
Logix5000 Controllers
1756 ControlLogix, 1769 CompactLogix, 1789 SoftLogix,
1794 FlexLogix, PowerFlex 700S with DriveLogix

System Reference

http://www.poweren.ir

ii
Important User Information
Because of the variety of uses for the products described in this publication, those responsible for the application and use of these products must satisfy
themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any
applicable laws, regulations, codes and standards. In no event will Allen-Bradley be responsible or liable for indirect or consequential damage resulting from
the use or application of these products.

Any illustrations, charts, sample programs, and layout examples shown in this publication are intended solely for purposes of example. Since there are many
variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual
property liability) for actual use based upon the examples shown in this publication.

Reproduction of the contents of this copyrighted publication, in whole or part, without written permission of Rockwell Automation, is prohibited.

Summary of Changes

This version of the Logix5000 Controllers System Reference Manual corresponds to version 15 of the controllers. Revision bars (shown in
the left margin of this page) indicate changed information. Changes made to this manual include:

• Addition of 1769-L32C and 1769-L35CR CompactLogix controllers for ControlNet

• Addition of DriveLogix5730 controller for PowerFlex 700S

• Addition of PSC, PCMD, POVR, PFL, PCLF, PXRQ, PRNP, PPD, PATT and PDET phase manager instructions

• The 1794-L33, 1769-L20, and 1769-L30 controllers have been removed
Publication 1756-QR107C-EN-P - June 2005

iv
Notes:
Publication 1756-QR107C-EN-P - June 2005

Table of Contents
Chapter 1
Logix Controllers Logix Family of Controllers. 1-1

ControlLogix Controllers (1756-L6x, L55Mxx). 1-2
CompactLogix Controllers (1769-Lxx) 1-4
FlexLogix Controllers (1794-L34). 1-10
SoftLogix5800 Controllers (1789-L10, -L30, -L60) 1-12
PowerFlex 700S with DriveLogix5720 1-14
PowerFlex 700S with DriveLogix5730 1-16
Controller Comparison . 1-18
Select the Operating Mode of the Controller 1-21
Non-Volatile Memory . 1-22
Create a Project . 1-24
Controller Organizer. 1-25
Controller Tasks. 1-26
Controller Tags . 1-30
Aliases. 1-33
Choose a Programming Language 1-34
Publication 1756-QR107C-EN-P - June 2005

vi
Chapter 2
Sequential Function Charts Editing an SFC . 2-4

Action Qualifiers . 2-10
How Do You Want to Use the Action? 2-12
Configure the Execution of an SFC 2-13

Chapter 3
Structured Text Structured Text Syntax . 3-1

Assignments. 3-4
Expressions . 3-6
Determine the order of execution 3-12
Instructions . 3-13
Constructs . 3-15
Comments . 3-25
Publication 1756-QR107C-EN-P - June 2005

 vii
Chapter 4
Function Block Diagram Editing a Function Block Diagram. 4-2

Order of Execution . 4-5
Resolve a Loop . 4-7
Resolve Data Flow Between Two Blocks. 4-9
Create a One Scan Delay . 4-10
Summary . 4-10
Define Program/Operator Control. 4-11

Chapter 5
Relay Ladder Relay Ladder Logic. 5-1

Editing Relay Ladder . 5-3
Rung Condition . 5-4
Publication 1756-QR107C-EN-P - June 2005

viii
Chapter 6
Accessing System Values System Values Stored by the Controller 6-1

Monitor Status Flags . 6-2
Get and Set System Data (Status Information) 6-3
Available Status Information - GSV/SSV Objects. 6-5
Determine Controller Memory Information 6-26

Chapter 7
Communicate with Other
Controllers

Communication Options. 7-1
Produce and Consume a Tag . 7-2
Send a Message . 7-9
Map PLC/SLC Addresses . 7-13
Send a Message to Multiple Devices 7-15

Chapter 8
Forcing What You Can Force . 8-1

Force I/O. 8-4
Step Through a Transition . 8-7
Force an SFC . 8-7
Publication 1756-QR107C-EN-P - June 2005

 ix
Chapter 9
System Faults Controller Faults. 9-1

Major Faults . 9-2
Major Fault Codes . 9-7
Minor Faults. 9-10
Minor Fault Codes . 9-13
User-Defined Faults . 9-15

Chapter 10
Data Structures Common Structures . 10-1

Chapter 11
Instruction Set . 11-1
Publication 1756-QR107C-EN-P - June 2005

x

Publication 1756-QR107C-EN-P - June 2005

Chapter 1
Logix Controllers
Logix Family of Controllers
Rockwell Automation Logix Platforms provide a single integrated control architecture for discrete, drives, motion, and process control.

The integrated Logix architecture provides a common control engine, programming software environment, and communication support
across multiple hardware platforms. All Logix controllers operate with a multitasking, multiprocessing operating system and support the
same set of instructions in multiple programming languages. One RSLogix 5000 programming software package programs all Logix
controllers. And all Logix controllers incorporate the NetLinx architecture to communicate via EtherNet/IP, ControlNet, and DeviceNet
networks.

PowerFlex 700S with DriveLogix
An integrated drives and control solution

FlexLogix
Small to mid-sized
control applications
using FLEX I/O

CompactLogix
Compact I/O and control for
smaller applications

ControlLogix
High-performance, multi-processing
control platform

SoftLogix5800
High-performance, PC-based control
Publication 1756-QR107C-EN-P - June 2005

1 - 2 Logix Controllers
ControlLogix Controllers (1756-L6x, L55Mxx)
Front Panel: Indicator: Color: Description:

RUN off The controller is in Program or Test mode.

solid green The controller is in Run mode.

I/O off Either:
• There are no devices in the I/O configuration of the controller.
• The controller does not contain a project (controller memory is empty).

solid green The controller is communicating with all the devices in its I/O configuration.

flashing green One or more devices in the I/O configuration of the controller are not responding.

flashing red The chassis is bad. Replace the chassis.

FORCE off No tags contain I/O force values.
I/O forces are inactive (disabled).

solid amber I/O forces are active (enabled).
I/O force values may or may not exist.

flashing amber One or more input or output addresses have been forced to an On or Off state, but the forces have not been enabled.

RS232 off There is no activity.

solid green Data is being received or transmitted
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 3
BAT off The battery supports memory.

solid red Either the battery is:
• not installed.
• 95% discharged and should be replaced.

OK off No power is applied.

flashing red If the controller is:Then:
a new controllerthe controller requires a firmware update
not a new controllerA major fault occurred. To clear the fault, either:

- Turn the keyswitch from PROG to RUN to PROG
- Go online with RSLogix 5000 software

solid red The controller detected a non-recoverable fault, so it cleared the project from memory. To recover:
1. Cycle power to the chassis.
2. Download the project.
3. Change to Run mode.

If the OK LED remains solid red, contact your Rockwell Automation representative or local distributor.

solid green The controller is OK.

flashing green The controller is storing or loading a project to or from nonvolatile memory.

Front Panel: Indicator: Color: Description:
Publication 1756-QR107C-EN-P - June 2005

1 - 4 Logix Controllers
CompactLogix Controllers (1769-Lxx)
Front Panel: Indicator: Color: Description:

RUN off The controller is in Program or Test mode.

solid green The controller is in Run mode.

FORCE off No tags contain I/O force values.
I/O forces are inactive (disabled).

solid amber I/O forces are active (enabled).
I/O force values may or may not exist.

flashing amber One or more input or output addresses have been forced to an On or Off state, but the forces have not been enabled.

BAT off The battery supports memory.

solid red Either the battery is:
• not installed.
• 95% discharged and should be replaced.

I/O off Either:
• There are no devices in the I/O configuration of the controller.
• The controller does not contain a project (controller memory is empty).

solid green The controller is communicating with all the devices in its I/O configuration.

flashing green One or more devices in the I/O configuration of the controller are not responding.

flashing red The controller is not communicating to any devices.
The controller is faulted.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 5
OK off No power is applied.

flashing red If the controller is:Then:
a new controllerthe controller requires a firmware update
not a new controllerA major fault occurred. To clear the fault, either:

- Turn the keyswitch from PROG to RUN to PROG
- Go online with RSLogix 5000 software

solid red The controller detected a non-recoverable fault, so it cleared the project from memory. To recover:
1. Cycle power to the chassis.
2. Download the project.
3. Change to Run mode.

If the OK LED remains solid red, contact your Rockwell Automation representative or local distributor.

solid green The controller is OK.

flashing green The controller is storing or loading a project to or from nonvolatile memory.

DCH0
(RS-232)

off User-configured communications are active.

solid green Default communications are active.

Channel 1
(RS-232)
(1769-L31, -L30
only)

off There is no activity.

solid green Data is being received or transmitted.

Front Panel: Indicator: Color: Description:
Publication 1756-QR107C-EN-P - June 2005

1 - 6 Logix Controllers
CompactLogix Controllers (1769-L31, -L32E, -L35E, -L32C, -L35CR) - CompactFlash

CompactLogix Controllers (1769-L32E, -L35E) - EtherNet/IP

Indicator: Color: Description:

CompactFlash
CF

off No activity.

flashing green The controller is reading from or writing to the CompactFlash card.

flashing red CompactFlash card does not have a valid file system.

Indicator: Color: Description:

EtherNet/IP MS off There is no activity.

flashing green The EtherNet/IP port does not have an IP address and is operating in BOOTP mode.

solid green EtherNet/IP communications are active.

solid red One of the following occurred:
• The controller is holding the EtherNet/IP port in reset or the controller is faulted.
• The EtherNet/IP port is performing it’s power-up self-test.
• An unrecoverable fault has occurred. Cycle power to the controller.

flashing red Firmware is being updated.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 7
EtherNet/IP NS off There is no activity. The EtherNet/IP port does not have an IP address and is operating in BOOTP mode.

flashing green The EtherNet/IP port has an IP address but there are no CIP connections established.

solid green The EtherNet/IP port has an IP address and CIP connections are established.

solid red The assigned IP address is already in use.

flashing red/green The EtherNet/IP port is performing its power-up self-test.

EtherNet/IP LNK off The EtherNet/IP port is not properly connected to the EtherNet/IP network. Make sure that all Ethernet cables are
connected and that the Ethernet switch has power.

flashing green One of the following occurred:
• The EtherNet/IP port is performing it’s power-up self-test.
• The EtherNet/IP port is communicating on the network.

solid green The EtherNet/IP port is properly connected to the EtherNet/IP network.

Indicator: Color: Description:
Publication 1756-QR107C-EN-P - June 2005

1 - 8 Logix Controllers
CompactLogix Controllers (1769-L32C, -L35CR) - ControlNet

Indicator: Color: Description:

ControlNet MS off the controller has no power.

the controller is faulted.

steady red a major fault has occurred on the controller.

flashing red a minor fault has occurred because a firmware update is in progress.

a node address switch change occurred. The controller’s node address switches may have been changed since
power-up.

the controller uses invalid firmware.

the controller’s node address duplicates that of another device.

steady green connections are established.

flashing green no connections are established.

flashing red/green the controller is performing self-diagnostics.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 9
Indicator: If both channel
indicators are:

Description:

ControlNet (1) off a channel is disabled.

steady green normal operation is occurring.

flashing green/off temporary network errors have occurred.

the node is not configured to go online.

flashing red/off media fault has occurred.

no other nodes present on the network.

flashing red/green the network is configured incorrectly.

If either channel
indicator is:

off you should check the MS indicators.

steady red the controller is faulted.

alternating red/green the controller is performing a self-test.

alternating red/off the node is configured incorrectly.

(1) Channel B is only labelled on the 1769-L35CR controller. The 1769-L32C controller only has channel A but uses the second indicator in some LED patterns as
described in this table.
Publication 1756-QR107C-EN-P - June 2005

1 - 10 Logix Controllers
FlexLogix Controllers (1794-L34)
Front Panel: Indicator: Color: Description:

RUN off The controller is in Program or Test mode.

solid green The controller is in Run mode.

OK off No power is applied.

flashing red If the controller is:Then:
a new controllerthe controller requires a firmware update
not a new controllerA major fault occurred. To clear the fault, either:

- Turn the keyswitch from PROG to RUN to PROG
- Go online with RSLogix 5000 software

solid red The controller detected a non-recoverable fault, so it cleared the project from memory. To recover:
1. Cycle power to the chassis.
2. Download the project.
3. Change to Run mode.

If the OK LED remains solid red, contact your Rockwell Automation representative or local distributor.

solid green The controller is OK.

flashing green The controller is storing or loading a project to or from nonvolatile memory.

BATTERY off The battery supports memory.

red Either the battery is:
• not installed.
• 95% discharged and should be replaced.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 11
I/O off Either:
• The controller project is not downloaded (the condition after power up).
• No I/O or communications are configured.

solid green The controller is communicating to all devices.

flashing green One or more devices are not responding.

LOCAL
and
LOCAL2

off The rail is inhibited.

solid green The controller is communicating to all devices on that rail.

flashing green One or more devices on that rail not responding.

flashing red No modules exist on that rail.

RS232 off There is no activity.

solid green Data is being received or transmitted.

FORCE off No tags contain I/O force values.
I/O forces are inactive (disabled).

solid amber I/O forces are active (enabled).
I/O force values may or may not exist.

flashing amber One or more input or output addresses have been forced to an On or Off state, but the forces have not
been enabled.

Front Panel: Indicator: Color: Description:
Publication 1756-QR107C-EN-P - June 2005

1 - 12 Logix Controllers
SoftLogix5800 Controllers (1789-L10, -L30, -L60)
Front Panel: Indicator: Color: Description:

RUN off The controller is in Program or Test mode.

solid green The controller is in Run mode.

I/O off Either:
• There are no devices in the I/O configuration of the controller.
• The controller does not contain a project (controller memory is empty).

solid green The controller is communicating with all the devices in its I/O configuration.

flashing green One or more devices in the I/O configuration of the controller are not responding.

flashing red A virtual chassis error was detected. Contact your Rockwell Automation representative or local distributor.

FRC off No tags contain I/O force values.
I/O forces are inactive (disabled).

flashing green At least one tag contains an I/O force value.
I/O force values are inactive (disabled).

solid green I/O forces are active (enabled).
I/O force values may or may not exist.

RS232(1) off No COM port was selected.

solid green The selected COM port was successfully assigned to channel 0 of the controller.

solid red There is a COM port conflict or you selected an invalid COM port number.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 13
BAT(1) off Normal operation.

flashing amber The controller is in power-up mode.

solid red Persistent storage for the controller has failed.

OK flashing red If the controller is:Then:
a new controllerthe controller requires a firmware update
not a new controllerA major fault occurred. To clear the fault, either:

- Turn the keyswitch from PROG to RUN to PROG
- Go online with RSLogix 5000 software

solid red The controller detected a non-recoverable fault, so it cleared the project from memory. To recover:
1. Cycle power to the chassis.
2. Download the project.
3. Change to Run mode.

If the OK LED remains solid red, contact your Rockwell Automation representative or local distributor.

solid green The controller is OK.

(1) Note that these LEDs function slightly different than the same LEDs on a ControlLogix controller.

Front Panel: Indicator: Color: Description:
Publication 1756-QR107C-EN-P - June 2005

1 - 14 Logix Controllers
PowerFlex 700S with DriveLogix5720
Front Panel: Indicator: Color: Description:

RUN off The controller is in Program or Test mode.

solid green The controller is in Run mode.

FORCE off No tags contain I/O force values.
I/O forces are inactive (disabled).

flashing amber At least one tag contains an I/O force value.
I/O force values are inactive (disabled).

solid amber I/O forces are active (enabled).
I/O force values may or may not exist.

BAT off The battery supports memory.

solid red Either the battery is:
• not installed.
• 95% discharged and should be replaced.

I/O off Either:
• There are no devices in the I/O configuration of the controller.
• The controller does not contain a project (controller memory is empty).

solid green The controller is communicating with all the devices in its I/O configuration.

flashing green One or more devices in the I/O configuration of the controller are not responding.

flashing red No required I/O connections can be made, controller is in Run mode.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 15
RS232 off No COM port was selected.

solid green The selected COM port was successfully assigned to channel 0 of the controller.

solid red There is a COM port conflict or you selected an invalid COM port number.

OK flashing red If the controller is: Then:
a new controller the controller requires a firmware update
not a new controller A major fault occurred. To clear the fault, either:

- Turn the keyswitch from PROG to RUN to PROG
- Go online with RSLogix 5000 software

solid red The controller detected a non-recoverable fault, so it cleared the project from memory. To recover:
1. Cycle power to the chassis.
2. Download the project.
3. Change to Run mode.
If the OK LED remains solid red, contact your Rockwell Automation representative or local distributor.

solid green The controller is OK.

flashing green The controller is storing or loading a project to or from nonvolatile memory.

Front Panel: Indicator: Color: Description:
Publication 1756-QR107C-EN-P - June 2005

1 - 16 Logix Controllers
PowerFlex 700S with DriveLogix5730
Front Panel: Indicator: Color: Description:

RUN off The controller is in Program or Test mode.

solid green The controller is in Run mode.

FORCE off No tags contain I/O force values.
I/O forces are inactive (disabled).

solid amber I/O forces are active (enabled).
I/O force values may or may not exist.

flashing amber One or more input or output addresses have been forced to an On or Off state, but the forces have not been enabled.

BAT off The battery supports memory.

solid red Either the battery is:
• not installed.
• 95% discharged and should be replaced.

I/O off Either:
• There are no devices in the I/O configuration of the controller.
• The controller does not contain a project (controller memory is empty).

solid green The controller is communicating with all the devices in its I/O configuration.

flashing green One or more devices in the I/O configuration of the controller are not responding.

flashing red The controller is not communicating to any devices.
The controller is faulted.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 17
COM off No RS-232 activity.

flashing green RS-232 activity.

OK off No power is applied.

flashing red If the controller is: Then:
a new controller the controller requires a firmware update
not a new controller A major fault occurred.

To clear the fault, either:
- Turn the keyswitch from PROG to RUN to PROG
- Go online with RSLogix 5000 software

solid red The controller detected a non-recoverable fault, so it cleared the project from memory. To recover:
1. Cycle power to the chassis.
2. Download the project.
3. Change to Run mode.
If the OK LED remains solid red, contact your Rockwell Automation representative or local distributor.

solid green Controller is OK.

flashing green The controller is storing or loading a project to or from nonvolatile memory.

Front Panel: Indicator: Color: Description:
Publication 1756-QR107C-EN-P - June 2005

1 - 18 Logix Controllers
Controller Comparison

Common Characteristics 1756 ControlLogix 1769 CompactLogix 1789 SoftLogix 1794 FlexLogix PowerFlex 700S with
DriveLogix

controller tasks
• continuous
• periodic
• event

• 32 tasks (only 1 continuous)
• event tasks: supports all event

triggers

• 1769-L35E, -L35CR: 8 tasks
• 1769-L32E, -L32C: 6 tasks
• 1769-L31: 4 tasks
• only 1 continuous
• event tasks: supports

consumed tag trigger and
EVENT instruction

• 32 tasks (only 1 continuous)
• event tasks: supports all

event triggers, plus
outbound and Windows
events

• 8 tasks (only 1 continuous)
• event tasks: supports

consumed tag trigger and
EVENT instruction

• 8 tasks (only 1 continuous)
• event tasks: supports axis

and motion event triggers

user memory 1756-L55M12 750 Kbytes
1756-L55M13 1.5 Mbytes
1756-L55M14 3.5 Mbytes
1756-L55M16 7.5 Mbytes
1756-L55M22 750 Kbytes
1756-L55M23 1.5 Mbytes
1756-L55M24 3.5 Mbytes
1756-L61 2 Mbytes
1756-L62 4 Mbytes
1756-L63 8 Mbytes

1769-L31 512 Kbytes
1769-L32E, -L32C 750 Kbytes
1769-L35E, -L35CR 1.5 Mbytes

1789-L10 2 Mbytes
3 slots, no motion

1789-L30 64 Mbytes
5 slots

1789-L60 64 Mbytes
16 slots

1794-L34 512 Kbytes 5720 256 Kbytes
768 Kbytes with
expansion memory

5730 1.5Mbytes

nonvolatile user memory 1756-L55M12 none
1756-L55M13 none
1756-L55M14 none
1756-L55M16 none
1756-L55M22 yes
1756-L55M23 yes
1756-L55M24 yes
1756-L6x CompactFlash

CompactFlash none yes 5720 yes (expansion
memory)

5730 CompactFlash
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 19
built-in communication ports 1 port RS-232 serial
(DF1 or ASCII)

• 1769-L31: 2 RS-232 serial
ports (one DF1 only,
other DF1 or ASCII)

• 1769-L32C, -L35CR: 1
ControlNet port and 1
RS-232 serial port
(DF1 or ASCII)

• 1769-L32E, -L35E: 1
EtherNet/IP port and 1
RS-232 serial port
(DF1 or ASCII)

depends on personal computer • 1 RS-232 serial port
(DF1 or ASCII)

• 2 slots for 1788
communication cards

5720
• 1 RS-232 serial port

(DF1 or ASCII)
• 1 slot for 1788

communication cards
5730
• 1 RS-232 serial port

(DF1 or ASCII)
• 1 slot for 1788 (option)
• 1 embedded ethernet

(option)

communication options
(these options have specific products
and profiles for their platform - other
options are available via 3rd party
products and generic profiles)

EtherNet/IP
ControlNet
DeviceNet
Data Highway Plus
Universal Remote I/O
serial
Modbus via ladder routine
DH-485
SynchLink

EtherNet/IP
ControlNet
DeviceNet
serial
Modbus via ladder routine
DH-485

EtherNet/IP
ControlNet
DeviceNet
serial

EtherNet/IP
ControlNet
DeviceNet
serial
Modbus via ladder routine
DH-485

EtherNet/IP
ControlNet
DeviceNet
serial
Modbus via ladder routine
DH-485

connections 64 over ControlNet (48
recommended)
128 over EtherNet/IP

32 over ControlNet
32 over EtherNet/IP

64 over ControlNet (48
recommended)
EtherNet/IP limited by type
and number of cards

32 over ControlNet
32 over EtherNet/IP

32 over ControlNet
32 over EtherNet/IP

controller redundancy full redundancy support not applicable not applicable controller hot backup via
DeviceNet

not applicable

Common Characteristics 1756 ControlLogix 1769 CompactLogix 1789 SoftLogix 1794 FlexLogix PowerFlex 700S with
DriveLogix
Publication 1756-QR107C-EN-P - June 2005

1 - 20 Logix Controllers
native I/O 1756 ControlLogix I/O 1769 Compact I/O supported via 3rd party PCI bus
I/O cards

1794 FLEX I/O
1797 FLEX Ex I/O

5720
• 1794 FLEX I/O
• 1797 FLEX Ex I/O
5730
• 1769 Compact I/O

simple motion stepper
servo via DeviceNet
analog ac drive

stepper
servo via DeviceNet
analog ac drive

stepper
servo via DeviceNet
analog ac drive

stepper
servo via DeviceNet
analog ac drive

stepper
servo via DeviceNet
analog ac drive

integrated motion SERCOS interface
analog interface with options:
• quadrature encoder input
• LDT input
• SSI input

not applicable SERCOS interface
analog interface with options:
• quadrature encoder input
• LDT input
• SSI input

not applicable 1 full servo
1 feedback axis

mounting and/or installation options 1756 chassis panel mount
DIN rail

none panel mount
DIN rail

embedded

programming languages • relay ladder
• structured text
• function block
• sequential function chart

• relay ladder
• structured text
• function block
• sequential function chart

• relay ladder
• structured text
• function block
• sequential function chart
• external routines (Windows

DLLs developed using
C/C++)

• relay ladder
• structured text
• function block
• sequential function chart

• relay ladder
• structured text
• function block
• sequential function chart

Common Characteristics 1756 ControlLogix 1769 CompactLogix 1789 SoftLogix 1794 FlexLogix PowerFlex 700S with
DriveLogix
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 21
Select the Operating Mode of the Controller
Use this table to determine the operating mode of the controller:

Turn the key on the front panel of the controller to select the mode.

If you want to: Select one of these modes:

Run Remote Program

Run Test Program

turn outputs to the state commanded by the logic of the project X X

turn outputs to their configured state for Program mode X X X

execute (scan) tasks X X X

change the mode of the controller through software X X X

download a project X X X X

schedule a ControlNet network X X

while online, edit the project X X X X

send messages X X X

send and receive data in response to a message from another controller X X X X X

produce and consume tags X X X X X
Publication 1756-QR107C-EN-P - June 2005

1 - 22 Logix Controllers
Non-Volatile Memory
These controllers have nonvolatile memory for project storage.

Controller Type: Catalog Number: Firmware Revision:

CompactLogix5332E 1769-L32E(1)

(1) Requires a 1784-CF64 Industrial CompactFlash memory card.

13.x or later

CompactLogix5335E 1769-L35E(1) 12.x or later

CompactLogix5331 1769-L31(1) 13.x or later

CompactLogix5332C 1769-L32C(1) 13.x or later

CompactLogix5335CR 1769-L35CR(1) 13.x or later

ControlLogix5555 1756-L55M22 10.x or later

1756-L55M23 8.x or later

1756-L55M24 8.x or later

ControlLogix5560M03SE 1756-L60M03SE(1) 13.x or later

ControlLogix5561 and ControlLogix5562 1756-L61, -L62(1) 12.x or later for series A
13.x or later for series B

ControlLogix5563 1756-L63(1) 11.x or later for series A
13.x or later for series B

DriveLogix5720 various 10.x or later

DriveLogix5730 various(1) 13.x or later

FlexLogix5434 Series B 1794-L34/B 11.x or later
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 23
On the controller properties, you select to store/load a project to/from non-volatile memory:

Project that is currently in the nonvolatile memory of the controller
(if any project is there).

Project that is currently in the user memory (RAM) of the controller.
Publication 1756-QR107C-EN-P - June 2005

1 - 24 Logix Controllers
Create a Project
From RSLogix 5000 software, select File → New.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 25
Controller Organizer
The programming software uses the Controller Organizer to define a project.

Continuous Task

Program

Main Routine

Routine

Task

Periodic Task
Publication 1756-QR107C-EN-P - June 2005

1 - 26 Logix Controllers
Controller Tasks
A task provides scheduling and priority information for a set of one or more programs that execute based on specific criteria. Once a task
is triggered (activated), all the programs assigned (scheduled) to the task execute in the order in which they are displayed in the controller
organizer.

Task: Definition:

continuous task The continuous task runs in the background. Any CPU time not allocated to other operations (such as motion, communications, and periodic
or event tasks) is used to execute the programs within the continuous task.
• The continuous task runs all the time. When the continuous task completes a full scan, it restarts immediately.
• A project does not require a continuous task. If used, there can be only one continuous task.

periodic task A periodic task performs a function at a specific rate.
• Whenever the time for the periodic task expires, the periodic task interrupts any lower priority tasks, executes one time, and then returns

control to where the previous task left off.
• You can configure the time period from 1 ms to 2000 s. The default is 10 ms. The performance of a periodic tasks depends on the type of

Logix controller and the logic in the task.
You assign a priority level (1 is the highest, 15 is the lowest) to each periodic task:
• The highest priority task interrupts all lower priority tasks.
• A higher priority task can interrupt a lower priority task multiple times.
• Tasks at the same priority execute on a time-slice basis at 1 ms intervals.

event task An event task performs a function only when a specific event (trigger) occurs. Whenever the trigger for the event task occurs, the event task
interrupts any lower priority tasks, executes one time, and then returns control to where the previous task left off.
Available triggers are Module Input Data State Change, Consumed Tag, Axis Registration 1 or 2, Axis Watch, Motion Group Execution,
EVENT Instruction.
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 27
The number of tasks supported depends on the controller:

A task can have as many as 32 separate programs, each with its own executable routines and program-scoped tags. Once a task is triggered
(activated), all the programs assigned to the task execute in the order in which they are grouped. Programs can only appear once in the
Controller Organizer and cannot be shared by multiple tasks.

When a task is triggered, the scheduled programs within the task execute to completion from first to last. Each program contains program
tags, a main routine, other routines, and an optional fault routine. When a program executes, its main routine executes first. Use the main
routine to call (execute) other routines (subroutines). To call another routine within the program, use a Jump to Subroutine (JSR)
instruction.

Controller: Number of Tasks Supported:

ControlLogix 32 tasks, one of which can be continuous
There are 15 configurable priority levels for periodic tasks(1-15), with 1 being the highest priority and 15 being the lowest priority.

CompactLogix
and
PowerFlex 700S with DriveLogix5730

1769-L35E, -L35CR: 8 tasks, one of which can be continuous
1769-L32E, -L32C: 6 tasks, one of which can be continuous
1769-L31, -L30, -L20: 4 tasks, one of which can be continuous
There are 15 configurable priority levels for periodic tasks(1-15), with 1 being the highest priority and 15 being the lowest priority. The CompactLogix controller uses a
dedicated periodic task at priority 7 to process I/O data. This periodic task executes at the fastest RPI you have scheduled for the system. Its total execution time is as
long as it takes to scan the configured I/O modules.

FlexLogix
and
PowerFlex 700S with DriveLogix5720

8 tasks, one of which can be continuous
There are 15 configurable priority levels for periodic tasks(1-15), with 1 being the highest priority and 15 being the lowest priority.
The controller uses a dedicated periodic task at priority 7 to process I/O data. This periodic task executes at the fastest RPI you have scheduled for the system. Its total
execution time is as long as it takes to scan the configured I/O modules.

SoftLogix5800 32 tasks, one of which can be continuous
There are 3 configurable priority levels for periodic tasks (1-3), with 1 being the highest priority and 3 being the lowest priority.
Publication 1756-QR107C-EN-P - June 2005

1 - 28 Logix Controllers
Event task details
Not all Logix controllers support all event task triggers:

If you have this controller: Then you can use these event task triggers:

Module Input Data State Change Consumed Tag Axis Registration 1 or 2 Axis Watch Motion Group Execution EVENT instruction

CompactLogix X X

FlexLogix X X

ControlLogix X X X X X X

DriveLogix5720 X X X X

DriveLogix5730 X X X X X

SoftLogix5800 X(1)

(1) Requires a 1756 I/O module or a virtual backplane.

X(2)

(2) A SoftLogix5800 controller produces and consumes tags only over a ControlNet network.

X X X X
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 29
To use an input module to trigger an event task, the module must support event task triggering. If the module is in a remote location, the

associated communication modules must also support event triggering. These modules can trigger an event task.

Category Module Category Module Category Module

1756 Discrete 1756-IA8D 1756 Analog 1756-IF16 1756 Communication 1756-CNB/A, -CNB/B,
-CNB/D

1756-IA16, -IA16I 1756-IF4FXOF2F/A 1756-CNBR/A, -CNBR/B,
-CNBR/D

1756-IA32 1756-IF6CIS 1756-DNB

1756-IB16, -IB16D, -IB16I 1756-IF6I 1756-ENBT/A

1756-IB16ISOE 1756-IF8 1756-SYNCH/A

1756-IB32/A, -IB32/B 1756-IR6I 1756 Generic 1756-MODULE

1756-IC16 1756-IT6I SoftDNB 1784-PCIDS/A

1756-IG16 1756-IT6I2 1789 Generic 1789-MODULE

1756-IH16I, -IH16ISOE 1756 Specialty 1756-CFM/A

1756-IM16I 1756-HSC

1756-IN16 1756-PLS/B

1756-IV16/A

1756-IV32/A
Publication 1756-QR107C-EN-P - June 2005

1 - 30 Logix Controllers
Controller Tags
The most common data types are.

To organize your data:

For: Select: For: Select:

analog device in floating-point mode REAL digital I/O point BOOL

analog device in integer mode (for very fast sample rates) INT floating-point number REAL

ASCII characters string integer (whole number) DINT

bit BOOL sequencer CONTROL

counter COUNTER timer TIMER

For a: Use a:

group of common attributes that are used by more than one machine user-defined data type

group of data with the same data type array

single value tag of a single element

I/O device
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 31
Create a tag
From the Logic menu, select Edit Tags.

You can configure tags to communicate directly with other controllers:

To: Use a:

send data over the backplane and ControlNet network at a specified interval produced tag

receive data from another controller over the backplane or ControlNet network at a specified
interval

consumed tag
Publication 1756-QR107C-EN-P - June 2005

1 - 32 Logix Controllers
Create a user-defined data type

right click
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 33
Aliases
An alias tag lets you create one tag that represents another tag.

• Both tags share the same value (s).

• When the value (s) of one of the tags changes, the other tag reflects the change as well.

drill_1_depth_limit is an alias for
Local:2:I.Data.3 (a digital input point). When the
input turns on, the alias tag also turns on.

drill_1_on is an alias for
Local:0:O.Data.2 (a digital output point).
When the alias tag turns on, the output
tag also turns on.

The (C) indicates that the tag is at the controller scope.
Publication 1756-QR107C-EN-P - June 2005

1 - 34 Logix Controllers
Choose a Programming Language
In general, if the function or group of functions represent: Then use this language:

continuous or parallel execution of multiple operations (not sequenced) ladder logic

boolean or bit-based operations

complex logical operations

message and communication processing

machine interlocking

operations that service or maintenance personnel may have to interpret in order to troubleshoot the machine or process

continuous process and drive control function block diagram

loop control

calculations in circuit flow

high-level management of multiple operations sequential function chart (SFC)

repetitive sequences of operations

batch process

motion control using structured text

state machine operations

continued
Publication 1756-QR107C-EN-P - June 2005

Logix Controllers 1 - 35
complex mathematical operations structured text

specialized array or table loop processing

ASCII string handling or protocol processing

In general, if the function or group of functions represent: Then use this language:
Publication 1756-QR107C-EN-P - June 2005

1 - 36 Logix Controllers
Notes:
Publication 1756-QR107C-EN-P - June 2005

Chapter 2
Sequential Function Charts
A sequential function chart (SFC) is similar to a flowchart. It uses steps and transitions to perform specific operations or actions.

continued

A step represents a major function of your
process. It contains the actions that occur at a
particular time, phase, or station.

An action is one of the functions that
a step performs.

A transition is the true or false condition that tells the
SFC when to go to the next step.

A qualifier determines when an action
starts and stops.

A simultaneous branch executes
more than 1 step at the same time.

START

END
Publication 1756-QR107C-EN-P - June 2005

2 - 2 Sequential Function Charts
Example SFC continued

continued

A selection branch chooses between
different execution paths.

A text box lets you add descriptive text or notes to your SFC.

START

END
Publication 1756-QR107C-EN-P - June 2005

Sequential Function Charts 2 - 3
Example SFC continued

A stop lets you stop and wait for a command to restart.

A wire connects one element to another
element anywhere on the chart.
Publication 1756-QR107C-EN-P - June 2005

2 - 4 Sequential Function Charts
Editing an SFC

Button SFC Element Created Description

step and transition pair Add a step and transition pair. See the descriptions for step and transition below.

step Add a step.

A step represents a major function of a process. It contains the events that occur at a particular time, phase, or station.

transition Add a transition.

A transition is the true or false condition or conditions that determine when to go to the next step.

action Add an action or a boolean action to the selected step. Click the step and then press this button.

An action represents a functional division of a step. Several actions make up a step. Each action performs a specific function, such as
controlling a motor, opening a valve, or placing a group of devices in a specific mode.

Each action includes a qualifier. When a step is active (executing) the qualifier determines when the action starts and stops.
boolean action

selection branch diverge Starts a selection branch. Use the new path button to add paths to the branch structure.
Publication 1756-QR107C-EN-P - June 2005

Sequential Function Charts 2 - 5
simultaneous branch diverge Starts a simultaneous branch. Use the new path button to add paths to the branch structure.

converge SFC elements Ends the current branch. Select the last step of each path in the branch and then press this button.

A simultaneous branch ends with a double horizontal line and no transition. A selection branch ends with a transition for each path and a
single horizontal line.

extend branch Add a path to a branch. Click the first step of the path that is to the left of where you want to add the new path and then press the button.

stop End a path in a branch without connecting to other SFC elements.

subroutine/return Add a subroutine call.

text box Create a text box. Once the text box appears, you can click and drag the text box to the location you want. Double-click the text box to add
text.

Button SFC Element Created Description
Publication 1756-QR107C-EN-P - June 2005

2 - 6 Sequential Function Charts
SFC_STEP Structure
Member Data type Details

T DINT When a step becomes active, the Timer (T) value resets and then starts to count up in milliseconds. The timer continues to count
up until the step goes inactive, regardless of the Preset (PRE) value.

PRE DINT Enter the time in the Preset (PRE) member. When the Timer (T) reaches the Preset value, the Done (DN) bit turns on and stays on
until the step becomes active again.

As an option, enter a numeric expression that calculates the time at runtime.

DN BOOL When the Timer (T) reaches the Preset (PRE) value, the Done (DN) bit turns on and stays on until the step becomes active again.

LimitLow DINT Enter the time in the LimitLow member (milliseconds).
• If the step goes inactive before the Timer (T) reaches the LimitLow value, the AlarmLow bit turns on.
• The AlarmLow bit stays on until you reset it.
• To use this alarm function, turn on (check) the AlarmEnable (AlarmEn) bit.

AlarmEn BOOL To use the alarm bits, turn on (check) the AlarmEnable (AlarmEn) bit.

AlarmLow BOOL If the step goes inactive before the Timer (T) reaches the LimitLow value, the AlarmLow bit turns on.
• The bit stays on until you reset it.
• To use this alarm function, turn on (check) the AlarmEnable (AlarmEn) bit.

LimitHigh DINT Enter the time in the LimitHigh member (milliseconds).
• If the Timer (T) reaches the LimitHigh value, the AlarmHigh bit turns on.
• The AlarmHigh bit stays on until you reset it.
• To use this alarm function, turn on (check) the AlarmEnable (AlarmEn) bit.

AlarmEn BOOL To use the alarm bits, turn on (check) the AlarmEnable (AlarmEn) bit.
Publication 1756-QR107C-EN-P - June 2005

Sequential Function Charts 2 - 7
AlarmHigh BOOL If the Timer (T) reaches the LimitHigh value, the AlarmHigh bit turns on.
• The bit stays on until you reset it.
• To use this alarm function, turn on (check) the AlarmEnable (AlarmEn) bit.

X BOOL The X bit is on the entire time the step is active (executing).

FS BOOL The FS bit is on during the first scan of the step.

SA BOOL The SA bit is on when the step is active except during the first and last scan of the step.

LS BOOL The LS bit is on during the last scan of the step. Use this bit only if you do the following: On the Controller Properties dialog box,
SFC Execution tab, set the Last Scan of Active Step to Don’t Scan or Programmatic reset.

Reset BOOL An SFC Reset (SFR) instruction resets the SFC to a step or stop that the instruction specifies.
• The Reset bit indicates to which step or stop the SFC will go to begin executing again.
• Once the SFC executes, the Reset bit clears.

TMax DINT Use this for diagnostic purposes. The controller clears this value only when you choose the Restart Position of Restart at initial
step and the controller changes modes or experiences a power cycle.

OV BOOL Use this for diagnostic purposes.

Count DINT This is not a count of scans of the step.
• The count increments each time the step becomes active.
• It increments again only after the step goes inactive and then active again.
• The count resets only if you configure the SFC to restart at the initial step. With that configuration, it resets when the

controller changes from program mode to run mode.

Member Data type Details
Publication 1756-QR107C-EN-P - June 2005

2 - 8 Sequential Function Charts
Status DINT For this member: Use this bit:

Reset 22

AlarmHigh 23

AlarmLow 24

AlarmEn 25

OV 26

DN 27

LS 28

SA 29

FS 30

X 31

Member Data type Details
Publication 1756-QR107C-EN-P - June 2005

Sequential Function Charts 2 - 9
SFC_ACTION Structure
Member Data type Details

Q BOOL The status of the Q bit depends on whether the action is a boolean action or non-boolean action:

If the action is: Then the Q bit is:

boolean on (1) the entire time the action is active, including the last scan of the action

non-boolean on (1) while the action is active but
off (0) at the last scan of the action

To use a bit to determine when an action is active, use the Q bit.

A BOOL The A bit is on the entire time the action is active.

T DINT When an action becomes active, the Timer (T) value resets and then starts to count up in milliseconds. The timer continues to
count up until the action goes inactive, regardless of the Preset (PRE) value.

PRE DINT Enter the time limit or delay in the Preset (PRE) member. The action starts or stops when the Timer (T) reaches the Preset value.

Count DINT This is not a count of scans of the action.
• The count increments each time the action becomes active.
• It increments again only after the action goes inactive and then active again.
• The count resets only if you configure the SFC to restart at the initial step. With that configuration, it resets when the

controller changes from program mode to run mode.

Status DINT For this member: Use this bit:

Q 30

A 31
Publication 1756-QR107C-EN-P - June 2005

2 - 10 Sequential Function Charts
Action Qualifiers
If you want the action to: And: Assign this

qualifier:
Which means:

start when the step is activated stop when the step is deactivated N Non-Stored (default)

execute only once P1 Pulse (Rising Edge)

stop before the step is deactivated or when the step is
deactivated

L Time Limited

stay active until a Reset action turns off this action S Stored

stay active until a Reset action turns off this action
or a specific time expires, even if the step is deactivated

SL Stored and Time
Limited

start a specific time after the step is activated and the step is
still active

stop when the step is deactivated D Time Delayed

stay active until a Reset action turns off this action DS Delayed and Stored

start a specific time after the step is activated, even if the step is
deactivated before this time

stay active until a Reset action turns off this action SD Stored and Time
Delayed

execute once when the step is activated execute once when the step is deactivated P Pulse

start when the step is deactivated execute only once P0 Pulse (Falling Edge)

turn off (reset) a stored action:
• S Stored
• SL Stored and Time Limited
• DS Delayed and Stored
• SD Stored and Time Delayed

R Reset
Publication 1756-QR107C-EN-P - June 2005

Sequential Function Charts 2 - 11
SFC_STOP Structure
Member: Data type: Details:

X BOOL • When the SFC reaches the stop, the X bit turns on.
• The X bit clears if you configure the SFCs to restart at the initial step and the controller changes from program to run

mode.
• In a nested SFC, the X bit also clears if you configure the SFCs for automatic reset and the SFC leaves the step that calls

the nested SFC.

Reset BOOL An SFC Reset (SFR) instruction resets the SFC to a step or stop that the instruction specifies.
• The Reset bit indicates to which step or stop the SFC will go to begin executing again.
• Once the SFC executes, the Reset bit clears.

Count DINT This is not a count of scans of the stop.
• The count increments each time the stop becomes active.
• It increments again only after the stop goes inactive and then active again.
• The count resets only if you configure the SFC to restart at the initial step. With that configuration, it resets when the

controller changes from program mode to run mode.

Status DINT For this member: Use this bit:

Reset 22

X 31
Publication 1756-QR107C-EN-P - June 2005

2 - 12 Sequential Function Charts
How Do You Want to Use the Action?
There are two types of actions:

Use a non-boolean action
A non-boolean action contains the logic for the action. It uses structured text to execute assignments and instructions or call a subroutine.
With non-boolean actions, you also have the option to postscan (automatically reset) the assignments and instructions before leaving a step:

• During postscan the controller executes the assignments and instructions as if all conditions are false.

• The controller postscans both embedded structured text and any subroutine that the action calls.

Use a boolean action
A boolean action contains no logic for the action. It simply sets a bit in its tag (SFC_ACTION structure). To do the action, other logic must
monitor the bit and execute when the bit is on. With boolean actions, you have to manually reset the assignments and instructions that are
associated with the action. Since there is no link between the action and the logic that performs the action, the automatic reset option does
not effect boolean actions. You can reuse a boolean action multiple times within the same SFC.

If you want to: Then use a:

execute structured text directly in the SFC non-boolean action

call a subroutine

use the automatic reset option to reset data upon leaving a step

only set a bit and program other logic to monitor the bit to determine when to execute. boolean action
Publication 1756-QR107C-EN-P - June 2005

Sequential Function Charts 2 - 13
Configure the Execution of an SFC
From Controller Properties:
Publication 1756-QR107C-EN-P - June 2005

2 - 14 Sequential Function Charts
Notes:
Publication 1756-QR107C-EN-P - June 2005

Chapter 3
Structured Text
Structured Text Syntax
Structured text is a textual programming language that uses statements to define what to execute.

• Structured text is not case sensitive.

• Use tabs and carriage returns (separate lines) to make your structured text easier to read. They have no effect on the execution of
the structured text.

This is an example of a structured text routine.
Publication 1756-QR107C-EN-P - June 2005

3 - 2 Structured Text
Structured text can contain these components:

Term: Definition: Examples:

assignment
(see page 3-4)

Use an assignment statement to assign values to tags.
The := operator is the assignment operator.
Terminate the assignment with a semi colon “;”.

tag := expression;

expression
(see page 3-6)

An expression is part of a complete assignment or construct statement. An expression evaluates to a
number (numerical expression) or to a true or false state (BOOL expression). An expression contains:

tags A named area of the memory where data is stored (BOOL, SINT,INT,DINT,
REAL, string).

value1

immediates A constant value. 4

operators A symbol or mnemonic that specifies an operation within an expression. tag1 + tag2
tag1 >= value1

functions When executed, a function yields one value. Use parentheses to contain
the operand of a function.

Even though their syntax is similar, functions differ from instructions in that
functions can only be used in expressions. Instructions cannot be used in
expressions.

function(tag1)

instruction
(see page 3-13)

An instruction is a standalone statement.
An instruction uses parenthesis to contain its operands.
Depending on the instruction, there can be zero, one, or multiple operands.
When executed, an instruction yields one or more values that are part of a data structure.
Terminate the instruction with a semi colon “;”.

Instructions cannot be used in expressions. Functions can only be used in expressions.

instruction();

instruction(operand);

instruction(operand1, operand2,operand3);
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 3
Entering spaces in structured text syntax is optional. Spaces have no effect on the execution of the structured text. For example, both of
these statements execute the same:

Tag_B:=Tag_A

Tag_B := Tag_A

construct
(see page 3-15)

A conditional statement used to trigger structured text code (i.e, other statements).
Terminate the construct with a semi colon “;”.

IF...THEN
CASE
FOR...DO
WHILE...DO
REPEAT...UNTIL
EXIT

comment
(see page 3-25)

Text that explains or clarifies what a section of structured text does.
Use comments to make it easier to interpret the structured text.
Comments do not affect the execution of the structured text.
Comments can appear anywhere in structured text.

//comment

(*start of comment . . . end of comment*)

/*start of comment . . . end of comment*/

Term: Definition: Examples:
Publication 1756-QR107C-EN-P - June 2005

3 - 4 Structured Text
Assignments
Use an assignment to change the value stored within a tag. An assignment has this syntax:

tag := expression ;

where:

The tag retains the assigned value until another assignment changes the value.

Component: Description:

tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL

:= is the assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT DINT
INT REAL

numeric expression

; ends the assignment
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 5
Specify a non-retentive assignment
A non-retentive assignment is reset to zero each time the controller:

• enters the RUN mode

• leaves the step of an SFC if you configure the SFC for Automatic reset.

A non-retentive assignment has this syntax:

tag [:=] expression ;

where:

Component: Description:

tag represents the tag that is getting the new value
the tag must be a BOOL, SINT, INT, DINT, or REAL

[:=] is the non-retentive assignment symbol

expression represents the new value to assign to the tag

If tag is this data type: Use this type of expression:

BOOL BOOL expression

SINT DINT
INT REAL

numeric expression

; ends the assignment
Publication 1756-QR107C-EN-P - June 2005

3 - 6 Structured Text
Expressions
An expression is a tag name, equation, or comparison. To write an expression, use any of the following:

• tag name that stores the value (variable)

• number that you enter directly into the expression (immediate value)

• functions, such as: ABS, TRUNC

• operators, such as: +, -, <, >, And, Or

BOOL expression: An expression that produces either the BOOL value of 1 (true) or 0 (false).

• A bool expression uses bool tags, relational operators, and logical operators to compare values or check if conditions are true or
false. For example, tag1>65.

• A simple bool expression can be a single BOOL tag.

• Typically, you use bool expressions to condition the execution of other logic.

Numeric expression: An expression that calculates an integer or floating-point value.

• A numeric expression uses arithmetic operators, arithmetic functions, and bitwise operators. For example, tag1+5.

• Often, you nest a numeric expression within a bool expression. For example, (tag1+5)>65.
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 7
Arithmetic operators
Arithmetic operators calculate new values.

To: Use this operator: Optimal data type:

add + DINT, REAL

subtract/negate - DINT, REAL

multiply * DINT, REAL

exponent (x to the power of y) ** DINT, REAL

divide / DINT, REAL

modulo-divide MOD DINT, REAL
Publication 1756-QR107C-EN-P - June 2005

3 - 8 Structured Text
Arithmetic functions
Arithmetic functions perform math operations. Specify a constant, a non-boolean tag, or an expression for the function.

For: Use this function: Optimal data type:

absolute value ABS (numeric_expression) DINT, REAL

arc cosine ACOS (numeric_expression) REAL

arc sine ASIN (numeric_expression) REAL

arc tangent ATAN (numeric_expression) REAL

cosine COS (numeric_expression) REAL

radians to degrees DEG (numeric_expression) DINT, REAL

natural log LN (numeric_expression) REAL

log base 10 LOG (numeric_expression) REAL

degrees to radians RAD (numeric_expression) DINT, REAL

sine SIN (numeric_expression) REAL

square root SQRT (numeric_expression) DINT, REAL

tangent TAN (numeric_expression) REAL

truncate TRUNC (numeric_expression) DINT, REAL
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 9
Relational operators
Relational operators compare two values or strings to provide a true or false result. The result of a relational operation is a BOOL value:

If the comparison is: The result is:

true 1

false 0

For this comparison: Use this operator: Optimal Data Type:

equal = DINT, REAL, string

less than < DINT, REAL, string

less than or equal <= DINT, REAL, string

greater than > DINT, REAL, string

greater than or equal >= DINT, REAL, string

not equal <> DINT, REAL, string
Publication 1756-QR107C-EN-P - June 2005

3 - 10 Structured Text
Logical operators
Logical operators let you check if multiple conditions are true or false. The result of a logical operation is a BOOL value:

If the comparison is: The result is:

true 1

false 0

For: Use this operator: Data Type:

logical AND &, AND BOOL

logical OR OR BOOL

logical exclusive OR XOR BOOL

logical complement NOT BOOL
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 11
Bitwise operators
Bitwise operators manipulate the bits within a value based on two values.

For: Use this operator: Optimal Data Type:

bitwise AND &, AND DINT

bitwise OR OR DINT

bitwise exclusive OR XOR DINT

bitwise complement NOT DINT
Publication 1756-QR107C-EN-P - June 2005

3 - 12 Structured Text
Determine the order of execution
The operations you write into an expression are performed in a prescribed order, not necessarily from left to right.

• Operations of equal order are performed from left to right.

• If an expression contains multiple operators or functions, group the conditions in parenthesis “()” to ensure the correct order.

Order: Operation:

1. ()

2. function (…)

3. **

4. − (negate)

5. NOT

6. *, /, MOD

7. +, - (subtract)

8. <, <=, >, >=

9. =, <>

10. &, AND

11. XOR

12. OR
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 13
Instructions
Structured text statements can also be instructions. See the Locator Table at the beginning of this manual for a list of the instructions
available in structured text. A structured text instruction executes each time it is scanned. A structured text instruction within a construct
executes every time the conditions of the construct are true. If the conditions of the construct are false, the statements within the construct
are not scanned. There is no rung-condition or state transition that triggers execution.

This differs from function block instructions that use EnableIn to trigger execution. Structured text instructions execute as if EnableIn is
always set.

This also differs from relay ladder instructions that use rung-condition-in to trigger execution. Some relay ladder instructions only execute
when rung-condition-in toggles from false to true. These are transitional relay ladder instructions. In structured text, instructions will
execute each time they are scanned unless you pre-condition the execution of the structured text instruction.

For example, the ABL instruction is a transitional instruction in relay ladder. In this example, the ABL instruction only executes on a scan
when tag_xic transitions from cleared to set. The ABL instruction does not execute when tag_xic stays set or when tag_xic is cleared.
Publication 1756-QR107C-EN-P - June 2005

3 - 14 Structured Text
In structured text, if you write this example as:

IF tag_xic THEN ABL(0,serial_control);

END_IF;

the ABL instruction will execute every scan that tag_xic is set, not just when tag_xic transitions from cleared to set.

If you want the ABL instruction to execute only when tag_xic transitions from cleared to set, you have to condition the structured text
instruction. Use a one shot to trigger execution.

osri_1.InputBit := tag_xic;

OSRI(osri_1);

IF (osri_1.OutputBit) THEN

ABL(0,serial_control);

END_IF;
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 15
Constructs
Constructs can be programmed singly or nested within other constructs.

If you want to: Use this construct: See page:

do something if or when specific conditions occur IF...THEN 3-16

select what to do based on a numerical value CASE...OF 3-17

do something a specific number of times before doing anything else FOR...DO 3-19

keep doing something as long as certain conditions are true WHILE...DO 3-21

keep doing something until a condition is true REPEAT...UNTIL 3-23
Publication 1756-QR107C-EN-P - June 2005

3 - 16 Structured Text
IF...THEN
Use IF…THEN to do something if or when specific conditions occur. The syntax is:

IF bool_expression1 THEN

<statement >; statements to execute when
bool_expression1 is true

.

.

.

optional ELSIF bool_expression2 THEN

<statement>; statements to execute when
bool_expression2 is true

.

.

.

optional ELSE

<statement>; statements to execute when both
expressions are false

.

.

.

END_IF;
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 17
CASE...OF
Use CASE to select what to do based on a numerical value. The syntax is:

CASE numeric_expression OF

specify as many alternative
selector values (paths) as you
need

selector1 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector1

selector2 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector2

selector3 : <statement>;
.
.
.

statements to execute when
numeric_expression = selector3

optional ELSE

<statement>;
.
.
.

statements to execute when
numeric_expression ≠ any selector

END_CASE;
Publication 1756-QR107C-EN-P - June 2005

3 - 18 Structured Text
The syntax for entering the selector values is:

When selector is: Enter:

one value value: statement

multiple, distinct values value1, value2, valueN : <statement>

Use a comma (,) to separate each value.

a range of values value1..valueN : <statement>

Use two periods (..) to identify the range.

distinct values plus a range of
values

valuea, valueb, value1..valueN : <statement>
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 19
FOR…DO
Use the FOR…DO loop to do something a specific number of times before doing anything else. The syntax is:

FOR count := initial_value

TO final_value

optional { BY increment If you don’t specify an increment, the loop increments
by 1.

DO

<statement>;

optional IF bool_expression THEN

EXIT; If there are conditions when you want to exit the loop
early, use other statements, such as an IF...THEN
construct, to condition an EXIT statement.END_IF;

END_FOR;

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1
Publication 1756-QR107C-EN-P - June 2005

3 - 20 Structured Text
The following diagrams show how a FOR...DO loop executes and how an EXIT statement leaves the loop early.

statement 1
statement 2
statement 3
statement 4
…

Done x number
of times?

no

yes

rest of the routine

statement 1
statement 2
statement 3
statement 4
…
Exit ?

Done x number
of times?

no

yes

rest of the routine

yes

no

The FOR…DO loop executes a specific number of times. To stop the loop before the count reaches the last value, use an
EXIT statement.
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 21
WHILE…DO
Use the WHILE…DO loop to keep doing something as long as certain conditions are true. The syntax is:

WHILE bool_expression1 DO

<statement>; statements to execute while bool_expression1 is true

optional IF bool_expression2 THEN

EXIT; If there are conditions when you want to exit the loop
early, use other statements, such as an IF...THEN
construct, to condition an EXIT statement.END_IF;

END_WHILE;

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1
Publication 1756-QR107C-EN-P - June 2005

3 - 22 Structured Text
The following diagrams show how a WHILE...DO loop executes and how an EXIT statement leaves the loop early.

While the bool_expression is true, the controller
executes only the statements within the WHILE…DO loop.

To stop the loop before the conditions are true, use an EXIT
statement.

statement 1
statement 2
statement 3
statement 4
…
Exit ?

BOOL expression

true

false

rest of the routine

yes

no

statement 1
statement 2
statement 3
statement 4
…

BOOL expression

true

false

rest of the routine
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 23
REPEAT…UNTIL
Use the REPEAT…UNTIL loop to keep doing something until conditions are true. The syntax is:

REPEAT

<statement>; statements to execute while bool_expression1 is
false

optional IF bool_expression2 THEN

EXIT; If there are conditions when you want to exit the loop
early, use other statements, such as an IF...THEN
construct, to condition an EXIT statement.END_IF;

UNTIL bool_expression1

END_REPEAT;

A major fault will occur if: Fault type: Fault code:

the construct loops too long 6 1
Publication 1756-QR107C-EN-P - June 2005

3 - 24 Structured Text
The following diagrams show how a REPEAT...UNTIL loop executes and how an EXIT statement leaves the loop early.

While the bool_expression is false, the controller executes
only the statements within the REPEAT…UNTIL loop.

To stop the loop before the conditions are false, use an EXIT
statement.

statement 1
statement 2
statement 3
statement 4
…

BOOL expression

false

true

rest of the routine
BOOL expression

false

true

rest of the routine

statement 1
statement 2
statement 3
statement 4
…
Exit ? yes

no
Publication 1756-QR107C-EN-P - June 2005

Structured Text 3 - 25
Comments
To add comments to your structured text:

To add a comment: Use one of these formats:

on a single line //comment

(*comment*)

/*comment*/

at the end of a line of structured text

within a line of structured text (*comment*)

/*comment*/

that spans more than one line (*start of comment . . . end of comment*)

/*start of comment . . . end of comment*/
Publication 1756-QR107C-EN-P - June 2005

3 - 26 Structured Text
Notes:
Publication 1756-QR107C-EN-P - June 2005

Chapter 4
Function Block Diagram
Function block diagrams are visual programs that can contain the following elements. Each function block is an instruction that defines a
control action.:

input reference (IREF) function block

output wire
connector (OCON)

output reference (OREF)

input wire connector (ICON)
Publication 1756-QR107C-EN-P - June 2005

4 - 2 Function Block Diagram
Editing a Function Block Diagram.

This toolbar button: Creates this ladder element: Description:

IREF Add an input reference to supply a value from an input device or tag.

OREF Add an output reference to send a value to an output device or tag.

ICON Add input and output wire connectors. Use wire connectors to transfer data between function
blocks when they are:

• far apart on the same sheet
• on different sheets within the same routine

Use wire connectors to disperse data to several points in the routine by assigning one OCON to
multiple ICONs.

OCON

instruction Select a specific function block to perform an operation on an input value or values and produce
an output value or values

Use the tabs on the bottom of the toolbar to display other available function blocks.
Publication 1756-QR107C-EN-P - June 2005

Function Block Diagram 4 - 3
Data Latching
Condition: Example:

If you use an IREF to specify input data for a function block instruction, the data in that IREF is latched for the scan of
the function block routine. The IREF latches data from program-scoped and controller-scoped tags. The controller
updates all IREF data at the beginning of each scan.

In this example, the value of tagA is stored at the beginning of the routine’s execution. The stored value is used
when Block_01 executes. The same stored value is also used when Blcock_02 executes. If the value of tagA
changes during execution of the routine, the stored value of tagA in the IREF does not change until the next
execution of the routine.

IREF

tagA Block_01

Block_02
Publication 1756-QR107C-EN-P - June 2005

4 - 4 Function Block Diagram
This example is the same as the one above. The value of tagA is stored only once at the beginning of the routine’s
execution. The routine uses this stored value throughout the routine.

You can use the same tag in multiple IREFs and an OREF in the same routine. Because the values of tags in IREFs are
latched every scan through the routine, all IREFs will use the same value, even if an OREF obtains a different tag
value during execution of the routine. In this example, if tagA has a value of 25.4 when the routine starts executing
this scan, and Block_01 changes the value of tagA to 50.9, the second IREF wired into Block_02 will still use a value
of 25.4 when Block_02 executes this scan. The new tagA value of 50.9 will not be used by any IREFs in this routine
until the start of the next scan.

Condition: Example:

tagA
Block_01

Block_02
tagA
Publication 1756-QR107C-EN-P - June 2005

Function Block Diagram 4 - 5
Order of Execution
The RSLogix 5000 programming software automatically determines the order of execution for the function blocks in a routine when you:

• verify a function block routine

• verify a project that contains a function block routine

• download a project that contains a function block routine

You define execution order by wiring function blocks together and indicating the data flow of any feedback wires, if necessary.

If function blocks are not wired together, it does not matter which block executes first. There is no data flow between the blocks.

If you wire the blocks sequentially, the execution order moves from input to output. The inputs of a block require data to be available
before the controller can execute that block. For example, block 2 has to execute before block 3 because the outputs of block 2 feed the
inputs of block 3.

1 2 3
Publication 1756-QR107C-EN-P - June 2005

4 - 6 Function Block Diagram
Execution order is only relative to the blocks that are wired together. The following example is fine because the two groups of blocks are
not wired together. The blocks within a specific group execute in the appropriate order in relation to the blocks in that group.

1 3 5

2 4 6
Publication 1756-QR107C-EN-P - June 2005

Function Block Diagram 4 - 7
Resolve a Loop
To create a feedback loop around a block, wire an output pin of the block to an input pin of the same block. The following example is OK.
The loop contains only a single block, so execution order does not matter.

If a group of blocks are in a loop, the controller cannot determine which block to execute first. In other words, it cannot resolve the loop.

This input pin uses an output that the block
produced on the previous scan.

?? ?
Publication 1756-QR107C-EN-P - June 2005

4 - 8 Function Block Diagram
To identify which block to execute first, mark the input wire that creates the loop (the feedback wire) with the Assume Data Available
indicator. In the following example, block 1 uses the output from block 3 that was produced in the previous execution of the routine.

The Assume Data Available indicator defines the data flow within the loop. The arrow indicates that the data serves as input to the first

block in the loop. Do not mark all the wires of a loop with the Assume Data Available indicator.

This is OK This is NOT OK

The controller cannot resolve the loop because all the wires use the Assume Data
Available indicator.

1 2 3

This input pin uses the output that block 3
produced on the previous scan.

Assume Data Available indicator

Assume Data Available indicator

21

??
Publication 1756-QR107C-EN-P - June 2005

Function Block Diagram 4 - 9
Resolve Data Flow Between Two Blocks
If you use two or more wires to connect two blocks, use the same data flow indicators for all of the wires between the two blocks.

This is OK This is NOT OK

Neither wire uses the Assume Data Available indicator.

Both wires use the Assume Data Available indicator.

One wire uses the Assume Data Available indicator while the other wire does not.

Assume Data Available indicator
Publication 1756-QR107C-EN-P - June 2005

4 - 10 Function Block Diagram
Create a One Scan Delay
To produce a one scan delay between blocks, use the Assume Data Available indicator. In the following example, block 1 executes first. It
uses the output from block 2 that was produced in the previous scan of the routine.

Summary
In summary, a function block routine executes in this order:

1. The controller latches all data values in IREFs.

2. The controller executes the other function blocks in the order determined by how they are wired.

3. The controller writes outputs in OREFs.

2 1

Assume Data Available indicator
Publication 1756-QR107C-EN-P - June 2005

Function Block Diagram 4 - 11
Define Program/Operator Control
Several instructions support the concept of Program/Operator control. These instructions include:

• Enhanced Select (ESEL)

• Totalizer (TOT)

• Enhanced PID (PIDE)

• Ramp/Soak (RMPS)

• Discrete 2-State Device (D2SD)

• Discrete 3-State Device (D3SD)

Program/Operator control lets you control these instructions simultaneously from both your user program and from an operator interface
device. When in Program control, the instruction is controlled by the Program inputs to the instruction; when in Operator control, the
instruction is controlled by the Operator inputs to the instruction.

Program or Operator control is determined by using these inputs:

Input: Description:

.ProgProgReq A program request to go to Program control.

.ProgOperReq A program request to go to Operator control.

.OperProgReq An operator request to go to Program control.

.OperOperReq An operator request to go to Operator control.
Publication 1756-QR107C-EN-P - June 2005

4 - 12 Function Block Diagram
To determine whether an instruction is in Program or Control control, examine the ProgOper output. If ProgOper is set, the instruction is in

Program control; if ProgOper is cleared, the instruction is in Operator control.

Control: Description:

program The Program request inputs take precedence over the Operator request inputs. This provides the capability to use the ProgProgReq and
ProgOperReq inputs to “lock” an instruction in a desired control.

Constantly setting the ProgProgReq can “lock” the instruction into Program control. This is useful for automatic startup sequences when
you want the program to control the action of the instruction without worrying about an operator inadvertently taking control of the
instruction. In this example, you have the program set the ProgProgReq input during the startup, and then clear the ProgProgReq input
once the startup was complete. Once the ProgProgReq input is cleared, the instruction remains in Program control until it receives a
request to change. For example, the operator could set the OperOperReq input from a faceplate to take over control of that instruction.

Program request inputs are not normally cleared by the instruction because these are normally wired as inputs into the instruction. If the
instruction clears these inputs, the input would just get set again by the wired input. There might be situations where you want to use
other logic to set the Program requests in such a manner that you want the Program requests to be cleared by the instruction. In this case,
you can set the ProgValueReset input and the instruction will always clear the Program mode request inputs when it executes.

operator Operator request inputs to an instruction are always cleared by the instruction when it executes. This allows operator interfaces to work
with these instructions by merely setting the desired mode request bit. You don’t have to program the operator interface to reset the
request bits.

Operator control takes precedence over Program control if both input request bits are set. For example, if ProgProgReq and ProgOperReq
are both set, the instruction goes to Operator control.
Publication 1756-QR107C-EN-P - June 2005

Chapter 5
Relay Ladder
Relay Ladder Logic
Relay ladder logic places input and output instructions on rungs.

input instructions output instructions

branches
Publication 1756-QR107C-EN-P - June 2005

5 - 2 Relay Ladder
There is no limit to the number of parallel branch levels that you can enter. The following figure shows a parallel branch with five levels.
The main rung is the first branch level, followed by four additional branches.

You can nest branches to as many as 6 levels. The following figure shows a nested branch. The bottom output instruction is on a nested
branch that is three levels deep.
Publication 1756-QR107C-EN-P - June 2005

Relay Ladder 5 - 3
Editing Relay Ladder

This toolbar button: Creates this ladder element: Description:

ladder rung A rung determines the execution order of input and output instructions.

branch A branch is two or more instructions in parallel.

a branch level There is no limit to the number of parallel branch levels that you can enter.

You can nest branches to as many as 6 levels.

instruction Input instruction: An instruction that checks, compares, or examines specific conditions in your
machine or process.

Output instruction: An instruction that takes some action, such as turn on a device, turn off a
device, copy data, or calculate a value.

Use the tabs on the bottom of the toolbar to display other available instructions.
Publication 1756-QR107C-EN-P - June 2005

5 - 4 Relay Ladder
Rung Condition
The controller evaluates ladder instructions based on the rung condition preceding the instruction (rung-condition-in).

Only input instructions affect the rung-condition-in of subsequent instructions on the rung:

• If the rung-condition-in to an input instruction is true, the controller evaluates the instruction and sets the rung-condition-out to
match the results of the evaluation.

– If the instruction evaluates to true, the rung-condition-out is true.

– If the instruction evaluates to false, the rung-condition-out is false.

• An output instruction does not change the rung-condition-out.

– If the rung-condition-in to an output instruction is true, the rung-condition-out is set to true.

– If the rung-condition-in to an output instruction is false, the rung-condition-out is set to false.

input instruction

rung-condition-in

output instruction

rung-condition-out
Publication 1756-QR107C-EN-P - June 2005

Chapter 6
Accessing System Values
System Values Stored by the Controller
The controller automatically stored different status information:

If you want to: See page:

use specific key words in logic to monitor specific status conditions 6-2

get or set system data (status information) 6-3

available status information - GSV/SSV objects 6-5

get information about controller memory 6-26
Publication 1756-QR107C-EN-P - June 2005

6 - 2 Accessing System Values
Monitor Status Flags
The controller supports status keywords you can use in your logic to monitor specific events:

The status keywords are not case sensitive. Because the status flags can change so quickly, RSLogix 5000 software does not display the
status of the flags. You cannot define a tag alias to a keyword.

To determine if: Use:

the value you are storing cannot fit into the destination because it is either:
• greater than the maximum value for the destination
• less than the minimum value for the destination

Important: Each time S:V goes from cleared to set, it generates a minor fault (type 4, code 4)

S:V

the instruction’s destination value is 0 S:Z

the instruction’s destination value is negative S:N

an arithmetic operation causes a carry or borrow that tries to use bits that are outside of the data type S:C

this is the first, normal scan of the routines in the current program S:FS

at least one minor fault has been generated:
• The controller sets this bit when a minor fault occurs due to program execution.
• The controller does not set this bit for minor faults that are not related to program execution, such as battery low.

S:MINOR
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 3
Get and Set System Data (Status Information)
The controller stores system data in objects. There is no status file, as in the PLC-5 controller. Use the GSV/SSV instructions get and set
controller system data that is stored in objects. To get or set a system value:

1. Select the system object you want.

2. In the list of attributes for the object, identify the attribute that you want to access.

To get or set: Select: To get or set: Select:

axis of a servo module AXIS status, faults, and mode of a module MODULE

system overhead timeslice CONTROLLER group of axes MOTIONGROUP

physical hardware of a controller CONTROLLERDEVICE fault information or scan time for a program PROGRAM

coordinated system time for the devices in one chassis CST instance number of a routine ROUTINE

DF1 communication driver for the serial port DF1 configuration of the serial port SERIALPORT

fault history for a controller FAULTLOG properties or elapsed time of a task TASK

attributes of a message instruction MESSAGE wall clock time of a controller WALLCLOCKTIME
Publication 1756-QR107C-EN-P - June 2005

6 - 4 Accessing System Values
3. Create a tag for the value of the attribute:

4. In your logic, use a GSV instruction to get the value of an attribute or an SSV instruction to set the value of an attribute.

5. Assign the required operands to the instruction:

If the data type of the attribute is: Then:

one element (e.g., DINT) Create a tag for the attribute.

more than one element (e.g., DINT[7]) A. Create a user-defined data type that matches the organization of data for the attribute.
B. Create a tag for the attribute.

For this operand: Select:

Class name name of the object

Instance name name of the specific object (e.g., name of the required I/O module, task, message)
Not all objects require this entry.
To specify the current task, program, or routine, select THIS.

Attribute Name name of the attribute

Dest (GSV) tag that will store the retrieved value
If the tag is a user-defined data type or an array, select the first member or element.

Source (SSV) tag that stores the value to be set
If the tag is a user-defined data type or an array, select the first member or element.
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 5
Available Status Information - GSV/SSV Objects

CONTROLLER attributes

CONTROLLERDEVICE attributes

Attribute: Data Type: Instruction: Description:

TimeSlice INT GSV
SSV

Percentage of available CPU that is assigned to communications. Valid values are 10-90. This value cannot be
changed when the keyswitch is in the run position.

Attribute: Data Type: Instruction: Description:

DeviceName SINT[33] GSV ASCII string that identifies the catalog number of the controller and memory board. The first byte contains a
count of the number of ASCII characters returned in the array string.

ProductCode INT GSV Identifies the type of controller:
Value: Meaning:
3 ControlLogix5550
15 SoftLogix5860
41 FlexLogix5433
43 FlexLogix5434
48 PowerFlex 700S with DriveLogix5720
50 CompactLogix5320
51 ControlLogix5555
52 PowerFlex 700S with DriveLogix5730
Publication 1756-QR107C-EN-P - June 2005

6 - 6 Accessing System Values
ProductRev INT GSV Identifies the current product revision. Display should be hexadecimal. The low byte contains the major
revision; the high byte contains the minor revision.

SerialNumber DINT GSV Serial number of the device. The serial number is assigned when the device is built.

Status INT GSV Device Status Bits Controller Status Bits
Bits 7-4: Meaning: Bits 13-12: Meaning:
0000 reserved 01 keyswitch in run
0001 flash update in progress 10 keyswitch in program
0010 reserved 11 keyswitch in remote
0011 reserved
0100 flash is bad Bits 15-14 Meaning
0101 faulted 01 controller is changing modes
0110 run 10 debug mode if controller is in run mode
0111 program

Fault Status Bits
Bits 11-8: Meaning:
0001 recoverable minor fault
0010 unrecoverable minor fault
0100 recoverable major fault
1000 unrecoverable major fault

Type INT GSV Identifies the device as a controller. Controller = 14

Vendor INT GSV Identifies the vendor of the device. Allen-Bradley = 0001

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 7
CST attributes

Attribute: Data Type: Instruction: Description:

CurrentStatus INT GSV Current status of the coordinated system time.
Bit: Meaning:
0 timer hardware faulted: the device’s internal timer hardware is in a faulted state
1 ramping enabled: the current value of the timer’s lower 16+ bits ramp up to the

requested value, rather than snap to the lower value.
2 system time master: the CST object is a master time source in the ControlLogix system
3 synchronized: the CST object’s 64-bit CurrentValue is synchronized by a master CST

object via a system time update
4 local network master: the CST object is the local network master time source
5 in relay mode: the CST object is acting in a time relay mode
6 duplicate master detected: a duplicate local network time master has been detected.

This bit is always 0 for time-dependent nodes.
7 unused
8-9 00 = time dependent node

01 = time master node
10 = time relay node
11 = unused

10-15 unused

CurrentValue DINT[2] GSV Current value of the timer. DINT[0] contains the lower 32; DINT[1] contains the upper 32 bits. The timer source
is adjusted to match the value supplied in update services and from local communication network
synchronization. The adjustment is either a ramping to the requested value or an immediate setting to the
request value, as reported in the CurrentStatus attribute.
Publication 1756-QR107C-EN-P - June 2005

6 - 8 Accessing System Values
DF1 attributes

Attribute: Data Type: Instruction: Description:

ACKTimeout DINT GSV The amount of time to wait for an acknowledgment to a message transmission (point-to-point and master
only). Valid value 0-32,767. Delay in counts of 20 msec periods. Default is 50 (1 second).

DiagnosticCounters INT[19] GSV Array of diagnostic counters for the DF1 communication driver.

word offset DF1 point-to-point DF1 slave master
0 signature (0x0043) signature (0x0042) signature (0x0044)
1 modem bits modem bits modem bits
2 packets sent packets sent packets sent
3 packets received packets received packets received
4 undelivered packets undelivered packets undelivered packets
5 unused messages retried messages retried
6 NAKs received NAKs received unused
7 ENQs received poll packets received unused
8 bad packets NAKed bad packets not ACKed bad packets not ACKed
9 no memory sent NAK no memory not ACKed unused
10 duplicate packets received duplicate packets received duplicate packets received
11 bad characters received unused unused
12 DCD recoveries count DCD recoveries count DCD recoveries count
13 lost modem count lost modem count lost modem count
14 unused unused priority scan time maximum
15 unused unused priority scan time last
16 unused unused normal scan time maximum
17 unused unused normal scant time last
18 ENQs sent unused unused
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 9
DuplicateDetection SINT GSV Enables duplicate message detection.
Value: Meaning:
0 duplicate message detection disabled
non zero duplicate message detection enabled

EmbeddedResponseEnable SINT GSV Enables embedded response functionality (point-to-point only).
Value: Meaning:
0 initiated only after one is received (default)
1 enabled unconditionally

ENQTransmitLimit SINT GSV The number of inquiries (ENQs) to send after an ACK timeout (point-to-point only). Valid value 0-127.
Default setting is 3.

EOTSuppression SINT GSV Enable suppressing EOT transmissions in response to poll packets (slave only).
Value: Meaning:
0 EOT suppression disabled (disabled)
non zero EOT suppression enabled

ErrorDetection SINT GSV Specifies the error-detection scheme.
Value: Meaning:
0 BCC (default)
1 CRC

MasterMessageTransmit SINT GSV Current value of the master message transmission (master only).
Value: Meaning:
0 between station polls (default)
1 in poll sequence (in place of master’s station number)

NAKReceiveLimit SINT GSV The number of NAKs received in response to a message before stopping transmission (point-to-point
communication only). Valid value 0-127. Default is 3.

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

6 - 10 Accessing System Values
NormalPollGroupSize INT GSV Number of stations to poll in the normal poll node array after polling all the stations in the priority poll node
array (master only).
Valid value 0-255. Default is 0.

PollingMode SINT GSV Current polling mode (master only). Default setting is 1.
Value: Meaning:
0 message-based, but don’t allow slaves to initiate messages
1 message-based, but allow slaves to initiate messages (default)
2 standard, single-message transfer per node scan
3 standard, multiple-message transfer per node scan

ReplyMessageWait DINT GSV The time (acting as a master) to wait after receiving an ACK before polling the slave for a response (master
only). Valid value 0-65,535. Delay in counts of 20 msec periods. The default is 5 periods (100 msec).

StationAddress INT GSV Current station address of the serial port. Valid value 0-254. Default is 0.

SlavePollTimeout DINT GSV The amount of time in msecs that the slave waits for the master to poll before the slave declares that it is
unable to transmit because the master is inactive (slave only). Valid value 0-32,767. Delay in counts of 20
msec periods. The default is 3000 periods (1 minute).

TransmitRetries SINT GSV Number of times to resend a message without getting an acknowledgment (master and slave only).
Valid value 0-127. Default is 3.

PendingACKTimeout DINT SSV Pending value for the ACKTimeout attribute.

PendingDuplicateDetection SINT SSV Pending value for the DuplicateDetection attribute.

PendingEmbeddedResponseEnable SINT SSV Pending value for the EmbeddedResponse attribute.

PendingENQTransmitLimit SINT SSV Pending value for the ENQTransmitLimit attribute.

PendingEOTSuppression SINT SSV Pending value for the EOTSuppression attribute.

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 11
FAULTLOG attributes

PendingErrorDetection SINT SSV Pending value for the ErrorDetection attribute.

PendingNormalPollGroupSize INT SSV Pending value for the NormalPollGroupSize attribute.

PendingMasterMessageTransmit SINT SSV Pending value for the MasterMessageTransmit attribute.

PendingNAKReceiveLimit SINT SSV Pending value for the NAKReceiveLimit attribute.

PendingPollingMode SINT SSV Pending value for the PollingMode attribute.

PendingReplyMessageWait DINT SSV Pending value for the ReplyMessageWait attribute.

PendingStationAddress INT SSV Pending value for the StationAddress attribute.

PendingSlavePollTimeout DINT SSV Pending value for the SlavePollTimeout attribute.

PendingTransmitRetries SINT SSV Pending value for the TransmitRetries attribute.

Attribute: Data Type: Instruction: Description:

MajorEvents INT GSV
SSV

How many major faults have occurred since the last time this counter was reset.

MinorEvents INT GSV
SSV

How many minor faults have occurred since the last time this counter was reset.

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

6 - 12 Accessing System Values
MESSAGE attributes

MajorFaultBits DINT GSV
SSV

Individual bits indicate the reason for the current major fault.
Bit: Meaning:
1 power loss
3 I/O
4 instruction execution (program)
5 fault handler
6 watchdog
7 stack
8 mode change
11 motion

MinorFaultBits DINT GSV
SSV

Individual bits indicate the reason for the current minor fault.
Bit: Meaning:
4 instruction execution (program)
6 watchdog
9 serial port
10 battery

Attribute: Data Type: Instruction: Description:

ConnectionPath SINT[130] GSV
SSV

Data to setup the connection path. The first two bytes (low byte and high byte) are the length in bytes of the
connection path.

ConnectionRate DINT GSV
SSV

Requested packet rate of the connection.

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 13
MessageType SINT GSV
SSV

Specifies the type of message.
Value: Meaning:
0 not initialized

Port SINT GSV
SSV

Indicates which port the message should be sent on.
Value: Meaning:
1 backplane
2 serial port

TimeoutMultiplier SINT GSV
SSV

Determines when a connection should be considered timed out and closed.
Value: Meaning:
0 connection will timeout in 4 times the update rate default)
1 connection will timeout in 8 times the update rate
2 connection will timeout in 16 times the update rate

UnconnectedTimeout DINT GSV
SSV

Timeout in microseconds for all unconnected messages. The default is 30,000,000 microseconds (30 s).

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

6 - 14 Accessing System Values
MODULE attributes

Attribute: Data Type: Instruction: Description:

EntryStatus INT GSV Specifies the current state of the specified map entry. The lower 12 bits should be masked when
performing a comparison operation. Only bits 12-15 are valid.
Value: Meaning:
16#0000 Standby: the controller is powering up.
16#1000 Faulted: any of the MODULE object’s connections to the associated module fail. This

value should not be used to determine if the module failed because the MODULE
object leaves this state periodically when trying to reconnect to the module. Instead,
test for Running state (16#4000). Check for FaultCode not equal to 0 to determine if a
module is faulted. When Faulted, the FaultCode and FaultInfo attributes are valid until
the fault condition is corrected.

16#2000 Validating: the MODULE object is verifying MODULE object integrity prior to establishing
connections to the module.

16#3000 Connecting: the MODULE object is initiating connections to the module.
16#4000 Running: all connections to the module are established and data is transferring.
16#5000 Shutting down: the MODULE object is in the process of shutting down all connections to

the module.
16#6000 Inhibited: the MODULE object is inhibited (the inhibit bit in the Mode attribute is set).
16#7000 Waiting: the parent object upon which this MODULE object depends is not running.

FaultCode INT GSV A number which identifies a module fault, if one occurs.

FaultInfo DINT GSV Provides specific information about the MODULE object fault code.

ForceStatus INT GSV Specifies the status of forces.
Bit: Meaning:
0 forces installed (1=yes, 0-no)
1 forces enabled (1=yes, 0=no)

Instance DINT GSV Provides the instance number of this MODULE object.
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 15
PROGRAM attributes

LEDStatus INT GSV Specifies the current state of the I/O LED on the front of the controller.
Value: Meaning:
0 LED off: No MODULE objects are configured for the controller (there are no modules in the

I/O Configuration section of the controller organizer).
1 Flashing red: None of the MODULE objects are Running.
2 Flashing green: At least one MODULE object is not Running.
3 Solid green: All the Module objects are Running.
Note: You do not enter an object name with this attribute because this attribute applies to the entire
collection of modules.

Mode INT GSV
SSV

Specifies the current mode of the MODULE object.
Bit: Meaning:
0 If set, causes a major fault to be generated if any of the MODULE object connections fault

while the controller is in Run mode.
2 If set, causes the MODULE object to enter Inhibited state after shutting down all the

connections to the module.

Attribute: Data Type: Instruction: Description:

DisableFlag SINT GSV
SSV

Controls this program’s execution.
Value: Meaning:
0 execution enabled
1 execution disabled

Instance DINT GSV Provides the instance number of this PROGRAM object.

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

6 - 16 Accessing System Values
LastScanTime DINT GSV
SSV

Time it took to execute this program the last time it was executed. Time is in microseconds.

MajorFaultRecord DINT[11] GSV
SSV

Records major faults for this program
We recommend that you create a user-defined structure to simplify access to the MajorFaultRecord attribute:

Name: Data Type: Style: Description:
TimeLow DINT Decimal lower 32 bits of fault timestamp value
TimeHigh DINT Decimal upper 32 bits of fault timestamp value
Type INT Decimal fault type (program, I/O, etc.)
Code INT Decimal unique code for the fault (depends on fault type)
Info DINT[8] Hexadecimal fault specific information (depends on fault type and code)

MaxScanTime DINT GSV
SSV

Maximum recorded execution time for this program. Time is in microseconds.

MinorFaultRecord DINT[11] GSV
SSV

Records minor faults for this program
We recommend that you create a user-defined structure to simplify access to the MinorFaultRecord attribute:

Name: Data Type: Style: Description:
TimeLow DINT Decimal lower 32 bits of fault timestamp value
TimeHigh DINT Decimal upper 32 bits of fault timestamp value
Type INT Decimal fault type (program, I/O, etc.)
Code INT Decimal unique code for the fault (depends on fault type)
Info DINT[8] Hexadecimal fault specific information (depends on fault type and code)

SFCRestart INT GSV
SSV

unused - reserved for future use

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 17
REDUNDANCY attributes

Attribute: Data Type: Instruction: Description:

ChassisRedundancyState INT GSV Redundancy status of the entire chassis.
Value: Meaning:
16#1 power-up or undetermined
16#2 primary with qualified secondary
16#3 primary with disqualified secondary
16#4 primary with no secondary

CompatibilityResults INT GSV The results of the compatibility checks with the partner controller.
Value: Meaning:
0 undetermined
1 no compatible partner
2 fully compatible partner

KeyswitchAlarm DINT GSV The keyswitch settings of the controller and its partner match or do not match.
Value: Meaning:
0 the keyswitches match or no partner is present
1 keyswitches do not match

ModuleRedundancyState INT GSV Redundancy status of the controller.
Value: Meaning:
16#1 power-up or undetermined
16#2 primary with qualified secondary
16#3 primary with disqualified secondary
16#4 primary with no secondary
16#6 primary with qualifying secondary
Publication 1756-QR107C-EN-P - June 2005

6 - 18 Accessing System Values
PartnerChassisRedundancyState INT GSV Redundancy state of the partner chassis.
Value: Meaning:
16#8 qualified secondary
16#9 disqualified secondary with primary

PartnerKeyswitch DINT GSV Position of the keyswitch of the partner.
Value: Meaning:
0 unknown
1 RUN
2 PROG
3 REM

PartnerMinorFaults DINT GSV Minor faults of the partner (if the ModuleRedundancyState indicates that a partner is present).
Value: Meaning:
4 problem with an instruction (program)
6 periodic task overlap (watchdog)
9 problem with the serial port
10 low battery

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 19
PartnerMode DINT GSV Mode of the partner.
Value: Meaning:
16#0 power up
16#1 program
16#2 run
16#3 test
16#4 faulted
16#5 run-to-program
16#6 test-to-program
16#7 program-to-run
16#8 test-to-run
16#9 run-to-test
16#A program-to-test
16#B into faulted
16#C faulted-to-program

PartnerModuleRedundancyState INT GSV Redundancy state of the partner.
Value: Meaning:
16#7 qualifying secondary
16#8 qualified secondary
16#9 disqualified secondary with primary

PhysicalChassisID INT GSV In a pair of redundant chassis, identifies a specific chassis without regard to the state of the chassis.
Value: Meaning:
0 unknown
1 Chassis A
2 Chassis B

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

6 - 20 Accessing System Values
ROUTINE attributes

QualificationInProgress INT GSV Status of the qualification process.
Value: Meaning:
-1 qualification is not in progress
0 unsupported
1 - 99 for modules that can measure their completion percentage, the percent of qualification that is

complete; for modules that cannot measure their completion percentage, 50 = qualification is in
progress and 100 = qualification is complete.

SRMSlotNumber INT GSV Slot number of the 1757-SRM module in this chassis

LastDataTransferSize DINT GSV This attribute is only valid on a primary controller that is configured for redundancy.
If: Then this value is the:
a synchronized partner isamount of data that was last
present transferred to the partner, specified in DINTs

no partner is present or amount of data that would have been last transferred to a synchronized partner,
a disqualified partner is specified in DINTs
present

MaxDataTransferSize DINT GSV
SSV

Maximum value of the LastDataTransferSize attribute. This attribute is only valid on a primary controller that
is configured for redundancy. To reset this value, use an SSV instruction with a Source value of 0.

Attribute: Data Type: Instruction: Description:

Instance DINT GSV Provides the instance number of this ROUTINE object. Valid values are 0-65,535.

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 21
SERIALPORT attribute

Attribute: Data Type: Instruction: Description:

BaudRate DINT GSV Specifies the baud rate. Valid values are 110, 300, 600, 1200, 2400, 4800, 9600, and 19200 (default).

DataBits SINT GSV Specifies the number of bits of data per character.
Value: Meaning:
7 7 data bits (ASCII only)
8 8 data bits (default)

Parity SINT GSV Specifies the parity.
Value: Meaning:
0 no parity (no default)
1 odd parity (ASCII only)
2 even parity

RTSOffDelay INT GSV Amount of time to delay turning off the RTS line after the last character has been transmitted. Valid value
0-32,767. Delay in counts of 20 msec periods. The default is 0 msec.

RTSSendDelay INT GSV Amount of time to delay transmitting the first character of a message after turning on the RTS line. Valid value
0-32,767. Delay in counts of 20 msec periods. The default is 0 msec.

StopBits SINT GSV Specifies the number of stop bits.
Value: Meaning:
1 1 stop bit (default)
2 2 stop bits (ASCII only)

PendingBaudRate DINT SSV Pending value for the BaudRate attribute.

PendingDataBits SINT SSV Pending value for the DataBits attribute.

PendingParity SINT SSV Pending value for the Parity attribute.
Publication 1756-QR107C-EN-P - June 2005

6 - 22 Accessing System Values
TASK attributes

PendingRTSOffDelay INT SSV Pending value for the RTSOffDelay attribute.

PendingRTSSendDelay INT SSV Pending value for the RTSSendDelay attribute.

PendingStopBits SINT SSV Pending value for the StopBits attribute.

Attribute: Data Type: Instruction: Description:

DisableUpdateOutputs DINT GSV
SSV

Enables or disables the processing of outputs at the end of a task.
Value: Meaning:
0 enable the processing of outputs at the end of the task
non zero disable the processing of outputs at the end of the task

InhibitTask DINT GSV
SSV

Prevents the task from executing. If a task is inhibited, the controller still prescans the task when the
controller transitions from program to run or test mode.
Value: Meaning:
0 enable the task 0 (default)
non zero inhibit (disable) the task

Instance DINT GSV Provides the instance number of this TASK object. Valid values are 0-31.

LastScanTime DINT GSV
SSV

Time it took to execute this task the last time it was executed. Time is in microseconds.

MaxInterval DINT[2] GSV
SSV

The maximum time interval between successive executions of the task. DINT[0] contains the lower 32 bits of
the value; DINT[1] contains the upper 32 bits of the value. A value of 0 indicates 1 or less executions of
the task.

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 23
MaxScanTime DINT GSV
SSV

Maximum recorded execution time for this program. Time is in microseconds.

MinInterval DINT[2] GSV
SSV

The minimum time interval between successive executions of the task. DINT[0] contains the lower 32 bits of
the value; DINT[1] contains the upper 32 bits of the value. A value of 0 indicates 1 or less executions of
the task.

OverlapCount DINT GSV
SSV

Number of times that the task was triggered while it was still executing. Valid for an event or a periodic task.
To clear the count, set the attribute to 0.

Priority INT GSV Relative priority of this task as compared to the other tasks. Valid values 0-15.

Rate DINT GSV The time interval between executions of the task. Time is in microseconds.

StartTime DINT[2] GSV
SSV

Value of WALLCLOCKTIME when the last execution of the task was started. DINT[0] contains the lower 32
bits of the value; DINT[1] contains the upper 32 bits of the value.

Status DINT GSV
SSV

Status information about the task. Once the controller sets one of these bits, you must manually clear the bit.
Bit: Meaning:
0 an EVNT instruction triggered the task (event task only)
1 a timeout triggered the task (event task only)
2 an overlap occurred for this task

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

6 - 24 Accessing System Values
Timeout DINT GSV
SSV

The timeout value for an event task. Time is in microseconds.

EnableTimeOut DINT GSV
SSV

Enables or disables the timeout function of an event task.
Value: Meaning:
0 disable the timeout function
non zero enable the timeout function

Watchdog DINT GSV
SSV

Time limit for execution of all programs associated with this task. Time is in microseconds.
If you enter 0, these values are assigned:
Time: Task Type:
0.5 sec periodic
5.0 sec continuous

Attribute: Data Type: Instruction: Description:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 25
WALLCLOCKTIME attributes

Attribute: Data Type: Instruction: Description:

CSTOffset DINT[2] GSV
SSV

Positive offset from the CurrentValue of the CST object (coordinated system time, see page 6-7).
DINT[0] contains the lower 32 bits of the value; DINT[1] contains the upper 32 bits of the value.
Value in µs. The default is 0.

CurrentValue DINT[2] GSV
SSV

Current value of the wall clock time. DINT[0] contains the lower 32 bits of the value; DINT[1]
contains the upper 32 bits of the value. The value is the number of microseconds that have
elapsed since 0000 hours 1 January 1972. The CST and WALLCLOCKTIME objects are
mathematically related in the controller. For example, if you add the CST CurrentValue and the
WALLCLOCKTIME CTSOffset, the result is the WALLCLOCKTIME CurrentValue.

DateTime DINT[7] GSV
SSV

The date and time in a readable format.
DINT[0] year
DINT[1] integer representation of month (1-12)
DINT[2] integer representation of day (1-31)
DINT[3] hour (0-23)
DINT[4] minute (0-59)
DINT[5] seconds (0-59)
DINT[6] microseconds (0-999,999)
Publication 1756-QR107C-EN-P - June 2005

6 - 26 Accessing System Values
Determine Controller Memory Information
Depending on your type of controller, the memory of the controller may be divided into several areas:

If you have this controller: Then it stores this: In this memory:

ControlLogix I/O tags I/O memory

produced tags

consumed tags

communication via Message (MSG) instructions

communication with workstations

communication with polled (OPC/DDE) tags that use RSLinx software(1)

(1) To communicate with polled tags, the controller uses both I/O and data and logic memory.

tags other than I/O, produced, or consumed tags data and logic memory(2)

(2) 1756-L55M16 controllers have an additional memory section for logic.

logic routines

communication with polled (OPC/DDE) tags that use RSLinx software(1)

CompactLogix
FlexLogix
PowerFlex 700S with DriveLogix
SoftLogix

These controllers do not divide their memory. They store all elements in one common memory area.
When you use the following procedure to get the memory values for these controllers, the values show up as I/O memory.
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 27
To get memory information from the controller, use a MSG instruction:

MSG Configuration Tab
For this item: Type or select: Which means:

Message Type CIP Generic Execute a Control and Information Protocol command.

Service Type Custom Create a CIP Generic message that is not available in the drop-down list.

Service Code 3 Use the GetAttributeList service. This lets you read specific information about the controller.

Class 72 Get information from the user memory object.

Instance 1 This object contains only 1 instance.

Attribute 0 Null value
Publication 1756-QR107C-EN-P - June 2005

6 - 28 Accessing System Values
Source Element source_array of type SINT[12]

In this element: Enter: Which means:

source_array[0] 5 Get 5 attributes

source_array[1] 0 Null value

source_array[2] 1 Get free memory

source_array[3] 0 Null value

source_array[4] 2 Get total memory

source_array[5] 0 Null value

source_array[6] 5 Get largest contiguous block of additional free logic memory

source_array[7] 0 Null value

source_array[8] 6 Get largest contiguous block of free I/O memory

source_array[9] 0 Null value

source_array[10] 7 Get largest contiguous block of free data and logic memory

source_array[11] 0 Null value

Source Length 12 Write 12 bytes (12 SINTs).

Destination INT_array of type INT[29]

For this item: Type or select: Which means:
Publication 1756-QR107C-EN-P - June 2005

Accessing System Values 6 - 29
MSG Communication Tab

The MSG instruction returns the following information to INT_array (destination tag of the MSG):

For this item: Type:

Path 1, slot_number_of_controller

If you want the: Then copy these array elements: Description:

amount of free I/O memory (32-bit words) INT_array[3] lower 16 bits of the 32 bit value

INT_array[4] upper 16 bits of the 32 bit value

amount of free data and logic memory (32-bit words) INT_array[5] lower 16 bits of the 32 bit value

INT_array[6] upper 16 bits of the 32 bit value

1756-L55M16 controllers only—amount of additional free logic memory
(32-bit words)

INT_array[7] lower 16 bits of the 32 bit value

INT_array[8] upper 16 bits of the 32 bit value

total size of I/O memory (32-bit words) INT_array[11] lower 16 bits of the 32 bit value

INT_array[12] upper 16 bits of the 32 bit value

total size of data and logic memory (32-bit words) INT_array[13] lower 16 bits of the 32 bit value

INT_array[14] upper 16 bits of the 32 bit value

1756-L55M16 controllers only—additional logic memory (32-bit words) INT_array[15] lower 16 bits of the 32 bit value

INT_array[16] upper 16 bits of the 32 bit value
Publication 1756-QR107C-EN-P - June 2005

6 - 30 Accessing System Values
The MSG instruction returns each memory value as two separate INTs.

• The first INT represents the lower 16 bits of the value.

• The second INT represents the upper 16 bits of the value.

To convert the separate INTs into one usable value, use a Copy (COP) instruction, where:

1756-L55M16 controllers only—largest contiguous block of additional free logic
memory (32-bit words)

INT_array[19] lower 16 bits of the 32 bit value

INT_array[20] upper 16 bits of the 32 bit value

largest contiguous block of free I/O memory (32-bit words) INT_array[23] lower 16 bits of the 32 bit value

INT_array[24] upper 16 bits of the 32 bit value

largest contiguous block of free data and logic memory (32-bit words) INT_array[27] lower 16 bits of the 32 bit value

INT_array[28] upper 16 bits of the 32 bit value

In this operand: Specify: Which means:

Source first INT of the 2 element pair (lower 16 bits) Start with the lower 16 bits

Destination DINT tag in which to store the 32-bit value Copy the value to the DINT tag.

Length 1 Copy 1 times the number of bytes in the Destination data type. In this case, the instruction copies 4
bytes (32 bits), which combines the lower and upper 16 bits into one 32-bit value.

If you want the: Then copy these array elements: Description:
Publication 1756-QR107C-EN-P - June 2005

Chapter 7
Communicate with Other Controllers
Communication Options
Select a method for transferring data between controllers:

If the data: Then: See page:

needs regular delivery at a rate that you specify (i.e., deterministic) produce and consume a tag 7-2

is sent when a specific condition occurs in your application send a message 7-9

is transmitted between Logix controllers and PLC or SLC processors map PLC/SLC addresses 7-13

is gathered from multiple controllers (and consumed tags are not an option or not desired) send a message to multiple controllers 7-13
Publication 1756-QR107C-EN-P - June 2005

7 - 2 Communicate with Other Controllers
Produce and Consume a Tag
You can use produced and consumed tags with the following controller and network combinations.

Produced and consumed tags work as follows:

• A connection transfers the data between controllers:

– Multiple controllers can consume (receive) the data.

– The data updates at the requested packet interval (RPI), as configured by the consuming tags.

This controller: Can produce and consume tags over this network:

Logix Backplane ControlNet EtherNet/IP

SLC 500 X

PLC-5 X

ControlLogix X X X

1769-L32E, -L35E CompactLogix X

1769-L32C, -L35CR CompactLogix X

FlexLogix X X

PowerFlex 700S with DriveLogix X X

SoftLogix X X
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 3
• Each produced or consumed tag uses the following number of connections:

Follow these guidelines:

• Create the tags at the controller scope. You can only share controller-scoped tags.

• Use one of these data types:

– DINT

– REAL

– array of DINTs or REALs

– user-defined

• Use the same data type for the produced tag and corresponding consumed tag (s).

• To share tags with a PLC-5C controller, use a user-defined data type.

• Limit the size of the tag to less than or equal to 500 bytes. If you must transfer more than 500 bytes, transfer the data in packets.

• If you are producing several tags for the same controller:

– Group the data into one or more user-defined data types. (This uses less connections than producing each tag separately.)

– Group the data according to similar update rates. (To conserve network bandwidth, use a greater RPI for less critical data.)

Each: Uses this many connections at the local controller: Uses this many connections at the communication device:

produced tag number_of_consumers + 1 number_of_consumers

consumed tag 1 1
Publication 1756-QR107C-EN-P - June 2005

7 - 4 Communicate with Other Controllers
Produce a tag Consume a tag

IMPORTANT If a consumed-tag connection fails, all of the other tags being
consumed from that remote controller stop receiving new data.
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 5
Produce tags for a PLC-5C controller

1. Create a user-defined data type that contains an array of INTs with an even number of elements, such as INT[2]. (When you produce
INTs, you must produce two or more.)

2. Create a produced tag and select the user-defined data type.

3. In the ControlNet configuration for the target PLC-5C controller:

• Insert a Receive Scheduled Message.

• In the Message size, enter the number of integers in the produced tag.

4. In RSNetWorx for ControlNet software, schedule the network.
Publication 1756-QR107C-EN-P - June 2005

7 - 6 Communicate with Other Controllers
Produce REALs for a PLC-5C controller

1. How many values do you want to produce?

2. In the ControlNet configuration for the target PLC-5C controller:

• Insert a Receive Scheduled Message.

• In the Message size, enter two times the number of REALs in the produced tag. For example, if the produced tag contains 10
REALs, enter 20 for the Message size.

When a PLC-5C controller consumes a tag that is produced by a Logix5000 controller, it stores the data in consecutive 16-bit integers.
The PLC-5C stores floating-point data, which requires 32-bits regardless of the type of controller, as follows:

• The first integer contains the upper (left-most) bits of the value.

• The second integer contains the lower (right-most) bits of the value.

• This pattern continues for each floating-point value.

3. In the PLC-5C controller, re-construct the floating point data, as depicted in the following example:

4. In RSNetWorx for ControlNet software, schedule the network.

If you are producing: Then:

Only one REAL value Create a produced tag and select the REAL data type.

More than one REAL value A. Create a user-defined data type that contains an array of REALs.
B. Create a produced tag and select the user-defined data type from Step A.
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 7
Consume Integers from a PLC-5C Controller
1. In the ControlNet configuration of the PLC-5C controller, insert a Send Scheduled Message.

2. In the controller organizer, add the PLC-5C controller to the I/O configuration.

3. Create a user-defined data type that contains the following members:

4. Create a consumed tag with the following properties:

5. In RSNetWorx for ControlNet software, schedule the network.

Data type: Description:

DINT Status

INT[x], where “x” is the output size of the data from the PLC-5C controller.
(If you are consuming only one INT, no dimension is required.)

Data produced by a PLC-5C controller

For this tag property: Type or select:

Tag Type Consumed

Controller The PLC-5C that is producing the data

Remote Instance The message number from the ControlNet configuration of the PLC-5C
controller

RPI A power of two times the NUT of the ControlNet network. For example,
if the NUT is 5ms, select an RPI of 5, 10, 20, 40, etc.

Data Type The user-defined data type that you created.
Publication 1756-QR107C-EN-P - June 2005

7 - 8 Communicate with Other Controllers
Adjust for bandwidth limitations
When you share a tag over a ControlNet network, the tag must fit within the bandwidth of the network:

• As the number of connections increases, several connections may need to share a network update time (NUT).

• Since a ControlNet network can only pass 500 bytes in one NUT, the data of each connection must be less then 500 bytes.

Depending on the size of your system, you may not have enough bandwidth. You can make these adjustments:

• Reduce your NUT. At a faster NUT, less connections have to share an update slot.

• Increase the RPI of your connections. At higher RPIs, connections can take turns sending data during an update slot.

• For a ControlNet bridge module in a remote chassis, select the most efficient communication format for that chassis:

The Rack Optimization format uses an additional 8 bytes for each slot in its chassis. Analog modules or modules that are sending or
getting diagnostic, fuse, timestamp, or schedule data require direct connections and cannot take advantage of the rack optimized
form. Selecting “None” frees up the 8 bytes per slot for other uses, such as produced or consumed tags.

• Separate the tag into two or more smaller tags:

– Group the data according to similar update rates.

– Assign a different RPI to each tag.

• Create logic to transfer the data in smaller sections (packets).

Are most of the modules in the chassis
non-diagnostic, digital I/O modules?

Then select this communication format for
the remote CNB module:

Yes Rack Optimization

No None
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 9
Send a Message
For each message, create a tag to control the message:

• Create the tag at the controller scope.

• Use the MESSAGE data type.

• In the Logix5000 controller, use the DINT data type for integers whenever possible. Logix5000 controllers execute more efficiently
and use less memory when working with 32-bit integers (DINTs).

• If your message is to or from a PLC-5® or SLC 500™ controller and it transfers integers (not REALs), use a buffer of INTs:

– Create a buffer for the data (controller scope) using the INT[x] data type.

– Use an FAL instruction to move the data between the buffer and your application.

To send the same message to multiple controllers, reconfigure the MSG instruction during runtime, write new values to the members of the
MESSAGE data type.

After you enter the MSG instruction and specify the MESSAGE structure, use the Message Configuration dialog box to specify the details of
the message.

Click here to configure the MSG instruction
Publication 1756-QR107C-EN-P - June 2005

7 - 10 Communicate with Other Controllers
The details you configure depend on the message type you select.
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 11
Specify the message type:

If the target device is a: Select one of these message types:

Logix controller CIP Data Table Read/Write

I/O module that you configure using RSLogix 5000 software Module Reconfigure

CIP Generic

PLC-5 controller PLC5 Typed Read/Write

PLC5 Word Range Read/Write

SLC controller
MicroLogix controller

SLC Typed Read/Write

Block-transfer module Block-Transfer Read/Write

PLC-3 processor PLC3 Typed Read/write

PLC3 Word Range Read/write

PLC-2 processor PLC2 Unprotected Read/write
Publication 1756-QR107C-EN-P - June 2005

7 - 12 Communicate with Other Controllers
Then, specify this configuration information:

When you configure a MSG instruction, specify these details on the Communication tab.

For this property: Specify:

Source Element • If you select a read message type, the Source Element is the address of the data you want to read in the target device. Use the
addressing syntax of the target device.

• If you select a write message type, the Source Tag is the first element of the tag that you want to send to the target device.

Number of Elements The number of elements you read/write depends on the type of data you are using. An element refers to one “chunk” of related data. For
example, tag timer1 is one element that consists of one timer control structure.

Destination Element • If you select a read message type, the Destination Element is the first element of the tag in the Logix5000 controller where you
want to store the data you read from the target device.

• If you select a write message type, the Destination Element is the address of the location in the target device where you want to
write the data.
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 13
Map PLC/SLC Addresses
You only map PLC/SLC addresses if you send a message from a PLC or SLC 500 processor to a Logix controller and the PLC/SLC processor
does not support logical ASCII addressing. To use a logical address (e.g., N7:0) to specify a value (tag) in a Logix controller, you must map
files to tags:

• You only have to map the file numbers that are used in messages; the other file numbers do not need to be mapped.

• The mapping table is loaded into the controller and is used whenever a “logical” address accesses data.

• You can only access controller-scoped tags (global data).
Publication 1756-QR107C-EN-P - June 2005

7 - 14 Communicate with Other Controllers
For each file that is referenced in a PLC or SLC command, make a map entry:

• Type the file number of the logical address.

• Type or select the controller-scoped (global) tag that supplies or receives data for the file number. (You can map multiple files to the
same tag.)

• For PLC-2 commands, specify the tag that supplies or receives the data.
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 15
Send a Message to Multiple Devices
To send a message to multiple devices:

• Define source and destination elements

• Create the MESSAGE_CONFIGURATION data type

• Create the configuration array

• Get the size of the local array

• Load the message properties for a device

• Configure the message

• Step to the next device

Define source and destination elements
An array stores the data that is read from or written to each remote controller. Each element in the array corresponds to a different remote

device. Create the local_array tag, which stores the data in this controller.

Tag Name Type

local_array data_type [length]

where:
data_type is the data type of the data that the message sends or receives, such as DINT, REAL, or STRING.
length is the number of elements in the local array.
Publication 1756-QR107C-EN-P - June 2005

7 - 16 Communicate with Other Controllers
Create the MESSAGE_CONFIGURATION data type
Create a user-defined data type to store the configuration variables for the message to each device.

• Some of the required members of the data type use a string data type.

• The default STRING data type stores 82 characters.

• If your paths or remote tag names or addresses use less than 82 characters, you have the option of creating a new string type that
stores fewer characters. This lets you conserve memory.

• To create a new string type, choose File ⇒ New Component ⇒ String Type…

• If you create a new string type, use it in place of the STRING data type in this procedure.

To store the configuration variables for the message to each controller, create the following user-defined data type.

Data Type: MESSAGE_CONFIGURATION

Name MESSAGE_CONFIGURATION

Description Configuration properties for a message to another controller

Members

Name Data Type Style Description

Path STRING

RemoteElement STRING

+

+

Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 17
Create the configuration array
Store the configuration properties for each device in an array. Before each execution of the MSG instruction, your logic loads new
properties into the instruction. This sends the message to a different controller.

1. Create this array:

where number is the number of devices to which to send the message.

Tag Name Type Scope

message_config MESSAGE_CONFIGURATION[number] any
Publication 1756-QR107C-EN-P - June 2005

7 - 18 Communicate with Other Controllers
2. Into the message_config array, enter the path to the first controller that receives the message.

Tag Name Value

 message_config {…}

 message_config[0] {…} Right-click and choose Go to Message Path Editor.

 message_config[0].Path

 message_config[0].RemoteElement

Type the path to the
remote controller.

Message Path Browser

Path:

or peer_controller

Browse to the remote
controller.

I/O Configuration

−

−

+

+

Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 19
3. Into the message_config array, enter the tag name or address of the data in the first controller to receive the message.

Tag Name Value

 message_config {…}

 message_config[0] {…}

 message_config[0].Path

 message_config[0].RemoteElement

 message_config[1] {…}

 message_config[1].Path

 message_config[1].RemoteElement

−

−

+

+ ...

Type the tag name or address of the data in
the other controller.

−

+

+

Publication 1756-QR107C-EN-P - June 2005

7 - 20 Communicate with Other Controllers
4. Enter the path and remote element for each additional controller:

Tag Name Value

 message_config {…}

 message_config[0] {…}

 message_config[0].Path

 message_config[0].RemoteElement

 message_config[1] {…}

 message_config[1].Path

 message_config[1].RemoteElement

−

−

+

+

−

+

+

Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 21
Get the size of the local array

Load the message properties for a device
Publication 1756-QR107C-EN-P - June 2005

7 - 22 Communicate with Other Controllers
Configure the message
Although your logic controls the remote element and path for the message, the Message Properties dialog box requires an initial
configuration. Make sure to clear the Cache Connections option.

On this tab: If you want to: For this item: Type or select:

Configuration read (receive) data from the other
controllers

Message Type the read-type that corresponds to the other controllers

Source Element tag or address that contains the data in the first controller

Number Of Elements 1

Destination Tag local_array[*]

Index 0

write (send) data to the other
controllers

Message Type the write-type that corresponds to other controllers

Source Tag local_array[*]

Index 0

Number Of Elements 1

Destination Element tag or address that contains the data in the first controller

Communication Path path to the first controller

Cache Connections Clear the Cache Connection check box. Since this procedure continuously changes
the path of the message, it is more efficient to clear this check box.
Publication 1756-QR107C-EN-P - June 2005

Communicate with Other Controllers 7 - 23
Step to the next controller

Restart the sequence
Publication 1756-QR107C-EN-P - June 2005

7 - 24 Communicate with Other Controllers
Notes:
Publication 1756-QR107C-EN-P - June 2005

Chapter 8
Forcing
What You Can Force
Use a force to override data that your logic either uses or produces. For example, use forces in the following situations:

• test and debug your logic

• check wiring to an output device

• temporarily keep your process functioning when an input device has failed

Use forces only as a temporary measure. They are not intended to be a permanent part of your application.

You can force the following elements:

If you want to: Then:

override an input value, output value, produced tag, or consumed tag add an I/O force

override the conditions of a transition one time to go from an active step to the next step step through a transition or a force of a path

override one time the force of a simultaneous path and execute the steps of the path

override the conditions of a transition in a sequential function chart add an SFC force

execute some but not all the paths of a simultaneous branch of a sequential function chart
Publication 1756-QR107C-EN-P - June 2005

8 - 2 Forcing
Before you use a force, determine the status of forces for the controller:

Use this method: To determine the status of: Description:

online toolbar I/O forces
SFC forces

FORCE LED I/O forces

continued

Forces tab

If the FORCE LED is: Then:

off • No tags contain force values.
• I/O forces are inactive (disabled).

flashing • At least one tag contains a force value.
• I/O forces are inactive (disabled).

solid • I/O forces are active (enabled).
• Force values may or may not exist.
Publication 1756-QR107C-EN-P - June 2005

Forcing 8 - 3
GSV instruction I/O forces

Use this method: To determine the status of: Description:

Force_Status is a DINT tag.

To determine if: Examine this bit: For this value:

forces are installed 0 1

no forces are installed 0 0

forces are enabled 1 1

forces are disabled 1 0
Publication 1756-QR107C-EN-P - June 2005

8 - 4 Forcing
Force I/O
Use an I/O force to accomplish the following:

• override an input value from another controller (i.e., a consumed tag)

• override an input value from an input device

• override your logic and specify an output value for another controller (i.e., a produced tag)

• override your logic and specify the state of an output device

IMPORTANT Forcing increases logic execution time. The more values you force, the longer it takes to
execute the logic.

IMPORTANT I/O forces are held by the controller and not by the programming workstation. Forces
remain even if the programming workstation is disconnected.
Publication 1756-QR107C-EN-P - June 2005

Forcing 8 - 5
When you force an I/O value:

• You can force all I/O data, except for configuration data.

• If the tag is an array or structure, such as an I/O tag, force a BOOL, SINT, INT, DINT, or REAL element or member.

• If the data value is a SINT, INT, or DINT, you can force the entire value or you can force individual bits within the value.

• You can also force an alias to an I/O structure member, produced tag, or consumed tag. An alias tag shares the same data value as
its base tag, so forcing an alias tag also forces the associated base tag.

Forcing an input or consumed tag:

• overrides the value regardless of the value of the physical device or produced tag

• does not affect the value received by other controllers monitoring that input or produced tag

Forcing an output or produced tag overrides the logic for the physical device or other controller (s). Other controllers monitoring that
output module in a listen-only capacity will also see the forced value.

To force I/O:

1. What is the state of the I/O Forces indicator?

If: Then note the following:

off No I/O forces currently exist.

flashing No I/O forces are active. But at least one force already exists in your project. When you enable I/O forces, all existing I/O
forces will also take effect.

solid I/O forces are enabled (active). When you install (add) a force, it immediately takes effect.
Publication 1756-QR107C-EN-P - June 2005

8 - 6 Forcing
2. Open the routine that contains the tag that you want to force.

3. Right-click the tag and choose Monitor… If necessary, expand the tag to show the value that you want to force.

4. Install the force value:

5. Are I/O forces enabled? (See step 1.)

To force a: Do this:

BOOL value Right-click the tag and choose Force ON or Force OFF.

non-BOOL value In the Force Mask column for the tag, type the value to which you want to force the tag. Then press the Enter key.

If: Then:

no From the Logic menu, choose I/O Forcing ⇒ Enable All I/O Forces. Then choose Yes to confirm.

yes Stop.
Publication 1756-QR107C-EN-P - June 2005

Forcing 8 - 7
Step Through a Transition
To override a false transition one time and go from an active step to the next step, use the Step Through option.
With the Step Through option:

• You do not have to add, enable, disable, or remove forces.

• The next time the SFC reaches the transition, it executes according to the conditions of the transition.

To step through the transition of an active step or a force of a simultaneous path:

1. Open the SFC routine.

2. Right-click the transition or the path that is forced and choose Step Through.

Force an SFC
To override the logic of an SFC, you have the following options:

If you want to: Then:

override the conditions of a transition each time the SFC reaches the transition Force a Transition

prevent the execution of one or more paths of a simultaneous branch Force a Simultaneous Path
Publication 1756-QR107C-EN-P - June 2005

8 - 8 Forcing
Force a Transition
To override the conditions of a transition through repeated executions of an SFC, force the transition. The force remains until you remove
it or disable forces

If you force a transition within a simultaneous branch to be false, the SFC stays in the simultaneous branch as long as the force is active
(installed and enabled).

• To leave a simultaneous branch, the last step of each path must execute at least one time and the transition below the branch must
be true.

• Forcing a transition false prevents the SFC from reaching the last step of a path.

If you want to: Then:

prevent the SFC from going to the next step force the transition false

cause the SFC go to the next step regardless of transition conditions force the transition true
Publication 1756-QR107C-EN-P - June 2005

Forcing 8 - 9
• When you remove or disable the force, the SFC can execute the rest of the steps in the path.

For example, to exit this branch, the SFC must be able to:
• execute Step_011 at least once
• get past Tran_011 and execute Step_012 at least once
• determine that Tran_012 is true
Publication 1756-QR107C-EN-P - June 2005

8 - 10 Forcing
Force a Simultaneous Path
To prevent the execution of a path of a simultaneous branch, force the path false. When the SFC reaches the branch, it executes only the
un-forced paths.

If you force a path of a simultaneous branch to be false, the SFC stays in the simultaneous branch as long as the force is active (installed
and enabled).

• To leave a simultaneous branch, the last step of each path must execute at least one time and the transition below the branch must
be true.

• Forcing a path false prevents the SFC from entering a path and executing its steps.

• When you remove or disable the force, the SFC can execute the steps in the path.

This path does not execute. This path executes.
Publication 1756-QR107C-EN-P - June 2005

Forcing 8 - 11
To force an SFC:

1. What is the state of the SFC Forces indicator?

2. Open the SFC routine.

3. Right-click the transition or start of a simultaneous path that you want to force, and choose either Force TRUE (only for a transition)
or Force FALSE.

4. Are SFC forces enabled?

If: Then note the following:

off No SFC forces currently exist.

flashing No SFC forces are active. But at least one force already exists in your project. When you enable SFC forces, all existing
SFC forces will also take effect.

solid SFC forces are enabled (active). When you install (add) a force, it immediately takes effect.

If: Then:

no From the Logic menu, choose SFC Forcing ⇒ Enable All SFC Forces. Then choose Yes to confirm.

yes Stop.
Publication 1756-QR107C-EN-P - June 2005

8 - 12 Forcing
Notes:
Publication 1756-QR107C-EN-P - June 2005

Chapter 9
Controller Faults
The controller stored different fault information:

Fault type: Description: See page:

major fault A fault condition that is severe enough for the controller to shut down, unless the condition is cleared. When a
major fault occurs, the controller:

1. Sets a major fault bit
2. Runs user-supplied fault logic, if it exists
3. If the user-supplied fault logic cannot clear the fault, the controller goes to faulted mode
4. Sets outputs according to their output state during program mode
5. OK LED flashes red

9-2

minor fault A fault condition that is not severe enough for the controller to shut down. 9-10

user-defined faults If you want to suspend (shut down) the controller based on conditions in your application, create a
user-defined major fault. With a user-defined major fault:

• You define a value for the fault code.
• The controller handles the fault the same as other major faults:

– The controller changes to the faulted mode (major fault) and stops executing the logic.
– Outputs are set to their configured state or value for faulted mode.

9-15

System Faults
Publication 1756-QR107C-EN-P - June 2005

9 - 2 System Faults
Major Faults
If a fault condition occurs that is severe enough for the controller to shut down, the controller generates a major fault and stops the
execution of logic.

1. Create the following user-defined data type. It stores information about the fault.

Data Type: FAULTRECORD

Name FAULTRECORD

Description Stores the MajorFaultRecord attribute or MinorFaultRecord attribute of the PROGRAM object.

Members

Name Data Type Style Description

Time_Low DINT Decimal lower 32 bits of the fault timestamp value

Time_High DINT Decimal upper 32 bits of the fault timestamp value

Type INT Decimal fault type (program, I/O, etc.)

Code INT Decimal unique code for the fault

Info DINT[8] Hex fault specific information
Publication 1756-QR107C-EN-P - June 2005

System Faults 9 - 3
2. Create a fault routine to clear specific faults and let the controller resume execution. Where you place the routine depends on the

type of fault that you want to clear:

For a fault due to: Do this:

execution of an instruction Create a fault routine for the program:
• In the controller organizer, right-click the program and select New Routine.

a. In the name box, type a name for the fault routine.
b. From the Type drop-down list, select Ladder.

• Right-click the program and select Properties.
a. Click the Configuration tab.
b. From the Fault drop-down list, select the fault routine

power loss Create a program and main routine for the Controller Fault Handler:
• In the controller organizer, right-click Controller Fault Handler and select New Program.

a. Enter the name of the program and a description.
• Click the + sign next to Controller Fault Handler.
• Right-click the program and select the New Routine

a. Enter the name of the routine and a description.
b. From the Type drop-down list, select the programming language for the routine.
c. Right-click the program and select Properties.
d. Click the Configuration tab.
e. From the Main drop-down list, select the routine

I/O

task watchdog

mode change

motion axis
Publication 1756-QR107C-EN-P - June 2005

9 - 4 System Faults
3. To clear a major fault that occurs during the execution of your project, use the following logic to:

• Get the fault type and code

1. The GSV instruction accesses the MAJORFAULTRECORD attribute of this program.

2. The GSV instruction stores the fault information in the major_fault_record tag.

1.
2.
Publication 1756-QR107C-EN-P - June 2005

System Faults 9 - 5
• Check for a specific fault

1. This EQU instruction checks for a specific type of fault, such as program, I/O. In Source B, enter the value for the type of fault
that you want to clear.

2. This EQU instruction checks for a specific fault code. In Source B, enter the value for the code that you want to clear.

3. This CLR instruction sets to zero the value of the fault type in the major_fault_record tag.

4. This CLR instruction sets to zero the value of the fault code in the major_fault_record tag.

1. 2.

3. 4.
Publication 1756-QR107C-EN-P - June 2005

9 - 6 System Faults
• Clear the fault

1. The SSV instruction writes new values to the MAJORFAULTRECORD attribute of this program.

2. The SSV instruction writes the values contained in the major_fault_record tag. Since the Type and Code member are set to zero,
the fault clears and the controller resumes execution.

1.
2.
Publication 1756-QR107C-EN-P - June 2005

System Faults 9 - 7
Major Fault Codes
Type: Code: Cause: Recovery Method:

1 1 The controller powered on in Run mode. Execute the power-loss handler.

1 60 On power-up, a non-recoverable fault occurred which
resulted in loss of controller memory integrity. The
controller has been reset and memory has been cleared.

Download the program to the controller.
Contact Rockwell Automation for help in diagnosing the fault.

1 61 On power-up, a non-recoverable fault occurred which
resulted in loss of controller memory integrity. The
controller has been reset and memory has been cleared.
Extended Diagnostic information was saved.

Download program to the controller.
Contact Rockwell Automation for help in diagnosing the fault.

3 16 A required I/O module connection failed. Check that the I/O module is in the chassis. Check electronic keying requirements.
View the controller properties Major Fault tab and the module properties Connection tab for more
information about the fault.

3 20 Possible problem with the ControlBus chassis. Not recoverable - replace the chassis.

3 23 At least one required connection was not established
before going to Run mode.

Wait for the controller I/O light to turn green before changing to Run mode.

4 16 Unknown instruction encountered. Remove the unknown instruction. This probably happened due to a program conversion process.

4 20 Array subscript too big, control structure .POS or .LEN is
invalid.

Adjust the value to be within the valid range. Don’t exceed the array size or go beyond dimensions
defined.

4 21 Control structure .LEN or .POS < 0. Adjust the value so it is > 0.

4 31 The parameters of the JSR instruction do not match those
of the associated SBR or RET instruction.

Pass the appropriate number of parameters. If too many parameters are passed, the extra ones
are ignored without any error.
Publication 1756-QR107C-EN-P - June 2005

9 - 8 System Faults
4 34 A timer instruction has a negative preset or accumulated
value.

Fix the program to not load a negative value into timer preset or accumulated value.

4 42 JMP to a label that did not exist or was deleted. Correct the JMP target or add the missing label.

4 82 A sequential function chart (SFC) called a subroutine and
the subroutine tried to jump back to the calling SFC. Occurs
when the SFC uses either a JSR or FOR instruction to call
the subroutine.

Remove the jump back to the calling SFC.

4 83 The data tested was not inside the required limits. Modify value to be within limits.

4 84 Stack overflow. Reduce the subroutine nesting levels or the number of parameters passed.

4 89 In a SFR instruction, the target routine does not contain the
target step.

Correct the SFR target or add the missing step.

4 user
defined

A user-defined fault.

6 1 Task watchdog expired.
User task has not completed in specified period of time. A
program error caused an infinite loop, or the program is too
complex to execute as quickly as specified, or a higher
priority task is keeping this task from finishing.

Increase the task watchdog, shorten the execution time, make the priority of this task “higher,”
simplify higher priority tasks, or move some code to another controller.

7 40 Store to nonvolatile memory failed. 1. Try again to store the project to nonvolatile memory.
2. If the project fails to store to nonvolatile memory, replace the memory board.

7 41 Load from nonvolatile memory failed due to
controller type mismatch.

Update the controller firmware to the with the correct firmware for
the controller.

Type: Code: Cause: Recovery Method:
Publication 1756-QR107C-EN-P - June 2005

System Faults 9 - 9
7 42 Load from nonvolatile memory failed because the firmware
revision of the project in nonvolatile memory does not
match the firmware revision of the controller.

Update the controller firmware to the same revision level as the project that is in nonvolatile
memory.

7 43 Load from nonvolatile memory failed due to bad
checksum.

Contact Rockwell Automation support. See the back of this
publication.

7 44 Failed to restore processor memory. Contact Rockwell Automation support. See the back of this
publication.

8 1 Attempted to place controller in Run mode with keyswitch
during download.

Wait for the download to complete and clear fault.

11 1 Actual position has exceeded positive overtravel limit. Move axis in negative direction until position is within overtravel limit and then execute Motion
Axis Fault Reset.

11 2 Actual position has exceeded negative overtravel limit. Move axis in positive direction until position is within overtravel limit and then execute Motion
Axis Fault Reset.

11 3 Actual position has exceeded position error tolerance. Move the position within tolerance and then execute Motion Axis Fault Reset.

11 4 Encoder channel A, B, or Z connection is broken. Reconnect the encoder channel then execute Motion Axis Fault Reset.

11 5 Encoder noise event detected or the encoder signals are not
in quadrature.

Fix encoder cabling then execute Motion Axis Fault Reset.

11 6 Drive Fault input was activated. Clear Drive Fault then execute Motion Axis Fault Reset.

11 7 Synchronous connection incurred a failure. First execute Motion Axis Fault Reset. If that doesn’t work, pull servo module out and plug back
in. If all else fails replace servo module.

Type: Code: Cause: Recovery Method:
Publication 1756-QR107C-EN-P - June 2005

9 - 10 System Faults
Minor Faults
If a fault condition occurs that is not severe enough for the controller to shut down, the controller generates a minor fault.

• The controller continues to execute.

• You do not need to clear a minor fault.

• To optimize execution time and ensure program accuracy, you should monitor and correct minor faults.

11 8 Servo module has detected a serious hardware fault. Replace the module.

11 9 Asynchronous Connection has incurred a failure. First execute Motion Axis Fault Reset. If that doesn’t work, pull servo module out and plug back
in. If all else fails replace servo module.

11 32 The motion task has experienced an overlap. The group’s course update rate is too high to maintain correct operation. Clear the group fault tag,
raise the group’s update rate, and then clear the major fault.

Type: Code: Cause: Recovery Method:
Publication 1756-QR107C-EN-P - June 2005

System Faults 9 - 11
To use ladder logic to capture information about a minor fault:

To check for a: Do this:

periodic task overlap 1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.
2. Monitor bit 6.

load from nonvolatile memory 1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.
2. Monitor bit 7.

problem with the serial port 1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.
2. Monitor bit 9.

low battery 1. Enter a GSV instructions that gets the FAULTLOG object, MinorFaultBits attribute.
2. Monitor bit 10.
Publication 1756-QR107C-EN-P - June 2005

9 - 12 System Faults
problem with an instruction 1. Create a user-defined data type that stores the fault information. Name the data type FaultRecord and assign the following members:

Name: Data Type: Style:

TimeLow DINT Decimal

TimeHigh DINT Decimal

Type INT Decimal

Code INT Decimal

Info DINT[8] Hex

2. Create a tag that will store the values of the MinorFaultRecord attribute.
3. Monitor S:MINOR.
4. If S:MINOR is on, use a GSV instruction to get the values of the MinorFaultRecord attribute.
5. To detect a minor fault that is caused by another instruction, reset S:MINOR. (S:MINOR remains set until the end of the scan.)

To check for a: Do this:
Publication 1756-QR107C-EN-P - June 2005

System Faults 9 - 13
Minor Fault Codes
Type: Code: Cause: Recovery Method:

4 4 An arithmetic overflow occurred in an instruction. Fix program by examining arithmetic operations (order) or adjusting values.

4 7 The GSV/SSV destination tag was too small to hold all of the data. Fix the destination so it has enough space.

4 35 PID delta time ≤ 0. Adjust the PID delta time so that it is > 0.

4 36 PID setpoint out of range Adjust the setpoint so that it is within range.

4 51 The LEN value of the string tag is greater than the DATA size of the
string tag.

1. Check that no instruction is writing to the LEN member of the string tag.
2. In the LEN value, enter the number of characters that the string contains.

4 52 The output string is larger than the destination. Create a new string data type that is large enough for the output string. Use the
new string data type as the data type for the destination.

4 53 The output number is beyond the limits of the destination data type. Either:
• Reduce the size of the ASCII value.
• Use a larger data type for the destination.

4 56 The Start or Quantity value is invalid. 1. Check that the Start value is between 1 and the DATA size of the Source.
2. Check that the Start value plus the Quantity value is less than or equal to

the DATA size of the Source.

4 57 The AHL instruction failed to execute because the serial port is set to
no handshaking.

Either:
• Change the Control Line setting of the serial port.
• Delete the AHL instruction.

6 2 Periodic task overlap.
Periodic task has not completed before it is time to execute again.

Simplify program(s), or lengthen period, or raise relative priority, etc.
Publication 1756-QR107C-EN-P - June 2005

9 - 14 System Faults
7 49 Project loaded from nonvolatile memory.

9 0 Unknown error while servicing the serial port. Contact Technical Support group.

9 1 The CTS line is not correct for the current configuration. Disconnect and reconnect the serial port cable to the controller.
Make sure the cable is wired correctly

9 2 Poll list error.
A problem was detected with the DF1 master’s poll list, such as
specifying more stations than the size of the file, specifying more then
255 stations, trying to index past the end of the list, or polling the
broadcast address (STN #255).

Check for the following errors in the poll list:
• total number of stations is greater than the space in the poll list tag
• total number of stations is greater than 255
• current station pointer is greater than the end of the poll list tag
• a station number greater than 254 was encountered

9 5 DF1 slave poll timeout.
The poll watchdog has timed out for slave. The master has not polled
this controller in the specified amount of time.

Determine and correct delay for polling.

9 9 Modem contact was lost.
DCD and/or DSR control lines are not being received in proper
sequence and/or state.

Correct modem connection to the controller.

10 10 Battery not detected or needs to be replaced. Install new battery.

Type: Code: Cause: Recovery Method:
Publication 1756-QR107C-EN-P - June 2005

System Faults 9 - 15
User-Defined Faults
If you want to suspend (shut down) the controller based on conditions in your application, create a user-defined major fault. With a
user-defined major fault:

• The fault type is always 4.

• You define a value for the fault code. Make sure it isn’t a code that is already used by the predefined major faults.

If you use a fault code that is already a predefined fault code, a major fault occurs.

• The controller handles the fault the same as other major faults:

– The controller changes to the faulted mode (major fault) and stops executing the logic.

– Outputs are set to their configured state or value for faulted mode.

In the main routine of the program, enter the following rung:

Jump to Subroutine
Routine name name_of_fault_routine
Input par x

JSR
conditions when the controller
should shut down
Publication 1756-QR107C-EN-P - June 2005

9 - 16 System Faults
Publication 1756-QR107C-EN-P - June 2005

Chapter 10
Data Structures
Common Structures
The following structures are common structures used by several relay ladder instructions. Function block instructions also use structures,
but they are more unique to individual types of instructions.

COMPARE Structure

Mnemonic: Data Type: Description:

.EN BOOL The enable bit indicates that the instruction is enabled.

.DN BOOL The done bit is set when the instruction has operated on the last element (.POS = .LEN).

.FD BOOL The found bit is set each time the instruction records a mismatch (one-at-a-time operation) or after recording all
mismatches (all-per-scan operation).

.IN BOOL The inhibit bit indicates the search mode.
0 = all mode
1 = one mismatch at a time mode

.ER BOOL The error bit is set if .POS < 0 or .LEN < 0. The instruction stops executing until the program clears the .ER bit.

.LEN DINT The length specifies the number of elements in the array.

.POS DINT The position contains the position of the current element.
Publication 1756-QR107C-EN-P - June 2005

10 - 2 Data Structures
CONTROL Structure

Mnemonic: Data Type: Description:

.EN BOOL The enable bit indicates that the instruction is enabled.

.DN BOOL The done bit is set when the instruction has operated on the last element (.POS = .LEN).

.ER BOOL The error bit is set if the expression generates an overflow (S:V is set). The instruction stops executing until the program
clears the .ER bit. The .POS value contains the position of the element that caused the overflow.

.LEN DINT The length specifies the number of elements in the array.

.POS DINT The position contains the position of the current element.
Publication 1756-QR107C-EN-P - June 2005

Data Structures 10 - 3
COUNTER Structure

EXT_ROUTINE_CONTROL Structure (SoftLogix5800 controller only)

Mnemonic: Data Type: Description:

.CD BOOL The count down enable bit indicates that the CTD instruction is enabled.

.CU BOOL The count up enable bit indicates that the CTU instruction is enabled.

.DN BOOL The done bit indicates that .ACC ≥ .PRE.

.OV BOOL The overflow bit indicates that the counter exceeded the upper limit of 2,147,483,647. The counter then rolls over to
-2,147,483,648 and begins counting up again.

.UN BOOL The underflow bit indicates that the counter exceeded the lower limit of -2,147,483,648. The counter then rolls over to
2,147,483,647 and begins counting down again.

.PRE DINT The preset value specifies the value which the accumulated value must reach before the instruction sets the .DN bit.

.ACC DINT The accumulated value specifies the number of transitions the instruction has counted.

Mnemonic: Data Type: Description:

ErrorCode SINT If an error occurs, this value identifies the error. Valid values are from 0-255.

NumParams SINT This value indicates the number of parameters associated with this instruction.

ParameterDefs EXT_ROUTINE_
PARAMETERS[10]

This array contains definitions of the parameters to pass to the external routine. The instruction can pass as many as 10
parameters.
Publication 1756-QR107C-EN-P - June 2005

10 - 4 Data Structures
ReturnParamDef EXT_ROUTIN_
PARAMETERS

This value contains definitions of the return parameter from the external routine. There is only one return parameter.

EN BOOL When set, the enable bit indicates that the JXR instruction is enabled.

ReturnsValue BOOL If set, this bit indicates that a return parameter was entered for the instruction. If cleared, this bit indicates that no return
parameter was entered for the instruction.

DN BOOL The done bit is set when the external routine has executed once to completion.

ER BOOL The error bit is set if an error occurs. The instruction stops executing until the program clears the error bit.

FirstScan BOOL This bit identifies whether this is the first scan after switching the controller to Run mode. Use FirstScan to initialize the
external routine, if needed.

EnableOut BOOL Enable output.

EnableIn BOOL Enable input.

User1 BOOL These bits are available for the user. The controller does not initialize these bits.

User0 BOOL

ScanType1 BOOL These bits identify the current scan type:
Bit Values: Scan Type:

00 Normal
01 Pre Scan
10 Post Scan (not applicable to relay ladder programs)

ScanType0 BOOL

Mnemonic: Data Type: Description:
Publication 1756-QR107C-EN-P - June 2005

Data Structures 10 - 5
MESSAGE Structure

Mnemonic: Data Type: Description:

.FLAGS INT The .FLAGS member provides access to the status members (bits) in one, 16-bit word.

This bit: Is this member:

2 .EW

4 .ER

5 .DN

6 .ST

7 .EN

8 .TO

9 .EN_CC

Important: Resetting any MSG status bits while a MSG is enabled can disrupt communications.

.ERR INT If the .ER bit is set, the error code word identifies error codes for the MSG instruction.

.EXERR INT The extended error code word specifies additional error code information for some error codes.

.REQ_LEN INT The requested length specifies how many words the message instruction will attempt to transfer.

.DN_LEN INT The done length identifies how many words actually transferred.

.EW BOOL The enable waiting bit is set when the controller detects that a message request has entered the queue. The controller resets
the.EW bit when the .ST bit is set.
Publication 1756-QR107C-EN-P - June 2005

10 - 6 Data Structures
.ER BOOL The error bit is set when the controller detects that a transfer failed. The .ER bit is reset the next time the rung-condition-in goes
from false to true.

.DN BOOL The done bit is set when the last packet of the message is successfully transferred. The .DN bit is reset the next time the
rung-condition-in goes from false to true.

.ST BOOL The start bit is set when the controller begins executing the MSG instruction. The .ST bit is reset when the .DN bit or the .ER bit
is set.

.EN BOOL The enable bit is set when the rung-condition-in goes true and remains set until either the .DN bit or the .ER bit is set and the
rung-condition-in is false. If the rung-condition-in goes false, but the .DN bit and the .ER bit are cleared, the .EN bit remains set.

.TO BOOL If you manually set the .TO bit, the controller stops processing the message and sets the .ER bit.

.EN_CC BOOL The enable cache bit determines how to manage the MSG connection. Connections for MSG instructions going out the serial port
are not cached, even if the .EN_CC bit is set.

.ERR_SRC SINT Used by RSLogix 5000 software to show the error path on the Message Configuration dialog box

.DestinationLink INT To change the Destination Link of a DH+ or CIP with Source ID message, set this member to the required value.

.DestinationNode INT To change the Destination Node of a DH+ or CIP with Source ID message, set this member to the required value.

.SourceLink INT To change the Source Link of a DH+ or CIP with Source ID message, set this member to the required value.

.Class INT To change the Class parameter of a CIP Generic message, set this member to the required value.

.Attribute INT To change the Attribute parameter of a CIP Generic message, set this member to the required value.

.Instance DINT To change the Instance parameter of a CIP Generic message, set this member to the required value.

Mnemonic: Data Type: Description:
Publication 1756-QR107C-EN-P - June 2005

Data Structures 10 - 7
.LocalIndex DINT If you use an asterisk [*] to designate the element number of the local array, the LocalIndex provides the element number. To change
the element number, set this member to the required value.

If the message: Then the local array is the:

reads data Destination element

writes data Source element

.Channel SINT To send the message out a different channel of the 1756-DHRIO module, set this member to the required value. Use either the ASCII
character A or B.

.Rack SINT To change the rack number for a block transfer message, set this member to the required rack number (octal).

.Group SINT To change the group number for a block transfer message, set this member to the required group number (octal).

.Slot SINT To change the slot number for a block transfer message, set this member to the required slot number.

If the network is: Then specify the slot number in:

universal remote I/O octal

ControlNet decimal (0-15)

.Path STRING To send the message to a different controller, set this member to the new path.
• enter the path as hexadecimal values
• omit commas [,]

Mnemonic: Data Type: Description:
Publication 1756-QR107C-EN-P - June 2005

10 - 8 Data Structures
.RemoteIndex DINT If you use an asterisk [*] to designate the element number of the remote array, the RemoteIndex provides the element number. To
change the element number, set this member to the required value.

If the message: Then the remote array is the:

reads data Source element

writes data Destination element

.RemoteElement STRING To specify a different tag or address in the controller to which the message is sent, set this member to the required value. Enter the
tag or address as ASCII characters.

If the message: Then the remote array is the:

reads data Source element

writes data Destination element

.UnconnnectedTimeout DINT The time out for unconnected messages. The default value is 30 seconds.

.ConnectionRate DINT The ConnectionRate times the TimeoutMultiplier produces the time out for connected messages.
• the default ConnectionRate is 7.5 seconds
• the default TimeoutMultiplier is 0 (which equates to a multiplication factor of 4)
• the default time out for connected messages is 30 seconds (7.5 seconds x 4 = 30 seconds)
• to change the time out, change the ConnectionRate and leave the TimeoutMultiplier at the default value

.TimeoutMultiplier SINT

Mnemonic: Data Type: Description:
Publication 1756-QR107C-EN-P - June 2005

Data Structures 10 - 9
RESULT Structure

Mnemonic: Data Type: Description:

.DN BOOL The done bit is set when the Result array is full.

.LEN DINT The length value identifies the number of storage locations in the Result array.

.POS DINT The position value identifies the current position in the Result array.
Publication 1756-QR107C-EN-P - June 2005

10 - 10 Data Structures
SERIAL_PORT_CONTROL Structure

Mnemonic: Data Type: Description:

.EN BOOL The enable bit indicates that the instruction is enabled.

.EU BOOL The queue bit indicates that the instruction entered the ASCII queue.

.DN BOOL The done bit indicates when the instruction is done, but it is asynchronous to the logic scan.

.RN BOOL The run bit indicates that the instruction is executing.

.EM BOOL The empty bit indicates that the instruction is done, but it is synchronous to the logic scan.

.ER BOOL The error bit indicates when the instruction fails (errors).

.FD BOOL The found bit indicates that the instruction found the termination character or characters.

.POS DINT The position determines the number of characters in the buffer, up to and including the first set of termination characters.
The instruction only returns this number after it finds the termination character or characters.

.ERROR DINT The error contains a hexadecimal value that identifies the cause of an error.
Publication 1756-QR107C-EN-P - June 2005

Data Structures 10 - 11
STRING Structure
Every string data type includes these members:

You store ASCII characters in tags that use a string data type.

• You can use the default STRING data type. It stores up to 82 characters.

• You can create a new string data type that stores less or more characters.

Name: Data Type: Description: Notes:

LEN DINT number of characters in the string The LEN automatically updates to the new count of characters whenever you:
• use the String Browser dialog box to enter characters
• use instructions that read, convert, or manipulate a string

The LEN shows the length of the current string. The DATA member may contain additional, old
characters, which are not included in the LEN count.

DATA SINT array ASCII characters of the string To access the characters of the string, address the name of the tag. Each element of the DATA array
contains one character. You can create new string data types that store less or more characters.

IMPORTANT Use caution when you create a new string data type. If you later decide to change the size of the string data type, you may lose data in any tags that currently use
that data type.

If you: Then:

make a string data type smaller • The data is truncated.
• The LEN is unchanged.

make a string data type larger The data and LEN is reset to zero.
Publication 1756-QR107C-EN-P - June 2005

10 - 12 Data Structures
To create a string data type:

If you create a new string data type, define the number of characters in the string:

OR

Use the default STRING data type. It
stores as many as 82 characters.

Create a new string data type to store the
number of characters that you define.
Publication 1756-QR107C-EN-P - June 2005

Data Structures 10 - 13
TIMER Structure

User-Defined Structure
You can also create your own structures, called a user-defined data type. A user-defined data type groups different types of data into a
single named entity.

• Within a user-defined data type, you define the members.

• Like tags, members have a name and data type.

• You can include arrays and structures.

• Once you create a user-defined data type, you can create one or more tags using that data type.

• Minimize the use of these data type because they typically increase the memory requirements and execution time of your logic:

– INT

– SINT

Mnemonic: Data Type: Description:

.EN BOOL The enable bit indicates that the instruction is enabled.

.TT BOOL The timing bit indicates that a timing operation is in process

.DN BOOL The done bit is set when .ACC ≥ .PRE.

.PRE DINT The preset value specifies the value (1 msec units) which the accumulated value must reach before the instruction sets the
.DN bit.

.ACC DINT The accumulated value specifies the number of milliseconds that have elapsed since the instruction was enabled.
Publication 1756-QR107C-EN-P - June 2005

10 - 14 Data Structures
• If you include members that represent I/O devices, you must use ladder logic to copy the data between the members in the structure
and the corresponding I/O tags.

• When you use the BOOL, SINT, or INT data types, place members that use the same data type in sequence:

• You can use single dimension arrays.

• You can create, edit, and delete user-defined data types only when programming offline.

• If you modify a user-defined data type and change its size, the existing values of any tags that use the data type are set to zero (0).

• To copy data to a structure, use the COP instruction.

more efficient

BOOL

BOOL

BOOL

DINT

DINT

less efficient

BOOL

DINT

BOOL

DINT

BOOL
Publication 1756-QR107C-EN-P - June 2005

Data Structures 10 - 15
To create a user-defined data type:
Publication 1756-QR107C-EN-P - June 2005

10 - 16 Data Structures
Notes:
Publication 1756-QR107C-EN-P - June 2005

Chapter 11
Instruction: Relay Ladder: Function Block: Structured Text: Description:

ABL
ASCII Test for
Buffer Line

not available ABL(Channel
SerialPortControl);

The ABL instruction counts the characters in the buffer up
to and including the first termination character.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

Serial Port
Control

SERIAL_PORT_
CONTROL

tag tag that controls the operation

Character Count DINT immediate displays the number of characters in the buffer, including the first set of termination characters (relay ladder only)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction Set
Publication 1756-QR107C-EN-P - June 2005

11 - 2 Instruction Set
ABS
Absolute Value

dest := ABS(source); The ABS instruction takes the absolute value of the Source
and places the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

value of which to take the absolute value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

ABS tag FBD_MATH_
ADVANCED

structure ABS structure (default parameters):

Parameter: Type: Description:

Source REAL value of which to take the absolute value

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 3
ACB
ASCII
Characters in
Buffer

not available ACB(Channel
SerialPortControl)

The ACB instruction counts the characters in the buffer.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

Serial Port
Control

SERIAL_PORT_
CONTROL

tag tag that controls the operation

Character Count DINT immediate displays the number of characters in the buffer (relay ladder only)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 4 Instruction Set
ACL
ASCII Clear
Buffer

not available ACL(Channel,
ClearSerialPortRead,
ClearSerialPortWrite);

The ACL instruction immediately clears the buffer and
ASCII queue.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

Clear Serial Port
Read

BOOL immediate
tag

to empty the buffer and remove ARD and ARL instructions from the queue, enter Yes.

Clear Serial Port
Write

BOOL immediate
tag

to remove AWA and AWT instructions from the queue, enter Yes.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 5
ACS
Arc Cosine

dest := ACOS(source); The ACS instruction takes the arc cosine of the Source
value (in radians) and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the arc cosine of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

ACS tag FBD_MATH_
ADVANCED

structure ACS structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 6 Instruction Set
ADD
Add

dest := sourceA + sourceB; The ADD instruction adds Source A to Source B and places
the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT REAL

immediate
tag

value to add to Source B

Source B SINT DINT
INT REAL

immediate
tag

value to add to Source A

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

ADD tag FBD_MATH structure ADD structure (default parameters):

Parameter: Type: Description:

SourceA REAL value to add to SourceB

SourceB REAL value to add to SourceA

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 7
AFI
Always False

not available not available The AFI instruction sets its rung-condition-out to false.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 8 Instruction Set
AHL
ASCII
Handshake
Lines

not available AHL(Channel,ANDMask
ORMask,
SerialPortControl);

The AHL instruction obtains the status of control lines and
turns on or off the DTR and RTS signals.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

ANDMask DINT immediate
tag

ORMask DINT immediate
tag

Serial Port Control SERIAL_PORT_
CONTROL

tag tag that controls the operation

Channel Status DINT immediate displays the status of the control lines (relay ladder only)

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 57 The AHL instruction failed to execute because the serial port is set to no handshaking.
Either change the Control Line setting of the serial port or delete the AHL instruction.

Instruction: Relay Ladder: Function Block: Structured Text: Description:

To turn
DTR:

And turn
RTS:

ANDMask
value:

ORMask
value:

To turn
DTR:

And turn
RTS:

ANDMask
value:

ORMask
value:

off off 3 0 unchanged off 2 0

on 1 2 on 0 2

unchanged 1 0 unchanged 0 0

on off 2 1

on 0 3

unchanged 0 1
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 9
ALM
Alarm

not available ALM(ALM_tag); The ALM instruction provides alarming for any
analog signal.

Operand: Type: Format: Description:

ALM tag ALARM structure ALM structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input

HHAlarm BOOL high-high alarm indicator

HAlarm BOOL high alarm indicator

LAlarm BOOL low alarm indicator

LLAlarm BOOL low-low alarm indicator

ROCPosAlarm BOOL rate-of-change positive alarm indicator

ROCNegAlarm BOOL rate-of-change negative alarm indicator

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 10 Instruction Set
AND
Bitwise AND

dest := sourceA AND sourceB The AND instruction performs a bitwise AND operation
using the bits in Source A and Source B and places the
result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT

immediate
tag

value to AND with Source B

Source B SINT DINT
INT

immediate
tag

value to AND with Source A

Destination SINT DINT
INT

tag tag to store the result

Function Block Operand: Type: Format: Description:

AND tag FBD_LOGICAL structure AND structure (default parameters):

Parameter: Type: Description:

SourceA DINT value to AND with Source B

SourceB DINT value to AND with Source A

Dest DINT result of the instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 11
ARD
ASCII Read

not available ARD(Channel,
Destination,
SerialPortControl);

The ARD instruction removes characters from the buffer
and stores them in the Destination.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

Destination string
SINT DINT
INT

tag tag into which the characters are moved (read):
• for a string data type, enter the name of the tag
• for a SINT, INT, or DINT array, enter the first element of the array

Serial Port
Control

SERIAL_PORT_
CONTROL

tag tag that controls the operation

Serial Port
Control Length

DINT immediate displays the number of characters to move to the destination (relay ladder only)

Characters Read DINT immediate during execution, displays the number of characters that were read (relay ladder only)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 12 Instruction Set
ARL
ASCII Read
Line

not available ARL(Channel,
Destination,
SerialPortControl);

The ARL instruction removes specified characters from the
buffer and stores them in the Destination.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

Destination string
SINT DINT
INT

tag tag into which the characters are moved (read):
• for a string data type, enter the name of the tag
• for a SINT, INT, or DINT array, enter the first element of the array

Serial Port
Control

SERIAL_PORT_
CONTROL

tag tag that controls the operation

Serial Port Control
Length

DINT immediate displays the maximum number of characters to read if no termination characters are found (relay ladder only)

Characters Read DINT immediate during execution, displays the number of characters that were read (relay ladder only)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 13
ASN
Arc Sine

dest := ASIN(source); The ASN instruction takes the arc sine of the Source value
(in radians) and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the arc sine of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

ASN tag FBD_MATH_
ADVANCED

structure ASN structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 14 Instruction Set
ATN
Arc Tangent

dest := ATAN(source); The ATN instruction takes the arc tangent of the Source
value (in radians) and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the arc tangent of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

ATN tag FBD_MATH_
ADVANCED

structure ATN structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 15
AVE
Average

not available SIZE(array,0,length);

sum := 0;

FOR position = 0 TO length-1
DO

sum := sum +
array[position];

END_FOR;

destination := sum / length;

The AVE instruction calculates the average of a set
of values.

Operand: Type: Format: Description:

Array SINT DINT
INT REAL

array tag find the average of the values in this array; specify the first element of the group of elements to average
do not use CONTROL.POS in the subscript

Dimension to vary DINT immediate
(0, 1, 2)

which dimension to use
the order is: array[dim_0,dim_1,dim_2] then array[dim_0,dim_1] then array[dim_0]

Destination SINT DINT
INT REAL

tag result of the operation

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements of the array to average

Position DINT immediate current element in the array; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 Dimension to vary does not exist for the specified array

Type 4 Code 21 .POS < 0 or .LEN < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 16 Instruction Set
AWA
ASCII Write
Append

not available AWA(Channel,Source,
SerialPortControl);

The AWA instruction sends a specified number of
characters of the Source tag to a serial device and appends
either one or two predefined characters.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

Source string
SINT DINT
INT

tag tag that contains the characters to send:
• for a string data type, enter the name of the tag.
• for a SINT, INT, or DINT array, enter the first element of the array.

Serial Port
Control

SERIAL_PORT_
CONTROL

tag tag that controls the operation

Serial Port Control
Length

DINT immediate displays the number of characters to send (relay ladder only)

Characters Sent DINT immediate displays the number of characters that were sent (relay ladder only)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 17
AWT
ASCII Write

not available AWT(Channel,
Source,
SerialPortControl);

The AWT instruction sends a specified number of
characters of the Source tag to a serial device.

Operand: Type: Format: Description:

Channel DINT immediate
tag

0

Source SINT DINT
INT string

tag tag that contains the characters to send:
• for a string data type, enter the name of the tag
• for a SINT, INT, or DINT array, enter the first element of the array

Serial Port
Control

SERIAL_PORT_
CONTROL

tag tag that controls the operation

Serial Port Control
Length

DINT immediate number of characters to send (relay ladder only)

Characters Sent DINT immediate displays the number of characters that were sent (relay ladder only)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 18 Instruction Set
BAND
Boolean AND

see AND IF operandA AND operandB
THEN

<statement>;

END_IF;

The BAND instruction logically ANDs as many as 8
boolean inputs.

Operand: Type: Format: Description:

BAND tag FBD_BOOLEAN_
AND

structure BAND structure (default parameters):

Parameter: Type: Description:

Inx BOOL boolean input; where x = 1-8

Out BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 19
BNOT
Boolean NOT

see NOT IF NOT operand THEN

<statement>;

END_IF;

The BNOT instruction complements a boolean input.

Operand: Type: Format: Description:

BNOT tag FBD_BOOLEAN_B
NOT

structure BNOT structure (default parameters):

Parameter: Type: Description:

In BOOL boolean input

Out BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 20 Instruction Set
BOR
Boolean OR

see OR IF operandA OR operandB THEN

<statement>;

END_IF;

The BOR instruction logically ORs as many as 8
boolean inputs.

Operand: Type: Format: Description:

BOR tag FBD_BOOLEAN_
OR

structure BOR structure (default parameters):

Parameter: Type: Description:

Inx BOOL boolean input; where x = 1-8

Out BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

BRK
Break

not available EXIT; The BRK instruction interrupts the execution of a routine
that was called by a FOR instruction.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 21
BSL
Bit Shift Left

not available not available The BSL instruction shifts the specified bits within the Array
one position left.

Operand: Type: Format: Description:

Array DINT array tag array to modify; specify the first element of the group of elements
do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation

Source bit BOOL tag bit to shift

Length DINT immediate number of bits in the array to shift

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 22 Instruction Set
BSL
Bit Shift Right

not available not available The BSR instruction shifts the specified bits within the
Array one position right.

Operand: Type: Format: Description:

Array DINT array tag array to modify; specify the first element of the group of elements
do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation

Source bit BOOL tag bit to shift

Length DINT immediate number of bits in the array to shift

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 23
BTD
Bit Field
Distribute

see BTDT see BTDT The BTD instruction copies the specified bits from the
Source, shifts the bits to the appropriate position, and
writes the bits into the Destination.

Operand: Type: Format: Description:

Source SINT DINT
INT

immediate
tag

tag that contains the bits to move

Source Bit DINT immediate number of the bit (lowest bit number) from where to start the move
must be within the valid range for the Source data type (0-31 DINT, 0-15 INT, 0-7 SINT)

Destination SINT DINT
INT

immediate
tag

tag where to move the bits

Destination bit DINT immediate the number of the bit (lowest bit number) where to start copying bits from the Source
must be within the valid range for the Destination data type (0-31 DINT, 0-15 INT, 0-7 SINT)

Length DINT tag number of bits to move (1-32)

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 24 Instruction Set
BTDT
Bit Field
Distribute with
Target

see BTD BTDT(BTDT_tag); The BTDT instruction first copies the Target to the
Destination. Then the instruction copies the specified bits
from the Source, shifts the bits to the appropriate position,
and writes the bits into the Destination. The Target and
Source remain unchanged.

Operand: Type: Format: Description:

BTDT tag FBD_BIT_FIELD_
DISTRIBUTE

structure BTDT structure (default parameters):

Parameter: Type: Description:

Source DINT input value containing the bits to move to Destination

SourceBit DINT the bit position in Source (lowest bit number where to start the move)

Length DINT number of bits to move (1-32)

DestBit DINT the bit position in Dest (lowest bit number to start copying bits into)

Target DINT input value to move to Dest prior to moving bits from the Source

Dest DINT result of the bit move operation

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 25
BXOR
Boolean
Exclusive XOR

see XOR IF operandA XOR operandB
THEN

<statement>;

END_IF;

The BXOR performs an exclusive OR on two boolean inputs.

Operand: Type: Format: Description:

BXOR tag FBD_BOOLEAN_X
OR

structure BXOR structure (default parameters):

Parameter: Type: Description:

In1 BOOL boolean input

In2 BOOL boolean input

Out BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

CLR
Clear

not available dest := 0; The CLR instruction clears all the bits of the Destination.

Operand: Type: Format: Description:

Destination SINT DINT
INT REAL

tag tag to clear

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 26 Instruction Set
CMP
Compare

not available IF BOOL_expression THEN

<statement>;

END_IF;

The CMP instruction performs a comparison on the
arithmetic operations you specify in the expression.

Operand: Type: Format: Description:

Expression SINT REAL
INT string
DINT

immediate
tag

an expression consisting of tags and/or immediate values separated by operators

Arithmetic Status Flags: Major Faults:

affected if expressions uses operators
that affect arithmetic status flags

none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

CONCAT
String
Concatenate

not available CONCAT(SourceA,SourceB,
Dest);

The CONCAT instruction adds ASCII characters to the end of
a string.

Operand: Type: Format: Description:

Source A string tag tag that contains the initial characters

Source B string tag tag that contains the end characters

Destination string tag tag to store the result

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 51 The LEN value of the string tag is greater than the DATA size of the string tag.
Check that no instruction is writing to the LEN member of the string tag and that in the LEN value, you
entered the number of characters that the string contains.

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 27
COP
Copy File

not available COP(Source,Dest
Length);

The COP instruction copies the value(s) in the Source to the
Destination. The Source remains unchanged.

The data can change during the copy operation

Operand: Type: Format: Description:

Source SINT REAL
INT string
DINT structure

tag initial element to copy
the Source and Destination operands should be the same data type, or unexpected results may occur

Destination SINT REAL
INT string
DINT structure

tag initial element to be overwritten by the Source
the Source and Destination operands should be the same data type, or unexpected results may occur

Length DINT immediate
tag

number of Destination elements to copy

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 28 Instruction Set
COS
Cosine

dest := COS(source); The COS instruction takes the cosine of the Source value (in
radians) and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the cosine of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

COS tag FBD_MATH_
ADVANCED

structure COS structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 29
CPS
Synchronous
Copy File

not available CPS(Source,Dest
Length);

The CPS instruction copies the value(s) in the Source to the
Destination. The Source remains unchanged.

The data cannot change during the copy operation.

Operand: Type: Format: Description:

Source SINT REAL
INT string
DINT structure

tag initial element to copy
the Source and Destination operands should be the same data type, or unexpected results may occur

Destination SINT REAL
INT string
DINT structure

tag initial element to be overwritten by the Source
the Source and Destination operands should be the same data type, or unexpected results may occur

Length DINT immediate
tag

number of Destination elements to copy

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 30 Instruction Set
CPT
Compute

not available destination :=
numeric_expresion;

The CPT instruction performs the arithmetic operations you
define in the expression.

Operand: Type: Format: Description:

Destination SINT DINT
INT REAL

immediate
tag

tag to store the result

Expression SINT DINT
INT REAL

immediate
tag

an expression consisting of tags and/or immediate values separated by operators

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

CTD
Counter Down

see CTUD see CTUD The CTD instruction counts downward.

Operand: Type: Format: Description:

Counter COUNTER tag counter structure

Preset DINT immediate how low to count

Accum DINT immediate number of times the counter has counted; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 31
CTU
Counter Up

see CTUD see CTUD The CTU instruction counts upward.

Operand: Type: Format: Description:

Counter COUNTER tag counter structure

Preset DINT immediate how high to count

Accum DINT immediate number of times the counter has counted; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 32 Instruction Set
CTUD
Count
Up/Down

see CTU and CTD CTUD(CTUD_tag); The CTUD instruction counts up by one when CUEnable
transitions from clear to set. The instruction counts down by
one when CDEnable transitions from clear to set.

Operand: Type: Format: Description:

CTUD tag FBD_COUNTER structure CTUD structure (default parameters):

Parameter: Type: Description:

CUEnable BOOL enable up count
When input toggles from clear to set, accumulator counts up by one.

CDEnable BOOL enable down count
When input toggles from clear to set, accumulator counts down by one.

PRE DINT counter preset value

Reset BOOL request to reset the timer

ACC DINT accumulated value

DN BOOL counting done

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 33
D2SD
Discrete
2-State Device

not available D2SD(D2SD_tag); The D2SD instruction controls a discrete device which has
only two possible states such as on/off, open/closed, etc.

Operand: Type: Format: Description:

D2SD tag DISCRETE_
2STATE

structure D2SD structure (default parameters):

Parameter: Type: Description:

ProgCommand BOOL program state command

StatexPerm BOOL state x permissive, where x = 0 or 1
unless in Hand or Override mode, this input must be set for the device to enter
the state

FBx BOOL feedback input, where x = 0 or 1

HandFB BOOL hand feedback input
when set, the field device is being requested to enter the 1 state; when cleared,
the field device is being requested to enter the 0 state

ProgProgReq BOOL program program request

ProgOperReq BOOL program operator request

ProgOverrideReq BOOL program override request

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 34 Instruction Set
D2SD
Discrete
2-State Device
(continued)

Parameter: Type: Description:

ProgHandReq BOOL program hand request

Out BOOL output of the instruction

DevicexState BOOL device x state output, where x = 0 or 1

CommandStatus BOOL command status output

FaultAlarm BOOL fault alarm output

ModeAlarm BOOL mode alarm output

ProgOper BOOL program/operator control indicator

Override BOOL override mode indicator

Hand BOOL hand mode indicator

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 35
D3SD
Discrete
3-State Device

not available D3SD(D3SD_tag); The D3SD instruction controls a discrete device having
three possible states such as fast/slow/off,
forward/stop/reverse, etc.

Operand: Type: Format: Description:

D3SD tag DISCRETE_
3STATE

structure D3SD structure (default parameters):

Parameter: Type: Description:

ProgxCommand BOOL program state x command, where x = 0, 1, or 2

StatexPerm BOOL state x permissive, where x = 0, 1, or 2
unless in Hand or Override mode, this input must be set for the device to enter
the state

FBx BOOL feedback input; where x = 0,1, 2, or 3

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 36 Instruction Set
D3SD
Discrete
3-State Device
(continued)

Parameter: Type: Description:

HandFBx BOOL hand feedback input, where x = 0, 1, or 2
when set, the field device is being requested to enter the 1 state; when cleared,
the field device is being requested to enter some other state

ProgProgReq BOOL program program request

ProgOperReq BOOL program operator request

ProgOverrideReq BOOL program override request

ProgHandReq BOOL program hand request

Outx BOOL output of the instruction, where x = 0, 1, or 2

DevicexState BOOL device x state output, where x = 0, 1, or 2

CommandxStatus BOOL command status output, where x = 0, 1, or 2

FaultAlarm BOOL fault alarm output

ModeAlarm BOOL mode alarm output

ProgOper BOOL program/operator control indicator

Override BOOL override mode indicator

Hand BOOL hand mode indicator

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 37
DDT
Diagnostic
Detect

not available not available The DDT instruction compares bits in a Source array with
bits in a Reference array to determine changes of state.

Operand: Type: Format: Description:

Source DINT array tag array to compare to the reference; do not use CONTROL.POS in the subscript

Reference DINT array tag array to compare to the source; do not use CONTROL.POS in the subscript

Result DINT array tag array to store the results; do not use CONTROL.POS in the subscript

Cmp control CONTROL structure control structure for the compare

Length DINT immediate number of bits to compare

Position DINT immediate current position in the source; initial value typically 0

Result control CONTROL structure control structure for the results

Length DINT immediate number of storage locations in the result

Position DINT immediate current position in the result; initial value typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 Result.POS > size of Result array

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 38 Instruction Set
DEDT
Deadtime

not available DEDT(DEDT_tag,storage); The DEDT instruction performs a delay of a single input. You
select the amount of deadtime delay.

Operand: Type: Format: Description:

DEDT tag DEADTIME structure DEDT structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

storage REAL array deadtime buffer

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 39
DEG
Degrees

dest := DEG(source); The DEG instruction converts the Source (in radians) to
degrees and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

value to convert to degrees

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

DEG tag FBD_MATH_
ADVANCED

structure DEG structure (default parameters):

Parameter: Type: Description:

Source REAL input to the conversion instruction

Dest REAL result of the conversion instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 40 Instruction Set
DELETE
String Delete

not available DELETE(Source,Qty,
Start,Dest);

The DELETE instruction removes ASCII characters from a
string.

Operand: Type: Format: Description:

Source string tag tag that contains the string from which you want to delete characters

Quantity SINT DINT
INT

immediate
tag

number of characters to delete; the Start plus the Quantity must be less than or equal to the DATA size of the Source

Start SINT DINT
INT

immediate
tag

position of the first character to delete; enter a number between 1 and the DATA size of the Source

Destination string tag tag to store the result

Arithmetic Status Flags: Major Faults:

not affected 4 51 The LEN value of the string tag is greater than the DATA size of the string tag. Check:
• that no instruction is writing to the LEN member of the string tag.
• in the LEN value, you entered the number of characters that the string contains.

4 56 The Start or Quantity value is invalid. Check that:
• the Start value is between 1 and the DATA size of the Source.
• the Start value plus the Quantity value is less than or equal to the DATA size of the Source.

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 41
DERV
Derivative

not available DERV(DERV_tag); The DERV instruction calculates the amount of change of a
signal over time in per-second units.

Operand: Type: Format: Description:

DERV tag DERIVATIVE structure DERV structure (default parameters):

Parameter: Type: Description:

In REAL input to the instruction

ByPass BOOL request to bypass the algorithm; when set, the instruction sets Out = In

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 42 Instruction Set
DFF
D FLip-Flop

not available DFF(DFF_tag); The DFF instruction sets the Q output to the state of the D
input on a cleared to set transition of the Clock input. The
QNot output is set to the opposite state of the Q output.

Operand: Type: Format: Description:

DFF tag FLIP_FLOP_D structure DFF structure (default parameters):

Parameter: Type: Description:

D BOOL input to the instruction

Clear BOOL clear input to the instruction; if set, the instruction clears Q and sets QNot

Clock BOOL Clock input to the instruction

Q BOOL output of the instruction

QNot BOOL complement of the Q output

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 43
DIV
Divide

dest := sourceA / sourceB; The DIV instruction divides Source A by Source B and
places the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT REAL

immediate
tag

value of the dividend

Source B SINT DINT
INT REAL

immediate
tag

value of the divisor

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

DIV tag FBD_MATH structure DIV structure (default parameters):

Parameter: Type: Description:

SourceA REAL value of the dividend

SourceB REAL value of the divisor

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 4 the divisor is 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 44 Instruction Set
DTOS
DINT to String

not available DTOS(Source,Dest); The DTOS instruction produces the ASCII representation of
a value.

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

tag tag that contains the value; if the Source is a REAL, the instruction converts it to a DINT value

Destination string tag tag to store the ASCII value

Arithmetic Status Flags: Major Faults:

not affected 4 51 The LEN value of the string tag is greater than the DATA size of the string tag. Check:
• that no instruction is writing to the LEN member of the string tag.
• in the LEN value, you entered the number of characters that the string contains.

4 52 The output string is larger than the destination. Create a new string data type that is large enough for
the output string. Use the new string data type as the data type for the destination.

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 45
DTR
Data
Transitional

not available not available The DTR instruction passes the Source value through a
Mask and compares the result with the Reference value.

Operand: Type: Format: Description:

Source DINT immediate
tag

array to compare to the reference

Mask DINT immediate
tag

which bits to block or pass

Reference DINT tag array to compare to the source

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

EOT
End of Transition

not available EOT(data_bit); The EOT instruction returns a boolean state to an SFC
transition.

Operand: Type: Format: Description:

data bit BOOL tag state of the transition (0=executing, 1=completed)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 46 Instruction Set
EQU
Equal To

IF sourceA = sourceB THEN

<statements>;
The EQU instruction tests whether Source A is equal to
Source B.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT REAL
INT string
DINT

immediate
tag

value to test against Source B

Source B SINT REAL
INT string
DINT

immediate
tag

value to test against Source A

Function Block Operand: Type: Format: Description:

EQU tag FBD_COMPARE structure EQU structure (default parameters):

Parameter: Type: Description:

SourceA REAL value to test against SourceB

SourceB REAL value to test against SourceA

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 47
ESEL
Enhanced
Select

not available ESEL(ESEL_tag); The ESEL instruction lets you select one of as many as six
inputs. Selection options include:

• manual select (either by operator or by program)
• high select
• low select
• median select
• average (mean) select

Operand: Type: Format: Description:

ESEL tag SELECT_
ENHANCED

structure ESEL structure (default parameters):

Parameter: Type: Description:

Inx REAL analog signal inputs to the instruction, where x = 1-6

ProgSelector DINT program selector input

ProgProgReq BOOL program program request

ProgOperReq BOOL program operator request

ProgOverrideReq BOOL program override request

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 48 Instruction Set
ESEL
Enhanced
Select
(continued)

Parameter: Type: Description:

Out REAL calculated output of the algorithm

SelectedIn DINT number of inputs selected; if the selector mode is average select, the instruction
sets SelectedIn = 0

ProgOper BOOL program/operator control indicator; set when in Program control; cleared when in
Operator control

Override BOOL override mode; set when the instruction is in Override mode

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

EVENT
Trigger Event
Task

not available EVENT(Task); The EVENT instruction triggers one execution of an
event task.

Operand: Type: Format: Description:

Task na task name event task to execute

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 49
FAL
File Arithmetic
and Logic

not available SIZE(destination,0
length-1);

FOR position = 0 TO length
DO

destination[position]
:= numeric_expression;

END_FOR;

The FAL instruction performs copy, arithmetic, logic, and
function operations on data stored in an array.

Operand: Type: Format: Description:

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements in the array to be manipulated

Position DINT immediate current element in array; initial value is typically 0

Mode DINT immediate how to distribute the operation; select INC, ALL, or enter a number

Destination SINT DINT
INT REAL

tag tag to store the result

Expression SINT DINT
INT REAL

immediate
tag

an expression consisting of tags and/or immediate values separated by operators

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 20 subscript is out of range

Type 4 Code 21 .POS < 0 or .LEN < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 50 Instruction Set
FBC
File Bit
Compare

not available not available The FBC instruction compares bits in a Source array with
bits in a Reference array.

Operand: Type: Format: Description:

Source DINT array tag array to compare to the reference; do not use CONTROL.POS in the subscript

Reference DINT array tag array to compare to the source; do not use CONTROL.POS in the subscript

Result DINT array tag array to store the result; do not use CONTROL.POS in the subscripts

Cmp control CONTROL structure control structure for the compare

Length DINT immediate number of bits to compare

Position DINT immediate current position in the source; initial value is typically 0

Result control CONTROL structure control structure for the results

Length DINT immediate number of storage locations in the result

Position DINT immediate current position in the result
initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 Result.POS > size of Result array

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 51
FFL
FIFO Load

not available not available The FFL instruction copies the Source value to the FIFO.

Operand: Type: Format: Description:

Source SINT DINT
INT REAL
string
structure

immediate
tag

data to be stored in the FIFO

FIFO SINT DINT
INT REAL
string
structure

array tag FIFO to modify; specify the first element of the FIFO
do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation; typically use the same CONTROL as the associated FFU

Length DINT immediate maximum number of elements the FIFO can hold at one time

Position DINT immediate next location in the FIFO where the instruction loads data; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 (starting element + .POS) > FIFO array size

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 52 Instruction Set
FFU
FIFO Unload

not available not available The FFU instruction unloads the value from position 0 (first
position) of the FIFO and stores that value in the
Destination. The remaining data in the FIFO shifts down one
position.

Operand: Type: Format: Description:

FIFO SINT DINT
INT REAL
string
structure

array tag FIFO to modify; specify the first element of the FIFO
do not use CONTROL.POS in the subscript

Destination SINT DINT
INT REAL
string
structure

 tag value that exits the FIFO

Control CONTROL tag control structure for the operation; typically use the same CONTROL as the associated FFL

Length DINT immediate maximum number of elements the FIFO can hold at one time

Position DINT immediate next location in the FIFO where the instruction unloads data; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 Length > FIFO array size

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 53
FGEN
Function
Generator

not available FGEN(FGEN_tag,X1,Y1,X2,Y2); The FGEN instruction converts an input based on a
piece-wise linear function.

Operand: Type: Format: Description:

FGEN tag FUNCTION_
GENERATOR

structure FGEN structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

X1 REAL array X-axis array, table one
combine with the Y-axis array, table one to define the points of the first piece-wise linear curve

Y1 REAL array Y-axis array, table one
combine with the X-axis array, table one to define the points of the first piece-wise linear curve

X2 REAL array (optional) X-axis array, table two
combine with the Y-axis array, table two to define the points of the second piece-wise linear curve

Y2 REAL array (optional) Y-axis array, table two
combine with the X-axis array, table two to define the points of the second piece-wise linear curve

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 54 Instruction Set
FIND
Find String

not available FIND(Source,Search,
Start,Result);

The FIND instruction locates the starting position of a
specified string within another string

Operand: Type: Format: Description:

Source string tag string to search in

Search string tag string to find

Start SINT DINT
INT

immediate
tag

position in Source to start the search; enter a number between 1 and the DATA size of the Source.

Result SINT DINT
INT

tag tag that stores the starting position of the string to find

Arithmetic Status Flags: Major Faults:

not affected 4 51 The LEN value of the string tag is greater than the DATA size of the string tag. Check:
• that no instruction is writing to the LEN member of the string tag.
• in the LEN value, you entered the number of characters that the string contains.

4 56 The Start value is invalid. Check that the Start value is between 1 and the DATA size of the Source.

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 55
FLL
File Fill

not available SIZE(destination,0
length);

FOR position = 0 TO length-1
DO

destination[position]
:= source;

END_FOR;

The FLL instruction fills elements of an array with the
Source value. The Source remains unchanged.

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

element to copy
the Source and Destination operands should be the same data type, or unexpected results may occur

Destination SINT DINT
INT REAL
structure

tag initial element to be overwritten by the Source
the Source and Destination operands should be the same data type, or unexpected results may occur
the preferred way to initialize a structure is to use the COP instruction

Length DINT immediate number of elements to fill

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 56 Instruction Set
FOR
For

not available FOR count:= initial_value TO
final_value BY increment DO

<statement>;

END_FOR;

The FOR instruction executes a routine repeatedly.

Operand: Type: Format: Description:

Routine name ROUTINE routine name routine to execute

Index DINT tag counts how many times the routine has been executed

Initial value SINT DINT
INT

immediate
tag

value at which to start the index

Terminal value SINT DINT
INT

immediate
tag

value at which to stop executing the routine

Step size SINT DINT
INT

immediate
tag

amount to add to the index each time the FOR instruction executes the routine

Arithmetic Status Flags: Major Faults:

not affected 4 31 main routine contains a RET instruction

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 57
FRD
Convert to
Integer

not available The FRD instruction converts a BCD value (Source) to an
integer value and stores the result in the Destination.

Relay Ladder Operand: Type: Format: Description:

Source SINT DINT
INT

immediate
tag

value to convert

Destination SINT DINT
INT

tag tag to store the result

Function Block Operand: Type: Format: Description:

FRD tag FBD_CONVERT structure FRD structure (default parameters):

Parameter: Type: Description:

Source DINT input to the conversion instruction.

Dest DINT result of the math instruction.

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 58 Instruction Set
FSC
File Search
and Compare

not available not available The FSC instruction compares values in an array, element by
element.

Operand: Type: Format: Description:

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements in the array to be manipulated

Position DINT immediate offset into array; initial value is typically 0

Arithmetic Status Flags: Major Faults:

affected 4 21 .POS < 0 or .LEN < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 59
GEQ
Greater Than
or Equal To

IF sourceA >= sourceB THEN

<statements>;
The GEQ instruction tests whether Source A is greater than
or equal to Source B.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT REAL
INT string
DINT

immediate
tag

value to test against Source B

Source B SINT REAL
INT string
DINT

immediate
tag

value to test against Source A

Function Block Operand: Type: Format: Description:

GEQ tag FBD_COMPARE structure GEQ structure (default parameters):

Parameter: Type: Description:

SourceA REAL value to test against SourceB

SourceB REAL value to test against SourceA

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 60 Instruction Set
GRT
Greater Than

IF sourceA > sourceB THEN

<statements>;
The GRT instruction tests whether Source A is greater than
Source B.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT REAL
INT string
DINT

immediate
tag

value to test against Source B

Source B SINT REAL
INT string
DINT

immediate
tag

value to test against Source A

Function Block Operand: Type: Format: Description:

GRT tag FBD_COMPARE structure GRT structure (default parameters):

Parameter: Type: Description:

SourceA REAL value to test against SourceB

SourceB REAL value to test against SourceA

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Instruction Set 11 - 61
GSV
Get System
Value

not available GSV(ClassName,
InstanceName,
AttributeName,Dest);

The GSV instructions get s controller system data that is
stored in objects.

Operand: Type: Format: Description:

Class name na name name of object

Instance name na name name of specific object, when object requires name

Attribute Name na name attribute of object; data type depends on the attribute you select

Destination SINT DINT
INT REAL

tag destination for attribute data

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 5 invalid object address

Type 4 Code 6 • specified an object that does not support GSV/SSV
• invalid attribute
• did not supply enough information for an SSV instruction

Type 4 Code 7 the GSV destination was not large enough to hold the requested data

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 62 Instruction Set
HLL
High/Low Limit

not available HLL(HLL_tag); The HLL instruction limits an analog input between two
values. You can select high/low, high, or low limits.

Operand: Type: Format: Description:

HLL tag HL_LIMIT structure HLL structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

HighAlarm BOOL high alarm indicator; set when In ≥ HighLimit

LowAlarm BOOL low alarm indicator; set when In ≤ LowLimit

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 63
Instruction: Relay Ladder: Function Block: Structured Text: Description:

HPF
High Pass
Filter

not available HPF(HPF_tag); The HPF instruction provides a filter to attenuate input
frequencies that are below the cutoff frequency.

Operand: Type: Format: Description:

HPF tag FILTER_HIGH_
PASS

structure HPF structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none
Publication 1756-QR107C-EN-P - June 2005

11 - 64
INSERT
Insert String

not available INSERT(SourceA,SourceB,
Start,Dest);

The INSERT instruction adds ASCII characters to a specified
location within a string.

Operand: Type: Format: Description:

Source A string tag string to add the characters to

Source B string tag string containing the characters to add

Start SINT DINT
INT

immediate
tag

position in Source A to add the characters; enter a number between 1 and the DATA size of the Source.

Result string tag string to store the result

Arithmetic Status Flags: Major Faults:

not affected 4 51 The LEN value of the string tag is greater than the DATA size of the string tag. ChecK:
• that no instruction is writing to the LEN member of the string tag.
• in the LEN value, you entered the number of characters that the string contains.

4 56 The Start value is invalid. Check that the Start value is between 1 and the DATA size of the Source.

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 65
INTG
Integrator

not available INTG(INTG_tag); The INTG instruction implements an integral operation. This
instruction is designed to execute in a task where the scan
rate remains constant.

Operand: Type: Format: Description:

INTG tag INTEGRATOR structure INTG structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

IOT
Immediate
Output

not available IOT(output_tag); The IOT instruction immediately updates the specified
output data (output tag or produced tag).

Operand: Type: Format: Description:

Output tag tag name tag tag that you want to update, either an output tag of an I/O module or a produced tag
do not choose a member or element of a tag

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 66
JKFF
JK FLip-Flop

not available JKFF(JKFF_tag); The JKFF instruction complements the Q and QNot outputs
when the Clock input transitions from cleared to set.

Operand: Type: Format: Description:

JKFF tag FLIP_FLOP_JK structure JKFF structure (default parameters):

Parameter: Type: Description:

Clear BOOL clear input to the instruction; if set, the instruction clears Q and sets QNot

Clock BOOL Clock input to the instruction

Q BOOL output of the instruction

QNot BOOL complement of the Q output

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

JMP
Jump

not available not available The JMP and LBL instructions skip portions of ladder logic.

Operand: Type: Format: Description:

Label name na name name of associated LBL instruction

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 42 label does not exist

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 67
JSR
Jump to
Subroutine

JSR(RoutineName
InputCount,
InputPar,ReturnPar);

The JSR instruction jumps execution to a different routine.

Operand: Type: Format: Description:

Routine name ROUTINE name routine to execute

Input parameter BOOL DINT
SINT REAL
INT
structure

immediate
tag
array tag

data from this routine that you want to copy to a tag in the subroutine
• parameters are optional
• enter multiple parameters, if needed

Return parameter BOOL DINT
SINT REAL
INT
structure

tag
array tag

tag in this routine to which you want to copy a result of the subroutine
• parameters are optional
• enter multiple parameters, if needed

Input count SINT DINT
INT REAL

immediate number of input parameters (structured text only)

Arithmetic Status Flags: Major Faults:

affected 4 31 • JSR instruction has fewer input parameters than SBR instruction
• RET instruction has fewer return parameters than JSR instruction
• main routine contains a RET instruction

4 0 JSR instruction jumps to a fault routine

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 68
JXR
Jump to
External
Routine

not available not available The JXR instruction executes an external routine. This
instruction is only supported by the SoftLogix5800
controllers.

Operand: Type: Format: Description:

External routine
name

ROUTINE name external routine to execute

External routine
control

EXT_ROUTINE_
CONTROL

tag control structure

Parameter BOOL DINT
SINT REAL
INT
structure

immediate
tag
array tag

data from this routine that you want to copy to a variable in the external routine
• parameters are optional
• enter multiple parameters, if needed
• you can have as many as 10 parameters

Return parameter BOOL DINT
SINT REAL
INT

tag tag in this routine to which you want to copy a result of the external routine
• the return parameter is optional.
• you can have only one return parameter

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

LBL
Label

not available not available The JMP and LBL instructions skip portions of ladder logic.

Operand: Type: Format: Description:

Label name na name execution jumps to LBL instruction with referenced label name

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 42 label does not exist

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 69
LDL2
Second-Order
Lead Lag

not available LDL2(LDL2_tag); The LDL2 instruction provides a filter with a pole pair and a
zero pair. The frequency and damping of the pole and zero
pairs are adjustable. The pole or zero pairs can be either
complex (damping less than unity) or real (damping greater
than or equal to unity).

Operand: Type: Format: Description:

LDL2 tag LEAD_LAG_SEC_
ORDER

structure LDL2 structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 70
LDLG
Lead Lag

not available LDLG(LDLG_tag); The LDLG instruction provides a phase lead-lag
compensation for an input signal. This instruction is
typically used for feedforward PID control or for
process simulations.

Operand: Type: Format: Description:

LDLG tag LEAD_LAG structure LDLG structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 71
LEQ
Less Than or
Equal To

IF sourceA <= sourceB THEN

<statements>;
The LEQ instruction tests whether Source A is less than or
equal to Source B.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT REAL
INT string
DINT

immediate
tag

value to test against Source B

Source B SINT REAL
INT string
DINT

immediate
tag

value to test against Source A

Function Block Operand: Type: Format: Description:

LEQ tag FBD_COMPARE structure LEQ structure (default parameters):

Parameter: Type: Description:

SourceA REAL value to test against SourceB

SourceB REAL value to test against SourceA

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 72
LES
Less Than

IF sourceA < sourceB THEN

<statements>;
The LES instruction tests whether Source A is less than
Source B.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT REAL
INT string
DINT

immediate
tag

value to test against Source B

Source B SINT REAL
INT string
DINT

immediate
tag

value to test against Source A

Function Block Operand: Type: Format: Description:

LES tag FBD_COMPARE structure LES structure (default parameters):

Parameter: Type: Description:

SourceA REAL value to test against SourceB

SourceB REAL value to test against SourceA

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 73
LFL
LIFO Load

not available not available The LFL instruction copies the Source value to the LIFO.

Operand: Type: Format: Description:

Source SINT DINT
INT REAL
string
structure

immediate
tag

data to be stored in the LIFO

LIFO SINT DINT
INT REAL
string
structure

array tag LIFO to modify; specify the first element of the LIFO
do not use CONTROL.POS in the subscript

Control CONTROL tag control structure for the operation; typically use the same CONTROL as the associated LFU

Length DINT immediate maximum number of elements the LIFO can hold at one time

Position DINT immediate next location in the LIFO where the instruction loads data; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 (starting element + .POS) > LIFO array size

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 74
LFU
LIFO Unload

not available not available The LFU instruction unloads the value at .POS of the LIFO
and stores 0 in that location.

Operand: Type: Format: Description:

LIFO SINT DINT
INT REAL
string
structure

array tag LIFO to modify; specify the first element of the LIFO
do not use CONTROL.POS in the subscript

Destination SINT DINT
INT REAL
string
structure

 tag value that exits the LIFO

Control CONTROL tag control structure for the operation; typically use the same CONTROL as the associated LFL

Length DINT immediate maximum number of elements the LIFO can hold at one time

Position DINT immediate next location in the LIFO where the instruction unloads data; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 Length > LIFO array size

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 75
LIM
Limit

IF (LowLimit <= HighLimit
AND

(Test >= LowLimit AND
Test <= HighLimit)) OR

(LowLimit >= HighLimit
AND

(Test <= LowLimit OR
Test >= HighLimit)) THEN

<statement>;

END_IF;

The LIM instruction tests whether the Test value is within
the range of the Low Limit to the High Limit.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Low Limit SINT DINT
INT REAL

immediate
tag

value of lower limit

Test SINT DINT
INT REAL

immediate
tag

value to test

High Limit SINT DINT
INT REAL

immediate
tag

value of upper limit

Function Block Operand: Type: Format: Description:

LIM tag FBD_LIMIT structure LIM structure (default parameters):

Parameter: Type: Description:

LowLimit REAL value of lower limit

Test REAL value to test against limits

HighLimit REAL value of upper limit

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 76
LN
Natural Log

dest := LN(source); The LN instruction takes the natural log of the Source and
stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the natural log of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

LN tag FBD_MATH_
ADVANCED

structure LN structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 77
LOG
Log Base 10

dest := LOG(source); The LOG instruction takes the log base 10 of the Source and
stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the log of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

LOG tag FBD_MATH_
ADVANCED

structure LOG structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 78
LOWER
Lower Case

not available LOWER(Source,Dest); The LOWER instruction converts the alphabetical
characters in a string to lower case characters.

Operand: Type: Format: Description:

Source string tag tag that contains the characters that you want to convert to lower case

Destination string tag tag to store the characters in lower case

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

LPF
Low Pass Filter

not available LPF(LPF_tag); The LPF instruction provides a filter to attenuate input
frequencies that are above the cutoff frequency.

Operand: Type: Format: Description:

LPF tag FILTER_LOW_
PASS

structure LPF structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 79
MAAT
Motion Apply
Axis Tuning

not available MAAT(Axis,MotionControl); The MAAT computes a complete set of servo gains and
dynamic limits based on the results of a previously run
MRAT instruction and updates the motion module with
these new gain parameters.

Operand: Type: Format: Description:

Axis AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 80
MAFR
Motion Axis
Fault Reset

not available MAFR(Axis,MotionControl); The MAFR instruction clears all motion faults for an axis.
This is the only method for clearing axis motion faults.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 81
MAG
Motion Axis
Gear

not available MAG(SlaveAxis,MasterAxis,
MotionControl,Direction,
Ratio,SlaveCounts,
MasterCounts,
MasterReference,
RatioFormat,Clutch,
AccelRate,AccelUnits);

The MAG instruction provides electronic gearing between
any two axes in a specified direction and at a
specified ratio

Operand: Type: Format: Description:

Slave axis AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Master axis AXIS_FEEDBACK
AXIS_CONSUME
D
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_DRI
VE

tag axis that the slave axis follows

Motion control MOTION_
INSTRUCTION

tag motion structure

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 82
MAG
Motion Axis
Gear
(continued)

Direction UINT32 immediate
tag

relative direction that the Slave axis tracks the Master Axis:
• 0 = slave axis moves in the same direction as the master axis
• 1 = slave axis moves in the opposite direction of its current direction
• 2 = slave axis reverses from current or previous
• 3 = slave axis to continue its current or previous direction

Ratio REAL immediate
tag

signed Real value establishing the gear ratio in Slave User Units per Master User Unit

Slave counts UINT32 immediate
tag

slave counts

Master counts UINT32 immediate
tag

master counts

Master reference BOOL immediate master position reference: 0 = actual position, 1 = command position

Ratio format BOOL immediate ratio format:
• 0 = real gear ratio
• 1 = integer fraction of slave encoder counts to master encoder counts

Clutch BOOL immediate whether Clutch is enabled or disabled

Accel rate BOOL immediate
tag

acceleration rate of the Slave Axis in% or Acceleration Units

Accel units DINT immediate units used to display the Acceleration value: 0 = units per sec2; 1 =% of maximum acceleration

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 83
MAH
Motion Axis
Home

not available MAH(Axis,MotionControl); The MAH instruction homes an axis.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 84
MAHD
Motion Apply
Hookup
Diagnostics

not available MAHD(Axis,MotionControl,
DiagnosticTest,
ObservedDirection);

The MAHD instruction applies the results of a previously
run MRHD instruction to generate a new set of encoder and
servo polarities based on the observed direction of motion
during the test.

Operand: Type: Format: Description:

Axis AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Diagnostic test UDINT immediate test for the motion module to run:
• 0 = motor/encoder hookup test
• 1 = encoder hookup test
• 2 = encoder marker test

Observed
direction

BOOL immediate direction of the test motion: 0 = forward; 1 = reverse

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 85
MAJ
Motion Axis
Jog

not available MAJ(Axis,MotionControl,
Direction,Speed,SpeedUnits,
AccelRate,AccelUnits,
DecelRate,DecelUnits,
Profile,Merge,MergeSpeed);

The MAJ instruction initiates a jog motion profile for the
specified axis.

Operand: Type: Format: Description:

Axis AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Direction UDINT immediate
tag

direction of jog: 0 = forward jog; 1 = reverse jog

Speed REAL immediate
tag

speed to move the axis in% or Speed Units

Speed units UDINT immediate engineering units for the Speed value: 0 = units per sec; 1 =% of maximum speed

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 86
MAJ
Motion Axis
Jog
(continued)

Accel units UDINT immediate engineering units for the Acceleration value: 0 = units per sec2; 1 =% of maximum acceleration

Accel rate REAL immediate
tag

acceleration rate of the axis in% or Acceleration Units

Decel rate REAL immediate or tag deceleration rate of the axis in% or Deceleration Units

Decel units UDINT immediate engineering units for the Deceleration value: 0 = units per sec2; 1 =% of maximum deceleration

Profile UDINT immediate select the velocity profile to run the jog: 0 = trapezoidal; 1 = S-curve

Merge UDINT immediate instructs the motion control to turn all current axis motion

Merge speed UDINT immediate determines whether the speed is the specified Speed value of this instruction or the Current axis speed:
• 0 = programmed value in the speed field
• 1 = current axis speed

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 87
MAM
Motion Axis
Move

not available MAM(Axis,MotionControl,
MoveType,Position,Speed,
SpeedUnits,AccelRate,
AccelUnits,DecelRate,
DecelUnits,Profile,Merge,
MergeSpeed);

The MAM instruction initiates a move profile for the
specified axis.

Operand: Type: Format: Description:

Axis AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Move type UDINT immediate or tag type of move operation: 0 = Absolute Move; 1 = Incremental Move; 2 = Rotary Shortest Path Move;
3 = Rotary Positive Move; 4 = Rotary Negative Move; 5 = Absolute Master Offset; 6 = Incremental Master Offset

Position
/Distance

REAL immediate
tag

value of the absolute command position to move to, or for incremental movement, the value of the distance to move from the
current command position.

Speed REAL immediate
tag

speed to move the axis in either% or Speed units.

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 88
MAM
Motion Axis
Move
(continued)

Speed Units BOOL immediate units for the Speed value:0 =units per sec; 1 =% of maximum speed

Accel rate REAL immediate or tag acceleration rate of the axis in% or Acceleration units

Accel units BOOL immediate units for the Accel value: 0 = units per sec2; 1 =% of maximum acceleration

Decel rate REAL immediate or tag deceleration rate of the axis in% or Deceleration units

Decel units BOOLEAN immediate units for the Deceleration value: 0 = units per sec2; 1 =% of maximum acceleration

Profile UDINT immediate velocity profile to run for the move: 0 = Trapezoidal; 1 = S-curve

Merge BOOL immediate instructs the motion control to turn all current axis motion, regardless of the motion instructions currently in process, into a
pure move governed by this instruction

Merge speed DINT immediate determines whether the speed of the move profile is going to be the specified Speed value of this instruction or the Current
axis speed:

• 0 = programmed value in the speed field
• 1 = current axis speed

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 89
MAOC
Motion Arm
Output Cam

not available MAOC(Axis,ExecutionTarget,
MotionControl,Output,Input,
OutputCam,CamStartPosition,
CamEndPosition,
OutputCompensation,
ExecutionMode,
ExecutionSchedule,
AxisArmPosition,
CamArmPosition,Reference);

The MAOC instruction sets and resets output bits based on
an axis position.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_CONSUME
D
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Execution Target UNIT32 immediate
tag

defines the specific output cam:
• 0...8 – Output Cams executed in the Logix controller.
• 9...31 – Reserved for future use.

Motion Control MOTION_
INSTRUCTION

tag motion structure

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 90
MAOC
Motion Arm
Output Cam
(continued)

Output DINT tag 32 output bits that are set or reset based on the specified output cam

Input DINT tag 32 input bits that can be used as enable bits depending on the specified output cam

Output Cam OUTPUT_CAM array tag array of OUTPUT_CAM elements

Cam Start
Position

SINT DINT
INT REAL

immediate
tag

cam start position with the cam end position define the left and right boundaries of the output cam range

Cam End Position SINT DINT
INT REAL

immediate
tag

cam end position with the cam start position define the left and right boundaries of the output cam range

Output
Compensation

OUTPUT_
COMPENSATION

array tag array of 1 to 32 OUTPUT_COMPENSATION elements

Execution Mode UINT32 immediate execution mode: once (0); continuous (1); persistent (2)

Execution
Schedule

UINT32 immediate when to arm the output cam: 0 = immediate; 1 = pending; 2 = forward only; 3 = reverse only; 4 = bi-directional

Axis Arm Position SINT DINT
INT REAL

immediate
tag

axis position where the output cam is armed when the execution schedule is set to forward only, reverse only, or
bi-directional and the axis moves in the specified direction

Cam Arm Position SINT DINT
INT REAL

immediate
tag

cam position associated with the axis arm position when the output cam is armed

Reference UINT32 immediate whether the output cam is connected to either 0 = actual position, 1 = command position

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 91
MAPC
Motion Axis
Position Cam

not available MAPC(SlaveAxis,MasterAxis,
MotionControl,Direction,
CamProfile,SlaveScaling,
MasterScaling,
ExecutionMode,
ExecutionSchedule,
MasterLockPosition,
CamLockPosition,
MasterReference,
MasterDirection);

The MAPC instruction provides electronic camming
between any two axes according to the specified
cam profile.

Operand: Type: Format: Description:

Slave Axis AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Master Axis AXIS_FEEDBACK
AXIS_CONSUME
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag axis that the slave axis follows according to the cam profile

Motion Control MOTION_
INSTRUCTION

tag motion structure

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 92
MAPC
Motion Axis
Position Cam
(continued)

Direction UINT32 immediate
tag

relative direction of the slave axis: same, opposite, revers, or unchanged

Cam Profile CAM_PROFILE array calculated cam profile array used to establish the master/slave position relationship

Slave Scaling REAL immediate
tag

scales the total distance covered by the slave axis through the cam profile

Master Scaling REAL immediate
tag

scales the total distance covered by the master axis through the cam profile

Execution Mode UINT32 immediate determines if the cam profile is executed: 0 = once, 1 = continuous, 2 = persistent

Execution
Schedule

UINT32 immediate method to execute the cam profile: 0 = immediate, 1 = pending, 2 = forward only, 3 = reverse only, 4 = bi-directional

Master Lock
Position

REAL immediate
tag

master axis absolute position where the slave axis locks to the master axis

Cam Lock Position REAL immediate
tag

starting location in the cam profile

Master Reference UINT32 immediate master position reference: 0 = actual position, 1 = command position

Master Direction UINT32 immediate direction of the master axis that generates slave motion according to the cam profile: bi-directional (0), forward only (1),
reverse only (2)

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 93
MAR
Motion Arm
Registration

not available MAR(Axis,MotionControl,
TriggerCondition,
WindowedRegistration,
MinimumPosition,
MaximumPosition,
InputNumber);

The MAR instruction arms servo-module registration
event-checking for the specified axis.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Trigger condition BOOL immediate registration input transition trigger: 0 = on positive edge, 1 = on negative edge

Windowed
registration

BOOL immediate whether registration is to be windowed, meaning that the computed registration position must fall within the specified
minimum and maximum position limits

Minimum position REAL immediate or tag registration position must be greater than minimum position limit

Maximum
position

REAL immediate or tag registration position must be less than maximum position limit

Input Number UINT32 1 or 2 registration input: 1 = Registration 1 Position, 2 = Registration 2 Position

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 94
MAS
Motion Axis
Stop

not available MAS(Axis,MotionControl,

StopType,ChangeDecel,

DecelRate,DecelUnits);

The MAS instruction initiates a controlled stop of any
motion process on the designated axis.

Operand: Type: Format: Description:

Axis AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Stop type UNIT32 immediate determines motion process: 0 = stop all motion; 1 = stop jogging; 2 = stop moving; 3 = stop gearing; 4 = stop homing
5 = stop tuning; 6 = stop test; 7 = stop position camming; 8 = stop time camming; 9 = stop a Master Offset Move

Change Decel BOOL immediate set to enable use of Decel value rather then the current configured Max Deceleration rate

Decel rate REAL immediate
tag

deceleration rate of the axis in% or Deceleration Units

Decel units BOOL immediate engineering units for Decel value: 0 = units per sec2; 1 =% of maximum

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 95
MASD
Motion Axis
Shutdown

not available MASD(Axis,MotionControl); The MASD instruction forces a specified axis into the
Shutdown state. The Shutdown state of an axis is when the
drive output is disabled, servo loop deactivated, and any
available or associated OK solid-state relay contacts are
open. The axis remains in the Shutdown state until either
an Axis or Group Shutdown Reset is executed.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 96
MASR
Motion Axis
Shutdown
Reset

not available MASR(Axis,MotionControl); The MASR instruction transitions an axis from an existing
Shutdown state to an Axis Ready state.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 97
MATC
Motion Axis
Time Cam

not available MATC(Axis,MotionControl,
Direction,CamProfile,
DistanceScaling,
TimeScaling,
ExecutionMode,
ExecutionSchedule);

The MATC instruction provides electronic camming of an
axis as a function of time, according to the specified Cam
Profile.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion Control MOTION_
INSTRUCTION

tag motion structure

Direction UINT32 immediate
tag

relative direction of the slave axis to the master axis: same, opposite, reverse, unchanged

Cam Profile CAM_PROFILE array calculated cam profile array

Distance Scaling REAL immediate
tag

scales the total distance covered by the axis through the cam profile

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 98
MATC
Motion Axis
Time Cam
(continued)

Time Scaling REAL immediate
tag

scales the time interval covered by the cam profile

Execution Mode UINT32 immediate how the cam motion behaves when the time moves beyond the end point of the cam profile: once (0), continuous (1)

Execution
Schedule

UNIT32 immediate method to execute the cam profile: 0 = immediate, 1 = pending

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 99
MAVE
Moving
Average

not available MAVE(MAVE_tag,storage,
weight);

The MAVE instruction calculates a time average value for
the In signal. This instruction optionally supports
user-specified weights.

Operand: Type: Format: Description:

MAVE tag MOVING_
AVERAGE

structure MAVE structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

storage REAL array holds the moving average samples; this array must be at least as large as NumberOfSamples

weight REAL array (optional) used for weighted averages; this array must be at least as large as NumberOfSamples
element [0] is used for the newest sample; element [n] is used for the oldest sample

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 100
MAW
Motion Arm
Watch

not available MAW(Axis,MotionControl,
TriggerCondition,Position);

The MAW instruction arms watch-position event-checking
for the specified axis.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Trigger condition BOOL immediate watch-event trigger condition: 0 = forward; 1 = reverse

Position REAL immediate
tag

 new value for the watch position

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 101
MAXC
Maximum
Capture

not available MAXC(MAXC_tag); The MAXC instruction finds the maximum of the Input
signal over time.

Operand: Type: Format: Description:

MAXC tag MAXIMUM_
CAPTURE

structure MAXC structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Reset BOOL request to reset control algorithm
the instruction sets Out = ResetValue as long as Reset is set

ResetValue REAL reset value for instruction
the instruction sets Out = ResetValue as long as Reset is set

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 102
MCCD
Motion
Coordinated
Change
Dynamics

not available MCCD(CoordinateSystem,
MotionControl,MotionType,
ChangeSpeed,Speed,
SpeedUnits);

The MCCD instruction initiates a change in path dynamics
for coordinate motion active on the specified coordinate
system

Operand: Type: Format: Description:

Coordinate
System

COORDINATE_
SYSTEM

tag coordinate group of axes

Motion Control MOTION_
INSTRUCTION

tag motion structure

Motion Type SINT DINT
INT

immediate 1 = coordinated move

Change Speed SINT DINT
INT

immediate
tag

whether to change speed: 0 = no; 1 = yes

Speed SINT DINT
INT REAL

immediate
tag

coordination units

Speed Units SINT DINT
INT

immediate 0 = units per second; 1 = % of maximum

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 103
MCCM
Motion
Coordinated
Circular Move

not available MCCM(CoordinateSystem,
MotionControl,MotionType,
Position);

The MCCM instruction initiates a 2- or 3-dimensional
circular coordinated move for the specified axes within the
coordinate system.

Operand: Type: Format: Description:

Coordinate
System

COORDINATE_
SYSTEM

tag coordinate group of axes

Motion Control MOTION_
INSTRUCTION

tag motion structure

Motion Type SINT DINT
INT

immediate
tag

type of move: 0 = absolute; 1 = incremental

Position REAL array coordination units

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 104
MCCP
Motion
Calculate Cam
Profile

not available MCCP(MotionControl,Cam,
Length,StartSlope,EndSlope,
CamProfile);

The MCCP instruction calculates a cam profile based on an
array of cam points.

Operand: Type: Format: Description:

Motion control MOTION_
INSTRUCTION

tag motion structure

Cam CAM array cam array

Length UINT immediate
tag

number of cam elements in the array

Start Slope REAL immediate
tag

boundary condition for the initial slope of the profile

End Slope REAL immediate
tag

boundary condition for the ending slope of the profile

Cam Profile CAM_PROFILE array calculated cam profile array

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 105
MCD
Motion Change
Dynamics

not available MCD(Axis,MotionControl,
MotionType,ChangeSpeed,
Speed,ChangeAccel,
AccelRate,ChangeDecel,
DecelRate,SpeedUnits,
AccelUnits,DecelUnits);

The MCD instruction selectively changes the speed,
acceleration rate, or deceleration rate of a move profile or a
jog profile in process

Operand: Type: Format: Description:

Axis AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Motion type UDINT immediate motion profile to change: 0 = jog; 1 = move

Change speed BOOL immediate whether to enable a change of speed

Speed REAL immediate
tag

new Speed to move the axis in% or Speed Units

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 106
MCD
Motion Change
Dynamics
(continued)

Change accel BOOL immediate whether to enable an acceleration change

Accel rate REAL immediate
tag

acceleration rate of the axis in% or Acceleration units

Change decel BOOL immediate whether to enable a deceleration change

Decel rate REAL immediate
tag

deceleration rate of the axis in% or Deceleration units

Speed units BOOL immediate units used to display the Speed value: 0 = units per sec; 1 =% of maximum speed

Accel units BOOL immediate units used to display the Acceleration value: 0 = units per sec2; 1 =% of maximum acceleration

Decel units BOOL immediate units used to display the Deceleration value: 0 = units per sec2; 1 =% of maximum acceleration

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 107
MCLM
Motion
Coordinated
Linear Move

not available MCLM(CoordinateSystem,
MotionControl,MotionType,
Position);

The MCLM instruction initiates a single- or
multi-dimensional linear coordinated move for the specified
axes within the coordinate system.

Operand: Type: Format: Description:

Coordinate
System

COORDINATE_
SYSTEM

tag coordinate group of axes

Motion Control MOTION_
INSTRUCTION

tag motion structure

Motion Type SINT DINT
INT

immediate
tag

type of move: 0 = absolute; 1 = incremental

Position REAL array coordination units

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

MCR
Master Control
Reset

not available not available The MCR instruction, used in pairs, creates a program zone
that can disable all rungs within the MCR instructions.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 108
MCS
Motion
Coordinated
Stop

not available MCS(CoordinateSystem,
MotionControl,StopType);

The MCS instruction initiates a controlled stop of the
coordinated motion profile.

Operand: Type: Format: Description:

Coordinate
System

COORDINATE_
SYSTEM

tag coordinate group of axes

Motion Control MOTION_
INSTRUCTION

tag motion structure

Stop Type SINT DINT
INT

immediate type of stop: 2 = coordinated move

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 109
MCSD
Motion
Coordinated
Shutdown

not available MCSD(CoordinateSystem,
MotionControl);

The MCSD instruction initiates a controlled shutdown of all
axes in the specified coordinate system.

Operand: Type: Format: Description:

Coordinate
System

COORDINATE_
SYSTEM

tag coordinate group of axes

Motion Control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

MCSR
Motion
Coordinated
Shutdown
Reset

not available MCSR(CoordinateSystem,
MotionControl);

The MCSD instruction resets all axes in the specified
coordinate system.

Operand: Type: Format: Description:

Coordinate
System

COORDINATE_
SYSTEM

tag coordinate group of axes

Motion Control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 110
MCSV
Motion
Calculate
Slave Value

not available MCSV(MotionControl,
CamProfile,MasterValue,
SlaveValue,SlopValue,
SlopeDerivative

The MCSV instruction calculates the slave value, the slope
value, and the derivative of the slope for a given cam profile
and master value. As an extension to the position and time
camming functionality it supplies the values essential for
the recovery from faults during camming operations.

Operand: Type: Format: Description:

Motion control MOTION_
INSTRUCTION

tag motion structure

Cam profile CAM_PROFILE array defines the cam profile used in calculating the slave values

Master value SINT DINT
INT REAL

immediate or tag value along the master axis of the cam profile that is used in calculating the slave values

Slave value REAL tag value along the slave axis of the cam profile with the master at the specified master value

Slope value REAL tag first derivative of the value along the slave axis of the cam profile with the master at the specified master value

Slope derivative REAL tag second derivative of the value along the slave axis of the cam profile with the master at the specified master value

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 111
MDF
Motion Direct
Drive Off

not available MDF(Axis,MotionControl); The MDF instruction deactivates the servo drive and sets
the servo output voltage to the output offset voltage.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_SERVO

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 112
MDO
Motion Direct
Drive On

not available MDO(Axis,MotionControl,
DriveOutput,DriveUnits);

The MDO instruction works in conjunction with motion
modules that support an external analog servo drive
interface. The MDO instruction activates the module’s Drive
Enable, enabling the external servo drive, and also sets the
servo module’s output voltage of the drive to the specified
voltage level.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_SERVO

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Drive Output REAL tag voltage to output in% of servo output limit or in volts

Drive Units BOOL tag units for drive output value: 0 = volts, 1 = %

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 113
MDOC
Motion Disarm
Output Cam

not available MDOC(Axis,ExecutionTarget,M
otionControl,DisarmType);

The MDOC instruction initiates the disarming of one or
more output cams connected to the specified axis.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_CONSUME
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Execution Target SINT DINT
INT

immediate
tag

output cam from the set connected to the named axis:
• 0...8 – Output Cams executed in the Logix controller.
• 9...31 – Reserved for future use.

Motion Control MOTION_
INSTRUCTION

tag motion structure

Disarm Type DINT immediate output cam(s) to be disarmed: 0 = all, 1 = specific

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 114
MDR
Motion Disarm
Registration

not available MDR(Axis,MotionControl,
InputNumber);

The MDR instruction disarms the registration input
event-checking for the specified axis.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Input Number UINT32 1 or 2 registration input: 1 = Registration 1 Position, 2 = Registration 2 Position

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 115
MDW
Motion Disarm
Watch

not available MDW(Axis,MotionControl); The MDW instruction disarms watch-position
event-checking for an axis.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 116
MEQ
Masked Equal
To

IF (Source AND Mask) =
(Compare AND Mask) THEN

<statement>;

END_IF;

The MEQ instruction passes the Source and Compare
values through a Mask and compares the results.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT

immediate
tag

value to test against Compare

Mask SINT DINT
INT

immediate
tag

defines which bits to block or pass

Compare SINT DINT
INT

immediate
tag

value to test against Source

Function Block Operand: Type: Format: Description:

MEQ tag FBD_MASK_
EQUAL

structure MEQ structure (default parameters):

Parameter: Type: Description:

Source DINT value to test against Compare

Mask DINT defines which bits to block (mask)

Compare DINT compare value

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 117
MGS
Motion Group
Stop

not available MGS(Group,MotionControl,
StopMode);

The MGS instruction initiates a stop of all motion in
progress on all axes in the specified group by a method
configured individually for each axis or as a group via the
stop mode of the MGS instruction.

Operand: Type: Format: Description:

Group MOTION_
GROUP

tag group of axes

Motion control MOTION_
INSTRUCTION

tag motion structure

Stop Mode UDINT immediate how the axes in the group are stopped: 0 = programmed, 1 = fast stop, 2 = fast disable

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

MGSD
Motion Group
Shutdown

not available MGSD(Group,MotionControl); The MGSD instruction forces all axes in the designated
group into a Shutdown state.

Operand: Type: Format: Description:

Group MOTION_
GROUP

tag group of axes

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 118
MGSP
Motion Group
Strobe Position

not available MGSP(Group,MotionControl); The MGSP instruction latches the current command and
actual position of all axes in the specified group at a single
point in time.

Operand: Type: Format: Description:

Group MOTION_
GROUP

tag group of axes

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

MGSR
Motion Group
Shutdown
Reset

not available MGSR(Group,MotionControl); The MGSR instruction transitions a group of axes from the
shutdown operating state to the axis ready operating state.

Operand: Type: Format: Description:

Group MOTION_
GROUP

tag group of axes

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 119
MID
Middle String

not available MID(Source,Qty,
Start,Dest);

The MID instruction copies a specified number of ASCII
characters from a string and stores them in another string.

Operand: Type: Format: Description:

Source string tag string to copy characters from

Quantity SINT DINT
INT

immediate
tag

number of characters to copy; the Start plus the Quantity must be less than or equal to the DATA size of the Source

Start SINT DINT
INT

immediate
tag

position of the first character to copy; enter a number between 1 and the DATA size of the Source

Destination string tag string to copy the characters to

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 51 The LEN value of the string tag is greater than the DATA size of the string tag. Check:
• that no instruction is writing to the LEN member of the string tag
• in the LEN value, you entered the number of characters that the string contains

Type 4 Code 56 The Start or Quantity value is invalid. Check that the:
• Start value is between 1 and the DATA size of the Source
• Start value plus the Quantity value is less than or equal to the DATA size of the Source

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 120
MINC
Minimum
Capture

not available MINC(MINC_tag); The MINC instruction finds the minimum of the Input signal
over time.

Operand: Type: Format: Description:

MINC tag MINIMUM_
CAPTURE

structure MINC structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Reset BOOL request to reset control algorithm
the instruction sets Out = ResetValue as long as Reset is set

ResetValue REAL reset value for instruction
the instruction sets Out = ResetValue as long as Reset is set.

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 121
MOD
Modulo

dest := sourceA MOD sourceB; The MOD instruction divides Source A by Source B and
places the remainder in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT REAL

immediate
tag

value of the dividend

Source B SINT DINT
INT REAL

immediate
tag

value of the divisor

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

MOD tag FBD_MATH structure MOD structure (default parameters):

Parameter: Type: Description:

SourceA REAL value of the dividend

SourceB REAL value of the divisor

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 4 the divisor is 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 122
MOV
Move

not available dest := source; The MOV instruction copies the Source to the Destination.
The Source remains unchanged.

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

value to move (copy)

Destination SINT DINT
INT REAL

tag an expression consisting of tags and/or immediate values separated by operators

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

MRAT
Motion Run
Axis Tuning

not available MRAT(Axis,MotionControl); The MRAT instruction commands the motion module to run
a tuning profile for the specified axis.

Operand: Type: Format: Description:

Axis AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 123
MRHD
Motion Run
Hookup
Diagnostics

not available MRHD(Axis,MotionControl,
DiagnosticTest);

The MRHD instruction commands the motion module to run
any one of three different diagnostics on the specified axis.

Operand: Type: Format: Description:

Axis AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Diagnostic test DINT immediate test for the motion module to run:
• 0 = motor/encoder hookup test
• 1 = encoder hookup test
• 2 = encoder marker test

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 124
MRP
Motion
Redefine
Position

not available MRP(Axis,MotionControl,
Type,PositionSelect,
Position);

The MRP instruction changes the command or actual
position of an axis.

Operand: Type: Format: Description:

Axis AXIS_FEEDBACK
AXIS_VIRTUAL
AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Type BOOL immediate how the redefinition operation should work: 0 = absolute, 1 = relative

Position select BOOL immediate what position to perform the redefinition operation on: 0 = actual position, 1 = command position

Position REAL immediate
tag

value to use to change the axis position to or offset to current position

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 125
MSF
Motion Servo
Off

not available MSF(Axis,MotionControl); The MSF instruction deactivates the drive output for the
specified axis and to deactivate the axis’ servo loop.

If you execute an MSF instruction while the axis is moving,
the axis coasts to an uncontrolled stop.

Operand: Type: Format: Description:

Axis AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

MSG
Message

not available MSG(MessageControl); The MSG instruction asynchronously reads or writes a block
of data to another module on a network.

Operand: Type: Format: Description:

message control MESSAGE tag message structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 126
MSO
Motion Servo
On

not available MSO(Axis,MotionControl); The MSO instruction activates the drive amplifier for the
specified axis and to activate the axis’ servo control loop.

Operand: Type: Format: Description:

Axis AXIS_GENERIC
AXIS_SERVO
AXIS_SERVO_
DRIVE

tag name of the axis

Motion control MOTION_
INSTRUCTION

tag motion structure

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 127
MSTD
Moving
Standard
Deviation

not available MSTD(MSTD_tag,storage); The MSTD instruction calculates a moving standard
deviation and average for the In signal.

Operand: Type: Format: Description:

MSTD tag MOVING_STD_
DEV

structure MSTD structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

SampleEnable BOOL enable for taking a sample of In
When set, the instruction enters the value of In into the storage array and
calculates a new Out and Average value.
When cleared and Initialize is cleared, the instruction holds Out and Average at
their current values.

Out REAL calculated output of the algorithm

storage REAL array holds the In samples; this array must be at least as large as NumberOfSamples

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 128
MUL
Multiply

dest := sourceA * sourceB; The MUL instruction multiplies Source A with Source B and
places the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT REAL

immediate
tag

value of the multiplicand

Source B SINT DINT
INT REAL

immediate
tag

value of the multiplier

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

MUL tag FBD_MATH structure MUL structure (default parameters):

Parameter: Type: Description:

SourceA REAL value of the multiplicand

SourceB REAL value of the multiplier

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 129
MUX
Multiplexer

not available not available The MUX instruction selects one of eight inputs based on
the selector input.

Operand: Type: Format: Description:

MUX tag MULTIPLEXER structure MUX structure (default parameters):

Parameter: Type: Description:

Inx REAL analog signal input to the instruction where x = 1-8

Selector DINT selector input to the instruction

Out REAL selected output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 130
MVM
Masked Move

see MVMT dest := (Dest AND NOT
(Mask))

OR (Source AND Mask);

The MVM instruction copies the Source to a Destination
and allows portions of the data to be masked.

Operand: Type: Format: Description:

Source SINT DINT
INT

immediate
tag

value to move

Mask SINT DINT
INT

immediate
tag

which bits to block or pass

Destination SINT DINT
INT

tag an expression consisting of tags and/or immediate values separated by operators

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 131
MVMT
Masked Move
with Target

see MVM MVMT(MVMT_tag); The MVMT instruction first copies the Target to the
Destination. Then the instruction compares the masked
Source to the Destination and makes any required changes
to the Destination. The Target and the Source remain
unchanged.

Operand: Type: Format: Description:

MVMT tag FBD_MASKED_
MOVE

structure MVMT structure (default parameters):

Parameter: Type: Description:

Source DINT input value to move to Destination based on value of Mask

Mask DINT mask of bits to move from Source to Dest. All bits set to one cause the
corresponding bits to move from Source to Dest. All bits that are set to zero
cause the corresponding bits not to move from Source to Dest

Target DINT input value to move to Dest prior to moving Source bits through the Mask

Dest DINT result of masked move instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 132
NEG
Negate

dest := -source; The NEG instruction changes the sign of the Source and
places the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

value to negate

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

NEG tag FBD_MATH_
ADVANCED

structure NEG structure (default parameters):

Parameter: Type: Description:

Source REAL value to negate

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 133
Instruction: Relay Ladder: Function Block: Structured Text: Description:

NEQ
Not Equal To

IF sourceA <> sourceB THEN

<statements>;
The NEQ instruction tests whether Source A is not equal to
Source B.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT REAL
INT string
DINT

immediate
tag

value to test against Source B

Source B SINT REAL
INT string
DINT

immediate
tag

value to test against Source A

Function Block Operand: Type: Format: Description:

NEQ tag FBD_COMPARE structure NEQ structure (default parameters):

Parameter: Type: Description:

SourceA REAL value to test against SourceB

SourceB REAL value to test against SourceA

Dest BOOL result of the instruction

Arithmetic Status Flags: Major Faults:

not affected none
Publication 1756-QR107C-EN-P - June 2005

11 - 134
NOP
No Operation

not available not available The NOP instruction functions as a placeholder

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

NOT
Bitwise NOT

dest := NOT source The NOT instruction performs a bitwise NOT operation
using the bits in the Source and places the result in
the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT

immediate
tag

value to NOT

Destination SINT DINT
INT

tag tag to store the result

Function Block Operand: Type: Format: Description:

NOT tag FBD_LOGICAL structure NOT structure (default parameters):

Parameter: Type: Description:

Source DINT value to NOT

Dest DINT result of the instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 135
NTCH
Notch Filter

not available NTCH(NTCH_tag); The NTCH instruction provides a filter to attenuate input
frequencies that are at the notch frequency.

Operand: Type: Format: Description:

NTCH tag FILTER_NOTCH structure NTCH structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

ONS
One Shot

not available IF BOOL_expression AND NOT
storage_bit THEN

<statement>;

END_IF;

storage_bit :=
BOOL_expression;

The ONS instruction enables or disables the remainder of
the rung, depending on the status of the storage bit.

Operand: Type: Format: Description:

storage bit BOOL tag internal storage bit
stores the rung-condition-in from the last time the instruction was executed

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 136
OR
Bitwise OR

dest := sourceA OR sourceB The OR instruction performs a bitwise OR operation using
the bits in Source A and Source B and places the result in
the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT

immediate
tag

value to OR with Source B

Source B SINT DINT
INT

immediate
tag

value to OR with Source A

Destination SINT DINT
INT

tag tag to store the result

Function Block Operand: Type: Format: Description:

OR tag FBD_LOGICAL structure OR structure (default parameters):

Parameter: Type: Description:

SourceA DINT value to OR with Source B

SourceB DINT value to OR with Source A

Dest DINT result of the instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 137
OSF
One Shot
Falling

see OSFI see OSFI The OSF instruction sets or clears the output bit depending
on the status of the storage bit.

Operand: Type: Format: Description:

storage bit BOOL tag internal storage bit
stores the rung-condition-in from the last time the instruction was executed

output bit BOOL tag bit to be set

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

OSFI
One Shot
Falling with
Input

see OSF OSFI(OSFI_tag); The OSFI instruction sets the OutputBit for one execution
cycle when the InputBit toggles from set to cleared.

Operand: Type: Format: Description:

OSFI tag FBD_ONESHOT structure OSFI structure (default parameters):

Parameter: Type: Description:

InputBit BOOL input bit

OutputBit BOOL output bit

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 138
OSR
One Shot
Rising

see OSRI see OSRI The OSR instruction sets or clears the output bit, depending
on the status of the storage bit.

Operand: Type: Format: Description:

storage bit BOOL tag internal storage bit
stores the rung-condition-in from the last time the instruction was executed

output bit BOOL tag bit to be set

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

OSRI
One Shot
Rising with
Input

see OSR OSRI(OSRI_tag); The OSRI instruction sets the output bit for one execution
cycle when the input bit toggles from cleared to set.

Operand: Type: Format: Description:

OSRI tag FBD_ONESHOT structure OSRI structure (default parameters):

Parameter: Type: Description:

InputBit BOOL input bit

OutputBit BOOL output bit

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 139
OTE
Output
Energize

not available data_bit [:=]
BOOL_expression;

The OTE instruction sets or clears the data bit.

Operand: Type: Format: Description:

data bit BOOL tag bit to be set or cleared

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

OTL
Output Latch

not available IF BOOL_expression THEN

data_bit := 1;

END_IF;

The OTL instruction sets (latches) the data bit.

Operand: Type: Format: Description:

data bit BOOL tag bit to be set

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

OTU
Output Unlatch

not available IF BOOL_expression THEN

data_bit := 0;

END_IF;

The OTU instruction clears (unlatches) the data bit.

Operand: Type: Format: Description:

data bit BOOL tag bit to be cleared

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 140
PATT
Attach to
Equipment
Phase

not available PATT(Phase_Name, Result); The PATT instruction lets a program take ownership of an
equipment phase.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Phase Name phase name of the
equipment phase

Equipment phase that you want to own

Result DINT immediate
tag

To let the instruction return a code for its success/failure, enter a DINT tag in which to store the result code.
Otherwise, enter 0.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

PCLF
Equipment
Phase Clear
Failure

not available PCLF(Phase_Name); The PCLF instruction clears the failure code for an
equipment phase.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Phase Name phase name of the
equipment phase

Equipment phase that you no longer want to own

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 141
PCMD
Equipment
Phase
Command

not available PCMD(PhaseName, Command,
Result);

The PCMD instruction transitions an equipment phase to
the next state or substate.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Phase Name phase name of the
equipment phase

Equipment phase that you want to change to a different state or substate

Command command name of the
command

Command that you want to send to the equipment phase to change its state

Result DINT immediate
tag

To let the instruction return a code for its success/failure, enter a DINT tag in which to store the result code.
Otherwise, enter 0.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

PDET
Detach from
Equipment
Phase

not available PDET(Phase_Name); After a program executes a PDET instruction, the program
no longer owns the equipment phase. This frees the
equipment phase for ownership by another program or by
RSBizWare Batch software. Use the PDET instruction only if
the program previously took ownership of an equipment
phase via an Attach to Equipment Phase (PATT) instruction.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Phase Name phase name of the
equipment phase

Equipment phase that you no longer want to own

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 142
PFL
Equipment
Phase Failure

not available PFL(Failure_Code); The PFL instruction sets the value of the failure code for an
equipment phase. Use the instruction to signal a specific
failure for an equipment phase, such as a specific device
has faulted.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Failure_Code DINT immediate
tag

value to which you want to set the failure code for the equipment phase

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 143
PI
Proportional +
Integral

not available PI(PI_tag); The PI instruction provides two methods of operation. The
first method follows the conventional PI algorithm in that
the proportional and integral gains remain constant over
the range of the input signal (error). The second method
uses a non-linear algorithm where the proportional and
integral gains vary over the range of the input signal. The
input signal is the deviation between the setpoint and
feedback of the process.

Operand: Type: Format: Description:

PI tag PROP_INT structure PI structure (default parameters):

Parameter: Type: Description:

In REAL process error signal input

Out REAL calculated output of the PI algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 144
PID
Proportional,
Integral,
Derivative

not available PID(PID,
ProcessVariable,Tieback,
ControlVariable,
PIDMasterLoop,
InholdBit,
InHoldValue);

The PID instruction controls a process variable such as flow,
pressure, temperature, or level.

Operand: Type: Format: Description:

PID PID structure PID structure

Process variable SINT DINT
INT REAL

tag value you want to control

Tieback SINT DINT
INT REAL

immediate
tag

(optional) output of a hardware hand/auto station which is bypassing the output of the controller
Enter 0 if you don’t want to use this parameter.

Control variable SINT DINT
INT REAL

tag value which goes to the final control device (valve, damper, etc.)
If you are using the deadband, the Control variable must be REAL or it will be forced to 0 when the error is within the
deadband.

PID master loop PID structure (optional) PID tag for the master PID
Enter 0 if you don’t want to use this parameter.

Inhold bit BOOL tag (optional) current status of the inhold bit from a 1756 analog output channel to support bumpless restart
Enter 0 if you don’t want to use this parameter.

Inhold value SINT DINT
INT REAL

tag (optional) data readback value from a 1756 analog output channel to support bumpless restart
Enter 0 if you don’t want to use this parameter.

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 145
PID
Proportional,
Integral,
Derivative
(continued)

Setpoint na na displays current value of the setpoint

Process variable na na displays current value of the scaled process variable

Output % na na displays current output percentage value

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 35 .UPD =0

Type 4 Code 36 setpoint out of range

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 146
PIDE
Enhanced PID

not available PIDE(PIDE_tag); The PIDE instruction provides enhanced capabilities over
the standard PID instruction. The instruction uses the
velocity form of the PID algorithm. The gain terms are
applied to the change in the value of error or PV, not the
value of error or PV.

Operand: Type: Format: Description:

PIDE tag PIDE_ENHANCED structure PIDE structure (default parameters):

Parameter: Type: Description:

PV REAL scaled process variable input

SPProg REAL SP program value, scaled in PV units

SPCascade REAL SP Cascade value, scaled in PV units

RatioProg REAL ratio program multiplier.

CVProg REAL CV program manual value

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 147
PIDE
Enhanced PID
(continued)

Parameter: Type: Description:

FF REAL feed forward value

HandFB REAL CV hand feedback value

ProgProgReq BOOL program program request

ProgOperReq BOOL program operator request

ProgCasRatReq BOOL program cascade/ratio mode request

ProgAutoReq BOOL program auto mode request

ProgManualReq BOOL program manual mode request

ProgOverrideReq BOOL program override mode request

ProgHandReq BOOL program hand mode request

CVEU REAL scaled control variable output

SP REAL current setpoint value

PVHHAlarm BOOL PV high-high alarm indicator

PVHAlarm BOOL PV high alarm indicator

PVLAlarm BOOL PV low alarm indicator

PVLLAlarm BOOL PV low-low alarm indicator

PVROCPosAlarm BOOL PV rate-of-change positive alarm indicator

PVROCNegAlarm BOOL PV rate-of-change negative alarm indicator

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 148
PIDE
Enhanced PID
(continued)

Parameter: Type: Description:

DevHHAlarm BOOL deviation high-high alarm indicator

DevHAlarm BOOL deviation high alarm indicator

DevLAlarm BOOL deviation low alarm indicator

DevLLAlarm BOOL deviation low-low alarm indicator

ProgOper BOOL program/operator control indicator
set when in program mode; cleared when in operator mode

CasRat BOOL cascade ration mode indicator

Auto BOOL auto mode indicator

Manual BOOL manual mode indicator

Override BOOL override mode indicator

Hand BOOL hand mode indicator

autotune PIDE_AUTOTUNE structure (optional) autotune structure (function block only)

Arithmetic Status Flags: Major Faults:

set for the CVEU parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 149
PMUL
Pulse
Multiplier

not available PMUL(PMUL_tag); The PMUL instruction provides an interface from a position
input module, such as a resolver or encoder feedback
module, to the digital system by computing the change in
input from one scan to the next. By selecting a specific
word size, you configure the PMUL instruction to
differentiate through the rollover boundary in a continuous
and linear fashion.

Operand: Type: Format: Description:

PMUL tag PULSE_
MULTIPLIER

structure PMUL structure (default parameters):

Parameter: Type: Description:

In DINT analog signal input to the instruction

Multiplier DINT multiplier; divide this value by 100,000 to control the ratio of In to Out

Out REAL output of the instruction

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 150
POSP
Position
Proportional

not available POSP(POSP_tag); The POSP instruction opens or closes a device by pulsing
open or close contacts at a user defined cycle time with a
pulse width proportional to the difference between the
desired and actual positions.

Operand: Type: Format: Description:

POSP tag POSITION_PROP structure POSP structure (default parameters):

Parameter: Type: Description:

SP REAL setpoint value; must use the same engineering units as Position

Position REAL position feedback

OpenedFB BOOL opened feedback; when set, the open output is not allowed to turn on

ClosedFB BOOL closed feedback; when set, the close output is not allowed to turn on

OpenOut BOOL output is pulsed to open the device

CloseOut BOOL output is pulsed to close the device

Arithmetic Status Flags: Major Faults:

set for the PositionPercent parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 151
POVR
Equipment
Phase Override
Command

not available POVR(PhaseName, Command,
Result);

Gives the hold, stop, or abort command to an equipment
phase.
Overrides all owners of the equipment phase. The
command works even if RSLogix 5000 software, RSBizWare
Batch software, or another program already own the
equipment phase.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Phase Name phase name of the
equipment phase

Equipment phase that you want to change to a different state

Command command name of the
command

One of these commands for the equipment phase:
• hold
• stop
• abort

Result DINT immediate
tag

To let the instruction return a code for its success/failure, enter a DINT tag in which to store the result code.
Otherwise, enter 0.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

PPD
Equipment
Phase Paused

not available PPD(); The PPD instruction lets you stop execution at a specific
step (breakpoint) to test and troubleshoot your logic.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 152
PRNP
Equipment
Phase New
Parameters

not available PRNP(); The PRNP instruction clears the NewInputParameters bit of
the equipment phase.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

PSC
Phase State
Complete

not available PSC(); The PSC instruction signals the completion of a phase state
routine.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

PXRQ
Equipment
Phase External
Request

not available PXRQ(Phase_Instruction,
External_Request,
Data_Value);

The PXRQ instruction sends a request to RSBizWare Batch
software.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Phase Instruction PHASE_INSTRUC
TION

tag tag that controls the operation

External Request request name type of request

Data Value DINT array tag parameters of the request

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 153
RAD
Radians

dest := RAD(source); The RAD instruction converts the Source (in degrees) to
radians and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

value to convert to radians

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

RAD tag FBD_MATH_
ADVANCED

structure RAD structure (default parameters):

Parameter: Type: Description:

Source REAL input to the conversion instruction

Dest REAL result of the conversion instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 154
RES
Reset

not available not available The RES instruction resets a TIMER, COUNTER, or
CONTROL structure.

Operand: Type: Format: Description:

structure TIMER
CONTROL
COUNTER

tag structure to reset

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 155
RESD
Reset
Dominant

not available RESD(RESD_tag); The RESD instruction uses Set and Reset inputs to control
latched outputs. The Reset input has precedence over the
Set input.

Operand: Type: Format: Description:

RESD tag DOMINANT_
RESET

structure RESD structure (default parameters):

Parameter: Type: Description:

Set BOOL set input to the instruction

Reset BOOL reset input to the instruction

Out BOOL output of the instruction

OutNot BOOL inverted output of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 156
RET
Return

RET(ReturnPar); The RET instruction is an optional instruction that
exchanges data with the JSR instruction.

Operand: Type: Format: Description:

Return parameter BOOL DINT
SINT REAL
INT
structure

immediate
tag
array tag

data from this routine that you want to copy to the corresponding return parameter in the JSR instruction

Arithmetic Status Flags: Major Faults:

affected 4 31 • JSR instruction has fewer input parameters than SBR instruction
• RET instruction has fewer return parameters than JSR instruction
• main routine contains a RET instruction

4 0 JSR instruction jumps to a fault routine

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 157
RLIM
Rate Limiter

not available RLIM(RLIM_tag); The RLIM instruction limits the amount of change of a
signal over time.

Operand: Type: Format: Description:

RLIM tag RATE_LIMITER structure RLIM structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

ByPass BOOL request to bypass the algorithm; when set, Out = In

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 158
RMPS
Ramp/Soak

not available RMPS(RMPS_tag,RampValue,

SoakValue,SoakTime);
The RMPS instruction provides for a number of segments of
alternating ramp and soak periods.

Operand: Type: Format: Description:

RMPS tag RAMP_SOAK structure RMPS structure (default parameters):

Parameter: Type: Description:

PV REAL scaled analog temperature signal input to the instruction

CurrentSegProg DINT current segment program value

OutProg REAL output program value

SoakTimeProg REAL soak time program value

ProgProgReq BOOL program program request

ProgOperReq BOOL program operator request

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 159
RMPS
Ramp/Soak
(continued)

Parameter: Type: Description:

ProgAutoReq BOOL program auto mode request

ProgManualReq BOOL program manual mode request

ProgHoldReq BOOL program hold mode request

Out REAL output of the instruction

CurrentSeg DINT current segment number

SoakTimeLeft REAL soak time left

GuarRampOn BOOL guaranteed ramp status

GuarSoakOn BOOL guaranteed soak status

ProgOper BOOL program/operator control indicator

Auto BOOL auto mode indicator

Manual BOOL manual mode indicator

Hold BOOL hold mode indicator

RampValue REAL array ramp value array; enter a ramp value (time in minutes) for each segment (0 to NumberOfSegs-1)

SoakValue REAL array soak value array; enter a soak value for each segment (0 to NumberOfSegs-1); the array must be at least as large
as NumberOfSegs

SoakTime REAL array soak time array; enter a soak time (time in minutes) for each segment (0 to NumberOfSegs-1)

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 160
RTO
Retentive
Timer On

see RTOR see RTOR The RTO instruction is a retentive timer that accumulates
time when the instruction is enabled.

Operand: Type: Format: Description:

Timer TIMER tag timer structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate number of msec the timer has counted; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 34 • .PRE < 0
• .ACC < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 161
RTOR
Retentive
Timer On with
Reset

see RTO RTOR(RTOR_tag); The RTOR instruction is a retentive timer that accumulates
time when TimerEnable is set.

Operand: Type: Format: Description:

RTOR tag FBD_TIMER structure RTOR structure (default parameters):

Parameter: Type: Description:

TimerEnable BOOL if cleared, enables the timer to run and accumulate time

PRE DINT timer preset value in 1msec units

Reset BOOL request to reset the timer

ACC BOOL accumulated time in milliseconds

DN BOOL timing done output. Indicates when the ACC ≥ PRE

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 162
RTOS
REAL to String

not available RTOS(Source,Dest); The RTOS instruction produces the ASCII representation of
a REAL value.

Operand: Type: Format: Description:

Source REAL tag tag that contains the REAL value

Destination string tag tag to store the ASCII value

Arithmetic Status Flags: Major Faults:

not affected 4 51 The LEN value of the string tag is greater than the DATA size of the string tag. Check:
• that no instruction is writing to the LEN member of the string tag.
• in the LEN value, you entered the number of characters that the string contains.

4 52 The output string is larger than the destination. Create a new string data type that is large enough for
the output string. Use the new string data type as the data type for the destination.

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 163
SBR
Subroutine

SBR(InputPar); The SBR instruction is an optional instruction that
exchanges data with the JSR instruction.

Operand: Type: Format: Description:

Input parameter BOOL DINT
SINT REAL
INT
structure

tag
array tag

tag in this routine into which you want to copy the corresponding input parameter from the JSR instruction

Arithmetic Status Flags: Major Faults:

affected 4 31 • JSR instruction has fewer input parameters than SBR instruction
• RET instruction has fewer return parameters than JSR instruction
• main routine contains a RET instruction

4 0 JSR instruction jumps to a fault routine

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 164
Publication 1756-QR107C-EN-P - June 2005

 11 - 165
Instruction: Relay Ladder: Function Block: Structured Text: Description:

SCL
Scale

not available SCL(SCL_tag); The SCL instruction converts an unscaled input value to a
floating point value in engineering units.

Operand: Type: Format: Description:

SCL tag SCALE structure SCL structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL output that represents the scaled value of the analog input

Arithmetic Status Flags: Major Faults:

set for the Out parameter none
Publication 1756-QR107C-EN-P - June 2005

11 - 166
SCRV
S-Curve

not available SCRV(SCRV_tag); The SCRV instruction performs a ramp function with an
added jerk rate. The jerk rate is the maximum rate of
change of the rate used to ramp output to input.

Operand: Type: Format: Description:

SCRV tag S_CURVE structure SCRV structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL output of the instruction

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 167
SEL
Selector

not available not available The SEL instruction uses a digital input to select one of
two inputs.

Operand: Type: Format: Description:

SEL tag SELECT structure SEL structure (default parameters):

Parameter: Type: Description:

In1 REAL first analog signal input to the instruction

In2 REAL second analog signal input to the instruction

SelectorIn BOOL input that selects between In1 and In2

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 168
SETD
Set Dominant

not available SETD(SETD_tag); The SETD instruction uses Set and Reset inputs to control
latched outputs. The Set input has precedence over the
Reset input.

Operand: Type: Format: Description:

SETD tag DOMINANT_SET structure SETD structure (default parameters):

Parameter: Type: Description:

Set BOOL Set input to the instruction

Reset BOOL Reset input to the instruction

Out BOOL output of the instruction

OutNot BOOL inverted output of the instruction

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 169
SFP
Pause SFC

not available SFP(SFCRoutineName,
TargetState);

The SFP instruction pauses an SFC routine.

Operand: Type: Format: Description:

SFCRoutine Name ROUTINE name SFC routine to pause

TargetState DINT immediate
tag

select executing (enter 0) or paused (enter 1)

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 85 the routine type is not an SFC routine

Instruction: Relay Ladder: Function Block: Structured Text: Description:

SFR
Reset SFC

not available SFR(SFCRoutineName
StepName);

The SFR instruction resets the execution of a SFC routine at
a specified step.

Operand: Type: Format: Description:

SFCRoutine Name ROUTINE name SFC routine to reset

Step Name SFC_STEP tag target step where to resume execution

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 85 the routine type is not an SFC routine

Type 4 Code 89 specified target step does not exist in the SFC routine

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 170
SIN
Sine

dest := SIN(source); The SIN instruction takes the sine of the Source value (in
radians) and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the sine of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

SIN tag FBD_MATH_
ADVANCED

structure SIN structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 171
SIZE
Size in
Elements

not available not available The SIZE instruction finds the size of a dimension of an
array.

Operand: Type: Format: Description:

Source SINT DINT
INT REAL
structure
string

array tag array on which the instruction is to operate

Dimension to vary DINT immediate
(0, 1, 2)

which dimension to use
enter 0 (first dimension), 1 (second dimension), or 2 (third dimension)

Size SINT DINT
INT REAL

tag tag to store the number of elements in the specified dimension of the array

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 172
SNEG
Selected
Negate

not available SNEG(SNEG_tag); The SNEG instruction uses a digital input to select between
the input value and the negative of the input value.

Operand: Type: Format: Description:

SNEG tag SELECTABLE_
NEGATE

structure SNEG structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

NegateEnable BOOL when NegateEnable is set, the instruction sets Out to the negative value of In

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 173
SOC
Second-Order
Controller

not available SOC(SOC_tag); The SOC instruction is designed for use in closed loop
control systems in a similar manner to the PI instruction.
The SOC instruction provides a gain term, a first order lag,
and a second order lead.

Operand: Type: Format: Description:

SOC tag SEC_ORDER_
CONTROLLER

structure SOC structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 174
SQI
Sequencer
Input

not available not available The SQI instruction detects when a step is complete in a
sequence pair of SQO/SQI instructions.

Operand: Type: Format: Description:

Array DINT array tag sequencer array; specify the first element of the sequencer array
do not use CONTROL.POS in the subscript

Mask SINT DINT
INT

tag
immediate

which bits to block or pass

Source SINT DINT
INT

tag input data for the sequencer array

Control CONTROL tag control structure for the operation; typically use the same CONTROL as the SQO and SQL instructions

Length DINT immediate number of elements in the Array (sequencer table) to compare

Position DINT immediate current position in the array; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 175
SQL
Sequencer
Load

not available not available The SQL instruction loads reference conditions into a
sequencer array.

Operand: Type: Format: Description:

Array DINT array tag sequencer array; specify the first element of the sequencer array
do not use CONTROL.POS in the subscript

Source SINT DINT
INT

tag
immediate

input data to load into the sequencer array

Control CONTROL tag control structure for the operation; typically use the same CONTROL as the SQI and SQO instructions

Length DINT immediate number of elements in the Array (sequencer table) to load

Position DINT immediate current position in the array; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 20 Length > size of Array

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 176
SQO
Sequencer
Output

not available not available The SQO instruction sets output conditions for the next step
of a sequence pair of SQO/SQI instructions.

Operand: Type: Format: Description:

Array DINT array tag sequencer array; specify the first element of the sequencer array
do not use CONTROL.POS in the subscript

Mask SINT DINT
INT

tag
immediate

which bits to block or pass

Destination DINT tag output data from the sequencer array

Control CONTROL tag control structure for the operation; typically use the same CONTROL as the SQI and SQL instructions

Length DINT immediate number of elements in the Array (sequencer table) to output

Position DINT immediate current position in the array; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 177
SQR
Square Root

dest := SQRT(source); The SQR instruction computes the square root of the Source
and places the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the square root of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

SQR tag FBD_MATH_
ADVANCED

structure SQR structure (default parameters):

Parameter: Type: Description:

Source REAL find the square root of this value

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 178
SRT
File Sort

not available SRT(Array,Dimtovary,
Control);

The SRT instruction sorts a set of values in one dimension
(Dim to vary) of the Array into ascending order.

Operand: Type: Format: Description:

Array SINT DINT
INT REAL

array tag array to sort; specify the first element of the group of elements to sort
do not use CONTROL.POS in the subscript

Dimension to vary DINT immediate
(0, 1, 2)

which dimension to use
the order is: array[dim_0,dim_1,dim_2] then array[dim_0,dim_1] then array[dim_0]

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements of the array to sort

Position DINT immediate current element in the array; initial value is typically 0

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 20 • instruction tries to access data outside of the array boundaries
• dimension to vary does not exist for the specified array

Type 4 Code 21 .POS < 0 or .LEN < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 179
SRTP
Split Range
Proportional

not available SRTP(SRTP_tag); The SRTP instruction takes the 0-100% output of a PID loop
and drives heating and cooling digital output contacts with
a periodic pulse. This instruction controls applications such
as barrel temperature control on extrusion machines.

Operand: Type: Format: Description:

SRTP tag SPLIT_RANGE structure SRTP structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input asking for heating or cooling

HeatOut BOOL heating output pulse

CoolOut BOOL cooling output pulse

HeatTimePercent REAL calculated percent of the current cycle that the HeatOut will be on

CoolTimePercent REAL calculated percent of the current cycle that the CoolOut will be on

Arithmetic Status Flags: Major Faults:

set for the HeatTimePercent and
CoolTimePercent parameters

none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 180
SSUM
Selected
Summer

not available SSUM(SSUM_tag); The SSUM instruction uses boolean inputs to select real
inputs to be algebraically summed.

Operand: Type: Format: Description:

SSUM tag SELECTABLE_
SUMMER

structure SSUM structure (default parameters):

Parameter: Type: Description:

Inx REAL input, where x = 1-4

Selectx BOOL selector signal for associated input, where x = 1-4

Out REAL calculated output of the algorithm

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 181
SSV
Set System
Value

not available SSV(ClassName,
InstanceName,
AttributeName,Source);

The GSV/SSV instructions get and set controller system
data that is stored in objects.

Operand: Type: Format: Description:

Class name na name name of object

Instance name na name name of specific object, when object requires name

Attribute Name na name attribute of object; data type depends on the attribute you select

Source SINT DINT
INT REAL

tag tag that contains data you want to copy to the attribute

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 5 invalid object address

Type 4 Code 6 • specified an object that does not support GSV/SSV
• invalid attribute
• did not supply enough information for an SSV instruction

Type 4 Code 7 the GSV destination was not large enough to hold the requested data

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 182
STD
Standard
Deviation

not available not available The STD instruction calculates the standard deviation of a
set of values in one dimension of the Array and stores the
result in the Destination.

Operand: Type: Format: Description:

Array SINT DINT
INT REAL

array tag find the standard deviation of the values in this array
specify the first element of the group of elements to use in calculating the standard deviation
do not use CONTROL.POS in the subscript

Dimension to vary DINT immediate
(0, 1, 2)

which dimension to use
the order is: array[dim_0,dim_1,dim_2] then array[dim_0,dim_1] then array[dim_0]

Destination REAL tag result of the operation

Control CONTROL tag control structure for the operation

Length DINT immediate number of elements of the array to use in calculating the standard deviation

Position DINT immediate current element in the array; initial value is typically 0

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 20 dimension to vary does not exist for the specified array

Type 4 Code 21 .POS < 0 or .LEN < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 183
STOD
String to DINT

not available STOD(Source,Dest); The STOD instruction converts the ASCII representation of
an integer to an integer or REAL value.

Operand: Type: Format: Description:

Source string tag tag that contains the value in ASCII

Destination SINT DINT
INT REAL

tag tag to store the integer value; if the Source value is a floating-point number, the instruction converts only the non-fractional
part of the number (regardless of the destination data type).

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 51 The LEN value of the string tag is greater than the DATA size of the string tag. Check:
• that no instruction is writing to the LEN member of the string tag.
• in the LEN value, you entered the number of characters that the string contains.

Type 4 Code 53 The output number is beyond the limits of the destination data type. Either:
• reduce the size of the ASCII value
• use a larger data type for the destination

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 184
STOR
String to REAL

not available STOR(Source,Dest); The STOR instruction converts the ASCII representation of a
floating-point value to a REAL value.

Operand: Type: Format: Description:

Source string tag tag that contains the value in ASCII

Destination REAL tag tag to store the REAL value

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 51 The LEN value of the string tag is greater than the DATA size of the string tag. Check:
• that no instruction is writing to the LEN member of the string tag.
• in the LEN value, you entered the number of characters that the string contains.

Type 4 Code 53 The output number is beyond the limits of the destination data type. Either:
• reduce the size of the ASCII value
• use a larger data type for the destination

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 185
SUB
Subtract

dest := sourceA - sourceB; The SUB instruction subtracts Source B from Source A and
places the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT REAL

immediate
tag

value from which to subtract Source B

Source B SINT DINT
INT REAL

immediate
tag

value to subtract from Source A

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

SUB tag FBD_MATH structure SUB structure (default parameters):

Parameter: Type: Description:

SourceA REAL value from which to subtract Source B

SourceB REAL value to subtract from Source A

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 186
SWPB
Swap Byte

not available SWPB(Source,OrderMode,
Dest);

The SWPB instruction rearranges the bytes of a value.

Operand: Type: Format: Description:

Source INT REAL
DINT

tag tag that contains the bytes that you want to rearrange

Order Mode na REVERSE
WORD
HIGH/LOW

how you want to change the order of the bytes

Destination INT REAL
DINT

tag tag to store the bytes in the new order

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 187
TAN
Tangent

dest := TAN(source); The TAN instruction takes the tangent of the Source value
(in radians) and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source SINT DINT
INT REAL

immediate
tag

find the tangent of this value

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

TAN tag FBD_MATH_
ADVANCED

structure TAN structure (default parameters):

Parameter: Type: Description:

Source REAL input to the math instruction

Dest REAL result of the math instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

TND
Temporary End

not available TND(); The TND instruction acts as a boundary.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 188
TOD
Convert to BCD

not available The TOD instruction converts a decimal value (0 ≤ Source ≤
99,999,999) to a BCD value and stores the result in
the Destination.

Relay Ladder Operand: Type: Format: Description:

Source SINT DINT
INT

immediate
tag

value to convert

Destination SINT DINT
INT

tag tag to store the result

Function Block Operand: Type: Format: Description:

TOD tag FBD_CONVERT structure TOD structure (default parameters):

Parameter: Type: Description:

Source DINT input to the conversion instruction

Dest DINT result of the conversion instruction

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 4 Source < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 189
TOF
Timer Off Delay

see TOFR see TOFR The TOF instruction is a non-retentive timer that
accumulates time when the instruction is enabled
(rung-condition-in is false).

Operand: Type: Format: Description:

Timer TIMER tag timer structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate number of msec the timer has counted; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 34 • .PRE < 0
• .ACC < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 190
TOFR
Timer Off Delay
with Reset

see TOF TOFR(TOFR_tag); The TOFR instruction is a non-retentive timer that
accumulates time when TimerEnable is cleared.

Operand: Type: Format: Description:

TOFR tag FBD_TIMER structure TOFR structure (default parameters):

Parameter: Type: Description:

TimerEnable BOOL if cleared, enables the timer to run and accumulate time

PRE DINT timer preset value in 1msec units

Reset BOOL request to reset the timer

ACC BOOL accumulated time in milliseconds

DN BOOL timing done output. Indicates when the ACC ≥ PRE

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 191
TON
Timer On Delay

see TONR see TONR The TON instruction is a non-retentive timer that
accumulates time when the instruction is enabled
(rung-condition-in is true).

Operand: Type: Format: Description:

Timer TIMER tag timer structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate number of msec the timer has counted; initial value is typically 0

Arithmetic Status Flags: Major Faults:

not affected Type 4 Code 34 • .PRE < 0
• .ACC < 0

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 192
TONR
Timer On Delay
with Reset

see TON TONR(TONR_tag); The TONR instruction is a non-retentive timer that
accumulates time when TimerEnable is set.

Operand: Type: Format: Description:

TONR tag FBD_TIMER structure TONR structure (default parameters):

Parameter: Type: Description:

TimerEnable BOOL if cleared, enables the timer to run and accumulate time

PRE DINT timer preset value in 1msec units

reset BOOL request to reset the timer

ACC BOOL accumulated time in milliseconds

DN BOOL timing done output. Indicates when the ACC ≥ PRE

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 193
TOT
Totalizer

not available TOT(TOT_tag); The TOT instruction provides a time-scaled accumulation of
an analog input value.

Operand: Type: Format: Description:

TOT tag TOTALIZER structure TOT structure (default parameters):

Parameter: Type: Description:

In REAL analog signal input to the instruction

ProgProgReq BOOL program program request

ProgOperReq BOOL program operator request

ProgStartReq BOOL program start request

ProgStopRequest BOOL program stop request

ProgResetReq BOOL program reset request

continued

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 194
TOT
Totalizer
(continued)

Parameter: Type: Description:

Total REAL the totalized value if In

OldTotal REAL the value of the total before a reset occurred

ProgOper BOOL program/operator control indicator

RunStop BOOL the indicator of the operational state of the totalizer

ProgResetDone BOOL the indicator that the TOT instruction has completed a program reset request

TargetFlag BOOL the flag for Total; set when Total ≥ Target.

TargetDev1Flag BOOL the flag for TargetDev1; set when Total ≥ Target - TargetDev1

TargetDev2Flag BOOL the flag for TargetDev2; set when Total ≥ Target - TargetDev2

Arithmetic Status Flags: Major Faults:

set for the Total parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 195
TRN
Truncate

dest := TRUNC(source); The TRN instruction removes (truncates) the fractional part
of the Source and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source REAL immediate
tag

value to truncate

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

TRN tag FBD_
TRUNCATE

structure TRN structure (default parameters):

Parameter: Type: Description:

Source REAL input to the conversion instruction.

Dest DINT result of the math instruction.

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

UID
User Interrupt
Disable

UIE
User Interrupt
Enable

not available UID();

UIE();

The UID instruction and the UIE instruction work together to
prevent a small number of critical rungs from being
interrupted by other tasks.

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 196
UPDN
Up/Down
Accumulator

not available UPDN(UPDN_tag); The UPDN instruction adds and subtracts two inputs into an
accumulated value.

Operand: Type: Format: Description:

UPDN tag UP_DOWN_
ACCUM

structure UPDN structure (default parameters):

Parameter: Type: Description:

InPlus REAL input added to the accumulator

InMinus REAL input subtracted from the accumulator

Out REAL output of the instruction

Arithmetic Status Flags: Major Faults:

set for the Out parameter none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 197
UPPER
Upper Case

not available UPPER(Source,Dest); The UPPER instruction converts the alphabetical characters
in a string to upper case characters.

Operand: Type: Format: Description:

Source string tag tag that contains the characters that you want to convert to upper case

Destination string tag tag to store the characters in upper case

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:

XIC
Examine If
Closed

not available IF data_bit THEN

<statement>;

END_IF;

The XIC instruction examines the data bit to see if it is set.

Operand: Type: Format: Description:

data bit BOOL tag bit to be tested

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 198
XIO
Examine If
Open

not available IF NOT data_bit THEN

<statement>;

END_IF;

The XIO instruction examines the data bit to see if it is
cleared.

Operand: Type: Format: Description:

data bit BOOL tag bit to be tested

Arithmetic Status Flags: Major Faults:

not affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

 11 - 199
XOR
Bitwise
Exclusive OR

dest := sourceA XOR sourceB The XOR instruction performs a bitwise XOR operation
using the bits in Source A and Source B and places the
result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source A SINT DINT
INT

immediate
tag

value to XOR with Source B

Source B SINT DINT
INT

immediate
tag

value to XOR with Source A

Destination SINT DINT
INT

tag tag to store the result

Function Block Operand: Type: Format: Description:

XOR tag FBD_LOGICAL structure XOR structure (default parameters):

Parameter: Type: Description:

SourceA DINT value to XOR with Source B

SourceB DINT value to XOR with Source A

Dest DINT result of the instruction

Arithmetic Status Flags: Major Faults:

affected none

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

11 - 200
XPY
X to the
Power of Y

dest := sourceX ** sourceY; The XPY instruction takes Source A (X) to the power of
Source B (Y) and stores the result in the Destination.

Relay Ladder and
Structured Text

Operand: Type: Format: Description:

Source X SINT DINT
INT REAL

immediate
tag

base value

Source Y SINT DINT
INT REAL

immediate
tag

exponent

Destination SINT DINT
INT REAL

tag tag to store the result

Function Block Operand: Type: Format: Description:

XPY tag FBD_MATH structure LOXPY structure (default parameters):

Parameter: Type: Description:

Source X REAL immediate
tag

base value

Source Y REAL immediate
tag

exponent

Dest REAL tag tag to store the result

Arithmetic Status Flags: Major Faults:

affected Type 4 Code 4 Source X is negative and Source Y is not an integer value

Instruction: Relay Ladder: Function Block: Structured Text: Description:
Publication 1756-QR107C-EN-P - June 2005

Rockwell Automation Support
Rockwell Automation provides technical information on the web to assist you in using our products. At
http://support.rockwellautomation.com, you can find technical manuals, a knowledge base of FAQs, technical and application notes,
sample code and links to software service packs, and a MySupport feature that you can customize to make the best use of these tools.

For an additional level of technical phone support for installation, configuration and troubleshooting, we offer TechConnect Support
programs. For more information, contact your local distributor or Rockwell Automation representative, or visit
http://support.rockwellautomation.com.

Installation Assistance
If you experience a problem with a hardware module within the first 24 hours of installation, please review the information that's contained
in this manual. You can also contact a special Customer Support number for initial help in getting your module up and running:

United States 1.440.646.3223
Monday – Friday, 8am – 5pm EST

Outside United States Please contact your local Rockwell Automation representative for any technical support issues.
Publication 1756-QR107C-EN-P - June 2005

New Product Satisfaction Return
Rockwell tests all of our products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your
product is not functioning and needs to be returned:

United States Contact your distributor. You must provide a Customer Support case number (see phone number above to obtain one) to your distributor
in order to complete the return process.

Outside United States Please contact your local Rockwell Automation representative for return procedure.
Publication 1756-QR107C-EN-P - June 2005 PN 957955-66
Supersedes Publication 1756-QR107B-EN-P - June 2003 Copyright © 2005 Rockwell Automation. All rights reserved. Printed in the U.S.A.

	Logix5000 Controllers System Reference, 1756-QR107C-EN-P
	Summary of Changes
	Table of Contents
	Chapter 1 - Logix Controllers
	Logix Family of Controllers
	ControlLogix Controllers (1756-L6x, L55Mxx)
	CompactLogix Controllers (1769-Lxx)
	FlexLogix Controllers (1794-L34)
	SoftLogix5800 Controllers (1789-L10, -L30, -L60)
	PowerFlex 700S with DriveLogix5720
	PowerFlex 700S with DriveLogix5730
	Controller Comparison
	Select the Operating Mode of the Controller
	Non-Volatile Memory
	Create a Project
	Controller Organizer
	Controller Tasks
	Controller Tags
	Aliases
	Choose a Programming Language

	Chapter 2 - Sequential Function Charts
	Editing an SFC
	Action Qualifiers
	How Do You Want to Use the Action?
	Configure the Execution of an SFC

	Chapter 3 - Structured Text
	Structured Text Syntax
	Assignments
	Expressions
	Determine the order of execution
	Instructions
	Constructs
	Comments

	Chapter 4 - Function Block Diagram
	Editing a Function Block Diagram.
	Order of Execution
	Resolve a Loop
	Resolve Data Flow Between Two Blocks
	Create a One Scan Delay
	Summary
	Define Program/Operator Control

	Chapter 5 - Relay Ladder
	Relay Ladder Logic
	Editing Relay Ladder
	Rung Condition

	Chapter 6 - Accessing System Values
	System Values Stored by the Controller
	Monitor Status Flags
	Get and Set System Data (Status Information)
	Available Status Information - GSV/SSV Objects
	Determine Controller Memory Information

	Chapter 7 - Communicate with Other Controllers
	Communication Options
	Produce and Consume a Tag
	Send a Message
	Map PLC/SLC Addresses
	Send a Message to Multiple Devices

	Chapter 8 - Forcing
	What You Can Force
	Force I/O
	Step Through a Transition
	Force an SFC
	Controller Faults
	Major Faults
	Major Fault Codes
	Minor Faults
	Minor Fault Codes
	User-Defined Faults

	Chapter 9 - System Faults
	Controller Faults
	Major Faults
	Major Fault Codes
	Minor Faults
	Minor Fault Codes
	User-Defined Faults

	Chapter 10 - Data Structures
	Common Structures

	Chapter 11 - Instruction Set
	Rockwell Automation Support
	Installation Assistance
	New Product Satisfaction Return
	Back Cover

	Process, Automation & Control
	Free Trade Publications

