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Preface

This text is intended for a first-year graduate-level course on nonlinear systems or
control. It may also be used for self study or reference by engineers and applied
mathematicians. It is an outgrowth of my experience teaching the nonlinear systems
course at Michigan State University, East Lansing. Students taking this course have
had background in electrical engineering, mechanical engineering, or applied math-
ematics. The prerequisite for the course is a graduate-level course in linear systems,
taught at the level of the texts by Antsaklis and Michel [9], Chen [35], Kailath [94],
or Rugh [158]. The linear systems prerequisite allowed me not to worry about in-
troducing the concept of "state” and to refer freely to ”transfer functions,” ”state
transition matrices,” and other linear system concepts. The mathematical back-
ground is the usual level of calculus, differential equations, and matrix theory that
any graduate student in engineering or mathematics would have. In the Appendix,
I have collected a few mathematical facts that are used throughout the book.

I have written the text in such a way that the level of mathematical sophistication
increases as we advance from chapter to chapter. This is why the second chapter is
written in an elementary context. Actually, this chapter could be taught at senior,
or even junior, level courses without difficulty. This is also the reason I have split
the treatment of Lyapunov stability into two parts. In Sections 4.1 through 4.3,
I introduce the essence of Lyapunov stability for autonomous systems where I do
not have to worry about technicalities such as uniformity, class I functions, etc. In
Sections 4.4 through 4.6, I present Lyapunov stability in a more general setup that
accommodates nonautonomous systems and allows for a deeper look into advanced
aspects of the stability theory. The level of mathematical sophistication at the end
of Chapter 4 is the level to which I like to bring the students, so that they can
comfortably read the rest of the text.

There is yet a higher level of mathematical sophistication that is assumed in
writing the proofs in the Appendix. These proofs are not imtended for classroom
use. They are included to make the text on one hand, self contained, and, on the
other, to respond to the need or desire of some students to read such proofs, such as
students continuing on to conduct Ph.D. research into nonlinear systems or control
theory. Those students can continue to read the Appendix in a self-study manner.

This third edition has been written with the following goals in mind:

xiil
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1. To make the book (especially the early chapters) more accessible to first-year

graduate students. As an example of the changes made toward that end, note
the change in Chapter 3: All the material on mathematical background, the
contraction mapping theorem, and the proof of the existence and uniqueness
theorem have been moved to the Appendix. Several parts of the books have
been rewritten to improve readability.

. To reorganize the book in such a way that makes it easier to structure nonlin-

ear systems or control courses around it. In the new organization, the book
has four parts, as shown in the flow chart. A course on nonlinear systems anal-
ysis will cover material from Parts 1, 2, and 3, while a course on nonlinear
control will cover material from Parts 1, 2, and 4.

Part 1
Basic Analysis

Chapters 1 to 4

Part 2
Analysis of Feedback Systems
Chapters Sto 7

Part 3 Part 4
Advanced Analysis Nonlinear Feedback Control
Chapters 8 to 11 Chapters 12 to 14

3. To update the material of the book to include topics or results that have

proven to be useful in nonlinear control design in recent years. New to the
third addition are the: expanded treatment of passivity and passivity-based
control, integral control, sliding mode control, and high-gain observers. More-
over, bifurcation is introduced in the context of second-order systems. On the
technical side, the reader will find Kurzweil’s converse Lyapunov theorem,
nonlocal results in Chapters 10 and 11, and new results on integral control
and gain scheduling.
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4. To update the exercises. More than 170 new exercises have been included.

I am indebted to many colleagues, students, and readers, who helped me in
writing the book, through discussions, suggestions, corrections, constructive com-
ments, and feedback on the first two editions. There are, probably, more than 100
names that I would like to acknowledge, but my fear of inadvertently omitting some
names, leads to me settle for a big thank you to each one of you.

I am grateful to Michigan State University for providing an environment that al-
lowed me to write this book, and to the National Science Foundation for supporting
my research on nonlinear feedback control.

The book was typeset using MTEX. All computations, including numerical so-
lution of differential equations, were done using MATLAB and SIMULINK. The
figures were generated using MATLAB or the graphics tool of ETEX.

As much as I wish the book to be free of errors, I know this will not be the case.
Therefore, reports of errors, sent electronically to

khalil@msu.edu

will be greatly appreciated. An up-to-date errata list will be available at the home-
page of the book:

www.egr.msu.edu/ “khalil/NonlinearSystems

The homepage also will contain a list of changes from the second edition, additional
exercises, and other useful material.

HASSAN KHALIL
East Lansing, Michigan
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Chapter 1

Introduction

When engineers analyze and design nonlinear dynamical systems in electrical cir-
cuits, mechanical systems, control systems, and other engineering disciplines, they
need to absorb and digest a wide range of nonlinear analysis tools. In this book, we
introduce some of the these tools. In particular, we present tools for the stability
analysis of nonlinear systems, with emphasis on Lyapunov’s method. We give spe-
cial attention to the stability of feedback systems from input—output and passivity
perspectives. We present tools for the detection and analysis of “free” oscillations,
including the describing function method. We introduce the asymptotic tools of
perturbation theory, including averaging and singular perturbations. Finally, we
introduce nonlinear feedback control tools, including linearization, gain scheduling,
integral control, feedback linearization, sliding mode control, Lyapunov redesign,
backstepping, passivity-based control, and high-gain observers.

1.1 Nonlinear Models and Nonlinear Phenomena

We will deal with dynamical systems that are modeled by a finite number of coupled
first-order ordinary differential equations

21 = filt,z1,. ., Tn,U,. .., Up)
i:2 = f2(tax17~"7x‘nau17'-'aup)
.’in = fn(t,:cl,...,xn,ul,...,up)

where &; denotes the derivative of z; with respect to the time variable t and uj, uso,
..., Up are specified input variables. We call the variables z;, zg, ..., Zn the state
variables. They represent the memory that the dynamical system has of its past.

1



2 CHAPTER 1. INTRODUCTION

We usually use vector notation to write these equations in a compact form. Define

Ty [ At z,u) ]
T
Z2 f2<tvx7u)
u2
T = S, u= , f(t,z,u) =
L Up |
| Tn | | fa(tiz,uw) |

and rewrite the n first-order differential equations as one n-dimensional first-order
vector differential equation

T = f(t,z,u) (1.1)

We call (1.1) the state equation and refer to = as the state and u as the input.
Sometimes, another equation

y = h(t,z,u) (1.2)

is associated with (1.1), thereby defining a g-dimensional output vector y that com-
prises variables of particular interest in the analysis of the dynamical system, (e.g.,
variables that can be physically measured or variables that are required to behave in
a specified manner). We call (1.2) the output equation and refer to equations (1.1)
and (1.2) together as the state-space model, or simply the state model. Mathemat-
ical models of finite-dimensional physical systems do not always come in the form
of a state model. However, more often than not, we can model physical systems
in this form by carefully choosing the state variables. Examples and exercises that
will appear later in the chapter will demonstrate the versatility of the state model.

A good part of our analysis in this book will deal with the state equation, many
times without explicit presence of an input u, that is, the so-called unforced state
equation

&= f(t,z) (1.3)

Working with an unforced state equation does not necessarily mean that the input
to the system is zero. It could be that the input has been specified as a given
function of time, u = 7(t), a given feedback function of the state, u = (z), or
both, u = (¢, z). Substituting v = « in (1.1) eliminates u and yields an unforced
state equation.
A gpecial case of (1.3) arises when the function f does not depend explicitly on
t; that is,
&= f(z) (1.4)

in which case the system is said to be autonomous or time invariant. The behavior
of an autonomous system is invariant to shifts in the time origin, since changing the
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time variable from ¢ to 7 = t — a does not change the right-hand side of the state
equation. If the system is not autonomous, then it is called nonautonomous or time
varying.

An important concept in dealing with the state equation is the concept of an
equilibrium point. A point z = z* in the state space is said to be an equilibrium
point of (1.3) if it has the property that whenever the state of the system starts at
z*, it will remain at z* for all future time. For the autonomous system (1.4), the
equilibrium points are the real roots of the equation

f(z)=0

An equilibrium point could be isolated; that is, there are no other equilibrium points
in its vicinity, or there could be a continuum of equilibrium points.
For linear systems, the state model (1.1)—(1.2) takes the special form

Il

b

Y

A(t)z + B(t)u
C(t)x + D(t)u

i

We assume that the reader is familiar with the powerful analysis tools for linear
systems, founded on the basis of the superposition principle. As we move from linear
to nonlinear systems, we are faced with a more difficult situation. The superposi-
tion principle does not hold any longer, and analysis tools involve more advanced
mathematics. Because of the powerful tools we know for linear systems, the first
step in analyzing a nonlinear system is usually to linearize it, if possible, about
some nominal operating point and analyze the resulting linear model. This is a
common practice in engineering, and it is a useful one. There is no question that,
whenever possible, we should make use of linearization to learn as much as we can
about the behavior of a nonlinear system. However, linearization alone will not
be sufficient; we must develop tools for the analysis of nonlinear systems. There
are two basic limitations of linearization. First, since linearization is an approxi-
mation in the neighborhood of an operating point, it can only predict the “local”
behavior of the nonlinear system in the vicinity of that point. It cannot predict the
“nonlocal” behavior far from the operating point and certainly not the “global” be-
havior throughout the state space. Second, the dynamics of a nonlinear system are
much richer than the dynamics of a linear system. There are “essentially nonlinear
phenomena” that can take place only in the presence of nonlinearity; hence, they
cannot be described or predicted by linear models. The following are examples of
essentially nonlinear phenomena:

e Finite escape time. The state of an unstable linear system goes to infinity
as time approaches infinity; a nonlinear system’s state, however, can go to
infinity in finite time.

e Multiple isolated equilibria. A linear system can have only one isolated equi-
librium point; thus, it can have only one steady-state operating point that
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attracts the state of the system irrespective of the initial state. A nonlinear
system can have more than one isolated equilibrium point. The state may
converge to one of several steady-state operating points, depending on the
initial state of the system.

e Limit cycles. For a linear time-invariant system to oscillate, it must have
a pair of eigenvalues on the imaginary axis, which is a nonrobust condition
that is almost impossible to maintain in the presence of perturbations. Even
if we do, the amplitude of oscillation will be dependent on the initial state.
In real life, stable oscillation must be produced by nonlinear systems. There
are nonlinear systems that can go into an oscillation of fixed amplitude and
frequency, irrespective of the initial state. This type of oscillation is known
as a limit cycle. :

e Subharmonic, harmonic, or almost-periodic oscillations. A stable linear sys-
tem under a periodic input produces an output of the same frequency. A
nonlinear system under periodic excitation can oscillate with frequencies that
are submultiples or multiples of the input frequency. It may even generate
an almost-periodic oscillation, an example is the sum of periodic oscillations
with frequencies that are not multiples of each other.

e Chaos. A nonlinear system can have a more complicated steady-state behavior
that is not equilibrium, periodic oscillation, or almost-periodic oscillation.
Such behavior is usually referred to as chaos. Some of these chaotic motions
exhibit randomness, despite the deterministic nature of the system.

e Multiple modes of behavior. It is not unusual for two or more modes of be-
havior to be exhibited by the same nonlinear system. An unforced system
may have more than one limit cycle. A forced system with periodic excita-
tion may exhibit harmonic, subharmonic, or more complicated steady-state
behavior, depending upon the amplitude and frequency of the input. It may
even exhibit a discontinuous jump in the mode of behavior as the amplitude
or frequency of the excitation is smoothly changed.

In this book, we will encounter only the first three of these phenomena.! Multiple
equilibria and limit cycles will be introduced in the next chapter, as we examine
second-order autonomous systems, while the phenomenon of finite escape time will
be introduced in Chapter 3.

ITo read about forced oscillation, chaos, bifurcation, and other important topics, the reader
may consult [70], [74], [187], and [207].
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mg

Figure 1.1: Pendulum.

1.2 Examples

1.2.1 Pendulum Equation

Consider the simple pendulum shown in Figure 1.1, where ! denotes the length of
the rod and m denotes the mass of the bob. Assume the rod is rigid and has zero
mass. Let 6 denote the angle subtended by the rod and the vertical axis through
the pivot point. The pendulum is free to swing in the vertical plane. The bob of
the pendulum moves in a circle of radius I. To write the equation of motion of
the pendulum, let us identify the forces acting on the bob. There is a downward
gravitational force equal to mg, where g is the acceleration due to gravity. There
is also a frictional force resisting the motion, which we assume to be proportional
to the speed of the bob with a coefficient of friction k. Using Newton’s second law
of motion, we can write the equation of motion in the tangential direction as

mlf = ~mgsin 6 — kif

Writing the equation of motion in the tangential direction has the advantage that
the rod tension, which is in the normal direction, does not appear in the equation.
We could have arrived at the same equation by writing the moment equation about
the pivot point. To obtain a state model for the pendulum, let us take the state
variables as 1 = 6 and =, = 6. Then, the state equations are

i:l = T2 (15)

k
1'}2 = - g sinzy — —Ty (16)
m

l

To find the equilibrium points, we set £1; = &3 = 0 and solve for z; and z3:
0 = o
k
0 = - gsin:cl — —9
{ m
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The equilibrium points are located at (nw,0), for n = 0,+1,42,.... From the phys-
ical description of the pendulum, it is clear that the pendulum has only two equi-
librium positions corresponding to the equilibrium points (0,0) and (7,0). Other
equilibrium points are repetitions of these two positions, which correspond to the
number of full swings the pendulum would make before it rests at one of the two
equilibrium positions. For example, if the pendulum makes m complete 360° revolu-
tions before it rests at the downward vertical position, then, mathematically, we say
that the pendulum approaches the equilibrium point {2m,0). In our investigation
of the pendulum, we will limit our attention to the two “nontrivial” equilibrium
points at (0,0) and (m,0). Physically, we can see that these two equilibrium posi-
tions are quite distinct from each other. While the pendulum can indeed rest at the
(0, 0) equilibrium point, it can hardly maintain rest at the (7, 0) equilibrium point
because infinitesimally small disturbance from that equilibrium will take the pen-
dulum away. The difference between the two equilibrium points is in their stability
properties, a topic we will study in some depth.

Sometimes it is instructive to consider a version of the pendulum equation where
the frictional resistance is neglected by setting k = 0. The resulting system

Zil'l = X9 (17)

.’i:2 = - %Sinml (18)

is conservative in the sense that if the pendulum is given an initial push, it will
keep oscillating forever with a nondissipative energy exchange between kinetic and
potential energies. This, of course, is not realistic, but gives insight into the behavior
of the pendulum. It may also help in finding approximate solutions of the pendulum
equation when the friction coefficient k is small. Another version of the pendulum
equation arises if we can apply a torque T to the pendulum. This torque may be
viewed as a control input in the equation

Ty = &2 (1.9)
. g . k 1
@2 = - ysing - —m -+ mT (1.10)

Interestingly enough, several unrelated physical systems are modeled by equations
similar to the pendulum equation. Such examples are the model of a synchronous
generator connected to an infinite bus (Exercise 1.8), the model of a Josephson
Junction circuit (Exercise 1.9), and the model of a phase-locked loop (Exercise 1.11).
Consequently, the pendulum equation is of great practical importance.

1.2.2  Tunnel-Diode Circuit

Consider the tunnel-diode circuit shown in Figure 1.2,2 where the tunnel diode is
characterized by ir = h(vg). The energy-storing elements in this circuit are the

This figure, as well as Figures 1.3 and 1.7, are taken from [39].
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i L © i,mA
+ v —
Yic “R
R
- +
voe=—=C iZ”R
E—T— - -
0 05 1wV
(@) (b)

Figure 1.2: (a) Tunnel-diode circuit; (b) Tunnel-diode vg—ig characteristic.

capacitor C and the inductor L. Assuming they are linear and time invariant, we
can model them by the equations

. Ldve _
1C—C~%— and vL——Ldt

where ¢ and v are the current through and the voltage across an element, with the
subscript specifying the element. To write a state model for the system, let us take
7 = ve and zo = iy, as the state variables and u = E as a constant input. To write
the state equation for z1, we need to express ic as a function of the state variables
z1,72 and the input u. Using Kirchhoff’s current law, we can write an equation
that the algebraic sum of all currents leaving node (©) is equal to zero:

ic+ip—ir =20
Therefore,
o= —h(.’l?l) + Zg

Similarly, we need to express v, as a function of the state variables x1, z2 and the
input u. Using Kirchhoff’s voltage law, we can write an equation that the algebraic
sum of all voltages across elements in the left loop is equal to zero:

vg—~E+ Rip, +vp =0

Hence,
v = —x1 — Rxo +u

‘We can now write the state model for the circuit as
Ty = —= [~h(x1) -+ .’Eg] (1.11)

iy = = |-z~ Ry +1 (1.12)

== Q-
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Figure 1.3: Equilibrium points of the tunnel-diode circuit.

The equilibrium points of the system are determined by setting &; = &2 = 0 and
solving for z; and zs:

—h(z1) + z9
0 = —x1—Rxs+u

Therefore, the equilibrium points correspond to the roots of the equation

h(zy) = —g - %xl

Figure 1.3 shows graphically that, for certain values of E and R, this equation has
three isolated roots which correspond to three isolated equilibrium points of the
system. The number of equilibrium points might change as the values of E and R
change. For example, if we increase E for the same value of R, we will reach a point
beyond which only the point @3 will exist. On the other hand, if we decrease E
for the same value of R, we will end up with the point @)1 as the only equilibrium.
Suppose that we are in the multiple equilibria situation, which of these equilibrium
points can we observe in an experimental setup of this circuit? The answer depends
on the stability properties of the equilibrium points. We will come back to this
example in Chapter 2 and answer the question.

1.2.3 Mass-Spring System

In the mass—spring mechanical system, shown in Figure 1.4, we consider a mass m
sliding on a horizontal surface and attached to a vertical surface through a spring.
The mass is subjected to an external force F. We define y as the displacement from
a reference position and write Newton's law of motion

mij+ Fy + Fop = F
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Figure 1.4: Mass-spring mechanical system.

where Fy is a resistive force due to friction and Fgp is the restoring force of the
spring. We assume that Fyp, is a function only of the displacement y and write it as
Fgp = g(y). We assume also that the reference position has been chosen such that
9(0) = 0. The external force F' is at our disposal. Depending upon F', Fy, and g,
several interesting autonomous and nonautonomous second-order models arise.

For a relatively small displacement, the restoring force of the spring can be
modeled as a linear function g(y) = ky, where k is the spring constant. For a
large displacement, however, the restoring force may depend nonlinearly on y. For
example, the function

9(y) = k(1 —a®y®)y, lay| <1

models the so-called softening spring, where, beyond a certain displacement, a large
displacement increment produces a small force increment. On the other hand, the
function

9(y) = k(1 +a?)y
models the so-called hardening spring, where, beyond a certain displacement, a
small displacement increment produces a large force increment.

The resistive force Fy may have components due to static, Coulomb, and viscous
friction. When the mass is at rest, there is a static friction force Fy that acts parallel
to the surface and is limited to £usmg, where 0 < pg < 1 is the static friction
coefficient. This force takes whatever value, between its limits, to keep the mass at
rest. For motion to begin, there must be a force acting on the mass to overcome
the resistance to motion caused by static friction. In the absence of an external
force, F' = 0, the static friction force will balance the restoring force of the spring
and maintain equilibrium for |g(y)} < psmg. Once motion has started, the resistive
force Fy, which acts in the direction opposite to motion, is modeled as a function
of the sliding velocity v = g. The resistive force due to Coulomb friction F. has a
constant magnitude prmg, where py is the kinetic friction coefficient, that is,

Fo_{ —Hemg, for v<0
¢ urpmg, for v>0

As the mass moves in a viscous medium, such as air or lubricant, there will be
a frictional force due to viscosity. This force is usually modeled as a nonlinear
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(a) (b)

/ /\
(© (d)

Figure 1.5: Examples of friction models. (a) Coulomb friction; (b) Coulomb plus linear
viscous friction; (c) static, Coulomb, and linear viscous friction; (d) static, Coulomb,
and linear viscous friction—Stribeck effect.

function of the velocity; that is, F, = h(v), where h(0) = 0. For small velocity,
we can assume that F, = cv. Figures 1.5(a) and (b) show examples of friction
models for Coulomb friction and Coulombs plus linear viscous friction, respectively.
Figure 1.5(c) shows an example where the static friction is higher than the level of
Coulomb friction, while Figure 1.5(d) shows a similar situation, but with the force
decreasing continuously with increasing velocity, the so-called Stribeck effect.

The combination of a hardening spring, linear viscous friction, and a periodic
external force F' = A coswt results in the Duffing’s equation

mi + cj + ky + ka®y® = Acoswt (1.13)
which is a classical example in the study of periodic excitation of nonlinear systems.
The combination of a linear spring, static friction, Coulomb friction, linear vis-

cous friction, and zero external force results in

mg + ky +cy +n(y,9) =0
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where

prmg sign(y), for [y| >0
n(y:9) =4 —ky, for §=0 and |y| < psmg/k
—psmg sign(y), for =0 and |y| > pusmg/k

The value of 7(y, y) for y = 0 and |y} < psmg/k is obtained from the equilibrium
condition § = ¢ = 0. With z; = y and z5 = ¢, the state model is

.’tl = X9 (1.14)
Ty = - —L'xl — Loy l77(9517332) (1.15)
m m m

Let us note two features of this state model. First, it has an equilibrium set,
rather than isolated equilibrium points. Second, the right-hand side function is
a discontinuous function of the state. The discontinuity is a consequence of the
idealization we adopted in modeling friction. One would expect the physical friction
to change from its static friction mode into its sliding friction mode in a smooth way,
not abruptly as our idealization suggests.® The discontinuous idealization, however,
simplifies the analysis. For example, when z5 > 0, we can model the system by the
linear model

fi:l:(Ez

k c

- —ZT1— —T2— [k
m m Heg

i

Ty
Similarly, when zo < 0, we can model it by the linear model

1 = Io

k

. c
Iy = — —Ty— —T3+ Urg
m m

Thus, in each region, we can predict the behavior of the system via linear analysis:
This is an example of the so-called piecewise linear analysis, where a system is
represented by linear models in various regions of the state space, certain coefficients
changing from region to region.

1.2.4 Negative-Resistance Oscillator

Figure 1.6 shows the basic circuit structure of an important class of electronic
oscillators. The inductor and capacitor are assumed to be linear, time invariant
and passive, that is, L > 0 and C > 0. The resistive element is an active circuit
characterized by the v—i characteristic ¢ = h(v), shown in the figure. The function

3The smooth transition from static to sliding friction can be captured by dynamic friction
models; see, for example, [12] and [144].
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i=h(v)

Resistive

Element v
ic i

() ®)

Figure 1.6: (a) Basic oscillator circuit; (b) Typical driving-point characteristic.

i
v %
jzozv =rosv

Figure 1.7: A negative-resistance twin-tunnel-diode circuit.

+o0

h(-) satisfies the conditions
h(0) =0, A'(0)<0

h{v) — oo as v — oo, and h(v) — —oo as v — —o0

where h'(v) is the first derivative of h(v) with respect to v. Such v— characteristic
can be realized, for example, by the twin-tunnel-diode circuit of Figure 1.7, with
the tunnel-diode characteristic shown in Figure 1.2. Using Kirchhoff’s current law,
we can write the equation

ic+ip+1=0
Hence,

dv 1 [*
Cﬁf +7 /7001)(5) ds+h(v) =0

Differentiating once with respect to t and multiplying through by L, we obtain

d2v dv
A L% =0
CLgm Tv+ IR @5



1.2. EXAMPLES 13

The foregoing equation can be written in a form that coincides with some well-
known equations in nonlinear systems theory. To do that, let us change the time
variable from t to 7 = t/v/CL. The derivatives of v with respect to ¢ and 7 are
related by

dv dv d?v d?v
— =VCL— d — =CL—
ar = VO ad g =Clog
Denoting the derivative of v with respect to 7 by ¥, we can rewrite the circuit
equation as
J4+eh(Wv+v=0

where € = 1/L/C. This equation is a special case of Liénard’s equation
U+ fv)o+gv)=0 (1.16)
‘When
h(v) = —v+ $0°

the circuit equation takes the form
v—e(l—v*)o+v=0 (1.17)

which is known as the Van der Pol equation. This equation, which was used by
Van der Pol to study oscillations in vacuum tube circuits, is a fundamental example
in nonlinear oscillation theory. It possesses a periodic solution that attracts every
other solution except the zero solution at the unique equilibrium point v = 9 = 0.
To write a state model for the circuit, let us take z; = v and x5 = v to obtain

i‘]_ = Iy (118)
sz = —T1 — Eh’(.’l)1)$2 (119)
Note that an alternate state model could have been obtained by choosing the state

variables as the voltage across the capacitor and the current through the inductor.
Denoting the state variables by zy = ¢y, and z3 = v, the state model is given by

d2,’1 _ 12

a L7

ng 1

2 - o h

7 ol hlz2)]

Since the first state model has been written with respect to the time variable 7 =
t/vCL, let us write this model with respect to 7.

1
~z (1.20)

—€lz1 + h(z2)] (1.21)

il

Z1

i

22
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Figure 1.8: Hopfield neural network model.

The state models in = and z look different, but they are equivalent representations
of the system. This equivalence can be seen by noting that these models can be
obtained from each other by a change of coordinates

z =T(z)

Since we have chosen both z and z in terms of the physical variables of the circuit,
it is not hard to find the map T'(-). We have

Xy = UV = 29

% = \/O—% = \/—g[—i);—-h(vc)] = e[~z — h(22)]

il

T2

Thus,
2 =T(z) = [ ~h(zy) = (1/e)z ]

T
and the inverse mapping is

r=T"1(z) = [ 2 }

—ezy — eh(zs)

1.2.5 Artificial Neural Network

Artificial neural networks, in analogy to biological structures, take advantage of
distributed information processing and their inherent potential for parallel compu-
tation. Figure 1.8 shows an electric circuit that implements one model of neural
networks, known as the Hopfield model. The circuit is based on an RC network con-
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Figure 1.9: A typical input—output characteristic for the amplifiers in Hopfield network.

necting amplifiers. The input—output characteristics of the amplifiers are given by
v; = g;(u;), where u; and v; are the input and output voltages of the ith amplifier.
The function g;(*) : R — (—Var, Vi) is a sigmoid function with asymptotes —Vas
and Vyz, as shown in Figure 1.9. It is continuously differentiable, odd, monoton-
ically increasing, and g;(u;) = 0 if and only if u; = 0. Examples of possible g;(-)

are
_ 2V 1 AT
gi(us) = - tan <2VM> , A>0

and
Aug e-*Aui

e
gi(us) = Vi

where A determines the slope of g;(u;) at u; = 0. Such sigmoid input-output char-
acteristics can be realized by using operational amplifiers. For each amplifier, the
circuit contains an inverting amplifier whose output is —v;, which permits a choice of
the sign of the amplifier output that is connected to a given input line. The outputs
v; and —~v; are usually provided by two output terminals of the same operational
amplifier circuit. The pair of nonlinear amplifiers is referred to as a “neuron.” The
circuit also contains an RC section at the input of each amplifier. The capacitance
C; > 0 and the resistance p; > 0 represent the total shunt capacitance and shunt
resistance at the ith amplifier input. Writing Kirchhoff’s current law at the input
node of the ith amplifier, we obtain

C'L—Jt—" = ;E;(iuj ’Ui) _ ;;ui +Iz = }],"TijUj - Eul -l'I.L

where
1 1 1

+
R, pi F Rij

T;; is a signed conductance whose magnitude is 1/R;;, and whose sign is determined
by the choice of the positive or negative output of the jth amplifier, and I; is &
constant input current. For a circuit containing n amplifiers, the motion is described
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by n first-order differential equations. To write a state model for the circuit, let us
choose the state variables as x; = v; for ¢ =1,2,...,n. Then

. dg; . dg; 1
€Ty = —C—l—’l%z:(uz) X U; = a%—(uz) X -CT, E Tij:cj - —-"ui + I.L
By defining

ha() = 22 (uy)

= dui

we can write the state equation as

ui=g; H(z:)

1 1
;= ahz(wz) Zj:Tijfcj - Egi Haw) + L (1.22)

fori=1,2,...,n. Note that, due to the sigmoid characteristic of g,(-), the function
hi(-) satisfies
hi(x:) >0, VY x; € (—Var, Var)
The equilibrium points of the system are the roots of the n simultaneous equations
1 )
0= }J:Tijwj - Egi l(wz) +I;, 1<i<n

They are determined by the sigmoid characteristics, the linear resistive connection,
and the input currents. We can obtain an equivalent state model by choosing the
state variables as u; for i =1,2,...,n.

Stability analysis of this neural network depends critically on whether the sym-
metry condition T3; = Tj; is satisfied. An example of the analysis when Tj; = Tj;
is given in Section 4.2, while an example when Tj; # T}; is given in Section 9.5.

1.2.6 Adaptive Control
Consider a first-order linear system described by the model
Up = Gplp + kpu

where u is the control input and vy, is the measured output. We refer to this system
as the plant. Suppose that it is desirable to obtain a closed-loop system whose
input~output behavior is described by the reference model

Ym = CmYm + KmT

where r is the reference input and the model has been chosen such that yy,(t)

represents the desired output of the closed-loop system. This goal can be achieved
by the linear feedback control

u(t) = 077 (t) + O3y,(1)
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provided that the plant parameters a,, and k,, are known, k, # 0, and the controller
parameters 7 and 65 are chosen as

k Ay — Q
m d 9* —_ ™ yel

When a, and k, are unknown, we may consider the controller

u(t) = 01(6)r(t) + O2(t)y, ()

where the time-varying gains 61 (¢) and 62(t) are adjusted on-line by using the avail-
able data, namely, 7(7), ym(7), yp(7), and u(r) for 7 < ¢. The adaptation should
be such that 61(t) and 65(t) evolve to their nominal values 65 and 8%. The adapta-
tion rule is chosen based on stability considerations. One such rule, known as the
gradient algorithm,? is to use

o; =

b = —7(Yp—ym)r
02 = —v(Yp — Ym)Vp

where -y is a positive constant that determines the speed of adaptation. This adap-
tive control law assumes that the sign of kj is known and, without loss of generality,
takes it to be positive. To write a state model that describes the closed-loop system
under the adaptive control law, it is more convenient to define the output error e,
and the parameter errors ¢; and ¢ as

€0 =Yp— Ym, $1="01—0], and ¢y =0 —0;
By using the definition of 6] and 83, the reference model can be rewritten as
Um = apYm + kp(017 + 03ym)
On the other hand, the plant output y, satisfies the equation
Up = apYp + kp(017 + O2yp)
Subtracting the above two equations, we obtain the error equation

o = apeot+ky(fr — O7)r + kp(B2p — O5ym)
= apeo + k(b — 07)7 + kp(b2yp — O5ym + O5yp — 05yp)
(ap + kpb3)eo + kp(B1 — 07)r -+ kp(02 — 603)yp

H

Thus, the closed-loop system is described by the nonlinear, nonautonomous, third-
order state model

€o = am€o + kpd17(t) + kpdales + ym(t))] (1.23)
q:bl = "Yeor(t) (1'24)
b2 = —veole0 + Ym ()] (1.25)

4This adaptation rule will be justified in Section 8.3.
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where we used &;(t) = 6;(t) and wrote r(t) and y,,(t) as explicit functions of time
to emphasize the nonautonomous nature of the system. The signals 7(t) and ynm(t)
are the external driving inputs of the closed-loop system.

A simpler version of this model arises if we know k. In this case, we can take
01 = 67 and only 0 needs to be adjusted on-line. The closed-loop model reduces to

€ = QAm€e+ kp¢[eo + ym(t)] (126)
é —veoleo + Ym (t)] (1.27)

where we dropped the subscript from ¢o. If the goal of the control design is to
regulate the plant output y, to zero, we take r(t) = 0 (hence, y(t) = 0) and the
closed-loop model simplifies to the autonomous second-order model

I

€o

(@m + kp¢)eo
d) = 7€,

The equilibrium points of this system are determined by setting é, = qb = 0 to
obtain the algebraic equations

0 = (am+kpdles
= —e€

The system has equilibrium at e, = 0 for all values of ¢; that is, it has an equilibrium
set e, = 0. There are no isolated equilibrium points.

The particular adaptive control scheme described here is called direct model ref-
erence adaptive control. The term “model reference” stems from the fact that the
controller’s task is to match a given closed-loop reference model, while the term
“direct” is used to indicate that the controller parameters are adapted directly as
opposed, for example, to an adaptive control scheme that would estimate the plant
parameters a, and k, on-line and use their estimates to calculate the controller
parameters.> The adaptive control problem generates some interesting nonlinear
models that will be used to illustrate some of the stability and perturbation tech-
niques of this book.

1.2.7 Common Nonlinearities

In the foregoing examples, we saw some typical nonlinearities that arise in modeling
physical systems, such as nonlinear resistance, nonlinear friction, and sigmoid non-
linearities. In this section, we cover some other typical nonlinearities. Figure 1.10
shows four typical memoryless nonlinearities. They are called memoryless, zero
memory, or static because the output of the nonlinearity at any instant of time is

5For a comprehensive treatment of adaptive control, the reader may consult [5], [15], [87], [139],
or [168].
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Figure 1.10: Typical memoryless nonlinearities.

determined uniquely by its input at that instant; it does not depend on the history
of the input.
Figure 1.10(a) shows an ideal relay described by the signum function

1, fu>0
sgn(u) = 0, fu=0 (1.28)
-1, if u<0

Such nonlinear characteristic can model electromechanical relays, thyristor circuits,
and other switching devices.

Figure 1.10(b) shows an ideal saturation nonlinearity. Saturation character-
istics are common in all practical amplifiers (electronic, magnetic, pneumatic, or
hydraulic), motors, and other devices. They are also used, intentionally, as limiters
to restrict the range of a variable. We define the saturation function

_ u, if jul <1
sat(u) = { sgn(u), if Jul > 1 (1.29)

to represent a normalized saturation nonlinearity and generate the graph of Fig-
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(a) Saturation (b) Dead zone

Figure 1.11: Practical characteristics (dashed) of saturation and dead-zone nonlineari-
ties are approximated by piecewise linear characteristics (solid).

Yy
Ly

Figure 1.12: Relay with hysteresis.

ure 1.10(b) as k sat(u/d).

Figure 1.10(c) shows an ideal dead-zone nonlinearity. Such characteristic is
typical of valves and some amplifiers at low input signals. The piecewise linear
functions used in Figure 1.10(b) and (c) to represent saturation and dead-zone
characteristics are approximations of more realistic smooth functions, as shown in
Figure 1.11

Figure 1.10(d) shows a quantization nonlinearity, which is typical in analog-to-
digital conversion of signals.

Quite frequently, we encounter nonlinear elements whose input—output charac-
teristics have memory; that is, the output at any instant of time may depend on
the whole history of the input. Figures 1.12, 1.15(b), and 1.16 show three such
characteristics of the hysteresis type. The first of the three elements, Figure 1.12,
is a relay with hysteresis. For highly negative values of the input, the output will
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Figure 1.13: An operational amplifier circuit that realizes the relay with hysteresis
characteristic of Figure 1.12.

be at the lower level L_. As the input is increased, the output stays at L. until
the input reaches Sy. Increasing the input beyond S4, the output switches to the
higher level Ly and stays there for higher values of the input. Now, if we decrease
the input, the output stays at the higher level L until the input crosses the value
S_ at which point the output switches to the lower level L_ and stays there for
lower values of the input. Such input—output characteristic can be generated, for
example, by the operational amplifier circuit of Figure 1.13.% The circuit features
ideal operational amplifiers and ideal diodes. An ideal operational amplifier has the
voltage at its inverting (-) input equal to the voltage at its noninverting (+) input
and has zero input currents at both inputs. An ideal diode has the v—i characteristic
shown in Figure 1.14. When the input voltage u is highly negative, the diodes D;
and D3 will be on while Dy and D4 will be off.” Because the inverting inputs of
both amplifiers are at virtual ground, the currents in Rz and Ds will be zero and
the output of D3 will be at virtual ground. Therefore, the output voltage y will be
given by y = —(R3/R4)E. This situation will remain as long as the current in D,

8This circuit is taken from [204].

"To see why D3 is on when Dj is on, notice that when Dj is on, the voltage at the output
of A; will be Vy, the offset voltage of the diode. This will cause a current V;/Rs to flow in Rs
heading towards As. Since the input current to Ag is zero, the current in Rs must flow through
D3. In modeling the diodes, we neglect the offset voltage Vy; therefore, the currents in Ry and
D3 are neglected.
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on

off

Figure 1.14: v—i characteristic of an ideal diode.

is positive; that is,

As we increase the input u, the output y will stay at —(R3/R4)E until the input
reaches the value RgR¢E/R4R7. Beyond this value, the diodes D; and D3 will be
off while Dy and D4 will be on. Once again, because the inverting inputs of both
amplifiers are at virtual ground, the currents in Rs and Dy will be zero, and the
input of Dy will be at virtual ground. Therefore, the output y will be given by
y = (Ry/Ry)E. This situation will remain as long as the current in Ds is positive;
that is,
u RQE RstE

ZDZ:RE+“R1R7>O = u>— TRy

Thus, we obtain the input-output characteristic of Figure 1.12 with

_RE | _RE  _ RReE o RiReE
R, 7T R, T RiR; "7 "R4Rq

We will see in Example 2.1 that the tunnel-diode circuit of Section 1.2.2 produces
a similar characteristic when its input voltage is much slower than the dynamics of
the circuit.

Another type of hysteresis nonlinearity is the backlash characteristic shown in
Figure 1.15(b), which is common in gears. To illustrate backlash, the sketch of
Figure 1.15(a) shows a small gap between a pair of mating gears. Suppose that the
driven gear has a high friction to inertia ratio so that when the driving gear starts to
decelerate, the surfaces will remain in contact at L. The input-output characteristic
shown in Figure 1.15(b) depicts the angle of the driven gear y versus the angle of the
driving gear u. Starting from the position shown in Figure 1.15(a), when the driving
gear rotates an angle smaller than a, the driven gear does not move. For rotation
larger than a, a contact is established at L and the driven gear follows the driving
one, corresponding to the A,A piece of the input—output characteristic. When the
driving gear reverses direction, it rotates an angle 2a before a contact is established
at U. During this motion, the angle y remains constant, producing the AB piece of

L_ =
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gear

Drivingl

Figure 1.15: Backlash nonlinearity.

Figure 1.16: Hysteresis nonlinearity.

the characteristic. After a contact is established at U, the driven gear follows the
driving one, producing the BC piece, until another reversal of direction produces
the CDA piece. Thus, a periodic input of amplitude higher than a produces the
ABCD hysteresis loop of Figure 1.15(b). Notice that for a larger amplitude, the
hysteresis loop will be A’'B'C’'D’—an important difference between this type of
hysteresis characteristic and the relay with hysteresis characteristic of Figure 1.12,
where the hysteresis loop is independent of the amplitude of the input.

Similar to backlash, the hysteresis characteristic of Figure 1.16, which is typical
in magnetic material, has a hysteresis loop that is dependent on the amplitude of
the input.®

8Modeling the hysteresis characteristics of Figures 1.15(b) and 1.16 is quite complex. Various
modeling approaches are given in [106], [126] and [203].
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1.3 Exercises

1.1 A mathematical model that describes a wide variety of physical nonlinear
systems is the nth-order differential equation

y™W =g (t,y, Y. ,y("“l),u)

where u and y are scalar variables. With u as input and y as output, find a state
model.

1.2 Consider a single-input—single-output system described by the nth-order dif-
ferential equation

Y™ =g (t,y, Uy ,,y(”_l),u) + g2 (t,y,}), e ,y(“_z)) U

where go is a differentiable function of its arguments. With u as input and y as
output, find a state model.
Hint: Take z, = y(*™ Y — g, (t, Ys Yy - ,y(”“z)) Uu.

1.3 Consider a single-input—single-output system described by the nth-order dif-
ferential equation

e _—.g(y,...,y("_l),z,...,z<m)), m<n

where z is the input and y is the output. Extend the dynamics of the system by
adding a series of m integrators at the input side and define u = z(™) as the input
to the extended system; see Figure 1.17. Using y,...,y" Y and z,...,2(™ V) ag
state variables, find a state model of the extended system.

————— J 2 . Given System —Z»

m integrators

Y = Z(m) f

Figure 1.17: Exercise 1.3.

1.4 The nonlinear dynamic equations for an m-link robot [171, 185] take the form
M(q)j+C(g,9)§++Dg+g(a) =u

where ¢ is an m-dimensional vector of generalized coordinates representing joint
positions, u is an m-dimensional control (torque) input, and M(g) is a symmetric
inertia matrix, which is positive definite for all ¢ € R™. The term C(g, ¢)¢ accounts
for centrifugal and Coriolis forces. The matrix C has the property that M — 2C is
a skew-symmetric matrix for all ¢, ¢ € R™, where M is the total derivative of M (q)
with respect to t. The term D¢ account for viscous damping, where D is a positive
semidefinite symmetric matrix. The term g(g), which accounts for gravity forces, is
given by g(g) = [0P(g)/0q]", where P(g) is the total potential energy of the links
due to gravity. Choose appropriate state variables and find the state equation.
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1.5 The nonlinear dynamic equations for a single-link manipulator with flexible
joints [185], damping ignored, is given by

IGy + MgLsing + k(g1 — g2)
Jio ~ k(g —¢g2) = u

where ¢1 and ¢o are angular positions, I and J are moments of inertia, k is a spring
constant, M is the total mass, L is a distance, and v is a torque input. Choose
state variables for this system and write down the state equation.

1.6 The nonlinear dynamic equations for an m-link robot with fiexible joints [185]
take the form ‘

M(g)g + h(g, ¢1) + K(gi —q2) =
Jgo — K(q1 — q2)

where ¢; and ¢z are m-dimensional vectors of generalized coordinates, M (q;) and
J are symmetric nonsingular inertia matrices, and u is an m-dimensional control
input. The term h(g,q) accounts for centrifugal, Coriolis, and gravity forces, and
K is a diagonal matrix of joint spring constants. Choose state variables for this
system and write down the state equation.

U

1.7 Figure 1.18 shows a feedback connection of a linear time-invariant system rep-
resented by the transfer function G(s) and a nonlinear time-varying element defined
by z = ¥(t,y). The variables r, u, y, and z are vectors of the same dimension, and
¥(t,y) is a vector-valued function. With r as input and y as output, find a state
model.

IO als) = C(sT - A B

Y(t,y)

Figure 1.18: Exercise 1.7.
1.8 A synchronous generator connected to an infinite bus can be represented [148]
by

Mé = P—Dé—mE,siné
TEq = ~7]2Eq+7]300S5+EFD
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where § is an angle in radians, E is voltage, P is mechanical input power, Erp is
field voltage (input), D is damping coeflicient, M is inertial coefficient, 7 is time
constant, and 71, 72, and 73 are constant parameters.

(a) Using 6, 4, and E, as state variables, find the state equation.

(b) Let P = 0.815, Epp = 1.22, 1 = 2.0, 1o = 2.7, 13 = 1.7, T = 6.6, M = 0.0147,
and D/M = 4. Find all equilibrium points.

(¢) Suppose that 7 is relatively large so that E = 0. Show that assummg E, to
be constant reduces the model to a pendulum equation.

1.9 The circuit shown in Figure 1.19 contains a nonlinear inductor and is driven
by a time-dependent current source. Suppose that the nonlinear inductor is a
Josephson junction [39], described by ip = Igsink¢r, where ¢r is the magnetic
flux of the inductor and Iy and k are constants.

(2) Using ¢, and vc as state variables, find the state equation.

(b) Is it easier to choose iz, and vc as state variables?

ir

+J +
is () R vc=C vL

Figure 1.19: Exercises 1.9 and 1.10.

1.10 The circuit shown in Figure 1.19 contains a nonlinear inductor and is driven
by a time-dependent current source. Suppose that the nonlinear inductor is de-

scribed by iy, = Le¢r + pugs, where ¢ is the magnetic flux of the inductor and L
and u are positive constants.

(a) Using ¢, and ve as state variables, find the state equation.

(b) Find all equilibrium points when 75 = 0.

1.11 A phase-locked loop [64] can be represented by the block diagram of Fig-
ure 1.20. Let {A, B,C} be a minimal realization of the scalar, strictly proper
transfer function G(s). Assume that all eigenvalues of A have negative real parts,
G(0) # 0, and ¢; = constant. Let z be the state of the realization {4, B,C}.



1.3. EXERCISES 27

f i

Figure 1.20: Exercise 1.11. Figure 1.21: Exercise 1.12.

(a) Show that the closed-loop system can be represented by the state equations
z= Az+ Bsine, é=—-Cz

(b) Find all equilibrium points of the system.

(¢) Show that when G(s) = 1/(7s + 1), the closed-loop model coincides with the
model of a pendulum equation.

1.12 Consider the mass—spring system shown in Figure 1.21. Assuming a linear
spring and nonlinear viscous damping described by c19+c29|yl, find a state equation
that describes the motion of the system.

1.13 An example of a mechanical system in which friction can be negative in a
certain region is the structure shown in Figure 1.22 [7]. On a belt moving uniformly
with velocity vg, there lies a mass m fixed by linear springs, with spring constants
ki and ks. The friction force h(v) exerted by the belt on the mass is a function
of the relative velocity v = vy — §. We assume that h(v) is a smooth function for
v} > 0. In addition to this friction, assume that there is a linear viscous friction
proportional to ¥.

(a) Write down the equation of motion of the mass m.

(b) By restricting our analysis to the region |y| < vg, we can use a Taylor series to
approximate h(v) by h(vg) — yh/(vg). Using this approximation, simplify the
model of the system.

(¢) In view of the friction models discussed in Section 1.2.3, describe what kind of
friction characteristic h(v) would result in a system with negative friction.

1.14 Figure 1.23 shows a vehicle moving on a road with grade angle 6, where v is
the vehicle’s velocity, M is its mass, and F is the tractive force generated by the
engine. Assume that the friction is due to Coulomb friction, linear viscous friction,
and a drag force proportional to v?. Viewing F' as the control input and 6 as a
disturbance input, find a state model of the system.
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Mg
9

Figure 1.22: Exercise 1.13.
Figure 1.23: Exercise 1.14.

1.15 Consider the inverted pendulum of Figure 1.24 [110]. The pivot of the pen-
dulum is mounted on a cart that can move in a horizontal direction. The cart is
driven by a motor that exerts a horizontal force F' on the cart. The figure shows also
the forces acting on the pendulum, which are the force mg at the center of gravity,
a horizontal reaction force H, and a vertical reaction force V at the pivot. Writ-
ing horizontal and vertical Newton’s laws at the center of gravity of the pendulum
yields

d? . d?

m w(y +Lsinf)=H and m Eﬁ(Lcosé?) =V —mg

Taking moments about the center of gravity yields the torque equation
I§ =VLsinG — HLcos#

while a horizontal Newton’s law for the cart yields

Mij=F—H—ky

Here m is the mass of the pendulum, M is the mass of the cart, L is the distance
from the center of gravity to the pivot, I is the moment of inertia of the pendulum
with respect to the center of gravity, k is a friction coeflicient, y is the displacement
of the pivot, @ is the angular rotation of the pendulum (measured clockwise), and
g is the acceleration due to gravity.

(a) Carrying out the indicated differentiation and eliminating V and H, show that
the equations of motion reduce to

I6 = mgLsin — mL*§ — mLijcos
Mij=F-m (y+ L cos§ — L6? sin6‘) — ky
(b) Solving the foregoing equations for § and §j, show that

6] 1 m+ M —mZLcosf mgLsin g
4] A(0) | —mLcosd I+mL? F+mL6?sing — ky
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Pendulum

Cart é/ ., F Y H

J J

Figure 1.24: Inverted pendulum of Exercise 1.15.

where
AB) = (I +mL?)(m+ M) —m?L%cos? 8 > (I +mL>)M +mI >0

(c) Using z; =0, 20 = 6, z3 = y, and x4 = ¢ as the state variables and u = F as
the control input, write down the state equation.

1.16 Figure 1.25 shows a schematic diagram of a Translational Oscillator with
Rotating Actuator (TORA) system [205]. The system consists of a platform of
mass M connected to a fixed frame of reference by a linear spring, with spring
constant k. The platform can only move in the horizontal plane, parallel to the
spring axis. On the platform, a rotating proof mass is actuated by a DC motor.
It has mass m and moment of inertial I around its center of mass, located at a
distance L from its rotational axis. The control torque applied to the proof mass
is denoted by u. The rotating proof mass creates a force which can be controlled
to dampen the translational motion of the platform. We will derive a model for
the system, neglecting friction. Figure 1.25 shows that the proof mass is subject to
forces Fy and Fy and a torque u. Writing Newton’s law at the center of mass and
taking moments about the center of mass yield the equations

2 a2 i
ma—t—z—(xc+Lsin9)=Fz, ma%—i(Lcosé))=Fy, and [0 =u+F,Lsinf—F,Lcosf

where 0 is the angular position of the proof mass (measured counter clockwise).
The platform is subject to the forces F; and F,, in the opposite directions, as well
as the restoring force of the spring. Newton’s law for the platform yields

Mg, =—-F, — kx,

where . is the translational position of the platform.
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(a) Carrying out the indicated differentiation and eliminating F, and Fy, show
that the equations of motion reduce to

67 U [ I+mL? mLcosf
Do) { e } - [ mL6?sinf — kz, } » where D(0) = { mLcos® M+m }

(b) Solving the foregoing equation for § and &, show that
g | 1 m-+ M —mLcos 6 Cu
i | A(9) | —mLcosf I+mL? mL@%sind = kx,

where

AB) = (I +mL?)(m+ M) —m2L?cos?8 > (I + mL*>)M +mI >0

(¢) Using z1 = 0, z2 = 0, T35 = z., and x4 = i, as the state variables and u as the
control input, write down the state equation.

(d) Find all equilibrium points of the system.

O @)
M
k . u F
dVAVAYS =y ¢
A Fy m
(@) @

Figure 1.25: Translational Oscillator with Rotating Actuator (TORA) system.

1.17 The dynamics of a DC motor [178] can be described by

. di
vy = Rf’Lf—i—Lf—E%f;
dig .
Vg = Clifw+La—d7:£-+Rala
d
J% Colfla — Ca3wW

The first equation is for the field circuit with v 7, tf, Ry, and Ly being its voltage,
current, resistance, and inductance. The variables v,, 14, Ry, and L, are the corre-
sponding variables for the armature circuit described by the second equation. The
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third equation is a torque equation for the shaft, with J as the rotor inertia and cg
as a damping coefficient. The term c;4yw is the back e.m.f. induced in the armature
circuit, and coi i, is the torque produced by the interaction of the armature current
with the field circuit flux.

(a) For a separately excited DC motor, the voltages v, and vy are independent
control inputs. Choose appropriate state variables and find the state equation.

(b) Specialize the state equation of part(a) to the field controlled DC motor, where
vy is the control input, while v, is held constant.

(c) Specialize the state equation of part(a) to the armature controlled DC motor,
where v, is the control input, while vy is held constant. Can you reduce the
order of the model in this case?

(d) In a shunt wound DC motor, the field and armature windings are connected
in parallel and an external resistance R is connected in series with the field
winding to limit the field flux; that is, v = v, = vy + Rgiy. With v as the
control input, write down the state equation.

1.18 Figure 1.26 shows a schematic diagram of a magnetic suspension system,
where a ball of magnetic material is suspended by means of an electromagnet whose
current is controlled by feedback from the, optically measured, ball position [211,
pp- 192-200]. This system has the basic ingredients of systems constructed to
levitate mass, used in gyroscopes, accelerometers, and fast trains. The equation of
motion of the ball is

my = —ky + mg + F(y,1)

where m is the mass of the ball, y > 0 is the vertical (downward) position of the
ball measured from a reference point (y = 0 when the ball is next to the coil), k is
a viscous friction coefficient, g is the acceleration due to gravity, F(y,4) is the force
generated by the electromagnet, and ¢ is its electric current. The inductance of the
electromagnet depends on the position of the ball and can be modeled as

Lo
1+y/a
where L, Lg, and a are positive constants. This model represents the case that the
inductance has its highest value when the ball is next to the coil and decreases to

a constant value as the ball is removed to y = co. With E(y,1) = $L(y)i® as the
energy stored in the electromagnet, the force F'(y,1) is given by

0E Lo
dy ~ 2a(l+y/a)?
When the electric circuit of the coil is driven by a voltage source with voltage v,

Kirchhoff’s voltage law gives the relationship v = ¢ + Ri, where R is the series
resistance of the circuit and ¢ = L(y)i is the magnetic flux linkage.

L(y) =Ly +

F(y,1) =
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Controller

™=Q,

source

Figure 1.26: Magnetic suspension system of Exercise 1.18.

a) Using z1 =y, 72 = ¢, and z3 = ¢ as state variables and « = v as control input,
g
find the state equation.

(b) Suppose it is desired to balance the ball at a certain position r > 0. Find the
steady-state values ;s and Vg of ¢ and v, respectively, which are necessary
to maintain such balance.

The next three exercises give examples of hydraulic systems [41].

1.19 Figure 1.27 shows a hydraulic system where liquid is stored in an open tank.
The cross-sectional area of the tank, A(h), is a function of h, the height of the liquid
level above the bottom of the tank. The liquid volume v is given by v = foh A(X) dA.
For a liquid of density p, the absolute pressure p is given by p = pgh + p,, where
Do 15 the atmospheric pressure (assumed constant) and g is the acceleration due
to gravity. The tank receives liquid at a flow rate w; and loses liquid through a
valve that obeys the flow-pressure relationship w, = kv/Ap. In the current case,
Ap = p — p,. Take u = w; to be the control input and y = h to be the output.

(a) Using h as the state variable, determine the state model.
(b) Using p — p, as the state variable, determine the state model.

() Find us, that is needed to maintain the output at a constant value .

1.20 The hydraulic system shown in Figure 1.28 consists of a constant speed cen-
trifugal pump feeding a tank from which liquid flows through a pipe and a valve that
obeys the relationship w, = ky/p — pa. The pump characteristic for the specified
pump speed is shown in Figure 1.29. Let us denote this relationship by Ap = é(w;)
and denote its inverse, whenever defined, by w; = ¢~*(Ap). For the current pump,
Ap = p—p,. The cross-sectional area of the tank is uniform; therefore, v = Ah and
P = pa + pgv/A, where the variables are defined in the previous exercise.
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Figure 1.27: Exercise 1.19. Figure 1.28: Exercise 1.20.
Ap

w

Figure 1.29: Typical centrifugal pump characteristic.

(a) Using (p — p.) as the state variable, find the state model.
(b) Find all equilibrium points of the system.

1.21 The valves in the hydraulic system of Figure 1.30 obey the fiéw relationships
wy = k14/p1 — p2 and wa = koy/Pz — pa. The pump has the characteristic shown
in Figure 1.29 for (p; — p,) versus wy. The various components and variables are
defined in the previous two exercises.

(a) Using (p; — po) and (p2 — p,) as the state variables, find the state equation.
(b) Find all equilibrium points of the system.

1.22 Consider a biochemical reactor with two components—biomass and substrate—
where the biomass cells consume the substrate [23]; a schematic is shown in Fig-
ure 1.31. Assume that the reactor is perfectly mixed and the volume V is constant.
Let @1 and z2 be the concentrations (mass/volume) of the biomass cells and sub-
strate, respectively, and x1; and x5 be the corresponding concentrations in the
feed stream. Let 1 be the rate of biomass cell generation (mass/volume/time), 7o
be the rate of the substrate consumption, and F be the flow rate (volume/time).
The dynamic model is developed by writing material balances on the biomass and
substrate; that is,

rate of biomass accumulation = in by flow — out by flow + generation
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Figure 1.30: The hydraulic system of Exercise 1.21.

rate of substrate accumulation = in by flow — out by flow — consumption

The generation rate 7y is modeled as 71 = pxy, where the specific growth coefficient
w18 a function of z5. We assume that there is no biomass in the feed stream, so
z1y = 0, the dilution rate d = F/V is constant, and the yield ¥ = r, /7y is constant.

(a) Using z; and z, as state variables, find the state model.

(b) Find all equilibrium points when g = fmxa/(km + z2) for some positive con-
stants u,, and k. Assume that d < pm,.

(¢) Find all equilibrium points when g = pmZa/(km + 22 4+ k122) for some positive

constants fim, km, and ky. Assume that d < maxg,>o{u(z2)}.

F

A

Ty

T2
v r
Z1
T2

Figure 1.31: Biochemical reactor of Exercise 1.22.
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Chapter 2

Second-Order Systems

Second-order autonomous systems occupy an important place in the study of non-
linear systems because solution trajectories can be represented by curves in the
plane. This allows for easy visualization of the qualitative behavior of the system.
The purpose of this chapter is to use second-order systems to introduce, in an ele-
mentary context, some of the basic ideas of nonlinear systems. In particular, we will
look at the behavior of a nonlinear system near equilibrium points, the phenomenon
of nonlinear oscillation, and bifurcation.

A second-order autonomous system is represented by two scalar differential equa-
tions

&1 = filz1,z2) (2.1)
T2 = falx1,z2)

Let z(t) = (z1(), z2(t)) be the solution® of (2.1)—(2.2) that starts at a certain initial
state Tg = (10, T20); that is, £(0) = zo. The locus in the z;~z5 plane of the solution
z(t) for all ¢ > 0 is a curve that passes through the point zq. This curve is called
a trajectory or orbit of (2.1)—(2.2) from xg. The z1-z3 plane is usually called the
state plane or phase plane. The right-hand side of (2.1)—(2.2) expresses the tangent
vector £(t) = (&1(t), £2(t)) to the curve. Using the vector notation

&= f(z)

where f(z) is the vector (fi(z), f2(x)), we consider f(zx) as a vector field on the
state plane, which means that to each point z in the plane, we assign a vector f(x).
For easy visualization, we represent f(z) as a vector based at z; that is, we assign
to z the directed line segment from z to z + f(z). For example, if f(z) = (222, z3),
then at z = (1,1), we draw an arrow pointing from (1,1) to (1,1) + (2,1) = (3,2).
(See Figure 2.1.) Repeating this at every point in a grid covering the plane, we

1t is assumed that there is a unique solution.

35
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z+ flz) = (3,2)

Z1

Figure 2.1: Vector field representation.

obtain a vector field diagram, such as the one shown in Figure 2.2 for the pendulum
equation without friction:

i‘lzl‘z

—10sin

i

Za

In the figure, the length of the arrow at a given point z is proportional to the
length of f(z), that is, \/f#(z)+ f2(z). Sometimes, for convenience, we draw
arrows of equal length at all points. Since the vector field at a point is tangent to
the trajectory through that point, we can, in essence, construct trajectories from
the vector field diagram. Starting at a given initial point zg, we can construct the
trajectory from x¢ by moving along the vector field at xg. This motion takes us to
a new point z,, where we continue the trajectory along the vector field at z,. If the
process is repeated carefully and the consecutive points are chosen close enough to
each other, we can obtain a reasonable approximation of the trajectory through zg.
In the case of Figure 2.2, a careful implementation of the foregoing process would
show that the trajectory through (2,0) is a closed curve.

The family of all trajectories or solution curves is called the phase portrait of
(2.1)-(2.2). An (approximate) picture of the phase portrait can be constructed
by plotting trajectories from a large number of initial states spread all over the
T1-T2 plane. Since numerical subroutines for solving general nonlinear differential
equations are widely available, we can easily construct the phase portrait by using
computer simulations. (Some hints are given in Section 2.5.) Note that since
the time ¢ is suppressed in a trajectory, it is not possible to recover the solution
{z1(t), z2(t)) associated with a given trajectory. Hence, a trajectory gives only the
qualitative, but not gquantitative, behavior of the associated solution. For example,
a closed trajectory shows that there is a periodic solution; that is, the system has
a sustained oscillation, whereas a shrinking spiral shows a decaying oscillation. In
the rest of this chapter, we will qualitatively analyze the behavior of second-order
systems by using their phase portraits.
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Figure 2.2: Vector field diagram of the pendulum equation without friction.

2.1 Qualitative Behavior of Linear Systems

Consider the linear time-invariant system
(2.3)

T = Az

where A is a 2 x 2 real matrix. The solution of (2.3) for a given initial state zq is
given by
z(t) = M exp(Jt) Mtz

where J,. is the real Jordan form of A and M is a real nonsingular matrix such that
M~YAM = J.. Depending on the eigenvalues of A, the real Jordan form may take

Ak a -3

o] (e x] e [T

where k is either 0 or 1. The first form corresponds to the case when the eigenval-
ues A1 and Ay are real and distinct, the second form corresponds to the case when
the eigenvalues are real and equal, and the third form corresponds to the case of
complex eigenvalues \; 2 = o= j3. In our analysis, we have to distinguish between
these three cases. Moreover, with real eigenvalues, we have to isolate the case when
at least one of the eigenvalues is zero. In that situation, the origin is not an isolated
equilibrium point and the qualitative behavior is quite different from the behavior

one of three forms

0
Ao

At
0

in the other cases.
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Case 1. Both eigenvalues are real: \; 5 Ay # 0.

In this case, M = [v1,vs], where v; and vy are the real eigenvectors associated
with A1 and Az. The change of coordinates z = M~z transforms the system into
two decoupled first-order differential equations,

&= Mz, 2o = dazo

whose solution, for a given initial state (210, 220), is given by

21 (t) = z10e™, 29(t) = z0™?
Eliminating ¢ between the two equations, we obtain
29 = cz?ﬂAl (2.4)

where ¢ = 299/ (zm))‘z/ A1 The phase portrait of the system is given by the family

of curves generated from (2.4) by allowing the constant ¢ to take arbitrary values
in R. The shape of the phase portrait depends on the signs of A\; and As.
Cousider first the case when both eigenvalues are negative. Without loss of

generality, let Ay < A\; < 0. Here, both exponential terms e** and e*?* tend to zero
as t — co. Moreover, since Ay < A; < 0, the term e*?* tends to zero faster than
the term e*t. Hence, we call Ay the fast eigenvalue and A; the slow eigenvalue.
For later reference, we call vy the fast eigenvector and vy the slow eigenvector. The
trajectory tends to the origin of the z;—z, plane along the curve of (2.4), which now
has a ratio Ag/A; that is greater than one. The slope of the curve is given by

B _ 22 0/3)-1

d21 )\1

Since [(Az/A1) — 1] is positive, the slope of the curve approaches zero as |z1| — 0
and approaches oo as |z1| — oco. Therefore, as the trajectory approaches the qrigin,
it becomes tangent to the z;-axis; as it approaches oo, it becomes parallel to the
zg-axis. These observations allow us to sketch the typical family of trajectories
shown in Figure 2.3. When transformed back into the z-coordinates, the family
of trajectories will have the typical portrait shown in Figure 2.4(a). Note that in
the z1—x5 plane, the trajectories become tangent to the slow eigenvector v; as they
approach the origin and parallel to the fast eigenvector vy far from the origin. In
this situation, the equilibrium point z = 0 is called a stable node.

When A\; and A are positive, the phase portrait will retain the character of Fig-
ure 2.4(a), but with the trajectory directions reversed, since the exponential terms
e*t and et grow exponentially as ¢ increases. Figure 2.4(b) shows the phase por-
trait for the case Ay > A; > 0. The equilibrium point = = 0 is referred to in this
instance as an unstable node.
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Figure 2.3: Phase portrait of a stable node in modal coordinates.

X2 vp xg| V2

Vi vy

Xq X1

(a) (b)

Figure 2.4: Phase portraits for (a) a stable node; (b) an unstable node.

Suppose now that the eigenvalues have opposite signs. In particular, let Ay < 0 <
A1. In this case, eM? — oo, while e*2t — 0 as t — o0o0. Hence, we call A, the stable
eigenvalue and A; the unstable eigenvalue. Correspondingly, v, and vy are called the
stable and unstable eigenvectors, respectively. Equation (2.4) will have a negative
exponent (Az/A1). Thus, the family of trajectories in the z;—z plane will take the
typical form shown in Figure 2.5(a). Trajectories have hyperbolic shapes. They
become tangent to the zj-axis as |21] — oo and tangent to the zo-axis as |z1] — 0.
The only exception to these hyperbolic shapes are the four trajectories along the
axes. The two trajectories along the zs-axis are called the stable trajectories since
they approach the origin as ¢ — oo, while the two trajectories along the zj-axis are
called the unstable trajectories since they approach infinity as ¢ — oo. The phase
portrait in the z1—-z2 plane is shown in Figure 2.5(b). Here the stable trajectories are
along the stable eigenvector vy and the unstable trajectories are along the unstable
eigenvector v1. In this case, the equilibrium point is called a saddle.
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Figure 2.5: Phase portrait of a saddle point (a) in modal coordinates; (b) in original
coordinates. .

Case 2. Complex eigenvalues: A\ =a =% j0.

The change of coordinates z = M ~}z transforms the system (2.3) into the form
2 = Qz — ,322, 29 = ﬂZl + azg

The solution of these equations is oscillatory and can be expressed more conveniently
in the polar coordinates

r= m, § =tan™! <z~>
where we have two uncoupled first-order differential equations:
f=ar and 6= I}
The solution for a given initial state (rg, fg) is given by
r(t) =roe* and (i) =0y + Bt

which define a logarithmic spiral in the 21—z plane. Depending on the value of «,
the trajectory will take one of the three forms shown in Figure 2.6. When o < 0,
the spiral converges to the origin; when a > 0, it diverges away from the origin.
When a = 0, the trajectory is a circle of radius ro. Figure 2.7 shows the trajectories
in the z1-z5 plane. The equilibrium point z = 0 is referred to as a stable focus if
a < 0, unstable focus if « > 0, and center if a = 0.
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Figure 2.6: Typical trajectories in the case of complex eigenvalues.
(a) a<0; (b) a>0; (c) a=0.
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Figure 2.7: Phase portraits for (a) a stable focus; (b) an unstable focus; (c) a center.

Case 3. Nonzero multiple eigenvalues: A\ =y = A #0.

The change of coordinates z = M~z transforms the system (2.3) into the form
21 = Azy + k2o, 2o = Azg
whose solution, for a given initial state (219, 220), is given by
z1(t) = eM (210 + kzaot), z5(t) = Mg

Eliminating ¢, we obtain the trajectory equation

Figure 2.8 shows the form of the trajectories when k = 0, while Figure 2.9 shows
their form when k = 1. The phase portrait has some similarity with the portrait
of a node. Therefore, the equilibrium point z = 0 is usually referred to as a stable
node if A < 0 and unstable node if A > 0. Note, however, that the phase portraits
of Figures 2.8 and 2.9 do not have the asymptotic slow—fast behavior that we saw
in Figures 2.3 and 2.4.

Before we discuss the degenerate case when one or both of the eigenvalues are
zero, let us summarize our findings about the qualitative behavior of the system
when the equilibrium point z = 0 is isolated. We have seen that the system can dis-
play six qualitatively different phase portraits, which are associated with different
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Figure 2.8: Phase portraits for the case of nonzero multiple eigenvalues when k = 0:
(@) A< 0; (b) A>0.
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Figure 2.9: Phase portraits for the case of nonzero multiple eigenvalues when k = 1:
(a) A< 0; (b) A > 0.

types of equilibria: stable node, unstable node, saddle point, stable focus, unstable
focus, and center. The type of equilibrium point is completely specified by the lo-
cation of the eigenvalues of A. Note that the global (throughout the phase plane)
qualitative behavior of the system is determined by the type of equilibrium point.
This is a characteristic of linear systems. When we study the qualitative behavior
of nonlinear systems in the next section, we shall see that the type of equilibrium

point can only determine the qualitative behavior of the trajectories in the vicinity
of that point.

Case 4. One or both eigenvalues are zero.

When one or both eigenvalues of A are zero, the phase portrait is in some sense
degenerate. Here, the matrix A has a nontrivial null space. Any vector in the
null space of A is an equilibrium point for the system; that is, the system has an
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Figure 2.10: Phase portraits for (a) Ay =0, Ay < 0; (b) A; =0, Ay > 0.

equilibrium subspace, rather than an equilibrium point. The dimension of the null
space could be one or two; if it is two, the matrix A will be the zero matrix. This
is a trivial case where every point in the plane is an equilibrium point. When the
dimension of the null space is one, the shape of the Jordan form of A will depend
on the multiplicity of the zero eigenvalue. When A\; = 0 and Ay # 0, the matrix M
is given by M = [v1,v3] where v; and vy are the associated eigenvectors. Note that
v, spans the null space of A. The change of variables z = M~z results in

2 =0, Zo = Aoz

whose solution is
Aat

z1(t) = z10, 29(t) = zo0€

The exponential term will grow or decay, depending on the sign of Ay. Figure 2.10
shows the phase portrait in the z1—z5 plane. All trajectories converge to the equi-
librium subspace when g < 0, and diverge away from it when Ay > 0.

When both eigenvalues are at the origin, the change of variables z = M~z
results in

21 = Z9, 52 =0
whose solution is
21(t) = z10 + 200, 23(t) = 220

The term zo0t will increase or decrease, depending on the sign of zgg. The z;-axis is
the equilibrium subspace. Figure 2.11 shows the phase portrait in the z;—z plane;
the dashed line is the equilibrium subspace. The phase portrait in Figure 2.11 is
quite different from that in Figure 2.10. Trajectories starting off the equilibrium
subspace move parallel to it.

The study of the behavior of linear systems about the equilibrium point z = 0 is
important because, in many cases, the local behavior of a nonlinear system near an
equilibrium point can be deduced by linearizing the system about that point and
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Figure 2.11: Phase portrait when A; = Ay = 0.

studying the behavior of the resultant linear system. How conclusive the lineariza-
tion approach is depends to a great extent on how the various qualitative phase
portraits of a linear system persist under perturbations. We can gain insight into
the behavior of a linear system under perturbations by examining the special case
of linear perturbations. Suppose A has distinct eigenvalues and consider A + AA,
where AA is a 2 x 2 real matrix whose elements have arbitrarily small magnitudes.
From the perturbation theory of matrices,? we know that the eigenvalues of a ma-
trix depend continuously on its parameters. This means that, given any positive
number ¢, there is a corresponding positive number § such that if the magnitude
of the perturbation in each element of A is less than §, the eigenvalues of the per-
turbed matrix A + AA will lie in open discs of radius € centered at the eigenvalues
of A. Consequently, any eigenvalue of A that lies in the open right-half plane (pos-
itive real part) or in the open left-half plane (negative real part) will remain in
its respective half of the plane after arbitrarily small perturbations. On the other
hand, eigenvalues on the imaginary axis, when perturbed, might go into either the
right-half or the left-half of the plane, since a disc centered on the imaginary axis
will extend in both halves no matter how small ¢ is. Consequently, we can conclude
that if the equilibrium point # = 0 of £ = Az is a node, focus, or saddle point,
then the equilibrium point z = 0 of £ = (A + AA)z will be of the same type for
sufficiently small perturbations. The situation is quite different if the equilibrium
point is a center. Consider the perturbation of the real Jordan form in the case of

a center
1
-1 u

where p is a perturbation parameter. When 4 is positive, the equilibrium point of
the perturbed system is an unstable focus; when w is negative, it is a stable focus.

=

2See [67, Chapter 7.
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This is true no matter how small p is, as long as it is different from zero. Because
the phase portraits of a stable focus and unstable focus are qualitatively different
from the phase portrait of a center, we see that a center equilibrium point will
not persist under perturbations. The node, focus, and saddle equilibrium points
are said to be structurally stable because they maintain their qualitative behavior
under infinitesimally small perturbations,® while the center equilibrium point is not
structurally stable. The distinction between the two cases is due to the location of
the eigenvalues of A, with the eigenvalues on the imaginary axis being vulnerable to
perturbations. This brings in the definition of a hyperbolic equilibrium point. The
origin z = 0 is said to be a hyperbolic equilibrium point of £ = Az if A has no
eigenvalues with zero real part.*

When A has multiple nonzero real eigenvalues, infinitesimally small perturba-~
tions could result in a pair of complex eigenvalues. Hence, a stable (respectively,
unstable) node would either remain a stable (respectively, unstable) node or become
a stable (respectively, unstable) focus.

When A has eigenvalues at zero, one would expect perturbations to move these
eigenvalues away from zero, resulting in a major change in the phase portrait. It
turns out, however, that there is an important difference between the case when
there is only one eigenvalue at zero and the case when both eigenvalues are at
zero (A s 0). In the first case, perturbation of the zero eigenvalue results in a
real eigenvalue A\; = pu, where p could be positive or negative. Since the other
eigenvalue Ag is different from zero, its perturbation will keep it away from zero.
Moreover, since we are talking about arbitrarily small perturbations, |A1] = || will
be much smaller than |Az|. Thus, we end up with two real distinct eigenvalues,
which means that the equilibrium point of the perturbed system will be a node or
a saddle point, depending on the signs of Ay and p. This is already an important
change in the phase portrait. However, a careful examination of the phase portrait
gives more insight into the qualitative behavior of the system. Since |A1] < |Az], the
exponential term e*?? will change with ¢ much faster than the exponential term e*:?,
resulting in the typical phase portraits of a node and a saddle shown in Figure 2.12,
for the case Ay < 0. Comparing these phase portraits with Figure 2.10(a) shows
some similarity. In particular, similar to Figure 2.10, trajectories starting off the
eigenvector vy converge to that vector along lines (almost) parallel to the eigenvector
vo. As they approach the vector v, they become tangent to it and move along it.
When g < 0, the motion along v, converges to the origin (stable node), while
when p > 0 the motion along v; tends to infinity (saddle point). This qualitative
behavior is characteristic of singularly perturbed systems, which will be studied in
Chapter 11.

When both eigenvalues of A are zeros, the effect of perturbations is more dra-

3See [81, Chapter 16] for a rigorous and more general definition of structural stability.

4This definition of a hyperbolic equilibrium point extends to higher-dimensional systems. It
also carries over to equilibria of nonlinear systems by applying it to the eigenvalues of the linearized
system.
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Figure 2.12: Phase portraits of a perturbed system when A; = 0 and Ay < 0: (a)
w<0; (b) u>0.

matic. Consider the four possible perturbations of the Jordan form

0 1 uo1 JT pno 1
[—uz 0}’ Luz M}’ [0 u}’ and {0 —u}

where pu is a perturbation parameter that could be positive or negative. It can easily
be seen that the equilibrium points in these four cases are a center, a focus, a node,
and a saddle point, respectively. In other words, all the possible phase portraits of
an isolated equilibrium point could result from perturbations.

2.2 Multiple Equilibria

The linear system & = Az has an isolated equilibrium point at z = 0 if 4 has no
zero eigenvalues, that is, if det A # 0. When det A = 0, the system has a continuum
of equilibrium points. These are the only possible equilibria patterns that a linear
system may have. A nonlinear system can have multiple isolated equilibrium points.
In the following two examples, we explore the qualitative behavior of the tunnel-
diode circuit of Section 1.2.2 and the pendulum equation of Section 1.2.1. Both
systems exhibit multiple isolated equilibria.

Example 2.1 The state model of a tunnel-diode circuit is given by
£y = Z[-h(@1)+ 2]

Ty = [~z1 — Rza + u]

SN= Q=

Assume that the circuit parameters are® u = 1.2 V, R = 1.5 kQ = 1.5 x 10° Q,
C=2pF =2x1072 F,and L = 5 uH = 5 x 107% H. Measuring time in

5The numerical data are taken from [39].
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Figure 2.13: Phase portrait of the tunnel-diode circuit of Example 2.1.

nanoseconds and the currents zo and h(z1) in mA, the state model is given by

T = O5[—~h(.’121) + Z’g]
IiJz = 0.2(~Z’1 - 1.5:!32 -+ 12)

Suppose that h(-) is given by
h(z1) = 17.76z; — 103.792% + 229.622% — 226.31x] + 83.7223

By setting £; = @2 = 0 and solving for the equilibrium points, we can verify that
there are three equilibrium points at (0.063,0.758), (0.285,0.61), and (0.884,0.21).
The phase portrait of the system, generated by a computer program, is shown in
Figure 2.13. The three equilibrium points are denoted in the portrait by Q1, Q2,
and @3, respectively. Examination of the phase portrait shows that, except for
two special trajectories, which approach @2, all trajectories eventually approach
either ()1 or Q3. Near the equilibrium points, the trajectories take the form of a
saddle for Q2 and stable nodes for @; and Q3. The two special trajectories, which
approach Q2, are the stable trajectories of the saddle. They form a curve that
divides the plane into two halves. All trajectories originating from the left side of
the curve will approach @i, while all trajectories originating from the right side
will approach Q3. This special curve is called a separatriz, because it partitions the
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Figure 2.14: Adjustment of the load line of the tunnel-diode circuit during triggering.

plane into two regions of different qualitative behavior.® In an experimental setup,
we shall observe one of the two steady-state operating points ¢ or @3, depending
on the initial capacitor voltage and inductor current. The equilibrium point at Q5
is never observed in practice because the ever-present physical noise would cause
the trajectory to diverge from 2 even if it were possible to set up the exact initial
conditions corresponding to Q.

The phase portrait in Figure 2.13 tells us the global qualitative behavior of
the tunnel-diode circuit. The range of z; and x2 was chosen so that all essential
qualitative features are displayed. The portrait outside this range does not contain
any new qualitative features.

The tunnel-diode circuit with multiple equilibria is referred to as a bistable cir-
cuit, because it has two steady-state operating points. It has been used as a com-
puter memory, where the equilibrium point ()7 is associated with the binary state
“0” and the equilibrium point Q3 is associated with the binary state “1.” Triggering
from @1 to Q3 or vice versa is achieved by a triggering signal of sufficient amplitude
and duration that allows the trajectory to move to the other side of the separatrix.
For example, if the circuit is initially at @)y, then a positive pulse added to the
supply voltage u will carry the trajectory to the right side of the separatrix. The
pulse must be adequate in amplitude to raise the load line beyond the dashed line
in Figure 2.14 and long enough to allow the trajectory to reach the right side of the
separatrix.

Another feature of this circuit can be revealed if we view it as a system with
input v = E and output y = vg. Suppose we start with a small value of u such that
the only equilibrium point is Q1. After a transient period, the system settles at Q1.
Let us now increase u gradually, allowing the circuit to settle at an equilibrium point

8In general, the state plane decomposes into a number of regions, within each of which the
trajectories may show a different type of behavior. The curves separating these regions are called
separatrices.
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Figure 2.15: Hysteresis characteristics of the tunnel-diode circuit.

after each increment of u. For a range of values of u, @1 will be the only equilibrium
point. On the input—output characteristic of the system, shown in Figure 2.15, this
range corresponds to the segment EA. As the input is increased beyond the point
A, the circuit will have two steady-state operating points at @y, on the segment
AB, and @3, on the segment C'D. Since we are increasing u gradually, the initial
conditions will be near @1 and the circuit will settle there. Hence, the output will
be on the segment AB. With further increase of u, we will reach a point where
the circuit will have only one equilibrium point at Q3. Therefore, after a transient
period the circuit will settle at Q3. On the input—output characteristic, it will
appear as a jump from B to C. For higher values of u, the output will remain
on the segment CF. Suppose now that we start decreasing u gradually. First,
there will be only one equilibrium point @s; that is, the output will move along
the segment F'C. Beyond a certain value of u, corresponding to the point C, the
circuit will have two steady-state operating points at @}; and @Qs, but will settle
at Q3 because its initial conditions will be closer to it. Hence, the output will be
on the segment CD. Eventually, as we decrease u beyond the value corresponding
to D, the circuit will have only one equilibrium point at ()1 and the characteristic
will exhibit another jump from D to A. Thus, the input-output characteristic of
the system features a hysteresis behavior. Notice that by drawing the input—output
characteristic of Figure 2.15, we ignore the dynamics of the system. Such viewpoint
will be reasonable when the input is slowly varying relative to the dynamics of the
system so that the transient time between different steady-state operating points
can be neglected.” A

Example 2.2 Consider the following pendulum equation with friction:

Ty = I

7This statement can be justified by the singular perturbation theory presented in Chapter 11.
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Figure 2.16: Phase portrait of the pendulum equation of Example 2.2.

Ty = —=10sinz; — a2

A computer-generated phase portrait is shown in Figure 2.16. The phase portrait
is periodic in z; with period 27. Consequently, all distinct features of the system’s
qualitative behavior can be captured by drawing the portrait in the vertical strip
-7 < z1 < 7. As we noted earlier, the equilibrium points (0, 0), (2m,0), (-2, 0),
etc., correspond to the downward equilibrium position (0,0). Trajectories near
these equilibrium points have the pattern of a stable focus. On the other hand,
the equilibrium points at (7, 0), (~,0), etc., correspond to the upward equilibrium
position (m,0). Trajectories near these equilibrium points have the pattern of a
saddle. The stable trajectories of the saddles at (m,0) and (—m,0) form separatrices
which contain a region with the property that all trajectories in its interior approach
the equilibrium point (0,0). This picture is repeated periodically. The fact that
trajectories could approach different equilibrium points correspond to the number
of full swings a trajectory would take before it settles at the downward equilibrium
position. For example, the trajectories starting at points A and B have the same
initial position, but different speeds. The trajectory starting at A oscillates with
decaying amplitude until it settles down at equilibrium. The trajectory starting at
B, on the other hand, has more initial kinetic energy. It makes a full swing before it
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starts to oscillate with decaying amplitude. Once again, notice that the “unstable”
equilibrium position (7,0) cannot be maintained in practice, because noise would
cause trajectories to diverge away from that position. A

2.3 Qualitative Behavior Near Equilibrium Points

Examination of the phase portraits in Examples 2.1 and 2.2 shows that the qual-
itative behavior in the vicinity of each equilibrium point looks just like those we
saw in Section 2.1 for linear systems. In particular, in Figure 2.13 the trajectories
near @1, (2, and @3 are similar to those associated with a stable node, saddle
point, and stable node, respectively. Similarly, in Figure 2.16 the trajectories near
(0,0) and (r,0) are similar to those associated with a stable focus and saddle point,
respectively. In this section, we will see that we could have seen this behavior near
the equilibrium points without drawing the phase portrait. It will follow from the
general property that, except for some special cases, the qualitative behavior of a
nonlinear system near an equilibrium point can be determined via linearization with
respect to that point.

Let p = (p1, p2) be an equilibrium point of the nonlinear system (2.1)-(2.2) and
suppose that the functions f; and fo are continuously differentiable. Expanding
the right-hand side of (2.1)—(2.2) into its Taylor series about the point (p1,ps), we
obtain

1 = fi(p1,p2) +au(zr — p1) + az(x2 — p2) + HO.T.
ty = fa(p1,p2) + an(z1 — p1) + aza(x2 — p2) + H.O.T.
where
= Of1(zy, z2) b= Ofi(z1,72)
Oy T1=p1,T2=p2 ' Oy z1=p1,To=p2
oy = 0fa(xq,x2) gy = 0fa(z1,x2)
3331 T1=p1,L2=Pp2 ’ 3&02

T1=P1,T2=pP2

and H.O.T. denotes higher order terms of the expansion, that is, terms of the form

(z1—p1)?, (w2 —p2)?, (z1—p1) X (x2—Pp2), and so on. Since (p1, p2) is an equilibrium
point, we have

f1(p1,p2) = f2(p1,p2) =0
Moreover, since we are interested in the trajectories near (py,p2), we define
yi=x1—p1 and Y=z — P2
and rewrite the state equations as

71 = &1 = anyr +any: +HO.T.
'92 = ig = a21Y1 -+ Q22Y2 -+ HOT
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If we restrict attention to a sufficiently small neighborhood of the equilibrium point
such that the higher-order terms are negligible, then we may drop these terms and
approximate the nonlinear state equations by the linear state equations

Y1 =  anyr+azye

Yo = Go1y1 + a2y

Rewriting the equations in a vector form, we obtain

y=Ay
where
Of1 (2351
aix  ai2 bz, Oxo of
.A = = —
o a ofs Bf2 ||° Oz,
21 22 521 B z=p

The matrix [0f/0z] is called the Jacobian matrix of f(z), and A is the Jacobian
matrix evaluated at the equilibrium point p.

It is reasonable to expect the trajectories of the nonlinear system in a small
neighborhood of an equilibrium point to be “close” to the trajectories of its lin-
earization about that point. Indeed, it is true that® if the origin of the linearized
state equation is a stable (respectively, unstable) node with distinct eigenvalues, a
stable (respectively, unstable) focus, or a saddle point, then, in a small neighborhood
of the equilibrium point, the trajectories of the nonlinear state equation will behave
like a stable (respectively, unstable) node, a stable (respectively, unstable) focus, or
a saddle point. Consequently, we call an equilibrium point of the nonlinear state
equation (2.1)-(2.2) a stable (respectively, unstable) node, a stable (respectively,
unstable) focus, or a saddle point if the linearized state equation about the equilib-
rium point has the same behavior. The type of equilibrium points in Examples 2.1
and 2.2 could have been determined by linearization without the need to construct
the global phase portrait of the system.

Example 2.3 The Jacobian matrix of the function f(z) of the tunnel-diode circuit
in Example 2.1 is given by

?_]: 3 -—0.5h/($1) 0.5
Oz —02  -03

where

dh
R (z1) = —— = 17.76 — 207.58z; + 688.862% — 905.24z°5 + 418.62%
1

8The proof of this linearization property can be found in [76]. It is valid under the assumption
that fi(z1,22) and f2(z1,22) have continuous first partial derivatives in a neighborhood of the
equilibrium point (p1,p2). A related, but different, linearization result will be proved in Chapter
3 for higher-dimensional systems. (See Theorem 4.7.)
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Evaluating the Jacobian matrix at the equilibrium points Q1 = (0.063,0.758),
Q2 = (0.285,0.61), and Q3 = (0.884,0.21), respectively, yields the three matrices

3598 0.5 ,
Ay = [ —02 -03 ] , FEigenvalues: —3.57, —0.33
182 05 ,
Ag = [ —02 —-03 :1 ,  Eigenvalues: 1.77, —0.25
—~1.427 0.5 ,
Az = [ 02 -03 } , DBigenvalues: —1.33, —0.4
Thus, Q1 is a stable node, @2 is a saddle point, and Qs is a stable node. A

Example 2.4 The Jacobian matrix of the function f(z) of the pendulum equation
in Example 2.2 is given by

of _ 0 1
Oz | —10cosz; -1

Evaluating the Jacobian matrix at the equilibrium points (0,0) and (7,0) yields,
respectively, the two matrices

Aq = [ __010 jl } , [Eigenvalues: — 0.5+ 53.12

0 1 .
Ag = [ 10 -1 } . Eigenvalues: — 3.7, 2.7

Thus, the equilibrium point (0, 0) is a stable focus and the equilibrium point (7, 0)
is a saddle point. A

Note that the foregoing linearization property dealt only with cases when the
linearized state equation has no eigenvalues on the imaginary axis, that is, when
the origin is a hyperbolic equilibrium point of the linear system. We extend this
definition to nonlinear systems and say that an equilibrium point is hyperbolic if
the Jacobian matrix, evaluated at that point, has no eigenvalues on the imaginary
axis. If the Jacobian matrix has eigenvalues on the imaginary axis, then the qual-
itative behavior of the nonlinear state equation near the equilibrium point could
be quite distinct from that of the linearized state equation. This should come as
no surprise in view of our earlier discussion on the effect of linear perturbations
on the qualitative behavior of a linear system when the origin is not a hyperbolic
equilibrium point. The example that follows considers a case when the origin of the
linearized state equation is a center.

Example 2.5 The system

iy = —zg — pxi(2? 4+ zd)

Ty = T1— ,uxz(x% -+ a:g)
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has an equilibrium point at the origin. The linearized state equation at the origin
has eigenvalues 5. Thus, the origin is a center equilibrium point for the linearized
system. We can determine the qualitative behavior of the nonlinear system by
representing it in the polar coordinates:

zy=rcosf and zo=rsinf

which yield .
F=—pur> and f=1

From these equations, it can be easily seen that the trajectories of the nonlinear
system will resemble a stable focus when g > 0 and an unstable focus when u < 0.

A

The preceding example shows that the qualitative: behavior describing a center
in the linearized state equation is not preserved in the nonlinear state equation.

The foregoing discussion excludes the case when the linearized state equation has
a node with multiple eigenvalues. Exercise 2.5 shows a case where the linearization
has a stable node, while the trajectories of the nonlinear state equation behave like
a stable focus. It should be mentioned, however, that a smoother function f(z)
will not allow this to happen. In particular, if fi(z1,z2) and fo(z1,22) are analytic
functions® in a neighborhood of the equilibrium point, then it is true that'® if the
origin of the linearized state equation is a stable (respectively, unstable) node, then,
in a small neighborhood of the equilibrium point, the trajectories of the nonlinear
state equation will behave like a stable (respectively, unstable) node whether or not
the eigenvalues of the linearization are distinct.

Determining the type of equilibrium points via linearization provides useful in-
formation that should be used when we construct a global phase portrait of a
second-order system, whether we do that graphically or numerically. In fact, the
first step in constructing a phase portrait should be the calculation of all equilibrium
points and determining the type of isolated ones via linearization, which will give
us a clear idea about the expected portrait in the neighborhood of the equilibrium
points.

2.4 Limit Cycles

Oscillation is one of the most important phenomena that occur in dynamical sys-
tems. A system oscillates when it has a nontrivial periodic solution

2(t+T)=z(t), Yt>0

for some 7" > 0. The word “nontrivial” is used to exclude constant solutions corre-
sponding to equilibrium points. A constant solution satisfies the preceding equation,

9That is, f; and fo have convergent Taylor series representations.
198ee [115, Theorem 3.4, page 188].
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Figure 2.17: A linear LC circuit for the harmonic oscillator.

but it is not what we have in mind when we talk of oscillation or periodic solutions.
Unless otherwise specified, from this point on whenever we refer to a periodic solu-
tion, we will mean a nontrivial one. The image of a periodic solution in the phase
portrait is a closed trajectory, which is usually called a periodic orbit or a closed
orbit.

We have already seen an example of oscillation in Section 2.1: the second-order
linear system with eigenvalues £53. The origin of that system is a center and the
trajectories are closed orbits. When the system is transformed into its real Jordan
form, the solution is given by

21 (t) N COS(,Bt -+ 00), Zz(t) =Tg Sil’l(ﬂt + 90)

where ©)
=20 1 2 — tan-1 | 20
0 2(0) + 23(0), By = tan Ll (0)]

Therefore, the system has a sustained oscillation of amplitude r¢. It is usually
referred to as the harmonic oscillator. If we think of the harmonic oscillator as a
model for the linear LC circuit of Figure 2.17, then we can see that the physical
mechanism leading to these oscillations is a periodic exchange (without dissipation)
of the energy stored in the capacitor’s electric field with the energy stored in the
inductor’s magnetic field. There are, however, two fundamental problems with
this linear oscillator. The first problem is one of robustness. We have seen that
infinitesimally small right-hand side (linear or nonlinear) perturbations will destroy
the oscillation. That is, the linear oscillator is not structurally stable. In fact, it
is impossible to build an LC circuit that realizes the harmonic oscillator, for the
resistance in the electric wires alone will eventually consume whatever energy was
initially stored in the capacitor and inductor. Even if we succeeded in building the
linear oscillator, we would face the second problem: the amplitude of oscillation is
dependent on the initial conditions.

The two fundamental problems of the linear oscillator can be eliminated in
nonlinear oscillators. It is possible to build physical nonlinear oscillators such that

e The nonlinear oscillator is structurally stable.

o The amplitude of oscillation (at steady state) is independent of initial condi-
tions.
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The negative-resistance oscillator of Section 1.2.4 is an example of such nonlinear
oscillators. The state equations of the system are given by

ilzxg

&y = —x1—eh'(21)2s

where the function h satisfies certain properties, stated in Section 1.2.4. The system
has only one equilibrium point at x; = zo = 0. The Jacobian matrix at this point
is given by

0zlo0 | 1 —en(0)

Since A'(0) < 0, the origin is either an unstable node or unstable focus, depending
on the value of eh/(0). In either case, all trajectories starting near the origin would
diverge away from it and head toward infinity. The repelling feature of the origin is
due to the negative resistance of the resistive element near the origin, which means
that the resistive element is “active” and supplies energy. This point can be seen
analytically by writing an expression for the rate of change of energy. The total
energy stored in the capacitor and inductor at any time ¢ is given by

A

E =1{Cv} + L33
We have seen in Section 1.2.4 that

1
vo=1c; and ip=—h(zy)— gxz

Thus, recalling that ¢ = \/L/C, we can rewrite the energy expression as
E = 1C{a} + [eh(z1) + z2)*}
The rate of change of energy is given by

E = C{xiiy + [eh(xy) + zo][eh/ (x1)d1 + 2]}

C{arzg + [eh(z1) + zo)[eh/ (21)x2 — 21 — R/ (21) 2]}
Clzize — ez1h(z1) — T122]

= —eCzih(z1)

The preceding expression confirms that, near the origin, the trajectory gains energy
since for small || the term 21 h(z1) is negative. It also shows that there is a strip
—a < z; < bsuch that the trajectory gains energy within the strip and loses energy
outside the strip. The strip boundaries —a and b are roots of h(z;) = 0, as shown
in Figure 2.18. As a trajectory moves in and out of the strip, there is an exchange
of energy with the trajectory gaining energy inside the strip and losing it outside.
A stationary oscillation will occur if, along a trajectory, the net exchange of energy
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Figure 2.18: A sketch of h(z;) (solid) and —z1h(z1) (dashed), which shows that E is
positive for —a < x; <b.
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Figure 2.19: Phase portraits of the Van der Pol oscillator: (a) ¢ = 0.2; (b) £ = 1.0.

over one cycle is zero. Such a trajectory will be a closed orbit. It turns out that
the negative-resistance oscillator has an isolated closed orbit, which is illustrated in
the next example for the Van der Pol oscillator.

Example 2.6 Figures 2.19(a), 2.19(b), and 2.20(a) show the phase portraits of the
Van der Pol equation

.’1.’51 = I3 (25)
Ty = =T +€(1—x%)$2 (26)

for three different values of the parameter : a small value of 0.2, a medium value
of 1.0, and a large value of 5.0. In all three cases, the phase portraits show that
there is a unique closed orbit that attracts all trajectories starting off the orbit. For
¢ = 0.2, the closed orbit is a smooth orbit that is close to a circle of radius 2. This
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Figure 2.20: Phase portrait of the Van der Pol oscillator with ¢ = 5.0: (a) in z1-22
plane; (b) in z1—22 plane.

is typical for small ¢ (say, € < 0.3). For the medium value of £ = 1.0, the circular
shape of the closed orbit is distorted as shown in Figure 2.19(b). For the large value
of € = 5.0, the closed orbit is severely distorted as shown in Figure 2.20(a). A more
revealing phase portrait in this case can be obtained when the state variables are
chosen as z; = iy, and 22 = v¢, resulting in the state equations

1

~ 2y
€

I

4

22

i

—e(z1 — 22 + $23)

The phase portrait in the 21—z plane for £ = 5.0 is shown in Figure 2.20(b). The
closed orbit is very close to the curve z; = z — (1/3)23, except at the corners, where
it becomes nearly vertical. The vertical portion of the closed orbit can be viewed as
if the closed orbit jumps from one branch of the curve to the other as it reaches the
corner. Oscillations where the jump phenomenon takes place are usually referred to

as relazation oscillations. This phase portrait is typical for large values of ¢ (say,
€ > 3.0). JAY

The closed orbit we have seen in Example 2.6 is different from what we have
seen in the harmonic oscillator. In the case of the harmonic oscillator, there is a
continuum of closed orbits, while in the Van der Pol example, there is only one
isolated periodic orbit. An isolated periodic orbit is called a limit cycle. The limit
cycle of the Van der Pol oscillator has the property that all trajectories in the
vicinity of the limit cycle ultimately tend toward the limit cycle as t — oco. A
limit cycle with this property is classically known as a stable limit cycle. We shall
also encounter unstable limit cycles, which have the property that all trajectories
starting from points arbitrarily close to the limit cycle will tend away from it as
t — oo. (See Figure 2.21.) To see an example of an unstable limit cycle, consider
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Figure 2.21: (a) A stable limit cycle; (b) an unstable limit cycle.

the Van der Pol equation in reverse time; that is,

£y = —x

x; — (1l —xd)zo

i

I

The phase portrait of this system is identical to that of the Van der Pol oscillator,
except that the arrowheads are reversed. Consequently, the limit cycle is unstable.

The limit cycle of the Van der Pol oscillator of Example 2.6 takes special forms
in the limiting cases when ¢ is very small and very large. These special forms can
be predicted analytically by using asymptotic methods. In Chapter 10, we will use
the averaging method to derive the special form of the limit cycle as £ — 0; while in
Chapter 11, we will use the singular perturbation method to derive the special form
of the limit cycle as ¢ — oo.

2.5 Numerical Construction of Phase Portraits

Computer programs for numerical solution of ordinary differential equations are
widely available. They can be effectively used to construct phase portraits for
second-order systems. In this section, we give some hints!! that might be useful for
beginners.

The first step in constructing the phase portrait is to find all equilibrium points
and determine the type of isolated ones via linearization.

Drawing trajectories involves three tasks:'?

e Selection of a bounding box in the state plane where trajectories are to be

11These hints are taken from [149, Chapter 10], which contains more instructions on how to
generate informative phase portraits.

12 A fourth task that we left out is placing arrowheads on the trajectory. For the purpose of this
textbook, it can be conveniently done manually.
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drawn. The box takes the form
Timin S T1 < Timaz, Tomin < T2 < Tomaz
e Selection of initial points (conditions) inside the bounding box.
e Calculation of trajectories.

Let us talk first about calculating trajectories. To find the trajectory passing
through a point zg, solve the equation

j’::f(l‘% x(o)—“:xo

in forward time (with positive t) and in reverse time (with negative ¢). Solution in
reverse time is equivalent to solution in forward time of the equation

i=—f(), =(0)=g0 -

since the change of time variable 7 = —t reverses the sign of the right-hand side.
The arrowhead on the forward trajectory is placed heading away from zg, while the
one on the reverse trajectory is placed heading into zg. Note that solution in reverse
time is the only way we can get a good portrait in the neighborhood of unstable
focus, unstable node, or unstable limit cycle. Trajectories are continued until they
get out of the bounding box. If processing time is a concern, you may want to add
a stopping criterion when trajectories converge to an equilibrium point.

The bounding box should be selected so that all essential qualitative features
are displayed. Since some of these features will not be known @ priori, we may have
to adjust the bounding box interactively. However, our initial choice should make
use of all prior information. For example, the box should include all equilibrium
points. Care should be exercised when a trajectory travels out of bounds, for such
a trajectory is either unbounded or is attracted to a stable limit cycle.

The simplest approach to select initial points is to place them uniformly on a grid
throughout the bounding box. However, an evenly spaced set of initial conditions
rarely yields an evenly spaced set of trajectories. A better approach is to select the
initial points interactively after plotting the already calculated trajectories. Since
most computer programs have sophisticated plotting tools, this approach should be
quite feasible.

For a saddle point, we can use linearization to generate the stable and unstable
trajectories. This is useful because, as we saw in Examples 2.1 and 2.2, the stable
trajectories of a saddle define a separatrix. Let the eigenvalues of the linearization
be X\; > 0 > \; and the corresponding eigenvectors be v; and ve. The stable and
unstable trajectories of the nonlinear saddle will be tangent to the stable eigenvector
v2 and the unstable eigenvector v, respectively, as they approach the equilibrium
point p. Therefore, the two unstable trajectories can be generated from the initial
points zp = p % awy, where « is a small positive number. Similarly, the two stable
trajectories can be generated from the initial points zg = p + aw,. The major parts
of the unstable trajectories will be generated by solution in forward time, while the
major parts of the stable ones will be generated by solution in reverse time.
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2.6 Existence of Periodic Orbits

Periodic orbits in the plane are special in that they divide the plane into a region
inside the orbit and a region outside it. This makes it possible to obtain criteria
for detecting the presence or absence of periodic orbits for second-order systems,
which have no generalizations to higher order systems. The most celebrated of
these criteria are the Poincaré—Bendixson theorem, the Bendixson criterion, and
the index method.

We consider the second-order autonomous system

&= f(z) (2.7)

where f(z) is continuously differentiable. Poincaré-Bendixson theorem gives a con-
dition for the existence of periodic orbits of (2.7). We will not give the formal
statement of the theorem,™® but will give a corollary of the theorem which sum-
marizes how the theorem is actually applied. We refer to this corollary as the
Poincaré-Bendixson criterion.

Lemma 2.1 (Poincaré—Bendixson Criterion) Consider the system (2.7) and
let M be a closed bounded subset of the plane such that

e M contains no equilibrium points, or contains only one equilibrium point such
that the Jacobian matriz [8f/0z] at this point has eigenvalues with positive
real parts. (Hence, the equilibrium point is unstable focus or unstable node.)

e Fuvery trajectory starting in M stays in M for oll future time.

Then, M contains a periodic orbit of (2.7).

The intuition behind the criterion is that bounded trajectories in the plane will
have to approach periodic orbits or equilibrium points as time tends to infinity. If M
contains no equilibrium points, then it must contain a periodic orbit. If M contains
only one equilibrium point that satisfies the stated conditions, then in the vicinity
of that point all trajectories will be moving away from it. Therefore, we can choose
a simple closed curve'# around the equilibrium point such that the vector field on
the curve points outward.’® By redefining the set M to exclude the region enclosed
by this curve (see Figure 2.22), we end up with a set that is free of equilibrium
points, and all trajectories are trapped in it.

As a tool for investigating whether trajectories are trapped inside a set M,
consider a simple closed curve defined by the equation V(z) = ¢, where V(z) is
continuously differentiable. The vector field f(z) at a point z on the curve points

13For the statement and proof of the Poincaré~Bendixson theorem, see, for example, [135] or
the second edition of this book.

14A simple closed curve divides the plane into a bounded region inside the curve and an un-
bounded region outside it (examples are circles, ellipses, and polygons).

158ee Exercise 4.33.
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Figure 2.22: Redefinition of the set M to exclude the viE:inity of an unstable focus or
node.

mward if the inner product of f(z) and the gradient vector VV(z) is negative; that
is,

£2) VY (@) = 5 @)fa(e) + o (@) fale) < 0
The vector field f(z) points outward if f(z)- VV(z) > 0, and it is tangent to
the curve if f(z) - VV(z) = 0. Trajectories can leave a set only if the vector
field points outward at some point on its boundary. Therefore, for a set of the
form M = {V(z) < c}, for some ¢ > 0, trajectories are trapped inside M if
f(z) - VV(z) < 0 on the boundary V(z) = c. For an annular region of the form
M = {W(z) > ¢; and V(z) < o}, for some ¢; > 0 and ¢y > 0, trajectories are
trapped inside M if f(z) - VV(z) < 0 on V(z) = ¢z and f(z) - VW(z) > 0 on
W{z) = ¢;.

We illustrate the application of the Poincaré-Bendixson criterion in the next
two examples, while the third example is a nontrivial application to the negative-
resistance oscillator of Section 1.2.4.

Example 2.7 Consider the harmonic oscillator

i’1=$2

:i?g = —T1

and the annular region M = { ¢; < V(z) < ¢}, where V(z) = z? + 23 and
¢z > c1 > 0. The set M is closed, bounded, and free of equilibrium points, since
the only equilibrium point is at the origin (0, 0). Trajectories are trapped inside M
since f(z) - VV(z) = 0 everywhere. Hence, by the Poincaré-Bendixson criterion,
we conclude that there is a periodic orbit in M. VAN
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The preceding example emphasizes the fact that the Poincaré-Bendixson criterion
assures the existence of a periodic orbit, but not its uniqueness. From our earlier
study of the harmonic oscillator, we know that it has a continuum of periodic orbits
in M. )

Example 2.8 The system
&1 =z Fx—z (x4 22)
Ty = —2z1 +x0 — xg(ﬁ% + $§)
has a unique equilibrium point at the origin, and the Jacobian matrix

af [ 1-32%-x2 1—2z29 11 1
oz —2 — 21%9 1—af—323 | _ | -2 1

z=0

has eigenvalues 1=+ jv/2. Let M = {V(z) < c}, where V(z) = 22 + 23 and ¢ > 0.
It is clear that M is closed, bounded, and contains only one equilibrium point at
which the Jacobian matrix has eigenvalues with positive real parts. On the surface
V(z) = ¢, we have

ov ov

&*fl + é—x—fz = 2z1[z1 + o — 21 (2 + 23)] + 202[—221 + 2o — z2(2F + 22))
1 2

2(z3 + 22) — 2(x? + 22)? - 22129
2(2% +23) — 2(at + 23)? + (2% + 23)
= 3¢c—2¢

IN

where we used the fact that |2z1z2| < x? + 73. By choosing ¢ > 1.5, we can
ensure that all trajectories are trapped inside M. Hence, by the Poincaré-Bendixson
criterion, we conclude that there is a periodic orbit in M. VAN

Example 2.9 The negative-resistance oscillator of Section 1.2.4 is modeled by the
second-order differential equation

i+eh/(v)o+v=0
where ¢ is a positive constant and h satisfies the conditions

R(0) =0, A(0) <0, lm h(v)=o0c0, and lim h(v)= oo
V00 v

——00

To simplify the analysis, we impose the additional requirements
h(v) = —h(-v), h(v) <O0for0<v<a, and h(v)>O0forv>a

These additional requirements are satisfied by the typical function of Figure 1.6(b),
as well as by the function h(v) = —v + (1/3)v3 of the Van der Pol oscillator.
Choose the state variables as

z1=v and s =0+ ch(v)
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to obtain the state model

i

1 @2 —eh(z1) (2.8)
Ty = —I
which has a unique equilibrium point at the origin. We start our analysis by show-
ing that every nonequilibrium solution rotates around the equilibrium point in the
clockwise direction. To this end, we divide the state plane into four regions, which
are determined by the intersection of the two curves

zo —eh(z1) =0 and z; =0

as shown in Figure 2.23. The figure also shows the general direction of the vector
field f(z) of (2.8) in the four regions as well as on the boundaries between them.
It is not difficult to see that a solution starting at point A = (0,p) on the upper
half of the zs-axis describes an orbit with an arc of the general nature shown in
Figure 2.24. The point E where the arc intersects the lower half of the zy-axis
depends on the starting point A. Let us denote E by (0, —a(p)). We will show that
if p is chosen large enough, then a(p) < p. Consider the function

V(z) = 3(a] +23)
To show that a(p) < p, it is enough to show that V(E) — V(4) < 0, since
1 def
V(E) = V(4) = 3la*(p) - p*] = ()
The derivative of V (z) is given by
V(a:) = T1d1 + Tolo = 1% — ex1h(T1) — 129 = —ex1h(T1)

Thus, V is positive for 1 < a and negative for 1 > a. Now,

Sp)=V(B)-V(A) = [ V() dt
AE
where the right-hand side integral is taken along the arc from A to E. If p is small,
the whole arc will lie inside the strip 0 < z; < a. Then, é(p) will be positive. As
p Increases, a piece of the arc will lie outside the strip, that is, the piece BCD in
Figure 2.24. In this case, we evaluate the integral in different ways depending on
whether the arc is inside or outside the strip 0 < z; < a. We divide the integral
into three parts
6(p) = 01(p) + 02(p) + 03(p)

where
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Consider first the term
dt
51(})) = - E.’Elh(.’lil) dt = — 5$1h($1) — dIl
AB AB T

Substituting for dx1/d¢t from (2.8), we obtain

d$1

5,(p) = — /A _emih(e)

zg9 — eh(z1)

where, along the arc AB, 3 is a given function of ;. Clearly, é;(p) is positive. Note
that as p increases, o — eh(z1) increases for the arc AB. Hence, d;(p) decreases
as p — oo. Similarly, it can be shown that the third term d3(p) is positive and
decreases as p — co. Consider now the second term

dt
Sa(p) = ‘/ ex1h(zq) dt = -/ ex1h(z1) — dzo
BCD BCD dzo

Substituting for dzs/dt from (2.8), we obtain

d2(p) = /BCD eh(zy) dzs

where along the arc BCD, x7 is a given function of zo. The integral on the right-
hand side is negative since h(z1) > 0 and dzo < 0. As p increases, the arc ABCDE
moves to the right and the domain of integration for d2(p) increases. It follows that
62(p) decreases as p increases and evidently limy—.oc 02(p) = —c0. In summary, we
have shown that

e §(p) >0, if p <r, for some r > 0.
e §(p) decreases monotonically to —oo as p — oo, p > r.

A sketch of the function &(p) is shown in Figure 2.25. It is now clear that by
choosing p large enough, we can ensure that §(p) is negative; hence, a(p) < p.
Observe that, due to symmetry induced by the fact that h(-) is an odd function,
if (z1(t),z2(t)) is a solution of (2.8), then so is (—x1(t), —z2(t)). Therefore, if we
know that a path ABCDE exists as in Figure 2.24, then the reflection of that path
through the origin is another path. Consider A = (0,p) and E = (0, —a(p)), where
a(p) < p. Form a closed curve of the arc ABCDE, its reflection through the origin
and segments on the zg-axis connecting these arcs, to form a closed curve. (See
Figure 2.26). Let M be the region enclosed by this closed curve. Every trajectory
starting in M at ¢ = 0 will remain inside for all ¢ > 0. This is a consequence
of the directions of the vector fields on the xs-axis segments and the fact that
trajectories do not intersect each other due to uniqueness of solutions. Now M is
closed, bounded, and has a unique equilibrium point at the origin. The Jacobian
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Figure 2.23: Vector field diagram for  Figure 2.24: 'i’he orbit ABCDE of
Example 2.9. Example 2.9.

matrix at the origin

0 1
1O

Orloco | 1 —en(0)

has eigenvalues with positive real parts since h'(0) < 0. Thus, by the Poincaré-
Bendixson criterion, we conclude that there is a closed orbit in M.

Using the same analysis, we can go beyond the Poincaré-Bendixson criterion and
show that this closed orbit is unique. Notice that, due to the symmetry property
alluded to earlier, the system can have a closed orbit if and only if a(p) = p. From
Figure 2.25, it is clear that there is only one value of p for which the condition is
satisfied. Hence, there is only one closed orbit. Furthermore, we can show that
every nonequilibrium solution spirals toward the unique closed orbit. To argue this
point, let py > 0 be the unique value of p for which a(p) = p. Consider a point
(0,p) on the zs-axis with p > po. As we argued earlier, the trajectory through
(0,p) intersects the lower half of the zs-axis at a point (0, —a(p)), where a(p) < p.
Due to symmetry, the trajectory through (0, —a(p)) will meet the upper half of the
zp-axis at a point (0,0(p)), where pg < o(p) < p. The upper bound follows from
the symmetry property, while the lower bound holds since for o(p) to be less than
Po, the trajectory must intersect the closed orbit. The map p — o(p) is continuous
due to continuous dependence of the solution on the initial states.’® Starting again
at the point (0, o(p)), the trajectory comes back to the upper half of the zp-axis at
(0,0%(p)), where py < 0(p) < o(p). By induction, we generate a sequence o™ (p),
which satisfies

po < o™ (p) < o™(p), n=1,2,...

10T his fact is shown in Theorem 3.4.
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5(p) X 1A

E

Figure 2.25: A sketch of the function  Figure 2.26: The closed curve formed
d(p) of Example 2.9. in Example 2.9.

The sequence o™(p) has a limit p; > po. Note that, by continuity of o(-), the limit
p1 satisfies

o(p1) —p1 = lim o(c"(p)) ~pr=p1—p1 = 0
By uniqueness of the closed orbit, it must be that p; = po. This shows that the

trajectory of p spirals toward the unique closed orbit as t — co. The same thing is
true for p < po. A

The next result, known as the Bendizson criterion, can be used to rule out the
existence of periodic orbits in some cases.

Lemma 2.2 (Bendixson Criterion) If, on a simply connected region*™ D of the
plane, the expression 8f1/0xy1 + 0 fa/0xo is not identically zero and does not change
sign, then system (2.7) has no periodic orbits lying entirely in D. <

Proof: On any orbit of (2.7), we have dza/dzy = f2/f1. Therefore, on any closed
orbit v, we have

/h fo(@r, z2) dxy — fi(x1,22) dzg =0
Y

This implies, by Green’s theorem, that

0f1 | 0fa
// <8:c1 0332) dzy dzo =0

17A region D is simply connected if, for every simple closed curve C in D, the inner region of
C is a also a subset of D. The interior of any circle is simply connected, but the annular region
0< g < zl + a: < ¢g is not simply connected. Intuitively speaking, simple connectedness is
equivalent to the absence of “holes.”
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where S is the interior of v. If 8f1/8z1 + Of2/0z2 > 0 (or < 0) on D, then we
cannot find a region S C D such that the last equality holds. Hence, there can be
no closed orbits entirely in D. o

Example 2.10 Consider the system

1 = fi(z1,22) = 22
iy = folz1,%2) = axp +bay — xize — 2
and let D be the whole plane. We have
Bfl 3f2 _ 2
Oz + Bz b-a
Hence, there can be no periodic orbits if b < 0. Y

‘We conclude this section with a useful result that relates the existence of periodic
orbits and equilibrium points. The result uses the (Poincaré) index of an equilibrium
point. Given the second-order system (2.7), let C be a simple closed curve not
passing through any equilibrium point of (2.7). Consider the orientation of the
vector field f(z) at a point p € C. Letting p traverse C in the counterclockwise
direction, the vector f(z) rotates continuously and, upon returning to the original
position, must have rotated an angle 27k for some integer k, where the angle is
measured counterclockwise. The integer k is called the index of the closed curve
C. If C is chosen to encircle a single isolated equilibrium point Z, then k is called
the index of Z. It is left to the reader (Exercise 2.25) to verify the next lemma by
examining the vector fields.

Lemma 2.3

(a) The index of a node, a focus, or a center is +1.

(b) The index of a (hyperbolic) saddle is ~1.

(¢) The index of a closed orbit is +1.

(d) The index of a closed curve not encircling any equilibrium points is 0.

(e) The index of a closed curve is equal to the sumn of the indices of the equilibrium
points within, it. ©

As a corollary to this lemma, we have the following:

Corollary 2.1 Inside any periodic orbit -y, there must be at least one equilibrium
point. Suppose the equilibrium points inside vy are hyperbolic, then if N is the number
of nodes and foci and S is the number of saddles, it must be that N — S =1. <
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Recall that an equilibrium point is hyperbolic if the Jacobian at that point has no
eigenvalues on the imaginary axis. If the equilibrium point is not hyperbolic, then
its index may differ from +1. (See Exercise 2.26.)

The index method is usually useful in ruling out the existence of periodic orbits
in certain regions of the plane.

Example 2.11 The system

T = —I1+T1T2

Ty = T1+2Tp— 27172

has two equilibrium points at (0,0) and (1,1). The Jacobian matrices at these

points are
{8]”} [ -1 0 ] [8]”] [ 0 1 }
9z | (0,0 1) 0z | (11 -1 -1

Hence, (0,0) is a saddle, while (1,1) is a stable focus. The only combination of
equilibrium points that can be encircled by a periodic orbit is a single focus. Other
possibilities of periodic orbits, like a periodic orbit encircling both equilibria, are
ruled out. ‘ A

2.7 Bifurcation

The qualitative behavior of a second-order system is determined by the pattern of
its equilibrium points and periodic orbits, as well as by their stability properties.
One issue of practical importance is whether the system maintains its qualitative
behavior under infinitesimally small perturbations. When it does so, the system is
said to be structurally stable. In this section, we are interested in the complement of
structural stability. In particular, we are interested in perturbations that will change
the equilibrium points or periodic orbits of the system or change their stability
properties. Consider, for example, the system

&1 = p-—zi

i?z = =2
which depends on a parameter . For g > 0, the system has two equilibrium points
at (y/i,0) and (—/f,0). Linearization at (. /i, 0) results in the Jacobian matrix

4 ]

which shows that (/£, 0) is a stable node, while linearization at (—/f,0) yields the

Jacobian matrix
2/ 0
0 -1
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X2 / //X2 // XZ)/
\< AN
Figure 2.27: Phase portrait of the saddle—node bifurcation example for u > 0 (left),
p = 0 (center), and u < 0 (right).

which shows that (—,/f,0) is a saddle. As p decreases, the saddle and node ap-
proach each other, collide at p = 0, and disappear for u < 0. As u crosses zero, we
witness a dramatic change in the phase portrait of the system. Figure 2.27 shows
the phase portrait for positive, zero, and negative values of . While for positive
#, no matter how small it is, all trajectories in {x; > —,/i} reach steady state at
the stable node, for negative p all trajectories eventually escape to infinity. Such a
change in the qualitative behavior of the system is called bifurcation. More gener-
ally, bifurcation is a change in the equilibrium points or periodic orbits, or in their
stability properties, as a parameter is varied. The parameter is called a bifurcation
parameter, and the values at which changes occur are called bifurcation points. In
the foregoing example, the bifurcation parameter is y, and the bifurcation point is
w=0.

The bifurcation we saw in the previous example can be represented by the bi-
furcation diagram shown in Figure 2.28(a). The diagram sketches a measure of the
amplitude (or norm) of the equilibrium points versus the bifurcation parameter.
The stable node is represented by a solid line, and the saddle by a dashed line.
More generally, the ordinate of a bifurcation diagram is a measure of the amplitude
of equilibrium points or periodic orbits, with solid lines representing stable nodes,
stable foci, and stable limit cycles and dashed lines representing unstable nodes,
unstable foci, saddles, and unstable limit cycles. The bifurcation represented in
Figure 2.28(a) is called saddle-node bifurcation because it results from the collision
of a saddle and a node. Note that the Jacobian matrix has a zero eigenvalue at
the bifurcation point. This feature is common to the bifurcations shown in Fig-
ures 2.28(a) through (d), which are all examples of the so called zero-eigenvalue bi-
furcation. Figure 2.28(b) shows a transcritical bifurcation, where equilibrium points
persist through the bifurcation, but their stability properties change. For example,
the system

T, = pr;— Ty

Ty = —Ig
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(a) Saddle-node bifurcation (b) Transcritical bifurcation

u
(c) Supercritical pitchfork bifurcation (d) Subcritical pitchfork bifurcation

(e) Supercritical Hopf bifurcation (f) Subcrtitical Hopf bifurcation

Figure 2.28: Bifurcation diagrams.

has two equilibrium points at (0,0) and (u,0). The Jacobian at (0,0) is

w0

0 -1
which shows that (0,0) is a stable node for 1 < 0 and a saddle for ¢ > 0. On the
other hand, the Jacobian at (4, 0) is

- 0

|74
which shows that (4, 0) is a saddle for © < 0 and a stable node for p > 0. So, while
the equilibrium points persist through the bifurcation point x4 = 0, (0,0) changes

from a stable node to a saddle and (u,0) changes from a saddle to a stable node.

Before we proceed to describe the other bifurcations in Figure 2.28, let us note
an important difference between the foregoing two examples. In the latter example,
crossing the bifurcation point causes the equilibrium point at the origin to change
from a stable node to a saddle, but at the same time it creates a stable node at
(i, 0), which for small values of pu will be close to the origin. This could mean
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that the impact of bifurcation on the performance of the system is not dramatic.
Suppose, for example, that the nominal system has a negative value of u so that
the origin is a stable node. By sketching the phase portrait, it can be seen that
all trajectories in the set {zx; > u} approach the origin as time tends to infinity.
Suppose the nominal value of x has a small magnitude so that a small perturbation
can cause u to become positive. Then, the origin will be a saddle and there will be a
stable node at (i, 0). A sketch of the phase portrait would show that all trajectories
in the set {z; > 0} approach the stable node (u,0) as time tends to infinity. For
small values of p, the steady-state operating point of the system will be close to
the origin. So, while the perturbed system does not have the desired steady-state
behavior, it comes close to it. The situation is quite different in the saddle-node
bifurcation example. Suppose the nominal system has a positive value of y so that
all trajectories in the set {1 > —,/Ii} approach the stable node (,/f,0) as time
tends to infinity. If the nominal value of y is small and a small perturbation causes
1 to become negative, the stable node disappears all together and trajectories will
have to move away from the desired steady-state operating point, even diverge to
infinity in this case. Because of the difference in their impact on the steady-state
behavior, the bifurcation in the transcritical bifurcation example is said to be safe
or soft, while that in the saddle-node bifurcation example is said to be dangerous
or hard.

The classification of bifurcation into safe versus dangerous cases arises also when
we examine the bifurcation diagrams of Figures 2.28(c) and (d), which represent
supercritical pitchfork and subcritical pitchfork bifurcations, respectively. The first
of the two cases is exemplified by the system

3 3
Ty = UT — Ty

.i)g = —T9

For p < 0, there is a unique equilibrium point at the origin. By calculating the
Jacobian, we can see that the origin is a stable node. For p > 0, there are three
equilibrium points at (0,0), (\/&,0), and (—,/f,0). Jacobian calculations show
that (0,0) is a saddle and the other two equilibria are stable nodes. Thus, as u
crosses the bifurcation point p = 0, the stable node at the origin bifurcates into
a saddle and gives birth to two stable nodes at (,/4,0). The amplitude of the
newly created stable nodes grows with w; hence, it is small for small u. Subcritical
pitchfork bifurcation is exemplified by the system

; 3
1 = uxy +xy
Ty =~

For p < 0, there are three equilibrium points: a stable node at (0, 0) and two saddles
at (£/=p,0). For u > 0, there is a unique equilibrium point at (0, 0), which is a
saddle. Thus, as p crosses the bifurcation point g = 0, the stable node at the origin
collides with the saddles at (£./=pg,0) and bifurcates into a saddle. Comparing
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the supercritical and subcritical pitchfork bifurcations, we can easily see that the
supercritical bifurcation is safe, while the subcritical one is dangerous. In particular,
if the system has a nominal operating point at the stable node (0,0) for p < 0,
then supercritical pitchfork bifurcation ensures close steady-state operation when
u is perturbed to a small positive value, while in subcritical pitchfork bifurcation
trajectories move away from the nominal operating point.

In the simplified examples we used to discuss zero-eigenvalue bifurcations, we
noticed that in dangerous cases trajectories diverge to infinity. In more complicated
examples, the system may have other equilibrium points or periodic orbits that are
not affected by the bifurcation under consideration. Trajectories moving away from
the bifurcating equilibrium point could be attracted by another equilibrium point
or period orbit rather than diverge to infinity. This situation is illustrated by the
next example.

Example 2.12 Consider the tunnel-diode circuit of Section 1.2.2:

I

T -é* [—h(:cl) +.’E2]

Ty = ”}: [—z1 — Rxa +
The diode’s v— characteristic h(:) is sketched in Figure 1.2 and y is a constant
input. Let us study bifurcation as p is varied. The equilibrium points of the system
are the intersections of the curve zy = h(zy) with the load line z9 = (u — z1)/R.
From Figure 2.29(a) and Examples 2.1 and 2.3, we know that for u < A, there is a
stable node on the left branch; for A < u < B, there are three equilibrium points, a
saddle on the middie branch and two stable nodes on the other two branches; and
for 4 > B, there is a stable node on the right branch. The bifurcation diagram
is shown in Figure 2.29(b). There are two saddle-node bifurcations at u = A and
u = B. Notice that when a stable node disappears upon collision with a saddle,
trajectories that move away are attracted by the other stable node which is not
affected by the bifurcation. A

When a stable node loses stability at a bifurcation point, an eigenvalue of the
Jacobian passes through zero. What about a stable focus losing stability? In this
case, a pair of conjugate complex eigenvalues could pass through the imaginary
axis. Figures 2.28(e) and (f) are examples of this situation, where Figures 2.28(e)
is called supercritical Hopf bifurcation and Figures 2.28(f) is called subcritical Hopf
bifurcation.'® The supercritical Hopf bifurcation is exemplified by the system

& = z(p— 2~ 13) —x2
gy = wp(p—oi—a3) +a

18The names Andronov—Hopf bifurcation and Poincaré-Andronov-Hopf bifurcation are also used
to acknowledge the earlier contributions of Poincaré and Andronov.
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Figure 2.29: Example 2.12: (a) determining equilibrium points; (b) bifurcation diagram.

which is represented in the polar coordinates

xy=rcosf and zy=rsind

by )
F=pr—r> and §=1

The system has a unique equilibrium point at the origin and the phase portraits for
opposite signs of u are shown in Figure 2.30. For u < 0, the origin is a stable focus
and all trajectories are attracted to it, while for u > 0, the origin is an unstable
focus, but there is a stable limit cycle that attracts all trajectories, except the zero
solution. The limit cycle is r = /i, which shows that the amplitude of oscillation
grows with ¢ and is small for small values of p. This is a safe bifurcation because
when the stable focus disappears due to small perturbation, the system will have a
steady-state oscillation with a small amplitude. To see how the eigenvalues behave
during bifurcation, notice that the Jacobian at the origin

w1
1
has eigenvalues p =7, which cross the imaginary axis from left to right as u increases
from negative to positive values.
The subcritical Hopf bifurcation is exemplified by the system
@1 = @ [+ (el +23) - (2 + )] -2

i Ty [u+ (2} +a3) — (2} + 23)%] + =

Il

which is represented in polar coordinates by

F=pr+rd—r® and =1
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VY %
N D
/\‘\&/& |

Figure 2.30: Phase portrait of the supercritical Hopf bifurcation example for yp < 0
(left) and p > 0 (right).

There is a unique equilibrium point at the origin, which is a stable focus for < 0
and unstable focus for p > 0. From the equation

O=p+ri—rt

we can determine the limit cycles of the system. For g < 0, there are two limit
cycles at 2 = (1 & /T +4pu)/2. By sketching 7 = r(u + 72 — r%) as a function of
r (see Figure 2.31), it can be seen that the limit cycle at r? = (1 + /T + 4u)/2 is
stable, while the limit cycle at 2= (1 — /T + 44)/2 is unstable. For small |u], the
unstable limit cycle can be approximated by 72 = —pu. For 4 > 0, there is only one
stable limit cycle at 2 = (1 + /T + 4u)/2. Thus, as p increases from negative to
positive values, the stable focus at the origin merges with the unstable limit cycle
and bifurcates into an unstable focus, as represented by the bifurcation diagram of
Figures 2.28(f). Notice that the stable limit cycle is not shown in the bifurcation
diagram because varying p only varies its amplitude. The subcritical Hopf bifur-
cation is dangerous because small perturbation of a nominal stable focus at the
origin could force trajectories to move away from the origin. Those trajectories are
attracted by the stable limit cycle.

All the bifurcations represented in Figure 2.28 occur in the vicinity of an equi-
librium point. Therefore, they are called local bifurcations. There are also global
bifurcations, which involve large regions of the state plane and cannot be described
in the vicinity of any equilibrium point. We give only one example of global bifur-
cations.'® Consider the system

.’blzwg

It

. 2
T2 UTo + 1 — T + T1T2

19See [187] for other examples.
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TN

Figure 2.31: A sketch of ur + 73 — r® for u < 0 (left) and p > 0 (right).

There are two equilibrium points at (0,0) and (1,0). By linearization, we can see
that (0,0) is always a saddle, while (1,0) is an unstable focus for —1 < p < 1.
Let us limit our analysis to the range —1 < p < 1. Figure 2.32 shows the phase
portrait for four different values of u. The phase portraits for 4 = —0.95 and —0.88
are typical for p < p. ~ —0.8645, while that for u = —0.8 is typical for p > puc.
For p < p., there is a stable limit cycle that encircles the unstable focus. As u
increases towards 4., the limit cycle swells and finally touches the saddle at p = pe,
creating a trajectory that starts and ends at the saddle; such trajectory is called
homoclinic orbit. For u > p., the limit cycle disappears. Note that this bifurcation
occurs without any changes to the equilibrium points at (0, 0) and (1,0). This type
of global bifurcation is called saddle—connection or homoclinic bifurcation.

2.8 Exercises

2.1 For each of the following systems, find all equilibrium points and determine
the type of each isolated equilibrium:

(1) 1 = -z + 223 + 29, By = -1y — g

(2) 1 = xy+ T1%o, Ty = —Tg+zi+ 139 ~ T3
(3) z1 = [1—x1~2h(z)]z, Zg = [2—h(z)]z

(4) 1 = x, ty = —zy+22(1 —2? +0.12})
() @ = @-w-di-td), b = (te)l-oi-d)
(6) By = ~2} + 2o, Ey = z1—a3

In the third system, h(z) = z3/(1 + 21).
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p=—0.95

1=—0.88

)

n=—0.8645

)
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Figure 2.32: Saddle—connection bifurcation.

7

2.2 For each of the following systems, find all equilibrium points and determine
the type of each isolated equilibrium:

T2,
21y — z1Z9,

Z2,

i)
T2

I

I

) 1.5
-1 + 1621 — T2

~z9 — Y(21 — T2)

In the third system, ¥(y) = y*+0.5y if |y| < 1 and ¢(y) = 2y—0.5 sgn(y) if [y| > 1.

2.3 For each of the systems in Exercise 2.1, construct the phase portrait and
discuss the qualitative behavior of the system.
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Figure 2.33: Phase portraits of Exercise 2.4.

2.4 The phase portraits of the following four systems are shown in Figure 2.33.

(1) &y = Ty, g = zp-—2tan"!(z; +x2)
(2) Ty = 21— T1%0, iy = 22—z

(3) 1 = T, a3 = —z1+22(l — 322 - 223)
(4) &1 = —(w1—af)+ h(z), iy = —(z9—x3) +h(z)

In the fourth system, h(z) = 1 — x; — z5. Mark the arrowheads and discuss the
qualitative behavior of each system.

2.5 The system

— 2 T T + R
2 = —T3

In\/22 + 22’ In+/z% + 2

has an equilibrium point at the origin.

Cbl = —~Tj —
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(a) Linearize the system about the origin and show that the origin is a stable node
of the linear system.

(b) Find the phase portrait of the nonlinear system near the origin and show that
the portrait resembles a stable focus.
Hint: Transform the equations into polar coordinates.

(c) Explain the discrepancy between the results of parts (a) and (b).
2.6 Consider the system
Ty = -—Z1+axe —brixo + x%
@y = —(a+b)xy +br?— 370
where a > 0 and b # 0.
(a) Find all equilibrium points of the system.

(b) Determine the type of each isolated equilibrium point, for all values of a > 0
and b # 0. ‘

(c) For each of the following cases, construct the phase portrait and discuss the
qualitative behavior of the system:

i.a=b=1.
oe - — 1
ii.a=1,b=~-3.

fii. a=1, b= -2.
2.7 Consider the negative resistance oscillator of Section 1.2.4 with
h(v) = —v +v° — o+ %51)7

and ¢ = 1. Construct the phase portrait in the z-coordinates and discuss the
qualitative behavior of system.

2.8 Consider the system
Ty = g, Tg = —x1 + Tléa:“;’ — To
(a) Find the equilibrium points and determine the type of each isolated one.
(b) Without using a computer program, sketch the phase portrait of the system.

2.9 For cruise control, the longitudinal motion of a vehicle on a flat road can
be modeled, with the use of Newton’s second law, by the first-order differential
equation

mo =u— K, sgn(v) — Kyv — K v?
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where m is the vehicle’s mass, v is its speed, u is the tractive force generated by the
engine, K. sgn(v) is the coulomb friction force, K yv is the viscous friction force, and
K,v? is the aerodynamic drag. The coefficients K., Ky and K, are nonnegative.
When a PI controller is used, u = K,0 + K, (vag —v), where vg is the desired speed,
o is the state of the integrator ¢ = vq — v, and K, and K, are positive constants.
‘We are only interested in the region v > 0.

(a) Using 21 = o and 2o = v as the state variables, find the state model of the
system.

(b) Let vy be a positive constant. Find all equilibrium points and determine the
type of each point.

(c) Construct the phase portrait and discuss the qua‘litative behavior of the sys-
tem, for the following numerical data: m = 1500 kg, K. = 110 N, K; =
2.5 N/m/sec, K, =1 N/m?/sec?, K, = 15, K, = 500, and vg4 = 30 m/sec.

(d) Repeat part (c) when K7 is increased to 150. Compare with the behavior in
part (c).

(e) Repeat part (¢) when saturation is used to limit u to the range 0 < u < 1800 N.
Compare with the behavior in part (c).

2.16 Consider the tunnel-diode circuit of Section 1.2.2 with the numerical data
used in Example 2.1, except for R and E, which are taken as £ = 0.2V and
R =0.2kQ.

(a) Find all equilibrium points and determine the type of each point.

(b) Construct the phase portrait and discuss the qualitative behavior of the circuit.

2.11 Repeat the previous problem with F = 0.4V and R = 0.2k().

2.12 Consider the Hopfield neural network model of Section 1.2.4 with n = 2,
V=1 and Toy =Tip=1 Fori=1,2,take ; =0, C; =1, p; = 1, Tj; = 0, and
9i(w) = (2/7) tan™  (Amu/2).

(a) Find all equilibrium points and determine the type of each point.

(b) For X\ = 5, construct the phase portrait and discuss the qualitative behavior of
the system.

2.13 An equivalent circuit of the Wien-Bridge oscillator is shown in Figure 2.34
[40], where g(v3) is a nonlinear voltage-controlled voltage source.
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Figure 2.34: Exercise 2.13.

(a) With z; = v, and z3 = v2 as state variables, show that the state model is given

by
Ty = Cl_lR;[_xl + x5 — g(w2)]
. 1 1
Ty = = o) [—z1 4+ 22 — g(x2)] — 52']3:;902

(b) Let C; = Cy = Ry = Ry =1 and g(v) = 3.234v —2.195v3 +0.6661°. Construct
the phase portrait and discuss the qualitative behavior of the system.

2.14 Consider the mass-spring system with Coulomb friction
G+ky+ecy+nly,y) =0
where 7 is defined in Section 1.2.3. Use piecewise linear analysis to sketch the

phase portrait (without numerical data) and discuss the qualitative behavior of the
system.

2.15 Consider the system
T1 = T3, To =1u
where the control input w can take the values +1.
(a) Sketch the phase portrait when v = 1.
(b) Sketch the phase portrait when v = —1.
(¢) By superimposing the two phase portraits, develop a strategy for switching the

control between =1 so that any point in the state plane can be moved to the
origin in finite time.
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2.16 A prey-predatory system may be modeled by [202]
fl'?l =£C1(1-*l'1—a$2), i’Q =bz2(x1—x2)

where z; and z are dimensionless variables proportional to the prey and predator
populations, respectively, and a and b are positive constants.

(a) Find all equilibrium points and determine the type of each point.

(b) Construct the phase portrait in the first quadrant (zy > 0, 23 > 0).whena =1,
b = 0.5 and discuss the qualitative behavior of the system.

2.17 For each of the following systems, use the Poincaré-Bendixson’s criterion to
show that the system has a periodic orbit:

(1) gy = ep(l-y* -4

(2) 1 = o, g = —zy+32(2~ 327~ 2z3)
(3) Ty = o, &y = —xy+ 3o — 2(xy + 230)23
(4) 1 = z1+ 9 — z1h(x), &y = =2z1+ 9 —z2h(z)

In the fourth system, h(x) = max{|z1], |z2|}.
2.18 (Conservative Systems) Consider the second-order system
1 =22,  Fz=—g(z1)

where g is continuously differentiable and zg(z) > 0 for z # 0 Consider the energy
function

1
V) =i+ [ g(e) da
0
(a) Show that V(z) remains constant during the motion of the system.
(b) Show that, for sufficiently small ||z(0}|], every solution is periodic.

(c¢) Suppose that zg(z) > 0 for z € (—o0, 00) and

y
/ g9(z) dz — oo as |y| — o0
0

Show that every solution is a periodic solution.

(d) Suppose that g(z) = —g(—2) and let G(y) = [ g(z) dz. Show that the trajec-
tory through (A, 0) is given by

T = =/2[G(A) — G(z1))
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(e) Using part (d), show that the period of oscillation of a closed trajectory through

(A,0) is
A d'y
1) =22 [ e

(f) Discuss how the trajectory equation in part (d) can be used to construct the
phase portrait of the system.

2.19 Use the previous exercise to construct the phase portrait and study periodic
solutions for each of the following systems:

(1) g(z1) =sinz, (2) g(z1) =21 + 73, (3) g(z1) =z}

In each case, give the period of oscillation of the periodic orbit through the point
(1,0).

2.20 For each of the following systems, show that the system has no limit cycles:

(1) Ty = —Iy+ Ty, Ty = g(r1)+azy, a#1l
(2) 1 o= -z 4o} + ozl iy = —xp+ 15+ 2z
(3) ;= 1-—z22, To = 1

(4) 1 = T1Tg, Ty = Ty

(5) 1 = xzgcos(zy), Ty = sinz

2.21 Consider the system
&1 = —x1 + z2(z1 +a) — b, Eo = —cz1(z1 +a)

where a, b, and ¢ are positive constants with b > a. Let

. 'y + b
D:{meRzlzl<—aandCE2<ll+ }
T+ a

(a) Show that every trajectory starting in D stays in D for all future time.
(b) Show that there can be no periodic orbits through any point z € D.
2.22 Consider the system

Ty = ary — T1Z9, Io = bx% — Ty

where a, b, and ¢ are positive constants with ¢ > a. Let D = {z € R? | z5 > 0}.
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(a) Show that every trajectory starting in D stays in D for all future time.
(b) Show that there can be no periodic orbits through any point z € D.
2.23 ([85]) Consider the system
) = To, &y = —[2b — g(x1)]azy — o’z
where a and b are positive constants, and
R
(a) Show, using Bendixson’s criterion, that there are no periodic orbits if & < 2b.

(b) Show, using the Poincaré-Bendixson criterion, that there is a periodic orbit if
k > 2b.

2.24 Consider a second-order system and suppose that the set M = {z?+2% < a?}
has the property that every trajectory starting in M stays in M for all future time.
Show that M contains an equilibrium point.

2.25 Verify Lemma 2.3 by examining the vector fields.

2.26 ([70]) For each of the following systems, show that the origin is not hyper-
bolic, find the index of the origin, and verify that it is different from +1:

(1) & = i, Ty = —xp
(2) & = a?—a3, By = 2T

2.27 For each of the following systems, find and classify bifurcations that occur
as u varies:

(1) Ty = Iy, &y = p(zy 4+ x) — x5 — 2} — 3xiny

(2) & = -~z -+, &y = —(14 pdzy +2uzs — pad + 2(x — pxy)®
(3) Ty = Tg, Ty = p—xg—xi— 23179

4y iy = 9, By = —(14 p?)z + 2uzs + pad — 23z,

() & = o, Ey = pzy 4 z2) — 22 — 23 + 3232y

(6) T3 = o, zo = plry+x2)— T2 — 9:% — 221Z2
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2.28 The model that follows is used to analyze the interaction between inhibitory
and excitatory neurons in a biological system [195]. In its simplest form, the model
describes the interaction of two neurons with z; as the output of the excitatory

neuron and x5 as the output of the inhibitory neuron. The evolution of x4y and zo
is described by

1
i = - —o + tanh(Az;) — tanh(Az2)

o

I

- 7}_'1172 + tanh(Az1) + tanh(Azs)

where 7 > 0 is a characteristic time constant and A > 0 is an amplification gain.

(a) Using the Poincaré-Bendixson criterion, show that the system has a periodic
orbit when Ar > L.

(b) Construct the phase portrait for 7 = 1 and A = 2 and discuss the qualitative
behavior of the system.

(c) Repeat part (b) for 7 =1 and A = 1/2.
(d) Find and classify bifurcations that occur as p = Ar varies.

2.29 A model that is used to analyze a class of experimental systems known as
chemical oscillators [187] is given by

. 4dx12o , Zo
h=ammog hsbn (1o
1 1

where z; and zo are dimensionaless concentrations of certain chemicals and a, b
are positive constants.

(a) Using the Poincaré-Bendixson criterion, show that the system has a periodic
orbit when b < 3a/5 — 25/a.

(b) Construct the phase portrait in the first quadrant for a = 10, b = 2 and discuss
the qualitative behavior of the system.

(c) Repeat part (b) for a = 10, b= 4.
(d) Find and classify bifurcations that occur as b varies, while a is fixed.

2.30 A Dbiochemical reactor can be represented by the model

Y R i I L B __ HmT1T
xl_(km+x2 d)‘“’ &2 = d(w25 — 72) Y (ko + 22)

where the state variables and the nonnegative constants d, pm, km, ¥, and o are
defined in Exercise 1.22. Let pp, = 0.5, ky, = 0.1, Y = 0.4, and zo5 = 4.
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(a) Find all equilibrium points for d > 0 and determine the type of each point.

(b) Study bifurcation as d varies.

(c) Construct the phase portrait and discuss the qualitative behavior of the system
when d = 0.4.

2.31 A biochemical reactor can be represented by the model

. Hm T2 . HmZ1Z2
o (km ¥ 2o + kel ) ;o de=dleey o) - g

where the state variables and the nonnegative constants d, f, km, k1, Y, and zaf
are defined in Exercise 1.22. Let p,, = 0.5, k,, = 0.1, k; = 0.5, Y = 0.4, and
ng = 4. )

(a) Find all equilibrium points for d > 0 and determine the type of each point.
(b) Study bifurcation as d varies.

(c) Construct the phase portrait and discuss the qualitative behavior of the system
when d = 0.1.

(d) Repeat part (c) when d = 0.25.

(e) Repeat part (c) when d = 0.5

fn
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Chapter 3

Fundamental Properties

This chapter states some fundamental properties of the solutions of ordinary differ-
ential equations, like existence, uniqueness, continuous dependence on initial con-
ditions, and continuous dependence on parameters. These properties are essential
for the state equation ¢ = f(f, ) to be a useful mathematical model of a physical
system. In experimenting with a physical system such as the pendulum, we expect
that starting the experiment from a given initial state at time tp, the system will
move and its state will be defined in the (at least immediate) future time t > #o.
Moreover, with a deterministic system, we expect that if we could repeat the ex-
periment exactly, we would get exactly the same motion and the same state at
t > tp. For the mathematical model to predict the future state of the system from
its current state at g, the initial-value problem

&= f(ta JJ), $(t0) =To (31)

must have a unique solution. This is the question of existence and uniqueness
that is addressed in-Section 3.1. It is shown that existence and uniqueness can
be ensured by imposing some constraints on the right-hand side function f(%,z).
The key constraint used in Section 3.1 is the Lipschitz condition, whereby f(t,x)
satisfies the inequality®

1/ 2) = FEul < Lz -yl (3-2)

for all (t,z) and (¢,y) in some neighborhood of (to, zo).

An essential factor in the validity of any mathematical model is the continuous
dependence of its solutions on the data of the problem. The least we should expect
from a mathematical model is that arbitrarily small errors in the data will not result
in large errors in the solutions obtained by the model. The data of the initial-value
problem (3.1) are the initial state xo, the initial time to, and the right-hand side

11| - || denotes any p-norm, as defined in Appendix A.

87
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function f(t,z). Continuous dependence on the initial conditions (¢g,z¢) and on
the parameters of f are studied in Section 3.2. If f is differentiable with respect
to its parameters, then the solution will be differentiable with respect to these
parameters. This is shown in Section 3.3 and is used to derive sensitivity equations
that describe the effect of small parameter variations on the performance of the
system. The continuity and differentiability results of Sections 3.2 and 3.3 are valid
only on finite time intervals. Continuity results on the infinite time interval will be
given later, after stability concepts have been introduced.?

The chapter ends with a brief statement of a comparison principle that bounds
the solution of a scalar differential inequality © < f(¢,v) by the solution of the
differential equation 4 = f(t,u).

3.1 Existence and Uniqueness

In this section, we derive sufficient conditions for the existence and uniqueness of
the solution of the initial-value problem (3.1). By a solution of (3.1) over an interval
[to, t1], we mean a continuous function z : [tg,t1] — R™ such that £(t) is defined
and &(t) = f(t,z(t)) for all ¢ € [tg,t1]. If f(¢,z) is continuous in ¢ and z, then
the solution z(t) will be continuously differentiable. We will assume that f(t,z) is
continuous in z, but only piecewise continuous in ¢, in which case, a solution z(¢)
could only be piecewise continuously differentiable. The assumption that f(t, z) be
piecewise continuous in t allows us to include the case when f(¢,z) depends on a
time-varying input that may experience step changes with time.

A differential equation with a given initial condition might have several solutions.
For example, the scalar equation

i&=x3  with z(0)=0 (3.3)

has a solution z(t) = (2t/3)3/2. This solution is not unique, since z(t) = 0 is another
solution. In noting that the right-hand side of (3.3) is continuous in z, it is clear
that continuity of f(¢,z) in its arguments is not sufficient to ensure uniqueness of
the solution. Extra conditions must be imposed on the function f. The question of
existence of a solution is less stringent. In fact, continuity of f(¢, z) in its arguments
ensures that there is at least one solution. We will not prove this fact here.® Instead,
we prove an easier theorem that employs the Lipschitz condition to show existence
and uniqueness.

Theorem 3.1 (Local Existence and Uniqueness) Let f(t,z) be piecewise con-
tinuous in t and satisfy the Lipschitz condition

[7(tz) = ft.n)] < Lilz -yl

2See, in particular, Section 9.4.
$See [135, Theorem 2.3] for a proof.
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Vaz,y€ B={z € R" | |lz —=zo] <r}, V€& to,t1]. Then, there exists some § > 0
such that the state equation & = f(t,z) with z(to) = zp has a unique solution over
[to, to + 0]. &

Proof: See Appendix C.1.

The key assumption in Theorem 3.1 is the Lipschitz condition (3.2). A function
satisfying (3.2) is said to be Lipschitz in z, and the positive constant L is called a
Lipschitz constant. We also use the words locally Lipschitz and globally Lipschitz to
indicate the domain over which the Lipschitz condition holds. Let us introduce the
terminology first for the case when f depends only on z. A function f(z) is said
to be locally Lipschitz on a domain (open and connected set) D C R™ if each point
of D has a neighborhood Dg such that f satisfies the Lipschitz condition (3.2) for
all points in Dy with some Lipschitz constant Ly. We say that f is Lipschitz on a
set W if it satisfies (3.2) for all points in W, with the same Lipschitz constant L.
A locally Lipschitz function on a domain D is not necessarily Lipschitz on D, since
the Lipschitz condition may not hold uniformly (with the same constant L) for all
points in D. However, a locally Lipschitz function on a domain D is Lipschitz on
every compact (closed and bounded) subset of D (Exercise 3.19). A function f(z)
is said to be globally Lipschitz if it is Lipschitz on R™. The same terminology is
extended to a function f(t,z), provided the Lipschitz condition holds uniformly in
t for all ¢ in a given interval of time. For example, f(¢,z) is locally Lipschitz in =
on [a,b] x D C R x R™ if each point z € D has a neighborhood Dg such that f
satisfies (3.2) on [a, b] x Dy with some Lipschitz constant Lg. We say that f(t,z)
is locally Lipschitz in z on [tg,00) x D if it is locally Lipschitz in z on [a,b] x D
for every compact interval [a,b] C [tg,00). A function f(¢,z) is Lipschitz in z on
la,b] x W if it satisfies (3.2) for all ¢ € [a,]] and all points in W, with the same
Lipschitz constant L.

When f: R — R, the Lipschitz condition can be written as

|f(y) = f(=@)] <r
ly—z|
ly-x| -

which implies that on a plot of f(z) versus z, a straight line joining any two points
of f(z) cannot have a slope whose absolute value is greater than L. Therefore, any
function f(z) that has infinite slope at some point is not locally Lipschitz at that
point. For example, any discontinuous function is not locally Lipschitz at the point
of discontinuity. As another example, the function f(z) = 2!/, which was used in
(3.3), is not locally Lipschitz at x = 0 since f'(z) = (1/3)z72/® — co asz — 0. On
the other hand, if |f'(z)| is bounded by a constant k over the interval of interest,
then f(z) is Lipschitz on the same interval with Lipschitz constant L = k. This
observation extends to vector-valued functions, as demonstrated by Lemma 3.1.

Lemma 3.1 Let f : [a,b] x D — R™ be continuous for some domain D C R".
Suppose that [0f/0z] exists and is continuous on [a,b] x D. If, for a convex subset
Suppose that [oflox] exists and is continuous on [a ] x D. If, for a convex subset
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W C D, there is a constant L > O such that

)1%{-@@ <L

on |a,b] x W, then

“f(tv x) - f(tvy)” < LH.’)3 - y”
foralltela,b,zeW, andye W. <
Proof: Let ||-||, be the underlying norm for any p € [1, 00}, and determine g € [1, 00]
from the relationship 1/p+1/¢ = 1. Fix t € [a,b], z € W, and y € W. Define

v(8) = (1 — 8)z + sy for all s € R such that v(s) € D. Since W C D is convex,
v(s) € W for 0 < s < 1. Take z € R™ such that*

lzllg=1 and 2F[f(t,y) = f(t,2)) = |f(t,y) — F(t.2)llp
Set g(s) = 27 f(t,~(s)). Since g(s) is a real-valued function, which is continuously

differentiable in an open interval that includes [0, 1], we conclude by the mean value
theorem that there is s; € (0,1) such that

9(1) — g(0) = g'(s1)

Evaluating g at s = 0, s = 1, and calculating ¢'(s) by using the chain rule, we
obtain

e - f6o] = L))
1569~ 16Dl < ol | Lt ly-slp < Lyl
P
where we used the Holder inequality |2Tw| < ||z|q]lwllp. o

The lemma shows how a Lipschitz constant can be calculated using knowledge
of [0f/0x].

The Lipschitz property of a function is stronger than continuity. It can be
easily seen that if f(z) is Lipschitz on W, then it is uniformly continuous on W
(Exercise 3.20). The converse is not true, as seen from the function f(z) = z/3,
which is continuous, but not locally Lipschitz at z = 0. The Lipschitz property is
weaker than continuous differentiability, as stated in the next lemma.

Lemma 3.2 If f(t,z) and [0f/0z](t,z) are continuous on [a,b] x D, for some
domain D C R™, then f is locally Lipschitz in z on [a,b] x D. <&

4Such z always exists. (See Exercise 3.21.)
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Proof: For zg € D, let r be so small that the ball Dy = {z € R" | ||z — zo|| < 7}
is contained in D. The set Dy is convex and compact. By continuity, [8f/0z]
is bounded on [a,b] x Dy. Let Ly be a bound for ||8f/8z| on [a,b] x Dy. By
Lemma 3.1, f is Lipschitz on [a, b] x Dy with Lipschitz constant Ly. ]

It is left to the reader (Exercise 3.22) to extend the proof of Lemma 3.1 to prove

the next lemma.

Lemma 3.3 If f(t,z) and [0f/0z](t,x) are continuous on |a,b] x R™, then f is
globally Lipschitz in = on [a,b] x R™ if and only if [0f/0x] is uniformly bounded on
la,b] x R™. <&

Example 3.1 The function

fz) = { —z1 + T1Tg }

Ty — T1To

is continuously differentiable on R?. Hence, it is locally Lipschitz on R2. It is not
globally Lipschitz since [8f/8z] is not uniformly bounded on R?. On any compact
subset of R?, f is Lipschitz. Suppose that we are interested in calculating a Lipschitz
constant over the convex set W = {z € R? | |z1] < a1, |z2| < as}. The Jacobian

matrix is given by
gji _ —1 44 x
Ox - —I9 1- Zq

Using ||.||oo for vectors in R? and the induced matrix norm for matrices, we have

of
Oz

All points in W satisfy

= max{| — 1+ 22| + |z1], |m2| + |1 — 2]}

oo

| =142+ o) <14a2+a; and |z +|1—z| <as+14a;

of
|

and a Lipschitz constant can be taken as L = 1+ a3 + as. A

Hence,

<l+4a;+az

[ee]

Example 3.2 The function

0= | i e |

—sat(z1 + z2)
is not continuously differentiable on R?. Let us check its Lipschitz property by

examining f(z)— f(y). Using ||.|]2 for vectors in R? and the fact that the saturation
function sat(-) satisfies

Isat(n) — sat(§)| < |n — €|
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we obtain

N

@) = fWIE < (z2—w2)+ (@1 + 22 — 1 — 32)°
(z1 = y1)* + 2(z1 — y1)(x2 — y2) + 2(x2 — v2)°

i

Using the inequality

a1P71 1
2 2
a+2ab+2b-[b} [12

we conclude that

Il f(z) = FW)llz < V2.618 ||z — yl|2, Vaye R?

Here we have used a property of positive semidefinite symmetric matrices; that is,
2T Pz < Apax(P) 2%z, for all z € R™, where Amax(-) is the maximum eigenvalue of
the matrix. A more conservative (larger) Lipschitz constant will be obtained if we
use the more conservative inequality

a® + 2ab + 20 < 24® + 3b* < 3(a® + %)
resulting in a Lipschitz constant L = /3. A

In these two examples, we have used || ||oo in one case and ||- ||z in the other. Due
to equivalence of norms, the choice of a norm on R™ does not affect the Lipschitz
property of a function. It only affects the value of the Lipschitz constant (Exer-
cise 3.5). Example 3.2 illustrates the fact that the Lipschitz condition (3.2) does
not uniquely define the Lipschitz constant L. If (3.2) is satisfied with some positive
constant L, it is satisfied with any constant larger than L. This nonuniqueness can
be removed by defining L to be the smallest constant for which (3.2) is satisfied,
but we seldom need to do that.

Theorem 3.1 is a local theorem since it guarantees existence and uniqueness only
over an interval [tg,to -+ 8], where § may be very small. In other words, we have
no control on §; hence, we cannot ensure existence and uniqueness over a given
time interval [to,t1]. However, one may try to extend the interval of existence by
repeated applications of the local theorem. Starting at a time tg, with an initial
state z(tp) = zo, Theorem 3.1 shows that there is a positive constant § (dependent
on xg) such that the state equation (3.1) has a unique solution over the time interval
[to, to + 8]. Now, taking to + & as a new initial time and z(to + &) as a new initial
state, one may try to apply Theorem 3.1 to establish existence of the solution beyond
to+ 0. If the conditions of the theorem are satisfied at (¢9 + 4, z(to + 8)), then there
exists d2 > 0 such that the equation has a unique solution over [tg + §,t0 + & + J3]
that passes through the point (o +4, z(to+49)). We piece together the solutions over
[to,to+ 6] and [tg + 8, to + & + 2] to establish the existence of a unique solution over
[to, %o + & + J2]. This idea can be repeated to keep extending the solution. However,
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in general, the interval of existence of the solution cannot be extended indefinitely
because the conditions of Theorem 3.1 may cease to hold. There is a maximum
interval [to,T') where the unique solution starting at (to,z) exists.® In general, T
may be less than ¢, in which case as t — T', the solution leaves any compact set
over which f is locally Lipschitz in @ (Exercise 3.26).

Example 3.3 Consider the scalar system
& =—2z% with z(0) = -1

The function f(z) = —z? is locally Lipschitz for all z € R. Hence, it is Lipschitz
on any compact subset of R. The unique solution

1

Tt-1

exists over [0,1). Ast — 1, z(t) leaves any compact set. A

z(t)

The phrase “finite escape time” is used to describe the phenomenon that a trajectory
escapes to infinity at a finite time. In Example 3.3, we say that the trajectory has
a finite escape time at t = 1.

In view of the discussion preceding Example 3.3, one may pose the following
question: When is it guaranteed that the solution can be extended indefinitely?
One way to answer the question is to require additional conditions which ensure
that the solution z(t) will always be in a set where f(t,z) is uniformly Lipschitz
in z. This is done in the next theorem by requiring f to satisfy a global Lipschitz
condition. The theorem establishes the existence of a unique solution over [tg, 1],
where t1 may be arbitrarily large.

Theorem 3.2 (Global Existence and Uniqueness) Suppose that f(t, z) is piece-
wise continuous in t and satisfies

I/t x) = f(t 9l < Lilz - y]

Y z,y € R", Vt € [to,11]. Then, the state equation & = f(t,z), with z(to) = xo,
has a unique solution over [to, t1]. <&

Proof: See Appendix C.1.
Example 3.4 Consider the linear system
&= A(t)x +g(t) = f(t )

where A(t) and g(t) are piecewise continuous functions of t. Over any finite interval
of time [to,t1], the elements of A(t) are bounded. Hence, ||A(t)|| < a, where ||A|| is
any induced matrix norm. The conditions of Theorem 3.2 are satisfied since

1/t 2) = £ (& o)l = A (= ~ )l < TAD llz - yll < allz -y

5For a proof of this statement, see [81, Section 8.5] or [135, Section 2.3].
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for all z,y € R™ and t € [tg,t1]. Therefore, Theorem 3.2 shows that the linear
system has a unique solution over [tg,%1]. Since {1 can be arbitrarily large, we can
also conclude that if A(t) and g(t) are piecewise continuous V¢ > g, then the system
has a unique solution V t > ¢5. Hence, the system cannot have a finite escape time.

A

For the linear system of Example 3.4, the global Lipschitz condition of Theorem
3.2 is a reasonable requirement. This may not be the case for nonlinear systems, in
general. We should distinguish between the local Lipschitz requirement of Theorem
3.1 and the global Lipschitz requirement of Theorem 3.2. Local Lipschitz property
of a function is basically a smoothness requirement. It is implied by continuous
differentiability. Except for discontinuous nonlinearities, which are idealizations
of physical phenomena, it is reasonable to expect models of physical systems to
have locally Lipschitz right-hand side functions. Examples of continuous functions
that are not locally Lipschitz are quite exceptional and rarely arise in practice.
The global Lipschitz property, on the other hand, is restrictive. Models of many
physical systems fail to satisfy it. One can easily construct smooth meaningful
examples that do not have the global Lipschitz property, but do have unique global
solutions, which is an indication of the conservative nature of Theorem 3.2.

Example 3.5 Counsider the scalar system

& =2’ = f(z)
The function f(z) does not satisfy a global Lipschitz condition since the Jacobian
Of/8z = —3z? is not globally bounded. Nevertheless, for any initial state z(tg) =
Zo, the equation has the unique solution
g

z(t) = sign(zo) T+ 203(t —to)

which is well defined for all ¢t > ;. A

In view of the conservative nature of the global Lipschitz condition, it would be
useful to have a global existence and uniqueness theorem that requires the function
f to be only locally Lipschitz. The next theorem achieves that at the expense of
having to know more about the solution of the system.

Theorem 3.3 Let f(t,z) be piecewise continuous in ¢ and locally Lipschitz in z
for allt > tg and all z in a domain D C R™. Let W be a compact subset of D,
zo € W, and suppose it is known that every solution of

T = f(t,l‘), I(to) = o

lies entirely in W. Then, there is a unique solution that is defined for allt > tg. <
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Proof: Recall the discussion on extending solutions, preceding Example 3.3. By
Theorem 3.1, there is a unique local solution over [t,to -+ 6]. Let [to, T') be its max-
imal interval of existence. We want to show that T' = co. Recall (Exercise 3.26)
the fact that if T is finite, then the solution must leave any compact subset of D.
Since the solution never leaves the compact set W, we conclude that T = oco. O

The trick in applying Theorem 3.3 is in checking the assumption that every
solution lies in a compact set without actually solving the differential equation. We
will see in Chapter 4 that Lyapunov’s method for studying stability is very valuable
in that regard. For now, let us illustrate the application of the theorem by a simple
example.

Example 3.6 Consider again the system
i=—z®= f(z)

of Example 3.5. The function f(z) is locally Lipschitz on R. If, at any instant
of time, z(t) is positive, the derivative z(t) will be negative. Similarly, if z(t) is
negative, the derivative (¢) will be positive. Therefore, starting from any initial
condition z(0) = a, the solution cannot leave the compact set {z € R | |z] <
lal}. Thus, without calculating the solution, we conclude by Theorem 3.3 that the
equation has a unique solution for all ¢ > 0. AN

3.2 Continuous Dependence on Initial Conditions
and Parameters

For the solution of the state equation (3.1) to be of any interest, it must depend
continuously on the initial state zg, the initial time tg, and the right-hand side
function f(t,z). Continuous dependence on the initial time tg is obvious from the
integral expression

z(t) = zg + ) f(s,z(s)) ds

Therefore, we leave it as an exercise (Exercise 3.28) and concentrate our attention
on continuous dependence on the initial state zg and the function f. Let y(t) be
a solution of (3.1) that starts at y(to) = yo and is defined on the compact time
interval [tg,?1]. The solution depends continuously on yg if solutions starting at
nearby points are defined on the same time interval and remain close to each other
in that interval. This statement can be made precise with the é— argument: Given
e > 0, there is § > 0 such that for all z in the ball {z € R" | ||z — yo| <
8}, the equation & = f(¢,z) has a unique solution z(t) defined on [tg,¢;], with
2(to) = 20, and satisfies ||2(t) — y(t)|| < & for all ¢ € [to,t1]. Continuous dependence
on the right-hand side function f is defined similarly, but to state the definition
precisely, we need a mathematical representation of the perturbation of f. One
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possible representation is to replace f by a sequence of functions fp,, which converge
uniformly to f as m — co. For each function f,, the solution of & = f,(¢,) with
z(ty) = zo is denoted by z,,(t). The solution is said to depend continuously on
the right-hand side function if z,,(t) — z(t) as m — oo. This approach is a
little bit involved, and will not be pursued here.® A more restrictive, but simpler,
mathematical representation is to assume that f depends continuously on a set of
constant parameters; that is, f = f(t,z, )\), where A € RP. The constant parameters
could represent physical parameters of the system, and the study of perturbation of
these parameters accounts for modeling errors or changes in the parameter values
due to aging. Let z(¢, \¢) be a solution of & = f(¢,z, Ao) defined on [tg,t1], with
z(to, Ao) = xo. The solution is said to depend continuously on X if for any € > 0,
there is § > 0 such that for all A in the ball {\ € R? | |]A — Ao < 6}, the equation
& = f(t,z, ) has a unique solution z(t,)) defined on [to,t;], with z(to, ) = zo,
and satisfies ||z(¢, \) — z(¢, Xo)|| < & for all t € [to,11].

Continuous dependence on initial states and continuous dependence on parame-
ters can be studied simultaneously. We start with a simple result that bypasses the
issue of existence and uniqueness and concentrates on the closeness of solutions.

Theorem 3.4 Let f(t,x) be piecewise continuous int and Lipschitz in & on [to, t1] ¥
W with a Lipschitz constant L, where W C R™ is an open connected set. Let y(t)
and z(t) be solutions of

y=[{ty), ylto) =1yo
and
2= f(t,2) +g(t,2), 2(to) = 20
such that y(t), z(t) € W for all t € [to,t1]. Suppose that

”g(tv$)” <u, v (t, .’I?) € [to,tl} x W

for some u > 0. Then,
lo(e) = 2()1 < llvo — =0l explL(t ~ )] + & {explL(t — 1)) - 1}

Vie [to,tﬂ. <&

Proof: The solutions y(¢) and z(t) are given by

y©) = vo+t [ Fsy(s)) ds

to

) = o+ / [£(5,2()) + a(s, 2(5))] ds

to

SSee [43, Section 1.3], [75, Section 1.3], or [135, Section 2.5] for results on continuous dependence
on parameters using this approach.
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Subtracting the two equations and taking norms yield
i
ly(@) =zl < llyo — =l +/t I1£(s,u(s)) = f(s,2(s))|| ds
. 0
+ [ oo, (el as
0

< y+alt—to)+ [ Liye) - 20 ds

to

where v = ||lyo — 20]|. Application of the Gronwall-Bellman inequality (Lemma A.1)
to the function ||y(¢) — 2(¢)|| results in

ly(t) = 2Ol < v+ plt —to) + t Ly + p(s — to)] exp[L(t — s)] ds

Integrating the right-hand side by parts, we obtain
ly@®) =2z < v+ ut—to) =7 — p(t = to) + v explL(t — to)]
¢
+/ wexplL(t — s)] ds
to
= yexplL{t —to)] + £ {explL{t — to)] ~ 1}
which completes the proof of the theorem. ]

With Theorem 3.4 in hand, we can prove the next theorem on the continuity of
solutions in terms of initial states and parameters.

Theorem 3.5 Let f(t,z,\) be continuous in (t,x,\) and locally Lipschitz in x
(uniformly in ¢t and X) on [to,t1] x D x {||A — Xo|| < ¢}, where D C R™ is an open
connected set. Let y(t, o) be a solution of & = f(t,z,Xo) with y(to, o) = yo € D.
Suppose y(t, \g) is defined and belongs to D for allt € [tg,t1]. Then, given £ > 0,
there is 6 > 0 such that if

llzo —woll <& and A=Al <46

then there is a unique solution z(t,\) of © = f(t,z,A) defined on [to,t1], with
z(tg, \) = z0, and z(t, \) satisfies

I2(8,A) —w(t, M)l <&,V t€lto, ]
<

Proof: By continuity of y(t, Ag) in ¢ and the compactness of [¢g, t1], we know that
y(t, Ag) is bounded on [tg, t1]. Define a “tube” U around the solution y(t, Ag) (see
Figure 3.1) by
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Figure 3.1: A tube constructed around the solution y(t, Ag).

U= {(t’ 1) € {t07t1} x R" l “.’I} —~y(t, /\D)“ < E}

Suppose that U C [to, 1] x D; if not, replace € by €1 < & that is small enough
to ensure that U C [tg,%1] X D and continue the proof with £;. The set U is
compact; hence, f(t,z,\) is Lipschitz in = on U with a Lipschitz constant, say, L.
By continuity of f in A, for any a > 0, there is 8 > 0 (with 8 < ¢) such that

“f(t,.l:, )‘) ——f(t,x,)\o)” <a, v (t,x) € U’ v ”A‘ )‘0“ </B

Take o < ¢ and |[z9 — yol| < . By the local existence and uniqueness theorem,
there is a unique solution z(t, A) on some time interval [to,t + A]. The solution
starts inside the tube U, and as long as it remains in the tube, it can be extended.
We will show that, by choosing a small enough «, the solution remains in U for
all t € [to,?1]. In particular, we let 7 be the first time the solution leaves the tube
and show that we can make 7 > ¢;. On the time interval [tg, 7], the conditions of
Theorem 3.4 are satisfied with pu = a. Hence,

ot )~ ylt, do)l| < avexplL(t— to)] + F{explL(t ~ ta)] ~ 1}

< a (1 + %) exp[L(t —to)]

Choosing a < eLexp[—L(t1 — t0)]/(1 + L) ensures that the solution z(¢,\) cannot
leave the tube during the interval [tg, t1]. Therefore, z(¢, \) is defined on [tg, t;] and
satisfies ||z(¢, A) — y(t, Ao)|| < &. Taking 6 = min{c, 3} completes the proof of the
theorem. a



3.3. DIFFERENTIABILITY OF SOLUTIONS 99

3.3 Differentiability of Solutions and Sensitivity
Equations

Suppose that f(t,z,\) is continuous in (f,z,A) and has continuous first partial
derivatives with respect to = and X for all (t,z,\) € [to,t1] x R™ x RP. Let Xg be a
nominal value of A, and suppose that the nominal state equation

z= f(t7$7 AO)a Wlth .’lj(to) = Iy

has a unique solution z(f, Ag) over [to,t1]. From Theorem 3.5, we know that for all
X sufficiently close to Ag, that is, ||A — Aol sufficiently small, the state equation

= f(t: x, )‘), with J}(to) = Iy

has a unique solution z(¢, \) over [to, 1] that is close to the nominal solution z(t, Ao).
The continuous differentiability of f with respect to  and X implies the additional
property that the solution z(t, A) is differentiable with respect to A near Ag. To see
this, write

t
z(t,A) =z0+ [ f(s,z(s,A), ) ds
to
Taking partial derivatives with respect to A yields

m,\(t,/\)zft [g—ﬁ(s,x(s,A),A) x)\(s,/\)+g§(s,x(5,>\),>\)] ds

where z,(t,\) = [0z(t,\)/0A] and [0zo/0A] = 0, since xo is independent of .
Differentiating with respect to ¢, it can be seen that x, (¢, \) satisfies the differential
equation

%{x’\(t’ A) = A(t, NzA(t, \) + B(E, A), za(to,\) =0 (3.4)
where 0f(t,2,)) 0f(t,2,%)
t,x t,x
A(t, )\) = JA T , B(t,/\) = LA
Oz z=x(t,\) oA w=x(t,\)

For A sufficiently close to g, the matrices A(¢, ) and B(t,A) are defined on [to, t1].
Hence, z,(t, ) is defined on the same interval. At X = )y, the right-hand side of
(3.4) depends only on the nominal solution z(t, Ao). Let S(t) = zx(t, Ao); then S(2)
is the unique solution of the equation

$(t) = A(t, \)S(8) + B(t, o), S(to) =0 (3.5)

The function S(t) is called the sensitivity function, and (3.5) is called the sensitivity
equation. Sensitivity functions provide first-order estimates of the effect of param-
eter variations on solutions. They can also be used to approximate the solution
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when A is sufficiently close to its nominal value Ag. For small ||A — Agl}, z(¢, A} can
be expanded in a Taylor series about the nominal solution z(¢, Ag) to obtain

z(t, A) = z(t, Ag) + S(t)(A — Ag) + higher-order terms
Neglecting the higher-order terms, the solution z(t, A) can be approximated by
z(t, A) = z(t, Ao) + S(E)(A = Ao) (3.6)

We will not justify this approximation here. It will be justified in Chapter 10 when
we study the perturbation theory. The significance of (3.6) is in the fact that knowl-
edge of the nominal solution and the sensitivity function suffices to approximate the
solution for all values of A in a (small) ball centered at Aq.

The procedure for calculating the sensitivity function S(t) is summarized by the
following steps:

e Solve the nominal state equation for the nominal solution z(t, \g).

e Evaluate the Jacobian matrices

0f(t,z,\)

_Of(t,z,A)
oz ’ B(t))‘()) - T/ aNy

A(t) )‘0) =
z=x(t,Ao),A=Ao 2 z=x(t,Ao),A=Ao

e Solve the sensitivity equation (3.5) for S(t).

In this procedure, we need to solve the nonlinear nominal state equation and the
linear time-varying sensitivity equation. Except for some trivial cases, we will be
forced to solve these equations numerically. An alternative approach for calculating
S5(t) is to solve for the nominal solution and the sensitivity function simultaneously.
This can be done by appending the variational equation (3.4) with the original state
equation, then setting A = )\g to obtain the (n + np) augmented equation

T = .f(t7x) )‘0)7 Jf(to) = Zg

(3.7)
s [afea) B (tz,\) _
s [ Oz ]A:AO S+ [ 2 JA:)\O > Slto) 0

which is solved numerically. Notice that if the original state equation is autonomous,
that is, f(t,z,)) = f(z, ), then the augmented equation (3.7) will be autonomous
as well. We illustrate the latter procedure by the next example.

Example 3.7 Consider the phase-locked-loop model

Ty = Iz fi(z1,z9)
s = —csingy — (a+beoszy)ze = fo1,z2)
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and suppose the parameters a, b, and ¢ have the nominal values ag = 1, bg = 0, and
co = 1. The nominal system is given by

The Jacobian matrices [0f/0z] and [0f/0)] are given by

of _

or _
ox

% o |
da Ob Oc|

Ii

.’il T2

Tog = —sinT; — T2

0
[ —ccoszy +brosinz: —(a+bcoszy) ]

—X9 —T9COSTy

0
—sinxy

Evaluate these Jacobian matrices at the nominal parameters a = 1, b = 0, and

¢ =1 to obtain

Let

S

Then (3.7) is given by

Ty
2
3
T4
Is
Tg
T7
Ig

The solution of this equation was computed for the initial

0

nominal l: —CosTy

of
Ox

_ { 0 0
nominal —T2 —T200813
oz oz
T3 Ts I7 5 b
[} el
Ts To Ts L
Z2,
- SiIl.Tl — Z2,
T4,
—T3CO8STy — Ty — T2,
Ze,
—X5COST1 — Tg — T COS Ty,
g,
—I7CO8T] — g — SN,

838 8 8 8 8 88
RS N

N N N N TN S

—sinzy ]

nominal

Il

Z10
Z20

If

I
coococoo

Il

state Tig = Tog = 1.

Figure 3.2(a) shows 3, z5, and =7, which are the sensitivities of z; with respect to
a, b, and ¢, respectively. Figure 3.2(b) shows the corresponding quantities for 5.
Inspection of these figures shows that the solution is more sensitive to variations
in the parameter ¢ than to variations in the parameters a and b. This pattern is
consistent when we solve for other initial states.

JAN
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0.6
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0.2

0
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@ ()

Figure 3.2: Sensitivity function for Example 3.7.

3.4 Comparison Principle

Quite often when we study the state equation & = f(t,z) we need to compute
bounds on the solution z(¢) without computing the solution itself. The Gronwall-
Bellman inequality (Lemima A.1) is one tool that can be used toward that goal. An-
other tool is the comparison lemma. It applies to a situation where the derivative of
a scalar differentiable function v(¢) satisfies inequality of the form o(t) < f(¢,v(t))
for all ¢ in a certain time interval. Such inequality is called a differential inequality
and a function v(t) satisfying the inequality is called a solution of the differential
inequality. The comparison lemma compares the solution of the differential inequal-
ity 0(t) < f(¢t,v(t)) with the solution of the differential equation 4 = f(¢,u). The
lemma applies even when v(t) is not differentiable, but has an upper right-hand
derivative D¥w(t), which satisfies a differential inequality. The upper right-hand
derivative D7 v(t) is defined in Appendix C.2. For our purposes, it is enough to
know two facts:

e If v(¢) is differentiable at ¢, then DT v(t) = v(¢).

e If
% ot + 1) —v(8)] < g6, k), ¥ he (0,8]

and
im t,h) = 4
hh 0 g( 3 ) gO( )

then DVo(t) < golt).
‘The limit A — 0% means that 2 approaches zero from above.

Lemma 3.4 (Comparison Lemma) Consider the scalar differential equation

= f(t,u), u(te)=1uo
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where f(t,u) is continuous in t and locally Lipschitz in wu, for all ¢ > 0 and all
u € J C R. Let [to,T) (T could be infinity) be the mazimal interval of existence
of the solution u(t), and suppose u(t) € J for all t € [tg,T). Let v(t) be a con-
tinuous function whose upper right-hand derivative DT v(t) satisfies the differential
inequality

D¥u(t) < f(t,o(t),  v(to) < uo

with v(t) € J for all t € [to, T). Then, v(t) < u(t) for allt € [to, T). <o

Proof: See Appendix C.2.

Example 3.8 The scalar differential equation
&= f(z)=-(1+a%)z, z(0)=a

has a unique solution on [0,¢;), for some t; > 0, because f(z) is locally Lipschitz.
Let v(t) = z%(t). The function v(¢) is differentiable and its derivative is given by

0(t) = 2z(t)2(t) = —222(t) — 2z (t) < —22°(¢)
Hence, v(t) satisfies the differential inequality
o(t) < —2u(t), v(0) = a?
Let u(t) be the solution of the differential equation
2,2t

w=—2u, u(0)=d> = u(t)=ad

Then, by the comparison lemma, the solution z(t) is defined for all ¢ > 0 and
satisfies

lz(t)] = o(t) < e flal, VYt>0

Example 3.9 The scalar differential equation
t=flt,z)=—(1+z)z+e, z(0)=a

has a unique solution on [0,¢1) for some ¢; > 0, because f(t,z) is locally Lipschitz
in z. We want to find an upper bound on |z(t)] similar to the one we obtained
in the previous example. Let us start with v(t) = z?(¢) as in Example 3.8. The
derivative of v is given by

o(t) = 2z(t)2(t) = —222(t) — 222 (t) + 2x(t)e’ < —2v(t) + 2/ v(t)e’

We can apply the comparison lemma to this differential inequality, but the resulting
differential equation will not be easy to solve. Instead, we consider a different choice
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of v(t). Let v(t) = |z(t)|. For z(t) # 0, the function v(t) is differentiable and its
derivative is given by

o(0) = 5/ = SO — oo+ 220+ ke

Since 14 z%(¢) > 1, we have ~|z(t)|[1 + 22(¢)] < —|z(t)| and ©(¢) < —v(t) +€'. On
the other hand, when z(¢) = 0, we have

o(t + R) — v(t)] et +h) _ 1
B h h

t+h
/t f(r,2(r)) dr

I

t+h
£6.0)+ 5 [ Ufmale) - fz(©) dr

IN

t+h
#0145 [ 17l = ftao)] dr

Since f(t,z(t)) is a continuous function of ¢, given any € > 0 there is ¢ > 0 such
that for all |7 —¢] < &, |f(r,z(7)) — f(t,z(t))| < e. Hence, for all h < 4,

tth
i ey - el dr <

which shows that

t+h
Jim g [ () - £t a@)] =0

Thus, DVo(t) < |f(¢,0)] = e* whenever z(t) = 0. Hence, for all ¢ € [0,¢1), we have
DFu(t) < —v(t) + ¢, v(0) =la|
Letting u(t) be the solution of the linear differential equation
i=-u+e', u(0)=|al
we conclude by the comparison lemma that
v(t) Sut)=e |+ L[t -], Vie[0,t)

The upper bound on v(t) is finite for every finite ¢; and approaches infinity only as
t1 — oo. Therefore, the solution z(t) is defined for all ¢ > 0 and satisfies

lz(t)] < e Plaj+ 3 [et—€e7], VE=0
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3.5 Exercises

3.1 For each of the functions f(z) given next, find whether f is (a) continuously
differentiable; (b) locally Lipschitz; (c) continuous; (d) globally Lipschitz.

(1) f(z) =2 +al. (2) f(z) = = + sgn(z).
(3) f(z) = sin(z) sgn(z). (4) f(z) = —z + asin(z).
(5) f(z) = —z + 2Jzl. (6) f(z) = tan(z).

az; + tanh(bz;) — tanh(bzz)
(7) f(z) = [ ax; +tanh(bwi) + tanh(bxj) } '

)50 = | (s o+ arms |

3.2 Let D, = {z € R" | |jz|| < r}. For each of the following systems, represented
as £ = f(t,z), find whether (a) f is locally Lipschitz in z on D,., for sufficiently
small 7; (b) f is locally Lipschitz in = on D,, for any finite r > 0; (c) f is globally
Lipschitz in z:

(1) The pendulum equation with friction and constant input torque (Section 1.2.1).
(2) The tunnel-diode circuit (Example 2.1).

(8) The mass—spring equation with linear spring, linear viscous damping, Coulomb
friction, and zero external force (Section 1.2.3).

(4) The Van der Pol oscillator (Example 2.6).
(5) The closed-loop equation of a third-order adaptive control system (Section 1.2.5).

(6) The system ¢ = Az — BY(Cxz), where A, B, and C arenxn,nx1,and 1 xn
matrices, respectively, and () is the dead-zone nonlinearity of Figure 1.10(c).

3.3 Show that if f1 : R — R and f; : R — R are locally Lipschitz, then fi + fo,
f1fo and fy o f1 are locally Lipschitz.

3.4 Let f: R™ — R™ be defined by
_]|K1_:£||Kz’ if g(z)|[Kzf| 2 p>0

flz)=
42) e, if g(z)|| Kzl < p

where g : R™ — R is locally Lipschitz and nonnegative, and K is a constant matrix.
Show that f(z) is Lipschitz on any compact subset of R™.

3.5 Let ||+ || and || - |5 be two different p-norms on R™. Show that f: R — R™
is Lipschitz in || - ||« if and only if it is Lipschitz in || - ||
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3.6 Let f(t,z) be piecewise continuous in ¢, locally Lipschitz in z, and
£ o)l < ki + Kollzl], V(¢ 7)€ [to,00) x R”

(a) Show that the solution of (3.1) satisfies

k
lz(@ < llzoll explka(t — to)] + E:"{exp[kz(t —to)] — 1}
for all t > ¢y for which the solution exists.
(b) Can the solution have a finite escape time?

3.7 Let g: R® — R™ be continuously differentiable for all z € R™ and define f(x)
by

1
z) = ——e——g(z
@) =5 + gT(w)g(x)g( )
Show that & = f(z), with z(0) = x¢, has a unique solution defined for all ¢ > 0.

3.8 Show that the state equation

) 2o

T = -x1+ i—_{_?%7 z1(0) =a
2z

T = — PO O :b

T2 $2+1+x%; z2(0)

has a unique solution defined for all ¢ > 0.
3.9 Suppose that the second-order system & = f(z), with a locally Lipschitz f(z),
has a limit cycle. Show that any solution that starts in the region enclosed by the

limit cycle cannot have a finite escape time.

3.10 Derive the sensitivity equations for the tunnel-diode circuit of Example 2.1
as L and C vary from their nominal values.

3.11 Derive the sensitivity equations for the Van der Pol oscillator of Example 2.6
as € varies from its nominal value. Use the state equation in the z-coordinates.

3.12 Repeat the previous exercise by using the state equation in the z-coordinates.
3.13 Derive the sensitivity equations for the system
i = tan"*(azy) — z1 29, T = bx% — ¢y

as the parameters a, b, ¢ vary from their nominal values ag = 1, by = 0, and ¢y = 1.
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3.14 Consider the system
1
i = - ! + tanh(Az1) ~— tanh(A\zs)
1
Ty = - ~%2 + tanh(Azy) + tanh(Azz)

where A\ and T are positive constants.

(a) Derive the sensitivity equations as X and 7 vary from their nominal values \g
and 7g.

(b) Show that r = 1/z% + 22 satisfies the differential inequality
1
TS - ;_‘T‘ +2/2

(c) Using the comparison lemma, show that the solution of the state equation
satisfies the inequality

lz(®)]l2 < e 7 ||z(0)])2 + 2v27(1 — e /7)

3.15 Using the comparison lemma, show that the solution of the state equation

211
1+ :c%

212
1+a3’

To = —Tg +

Iy =—x1 +

satisfies the inequality
le(@®)l2 < e *|lz(0)ll2 + V2 (1 —e7*)

3.16 Using the comparison lemma, find an upper bound on the solution of the

scalar equation
sint

Trae “0=2

T=-z+

3.17 Counsider the initial-value problem (3.1) and let D C R"™ be a domain that
contains z = 0. Suppose z(¢), the solution of (3.1), belongs to D for all ¢ > ¢, and
|f (&, z)ll2 < Liz]|2 on [to,00) x D. Show that

()

id, [mT(t)w(t)}] < 2L|jz(t)l13
dt B ’
(b)

llzoll2 exp[—L(t — to)] < [lz(t)]l2 < [lzoll2 exp[L(t — to)]
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3.18 Let y(¢) be a nonnegative scalar function that satisfies the inequality
t
y(t) S kle—~a(t—t0) ‘\‘“/ e—a(t-'r) [kgy('r) -+ kg} dr
to
where ky, ko, and ks are nonnegative constants and « is a positive constant that

satisfies o > ky. Using the Gronwall-Bellman inequality, show that

Y(t) < hye~(e—ka)lt—to) L s [1 _ e~<a~k2>(t-to>]
- o — ko

Hint: Take z(t) = y(t)e®*~%) and find the inequality satisfied by z.

3.19 Let f: R™ — R™ be locally Lipschitz in a domain D C R™. Let S C D be a
compact set. Show that there is a positive constant L-such that for all z,y € S,

17 (z) = f()ll < Lllz — o
Hint: The set S can be covered by a finite number of neighborhoods; that is,
S C N(ai,r1)UN(ag,ma) U---UN(ag, )
Counsider the following two cases separately:
o z,y € SN N(a;,r;) for some ¢.
e z,y ¢ SN N(a;,r;) for any 7; in this case, ||z — y|| > min; ;.
In the second case, use the fact that f(z) is uniformly bounded on S.

3.20 Show that if f : R™ — R"™ is Lipschitz on W C R™, then f(z) is uniformly
continuous on W.
3.21 For any z € R™ — {0} and any p € [1,00), define y € R"™ by

p—1
i

(el

Show that yTz = |z|, and |lyll; = 1, where g € (1,00] is determined from 1/p +
1/q = 1. For p = oo, find a vector y such that y7'z = ||z]|e and |y[1 = 1.

yi = T sign(a})

3.22 Prove Lemma 3.3.

3.23 Let f(z) be a continuously differentiable function that maps a convex domain
D < R" into R™. Suppose D contains the origin z = 0 and f(0) = 0. Show that

f(x):/olgi—c(ax)dax, VzeD

Hint: Set g(0) = f(oz) for 0 < o < 1 and use the fact that g(1)—g(0) = 01 g' (o) do.
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3.24 Let V : Rx R™ — R be continuously differentiable. Suppose that V(¢,0) = 0
for all £ > 0 and

Vo) 2 alel’s |5 ) < clel, ¥ (o) € 0.00) x D

where ¢; and ¢4 are positive constants and D C R™ is a convex domain that contains
the origin z = 0.

(a) Show that V(¢,2) < Scafjz||? for all z € D.
Hint: Use the representation V(¢t,z) = 01 9V (t,02) do z.
(b) Show that the constants ¢; and ¢4 must satisfy 2¢; < ca.
(c) Show that W (t,z) = 1/V (t,z) satisfies the Lipschitz condition

Cq

W (6 22) = W(t0)| < 5

lze —z1ll, V>0, Vz1,29€ D

3.25 Let f(t, z) be piecewise continuous in ¢ and locally Lipschitz in z on [tg, 1] X

D, for some domain D C R". Let W be a compact subset of D. Let z(t) be the
solution of & = f(t,z) starting at z(to) = zo € W. Suppose that z(¢) is defined
and z(t) € W for all ¢ € [t0,T), T < t1.

(a) Show that x(t) is uniformly continuous on [tg, T').
(b) Show that x(T') is defined and belongs to W and z(t} is a solution on [ty, 7.

(¢) Show that there is § > 0 such that the solution can be extended to [to, T + 4].

3.26 Let f(t,z) be piecewise continuous in ¢ and locally Lipschitz in = on [tg, t1] X
D, for some domain D C R™. Let y(t) be a solution of (3.1) on a maximal open
interval [to,T") C [to,t1] with T < co. Let W be any compact subset of D. Show
that there is' some ¢ € [to, T) with y(¢) ¢ W.

Hint: Use the previous exercise.

3.27 ([43]) Let 23 : R — R™ and @3 : R — R" be differentiable functions such
that

lz1(a) = z2(@)ll < v, N2:(8) = F((E 2 ()] < g, fori=1,2
for a <t < b. If f satisfies the Lipschitz condition (3.2), show that

6L(t-—a,) -1

19~ 220 <760 4 (o 1) [

}, fora<t<b

3.28 Show, under the assumptions of Theorem 3.5, that the solution of (3.1) de-
pends continuously on the initial time ¢g.
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3.29 Let f(t,z) and its partial derivatives with respect to z be continuous in
(t,z) for all (t,z) € [to,t1] x R™. Let z(t,n) be the solution of (3.1) that starts at
z(to) = n and suppose z(t,n) is defined on [tp,?1]. Show that z(¢,n) is continuously
differentiable with respect to 7 and find the variational equation satisfied by [0z/0n).
Hint: Put y = = — n to transform (3.1) into

g=f(t,y+mn), ylto) =0
with n as a parameter.

3.30 Let f(t,z) and its partial derivative with respect to z be continuous in (¢, )
for all (t,z) € R x R™. Let z(t,a,n) be the solution of (3.1) that starts at z(a) = n
and suppose that z(t,a,n) is defined on [a,;]. Show that z(¢,a,n) is continuously
differentiable with respect to a and 1 and let 2, (t) and z,(t) denote [Oz/da] and
[0z /0n), respectively. Show that z,(t) and z,(t) satisfy the identity

zo(t) + 2n(t) fla,m) =0, YiEa,iq]

3.31 ([43]) Let f : R x R — R be a continuous function. Suppose that f(¢,z)
is locally Lipschitz and nondecreasing in z for each fixed value of ¢t. Let z(t) be a
solution of £ = f(¢,z) on an interval [a,b]. If a continuous function y(¢) satisfies
the integral inequality

y(t) < o(a) + / F(s,u(s)) ds

for a <t < b, show that y(t) < z(t) throughout this interval.



Chapter 4
Lyapunov Stability

Stability theory plays a central role in systems theory and engineering. There are
different kinds of stability problems that arise in the study of dynamical systems.
This chapter is concerned mainly with stability of equilibrium points. In later
chapters, we shall see other kinds of stability, such as input—-output stability and
stability of periodic orbits. Stability of equilibrium points is usually characterized
in the sense of Lyapunov, a Russian mathematician and engineer who laid the
foundation of the theory, which now carries his name. An equilibrium point is stable
if all solutions starting at nearby points stay nearby; otherwise, it is unstable. It is
asymptotically stable if all solutions starting at nearby points not only stay nearby,
but also tend to the equilibrium point as time approaches infinity. These notions
are made precise in Section 4.1, where the basic theorems of Lyapunov’s method for
autonomous systems are given. An extension of the basic theory, due to LaSalle, is
given in Section 4.2. For a linear time-invariant system &(t) = Az(¢), the stability
of the equilibrium point z = 0 can be completely characterized by the location
of the eigenvalues of A. This is discussed in Section 4.3. In the same section, it
is shown when and how the stability of an equilibrium point can be determined
by linearization about that point. In Section 4.4, we introduce class K and class
KL functions, which are used extensively in the rest of the chapter, and indeed
the rest of the book. In Sections 4.5 and 4.6, we extend Lyapunov’s method to
nonautonomous systems. In Section 4.5, we define the concepts of uniform stability,
uniform asymptotic stability, and exponential stability for nonautonomous systems,
and give Lyapunov’s method for testing them. In Section 4.6, we study linear time-
varying systems and linearization.

Lyapunov stability theorems give sufficient conditions for stability, asymptotic
stability, and so on. They do not say whether the given conditions are also nec-
essary. There are theorems which establish, at least conceptually, that for many
of Lyapunov stability theorems, the given conditions are indeed necessary. Such
theorems are usually called converse theorems. We present three converse theorems
in Section 4.7. Moreover, we use the converse theorem for exponential stability to

111
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show that an equilibrium point of a nonlinear system is exponentially stable if and
only if the linearization of the system about that point has an exponentially stable
equilibrium at the origin.

Lyapunov stability analysis can be used to show boundedness of the solution,
even when the system has no equilibrium points. This is shown in Section 4.8
where the notions of uniform boundedness and ultimate boundedness are intro-
duced. Finally, in Section 4.9, we introduce the notion of input-to-state stability,
which provides a natural extension of Lyapunov stability to systems with inputs.

4.1 Autonomous Systems

Consider the autonomous system

&= f(z) (4.1)

where f : D — R™ is a locally Lipschitz map from a domain D C R™ into R™.
Suppose T € D is an equilibrium point of (4.1); that is, f(Z) = 0. Our goal is to
characterize and study the stability of Z. For convenience, we state all definitions
and theorems for the case when the equilibrium point is at the origin of R™; that
is, Z = 0. There is no loss of generality in doing so because any equilibrium point
can be shifted to the origin via a change of variables. Suppose % # 0 and consider
the change of variables y =  — Z. The derivative of y is given by

g=i = f(z)= fly+7) < gly), where g(0)=0

In the new variable y, the system has equilibrium at the origin. Therefore, without
loss of generality, we will always assume that f(z) satisfies f(0) = 0 and study the
stability of the origin z = 0.

Definition 4.1 The equilibrium point z = 0 of (4.1) is
e stable if, for each € > 0, there is § = §(g) > O such that

[zO)l <= llz(t)l <e, V=0

e unstable if it is not stable.
e asymptotically stable if 1t is stable and & can be chosen such that
lz(0)]| <6 = lim z(t) =0
t—o00
The e-§ requirement for stability takes a challenge-answer form. To demonstrate
that the origin is stable, then, for any value of £ that a challenger may care to desig-

nate, we must produce a value of §, possibly dependent on ¢, such that a trajectory
starting in a ¢ neighborhood of the origin will never leave the ¢ neighborhood. The
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three types of stability properties can be illustrated by the pendulum example of
Section 1.2.1. The pendulum equation

Ty = o

Tg = =— asinz; — bxy

has two equilibrium points at (z3 = 0, z2 = 0) and (z; = 7, z2 = 0). Neglecting
friction, by setting b = 0, we have seen in Chapter 2 (Figure 2.2) that trajecto-
ries in the neighborhood of the first equilibrium are closed orbits. Therefore, by
starting sufficiently close to the equilibrium point, trajectories can be guaranteed
to stay within any specified ball centered at the equilibrium point. Hence, the -6
requirement for stability is satisfied. The equilibrium point, however, is not asymp-
totically stable since trajectories starting off the equilibrium point do not tend to it
eventually. Instead, they remain in their closed orbits. When friction is taken into
consideration (b > 0), the equilibrium point at the origin becomes a stable focus.
Inspection of the phase portrait of a stable focus shows that the e-0 requirement
for stability is satisfied. In addition, trajectories starting close to the equilibrium
point tend to it as ¢ tends to co. The second equilibrium point at x; = 7 is a saddle
point. Clearly the e~ requirement cannot be satisfied since, for any € > 0, there is
always a trajectory that will leave the ball {z € R" | ||z — Z|| < ¢} even when z(0)
is arbitrarily close to the equilibrium point Z.

Implicit in Definition 4.1 is a requirement that solutions of (4.1) be defined for
all t > 0.) Such global existence of the solution is not guaranteed by the local
Lipschitz property of f. It will be shown, however, that the additional conditions
needed in Lyapunov’s theorem will ensure global existence of the solution. This will
come as an application of Theorem 3.3.

Having defined stability and asymptotic stability of ethbrlum points, our task
now is to find ways to determine stability. The approach we used in the pendulum
example relied on our knowledge of the phase portrait of the pendulum equation.
Trying to generalize that approach amounts to actually finding all solutions of (4.1),
which may be difficult or even impossible. However, the conclusions we reached
about the stable equilibrium point of the pendulum can also be reached by using
energy concepts. Let us define the energy of the pendulum E(z) as the sum of
its potential and kinetic energies, with the reference of the potential energy chosen
such that F(0) = 0; that is,

T1
E(ac)z/J asinydy+%m§=a(1—cos:c1)+%xg

When friction is neglected (b = 0), the system is conservative; that is, there is no
dissipation of energy. Hence, E = constant during the motion of the system or, in

1t is possible to change the definition to alleviate the implication of global existence of the
solution. In [154], stability is defined on the maximal interval of existence [0, t1), without assuming
that t1 = oo
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other words, dE//dt = 0 along the trajectories of the system. Since E(z) = ¢ forms
a closed contour around z = 0 for small ¢, we can again arrive at the conclusion
that = 0 is a stable equilibrium point. When friction is accounted for (b > 0),
energy will dissipate during the motion of the system, that is, dE/dt < 0 along the
trajectories of the system. Due to friction, E cannot remain constant indefinitely
while the system is in motion. Hence, it keeps decreasing until it eventually reaches
zero, showing that the trajectory tends to z = 0 as t tends to co. Thus, by examining
the derivative of E along the trajectories of the system, it is possible to determine
the stability of the equilibrium point. In 1892, Lyapunov showed that certain other
functions could be used instead of energy to determine stability of an equilibrium
point. Let V : D — R be a continuously differentiable function defined in a domain
D C R™ that contains the origin. The derivative of V along the trajectories of (4.1),
denoted by V(x), is given by

V@ = Yo =Y e
=1 =1
i
T 0
ST O S 3 | R RO

The derivative of V' along the trajectories of a system is dependent on the system’s
equation. Hence, V{x) will be different for different systems. If ¢(t; z) is the solution
of (4.1) that starts at initial state = at time t = 0, then

V()= SV(6(2)
t=0

Therefore, if V(z) is negative, V will decrease along the solution of (4.1). We are
now ready to state Lyapunov’s stability theorem.

Theorem 4.1 Let x = 0 be an equilibrium point for (4.1) and D C R™ be a domain

containing x = 0. Let V : D — R be a continuously differentiable function such
that

V(0)=0 and V(z)>0in D — {0} (4.2)
V(z)<0in D (4.3)

Then, x = 0 is stable. Moreover, if

V(z) <0in D — {0} (4.4)

then 2 = 0 is asymptotically siable. ©
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Figure 4.1: Geometric representation of sets in the proof of Theorem 4.1.

Proof: Given € > 0, choose r € (0,¢] such that
B,={zeR"||zl|<r}cD
Let a = miny, = V(z). Then, a > 0 by (4.2). Take 8 € (0, ) and let
Qp={z € B, |V(z) < B}

Then, (g is in the interior of B> (See Figure 4.1.) The set {25 has the property
that any trajectory starting in g at t = O stays in Qg for all ¢ > 0. This follows
from (4.3) since

V(z(t) <0 = V() < V(z(0) <8, V>0

Because Qg is a compact set,> we conclude from Theorem 3.3 that (4.1) has a
unique solution defined for all ¢ > 0 whenever x(0) € Qg. As V(x) is continuous
and V(0) = 0, there is § > 0 such that

[zl <6 = V(z)<p

Then,
B; C Qﬁ - BT
and
z(0) € Bs = x(0) € g = z(t) € Qg = =(t) € B,
Therefore,

Q) <= llz(®)l| <r <e, VE=0

2This fact can be shown by contradiction. Suppose Qp is not in the interior of By, then there
is a point p € §2g that lies on the boundary of Br. At this point, V(p) > a > (3, but for all
z € Qg, V(z) < B, which is a contradiction.

395 is closed by definition and bounded, since it is contained in Br.



116 CHAPTER 4. LYAPUNOV STABILITY

Cs3
C2

C1<Cy<C3

Figure 4.2: Level surfaces of a Lyapunov function.

which shows that the equilibrium point z = 0 is stable. Now, assume that (4.4)
holds as well. To show asymptotic stability, we need to show that z(t) — 0 as
t — o00; that is, for every a > 0, there is T' > 0 such that ||z(t)|| < a, for all ¢t > T.
By repetition of previous arguments, we know that for every a > 0, we can choose
b > 0 such that Q, C B,. Therefore, it is sufficient to show that V(z(t)) — 0
as t — oo. Since V(z(t)) is monotonically decreasing and bounded from below by
Z€10,

V(z(t)) »c>0 as t— o0

To show that ¢ = 0, we use a contradiction argument. Suppose ¢ > 0. By continuity
of V(z), there is d > 0 such that Bg C €. The limit V(2(t)) — ¢ > 0 implies that
the trajectory x(t) lies outside the ball By for all t > 0. Let —v = maxg<|z<r V (%),
which exists because the continuous function V(z) has a maximum over the compact
set {d < ||z} < r}.* By (4.4), —y < 0. It follows that

V(z(t) = V(2(0) + /0 V(z(r)) dr < V((0)) — 1t

Since the right-hand side will eventually become negative, the inequality contradicts
the assumption that ¢ > 0. ]

A continuously differentiable function V(z) satisfying (4.2) and (4.3) is called
a Lyapunov function. The surface V(z) = ¢, for some ¢ > 0, is called a Lyapunov
surface or a level surface. Using Lyapunov surfaces, we notice that Figure 4.2 makes
the theorem intuitively clear. It shows Lyapunov surfaces for increasing values of
¢. The condition V < 0 implies that when a trajectory crosses a Lyapunov surface
V(z) = ¢, it moves inside the set Q. = {z € R | V(z) < ¢} and can never come
out again. When V' < 0, the trajectory moves from one Lyapunov surface to an
inner Lyapunov surface with a smaller ¢. As c decreases, the Lyapunov surface
V(z) = c shrinks to the origin, showing that the trajectory approaches the origin as

“See [10, Theorem 4-20].
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time progresses. If we only know that V < 