 (a), we have
Vo(s) = Ve(s)
3.122
V(s) = Vals) - (o) (3.122)
I(s) = -—I(s)
3.123
Iis) = L(s) = bI(s) (3123)

Since 6§ =0,

I, = \/g [—Icos(O") + ;-cos(-120") + 2008(1200)}

3
- "\[5 I (3.124)
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2 I
I, = \/; [—-Isin(O) + Esin(—120°) + %sin(l20°)
- 0 (3.125)

2
Vy = \/; [Va cos(0) + V, cos(~120°%) + V. cos(120°)]

- \/g Ve — V] = \/gv (3.126)

2
v, = \/;[Vasin(O) + Vp sin(—120°) + V, sin(120°)]
= 0 (3.127)
From, (3.124) and (3.126) we get

Va(s) __2V(s)
Ii(s) 3 I(s)

= —Zy(s)
Substituting in (3.121), we also have
w
Xa(s) = = [Za(s) ~ R

For quadrature axis measurement, the rotor is turned 90° electrically (6 = 90°).
It can be shown in this case, that

Va(s)

S
T = ~als) = = - Xole) = R (3.128)

3.9 Saturation Models

Magnetic materials used in the stator and rotor of synchronous machine exhibit
saturation. This implies that the machine inductances are not constants but
depend on the levels of flux in different parts of the machine. An exact analysis
of saturation can be very complex and impractical to use in large scale system
studies [32, 41].

There are several saturation models proposed in the literature [34-43]
but they tend to be highly empirical and lack theoretical justification although
recent developments [33, 41, 42] are aimed at achieving better representation
of saturation in a machine. Sauer [33] has presented algebraic constraints that
must be satisfied by saturation models of lossless fields. This has relevance to the
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development of theoretically sound saturation models based on fundamental laws
that lead to a typical dynamic model. Harley et al [43] present a comparative
study of the saturation models used in stability studies involving synchronous
machines.

Most of the different methods proposed in the literature consider that
the mutual inductances in a machine are subject to saturation. Thus,

Tads = SiTad (3.129)

where the subscript ‘s’ indicates saturated value while z,4 and z,, are unsatu-
rated (linear) reactances. Sy and S, are nonlinear factors that depend on flux
levels. The assumptions are that the leakage inductances are unaffected by sat-
uration. However, some methods consider saturation of field flux leakage path
while assuming only constant armature leakage reactance.

Saturation factor Sg, is normally derived from open circuit saturation
curve. Since data on S, is generally not available, it is assumed that S, = 1 for
salient pole machines and S4 = S, for round rotor machines. The determination
of Sy is explained with reference to the O.C.C. and air-gap line shown in Fig.
3.16. The abscissa represents the mmf (Fg). At no load, Fy depends only on I
(the field current). The ordinate represents the flux level 1,4 which corresponds
to an internal voltage component E, behind a leakage or Potier reactance (Note
that the open circuit voltage is identical to Eg).

¥ g/ .~ ~0CC
B A/

Fylp)

Figure 3.16: Direct axis open circuit characteristics

The value of unsaturated z,4 is given by
DE

Tad = 55 (3131)
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1.0

lI’ad

Figure 3.17: Variation of Sy

The saturated reactance, .4 is given by the slope of the line OC, when
OB = 144 = E,.

DC DC
Tads = O—D = Tqd D_E,‘ =84 . Taq (3.132)
which gives A
DC B
1= pE " BC (3.133)

Similar procedure can be used to determine S, if the saturation curve
is available. The variation of Sq with 9,4(E,) is shown in Fig. 3.17. Some
saturation models consider Sy as a function of the total airgap flux 9, given by

b = V2 + 92 (3.134)

Minnich et al [41] have proposed that the reactances z4q; and x4y can be ex-
pressed in terms of product of two nonlinear functions, i.e.

Tods = Zad- Fdl(l Ve |) . Fd2("/’qp) (3-135)
Tgs = Tq-Fq(l Ve ). Fo(dhgp) (3.136)

| Vp | is the magnitude of the total voltage or flux behind an internal reactance
(called for convenience as the Potier reactance, although it is not the same
defined originally). Vp and 44, are defined by

Vp = Vi+jluap (3.137)
Yop = Ygq—ILgzp=~Vy— Izzp (3.138)

as in steady state, (at rated speed),
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It has been observed that saturation is a strong function of the voltage
| Vp |. In [41] the authors fit the saturation function F, using a quadratic, while
F is defined by a look-up table (as power series fit is inadequate).

Instead of using saturation factors to modify the inductance values, some
models introduce a ‘saturation current’ which reduces the d-axis mmf for salient
pole machines or the total mmf for round rotor machines. However this model
is not preferred as it fails to distinguish between the degrees of saturation in the
two axes [43)].

The effect of saturation on z, is important from the point of view of
determining the correct rotor angle. The accurate modelling of saturation (in
both axes) is also necessary for the accurate prediction of field excitation required
for a specified generator power output.

An important phenomenon resulting from saturation is the cross-coupling
between d- and g-axis coils (termed as the cross-magnetizing phenomenon). Due
to saturation, d-axis current I; produces g-axis flux linkages and vice versa.
Also, the field and the g-axis coil in the armature get coupled. The cross-
magnetization arises from the fact that when the machine is loaded, the per-
meability is not symmetric around d-axis. The effects of various saturation
models on generator swing curves are investigated in [43] and the results are
interesting. Although the studies were carried out without considering machine
controllers (both excitation and governor), the conclusions indicate that using
saturated, but constant values of reactances gives reasonably accurate results.
Thus, the complication of modifying the reactances at every solution step may
not be essential. While this result is significant particularly for large scale sys-
tem studies, it needs to be checked thoroughly with extensive experimentation.
Unfortunately, there are no detailed reports of comparative studies on saturation
models in synchronous machines.

3.10 Transient Analysis of a Synchronous
Machine

The transient response of a synchronous machine can be considered under the
following conditions

(a) connected to a voltage source

(b) connected to an external network

When the machine is running at constant speed and saturation is neglected, the
machine equations are linear. Neglecting the armature resistance, and assuming
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the machine is running at rated speed they are

1 dyg
wp At Vo = v (3.139)
P,
wpg dt d q
L% = _Rf'if+_£Efd
Tap _ '
wpg dt
Ldbg _ _p;
wp dt i (3.141)
Ldbe _ —Rui
wpg dt - kk

Machine connected to a voltage source

If it is assumed that the machine is connected to a balanced sinusoidal voltage
of rated frequency, then vg and v, are constants. It is seen that the equation
(3.139) is not coupled to the rest and can be solved as
Pa(t) = cjcoswpt + cosinwpt + vy (3.142)
Pqe(t) = —cocoswpt+ cisinwpt — vy (3.143)
¢; and ¢y are determined from the initial conditions of 14 and v, as
a = %a(0) - Uq
C2 = ”'¢q(0) — U4

Egs. (3.140) and (3.141) can be solved independently by substituting for the
rotor currents in terms of flux linkages. The relevant equations are

Pa Ty T Tan iq
Yr | =| T4 Tf Tpn || U (3.144)
(/7% Tdn ZTfh Th ih
Vg Tg Tgg Tgk ig
Yg | = | Tgg Tg Tgk ig (3.145)
(7 Tgk Tgk Tk ik

From (3.144) and (3.145), it is possible to obtain

iy = a19¥f+ app +bithg 3 146
ih = a¥r+ azp + bathy (3-146)
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iy = asPy + asPr + batly (3-147)
If,
Tf=Tge+Tfe, Th = Tdc+ The } ( )
then
o = 1 T Tdc
! Tfc a"?fc (Tac + z1)
ag = — Tde I
(zdc + 1"1) ZfeThe
o 1 Ty Tge
3 = — = - 7———s
The :E?w (Tae + 1)
by = — Tdc 1 by = — Zde 1
(Zgc + 1) zczfc’ (Zge + xl) LcThe
where
1 1 1 1
=
T Te Tfe The
Similarly, if
then,
0 = %2 T
Tgo T2y (Tag + T2)
as = —
TgoTko (waq + x2)
6 — T T 57 N
Tko .'L'%a (maq + .’1:2)
TgoTac (maq + 972)
b4 — $2 xaq

TkoZao (xaq + 552)
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where
1 1 1 1

T2 Tog Tgo Tko

Substituting Eqs. (3.146) and (3.147) in (3.140) and (3.141), we obtain,

s R

;btf = —wpRla1¥s + azyn] — waRpb1%a + L Epg

din of (3.150)
o = ~wBRalaaYy + agyn] — wpRrbyd

d
_ﬁ = —wpRylagpy + asyhy] — wpR b3y,

(3.151)
%‘{’5 = —wpRilaspg + asx] - wpRrbaty

Egs. (3.150) and (3.151) are decoupled and can be solved independently. Here
Y4, Y¥q and Egy are treated as input variables. The solutions for the rotor flux
linkages also include sinusoidal terms at fundamental frequency in light of Egs.
(3.142) and (3.143). The solution for the currents 74 and 4, are obtained in terms
of flux linkages as

ia = Ci¢a+ Covps + Csihp (3.152)
tg = Catpg + Csvpg + Coihg (3.153)
If the reactances are as defined in (3.148) and (3.149), then
1
Cl=—"x_§‘_ﬁc—‘", Cp=——2 Zde
Te T (-'L'dc + 1'1) Tfele (zdc + :E1)
T Tde 1 ) Tagq
C3 = - , u=— - ———7"—
Thelc (zdc + 11»'1) Tao Tye (z'aq + :L‘2)
TaocTgo (zaq + z2) TaocTko (zaq + z2)

The electrical torque can be computed from
Te'= Yaiq — Ygia (3.154)

It can be seen that the torque consists of sinusoidal components of fundamental
frequency and second harmonic in addition to constant components.

Remarks

1. The analysis assumed the armature resistance as zero which enabled the
machine equations to be decoupled. First, 14 and 1, are solved and the
solution is utilized to solve for the rotor flux linkages in the direct axis and
quadrature axis separately.
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2. If armature resistance is to be considered, then the machine equations

cannot be decoupled. The three sets of Equations (six in all), (3.139) to
(3.141) have to be solved simultaneously.

The armature resistance is never zero, hence the sinusoidal components
in the flux linkages and torque eventually decay to zero. If the solution
is required for a short period immediately following a disturbance, it is
in order to simplify the solution by assuming R, = 0 as the armature
resistance is usually very small.

. The sinusoidal component in iy and i4 result in second harmonic compo-

nents in the armature currents z,, %, and i, in addition to the dc compo-
nents. It is usually presumed that this so called dc component decays with
the time in the presence of armature resistances.

However, it can be shown that the sinuscidal components in i4 and ig have
a frequency slightly differing from the rated frequency. This implies that
the ‘dc’ components in the armature currents are not really dc (unidirec-
tional) but decaying sinusoidal components of very low frequency (say 0.02
Hz). Note that the radian frequency of oscillation in 74 and ¢4 is obtained
as the imaginary part of the complex eigenvalue of the matrix [F] defined
by the machine equations expressed as

z = [Flz + [Glu (3.155)
where the state vector z and input vector u are defined by

t = [Wa Yg Y5 Yn Vg Vil

u' = [va vy Ejd

Note also that the choice of state vector is not unique. The currents can
also be chosen as state variables. However, the simplification that arises
when R, = 0, is not obvious in this case.

. The ‘d¢’ components in the armature currents lead to sinusoidal compo-

nents of rated frequency (or very close to rated) in the electrical torque.
Generally, fast variations in the torque have little influence on the motion
of the rotor (due to its inertia) unless shaft torsional modes are considered.

In stability studies, where swing curves (variation of rotor angle 4 with

time) are of importance, it is acceptable to ignore the transients in the stator. In
this case, the stator is described by algebraic equations. Neither 14, 9, orig, iq

can be considered as state variables as they can change suddenly in response to

step changes in the terminal voltages v4 and vy.



3. Modelling of Synchronous Machine 97

Analiysis of Machine connected to an External Net-
wor

In most of the cases, the normal operation of a synchronous machine in a power
system is when it is connected to an external network consisting of transmission
lines, transformers, loads and other components. In such cases, it is not possible
to assume that the terminal voltages are specified or known. The network can
be modelled by an electrical circuit consisting of lumped elements of linear R, L
and C. Thus it is advantageous to obtain a circuit equivalent for the machine
stator which can then be combined with the equivalent circuits for the external
network.

A circuit model for a synchronous machine which is applicable for tran-
sient analysis is given in [13]. The stator is represented by a three phase equiva-
lent circuit shown in Fig. 3.18 . The inductance matrix for the circuit is defined
as

[L:] = [Lgs] = [Lsr][er]—l[Lrs] (3.156)
I
I
I,
R, R, R, 1

Va Uy Ve

= é

Figure 3.18: Equivalent circuit of stator
It can be shown that if subtransient saliency is absent, i.e. z:; = :c;' =z,

then the elements of [L,] are constants (independent of the rotor angle). Also,
[L,] is a cyclic symmetric matrix with all the off-diagonal terms as L. It can
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also be shown that the subtransient inductance is given by
Li=L,=L" =Ly~ Ly (3.157)

When subtransient saliency is present, by introducing a ‘dummy’ rotor coil in the

g-axis, (or d-axis) with appropriately chosen parameters, it is possible to modify

[L;] (which is dependent on 8 in the presence of subtransient saliency) and obtain

a new constant matrix. Note that the introduction of an open ‘dummy’ coil has*
no effect on the machine performance.

The current source I, in Fig. 3.18 is defined by
~Iy = [L]) Ll e, L=l I 1] (3.158)
in the absence of a dummy coil, and modified to
~I, = (L) H{[Larl[Lrr] o + (ML (M} (3-159)

in the presence of a dummy coil. [M] is the vector of mutual inductances
between the dummy coil and the stator windings. L. is the self inductance of
the dummy coil.

It can be shown [16] that tk subtransient saliency results when

81 — 82

Lua = 222 20 (3.160)
where
5y = Marln = Mo Lgn) Moy + (MapLg = MasL ) Mo (3.161)
L¢Lp — Ly,
Sg = (Mag L — Mok Lgk) Mag + (Mak Lg — Mag L) Mok, (3.162)

2
LgLy — L,
The inductances used in the above expressions are defined in section 3.2.

The vector [M,] is defined as

2
M) = [Mac sinf M,.sin (0 - 3371) M. sin (0 + %)}

(It is assumed that the dummy rotor coil is on g-axis)

With the dummy coil considered, the saliency is avoided if

2

ac = 81 — 2Laa2 (3. 163)

Sg + L.
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This equation determines the parameters of the dummy coil. As there is only
one equation in two parameters, one of the parameters, say L. can be arbitrarily
assigned a value, say L,. Then My, is determined from Eq. (3.163).

The current vector I, can be viewed as vector of dependent current
sources (dependent on the rotor flux linkages and stator currents). The depen-
dence on stator currents may be problematic; in such a case, the dummy coil
can be treated as closed with a high resistance. The current vector I; can be
expressed as

~I; = [Ly] {[Lor)[Lre] o + [ML7 5} (3.164)

where 9., the flux linkage of the dummy coil becomes an additional state vari-
able.

Remarks

1. It is assumed in the derivation of Egs. (3.159) and (3.164) that the dummy
coil has no coupling with other rotor coils (for convenience).

2. Note that when the dummy coil is open, then

Pe = [Mc]'i, (3.165)

3. The assumption about closed dummy coil is wn approximation; however the

degree of approximation (or accuracy) is controlled by selecting arbitrarily
large resistance for the dummy coil.
It is convenient to define an (open circuit) time constant T, for the dummy
coil which should be theoretically zero, but can be given an arbitrarily
small value. Numerical experiments on realistic systems indicate a value
of T. < 0.001 sec is adequate for transient analysis while T, < 0.01 sec is
satisfactory for stability studies.

4. The equivalent circuit of Fig. 3.18 can be combined with the external
stationary network to obtain the differential equations. If network (and
stator) transients are ignored, then the resulting equations are algebraic.

Torque Equation
The electrical torque in the machine can be derived as [13]
T, = —it[L, ]I, (3.166)

where

fe= () { [ (o) + [P 20 (3.167)
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It is assumed that [L,] is a constant matrix (as discussed earlier).
Example 3.4

A synchronous generator is operating at rated speed and on no-load.
The open circuit voltage is 1.0 pu. There is a sudden three phase short circuit
at the generator terminals at £ = 0.

(a) Obtain expression for é4, iq, iy and T, as function of time. Assume that the
transients in the armature are neglected. Also neglect armature resistance.

(b) Repeat (a) if transients in the armature are considered (with R, = 0)

(c) Plot 44, iq, iy and T, as functions of time for the data in Example 3.3(b).

"
Assume T, = T4

Solution

The fault at the generator terminals is simulated by considering the
superposition of two voltage sources; the first is the prefault voltage at the
terminals (vgo, and vge) and the second is equal and opposite to the first (see
Fig. 3.19)

AVy= —v4,, AVg= —vg

The net currents are obtained by superposition of the currents due to the two
sources taken one at a time. The first source (v4, and vg,) result in prefault
currents, Under no load conditions, these are

_ Ejao

ido =0, ":qo =0, ":fo Ta

(a) Neglecting transients in the armature and with R, = G,
Yao = VUgo = Efdo, "pqo = —vg, =0
The response due to AVy and AV, are obtained from

I = =
Bll) = X6 = 5Xalo)
AV, [1 1 1\ T} 1 1\ T
= Ll —4|5-— +| -5 —%=
s |zq4 zy xq) 14T T, Ty)1l+sT,
AV
Al (s) = 2 =9
q() Xq(s)

It can be derived that
AIf(s) = ~G'(s)ALi(s)
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q - axis

Network

1 L1
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Network

(a) Faulted generator

(b) Equivalent network

d — axis

Network

d - axis

Network

q - axis

o1

Network

q — axis

Network

o

(c) Prefault

(d) Effect of fault

Figure 3.19: Application of superposition theorem (Example 3.4)

where

G'(S) — Zad 3(1 +T13)
wpRs (1 + sT4,)(1 + sT)’

Substituting for I4(s),
_AVyzeq (1+sT)

Th — Tfh
wpRp

Al+(s) =
1) wpRsza (1+ sT)(1 +

Taking inverse Laplace transforms, we get
+ <

~Ugo = _Efdo

1

Td

11

_t
7 e?g+

Aig(t) = ~ [

A,

sTy)

1

t
7
T
e ¢ | Vg

/
d



Power System Dynamics - Stability and Control

Rig()

Aidg(t)

C1

C2
ia(t)

Ya(t)
T

ido + Aig(t) = Aig(t), ig(t) =igo+ Aig(t) =0
"/’do + A"/’d(t)a wq(t) = "/’qo + A’l/iq(t) =0
"/’diq - "/’qid =0

(b) Neglecting armature resistance,

sA¥ (3) + wp¥y(s) = —AVy(s) =0

w w
sA¥(s) —wp¥y(s) = —?BAVq == —squ,,

From the above equations, we get

2
- WhYqo
Atl) =~ r
VgoWB
Alqls) = s2q—‘;-w%

Taking inverse Laplace Transform,

Aly(s)

Aq(t)
Avpy(t)

Vgo[—1+ cos wpt]
Vgo SINwpt

Ay(s)
Xa(s)
W%”qo
T (2+ wy)

_1_ + L 1 1 + 1 1 1
STq zh z4) 1+ T} z; ) 1+sT;
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from which
1 1 1) - 1 1) -7
Aig(t) =~ -[—+(—,—-———)e 75+<—ﬁ——,)e ;Ztr] X
Td Ty Td Ty, Ty
1
+ Tcoswt] Vgo
Zq
AT, (s)
Al(s) = g
q( Xq(S)
_ vgwp |1 + 1 1 sTy + 1 1 sT;
o SP+wh|mg \T, zg) 1+T)  \z; ) 1+sT,
From which
Aiq(t) ~ Vgo su:wgt
Zq
Zad s(1 + sTy)
Alf(s) = ——2 — AIy(s
1) wpRs (1+ sTi)(1 + sT}y) als)
_ WBYgoTad (1+ sTy)
zaRp(s? +wh) (1 + sT)(1 + sTy)
from which
. Vgolad -& T ~or Ty
Ais(t) = —9070d T —[1- = [ —. t
Al O KRS L
Since,
Vgo = xad":fo
and
T, _ (xa — xp)
wpRsT; ~—

—zh) [ - T\ ~7 T
Aif(t)zifo(id ,xd) e Ti—[1-2=L}e ;;T——,l,-coswgt
T, Td

The electrical torque is expressed as

T, = (¢do + A¢d) (iqo + A'iq) - ("[’qo + A'll’q)(ido + Aid)
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-1F

-2}

-3k

Time

Figure 3.20: Variation of 44 and iy with armature transients neglected (Example

3.4)

(c)

The variations of 45 and iy with time, when armature transients are ne-
glected are shown in Fig. 3.20. The variations of i4, ¢4, %7 and T, with
armature transients considered are shown in Fig. 3.21.

The following points can be noted from the example

(i)

(i)

(iit)

The field current and torque have sinusoidal components of fundamental
frequency. The latter also has a second harmonic component.

The armature currents i,4,% % and ¢, also have second harmonic compo-
nents.

The electrical torque during short circuit is zero if armature transients are
neglected. This implies if T, > 0 (in a loaded generator) the rotor contin-
ues to accelerate from the instant of fault.

However, with armature transients included, the initial torque can be of
such value that the machine initially decelerates. This is termed as ‘back-
swing’ [51]. The effect of this phenomenon is that the critical clearing time
for a fault is higher than what is computed neglecting the backswing.
The effect of the armature resistance (which was neglected in the exam-
ple) can be considered approximately, by noting that the machine response
(with armature transients) includes a term determined by the mode (eigen-
value) calculated from the equation [2]

24208 +wh =0
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Figure 3.21: With armature transients considered (Example 3.4)
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wpR, [ 1 1 1
a= t | = 5
2 Ty T4 T,

The roots of the quadratic equation are

s=-—atji/wy-a?=-atjw

The response for 14 and %4 includes terms

where

e ®coswt and e *tsinwt

It is to be noted that w < wp. The armature currents 74, % and ¢, include
terms

e cos(wp —w)t and e *sin(wp — w)t

which are not unidirectional.
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Chapter 4

Excitation and Prime Mover
Controllers

The synchronous generator is provided with two automatic (feedback) controllers
for the regulation of the terminal voltage and frequency. These controllers in-
directly influence the reactive power and active power outputs of the generator
respectively. The regulation of the voltage is the faster of the two controllers
and has bearing on the system stability much more than the regulation of speed.

In this chapter, we will look at the modelling of the excitation and prime
mover controllers for the purposes of stability analysis of power systems. For
each control system, the models are grouped into a few standard types which
are conveniently handled in computer simulation and analysis [1-3]. The block
diagram structure of each standard type is well defined such that an equipment
belonging to that type is characterized by a set of parameters.

4.1 Excitation System

The main objective of the excitation system is to control the field current of
the synchronous machine. The field current is controlled so as to regulate the
terminal voltage of the machine. As the field circuit time constant is high (of
the order of a few seconds), fast control of the field current requires field forcing.
Thus exciter should have a high ceiling voltage which enables it to operate
transiently with voltage levels that are 3 to 4 times the normal. The rate of
change of voltage should also be fast. Because of the high reliability required,
unit exciter scheme is prevalent where each generating unit has its individual
exciter.

There are three distinct types of excitation systems based on the power
source for exciter.

1. DC Excitation Systems (DC) which utilize a DC generator with com-
mutator.
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Figure 4.1: Functional block diagram of excitation control system

2. AC Excitation Systems (AC) which use alternators and either station-
ary or rotating rectifiers to produce the direct current needed.

3. Static Excitation Systems (ST) in which the power is supplied through
transformers and rectifiers.

The first two types of exciters are also called rotating exciters which are
mounted on the same shaft as the generator and driven by the prime mover.

4.2 Excitation System Modelling

The general functional block diagram of an excitation system (for all the three
types defined earlier) is shown in Figure 4.1. The modelling of the various
components of the excitation system is described below.

4.2.1 Terminal voltage Transducer and load compen-
sation

This is shown in Figure 4.2. The terminal voltage of the generator is sensed and
transformed to a dc quantity. Although the filtering associated with the voltage
transducer may be complex, it is usually modelled as a single time constant Tg.
In many systems, T’p is very small and can be assumed to be zero for simplicity.
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Vi = |Vr + (Rc + j X )| 1+ sTh

Figure 4.2: Transducer and Load Compensation

The purpose of the load compensation is to synthesize a voltage which
differs from the terminal voltage by the voltage drop in an impedance (R.+jX.).
Both voltage and current phasors must be used in computing V.. The objectives
of the load compensation are as follows.

a) sharing of reactive power among units which are bussed together with zero
impedance between them. In this case, R, and X, are positive and the
voltage is regulated at a point internal to the generator.

b) when the generating units are connected in parallel through unit trans-
formers, it may be desirable to regulate voltage at a point beyond the ma-
chine terminals to compensate for a portion of the transformer impedance.
In this case both R, and X, are negative values.

In most cases, R, is negligible and can be ignored.

4.2.2 Exciters and Voltage Regulators

The modelling of various excitation systems has been reported in two IEEE
Committee reports [1, 2]. Modern Automatic Voltage Regulators (AVR) are
continuously acting electronic regulators with high gain and small time con-
stants.

The exciters can be of the following types

1. Field controlled dc generator - commutator

2. a) Field controlled alternator with non-controlled rectifier (using diodes)
i) with slip rings and brushes (stationary rectifier)
ii) brushless, without sliprings (rotating rectifier)
b) Alternator with controlled rectifier

3. Static exciter with
a) potential source controlled rectifier in which the excitation power is

supplied through a potential transformer connected to generator ter-
minals
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b) Compound source (using both current and voltage transformers at
the generator terminals) with

(i) non-controlled rectifier (control using magnetic elements such as
saturable reactors)

(ii) controlled rectifier (for controlling the voltage)

Historically, DC generator-commutator exciters were first to be used.
The DC generator may be self-excited or separately excited (using a pilot ex-
citer). The voltage regulator for DC excitation systems were based on rotating
amplifier (amplidyne) or magnetic amplifiers.

AC and static excitation systems invariably use electronic regulators
which are fast acting and result in the phase control of the controlled recti-
fiers using thyristors. In type 2(a) exciters, field control of the alternator is
achieved using controlled rectifier with power source derived from the alternator
output. With brushless exciters, the field circuit of the alternator is mounted
in the stationary member and is supplied through a controlled rectifier from a
permanent magnet generator. The armature of the alternator is on the rotor and
connected directly to rotating diode rectifier and thus sliprings are eliminated.

The performances of the exciters type 2(b) and 3(a) are expected to
be similar as in both systems, the generator field is directly supplied through
controlled rectifiers which have fast response. The only difference is that of the
power source for the rectifiers (and the generator field) - in 2(b) it comes from the
alternator (hence a part of the AC excitation systems) and in 3(a) it comes from
static elements (potential transformer) and thus belongs to the static excitation
systems.

In the first IEEE committee report published in 1968 [1], excitation
systems were classified not according to their power source but in an arbitrary
manner. However the IEEE Type 1 excitation system defined in that report
represents a majority of the excitation systems in service and is widely used.
It essentially represents rotating exciters but with some modifications can also
represent static exciters. This is shown in Figure 4.3. Here, Vg is the output of
the regulator, which is limited. The regulator transfer function has single time
constant T4 and a positive gain of K4. The saturation function Sg = f(EFp)
represents the saturation of the exciter.

It is to be noted that the limits on Vg also imply limits on Epp. Actually
the latter are usually specified, and the former can be found from the equation
(in steady state)

Vr — (Kg + Sg)Erp =0 } (4.1)

EFsz'n S EFD < EFDmax
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Figure 4.3: IEEE Type 1 Excitation system

IEEE Type 1 can also represent the siatic excitation system (3(a)) by specifying
the following parameters

Kgp=1,Tg=0, Sg=0 and Vrypax = KpVp (4.2)

Eq. (4.2) shows that the upper limits on the regulator and exciter out-
puts are directly related to the terminal voltage (Vr) of the generator.

4.2.3 Excitation System Stabilizer (ESS) and Tran-
sient Gain Reduction (TGR)

This is used for increasing the stable region of operation of the excitation sys-
tem and permit higher regulator gains. It is to be noted that feedback control
systems, of which the excitation system is an example, often require lead/lag
compensation or derivative (rate) feedback.

The feedback transfer function for ESS is shown in Figure 4.4. This can
be realized by a transformer (assumed to be ideal) whose secondary is connected
to a high impedance (see Figure 4.5). The turns ratio of the transformer and
the time constant (L/R) of the impedance determine K and TF according to
the relations

Erp sKr Vr
1+ sTr

Figure 4.4: Excitation System Stabilizer(ESS)
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Figure 4.5: Realization of ESS

Tr = (4.3)

Kr = (4.4)

| 2, I

The time constant is usually taken as 1 second. Instead of feedback
compensation for ESS, a series connected lead/lag circuit can also be used as
shown in Figure 4.6. Here T¢ is usually less than Tp. Hence, this means of
stabilization is termed as Transient Gain Reduction (TGR). The objective of
TGR is to reduce the transient gain or gain at higher frequencies, thereby mini-
mizing the negative contribution of the regulator to system damping. However if
Power System Stabilizer (PSS) is specifically used to enhance system damping,
the TGR may not be required. A typical value of the transient gain reduction
factor (Ts/T¢) is 10.

1+ sT¢
1+ sTg

Figure 4.6: Transient Gain Reduction(TGR)

4.2.4 Power System Stabilizer (PSS)

The stabilization provided by PSS is not to be confused with that by ESS. While
ESS is designed to provide effective voltage regulation under open or short circuit
conditions, the objective of PSS is to provide damping of the rotor oscillations
whenever there is a transient disturbance. The damping of these oscillations
(whose frequency varies from 0.2 to 2.0 Hz) can be impaired by the provision of
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high gain AVR, particularly at high loading conditions when a generator is con-
nected through a high external impedance (due to weak transmission network).

While detailed discussion of PSS will be taken up separately in chapter
8, it is worth noting here that the input signal for PSS is derived from speed/
frequency, or accelerating power or a combination of these signals. The PSS de-
sign in a multi-machine environment can be complex, as several rotor oscillation
frequencies have to be considered. In any case, the stabilizer is designed to have
zero output in steady state. Also the output is limited in order not to adversely
affect the voltage control. The stabilizer output Vs is added to the terminal
voltage error signal.

4.3 Excitation Systems- Standard Block Di-
agram

The second IEEE committee report published in 1981 [2], distinguished between
the excitation systems based on their power source. This classification is more
logical and can avoid gross approximations in the representation of different
excitation systems.

4.3.1 DC Excitation System

The type DC 1 which represents field controlled DC commutator exciters with
continuously acting voltage regulators, is shown in Figure 4.7. This is similar
to the IEEE Type 1 excitation system . The block with the transfer function
(1 + sT¢)/(1 + sT'g) represents Transient Gain Reduction (TGR) as T > T¢.
This has the similar function as Excitation System Stabilizer (ESS) which is
used in the feedback path. Normally, either TGR (in the forward path) or ESS
is used. By choosing Tg = T¢, the TGR is neglected. Similarly by choosing
Kr =0, ESS is avoided.

4.3.1.1 Derivation of the Transfer Function for separately Ex-
cited DC Generator

Consider the DC exciter shown in Figure 4.8. The equation for the field circuit

of the exciter is ” I
E,=IfRj+ —L =Ry + L;—1 4.5
s =Iply+ == Ipl + L (4.5)
The exciter voltage E; is a nonlinear function of Iy as shown in Figure 4.9. The
speed of the exciter is assumed to be constant as it is normally driven by the

generator shaft.
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Figure 4.7: Type DC1-DC commutator exciter
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Figure 4.8: Separately excited DC generator
From Figure 4.9, we can express
E
I; = 2+ AIf (4.6)
Ry
Al; = S.E; (4.7

R, is the slope of the exciter saturation curve near E; = 0. It is convenient to
express Iy in per unit of Iy, where

Eg
I = — 4.
»= R, (4.8)

E,; is the rated voltage which is defined as the voltage which produces rated
open circuit voltage in the generator neglecting saturation.
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Figure 4.9: Exciter load saturation curve

Thns, in per unit quantities, Eqs. (4.6) and (4.5) are reduced to

_ - Ry Ky dE,
Es=I—"+—"—+ 4.10

*~ R, R, dt (4.10)
where

o)

K = L1gg,

Since
Es = Vg

equations (4.9) and (4.10) represent the exciter block diagram shown in Figure
4.10. Here

Ky
= Zf (4.11
Tg R, )
!
sp = o8 (4.12)
R!]
Ry
N 4.1:
K R, (4.13)
Erp = E, (4.14)
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Ve=E, + 1 Erp = E;
sTg
Ry
R,
+
Sg
+

Figure 4.10: Block diagram of separately excited DC generator

4.3.1.2 Self Excited DC Generators

Figure 4.11 shows the schematic diagram of the self-excited exciter.’ E, repre-
sents the voltage of the amplifier in series with the exciter shunt field. Hence,

E,=E,+E, (4.15)
Using this relation along with the block diagram given in Figure 4.10 and noting

Rp

—_ | °
Eq

o

o

E.|

Figure 4.11: Self Excited DC Generator

that
E,=Vgp (4.16)
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We can reduce the block diagram of the self-excited exciter to that given in
Figure 4.10 with the modified value of K, as
Ry

K==L (4.17)
E Rg

The field resistance Ry is periodically adjusted to maintain Vg = 0 in steady
state. For this case, from Eq. (4.1), we get

Kg = —Sk, (4.18)

where Sg, is the value of saturation function Sg at the initial operating point.
It is to be noted that K is generally negative for self-excited exciter.

4.3.2 AC Excitation System

Type AC 1 (Field controlled alternator rectifier, with non-controlled rectifiers)

excitation system is shown in Figure 4.12. This is different from earlier repre-

sentation [1] in that a) the armature reaction of the alternator (KpIrp) and b)

rectifier regulation (Fgx) are considered. The constant Kp is a function of the
\

RMAX
H v, [
vV ere 14T K, |Vg 1 Ve RN E o
nx) L4sT L4sT |z T 1)
j/ 8 B § A ~ S E -
Ve _ ] _/ Fpx
v 0
RMIN
Fo=fy
Iy
K~ I
I e c '™
Kg+ Sg Iy=
{ v
+ £
sl(F 5
L+sT v
F FE  + K "rp

Figure 4.12: Type AC1-Alternator-rectifier excitation system

alternator synchronous and transient reactances. The constant K¢ is a function
of the commutating reactance. The function Fgx is defined as follows

Iy . \/—3
F = —_— < —
EX 1 \/g "’f IN =3
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Figure 4.13: Exciter Saturation Characteristics

T, .. V3 3
= VBU-Iy) if In>3

The signal Ve i8 proportional to the exciter field current. This signal is also
used as input to the Excitation System Stabilizer (ESS).

4.3.3 Saturation Function

The exoter saturation function Sg is defined as a multiplier of per unit exciter
voltage to represent the increase in exciter field current (expressed in per unit)
due to saturation. It applies both to DC and AC exciter. The exciter saturation
characteristics are shown in Figure 4.13. At a given exciter voltage (Erp),
the quantities A, B and C are defined as the exciter field currents required on
(a) constant resistance load saturation curve (b) air-gap line and (c) no-load
saturation curve respectively. for DC-commutator exciters, Sg is defined as

A-B
p = — 4.2
5g B (4.20)
When exciter field resistance is significantly different from the base resistance
value, the adjusted value of Sg; should be used instead of Sg (Note: S%; is defined
in 4.9).

For alternator-rectifier exciters, Sg is defined using no-load saturation
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curve, as
C-B
Sg = 5 (4.21)

The no-load saturation curve is used in the case of alternator-rectifier exciters as
the exciter regulation effects are taken into account by the synchronous reactance
and commutating reactance voltage drops, considered separately.

Mathematically the saturation function, Sg, is modelled as
Sg = AgeBeFrp (4.22)

The constants A, and B; can be found if Sg is specified at two different values
of Erp. Usually, Sg is specified at or near ceiling voltage and at a lower value,
commonly at 75% of that level.

4.3.4 Static Excitation System

In these systems, transformers are used to convert voltage (and also current
in compounded systems) to the required level of the field voltage.Controlled or
uncontrolled rectifiers are then used to provide the dc voltage for the generator
field. Although negative field voltage forcing is used, many of the excitation
systems used do not permit negative field current. This aspect is normally
ignored in computer simulation but can be significant semetimes (particularly
in asynchronous operation). As the exciter ceiling voltage tends to be high in
static exciters, field current limiters are used to protect the exciter and field
circuit. However, this protection is also not modelled except in special cases.

The block diagram of the potential source, controlled- rectifier excitation
system is shown in Figure 4.14. The internal limiter following the summing
junction can be neglected, but field voltage limits which are dependent on both
Vr and Irp must be considered. For transformer fed systems K¢ is small and
can be neglected.

The block-diagram given in Figure 4.14 is also similar to that of alter-
nator supplied controlled rectifier excitation system. The only difference is that
the field voltage limits are not dependent on the generator terminal voltage Vr
in the case of alternator supplied system.

4.4 System Representation by State Equa-
tions

For digital computer simulation (and also for state space analysis of the overall
system), it is necessary to describe the system by state equations. Given the
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Figure 4.14: Type ST1-Potential source controlled rectifier exciter

block diagram representation of the system, it is possible to derive the state
equations.

The choice of the state variables is not unique for a given transfer func-
tion. However, the minimum number of state variables required, is invariant. If
the zeroes of the transfer function do not coincide with the poles, the minimum
number of state variables is equal to the total number of poles.

4.4.1 Derivation of State Equations from Transfer
Functions

It is assumed that the number of zeroes of a transfer function does not exceed
the number of poles. Any general function can be expressed as a product of
simpler functions with not more than two poles and two zeroes. These can be
real or complex. Let the second order transfer function be expressed as

g(s) = Fls) = K((11++b?;s++b:§2s)2) (4.23)
This can also be expressed as
Y(s) = (1 + a8+ ags?) Z(s) (4.24)
and
Z(s) = —2U L) (4.25)

- 1 4 b1s + bys?
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Defining the state variables as

Ty =2z (4.26)
o = il =2z

the Eq. (4.25) represents a simplified block diagram (or signal flow
graph) in which the dynamic blocks are only integrators. This is shown in
Figure 4.15. The state equations are readily written below as

&) =z (4.27)
a (e

From Eq.(4.24), we get
y = (21 + a122 + a2ds) (4.29)

Substituting from Eq. (4.28), (4.29) can be finally expressed as

L
bs

+l>*_

(
I

® | —
8
(%)
[V
B
i
N

Figure 4.15: Block diagram representation of Eqn 4.25

K
y= (1 - 5:_2) T+ (al - @bl) Ty + 2y (4.30)
2 2

If all the poles and zeroes of a transfer function are real, the simplest
transfer function (as a factor of the overall transfer function) is given by

K(1+ sTy)
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This function can be represented by a block diagram shown in Figure 4.16. From
the diagram, the equations are

s= (Lo KT =Tomy s
AN s

It is to be noted that if T} = 0 then

It is also to be noted if T} = T3, there is a pole-zero cancellation. In this case
z=0and y= Ku.

1
I
u K(T - T) +©_ 1 x| *tey L
2 p S
KT
T,

Figure 4.16: Block diagram representation of Eq.(4.31)

4.4.2 Inclusion of Limits

There are two types of limiters

1. Windup Limiter
2. Non-Windup Limiter
As the behaviour of these limiters are different, it is necessary to indicate the

type of the limiter in the block diagram using the convention shown in Figure
4.17.
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In the case of the windup limiter, the output variable (y) of the transfer
function is not limited and is free to vary. In this case the limiter can be treated
as a separate block whose input is y and the output is 2. If

1
F(s) =
)= 1537

the equations with the windup limiter are

| F(s) y7£> e F (s) ?y-——>
zZ z

L _/

(a) (b)

Figure 4.17: (a) Windup limiter (b)Non-windup limiter

dy u-y
ut A 4.3
dt T (435)
If
L<y<H, then z=y
y > H, then z=H (4.36)

y< L, then 2=1

In the case of the non-windup limiter, the output of the transfer function
is limited and there is no separate block for the limiter. The equations in this
case are

f=@=-y)/T (4.37)
If y=H and f >0,
y=L and f<O0,
dy
h = =
then, 7 0
otherwise,
dy
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and
L<y<H (4.38)

Note that

1. Windup limiter can result in slow response as the output z of the limiter
does not change until ¥y comes within the limits.

2. Generally, all integrator blocks have non-windup limits.

4.4.3 Examples

Example 1: IEEE Type 1 Excitation System

This system is shown in Figure 4.3 and has been widely used. The
equations for the system are given below

dE 1
D — _—(~[Kg+ Se(Erp)| Erp + V&) (4.39)
dt Tk
dVs 1 Kp
e i ) 4.40
dt Tn |72t 7 B (4.40)
av; 1
A4 R R TR 4.41
VErr = VeRer—-Wi (4.42)
K
Vi = —LEpp-Vo (4.43)
Tr
1
Fp = T [-Vr + Ka(VERR + V5 — VF)] (4.44)
If VR > Vemax set Vg = Vrmax )
If VR=Vrmax and Fr > 0, set (%,tﬂ=0
If VR < Vrymin set Vgp=VgrMmIN \ (4.45)
If VR=Vrminy and Fgr <0, set %/t-R:O
Otherwise , % = Fg
dt J

It is to be noted that the limiter is represented as a non-windup limiter.
Example 2 : Static Excitation System

This is shown in Figure 4.14. Many modern excitation systems can be
represented by the block diagram shown in the figure. The equations are given
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below for the case neglecting K¢. The internal limits are also neglected. The
system includes TGR. instead of ESS.

Vi = Verr+Vs (4.46)
av, 1 (Ts ~ 1)
Vg = Vi+ EV[ (4.48)
Tp
dV4 1
— 2 = (= 4.
g7 T (V4 + KaVB] (4.49)

If

VrVemin < Va4 < VrVemax, then
Erp=Va (4.50)

If V4o > VrVemax, then Epp = VrVemax
If V4 < VrVrMmIN, then  Epp = VrVeumin

4.5 Prime-Mover Control System

The regulation of frequency in the system requires the speed control of prime-
mover using governor. However, parallel operation of generators requires a droop
characteristic incorporated in the speed-governing system to ensure stability and
proper division of load. Hence, to maintain constant frequency, an auxiliary
control is required which responds to a load unbalance. Also, it is necessary for
the prime-mover control to adjust the generation according to economic dispatch.

Thus, different prime-mover controls are classified as (a) primary (speed-
governor), (b) secondary (load frequency control) and (c) tertiary (involving
economic dispatch). With increase in the system size due to interconnections,
the frequency variations (in normal conditions) become less and less and load
frequency control assumes importance. However, the role of speed governors in
rapid control of frequency cannot be underestimated.

In stability studies, the secondary and tertiary controls are usually ne-
glected. Only speed-governing systems including turbines need to be repre-
sented. In this section, both turbine and governor models are presented based
on the IEEE report published in 1973 [3].
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Figure 4.18: Hydroturbine model

4.5.1 Modelling of Turbines
4.5.1.1 Hydraulic Turbine

The hydraulic turbine is approximately represented by the block diagram shown
in Figure 4.18. The time constant Ty is called the water starting time or water
time constant. The equation for Ty is

Ly

Ty = =2
W Hrg

(4.51)

where L is the length of the penstock, V is the water velocity, Hr is the total head
and g is the acceleration due to gravity. For more accurate models, travelling
wave phenomenon in penstock need to be considered. However, this is not
required in stability studies.

The input Pgy for the turbine comes from the speed-governor. It is the
gate opening expressed in per unit. Values for Ty lie in the range of 0.5 to 5.0
seconds with the typical value around 1.0 sec.

It is to be noted that hydroturbine has non-minimum phase characteristic
and results in slower response. The response to a unit step input is shown in
Figure 4.19 and is compared to the response, if the zero in the R.H.P. for the
transfer function shown in Figure 4.18, did not exist.

4.5.1.2 Steam Turbine System

There are six common steam turbine systems given below

(i) Nonreheat

(ii) Tandem Compound, Single Reheat
(iii) Tandem Compound, Double Reheat
(iv) Cross Compound, Single Reheat with two LP turbines
(v) Cross Compound, Single Reheat with single LP turbine
(vi) Cross Compound, Double Reheat
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-10 a - actual response

b ~ response neglecting zero in RHP

Figure 4.19: Response of a hydroturbine to a unit step input

Tandem compound has only one shaft on which all the turbines, High Pressure
(HP), Intermediate Pressure (IP) and Low Pressure (LP) turbines are mounted.
Sometimes there is a Very High Pressure (VHP) turbine also. Cross compound
systems have two shafts driving two independent generators. The configura-
tions corresponding to (ii) Tandem Compound, Single Reheat and (iii) Cross
Compound, Single Reheat are shown in Figure 4.20. This does not show the
extraction of steam taken at various turbine stages to heat feedwater, as this has
no major significance in stability studies. The block diagrams for the steam tur-
bine systems given in Figure 4.20 are shown in Figure 4.21. All compound steam
turbines use governor controlled valves at the inlet to the high pressure turbine,
to control the steam flow. The steam chest, reheater and crossover piping all
introduces delays. The time constants Tog and Try and Too represent these
delays. The fractions Fgp, Frp, Frp represent fractions of the total turbine
power developed, in the HP,IP and LP turbines respectively. Typical values for
Tcr, Try and Teo are

TCH = 01-04s
Try = 4-11s
TCO = 03-05s

The typical values of Fgp, Frp and Frp are 0.3, 0.3 and 0.4 respectively, the
sum adding to unity.
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Figure 4.20: Steam system configurations

4.5.2 Speed-Governing Systems

There are two types of speed-governing systems, namely

a) Mechanical-Hydraulic
b) Electro-Hydraulic

In both types, hydraulic motors are used for positioning the valve or gate control-
ling steam or water flow. The speed sensing and conditioning (at low power) for
electro-hydraulic governors is done using electronic circuits while for mechanical-
hydraulic governors, it is done using mechanical components.

4.5.2.1 Hydroturbines

The mechanical-hydraulic speed-governing system for a hydroturbine consists
of a speed-governor, a pilot valve and servomotor, a distributor valve and gate



4. Ezcitation and Prime Mover Controllers 135

Fyp
Pav 1 1 1
1+5sT oy 1+sT gy 1+sT
(a) Tandem compound, single reheat
£
)y P
+
-
LP
F HP
2
Pov | 1 1 ot
14T o 1+sTRH 1+5T
F
LP
Fp —
2
JL\
+
A

(b) Cross compound, single reheat

Figure 4.21: Steam turbine models

servomotor and governor controlled gates. A functional block diagram is shown
in Figure 4.22. Because of the effects of water inertia on hydroturbine, a dashpot
feedback is required for stable performance.
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Figure 4.22: Speed governing system for hydroturbines-functional block diagram

An approximate nonlinear model for the hydro-governing system is shown
in Figure 4.23. The typical values and ranges of parameters are given in Table
4.1. It is to be noted that Ty and § are computed from

Tp=5Tw , 6=125Tw/H

where H is generator inertia constant, Ty is the water starting time.

Table 4.1 Typical Values of Parameters
for Governors of Hydroturbines

Parameter | Typical Value | Range
Tr 5.0 2.5-25
Ta 0.2 0.2-0.4
Tp 0.04 0.03-0.05

] 0.3 0.2-1.0
o 0.05 0.03-0.06

The electro-hydraulic governor has essentially same dynamic performance
as that of mechanical-hydraulic governor. Hence a common simplified block di-
agram for the speed governing system for hydro-turbine is employed in stability
studies and is shown in Figure 4.24. The parameters of this block diagram can
be determined from those defined in Figure 4.23.

2
T, Ty = 24| 1E

5 LT (4.52)
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Figure 4.23: Model of Speed governing system for hydroturbines

where
Ty = (l) TrTc
o

Tp = (s) [(o + 6)Tr + Tg]

The other parameters are given as

K=l , Ta=0 (4.53)
o
P, is the initial power (load reference determined from automatic generation
control). The output of the governor is Pgy which is expressed as power refer-
ence in per unit. It is to be noted that K is the reciprocal of o (steady state
speed regulation expressed in per unit).

4.5.2.2 Steam Turbines

The mechanical-hydraulic governing system for a steam turbine consists of a
speed governor, a speed relay, a hydraulic servomotor and governor controlled
valves. A functional block diagram is given in Figure 4.25.

A functional block diagram for the electro-hydraulic governor is shown
in Figure 4.26. The feedback from steam flow (or pressure in the first stage
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Figure 4.24: General model of speed governor of hydroturbines
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Figure 4.25: Mechanical-hydraulic speed governing system for steam turbines-
functional block diagram

turbine) and the servomotor feedback loop provide for improved linearity over
the mechanical-hydraulic governor system.

A simplified, general model for the speed-governing systems for steam
turbine is shown in Figure 4.27. Typical values of time constants (in seconds)
are given below.

Mechanical-hydraulic governor : T3} =0.2-0.3, T, =0, T3 = 0.1
Electro-hydrualic governor : Ty =T, T3 =0.025 - 0.15

Note that when T7 = T5, the value of T} or T, has no effect as there
is pole-zero cancellation. For studies involving the dynamic performance for
midterm and long term, it is essential also to model boiler controls in addition
to automatic generation control (AGC). In this context, it is relevant to note
that there are two basic modes of energy control in fossil fueled steam generator
units -
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Figure 4.26: Electro-hydraulic speed governing system for steam turbines-
functional block diagram
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Figure 4.27: General model for speed governor for steam turbine

1. Boiler following (or turbine leading) mode
2. Turbine following (or boiler leading) mode

In the first mode of control which is applicable to many drum-type boilers
(and also a few once-through boilers), changes in the power are initiated by
turbine control valves and boiler controls respond to changes in steam flow and
pressure. The response to small changes in power demand are rapid as turbine
utilizes the stored energy in the boiler. However large changes can be detrimental
to the boiler operation as large excursions in steam pressure and flow result
following changes in the valve position.

In the second mode of control, (boiler leading turbine) the turbine control
valves are made to regulate boiler pressure and changes in generation are made
through boiler controls. The fast action of the turbine control valves can be
utilized to maintain the boiler pressure almost constant. However, in this mode,
the response of the turbine power to a change in load demand is slow as the
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Figure 4.28: Basic structure of prime mover and energy supply system

lags in the fuel system and boiler storage affect the response. A compromise
between the two desired objectives - (a) fast response and (b) constraints of
regulating pressure and temperatures for maintaining boiler safety is achieved
by the adoption of control modes termed as coordinated, integrated or direct
energy balance. The need for close coordination between boiler and turbine
controls is more crucial for once - through boilers than drum type boilers [14].
A recent development is to use turbine leading mode for small changes in steam
pressure and switch to boiler leading mode for large changes.

The basic structure of the overall prime mover and energy supply controls
is shown in Figure 4.28. The mechanical power Py, is a function of the steam
pressure (Pr), control valve flow area (CV) and intercept valve flow area (IV).
The boiler outputs, Pr and 7ns (steam flow rate) are modelled as functions of
CV and fuel, air and feedwater flows. The pressure effects of the reheater are
included in the turbine model.

The speed/load control block represents the turbine control logic in re-
sponse to changes in speed/load reference (LR), speed(w), steam pressure (Pr)
and possibly in the case of fast valving applications, in response to changes in
the electrical power (P,) and generator current (I).

The boiler turbine controls establish the load reference LR in response
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to the load demand (LD) set either manually or by AGC. Other inputs to the
control logic are plant frequency (f), Pr and 7. In its simplest form, the boiler
and turbine controls are decoupled, with power changes implemented directly
through load reference (LR) and boiler controls responding to changes in Pr
and 7.

4.6 Examples

Example 4.1

A generator equipped with a static excitation system is on no load (open cir-
cuited). The terminal voltage Vr in this case, is related to Erp by the transfer
function

1

Vp=——
T 14T,

Erp

The overall system block diagram is shown in Figure 4.29. The system is initially

1
T+ T,
Vr Erpmax
VreF +ﬁ2\ 1+ sT¢ K4 r
__\./ 1+ sTg 14 8Ty J Erp
Vr
ErpMmIN
sKr
14 8Tp

Figure 4.29: System block diagram(Example 4.1)

in steady state with Erp = Vp = 1.0. Obtain the response of Erp for a step
increase in Vrer by 0.2 pu, for the two cases

() Tj,=5s (b)T;=1s

The excitation system data : K4 = 400, T4 = 0.025s, Tp = 10s,

Erpmax = 6.0, Erpyin = —6.0, Tr = 1.0s

(i) K =0.0, Tc = 10 s (No TGR or ESS)
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(i) KF = 0.0, Tc =1 s (No ESS, only TGR)
(i) Kr =0.03, T¢ = 10 s (No TGR, only ESS)
(iv) Kr =0.03, Tc =1 s (TGR and ESS are included)

(Note that with Kr = 0.0, the effect of ESS is not considered, with Tp = T,
there is a pole zero cancellation and TGR is not considered)

Solution

The system equations can be obtained from the block diagram represen-
tation given in Figure 4.30 which is equivalent to that shown in Figure 4.29.
These are

dVa 1
T
VB = zp+ -2V (4.55)
Tp
Vi = Veer—VFr—-Vr (4.56)
dvr 1
i 4,
& = 7y -Vr+Erol (4.57)
VFr = —I{—FEFD - R (4.58)
TF
dzp 1 Kp
& = T [ zr+ 7 EFD] (4.59)
dzp 1 Te
it T_B[ 2B+ (1 TB) V’] (460)
Erp = Va if Erppmin < Erp < EFrpmax
= Erpmin i Epp < ErpMIN (4.61)

= Erpmax i Erp > Erpmax

The initial conditions for the four state variables are obtained as

Va(0) = Epp(0) = 1.0, z5(0) = Y%? [1 _ %]

zr(0) = %EFD(OL Vr(0) = 1.0

The reference voltage Vrer is calculated as

Va(0)

Vrer = Vr(0) + K,
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Figure 4.30: Block diagram indicating state variables (Example 4.1)

The system equations can be simulated using any numerical integration
method (say modified Euler’s method). The results (variation on Epp with
time) for case (a) are shown in Figure 4.31 while for case (b) are shown in
Figure 4.32. The disturbance is initiated at ¢ = 0.5 s. Each figure shows the
results for the four different conditions, namely (i) with no TGR or ESS (ii)
with TGR (iii) with ESS (iv) with both TGR and ESS.

The results show that either TGR. or ESS is necessary to improve the
response which tends to be oscillatory and takes more time to settle (particularly
for case (b)) without TGR and ESS . For this example, ESS gives slightly better
results compared to TGR. There is no real advantage in having both TGR and
ESS . The presence of both TGR and ESS has the effect of preventing the AVR
hitting the upper limit during the transient but the settling time is actually
increased, particularly for case (a).

It is interesting to observe that the response time of the excitation system
is within 0.5s even when T}, = 5 s. The use of TGR or ESS helps in reducing
the settling time when T}, is small. Although this example refers to the noload
operation of the generator, the results can be related to system operation under
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Figure 4.31: Variation of Efq (Example 4.1 - case (a))

load. In this case T}, is to be replaced by a generator time constant Tg, where
T; < Tg < Ty,

The final steady state value of Erp or Vr is given by the relation

_ Erp _ ( 1)
Verer = V1 + R, = Erp 1+KA

Substituting the value of Vrgr = 1.2025, we get

Erpp =V =120
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Figure 4.32: Variation of E¢y (Example 4.1 - case (b))

Example 4.2

The generator is initially operating with Vr = 1.0, Erpp = 2.2, while
supplying load. The generator breaker trips suddenly at ¢ = 0. Obtain the
response of the excitation system. The data is as given in Example 4.1 with
Kr = 0.0 and (i) Tc = 10 s (no TGR) (ii) T¢ = 1 s (with TGR).

Solution

The reference voltage in this example is given by

Erp(0)

Vrer = Vr(0) + K

= 1.0055
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The initial conditions for the state variables are

V4(0) =2.2, zp(0) =0.00495 (with TGR)
Vr(0) =10, zp(0)=0

The results ot the simulation for cases (a) and (b) are shown in Figure
4.33 and 4.34 respectively. The variations of both Erp and Vr are shown. It is
interesting to observe that although the response is non-oscillatory with TGR,
it is slow compared to the case without TGR (particularly for Tj, = 5 s) Also
the peak values reached are higher in the case with TGR. Thus the advantages
of using TGR are suspect.

1006 T~ v 25 T —
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| — — s .
0 02 04 08 08 1 12 14 16 18 2 %% 05 1
Time (sec} Time (sec)

(i) Variation of V; (without TGR) (i) Variation of E¢q (without TGR)
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(i1) Variation of V; (with TGR) (ii) Variation of E¢4 (with TGR)

Figure 4.33: Variation of Efq (Example 4.2 - case (a))
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Figure 4.34: Variation of E¢y (Example 4.2 - case (b))

It is to be noted that without AVR the terminal voltage would have
reached the value of 2.2 pu (the same as E4(0)), neglecting saturation.

Example 4.3

A generator is driven by a hydroturbine and is delivering a constant
power load. The governor input Aw (incremental per unit speed) is determined

from the differential equation

ZH%‘—? =P, P, (4.62)

The overall system representation (neglecting limits) including the governor,
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turbine and generator rotor is shown in Figure 4.35. The permanent speed
droop is neglected in modelling the governor. For the system to be stable, show
that

1 —-15a
Milinkihnd 4.63
b<—v—4 (4.63)
where
Tw _ Tw
*=Tp P
1
2Hs
14+ sTg 1~ sTw
s0Tr : 14 0.58Tw

Figure 4.35: Block diagram (Example 4.3)

Solution

From small signal analysis (using incremental quantities) the character-
istic equation for the third order system shown in Figure 4.35 can be expressed
as

STrHTyws® + Tr(2HS6 — Tw)s® + (Tr — Tw)s +1 =0 (4.64)

Applying Routh-Hurwitz criterion, the condition for stability can be obtained
as

(Tr - Tw) - ﬁg’}—%’;—ﬂ 0 (4.65)
2H6 - Tw) > 0 (4.66)
(Tr —Tw) >0 (4.67)

As Tr > 0, H > 0, the inequalities (4.66) and (4.67) imply
>0, a<l, <1
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The inequality (4.65) can be expressed as

0.5a
l-a———>0
1-8
After some manipulations, the above criterion can be reduced to
1 - 1.5c
<
b l-a
Remarks
1. The governor transfer function shown in Figure 4.35 is an approximation

of what is shown in Figure 4.23. This can be seen from the fact that a
system with feedback transfer function H(s) can be approximated as

G(s) 1

TO) = 11 G HE) = H)

(4.68)

where T'(s) is the overall transfer function, G(s) is the transfer function in
the forward path.

Applying this to the block diagram in Figure 4.23, the governor transfer
function is approximately given by

1

JSTR
o+ 14 s8Tg

T(s) ~

Letting 0 = 0 (neglecting permanent speed droop), the transfer function
is same as that given in Figure 4.35.
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Chapter 5

Transmission Lines, SVC and Loads

In this chapter, the modelling of the elements of the AC network, external to
synchronous generators, is discussed. The AC network primarily consists of
transformers, transmission lines, shunt and series reactive compensation devices
and loads. In power system modelling, a transformer is represented by leakage
impedances connected in series. Shunt reactors, shunt and series capacitors are
also represented by linear impedances.

In recent times, Static Var Compensators (SVC) are used for fast reactive
power control in power systems. The major benefits are improvement of system
stability and voltage regulation. It is necessary to model these devices in stability -
studies.

5.1 Transmission Lines

Transmission lines are basically distributed parameter devices. For the study
of fast switching transients, it is necessary to model them in some detail. For
example, the frequency response of a line can be approximated by cascaded
connection of n networks - a lumped parameter model. However for power
system dynamic performance studies involving frequencies below fundamental
(synchronous frequency), the representation by a single 7 circuit is adequate. As
a matter of fact, for studies involving low frequency transients, the transmission
lines can be assumed to be in quasi-steady state - the voltages and currents can
be assumed to be sinusoidal with slowly varying amplitudes and phase angles.

A basic assumption in the modelling of three phase transmission lines
is that they are symmetric. This implies that the self impedances of all the
three phases are equal. Also, the mutual impedances between any two phases
are equal. An additional assumption is that the line parameters are constant -
the network is linear. It can be shown that, in steady state, a symmetric three
phas2 linear network connected to synchronous generators has only fundamental
frequency voltages or currents. On the other hand, a lack of symmetry leads to



52 Power System Dynamics - Stability and Control

unbalanced currents (with negative sequence components) which can result in
third harmonic voltage generation.

The symmetry is disturbed during unbalanced faults such as single line
to ground or line to line faults. However, their duration is brief and the presence
of harmonics can be neglected.

5.1.1 Modelling of Transmission Network

A single phase 7 equivalent of a transmission line is shown in Fig. 5.1. However
it is to be noted that the coefficient matrices, inductance [L], resistance [Rl and
capacitance [C] are all 3x3 matrices. These are defined as

1 [L] [R] 12
T A AN ——
i
+] 30 slc |+
m T T ve
o o

Figure 5.1: A single phase 7 equivalent of a transmission line

Ly Ly Lpy R; Rm Ry C; Cn Cnm
[L] =| Lm Ls Lpn |, [R] =| Rm Rs BRp |, [C] =|Cn C; Cn
Ly Ly Ly Rm R,, R, Cm Cm Cs
The network equations are
di
(L)= + [Bli = v — v (5.1)
1 dvl . :
2[ E— =171 —1 (52)
1 dv2 . :
5[01—&— =1i—1ip (5.3)

where vy, v2,4;1,%2 and 7 are three dimensional vectors, with phase variables as
elements. For example,

it = [ia ib ic],
vl =[via vy w1

v = [vq vap Vo]



5. Transmission Lines, SVC and Loads 153

5.1.2 Transformation to D-QQ components

If generator is described by variables in d-q components, using Park’s transfor-
mation, it stands to reason that the external network equations should ulso be
expressed in d-q components. However, there is one problem and that is Park’s
transformation is not unique and each generator has individual d-q components
(corresponding to the individual transformation).

For a connected network, it is obvious that the entire network is to be
transformed using a single transformation with reference to a common, syn-
~hronously rotating reference frame. Such a transformation is termed as Kron'’s

usformation defined as

fa 5 cos 602 sin 002 # o
i | = \/; cos(fo — ) sin(bo — F) 75 fo (5.4)
fe cos(0,+ %) sin(6,- %) L | L fo

= [CK]fDQo

where fho, = [fp fo fo]

It is to be noted that f can be any variable, voltage or current. 8, is
defined as

0o = wot +7v (5.5)

where w, is the average (synchronous) frequency in the network in steady state
and 7 is a constant. The difference between Kron’s transformation [Ck] and
Park’s transformation [Cp] lies in 8, being replaced by 6 in Park’s transforma-
tion. 8 is defined by

0 =wet+90 (5.8)

It is to be noted that § is dependent on the generator and not a common variable.
[Ck] is defined such that
[Ck]™" = [Ck]* (5.7)

In other words, [Ck] is an orthogonal matrix and satisfies the condition for a
power invariant transformation.

The relationship between [Cp] and [Ck] is given by
[CP] = [Ck][Th] (5.8)

where

[T\ = | —sind cosd O

0 0 1

cosd sinéd O
(5.9)

T

-
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It is to be noted that [T}] is also an orthogonal matrix. Actually, [T;] defines
the transformation between Park’s and Kron’s variables, as

fp fa
fo | =[] fq (5.10)
fo Jo

where fq, fq are Park’s components and fp, fo are Kron’s components (with
respect to a synchronously rotating reference frame). Note that subscripts D,Q
are associated with Kron’s transformation. This convention will be followed
throughout.

Applying Kron’s transformation to Eq. (5.1) results in

di
Ll-% + wolnig + Ryip = vip — v2p (5.11)
dig . .
Llﬂ — wolip + Ritg = v19 — v20 (5.12)
di, ]
LOE{ + Ryip = V1o — V20 (5.13)

The last equation can be neglected if no zero sequence voltages or currents are
present. L1, Ry, L, and R, are defined by

Li=Ly~ Ly, Ly=L;+2Ly
Ri=R;—-Rm, R,=R,;+2R,

It is to be noted that L; and R; are positive sequence (or negative sequence)
quantities. Applying Kron’s transformation to Eqs. (5.2) and (5.3) gives

1 _dvup w , .

501—d—t' + ?001’01Q =11D — 1D (5.14)
1 ,dvig wo iy ,

-2—017 - —2—01’011) =11Q — 1Q (5.15)
10320 | Yo g = ip —i (5.16)
e dt ) 1Y2Q =D — 2D .

1 d’l)2 W . .

501 dtQ - 7001'02D = ’I.Q - ’LzQ (517)

The zero sequence variables are normally neglected and their equations can be
omitted. C is positive sequence capacitance given by

01203_01”
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Denoting A
L = i@ + jip, U1 =v1Q + jvip, U2 =v2 + jv2p (5.18)
Egs. (5.11) and (5.12) can be expressed as

>

d: ) P
lel% + (R1 + jwolLy )t = 9y — Do (6.19)

Yom Eq. (5.10), we have

fp cosdfq +sindfy
fo = —sindfs+cosdfy

(5.20)

from Eq. (5.20), we can obtain

fo+ifp=e"(fg+3fa) (5.21)

From Eq. (5.21), we can express Eq. (5.19) as

; dv' dd
8 we et
el L1 +]dt

o7 L7 + (R + jwaLl)z'] = (9] — 9) ° (5.22)

where

3 . .. N . N .
1 =1 +sza V] = Vigq +J'U1d, Vg = V2q +.7'U2d

implifying Eq. (5.22) we get

~

!
Lllfi—zt + (R + ijl)i’ = 9] — 0 (5.23)
~vhere
=we + Eié
W= n

Eq. (5.23) can also be derived directly from applyiag Park’s transformation.
Eq. (5.21) is a very useful relation and can be represented by a phasor diagram
shown in Fig. 5.2.

5.1.3 Steady State Equations

neglecting transients, the equations that are applicable in steady state are ob-
ained by neglecting variations in D-Q components. These complex equations
fe

(R + jwoL )T =V, =V, (5.24)
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. D - axis
d -~ axis

fp

— axis

f o Q- axis

Figure 5.2: Phasur diagram showing relationship between dq and DG variables

jwa%vl =5 -1 (5.25)
jw,,%f/g =I-1I (5.26)

These equations describe a single phase circuit shown in Fig. 5.3 with sinusoidal
excitation. (It is to be noted that the constancy of ip and ig implies sinusoidal
currents in the line). In Fig. 5.3, Z and Y are defined by

Z=R;+jwly, Y =jw,,01

For long transmission lines, an exact m equivalent shown in Fig. 5.4 is applicable

I Z I,
(o) ';I -0
i
Y Y
. p) 2 X
VlI 17
(o) l O

Figure 5.3: Positive sequence cercuit for steady state

in steady state, where

_ ZsinhyZY Y tanh(VZY/2)

Z=—rz WeadD)
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oy —0

Figure 5.4: An exact m equivalent for steady state

R;, L; and C) are calculated by multiplying the positive sequence R, L and C
parameters per unit length by the length of the line.

The AC system consisting of transmission lines, transformers and other
impedance elements can be represented by a single phase equivalent network (in *
positive sequence parameters). The equations for such a network are expressed
conveniently using a bus admittance matrix as

YV =I (5:27)

where I are current injections at the nodes. At generator nodes, I consists of
armature currents and at load nodes, I consists of load currents (treated as
injections). At a given bus, both the generators and loads may be present in
which case, algebraic sum of generator and load currents is to be considered.

5.2 D-Q Transformation using o — 8 Vari-
ables

Stationary three phase symmetric matrices can be decoupled through transfor-
mation involving constant real matrices. The most well known among these is
Clarke’s transformation using a — 8 variables. Using a power invariant trans-
formation given by

Ja fa
fo | =ICcl| 18 (5.28)
fe fo
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where
2 1
el 0 —
i 0 5
RN B SR U
6 2 3
I G
V6 V2 V3
Eq. (5.1) is transformed to three decoupled equations given below
di .
Ll% + Ryig = v1p — vap (5.30)
dz.o .
Lo— + Ryip = V10 — V2 (5.31)

dt

The advantage of using Clarkes c, 8, o components is that a three phase
network is transformed to three decoupled networks ‘e/, ‘8’ and zero sequence.
Out of these, the ‘@’ and ‘8’ networks are identical and zero sequence network
can be generally neglected (in the absence of zero sequence currents). Thus, the
circuit shown in Fig. 5.1 is transformed to two decoupled circuits shown in Fig.
5.5. Although the two circuits are identical, it is to be noted that the currents
and voltages are different in the ‘o’ and ‘8’ circuits.

Yo L, R, La Y L, R, L
O'*T/WV\ AN > o TAATATAN ANN— o
iy ig
L ¢ c, 2 4!: Cy C; A2
Vie| 72 2 | Vo Vig| 72 2 | V2B
o o o o

(a) o — sequence (b) P- sequence
Figure 5.5: Sequence Networks
The transformation from afo to DQo components is given by
f [ f D
fs | =]} foq (5.32)

fo fo
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where

cosf, sinf, O
[T2]=| —sin6, cosf, O
0 0 1

It is to be noted that [T3] is similar to [T}] in that d is replaced by 6,. It is not
difficult to see that transformation from afo to dgo component is given by

fa fd
fo | =[T3]| fq (5.33)
fo fo

where

cosf sinf O
[T3] = | —sinf cosf O
0 0 1

The advantage of using a3 variables for a stationary network is that the
state (differential) equations for the network can be obtained on a single phase
basis. For the single phase ‘a’ network, the general equations are

Zo = [AN]Zo + [BNjua (5.34)

where z,, are the state variables which consist of inductor currents and capacitor
voltages (Note that only those inductors which form part of cotree (links) and
capacitors which form part of tree are considered). The equations for ‘4’ network
can be expressed as

&g = [An]zp + [BN]us (5.35)

The structure of Eq. (5.35) follows from the fact that ‘8’ network is
identical to the ‘e’ network. u, and ug are input variables (in ¢, 8 components)
which may include voltage and current sources in the network. It is convenient
to apply D-Q transformation to Egs. (5.34) and (5.35). Expressing z, and zg
in terms of zp and zg as

D i veio | 539

the transformed network equations are
&p = [AN]zp — woxq + [Bn]up (5.37)
zg = [Anjzg + wozp + [Bn]ug (5.38)

where up and ug are input variables transformed to D-Q components.
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5.3 Static Var compensators

Fast control of reactive power is important for maintaining security during power
system operation. Traditionally, the reactive power control depended on me-
chanically switched shunt capacitors and reactors which only help in maintaining
the desired voltage profile in the system during slowly changing load conditions.
However, disturbances such as faults followed by line switching or generator
tripping can result in system stability and voltage problems. If the system has
to operate close to stability limits in steady state, (with minimum margins), fast
control of reactive power is essential. In the past, dynamic shunt compensators
such as synchronous condensers and saturable reactors were used, although in-
frequently as the transmission systems were conservatively designed with large
stability margins.

In recent years, thyristor controlled static var compensators are being
used for fast reactive power control [1-8]. Advances in high power semicon-
ductors, microelectronics and digital controls which are already used in HVDC
transmission systems have made this improvement possible. SVCs were origi-
nally developed for power factor compensation of fast changing loads (such as arc
furnaces) in early 1970’s but later (before the end of the decade) were adapted
for dynamic shunt compensation of AC transmission lines. They are extremely
fast in response (about 2-3 cycles) and free from the problems of synchronous
condensers (such as loss of synchronism and increased maintenance due to ro-
tating parts).

SVCs are used for

1. Increasing power transfer in long lines

2. Stability improvement (both steady state and transient) with fast acting
voltage regulation '

3. Damping of low frequency oscillations (corresponding to electromechanical
modes)

4. Damping of subsynchronous frequency oscillations (due to torsional modes)

5. Control of dynamic overvoltages

5.3.1 Types of SVC and Controllers

There are three basic types of SVCs [5]

(a) Variable impedance type
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(b) Current source type

(c) Voltage source type

SVV VA

ref
CONTROL

l_]__l i

TCR Fixed Capacitors

Figure 5.6: Schematic diagram of FC-TCR

5.3.1.1 Variable Impedance Type SVC

The SVCs in use to-day are variable impedance type made of Thyristor Con-
trolled Reactor (T'CR) in parallel with either Fixed Capacitor (FC) or Thyristor
Switched Capacitor (TSC). A FC-TCR type of SVC is shown in Fig.5.6. Both
FC and TCR are supplied from a step down transformer. TCR is phase con-
trolled by controlling the firing angle @ in the range from 90° to 180°. A typical
waveform of phase current is shown in Fig. 5.7.

The instantaneous current ircg over half a cycle is given by

V2V

XL
= 0, at+o<wt<a+m

ITCR (cosa—coswt), a<wt<a+o (5.39)

where V is the rms voltage, Xj, is the fundamental frequency reactance of the
reactor, « is the delay angle, o is the conduction angle. The fundamental fre-
quency current I; can be obtained as

I = Brer(o)V (5.40)
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Figure 5.7: TCR current waveform

where .
o —sino
= - 41
Brcr(o) = — X, (5.41)
It is to be noted that o, given by
oc=2(r—a)

can vary from 0 to  radians as « is decreased from 7 to 7 /2.

TCR produces odd harmonics. To eliminate triplen harmonics, TCR is
connected in delta. The line current harmonics are of the order 6n+1 where n is
an integer. To reduce harmonic content further, twelve pulse operation is used
in which there are two branches of TCR, fed from two transformer secondaries,
one connected in star and the other connected in delta. To prevent remaining
harmonics from entering the system, some of the fixed capacitor banks can be
connected as series tuned filters.

Instead of fixed capacitors, thyristor switched capacitors (TSC) can be
used which result in the reduction in the reactor size (and consequently harmon-
ics) and better performance of SVC under system fault conditions.

5.3.1.2 Voltage Source Type SVC

A basic scheme is shown in Fig. 5.8. This shows a six pulse Voltage Source
Converter (VSC) with capacitor on its DC side. VSC produces a set of three
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AC voltages from the input DC (capacitor) voltage. By controlling the switch-
ing instants of the GTO devices, the magnitude of the output voltages can be
controlled. The voltages are essentially in phase with the supply voltage. By
varying the magnitude of the output voltage, the reactive current can be regu-

XA XB ¥

oy 7

J $E ¥% y5

Figure 5.8: Advanced SVC using voltage source converter

A six pulse VSC produces a set of three square voltage waveforms. The
voltage waveforms are shown in Fig. 5.9. The output voltages contain harmon-
ics. By combining a number of six pulse VSC into a multi-pulse configuration,
voltage distortion can be reduced.

This type of SVC has been termed as an advanced type SVC [9,10] and
also as Static Condenser (STATCON) [11]. The variable impedance type SVC
is also said to belong to the first generation FACTS (Flexible AC Transmission
System) controllers. STATCON is a second generation FACTS controller and is
expected to be commercially available before the year 2000 [12].

5.3.2 SVC Control Characteristics

The steady state control characteristics of a variable impedance type SVC is
shown in Fig. 5.10. Here, the voltage is measured at the high voltage side of the
transformer (or network bus) feeding the SVC and the current is the reactive
current, considered to be positive when SVC is inductive (absorbing reactive
power). In the control range, the SVC voltage is not maintained constant. The
slope of the control characteristics is positive (3 to 5%) and helps in (a) stable
parallel operation of more than one SVC connected at the same or neighbouring
buses and b) prevent SVC hitting the limits too frequently.
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Figure 5.9: Voltage waveforms in a six pulse VSC

Capacitive Inductive 1
SvC

Figure 5.10: Steady state control characteristics of variable impedance SVC
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The reference voltage of the SVC is chosen such that, under normal
operating conditions, SVC delivers close to zero reactive power so that the full
control range of SVC is available for use whenever there is a transient. Thus,
slow coordination between a SVC and other reactive power control devices (such
as mechanically switched capacitors and reactors) is necessary.

ISVC
o——— NV \_____
XS
+
v /b, @ VAR
O

Figure 5.11: Equivalent circuit for SVC in control range

It is to be noted that when the SVC hits the capacitive limit, it behaves
like a fixed capacitor. Similarly, when it hits the inductive limit, it behaves as
a fixed inductor. In the control range, the SVC can be modelled as a nonlinear
voltage source E, in series with a fictitious, fixed inductor X, (see Fig. 5.11).
The phase angle of the voltage source is same as that of the bus voltage V,. The
value of the inductor is related to the slope of the control characteristic.

The block diagram of SVC control is shown in Fig. 5.12. Both terminal
voltage and SVC current are used as control signals (K is the slope of the control
characteristic shown in Fig. 5.10) The auxiliary control signal Vy is used for
damping of oscillations. It can be derived from bus frequency, line current, or
synthesized generator rotor velocity. The regulator is proportional-integral type
with provision for gain reduction in case of control instability under abnormal
system conditions. The linearizer transfer function F~!(a) is the inverse of

_ 2(m — o) +sin2a
- Xy,

GPG is the gate pulse generator which produces firing pulses for individual TCR
valves synchronized with the supply voltage.

F(a)

(5.42)

The steady state control characteristic for a STATCON is shown in Fig.
5.13. The reactive current can be maintained constant even at low voltages. Also
a STATCON can be designed with higher transient ratings than steady state



166 Power System Dynamics - Stability and Control

K 5

Vs Isyc

H,,(s)| Measurement

TSC Blocking
Limiter l
‘/Tef = Bref . pref Qref o
REG SVQ| Loglc e F—l a) GP .
+ /- () ¢

C] ||
Linearizer

Vr Gain Reduction
To TSC

Figure 5.12: Block diagram of SVC controller

and deliver more reactive power compared to a SVC (FC-TCR type) where the
reactive power is severely limited by the size of the capacitor and the bus voltage
level.

5.3.3 Modelling of SVC

For steady state analysis, it is adequate to model the steady state control char-
acteristics of SVC. Even for transient stability studies, where low frequency phe-
nomena are of interest, and AC network transients are neglected, steady state
representation of SVC may be adequate as a first approximation. However to
model the damping contribution of SVC, it is necessary to consider the dynamics
of SVC controller. A typical transfer function modelling of the SVC controller
is shown in Fig. 5.14. Here the output is Bgyc and the delays introduced by
the GPG are modelled approximately by the transfer function

e—sTd
T 1+ 8Ty

G(s) (5.43)
where T is approximately T'/12 for a six pulse converter and 7} is T'/4 where
T is the period of supply voltage. T, represents the transducer time constant.
Filters are neglected in this model.

The output of SVC is a time-varying susceptance Bgy¢. The inclusion
of this in the network results in a time varying admittance matrix which can be
problematic. The inclusion of a single SVC in the network can be handled by
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A%

Leading Lagging ISTATCON

Figure 5.13: Steady state control characteristics of STATCON

the use of compensation theorem which enables the calculation of SVC current
using Thevenin’s equivalent of the network at the SVC bus. This equivalent has
to be updated at every time step when SVC current is to be calculated.

5.4 Loads

The importance of load modelling in stability studies is well known. However,
the major problem in the evaluation of power system dynamic performance is
not posed by the complexity in load models, but the difficulty in obtaining
data. Hence, in the early days, when AC network analyzers were used for study,
the simplicity in load representation (by treating them as constant impedances)
was common for convenience in calculations. Even when AC network analyzers
were replaced by digital computer programs, the practice of modelling loads as
constant impedances was continued and justified for the following reasons.

(i) For the study of first swing stability of generators feeding radially into a
load centre, the load representation is less critical.
(i) The use of constant impedance loads result in linear network equations
which simplify the solution
(iif) Data on the response of system loads to disturbances are not available and
difficult to obtain on the system

Regarding the last item, it is to be noted that several attempts have been made
by different utilities to obtain the load data by measurements at high voltage
substations [13-17].
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Figure 5.14: Model of SVC controller

The significance of load modelling is keenly felt in voltage stability anal-
ysis. The problem of voltage collapse is critically dependent on the response of
the system load.

The system load is a mix of the following classes (or components)

(a) Residential
(b) Commercial
(c) Industrial
(d) Agricultural (irrigation pumps)
(e) Power plant (auxiliary motors)
Each class of loads listed above can be further subdivided into subclasses. For

example, the industrial loads consist of (i) aluminium refining pot lines (ii) steel
mills with arc furnaces (iii) large motors and (iv) small industrial motors.

The advantage of a component based approach is the possibility of using
standard model for each component and avoiding the need for system measure-
ments.

The load models can also be divided into

A) static loads
B) dynamic loads

In general, motor loads are treated as dynamic loads.
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5.4.1 Static Load Representation

At any given bus, it is of importance to develop an aggregated static model.
There are two ways of static load represention.

1.  Polynomial Representation

Both active and reactive power loads are represented by quadratic poly-
nomials given by

Poen(Den(l) e
Soun(Den() e

where P,, (), are initial values of power and reactive power at initial value of
voltage V,. The coeflicients a,, a; and as are the fractions of the constant power,
constant current and constant impedance components in the active power loads.
Similar comments apply to the coefficients b,, b; and bs. Also it is to be noted
that

a,+ay+ax=1
bo+b1+b2=1

The problem with constant power type loads is that it is not applicable for cases
involving severe voltage drops. As voltage approaches zero, the load current is
also expected to reach zero. Hence exponential load representation is more valid
for a larger voltage excursion.

2.  Exponential Representation

This can include not only voltage dependence but also the effect of frequency
variations. In general, the active power can be represented as [20]
P V™t V\"e2
P _. (_) (L+kAS) + (1 — 1) (7)
(]

46
P, 7 (5.46)

where

c; is the frequency dependent fraction of active power load

My is the voltage exponent for frequency dependent component of active power
load

mp2 i the voltage exponent for frequency independent component of active
power load

Af is the per unit frequency deviation (from nominal)

ky is the frequency sensitivity coefficient for the active power load.
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The reactive power load is expressed as

% o (VV_) "k AS) + (%‘1 = (;)m (1+kaAf)  (5.47)
where

¢y is the reactive load coefficient-ratio of initial uncompensated reactive load to
total initial active power load F,.

mgq1 is the voltage exponent for the uncompensated reactive load

mg2 is the voltage exponent for the reactive compensation term

kq1 is the frequency sensitivity coefficient for the uncompensated reactive power
load

kg2 is the frequency sensitivity coefficient for reactive compensation

The second term on the R.H.S. of Eq. (5.47) represents to a first approx-
imation, the effect of reactive compensation and losses in the subtransmission
and distribution system between the bus and the various loads. The first term
is made up of individual load components using their power factors. The second
term is based on the difference between this value and the initial reactive power
at the bus (specified in the power flow data).

It is to be noted that the reactive power is normalized by dividing by P,
rather than ,. This is done to avoid difficulty when @, = 0 due to cancellation
of reactive power consumption by shunt capacitance.

5.4.2 Dynamic Load Representation
5.4.2.1 Induction Motor Model

The simplest induction motor model is to consider only the dynamics of the
rotor inertia described by

dwyn, 1
dt  2H
where wy, is the per unit motor speed. The per unit mechanical torque T/ is a
function of w,, given by

[Te(S) ~ T (wm)] (5.48)

Ty = TMO(Aw?n + Bwy, + ¢)

The per unit electrical torque Tk 18 a function of the motor slip S and is com-
puted from the steady state equivalent circuit shown in Fig. 5.15. H is the
inertia constant of the motar. Tk is given by the expression

TE=I§%
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o

Figure 5.16: Stator equivalent circuit for an induction motor

If rotor Hux transients are to be included, the model is modified. The
stator equivalent circuit is shown in Fig. 5.16 where E’ is a complex voltage
source defined by

dE' . , 1., . ,
—— = —72nfSE' — —[E" — j(X - X")I] (5.49)
dt T,
where
__Xr +Xm _ Vt_ ! . .
Lo="fr > =g yx ~letso

f is the operating frequency, X and X' are given by

XmX
= Xmy X' =X,+ "
X X3+ ms s+Xm+XT
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Using D-Q components, Eq. (5.49) can also be expressed in terms of real vari-
ables Ep, and Ey, as

dE! 1 g
dtD = —(ws — wm)Eg + (X — X")ig - - Ep 50)
[ ]
EQ  (wy — wm) By — (X = X)ip - LB (
dt s T, T, @

where w; = 2m f

The electrical torque T is given by

Ty = Epip + Eyig (5.51)

5.4.2.2 General Load Model

The dynamic response of loads to step changes in the bus voltage (particularly
for small changes) can be measured and a general (aggregated) load model can
be formulated. A typical response of active power load to a voltage step is
shown in Fig. 5.17. This does not show the long term response affected by the
automatic tap changers on low voltage transformers.

\/4 P

AP s

LA S— J_

(=]

o —m ——

Figure 5.17: Load responce for a step change in voltage

The differential equation describing this response can be expressed as [27)

dP av
Tp— + P =P(V) +kp(V) - (5.52)
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The load behaviour is determined by two load functions and a time constant
Tp. Py is called the static load function and is applicable in steady state. kp is
called the dynamic load function.

The transient and steady state power increments AP, and AP, (shown
in Fig. 5.17) can be obtained as

AP,

i

P(t;) - P(}) = :%;[Kpm) — Kp(Vy)]

AP, = P(t7) - P(c0) = P,(V,) = P(V1)

where

Vv
Kp(V) = /0 ky(0)do
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Chapter 6

Dynamics of a Synchronous
Generator Connected to Infinite Bus

Chapters 3, 4 and 5 presented the models of the major components of the power
system that determine its dynamic behaviour. The most important component
is the synchronous generator with its associated controls - excitation and prime
mover. If the major objectives of dynamic analysis are to predict system stabil-
ity, then it is often adequate to consider only the excitation system and ignore
the prime-mover controls.

In this chapter, the dynamics of a synchronous generator is illustrated by
taking up the example of a single machine connected to an infinite bus (SMIB).
Although this is the simplest system example that can be considered, it is not
entirely unrealistic. For example, a remote power station connected to a load
centre through a long transmission line can be approximated by SMIB system.
Although a power station consists of more than one generator, it is acceptable
to assume that, for disturbances external to the power station, the generators
can be represented by an equivalent machine. Also, in a multi-machine system,
it is possible to ignore the dynamics of other machines than the one under study,
as a first approximation. This is conveniently done by representing the external
system for a generator by its Thevenin’s equivalent. While the accuracy of this
approximation depends on the system data, type of the study considered etc, the
simplification of a SMIB system enables one to gain insights into the dynamic
behaviour of a synchronous generator.

6.1 System Model

The system considered is shown in Fig. 6.1. This shows the external network
(represented by a black box) with two ports. One port is connected to the
generator terminals while the second port is connected to a voltage source E,Z0
(representing the infinite bus). Both the magnitude F} and the phase angle of the
voltage source are assumed to be constants. Also, there is no loss of generality in
assuming the phase angle of the bus voltage as zero (reference bus). (However,
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in a general case, where the voltage source is Thevenin’s equivalent, both the
voltage magnitude and angle may be treated as variable).

I,
o—]
EXTERNAL +
7 TWO PORT (’\/ Eyl0
NETWORK
o——

Ve = (vg + jva)e®, Io = (ig + jia)e”
Figure 6.1: External two port network

One of the major assumptions in the analysis of dynamic performance
involving low frequency (< 5 Hz) behaviour of the system, is to neglect the
transients in the external network. This simplifies the analysis as the network
is modelled by algebraic equations based on single phase representation (see
chapter 5). The network equations are conveniently expressed using voltage (and
current) phasors with D-Q components (expressed on a synchronously rotating
or Kron’s reference frame).

If network transients are to be neglected, it is logical to ignore the tran-
sients in the stator windings of the synchronous machine, which are connected
to the external network. This implies that stator equations are also reduced to
algebraic. The use of stator flux linkages or currents as state variables is not
possible. Thus the equations given in Chapter 3 have to be modified. Also, the
degree of detail used in modelling a synchronous machine can vary depending
on the requirements and the data available.

6.2 Synchronous Machine Model
6.2.1 Stator Equations

The stator equations in Park’s reference frame are described in Chapter 3. Ex-
pressed in per unit, these are

1 d’(/)d w .

—_wB dt wp Va — Rata = v4 (6.1)
1 dpg  w .

“wg dt t ) Va = Ratg =g ©2)
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It is assumed that the zero sequence currents in the stator are absent.
If stator transients are to be ignored, it is equivalent to ignoring the pyy and
pYg terms in Eqgs. (6.1) and (6.2) (Note that p is the differential operator %)
In addition, it is also advantageous to ignore the variations in the rotor speed
w. This can be justified on the grounds that under disturbances considered the
variations in the speed are negligible. (Actually, in some cases neglecting pyqy
and py, terms go together with neglecting variations in w - see Ex. 6.1) With
these assumptions, Egs. (6.1) and (6.2) can be expressed as

_(1 + Smo)"pq —Ryig = vq (6.3)
where Sy, is the initial operating slip defined as
Spmo = 2B (6.5)
wWB

Example 6.1

Prove that, if the armature flux linkage components, with respect to a
synchronously rotating reference frame, are constants, then the transformer emf
terms (py4 and py,) and terms introduced by the variations in the rotor speed
cancel each other.

Solution

Let ¥p and g be the components of armature flux linkages w.r.t. a
synchronously rotating reference frame (rotating at speed w,). The flux linkage
components in d-q axes are related to ¢p and ¥g by

(¥q +59a)e”® = o + j9p (4)
Taking derivatives, we get
. 5 NN
(Pg + Jpa)e’” + (g + 5%a) € =0 (B)
From the above, we can derive, (by separating real and imaginary parts)

wl—‘p"/Jq = (Sm — Smo)¥a = 0 (C)
wEP"/’d + (Sm - mo)"/’q =0

In deriving these equations, %‘% is expressed as

dé
‘(‘i't‘ = wB(Sm - Smo)



180 Power System Dynamics - Stability and Control

The stator differential equations (6.1) and (6.2) can be written as

1 dypg .
“‘w—B‘-—&t——(l-I-Sm)TI)q—Razd = g

1 dy .
-;};d—tq"‘(l'l'sm)"pd—Ran = Uq

Utilizing (C) in the above, we get Egs. (6.3) and (6.4) which shows that trans-
former emfs cancel with the changes in the rotational emfs due to variation in
the rotor speed (or slip Sp,).

In most of the cases, it will be assumed that the initial operating slip is zero
[the operating frequency is the rated (nominal) frequency].

6.2.2 Rotor Equations

Since the stator Egs. (6.3 and 6.4) are algebraic (neglecting stator transients),
it is not possible to choose stator currents i; and 4, as state variables (state
variables have to be continous functions of time, whereas i4 and i; can be dis-
continuous due to any sudden changes in the network - this point will be made
clear later). As rotor windings either remain closed (damper windingss) or closed
through finite voltage source (field winding), the flux linkages of these windings
cannot change suddenly. This implies that if 74 changes suddenly, the field and
damper currents also change suddenly in order to maintain the field and damper
flux linkages continuous. The flux linkage immediately after a disturbance re-
mains constant at the value just prior to the disturbance. (This property is
termed as the theorem of constant flux linkages in the literature - see Kimbark

[1])-

The previous discussion shows that rotor winding currents cannot be
treated as state variables when stator transients are neglected. The obvious
choice of state variables are rotor flux linkages or transformed variables which
are linearly dependent on the rotor flux linkages.

Depending on the degree of detail used, the number of rotor windings and
corresponding state variables can vary from one to six. In a report published
in 1986 by an IEEE Task Force [2], following models are suggested based on
varying degrees of complexity.

1. Classical model (Model 0.0)
2. Field circuit only (Model 1.0)

3. Field circuit with one equivalent damper on g-axis (model 1.1)
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4. Field circuit with one equivalent damper on d-axis

(a) Model 2.1 (one damper on g-axis)
(b) Model 2.2 (two dampers on g-axis)

5. Field circuit with two equivalent damper circuits on d-axis

(a) Model 3.2 (with two dampers on g-axis)
(b) Model 3.3 (with three dampers on g-axis)

It is to be noted that in the classification of the machine models, the first
number indicates the number of windings on the d-axis while the second number
indicates the number of windings on the g-axis. (Alternately, the numbers rep-
resent the number of state variables considered in the d-axis and g-axis). Thus,
the classical model which neglects damper circuits and field flux decay, ignores
all state variables for the rotor coils and is termed model (0.0).

In Chapter 3, it was assumed that the synchronous machine is repre-
sented by model (2.2). This model is widely used in the literature and for which
data are supplied by manufacturers of machines or obtained by tests described
in IEEE Standard No. 115 [3]. Model 3.3 is claimed to be the most detailed
model applicable to turbo alternators, while models (2.1) and (1.1) are widely
used for hydro generators [2]. It is to be noted that while higher order models
provide better results for special applications, they also require an exact deter-
mination of parameters. With constraints on data availability and for study of
large systems, it may be adequate to use model (1.1) if the data is correctly
determined [4).

In what follows, model (1.1) is assumed for the representation of syn-
chronous machine.

6.3 Application of Model 1.1

The stator and rotor flux linkages are given by

Pqg = Tqtq + Tadlf (6.6)
VY = Todld + Tfif (6.7)
Vg = Tqig + Taglg (6.8)

Vg = Taglq + Tglg (6.9)
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Solving (6.7) and (6.9) for i; and 44, we get

ip= Y _ Tad; (6.10)
.’Ef :Z'f

ig= Yo _ Toa; (6.11)
Z’g fﬂg

Substituting Eqs. (6.10) and (6.11) in (6.6) and (6.8) respectively, we get

Ya = Tjia + Ey (6.12)
g = xhiy — Ej 6.13)
q q‘q d
where
' sz
Tqg=2d — 'E (614)
2
T
Ty =zq— z—"’" (6.15)
9
E\= % (6.16)
E, = —5":‘5’/19— (6.17)
9

The voltage equations for the rotor windings are

1 d’(/}f

1 dyp, ]
op dt Ryig (6.19)

Substituting Eqs. (6.10) and (6.16) in Eq. (6.18), we get

__]'___ff_dE{I _ _RfE'; + Rpzoq .

= 6.20
Wwpg Teq dit Tod zf Wt v (6-20)
dE! wBR [ z2 z ]
q f 4 ad ; ad
_ _ Tod; o Tod 21
7 27 E, + zs i+ Rf’Uf (6.21)

1 .
= T [-Eq + (za — z3)ia + Efd] (6.22)
do .
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In deriving the above Eq. (6.14) and the following relations are used

Zad
By = 2% 6.23
1=, vf (6.23)

’ Ty
= et .24
Too oy (6.24)

Substituting Egs. (6.11), (6.17) in Eq. (6.19) it is possible to obtain the following
equation after some manipulations

dE;, 1 , N
FTa T_(;o [—E’d —(zq — zq)zq] (6.25)
where o 626
90 wpRy

It is to be noted that in model 1.1, it is convenient to define the equivalent
voltage sources E; and E; which are used as state variables instead of 4y and
g. The advantages of this will be self evident when we consider the stator and
torque equations.

Stator Equations

Substituting Eqs. (6.12) and (6.13) in Eqgs. (6.3) and (6.4) and letting
Smo = 0, we get
E! + @ljiq — Raig = v, (6.27)

Ey — x3ig — Reig = vy (6.28)

If transient saliency is neglected by letting
Tg=1p =12 (6.29)
we can combine Egs. (6.27) and (6.28) into a single complex equation given by
(Eq + jEg) — (Rq + j2')ig + jia) = vg + jva (6.30)

The above equation represents an equivalent circuit of the stator shown in Fig.
6.2(a). This shows a voltage source (Ej + jEj) behind an equivalent impedance
(Ra+3 ml)'

The variables (D-Q) in Kron’s frame of reference are related to the vari-
ables (d-q) in Park’s frame of reference by

(fo +ifp) = (fo +ifa)e’ (6.31)
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R, X
—AMN VYV,
+ (g +jig) _
(B, +j By Vg + V)
(o]
(@
R, _]x’
A NV 4
+ (g+jip)
Eq+iEp) "9 (Vg +jvp)
o]
®)

Figure 6.2: Stator equivalent circuits

where f can represent voltage or current. Applying (6.31) to (6.30), we get
(Eb + jEp) — (Rs + jz')(ig + jin) = vo + jup (6.32)

Eq. (6.32) also represents an equivalent circuit of the stator shown in Fig. 6.2

(b).

Unfortunately no equivalent circuit for the stator exists when transient
saliency is considered. This can pose a problem in the network calculations
in multimachine systems. The ways of handling saliency will be discussed in
chapter 12. For a single machine system however, saliency does not pose any
problem.

Rotor Mechanical Equations

The rotor mechanical equations in per unit can be expressed as

d?s _,db
Mﬁ D,E = Tm - Te (6.33)
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where M = EJ—I;— , T is electrical torque given by

Te = tpaiq — ¢qid (6.34)

D is the damping term and 7}, is the mechanical torque acting on the rotor.
Substituting Egs. (6.12) and (6.13) in (6.34), we get,

T, = Elig + E’('qu + (zg — Tg)iaiq (6.35)

If transient saliency is ignored (zj; = z;) then the third term in the above
expression is identically zero.

Eq. (6.33) can be expressed as two first order equations as

dé
dSp,
2Hd—t = —D(Sm - Smo) + Tm - Te (637)

where the generator slip, S, is defined below

S, =2"YB (6.38)
wpB
do -
Note that Jr 8 defined as
dé
7 =W - w, (6.39)

Normally, the operating speed is considered to be the same as the nominal or
rated speed. In this case, Sy, = 0. D is the per unit damping, given by

D =wgD' (6.40)

Network Equations

It is assumed that the external network connecting the generator ter-
minals to the infinite bus is linear two port. This includes any complex rep-
resentation of the external system with several transmission lines, transformers
and loads. The loads are assumed to be of constant impedance type. A typical
network is shown in Fig. 6.3 which shows a generator transformer, a transmis-
sion line, a shunt load and a Thevenin’s impedance, Z, connected between the
end of the line and infinite bus (equivalent voltage source). The shunt load is
connected somewhere between the two ends of the line. The transmission can be
made up of several lines connected in parallel. Equivalent circuit of the system
of Fig. 6.3 is shown in Fig. 6.4. z; is the leakage impedance of the generator
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vl v 1 v 3 v 2 7
5 | RSN
Ey L0
< | I b
Load
Figure 6.3: A typical network diagram
2 21 22 2
o— | 1 | i I

Jo [ O

Figure 6.4: Equivalent circuit of the system in Figure 6.3

transformer, z; and 2o are series impedances of the two line sections, y; and y2
are the shunt admittances of the line sections (represented by 7 equivalents). y3
includes both line and load admittances. Actually y; and y2 can also include
the admittances of load connected at the sending end and receiving end of the
line respectively.

Whatever may be the configuration of the external network, it can be rep-
resented by the two port network parameters. As only the first port, connected
to the generator terminals is of interest, the voltage there can be expressed as

A

AT A (6.41)
Yu
where y;; is the short circuit self admittance of the network, measured at the
generator terminals, h;o is a hybrid parameter (open circuit voltage gain). In
general, both y;; and hj2 are complex. For a simple network consisting of only
series impedance (R, + jz.), it is not difficult to see that

1
.’!—J_— = Re + je, hi2 =1.0+ 50.0 (6.42)
11
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In the general case, let

1
— = 2Rp + jz1, hi2 = hy + jho (6.43)
Y
Eq. (6.41) can be expressed as
(vg + jva)e’’ = (zr + jar)(iq + Fia)e? + (h1 + jha) Ey (6.44)
Multiplying both sides of the above equation by 7%, we get
(vg + jva) = (2R + j21)(iq + §id) + (h1 + jha) Epe™7° (6.45)
Equating real and imaginary parts, we get
' Vg = 2Riq— z1ig + h1Eycosé + hyEysiné (6.46)
Yqi = 2rig+ 2rig + hoFEpcosd — hyEysind (6.47)

The above equations can be substituted in Egs. (6.27) and (6.28) and solved for
ig and i, in terms of state variables Ej, E} and 4.

Solution of Network Equations : An example

The simplest external network is a series impedance (Re+jze). If R, =0,

then
zr =0, 2] = Te, hy = 1.0, ho =0 (6.48)
Substituting these values in Eqgs. (6.46) and (6.47) we get,
Vg = ~—Teiqg+ Epcosd (6.49)
V4 = ZTelg— Epsind (6.50)

If R, = 0, the substitution of the above equations in Egs. (6.27) and (6.28)
gives

Eb cosd — E(II
P — .51
Hd (ze + Z:z) (6.51)
] Eysind + E)
== "¢a .52
‘e (ze + :L';) (6.52)

Eqgs. (6.51) and (6.52) can be substituted in Eqgs. (6.22), (6.25) and (6.35) to
eliminate the non-state variables and express the equations in the form

T = fm(Tm, Um) (6.53)
where
t, = [ Sp E(', Ej)
ufn = [Efd T}
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It is to be noted that E, is treated as a parameter. Eyq and T;, are inputs
from the excitation and turbine-governor system respectively. If the dynamics
of the controllers are ignored, then E¢q and Ty, are also treated as parameters.
Otherwise E¢q and Ty, are treated as outputs of dynamic systems represented
by differential equations which are to be appended to Eq. (6.53).

6.4 Calculation of Initial Conditions

The system equations (6.53) are nonlinear and have to be solved numerically. In
solving these equations it is assumed that the system is at a stable equilibrium
point (SEP) till time t=0, and a disturbance occurs at t=0 or later. It is
necessary to calculate the initial conditions z, at time t=0 based on the system
operating point determined from load (power) flow.

From power flow calculations in steady state, we get the real and reactive
power (P; and @), the voltage magnitude (V;) and angle (#) at the generator
terminals. Here 6 is the angle with respect to the slack (infinite) bus.

In steady state, the derivatives of all the state variables, £ = 0. From
this condition, we get

E(’IO = Efgo+ (x4~ zh)ido (6.54)
E&O = —(:L'q - a:lq)iqo (6.55)
Tno = Tep = E(I]oiqo + E:io"'do + (:L':, - x;)idoiqg (6.56)

In the above equations, the subscript ‘0’ indicates the operating values. It is to
be noted that, in general, the initial slip Sy,, cannot be determined from Eq.
(6.36). It has to be specified separately. As mentioned earlier, it can be taken
as zero.

Substituting Eqs. (6.54) and (6.55) in Egs. (6.27) and (6.28), we get

Ef4o + Tgige — Ralgo = Vgo (6.57)

From the above, one can obtain

Efgo+ (Ta = ZTg)ido = (Vg0 + j¥do) + (Ra + 52q)(igo + Jido)
= Vil=0+4 (Ra+ jzg)al—0 (6.59)

Defining A A
Eql6 = Vi + (Ro + jzg) 1 (6.60)
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We can express,

Ef4o = Eyo — (zq — :L'q)ida (6.61)
Eq. (6.60) can be used to fix the position of q-axis. The phasor diagram shown
in Fig. 6.5 represents the Eqs. (6.60) and (6.61). The d- ai.d g-axis components

of the armature current (ig, iy) and the terminal voltage (vq, v,) are also shown
in the diagram.

D
*\
/‘b

Reference

Figure 6.5: Phasor Diagram

The procedure for the computation of the initial conditions is given below

1. Compute I, from

. P—3i
Iaa = Ia.ol(bo = T/%—Z%%E
0 o

2. Compute E4, and §, from
qulfso = Vtoloo + (Ra + qu)Iaoquo

(Note that P;, Q¢, Vi, and 6, are obtained from the power flow analysis
in steady state)
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3. Compute

4. Compute

tdo = —Igo8in(do ~ ¢o)
I co8(00 — ¢o)
—Vio8in(d, — 6,)
Y90 = Vio cos(do — 6o)

< .
g 3
ol

Efso = Ego —(Td— Tq)ido
Eyp = Ejpgo+ (T4 — Tg)ido
Ejp = —(zq- g )igo
T = E;o":qo + Ejgigo + (zg — Zg)idoigo = Tmo

Example 6.2

A generator is connected to an infinite bus through an external impedance
of jze. If By = V3 = 1.0 pau. P, = 1.0 p.u. Find the initial conditions. Assume

T, = 0.25 p.u.

The generator data: z4 = 1.8, z4 = 1.7, z/, = 0.17, a:; =0.23, R, = 0.0,

Solution

Ty = 0.4 sec, T; = 0.1 sec, H = 4 sec, fp = 60 Hz.

The generator terminal bus angle §, is found from

Substituting values,

By, =

Eqa =

_ ViEysinéb,
=

Py

sinf, = 0.25, 6, = 14.48°

Vi— Ey/0 1.0/14.48° — 1.0/9°
jze §0.25

Vi L8, + jzol,

1.0/14.48° + j1.7 . 1.008/7.24°

2.090£68.91° = Ey,/5,

2.090, 6, = 68.91°

= 1.008/7.24°

The initial armature current components are

tdo = —Isin(d, — ¢,) = —1.0085in(68.91 — 7.24)
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-0.8873
igo = I,c08(6, — ¢o) = 1.008 cos(68.91 — 7.24)
= 0.4783
Etio = Ego— (g — Tq)igo = 2.090 + 0.1 . 0.8873
= 2.179
Ejy = Efgo+ (zq — Th)igo = 0.7327
o = —(zq—z})igo = —0.7031
Teo = E(lloiqo + E:loido + (a::i — z;)idoiqo

1.0

(Check: Teo = P, + I2R,)
The initial slip, S, can be assumed to be equal to zero.

6.5 System Simulation

The synchronous machine is represented by model 1.1. Magnetic saturation is
either neglected or considered by using saturated values of mutual inductances,
T4 (Or Toq) and z44. (In chapter 3, it was mentioned that the saturation mod-
elling during dynamic simulation may not be significant).

The machine equations are

g‘f = wB(Sm = Smo) (6.62)
% = 2_1;2 (=D(Sm — Smo) + Trm — Te] (6.63)
dd]i; = ':FZ;‘ [~ B4 + (24 - o)ia + By (6.64)
d—dl% - :7};; (B4 = (24 - 2))i] (6.65)

The electrical torque, T, is expressed in terms of state variables E}; and E{] and
non-state variables i4 and #,. The expression for T, is

Te = Ejiq + Ejig + (zg — T4)iat, (6.66)
The non-state variables iy and i, can be obtained from the stator alge-

braic Egs. (6.27), (6.28) and the network Eqgs. (6.46) and (6.47). Substituting
the former in the latter, we can solve for iy and i; from the following linear

-



192 Power System Dynamics - Stability and Control

equations

_ | Hh(d) - E;

= [ o) B, ] (6.67)

(zg + 21) —(Rq + 2r) 14
—(Rq + 2R) -—(:L':I+ZI) ig

where

f1(8) = h1Eycosé + hoEysiné
f2(8) = hgEyco8d — h1Eysind

(zr + jzr) is the input impedance of the external network viewed from the
generator terminals with the infinite bus shorted. (h; + jh2) is the voltage
gain at the generator terminals with armature open circuited. (Alternatively,
(hy + jh2)E, is Thevenin voltage source viewed from the generator terminals).
The use of these hybrid parameters enables the consideration of any complex
network connected between the generator and the infinite bus.

Example 6.3

Obtain the hybrid parameters for the two port network shown in Fig. 6.4.
Define

Zy = ! 1 + 22
Yo + Z,
Zy = L Ttz
ys + A
Then,
ZR + jzr = 1 T + 2
Y1+ 7
Define
1/y2
Hs (1/y2/+ Zy)
1/ys
2 (1/ys + Z3)
/y
B e
Then,

hi + jho = HiHoH3
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The machine equations, eliminating non-state variables (from Eq. 6.67) can be
expressed as Eq. (6.53) which is reproduced below.

Zm = fm(Tm, Um)

where
g, = [0 Sm E; Ej
uy = [Efa Tl

If the generator controllers (excitation and prime-mover) are neglected
then there are no additional dynamic equations. If controller dynamics are
considered, then the following equations are to be included along with Eq. (6.53)

Te = fe(Te ue)
Efa = Eja(ze) } (6.68)

Z = f (SL' ) )
A 659

The inputs to the excitation controller, u., are generally, the terminal
voltage Vi, reference voltage V;.¢ and slip S, (if PSS is to be considered).
The inputs to prime-mover controller u,, are slip Sy, and speed reference wyf.
Combining Egs. (6.53), (6.68) and (6.69) and eliminating non-state variable, V;,
we can write the overall system equations as

&g = f(zg, ug) (6.70)
where
z, = [zh, =} z}]
U; = [V;'ef wref]

If prime-mover controller is not considered then

= [z7, «i]
= [V;'ef Tm]

Actually, Eq. (6.53) can be viewed as a special case of Eq. (6.70) which is
applicable for a detailed model of the generator including controllers.

8
W@

u



194 Power System Dynamics - Stability and Control

Numerical Integration of System Equations

It is assumed that the system is initially in steady state with operating
conditions determined from power flow analysis. With the knowledge of P;, Q;
(power output at the terminals of the generator), V; and 8 (voltage magnitude
and phase angle), it is possible to determine the initial conditions (see section
6.4). The initial operating values of z, and u4 satisfy

0= f(zgoa ugo) (6°71)

The disturbances that can be considered are

(a) step change in u,
(b) step change in network parameters caused by faults and switching
(c) step change in E
The system responses to the disturbances is obtained by numerical inte-
gration of the nonlinear system differential equations. There are several numer-

ical methods and a brief discussion is given in Appendix A. A simple explicit
method is the modified Euler (also called as Heun’s method) outlined below.

This is a single step method in which, given the initial values for an
interval (t,_1, tn), the end values are obtained as follows

1. Predict z4(t,) from
Zgp(tn) = To(tn-1) + hf (25", ug™) (6.72)

(The superscript indicates the instant at which the variables are evaluated)

h _ -
x.‘)(tn) = z!](tn—l) + E[f(zgpa u;) + f(x_g 11 u; 1)] (673)
h is the step size which should be sufficiently small both from the accuracy
and numerical stability considerations.

It is to be noted that the state variables are continuous, although the currents
and voltages in the network can be discontinuous when a fault or switching
occurs.

Example 6.4
In example 6.2, Z, (the electrical impedance) changes to j0.5 at ¢t = 0.

2
Find 44, 14 and dﬁg at t =0%.
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Solution

The expressions for ¢4 and %4 (with lossless network) are given in (6.51)
and (6.52).

At t = 0%, 6 = 68.91°, E! = 0.7324, B}, = —0.7031

Eycosd — E;,  cos 68.91 —0.7327

Wt =01) = - — —0.5565

ia(t =07) (e + ) 05+017) 0-556
B!+ Epsind  sin 68.91 — 0.7031

=0t d = = (0.31
iq(t=0") (@e +20) 05+023) 03150
T, = 0.7327.0.3150 + 0.5565 . 0.7031 + 0.06 . 0.5565 . 0.3150

0.6326

&5 _ 377(1.0 - 0.6326)

w
Et‘f(t =0%) = %(Tm -T) = =17.31 rad/sec?

2. 4)

Example 6.5

The system is shown in Fig. 6.6. The switch is closed at ¢ = 0. z, = 0.192
(with switch open) and z, = 0.055 with switch closed.

e~ VYV ]

On I

GEN

ANNNNNN

Figure 6.6: System diagram (Example 6.5)

The generator data : z4 = 1.93, g4 = 1.77, zj; = 0.23, z, = 0.50, T}, = 5.2 sec,
T,, = 0.81 sec, H = 3.74
Assume Ej, = 1.0. Calculate swing curves for the following cases
(i) =09, Q; =0.6
(ii) P, =0.9, Q: = —0.02
(iif) P, =0.3, Q; =0.02
(iv) B =03, Q; =-0.36
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(The data is taken from Dunlop and Parikh5)
Solution

The results (swing curves) are shown in Figs. 6.7 to 6.10 for all the 4
cases considered. The variations of the terminal voltage are also shown in the
Figures. The initial values of state variables and iq4, g, Efq and V; are given in
Table 6.1

L . L n " L s s L L " L
0 1 2 3 4 § L] 7 ] 9 10 ] 1 2 3 4 5 L] 7 L] [ 10
Time (sac) Time (sec)

(a) Swing Curve (b)Variation of terminal voltage

Figure 6.7: Case (i) (Example 6.5).

s 8
Time (sac) Tine (sac)

(a) Swing Curve (b)Variation of terminal voltage

Figure 6.8: Case (ii) (Example 6.5).

It is interesting to observe that

(a) the responses of the rotor angle (following the distur/bance) are mainly os-
cillatory in all the cases. However, there is also a significant unidirectional
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(a) Swing Curve (b)Variation of terminal voltage
Figure 6.9: Case (iii) (Example 6.5).
Im e -
Bl 088 1
g éow 4
Bal :
5 |
ol (313 1
i |

[} t 2 3 L3 5 8 7 3 ] 10 0 1 2 3
Time (soc)

5 7 [) [ 10
Time (sec)

(a) Swing Curve (b)Variation of terminal voltage

Figure 6.10: Case (iv) (Example 6.5).

Table 6.1 Initial Values for Example 6.5

Variable | Case (i) | Case (ii) | Case (iii) | Case (iv)
0 44.10° 69.73° 30.27° 71.38°
E’; 1.111 0.6813 0.9312 0.3893
E} -0.4568 | -0.6126 | -0.3273 -0.6145
iq -0.9221 |-0.7813 | -0.1536 -0.1535
ig 0.3597 | 0.4824 0.2577 0.4838
Eg¢q 2.6787 | 2.0094 1.1923 0.6503
Vi 1.0928 | 0.9804 1.0022 0.9232
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component in case (iv). The oscillations are damped in all the cases and
the decay is fastest in case (iii).

(b) The response of the terminal voltage has mainly a slowly varying unidi-
rectional component in all the cases except (iii)

(c) While the rotor angle is reduced (in steady state) in all the cases, the
terminal voltage is reduced in cases (i) and (iii) while increased in cases
(ii) and (iv) following the disturbance. The rotor angle is reduced as the
external reactance is reduced as the power transfer remains at the same
level as before. However (), is increased as the reactance is reduced, since
E¢4 remains at the same level as before. With positive Q;, the increase
in @Q; has the effect of reducing the terminal voltage, while with negative
Qt, the increase (implying the reduction in the magnitude) has the effect
of increasing the voltage magnitude.

Example 6.6

A single line diagram of the system is shown in Fig. 6.11. The system data (on
a 1000 MVA base) are given below.

Generator : Ra = 0.00327, zq = 1.7572, z, = 1.5845 z/; = 0.4245, :1: = 1.04,
, = 6.66, T’ =044, H= 3542 fB—SOHz
Transformer : Rt 0.0, z; = 0.1364

Vtw

Gen 2 ,
JXTh
_\,_§ g_. AN E Ey L0

— P,

—’Qt‘

Figure 6.11: System diagram (Example 6.6)

Transmission line : (per circuit) R; = 0.08593, z; = 0.8125, B, =0.1184
(These parameters are representative of a 400 kV, 400 km long line with 50%
shunt compensation)

Ezxcitation System : Static exciter with single time constant AVR is used.

K4 =400, T4 = 0.025, Efgmaz = 6.0, Efamin = —6.0 .

Operating Data : Ep = 1.0, P, = 0.6, Q; = 0.02224, V; = 1.05, § = 21.65°

Xrp = 0.13636 (represents Thevenin’s impedance of the receiving end system).
Simulate the system response for the following conditions
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Step increase in V¢ by 0.1 pu
Step increase in T}, by 0.1 pu
Step increase in Fy by 0.1

o awe>

A three phase fault at the sending end of one of the circuits of the trans-
mission line followed by clearing at the end of 4 cycles (The faulted line
connecting buses 1 and 2 is tripped to clear the fault).

Solution

The initial conditions are calculated as 9, = 61.5%, S,,, = 0.0,
E}, = 0.9699, E, = —0.2316, iz = —0.3823, ig, = 0.4253
The variations of §, Sy, Ej, Ej, Egq, V; and T, for the four cases (A to D) are
shown in Figures 6.12 to 6.15.

It is interesting to observe that

(a) The disturbances (B) and (D) result in the net system damping becoming
negative. For the case (B) the power output is increased by 0.1 pu and for
case (D) the transmission is weakened after the fault clearing.

It will be seen in chapter 8 that the Power System Stabilizer (PSS) can
help damp the low frequency oscillations.

(b) For case (D), if a switching station is provided at the midpoint of the
transmission line and only one line section connecting the midpoint to bus
1 is tripped following the fault clearing, it is seen from the swing curve for
this case (shown in Fig. 6.16) that the net damping is positive.

(c) For case (C) it is seen that the rotor angle increases with increase in Ej.
This may appear to be surprising. Actually if there is no AVR and the
field voltage Eyq is maintained constant, then the rotor angle decreases
with increase in E,. (see Fig. 6.17). Without AVR, the terminal voltage
rises, but with AVR it is held constant which requires reduction of the
field voltage in steady state. It is clear, that with increase in Fj, reactive
power output of the generator reduces (and becomes negative).

6.6 Consideration of other Machine Models

Sections 6.3 to 6.5 considered the application of synchronous machine model 1.1
as this is considered to be reasonably adequate. Simpler models are conveniently
considered as special cases with the modification of machine parameters. This
is simpler than writing separate sets of equations Jor each 1nodel.
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(g) Variation of terminal voltage (Eq)
Figure 6.12: Response to step increase in V;.; (Example 6.6 - Case A)
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Figure 6.13: Response to step increase in Ty, (Example 6.6 - Case B)
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Figure 6.14: Response to step increase in E (Exa.mpie 6.6 - Case C)
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Figure 6.15: Response to a three phase fault (Example 6.6 - Case D)
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Figure 6.16: Swing curve with line sectioning (Example 6.6 - Case D)

6.6.1 Simpler Models
Model (1.0) can be handled by letting

Ty ==2q, Tgo#0 (6.74)
Note that with z; = 4, Eq. (6.65) reduces to

dE; 1

—C = _—[-Ej], Ejfp=—(zq—7})igo=0

dt Tc;o ’ o q q/%qo

With the initial condition at zero, E/; remains at zero throughout the simulation
as long as Ty, > 0. The actual value of Tg, is unimportant and can be set at
any arbitrary (convenient) value (say 1.0 sec).
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Temminal Vo
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(a) Variation of § (b) Variation of Vp

Figure 6.17: Response to step increase in E, without AVR (Example 6.6)

For the consideration of classical model (0.0) in addition to the constraints (6.74)
it is necessary to set

Ti, = large value (say 1000 sec) (6.75)
If saliency is not to be considered, then it is necessary to set

Ty = Tq = Ty (6.76)
With the constraints (6.74) to (6.76), the model reduces to that of a voltage
source Ej behind a transient reactance of zj;. The large value of T}, ensures
that E remams practically constant (neglecting flux decay).

Note that the constraint (6.76) can also be included in model (1.0) and has the
effect of neglecting saliency while considering flux decay 'The term ‘saliency’ has
been used rather loosely here. The normal definition of saliency applies when
zq4 # 4. The saliency that we need to consider in dynamic analysis, depends
on the model used. The ‘dynamic saliency’ has been defined [11] in this context
to distinguish it from the usual definition of saliency. Table 6.2 indicates the
constraints which have to be satisfied for no dynamic saliency with different
machine models.

Note: With one rotor winding on the g-axis there is only one reactance and
one time constant (open circuit) which can be defined. Logically (in relation to
d-axis), these should be labelled as zj, (transient reactance) and T,. However

many authors use the symbols :c;' (subtransient reactance) and T;:, with model
(2.1).
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Table 6.2. Constraints for No Dynamic Saliency

Machine Model | Constraints
Classical (0.0) | z,= a:; =z
']
1.0 Tg =Ty =Ty

1.1 :1:% = :1:;’

2.1 T, = :L‘d

3 %

2.2 z, =2,

6.6.2 Application of Model 2.2

The appropriate rotor state variables in this case are the rotor flux linkages;
although several authors use hybrid versions (E, and E} in addition to v and

¥n) [12]

Stator Equations

The stator flux linkages are given by

Y4 = Tdid + Tapif + Tdntn (6.77)

It is possible to eliminate i¢ and i, from Eq. (6.77) by expressing them in terms
of 4, ¥n and iy. The expressions for iy and i) are obtained from

, -1
R RN I

Similarly ¢4 and i in Eq. (6.78) can be substituted from

-1
g | = | %o Tok Y| _| )
HEEEIR I EEI

Eliminating rotor currents, Eq. (6.77) and (6.78) reduce to

Ya = Tgia+ g (6.81)
Vg = Tig+Y, (6.82)
where
v = (zgrzn — zdl;th)n,f + (Tanzy — z%th)
(:L‘f:l:h - th) (:Bf:vh - a:fh)

= C1r+ Cop, (6.83)
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" (ZqoZTk — TqkTok) (ZgkTg — TqgTgk)
,‘p — gr*g + q
e (zgzk — 22) ¥s (zgzr — T24) v
= Csthg + Cavy (6.84)
(L‘; = zq— Ciz4q — CoZan (6.85)

In comparison with Egs. (6.12) and (6.13), Egs. (6.81) and (6.82) could be
expressed as

Yag = zgia+E, (6.87)
Vg = yiq—Eg (6.88)
Substituting the above in Eqs. (6.3) and (6.4) and letting Sy,, = 0, we get
E, +zgia — Raig = v (6.89)
Ej —z4ig— Raig = v (6.90)

If subtransient saliency is neglected, i.e. z;' = w; =" then the above equations
represent an equivalent circuit shown in Fig. 6.18.

R, jx”
AMA—IYYW___
. (ig +iig)
(E(,”+J'EZ)® (Vg +ivo

Figure 6.18: Stator equivalent circuit (model 2.2)

Although Eqgs.(6.89) and (6.90) are similar to Egs. (6.27) and (6.28),
there is no specific advantage in selecting E;' and E;' as state variables. Some
authors use combinations of Ej, E; and Ej, E, as state variables [13, 14].
Although this is acceptable, it is to be noted that the equations for E"J and Ej
will be different, in general, from Egs. (6.64) and (6.65). The terms involving
other state variables will also enter into the equations. In specific cases, it is
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possible that C; = 0 (implying that the damper winding in the d-axis completely
shields the field winding from d-axis winding in the armature). Similarly C3 =0
when ‘k’ winding acts as a perfect shield between g-winding and g-winding. In
such cases, E;' is only a function of v, and E; only a function of 9. The
significance of this is, that in the event of a fault or disturbance affecting the
armature, there is no instantaneous change in the field current (or current in
the g-winding).

It is obvious that the machine equations should be formulated for the
general case with no assumptions regarding the parameters. Hence, the best
choice for state variables is rotor flux linkages which are basic variables as op-
posed to the derived variables (such as Ej; and E;') A major problem with
formulations of machine equations given in several publications [12-14] is that
the equations are expressed using the so called ‘stability constants’ (transient
and subtransient reactances and time constants). From the discussions in chap-
ter 3, it should be clear that such restrictions (the use of stability constants)
are unnecessary and confusing (the latter in view of the fact that there is still
no agreement on the definitions of T;o, T;:, and z!; and zg). Hence it would be
advisable to use circuit parameters (self and mutual reactances, resistances) in
the equations that are derived from fundamental laws.

Rotor Equations

The basic equations in the rotor flux linkages (using per unit quantities)
are

d ) R
7'/? = wB l‘Rﬂf + _fEfd]

Z4f (6.91)
dt" = —wpRyip
d ,
j’pl = Wl (6.92)
% = —(UBRk’l:k

Eliminating the rotor currents using Eqs. (6.79) and (6.80), we can express the
above equations as

% = a9 + agp + b1 Eyq + baig (6.93)
% = a3 + asp + +bsig (6.94)
% = ast, + ast + +baig (6.95)
Wk _ arp, + agr + +bsig (6.96)

dt
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where
wpRsz wpRsz
o = —eoRem , wnlyen
wpRrTfh wpRpz;
“ = b 4=
D, = :cfa:h—:z:%h
wpR,T wBRyT gk
WBRkZ'gk wpRyz,y
a; = ————, ag=———-
Dz D2
R
h = M, by =wpRfCi, b3 =wpRR(C:

Zdf
by = wBRg03, b5=wBRkC4

Electrical Torque

The new expression for electrical torque can be obtained by substituting
Eqgs. (6.81) and (6.82) in the basic expression for the torque given by

T, = "/’diq - ¢q7:d
", ", " "y, .
= Yaiqg — Ygla + (T4 — Ty)iaiq
= Ejig+ Ejiq + (zg — z,)idiq (6.97)

¢, and 1/;;' can be substituted from expressions (6.83) and (6.84). The final
expression for T, can be written as

T, = (C1%s + Catbn)iq — (Cathy + CathrYia + (T4 — T, )igia (6.98)
The last term is due to subtransient saliency.

6.6.3 Application of Model 2.1

This model differs from model (2.2) in that only one damper winding (say g)
is considered in the g-axis. The equations are identical to those given in the
previous section except for the following

Yy = City, CGh="2 (6.99)
g
Ao _ _WBRW Ly b, = wpR,Cl (6.100)

dt Zg
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Also, there is no equation for 1. The torque equation is modified by putting
Cs = 0 and substituting Cj instead of C3 in Eq. (6.98). The subtransient

"o, -
reactance z, is obtained as

"

_ !
T, = Tq — C3Tqg

(Note that transient reactance a:; is not defined here. As mentioned earlier, this
convention appears to be widely used).

6.7 Inclusion of SVC Model

The Static Var Compensator (SVC) is provided in the system to enhance power
transfer, improve stability and voltage regulation. As mentioned in Chapter 5,
the response of SVC is fast because of thyristor controllers. When only low
frequency behaviour is to be studied, it is in order to neglect the SVC controller
dynamics and model SVC by its control characteristics shown in Fig. 6.19. This
shows three regions of operation

I (cap) (ind) L Ieve

Figure 6.19: SVC control characteristics

(i) Control region:

Vi < Veve < Vo, T < Isye <Dz
(i1) Capacitive limit:

Vsve < V1, Bsve = Bc
(iii) Inductive limit:

Vsve >Va, Bsyc = —(Br— Bc)
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where B, = )%Z = max[BrcR)

All the three regions of operation of SVC can be modelled by an equiv-
alent circuit shown in Fig. 6.20(a). However, the circuit parameters vary de-
pending on the region of operation of SVC as given below.

Region (i):
Esyc = Vreslosve, Xsve =K (6.101)
(K is the slope of the control characteristics in the control region)

Region (ii):

R 1

Esve =0, Xsyvc= “Bg (6.102)
Region (iii):

Esvc =0, Xsyc= B, —Bo (6.103)

6.7.1 Network Solution with SVC : Application of
Compensation Theorem

The model of SVC in control region (i) is nonlinear and with limits considered,
it is also time-varying. If one SVC is to be considered, the network solution with
SVC can be considerably simplified by applying compensation theorem.

In this approach, the SVC is treated as a time-varying current source
which can be computed from the solution of a simple network shown in Fig.
6.20(b). Here the network external to the SVC is modelled by a time-varying
Thevenin’s equivalent. If the network impedances are constant, Z., remains
constant. Zgg is found as the impedance of the network seen at the SVC termi-
nals when all the sources in the network are removed (the voltage sources are
shorted and the current sources are open circuited). Vpy, is found as the SVC
terminal voltage with SVC current set to zero.

From Fig. 6.20(b), the SVC current can be computed as

. Veq — Esve
Igyo =42 2" 6.104
Svce Zeq F JXSVC ( )

The magnitude of the SVC terminal voltage is

Vi =| Vsve |=| Esve + jlsveXsve | (6.105)
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(a) SVC Equivalent circuit
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(b) Combined equivalent circuit
Figure 6.20: Equivalent Circuits

If Esvc = 0, the solution of Eq. (6.104) is straightforward as Veq and Zeq are
known at any given time instant. The magnitude of Egyc for the control region
(i) is known but the phase angle is dependent on Vsy¢ (see Eq. 6.101).

Calculation of ¢sy¢c in Control Region

It can be shown that ¢sv ¢ is obtained from the solution of a quadratic
equation given by

atan? ¢ggyc + btandsyc +c =0 (6.106)
Proof
From Eq. (6.104) and (6.105), we can express
Vsve = (1 = A)Veg + AEsyc (6.107)
where 7
A=— 2 _ Alo 6.108
Zeg + jXsve ( )

Separating real and imaginary components in Eq. (6.107) we get,

Vicosdsye = z+zcos(dsve +a) (6.109)
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Vesingsye = y+ zsin(gsve + a) (6.110)
where
z = R(1- AV, y=3((1 - A)V]
= | AEgyc |
From Egs. (6.109) and (6.110), we get

y + zcosasinggyc + zsinacos ¢gyc
T + zcos a.cos g5y — zsinasingsye
ysec psyc + zcos atan dsyc + zsina

= 6.111
zsec gpsyc + zcosa — zsina tan gy ( )

tangsyc =

After some manipulations and using the identity
sec?p=1+tan¢
We can finally derive Eq. (6.106), where

= z? - 22sin’e
b = -2zy
c = y*-zisina

Once ¢gsyc is found, Igyc is readily calculated.
Network Solution

The network solution is carried out in two steps. In the first step, the
voltage solution is obtained by putting Isyc = 0. The voltage calculated at the
SVC bus, at the end of the first step is same as V7y,.

The knowledge of V., and Z,, (which has been calculated in advance and
stored) enables the computation of Isve as described earlier.

The network is solved again with the injection of I sve at the SVC bus
(all other sources put equal to zero). The second solution does not require much
computations as the current vector is sparse.

The voltages at all the buses are obtained from the addition (superposi-
tion) of the voltages calculated in the two network solutions.

Remarks

1. It is assumed that the generator stator is represented by a constant impe-
dance (neglecting dynamic saliency). Even if dynamic saliency is present, it



6. Dynamics of a Synchronous Generator Connected to Infinite Bus 215

can be handled by the introduction of a dummy rotor coil in the quadrature
axis (see Chapter 3). Dynamic saliency results in time-varying impedance
(with respect to network or common reference frame). Also, the impedance
needs to be expressed (as a 2x2 matrix) in D-Q axes. In this case, it can
be shown that ¢sy ¢ can be obtained by solving a quartic equation.

2. Z.q changes whenever there is a change in the network configuration.

3. If Z,, is a purely reactive (inductive) impedance, then ¢sv ¢ is identical to
the phase angle of Veq, which is known. This eliminates the need for the
solution of the quadratic equation (6.106).

Even if quadratic equation is to be solved, the correct value of ¢gyc is
obtained as that solution which is closer to the phase angle of Veq.

Example 6.7

For the system considered in Example 6.6, a SVC of rating +£300 MVAR
is connected at the midpoint of the transmission lines. The SVC data are
Iy = =03, I = 0.3 (on a 1000 MVA base), V;.; = 1.03584, K =0.1.

Simulate the system response for the following conditions

(B) step increase in Ty, by 0.1 pu

(D) A three phase fault at the sending end of one of the circuits followed by
clearing at the end of 4 cycles (To compare with Example 6.6, both the
line sections, one connecting SVC bus to bus 1 and the other connecting
SVC bus to bus 2 are assumed to trip. The postfault configuration include
only one circuit as in Example 6.6).

The operating data is same as in Example 6.6 as the SVC output before the
disturbance is assumed to be zero (Note that V.s is same as the SVC bus
voltage in this case).

Solution

The initial conditions for the generator are same as in Example 6.6. The
variations of 4, Sy, E{I, E},, E¢4, Vi, T and Vgy for the cases (B) and (D)
are shown in Figures 6.21 to 6.22.

It is interesting to observe that the oscillations are damped in both the
cases showing the improvement introduced by SVC. With SVC, more power
can be transferred without losing stability. Also, SVC permits operation with
weaker AC network (after the fault is cleared).
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Chapter 7

Analysis of Single Machine System

With classical model of the synchronous machine, the steady state instability at
the limiting power is characterized by a slow monotonic increase (or decrease) in
the rotor angle, resulting in loss of synchronism. With the advent of automatic
voltage regulators (AVR) it was felt that the steady state stability limit can be
enhanced as the AVR acts to overcome the armature reaction. A simplified rep-
resentation of the effect of AVR is the reduction of generator reactance from z4
to a much smaller value (around z;). It is to be noted that without AVRs mod-
ern turbo-generators cannot operate at full rated power, as their synchronous
reactances are around 2.0 pu. Also, the transient stability is improved by fast
acting exciters with high gain AVRs. Unfortunately, such fast acting excitation
systems can result in negative damping of the rotor oscillations induced by small
disturbances such as random load changes. Thus, system operators started ob-
serving spontaneous power oscillations of low frequency in interconnecting ties
or long transmission lines. These oscillations have been observed in several sys-
tems and are of major concern in system operation. This is mainly due to the
fact that the problem is aggravated at peak loading conditions and high external
impedance (connected to a generator).

In this chapter, an analysis of a single machine system is presented. The
emphasis is on highlighting the factors that influence the oscillatory instability.

7.1 Small Signal Analysis with Block Dia-
gram Representation

Consider a single machine system shown in Fig. 7.1. For simplicity, we will
assume a synchronous machine represented by model 1.0 neglecting damper
windings both in the d and q axes. (It is possible to approximate the effects of
damper windingss by a nonlinear damping term, if necessary). Also, the arma-
ture resistance of the machine is neglected and the excitation system represented
by a single time-constant system shown in Fig. 7.2.



222 Power System Dynamics - Stability and Control
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G E, /0
Figure 7.1: A single machine system
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Figure 7.2: Excitation system
The algebraic equations of the stator are
E(II + :v:;id =y (7.1)

The complex terminal voltage can be expressed as
vQ + jup = (g + jva)e?® = (ig + jia)(Re + jTe)e’® + EpL0

From which .
(vg + jva) = (3g + jia)(Re + jze) + Epe™ 0 (7.3)

Separating real and imaginary parts, Eq. (7.3) can be expressed as

Vg = Reiqg— Teiqg+ Ep cosd (7.4)

Substituting Eqs. (7.4) and (7.5) in Eqgs. (7.1) and (7.2), we get,

(zh + ze) -R, ig | _ | By cosd — E, (7.6)
—Re  —(zq+ze) g | —E, sind )
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The expressions for 74 and 44 are obtained from solving (7.6) and are given below

ig = % [ReEb sind + (24 + ze)(Ep cosd — E’f,)] (7.7)
g = % [(z; + z¢)E)p sind — Re(Ey cosd — E«';)] (7.8)

where
A= (zh+ Te)(zg + Te) + Rg (7.9)

Linearizing Eqs. (7.7) and (7.8) we get

Aig = ClA(s-i-CzAE; (7.10)
Aig = C3Aé+CiAE, (7.11)

where
1
C, = 1 [ReEy cosdy — (g + ze)Ep sin dy)
1

C; = [(z} + z¢)Ep €088, + ReE)y sind,)

SR

Cy =

Linearizing Eqs. (7.1) and (7.2), and substituting from Egs. (7.10) and (7.11),
we get,

Ay, = zf,ClAé +(1+ w:iCQ)AE(II (7.12)
Avg = —z4C3A6 ~ :z:qC4AE'; (7.13)

It is to be noted that the subscript ‘o’ indicates operating value of the variable.

7.1.1 Rotor Mechanical Equations and Torque Angle

Loop
The rotor mechanical equations are
dé
% = WB(Sm - mo) (7-14)
dSy,
2H——dt— = -DS,,+T,—-T, (7.15)
T. = E;iq — (zq — Z)p)iaiq (7.16)
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Linearizing Eq. (7.16) we get
Substituting Egs. (7.10) and (7.11) in Eq. (7.17), we can express AT, as

AT, = K\ A8 + K;AE, (7.18)
where
K2 = quC4 + ":qa - (:L‘q - m:i)iqoc2 (7-20)
Egp = E’"Io — (zq = Tij)tdo (7.21)
Linearizing Eqs. (7.14) and (7.15) and applying Laplace transform, we get
Ad=YBAS,, = “—sliAw (7.22)
S
1
ASp = 52 [ATn — AT, = DASq] (7.23)

The combined Eqgs. (7.18), (7.22) and Eq. (7.23) represent a block dia-
gram shown in Fig. 7.3. This represents the torque-angle loop of the synchronous
machine.

For classical machine model, AE{I = 0 and the characteristic equation
given by
2Hs? 4+ Ds + Kywp =0 (7.24)

For stability, both D and K; should be positive. If D is negligible, the roots of
the characteristic equations are

Kle

= tjwy, (7.25)

where wy, is the natural (radian) frequency of oscillation of the rotor. Typically,
the frequency of oscillation lies in the range of 0.5 to 2.0 Hz although extreme
values of 0.1 Hz at the low end and 4 Hz at the high end are also possible.

7.1.2 Representation of Flux Decay

The equation for the field winding can be expressed as

dE!
T'Iio—gig =FE¢ - E; + (za — Th)iq (7.26)
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Figure 7.3: Torque-angle loop
Linearizing Eq. (7.26) and substituting from Eq. (7.10) we have
! dAE; / / !
Tio Fra AEfg — AE, + (24 — 4)(C1A6 + C2AE)) (7.27)
Taking Laplace transform of (7.27) we get,
(1 + sTy,K3)AE, = K3AEpg — K3K4 A9 (7.28)
where
K; = ! (7.29)
P - (ea-z)C '
Ky = —(zq-125)C1 (7.30)

Eq. (7.28) can be represented by the block diagram shown in Fig. 7.4.

7.1.3 Representation of Excitation System

The block diagram of the excitation system considered is shown in Fig. 7.2.
The linearized equations of this system can also be represented by the same
. block diagram omitting the limiter. For the present analysis we can ignore the
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Figure 7.4: Representation of flux decay

auxiliary signal V. The perturbation in the terminal voltage V; can be expressed
as

qo
Substituting from Egs. (7.12) and (7.13) in (7.31), we get
AV, = KsAd + KGAE'(’I (7.32)
where
Vdo
Ky = - .
° () 240+ (52 22cn (7:33)
Ks = (:/do) ZqC4 + ('qu) (1 + ZdC2) (7.34)
to

Using Eq. (7.32) the block diagram of the excitation system is shown in
Fig. 7.5. The coeflicients K to K¢ defined in Eqgs. (7.19), (7.20), (7.29), (7.30),
(7.33) and (7.34) are termed as Heffron-Phillips constants. They are dependent
on the machine parameters and the operating conditions. Generally K;, K», K3
and K¢ are positive. K4 is also mostly positive except for cases when R, is high.
K5 can be either positive or negative. Kj is positive for low to medium external
impedances (R, + jz.) and low to medium loadings. Kj is usually negative for
moderate to high external impedances and heavy loadings.

7.1.4 Computation of Heffron-Phillips Constants for
Lossless Network

For R.=0, the expressions for the constants K; to Kg are simplified. As the
armature resistance is already neglected, this refers to a lossless network on the
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Figure 7.5: Excitation system block diagram

stator side. The expressions are given below.

K, = + 4 B0 Sind
! (e + z4) (ze + ) blqo SN0
K, = (e + z4) . = E} sind,
(ze + z0y) e (ze + z0))
K = (ze + z)p)
(g + Te)
K4 = E.’L' d; E sin 6
a1 Te
K = —TqVdo By c088o ThvgoFp sind,
(ze + zq)Vto (ze + -Tld)Vto

T v,
Ke — % (L")
7 @t \Vio

It is not difficult to see that for z. > 0, the constants K;, K2, K3, K4 and K
are positive. This is because J, is generally less than 90° and iy is positive. K3
is independent of the operating point and less than unity (as z), < z4). Note
that z. is generally positive unless the generator is feeding a large capacitive
load (which is not realistic).

It is to be noted that Heffron-Phillips constants can also be defined for
any general network connected between the generator and the infinite bus. For
a general two-port network, the voltage at the generator port can be expressed
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A ) 1 .
Vi = (vg + jug)e?® = (1717) (ig + jia)e™ + h12Ey /0

where y;1 is short circuit admittance (at the generator terminals) and hjg is a
hybrid parameter (open circuit voltage gain). Expressing

1 . .
— = Re +j%e, hiz = hy + jho
Y11

Vi = (Re + jze) (i + fia)e’® + Ej L6y

_1 ha
E} = \/h? + h2 Ey, & =tan 1h_1 = constant

The expressions for the constants given earlier are still valid if 4, is replaced by
_ (06 — ) and Ej replaced by Ej

7.1.5 System Representation

The system block diagram, consisting of the representation of the rotor swing
equations, flux decay and excitation system, is obtained by combining the com-
ponent blocks shown in Figs. 7.3 to 7.5. The overall block diagram is shown in
Fig. 7.6. Here the damping term (D) in the swing equations is neglected for
convenience. (Actually D is generally small and neglecting it will give slightly
pessimistic results).

From Fig. 7.6, the electrical torque compound AT, is related to Ad by the
following relation

1 KsKg
KK s+ = (1+——)
AT(s) = 5" I % A(s)
do | g2 4 S(E + KsTéo) +(1+ K3K6KE)/K3T:,0TE
(7.35)
. . . . Te2
For a static exciter, Tg is very small. If Tg ~ 0, the transfer function Y can
be approximated as
ATex(s) , _KaKy (1 + KsKg/Ky) (7.36)
AJ(S) - Téo [8 -+ (1 + K3K6KE)/K3T‘§0] )
For large values of Kg, Eq. (7.36) can be further approximated as
AT, KyKsK Ky K5/ K
e2(s) 2KsKg 2Ks5/Ks (7.37)

Aé(s) ~  (Tis+KeKg)  sT)/(KeKp)+1
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Figure 7.6: Overall block diagram

7.2 Characteristic Equation (CE) and Ap-
plication of Routh-Hurwitz Criterion

The characteristic equation (CE) for the system shown in Fig. 7.6 can be ob-
tained by combining the transfer function given in Eq. (7.35) with the following
equation

(2Hs? + K1wp)Ad(s) = wp(ATy, — ATe) (7.38)
The characteristic equation is a 4th order polynomial expressed as
sttas®+azs®+azs+ag=0 (7.39)
where
1 + 1
“T T T KT,
4y = (1+ K3KgKg) Kws
2 KT, T 2H
__ wB I-Kl K1 K2K4
a3 — - -

2H |75 = KsT), Tj,
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o = B |Ei(l+KsKeKp) KiKy
Y KT, T T3 Tx

K5KE)
K,

1+

The application of Routh-Hurwitz criterion enables steady state stability to be
determined by the coefficients of the characteristic equation (without having to
determine the roots). The application for Eq. (7.39) can indicate limits on the
AVR gain Kg.

For static exciters, Tr ~ 0 and the characteristic equation reduces to third
degree given by

8 +b1s® +bys+b3=0 (7.40)
where
I 1+ K3K¢KE
b K3T/,
by = wpK)
* " T2H
wp |Ki(1+ K3K¢Kg) KiK, KsKg
by = — i - 7 (1 -+ )
The criteria for stability are obtained by forming Routh array given by
83 1 b2
s by bs
st a
s° b3

For steady state stability, b;, a and bz must be positive where

b3 wBK2K3K4 (1 K5KE)

@=by— == 9H(1 + K3KoKr) Ky

bs > 0 implies,

KoK
(K1 — K2K3K4) + KsKpKg (Kl - I"’{ "’) >0
6

The above inequality is applicable as both terms in the L.H.S. are generally
positive, i.e.

K1 — K3K3Ky >0 (7.41)

K - K2 (7.42)
Kg
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Hence the major criterion for stability is that o > 0 which implies

Ky
K _— .
s+ o >0 (7.43)

When Kj is positive, (7.43) applies and the system is stable. When Kj is
negative the inequality (7.43) puts an upper limit on Kg given by

K4
Kp< —+ 44
E< Tk (7.44)

In deriving (7.44) it is assumed that K4 > 0. However, it can be seen that for
large values of Kg, if K5 > 0, then a > 0. This follows from the fact that

~ KoKs wp
T K¢ 2H

Thus, the major criterion for stability for large values of Kg is given by

Ks>0 (7.45)

Stability Criterion for System Neglecting AVR

It is worthwhile investigating stability for a system neglecting AVR but consid-
ering field flux decay. In this case the equation can be obtained as

L teas?+ces+e3=0 (7.46)

where

1
T3 Ks
wpK)
2H
wp (K1 — K3 K3K,)
2H e

G =

Cy =

c3 =

The application of Routh criterion gives ¢; > 0, ¢3 > 0 and

a-250 (7.47)
1

¢1 > 0 is applicable as K3 > 0. ¢3 > 0 implies

K- Ky;K3K4 >0 (7.48)
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(7.47) can be expressed as

wB
— Ko K3 K. ;!
gy 2 Ks 4>0 (7.49)

As K3 > 0, the criterion for stability is
Ky>0 (7.50)

For R, = 0, the expression for K, is positive for d, < 90°. However for R, # 0,
the expression for K4 can be obtained as

_ Ey(za — z3)

Ky A

((ze + z4) sind, — Re cos dg) (7.51)
If,
Re > (ze + z4) tand, (7.52)

then, K4 < 0. However, unless local resistive load is considered at the generator
terminals, the external resistance R, will be less than the limit given above.

For K4 < 0, there will be two roots of the CE in the right half plane (RHP).
However for K4 > 0 and K| — K3K3K4s < 0, (K; > 0) there will be only one
root in the RHP.

7.3 Synchronizing and Damping Torques
Analysis

The concepts of synchronizing and damping torques are basic in the power
system analysis. Assuming that the generator rotor is oscillating sinusoidally,
restoring torques are set up to oppose the motion. The component of torque in
phase with the rotor angle § is called as the synchronizing torque while the com-
ponent of torque in phase with the rotor velocity deviation (or slip) is termed
the damping torque. Mathematically, the synchronizing torque coefficient (Ts)
is defined as

AT, .
Ts =R [ =t (Jw)] (7.53)
Similarly, the damping torque coefficient (Tp) is defined as
AT, .
Tp =R [ - (;w)] (7.54)

Since

Aw(s) s

Afl_’e(s) _ws [AAT;((SS))] (7.55)
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We can derive

wpS [——*AA%;C((J‘U))]
Tp = - ke (7.56)
Similarly, Ts can also be expressed as
W ATe(jw)]
Ts = ons [—_Aw(jw) (7.57)

The significance of the concepts of synchronizing and damping torques
is the postulate that the small rotor oscillations are governed by an approximate
second order differential equation given by

Mp?AS + T—QpAé +TsAs =0 (7.58)
wp

. .. 2H . . d
where M is the inertia constant (;—), p the differential operator, 7
B
It is to be noted that the accuracy of this approximation depends on the
nature of the electrical network connected to the generator.

The significance of Eq. (7.58) is that for stability of rotor oscillations,
both Ts and Tp should be positive calculated at all possible frequencies of
oscillations. An initial estimate for the frequency of oscillation is given by Eq.
(7.25).

For Tp < 0 and Ts > 0, there will be two complex roots which will lie
in the RHP. For Tp > 0 and Ts < 0 or for both Ts and Tp negative, there will
be one real root in the RHP.

7.3.1 Application : Case 1 : System without AVR

When AVR is not considered, the electrical torque (AT) is given by the expres-
sion

AT, = AT, + AT (759)
K>3K3Ky
= |K -2 —|A¢
[ ' 1+3T50Kgl

From the above, Ts and Tp can be obtained as

KyK3Ky

Ts = Kj — —— 324
ST T Y WTEK}

(7.60)
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AT, AT,
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(a)K4>0 (b)K4<0
Figure 7.7: Phasor diagram
KoK2K,T) w
Tp = —2-3 4 do* B (7.61)

14 w?TR2K?2

For Ts and Tp to be positive for all frequencies of oscillations, it is necessary
that

K, > 0

Kyi— KaKoKy > 0 }for Ts >0 (7.62)

Ky > 0 fm' Tp >0

The first condition applies for high oscillation frequencies such that
wTy,K3 >> 1. The second applies for low frequencies such that wT};,K3 << 1.
The third condition applies for all frequencies.

It is to be noted that the above conditions for stability are identical to
those given by Routh Criterion. K4 < 0 indicaies negative damping. Fig. 7.7
shows the phasors Ad, Aw, AT, AT.s and AT, . (a) shows the phasor relations
for the case when K4 > 0 and (b) for the case when K4 < 0. It is obvious that
with K4 < 0 the damping torque is negative although the synchronizing torque is
increased (compared to case (a)). The negative synchronizing torque component
introduced by AT (for K4 > 0) results from the demagnitizing action of the
armature reaction which weakens field flux.
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7.3.2 Case 2: Fast excitation system (Tr ~ 0)
For Tg ~ 0 the electrical torque (AT,) can be approximated as (see Eq. 7.36)
. K\
(Ks + f{'i)
K, N BET

AT, = | Ky — Kg
+1

T Aé (7.63)

L (KeKg)

In deriving the above expression, it is assumed that K3K¢Kpr >> 1 and hence
1+ K3K¢Kg ~ K3KsKE

By combining Eq. (7.63) with Eq. (7.59) it is not difficult to get the following
conditions for stability

K1 > 0} B
N K4) for Ts>0 (7.64)
K1 (Ks) (K5+KE >0
K
(K5 + ——i) >0 for Tp>0 (7.65)
Kg

For large values of Kg, the conditions reduce to

K, > 0
K, - KK > 0 for Ts>0 (7.66)
Kg
K5 > 0, for Tp>0 (7.67)

These conditions are related to those obtained by applying Routh’s criterion.
Example 7.1

A synchronous generator is connected to an infinite bus through an ex-
ternal reactance z, = 0.4 pu. Compute the Heffron-Phillips constants, K; to
K¢ at the operating point

(a) Pg=05, V;=1.0, E;=1.0
(b) Pp=10, V;=10, E, =10
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The machine data: z4=1.6, z,=1.55, z;=0.32, T; =6.0, H =35,
D=0, fp=60Hx.

Solution

The data given assumes machine model (1.0). The initial conditions are
calculated from the operating point and the constants K; to Kg are obtained
from using the expressions given in section 7.1.4.

(a) V& = 1.0£11.53, I, = 0.5025, E,, = 1.3279, &, = 47.24°, iz, = —0.3328,
igo = 0.3765, vz, = —0.5836, v, = 0.8120
K; =0.9346, K, = 1.0198, K3 = 0.3600, K4 = 1.3053, K5 = 0.0500,
Kg = 0.4511

(b) V; = 1.0/23.57, I, = 1.0215, E,, = 2.0382, &, = 73.08°, ig, = —0.8960,
igo = 0.4906, vgo = —0.7605, v, = 0.6494
K; = 1.1060, K, = 1.3288, K3 = 0.3600, K4 = 1.7009, K5 = —0.1002,
Kg = 0.3608

Note: Kj3 is independent of operating point. Kj is positive for case (a) and
negative for case (b). All other constants are positive. If AVR is not considered,
then the conditions for stability are

Ki >0, Ki—KyK3K4>0
The value of (K — K2K3K,) is 0.4554 for case (a) and 0.2924 for case (b).

If AVR is to be considered, the condition for stability is primarily

K,
KE<—_K5

For case (b), this implies that Kg < 16.98
Example 7.2

For the system given in Example 7.1, plot the variations of -
K, (K1 — K3K3K,) and K5 with variations in z.. (All other parameters having
same values as before).

Solution

The variations in Ky, (K; — K2K3K,) and K5 are shown in Fig. 7.8. It
is interesting to observe that

(i) Ky > 0 for both cases. As expected, K; reduces with increase in z,. The
reduction is faster for case (b) P, = 1.0
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Figure 7.8: Variations of parameters with z, (Example 7.2).
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(ii) (K, — K3K3K},) is positive for case (a) while for case (b) it becomes neg-

ative for z. exceeding 0.7

(iii) Ks > 0 for case (a) when z, < 0.8. However, K5 < 0 for case (b) even for

z. = 0.1. K5 reduces with increase in z.

Example 7.3

Repeat Example 7.2 if z, = 0.4 and P, is varied from 0.5 to 1.5 p.u.

Solution

The variations of K, (K; — K2K3K4) and K5 with variation in P, are

shown in Fig. 7.9. It is interesting to observe that

(i) K7 > 0 and remains practically constant.



238 Power System Dynamics - Stability and Control

(ii) (K1 — K2K3K4) reduces with increase in P,. It reaches the value of zero
as P, approaches 1.5 pu.

(iii) K5 reduces as P, increases. Ky crosses zero as P, approaches the value of
0.7 p.u. and remains negative as P, is further increased.
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Figure 7.9: Variation of parameters with P, (Example 7.3).

Example 7.4

For the gystem shown in Fig. 7.10, compute the constants K; to K¢ for
the two operating points (a) P, = 1.0 (b)P, = 1.1. For both cases, assume
that V; = E, = 1.0. The system data are Rg = 1.0, zg = 5.0, the machine data
is same as in Example 7.1.
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Figure 7.10: System for Example 7.4

Solution

From the discussion given in section 7.1.4, the external network is a
special case of a two-port network for which the parameters are calculated as

1 1 bio = Rg
Jjze  Re +j$e’ 12 Rg + jzg

1
yll—R—E"*‘

The system shown in Fig. 7.10 is equivalent to the system shown in Fig. 7.1
with infinite bus voltage replaced by

E} /8y = h12Ey

(a) The initial conditions are calculated as
Vi =1.0£0, I, = 1.0, Eq, = 1.8446, 0, = 57.17°, i4, = —0.8403,
igo = 0.5421, vg, = —0.8403, vy = 0.5421
The constants are obtained from using the expressions given in section
7.1.3. They are
K; =0.1971, K» = 2.1575, K3 = 0.4490 K4 = 0.2629, K5 = 0.0068,
K¢ = 1.0650

(b) The initial conditions are
Vi = 1.0£30, I,= 1.1003, Eg4 = 1.998, &, = 88.58°, iy, = —0.9527,
igo = 0.5506, vgo = —0.8534, vy = 0.5213
The constants are
K, =0.0345, Ky = 2.2571, K3 = 0.4490 K4 = 0.1826, K5 = —0.0649,
Kg = 1.0613 '
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7.4 Small Signal Model: State Equations
7.4.1 Simplified Model

It is possible to express the system equations in the state space form. From the
block diagram, shown in Fig. 7.6, the following system equations can be derived

& = [Ale + [B)(AVyes + AV,) (7.68)
where

zt = [Ad ASy, AE; AE4q]

i 0 WA 0 0 ]
K D _ Ko 0
2H 2H 2H
[4] = Ki 1 1
Ta’,o T(’ioK;; Téo
_KeKs , _KpKe _ 1
! Tg TE Tg |

(B = [0 00 I;——j]

The damping term D, is included in the swing equation. The eigenvalues
of the matrix should lie in LHP in the ‘s’ plane for the system to be stable.
The effect of various parameters (for example, Ky and Tg) can be examined
from eigenvalue analysis. It is to be noted that the elements of matrix [A] are
dependent on the operating condition.

Example 7.5

For the system considered in Example 7.1, compute the eigenvalues for
the two operating conditions and (i) without AVR (ii) with AVR of Tg = 0.05
sec, Kg = 200.

Solution

The system matrix [A] is defined in Eq. (7.68). The substitution of the
parameter values and calculation of eigenvalues using MATLAB program gives
the following results
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(a) Pp=0.5

(i) Without AVR
—0.1185 = j5.9302, —0.2259
(ii) With AVR
~0.1512 % j5.5407, —10.0803 + j14.3810

(b) P, =1.0

(i) Without AVR
~0.1702 + j6.4518, —0.1225
(ii) With AVR
0.5091 + j7.1562, —10.7405 + 12.1037

It is interesting to observe that

(i) The complex pair of eigenvalues corresponding to low frequency rotor os-
cillations is affected by AVR in different ways for cases (a) and (b). In the
first case (Py = 0.5), the damping is slightly increased with AVR while
the frequency of oscillation is slightly decreased. This is equivalent to the
statement that while AVR can contribute damping torque (with K5 > 0)
the synchronizing torque is slightly decreased.

For the case (b), the net damping becomes negative while the frequency of
oscillation increases slightly. This is mainly due to the fact that K5 < 0,
in this case.

(ii) There is a negative real eigenvalue in the case without AVR which moves
towards the origin as P, is increased. However the inclusion of a single
time constant excitation system results in another complex pair in the left
half plane, further away from the imaginary axis compared to the rotor
mode. The loci of eigenvalues for the case without AVR are shown in
Fig. 7.11 as Py is varied from 0.5 to 1.7 (for z. = 0.4). The variations
with z. (varied from 0.1 to 1.0) for P; = 1.0, are shown in Fig. 7.12.
It is interesting to note that while the complex pair remains in the left
half plane, the real eigenvalue crosses imaginary axis into RHP as either
P, or z. is increased. This shows that instability in the case when AVR
is absent, is mainly due to monotonic increase (or decrease) in the rotor
angle when small perturbations are present.

Example 7.6

For Example 7.5, plot the loci of the critical eigenvalues as Kg is varied
from 0 to 400.
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Solution

The loci of the complex critical eigenvalues are shown in Fig. 7.13. For
case (a) (with Py = 0.5), the damping increases at first as K is increased from
zero but starts decreasing as K is further increased. However the locus remains



7. Analysis of Single Machine System 243

8r

75[’ 400

>
ESS 0 b
g
E
sr [}
a P =05
63 ¢
55} a 400 b Pg=10
x =04
3
5 " L i 1 L S n 1 L
-08 -08 -04 02 [ 02 04 06 o8
real part

Figure 7.13: Eigenvalue loci for variation in AVR gain(Example 7.6).

in the LHP. For case (b), the damping starts decreasing as K, is increased from
zero and the eigenvalue crosses imaginary axis as Kg is increased beyond 17.0.

Although the locus turns around as Kg is further increased, it remains in the
RHP.

The difference in the loci for the two cases can be attributed to the fact
that while K5 < 0 for case (b) it is positive for case (a). Thus instability is
expected in case (b) for sufficiently large values of Kg.

(Note that only one of the critical eigenvalues is shown in Fig. 7.13. The
other is the complex conjugate whose locus is the mirror image about the real
axis).

Example 7.7

For the system of Example 7.4, compute the eigenvalues (i) without and
(ii) with AVR (Kg = 200, Tg = 0.05 sec).

Solution

(a) Pp=1.0

(i) Without AVR
—0.2395 £+ 52.7247, 0.1078
(ii) With AVR
—0.0063 + 72.6102, -10.1793 + j24.7821
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(b) P, =11

(1) Without AVR
—0.6246 + j1.4174, 0.8780

(i} With AVR
0.0753 & j2.5280, —10.2609 + j24.6505

Note that
(i) Case (a) corresponds to the case with no power transmission on the tie

line. (P, is just adequate to meet the local load). For case (b), the power
flow on the line is % of the local load.

(ii) The frequency of oscillation is less when compared to the system of Ex-
ample 7.1. Also the frequency reduces as power flow increases on the line.

(iii) While AVR stabilizes the system for case (a), the mode of instability for
case (b) shifts from one of monotonic instability to oscillatory instability
when AVR is present.

Example 7.8

For Example 7.7, plot the loci of the critical eigenvalues as Kg is in-
creased from 0 to 400.

Solution

The loci of the complex critical eigenvalues for the cases (a) and (b) are
shown in Fig. 7.14. The results are similar to those shown in Fig. 7.13 in
the sense that for the case (operating point) when K5 < 0, the increase in Kg
beyond a limit results in oscillatory instability.

7.4.2 Detailed Models

The analysis given above considered only the synchronous machine model 1.0
and simple excitation system model. It is possible to consider more detailed
models both for the machine and controllers (both excitation and prime-mover).

In general, the linearized machine model can be expressed as

Ty = {Am]a:m + [Bml]Aim -+ [BmZ]AEfd + [Bm3]ATm (769)

where

Ait, = [Aig Aig)
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For machine model 1.1, the state vector z,, is say

zt, = [A§ AS, AE, AE)]

The various coefficient matrices are

0 wg

[Am] =

[Bml] =

0 0

_Yo o

2H 2H

1

"z, 0
1

0 —_
T, |
. ]
B2
0

—(gq — )/ T}, |
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[Bms)t = [0 % 0 0]

Br = (B + (24— 3q)igo)/2H
Ba = (B + (aq — 2g)iao)/2H

Controller Equations

In general, the controller (including excitation and prime-mover) can be de-
scribed by the following equations

where z. is the state vector for the control system and

ul, = [AVies Awpeg]
Avl, = [Av, Ay

AS,, is expressed as
AS,, = egxm

where es is a column vector equal to the second column of the unit matrix of
same dimension as that of vector z,,. (It is assumed that irrespective of the
machine model, AS,, is always the second variable among the state variables
corresponding to the machine. The first variable is Ad).

AE¢q and ATy, are outputs of the controllers expressed as
AEs = Clz,, ATy, = Ciz,

where C) and C5 are column vectors of same dimension as that of z.. There is
no loss of generality if z, vector is so arranged such that

Ct=[100....0]

In other words C} is the first column of the unit matrix of same dimension as
that of vector z..

Note: Power System Stabilizer (PSS) (to be discussed in the next chapter)
can also be treated as a part of the excitation controller. Also, if prime-mover
controller is ignored, then C5 can be put equal to zero.

Equations (7.69) and (7.70) can be combined to give
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where
| Am  BpmaCt+ BpsCh
[l = | B et A (7.72)
BZl = [Brtm [0]]

By = [l0] Byl
E, = [0] E]

It is to be noted that Ai,, and Awy, are related by the following equations

!
Avy, = [ 223 ] = —[Z,| Qi + [ 227,(,‘; ] (7.73)

where

T

2] = [ z& R;a ]

The armature resistance is usually very small and can be neglected in the above
equations.
Network Equations

For a single generator connected to infinite bus through an external
network, the following equation in Awv,, can be derived

A’Uq _ Zu Zlg Aid + a1l] a12 -—Eb sindo Ad
Avg | | Zoy Zyo Aiq as1 a9 —E, cosd,

Avp = [Z])Dim + [A]AS (7.74)

or

The derivation of Eq. (7.74) is quite straightward for a two port network
connecting the generator to the infinite bus. However, the form given in Eq.
(7.74) applies even if nonlinear voltage dependent load and SVC are considered
at an intermediate bus.
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Representation of Nonlinear Load

For example, consider a system shown in Fig. 7.15 which shows a nonlinear load
and a SVC at bus 3. The load can be described by

P, = Pp (%)mp (7.75)
QL = QLo (%)mq (7.76)

The load current I7, can be expressed as

1 3 2
R, X R, X5 E
sve P, Q,
Figure 7.15: System diagram
N . Pr,—3j
I, = IqL+deL=LA—;TQL
Vi
Pr, —jQL) 5
(TVL (7.77)

where
Vi = Var + jVar,

Note that the magnitude of the load bus voltage is denoted by V' (without the
subscript L).

Substituting Egs. (7.75) and (7.76) in Eq. (7.77) and linearizing, it is possible
to express Al as

Al, = Al +jALi, = (Gro + jBro)(AVy + jAVaL)

4 [(mp = 2)Pro = §(mq ~ 2)Q1a Av

(7.78)
Lo Vo
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where
Pr, - .7 QLo
V2
Note that if the load is of constant impedance type, both m, and m, have value
of 2 and the second term is the R.H.S. of Eq. (7.78) is zero.

GLo + jBLo =

By expressing AV as

AV = ( VdL") AVy + ( V"L“) AV, (7.79)
Vo Vo
it is possible to express (7.78) in the form
Aly, | _ | Brotb Gro+a AV, (7.80)
Alyy, GrLo+92 —Bro—bz AVg '

AV,
[¥z] [ AVg ]
1 .
b = 7 [(mp — 2) P, sinf, — (mgq — 2)QLo cosb)
[e]

VoL VdL)
_ g1 { YgLo _y 0
b= b(V.,)’ o =¥ (7

1 .
g = 2 [(mp — 2)Ppo cosby + (mg — 2)QLo sinb,)]
o

_ ' VqLo) _ I(VdLo)

6, is the initial angle of the load bus voltage with respect to q axis. It is to be
noted that, b; # be and similarly g; # go. Hence Eq. (7.80) cannot be expressed
as a single equation in phasors.

Representation of SVC

For a study of the low frequency behaviour of the system, it is not nec-
essary to model the network transients. Similarly, the fast dynamics of SVC
controller can be neglected and SVC represented by its steady state control
characteristics. Only auxiliary control utilizing bus frequency or other signals
need to be considered.

Neglecting auxiliary control, the control characteristics of SVC can be
expressed as

3 V= Vees1 V
Isve = —j [—EJ—CL] v (7.81)
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where k is the slope of the control characteristics, V' is the voltage phasor cor-
responding to the SVC bus. V is the magnitude of V. Eq. (7.81) shows that
Isyclags V by 90° if V > V,-ef.

Eq. (7.81) can be expressed as

Iis+jlgs = -—JE [1 — ] (V;I + 3Va) (7.82)

Linearizing Eq. (7.82), we get

V;
Alys + jAlgs = ‘jﬁ(AVq + jAVy) — I lref (cos By + 7 sinf,)AV
Vo kV,

This can be written as

[ Alys ] _ [ ~Bs+bs g5 ] [ AVy ] (7.83)
Al gs Bg - bg AVy
= [Ysvc] { 2“2 ]
where Be - I%:  fen= Vo —ergf
bs = —Z"‘Z cos 8§, (VVL:), 5 = _‘Z‘Z‘ sinf (Y;—:)
o5 =~k ot (Y2), dh= ik e ()

As bs # by and gs # g5, Eq. (7:83) cannot be reduced to a single >pha,sor
equation.

Derivation of Eq. (7.74) for system of Fig. 7.15

The Eq. (7.74) can be derived as follows. The generator armature cur-
rent Az, can be expressed as

Aip, = [Ysyc + YL]AV3 + [V2][AV3 — AVy] (7.84)

where

_ | AVga | —Ep sind,
AVs = [ AV ] , A= [ —E) cosd, ]AJ

vi= & 5,
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Ge +jBy = Raiim
Avy, can be expressed as

Avy, = [Z1)Ady, + AV3 (7.85)
where

2] = [ P ]
Eliminating AV3 from Eq. (7.84), we get

CAVs = [ZDin + [2'][Y2)AVS (7.86)
where
[2') = [Ya + Y1 + Ysve]

Substituting (7.86) in (7.85) we can derive

— A2 1 —Eb sin 60
AVy = (21 + Z') Al + [ Z27][Y7] [ _E, cosé, Aé
From the above, the coefficients in Eq. (7.74) are easily derived.
Derivation of System Equations

The system equations are obtained by eliminating Ai,, and Awv,, from

Eq. (7.71). Egs. (7.73) and (7.74) are used to eliminate Aiy,, and Avy,. Ain,
can be expressed as

Ay = [Filz, (7.87)

where

[Fi] = [Zr]7*{[CE] - [Ale1}

[Zr] = [2]+[Z]
[Cg] and e are defined from

[ AE,

AE! } = [Cglzg, Ad=eizq4

Substituting Eq. (7.87) in (7.74) we get
Avy, = [Fylz, (7.88)
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where
[Fy] = [Z][F] + [Alex
Substituting Eqs. (7.87) and (7.88) in Eq. (7.71) we get the system equation
&g = [Ar]zg + [Egluc (7.89)
where
[Ar] = [Ag] + [Bal[Fi] + [Bg2][F]

Example 7.9

A synchronous generator is connected to an infinite bus through a line
of reactance (z, = 0.6). At the midpoint of the line, a SVC is connected. The
SVC is initially supplying no reactive power. The operating data is:

Ey=V; =10, P, =1.0.

Plot the loci of the critical eigenvalues as Kg is varied from 0 to 400 for the
following cases (i) £ =0.001 (ii) £ =0.1

Assume Ty = 0.05sec. The machine data is same as that given in Example 7.1.

Solution

The initial conditions are calculated as  V; = 1.0/36.87, I, = 1.0541,
Eqo = 2.1686, d, = 82.49, i4, = —0.9479, 14 = 0.4611, vg, = —0 7148,
Vg0 = 0.6994.

The loci of the critical eigenvalue for the two cases are shown in Fig.
7.16. This also shows the case when SVC is not considered. The effect of SVC
is to reduce the effective length of the line (or reduction of z.) which results in
the eigenvalue locus being shifted to the left.

Without SVC, the critical AVR gain (which results in instability) is
around 8; with SVC, the critical gain is 17.0 with £ = 0.1 and increases to 28.7
with k£ = 0.001. Thus voltage control at SVC is beneficial in reducing the neg-
ative damping due to AVR. However, the contribution of the voltage controller
at SVC is limited. For improved system damping, additional (auxiliary) control
loop has to be used with control signal derived from bus frequency or synthesized
from voltage and current signals measured at SVC [12].

7.5 Nonlinear Oscillations - Hopf Bifurca-
tion

The small signal stability analysis based on linearized system models indicates
only whether the relevant equilibrium point (or operating point) is stable. It
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Figure 7.16: Loci of critical eigenvalue with variation in AVR gain (Example
7.9).

does not indicate whether there would be stable (persistent) oscillations if the
equilibrium point is unstable. In practical systems, both stable (with finite
amplitudes) or unstable (with growing amplitude) oscillations of power flow in
transmission lines have been observed. In general, unstable oscillations (due to
fast acting static exciters and high gain AVRs) are common. The increasing
amplitude of oscillations can lead to loss of synchronism.

The existence of stable nonlinear oscillations is indicated by supercritical
Hopf bifurcation [13, 14]. Given the nonlinear equations

&= f(z, p) (7.90)

The equilibrium point z, is a function of u. Hopf bifurcation is indicated if the
linearized system has a complex pair of eigenvalues crossing imaginary axis at
i = po. The stability of the oscillations is determined from Hopf bifurcation
theorem [15]. If the oscillations are stable (stable limit cycle or periodic orbit),
the Hopf bifurcation is said to be supercritical, otherwise subcritical. With static
excitation systems, the Hopf bifurcation is mostly subcritical. However with high
line resistance, the bifurcation could be supercritical. Persistent oscillations have
been observed in such cases in the past and damper windingss designed to damp
the oscillations.

The problem of oscillatory instability (which can lead to loss of syn-
chronism) introduced by static excitation systems can be solved utilizing Power
System Stabilizers (PSS). This is discussed in the next chapter.
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Chapter 8

Application of Power System
Stabilizers

8.1 Introduction

High performance excitation systems are essential for maintaining steady state
and transient stability of modern synchronous geuerators, apart from providing
fast control of the terminal voltage. Bus fed static exciters with thyristor con-
trollers are increasingly used for both hydraulic and thermal units [1, 2]. They
are characterized by high initial response and increased reliability due to ad-
vances in thyristor controllers. The block diagram of a typical static exciter is
shown in Fig.8.1. The time constant T4 of the regulator is negligible. The other
time constant T, in the range of 0.01 to 0.02 sec, is necessary for filtering of
the rectified terminal voltage waveform.

The other time constants associated with the exciter are negligible and
the voltage regulator and the exciter can be modelled as a gain in series with
an optional block of Transient Gain Reduction (T'GR). The role of TGR is
primarily to provide satisfactory operation on open circuit [3]. The Automatic
Voltage Regulator (AVR) gain is typically around 200 pu/pu. The exciter ceiling
is typically 8.0 pu. These parameters permit the exciter to reach 90% of the
ceiling voltage (from the rated-load field voltage) within 25 ms for a sustained
drop in the terminal voltage not exceeding 5%.

It is well established that fast acting exciters with high gain AVR ean
contribute to oscillatory instability in power systems. This type of instability
is characterized by low frequency (0.2 to 2.0 Hz) oscillations which can persist
(or even grow in magnitude) for no apparent reason (see Fig. 8.2). There are
several instances of such occurrences which have been recorded and studied [4,
5, 6, 7). This type of instability can endanger system security and limit power
transfer. The major factors that contribute to the instability are

(a) loading of the generator or tie line

(b) power transfer capability of transmission lines
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Figure 8.1: Block diagram of static exciter
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(c) power factor of the generator (leading power factor operation is more prob-
lematic than lagging power factor operation)

(d) AVR gain.

A cost efficient and satisfactory solution to the problem of oscillatory
instability is to provide damping for generator rotor oscillations. This is con-
veniently done by providing Power System Stabilizers (PSS) which are supple-
mentary controllers in the excitation systems. The signal V; in Fig. 8.1 is the
output from PSS which has input signal derived from rotor velocity, frequency,
electrical power or a combination of these variables. The objective of designing
PSS is to provide additional damping torque without affecting the synchronizing
torque at critical oscillation frequencies [3].

PSS have been used for over 20 years in Western systems of United States
of America and in Ontario Hydro. In United Kingdom, PSS have been used in
Scotland to damp oscillations in tie lines connecting Scotland and England [8].
It can be generally said that need for PSS will be felt in situations when power
has to be transmitted over long distances with weak AC ties. Even when PSS
may not be required under normal operating conditions, they allow satisfactory
operation under unusual or abnormal conditions which may be encountered at
times. Thus, PSS has become a standard option with modern static exciters and
it is essential for power engineers to use these effectively. Retrofitting of existing
excitation systems with PSS may also be required to improve system stability.

This chapter presents the various aspects for the application of PSS
with emphasis on the tuning procedures. The coverage includes not only on
the current practices but also on recent developments and future trends. The
stabilization through SVC and HVDC controllers are also discussed.

8.2 Basic concepts in applying PSS

A brief review of the basic concepts of stabilization is undertaken here. The
power system, in general, is described by a set of nonlinear differential and
algebraic equations. These can be expressed as

pX = F(X, Z), p= % (8.1)
Y = H(X, Z) (82)
0=G(Y, Z) (8.3)

The oscillatory instability can be viewed as stability of the operating point,
subjected to small, random perturbations which are always present. The analysis
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can be performed by linearizing the system equations around the operating point
(X =X,, Y=Y, Z=2Z,). Here X are the state variables, Y represent active
and reactive power injections (at buses), Z represent voltage magnitudes and
angles at various buses.

Expressing
X=X,+AX, Y=Y, +AY, Z=2,+AZ (8.4)

it is possible to obtain the following equation

pAX = [A]AX (8.5)
where .
OF OF (0GOH OG\ ™" 0GOH
4= [5} -3z (sv oz * 32) Wﬁ] (8.6)

It is to be noted that the elements of A are functions of the operating point.

The stability of the operating point can be judged by the location of the
eigenvalues of the matrix A. If all the real parts of the eigenvalues are negative,
the system is stable. If one or more has positive real part, then the system
is unstable. While this criterion of stability is valid for very small perturba-
tions (which may not be true in practice), it is interesting to note that several
analytical studies [5, 6, 7] show excellent correlation between theory and field
tests. The criterion indicates problem areas but cannot provide estimates for
amplitudes of the oscillation observed.

To give more insight into the problem, we can take up a multi-machine
system where generators are modelled by the ‘classical’ model, neglecting flux
decay, saliency, damper windings and governor effects. In this case, the lin-
earized system equations can be written as

[M]p*Ad = —[K|AS (8.7)

where [M] is diagonal matrix with M;; = %1 (Hj; is the inertia constant of

j* synchronous machine). K;ij = OP,;/0d;, where P,; is the power output of
i*" machine, &; is the rotor angle of % machine referred to a rotating reference
frame (with the operating speed w,). If the network can be reduced by retaining
only the internal buses of the generators and the losses in the reduced network
can be neglected,

E,E; 1
K= 7’1—’— cos(d; — 6;) ~ ; (8.8)

P
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where X;; is the reactance of the element connecting the generator buses i and
j. E; and E; are the generator voltages. The approximation assumes that the
voltages are around 1.0 pu. and the bus angle difference (in steady-state) are
small. The matrix [K] is singular and has rank < (m —'1) where m is the size of
K (also equal to the number of generators). This enables the reduction of the
number of angle variables by one by treating relative angles (with respect to a
reference machine which can be chosen as the first machine) as state variables.

The solution of equation (8.7) can, in general, be expressed as

m—1
A6 = Z Vi (cj cos wjt + dj sin wjt) (8.9)
i=1

where Adft = [Ab21  Ad3y.....Adp]? is the vector of relative angles (Ad;

= Ad; — Ady), ¢1y--+5 Cm-1, d1, dg,..., dy—1 are scalars depending on the
initial conditions, Vi, Vi,_; are vectors. The structure of a vector V; depicts the
participation of various machines in the oscillation mode whose frequency is w;.
It is to be noted that for a ‘m’ machine system, there are (m — 1) oscillatory
modes whose frequency varies in the range of (0.2 to 3 Hz). The frequencies
are obtained as square roots of the non-zero and real eigenvalues of the matrix
[M]-1[K].

In a practical system, the various modes (of oscillation) can be grouped
into 3 broad categories [9].

A. Intra-plant modes in which only the generators in a power plant partici-

pate. The oscillation frequencies are generally high in the range of 1.5 to
3.0 Hz.

B. Local modes in which several generators in an area participate. The fre-
quencies of oscillations are in the range of 0.8 to 1.8 Hz.

C. Inter area modes in which generators over an extensive area participate.
The oscillation frequencies are low and in the range of 0.2 to 0.5 Hz.

The above categorization can be illustrated with the help of a system
consisting of two areas connected by a weak AC tie (see Fig. 8.3). Area 2 is
represented by a single generator G4. The area 1 contains 3 generators G, Ga,
and G3. The generators G; and G, are connected in parallel and participate
in the intra-plant oscillations which have higher frequency due to the lower
reactance between the two machines and also smaller inertias. In local mode
oscillation, G; and G2 swing together and against G'3. In oscillations due to inter
area mode, all generators GG to G4 participate and have the lowest frequency.
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__________
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Figure 8.3: A sample power system

It is to be noted that the distinction between local modes and inter area
modes applies mainly for those systems which can be divided into distinct areas
which are separated by long distances. For systems in which the generating
stations are distributed uniformly over a geographic area, it would be difficult
to distinguish between local and inter area modes from physical con:iderations.
However, a common observation is that the inter area modes have the lowest
frequency and highest participation from the generators in the system spread
over a wide geographic area.

The PSS are designed mainly to stabilize local and inter area modes.
However, care must be taken to avoid unfavourable interaction with intra-plant
modes [10] or introduce new modes which can become unstable.

Depending on the system configuration, the objective of PSS can differ.
In Western U.S.A, PSS are mainly used to damp inter area modes without
jeopardizing the stability of local modes. In other systems such as Ontario
Hydro, the local modes were the major concern. In general, however, PSS must
be designed to damp both types of modes. The procedures for tuning of PSS
depend on the type of applications.

If the local mode of oscillation is of major concern (particularly for the
case of a generating station transmitting power over long distances to a load
centre) the analysis of the problem can be simplified by considering the model of
a single machine (the generating station is represented by an equivalent machine)
connected to an infinite bus (SMIB). With a simplified machine model (1.0), and
the excitation system, the analysis can be carried out using the block diagram
representation given in Chapter 7. The instability arises due to the negative
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damping torque caused by fast acting exciter under operating conditions that
lead to K5 < 0. The objective of PSS is to introduce additional damping torque
without affecting the synchronizing torque.

8.3 Control Signals

The obvious control signal (to be used as input to the PSS) is the deviation
in the rotor velocity. However, for practical implementation, other signals such
as bus frequency [11], electrical power [9], accelerating power [12, 13] are also
used. The latter signal is actually synthesized by a combination of electrical and
mechanical power signals. The mechanical power signal can be obtained from
the gate position in a hydraulic turbine or steam pressures in steam turbine.
Nevertheless, it is difficult to measure mechanical power. It can be argued that
if mechanical power variations are slow, then a signal derived from the electrical
power approximates accelerating power. However, this can pose problem during
rapid increases of generation for which PSS action leads to depression in the
voltage, endangering security.

A recent development is to synthesize accelerating power signal from
speed and electrical power signals. This is shown in Fig. 8.4 [13]. A similar
approach is used at Ontario Hydro and the PSS utilizing these signals are termed
as Delta-P-Omega stabilizers [14]. It is claimed that the new control signal has
eliminated the problem of torsional interactions and improved reliability.

P P
A Ms [Z\ m +® a

L+sT + (To PSS)

1

1+sT

Figure 8.4: Synthesis of accelerating power signal
The choice of control signal for PSS can be based on the following criteria

(a) The signal must be obtained from local measurements and easily synthe-
sized.

(b) The noise content of the signal must be minimal. Otherwise complicated
filters are required which can introduce their own problems.
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(c) The PSS design based on a particular signal must be robust and reject
noise. This implies that lead compensation must be kept to a minimum
to avoid amplifying the noise.

All the control signals considered- rotor speed, frequency, electrical power
are locally available. The speed signal can be obtained from a transducer using
a tooth wheel mounted on the shaft. Alternately it can be obtained from the
angle of the internal voltage which can be synthesized. The bus frequency signal
can be obtained by measuring the period using zero crossing detection. The
power signal can be derived from a Hall effect transducer.

The speed signal is inherently sensitive to the presence of torsional os-
cillations at frequencies in the range of 8 to 20 Hz. This can lead to negative
damping of the torsional mode [15]. An initial solution to this problem was inge-
nious - to relocate the speed pick up at the node of the first torsional frequency.
However, this was npt a general solution (for example in 4 pole nuclear units
in Ontario Hydro, the node of the first torsional mode of oscillation is located
inside the turbine casing and hence inaccessible). A practical solution is to pro-
vide a torsional filter tuned to the frequency of the critical mode. However, this
filter introduces another mode of oscillation, the damping of which reduces with
increasing stabilizer gain [16].

Speed signal can also lead to negative damping of intra-plant modes if
the PSS is not properly designed. In reference [10], the average speed instead
of individual speed is suggested as a suitable control signal in a plant whenever
more than one unit operate.

The frequency signal is insensitive to intra-plant modes and hence there
is no danger of destabilising intra-plant modes. The frequency signal is also less
sensitive to torsional frequency components. However, the frequency signal is
prone to noise caused by nearby loads such as arc furnaces [6, 10].

The acceleration signal (based on accelerating power) results in mini-
mum lead compensation requirements. The signal is also insensitive to torsional
modes. Both these factors imply that torsional filters may be dispensed with
completely or their design simplified.

8.4 Structure and tuning of PSS

The block diagram of the PSS used in industry is shown in Fig. 8.5. It consists
of a washout circuit, dynamic compensator, torsional filter and limiter. The
function of each of the components of PSS with guidelines for the selection of
parameters (tuning) are given next.



8. Application of Power System Stabilizers 265

DYNAMIC TORSIONAL
WASHOUT COMPENSATOR FILTER LIMITER
u sT u \Z
T (s) FILT (s) it
1+sT w

Figure 8.5: Block diagram of PSS

It is to be noted that the major objective of providing PSS is to in-
crease the power transfer in the network, which would otherwise be limited by
oscillatory instability. The PSS must also function properly when the system is
subjected to large disturbances.

8.4.1 Washout Circuit

The washout circuit is provided to eliminate steady-state bias in the output of
PSS which will modify the generator terminal voltage. The PSS is expected to
respond only to transient variations in the input signal (say rotor speed) and
not to the dc offsets in the signal. This is achieved by subtracting from it the
low frequency components of the signal obtained by passing the signal through
a low pass filter (see Fig. 8.6).

1

1+sTW

Figure 8.6: Washout circuit

The washout circuit acts essentially as a high pass filter and it must pass
all frequencies that are of interest. If only the local modes are of interest, the
time constant Ty can be chosen in the range of 1 to 2. However, if inter area
modes are also to be damped, then Ty must be chosen in the range of 10 to 20.
A recent study [1] has shown that a value of Ty = 10 is necessary to improve
damping of the inter area modes. There is also a noticeable improvement in the
first swing stability when Ty is increased from 1.5 to 10. The higher value of
Tw also improved the overall terminal voltage response during system islanding
conditions.
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8.4.2 Dynamic Compensator

The dynamic compensator used in industry is made up to two lead-lag stages
and has the following transfer function

Ks(l + 8T1)(1 + 3T3)
(1 + sT3)(1 + sTy)

where K, is the gain of PSS and the time constants, 77 to Ty are chosen to
provide a phase lead for the input signal in the range of frequencies that are of
interest (0.1 to 3.0 Hz). With static exciters, only one lead-lag stage may be
adequate. In general, the dynamic compensator can be chosen with the following
transfer function

T(s) =

(8.10)

N(s)
T(s) = =~ 8.11
where
N(s) = l+4a1s+a2s®+...aps?

D(s) = 1+bys+bos® +...bps?

The zeros of D(s) should lie in the left half plane. They can be complex or
real. Some of the zeros of N(s) can lie in the right half plane making it a
non-minimum phase.

For design purposes, the PSS transfer function is approximated to T'(s),
- the transfer function of the dynamic compensator. The effect of the washout
circuit and torsional filter may be neglected in the design but must be considered
in evaluating performance of PSS under various operating conditions.

There are two design criteria.

1. The time constants, 7} to Ty in equation (8.10) are to be chosen from the
requirements of the phase compensation to achieve damping torque

2. The gain of PSS is to be chosen to provide adequate damping of all critical
modes under various operating conditions. It is to be noted that PSS is
tuned at a particular operating condition (full load conditions with strong
or weak AC system) which is most critical. Although PSS may be tuned
to give optimum damping under such condition, the performance will not
be optimal under other conditions. The critical modes include not only
local and inter area modes, but other modes (termed as control or exciter
modes) introduced by exciter and/or torsional filter.

The basis for the choice of the time constants of the dynamic compen-
sator can be explained with reference to the block diagram of the single machine
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System without PSS
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AV,

Figure 8.7: Stabilizer with speed input: system block diagram

system when PSS is included (see Fig. 8.7). If PSS is to provide pure damping
torque at all frequencies, ideally the phase characteristics of PSS must balance
the phase characteristics of GEP at all frequencies. As this is not practical, the
following criteria are chosen to design the phase compensation for PSS.

(a) The compensated phase lag (phase of P(s) = GEP(s) PSS(s)) should pass
through 90° at frequency around 3.5 Hz (For frequency input signal this
can be reduced to 2.0 Hz).

(b) The compensated phase lag at local mode frequency should be below 45°,
preferably near 20°

(c) The gain of the compensator at high frequencies (this is proportional to
T,T3/T>T4) should be minimized.

The first criterion is important to avoid destabilization of intra-plant
modes with higher frequencies. It is also preferable to have the compensated
phase to be lagging at inter area modes so that PSS provides some synchronizing
torque at these frequencies. The time constant of the washout circuit can also
affect the compensated phase lag. The third criterion is required to minimize
the noise amplification through PSS.

The plots of the phase angle ¢ of the compensator of Eq. (8.10), with
variation in frequency are shown in Fig. 8.8 for different values of the centre
frequency f. defined by

1 1

fe= 2 VT, T

(8.12)
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It is assumed that

T, Ti

The plots of Fig. 8.8 (a) are obtained for n = 10. Fig. 8.8 (b) shows similar
plots, but for n = 2. Since the two lead-lag stages are assumed to be identical,
the phase angle ¢ is twice that for a single stage. The figure 8.8 shows the phase

angle (E) corresponding to a single stage.

&80

100; T T T had T
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(a) n=10 (b) n =2

Figure 8.8: Variation of phase angle of compensator

The results given in Fig. 8.8 show that the peak value of the phase
lead provided by the compensator occurs at the centre frequency (f.). Also,
increasing n increases the phase lead. Depending on the phase compensation
required, f. and n can be selected. A single stage of lead-lag network is adequate
whenever the requirements of the phase lead are moderate.

The determination of the ‘plant’ transfer function can be done analyt-
ically or experimentally from field tests. In the former case, GEP(s) can be
obtained from the fact that

AT,

GEP(s) = INATOIR
L] =

(8.13)

where V, is the output of the PSS. The condition A@ = 0, can be enforced by
selecting arbitrarily very high values of inertias and calculating the frequency
response over a range of frequencies. There are computer programs to compute
eigenvalues or frequency response for a large system [17-19].



8. Application of Power System Stabilizers 269

EXC(s)

Figure 8.9: Simplified model of SMIB system
For a SMIB system with machine model (1.0), GEP(s) can be determined
from the block diagram shown in Fig. 8.9. From this, GEP(s) is obtained as

K2K3EXC(S)
(1+ sT},K3) + KsKcEXC(s)

GEP(s) = (8.14)

where EXC(s) is the transfer function of the excitation system.

The transfer function GEP(s) cannot be determined exactly from the
field tests as the rotor velocity variations can never be avoided in practice.
However, it is shown below that GEP(s) can be determined from the following
approximate relationship

~ K2 AVt(S)

GEP(S) o Em

(8.15)
By measuring the transfer function between the terminal voltage and stabilizer
output (V;) it is possible to experimentally determine the phase characteristics
of the plant.

Derivation of Eq. 8.15
The simplified model of the SMIB (single machine infinite bus) without PSS can
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Figure 8.10: Simplified model of SMIB system without PSS

be obtained as shown in Fig. 8.10. From this figure, the transfer function from
V; to V; can be obtained as

AV,
AV,

where M = 2H
K is the effective complex synchronizing torque

(s) = GEP(s)

X Kswp ] (8.16)

Ky, Ms2+ wpKie(s)

If K is zero, then

K> AVt(s)

K represents the effect of the rotor angle changes in terminal voltage which has
he following characteristics.

1. With no load on the generator, K5 is positive and approaches zero as the
transmission system becomes weaker.

2. Under load, K5 is positive for strong systems but passes through zero and
becomes negative as the system becomes weak.
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Hence K5 can be assumed to be zero and the approximation of GEP(s) by R.H.S.
of equation (8.15) is valid.

The comparison between the exact and the approximate computation of
GEP(s) is shown in Fig. 8.11 for a representative system.
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Figure 8.11: Phase characteristics of measurable and ideal plant transfer func-
tions
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Figure 8.12: Root loci with variation in stabiliser gain

Once GEP(s) is determined, the PSS time constants are adjusted (by
trial and error) such that the criteria given earlier are satisfied. The performance
of the PSS can also be checked by root locus plots. See Fig. 8.12 for an example.
The root loci with variation in stabilizer gain are drawn for two different values
of f. and for a fixed value of the ratio n. In addition to f,, it is possible to vary
the ratio of T} /T, and T3/T4 independently to get a better performance. It is
observed that either the local mode or the other mode (called the exciter mode
irrespective of its source) gets destabilized as the PSS gain K| is increased.

The studies carried out by Larsen and Swann [9] indicate that depending
upon the input signal used, PSS is to be tuned for a particular system condition
which has the highest stabilizer loop gain and greatest phase lag. Full load on
the generator yields the highest loop gain. For speed and power input stabilizers,
the strongest AC system results in the highest loop gain and greatest phase lag.
For frequency input stabilizers, the highest loop gain occurs with weakest AC
transmission system.

To set the gain of the PSS, root locus analysis is performed. The optimal
PSS gain is chosen for the particular tuning condition as the gain that results in
the maximum damping of the least damped mode. From studies carried out in
[9], the optimum gain (K,p) is related to the value of the gain (K7) that results
in instability. For speed input stabilizers Kop; = 1/3K7, for frequency input
stabilizers Kop¢ = 2/3K;. For power input stabilizers Kot = 1/8K;. These
thumb rules are useful while implementing PSS in the field without having to
do root locus studies.
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It is to be noted that for input signals other than rotor speed, the block
diagram shown in Fig. 8.7 is not valid. In such cases, the diagram is as given
in Fig. 8.13, where X is an arbitrarily chosen control (input) signal. Sx(s) is
defined as the input signal sensitivity factor and F' Bx(s) is defined as the input
signal feedback factor. For power input stabilizer,

K
Sp(s) = ‘ﬁB—Slf—(ﬂ (8.17)
R, (s)
FB X(s)
+
- Sx® PSS (s) GEP(s) >
Aw + AX AV, AT ep
Figure 8.13: Stabilizer loop with arbitrary input X
FBy(s) = GEP(s) (8.18)

For the general case, the plant transfer function in the stabilizer path is
given by

_ ATep, . Sx(s)PSSx(s)GEP(s)
Px(8) = 35 ) = T - FBy(5)PSSx(s) (8:19)

For speed input stabilizer, Sx = 1.0, FBx = 0. Hence
P,(s) = PSS,(s)GEP(s) (8.20)

To summarize, the tuning procedure for the dynamic compensator, the
following steps are carried out.

1. Identify the plant GEP(s)

2. Choose the time constants from the phase compensation technique de-
scribed earlier and from the knowledge of GEP(s).

3. Select the PSS gain such that it is a fraction of the gain corresponding
to instability. This can be determined from root loci to maximize the
damping of the critical (least damped) mode.
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8.4.3 Torsional Filter

The torsional filter in the PSS is essentially a band reject or a low pass filter to
attenuate the first torsional mode frequency. The transfer function of the filter

san be expressed as

w?

= n 8.21
82 + 20wps + w? (8:21)

FILT(s)

For stabilizers derived from accelerating power, torsional filter can have
a simple configuration of a low pass filter independent of the frequency of the
torsional mode to be filtered out.

Torsional filter is necessitated by the adverse interaction of PSS with
the torsional oscillations. This can lead to shaft damage, particularly at light
generator loads when the inherent mechanical damping is small. Even if shaft
damage does not occur, stabilizer output can go into saturation (due to torsional
frequency components) making it ineffective. The criteria for designing of the
torsional filter are:

1. The maximum possible change in damping of any torsional mode is less
than some fraction of the inherent torsional damping.

2. The phase lag of the filter in the frequency range of 1 to 3 Hz is minimized.

8.4.4 Limiter

The output of the PSS must be limited to prevent the PSS acting to counter
the action of AVR. For example, when load rejection takes place, the AVR acts
to reduce the terminal voltage when PSS action calls for higher value of the
terminal voltage (due to the increase in speed or frequency). It may even be
desirable to trip the PSS in case of load rejection.

The negative limit of PSS output is of importance during the back swing
of the rotor (after initial acceleration is over). The AVR action is required to
maintain the voltage (and thus prevent loss of synchronism) after the angular
separation has increased. PSS action in the negative direction must be curtailed
more than in the positive direction. Ontario Hydro uses a -0.05 pu. as the lower
limit and 0.1 to 0.2 as the higher limit. Recent studies have shown [1] that
higher negative limit can impair first swing stability.

It is of interest to note that discontinuous excitation control is employed
at Ontario Hydro in order to improve transient stability [2]. This control termed
as Transient Stability Excitation Control (TSEC) operates using a signal derived
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from the rotor angle and augments the PSS output. The operation is permitted
only if the following conditions are satisfied simultaneously

(a) a drop in the terminal voltage in excess of the preset value
(b) field voltage is at positive ceiling

(c) rise in speed above a preset value.

The effect of TSEC is to maintain the maximum permissible terminal
voltage over the entire positive swing of the rotor angle. However, the angle
signal is used only during the transient period of about 2 seconds following a
severe disturbance. The operation of TSEC is discontinued when either the
speed drops below a threshold value or the exciter comes out of saturation.
The output of the TSEC is allowed to decay exponentially. The reason for
discontinuous control arises from the fact that the continuous use of the angle
signal is deleterious to steady state stability.

8.5 Field implementation and operating ex-
perience

The tuning of power system stabilizer can be performed using extensive analyti-
cal studies covering various aspects. While such studies are useful in optimizing
the performance of PSS, satisfactory operation of PSS can be obtained by tuning
the PSS using field test results as described below [9,20].

1. Measure the open loop frequency response without PSS. This involves
obtaining the transfer function between the terminal voltage and the AVR
input (V;) in frequency domain. As described earlier, the transfer function
is approximately related to GEP(s).

2. Select PSS time constants by trial and error such that desired phase com-
pensation is obtained. The guidelines for selecting the phase compensation
are:

(a) Check that the compensated system (GEP(s) PSS(s)) has some phase
lag at inter area modes

(b) Verify the stabilizer time constant settings by field test which involves
determination of points on a root locus. The local mode oscillations
are stimulated by step changes to AVR reference, line switching or
low level sinusoidal modulation (at local mode frequency) of the volt-
age reference. The effect of the PSS can be measured by comparing
the damping with zero PSS gain and few low values of the gain which
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cause a noticeable change. The waveform recorded can give informa-
tion on the frequency and damping ratio.

Modern test equipment such as HP 5423A Structural Dynamic Analysis
(SDA) which use random noise signals and microprocessor based instru-
mentation help in simplifying the measurements and reducing the burden
on the operator [20].

3. Perform the gain margin test. This consists of slowly increasing the sta-
bilizer gain until instability is observed which is characterized by growing
oscillations at a frequency greater than the local mode. The oscillation can
be monitored from PSS output. Once instability is detected the stabilizer
is switched out of service. Reduction of stabilizer output limits during the
test will ensure that safe operation of the generator is maintained.

During the gain margin test, torsional oscillations should be monitored to
check that the torsional filter is giving satisfactory performance.

4. The PSS gain can now be set to a lower value and a fraction of the in-
stability gain. Typically the gain is set to 1/3 of the instability gain (for
speed input stabilizers).

Operating Experience with PSS

The early operating experience with speed input stabilizers showed the
need for torsional filtering to eliminate unfavourable interactions at torsional
frequencies. Also, improper design can lead to destabilization of intra-plant
modes. The frequency input stabilizers are susceptible to noise generated by arc
furnace loads located close to the power stations.

The presence of the torsional filter can introduce additional control (or
so called exciter) mode whose damping reduces as stabilizer gain is increased
[16]. Replacing speed signal by synthesized accelerating power signal [2] can
help overcome this problem.

The overall performance of properly tuned stabilizers is excellent. On-
tario Hydro statistics [2] showed a mean time to failure of about 5.7 years in
107 stabilizer years of operation. Built-in protection features have mitigated
the consequences of stabilizer failure in recent years. Dynamic test facilities
incorporated into the stabilizers permit routine testing.
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8.6 Examples of PSS Design and Applica-
tion

Example 8.1

The system data is taken from Example 7.1 given in chapter 7. The
system consists of a single machine connected to an external impedance of 0 +
70.4. The generator is initially supplying power of 1 pu with terminal voltage at
1.0 pu. The infinite bus voltage is 1.0£0.0°. \ static exciter with a single time
constant AVR is considered (Kg = 200,Tg = 0.05). Design a speed input PSS
at this operating condition.

Solution

The phase angle of GEP (jw) as a function of w is shown in Fig. 8.14.
The phase angle decreases as frequency increases. At the rotor oscillation fre-
quency of about 7 rad/sec, the phase lag is 35°. At the cut off frequency of 3.5
Hz (22 rad/sec), the phase lag is around 120°.

_180 M [ ST

Frequency in rad/sec

Figure 8.14: Phase angle of GEP(jw)

A compensator transfer function

_ (1 +3T1)Ks
T(s) == 1+ sTs

with a centre frequency of 3.5 Hz is selected. The maximum phase lead (which
occurs at 3.5 Hz) is selected as 30° so that the compensated phase lag is 90° at



278 Power System Dynamics - Stability and Control

25F

: )
. 10' 10° 10
Frequency in rad/sec

10 10

Figure 8.15: Phase angle of compensator T'(jw)

3.5 Hz. The ration = %, has to satisfy
2

tan™! Thw, — tan™! Thw, = 30° (8.22)
where 1 1
We =2mfe = T = Todm (8.23)
Substituting (8.23) in (8.22), we have
tan~!4/n — tan~! L 00 (8.24)

N

The solution of the above equation is n = 3. The time constants T} and T5 are
selected as

T =0.078 s, Tp=0.026 s

The phase lead provided by the PSS at the rotor oscillation frequency is
around 19°. This results in the compensated phase lag of about 16° at 7 rad/sec.
The phase angle of the compensator is shown in Fig. 8.15 and the compensated
phase LT(s)GEP(s) is shown in Fig. 8.16. The washout circuit time constant
Tw is selected as 2.0 s as the PSS is mainly designed for damping local mode of
frequency around 1 Hz. The overall PSS transfer function is

_ Tws K,(1+sT)
PS5() = T3 sy 1+ s10)
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Figure 8.16: Compensated phase angle

To select the appropriate value of the PSS gain (K,) root locus plot is
obtained as K is varied. Fig. 8.17 shows the loci of two roots (eigenvalues),
one corresponding to the local (rotor) mode and other corresponding to the
exciter mode. The root corresponding to the exciter mode moves to the right
and crosses imaginary axis at around K = 74. The root corresponding to the
local mode moves to the left as K increases from zero and for higher PSS gain,
the frequency of oscillation continues to decrease until the complex root splits
into two real roots. The optimum PSS gain is chosen such that critical mode
has maximum damping ratio. From Fig. 8.17 the optimum PSS gain is 16.

It is to be noted that GEP (jw) is a function of the operating point.
The plots of the variation of angle of GEP(jw) as a function of frequency for
three other operating points (a)P, = 0.5, z. = 0.4, (b)P, = 0.5, z. = 0.8,
(c)Py = 1.0, z, = 0.8, are shown in Fig. 8.18. The plot for the operating
point Py = 1.0, z, = 0.4 (shown in Fig. 8.14) is also given in Fig. 8.18 for
comparison. It is seen that the phase lag of GEP (jw) is maximum for full
load and strong system (z. = 0.4) conditions. Hence PSS designed for the
operating condition Py = 1.0, z, = 0.4 is expected to operate satisfactorily at
other operating conditions. The eigenvalues of the system with PSS for the four
operating conditions are given in Table 8.1.

Example 8.2

Obtain the responses of the system of Example 8.1 for a three phase fault
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Figure 8.18: Variation of phase of GEP(jw) for different operating points

at the generator terminals followed by clearing after 4 cycles. The operating
-point is Py = 1.0, z, = 0.4. The system is initially at equilibrium. Compare the
responses with and without PSS. Assume the post fault system identical to the
pre-fault system. The limits on PSS output are £:0.05 pu and the limijts on E¢g4
are £6.0 pu.
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Table 8.1 Eigenvalues with and without PSS (Example 8.1)
S1. | Without With PSS
PSS .
Noj P,=10 [P, =10 P =10 P, =05 P, =05
Te =04 |z, =04 ze = 0.8 e = 0.8 T = 0.4
1,2] -10.74 £ | -5.39 + | -8.29 + | -8.38 + 18.02 | -7.00 £+j15.66
j12.10 | j13.67 j16.82
34/ 051 £ |-3.44 +36.56 | -1.00 + j5.19 | -1.06 + j4.68 | -2.17 £+ j4.89
j7.16
5 | - -0.5294 -0.5236 -0.5218 -0.5326
6 |- -39.82 -38.80 -38.49 -39.13
Solution

The results of the simulation without PSS are shown in Fig. 8.19. The
fault is assumed to occur at 1 s. The figure shows the variation of rotor angle
(5)5 E;a T, V; and Efd'

The plot of the rotor angle shows oscillatory instability as the operating
point is unstable. The oscillations in 4, T, and V; are increasing in magnitude.
The dominant frequency of oscillation is about 1 Hz corresponding to the rotor
(swing) mode. There is also a second harmonic component in 7, and V;. The
results of simulation with PSS included are shown in Fig. 8.20. The variation of
the PSS output is also given. It is interesting to observe that the oscillations are
well damped and steady state is reached in little over 2 s after the occurrence
of the disturbance.

Example 8.3

The system diagram and data are given in Example 7.4. The generator repre-
sents the equivalent for the area connected to a very strong system (represented
by infinite bus) through a tie line of impedance 0 + j5. The initial power flow
over the tie line is 10 % of the local load supplied by the generator. Design a
speed input PSS at the operating condition Py = 1.1, V; = 1.0.

Solution

The phase angle of GEP (jw) as a function of w is shown in Fig. 8.21.
This shows that the phase lag of GEP (jw) is within limits and the PSS does
not need to provide any phase lead. The choice of 77 and T» are immaterial
providéd n = 1 (There is a pole-zero cancellation in the compensator).
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Figure 8.21: Phase angle of GEP(jw) (Example 8.3)
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Figure 8.22: Root loci with variation in stabilizer gain (Example 8.3)
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Table 8.2 Eigenvalues With and Without PSS (Example 8.3)

SI.No. | Without With

PSS PSS
1,2 |-10.26 £ 24.65 | -0.14 + j 24.25
34 | 0075+j253 |-1.054j2.34
5 - -0.1035

The PSS gain is selected from the plot of root loci shown in Fig. 8.22.
This shows two modes - a low frequency inter area mode and higher frequency
exciter mode which gets destabilized as PSS gain is increased. The optimum
gain is K, = 10.

The washout circuit time constant is chosen as 10 s as the inter area
mode has a low frequency (< 0.5Hz). The PSS transfer function is

100s

The system eigenvalues with and without PSS are given in Table 8.2.
Example 8.4

Obtain the response of the system of Example 8.3 for a step increase in
Vres by 0.05 pu. The system is initially in equilibrium with P, = 1.1, zg = 5.0.
Compare the responses with and without PSS. Assume the limits on V; (PSS
“output) as £0.05 and on Egq as £6.0 pu.

Solution

The results of the simulation for the case without PSS are shown in
Fig. 8.23. The step increase in Vs occurs at 1 sec. The plots of variation of
é, E('I, Te, Vi and Ejq are given in Fig. 8.23. The results show that the system
is marginally unstable and the oscillations continue even beyond 10 s.

The rotor angle decreases as V¢ is increased. E’,’I and V; also increase as
expected. The electrical torque T, increases initially and settles down to previous
value (neglecting the superimposed oscillations). The field voltage Ey4 hits the
ceiling initially and settles down (neglecting oscillations) to a slightly lower value
(compared to the initial operating value) as the demagnetizing current is reduced
on account of decrease in the rotor angle.

The results of simulation with PSS considered are given in Fig. 8.24.
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The output of PSS is also given for this case. The oscillations are damped out
within 3 s after the occurrence of the disturbance. The PSS output is negative
initially as the rotor decelerates following the step increase in V;..;. As the action
of the PSS is countering the increase in V¢, the initial overshoot in V; is slightly
less than the value reached in the case without PSS. However there is a larger
undershoot with PSS on account of the negative output of PSS which lasts for
over 1 8. This shows that in damping rotor oscillations PSS can cause some
fluctuations in the terminal voltage during the transient. The limiting of PSS
output is essential in reducing the voltage fluctuations.

Example 8.5

Consider the system of Example 6.6 (in chapter 6). The generator is
assumed to be equipped with a PSS with the following parameters -
K, =15, T} =0.75, T3 = 0.3, T = 10. Limits on V, = £0.05.
Obtain the responses of the system for case D with PSS included (The dis-
turbance considered is a three phase fault near the sending end of one of the
transmission circuits followed by clearing of the fault in 4 cycles by tripping of
the line).

Solution

The results of the simulation with PSS considered are shown in Fig. 8.25.
The oscillations are well damped and new steady state is reached within 3 sec
after the disturbance. The results should be compared with those shown in Fig.
6.15 (without PSS). The system is unstable without PSS. The limits on V; are
active in this case (as in Example 8.2) also as the disturbance is large. However
the PSS is effective in spite of the limits imposed on its output. As a matter of
fact, the satisfactory limits are essential in reducing voltage fluctuations during
the transient following the fault clearing.
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Figure 8.25: Simulation results with PSS (Example 8.5)
Remarks

1. The optimum gain of PSS is a function of the AVR gain. Smaller AVR
gains permit larger PSS gain. However it is advantageous to have large
AVR gain for rapid control of voltage during load rejection. High AVR

gains and ceilings on the exciter voltage are beneficial in improving tran-
sient stability.

2. Phase lead is usually required from PSS. However with static exciters and

high gain AVRs, speed input PSS may be required to provide just a pure
gain.

3. In practically all the cases, increasing PSS gain results in destabilizing a
mode other than the swing (rotor) mode. The results of PSS design given
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in both Example 8.1 and 8.3 show an exciter mode that is destabilized
at high PSS gains. In example 8.1, the instability gain is Kg = 74. The
results of the simulation for a three phase fault (see Example 8.2) with
PSS gain set at Kg = 72, are shown in Fig. 8.26.

It is interesting to observe in this case, that although the rotor oscillations
are well damped, there are significant oscillations in V;, E; and Eg4. The
frequency of these oscillations correspond to the exciter wode of about 3.5
Hz at K; = 72. Such behaviour is typical in cases whe§exciter mode is
poorly damped.

. The optimal gain Kg = 16 in Example 8.1 is little above % of the instability

gain. This shows that the thumb rules given in reference [9] are not general
and depend on the type of excitation system considered.
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Figure 8.26: Simulation results with high PSS gain (Example 8.2)

8.7 Stabilization through HVDC converter
and SVC controllers

It is well established now that the stability characteristics of the interconnected
systems can be improved by power modulation of DC links [21]. This concept
utilizes the fast controllability of power flow in a DC link. The control signals
used are bus frequency deviations or power flow in the parallel AC tie. With
weak AC systems, active and reactive power modulation can be implemented
by providing controllers at both rectifier and inverter stations. The modulation
of extinction angle at the inverter in response to the AC voltage (magnitude)
signal can avoid voltage instability.

Sinall signal power modulation implemented at Pacific DC Intertie has
helped prevent inter area mode of 1/3 Hz from reducing the power transfer
capability of a parallel AC tie [22, 23]. The power or current modulation has
now become a standard practice to improve dynamic or transient stability.

Static Var Compensator (SVC) connected ac the midpoint of a transmis-
sion line can help to increase the power transfer capability of the line. If auxiliary
controllers are provided, utilizing signals from locally available measurements,
the small signal stability can be improved [24, 25].

8.8 Recent developments and future trends

Research efforts in academic institutions and industry have been directed at bet-
ter approaches to tuning of PSS using analytical techniques. One such direction
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is the applications of modern control theory techniques such as pole assignment
and optimal control [26, 27]. It is possible to get better performance from PSS
if it is viewed as a dynamic compensator with general structure (with complex
poles and zeros with possibility of non-minimum phase characteristics).

Another direction of investigation is the possibility of coordinated tuning
of PSS in several locations using the general multi-machine system model. This
is of particular relevance in damping of several inter area modes [34, 35]. In this
context, it is required to examine the effectiveness of PSS at a particular location.
Based on the concept of eigenvalue sensitivities, it is possible to determine the
machines where PSS will have the maximum effect on damping of a specific
mode [28].

The coordinated tuning of PSS and HVDC/SVC auxiliary controllers
would require analytical studies using mathematical models, as tuning based on
field tests would be impractical. In a large system, it would be also advantageous
to do selective modal analysis [29).

The present practice in tuning PSS is to select a tuning condition (of the
system) and select the parameters for satisfactory performance under all possible
operating conditions. There can be situations when this is unrealistic. In such
cases, self-tuning regulator principle based on constructing a simplified model in
real time with parameter estimation and automatic tuning of PSS is desirable
[30, 31]. The development of digital control makes it possible to synthesize
control signal from sampled (instantaneous) voltage and current measurements
[32, 33] and implement adaptive control strategies [34]. With a microcomputer
control and static exciters, it should be possible to integrate the functions of
voltage regulation and power system stabilization.
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Chapter 9

Analysis of Multimachine System

The small signal analysis of multimachine power systems is examined in this
chapter. The methods for formulation of the system model are presented in
some detail. The analysis for large systems has to necessarily concentrate on
the critical modes of oscillation (typically interarea modes) which are important.
The computational issues in the evaluation of small signal stability are also
discussed.

9.1 A Simplified System Model

The electromechanical modes in a system are highlighted by considering only
classical models of generators. In addition, the following assumptions simplify
the analysis.

1. The losses in transmission lines are neglected.
2. The voltage magnitudes at all buses are constant.
3. The loads are static.
As the voltages at all buses are assumed to be constant, only the real

power flow equations need to be considered. At any bus j, (not the generator
internal bus), the injected power P; is given by

ViVi

P;=-P; = Z — sin(d; — &) + Z V},Ek sin(d; — dx) (9.1)
ien, “Y kem, T dk

where n; is set of load buses connected to bus j, m; is the set of generator

(internal) buses connected to bus j. P is the power consumed in the load

connected at bus j. z;; is the reactance of the line connecting bus ¢ and j. z/j; is

the transient reactance (in direct axis) of generator k. The saliency is neglected

in the analysis.
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At the k** generator internal bus,
__ EyV; sin(d; — 4;)

!
Tk

Peg (9.2)

Linearizing the power flow equations, it is not difficult to see that the deviation
in the power flow in a line (AP;;) is related to the change in the relative angle

across the line, Ad;;.
AP,;J' = g,-,-A&,-j (9.3)
where
ViV; cos d;;
9ij = ————
Comparing AP with current flow and Ad with voltage drop, the lin-
earized Eqgs. (9.1) and (9.2) represent a linear resistive network described by

Adg | _ | AP,

G] [ AS, ] = { 0 ] (9.4)
where Ad, is a vector of rotor angle deviation corresponding to m (number of
generators) internal buses. A¢d; represents deviations in other bus angles. AP,
is the vector of deviations in the electrical power outputs of generators. The
second entry on R.H.S. of Eq. (9.4) is zero as the active loads are assumed

to be constant on account of constant voltages at load buses. The frequency
dependency will be considered later.

It is not difficult to see that the matrix [G] is singular. It represents
indefinite conductance matrix of a network with no connection to ground. As an
example consider a 3 generator, 4 bus system shown in Fig. 9.1. The linearized
power flow equations represent a resistive 7 bus network shown in Fig. 9.2. The
[G] matrix for this network is given by

91 0 0 -0
0 g2 0 0
0 0 93 0
Gl=| -1 0 0 (914912 +013)
0 -g2 O —g12
0 0 —93 —g13
0 0 0 0
0 0 0
—g2 0 0
0 —g3 0
—g12 —g13 0
(912 + 923 + g24 + g2) —g23 —~g24
—g23 (93 + 913 + g23 + g34) —934

—g24 —934 (924 + g34)
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Gy

(™)

~

3 4

G3 3 4

Figure 9.2: A resistive network representing equation 9.4

Each row or column of [G] adds up to zero. From superposition theorem,
we can derive an expression for AP, as

m
APy =Y GEAS; (9.5)

j=1

where G is the short circuit transfer admittance between generator buses j and
k. As AP, = 0 if all the angle deviations are equal, i.e. Ad; = Ad, j=1,2..m,
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we can obtain,

m
Z foj =0 (9.6)
j=1

ij is the element of the reduced conductance matrix [GF] obtained from [G"
after eliminating all the buses except the generator internal buses. This follow:
from Eq. (9.4).

Generator Equations and COI Reference

Utilizing the classical model of generators, the swing equations for gen-
erator k can be expressed as

d24y, ddy,

’ —
My—5 + Dy = Pk — Per, k=1,2..m (9.7)
where
wp wp

whiere Dy, is the per unit damping. For simplicity, it will be assumed that the
damping is uniform, i.e.

D;° = Ek—- = constant = «
M,  2H, B

Defining the Centre of Inertia (COI) whose angle 4, is defined by

1 m
8o = i (k; Mk6k> (9.8)

where Mr = ) Jv; M is the total inertia. The equation for COI is given by

m m
Mr(p+ a)ao =Y P — Y Per, = Pcor (9.9)
k=1 k=1
where
__db, _d
=@ PT @

In the electrical network,

m n
Z Pey, = Z Plj + Ploss (9-10)
k=1 j=1
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For lossless network and with constant active power loads, Pcor is a constant
when the mechanical powers are constant. Eq. (9.9) can also be written as

Mr(p* + ap)é, = Pcor (9.11)
Substituting Eq. (9.11) in (9.7), we get

M,
Mi(p® + op)0 = Prg — Peg — —MEPCOH k=12.m (9-12)
T
where 6}, is the rotor angle relative to COI defined by

O = 6, — do (9.13)

From the above definition of 8, it can be shown that alkthe relative angles with'
respect to COI are not independent and the following relation applies.

m
D Mipb =0 (9.14)
k=1
Also,
0; — 0; = 6; — 9 (9.15)

Linearizing Eq. (9.12), (assuming Pcor as constant) we get
Mp? A6 + aMppAby, = ~AP., k=1,2,....m (9.16)
Utilizing Eq. (9.6), (9.5) can be expressed as

m
APy = Y -GR(A& - AG))
J=Li#k
m
= Y -Gi(A6 — AG;) (9.17)
j=1,5#k

Eq. (9.15) is utilized in deriving (9.17). If & = 0, the linearized system equations
can be written in the matrix form as

[M]p*A0 = —[G]" A (9.18)
in addition to the scalar equation
Mrp?Ad, =0 (9.19)

where [G]" is a reduced (to generator internal buses) symmetric matrix with
elements G%(j, k) = Gﬁc =G ,Ifj. The rank of this matrix is less than or equal to
(m - 1).
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Remarks

1. For lossless network and constant active power loads
APcor=0
In this case, we also have (with zero damping)

[M]p?AS = ~[G]RAS

2. In light of Eq. (9.14) the number of independent angle variables on COI
reference frame are reduced to only m, namely 6;,0s....0,,—; and &,.

3. There are n second order differential equations describing the system. Thus
there are 2n system eigenvalues out of which two are zero (for zero damp-
ing) in light of

pAd, = Aw,

AP,
PAD, = —0AG, + —22f

Mr
If a # 0, then one of the eigenvalues is —a, while the second is zero.
4. Even if APcor # 0, it can be shown that

m—1

APcor = Y, kA0
k=1

The system equations can be written as
Ay =[A]Ay

where ) ) )
yt = [011011 027021 cee ’Om—l') om-—l,a"m 60]

A 0
Al =
4] [ Az Az }
The eigenvalues of [A] are the eigenvalues of [41;] and [Ag2]. The latter is

2x2 matrix given by
-a 0
[Az] = [ 1 0 ]

This shows that the system equations on COI reference has the advantage
of bringing out the system structure.
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5. The assumption about uniform damping is required to decouple the system
equations into two sets, when APgor = 0.

Solution of Equation (9.18)

Defining the transformation from 6 to g given by

[M)'20 =g (9.20)
Eq. (9.18) can be expressed as .
pzAﬁ — —[M]_1/2[G]R[M]—1/2A,B
-|K]AB (9-21)

where
K] = [M] 2GR M] 2

is also a symmetric matrix as both [G]® and [M] are symmetric matrices. [M] is
a diagonal matrix of inertia coefficients. The rank of [K] is same as that of [G]®.
The eigenvalues of [K] are real and at least one of them is zero. It is to be noted
that-in the resistive network described by Eq. (9.4), the individual element g;;
can be positive, zero or negative depending on whether the magnitude of (4; —4;)
is less than, equal or greater than 90° (but less than 180°). It can be shown that
if the operating point is a stable equilibrium point, the (m — 1) eigenvalues of
[K] are each positive. The matrix [K] can be expressed as

(K] = [Pl[Q](P]*

where [P] is a matrix of normalized eigenvectors of [K]. It is assumed that the
eigenvalues of [K| are distinct. [P] is an orthogonal matrix with the property

[P~ =[P

2 is a diagonal matrix of the eigenvalues of [K]. It can be shown that each non-
zero eigenvalue is equal to square of the radian frequency of an electromechanical
(low frequency) oscillatory mode. Thus there are at most (m — 1) modes in a m
machine system (Note that an infinite bus is an idealization of a large generator
with negligible reactance and infinitely large inertia).

Remarks

1. When damping is nonuniform, there will be coupling between Eq. (9.11)
and (9.12). However, only (2m — 1) variables ( 61, 02 ... Op_1, 61, 02 ...
0m—1 and @,) need to be considered. The variable §, does not appear in
the equations and is obtained by integrating @,.
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2. The frequency dependent load models can be considered where the loads
are linearly proportional to bus frequency, i.e.
do;
Ppj = Ppjo+ kjE—tJ—
where 4; is the bus angle at load bus j
From the network representation given in Fig. 9.2, Aj; can be expressed
as
m~1
Ab; = Y RjxGR A
k=1

where R, = R(j, k) is the element of the bus resistance matrix [R] defined
by

[R] =[G

where [G'] is the matrix derived from [G] by deleting the row and column
corresponding to a reference generator (internal bus).

3. The use of COI is not essential in writing state space equations.

Linearized State Space Equations

The linearized state space equations for the system can be obtained from
the network analogy with Aw (pAd) analogous to voltage and AP analogous to
current, the network consists of GLC elements - C (capacitor) corresponding
to inertia (M), G (conductance) corresponding to damping (or frequency de-
pendent loads) and L (inductance) corresponding to reciprocal of Gj;. As an
example, the analogous network for the system shown in Fig. 9.1 is shown in
Fig. 9.3. It is assumed that there is a frequency dependent load at bus 4.

The unreduced network is shown in Fig. 9.3(a). The reduced net-
work eliminating buses 1, 2 and 3 is shown in Fig. 9.3 (b). The element
K9, K13, K14, K23, Ko4 and Kz are reciprocals of inductances (Notice that
these are identical to elements of the reduced matrix [GF] which includes buses
G1,G2,G3 and 4). The variable A4 is analogous to flux linkage. The equations
for the network shown in Fig. 9.3 (b) are obtained as

M, —%Awl + D'lAwl = —AP,
M2%Aw2 + Dész = —AP,
M3—d-Aw3 + DQAw;; = —AP.

dt
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G, ! 2’ G,
i ANYV | VYV VYV i
l /‘-_‘——
' LM‘ /fﬁ\// % M| |
— 1 —
] VYV
[ YN
G3 3 4
D, T~ M K,

.|I

(a) Unreduced network

G, Kis G,
NYWN
KM
D, %—— M, " J M, D,
B Kia
\%7\ Ko
VYW
G, K4 4
D || =M K4
1

(b) Reduced network

Figure 9.3: An electrical network analogue for small signal analysis
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d
d—iA(slz = Awl—sz
d
EL:AJB == Awl—Aw3
d
EZA(SM = Awl—Aw4

AP =" KipplAdiz + K13A613 + K14Ad14

AP ~K12A012 + Ko3(Ad13 — Adya) + Ka4{Ad14 — Ad12)

AP —K13A013 + K23(Ady12 — Ad13) + K34(Ad14 — Ady3)
KiAwy = Ki4Ad14 + Kog(Adyg — Ad1a) + K34(Ad1g4 — Ady3)

fl

The algebraic equations are used to eliminate the non-state variables AP,
AP, AP, and Awy in the state equations. These are expressed as

z = [A]z
where o =[Aw, Awy Aws Ay Afiz Abu]
Remarks

1. The applicability of network analogue for the derivation of system state
equations arises on account of the assumptions made earlier that the sys-
tem is lossless and all buses are PV buses. The latter assumption is quite
stringent and can be unrealistic.

2. The frequency dependence of the loads is considered easily from the net-
work analogy.

3. The system is stable if all the damping terms (in generators and loads) are
positive and Kj; > 0 for all ¢ and j. (These are sufficient conditions).

9.2 Detailed Models: Case 1

In the previous section, a simplified system model was considered, where genera-
tors are represented by classical models. In this section, model 1.0 is assumed for
synchronous machines by neglecting damper windings. In addition, the following
assumptions are made for simplicity.

1. The loads are represented by constant impedanees.

2. Transient saliency is ignored by considering zg = z/;.
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3. Mechanical power is assumed to be constant.

Neglecting saliency, the stator of a synchronous machine is represented
by the equivalent circuit shown in Fig. 9.4. The only difference between the
classical model and here is that E¢’1 is treated as a state variable influenced by
field excitation.

g R,
+ AYWA M
. .. i
s (1q+11d)eJ 5
EqL (vq+jvd)eJ

©

Figure 9.4: Stator equivalent circuit

E/ql 151 '__

Reduced
Network

Figure 9.5: Reduced network (with generator internal buses)

From assumption (1), the load buses can be eliminated and the network
reduced to only the internal buses of the generator. (see Fig. 9.5)

The electrical power output of generator k is given by
m
Py =Y Ey(Gjx cos; + Bji sinby;|E); (9.22)
=1

where d;; = 0 —d;, (Gjr+jBji) is an element of the reduced admittance matrix
of the network.
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Generator Equations

The machine equations (for ¥** machine) are
1

pEtllk = m ["'E;k + (Tak — Tgx)iak + Efdk] (9.23)
pok = wB(Smk — Smko) (9.24)

1
PSmk = . E'I‘I'; [“Dk(smk - Smko) + Pk — Pek] (9-25)

P, and P, are used instead of T},; and T, for convenience. Actually there
is no difference between P, and T, as the frequency variations are neglected
in the network calculation.

At the generator internal bus, the complex power is given by

Pek + erk = E;k(iqk‘_ jidk) (9-26)
= E;kiqlc - jE:Ik‘idk
Thus, i4, is expressed by 0
Tdk = E,ek (9.27)
qk
where the expression for Qek is obtained as
Qek = Z k Slnakj k cos 6]5:]] (9.28)
Linearizing Eq. (9.27), we get
Aigy, = Qe’“°2AE" AQ‘* (9.29)
( qko) qko

Linearizing Eqgs. (9.23) to (9.25), and combining the equations for all the gen-
erators we have
Xy = [Ag] Xy + [BglAS, + [Eg)AEfq (9.30)
where
= [AE¢'11 Ad; ASpi...AE ok Ad;, ASpk.. AE;m Aby, ASpm)
[Ag] = Diag [Agl Agg e gm]
[B ] Dia.g [Bgl Bgz .Bgm]
[E ] D1ag [Eg1 g2 .- - Eym]
ASt = [AP.; AQe - AP,z,c AQek - . - APerp, AQem)]

ag 0 0
g = | 0 0 “p
0 0 —--
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0 b T}
0 0
[ng] = 1 ’ [Egk] = %Ok
T 2H; 0 0
1 (zak — Tap) (zak — Thy)
ap = |—1+ RS |, by = - )
T(go (E(,lko ? e Tt’ia (Izko

Linearizing expression (9.22) and (9.28), we can express
AS, = [M]AE, + [F2]AS (9.31)

where [F1] and [F3] are (2m x m) matrices. It is not difficult to see that [Fy)] is
a singular matrix as all the columns add up to zero. This comes about as the
expressions in Py and Q¢ depend only on the differences in the rotor angles.
Thus, state space description is simplified by considering the state vector as

X& =[AEy Abim ASpmi...AEy Abpm ASmy...AEy, ASmp

Here, Adg,, = Ady — Ad,, and one of the angle variables is dispensed with. The
system equation can be expressed as

Xg = [Ag)Xc + [BG]AS. + [EG]|AE;q (9-32)

[Ag] is (3m — 1) x (3m — 1) matrix, [Bg] is (3m — 1) x 2m matrix and [Eg]
is (3m — 1) x m matrix. They differ from [Ay],[By] and [E,] in that (a) the
entries for [Agm], [Bgm] and [Eym] are different and (b) the last column of [Ag]
has entries in rows corresponding to Adg.,, which are each equal to —wp.

[Agm], [Bgm] and [Eyy] are given by

am 0 0 bm
[Agm]:|:0 &_}a[Bgm]:[__l_ 0

1
—_ ’ [Egm] = I: Téom :I
2H,, 2H,, 0

Using relative angles instead of absolute angles, Eq. (9.31) is reduced to
AS, = [FI]AE; + [F3]A (9.33)

where [F}] is a (2m X m — 1) matrix obtained from [F»] by subtracting the last
column of [F,] from all the remaining columns (and deleting the last column).
Ad' is a vector of relative angles whose k™ element is (Adg — Abp) = Adgrm.

The final system equations are obtained by substituting Eq. (9.34) in
(9.32). We have

X¢ = {[Aq] + [Bg|[F|} X¢ + [EG]AEfq (9.34)
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where
[F] = [F1][C1] + [F3][C]

[C1] and [C5] are defined by

[C1] = Diag [C11 ... Cik - - Cir]

[02] = Dia.g [021 ‘e Cgk o C2(m—1)]

Cy and Cy are row vectors of dimension 3, defined by

Cix=[1 0 0], Cyx=[0 1 0]
Cim is a row vector of dimension 2,
Cim=[1 0]
Ca(m—1) i8 a row vector of dimension 5 given by
Cam-1y=[0 1 0 0 0]

If excitation controllers are to be considered, then the system matrix will be
augmented by the inclusion of controller dynamics. In this case, AEg; is a
vector of output variables from the excitation controllers and can be expressed
in terms of the state variables of the controllers.

9.3 Detailed Model : Case 11

The assumption about loads as constant impedances, is restrictive if nonlinear
load characteristics or load dynamics are to be considered. The dynamics of SVC
or HVDC controllers can be viewed as part of load dynamics as SVC and HVDC
converter buses are treated as load buses. Of course, the controller dynamics
are unique and distinct from typical loads such as induction motors.

Generator Equations

In order to preserve the structure of the power system network, (retaining
the load buses), the generator representation as given in the previous section
needs to be slightly modified. The generator equations are expressed as

Tg = [Ag)zg + [Bg]AVy + [Egluc (9-35)

where u, is the vector of small perturbations in the reference input variables
of the generator controllers (AV;.; and ATy, or Adyes). AV, are the small
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deviations in the generator terminal voltage expressed in polar or rectangular
coordinates defined below

Voo A8
P goUg
AVs [Alvgl]

A[’Q
T g
AVg = [ fVDg]

The two expressions are related by
avr = 1| VP Vogo | | AVge | _ piayr
Vng VDga

It is easy to see that

[P~ = [P]

The output variables of the generator can be small deviations in the
power output or currents (referred to Kron’s reference frame). If currents are
used, then

AI
Al = [ AIZZ ] = [Cylzg + [Dy]AV, (9.36)

Example: If synchronous machine is represented by model 1.1, neglecting
prime-mover dynamics and considering only a single time constant exciter, the
state variables are

The nonzero elements of matrix [A,] are given by

Ay(1,2) =wB
1 | E E )
Ag(2,1) = — 55 ;Z—"vgo cos(8, — Og0) — -ﬁvgo sin(d, — 840)+
q
V2 cos2(8, — O46)
(g =)
dvq
-D
Ag(2a 2) = SI
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_Vgo Sin((sa - Ogo)

A (2,3) =
9 2Hz)
Vgo c08{do — 840)
Ag(2,4) = - -2 g
2H:z:{1
!
Tg— T .
A (3,1) = —(_E“F,——,ﬂl Vgo sin(d, — 6,0)
doTd
1 (zg — z)
Ag(3,8) = — — [1+ 7e T/
! T Ty
1
Ag(3,5) = =
! Tgo
(zqg — ) cos(dp — Og0)
A9(41 1) = — g Téofl"z; Vgo
1 (zq — 2!
A 4,4) = —— |1+ %
=g [1e B
1
Ay(5,5) = ~7

Similarly, the nonzero elements of [By] and [E] are given by

1 [E, cos(do —Og0) E!) sin(dy — 8,0)
BP(2.1) = — qo go) Yo [ go
521 2H [ T ) +
cos 2(d, — 040)
L T
Bp2.2) = 51 [ o S Tl con(, )
(z’ _ w, ) ‘/go Sin 2(50 - ogo)
T g
Bp(3 1) —_ (zd - z:l) Sin((sO - 690)
q b

! !
Tq Ty,
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(zq — ) cos(d, — bg0)

P(3 9) —
532 o T,
- = =)
Ty Tgo
Br(4,2) = (zg — z,) ,sinl(éo —040)
zg Tgo
Kg
9) = _2E
Bp(5,2) Ty
-Kg 1
it 24 2 -

[Eq] is a column vector in this case as u, is a scalar equal to AV,.s. Kg
and T are the gain and time constant of the excitation system. The armature
resistance is neglected in deriving the expressions. The superscript p indicates
polar coordinates are used.

The nonzero elements of [Cy] and [D,] are given below

C (1 1) _ IQ + Vgo Sinéo COS(‘SO - 090) _ Vgo Sin((sa - 090) COs (50
g\ - qo

5 Tq Ty
COS
C,(1,3) = - =%
q I:l
ind,
C,(1,4) = 220
Tq

8in d, sin(d, — 6go) + €08 8, cos(8o — by0) 3

sin d,
2.3) =
CQ( I ) -'L':j
cos d,
2.4) = ="°
Cg( s ) 117:]
D_f]’(l, ) = cos d, 8in(dp — o) _ sin é, cosséo — 040)

/
fL'd .'L'q
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€08 85 cos(dy — Ogo) + sind, sin(d, — bg0)

p =
D2(1,2) g s
Dg(2’ 1) — _sin 60 Sin(,50 - 090) _ COos 50 COSf(so - Hgo)
) )
DP(2,2) = __sind, cosséo — 040) + cos &, sinséo — 6y0)
) 7,

If 2, = z; = 2/, then some of the expressions given above are simplified. These
are

Dg(lal) = :_Sg_}_e‘qg’ Dg(lsz) = ’(EZ"QE

— cos 040
xl

sinfy,
zl

D!](21 1) = ) Dg(2,2) =

Voo .

V.
Cy(2,1) = —Ipgo + ~;—,° cos g0

The matrices [Bg] and [Dj] are obtained as

1B;] = (B[]

[Dg] = [Df]IP]
The superscript 7 indicates that rectangular coordinates are used.
Network Equations

The linearized network equations can be expressed either using admit-
tance matrix (and DQ variables) or using Jacobian matrix (obtained from power
balance equations). Using the former, we can express as

[YDQ]AVQD = AIDQ (9.37)

where each element of [qu]' is a 2x2 matrix. For example

[ B Gy
et =| 5 %,



9. Analysis of Multimachine System 315

AVop(i) and Alpg(i) are vectors with elements

. AVp; . Alp;
avan®) = | a2 | Aot = | 47|

Note that the voltages are expressed with AVg; preceding AVp;. On
the other hand, the currents are expressed with AlIp; preceding Alg;. This is
deliberately done so that the matrix [Ypg) is a real symmetric matrix (if phase
shifting transformers are not considered).

If power balance equations are used, the linearized equations can be
expressed as

[J]AVP = AS (9-38)
where J is Jacobian matrix defined by
1 8P 0OFR
V; 86; 9V;
J(”'a.?) =

100 0
V; 96; 9V;

V;Ab; AP;

P2y — 1 ) N 1

AV (z)—[ AV; ], AS(z)—[AQi]

P; and Q; are power injections at bus 7,0; and V; are the angle and
magnitude of the voltage at bus i.

It is also possible to use rectangular coordinates instead of polar coordi-
nates. In this case, Jacobian matrix is different than what is given above.

It is convenient to use Eq. (9.37) as the admittance matrix is unchanged
with change in the operating point. On the other hand, Jacobian matrix is
dependent on the operating point.

If load dynamics are neglected, the effect of the static loads are consid-
ered by modifying the diagonal entries of the matrix [Ypg]. The similar thing
applies for the effect of SVC also, when only steady state control characteristics
are to be considered.

Derivation of System Equations

Let the number of generators in the system be mg, the number of loads
m; and the number of static var compensators be m,. Let the number of buses
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in the network be n. Eq. (9.37) can be rewritten as
[Ypg]AVop = [Fe]Alg — [Ps|ALs — [PL]AILL (9.39)
where Pg is a 2nz2mg matrix with elements

. 1 0]
PG(’?])Z[O 1

if generator j is connected to bus 4, otherwise

. 0 0]
PG(zaJ):[O 0

Similarly [Ps] and [Pf] can be defined. Ps(i,7) or Pr(i,5) is a unit
matrix of dimension 2 if SVC ¢j’ (or load j) is connected to bus i. Otherwise
Pg(i,37) or Pp(i,4) is a null matrix. Notice that the signs associated with Alg
and A} are negative as the SVC and load currents are assumed to flow away
from the bus (load convention).

From the discussion given in chapter 7, both Alg and Ay can be ex-
pressed as

Als = [Y5]AVs (9.40)
Al = [Y1]AV, (9.41)

where both [Ys] and [Y7] are block diagonal matrices. AVs and AVy can be
expressed as

AVg = [PS]tAVQD, AV, = [PL]tAVQD

The generator current vector Al is a collection of the quantities Alg;, Ay, ...
Alypy, and can be expressed as

Alg = [Cg]Xe - [Y6]AVg (9.42)

where
t [t ot t
X& =zl Top-Tom,]

AV =[AVY AV AVE, ]

AT, = [ALL, ALty AL, |
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[CG) = Diag[Cyq1 Cya...Cqm,]

gmyg

After some manipulations, Eq. (9.39) can be expressed as
[YpolAVop = [P6lCs]Xe (9.43)
where
[Ybol = (Yool + [PeYoPE] + [PsYsP§] + [PLYLPy)
is modified admittance matrix. Actually the modification affects only the diago-
nal elements corresponding to buses where generator, load or SVC are connected.
In deriving this, the following relation is also used
AVg = [P AVgp (9.44)
After solving for AVgp from Eq. (9.43), we can express AVg as
AVg = [Ps)'[Ypol ' [P6l[Ce)Xe (9.45)
The collection of all the generator equations is expressed by
X¢ = [Ac]Xc + [BclAVG + [EG|U. (9.46)

where

Substituting Eq. (9.45) in (9.46) gives
X¢ = [Ar]Xc + [EG)U. (9.47)
where

[A7] = [AG] + [Bal[Psl [Ypgl ' [Ps]ICa)
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9.4 Inclusion of Load and SVC Dynamics

The dynamics of SVC and load (say induction motor) can be included if neces-
sary, by expressing their equations in the form

Zs = [A,]:L's + [Bs]AVs + [Es]uca

CAI = [Co. + DAV, } (948)
I = [Aj]zi + [BI]AV] + [Ei]ug
_AL = [Ciui + DAV } (9.49)

ALy = A, AL,..AL,)]
AL, = (AL Alp..AL,]

Note that Eqgs. (9.48) and Eq. (9.49) are similar in structure to the generator
equations except for the sign change associated with the currents.

The system equations can be obtained using similar procedure outlined in the
previous section.

The equation (9.43) gets modified to
[YpolAVgp = [Pl[CelXe + [Ps][Cs]Xs + [PL)[CL) XL (9.50)

where [Y},,] is a modified admittance matrix similar to that defined earlier. [Y]
and [Y7] in this case are defined by .

[Y5] = Diag [-Ds; — Dgge.... = Dym,]

[Yi] = Dia.g [—-Du - Dl2 ..... - Dlm;]

The collection of the generator, SVC and load equations can be expressed

X
AI

[A]X + [B]JAV + [EU,
[C1X + [D]AV } (9:51)
where

[A] = Diag[A¢ As AL]

[As] = Diag [Asl AsZ--'Aam,,]

[AL] = Diag [Au Al2---Alm[]

[B] = Diag [Be Bs Bi]

[Bs] = Diag [Bsi Bs2-.-Bsm,]
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[BL] = Diag [Bu Bl2---Blm,]
[C] = Diag [Cs Cs Ci]
[Cs] = Di.ag [Cs1 Cs2...Csm,]
[CL] = Dlag [C“ Cl2'"Clm1]
[E] = Diag [Eg Es Ey]
[Es] = Diag [Esl E.92---Esm,]
[EL] = Diag [Ey1 Ep...Epm]
AVt = [AVE AVE AVE
AVE=[AVE AV,...AVE, ]
AVE=[AV} AV,Q....AV;ﬁm]
AV can be expressed as
Fg
AV = ng AVQD = [P]tAVQD (9.52)
P
where
[P=[Pe Ps Py
From Egs. (9.50) and (9.52), we can derive
AV = [PY{Yhol " [PIICIX (9.53)
This can be substituted in Eq. (9.51) to give
X = [A7]X + [E]U. (9.54)

where

[A7] = [A] + [BI[PI'[Ypql ' [PIIC]

9.5 Modal Analysis of Large Power Systems

In recent years, computer programs for the eigenvalue analysis of large power
systems have been developed. Notable among them are

(i) AESOPS (Analysis of Essentially Spontaneous Oscillations in Power
Systems) [6]
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(ii) PEALS (Program for Eigenvalue Analysis of Large Systems) [7]

The first program was developed under sponsorship of Electric Power Research
Institute (EPRI) in U.S.A. and is capable of handling systems having upto 200C
buses, 3600 lines and 350 generators. The second program is claimed to have the
capability of handling systems having up to 12,000 buses and 1000 generators.

The major objective of both programs is to compute low frequency elec-
tromechanical (rotor) modes. It is obvious that in a large system, not all the
eigenvalues are of interest. Also, the computation of all eigenvalues would re-
quire an enormous amount of computer time. Without considering sparsity, the
number of computations required in eigenvalue calculation is proportional to n3
where n is the size of the matrix. Hence only critical eigenvalues (which lie close
to the imaginary axis and likely to cross into the RHP as the system operating
conditions are changed) need to be determined.

The computation of an eigenvalue and the corresponding vector of matrix
[AT] can be viewed as the solution of a set of nonlinear equations given by

[AT — AilJvi =0 (9.55)

where ); is the eigenvalue and v; is the corresponding eigenvector. [I,] is a
unit matrix of order n. There are n equations in n unknowns - A; and
(n — 1) elements of the eigenvector. (one nonzero element of the vector v; can
be arbitrarily chosen as 1.0). Thus, the solution of Eq. (9.55) which determines
A; and v;, is equivalent to solving a load flow. While there may be thousands
of state variables (and eigenvalues) there may be only few critical modes which
have to be computed.

The formation of system matrix [Ar] in power systems can be viewed as
the elimination of non-state variables Z in the following general equations

X = [AIX +[B])Z (9.56)
0 = [CIX+[D]Z (9.57)

These equations are applicable irrespective of the complexity of the sys-
tem considered. The matrices [A],[B] and [C] are block diagonal, each block
corresponding to the individual dynamic devices. The matrix [D] is obtained
from network admittance [Y] and is generally sparse. The system matrix [Ar]
is obtained from Eqs. (9.56) and (9.57) as

[Ar] = [A] - [B][D]*[C] (9.58)

The matrix [Ar] is generally full although the matrices on the RHS of.(9.56) anc
(9.57) are sparse. For the determination of an eigenvalue and the eigenvector
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it is convenient to express the equations as

[Q]:{[A—Aifn] [B]H
0 [c] (D]

where X; is the eigenvector corresponding to A;.

N

] (9.59)

Iterative Scheme for Computation of Eigenvalue

The matrix [A] is block diagonal. If we wish to compute an eigenvalue
which has its origin in a block (corresponding to a dynamic device, say a gener-
ator), then the matrix can be partitioned as

-4 4]

where R indihit:;s the rest of the blocks. Note that [Ag] is also a block diagonal

ber of blocks reduced by one compared to [A]. If [A;] corre-
sponds to a generator with classical model, then there are two state variables
(ASm1 and Ady) and [A;] can be expressed as

D, _Ki
“arr T ar WB

[4]=| 2 2H (9.60)
) 0

By defining,

B1=10 @l =] 5|

ey N — AR — )\iIn,- B,
o= | A |
where [B,], [B2], [C1] and [C3] are defined from

[B]-_—[g;], 1= Ci

it is possible to express A; as the solution of the equation

det[A) — B'D''(\)C' = M\l =0 (9.61)
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where det stands for the determinant, I,, is the unit matrix of order n, (same
as the size of [A;]). Also

=n;+n,
The equation (9.61) is based on the assumption that
det[D'(N)] # 0

The derivation of Eq. (9.61) follows from Schur’s formula for partitioned matri-
ces, according to which,

det[F] = det[D] . det{A — BD~'C] = det[A] det[D — CA™'B] (9.62)
where

4 B } 9.63)

Schur’s formula is applied to the matrix defined in Eq. (9.59) which is rearranged
as

Ay — NI B
[ o Do (9.64)
Eq. (9.59) can be reduced (using the above matrix) to
XiXi = [A41 — B'D'"-1(\;)C') Xy (9.65)

where Xj; is the subset of X; corresponding to the state variables defined in
block 1 (A;). An iterative technique can be used to solve for A; and (n; — 1)
elements of X;; from Eq. (9.65). As a special case, when n; =1, Eq. (9.64)
reduces to a scalar equation expressed as

A=A, -B'D-1(\)C (9.66)

One way of solving the above equation is by using a fixed point iteration
M+l = 4 - B'D'-10F)C! (9.67)

where k indicates the iteration number. Starting with the initial estimate of
Ai; (9.67) can be used to improve the estimate until convergence is obtained.
A better iterative scheme is based on Newton’s method. In reference [10] it is
shown that the heuristic approaches for the computation of eigenvalues given
in AESOPS and PEALS programs are based on approximation of Newton type
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algorithm for iterative solution of (9.66). Better algorithms are possible based
on better approximations which converge faster.

Selective Modal Analysis [12-14]

Selective Modal Analysis (SMA) is a framework for the study of selected
modes for the analysis of small signal stability in large power systems. The
modes considered are swing (rotor) modes involving low frequency (0.1-2 Hz)
oscillations.

SMA involves model reduction by retaining only the relevant state vari-
ables depending on the selected modes and eliminating the rest. For example, if
only swing modes are to be considered, then the retained variables are § (rotor
angle) and S, (slip) for all the machines. In general, the unreduced system can

be modelled as
T _ A1 A2 r
HEFIN os8

where the vector r is the vector of variables retained. In this particular case,
rt = [As ASE] (9.69)

Eq. (9.68) is represented by the block diagram shown in Fig. 9.6. This shows two
subsystems - one significant and the other less significant and their interaction.
The transfer function matrix of the less significant dynamics is given by

[H(s)] = Aa[s] — Ag]™ A3 (9.70)

The SMA procedure involves the reduction of the system model in an
iterative fashion, starting with the crude reduced model

7 = [A1]r = [A%]r (9.71)

At k** stage of iteration, the dynamic block [H(s)] is replaced by a static gain
matrix [M**1]. This results in the reduced mogel

f=[Ar + M*r = [AFY)r (9.72)
The initial value of [M] is null matrix. If ‘m’ is the number of modes to be

retained in the reduced model (m < n, where n, is the size of vector r), then
[M*+1] is selected to satisfy

[MF*E ok, of ] = [HOEE . H(OE k) (9.73)
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4

______________________________________________

Figure 9.6: Interaction of significant and less significant subsystems

[

where vy; is the part of the right eigenvector corresponding to the eigenvalue A;
that is retained with the state variable vector ». If m = 1, then

[Mk+1]’”f1 = [H()\,f)]”fl

This implies that
[M*1 = [HO])] form=1 (9.74)

The solution for [M*+1] exists in general as the eigenvectors are independent.
There are infinitely many solutions for m < n,. In these cases, the solution can
be selected such that it minimizes the sum of the norms of the errors between
[M*+1] and [H(AF)] for i = 1,2..m.

The convergence of the SMA procedure depends on the choice of the
significant variables. This can be based on the ‘participation factors’ of the
variables for the mode considered. Let it mode be specified by its eigenvalue
A; and the associated right and left eigenvectors v; and w; respectively. Let the
vectors be normalized such that

why; =1
The response of the system model given by

& = [Alz
is obtained as

n
z(t) = Z o;viett (9.75)
i=1
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where o; are constants determined by z(0). Premultiplying both sides of Eq.
(9.75) by wt, we get

wiz(t) = ai(wvi)eMt = o (Zn:[wi(k)vi(k)]) et (9.76)

k=1

w;(t) and v;(k) are the k** entries of the ** left and right eigenvectors. The
participation factor py; of the k** state variable in the i* mode is defined by

Pri = wi(k)vi(k) (9.77)

As a consequence of the eigenvector normalization defined above, the
participation factors sum to unity both across the state variables and across
modes. Physically, the term v;(k) reflects the activity of the k*® state variable
when ** mode is excited, while the term w;(k) weighs the contribution of this
activity to the it mnde. Mathematically, the participation factor pi; is the

sensitivity é—a