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The many books on introductory electromagnetics can be roughly divided into two
main groups. The first group takes the traditional development: starting with the
experimental laws, generalizing them in steps, and finally synthesizing them in the
form of Maxwell’s equations. This is an inductive approach. The second group takes
the axiomatic development: starting with Maxwell’s equations, identifying each with
the appropriate experimental law, and specializing the general equations to static
and time-varying situations for analysis. This is a deductive approach. A few books
begin with a treatment of the special theory of relativity and develop all of electro-
magnetic theory from Coulomb’s law of force; but this approach requires the discus-
sion and understanding of the special theory of relativity first and is perhaps best
suited for a course at an advanced level.

Proponents of the traditional development argue that it is the way electromag-
netic theory was unraveled historically (from special experimental laws to Maxwell’s
equations), and that it is easier for the students to follow than the other methods.
I feel, however, that the way a body of knowledge was unraveled is not necessarily
the best way to teach the subject to students. The topics tend to be fragmented and
cannot take full advantage of the conciseness of vector calculus. Students are puzzled
at, and often form a mental block to, the subsequent introduction of gradient, diver-
gence, and curl operations. As a process for formulating an electromagnetic model,
this approach lacks cohesiveness and elegance.

The axiomatic development usually begins with the set of four Maxwell’s equa-
tions, either in differential or in integral form, as fundamental postulates. These are
equations of considerable complexity and are difficult to master. They are likely to
cause consternation and resistance in students who are hit with all of them at the
beginning of a book. Alert students will wonder about the meaning of the field vectors
and about the necessity and sufficiency of these general equations. At the initial stage
students tend to be confused about the concepts of the electromagnetic model, and
they are not yet comfortable with the associated mathematical manipulations. In any
case, the general Maxwell’s equations are soon simplified to apply to static fields,
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Preface

which allow the consideration of electrostatic fields and magnetostatic fields sepa-

rately. Why then should the entire set of four Maxwell’s equations be introduced at
the outset?

It may be argued that Coulomb’s law, though based on experimental evidence,
1s in fact also a postulate. Consider the two stipulations of Coulomb’s law: that the
charged bodies are very small compared with their distance of separation, and that
the force between the charged bodies is inversely proportional to the square of their
distance. The question arises regarding the first stipulation: How small must the
charged bodies be in order to be considered “very small” compared with their dis-
tance? In practice the charged bodies cannot be of vanishing sizes (ideal point charges),
and there is difficulty in determining the “true” distance between two bodies of finite
dimensions. For given body sizes the relative accuracy in distance measurements 1s
better when the separation is larger. However, practical considerations (weakness of
force, existence of extraneous charged bodies, etc.) restrict the usable distance of sepa-
ration in the laboratory, and experimental inaccuracies cannot be entirely avoided.
This leads to a more important question concerning the inverse-square relation of
the second stipulation. Even if the charged bodies were of vanishing sizes, experi-
mental measurements could not be of an infinite accuracy no matter how skillful and
careful an experimentor was. How then was it possible for Coulomb to know that
the force was exactly inversely proportional to the square (not the 2.000001th or the
1.999999th power) of the distance of separation? This question cannot be answered
from an experimental viewpoint because it is not likely that during Coulomb’s time
experiments could have been accurate to the seventh place. We must therefore con-
clude that Coulomb’s law is itself a postulate and that it is a law of nature discovered
and assumed on the basis of his experiments of a limited accuracy (see Section 3-2).

This book builds the electromagnetic model using an axiomatic approach in steps:
first for static electric fields (Chapter 3), then for static magnetic fields (Chapter 6),
and finally for time-varying fields leading to Maxwell’s equations (Chapter 7). The
mathematical basis for each step is Helmholtz’s theorem, which states that a vector
field is determined to within an additive constant if both its divergence and its curl
are specified everywhere. Thus, for the development of the electrostatic model 1n free
space, it is only necessary to define a single vector (namely, the electric field intensity
E) by specifying its divergence and its curl as postulates. All other relations 1n electro-
statics for free space, including Coulomb’s law and Gauss’s law, can be derived from
the two rather simple postulates. Relations in material media can be developed
through the concept of equivalent charge distributions of polarized dielectrics.

Similarly, for the magnetostatic model in free space it is necessary to define only
a single magnetic flux density vector B by specifying its divergence and 1ts curl as
postulates; all other formulas can be derived from these two postulates. Relations
in material media can be developed through the concept of equivalent current densi-
ties. Of course, the validity of the postulates lies in their ability to yield results that
conform with experimental evidence.

For time-varying fields, the electric and magnetic field intensities are coupled.
The curl E postulate for the electrostatic model must be modified to conform with



Preface VI

Faraday’s law. In addition, the curl B postulate for the magnetostatic model must
also be modified in order to be consistent with the equation of continuity. We have,
then, the four Maxwell’s equations that constitute the electromagnetic model. I believe
that this gradual development of the electromagnetic model based on Helmholtz’s

theorem 1s novel, systematic, pedagogically sound, and more easily accepted by
students.

In the presentation of the material, I strive for lucidity and unity, and for smooth
and logical flow of ideas. Many worked-out examples are included to emphasize
fundamental concepts and to illustrate methods for solving typical problems. Applica-
tions of derived relations to useful technologies (such as ink-jet printers, lightning
arresters, electret microphones, cable design, multiconductor systems, electrostatic
shielding, Doppler radar, radome design, Polaroid filters, satellite communication
systems, optical fibers, and microstrip lines) are discussed. Review questions appear
at the end of each chapter to test the students’ retention and understanding of the es-
sential material in the chapter. The problems in each chapter are designed to reinforce
students’ comprehension of the interrelationships between the different quantities in
the formulas, and to extend their ability of applying the formulas to solve practical
problems. In teaching, I have found the review questions a particularly useful device
to stimulate students’ interest and to keep them alert in class.

Besides the fundamentals of electromagnetic fields, this book also covers the
theory and applications of transmission lines, waveguides and cavity resonators, and
antennas and radiating systems. The fundamental concepts and the governing theory
of electromagnetism do not change with the introduction of new electromagnetic
devices. Ample reasons and incentives for learning the fundamental principles of
electromagnetics are given in Section 1-1. I hope that the contents of this book,
strengthened by the novel approach, will provide students with a secure and sufficient
background for understanding and analyzing basic electromagnetic phenomena as
well as prepare them for more advanced subjects in electromagnetic theory.

There 1s enough material in this book for a two-semester sequence of courses.
Chapters 1 through 7 contain the material on fields, and Chapters 8 through 11 on
waves and applications. In schools where there is only a one-semester course on elec-
tromagnetics, Chapters 1 through 7, plus the first four sections of Chapter 8 would
provide a good foundation on fields and an introduction of waves in unbounded
media. The remaining material could serve as a useful reference book on applications
or as a textbook for a follow-up elective course. Schools on a quarter system could
adjust the material to be covered in accordance with the total number of hours
assigned to the subject of electromagnetics. Of course, individual instructors have the
prerogative to emphasize and expand certain topics, and to deemphasize or delete
certain others.

I have given considerable thought to the advisability of including computer pro-
grams for the solution of some problems, but have finally decided against it. Diverting
students’ attention and effort to numerical methods and computer software would
distract them from concentrating on learning the fundamentals of electromagnetism.
Where appropriate, the dependence of important results on the value of a parameter
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1s stressed by curves; field distributions and antenna patterns are illustrated by graphs;
and typical mode patterns in waveguides are plotted. The computer programs for
obtaining these curves, graphs, and mode patterns are not always simple. Students
1n science and engineering are required to acquire a facility for using computers; but
the inclusion of some cookbook-style computer programs in a book on the funda-
mental principles of electromagnetic fields and waves would appear to contribute
little to the understanding of the subject matter.

This book was first published in 1983. Favorable reactions and friendly encour-
agements from professors and students have provided me with the impetus to come
out with a new edition. In this second edition I have added many new topics. These
include Hall effect, d-c motors, transformers, eddy current, energy-transport velocity
for wide-band signals in waveguides, radar equation and scattering cross section,
transients 1n transmission lines, Bessel functions, circular waveguides and circular
cavity resonators, waveguide discontinuities, wave propagation in 1onosphere and
near earth’s surface, helical antennas, log-periodic dipole arrays, and antenna effective
length and effective area. The total number of problems has been expanded by about
35 percent.

The Addison-Wesley Publishing Company has decided to make this second
edition a two-color book. I think the readers will agree that the book is handsomely
produced. I would like to take this opportunity to express my appreciation to all
the people on the editorial, production, and marketing staff who provided help in
bringing out this new edition. In particular, I wish to thank Thomas Robbins, Barbara
Rifkind, Karen Myer, Joseph K. Vetere, and Katherine Harutunian.

Chevy Chase, Maryland D. K. C.
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The Electromagnetic
Model

Introduction

Stated 1n a simple fashion, electromagnetics is the study of the effects of electric
charges at rest and in motion. From elementary physics we know that there are two
kinds of charges: positive and negative. Both positive and negative charges are sources
of an electric field. Moving charges produce a current, which gives rise to a magnetic
field. Here we tentatively speak of electric field and magnetic field in a general way;
more definitive meanings will be attached to these terms later. A field is a spatial dis-
tribution of a quantity, which may or may not be a function of time. A time-varying
electric field is accompanied by a magnetic field, and vice versa. In other words, time-
varying electric and magnetic fields are coupled, resulting in an electromagnetic field.
Under certain conditions, time-dependent electromagnetic fields produce waves that
radiate from the source.

The concept of fields and waves is essential in the explanation of action at a dis-
tance. For instance, we learned from elementary mechanics that masses attract each
other. This is why objects fall toward the earth’s surface. But since there are no elastic
strings connecting a free-falling object and the earth, how do we explain this phenom-
enon? We explain this action-at-a-distance phenomenon by postulating the existence
of a gravitational field. The possibilities of satellite communication and of receiving
signals from space probes millions of miles away can be explained only by postulating
the existence of electric and magnetic fields and electromagnetic waves. In this book,
Field and Wave Electromagnetics, we study the principles and applications of the
laws of electromagnetism that govern electromagnetic phenomena.

Electromagnetics is of fundamental importance to physicists and to electrical and
computer engineers. Electromagnetic theory is indispensable in understanding the
principle of atom smashers, cathode-ray oscilloscopes, radar, satellite communication,
television reception, remote sensing, radio astronomy, microwave devices, optical
fiber communication, transients in transmission lines, electromagnetic compatibility

|



2 1 The Electromagnetic Model

FIGURE 1-1
— A monopole antenna.

problems, instrument-landing systems, electromechanical energy conversion, and so
on. Circuit concepts represent a restricted version, a special case, of electromagnetic
concepts. As we shall see in Chapter 7, when the source frequency is very low so that
the dimensions of a conducting network are much smaller than the wavelength, we
have a quasi-static situation, which simplifies an electromagnetic problem to a circuit
problem. However, we hasten to add that circuit theory is itself a highly developed,
sophisticated discipline. It applies to a different class of electrical engineering prob-
lems, and it is important in its own right.

Two situations illustrate the inadequacy of circuit-theory concepts and the need
for electromagnetic-field concepts. Figure 1-1 depicts a monopole antenna of the
type we see on a walkie-talkie. On transmit, the source at the base feeds the antenna
with a message-carrying current at an appropriate carrier frequency. From a circuit-
theory point of view, the source feeds into an open circuit because the upper tip of
the antenna is not connected to anything physically; hence no current would flow,
and nothing would happen. This viewpoint, of course, cannot explain why communi-
cation can be established between walkie-talkies at a distance. Electromagnetic con-
cepts must be used. We shall see in Chapter 11 that when the length of the antenna
is an appreciable part of the carrier wavelength,! a nonuniform current will flow
along the open-ended antenna. This current radiates a time-varying electromagnetic
field in space, which propagates as an electromagnetic wave and induces currents 1n
other antennas at a distance.

In Fig. 1-2 we show a situation in which an electromagnetic wave 1s incident
from the left on a large conducting wall containing a small hole (aperture). Electro-
magnetic fields will exist on the right side of the wall at points, such as P in the fig-
ure, that are not necessarily directly behind the aperture. Circuit theory 1s obviously
inadequate here for the determination (or even the explanation of the existence) of
the field at P. The situation in Fig. 1-2, however, represents a problem of practical

importance as its solution is relevant in evaluating the shielding effectiveness of the
conducting wall.

t The product of the wavelength and the frequency of an a-c source is the velocity of wave propagation.
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Generally speaking, circuit theory deals with lumped-parameter systems—circuits
consisting of components characterized by lumped parameters such as resistances,
inductances, and capacitances. Voltages and currents are the main system variables.
For d-c circuits the system variables are constants, and the governing equations are
algebraic equations. The system variables in a-c circuits are time-dependent; they are
scalar quantities and are independent of space coordinates. The governing equations
are ordinary differential equations. On the other hand, most electromagnetic vari-
ables are functions of time as well as of space coordinates. Many are vectors with
both a magnitude and a direction, and their representation and manipulation require
a knowledge of vector algebra and vector calculus. Even in static cases the govern-
Ing equations are, in general, partial differential equations. It is essential that we be
equipped to handle vector quantities and variables that are both time- and space-
dependent. The fundamentals of vector algebra and vector calculus will be developed
in Chapter 2. Techniques for solving partial differential equations are needed in deal-
ing with certain types of electromagnetic problems. These techniques will be discussed
in Chapter 4. The importance of acquiring a facility in the use of these mathematical
tools in the study of electromagnetics cannot be overemphasized.

Students who have mastered circuit theory may initially have the impression that
electromagnetic theory is abstract. In fact, electromagnetic theory 1s no more abstract
than circuit theory in the sense that the validity of both can be verified by experimen-
tally measured results. In electromagnetics there is a need to define more quantities
and to use more mathematical manipulations in order to develop a logical and com-
plete theory that can explain a much wider variety of phenomena. The challenge of
field and wave electromagnetics is not in the abstractness of the subject matter but
rather 1n the process of mastering the electromagnetic model and the associated rules

of operation. Dedication to acquiring this mastery will help us to meet the challenge
and reap immeasurable satisfaction.

The Electromagnetic Model

There are two approaches in the development of a scientific subject: the inductive
approach and the deductive approach. Using the inductive approach, one follows
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1 The Electromagnetic Model

the historical development of the subject, starting with the observations of some sim-
ple experiments and inferring from them laws and theorems. It 1s a process of reason-
ing from particular phenomena to general principles. The deductive approach, on
the other hand, postulates a few fundamental relations for an idealized model. The
postulated relations are axioms, from which particular laws and theorems can be de-
rived. The validity of the model and the axioms is verified by their ability to predict
consequences that check with experimental observations. In this book we prefer to
use the deductive or axiomatic approach because it is more elegant and enables the
development of the subject of electromagnetics in an orderly way.

The idealized model we adopt for studying a scientific subject must relate to real-
world situations and be able to explain physical phenomena; otherwise, we would
be engaged in mental exercises for no purpose. For example, a theoretical model
could be built, from which one might obtain many mathematical relations; but, 1if
these relations disagreed with observed results, the model would be of no use. The
mathematics might be correct, but the underlying assumptions of the model could
be wrong, or the implied approximations might not be justified.

Three essential steps are involved in building a theory on an idealized model.
First, some basic quantities germane to the subject of study are defined. Second, the
rules of operation (the mathematics) of these quantities are specified. Third, some
fundamental relations are postulated. These postulates or.laws are invariably based
on numerous experimental observations acquired under controlled conditions and
synthesized by brilliant minds. A familiar example is the circuit theory built on a
circuit model of ideal sources and pure resistances, inductances, and capacitances.
In this case the basic quantities are voltages (V'), currents (I), resistances (R), induc-
tances (L), and capacitances (C); the rules of operations are those of algebra, ordinary
differential equations, and Laplace transformation; and the fundamental postulates
are Kirchhoff’s voltage and current laws. Many relations and formulas can be de-
rived from this basically rather simple model, and the responses of very elaborate
networks can be determined. The validity and value of the model have been amply
demonstrated.

In a like manner, an electromagnetic theory can be built on a suitably chosen
electromagnetic model. In this section we shall take the first step of defining the basic
quantities of electromagnetics. The second step, the rules of operation, encompasses
vector algebra, vector calculus, and partial differential equations. The fundamentals
of vector algebra and vector calculus will be discussed in Chapter 2 (Vector Analysis),
and the techniques for solving partial differential equations will be introduced when
these equations arise later in the book. The third step, the fundamental postulates, will
be presented in three substeps in Chapters 3, 6, and 7 as we deal with static electric
fields, steady magnetic fields, and electromagnetic fields, respectively.

The quantities in our electromagnetic model can be divided roughly into two
categories: source quantities and field quantities. The source of an electromagnetic
field is invariably electric charges at rest or in motion. However, an electromagnetic
field may cause a redistribution of charges, which will, in turn, change the field; hence
the separation between the cause and the effect 1s not always so distinct.
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We use the symbol g (sometimes Q) to denote electric charge. Electric charge

1s a fundamental property of matter and exists only in positive or negative integral
multiples of the charge on an electron, —e.!

e =160 x 10"1° (C), (1-1)

where C is the abbreviation of the unit of charge, coulomb.? It is named after the
French physicist Charles A. de Coulomb, who formulated Coulomb’s law 1n 1785.
(Coulomb’s law will be discussed in Chapter 3.) A coulomb is a very large unit for
electric charge; it takes 1/(1.60 x 10 ') or 6.25 million trillion electrons to make
up —1C. In fact, two 1 C charges 1 m apart will exert a force of approximately
I million tons on each other. Some other physical constants for the electron are listed
In Appendix B-2.

The principle of conservation of electric charge, like the principle of conserva-
tion of momentum, is a fundamental postulate or law of physics. It states that electric
charge is conserved; that is, it can neither be created nor be destroyed. This is a law
of nature and cannot be derived from other principles or relations. Its truth has never
been questioned or doubted in practice.

Electric charges can move from one place to another and can be redistributed
under the influence of an electromagnetic field; but the algebraic sum of the positive
and negative charges in a closed (isolated) system remains unchanged. The principle
of conservation of electric charge must be satisfied at all times and under any
circumstances. It is represented mathematically by the equation of continuity, which
we will discuss in Section 5-4. Any formulation or solution of an electromagnetic
problem that violates the principle of conservation of electric charge must be incorrect.
We recall that the Kirchhoff’s current law in circuit theory, which maintains that
the sum of all the currents leaving a junction must equal the sum of all the currents
entering the junction, is an assertion of the conservation property of electric charge.
(Implicit in the current law is the assumption that there is no cumulation of charge
at the junction.)

Although, in a microscopic sense, electric charge either does or does not exist at
a point in a discrete manner, these abrupt variations on an atomic scale are unim-
portant when we consider the electromagnetic effects of large aggregates of charges.
In constructing a macroscopic or large-scale theory of electromagnetism we find that
the use of smoothed-out average density functions yields very good results. (The same
approach is used in mechanics where a smoothed-out mass density function is defined,
In spite of the fact that mass is associated only with elementary particles in a discrete

"In 1962, Murray Gell-Mann hypothesized quarks as the basic building blocks of matter. Quarks were

predicted to carry a fraction of the charge of an electron, and their existence has since been verified
experimentally.

* The system of units will be discussed in Section 1—3.
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manner on an atomic scale.) We define a volume charge density, p, as a source quan-
tity as follows:

Aq
= lim
g Av—0 AU

(C/m>), (1-2)

where Aq is the amount of charge in a very small volume Av. How small should Av
be? It should be small enough to represent an accurate variation of p but large enough
to contain a very large number of discrete charges. For example, an elemental cube
with sides as small as 1 micron (10" m or 1 um) has a volume of 10~ '® m>, which
will still contain about 10! (100 billion) atoms. A smoothed-out function of space
coordinates, p, defined with such a small Av is expected to yield accurate macroscopic
results for nearly all practical purposes.

In some physical situations an amount of charge Aq may be identified with an
element of surface As or an element of line AZ. In such cases it will be more appropriate
to define a surface charge density, p,, or a line charge density, p,:

Aq

Ps = lim (C/mz)a (1—3)
As—0 AS
AY?

= lim — C/m). 1-4

P¢ oo AL (C/m) (1-4)

Except for certain special situations, charge densities vary from point to point; hence
p, p., and p, are, in general, point functions of space coordinates.
Current is the rate of change of charge with respect to time; that 1s,

_4q
I = o (C/s or A), (1-5)

where I itself may be time-dependent. The unit of current is coulomb per second (C/s),
which is the same as ampere (A). A current must flow through a finite area (a con-
ducting wire of a finite cross section, for instance); hence it is not a point function. In
electromagnetics we define a vector point function volume current density (or simply
current density) J, which measures the amount of current flowing through a unit
area normal to the direction of current flow. The boldfaced J is a vector whose mag-
nitude is the current per unit area (A/m?) and whose direction 1s the direction of cur-
rent flow. We shall elaborate on the relation between I and J in Chapter 5. For very
good conductors, high-frequency alternating currents are confined in the surface layer
as a current sheet, instead of flowing throughout the interior of the conductor. In such
cases there is a need to define a surface current density J,, which is the current per
unit width on the conductor surface normal to the direction of current flow and has
the unit of ampere per meter (A/m).

There are four fundamental vector field quantities in electromagnetics: electric
field intensity E, electric flux density (or electric displacement) D, magnetic flux
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TABLE 1-1
Fundamental Electromagnetic Field Quantities

Symbols and Units '

for Field Quantities Field Quantity Symbol
Electric field intensity

Electric
Electric flux density
(Electric displacement)
Magnetic flux density
Magnetic

Magnetic field intensity

density B, and magnetic field intensity H. The definition and physical significance
of these quantities will be explained fully when they are introduced later in the book.
At this time we want only to establish the following. Electric field intensity E is the
only vector needed in discussing electrostatics (effects of stationary electric charges)
In free space; it is defined as the electric force on a unit test charge. Electric displace-
ment vector D 1s useful in the study of electric field in material media, as we shall
see 1n Chapter 3. Similarly, magnetic flux density B is the only vector needed in dis-
cussing magnetostatics (effects of steady electric currents) in free space and is related
to the magnetic force acting on a charge moving with a given velocity. The magnetic
field intensity vector H is useful in the study of magnetic field in material media. The
definition and significance of B and H will be discussed in Chapter 6.

The four fundamental electromagnetic field quantities, together with their units,
are tabulated in Table 1-1. In Table 1-1, V/m is volt per meter, and T stands for tesla
or volt-second per square meter. When there is no time variation (as in static, steady,
or stationary cases), the electric field quantities E and D and the magnetic field quan-
tities B and H form two separate vector pairs. In time-dependent cases, however,
electric and magnetic field quantities are coupled; that is, time-varying E and D will
give rise to B and H, and vice versa. All four quantities are point functions; they are
defined at every point in space and, in general, are functions of space coordinates.
Material (or medium) properties determine the relations between E and D and be-
tween B and H. These relations are called the constitutive relations of a medium and
will be examined later.

The principal objective of studying electromagnetism is to understand the inter-
action between charges and currents at a distance based on the electromagnetic model.
Fields and waves (time- and space-dependent fields) are basic conceptual quantities
of this model. Fundamental postulates will relate E, D, B, H, and the source quantities:

and derived relations will lead to the explanation and prediction of electromagnetic
phenomena.

Unit

a1 Q=
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TABLE 1-2
Fundamental SI Units

Quantity Abbreviation

Length meter
Mass kilogram
Time second
Current ampere

SI Units and Universal Constants

A measurement of any physical quantity must be expressed as a number followed by
a unit. Thus we may talk about a length of three meters, a mass of two kilograms, and
a time period of ten seconds. To be useful, a unit system should be based on some
fundamental units of convenient (practical) sizes. In mechanics, all quantities can be
expressed in terms of three basic units (for length, mass, and time). In electromagnetics
a fourth basic umit (for current) 1s needed. The SI (International System of Units
or Le Systéme International d’Unités) 1s an MKSA system built from the four funda-
mental units listed 1n Table 1-2. All other units used in electromagnetics, including
those appearing in Table 1-1, are derived units expressible in terms of meters, kilo-
grams, seconds, and amperes. For example, the unit for charge, coulomb (C), 1s
ampere-second (A -s); the unit for electric field intensity (V/m) is kg-m/A-s>; and the
unit for magnetic flux density, tesla (T), is kg/A-s*. More complete tables of the units
for various quantities are given in Appendix A.

The official SI definitions, as adopted by the International Committee on Weights
and Measures, are as follows:'

Meter. Once the length between two scratches on a platinum-iridium bar (and
originally calculated as one ten-millionth of the distance between the North Pole
and the equator through Paris, France), 1s now defined by reference to the second

(see below) and the speed of light, which 1n a vacuum 1s 299,792,458 meters per
second.

Kilogram. Mass of a standard bar made of a platinum-iridium alloy and kept
inside a set of nested enclosures that protect it from contamination and mis-

handling. It rests at the International Bureau of Weights and Measures in Sevres,
outside Paris.

Second. 9,192,631,770 periods of the electromagnetic radiation emitted by a par-
ticular transition of a cesium atom.

' P. Wallich, “Volts and amps are not what they used to be,” IEEE Spectrum, vol. 24, pp. 44—49, March
1987.
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Ampere. The constant current that, if maintained in two straight parallel con-
ductors of infinite length and negligible circular cross section, and placed one
meter apart in vacuum, would produce between these conductors a force equal
to 2 x 10”7 newton per meter of length. (A newton is the force that gives a mass
of one kilogram an acceleration of one meter per second squared.)

In our electromagnetic model there are three universal constants, in addition to
the field quantities listed in Table 1-1. They relate to the properties of the free space

(vacuum). They are as follows: velocity of electromagnetic wave (including light) in
free space, c; permittivity of free space, €,; and permeability of free space, u,. Many
experiments have been performed for precise measurement of the velocity of light,
to many decimal places. For our purpose it is sufficient to remember that

c>~3 x 10° (m/s). | (in free space) (1-6)

The other two constants, €, and pu,, pertain to electric and magnetic phenomena,

respectively: €, is the proportionality constant between the electric flux density D
and the electric field intensity E in free space, such that

(in free space) (1-7)

Uo 1S the proportioﬁality constant between the magnetic flux density B and the mag-
netic field intensity H in free space, such that

(1n free space) (1-8)

The values of €, and p, are determined by the choice of the unit system, and they
are not independent. In the ST system (rationalized” MKSA system), which is almost
universally adopted for electromagnetics work, the permeability of free space is chosen

to be
Uo=4n x 107  (H/m), | (in free space) (1-9)

where H/m stands for henry per meter. With the values of ¢ and y,, fixed in Egs. (1-6)
and (1-9) the value of the permittivity of free space is then derived from the following

" This system of units is said to be rationalized because the factor 4n does not appear in the Maxwell’s
equations (the fundamental postulates of electromagnetism). This factor, however, will appear in many

derived relations. In the unrationalized MKSA system, u, would be 10~7 (H/m), and the factor 4% would
appear in the Maxwell’s equations.
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TABLE 1-3
Universal Constants in SI Units

Velocity of light in free space

Permeability of free space

Permittivity of free space

relationships:

(1-10)

o1

11
= ~ 1077
0= 2y T 36m (1-11)

~ 8854 x 1071'*  (F/m),

where F/m is the abbreviation for farad per meter. The three universal constants and
their values are summarized in Table 1-3.

Now that we have defined the basic quantities and the universal constants of the
electromagnetic model, we can develop the various subjects in electromagnetics. But,
before we do that, we must be equipped with the appropriate mathematical tools. In

the following chapter we discuss the basic rules of operation for vector algebra and
vector calculus.

Review Questions

R.1-1 What is electromagnetics?

R.1-2 Describe two phenomena or situations, other than those depicted in Figs. 1-1 and
1-2, that cannot be adequately explained by circuit theory.

R.1-3 What are the three essential steps in building an idealized model for the study of a
scientific subject?

R.1-4 What are the four fundamental SI units in electromagnetics?

R.1-5 What are the four fundamental field quantities in the electromagnetic model? What
are their units?

R.1-6 What are the three universal constants in the electromagnetic model, and what are
their relations?

R.1-7 What are the source quantities in the electromagnetic model?



Vector
Analysis

2-1 Introduction

As we noted 1n Chapter 1, some of the quantities 1n electromagnetics (such as charge,
current, and energy) are scalars; and some others (such as electric and magnetic field
intensities) are vectors. Both scalars and vectors can be functions of time and posi-
tion. At a given time and position, a scalar i1s completely specified by 1ts magnitude
(positive or negative, together with 1ts unit). Thus we can specify, for instance, a charge
of —1 uC at a certain location at t = 0. The specification of a vector at a given loca-
tion and time, on the other hand, requires both a magnitude and a direction. How do
we specify the direction of a vector? In a three-dimensional space, three numbers are
needed, and these numbers depend on the choice of a coordinate system. Conversion
of a given vector from one coordinate system to another will change these numbers.
However, physical laws and theorems relating various scalar and vector quantities
certainly must hold irrespective of the coordinate system. The general expressions of
the laws of electromagnetism, therefore, do not require the specification of a coordi-
nate system. A particular coordinate system is chosen only when a problem of a given
geometry 1s to be analyzed. For example, if we are to determine the magnetic field at
the center of a current-carrying wire loop, it 1s more convenient to use rectangular
coordinates if the loop is rectangular, whereas polar coordinates (two-dimensional)
will be more approprnate if the loop 1s circular in shape. The basic electromagnetic
relation governing the solution of such a problem is the same for both geometries.
Three main topics will be dealt with in this chapter on vector analysis:

1. Vector algebra—addition, subtraction, and multiplication of vectors.

2. Orthogonal coordinate systems—Cartesian, cylindrical, and spherical coordi-
nates.

3. Vector calculus—differentiation and integration of vectors; line, surface, and
volume integrals; “del” operator; gradient, divergence, and curl operations.

11
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2 Vector Analysis

Throughout the rest of this book we will decompose, combine, differentiate, integrate,
and otherwise manipulate vectors. It is imperative to acquire a facility in vector algebra
and vector calculus. In a three-dimensional space a vector relation is, in fact, three
scalar relations. The use of vector-analysis techniques in electromagnetics leads to
concise and elegant formulations. A deficiency in vector analysis in the study of elec-
tromagnetics 1s similar to a deficiency in algebra and calculus in the study of physics;
and 1t 1s obvious that these deficiencies cannot yield fruitful results.

In solving practical problems we always deal with regions or objects of a given
shape, and it is necessary to express general formulas in a coordinate system appro-
priate for the given geometry. For example, the familiar rectangular (x, y, z) coordi-
nates are, obviously, awkward to use for problems involving a circular cylinder or
a sphere because the boundaries of a circular cylinder and a sphere cannot be de-
scribed by constant values of x, y, and z. In this chapter we discuss the three most
commonly used orthogonal (perpendicular) coordinate systems and the representa-
tion and operation of vectors in these systems. Familarity with these coordinate
systems 1s essential in EEIDCD solution of electromagnetic problems.

Vector calculus pertains to the differentiation and integration of vectors. By de-
fining certain differential operators we can express the basic laws of electromagnetism
In a concise way that is invariant with the choice of a coordinate system. In this chap-
ter we introduce the techniques for evaluating different types of integrals involving

vectors, and we define and discuss the various kinds of differential operators.

2—2 Vector Addition and Subtraction

We know that a vector has a magnitude and a direction. A vector A can be written
as

A — aAA, (2“"1)

where A4 is the magnitude (and has the unit and dimension) of A,

(2-2)

and a, is a dimensionless unit vector’ with a unity magnitude having thc direction
of A. Thus,

= —. (2-3)

The vector A can be represented graphically by a directed straight-line segment of a
length |A| = A with its arrowhead pointing in the direction of a ;, as shown in Fig. 2—1.
Two vectors are equal if they have the same magnitude and the same direction, even

' In some books the unit vector in the direction of A is variously denoted by A, u 4, Or1,. We prefer to write
A as in Eq. (2-1) instead of as A = AA. A vector going from point P, to point P, will then be written as

N
ap p.(P,P,) instead of as P,P,(P,P,), which is somewhat cumbersome. The symbols u and i are used for
velocity and current, respectively.
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AzaAA

FIGURE 2-1
Graphical representation of vector A.

though they may be displaced in space. Since it is difficult to write boldfaced letters
by hand, it 1s a common practice to use an arrow or a bar over a letter (}i or A) or
a wiggly line under a letter (A) to distinguish a vector from a scalar. This distinguish-
ing mark, once chosen, should never be omitted whenever and wherever vectors are
written.

Two vectors A and B, which are not in the same direction nor in opposite direc-
tions, such as given in Fig. 2—-2(a), determine a plane. Their sum is another vector C
in the same plane. C = A + B can be obtained graphically in two ways.

1. By the parallelogram rule: The resultant C is the diagonal vector of the parallelo-
gram formed by A and B drawn from the same point, as shown in Fig. 2-2(b).

2. By the head-to-tail rule: The head of A connects to the tail of B. Their sum C is
the vector drawn from the tail of A to the head of B; and vectors A, B, and C form
a triangle, as shown in Fig. 2-2(c).

It 1s obvious that vector addition obeys the commutative and associative laws.

Commutative law: A + B =B + A. (2—-4)
Associative law:. A+ (B+ C)=(A + B) + C. (2-5)

Vector subtraction can be defined in terms of vector addition in the following way:
A—-—B=A+(—B), (2-6)

where — B 1s the negative of vector B; that 1s, — B has the same magnitude as B, but
its direction is opposite to that of B. Thus

—B = (—ag)B. (2-7)
The operation represented by Eq. (2-6) is illustrated in Fig. 2-3.

A

(a) Two vectors, A and B. (b) Parallelogram rule. (c) Head-to-tail rule.

FIGURE 2-2
Vector addition, C = A + B.
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(a) Two vectors, (b) Subtraction of FIGURE 2-3

A

and B. vectors, A — B. Vector subtraction.

2—=3 Products of Vectors

Multiplication of a vector A by a positive scalar k changes the magnitude of A by k
times without changing its direction (k can be either greater or less than 1).

kA = a (kA). ... (2-8)

It 1s not sufficient to say “the multiplication of one vector by another” or “the prod-
uct of two vectors” because there are two distinct and very different types of products

of two vectors. They are (1) scalar or dot products, and (2) vector or cross products.
These will be defined in the following subsections.

»

2-3.1 SCALAR OR DOT PRODUCT

The scalar or dot product of two vectors A and B, denoted by A - B, is a scalar,
which equals the product of the magnitudes of A and B and the cosine of the angle

between them. Thus,
A:B=2 ABcos 0 5. (2-9)

In Eq. (2-9) the symbol £ signifies “equal by definition,” and 0 ,, is the smaller angle
between A and B and is less than n radians (180°), as indicated in Fig. 2—-4. The dot
product of two vectors (1) 1s less than or equal to the product of their magnitudes;
(2) can be either a positive or a negative quantity, depending on whether the angle
between them is smaller or larger than n/2 radians (90°); (3) is equal to the product

|~—\—+———A————*| FIGURE 2-4

B cos 045

Illustrating the dot product of A and B.
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of the magnitude of one vector and the projection of the other vector upon the first
one; and (4) 1s zero when the vectors are perpendicular to each other. It is evident
that

A A= A° (2-10)

or
A= /A" A (2-11)
Equation (2-11) enables us to find the magnitude of a vector when the expression
of the vector is given in any coordinate system.
The dot product 1s commutative and distributive.

Commutative law: A-B=B-A. (2-12)
Distributive law: A -(B+C)=A-B+ A-C. (2-13)

The commutative law i1s obvious from the definition of the dot product in Eq. (2-9),
and the proof of Eq. (2—-13) 1s left as an exercise. The associative law does not apply
to the dot product, since no more than two vectors can be so multiplied and an ex-
pression such as A * B+ C is meaningless.

=mmmm EXAMPLE 2-1 Prove the law of cosines for a triangle.

Solution The law of cosines is a scalar relationship that expresses the length of a
side of a triangle in terms of the lengths of the two other sides and the angle between
them. Referring to Fig. 2-5, we find the law of cosines states that

C = /A% + B> — 24B cos a.

We prove this by considering the sides as vectors; that is,
C=A1B.
Taking the dot product of C with itself, we have, from Eqs. (2—-10) and (2-13),
C:=C-C=(A+B):(A +B)
=A*‘A+B-B+2A-B
= A* + B* + 2AB cos 0 4.

FIGURE 2-5§
Illustrating Example 2-1.




16

2  Vector Analysis

Note that 0,5 1s, by definition, the smaller angle between A and B and is equal to
(180° — a); hence cos 6,5 = cos (180° — a) = —cos a. Therefore,

C? = A% + B?> — 2AB cos «,

and the law of cosines follows directly. amn

2-3.2 VECTOR OR CROSS PRODUCT

The vector or cross product of two vectors A and B, denoted by A x B, i1s a vector
perpendicular to the plane containing A and B; its magnitude 1s AB sin 0,5, where
0,5 is the smaller angle between A and B, and its direction follows that of the thumb
of the right hand when the fingers rotate from A to B through the angle 0,5 (the

right-hand rule).
A x B £ a,|A4Bsin 0 . (2-14)

This is illustrated in Fig. 2—6. Since B sin 0 .5 is the height of the parallelogram formed

by the vectors A and B, we recognize that the magnitude of A x B, |AB sin 6,4/,

which is always positive, is numerically equal to the area of the parallelogram.
Using the definition in Eq. (2—14) and following the right-hand rule, we find that

BxA=—A xB. (2-15)

Hence the cross product is not commutative. We can see that the cross product obeys
the distributive law,

AxB+OCO=AxB+ A xC. (2-16)

Can you show this in general without resolving the vectors into rectangular
components?

The vector product is obviously not associative; that is,

Ax(BxC)#(AxB)xC. (2-17)

(a) A x B = a,|A4B sin 045 (b) The right-hand rule.

FIGURE 2-6
Cross product of A and B, A x B.
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The vector representing the triple product on the left side of the expression above is
perpendicular to A and lies in the plane formed by B and C, whereas that on the
right side is perpendicular to C and lies in the plane formed by A and B. The order

In which the two vector products are performed is therefore vital, and in no case
should the parentheses be omitted.

mmmmm EXAMPLE 2-2 The motion of a rigid disk rotating about its axis shown in Fig.
2—7(a) can be described by an angular velocity vector w. The direction of  is along
the axis and follows the right-hand rule; that is, if the fingers of the right hand bend
in the direction of rotation, the thumb points to the direction of w. Find the vector

expression for the lineal velocity of a point on the disk, which is at a distance d from
the axis of rotation.

Solution From mechanics we know that the magnitude of the lineal velocity, v, of
a point P at a distance d from the rotating axis is wd and the direction is always
tangential to the circle of rotation. However, since the point P is moving, the direc-
tion of v changes with the position of P. How do we write its vector representation?

Let O be the origin of the chosen coordinate system. The position vector of the
point P can be written as R, as shown in Fig. 2—7(b). We have

v| = wd = wR sin 6.

No matter where the point P is, the direction of v is always perpendicular to the
plane containing the vectors @ and R. Hence we can write, very simply,

L

v=mw X R,

which represents correctly both the magnitude and the direction of the lineal velocity
of P.

FIGURE 2-7
(a) A rotating disk. (b) Vector representation.  Illustrating Example 2-2.
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i _. e FI G U R E 2 _8 3
Area = |B x C| Illustrating scalar triple product A * (B x C).

2-3.3 PRODUCT OF THREE VECTORS

There are two kinds of products of three vectors; namely, the scalar triple product

and the vector triple product. The scalar triple product is much the simpler of the
two and has the following property:

A-BxC)=B-(Cx A =C-(A x B). (2—-18)

Note the cyclic permutation of the order of the three vectors A, B, and C. Of course,
A-BxC)=—A-(C x B)

= —B- (A x C) (2-19)
= —C-*(B x A).

As can be seen from Fig. 2—8, each of the three expressions in Eq. (2—18) has a magni-
tude equal to the volume of the parallelepiped formed by the three vectors A, B, and
C. The parallelepiped has a base with an area equal to [B x C| =|BC sin 0, and a
height equal to |4 cos 6,|; hence the volume is |[ABC sin 6, cos 0,|.

The vector triple product A x (B x C) can be expanded as the difference of two
simple vectors as follows:

A x (B x C)=B(A-C)— C(A-B). (2-20)

Equation (2-20) is known as the “back-cab” rule and is a useful vector identity. (Note
“BAC-CAB” on the right side of the equation!)

EXAMPLE 2-3'" Prove the back-cab rule of vector triple product.

t The back-cab rule can be verified in a straightforward manner by expanding the vectors in the Cartesian
coordinate system (Problem P.2-12). Only those interested in a general proof need to study this example.
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FIGURE 2-9
Illustrating the back-cab rule of vector triple product.

Solution In order to prove Eq. (2-20) it is convenient to expand A into two
components:

A=A||+AJ_,

where A\, and A are parallel and perpendicular, respectively, to the plane containing
B and C. Because the vector representing (B x C) is also perpendicular to the plane,

the cross product of A, and (B x C) vanishes. Let D = A x (B x C). Since only A,
1s effective here, we have

Referring to Fig. 2-9, which shows the plane containing B, C, and A, we note
that D lies in the same plane and is normal to A;. The magnitude of (B x C) is
BC sin (6, — 0,), and that of A, x (B x C) is 4,BC sin (§; — 6,). Hence,

D=D-a,=A,BCsin (0, —0,)
= (B sin 0,)(A,C cos 0,) — (C sin 0,)(A,B cos 0,)
= [B(A) - C) — C(A - B)] - a,,.

The expression above does not alone guarantee the quantity inside the brackets to
be D, since the former may contain a vector that is normal to D (parallel to A));
that 1s, D - a, = E - a;, does not guarantee E = D. In general, we can write

B(A, - C)— CA, - B)=D + kA,

where k is a scalar quantity. To determine k, we scalar-multiply both sides of the
above equation by A\, and obtain

SinCC A” - D = 0, then k — 0 and
which proves the back-cab rule, inasmuch as A C=A-Cand A ;- B=A"B.

Division by a vector is not defined, and expressions such as k/A and B/A are
meaningless.
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2—=4 Orthogonal Coordinate Systems

We have indicated before that although the laws of electromagnetism are invariant
with coordinate system, solution of practical problems requires that the relations
derived from these laws be expressed in a coordinate system appropriate to the geome-
try of the given problems. For example, if we are to determine the electric field at a
certain point in space, we at least need to describe the position of the source and the
location of this point in a coordinate system. In a three-dimensional space a point
can be located as the intersection of three surfaces. Assume that the three families of
surfaces are described by u, = constant, u, = constant, and u; = constant, where the
u’s need not all be lengths. (In the familiar Cartesian or rectangular coordinate system,
u,, u,, and u, correspond to x, y, and z, respectively.) When these three surfaces
are mutually perpendicular to one another, we have an orthogonal coordinate system.
Nonorthogonal coordinate systems are not used because they complicate problems.

Some surfaces represented by u; = constant (i = 1, 2, or 3) in a coordinate system
may not be planes; they may be curved surfaces. Let a,, a,,, and a,, be the unit
vectors in the three coordinate directions. They are called the base vectors. In a
general right-handed, orthogonal, curvilinear coordinate system the base vectors are
arranged in such a way that the following relations are satisfied:

a, xa, =a,, (2—-21a)
a, Xa, =a,, (2-21b)
a, Xxa, =a,,. (2-21c)

These three equations are not all independent, as the specification of one automati-
cally implies the other two. We have, of course,

-a, =a, a, =0 (2-22)
and

-a,, =a, a, = 1. (2-23)

Any vector A can be written as the sum of its components in the three orthogonal
directions, as follows:

(2—-24)

From Eq. (2-24) the magnitude of A 1s
A=|A| = (4% + A, + AL)">. (2-25)

=smmm EXAMPLE 2-4 Given three vectors A, B, and C, obtain the expressions of (a) A * B,
(b) A x B, and (¢) C- (A x B) in the orthogonal curvilinear coordinate system

(Uy, Uy, Uj).
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Solution First we write A, B, and C in the orthogonal coordinates (u,, u,, u.):

A=a, A, +a,A, +a, A

Uz° " u3 u3” "uiz?

B=a,B, +a,B, +a,B

C=a,C, +a,C, +2a,C,..
a) A-B=(a, A4, +a,A, +2a,A,): (a,,B,, +a,B,, +a,B,)
= A, B, +A4,B,, + A,B,,
in view of Egs. (2-22) and (2-23).
b) AxB=(a,A, +a,A4, +a,A,)x (a,,B,, +a,,B, +a,B,)
= a,,(A,,B., — A,,B,,) + a,(A,,B,, — A, B,) + a,(A, B,, — A, B,)
au1 auz au3
=14, A, A, (2-27)

uj

13u1 l3u2 13u3

(2-26)

Equations (2-26) and (2-27) express the dot and cross products, respectively,
of two vectors in orthogonal curvilinear coordinates. They are important and
should be remembered.

¢) The expression for C - (A x B) can be written down immediately by combining the
results 1n Eqgs. (2-26) and (2-27):

C-(AxB)=C,(A,B,, — A,,B,) + C,,(4,,B,, — A,,B,)) + C,(4,,B,, — A,,B,,)
C. C, C,

=|4,, A, A, (2-28)

B, B, B

usj

Eq. (2-28) can be used to prove Egs. (2-18) and (2-19) by observing that a per-
mutation of the order of the vectors on the left side leads simply to a rearrange-
ment of the rows in the determinant on the right side. —

In vector calculus (and in electromagnetics work) we are often required to per-
form line, surface, and volume integrals. In each case we need to express the differential
length-change corresponding to a differential change in one of the coordinates. How-
ever, some of the coordinates, say u; (i = 1, 2, or 3), may not be a length; and a con-
version factor is needed to convert a differential change du; into a change in length d¢;:

d{i — hi dui, (2‘“29)

i

where h; 1s called a metric coefficient and may itself be a function of u,, u,, and us,.
For example, in the two-dimensional polar coordinates (u,, u,) = (r, ¢), a differential
change d¢ (=du,) in ¢ (=u,) corresponds to a differential length-change d¢, = rd¢ -
(h, =r = uy) in the a, (=a,,)-direction. A directed differential length-change in an
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arbitrary direction can be written as the vector sum of the component length-changes:

d€ —_ aul dfl + auz dfz + au3 d/3 (2‘“30)T
or

d¢ = a, (h,du,) + a, (h, du,) + a, (h; du,). (2-31)
In view of Eq. (2-25) the magnitude of d€ 1s
df — d 2 2 271/2
[(d,)? + (@2,)? + (dt3)°] 23

= [(hydu,)* + (hyduy)® + (hsdus)*]'?.

The differential volume dv formed by differential coordinate changes du,, du,, and
du, in directions a,,, a,,, and a,,, respectively, is (d¢, df, d/s), or

dv = h,h,h,du, du, du,. (2-33)

Later we will have occasion to express the current or flux flowing through a dif-
ferential area. In such cases the cross-sectional area perpendicular to the current or
flux flow must be used, and it is convenient to consider the differential area a vector
with a direction normal to the surface; that 1s,

For instance, if current density J is not perpendicular to a differential area of a mag-
nitude ds, the current, dI, flowing through ds must be the component of J normal to
the area multiplied by the area. Using the notation in Eq. (2-34), we can write simply

dl = J - ds
= J -+ a,ds.

In general orthogonal curvilinear coordinates the differential area ds; normal to the
unit vector a,, 18

(2—35)

dSl — d/z dfs

ds, = h,hydu, du,. (2-36)

Similarly, the differential areas normal to unit vectors a,, and a,, are, respectively,
dSz — h1h3 du1 du3 (2—'37)

" The € here is the symbol of a vector of length .

or
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_ z =z plane
.
by FIGURE 2-10
""" y = y; plane Cartesian coordinates.
dn
dS3 — h1h2 du1 duz. (2""38)

Many orthogonal coordinate systems exist; but we shall be concerned only with
the three that are most common and most useful:

1. Cartesian (or rectangular) coordinates.’
2. Cylindrical coordinates.

3. Spherical coordinates.

These will be discussed separately in the following subsections.

2-4.1 CARTESIAN COORDINATES

(ula U, u3) = (xa Vs Z)

A point P(x,, y;, z,) in Cartesian coordinates is the intersection of three planes speci-
fied by x = x;, y = y,, and z = z,, as shown in Fig. 2-10. It is a right-handed system
with base vectors a,, a,, and a, satisfying the following relations:

a, xa, =a, (2—-39a)
a, X a,=a, (2—-39b)
a, x a, = a,. (2—39c¢)

' The term “Cartesian coordinates” is preferred because the term “rectangular coordinates” is customarily
associated with two-dimensional geometry.
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The position vector to the point P(x,, y,, z,) 1s
OP = a,x; +a,y, +a,z;. (2—40)

A vector A in Cartesian coordinates can be written as

A=a A, +aAd, +a,A,. (2-41)
The dot product of two vectors A and B is, from Eq. (2-26),

A-B=AB, + AB,+ A,B,, (2-42)

and the cross product of A and B 1s, from Eq. (2-27),
A xB=a,(AB,— A,B) + ayA4,B, — A.B,) + a,(A,B, — A,B,)

a, a, a,
=14, A, A, (2-43)
B, B, B,

Since x, y, and z are lengths themselves, all three metric coefficients are unity;

that is, h, = h, = hy; = 1. The expressions for the differential length, differential area,
and differential volume are—from Egs. (2-31), (2-36), (2-37), (2—-38), and (2-33)—

respectively,
d¢ = a,dx + a,dy + a,dz; (2-44)
ds, = dydz, (2—-45a)
ds, = dx dz, (2—45b)
ds, = dxdy; (2—-45c¢)
and

dv =dxdyd:z. (2—46)

A typical differential volume element at a point (x, y, z) resulting from differential
changes dx, dy, and dz is shown in Fig. 2—11. The differential surface areas ds,, ds,,
and ds, normal to the directions a,, a,, and a, are also indicated.

ssssss EXAMPLE 2-5 Given A =a,5 —a,2 + a,, find the expression of a unit vector B
such that

a) B||A.
b) B LA, if B lies in the xy-plane.
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FIGURE 2-11
A differential volume in Cartesian coordinates.

Solution Let B=a_,B, + a,B, + a,B,. We know that

B| = (B2 + B2 + B?)'? = 1. (2-47)
a) B||A requires B x A = 0. From Eq. (2—43) we have
—2B, — B, =0, (2—48a)
B, — 5B, =0, (2-48b)
5B, + 2B, = 0. (2-48¢)

The above three equations are not all independent. For instance, subtracting
Eq. (2—-438c) from twice Eq. (2—-48b) yields Eq. (2—48a). Solving Egs. (2-47),
(2—48a), and (2—48b) simultaneously, we obtain

V30 V30

B, = B, = — and B, =

Therefore,

|
B=—(a5—a2+a).
\/@( y )

b) B L A requires B+ A = 0. From Eq. (2—42) we have
3B, — 2B, = 0, (2-49)

where we have set B, = 0, since B lies in the xy-plane. Solution of Egs. (2—-47)
and (2—-49) yields

B and B, =

2 5
N SN

Hence,

1
B=-——(a2+ a,5)

/2 -

smmmm EXAMPLE 2-6 (a) Write the expression of the vector going from point P,(1, 3, 2) to
point P,(3, —2, 4) in Cartesian coordinates. (b) What is the length of this line?
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y FIGURE 2-12
[llustrating Example 2-6.

Solution

a) From Fig. 2—-12 we see that
PP, = D—P_; "‘" -51_5:
= (a,3 —a,2 + a,4) —(a, + a,3 + a,2)
=a,2 —a,5 + a,2
b) The length of the line i1s
PP, = IFIT’_;I
= /2% + (=5)? + 22
_ /3.

mssmsmm EXAMPLE 2-7 The equation of a straight line in the xy-plane is given by 2x + y = 4.

a) Find the vector equation of a unit normal from the origin to the line.

b) Find the equation of a line passing through the point P(0, 2) and perpendicular
to the given line.

Solution It is clear that the given equation y = —2x + 4 represents a straight line
having a slope —2 and a vertical intercept +4, shown as L, (solid line) in Fig. 2—13.

a) If the line 1s shifted down four units, we have the dashed parallel line L, passing

through the origin whose equation 1s 2x + y = 0. Let the position vector of a
point on L' be

r=a,x + a,).
The vector N = a,2 + a, 1s perpendicular to L} because
Ner=2x+y=0.

Obviously, N 1s also perpendicular to L,. Thus, the vector equation of the unit
normal at the origin is

N 1
ay = N = —(a,2 + a,).

NG
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\ FIGURE 2-13
\ Illustrating Example 2-7.

Note that the slope of ay (=3) is the negative reciprocal of that of lines L, and
L) (=—2).

b) Let the line passing through the point P(0, 2) and perpendicular to L, be L,.
L, 1s parallel to and has the same slope as a,. The equation of L, is then

y=3+2  or x—2y=—4,
since L, 1s required to pass through the point P(0, 2). —

2-4.2 CYLINDRICAL COORDINATES

(ula Us, u3) — (ra ¢9 Z)

In cylindrical coordinates a point P(r,, ¢,, z,) is the intersection of a circular cylin-
drical surface r = r,, a half-plane containing the z-axis and making an angle ¢ = ¢,
with the xz-plane, and a plane parallel to the xy-plane at z = z,. As indicated in
Fig. 2-14, angle ¢ is measured from the positive x-axis, and the base vector a, is

<

r = ry cylinder

FIGURE 2-14
Cylindrical coordinates.
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tangential to the cylindrical surface. The following right-hand relations apply:

a, X a, = a,, (2—50a)
a, x a, = a,, (2—-350b)
a, X a, = a,. (2—-50c¢)

Cylindrical coordinates are important for problems with long line charges or currents,
and 1n places where cylindrical or circular boundaries exist. The two-dimensional
polar coordinates are a special case at z = 0.

A vector 1n cylindrical coordinates is written as

A=aA +a,A, +a,A,. (2-51)

The expressions for the dot and cross products of two vectors in cylindrical coordi-
nates follow from Egs. (2-26) and (2-27) directly.

Two of the three coordinates, r and z (u; and u;), are themselves lengths; hence
h, = hy = 1. However, ¢ is an angle requiring a metric coefficient h, = r to convert

do to d/,. The general expression for a differential length in cylindrical coordinates
1s then, from Eq. (2-31),

dé = a, dr + a,rd¢ + a, dz. (2-52)

The expressions for differential areas and differential volume are

ds, =rdgdz, (2—-53a)
ds, = rdrdo, (2—53c¢)

dv =rdrd¢dz. (2-54)

A typical differential volume element at a point (r, ¢, z) resulting from differential
changes dr, d¢, and dz in the three orthogonal coordinate directions is shown in
Fig. 2-15.

A vector given 1n cylindrical coordinates can be transformed into one in Cartesian
coordinates, and vice versa. Suppose we want to express A = a4+ a,A, + a,A, In
Cartesian coordinates; that is, we want to write A as a,A, + a,4, + a,4, and deter-
mine A,, A,, and A4,. First of all, we note that A4,, the z-component of A, is not
changed by the transformation from cylindrical to Cartesian coordinates. To find
A,, we equate the dot products of both expressions of A with a_. Thus

A, =A-a,
=A,a,-a,+ Aza,-a,.

and
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ds, = rd¢ dz
ds, = rdrd¢
dr dz
FIGURE 2-15
y A differential volume element in cylindrical
o coordinates.

The term containing A, disappears here because a, * a, = 0. Referring to Fig. 2-16,
which shows the relative positions of the base vectors a_, a, a,, and a,, we see that

a,-a, = Ccos @ (2-55)
and
a, - a, = COS (g— + qb) = —SsIn Q. (2—56)
Hence,
A, = A,cos ¢ — A, sin . (2-57)

Similarly, to find A,, we take the dot products of both expressions of A with a,:
A,=A-a,
= A,a,-a,+ Asa, - a,.
From Fig. 2-16 we find that

T .
a.-a, = Cos (5 — ) = sIln @ (2—-58)
and

a,°a, = Cos Q. (2-59)

It follows that
A,=A,sin¢p + A, cos @. (2-60)

y
ay
a
a FIGURE 2-16

Relations between a,, a,, a,, and a,.
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It 1s convenient to write the relations between the components of a vector in Cartesian
and cylindrical coordinates in a matrix form:

(2-61)

Our problem is now solved except that the cos ¢ and sin ¢ in Eq. (2-61) should be
converted into Cartesian coordinates. Moreover, A4,, A4, and A, may themselves be
functions of r, ¢, and z. In that case, they too should be converted into functions of
X, ¥, and z in the final answer. The following conversion formulas are obvious from
Fig. 2-16. From cylindrical to Cartesian coordinates:

(2—62a)
(2—-62b)
(2—62c)

The 1nverse relations (from Cartesian to cylindrical coordinates) are

(2—-63a)
(2—63Db)

(2-63c)

mssmm EXAMPLE 2-8 The cylindrical coordinates of an arbitrary point P in the z = 0 plane

are (r, ¢, 0). Find the unit vector that goes from a point z = h on z-axis toward P.

Solution Referring to Fig. 2—-17, we have

OF = OF - 00
= (a,r) — (a,h).
Hence, L
P 1
Aop = 9__,, = - (a,r — a_h).
IQPI \/ r¢ + h? -

sssmmm EXAMPLE 2-9 Express the vector

A =a,/(3cos ¢)—a2r+a,s

1in Cartesian coordinates.
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Y FIGURE 2-17
Illustrating Example 2-8.

Solution Using Eq. (2-61) directly, we have

A, COS @ —sin ¢ Of|3cos ¢
A, | =|sin ¢ COS @ 0] —2r
A, 0 0 1 5

or
A = a,(3 cos® ¢ + 2rsin @) + a,(3 sin ¢ cos ¢ — 2r cos ¢) + a,5.

But, from Egs. (2—62) and (2-63),

X
COS @ =
VX2 + y?
and
SIn @ = - 4
VX2 + y?
Therefore,
3x? 3xy
A = 2 — 2 5,
ax(xz g + y) + a”(xz )2 x) + a,

which is the desired answer.

2-4.3 SPHERICAL COORDINATES
(ula U,, u3) = (Ra 99 ¢)

A point P(R,, 0,, ¢,) in spherical coordinates is specified as the intersection of the fol-
lowing three surfaces: a spherical surface centered at the origin with a radius R = R;;
a right circular cone with its apex at the origin, its axis coinciding with the + z-axis
and having a half-angle 6 = 0,; and a half-plane containing the z-axis and making
an angle ¢ = ¢, with the xz-plane. The base vector ag at P is radial from the origin
and is quite different from a, in cylindrical coordinates, the latter being perpendicular
to the z-axis. The base vector a, lies in the ¢ = ¢, plane and is tangential to the
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--------

FIGURE 2-18
Spherical coordinates.

spherical surface, whereas the base vector a, is the same as that in cylindrical coor-
dinates. These are illustrated in Fig. 2-18. For a right-handed system we have

ap X 2, =a,, (2-64a)
ae X a¢ — aR, (2"‘64b)
a¢ X aR — ae. ' (2“‘64(:)

Spherical coordinates are important for problems involving point sources and regions
with spherical boundaries. When an observer is very far from the source region of
a finite extent, the latter could be considered as the origin of a spherical coordinate
system; and, as a result, suitable simplifying approximations could be made. This is

the reason that spherical coordinates are used in solving antenna problems in the
far field.

A vector in spherical coordinates is written as

(2—65)

The expressions for the dot and cross products of two vectors in spherical coor-
dinates can be obtained from Egs. (2-26) and (2-27).

In spherical coordinates, only R(u,) is a length. The other two coordinates, €
and ¢ (u, and u,), are angles. Referring to Fig. 2-19, in which a typical differential
volume element i1s shown, we see that metric coefficients h, = R and h, = R sin 0 are

required to convert dff and d¢ into d/, and d/,, respectively. The general expression
for a differential length is, from Eq. (2-31),

d€ = agpdR + agRd0 + a R sin 0d¢. (2—-66)




33

FIGURE 2-19

A differential volume element in spherical
coordinates.

The expressions for differential areas and differential volume resulting from differen-
tial changes dR, d, and d¢ in the three coordinate directions are

dsg = R*? sin 0d0d¢, (2-67a)
dse = R sin 0dR d¢, (2-67b)
ds, = RdR d6, (2—-67¢)

dv = R* sin 6dR dO d¢. (2-68)

For convenience the base vectors, metric coefficients, and expressions for the differen-
tial volume are tabulated in Table 2-1.

and

TABLE 2-1
Three Basic Orthogonal Coordinate Systems

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates

(x, y, 2) (r, 9, 2) (R, 0, ¢)

Coordinate System Relations

Base vectors

Metric coefficients

Differential volume dv



34 2 Vector Analysis

A vector given in spherical coordinates can be transformed into one in Cartesian
or cylindrical coordinates, and vice versa. From Fig. 2—19 it is easily seen that

x = R sin 0 cos ¢, (2—69a)
y = R sin 0 sin ¢, (2—-69Db)
z = R cos 0. (2—-69¢)

Conversely, measurements in Cartesian coordinates can be transformed into those in
spherical coordinates:

(2-70a)

(2—70b)

(2—-70c)

=smmm EXAMPLE 2-10 The position of a point P in spherical coordinates is (8, 120°, 330°).
Specify its location (a) in Cartesian coordinates, and (b) in cylindrical coordinates.

Solution The spherical coordinates of the given point are R = 8, 8 = 120°, and
¢ = 330°.
a) In Cartesian coordinates. We use Egs. (2—69a, b, c):
x = 8 sin 120° cos 330° = 6,
y = 8 sin 120° sin 330° = —2./3,
z =8 cos 120° = —4.

Hence the location of the point 1s P(6, —Zﬁ, —4), and the position vector (the
vector going from the origin to the point) is

OP = a6 — ay2\/§ — a 4.

b) In cylindrical coordinates. The cylindrical coordinates of point P can be obtained
by applying Eqgs. (2-63a, b, c) to the results in part (a), but they can be cal-
culated directly from the given spherical coordinates by the following relations,
which can be verified by comparing Figs. 2—-14 and 2-18:

r = R sin 0, (2-71a)
¢ = ¢, (2-71b)
z = R cos 6. (2-71c)

We have P(4\/§, 330°, —4); and its position vector in cylindrical coordinates is
OP =a4./3 —aj. -
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We note here that the position vector of a point in cylindrical coordinates does
not contain the angle ¢ = 330° explicitly. However, the exact direction of a, depends
on ¢. In terms of spherical coordinates the position vector (the vector from the
origin to the point P) consists of only a single term:

_O-_ﬁ — aR8.

Here the direction of ap changes with the 6 and ¢ coordinates of the point P.

EXAMPLE 2-11 Convert the vector A = agAp + 2,4y + a,A4, into Cartesian co-
ordinates.

Solution In this problem we want to write A in the formof A =a, 4, + a4, + a,4,.
This is very different from the preceding problem of converting the coordinates of a
point. First of all, we assume that the expression of the given vector A holds for all
points of interest and that all three given components Ag, 4y, and 4, may be functions
of coordinate variables. Second, at a given point, Ag, Ay, and 4, will have definite
numerical values, but these values that determine the direction of A will, in general,
be entirely different from the coordinate values of the point. Taking dot product of
A with a_, we have

A, =A-a,
— ARaR ¢ ax + Aeao ¢ ax + A¢a¢ ¢ ax.

Recalling that a, - a,, a5 a,, and a, - a, yield, respectively, the component of unit

vectors ag, a4, and a, 1n the direction of a,, we find, from Fig. 2-19 and Egs.
(2—-69a, b, c):

X

ap*a,=snfcosp=— (2-72)
VX2 + y* + 27
XZ
a,°a,=Ccoslcos p =—— ; _
' 2+ P + 9 + 29) &=7)
o cin b — y
a¢ * ax — "'"'Sln ¢ —_— 5 > . (2"‘74)
X“+Yy
Thus,
A, = Agsin @ cos ¢ + Agcos 0 cos ¢ — A, sin ¢
=.__._________‘f!_1i‘.fc_______+_____ _____‘A_l_ﬂf_z___________‘il_?;?_’__. (2-75)
/x2 + y2 + ZZ /(x2 + y2)(x2 + y2 + 22) /x2 + y2
Similarly,
, = Agsin@sin ¢ + A,y cos 0sin ¢ + A, cos ¢
Agpy Ayyz Ayx
=& 4 4 . (2-76)
Ay t2 Sty +2) e+
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and

A A /2 2
A, = Agcos 6 — A931n9————-————5—z-—-—-———————-6—-—u—-—¥——- (2-77)

If Ag, Ay, and A, are themselves functions of R, 0, and ¢, they too need to be con-
verted into functions of x, y, and z by the use of Eqgs. (2-70a, b, c). Equations (2—75),
(2-76), and (2-77) disclose the fact that when a vector has a simple form in one
coordinate system, its conversion into another coordinate system usually results in a
more complicated expression. -

=sssm EXAMPLE 2-12 Assuming that a cloud of electrons confined in a region between
two spheres of radii 2 and 5 (cm) has a charge density of

—3x 108

R4 cos’ ¢ (C/m?),

find the total charge contained in the region.

Solution We have

3x 1078
p= ———pg—cos* ¢,
0= fpdv.

The given conditions of the problem obviously point to the use of spherical coordi-
nates. Using the expression for dv in Eq. (2-68), we perform a triple integration:

0 = fznf fo 2> HR? sin 0dR dOd¢.

Two things are of importance here. First, since p is given in units of coulombs per
cubic meter, the limits of integration for R must be converted to meters. Second, the
full range of integration for 6 is from 0 to = radians, not from 0 to 2z radians. A
little reflection will convince us that a half-circle (not a full-circle) rotated about the
z-axis through 2n radians (¢ from 0 to 27) generates a sphere. We have

—3 x 10~ fznf foos—l—cos ¢ sin 0dR dOd¢

27 L . 2
-3 x 10~ f f (_6_(-)_5-'-002) sin 0 dO cos” ¢ do

Q

_ 2
— , , " cos ddo
. 2%
— _18x10-5(2 422N _18n (w0
2 4 0 N
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2-5 Integrals Containing Vector Functions

In electromagnetics work we have occasion to encounter integrals that contain vector
functions such as

L F dv, (2-78)
- Vde, (2-79)
_F-ae, (2—80)

A - ds. (2-81)

The volume integral in (2—-78) can be evaluated as the sum of three scalar integrals
by first resolving the vector F into its three components in the appropriate coordinate
system. If dv denotes a differential volume, then (2—78) is actually a shorthand way
of representing a triple integral over three dimensions.

In the second integral, in (2—79), V is a scalar function of space, d¢€ represents
a differential increment of length, and C is the path of integration. If the integration
1s to be carried out from a point P, to another point P,, we write {2 V dé. If the

Integration is to be evaluated around a closed path C, we denote it by $c V dé. In
Cartesian coordinates, (2—79) can be written as

fc Vdé = fc Vix, y,z)[a,dx + a,dy + a,dz], (2-82)

In view of Eq. (2—-44). Since the Cartesian unit vectors are constant in both magni-
tude and direction, they can be taken out of the integral sign, and Eq. (2—-82) becomes

fc Vdé =a, fc V(x,y,z)dx + a, fc Vix, y, z)dy + a, fc Vix, y, z)dz. (2-83)

The three integrals on the right-hand side of Eq. (2-83) are ordinary scalar integrals:
they can be evaluated for a given V(x, y, z) around a path C.

mmmum EXAMPLE 2-13  Evaluate the integral (g r* dr, where r* = x2 + y?, from the origin
to the point P(1, 1): (a) along the direct path OP, (b) along the path OP,P, and (c)
along the path OP,P in Fig. 2-20.

Solution

a) Along the direct path OP:

fP rédr = a_ fﬁ rédr = a,_—z——\/-—z-
0 3

0
22
3

(a, cos 45° + a, sin 45°)

—a 2 2
= a,3 + as3.
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P(1,1)

x . FIGURE 2-20
Illustrating Example 2-13.

b) Along the path OP,P:
P P
fo (x* + y’)dr=a, |_

1 1
= a,3)" |O + a,(3x” + x)l0

y*dy +a, | (x*+ 1)dx

=a,3 +a,3.
¢c) Along the path OP,P:
P P> P
fo (x2 + y%)dr = axf x*dx + a, fpz (1 + y?)dy

O
— l31 +L31
= A3 O+ay(y 3 )O
— aq 1l 4
—ax3+ay3.

Obviously, the value of the integral depends on the path of integration, since the
results in parts (a), (b), and (c) are all different. -

The integrals in (2—-80) and (2-81) are mathematically of the same form; they
both lead to a scalar result. The expression in (2—80) is a line integral, in which the
integrand represents the component of the vector F along the path of integration.
This type of scalar line integral is of considerable importance in both physics and
electromagnetics. (If F is a force, the integral is the work done by the force in moving
an object from an initial point P, to a final point P, along a specified path C; if F
is replaced by E, the electric field intensity, then the integral represents the work
done by the electric field in moving a unit charge from P, to P,.) We will encounter
it again later in this chapter and in many other parts of this book.

msmsm EXAMPLE 2-14 Given F = a,xy — a 2x, evaluate the scalar line integral
[P F-ae
A

along the quarter-circle shown in Fig. 2-21.
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Solution  We shall solve this problem in two ways: first in Cartesian coordinates,
then 1n cylindrical coordinates.

a) In Cartesian coordinates. From the given F and the expression for d€ in Eq. (2—44)
we have

F-df =xydx — 2xdy.
The equation of the quarter-circle is x* + y* =9 (0 < x, y < 3). Therefore,

LBF'dé’ = f: x\/§—— x? dx —ZJ:' V9 — y*dy

1 0 y 3
= — (9 —x*)* —|yvJ9—py* +9sin" 12
3 3 Jo

= -—9(1 +-’-25)

b) In cylindrical coordinates. Here we first transform F into cylindrical coordinates.
Inverting Eq. (2-61), we have

3

A cos ¢ —sin ¢ 071 A,
Ay | = |sin ¢ cosgp 0 A,
A, 0 0 1 A, (2-84)
COS @ sin ¢ 0] A,
= | —sin ¢ cosp  Off A4,
0 0 1| A,
With the given F, Eq. (2-84) gives
F, COS @ sin ¢ 0 Xy
Fy| =|—sin¢ COS ¢ 0]l —2x1|,
F, 0 0 1 0

which leads to
F =a,(xycos ¢ — 2xsin ¢) — a,(xy sin ¢ + 2x cos ¢).

For the present problem the path of integration is along a quarter-circle of a
radius 3. There is no change in r or z along the path (dr = 0 and dz = 0); hence

¢ FIGURE 2-21

* ' Path for line integral (Example 2-14).
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Eq. (2—52) simplifies to
d€ = a,3d¢
and
F-:dé = —3(xysin ¢ + 2x cos ¢)do.

Because of the circular path, F, 1s immaterial to the present integration. Along
the path, x = 3 cos ¢ and y = 3 sin ¢. Therefore

LB F-dfé = f:/z — 3(9 sin® ¢ cos ¢ + 6 cos? @)d¢

= —9(sin® ¢ + ¢ + sin ¢ cos @) 2/2
T
= —9[ 1+ —
+ 5 |
which is the same as before. —

In this particular example, F is given in Cartesian coordinates, and the path is
circular. There 1s no compelling reason to solve the problem in one or the other co-
ordinates. We have shown the conversion of vectors and the procedure of solution
in both coordinates.

The expression in (2-81), |5 A - ds, is a surface integral. It is actually a double
integral over two dimensions; but it is written with a single integral sign for simplicity.
The integral measures the flux of the vector field A flowing through the area §. In
the integral the vector differential surface element ds = a, ds has a magnitude ds and

a direction denoted by the unit vector a,. The conventions for the positive direction
of ds or a, are as follows:

1. If the surface of integration, S, is a closed surface enclosing a volume, then the
positive direction for a, is always in the outward direction from the volume. This
is illustrated in Fig. 2-22(a). We see that the positive direction of a, depends on

the location of ds. A small circle is added over the integral sign if the integration
is to be performed over an enclosed surface:

SESA-'ds=SESA°a,,dS.

(a) A closed surface. (b) An open surface. (c) A disk.

FIGURE 2-22
Illustrating the positive direction of a, in scalar surface integral.
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2. If § 1s an open surface, the positive direction for a, depends on the direction in
which the perimeter of the open surface is traversed. This is illustrated in Fig.
2-22(b), in which a cup-shaped surface (with no lid) is shown. We apply the right-
hand rule: If the fingers of the right hand follows the direction of travel around
the perimeter, then the thumb points in the direction of positive a,. Here again,
the positive direction of a, depends on the location of ds. A plane, such as the
disk 1n Fig. 2-22(c), is a special case of an open surface where a_ is a constant.

mmmmm EXAMPLE 2-15 Given F = a k,/r + a,k,z, evaluate the scalar surface integral

gﬁF-ds
S

over the surface of a closed cylinder about the z-axis specified by z = +3 and r = 2.

Solution The specified surface of integration S is that of a closed cylinder shown in
Fig. 2-23. The cylinder has three surfaces: the top face, the bottom face, and the side
wall. We write

9SSF°ds=-9SSF-a,,ds

=f F-a,ds + F-a,ds+ |
top bottom side

face face wall

F-a, ds,

where a, 1s the unit normal outward from the respective surfaces. The three integrals
on the right side can be evaluated separately.

a) Top face. z=3,a,=a,,
F * an — kzz — 3k2,
ds = rdrd¢ (from Eq. 2-53c);
F-a,ds = -fozn foz 3k,rdrde = 12nk,.

top
face

FIGURE 2-23
A cylindrical surface (Example 2-15).
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b) Bottom face. z= —3,a, = —a,_,
F ¢ an —_— _kzz — 3k2,
ds = rdrdd;

f F ¢ an dS — 127Ik2,
bottom

face

which is exactly the same as the integral over the top face.
c) Sidewall. r=2,a, = a_,

ki _ ky
K a, = j;_ —-'7579
ds =rd¢dz =2d¢dz (from Eq. 2-53a);
3 px
. F- a ds = f_3 ) k,dopdz = 12nk,.

wall

Therefore,
953 F - ds = 12nk, + 121k, + 127k,

— 12n(k1 + 2k2).

This surface integral gives the net outward flux of the vector F through the closed
cylindrical surface. —

In electromagnetics we have to deal with quantities that depend on both time and
position. Since three coordinate variables are involved in a three-dimensional space,
we expect to encounter scalar and vector fields that are functions of four varnables:
(t, u,, u,, u;). In general, the fields may change as any one of the four variables
changes. We now address the method for describing the space rate of change of a
scalar field at a given time. Partial derivatives with respect to the three space-
coordinate variables are involved, and, inasmuch as the rate of change may be difler-
ent in different directions, a vector is needed to define the space rate of change of a
scalar field at a given point and at a given time.

Let us consider a scalar function of space coordinates V(uy, u,, us), which may
represent, say, the temperature distribution in a building, the altitude of a moun-
tainous terrain, or the electric potential in a region. The magnitude of V, in general,
depends on the position of the point in space, but it may be constant along certain
lines or surfaces. Figure 2—24 shows two surfaces on which the magnitude of V is
constant and has the values V; and V, + dV, respectively, where dV indicates a small
change in V. We should note that constant-V surfaces need not coincide with any
of the surfaces that define a particular coordinate system. Point P, is on surface V;
P, is the corresponding point on surface V; + dV along the normal vector dn; and
P, is a point close to P, along another vector d€ # dn. For the same change dV 1n
V, the space rate of change, dV/d/, is obviously greatest along dn because dn is the
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FIGURE 2-24
Concerning gradient of a scalar.

shortest distance between the two surfaces.” Since the magnitude of dV/d¢ depends
on the direction of df, dV/d/ is a directional derivative. We define the vector that
represents both the magnitude and the direction of the maximum space rate of increase

of a scalar as the gradient of that scalar. We write

(2-85)

For brevity it 1s customary to employ the operator del, represented by the symbol
V and write VV 1n place of grad V. Thus,

(2-86)

We have assumed that dV 1s positive (an increase in V); if dV is negative (a decrease
in V from P, to P,), VV will be negative in the a, direction.
The directional derivative along dé€ is

dV B dVdn dV

— = —— — = —— COS 0
14 ;ilr: d/ dn 2-87)
=—a, a,=(VV)-a,.
dn

Equation (2—-87) states that the space rate of increase of V in the a, direction is equal
to the projection (the component) of the gradient of V in that direction. We can also

write Eq. (2-87) as
dV = (VV)- de, (2-88)

"In a more formal treatment, changes AV and AZ would be used, and the ratio AV/A¢ would become
the derivative dV/d¢ as A/ approaches zero. We avoid this formality in favor of simplicity.
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where d€ = a,d/. Now, dV in Eq. (2-88) i1s the total differential of V as a result of
a change 1n position (from P, to P, in Fig. 2-24); it can be expressed in terms of
the differential changes 1n coordinates:

oV oV oV
AV = oty + 5 dby + o

where d/,, d/,, and d/; are the components of the vector differential displacement
d€ 1n a chosen coordinate system. In terms of general orthogonal curvilinear coordi-
nates (uq, u,, U3), d€ is (from Eq. 2-31),

d¢ =a, d/, + a, d/l, + a,, d/;

dts, (2—89)

(2-90)
= a, (h, du,) + a,_(h, du,) + a,,(h; du,).
We can write dV in Eq. (2—-89) as the dot product of two vectors, as follows:
oV oV oV
dV =\a, — +a,, — +a, — | (a, d/, +a, df, + a,, df;)
0¢, d¢, 044 2-91)
= | a aV+a aV+a ad - df
C\Mat, Mo, ™oL, |
Comparing Eq. (2-91) with Eq. (2-88), we obtain
oV oV oV
V = _
\% a,. 57, + a,, o7, + a,, i (2-92)
or
oV oV oV
VIV = a + a + (2-93)

“2 b, Ou, s hyOu,

“''h. du,

Equation (2-93) 1s a useful formula for computing the gradient of a scalar, when the
scalar 1s given as a function of space coordinates.
In Cartesian coordinates, (u,, u,, u3) = (x, y, z) and h, = h, = h, = 1, we have

oV oV oV
VV=a, —+a,—+a, — (2-94)

*ox Yoy  ° Oz

Or

0 0 0
VV = — —+a,—|V. 2-95
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