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2.1. (a) T(z[n]) = g[njz[n]
e Stable: Let |z[n]| < M then |T{z[n]| < |g[n]|M. So, it is stable if |g[n]| is bounded.

e Causal: y:1[n] = g[n]zi[n] and y2[n] = g[n]z2(n], so if z1[n] = z2[n] for all n < ng, then
y1[n] = y2[n] for all n < ng, and the system is causal.

e Linear:
T(az:1[n] + bz2[n]) = g[n](azi[n] + bz2[n]
= ag[n]z:1[n] + bg[n]z2[n]
= aT(zi[n]) + bT(z2[n])
So this is linear.
e Not time-invariant:
T(z[n —no]) = g[njz[n — no]

#  y[n — no] = g[n — nolz[n — no]

which is not TL
e Memoryless: y[n] = T(z[n]) depends only on the n* value of z, so it is memoryless.
(b) T(z[n]) = Xk, (K]
e Not Stable: |z[n]| < M — [T(z[n])| < Y}_,, lzk]| < In —no|M. As n = oo, T — oo, 50 not

stable.
e Not Causal: T'(z[n]) depends on the future values of z[n] when n < no, so this is not causal.
o Linear:
T(azi[n] + bz2[n]) = Z az1 [k] + bz [k]
k=no
= a Z zi[n] + b Z z2[n]
k=ng k=ng
= aT(z1[n]) + bT (z2[n])

The system is linear. =
e Not TI: N

T(n-no)) = Y zlk—no] POWEREN.IR

= i z[k]
k=0
4 yln-n= Y alk]
k=no

The system is not TI.
e Not Memoryless: Values of y[n] depend on past values for n > ng, so this is not memoryless.

(© T(zn)) Xiinta, 2l
o Stable: [T(z[n])| < Spine . |z[k]] < Tpin2,. zlkIM < |2no + 1|M for |z[n]| < M, so it is
stable.

e Not Causal: T(z[n]) depends on future values of z[n], so it is not causal.

e Linear:

n+no

Z azy[k] + bz, [k]

k=':1:—1:::; n+ng

a Y. m[kl+b Y =a[k] = aT(z[n]) + bT (z2[n])

k=n—ng k=n-—ng

T(az;i[n] + bza[n])

o
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This is linear.
o TI:
n+ng

T(z[n—no] = Z z[k — ng]

k=n—ng
n

> alk]

k=n-—ng

y[n — noj

1l

This is TI.
e Not memoryless: The values of y[n] depend on 2ng other values of z, not memoryless.
(d) T(z[n]) = z[n — no
e Stable: |T'(z[n])| = |z[n — no]| < M if |z[n] < M, so stable.
o Causality: If ng > 0, this is causal, otherwise it is not causal.
e Linear:

T(az1[n] + bza[n]) azi[n — no] + bzafn — ngj

aT (z1[n]) + bT (z2[n])

This is linear.
o TI: T(z[n — n4] = z[n — ng — na] = y[n — ng4). This is TL.
o Not memoryless: Unless ng = 0, this is not memoryless.
() T(z[n]) = =l
Stable: |z[n]| < M, |T(z[n])| = |e*!"]] < el*l?ll < M this is stable.
e Causal: It doesn’t use future values of z[n], so it causal.
¢ Not linear:

T(az1[n] + bza[n]) = eo=(nl+bealn]

— ea.zl[n]ebzz[n]

aT (z1[n]) + bT (z2[n])

AL

This is not linear.
TL T(z[n — no]) = €*l*~™l = y[n — ny), so this is TL
e Memoryless: y[n] depends on the n** value of = only, so it is memoryless.
(f) T(z[n]) = az[n] +b
e Stable: |T'(z[n])| = Jaz[n] + b] < a|M| + |b|, which is stable for finite @ and b.
o Causal: This doesn’t use future values of z[n], so it is causal.
e Not linear:

T(czy[n] + dz2[n]) = aczin] + adzz(n] +b
# cT(z1[n]) + dT (z2[n])

This is not linear.

f&

POWEREN.IR
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e TI: T(z[n - ng]) = az[n — no] + b = y[n — ng}. It is TL
e Memoryless: y[n] depends on the nt* value of z[n] only, so it is memoryless.

(8) T(z[n]) = z[-n]

e Stable: |T'(z[n])] < |z[-n]| < M, so it is stable.
e Not causal: For n < 0, it depends on the future value of z[n], so it is not causal.
e Linear:
T(azi[n] + bz2[n]) = azi[—n]+ bzaz[-n]
= aT(z1[n]) + bT(z2[n])
This is linear.
e Not TIL:
T(z[n —no)) = z[-n—no)
# yln = no] = z[~n + no]
This is not TIL.
e Not memoryless: For n # 0, it depends on a value of z other than the n‘* value, so it is not

memoryless.

(B) T(afn]) = afn] +uln + 1]
o Stable: |T'(z[n])] < M + 3 for n > —1 and |T(z[n])| < M for n < —1, so it is stable.
e Causal: Since it doesn’t use future values of z[n], it is causal.
e Not linear:

T(az1[n] + bz2[n]) = azi[n] + bza[n] + 3ufn + 1]
# aT(z1[n]) + T (z2[n])

This is not linear.
Not TI:

T(z[n —no] = z[n - ng] + 3uln + 1]
y[n — no
z[n — ng] + 3u[n —ng +1]

I

This is not TI.
Memoryless: y[r] depends on the n** value of z only, so this is memoryless.
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2.2. For an LTI system, the output is obtained from the convolution of the input with the impulse response
of the system:

vinl= 3 Alkleln — 4

k=-o0
(a) Since h[k] # 0, for (Ng < n < M),
N
ylnl= Y hlklz[n — k]
k=Np
The input, z[n] # 0, for (N, < n < N3), so
z[n — k] #0, for N2 < (n—k) < N3

Note that the minimum value of (n — k) is N;. Thus, the lower bound on n, which occurs for
k= No is
Ny = Ny + Ns.

Using a similar argument,
Ns = N; + Nj.

Therefore, the output is nonzero for

(No + Nz) <n< (Nl + N3)

(b) If z[n] # 0, for some n, < n < (n, + N — 1), and h[n] # 0, for some n; < n < (ny + M — 1), the
results of part (a) imply that the output is nonzero for:

(no+mn1))<n<(no+m+M+N-2)

So the output sequence is M + N — 1 samples long. This is an important quality of the convolution
for finite length sequences as we shall see in Chapter 8.
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2.3. We desire the step response to a system whose impulse response is
hln] = a "u[-n], for0<a < 1.
The convolution sum: -
ylnl= ) hlklaln — k]
k=-—00
The step response results when the input is the unit step:
z[n] = ufn] = 1, forn>0
M=UMU=10, forn<0
Substitution into the convolution sum yields
oo
ylnl= > o *u[-kluln— k]
k=—00
Forn < 0
[e o]
yn] = ) o*
k=-o0
o0
-
k=-n
— a_n
T 1-a
For n > 0:
0
yln] = ) a7*
k=—00
oo
= ak
k=0
_ 1
T 1-a
5



ch02_01-18.gxd 4/16/10 8:31 PM Page 6 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2.4. The difference equation: 3 .
yln] - Jyln — 1)+ gyln — 2 = 22fn — 1]

To solve, we take the Fourier transform of both sides.
Y (') - %Y(e"“)e—"" + gY(e"")e"Z“’ =2-X(e')e
The system function is given by:

Y (e7%)
X (eiw)
2e~iw

— 3o—jw 4 lo—j2w
1-4e + ge

H(eY) =

The impulse response (for z[n] = &[n]) is the inverse Fourier transform of H(e?*).

-8 8

oy =
H(e™) 1+ te—dw 1o ze~v

Thus, . .
h[n] = —S(Z)"u[n] + 8(5)"u[n].
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2.5. (a) The homogeneous difference equation:
yln] = 5y[n — 1] + by[n — 2] = 0

Taking the Z-transform,
1-527146272=0

1-2:"1H(1-32"1) =0.
The homogeneous solution is of the form
yn[n] = A1(2)" + A2(3)".
(b) We take the z-transform of both sides:
Y(2)[1 =527 +627%) =221 X(2)
Thus, the system function is

Y(2)

H(z) XG)

1—-2z"1 + 1-32z"1

where the region of convergence is outside the outermost pole, because the system is causal. Hence
the ROC is |z| > 3. Taking the inverse z-transform, the impulse response is

hin] = —2(2)"ufn] + 2(3)"u[n].

(c) Let z[n] = u[n] (unit step), then

X(z) = 'l_—lz—:f
and
Y(z) = X(z)-H(2)
2271

(1=2"1)(1-22"1){1 - 32~1)°
Partial fraction expansion yields

1 4 3
Y(e) = 1-2z1 1-2z1 +1—3z‘1'

The inverse transform yields:

yln] = ufn] — 4(2)"u[n] + 3(3)"u[n].
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2.6. (a) The difference equation:
yln] - 33l ~ 1] = zn] + 2aln ~ 1] + 2l ~ 2
Taking the Fourier transform of both sides,
Y(e)[1 - —;-e’j‘”] = X(e?)[1 +2e77 +e77%].

Hence, the frequency response is

- Y (e7¥)
_ 142e7I 4 eI
- 1- e v

(b) A system with frequency response:

1-le™ ¥ 433

Jjw —
H(Y) = 1+%e_—ju+%e—j2w

Y (e7¥)
X(eiv)

cross multiplying,
j 1 —fw 3 —jow jw 1 —Jjw —j3w
Y(e"")[1+§e I + 7€ 729 = X (e )[1——2-6 W e,
and the inverse transform gives

yl) + 3yl — 1]+ Syl — 2] = aln] — 3l — 1] + ol - 3|
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2.7. z[n] is periodic with period N if z[n] = z[n + N] for some integer N.
(a) z[n] is periodic with period 12:
eI(3n) = Qi (F)n+N) _ gi(Fn+2mk)
= 27k = %N, for integers k, N

Making k£ = 1 and N = 12 shows that z[n] has period 12.
(b) z[n] is periodic with period 8:
1) — giCE)(n+N) _ i(3En+2nk)

3

k =
= 27 7

N, for integers k, N

= N= g-k, for integers k, N

The smallest k for which both k and N are integers are is 3, resulting in the period N being 8.
(c) z[n] = [sin(nn/5)]/(7n) is not periodic because the denominator term is linear in n.
(d) We will show that z[n] is not periodic. Suppose that z[n] is periodic for some period N:
(TN = (TN _ i(Fgnetank)
T
V2
= N = 2v/2k, for some integers k, N

There is no integer k for which NNV is an integer. Hence z{n] is not periodic.

= 27k = —N, for integers k, N
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2.8. We take the Fourier transform of both h[n] and z[n], and then use the fact that convolution in the time
domain is the same as multiplication in the frequency domain.

5
1+ femiv
H(e™)X (™)

5 1
[Tl Tl
3 2
1+ ledo | 1-lew

H(e™)

l

Y (el®)

s = 2(3)"uln] +3(~3) uln]

10
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2.9. (a) First the frequency response:

V() = 2TV () + geTHUY () = e X (e)

Y(e?v)
X (eiw)

1, 2w
3€

H(Y) =

1-3e—Jo + Le2w
Now we take the inverse Fourier transform to find the impulse response:

-2 2

HE™) = 1 le—iv 1= ze~iv

Hin] = =2(3)"uln] +2(3)"uln)
For the step response s[nj:
s[n] = i hikJuln — k]

k=-—00

= ) hlK]
k=-—o0

IS T ¢V 1- (1/2)"+

= -2—-——1-_—1-/-?3———11,[11] + 2———1t-1—/—2-—u[n]

o 1 n 1 n
= 1+ ()" -25)"uln]
(b) The homogeneous solution yx[n] solves the difference equation when z[n] = 0. It is in the form
ya[n] = 3 A(c)™, where the c’s solve the quadratic equation
5 1
2 _ = - =
c 6c+ 6 0

So for ¢ = 1/2 and ¢ = 1/3, the general form for the homogeneous solution is:

wnln] = A1(5)" + Ax(3)"

(c) The total solution is the sum of the homogeneous and particular solutions, with the particular
solution being the impulse response found in part (a):

ya[n] + ypln]
= MG+ 4G+ ~25) sl + 2(3)"uln)

y[n]

Now we use the constraint y[0] = y[1] = 1 to solve for A; and A,:

yl0) = A1+A4:-2+2=1
y[l] = A1/2+A4:/3-2/3+1=1
Ai+4 =1
A2+ A42/3 = 2/3
With 4; = 2 and A; = —1 solving the simultaneous equations, we find that the impulse response
is
= l n l ny - .1_ n _1_ n
ylnl = 2(3) (3) +-2(3) uln] + 2(3) u[n]
11
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2.10. (a)
y[n] = hin]*z[n]
o0
= Z a*u[—k — 1ju[n — k]
k=—o00
Z af, n<-1
_ k=—00
= -1
Z a", n>-1
k=—o0
an
_ < —
_ 1-1/a’ ns-1
= 1/a > -1
1-1/a’

(b) First, let us define v[n] = 2"u[—n — 1]. Then, from part (a), we know that

2n+1’ n < -1

win] = u[n] *x v[n] = { 1,

n>-1
Now,
yln] = uln—4]*vn]
= wn -4
2% n<3
- 1, n>3

(c) Given the same definitions for v[n] and w[n] from part(b), we use the fact that h[n] = 2" "lu[—(n -
1) — 1] = v[n — 1] to reduce our work:

z[n] * h[n]

z[n] * v[n — 1]

wln — 1]

_ { 2", n<0

y[n]

1, n>0
(d) Again, we use v[n] and w[n] to help us.

z[n] * hln]

(uln] - ufn — 10]) » vln]

= w[n] - w[n - 10]

= (2"u[~(n+1)] + ufn]) ~ (2" u[~(n ~ 9)] + uln — 10))
9(n+1) __ 2(n—9)’ n< -2

y[n]

Il

= 1 - 2(n=9) -1<n<8
0, n>9
12
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2.11. First we re-write z[n] as a sum of complex exponentials:
ej-xn/4 - e-—j1rn/4
2j

z[n] = sin(zg—l)

Since complex exponentials are eigenfunctions of LTI systems,

H ej1r/4 ej1m/4 - H e—j1r/4 e—Jimn/4
ORE CACAEY (Gl

Evaluating the frequency response at w = +x/4:

H(T) = ..1_:_6__]1 =2(1 - j) = 2v/2e"/4
T 1¥1j2e7 9=
- 1- ej"/z )
-3 - . = i} =2 jn/4
H(e %) 13120 2(1 + j) = 2v2

We get:

2V~ im/4eimn/4 _ 0.\ [2ei™/4e=imn/4
yln] = %

2V/2sin(rn/4 - w/4).

13
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2.12. The difference equation:
y[n] = ny[n — 1] + z[n]
Since the system is causal and satisfies initial-rest conditions, we may recursively find the response to
any input.

(a) Suppose z{n] = §[n]:
y[n] =0, forn <0

y[0] =1
yl=1
y[2] =2
y[3]=6
yl4] =24

y[n] = k[n] = n'u[n]
(b) To determine if the system is linear, consider the input:

z{n] = ad[n] + bd[n]

performing the recursion,

y[n] =0, forn <0
yl0]=a+b
y[lj=a+b

y[2] =2(a+1)
y[3] = 6(a + b)
y[4] = 24(a + b)

Because the output of the superposition of two input signals is equivalent to the superposition of
the individual outputs, the system is LINEAR.

(c) To determine if the system is time-invariant, consider the input:
z[n] = 8[n—1]

the recursion yields
y[n]=0, forn <0

y[0]=0
y1]=1
y2] =2
y[3]=6
yl4] =24

Using h[n] from part (a),
h[n - 1] = (n - 1)!‘(1.[7’1. - 1] # y["’]lz[n]:é[n—-l]

Conclude: NOT TIME INVARIANT.

14
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2.13. Eigenfunctions of LTI systems are of the form a", so functions (a), (b), and (e) are eigenfunctions.

Notice that part (d), cos(won) = .5(e7“°™ + ¢~9“°™) is a sum of two o™ functions, and is therefore not
an eigenfunction itself.

15
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2.14. (a) The information given shows that the system satisfies the eigenfunction property of exponential
sequences for LTI systems for one particular eigenfunction input. However, we do not know the
system response for any other eigenfunction. Hence, we can say that the system may be LTI, but
we cannot uniquely determine it. => (iv).

(b) If the system were LTI, the output should be in the form of A(1/2)", since (1/2)™ would have been
an eigenfunction of the system. Since this is not true, the system cannot be LTL. = (i).
(c) Given the information, the system may be LTI, but does not have to be. For example, for any
input other than the given one, the system may output 0, making this system non-LTI. = (iii).
If it were LTI, its system function can be found by using the DTFT:
. Y (e7%)
H(Y) = -
(¢*) X(e7%)
_ 1
T 1-lemiw
1
Bl = (3)"uln]
16
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2.15. (a) No. Consider the following input/outputs:
1
zifn] =6[n] = wiln] = (7)"uln]
1
] =dn -1 = y2ln] = (3)" uln]

Even though o3[n] = z1[n — 1], y2ln] # y1fn — 1] = (2)*uln - 1]

(b) No. Consider the input/output pair z[n] and y,[n] above. z[n] = 0 for n < 1, but y2[0] # 0.

(c) Yes. Since h[n] is stable and multiplication with u{n] will not cause any sequences to become
unbounded, the entire system is stable.

17
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2.16. (a) The homogeneous solution yx[n] solves the difference equation when z[n] = 0. It is in the form
ya[n] = 3 A(c)™, where the ¢’s solve the quadratic equation

1 1
2 -_—— ——
c 4c+ 3 0
So for ¢ = 1/2 and ¢ = —1/4, the general form for the homogeneous solution is:

1 1
yaln] = A (3)" + A2(=2)"
(b) Taking the z-transform of both sides, we find that
Loa_1 5 _
Y(2)(1 yid i ) =3X(2)
and therefore

Y(z)
HE) = %@
_ 3
T 1-1/42"1-1/82"2
_ 3
T (1+1/4z7)(1-1/2271)
1 2

1+1/42-1 + 1-1/2z1

The causal impulse response corresponds to assuming that the region of convergence extends outside

the outermost pole, making
he[n] = ((=1/4)" + 2(1/2)")u[n]

The anti-causal impulse response corresponds to assuming that the region of convergence is inside
the innermost pole, making

hac[n] = —((—-1/4)™ + 2(1/2)™)u[-n — 1]

(c) he[n] is absolutely summable, while h,.[n] grows without bounds.

(d)
Y(z) = X(2)H(2)
B 1 1
T o1-121 (143270 -327Y)
_ 1/3 2 2/3
= T¥1/41 T1-1/21 T1-1/221
11, 1 2.1,
vial = 33l + e+ DGl 1)+ 2 ()

18
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2.17. (a) We have
1, for0<n<M
rin] = 0, otherwise

Taking the Fourier transform

M
n=0
1-— e—-ju(M+1)

1 —eiw

S M1 M1
ju, (€T e <
= 2 n -
€ elW — e—Iw

—jMw Sin( M‘é&w)
€7\ Tsin(/2)

R(e™)

Il

(b) We have
1(1 +cos(§2), for0<n<M
0, otherwise

wln] = {

‘We note that, ) orm
wln] =r[n] - 5[1 + cos(-EI——)].

Thus,
i v = 1 2MN\\ _iun
W(e) = R(@)* ), 5(1+cos(5r)e
n=—oo
o= 1 1 izen 1 _i2mn g,
= R()* Y 5L+ 56 F +2e e
n=--00

R(e) + (35(0) + 3800+ 30) + 360 = 37)

(c)
YRE®

- T O

A

(Wl @ )

D\

2\l

19
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2.18. h[n] is causal if h[n] = 0 for n < 0. Hence, (a) and (b) are causal, while (c), (d), and (e) are not.

20
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2.19. h[n] is stable if it is absolutely summable.

(a) Not stable because h[n] goes to co as n goes to co.
(b) Stable, because h[n] is non-zero only for 0 < n < 9.
(c) Stable.
-1 )
ShR)= > 3= (1/3)"=1/2< 00
n n=1

n=-00
(d) Not stable. Notice that 5
> Isin(n/3)| = 2v3
n=0
and summing |k[n]| over all positive n therefore grows to co.
(e) Stable. Notice that |h[n]| is upperbounded by (3/4)!™!, which is absolutely summable.

(f) Stable.
2, ,-5<n<-1
hln]=< 1, ,0<n<4
0, ,otherwise
So 3 |h[n]| = 15.
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2.20. (a) Taking the difference equation y[n] = (1/a)y[n — 1] + z[n — 1] and assuming h[0] = 0 for n < 0:

hlo] = 0
A1l = 1
h2l = 1/a

R3] = (1/a)

hln] = (1/a)" lu[n-1]

(b) h[n] is absolutely summable if |1/a] < 1 or if |a| > 1

22
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2.21.
1 o900
(a) I T1/2
“®* 17233256 °
b ® 00 0|
“* 0512325 "
© LK)
12
0 1 2 "™
@ ]..I
~*1 o012 ***"
(e) L 4

|
{
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2.22. For an LTT system, we use the convolution equation to obtain the output:

ylnl= Y aln - KRk
k=—o00
Letn=m+ N:
yfm+N] = > z[m+ N - Klh[k]
k=-o00
= ) z[(m—-k)+ Na[k]
k=-—o00

Since z[n] is periodic, z[n] = z[n + rN] for any integer r. Hence,

o

ym+N] = > z[m - klh{k]

k=-—00

y[m]

So, the output must also be periodic with period N.

24
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2.23. (a) Since cos(nn) only takes on values of +1 or -1, this transformation outputs the current value of
z[n] multiplied by either £1. T'(z[n]) = (—1)"z[n].
e Hence, it is stable, because it doesn’t change the magnitude of z[n] and hence satisfies bounded-
in/bounded-out stability.
e It is causal, because each output depends only on the current value of z[n].
o It is linear. Let y1[n] = T'(z1[n]) = cos(wn)z;[n], and yq[n] = T(z2[n]) = cos(rn)zz[n]. Now

T(az1[n] + bzz[n]) = cos(nn)(azy[n] + bzz[n]) = ay:[n] + byz[n]

e It is not time-invariant. If y[n] = T(z[n]) = (-1)"z|n], then T'(z[n —1]) = (~1)*z[n — 1] #
y[n —1].
(b) This transformation simply “samples” z[n] at location which can be expressed as k2.
o The system is stable, since if z[n] is bounded, z[n?] is also bounded.
e It is not causal. For example, T'z[4] = z[16].
e It is linear. Let y1[n] = T(z1[n]) = z1[n?], and y2[n] = T(z2[n]) = z2[n?]. Now

T(azy[n] + bz2[n]) = az; [n?] + bz2[n?]) = ay1[n] + byz[n]

e It is not time-invariant. If y[n] = T(z[n]) = z[n?], then T(z[n — 1]) = z[n® — 1] # y[n — 1].
(c) First notice that
<]
> 8ln— k] = u[n]
k=0
So T(z[n]) = z[nJu[r]. This transformation is therefore stable, causal, linear, but not time-
invariant.
To see that it is not time invariant, notice that T'(6[n]) = é[n], but T'(d[n + 1]) = 0.
(d) T(zln]) = XiZn- (k]
o This is not stable. For example, T(u[n]) = co for alln ; 1.
o It is not causal, since it sums forward in time.
e It is linear, since

> amfk]+bmakl=a Y @kl+b Y z2fk]
k=n—1 k=n-1 k=n-—-1
e It is time-invariant. Let .
yln] =T([r) = ) alk),
k=n~1
then -
Teln-n)= Y. o[kl =yln—nol
k=n—ng—1
25
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2.24. For an arbitrary linear system, we have
y[n] = T{z[n]},

Let z[n] = 0 for all n.
y[n] = T{z[n]}
For some arbitrary z;[n], we have
y1[n] = T{z:1[n]}

Using the linearity of the system:

T{z[n] + z:[n]} T{z[n]} + T{z:1[n]}

= y[n]+u(n]

Since z[n] is zero for all n,
T{z[n] + z:[n]} = T{z:[n]} = y:[n]

Hence, y[n] must also be zero for all n.

26
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2.25. We use the graphical approach to compute the convolution:

yln] = z[n]xh[n]
> zlklh[n - k]

k=—00

(a) y[n] = z[n] * hn]

y[n] = d[n — 1] x h[n] = h[n — 1]
2

(b) yln] = z[n] * h[n]

(¢) y[n] = z[n] » h[n]

(d) y[n] = z[n] x h[n]

27
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2.26.

The response of the system to a delayed step:

Evaluating the above summation:

For n < 4:
For n =4:
For n = 5:
For.n = 6:
Forn="T:
Forn =8:
Forn >9:

z[n] * hn]
> zlklh[n - k]
> ulk - 4Jhln — k]

k=-—00

y[n]

1

I

yln] = hln - K]

k=4

y[n] =0

y[n] = A[0] =1

y[n] = h[1] + R[0] = 2

y[n] = h[2] + R[1] + R[0] = 3

y[n] = h[3] + h[2] + R[1] + h[0] = 4

y[n] = h[4] + A[3] + A[2] + R[1] + A[0] = 2

y[n] = h[5] + h[4] + h[3] + h[2] + A[1] + A[0] = 0
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2.27. The output is obtained from the convolution sum:

yln] = z[n]+hln]

= ) zlklh[n -k
k=-—00

= ) zlkju[n -k
k=—o00

The convolution may be broken into five regions over the range of n:

y[n] =0,forn <0

n
yln] = ) a*
k=0
— a(n+1)
= l——a——,forognle
l1-a
Ny
yln] = D o
k=
1 — g(N1+1)
= ————la_a , for Ny <n < N;
Ny n
el = Yt 3 b
k=0 k=N
1—aMi+l) 1 gntl)
- l1-a 1-a

92 — a(N1+1) _ 4(n+1)
= 2 l_a“ , for Ny <n < (N + Na)

N1+N2

N,
yln] = Zla"+ Z alk—N2)
k=0

k=Nz

Ny
= Zak + Z Nla'"
k=0 m=0
Ny
= 2 Zak
k=0
” (1 - a(N1+1)
l-a

), for n > (Ny + N»)
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2.28. (a) The homogeneous solution y4[n] solves the difference equation when z[n] = 0. It is in the form
ya[n] = 3 A(c)™, where the ¢’s solve the quadratic equation

1 2
2 —_—C - — =
c+15c 5 0

So for ¢ = 1/3 and ¢ = —2/5, the general form for the homogeneous solution is:
1., 2.,
ynln] = Al(g) + Az(—g)

(b) We use the z-transform, and use different ROCs to generate the causal and anti-causal impulses

responses:
1 _5/11 6/11

(1-1z1)(1+2271)  1-L1z1 1422
(3 uln] + 13 (~3)"uln]
hac[n] = "%(%)nu[“n -1]- %(—%)”u[-—n -1]

H(z) =

hen] =

(c) Since hc[n] is causal, and the two exponential bases in h.[n] are both less than 1, it is absolutely
summable. hq.[n] grows without bounds as n approaches —oo.

(d)
Y(z) = X(2)H(2)
1 1
To1- 3271 (1-327Y)(1+ 2z-1)
_ —25/44 55/12 27/20
= 1131 T1x2/5:1 T 1-3/5:1
s = (3 uln] + oo (= 2yl + S ) uln
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2.29. e System A:
1
z[n] = )"

This input is an eigenfunction of an LTI system. That is, if the system is linear, the output will
be a replica of the input, scaled by a complex constant.
Since y[n] = ()", System A is NOT LTL

e System B: .
z[n] = e/™3u[n]

The Fourier transform of z[n] is

>~}
X(e?) = Z e/ Bu[n)eIwn

n=-000

oo
= 3 eitebn

n=0
1
1 —_ e"j(w—%) )

The output is y[n] = 2z[n], thus

. 2
jwy - %
Y =T
Therefore, the frequency response of the system is

- Y (e?¥)
wy = =/
HE™) = X

= 2.

Hence, the system is a linear amplifier. We conclude that System B is LTI, and unique.

e System C: Since z[n] = /™3 is an eigenfunction of an LTI system, we would expect the output to
be given by
yln] = ye™/%,
where «y is some complex constant, if System C were indeed LTI. The given output, y[n] = 2¢/™/%,
indicates that this is so.
Hence, System C is LTI. However, it is not unique, since the only constraint is that

H(ejw)lw=1/8 =2.
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2.30
A. LTI systems are stable iff Z ‘h [n]‘ < oo (the summation should converge).

n=—co

Then

S= i |a|" u[n]

n=—co
=2
n=0

S will converge only when |a| <l and §=

n

— < oo
1=d

Therefore the system is stable for |a| <l1.

B. y[n]=ay[n—1]+x[n]-a"x[n—N]. Therefore,

h|n]=ah[n—1]+6[n]-a"6[n—N].
Since the system is causal, h[—l] =0. Then
h[0]=0+1-0=1
h[l]za, h[2]=a2, h[N]zaN—aNzO
h[N+1]=ax0+0-0=0.

h{n]

1

2
a

W aN—l
—-—0 T *—0— 7

012 N-IN

C. We see that even though it is a recursive system (with feedback), its impulse respor
finite in length. The length of h[n] is N terms. Hence this system is FIR.

D. FIR systems are always stable as the sum z ‘h [n]‘ has at most a finite number of

Nn=—oo

nonzero terms.
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2.31. For (-1 < a < 0), we have

(a) real part of X (e/“):

(b) imaginary part:

(c) magnitude:

(d) phase:

X(ejw) = - 1

— ge—iv

Xn() = 3 [X()+X"()]
1 - acos(w)
1 - 2acos(w) + a?

1 jw *( _jw
Z'[X(e’ ) = X" (/)]
—asin(w)

1 - 2acos(w) + a?

1X(e) = [X(e™)X"(e™)]?

1 z
- (1 — 2a cos(w) +a2)

LX(e'") = arctan ( —asin(w) )

1 — acos(w)

33
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2.32
y[n] = —2x[n]+4x[n—l]—2x[n—2]
A. Impulse response:

h[n]=-26[n]+45[n—1]-26[n-2]

H(e")=-2+4e7"-2¢7>
=—2¢7" (! +e7"-2)
=—2¢7"(2cos(w)-2)
=4¢ 7 (1-cos(w))
=4e 7 (2sin’ (w/2))
=8sin’ (@/2)e .

The delay is 1, =1.

Frequency Response Magnitude

8 Iy T T T T e
| | | I I I
| | | I \/\
6 — 477X\ 77777 - — - — 4+ - — — — |- — — — — N
| N I | I
é: | | I I I I
OB R N A
L | | N \// | |
| I I I I I
2L NS
o \ ) A
| | | 0 I I
0 1 1 1 S~ L 1 1 1
-4 -3 -2 -1 0 1 2 3 4

o (rad/sample)
Frequency Response Phase

4 T T T T T T

N | | | | |

[ | | | |
2 - - R ([P [ I [T

=~ T S
R e e S S

N : l l T :
2roooe H SR S R e

| | | | | ™

-4 I I I I I I
-4 -3 -2 -1 0 1 2 3 4

o (rad/sample)
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D. If
then

E. Using the
Consider

xl [n]=1+ej0.5ﬂ'n

0
=e/" +e’?

a1 (&) s ()
=0xe’ +8sin’ (r/4)e 2’

| .
=8><Ee“( U —co<n<oo,

convolution sum,

»[n]= Zh x, [n—k]

fk=—oco

:kgh[k](He’Z"k) u[n—k)

= Y k)14 )

f=—oo

0, n < 0 (as the system is causal)

»,[n]= zn:h ( j%(n—k))’ >0
n=0,

»ln]= (ih[k](l +e’%("‘k))]—( D h[k](”ef%(n—k)))
_ ih[k]+(ih[k]ef%k Jef%n _( S Ak)(1+e5)

k=n+1

h[K] (1475 “)).

N——

oo

— (") e () (2

k=n+1

+H
Now ( 2 h[k 1+e’2(" k) ]becomes zero for n>2 since h[ ] 0 for n>2. Thus

k=n+1

Y, [n]=yl [n] foralln=>2.
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2.33. Recall that an eigenfunction of a system is an input signal which appears at the output of the system
scaled by a complex constant.

(a) z[n] = 5™u[n]:

> hlklz[n — k]

k=-—00

i h{k]5™Fu[n — k]

k=-—o00

= 5" i h[k]5~*

k=-—o00

yln]

Becuase the summation depends on n, z[n] is NOT AN EIGENFUNCTION.

(b) z[n] = e2¥m:

yln] = ) hkle W
k=-00
ed2un Z h[k]e—j2wk
k=-—o00

I

eijn . H(eij)

YES, EIGENFUNCTION.

(C) ejwn+ej2wn:

> hlke™R 4 " hlk]e2n=R)

k=-00 k=—oc0

oo )
= ejwn Z h[k]e—jwk+ej2wn Z h[k]e—ijk

k=-o00 k=—o00

y[n]

= ejum _H(ejw) +ej2am . H(equ)

Since the input cannot be extracted from the above expression, the sum of complex exponentials
is NOT AN EIGENFUNCTION. (Although, separately the inputs are eigenfunctions. In general,
complex exponential signals are always eigenfunctions of LTI systems.)

(d) z[n] =5™

sl = 3 Akl

k=—00
o
= 5" Y hk57*
k=—00
YES, EIGENFUNCTION.
(e) z[n] = 5mes2wm:
o
y[n] = Z h[k]5(n—k)ej2w(n—k]
’ k=-o0
o
= §nei2wn Z h[kls—ke—ﬂwk
k=—00
YES, EIGENFUNCTION.
36
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2.34

A. Note 1: The sequence h[n] is one of the so-called “Barker codes.”

Note 2: The impulse response of the filter satisfies /#[n]=x[4—n], that is, h[n] is the
“matched filter” for x|[n].

Using “flipping and shifting,”

h[n—k] x[k]

3

B. Using “flipping and shifting,”

ST
il
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2.35. We first re-write the system function H(e?*):

. i . —j2w —Jj4w
Hev) = eJ”/‘*-e—J“’(1+e + de )

1+ fe—i2v
= &"/'G(e)
Let y1[n] = z[n] * g[n}, then
2 n, ei™/2 4 e—inn/2
n] = cos(.?) =' —2—-———— |
il = G(ei™/2)eimn/2 +2G(e"1"/2)e"”"/2

Evaluating the frequency response at w = +7/2:

- _i2
7% <1+e I 4 4e™ ") = 8g—im/2

Gle’) 1+ feim

G(e™7%) = 8ei™/?
Therefore, . .
= j(rn/2—=/2) j(—=nn/2+n/2) = 70, "
yi[n] = (8¢’ + 8e )/2 = 8 cos( 5"~ 3 )

and . | ] )
y[n] = eJ1l‘/4y1[n] - 8ej1r/4 COS(E'R _ 5)
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2.36

C.

1 e/
H(e"”) — + .
1-0.8¢77 1-0.8¢77?

h[n]=(0.8)"u[n]+(0.8)" u[n-2]

Y(ejw) 1+e /2
H(e")= X () 1-0.8¢7
Y(e”)-0.8¢7°Y ()= X (/) +e > X ()
y[n]-0.8y[n-1]=x[n]+x[n-2]
y[n]=0.8y[n—1]+x[n]+x[n-2]

Using the frequency response we can write the output as
y[n]=H (" )4+ Z‘H (ej“"’ )‘ cos (a)on +ZH (ej“"’ ))

To get y[n]= constant we need ‘H (e )| =0, which means 1+e/*® =0, or @, =7/2.
1+1

Th 4 =40.
en y[n]= Y
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2.37
sin (0.577n)
n

A. The impulse response 4, [n]=2 corresponds to a frequency response of

oy |2 o<n/2
Hz(ej )_{0, r2<w<n
Then
H(e’“’)zH1 (ej‘")H2 (ejw)
|| < /4
=e %42, 7m/4<|w|<7/2
0, z/2<|w|<7m.
B.
’H (ej’”)‘ ZH (ej‘")
zl
2._
| —w
- V4
- z z /i zl

C. Method 1 (Easiest):
The overall cascade system can be viewed as the difference of two lowpass filters with a

one-sample delay.
sm(l( ) sm( (n-1))

== 7(n=1)

Method 2 (Harder):
The overall cascade system can be viewed as having a lowpass response modulated up to

frequency 37/8.
sin (£ (n-1))

h[n]=4 Wcos( z(n-1))

Method 3 (Direct):
Just evaluate
1 or o
hin|=—1| H(’)e"dw
=L (o)
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2.38. (a) Notice that
z[n] = zo[n — 2] + 2zo[n — 4] + zo[n — 6]

Since the system is LTI,
y[n] = yoln — 2] + 2yo[n — 4] + yo[n - 6],

and we get sequence shown here:
2

1

“Pl?ﬁ567T’
-1

2

(b) Since
Yo[n] = —1zo[n + 1] + zo[n — 1] = @o[n] * (—b[n + 1] + [n — 1]),

h[n] = =é[n + 1] + é[n — 1]
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2.39. The ideal delay system:
y[n] = T{z[r]} = z[n — n,]
Using the definition of linearity:
T{az:i[n] + bz2[n]} = az1[n —n,]+ bz2[n — n,)
= ayi[n] + byz[n]
So, the ideal delay system is LINEAR.
The moving average system:
1 &
y[n] = Tz[n] = VTGS k;ﬂ z[n — k]
=—M
by linearity:
M
T{azi[n] + bzz[n]} = 1 Z (az1[n] + bz2[n])
M, +M; +1 [y P8
1 M 1 M
= —_— Z azi[n] + —————— Z bzz([n]
M1+M2+1k=-M1 M, +M2+1k=—M1
= ay;[n] + byz[n]
Conclude, the moving average is LINEAR.
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2.40. z[n] is periodic with period N if z[n] = z[n + N] for some integer N.

(a) z[n] is periodic with period 5:
I (BN — (I (BF)(n+N) _ i(3Fnt2mk)
2r
5
Making k = 1 and N = 5 shows that z[n] has period 5.
(b) z[n] is periodic with period 38. Since the sin function has period of 2m:

= 2wk = — N, for integers k, N

z[n + 38] = sin(w(n + 38)/19) = sin(7n/19 + 27) = z[n]
(c) This is not periodic because the linear term n is not periodic.
(d) This is again not periodic. €/ is periodic over period 27, so we have to find k, N such that

z[n + N] = e/ (W+N) = giln+2rk)

Since we can make k£ and N integers at the same time, z[n] is not periodic.
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2.41. Since H(e™7%) = H*(e¥), we can apply the results of Example 2.13 from the text,
yln] = [H(e"%)l cos(%’—r-n + % + AH(e-";zz'))

To find H(e? %), we use the fact that H(e’) is periodic over 2, so
HEF)=H(e %) =¥

Therefore,
117
12

3w T 27 3
y[n] = cos(—2—n + 1 + ?) = cos(Tn + )
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2.42
The autocorrelation function of s [n] is

o, [m] = E{ S [n]s [n + m]}
Substituting s[n]=x[n]w[n] gives
o, [m] = E{ x[n]w[n]x[n+m]w[n+m]}.
Since x[n] and w[n] are statistically independent we have
o, [m] = E{ x[n]x[n+m]}E{ w[n]w[n+m]}
= E{x[n]x[n+m]}0'i5[m].
Then @, [m]=0 for m=0, so s[n] is white.

We can find the mean of s[n] by

E{ s[n]}= E{ x[n]w[n]}: E{ x[n]}E{ w[n]}: 0,
where we have used the statistical independence of x[r] and w[n] together with the fact that

x[n] and w[n] each have zero mean. The variance of s[n] is then given by
0. = E{s*[n]}-E*{s[n]}
= E{s’[n]}
=9,[0]
= E{x*[n]}o?.

Since x[n] has zero mean, E{x’[n]}=0]. Then 0} =0 0, as was to have been shown.
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243
1. The Fourier transform of x[n] is given by X(ej“’) = i x[n]e”™" . Then
X(ej‘”)‘ T i x[n]=12
2. X(ej“’) = Z x[n]e ™ = Z (-1)" x[n]=-j12.

3. The inverse Fourier transform is given by ﬁj_ﬂ,, X (ej "’)ej “dw=x[n]. Then
J:””X (ej"’)ef"’”da): 27x|n|
j_”” X (&)’ dw=27x[0]

[" x(e”)do=27(2-j).

4. If x[n]%X(ej“’),then x[—n]#)X(e’j”).

Rix, [n]} 502 5
3

19
1/2I L 12 12
_.T 1234, ; o4t [2Ya, ;
254 321 J J 5 J
de-
3/

— W
= —
[\9)

1
(93]
*———
1
w
o—
—
@
—_
w
(9]
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2.44. First z[n] goes through a lowpass filter with cutoff frequency 0.5x. Since the cosine has a frequency of
0.6, it will be filtered out. The delayed impulse will be filtered to a delayed sinc and the constant will
remain unchanged. We thus get:

sin(0.57(n — 5))

e R R

wln] =3

y[n] is then given by:

_ o5in(0.57(n — 5)) sin(0.57(n — 6))
=3 — s T rm-e
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2.45
-b", n<-1
= —bn —_ —1 = >
x[n] u[ . ] 0, otherwise

Then

X ()=, x[n]e ™

nj;m |
=3 e,

n=—oco

Let k=-n. Then

= —{ ib_kej”’k -1

k=0
S
k=0
S
e
b
where the last step is true only for ‘b’lej"” <1,or ’b‘l‘ <1, or |p|>1. Now we have
- e_bjw -1
X(ejw)_ 1_ efjw
b

only when |b| >1.

Now suppose
—jo
Y(ej’”): 2 —=2 ! —e
1+2e777  1-(-2)e”
Using the above transform pair and then shifting to the right by one,

yl]=2[=(=2) " u[-(n-1)-1]|==2(-2)"" u[-n]
=(=2)"u[-n].
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2.46
x[n]=w[n]cos(ayn)
A. Fourier transforming gives

Ly o]

_ i{”W (e.f(awo) )+ e (ej(w"'wo) )}

:%W(ej(w_w“))+%W(ej(w+w°)),

X(ej‘”):

for -m<w<rx.
B. We know from tables that if

[ ] 1, 0<nsM
nl=
Y 0, otherwise,

then the DTFT Y (&’) is
Y( w)_ sin(@w(M +1)/2)
©)= sin (@)2)
Let M =2L. Then we have

[ ] I, 0<n<2L
nl=
Y 0, otherwise,

—joM/2

with DTFT
_sin(@(2L+1)/2) _ .,
Y(e )_ sin (@)/2) ¢
Now w(n]=y[n+L], which implies W(ej‘”): Y(e’“’) /oL That is,
_sin(@(2L +1)/2)
W( )_ sin (@)2)

X(ej‘")

+2L+1
™\ /\ /™ /\ W

As @), gets closer to @w=0, the two peaks merge into a single peak. We will have two
2r

distinct peaks if @, = .
2L+1
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2.47. (a) Notice that z;[n] = z2[n] + z3[n + 4], so if T{-} is linear,

T{zi[n]} = T{z2[n]}+ T{zsn+4]}
y2[n] + y3[n + 4]

From Fig P2.4, the above equality is not true. Hence, the system is NOT LINEAR.
(b) To find the impulse response of the system, we note that

8[n] = z3[n + 4]
Therefore,

T{5[n]}

y3[n + 4]
= 36[n + 6] + 24[n + 5]

I

(c) Since the system is known to be time-invariant and not linear, we cannot use choices such as:
8[n] = &1[n] - 22[n]

and :
d[n] = §zz[n +1]

to determine the impulse response. With the given information, we can only use shifted inputs.
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2.48. (a) Suppose we form the impulse:
1 1
d[n] = 3% [n] - é-xz[n] + z3[n]
Since the system is linear,
1 1
L{d[n]} = 5u[n] — 532(n] + ys[n]
A shifted impulse results when:
bn — 1] = 1] + 32ln]
n = —531 n 22:2 n
The response to the shifted impulse
1 1
L{d[n - 1]} = —5u(n] + 532(n]

Since,
L{5[n]} # L{én — 11}
The system is NOT TIME INVARIANT.
(b) An impulse may be formed:
8[n] = %zl[n] - -;—:cz[‘n] + z3[n)

since the system is linear,

LI} = uiln]— gualn] +ysll
= h[n]
from the figure,
y1[n] = —é[n + 1] + 38[n] + 36[n — 1} + d[n — 3]
y2[n] = —6[n + 1] + é[n] — 34[n — 1] — é[n — 3]
ys[n] = 26[n + 2] + é[n + 1] — 36[n] + 26[n — 2]
Combining;:

kln] = 26[n+ 2]+ 6[n + 1] — 28[n] + 36[n — 1]
+26[n — 2] + 6[n — 3]

=Y

-!-2-]012

-2
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2.49. (a) The homogeneous solution to the second order difference equation,
3 1
yln] = guln 1] + gyln — 2] = 2zfn - 1,
is obtained by setting the input (forcing term) to zero.
3 1
yln] - gyln — 1]+ gyln — 2] =0

Solving, 5 .
21,1 2
1 4z + 8z 0,

1 -1 1 -1y _
(1 5% )(I—Zz )=0,
and the homogeneous solution takes the form
1 1
ynln] = A1(3)" + A2()"

for the constants A; and A,.
(b) Substituting the intial conditions,

-1 = ()7 + 4 =1,

and
y;.[O] =A; +4,=0.
We have
24; +44;, =1

A +A4,=0
Solving,

Al = —1/2
and

Ay =1/2.

(c) Homogeneous equation:
1
yln] —yln - 1]+ Jyln - 2] =0

Solving,
1-z714 %z“z =0,

1, 1
= - 527 =0,

and the homogeneous solution takes the form

o] = 4r(5)"

(1-

Invoking the intial conditions, we have
yh[—l] = 2A1 =1
ya[0] =4, =0
Evident from the above contradiction, the initial conditions cannot be met.
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(d) The homogeneous difference equation:
1
yln] —yln — 1]+ Jyln 2] =0
Suppose the homogeneous solution is of the form
1 1
ya[n] = A41(3)" +nB1(3)",
substituting into the difference equation:

1
ya[n] —yaln — 1]+ th[n -2]=0
1 1 1 1.,._
A" +nBu(3)" - 1‘11('2‘)"_1 —(n-1Bi(3)" !
1 _]_' n—2 _]; _ l n—2 -
ZAI(Z) +4(n 2)31(2) 0.
(e) Using the solution from part (d):
1 1
ya[n] = Al(i)n + nBl(i)n’

and the initial conditions

ya[-1] =1
and
yn[0] =0,
we solve for A; and Bj:
A =0
B, = —1/2.
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2.50. (a) For z;[n] = é[n],

v = 1
wnll] = ayl0]=a
For z3[n] = é[n — 1],
¥200] = 1
¥2(1] = ay[0] + (1] =a+1#y0]

Even though z2[n] = z;[n — 1], y2[n] # y2[n — 1]. Hence the system is NOT TIME INVARIANT.
(b) A linear system has the property that

T{az,[n] + bzz[n]} = aT{z;1[n]} + bT{z2[n]}}
Hence, if the input is doubled, the output must also double at each value of n.
Because y[0] = 1, always, the system is NOT LINEAR.

(c) Let z3 = az;[n] + Bz2[n].
For n > 0:

ys[n] = z3[n]+ays[n —1]
= az[n] + Bz2[n] + a(zz[n — 1] + y3[n — 2])

n—1 n—1
= a Z a*zi[n — k] + 8 Z a*z,[n — k|
k=0

k=0
= a(h[n] * z1[n]) + B(h[n] * z2[n])
= ayi[n] + Byz[n].
For n < 0:
ys[n] = a " (ys[n + 1] — z3[n])
= ~—a Z a*zi[n— k] - B Z a*zan — K|
k=-1 k=-1
= ay[n] + Byz[n]-
For n = 0:
y3[n] = y1[n] = y2[n] = 0.
Conclude,
ys[n] = ay1[n] + Byz[n], for all n.
Therefore, the system is LINEAR. The system is still NOT TIME INVARIANT.
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2.51. For (-1 < a < 0), we have

i 1
X(e™) = a5

(a) real part of X (e?“):
Xn(e) = 3 [XE)+ X ()]

1 — acos(w)
1 - 2acos(w) + a?

(b) imaginary part:

Xi(e) = %-[X(e"“’)—X*(e"‘“)l

—asin(w)
1 — 2acos(w) + a?

(c) magnitude:

IX(e) = [X(e™)X*(e™))}

1

1 2
(1 — 2acos(w) + az)

(d) phase:

@) = s (£5505)
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2.52. For the input

z[n] = cos(mn)uln]
(=1)"u[n],

the output is

> (/2)kulk])(-1) " Fuln - k]
k=—00
(=D)™ > G/2)k(-1)7*
k=0
(=1)™> (-i/2)*
=0

cor (=

y[n]

For large n, (—5/2)(®*1) — 0. Thus, the steady-state response becomes
_ ="
il = 157
cos(mn)
1+35/2°
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2.53. The input sequence,
(o]
z[n] = Z d[n + 16k},
k=-o00
has the Fourier representation

(o]

X(ev) = Z f: 8[n + 16k]e~7«m

n=—00 k=—o00

1 & 2rk
1_6 Z 5(w+—16—.

I

k=—o00

Therefore, the frequency representation of the input is also a periodic impulse train. There are [6
frequency impulses in the range -7 <w < 7.

We sketch the magnitudes of X (e?“) and H(e/*):

jo
HeE .
J\‘ T X )l

—6n4m2n 0 2n 4n 6n ®
16 16 16 16 16 16

From the sketch, we observe that the LTI system is a lowpass filter which removes all but three of the
frequency impulses. To these, it multiplies a phase factor e~ 73w,

The Fourier transform of the output is

Y(e) = %6(«1) + ilge_j%é(w - ?—;’
1 ex 2
g L “r
+16e 16 §(w + 16)

Thus the output sequence is
[n] = 1 + 1cos(27m + 3_7r_)
VM=% T8 16 "3
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2.54. (a) From the figure,

(z[n] + z[n] * h1[n]) * hz[n]
(z[n] * (8[n] + ha[n])) * ha[n].

y[n]

Let h[n] be the impulse response of the overall system,
y[n] = z[n] * h[n].
Comparing with the above expression,

h[n]

(8[n] + ha[n]) * hz(n]
ha[n] + hi[n] * ha[n]
= a™ufn]+ B Vuyln - 1).

(b) Taking the Fourier transform of h[n] from part (a),

Z h[n]e—jwn

n=-00
(o<}

[e o]
= Z a™u[n]e " + 3 Z " Dyfn — 1)e~Iwn

n=-—00 n=-—oo

oo oo
= Z ate—iwn +ﬂza(l—1)e—~1wl’

n=0 =0

H(ev)

where we have used ¢ = (n — 1) in the second sum.

; 1 Be~3v
H(Y) = - -
(™) l—ae™v 1-qe v
1+ Be~3v
:-l——a—e'J7’ for lal <1

Note that the Fourier transform of a"u[n] is well known, and the second term of h[n] (see part (a))
is just a scaled and shifted version of a™u[n]. So, we could have used the properties of the Fourier
transform to reduce the algebra.

(c) We have

Y (e7v)

X (eiv)

1+ Be~v
1- aeiv’

H(v) =

cross multiplying, _ . . '
Y ()1 — ae™¥] = X(e?)[1 + Be™7¥]
taking the inverse Fourier transform, we have
y[n] — ay[n — 1] = z[n] + Bz[n — 1].
(d) From part (a):
h[n] =0, for n < 0.

This implies that the system is CAUSAL.

If the system is stable, its Fourier transform exists. Therefore, the condition for stability is the
same as the condition imposed on the frequency response of part (b). That is, STABLE, if |a| < 1.
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2.55. (a) X () |w=0 Z z[nle ™" y=0

> aln]

n=-—00

= 6

(b) X(ejw)|w=1r — f: z[n]e—jrn
3 (-1

= 2

(c) Because z[n] is symmetric about n = 2 this signal has linear phase.
X (&%) = A(w)e 7
A(w) is a zero phase (real) function of w. Hence,
LX) =-2w, -T<w<T
(d)
w . .
X(e?“)e 7" dw = 2rz[n]
-7

forn=20: .
X (e7“)dw = 27z[0] = 4n

-7
(e) Let y[n] be the unknown sequence. Then
X(e™7v)

Z z[n]elv™

z z[—nle~ I
> ylnlen

Y (e?)

I

Il

Hence y[n] = z[-n].
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(f) We have determined that: ) .
X (7)) = A(w)e™ 7%

Xr(e) Re{X (™)}
= A(w)cos(2w)

= %A(w) (€72 + e772v)

Taking the inverse transform, we have
1 1 1 1
§a[n +2] + ia[n -2]= E:z:[n +4] + Ea:[n]
2
1 1
172 T T T T 1/2
-—o——o ? *—e e e
® -4 0 4
12 -172
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2.56. Let z[n] = 4[n], then _
X)) =1
The output of the ideal lowpass filter:
W () = X(e?“)H(e?) = H(e'¥)
The multiplier: '
(—1)"w[n] = e w(n]
causes a shift in the frequency domain:
W(e!@™)) = H(e/w—™)
The overall output: ‘
yln] = e7wln] + w(n]
Y(e”) = H(e“ ™) + H(e™)
Noting that:
jw=m)y — 1, ’72£ < lwl <
e ={ 5 kil
Y (e?¥) = 1, thus y[n] = é[n].
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2.57. (a) We first perform a partial-fraction expansion of X (e):

X(@) = e
€T U=ae )1 - ae¥)
_ 1 aedv
T 1-—age-iv ' 1-—aeiw
z[n] = a"uln]+a "u[-n-1]
' oln!
(b)
1 [ . 1 [" el e
—_— Jw = Jw dw
5 X (') cos(w)dw v X(e™) 3

-7

X (7)€ dw + % X (e/)e ™ dw

-

1cI8 )
%(a:[n —1]+z[n +1])

%(a[n—u + a|n+1|)
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2.58. (a)

y[n] = zn]+2z[n—1]+z[n -2

z[n] * h{n]

z[n] * (8[n] + 26[n — 1] + é[n — 2])
8[n] + 26[n — 1] + 6[n — 2]

h{n]

I

(b) Yes. h[n] is finite-length and absolutely summable.

(c)
H(eY) = 142799 e 2%
1 1 .
' L uipv [ —eTIw
2e .(2e +1+2e )
= 2e77“(cos(w) + 1)

(d)

|H (e7)] 2(cos(w) + 1)
LH(EY) = -—w

I

Magnitude 4 Phase 4

(e)
m] = — / Hy(e7)e™ dw
27 J<on>
1

27 Jcon>

- 1 H(ej(w)ej(w—n)ndw

5;; <27>
. 1 . .
= e—_-mn_ H(eJ(w e]amdw
2m <2r> )
= —1"h[n]
= 6[n] - 26[n — 1] + d[n — 2]

H(ej(w+1r)ejwndw
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2.59. (a) Notice that
s[n] =1+ cos(nn) =1+ (-1)°

S(e?v) = 2%25((4) — k)
k

s[n] s@® )
2n

(b) Since y[n] = z[n]s[n],

Y(e*) = 5 [ SE)X(E)dw
= L7 5t x (30
= o [ SE@)XE@ )

-7

= X(¥) + X(ej(“’”"))

Y (e’“) contains copies of X (e7“) replicated at intervals of .
(c) Since win] = y[n] + (1/2)(y[n + 1] + y[n - 1)),

W (e?)

Y(e?) + % (Y () + e Y (7))
Y (e7“)(1 + cos(w))

(d) The following figure shows X (e/*), Y (e#*), and W (e’¥) for a < 2 and a > 2. Notice that

i 1, |w|<n/a,
Jwy >
X(e "{‘0, m/a < fw] >

64



ch02_51-68.gxd 4/16/10 8:36 PM Page 65

—p—

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

So, for a > 2, Y(e?) contains two non-overlapping replications of X (e/*), whereas for a < 2,
“aliasing” occurs. When there is aliasing, W (e’“) is not at all close to X (e’“). Hence, a must be
greater than 2 for win] to be “close” to z[n].
X, Y, and W for a<2 X,Y,and W fora>2
2 6
1.5 4
£ N
21 2
x x 2
05
0 0
-2 -2
3 6
25
= ~4
N EN
2 2 2
= = 2
150 -
1 0
-2 -2
6
10}
-4 p—
% %
5
b E /] N
0 , g
0 -2 0 2 -2 0 2
® (0]
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2.60. (a) We start by interpreting each clue.
(i) The system is causal implies
h[n] =0 for n < 0.
(ii) The Fourier transform is conjugate symmetric implies h[n] is real.
(iii) The DTFT of the sequence h[n + 1] is real implies k[n + 1] is even.
From the above observations, we deduce that h[n] has length 3, therefore it has finite duration.
(b) From part (a) we know that h[n] is length 3 with even symmetry around A[1]. Let h{0] = h[2] = a
and h[1] = b, from (iv) and using Parseval’s theorem, we have
2a% +b% = 2.
From (v), we also have
2a-b=0.
Solving the above equations, we get
1
hl0] = —
(0] 7
2
R[] = —
(1] 7
1
hl2] = —
2] 7
or
1
A0} = -—
(0] 7
WY = -
V3
1
h2] = —-—.
2] 7
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2.61. (a) Carrying out the convolution sum, we get the following sequence g[n):

Tl
TT[

i

0 1 2 3 4 5 6 7 8 9 10
(b) Again carrying out the convolution sum, we get the following sequence r[n}:

’7
10 |11 fi2 113 114 o 1516

-8
-12
-16

(c) Let a[n] = v[—n] and b[n] = w[—n], then:

+00

a[n] *bfn] = Z a[k]b[n — k]
k=-—o00

+o00

> v[-kuwlk -]
k=-—00

+00
= Z v[rjw[-n — r] where r = —k

r=-—00

= g[-n].

We thus conclude that g[—n] = v[—n] * w[-n].
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2.62.

cos(————lszn - g)

z[n]

o] = %
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2.63. (a)

y[n] hin] * (e77“°"z[n])

+o00
= Y e kg[klhn — k).

k=-—o00

Let z[n] = az,[n] + bzz[n], then:

yln] = h[n]* (e77“°"(az1[n] + ba2[n]))
+o0
= Z eIk (az, [k] + bz [k])h[n — k)
k=—o00

= a +Z°° e—j“°’°z1[k]h[n—k]+b +§ e—jwokzzlk]h[n_k]

k=—00 k=-—00

= ayi[n] + byz[n]

where y;[n] and y2[n] are the responses to z;[n] and z2[n] respectively. We thus conclude that
system S is linear.

(b) Let z2[n] = z[n — ng), then:

hln] * (e™7*°"z[n])

y2[n]

+o0 )
= Z e~ wo(n=k) g, [n — k]h[k]

k=-—00

+o00 )
= Z eI (=K gin — ny — k]h[k]
k=—00

# yln—no].

We thus conclude that system S is not time invariant.

(c) Since the magnitude of e~7“°™ is always bounded by 1 and A[n] is stable, a bounded input z[n]
will always produce a bounded input to the stable LTI system and therefore the output y[n] will
be bounded. We thus conclude that system S is stable.

(d) We can rewrite y[n] as:

yln] hin] * (e™7*°"z[n])

+o00 )
= Y e iwo(=kg[n — k]hk]

k=—o00

+o00 ) )
= z e Jwongivokyin — kh[k]

k=-00

. +w .
= e Jwon Z &% z[n — k]h[k].

k=-—o00

System C should therefore be a multiplication by e~7«o™,
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2.64. (a) Hy(e’“) corresponds to a frequency shifted version of H(e’“), specifically:
Hy(e?) = H(e?“™™).

‘We thus have:

oy [0, |wl <08
Hl(ew)‘{ 1, 08r<|w<m

This is a highpass filter.

H1(€jw)

- —0.87 0 08 w
(b) Hz(e’*) corresponds to a frequency modulated version of H(e’“), specifically:
Hy(e?°) = H(e?) * (6(w — 0.57) + 6(w + 0.57)) where |w| < 7.
We thus have:
‘ 0 , |w<03nr
Hy(e)=< 1 , 037 <|w| <077
0, 0.7r< |w| <.

This is a bandpass filter.

Hz(ej”)

-7 =07 —037 0 037 0.7r =
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(c) H3(e’®) corresponds to a periodic convolution of Hi,(e’“) with another lowpass filter, specifically:

Hs(e™) = .2_1; H(e®) Hip(e7* %) db
where H(e’*) is given by:
; 1 jw] < 0.17
Jwy 3
H(e )—{0 , Olr<|wl<mw

Carrying out the convolution, we get:
01 , |w<01m

Hy(e™)={ -kl 4015 |, 017 <|w| <03
0, 03r<|w| <.

A H3(ej"’)
/_ _{'1
4 — W
-7 —-0.37 0 0.37 T
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2.65. Note that X (e’) is real, and Y (¢’“) is given by:

oy _ | —iX(EvY) , O<w<m
Y(e"")—{ +iX(ev) , -m<w<O.

w(n] = z[n] + jy[n], therefore: ’ _ .
W(e) = X () + jY (e7¥).

Using the above, we get:

ol dwn X(Evw) , O<w<m
Y (e )_{ -X(ev) , -T<w<0.
We thus conclude:
; 2X(e) , O<w<m
Jwy —
W(e )'{ 0, - T<w<O.
W(e'¥)
2
+ — w
- 0 Wr ™
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2.66. (a) Using the change of variable: r = —k, we can rewrite R;[n] as:
oo
R:[n] = Z z*[~r]z[n — r] = z*[-n] * z[n].
r=-—o00

We therefore have:
gln] = 2°[~n.
(b) The Fourier transform of z*[—n] is X*(e?*), therefore:

R.(e7) = X* (&) X (e7*) = | X ()2
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2.67. (a) Note that z2[n] = — YF=a z[n — k]. Since the system is LTI, we have:
=4
yaln] = =) yln — k.
k=0
(b) By carrying out the convolution, we get:
-1, =0,n=2
hln]=<¢ -2 , n=1
0 , ow.
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2.68. The system is not stable, any bounded input that excites the zero input response will result in an
unbounded output.

The solution to the difference equation is given by:
y[n] = Yzir[n] + yzer[n]

where y.i-[n] is the zero input response and y,,.[n] is the zero state response, the response to zero initial

conditions:
Yzir[n] = a(%)" where a is a constant determined by the initial condition.
1
Yesr[n] = (é’)n“[n] * z[n].

An example of a bounded input that results in an unbounded output is:
z[n] = é[n + 1).
The output is unbounded and given by:

o] = (3)™ uln +1] - 30"
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3.1. (a)
1 n o0 1 n [> ] 1 n 1
JORS RSB Sl e S
1, -
2 ~\2 —\2 1-1z1 2
(b)
n -1 1 n )
2[-(3) wenn] = - 2 () - g
n=-o00 n=1
_ 22 1 2] < L
1-2z 1-1,1 153
(c)
1 n 0 1 1
Zll = — = 22)t = —— -
[(2) u n]] Y =15 k<3
n=--oo
(d)
Z[[n))=2"=1 all z
(e)
Z[n-1]] =21 |z| >0
(f)
Zn+ 1)) =2 0<|z| < o0
(8)
1\" 2 /1\" 1-(22)°10
Zl=z] (un]-un-10)} = — ) =
((3) wi-ve-w] =3 (2) =527 koo
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3.2.
n, 0<n<N-1
z[n] = { N, N_Snn— =nu[n] — (n — N)u[n — N]
nzn] & —z-iX(z) = n ufn] & —zg-————— l2| > 1
dz wm dz1-z1 #
21
n u{n] = m IZI >1
—n z—N—l
z[n—no] < X(Z)'Z °=>(n—-N)u[n—N]¢>m IZ|>1
therefore . N1 o N
X(z):z -z _z (1—-_z )
(1-271)2 1-271)2
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3.3. (a)
z,[n] = ol 0<l|al <1
-1 oo
X.(2) = Z a "z 4 Za"z'"
n=-00 n=0
oo o0
= Za”z" + Za"z‘"
n=1 n=0
e 1 . z(1-a?) Il < |2] < 1
T 1l-az l-az! (1-az)(z-a)’ 1]
Xt{Z)
N-1
poles pole zero
_a— cancel
)f T
N roots of 1
(b)
1, OSHSN—‘l N-1 1—2-N N1
=4 0, N<n = Xp(2) = z7 "= = z#0
’ 0, n<0 o) ;, 1-z7t 2N-1(z-1)
(c)

ze[n] = zpn — 1] * zp[n] & Xo(2) = 271 Xp(2) - Xb(2)

N 2 N 2
4 2V —1 _ 1 z¥ -1
X (2) == (zN"l(z— 1)) = N1 ( = ) z2#0,1

z

pole zero
\ _a—cancel
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3.4. The pole-zero plot of X (z) appears below.

X(z)
unit circle
N AV N
7\ /\ /\
-1 1/3 2 3

(a) For the Fourier transform of z[n] to exist, the z-transform of z[n] must have an ROC which includes
the unit circle, therefore, || < |z| < |2[.
Since this ROC lies outside %, this pole contributes a right-sided sequence. Since the ROC lies
inside 2 and 3, these poles contribute left-sided sequences. The overall z[n] is therefore two-sided.

(b) Two-sided sequences have ROC’s which look like washers. There are two possibilities. The ROC’s
corresponding to these are: |}| < |2] < [2] and |2| < |z < [3].

(c) The ROC must be a connected region. For stability, the ROC must contain the unit circle. For
causality the ROC must be outside the outermost pole. These conditions cannot be met by any of
the possible ROC’s of this pole-zero plot.
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3.5.
X(z) = (Q+22)(1+327"H)(1-2z7Y
= 22+5-4z"1-3272
o0
= z z[n]z™"
n=-00
Therefore,

z[n] = 28[n + 1] + 56[n] — 46[n — 1] — 34[n — 2]

f

POWEREN.IR
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(d)

Partial Fractions:

X(2)

z[n]

Long division: see part (i) above.

(e)

Partial Fractions:
X(2)

Long division:

1- %z‘l 1
X(2) = =i 21> 5
1-3z71 1 1
To1-12 7 14327 'z|>2
1 n
= (-5)
1-az! -1
X(z)=—— Izl >la7|
a"1(1-a?) 1
s A

z[n] = —ad[n] — (1 — a®)a~("+Vy[n]

-1 _(aT=a)l _(eTpe)? 4
—a+2z"1 | 1 - az™!
1 —az™}
(@™t —a)z?
= z[n] = —adfn] — (1 — a®)a~"+y[n]
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(d)

Partial Fractions:

X(2)

z[n]

Long division: see part (i) above.

(e)

Partial Fractions:
X(2)

Long division:

1- %z‘l 1
X(2) = =i 21> 5
1-3z71 1 1
To1-12 7 14327 'z|>2
1 n
= (-5)
1-az! -1
X(z)=—— Izl >la7|
a"1(1-a?) 1
s A

z[n] = —ad[n] — (1 — a®)a~("+Vy[n]

-1 _(aT=a)l _(eTpe)? 4
—a+2z"1 | 1 - az™!
1 —az™}
(@™t —a)z?
= z[n] = —adfn] — (1 — a®)a~"+y[n]
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3.7. (a)
z[n] = u[-n—-1] + (%) ufn]
-1 1 1
=> X(z):l_z__1+1_%z_1 §<|z|<1
Now to find H(z) we simply use H(z) =Y (z)/X(z); i.e.,
_Y(z) _ -1, 1-z"hHa-1Ltz"h _1- z~!
H(z) = X(z) (- %z—i)(l 27 1) —3z71 * T 1+z71

H(z) causal = ROC |z| > 1.

(b) Since one of the poles of X(z), which limited the ROC of X(z) to be less than 1, is cancelled by
the zero of H(z), the ROC of Y (2) is the region in the z-plane that satisfies the remaining two
constraints |z| > % and |z| > 1. Hence Y (z) converges on |z| > 1.

(c)

-1

1

3 3
1

Ti,17 7 +2z1 It >

Y(z)= T
2

Therefore, .
il =3 (3) ol + 3(-1aln
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3.8. The causal system has system function

1-2z71

H(z)= ———
() 1+ 32-1

and the input is z[n] = (-;—)n u[n] + u[—n — 1]. Therefore the z-transform of the input is

1 1 —-3271 1
= - = =<zl <1
X(z) 1-— %z—-l 1-—- z—-l (1 _ ‘;‘Z—l)(l — Z_l) 3 Izl

(a) h[n] causal =

(b)
_%z"l 3
Y(z) = X(2)H(z)= -1z +3270) 1< ¥l
8 8
= __13 13

Therefore the output is

il =2 (3) wiml+ 5 (-2) ut

(c) For h[n] to be causal the ROC of H(z) must be 2 < |z| which includes the unit circle. Therefore,
h[n] absolutely summable.
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3.9.
1+ 271 2 1

-z )(+3z) (-39 @0+k)

H(z) =

(a) h[n] causal = ROC outside |z| = ; = |z| > 3.
(b) ROC includes |z| =1 = stable.

()
sl = -3 (‘z) ulrl = 5(@)"sl=n 1]
_1 1
Y(2) = T ;z—l + 1—%2—1
14271 1
= UrLha-2mH a° Il <2
1,1
o - 30D
o] = -@ul-n—1+ (@) ul-n]
(d)

h[n] = (%)nu[n] - (—%)nu[n]

86



ch03 87-88.gxd

4/15/10 1:34 PM Page 87 CE

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

3.10.

(a)

z[n]

( )nu[n -10]+ (%)nu[n - 10]
( )nu[n] + (-z-)nu[n]
(AR e——

The last term is finite length and converges everywhere except at z = 0.
Therefore, ROC outside largest pole 3 < |z|.

DN = DN

(b)

m={ L —10<n<10
T =1 0, otherwise

Finite length but has positive and negative powers at z in its X (z). Therefore the ROC is 0 <

|z] < co.
(c)
z[n] = 2"u[—n]=(—;-)~ u[—n]
z[-n] <« X(1/2)
(%) ulr] = ROCis |z]>%
(%)-nu[—n] =~ ROCis |o<2
(d)

aln] = [(ﬁ)m - (ef"/f‘)"] ufn—1J

z[n] is right-sided, so its ROC extends outward from the outermost pole e’*/3. But since it is
non-zero at n = —1, the ROC does not include co. So the ROC is 1 < |z]| < o0.

(e)

u[n + 10] — u[n + 5]
1, -10<n< -6
0, otherwise

z[n]

z[n] is finite-length and has only positive powers of z in its X(z). So the ROC is |2| < o0.

(f)

aln] = (%) " ] + @+ 3)Pulen— 1]

z[n] is two-sided, with two poles. Its ROC is the ring between the two poles: } < |z| < lz—jgg l, or

1 1
3 < |z| < 7
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3.11.
o]
z[n] causal = X(z) = z z[n]z~"
n=0
which means this summation will include no positive powers of z. This means that the closed form of
X (z) must converge at z = o, i.e., z = co must be in the ROC of X (z), or lim,_,. X (2) # oo.
(a)
_ -1)2
(—l—f—) =1 could be causal
z—00 (1 — iz“l)
(b)
—1)2
lim (= 11) =00 could not be causal
(c)
—1)5
(= ‘}) =0 could be causal
z—+00 (z - —)6
(d)
(2 -3)°
lim ——3= =00 could not be causal
z=00 (2 — 5)5
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3.12. (a)
1-13z71
%) = T
The pole is at -2, and the zero is at 1/2.
(b)
1-1z7t

Xz(z) =

(1+1z-1)(1- 2271

The poles are at -1/2 and 2/3, and the zero is at 1/3. Since z2[n] is causal, the ROC is extends
from the outermost pole: |z| > 2/3.

Ak

14271 -2272
B =imm =

The poles are at 3/2 and 2/3, and the zeros are at 1 and -2. Since z3[n] is absolutely summable,
the ROC must include the unit circle: 2/3 < |z| < 3/2.

X3 @

AN

©
3 \ 273 372
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3.13.
G(z) = sin(z71)(1+3272+227%)
_y 273 7% 7 _ _
= (Z 1—'§r+—5—!—'—?)(1+32 2+22 4)

Z g[n]z™"

g[11] is simply the coefficient in front of z~!! in this power series expansion of G(z):

1 3 2
=1+ g~ 1
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3.14.
1
H(z) = Py
4
_ 1
T (=i + i)
0.5 0.5

1- %z‘l 1+ %z‘l
Taking the inverse z-Transform:
11, 1, 1.,

So, . )
Az = 5 =5

>

[
=

2

I
irdla
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3.15. Using long division, we get

1 _-10
1 - 15532

1- 3271

n=9

1 n,—n

n=0

H(z)

Taking the inverse z-transform,

_f 3" n=012,..,9
hin] _{ 0, otherwise

Since h[n] is 0 for n < 0, the system is causal.
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3.16. (a) To determine H(z), we first find X (z) and Y (2):

1 1
X(@) = 1-3z-! T 1-2z1
5,-1
—'§Z 1
= =< 2
T-Lya-z 3PS
5 5
Y(z) = -
(=) 1-3z1 1-2z1
5,1
T—Lha-LZ5 >3
Now
_ Y(2)
8 = x0
_ 1-277 z| > 2
Tl 2,71 3
The pole-zero plot of H(z) is plotted below.
H@
N o
N U/
2/3 2

(b) Taking the inverse z-transform of H(z), we get

W) = (3)"uln] - 2(3)" uln - 1]

I

(3)"uln] — 3ufn — 1)

(c) Since
Y(2) 1-2z7!
T X(2)  1-22V

we can write 9
Y(2)(1 - gz‘l) = X(2)(1 -22z7Y),

whose inverse z-transform leads to

yln] = Syl — 1) = afn] - 2afn — 1

(d) The system is stable because the ROC includes the unit circle. It is also causal since the impulse
response hin] = 0 for n < 0.
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3.17. We solve this problem by finding the system function H(z) of the system, and then looking at the
different impulse responses which can result from our choice of the ROC.

Taking the z-transform of the difference equation, we get

Y(2)(1 - gz_l +27 ) =X(@)1-27Y,

and thus

_Y(z) 1-2z71
H@z) = X(z) 1- %z‘l +2z-2

_ 1-2z71
To(-221( -1
_ 2/3 1/3
T o1-2271 T 1-1p7

If the ROC is

(@) Izl < 3:

h[n] = —§2"u[—n —1)- %(%)"u[—n —1
= h[0] = 0.
(d) 3 <zl <2

h[n]) = —%2"11[—71 -1+ %(%)“u[n]

= h[0] =

Wi

© |z| > 2 , .
hin] = 32"ufn] + 3 ()"l
= h[0] = 1.
(d) |zl > 2or|2| < 3:
hln] = 22%ufn] - 3(3)"ufn ~ 1

= A==
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3.18. (a)
142514272
1+ %z‘l)(l -zt
1

= -2+ —3
1+1iz-1 "

w|oo

Taking the inverse z-transform:
1, 1., 8
h[n] = —2(5[71] + 5(‘5) u[n] + §u[n]
(b)

Given
142270+ 272

(1+427")(1-27")
y[n]= H(z)'z=2 2"

18,
5

H(z)=

z =2 isinside the ROC. Therefore,
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8.19. The ROC(Y (2)) includes the intersection of ROC(H(z)) and ROC(X (2)).

(a)
1
(1+3z71)(1-32z7Y)

Y(2) =

The intersection of ROCs of H(z) and X (z) is |z| > 4. So the ROC of Y (2) is |2| > .
(b) The ROC of Y(z) is exactly the intersection of ROCs of H(z) and X (2): § < |2| < 2.
(c)
1
-3z 1)1+ 32z7Y)

Y(2)= a

The ROC is |z] > .
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3.20. In both cases, the ROC of H(z) has to be chosen such that ROC(Y (z)) includes the intersection of
ROC(H(z)) and ROC(X (z)).
(a)
1-3z71
H(z) = ——
(2) 1+ %z’l
The ROC is |z| > 2.
(b)
1
H(Z) = -1—_—-—%;-:;
The ROC is |2| > &.
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4+0.25z"'-0.5z

321 1(z)= (1-0.2527")(1+0.527")

A. Poles are located at z=0.25 and z=—-0.5. Since the system is causal, the ROC is the
disk that extends outwards from the outermost pole. Hence, z| >0.5.

B. The unit circle has to be contained in the ROC to ensure stability. The above ROC
contains the ROC, and hence the system is stable.

Y(z)  4+0252'-05z7

H = =

(2) X(z) (1-0.25z7")(1+0.527")
(140527 =025z =0.12527 )Y (2) =(4+0.252"' =052 ) X (z)
Y (2)+0.2527'Y (2)—0.1252°Y () =4X (2)+0.2527' X (2) - 0.5z X (2)

Taking the inverse z-transform of both sides gives

y[n]+0.25y[n-1]-0.125y[n—2] = 4x[n]+0.25x[n—1]-0.5x[n-2]
y[n]=-0.25y[n-1]+0.125y [n— 2]+ 4x[n]+0.25x[n—1]-0.5x[n-2].

D. Since the degree of the numerator is equal to the degree of the denominator, we need to
do long division. The result is

0.75z"
H(z)=4- _
() =41 035012557
Then
0.75z" 4 3
_ _pa).
(12025:7)(1+0527) (1-02527) (1+0.527) (2)
We have
A=(1-025")P(z)| = 075(4) _,
025 140.5(4)
and
B=(1+05z")P(z) _075(=2)
=0 1-0.25(-2)
so that

1 1

H(z)=4- (1-0252") ’ (1+0527)

The inverse z-transform is
h [n] =45 [n] - (0.25)" u [n] + (—0.5)” u [n]
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E. x[n] = u[—n —1] . Note that this is a left-sided sequence. The z-transform is

X(z)=1__;1, ROC || <1.

Then
F(5)=H(z)X(z). ROCR, R,
4+0.25z"' 0.5z -1
(1—:)_.252_21)(1+0§Z_1) (1_2‘1)’ ROC [|z|>0.5]ﬁ[|z|<l]

—4-0.25z71+0.5z7
(1_0.25271 )(1+O.5271 )(1_24), ROC 0.5 <|Z| <1.

F. Notice that the degree of the numerator is less than the degree of the denominator. Thus

there is no need for long division and we can proceed directly to the partial fraction
expansion.

A B C
YO o) im0 ) (=2 )
We have

_—4-025(4)+0.5(4) -1

A4=(1-025z")¥ (z)

=0 (140.5(4))(1-4) 3

—4-025(-2)+0.5(-2)" -1

B=(1+05z")r(z)

05 (1+0.5(—2))(1_(_2)) 3

—4-0.25+0.5 -10

A (1-025)(1+05) 3

C:(I—Z’I)Y(z)

Then

)= (1—0.23521 ) ! (1+0§z' ) ! (1 —j‘ )

1 1 _10

The inverse z-transform is

p[z]==3(025) uln] -5 (-05) uln]+ ul-n-1].
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3.22. A. The system is linear, so we can find the response to each term in the input express
add the responses together.

For input 2cos (% n) , we can evaluate H (z) at z=e’? . The steady-state respons

then ‘H(ejg)

2cos(§n+4H(e’%)).

For input u[n] , the steady-state response is equal to the DC gain; that is, H (ef 0 )

2
B. Given H(z):%,we have
+0.5z
. —_dp77 )
1(e't)= 180”5 447
1+0.5¢7> 1-70.5

Then y,[n]=8.94cos(5n+0.464).

1-4

=-2.00, so that nl=-2.00x1=-2.00.
1+0.5 (7]

Next, H(e-’o) =

As ngets large the response becomes
y[n]=y[n]+y,[n]=—2.00+8.94cos(%n+0.464).
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3.23. (a)
ylr] = 0 n<0
n n
1-— a—(n+1) 1-— an+l
= hin — = n—k _ ,n = < —
y[n] l;)x[k] [n — &] kz::%a at T2 0<n<N-1
N-1 N-1 1—g-N 1N
= klh[n — k] = n-k __ n- "% _ n+12T79% SN
bl = Talbin-k= Dot = i =
(b)
— 1
H(Z) = Za"z“" = -i—:—a-z—:l“ IZI > [a[
n=0
N-1 _N
n 1=z
X(z) = ZZ =TT || >0
n=0
Therefore,
1-z7N 1 2N
Yiz) = (1—az)(1-2z1)  (I-az)(1-21) (1-az1)1-2z"1) l21 > lal
Now,
1 _ == + s _ 1 1 a
(1-az)(1-2"1) 1-az1 1-21 \l-a/\1-21 1-az!
So
1
yln] = (1 — a) [uln] — a™*'u[n] — u[n — N] — @™ N+ly[n — N
1 — qnt+1 1-— an——N+1
= 1. u[n] — T u[n — N
0 n<0
1-a™t?
y[n] = 1-a 0<n<N-1

an+1 (l—a‘") n> N

a-1 =
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3.24. (a)
yinl = D hlkleln -]

k=—o00

= Z (3 (—%) u[k]) u[n — k]
n 1 k

= 3| —-
2:(3)

_ [3(-H"), n2o0

0, otherwise
(b)

Y(z) = H(2)X()
3 1
3 9

_ 4 3
- 1,-1 -1
32 1-2

-—%)nu[n] + %u[n]
143 (—%—) n) uln]
1- (_%)"H) u[n]

yln] =

BRIO RO W =

Af‘\ﬁ-’-
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3.25. (a)
1—-1,-2
H(z) = 2
(1-32"1)(1-%271)

54 1271

1—-3z714 3272
2 7

= —4-
1- %z“l + 1- %z—l
1\" 1\"
hin] = —44[n]—2 3 uln] + 7 1 u[n]
(b)

yin] - 3yl ~ 1] + gyln — 2] = ofn] ~ 3l ~ 2
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3.26. The plots of the sequences are shown below.
(a) Let
o
aln] = Y d[n -4k,
k=—o00
Then "
A(2) = Z z74n
k=—00
(b)
17 g m
— 2 |gimn z in (=
bln] = 3 [e + cos (2n) + sin (2 + 27m)] uln]
1 n ™
= 3 [(—1) + cos (—2-n) + 1] u[n]
%, n=4k, k>0
= 35, n=4k+2, k>0
0, otherwise
= 3 =1
_ S -4 1 —(@n+2)
B(z) = Z 5% "+ Z 5%
n=0 n=0
. 3/241/2272
= R e
1F -
0.8f 4
§°5'°" LEXLE
«©
041 b
0.2} T
0 1 1 1 n 1 I 1 e 1 1 L
-10 -8 -6 -4 -2 o 2 4 6 10
n
151 ! ‘ ' l ‘ ‘ l ; I l ! b
. 1
g,
o
05—000 T .':
° d e v d h 4 n " n e n
-10 -8 -6 -4 -2 o 2 4 8 10
n
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3.27.

22 z2

(z—a)(z—1) = 22— (a+b)z+ab

X(2) =
Obtain a proper fraction:
1

22— (a+b)z+ab | 22
22 - (a+bdz +ab

(a+b)z —ab
(a+b)a—ab (a+b)b—ab
_ (a+b)z —ab _ a—b b-a
X(@) = 1+(z—a)(z~—b)—-1+ z—a + z—-b

2 b2

P ryry 1 a?z7! b2zt
a—b a—b
= 1422 _ =1+ -
1 z—a 2-b a—b(l—az—1 l—bz“l)

2 2
@ iy 1] - <
a-b" ufn — 1] a-b

= o)+ (a—ib) (@™ — 5™ )ufn — 1]

z[n] = &[n]+ b lufn — 1]
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3.31
-z 1-z7"
H = =
(2) 1-025z7  (1-0.5z7")(1+0.527")
A. Given x[n|=u[n], we have X (z)= T 1< |z| Then
-z
Y(z)=H(z)X(z)
_ 1-z" 1
(1-0.5z7")(1+0.527" ) 12
1

(1-0.5z7")(1+0.527")

o[~

1
— 2
T-05:") (1+052) 05 <l

(The ROC for ¥ (z) includes the intersection of the ROC of H (z) with the ROC of
X (z) 2
Inverse z-transforming gives

y[n]= %(0.5)” uln| +%(—0.5)" uln].

B. If y[n]=6[n]-6[n—-1], then Y (z)=1-z", 0<|z|. We have

1-z"

-z
1-0.25z7
=1-0.25z2, 0<|4|.

Inverse z-transforming gives

x[n]=8[n]-0.256[n-2].

C. Now x[n]=cos(0.57n), —co<n<eo. At @=0.57 we have
) l_eij,Siz'
H(e’o's”)zi;
1-0.25¢7"
=1.13¢'%.
Then
y[n]=1.13cos(0.5zn+%).
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3.32. (a) z[n] is right-sided and

1-%271
X(z)= —3
(=) 1+ 3271
Long division:
1 — 2270 2,72 4
1+3270 |1 - 327!
1 —3z71
2 __
+ %z'z
Therefore, z[n] = 2(—3)"u[n] — §[n]
(b)
3 3271 4 4
X(2) = 1

z-t-321 T -l +ll) 111 1 $z71

Poles at 1, and —}. z[n] stable, => |z| > 1 = causal.

Therefore,
anl =4 (1) upm—a(-1)"
T2 1) Ul
(c)
1
X@) = W(l-4) |el<y
R YO T
= =Y W
i=1 t=—00
Therefore,
1 -1
z[n]—;(4) u[-n—1]
(d)
—_1 — —-1
X () = 1- L3 lz| > (3)7% = causal
By long division:
1 +3273 +327% + ...
1-1273 |1
1 - %2‘3
+ 3278
+ 32738 - 126
+ 327
1% =
= z[n] = (3) , n=20,3,6,...
0, otherwise
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3.33. (a)
X(2) 1 <2
(1+3271)2(1 = 2271)(1 - 3271) 2
1 88 1568 2700
= 35 41228 1225 1225
(1+3272)2 (1431271 (1-2271)  (1-3271)
Therefore,
1 -1\ 58 (-1\" 1568 _ . 2700 ...
z[n] = gg(n+1) (-5-) u[n+1]+(—3§)—2- (——2——) u[n]+—(—35—)2(2) u[—n—l]—zg’s—)z(3) u[-n—1]
(b)
_ -2 -3 -4
X(z) =€ =1+z—1+%—+%+%+...
Therefore, z{n] = ;:—lu[n].
(c)
2% -2z 2
X(2) = =22+2z+1—_——£—_—_—1— lz} < 2

Therefore,
z[n] = d[n + 2] + 26[n + 1] — 2(2)"u[-n — 1]
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3.34. (a)
nzn] & —Z%X(z)
z[n —ngl @ z7™ X(z)
3273

X&) =gy = 12:7 ["’EdE (Tf;?;:f)]

z[n] is left-sided. Therefore, X (z) corresponds to:

2[n] = —12(n - 2) (i) T en 1]

(b)
— ( 1)* S2k+1 : —
X(z) =sin(z) = Z (2k T 1)| ROC includes |z} =1
Therefore,
z[n] = Z . @k 1)|6[n + 2k +1]
Which is stable.
(c)
2" -2 7 1
X(Z)—ITF:T-——Z —1—_;—_—7' lZ|>1
<]
X(z)=2"- 22'7"
n=0
Therefore,

zn] =6n+7 — Z 8[n — Tk]

n=0
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3.35.

X(z)=e"+€e* z#0

IR <% IFE o8 A AL UIRR NS SN 1
(z) = Z;l—‘z + Zm z) = Z (_n)!z + Zmz = z[n] = Tl + &[n]
n=0 n=0 n=-—00 n=0
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3.36.
X()=loga(5~2) Il <3
(a)
oo i -1 1 /4
X(2) = log(1 - 22) = —Z@ ==Y Set= Y 5 (-;-) 2t
i=1 £=-00 {=—00
Therefore, n
z[n] = % (-;-) u[-n - 1]
(b)
nzln] <« —zzd; log(l —22) = —z (1 —12z) (-2) =271 (-1—_:;—12—:—1-) , |z] < %
2
nz[n] = (-;—) u[—n — 1]
z[n] = % (%) u[-n —1]
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3.37. (a)
z[n] = a"uln] + b u[n] + "u[-n - 1] lal < [b] < e}
1 1 1
X(z) = + - bl < |z < |e
(2) l—az! 1-bz"1 1-cz7! 16l < 2] < el
1—2cz7! + (bc + ac — ab)z~2
X(z b <le
@) = Aer@-t-cn Pl<lkd<ld
Poles: a, b, c,
Zeros: zj, 22,00 where 2; and 2, are roots of numerator quadratic.
pole-zero plaf (a) po|e-zero plo‘r ®)
O
NG
2 b
O \\
(b)
z[n] = nla"u[n]
zi[n] = a" & Xi(2) = >a
1ln] un] © Xu(2) = ;—— Il
z2[n] = nzyfn] = na"uln] & X,(z) = —zin(z) = ——E—l———- |z| > a
dz (1 - az—1)?
d d az™!
= n = “uln] & — X —_— zZl>a
oln] =neafn] = watuln) @ s Xale) =~ (o) M
—az"!(1+az 1)
X o= zZl>a
() T M
(©)
4 T 4 s
z[n] = e€" (cos—n)un —e" (cos—-n)un—l
@ Zn) ufn] =n)uln - 1]

Therefore, X (z) = 1 for all |z|.

e (cos

n) (uln] - uln — 1)) = d[n]
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3.38. From the pole-zero diagram
z |z} > 3
(22—Z+%)(Z+%) 4

X(2) =

yln] = z[-n+3 =z[-(n-3)
=351
= (z72—z"1+ 3)(z7 1 + %)

= Y()=2z73X(z"Y)

8/3
z2(2-2z+22)(% +2)

Poles at 0, —3,1 = j, zeros at oo

z[n] causal = z[—n + 3] is left-sided == ROC is 0 < |z| < 4/3.

Y@

-4/3
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3.39. From pole-zero diagram

22+1
x() =22
(a)
n 2
y[n] = (%) z[n] = Y(2) = X(22) = 4222 _+ll
zeros +1j

poles },00

Y@

/o
X7A 1
X!
™

w[n] = cos (-—i—) z[n] = %(eﬁm/z + e=iTm/2)g(n]

(b)

; 1 ; 1 ) 1_ ..
W(z) = %X(e"”'/zz) + §X(e’"/2z) = -2—X(——_1z) + §X(]z)

1(-2241) 1 —z2+1)_ 2-1
W(z)—a(—_——jz—l)+—2_(jz—% —2(22_*_%)

2

poles at +1j
zeros at *1

Y@

N

{15,
N

N
/N
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3.40.
3727145272 1
H = —— T 5 —
(2) 1- gz‘l +2z—2 + 1-2z2"1 1-— %z‘l

h[n] stable = h[n] = 54[n] — 2"u[-n—1] -3 (%)nu[n]

()
yln] = h[n]xaln]= ) Ak
k=—0c0
_i2k=-2"+1 n<0
k=—oc0
RS VYIRS S A R e ¢ ke 1\"
k§°2 +5 ;)3(2) =4-3 o= 2+3(2> n>0
= —2u[n]+3(-;—)nu[n]—T‘“u[—n—-l]
(b)
1 1 1 1 1
Y(Z) = 'i—:;'_'TH(Z)=—21_Z_1+21_2z_1+31_%z_1, §<|Z|<2
vin] = -—2u[n]—-2(2)"u[—n—1]+3(%) uln]
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3.41.

U(z)H (240

u[n] * h[n]

1-—23_2_1 1-278 ]

1—2¢ " 1-2-¢ |2 >
1 z

== z-1 >

P S
1-2"9)(1-271)
21 24
1—-21 1-2-1 21> 1
o o}
ufn — 1] = ) "d[n — 4 — 4k]
k=0
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3.42.
z[n] =un] & X(2) = i —1z‘1 lz| > 1
n—1 n+1l
y[n] = (-;-) uln+1]=4 (%) uln+1] & Y(2) = -l—zi;—_—l lz| > %
(a)
Y 4z(1-271 1
H(z) = X((;)) = i(— %;—1) Il > 3
NN
\\\ LD
3/ ]/ \\ ]
\\\ N \
(b)
HE = 1 —4;-1 "1 —zz*l >3

hn]

i

4 (%)M uln+1] -4 (%)n uln]

48[ +1] -2 <%) " ufn)

(c) The ROC of H(z) includes |z] =1 = stable.
(d) From part (b) we see that h[n] starts at n = —1 = not causal
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3.43.

1
1

+

X(z) = 1—~32-1 1-2z"1

[T (AT

has poles at z = } and z = 2.

Since the unit circle is in the region of convergence X (z) and z[n] have both a causal and an anticausal
part. The causal part is “outside” the pole at ;. The anticausal part is “inside” the pole at 2, therefore,
z[0] is the sum of the two parts

0= I 3 lm 2% =1 0= 1
A= g T T30
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3.44. (a) After writing the following equalities:

V(z) = X(z)-W()
W) = V(2)H()+E@)
we solve for W/(z): o
W) = 13 e X&)+ T B
(b)
Hi(2) = 1+112_;,_r —1-21

(c) H(z) is not stable due to its pole at z = 1, but H;(z) and H,(z) are.
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3.45.

(a) Yes, h[n] is BIBO stable if its ROC includes the unit circle. Hence, the system is stable if rpin, < 1
and T > 1.
(b) Let’s consider the system step by step.
(1) First, v[n] = a~"z[n]. By taking the z-transform of both sides, V' (z) = X (az).
(ii) Second, v[n] is filtered to get w[n]. So W(z) = H(z)V(z) = H(z)X (az).
(iii) Finally, y[n] = a™w[n]. In the z-transform domain, Y (2) = W(z/a) = H(z/a)X(z).
In conclusion, the system is LTI, with system function G(z) = H(z/a) and g[n] = a™h[n].

(c) The ROC of G(2) is ormin < |2| < 0Tmez- We want 7, < 1/a and rpe; > 1/a for the system
to be stable.

ﬁ

POWEREN.IR
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3.46. (a) h[n] is the response of the system when z[n] = é[n]. Hence,
10
hin] + Y arhln — k] = 8[n] + Bé[n — 1],
k=1
Further, since the system is causal, h[n] = 0 for n < 0. Therefore,
10
hl0] + > arh[—k] = h[0] = 5[0] = 1.
k=1
(b) Atn=1,
_ B-h[1]

h[l] + C!1h.[0] = (5[1] + ﬂJ[O] = a; = —W =0- h[l]

(c) How can we extend hn] for n > 10 and still have it compatible with the difference equation for S?
Note that the difference equation can describe systems up to order 10. If we choose

hjn] = (0.9)" cos(%n)u[n],
we only need a second order difference equation:
az3=a4 =05 =0g=Q7=0ag =09 =ay9 =0.

The z-transform of h[n] can be found from the z-transform table:

1- 299
V3
H(z) = : :
(@) = A= 09e/i-1(1 - 0.8e777577)
H@

e ’ )y
N A\
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3.47. (a)
1 1 1
X(2) = - - 2
(2) 1-3271 1-2z7Y 2 <lel <
6 6 3
Y = - bt
2) 1-1z-1 1-3-1 Il > 4
_3,-1
Y(2) _ G=F00-§)
H(Z) = X(Z) = . _12—14
_ 1= 2271 2| > §
To1-30 4
Pale-zero plot of H(z)
15f
1
= 0.5¢
.
s 4 2
Eos
-1
15
U 05 0 _05 1 15 2
Real part
(b)

hn] = (45)" uln] - 2 (g)n_l uln - 1]
(©)
yln] ~ Syl — 1] = ofn] ~ 220 — 1

(d) The system is stable because the ROC includes the unit circle. It is also causal since hfn] = 0 for
n <0.
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3.48. (a)

4
3

-1
X(z) = 3
@) =117 Y 1o
The ROCis § < |z| < 2.
(b) The following figure shows the pole-zero plot of Y (z). Since X (z) has poles at 0.5 and 2, the poles

at 1 and -0.5 are due to H(z). Since H(z) is causal, its ROC is |z] > 1. The ROC of Y (z) must
contain the intersection of the ROC of X(2) and the ROC of H(z). Hence the ROC of Y (2) is

1<z]<2.
Pole-zero plot of Y(z)
15
1
© lJ.5/1
g
§ o
5 1 05 2
E'O'ST
-
e 0 s T s
Real part
(c)
Y(2)
&) = %@
1+z_1

A=z-D+Lz-)(1-2:-7)

(1—12:—115(1-2z—15
(L+271)(1 - 1z7Y)
1-zH(1- Lt

2

= 1 3 .
ti +1+%z‘1

Wity

Taking the inverse z-transform, we find
2 2, 1.,
hin] = 8ln] + Fuln] — 3 (~3)"uln]

(d) Since H(z) has a pole on the unit circle, the system is not stable.
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3.49. (a)
ny[n] = z[n]
=28 k()

Y(z) = - / 21X (2)dz

(b) To apply the results of part (a), we let z[n] = u[n — 1], and w[n] = y[n].

-1
-1 <
-

1
= | e
/(z n“

_ —1+ 1
- z z—-1

= In(z) -In(z-1)

W (z)

dz
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3.50. (a) Since y[n] is stable, its ROC contains the unit-circle. Hence, Y (z) converges for < |z| < 2.
(b) Since the ROC is a ring on the z-plane, y[n] is a two-sided sequence.

(c) z[n] is stable, so its ROC contains the unit-circle. Also, it has a zero at co so the ROC includes
oo. ROC: |2| > 3.

(d) Since the ROC of z[n] includes co, X(z) contains no positive powers of z, and so z[n] = 0 for
n < 0. Therefore z[n] is causal.

(e)
z[0] = X(2)|i=co
_ A(l— %z‘l)
T+ 3 (-1 le=co

= 0

(f) H(z) has zeros at -.75 and 0, and poles at 2 and co. Its ROC is |z| < 2.

Pole-zero piot of H(z)

1.5f
ROC: izi<2
1
€ 0.5
a
2 ol
g 0
k=3 -0.75 P 2
g
=-0.5]
-1
~1.5]
-1 -05 [} 0.5 1 15 2
Real part

(g) Since the ROC of h[n] includes 0, H(z) contains no negative powers of z, which implies that
hin] = 0 for n > 0. Therefore h[n] is anti-causal.
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3.51

k=1\ oy

y[n]= —z(&Jy[n—khkz:‘[Z—’;Jx[n_k]

A. Using Equation (3.76), the unilateral z-transform of y[n—k] is

i{y[m—k—l]z"”1 +z7Y(2).

Applying the unilateral z-transform to the difference equation gives

y<z>=—§(j—z]{gy[m—k—1]z-m+l+z-ky(z>}

L (b
+z -+ 27X (2),
k=0 ao
assuming that x[n] is suddenly applied at n=0.
Solving for Y(z) gives

N k M
Zak [Zy[m—k—l]z"”“] Zbkz_k
Y(z)=——""3 X (2),
akz_k akz_k
k=0 k=0

QED.

B. If x[n]=0 forall n, then X (z)=0. This gives

y<z>=ym(z):éa"(;y['n-k—uzmﬂ]

>
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which depends only on the initial conditions y[—1],y[-2],...,»[~N]. The inverse z-

transform is the “zero-input response” v, [#].

If y[-1]=y[-2]=...=y[-N]=0, then
ibkz_k
y(z):yZICR (Z):k/vzoix(z)’
;akz"k

which depends only on the input x[7]. The inverse z-transform is the “zero-initial-

.. »
condition response” ¥, [7].

In general we have Y (z)=VY,, (z)+ VY, (z). Since the z-transform is linear, this

implies y[n]=y,, [7]+ ¥,z [#], as was to have been shown.

C. When the initial conditions are all zero, Y (z) =Y, (z) as shown in part B. Applying
the bilateral z-transform to the difference equation gives
N M
v(z)=-3[% |y () + 3 & | x (2).
=1\ G k=0 G

Solving for Y (z) gives

—k
b,z

Y(z)zO—kX(z),

M= M<

a.z

==
I

0
Now if x[n]=0 for n<0, then X (z) is identical to X'(z). In this case we have

Y(2)=Yuer (7).
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4.1.
zfn] = zc(nT)

1
sin (2W(100)"Z-65>

sin (%n)

I

I\
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4.2. The discrete-time sequence
Tn
z[n] = cos(z—)

results by sampling the continuous-time signal
Z(t) = cos(Qot).
Since w = QT and T = 1/1000 seconds, the signal frequency could be:

Q, = % - 1000 = 2507

or possibly:
Q= (27 + g) -1000 = 22507.
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4.3. (a) Since z[n] = z.(nT),

— = 4000mnT

1
12000

(b) No. For example, since

T n
cos(gn) = cos(?n),

T can be 7/12000.
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4.4. (a) Letting T = 1/100 gives
zc(nT)

. 1 1

= sin (207m—1 00) + cos (401rn———1 o 0)
. /TN 2mn

= s (—5-—) + cos (-—5—)

(b) No, another choice is T = 11/100:

z{n]

z[n] = zc(nT)
) 11 11
= sin (201m-1—66) + cos (407mﬁt_])
_ . [1lmn +cos (221rn)
= sin 5 5
. (TN 2mn
= sin (?) + cos (—5—)
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4.5. A plot of H(e’“) appears below.
1
=~ - 8 o
(a)
zc(t) =0, |9 > 2x-5000
The Nyquist rate is 2 times the highest frequency. = T = E,%ﬁﬁ sec. This avoids all aliasing in
the C/D converter.
(b)
1 10kHz
F =
w = TQ
T 1
8 = 10,000
Q. 2 - 625rad/sec
fe 625H z
(c)
-;: = 20kHz
w TQ
m 1
8 = 0,000
Q. = 2rm-1250rad/sec
fe = 1250H:z
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4.6.

He(552)

So, we take the magnitude

(a) The Fourier transform of the filter impulse response

S .
/ he(£)e=9% dt

(e )
[ e
1]
1

a+jQ

. 1 \?
|H(5Q)| = (m)

) | H, (JQ)
1/a

ha[n]

Hd(ej“’)

Taking the magnitude of this response

-a a

(b) Sampling the filter impulse response in (a), the discrete-time filter is described by

Te " Ty[n]

0o
E :Te—anTe—-jwn
n=0

T
1—eoTe—iw

T

|Ha(e?)| =

(1 — 2e=9T cos(w) + e"zaT)% .

Note that the frequency response of the discrete-time filter is periodic, with period 2.

Hy(e 1)1
] 1 1 ! ] | ] |
—4r 2R 0 2n 4r [0)
(c) The minimum occurs at w = m. The corresponding value of the frequency response magnitude is
; T
|Hd (eJ"")l = 1
(1 +2e—oT + e—2aT)2
_ T
T l+4eeT’
j
A IHy (e 19
T ————————————————————————
1:/2 1 1 1 -
1/a 2/a 3/a T
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4.7. The continuous-time signal contains an attenuated replica of the original signal with a delay of 74.
Zo(t) = sc(t) + asc(t — 74)
(a) Taking the Fourier transform of the analog signal:
Xo(jQ) = S.(1) - (1 + ae™974?)

Note that X.(jQ) is zero for |Q] > #/T. Sampling the continuous-time signal yields the discrete-
time sequence, z[n]. The Fourier transform of the sequence is

X)) = LY s
T T T

T=—00

oo .
a jw  2wr . (2+2z%)
=D DIRXC-RSEAOEL S

r=-—00
(b) The desired response: 0
on_ J 1+ae i@ for |Q| < T
H(Q) = { 0, - otherwise
Using w = QT, we obtain a discrete-time system which simulates the above response:

H(e*) =1+ ae™ i+

(c) We need to take the inverse Fourier transform of the discrete-time impulse response of part (b).

s
hin] = 51; H(e')el™ dw
= 51}- (1 + ae™ 7 F )l dw
(i) Consider the case when 74 = T
1 . )
hin] = P (&7 + ae?“(" 1)) dw

sin(wn)  asinfr(n — 1)]
mm w(n—1)
= 6[n]+ adln —1]

(ii) For 74 =T/2:

hn] = %; (€™ + ae D) du
-7
sin(wn) + asin[r(n — 1)]

™ m(n—3)

~ S+ asin[r(n — 3)]

n(n— 3
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4.8. A plot of X (512) appears below.

X (9)

—2nx104 mx104 @

(a) For z.(t) to be recoverable from z[n], the transform of the discrete signal must have no aliasing.
When sampling, the radian frequency is related to the analog frequency by

w=QT.

No aliasing will occur if the sampling interval satisfies the Nyquist Criterion. Thus, for the band-
limited signal, z.(t), we should select T as:

1
T< ——.
~ 2x10%
(b) Assuming that the system is linear and time-invariant, the convolution sum describes the input-

output relationship.
o]

yinl= Y z[klh[n - k]

k=-—00

We are given

yinl = T ) 2k

k=-o00
= T Y alkluln—k]
k=—00

Hence, we may infer that the impulse response of the system
hin] =T - u[n).

(c) We use the expression for y[n] as given and examine the limit

lim y[n] = nl'l)n;oT- Z z[k]

n—+oo

I
&
™
&
=

Recall the analysis equation for the Fourier transform:

oo

X(e) = Z .'z:[n]e'"j“’"

n=-—00

Hence, .
; =T. X(ed¥
nlgn Yyl =T - X(e')|w=0
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(d) We use the result from part (c). Noting that

jw 1 & jw  j2mr
X(e) =7 > Xe(Z + =5)-

r=—00

Thus, we have
j2nr )
T

T-X(e)=o= . Xel

r=-—00

From the given information, we seek a value of T such that:

ad j 27 *°
> xZ) = / zo(t) dt

r=-—co —®

Xc(jQ)|ﬂ=0

For the final equality to be true, there must be no contribution from the terms for which r # 0.
That is, we require no aliasing at 2 = 0. Since we are only interested in preserving the spectral
component at Q = 0, we may sample at a rate which is lower than the Nyquist rate. The maximum
value of T to satisfy these conditions is

1
< —_—
T“lx104
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4.9. (a) Since X(e?¥) = X (e/(“—™), X (e#*) is periodic with period .
(b) Using the inverse DTFT,

1 o
- wY jwn
z[n] = 2 Jiam X (e?¥)e? dw
= i X(ej(“""))ej“’"dw
27 (2m)
= [ x(e*)eiwring,
2 (2)
— _1_ej1rn X(eju)ejwndw
2 (2n)
= (-1)"z[n].
All odd samples of z[n] = 0, because z[n] = —z[n]. Hence z[3] = 0.

(¢) Yes, y[n] contains all even samples of z[n], and all odd samples of z[n] are 0.

_J y[n/2], n even
z[n] = { 0, otherwise
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4.10. Use z[n] = z.(nT), and simplify:
(a) z[n] = cos(27n/3).
(b) z[n] = sin(4wn/3) = —sin(27n/3)

in(27xn/
() oln] = T
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4.11. (a) Pick T such that
z[n] = z.(nT) = sin(10rnT) = sin(7rn/4) =T =1/40

There are other choices. For example, by realizing that sin(wn/4) = sin(97n/4), we find T = 9/40.
(b) Choose T = 1/20 to make z[n] = z.(nT). This is unique.

142



ch04 131-150.gxd 4/15/10 1:52 PM Page 143 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.12. (a) Notice first that H(e/*) = 10jw, -7 < w < 7.
(i) After sampling,

z[n] = cos(-35£n),
yln] = IH(ej%E)Icos(gg—rn+ LH(e1%))
3w ™
= 6mcos( —5-11 + 5)
= —6m sin(:%ﬂn)
Ye(t) = —6msin(6mt).
(ii) After sampling, z[n] = cos(Zn) = cos(3£n), so again, y.(t) = —6m sin(67t).

(b) y(t) is what you would expect from a differentiator in the first case but not in the second case.
This is because aliasing has occurred in the second case.
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4.13. (a)
R
z(t) = sm(%t)
L
velt) = sin(z5(t~5))
. ™
= sxn(%-t—- Z)
vl = sin(5 - 7)
(b) We get the same result as before:
R
z.(t) = sm(—l—ét)

ve(t) = sin(g5(t-25)
= sin(g5t - 7)
yin] = sin(5 - 7)

(c) The sampling period T is not limited by the continuous time system h.(t).
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4.14. There is no loss of information if X (e7#/2) and X (e/(“/2-™)) do not overlap. This is true for (b), (d),
(e)-
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/3 < w| L.

4.15. The output z.[n] = z[n] if no aliasing occurs as result of downsampling. That is, X(e’¥) = 0 for

(a) z[n] = cos(mn/4). X (e’“) has impulses at w = +m/4, so there is no aliasing. z.[n] = z[n].
(b) z[n] = cos(mn/2). X(e’*) has impulses at w = £ /2, so there is aliasing. z.[n] # z[n].
(c) A sketch of X (e’“) is shown below. Clearly there will be no aliasing and z.[n] = z[n].

I
X(I?)

[}

-mt/4

/4
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4.16. (a) In the frequency domain, we have
L X(e joy Af((e joy
T w3 w3 o ~ 56 56 o
M _57/6 5
L~ «/3 2
This is unique.
(b) One choice is
M_ 2 o
L 37/4" 3
However, this is not unique. We can also write Z4[n] = cos(3£n), so another choice is
M _51/2 10
L~ 3r/4 3
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4.17. (a) In the frequency domain,
; 1, |w|<2m/3
Jwy —
X(e )‘{ 0, 20/3<|wl<r

After the sampling rate change,

s 4/3, |w| < 7w/2
Jwy —
Xa(e )_{ 0, 72<|w<m’

which leads to 4sin(rn/2)
sin(mn
=3

(b) Upsampling by 3 and low-pass filtering z[n] = sin(37n/4) results in sin(wn/4). Downsampling by
5 gives us &q4[n] = sin(57n/4) = —sin(3rn/4).
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4.18. For the condition to be satisfied, we have to ensure that wo/L < min(r/L, 7 /M), so that the lowpass
filtering does not cut out part of the spectrum.

(a) wo/2 < 7/3 => wo,maz = 27/3.
(b) wo/3 < /5 => Wo,maz = 37/5.

(c) Since L > M, there is no chance of aliasing. Hence wg mqz = 7.
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4.19. The nyquist sampling property must be satisfied: T < 7 /8.
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4.20. (a) The Nyquist sampling property must be satisfied: T < 7/ => F; > 2000.
(b) We’d have to sample so that X (e/) lies between |w| < /2. So F; > 4000.
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4.21
A. The impulse-train signal x, () has spectrum X (jQ) given by

oo

X, (jQ =%2 [(Q k”)]

An example is shown below.

_’Hl:\:" T
[®)
(=]
SR+

We will have x, (t)=x, () provided 7, <&-.

B. We will have x, (¢)=x, (¢) under any of the following circumstances:
1. As illustrated above, 7, <&-.

2. Asillustrated below, 122 <T, <ZF.

X, (j2)
A AN AREN AR AN
1 \\ // 1 : 1 \\ // 1 I 1 \\ /l 1 Q
2 2z
n n
3. Asillustrated below, T, = Q—”
X, (JQ)
NV N NV N N
, | N ’, ] ’ 1 \ 7’ I \
’l I \\\ /II : : : \\\ Q
27r Q 7

Tz

The frequency response of the filter that is needed to recover x, () is shown below.

H, (jQ)
T,
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4.22. (a) Keeping in mind that after sampling, w = QT, the Fourier transform of z[n] is

. jo©
X (i Q) X €i®)
= 0 9 @ T = LR "o
2

(b) A straight-forward application of the Nyquist criterion would lead to an incorrect conclusion that
the sampling rate is at least twice the maximum frequency of z.(¢), or 2Q;. However, since the
spectrum is bandpass, we only need to ensure that the replications in frequency which occur as a
result of sampling do not overlap with the original. (See the following figure of X;(j2).) Therefore,

we only need to ensure 0 0
T T
Qy — ‘a_,— < =T< E‘

XD

Q, 21192 Q
> 92— T

(c) The block diagram along with the frequency response of h(t) is shown here:

convert bandpass
X[n] sequence | filtor | x(®)
to impulse
trainp h(®)
Ql 92 Q
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4.23. (a)
27
w= QT, T= 'ﬁ;
X(e1®)
T
r T ®
(b) To recover simply filter out the undesired parts of X (e?).
x[n] | Ban.dpass X, (1)
Filter
T
~"2r/T -n/T wT 21/T Q
(c)
2n
T<q&
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4.24
(a) Given
x[n]=cos(ayn), @,=QT <,
we have from Table 2.3,
X()=n8(w- )+ 75 (0+a,), |o<z.

(b) Eq. (4.46) gives H(ef‘"):j7w, || < 7. Then
Y(ej"’)zH(ef‘”)X(ej“’)

=%[7Z§((0—(00)+7F5(a)+ @,)]

_ID s J D,
% 5 (0-a,)- 22

. |al<7.

(c )From Eq. (4.32),

jQr 7
Yr(jQ)zHr(jQ)Y(ejQT)z TY(e ), ‘Q|<T
0, otherwise
= jors (QT — @) - jors (QT + @)

= jo8[ (Q-,/T)T |- jows[ (Q+a,/T)T].

(d) The inverse Fourier transform of §(Q7') is the constant 1/(277). We then have

( ) ]a)o /T _ja)o oI
2T

_o, [ /T _‘e—.i%t/T )
j2

=—Q,sin(Q?),
as was to have been shown.
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4.25. Appears in: Fallo4 PS1, Fall02 PS1.

Problem

Note that in OSB and 6.341 ) denotes continuous-time frequency and w denotes discrete-
time frequency.

Figure 1 shows a continuous-time filter that is implemented using an LTI discrete-time filter
with frequency response H (e/*).

(a) If the CTET of x.(t), namely X.(j€2), is as shown in Figure 2 and w, = %, sketch and
label X (e/%), Y (/) and Y.(jQ) for each of the following cases:
(1) 11, = 1)1y =2 x 10*
(i) 1/Th =4 x 104, 1/Ty = 104
(iii) 1/Ty =104, 1/T» = 3 x 10*
(b) For 1/T} = 1/Ty = 6 x 103, and for input signals z.(t) whose spectra are bandlimited
to [Q] < 27 x 5 x 10 (but otherwise unconstrained), what is the maximum choice of

the cutoff frequency w,. of the filter H(e/*) for which the overall system is LTI? For this
maximum choice of w,, specify H.(j).

H(j$)
| |
el C/D il H(e™) o D/C [ )
] I
| T T |
A H(ej‘*’)
1

Figure 1: Problem .

14 X:(j9)

Y

97 x 5 x 10 271 x 5 x 10 0

Figure 2: Problem , part (a).
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Solution from Fall04 PS1

(a) (1) /Ty =1/Ty =2 x 104

/\ 2% 10 X(e)
I—27r —7T/2 7T/2 I27r
Y (/%)
2 xrﬁ
I—27r —7T/5 .7T/5 I27r
R AVY)

—41 x 10> 47w x 103
(i) 1/Th = 4 x 10*, 1/T, = 10*

X (/)
4 % 10

-2 —7T/4 7T/4 o2
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Y (e?¥)
4 x W
I - |
—27 —7/5 /5 27
WYC(JQ)
—2r x 10> 27 x 103
(iii) 1/71 = 104, 1/Ty = 3 x 10*
X ()
1
I j
-2 -7 T 2m
Y (e/¥)
102
| | |
—2m —m/5 /5 27
Y. ()
1/3
—67 x 10° 6 x 103
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(b) From the figure below, it can be seen that the only portion of the spectrum which remains
unaffected by the aliasing is |w| < 7/3. So if we choose w, < /3, the overall system is
LTT with a frequency response of

/

, 1 for |Q] < w, x 6 x 103
Hc(]Q):{O | | ¢

otherwise.

unaliased ,
' X (e!¥)

'J'

T T T 5
- -3 3 3 2
aliased aliased
Solution from Fall02 PS1
(a) (1) /Ty =1/Ty =2x 104
X(ew
/\ 2 % 10 (e™)
i i
—27 —7/2 /2 27
Y (&%)
m 2 fk“
i : i
—27 —7T/5 7T/5 21
Yo(59)

—47 x 103 47 x 10?
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(i) 1/Th =4 x 10, 1/T, = 104

X (/)
4 x 10
I |
21 —7'('/4 7T/4 o2
Y (e)
4 x
I I
—2m —x/5 /5 2
Y.

—27 x 103 21 % 10°
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(iii) 1/Ty =104, 1/T = 3 x 10*

X (&)
/
I I
—27 —Tr m 21
Y(ej"’)
102
: - :
—or —m/5 /5 2
Y. (5€2)
ﬁ/w
6 x 103 61 x 103

(b) From the figure below, it can be seen that the only portion of the spectrum which remains
unaffected by the aliasing is |w| < 7/3. So if we choose w, < /3, the overall system is
LTI with a frequency response of

) 1 for |Q] < we x 6 x 103
HC(JQ)Z{O -

otherwise.

unaliased )
| ' X(e)

|
|
w03
w0l
V)
=)

aliased aliased
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4.26
A. The input signal is sampled at a rate high enough to avoid aliasing. Then

X, (ef‘“)=%Xc(j%), o] <7
Now
Y (€)= H, (") X, (")

=) (7] el

The D/C converter includes an ideal lowpass filter of bandwidth % and gain T .

Therefore
jor 7
0, otherwise
=H, (") X, (jQ).
The continuous-time frequency response of the end-to-end system is given by
Y, (f Q) | ‘ 7
H, (jQ)=1X,(jQ) T
0, otherwise

11, (), Jol<Z

0, otherwise
[ ejQT/2 —e jQT/)2 P
_ , Q<=
T T
0, otherwise

[j2 . r
7sm(QT/2), Q| <z

0, otherwise.

in (€
B. We are given x, (;):M, with Q,, =%. Then
M
sin(Q,,nT
M

_sin(zn)
7
=0.

But then y,[7]=0 and y,(7)=0 as well.
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4.27

X, (jQ) =275 (Q—-1007 )+ 27me’™* S (Q+1007)
+ 7’8 (Q-3007) + me "5 (Q+3007).

X, (7Q)
e’ e/
e ™3 e’
t I o
=300z 100z 100z 300z

B. If f, =1/T =500 samples/s then Q  =27/T =10007 rad/s.

X, (/Q)
. H,(jQ)
ax gt : 2z g4 | 2 gt : 2z gt
%fﬂ[ﬁ E %Te—jﬂﬂ %Fjﬂ'ﬂ E %QT_NI/S
—Q =500z 100z 300z 500z 7007 900z €2

There is no aliasing, so x, (#)=x, (¢); that is,
x, (¢)=2cos (1007t — /4)+cos (3007t + 7r/3).

Q
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C. If f, =1/T =250 samples/s then Q_ =27z/T =5007x rad/s.
X, (jQ)
T H,(jQ)
2z gt i 21 4 2 gt i 2 gt
£ gl i %Temﬂ x Tm/3§ x i3
-Q, 1007 2007 3007 4007
Now there is aliasing and
x, (1) =2cos (1007t — /4)+cos (2007t — 7/3).
D. We want to sample the component at 300z rad/s exactly once per cycle, so that all the

samples have the same value. At Q =300z rad/s we have

X, (jQ)
T H,(jQ)

27”97]‘”/45 27”ej”/4 2T7;e—j7r/:4 2T;;ej7z/4
%e_j”/3 z j7r/3§ %( P i x e
| A . !

t ; ) L]
Q. 1007 2007 Q.

Now

x, (t)=cos(7/3)+2cos (1007 — /4)
=1/2+2cos (1007 —7/4).

We have 4=1/2.

Q
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4.28. In the frequency domain, we have

X4Q) Xl ®) Yo
- —'ﬂ:/rl ) n’Tl;Q - -7 V 4 ‘>(0 -

)
1
-n/T, 1dT2T2

T
zc(t) = 0, 12 > 771
Therefore, since we are sampling this z.(t) at the Nyquist frequency z[n] will be full band and unaliased.
z[n] = z.(nT1)

yc(t) is a band-limited interpolation of z[n] at a different period. Since no aliasing occurs at z[n], the
spectrum of y.(t) will be a frequency axis scaling of the spectrum of z.(t) for T} > T> or T} < T». As

we show in the figure,
T (T
et = 7= (721
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4.29. The Fourier transform of y.(t) is sketched below for each case.

(a) X(e®)
1T,

- g

mgg)

A

[}

® Zx5x10  mxsxi0 @
(b) X(eI® AY .G Q)
\ l\
~7/ /2 ® ‘-2nx5x103 21tx5x103
(©)
Xei® by _G Q)
Ty 2\
~/2 /2 o N - x5x10° nx5x103
(d) i
1/T1 1/2\
-7t T >m =

—21tx5x103 21tx5x103
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4.30.

(@) z5(t) = z(t)s(t) = X,(5Q) * s(iQ)

'} .
X (Q)
/T
1 | >
—2n/T 2n /T Q
H X(el?)
1/T
1 L -
—-2r 2n ®

(b) Since Hg(e’“) is an ideal lowpass filter with w: = %, we don’t care about any signal aliasing that

occurs in the region § < w < m. We require:

27 T
—_— . > —
T 2w -10000 > iT
1 8
—_ > =
T 2 7 10000
T < % x 10~ *sec

Also, once all of the signal lies in the range |w| < %, the filter will be ineffective, i.e., T < T(27x10%).

So, T' > 12.5usec.

(c)
w m
Q= T = Qc = 4_T
gzc
slope = n/
h 8/7 x 104 8x104 1T
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4.31. First we show that X(e’*) is just a sum of shifted versions of X (e/*):

sfn] = z[n], n=Mk, k=0,%1,£2
s - 0, otherwise
1 M-1
. il j(2mrkn/M)
= (M Z e’ ) z[n]
k=0
. o .
Xs(e%) = Z zs[nle v
n=-—o0o
0 1 M-1 ) )
- __M__ Z z[n]eg(mrkn/M)e—-]wn
n=-—00 k=0
1 M-1 o
- - Z z[n]e-—j[w—(ZWk/M)]n
M =0 n=-00

- L Mil X (ez‘[w—('lwk/M)})
M k=0

Additionally, X4(e’*) is simply X,(e’*) with the frequency axis expanded by a factor of M:

=]
Xa(e??) = Z X [Mn]e=7“"
n-;;oo

Z z,[l]e~ /M)

l=-—o0

= X, (ej(u/M))
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(a) (i) Xs(e’) and X4(e?“) are sketched below for M = 3, wy = 7/2.

1 Xs€I® )
_,/\_/u
P :(’ \.(: ~
! A h N i .
-t —2n/3-n/2 w2 2n/3 T ®
“Xd(ej“’ )
_/\—_/M
,/ \:<’ \/{\/ ~
- L 7 DA N -
-2 -7 T 2r ®
(ii) X,s(e’) and X4(e) are sketched below for M = 3, wy = /4.
1 Xs@I® )
173
-r —2n/3 -T/4 n/4 2n/3 T
AXd(eJm )
173
-2r -= n 2r 0]

(b) From the definition of X,(e’“), we see that there will be no aliasing if the signal is bandlimited to
w/M. In this problem, M = 3. Thus the maximum value of wg is 7/3.
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4.32
A. With M =2 and N=4,
X(e*”")
}L 1
: — @
4 _% [ % /4
X, (ej”)
+1
N N
7z -z z 7
v.(e")
14
| — @
7z = " 7
Y(ej'")
1
/ll [\a)
- ! T
B. With M =2 and N =8, X, (ej“’) and Y, (ej”’) remain as in part A, except that Y, (ej“’)
now has a peak value of 8. After expanding we have
| (e”) |
%)fe( J(ﬂ’+2”)/8) . L1y (ef(ﬂ’*2”)/8) ly (e/w/8)
_:275 ------ —7!r ------------ 7IZ' hhhhhh 27
We see that Y(e’“’) =1 forall @. Inverse transforming gives y[n]=&[n] in this case.
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4.33

x["]"[ 5 H 13 H L5 H 13 }—*y["]

Since 3 and 5 are relatively prime, the order of the two operations in the center can be
interchanged. This gives

oo o oo H o o

Expanding by 5 and immediately compressing by 5 produces no net effect. We have

x,[n]

y[n]

Compressing by 3 produces

x, [n]=x[3n].

Expanding by 3 now gives

x, |n/3|, mn=3k, k anyinteger
Jnl= (/3]  kany integ

0, otherwise.

That is,

x[n], n=3k, k any integer
y[n]= .

0, otherwise.
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4.34. We can analyze the system in the frequency domain:

jo 2im ‘ 2% . .
RCAN Ry P b Cbl P TP CoLd L TCELD N PR I Tl

Y1(e’*) is X (e2/¥)H, (e?“) downsampled by 2:
Yl(ej“’) = _;_{X(erw/2)Hl(ejw/2) +X(e(Zj(u~21r)/2)H1(ej(w—21r)/2)}
1 . . . .
= 3 {X (@) Hi(e/?) + X (720 Hy (9% -7) }

= %{Hl(ejw/z)+H1(ej(%"‘))}X(ej“’)
= Hy(e)X ()
Hy(e®) = %{Hl(ej“’/z) +H1(ej(§-—1r))}

172



ch04 171-202.gxd 4/15/10 3:19 PM Page 173 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4.35. X (j) is drawn below.

X G2)
I/T

z(t) is sampled at sampling period T, so there is no aliasing in z[n].

[}

Q

Xe 19)
UT

-n T [}
Inserting L — 1 zeros between samples compresses the frequency axis.

Ve 19 )
LT

-t/L  wL )

The filter H(e’“) removes frequency components between 7/L and 7.

Wel® )
/\ \ /\
- WL @l )
The multiplication by (—1)" shifts the center of the frequency band from 0 to 7.
Y 1® )
1/LT
- /\ /\ / L
—n n ®

The D/C conversion maps the range — to 7 to the range —# /T to 7 /T.

Y. (GQ)
1/L
= - L/T n LT =Q
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4.36. (a) See the following figure:

ARE 1?)
12000
-~ - T >(1)
X(e 19
12000
R 7 S —; R T 53 o

(b) For this to be true, H(e’“) needs to filter out X (e’) for n/3 < |w| < w. Hence let wy = 7/3.

Furthermore, we want

’-;Q = 27(1000) => T} = 1/6000
2

(c) Matching the following figure of S(e’*) with the figure for R.(j{2), and remembering that Q = w/T,
we get T3 = (27/3)/(20007) = 1/3000.

S(e jm)
6000

=2n/3 2n/3
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4.37. Problem 3 in Spring2004 Midterm exam.

Problem

We have a discrete-time signal, x[n], arriving from a source at a rate of Til samples per
second. We want to digitally resample it to create a signal y[n] that has TLQ samples per second,
where Th = %Tl.

(a) Draw a block diagram of a discrete-time system to perform the resampling. Specify the
input/output relationship for all the boxes in the Fourier domain.

1, n=0

0. otherwise’ determine y[n].
9

(b) For an input signal z[n] = d[n] =
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Solution from Spring04 midterm
Part(a):
z[n] y[n]
——=15 H 13 =
aln] b[n]
H (e
()
-7/5 w5
The input-output relationships for the boxes in the above figure are as follows:
A(¥) = X (7%%)
B(ejw) _ 5A(ejw)7 |w| < 7T/5
0, otherwise
1 2 2 k
jw—2mk
ejw = § Z B )
k=0
Part(b):
A(e) =1
|lw| < /5
otherwise
5/ 3, |w|<3n/5
otherwise
Taking the inverse Fourier Transform:
5 Sln(37T /b5n)
=—-—° 1
yin] = 22 (1)
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4.38. Appears in: Fall05 PS6, Fall04 PS5, Fall02 PS5.

Problem

Consider the decimation filter structure shown below:

Xoln] Yoln]
v 2 ~ Hy(2)
x[n] vy yIn]
b—
71 x4[n] y4[n] 4
V2 | Hy(@

where yo[n] and y;[n] are generated according to the following forward recursions:

wlnl = Jwoln 1] = zzoln] + gl — 1
il = gl =11+ nl]

(a) How many multiplies per output sample does the implementation of the filter structure
require? Counsider a divide to be equivalent to a multiply.

The decimation filter can also be implemented as shown below,

x[n] v[n] y[n]

—= H@ b2~

where v[n] = av[n — 1] + bz[n] + cx[n — 1].
(b) Determine a, b, and c.

(¢) How many multiplies per output sample does this second implementation require?
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Solution from Fall05 PS6

(a) There is one output sample generated for every pair of input samples. Even input samples
require 3 multiplies and odd input samples require 2 multiplies. Thus each pair requires
5 multiplies.

(b) Applying the compressor identity to the previous structure results in:
H(z) = H()(Z2) + ZﬁlHl(ZQ).

From the difference equations in the previous part we have:

Ly 1.1
—5+ g%
and
1
Hi(z) = 12
1( ) _iz_l
Thus,
oy At bt bl da- G del) o det
— 1% (1—=352z"H)(1 435271 1—352

Therefore, a =1/2,b=—1/3 and ¢ = 1/4.

(¢) In this implementation 3 multiplies are required for every input sample. For every output
sample we need to calculate 2 values of v[n]. Altogether we need 6 multiplies per output
sample.
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Solution from Fall04 PS5

(a) There is one output sample generated for every pair of input samples. Even input samples
require 3 multiplies and odd input samples require 2 multiplies. Thus each pair requires
5 multiplies.

(b) Applying the compressor identity to the previous structure results in:
H(z) = H()(Z2) + ZﬁlHl(ZQ).

From the difference equations in the previous part we have:

Ly 1.1
—5+ g%
and
1
Hi(z) = 12
1( ) _iz_l
Thus,
I S ot (O ) 0 o) B S o
— 1% (1—=352z"H)(1 435271 1—352

Therefore, a =1/2,b=—1/3 and ¢ = 1/4.

(¢) In this implementation 3 multiplies are required for every input sample. For every output
sample we need to calculate 2 values of v[n]. Altogether we need 6 multiplies per output
sample.
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Solution from Fall02 PS5

1. There is one output sample generated for every pair of input samples. Even input samples
require 3 multiplies and odd input samples require 2 multiplies. Thus each pair requires
5 multiplies.

2. Applying the compressor identity to the previous structure results in:
H(z) = H()(Z2) + ZﬁlHl(ZQ).

From the difference equations in the previous part we have:

Ly 1.1
—5+ g%
and
1
Hi(z) = 12
1( ) _iz_l
Thus,
oy At bt bl da- G del) o det
— 1% (1—=352z"H)(1 435271 1—352

Therefore, a =1/2,b=—1/3 and ¢ = 1/4.

3. In this implementation 3 multiplies are required for every input sample. For every output
sample we need to calculate 2 values of v[n]. Altogether we need 6 multiplies per output
sample.
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4.39. Appears in: Spring05 PS3.

Problem

Consider the two systems of Figure 77.

(a) For M = 2, L. = 3, and any arbitrary z[n|, will ya[n] = yg[n]? If your answer is yes,
justify your answer. If your answer is no, clearly explain or give a counterexample.

(b) (Optional) How must M and L be related to guarantee ya[n] = yp[n] for arbitrary z[n]?

System A: x[n] J1 M w4 [n] 11L yaln] N

System B: z[n] 11L wgn] M ys[n]

Figure 1: Systems compared in Problem 3.8.
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Solution from Spring05 PS3

(a) The following equations describe the stages of System A:

waln] = x[2n]

walg] if ¥ is an integer,
yaln] = .
0 otherwise.

The following equations describe the stages of System B:

] z[g] if ¢ is an integer,
wpln] =
b 0 otherwise.

yp[n] = wp[2n]

Therefore,
n . n .
z[%] if % is an integer
aln] = 007 E 5 s e
0 otherwise.
and
2n e 2n :
z[2] if & is an integer
yoln] = {23 BE B |
0 otherwise.
Because for all integer values of n for which 2 is an integer, 2?" is also an integer and

vice-versa, the systems are equivalent.

(b) More generally, the systems can be described by the following equations:

z[M2]if 2 is an integer,
yaln] = .
0 otherwise.

a[M2]if M2 s an integer,
ysln] = :
0 otherwise.

Therefore the two systems are equivalent if for all integer values of n where % is an
integer, 7 is also an integer, and if for all integer values of n where 7 is an integer, % is
also an integer. Since we are guaranteed that for each n which gives integer values of 7,

% must also be an integer (since we’re only considering integer M and L), we need only

to show that every time % is an integer, 7 is an integer in order to have an equivalence
between the two systems.

For arbitrary integer n, % is an integer if and only if Mn is an integral multiple of L.

This only occurs whenever Mn contains all of L’s prime factors. Likewise, 7 is an integer
if and only if n contains all of L’s prime factors. It is therefore true that in order for
the systems to be equivalent, Mn containing all of L’s prime factors must imply that n
contains all of L’s prime factors. This is guaranteed to be true if M and L share no prime
factors in common besides 1. (This condition will ensure that any prime factors which
Mn has in common with L, besides 1, must have come exclusively from n.) Therefore,
the two systems are equivalent if the greatest common factor of M and L is 1 (M and L
are co-prime).
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—p—

4.40
A x(e”)
1
J¥
2
R 7 7
X, (ej‘”)
1
\—Au
2
B 7 7
Y, (e")
2
14
- > 7 7
Y(ej‘”)
1
14
2
_}[ _g % 7-[
B.
£= g [x[n]~y[n]
1 T w ‘» 2
[ Pe(e)-v (e do
1 r
=5-2 ”/2(1/2)2 dw
~1/8.
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C. For M =2 we have, ‘Heff (eja) )|

= T

D. When M =6 we have X, (¢/’)=X(e/*”). Then

T(e)=H(e")X.(e")

:H(ej“’)X(ej(’“’)
x(e). Jof<”
0, %<|a)|Sﬂ'.

Now

X(ejﬁ(mhyﬁ)+X(ef6“’/6), r<w<-Z

Y(ej“’)=<X(e-j"“’/6), dd i

X(ejﬁw/ﬁ)+X(ej6(w_2”)/6), %Sa)ﬁ 7.

But X(e‘i(‘"izﬂ))= X(ej”’). Thus

Y(ej”’):< X(ej"’), —%<a)<§

2X (e, %Sa)Sﬁ.

_ o Y(e) o
Finally, H (ef “’) =——3" The magnitude is plotted below.
% Y (e

‘H off (ejw )|

21

|
B

|
N
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4.41. (a) Notice that
Yo[r] = z[3n]
nn] = z[3n+1]
y2[n] = z[3n+2],

and therefore,
yo[n/3], n =3k
z[n] =< wnl(n-1)/3], n=3k+1
y2[(n—2)/3], n=3k+2
(b) Yes. Since the bandwidth of the filters are 27 /3, there is no aliasing introduced by downsampling.
Hence to reconstruct z[n], we need the system shown in the following figure:

—XQEI—]" 1 3 > 3H0(z)——l
x[n]

RALIN } 5 H ()= D—

RoILIN }s - 3}12(z)——-T
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(c) Yes, z[n] can be reconstructed from ys[n| and y4[n] as demonstrated by the following figure:

\

x[n] H,@ w(n] ‘ , | (n] f , [ [n] ~ x{n]

w ,[n] ‘ , s [n] f 5 e (n] s[n]

H, (2 H, ()

In the following discussion, let z.[n] denote the even samples of z[n], and z,[n] denote the odd
samples of z[n]:

_ z[n], n even

zeln] = { 0, nodd
] = 0, n even
o - z[n], n odd

In the figure, y3[n] = z[2n], and hence,

vs{n] 0, nodd

= z¢[n]

{ z[n], n even

Furthermore, it can be verified using the IDFT that the impulse response h4[n] corresponding to
Hy(e?v) is

_ | =2/(jmn), nodd
haln] = { 0, otherwise

Notice in particular that every other sample of the impulse response h4[n] is zero. Also, from the
form of Hy(e?*), it is clear that Hy(e’*)Hs(e’) = 1, and hence hy[n] * hy[n] = 8[n].

Therefore,
n/2], n even
vafn] = { g?[ & n odd
wy[n], n even
0, n odd
(z * hg)[n], n even
0, n odd

= zo[n] * ha[n]

where the last equality follows from the fact that h4[n] is non-zero only in the odd samples.
Now, s[n] = va[n]*ha[n] = zo[n]* ha[n]* ha[n] = x,[n}, and since z[n] = z.[n]+z,[n], s[n]+vs[n] =
z[n].
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4.42

A. We are given
1y <n<
h[}’l]: (2), 0<n<ll
0, otherwise.
Then
E, (Z) =1 +%Z_I +2L4Z_2 +2—162_3 +i82_4 +%2_5,
and
11, 1 5, 1 5 1 4, 1 _
E‘1 (Z):E'F?Z ! +?Z 2 +2—7Z 3 +?Z 4 +FZ 5.
A compressor structure with two polyphase components is shown below.

Y R
x[n] o 2 | E(2)
-/ -
z”! y[n]
'SR )
> J,z —> EI(Z)
~———— N~
B. Using the same 4[n],
E, (z)=1+i3zf1 +—z ? +%Z3
r 1 , 1 5 1 _
bj1 (z)—5+?z 1+2—72 2+—IOZ ?
r 1 ., 1 5, 1 _
E2 (2)22—24‘?2 l'|'?Z 2'|‘?Z 3
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4.43

It is not possible to find a choice for H, (z) that will guarantee that y, [n] = [n] whenever
x,[n]=x,[n]. One way to show this is to observe that H, (z)=1+z", so that
H,(e’”)=1+¢*°. This implies that H,(¢*)=2, while H, (e’")=0. This in turn means
that ¥, (¢’*) may not equal 0, but ¥, (¢’ )=0.

Now consider System 2. For this system

h(e)=W,(e")

= H, (") X, ().
To guarantee Y, (ej”’) =Y, (e”") for all @ we must allow ¥, (¢*) to possibly have a nonzero
value. This implies that H, (ej 0 ) #0. We must also insure that Y, (e-”’ ) =0, and this implies

that H, (e’ a ) =0. The frequency resoponse H, (ej “’) must be periodic in @, however, with

period 27 . Consequently the required conditions on H, (e-’ ”’) cannot be satisfied.
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4.44
We need to compress as much as possible, filter, and then expand. To start, the expand by 3
and compress by 2 blocks at the input can be exchanged.

—> T3 — 12 —> H(Z) —> 12 — T3 —>

k exchange j

use Noble
downsampling
identity

—{ 12 = T3 | l2 |- H

1

k exchange j 4 J
227

(Z) —> T3 —>

V4

1=

— 12 = 12 = 13 K= H

k combine J

1(Z) —> T3 —>

use Noble
upsampling
identity &
combine

-1

z
H, (z)=—"F"——
:(2) T+z'=-2z7
A L two multiplies
Total: 2/9 multiplications per output sample.
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4.45. Appears in: Fall02 PS3, Spring00 PS4.

Problem

Consider the following two systems:

System A:

X[l

— O HE)

AUN

Q(-)

G(z) =

System B:

x5[nl, rin]

+
_/
A~

ygIn]

— G(Z)<—

where Q)(-) represents a quantizer which is the same in both systen
can H(z) always be specified so that the two systems are equivalent (

xaln] = zpg[n]) for any arbitrary quantizer Q(-)7 If so, specify H(z)
your reasoning.
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Solution from Fall02 PS3

Since Q(-) can do anything, we need to let the transfer function from z[n| to r[n| and
from y[n] to r[n] be the same in both systems. In other words Hy,,,(2) = Hy,rp(2) and
Hyra(2) = Hygrp(2), where

Hyyra(2) = H(z)
1
Hyprp(2) = [YeP)
Hywa(2) = —G(2)H(z)
G(2)
Hy,ry(2) = _1——G(z)'
Both conditions are satisfied if we let H(z) = é(z). Thus the two systems are equivalent if

we choose H(z) appropriately.

Solution from Spring00 PS4

Since Q(-) can do anything, we need to let the transfer function from z[n]| to r[n| and
from y[n| to r[n] be the same in both systems. In other words Hy,,,(2) = Hygrp(z) and
Hy,ra(2) = Hygr (2), where

HUCATA(Z) = H(z)
1
Hyprp(2) = T-G(r)
Hy,r,(2) = —G(2)H(z)
_ G(2)
Hyprp(2) = —1_7(;(2)-

Both conditions are satisfied if we let H(z) = 1—;G(z) Thus the two systems are equivalent if
we choose H(z) appropriately.
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4.46

This proposed identity is not valid.
Consider as an input &[n].

If &[n] is compressed by a factor of two, the resultis §[n]. If &[n] is applied to a half-

sample delay, the result is nonzero for some values of 7.

On the other hand, if & [n] is delayed by a single sample, the result is & [n - 1]. Then

compressing by a factor of two yield zero for all values of 7.

This proposed identity is not valid.

Consider as input 8[n—1] and suppose 4[n]=J[n—1].

If 8[n—1] is delayed one sample, the result is §[n—2]. Compressing by a factor of two
yields 0 [n - 1]. The response of the filter is & [n — 2] . Expanding by a factor of two

gives 0 [n — 4] . Finally, advancing one sample produces ¢ [n — 3] .

On the other hand, if §[n—1] is advanced one sample, the result is §[n]. Compressing
by a factor of two yields §[n] again. Since h[n+1]=8[(n+1)—1]=8[n], the filter
response is &[n]. Expanding by a factor of two gives §[n], and delaying by two
samples produces §[n—2].

This proposed identity is valid. The validity is demonstrated by looking in the frequency
domain.

Let the input to the first system be v[r] with DTFT ¥ (¢”). Expanding by a factor of

L produces V' (e””L ) . The response of system A is then (V(ej“’L ))L .

Now consider the second system with the same input v[n]. The response of block 4 is

(7(¢)) . Expanding by a factor of L produces (¥ (¢/*")) .
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4.47. (a) Notice first that
Fo(j)|Hoa(jQ)|eY, |0 < 4007
X(§Q) =8 E.(jQ)|Haa(jQ)|e~%, 400r < |R] < 8007

0, otherwise

For the given T = 1/800, there is no aliasing from the C/D conversion. Hence, the equivalent CT
transfer function H.(j2) can be written as

: — H(ejw)luJ:QT: [Qi < Tr/T
He(jQ) = { 0, otherwise
Furthermore, since Y,(5§2) = H () X(5€2), the desired tranfer function is

o _ | &%, 19| < 4007
H(59) = { 0, otherwise

Combining the two previous equations, we find

) i(800w)®
joy — J € , wl < /2
HE™) {o, T/2< | <7

(b) Some aliasing will occur if 27 /T < 1600r. However, this is fine as long as the aliasing affects only
E.(j9) and not F.(jQ), as we show below:

WX (e i®)l

F is unchanged
V4 .

‘e N I e N -
-2r \ / 2n ®
E is aliased

In order for the aliasing to not affect F.(j2), we require
2w 2m
—_— - > —_ >
7 8007 > 400mr —> T 2 12007

The minimum %% is 1200w. For this choice, we get

. j(600w)3
joy _ | €% juf < 2m/3
(™) {0, 21/3 < |w| <
193
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4.48
(@) B(z)+B(—z)=2c means that b[n]+(-1)" b[n]=2cS[n], forall n. For n=0,

b[0]+5[0]=2¢c. For n#0, b[n]+(-1)"b[n]=0. For n even, (-1)" =1, so
b[n]+(—1)nb[n]:b[n]+b[n]:2b[n]. For »n odd, b[n]+(—1)nb[n]:b[n]—b[n]=0.

So, we have the following constraints: b[n]=0 foreven n#0, b[0]=c, and b[n] can be

anything for odd #.

(b) It is possible. One example is #[n]=J[n]+[n—1]. Thus
b[n]=h[n]*h[-n]=S[n+1]+28[n]+S[n-1].

(¢c) Let H,(z)=H(z),and H,(z)=2z""H (—z").

Wo [”]
H,y(z) > 12 » 12 s G (2)
x[n] —» y[n]
H,(z) > 12 o 12 M G(2)
W [”]
Then
W, (e”")=%[ X (&) H, (&) + X( /(a»zm/z) Ho( J(w—2ﬂ)/2):|
W, (ejw) =%|:X eJW/2)H (e/w/2)+X(e/(‘U 2”)/2)1_[1 (e/(w—Z”)/2 )]
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We want to get rid of the term in the output which is multiplied by X (ej (@=1) ) , which is the
result of aliasing. With this term present the system will not be LTI. Thus we must have
H,y (") G, () + H, (") G, (") =0.

This condition can be satisfied with the following choice for G, (z) and G, (z):
G, (e™)=2H, ( (- ”)) and G, () =-2H, (ej(ak”)) . Looking up our definition of H,(z),
we have

G, (z) =2H, (—z) = 2(—Z)N_l H(Z_l )

G, (z) =-2H, (z) =—2H (—z).
With this choice of G, (z) and G, (z), the aliasing resulting from decimation in the analysis

section of the QMF filter bank is perfectly cancelled by the synthesis part. The factors of 2
are optional — they compensate for 4 introduced by the downsampler.

(d)
Y (2)=5[H,(2)Gy (2)+ H, ()G, (2)] X (2)

= %[ZH(Z)(—Z)N_I H(Z_l )+22N_1H (—Z_l )(—H(—z))]X(z)
=[(-0)"" H () H () -2 H (=) H (-2 )] ( )
=2 ()T H () H () - H (=2)H (=) | X (2
Recall that we are given that H(z)H(z'I )+H(—z)H(—z 1)= c. For N even
(—I)N_l =—1, and we have
Y(z) =z [—H(Z)H(Z_l)—H(—Z)H(—Z_l )]X(z) = —czN_lX(z).
Thus for even N , the output of the QMF is simply a scaled shifted version of the input.

Therefore, the overall system does indeed reconstruct the input perfectly, but only for even
N.
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4.49
Suppose x[n] has spectrum X (ej”’). At the output of the first H, (ej”’) stage, the spectrum

is
. T
xX(e”), lel<7

Hy(e") X (¢")=
0, %<M<m
After downsampling, we have 1 X (ef o2 ), || < 7. At the output of the O, (e"”) stage we have
%X(ej“’/2 )QO (ej”’). The next step is upsampling. This produces %X(ej‘")QO (eﬂ‘”), || < %

The upsampled signal is passed through a second H (ej“’) stage. At the output of the upper
branch we have the spectrum

Lx(e7)0, (), Jof<®

0, %<M<m

At the output of the first H, (ej ’”) stage in the lower branch, the spectrum is

z
2

X@WL-§4@<m

After downsampling, we have 1 X (ej o2 ), 7 <|w| < 27. At the output of the O, (ej"’) stage we

0, || <
H,(e") X (e")=

have 10, (e""”)X (e‘/ o2 ), < ]a)‘ < 2zx. The next stage is upsampling; upsampling produces

10 (e”“’)X (ej‘"), % <|@|< 7 . The upsampled signal is passed through a second H, (ef‘")

stage. At the output of the lower branch we have the spectrum

196



ch04 171-202.gxd 4/15/10 3:20 PM Page 197 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

P 1
0, 0<|a)|<5

10 (ejz‘”)X(e-i“’), %< || < 7.

Finally, we combine the two branches and divide by X (ej “’) to obtain the frequency

response
10, (efzw), O<\a)|<—£
G(e™)= i 2
10 (7). E<|a)\<7r.
The result is sketched below.
G (ej ‘”)
1
2
T T @
—T _— — T
2 2
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4.50
(a)
(al) If H,(z) is linear phase, then H, (ej“’) = A(ej “’)e’j"‘“’”ﬂ , where 4 (ef “’) is real-valued
and o and J are constants. In this case we have Hj (/)= 4’ (e’”)e**"/* and
H, (ej (‘”—”)) =4 (ej (@) )e_j eI o that
H(f ( /(@) ) = 4 ( ej(wffr)) o 2o @-Ti2B _ g2 ( /(@) ) o 2aeri2b-em) Now T( e/’w) is given by
T(ej‘") = %(HO2 (ej”’)—HO2 (ej('w”)))
_ %Az (eja))e—j2aa)+j2ﬁ _%Az (ej(w—fr) )e—j2aw+j2(ﬂ—wr)
_ [ e ( e-’”’)— e ( ef(w—”)) e—jzm] o 12004i2f

We see that 7'(z) will be linear phase if [% A ()1 4° (ej (@-1) )e’j 2””] is real-valued. A

sufficient condition is that ¢ is an integer multiple of 1.

(a2) If E,(z) and E, (z) are linear phase then E, (ef”’): 4, (efw) oIy gnd
E, (e‘/w) =4, (ef”)e"’“I“’*fﬂ‘ . In this case T(ef’”) is given by
r{e) -2, (") (™)
=2¢774, (efzw)e—jzaomjzﬂo 4, (ejzw)eszalmjzﬂl
=24, ( ejzm) 4, ( ej2w)€—_/[2(ao+al)+l]a)+ P2AAAA)

We see in this case that 7'(z) is linear phase.
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(b) Given h,[n]=38[n]+6[n-1]+16[n-2],

(bl) Wehave H, (z)=l+z_l+%z_2. Then H, (Z)=H0(—Z)=l—z_l+%z_2. Also,

G,(z)=H,(z) and G,(z)=-H,(z). These give & [n]=8[n]-5[n-1]+15[n-2],
g, [n]=6[n]+8[n-1]+16[n-2], and g [n]=-8[n]+6[n-1]-16[n-2].

(b2) We have ¢, [n]=h,[2n]=0[n]+15[n—1] and ¢ [n]=h,[2n+1]=5[n].

(b3) Now E,(z)=1+4z" and E,(z)=1. Therefore
T(z)=2z"E,(*)E ()
=2z (1+427)1
=2z"+1z7.

Also, t[n]=26[n-1]+16[n-3].
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4.51.

y[n] z*[n]
Y(¥) = X(e“)* X(e¥)

therefore, Y (e/“) will occupy twice the frequency band that X (e’“) does if no aliasing occurs.
IfY(e’) #0, —m<w<m,then X(e?)#0, -3 <w< ¥ andsoX(jQ) =0,

|2] > 27(1000).
Since w = QT,

v

T - 27(1000)
1

4000

SR
IA

fn

POWEREN.IR
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4.52. Split H(e’*) into a lowpass and a delay.

H(ejw) = HLP(ejw)e—ju
jw —_ 1: |w] <i
Hpp(e*) = { 0, =< qu| <
X (t) x[n . win : v[n (t)
200 op Pl o = H (&) e I L e
l |
Ideal Upsampler with gain

of 1 instead of L

Then we analyze the system as follows:

z[n] = z(nT) no aliasing assumed
1 T
wln] = 7% (n -E) rate change
T
v[n] = wr-1]= %zc (n% - —I—,) ,  delay at higher rate

y[r] = wv[nL]= %a:c (nT - %)
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5.1.
[n] = 1, 0<n<10,
Y™ =91 0, otherwise
Therefore,
11
Y(e/) = e3% Sin 5w
sin §

This Y (e?“) is full band. Therefore, since Y (e/) = X (e7“)H (e’“), the only possible z[n] and w, that
could produce y[n] is z[n] = y[r] and w, = =.

203



Ch05 203-222.gxd 4/15/10 3:58 PM Page 204 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

5.2. We have y[n — 1] — Ly[n] + y[n + 1] = z[n] or 271Y(2) — LY (z) + 2Y () = X(2). So,

1
-1 _ 10
¥4 3 T2

H(z) =

- D9
1 9

-1 9
= +
1 -

z—3 Z 3

(a)

i3 |Re 3

/‘Nzem atz=oo
\<>

(b)

1
H(Z) = 81
3
Stable = ROC is % < |2| £ 3. Therefore,
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5.3.

sln = 1]+ 3yln — 2 = afo

Y (2) + %ﬂy(z) = X(2)

_ Y(2) _ 1
H(Z) = X(Z) = 21+ %2_2
H(z) = ﬁ%;‘-?

i) 3 <z, h[n] = (-3)"*'u[n + 1] = answer (a)
ii) 3 > |z,

h[n]

I
|
|
W=
SN——"
3
+
-

u[-n — 2]

() () e

_%) nu[-—n ~ 2] = answer (d)

i

I
Wl =
—
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5.4. (a)
2ln] = (-;-) uln] + (2)"u[-n — 1]
1 z 1
X(Z)='—————1_%z_1—;———2, '2‘<|Z|<2
il =6(3) url-6(3) uln
6 6 3
Y(z)—_—l—%z"l—]_—%z"l, Z(IZ‘
_Y(2) _ -3zt (1-3z1)(1-22"1) 1-227! 3
H(z) - X(Z) - (1 _ -;‘Z—lz)(l — %z—l) . 2 _gz—l = 1= %2_1’ lzl > Z
Im
/ \lzl > 3/4
\jﬂe g
(b)
1 2271 3
B =1z 371 1= 31 > 3
n n—1
hln] = (g) u[n] —2 (%) u[n — 1]
(c)

_Y(z) _1-227"

H(z) = X(z)  1- 3,71

Y(z) - %z“‘l}’(z) - X(z) - 2:71X(2)

yln] ~ 3yl — 1] = oln] — 2ol — 1]

(d) The ROC is outside |z| = 3, which includes the unit circle. Therefore the system is stable. The
h{n] we found in part (b) tells us the system is also causal.
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5.5.

ool = (3) utnl+ (3) ol + ot

1 1 1
Y(z)z1—-%z-1+1—4lz—1+1—-z—1’ |z] > 1
z[n] = uln]

1
X(Z) = ﬁ, IZI >1
_Y(z)  3-%z142:72 1
HO = 3@ " 1og 75> 773

(a) Cross multiplying and equating z~! with a delay in time:

yln] = vl — 1] + 5ln ~ 2 = Seln] ~ ‘el — 1] + 2afn -2

(b) Using partial fractions on H(z) we get:

1 27! 1 2! 1
H(z) = - + - +1, |2|> 3
2 1-1z-1 1-1z1 1-11 1-11 7 I 3

So,
i h[n] = (%)nu[n] - (%) -1+ (-})nu[n] - (%)H uln — 1] + 8[n]

(c) Since the ROC of H(z) includes |z| = 1 the system is stable.
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5.6. (a)
z[n] = -% (%) ufn] - %(2)"11[—71 -1
1 4 1 1
X(z) = . %32_1 -+ 1 —;z“l = (1 — %z‘l)(l — 22__1), 5 < Iz[ <2
(b)

1-—2"2
1- %z‘l)(l —2z71)

Y(2) =

This has the same poles as the input, therefore the ROC is still < [z] < 2.

(c)

Y (2)

H(z) = X@) =1-2"% & h[n] = 8[n] - d[n - 2]
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5.7. (a)
2[n] = 5uln] & X(2) = I‘-EF 2] > 1
" " 2 3 3
yln] = (2 (%) +3 (-%) )u[n] “Y@ = trrne Mg
_Y(2) _ 1-2z71 3
H(z) = X(z)  (1-1z-1)(+ 327 Il > 4
Im
-3/4 i/2 [Re
(b)
1-271 -2 I 3
HO =g nas o —a Ly tar o 7
hin] = —-z— (%) uln] + -g (—%) u[n]
(c)

_Y(2) 1-271
T X(z) 1+3iz1-%2-2

H(z)

Y(e)+ 127 () - 3770 (2) = X() - 27X (2)

yln] + 39 — 1] = 3yl — 2] = ofn] — aln 1)
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5.8. (a)
3
yin] = Zyln-1]+ yln — 2] + z[n — 1]
Y(2) = gZ'lY(z) +27%Y(2) + 271X (2)
Therefore, . 1
Y(z2) z" z-
= = = ) >2
H(Z) X(Z) 1- %z“l — 22 (1 - 22-1)(1 + %z"l) lZI
Im ,
1zeroatz=-co
32 ¥ Re >
(b)
z~1L A B
H = — 9
© = TEar Y S ase iy H
z7! )
A = —— =2
1+ -;-z‘l) Y 5
z-1 2
B A - _%
(1-227%) |, _, 5

el =2 [ - (-3) Jutn

(c) Use ROC of § < |z| < 2 since the ROC must include |z| = 1 for a stable system.

hin] = —§(2)"u[—-n -1] - g (—- —;—) u[n]
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5.9.

o~ 1] = Syfn] + yln + 1] = aln]
1Y (2) — gY(z) +2¥(2) = X(2)

Y(2)
X(2)
z

z-l

(I-20)(1-3z7Y)
2 2

3 _ 3
1-2z71 1-121

H(z)

-1

Im

/‘\zem atz=oco
\eay s

Three regions of convergence:
(@) 2l < 3:
_ 2 2 (1\"
h[n] = 3(2) u[-n - 1]+ 3 (2) u[-n — 1]
(b) $<lzl<2:
_ 2vn 2 (1\"
hln] = ‘3(2) u[-n—1] - 3 (—) u[n]
Includes |z| = 1, so this is stable.
(c) |2] > 2:
2 2 (1\"
bln] = @"uln] - 3 (3) uln

ROC outside of largest pole, so this is causal.
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5.10. Figure P5.16 shows two zeros and three poles inside the unit circle. Since the number of poles must
equal the number of zeros, there must be an additional zero at z = oc.

H(z) is causal, so the ROC lies outside the largest pole and includes the unit circle. Therefore, the
system is also stable.

The inverse system switches poles and zeros. The inverse system could have a ROC that includes |z| = 1,
making it stable. However, the zero at z = oo of H(z) is a pole for H;(z), so the system H;(z) cannot
be causal.
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5.11. (a) It cannot be determined. The ROC might or might not include the unit circle.

(b) It cannot be determined. The ROC might or might not include z = co.

(c) False. Given that the system is causal, we know that the ROC must be outside the outermost pole.
Since the outermost pole is outside the unit circle, the ROC will not include the unit circle, and
thus the system is not stable.

(d) True. If the system is stable, the ROC must include the unit circle. Because there are poles both
inside and outside the unit circle, any ROC including the unit circle must be a ring. A ring-shaped
ROC means that we have a two-sided system.
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5.12.

(a) Yes. The poles z = +5(0.9) are inside the unit circle so the system is stable.

(b) First, factor H(z) into two parts. The first should be minimum phase and therefore have all its
poles and zeros inside the unit circle. The second part should contain the remaining poles and
Z€eros.

1402271 1-9272
HE = 708 1
N e S —
minimum phase poles & zeros

outside unit circle

Allpass systems have poles and zeros that occur in conjugate reciprocal pairs. If we include the
factor (1 — %z"z) in both parts of the equation above the first part will remain minimum phase
and the second will become allpass.

(1+02271)(1—227%) 1-9272
1+0.81272 1- 3272
H;(2)Hop(2)

H(z)
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5.13. An aside: Technically, this problem is not well defined, since a pole/zero plot does not uniquely
determine a system. That is, many system functions can have the same pole/zero plot. For example,
consider the systems

H]_(Z) = 2z}
Hz(z) = 2z7!

Both of these systems have the same pole/zero plot, namely a pole at zero and a zero at infinity.
Clearly, the system H;(z) is allpass, as it passes all frequencies with unity gain (it is simply a unit
delay). However, one could ask whether H,(z) is allpass. Looking at the standard definition of an
allpass system provided in this chapter, the answer would be no, since the system does not pass all
frequencies with unity gain.

A broader definition of an allpass system would be a system for which the system magnitude response
|H (ej“’)l = a, where a is a real constant. Such a system would pass all frequencies, and scale the output
by a constant factor a. In a practical setting, this definition of an allpass system is satisfactory. Under
this definition, both systems H;(z) and Hz(z) would be considered allpass.

For this problem, it is assumed that none of the poles or zeros shown in the pole/zero plots are scaled,
so this issue of using the proper definition of an allpass system does not apply. The standard definition
of an allpass system is used.

Solution:

(a) Yes, the system is allpass, since it is of the appropriate form.

(b) No, the system is not allpass, since the zero does not occur at the conjugate reciprocal location of
the pole.

(c) Yes, the system is allpass, since it is of the appropriate form.

(d) Yes, the system is allpass. This system consists of an allpass system in cascade with a pole at zero.
The pole at zero is simply a delay, and does not change the magnitude spectrum.
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5.14. (a) By the symmetry of z;[n] we know it has linear phase. The symmetry is around n = 5 so the
continuous phase of X;(e’%) is arg[X;(e’“)] = —5w. Thus,
. d o d
grd[ X, ()] = == {arg[Xa ()]} = ——= {~5w} =5
40
3 x,[n]
2
T [
6 1 2 3 4 56 7 8 9 n
(b) By the symmetry of z2[n] we know it has linear phase. The symmetry is around n = 1/2 so we
know the phase of X,(e’) is arg[X2(e?“] = —w/2. Thus,
) d . d w 1
JWY] — — —. w = e —— 5 = —
grd[Xa(e)] = - o {arglXa(e)]} = - == { -2} = 2
3/2 ¢ [}
X,
3/4
3/8 T T
-2 -1 0 1 2 3 n
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5.15. (a) h[n] is symmetric about n = 1.
H(e™) 2+ eIV 4 2eTHW

e (27 + 1+ 2¢77)

(1 +4cosw)e™ v

Aw)=1+4cosw, a=1, =0

Generalized Linear phase but not Linear Phase since A(w) is not always positive.

(b) This sequence has no even or odd symmetry, so it does not possess generalized linear phase.
(c) h[n] is symmetric about n = 1.
H(e™) = 1+3e9v 472
= e IY(e +3+e7Iv)
= (3+2cosw)e ¥
Alw)=3+2cosw, a=1, =0
Generalized Linear phase & Linear Phase.
(d) h[n] has even symmetry.
1+e v
=312 (i1 4 g=i(1/2)0)
2 cos(w/2)e~ (/2w

Il

H(e™)

A(w) = 2cos(w/2), a= %, B=0
Generalized Linear Phase but not Linear Phase since A(w) is not always positive.
(e) h[n] has odd symmetry.
H(EY) = 1-e 2w

e'j“’(ej“’ - e_j“’)
e “2jsinw
= (2sinw)e”7wti%

7!'

A(w) =2sinw, a=1, 8= 3

Generalized Linear Phase but not Linear Phase since A(w) is not always positive.
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5.16. The causality of the system cannot be determined from the figure. A causal system h; [n] that has a
linear phase response ZH(e’*) = —aw, is:

hifn] = &[n]+26[n — 1] + d[n — 2]

Hy(e?) = 14279 e
= e (e +2+e77v)
= e 7¥(2 + 2cos(w))
|Hi(e™)] = 2+ 2cos(w)
LHi(&%) = -w

An example of a non-causal system with the same phase response is:

he[n] = 6[n+ 1]+ d[n] +46[n — 1]+ é[n — 2] + é[n — 3]

Hy(e?®) = &Y +1+4e79 792 4793
= e (eI t el +4+e7I 4 eI
= e9“(4 + 2cos(w) + 2 cos(2w))
|H2(e?)| = 4+ 2cos(w) + 2cos(2w)
AHg(ej“’) = —Ww

Thus, both the causal sequence h;[n] and the non-causal sequence h[n] have a linear phase response
LH(e?¥) = —aw, where o = 1.
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5.17. A minimum phase system is one which has all its poles and zeros inside the unit circle. It is causal,
stable, and has a causal and stable inverse.

(a) Hi(z) has a zero outside the unit circle at z = 2 so it is not minimum phase.
(b) H,(z) is minimum phase since its poles and zeros are inside the unit circle.
(c) H3(z) is minimum phase since its poles and zeros are inside the unit circle.

(d) Hy(z) has a zero outside the unit circle at z = oo so it is not minimum phase. Moreover, the
inverse system would not be causal due to the pole at infinity.
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5.18. A minimum phase system with an equivalent magnitude spectrum can be found by analyzing the system
function, and reflecting all poles are zeros that are outside the unit circle to their conjugate reciprocal
locations. This will move them inside the unit circle. Then, all poles and zeros for H,;,(2) will be
inside the unit circle. Note that a scale factor may be introduced when the pole or zero is reflected
inside the unit circle.

(a) Simply reflect the zero at z = 2 to its conjugate reciprocal location at z = % Then, determine the

scale factor.
1-1z1
Ho.(2)=2{—2" _
) =2 (735
(b) First, simply reflect the zero at z = —3 to its conjugate reciprocal location at z = -—%. Then,

determine the scale factor. This results in
(1+327Y) (1-3271)
11+ 121

Hm,-n(z) =3

The (1+ 3z7') terms cancel, leaving

(- 4=

z-1

Hmm(z) =3

Note that the term -2r does not affect the frequency response magnitude of the system. Con-
sequently, it can be removed. Thus, the remaining term has a zero inside the unit circle, and is
therefore minimum phase. As a result, we are left with the system

Hoin(z) = 3 (1 - %z_l)

(c) Simply reflect the zero at 3 to its conjugate reciprocal location at % and reflect the pole at 45 to its
conjugate reciprocal location at %. Then, determine the scale factor.

(1-3271) (1-327")

(1-3=1)°

9
Hmin(z) = 2
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5.19. Due to the symmetry of the impulse responses, all the systems have generalized linear phase of
arg[H (e’¥)] = B — now where n, is the point of symmetry in the impulse response graphs. The group
delay is

grd [Hi(e)] = ~ 5 {axg [Hi(e)]} = o {8 — nw} =,

To find each system’s group delay we need only find the point of symmetry n, in each system’s impulse

response.
grd [Hy(e™)] = 2 grd [Hy(e’?)] = 3
grd [Hz(e)] = 15 grd [Hs(e?”)] =
grd [Hs(e™)] = 2 grd [Ho(e)] = 3.5

f

POWEREN.IR
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5.20. (a) Yes. The system function could be a generalized linear phase system implemented by a linear
constant-coefficient differential equation (LCCDE) with real coefficients. The zeros come in a
set of four: a zero, its conjugate, and the two conjugate reciprocals. The pole-zero plot could
correspond to a Type I FIR linear phase system.

(b) No. This system function could not be a generalized linear phase system implemented by a LCCDE
with real coefficients. Since the LCCDE has real coefficients, its poles and zeros must come in
conjugate pairs. However, the zeros in this pole-zero plot do not have corresponding conjugate
Zeros.

(c) Yes. The system function could be a generalized linear phase system implemented by a LCCDE
with real coefficients. The pole-zero plot could correspond to a Type II FIR linear phase system.
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5.21. hyp[n] is an ideal lowpass filter with w, = %

(a) y[n] = z[n] — z[n] * hip[n] = H(eI) = 1~ Hyp(e?)
This is a highpass filter.

L 1

-n -1/4 0 n/4 T

(b) z[n] is first modulated by w, lowpass filtered, and demodulated by =. Therefore, H;,(e?*) filters
the high frequency components of X (e#“).
This is a highpass filter.

-1 -3n/4 0 3n/4 T

(c) hip[2n] is a downsampled version of the filter. Therefore, the frequency response will be “spread
out” by a factor of two, with a gain of .
This is a lowpass filter.

e o 0 1/2 * e

1 1

-T -n/2 0 /2 T ®

(d) This system upsamples h;p[n] by a factor of two. Therefore, the frequency axis will be compressed
by a factor of two.
This is a bandstop filter.

-n-71/8 /8 0 n/8 8 n o

(¢) This system upsamples the input before passing it through hip[n]. This effectively doubles the
frequency bandwidth of Hjp,(e?v).
This is a lowpass filter.

® o 0 1/2 * o
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5.22. Problem 2 from sp 2005 final exam
Appears in: Fall05 PS2.

Problem

Many properties of a discrete-time sequence h[n] or an LTI system with impulse response
h[n] can be discerned from a pole-zero plot of H(z). In this problem we are concerned
only with causal h[n]. Clearly describe the z-plane characteristic that corresponds to each
of the following properties:

(i) Real-valued impulse response:
(ii) Finite impulse response:

)
)
(iii) h[n] = h[2a — n] where 2« is an integer:
(iv) Minimum phase:

)

(v) All-pass:

Solution from Fallo5 PS2

(i) Real-valued impulse response:
Poles that aren’t real must be in complex conjugate pairs. Zeros that aren’t real must be
in complex conjugate pairs.

(ii) Finite impulse response:

All poles are at the origin. The ROC is the entire z-plane, except possibly z = 0.

(iii) h[n] = h[2a — n] where 2« is an integer:
Causality combined with the given symmetry property implies a finite-length h[n] that
can only be nonzero between time zero and time 2c.. Thus we must have all poles at the
origin and at most 2« zeros. The z transform of h[2a — n] is z72*H(1/z), so any zero of
H(z) at ¢ # 0 must be paired with a zero at 1/c.

(iv) Minimum phase:

All poles and zeros are inside the unit circle (so that the inverse can be stable and causal).

(v) All-pass:

Each pole is paired with a zero at the conjugate reciprocal location.
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Solution from Spring05 Final

(i) Real-valued impulse response:

Poles that aren’t real must be in complex conjugate pairs. Zeros that aren’t real must be in
complex conjugate pairs.

(ii) Finite impulse response:

All poles are at the origin.

(iii) h[n] = h[2ac — n] where 2« is an integer:

Causality combined with the given symmetry property implies a finite-length h[n] that can only
be nonzero between time zero and time 2a.. Thus we must have all poles at the origin and at most
2a zeros. The z transform of h[2a — n] is z72*H(1/2), so any zero of H(z) at ¢ # 0 must be
paired with a zero at 1/c.

(iv) Minimum phase:

All poles and zeros are inside the unit circle (so that the inverse can be stable and causal).

(v) All-pass:

All poles and zeros are inside the unit circle (so that the inverse can be stable and causal).
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5.23.
—a7 27! Y(2)
1—az! ~ X(2)

(a) Cross multiplying and taking the inverse transform

causal, so ROC is |z| > a

H(z) =1

y[n] — ay[n — 1] = z[n] — %z[n -1]

(b) Since H(z) is causal, we know that the ROC is |z| > a. For stability, the ROC must include the
unit circle. So, H(z) is stable for |a| < 1.

(9 a=1
/Im\lzl >1/2
(@
-1,-1
H(z) = 1- (lzz‘l B 1a— :z—l » lel>a
hfn] = (@)"ulr] ~ > (@)l ~ 1]
(©)

_ 1—a e
Jwy = meiw =
H(e™) = H(2)| .= 1 — ge—iw
. . . l-ale™# 1-—q e
w12 — Jjw * Jw —_ — . 3
|H ()" = H(e™)H™ (") = 5= 7=

) 1+ 4% —2cosw ) ?
Jw = a a
()] (1+a2—2acosw

1
1 /a®+1-2acosw)?
a \1+a? —-2acosw

Q|-
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5.24. (a) Typel:

M/2
Aw) = Z a[n] coswn
n=0
cos0 =1, cosm = —1, so there are no restrictions.
Type II:
(M+1)/2

1
Aw) = '; b[n] cosw (n - 5)
cos0 =1, cos (nm — §) = 0. So H(e’™) = 0.

Type III:
M/2

Aw) = Z c[n]sinwn

n=0

sin0 = 0, sinnw = 0, so H(e’°) = H(e’™) = 0.

Type IV:
(M+1)/2 1
Aw) = Z d[n]sinw (n - 5)

n=1

sin0 = 0, sin (n7 — §) # 0, so just H(e°) =0.

(b) Type I | Type II | Type III | Type IV
Lowpass Y Y N N
Bandpass Y Y Y Y
Highpass Y N N Y
Bandstop Y N N N
Differentiator Y N N Y
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5.25.

proof.

(a) Taking the z-transform of both sides and rearranging

_Y() —-3+27?
T X(z) T 1-3z72

H(z)

Since the poles and zeros {2 poles at z = +1/2, 2 zeros at z = %2} occur in conjugate reciprocal
pairs the system is allpass. This property is easy to recognize since, as in the system above,
the coefficients of the numerator and denominator z-polynomials get reversed (and in general
conjugated).

(b) It is a property of allpass systems that the output energy is equal to the input energy. Here is the

N-1

> il

n=0

=)

Y Iyl

n=-—co
nw
[ e a

—1- s

27 J_,

1
27
oo

> lefnll
N1

> lelnl®
n=0

5

(by Parseval’s Theorem)
|H(e) X ()| dw

" |X () |* dw

-7

(|H(e%)|” = 1 since h[n] is allpass)

(by Parseval’s theorem)
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5.26. The statement is false. A non-causal system can indeed have a positive constant group delay. For
example, consider the non-causal system

hln] = é[n + 1] + 8[n] + 46[n — 1] + é[n — 2] + é[n — 3]

This system has the frequency response

H(e¥) = e +1+4e77% 4792 4 93w
e I(e? + &Y + 4 + 7Y + e7I2)
= e (4 + 2cos(w) + 2 cos(2w))
|[H(e?“)| = 4+ 2cos(w) + 2 cos(2w)
LH(EY) = -w
grd[H(e™)] = 1
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5.27. Problem 1 in Spring2005 Final exam.

Problem

(a) An ideal lowpass filter h[n] is designed with zero phase, a cutoff frequency of w. = 7/4, a
passband gain of 1, and a stopband gain of 0. (H(e/*) is shown below on the left.) Sketch
the discrete-time Fourier transform of (—1)"h[n].

H(el¥) Sketch your answer here
1 ey e
0.8r j
~06r 1
3
o
Toar ]
0.2r 1
0, 4
—27 -7 20 s 27 —27 -7 0 a 27
1 7
w w

(b) A (complex) filter g[n] has the pole-zero diagram shown below. Sketch the pole-zero
diagram for (—1)"g[n]. If there is not sufficient information provided, explain why.

Pole-zero plot of G(z) Sketch your answer here

o
1+ : 1 1t : 1
o :
0.5- : : - 1 0.5- : 1
k= : k= :
© © :
o o .
> > :
g 0r ] g 0 f 1
j=) j=)
© X © .
E E :

-0.5} x 1 -0.5f : 1
-1t e ’ B -1t i
-15 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5

Real Part Real Part
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Solution from Spring2005 Final
DTFT of (—1)"h[n]

1 4
0.8 1
~ 06 1
3
o
T o4 :
0.2 1
0
—27 T 0 3 T 27
4 4
Pole-zero plot of G(z) Pole-zero plot of modulated ¢
o]
1t - ] 1 1
. O : -
0.5f . 1 0.5¢ B ; x i
k=4 : . k=4 : '
c c Cox
& x & :
£ £ :
-0.5} x 1 -0.5¢ : 1
°
-1t T . 1 -1t : 1
©
15 -1 -05 0 05 1 15 15 -1 -05 0 05 1 15
Real Part Real Part
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5.28. Problem 12 from Fall 2005 Background exam

Problem

We process the signal x[n] = cos(§n) with a unity-gain all-pass LTI system, with frequency
response H(e’“) and a group delay of 4 samples at frequency %, to get the output y[n]. We
also know that ZH(e’5) = 6 and ZH(e75) = —f. Choose the most accurate statement:

yln] = cos(Tn + 0)
B. yfn] = cos(§(n — 4) +0)
C. yln] = cos(5(n — 4~ 6))
D. yln] = cos(§(n — 4))

E. y[n] = cos(Z(n—4+6))

Solution from Fall05 background exam

(Circle one) B C D E
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5.29

() (1—ef%z-l)(1—e‘«’§z-l)(1+1.1765z—1)

(1-0.9¢%27")(1-09¢ 7%z ) (1+0.852 ")

_140.1765z7' —0.1765z +1.1765z"°
1-0.05z7" +0.045z° +0.6885z"

_Y(@)

X(z)

y[n]=0.05y[n-1]-0.45y[n—2]-0.6885y[n—-3]
+x[n]+0.1765x[n—1]-0.1765x[n—2]+1.1765x[n—3].

B. Im{z}

o Resz
—1.1765 \-0.85 { }

Since the system is causal, the ROC is the region outside the outermost pole.
|2[>0.9.
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1+1.1765z""
14+0.85z"

stable.

Z€10.

stable inverse.

Magnitude of Frequency Response

0.8

IHe)!

0.6

0.4

0.2-

1+0.85z

L L
06 -04 02 0 02 04 06 08 1

The zeros on the unit circle null the frequency response at @==27/3. The sharpness of
the nulls depend on how close the nearby poles are to the zeros. The factor
65 z'+0.85

— is allpass and does not affect the magnitude response.

True. The system is stable because the ROC contains the unit circle.

2. False. The impulse response must approach zero for large n because the system is

3. False. The system function has a zero on the unit circle at @=7/3. This negates the

effect of the pole, and since the pole is not on the unit circle, the pole does not cancel
the zero. Instead, the sharpness of the notch depends on how close the pole is to the

4. False. There is a zero outside the unit circle.

5. False. The system is not a minimum-phase system so it does not have a causal and
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5.30. Making use of some DTFT properties can aide in the solution of this problem. First, note that
ha[n] = (-1)"h1[n]
ha[n] = e 9™hy[n]
Using the DTFT property that states that modulation in the time domain corresponds to a shift in the
frequency domain,
Hz(ej“) = Hl(ej(w+1r))
Consequently, H,(e/*) is simply H,(e’*) shifted by 7. The ideal low pass filter has now become the
ideal high pass filter, as shown below.
H,(e")
1
—‘n -2 0 /2 n o
H (&)
1 pr——————————
x /2 0 /2 T o
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5.31.

(a) A labeled pole-zero diagram appears below.

1zeroatz=

The table of common z-transform pairs gives us
(rsinwg)z™!
1— (2rcoswp)z~! + 1222’

(r" sinwen)u[n] «—

which enables us to derive h[n].

) (r™ sinwen)u[n]

h[n]=(.1

Sinwg
(b) When wy =0
rz=1 rz~1

H(z) = 1—(2rcoswp)z=t + 12272 T T =rz )2

Again, using a table lookup gives us

hin] = nru[n]

Im
1zeroatz=-o
P
T s Re
2nd order pole

|z| >7r

lz| >
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5.32. (a)

-2

z
-_— . l
H(z) = A= L) =) stable, so the ROC is 5 < |z| < 3

z[n] = un] © X(2) = #, lz] > 1

1
3 1
5
- , 1 <3
z~1 + 1-3271 1-271 <l

Y(2) = X(2)H(z) = P

[ ZIFN

il =5 (3) vl - 3"ul-n -1~ ulo

(b) ROC includes z = oo so h[n] is causal. Since both h[n] and z[n] are 0 for n < 0, we know that y[n]
isalso0forn <0

_Y(2) _ z72
T X(2)  1-Zz 14322

H(z)

Y(z) - ;z‘lY(z) + gz"zY(z) = 272X (2)

yln] = ol — 2]+ Lyln ~ 1] = Syl ~ 2]

Since y[n] = 0 for n < 0, recursion can be done:

y[0]=0, y1]=0, y2]=1
(c)

1 _ . 7T 3 o
H;(z) = G 2" =5z + 5 ROC: entire z-plane

hilr) = 8l +2) ~ 2510 + 1] + 36(n]
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5.33. Appears in: Fall05 PS2, Spring05 PS2, Spring04 PS2, Fall03 PS2, Spring03 PS2.

Problem

H(z) is the system function for a stable LTI system and is given by:

(1—227"1)(1-0.75271)
z71(1—0.5z71)

H(z) =

(a) H(z) can be represented as a cascade of a minimum phase system H;(z) and a unity-gain
all-pass system H4(z), i.e.
H(z)=Hi(2)Ha(2).

Determine a choice for Hi(z) and H(z) and specify whether or not they are unique up
to a scale factor.

(b) H(z) can be expressed as a cascade of a minimum-phase system Hs(z) and a generalized
linear phase FIR system Hp(z):

H(z) = Ho(2)HL(2).

Determine a choice for Ho(z) and Hr(z) and specify whether or not these are unique up
to a scale factor.
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Solution from Fall05 PS2

The pole-zero diagram for the original system is as follows:

Original system
T T T T T
151 4
1r 4
pole at e
051 : 4
g o X0 O
E
-0.51 4
b 4
-1.51 4
1 I I 1 Il I 1 I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2
Re(z)

(a) One way to carry out the minimum-phase and all-pass decomposition is as follows. In the
first stage, collect all zeros and poles that are inside the unit circle (zero at z = 3/4, pole
at z = 1/2) into the minimum-phase system. The other zeros and poles (zero at z = 2,
pole at z = 00) go into the all-pass system.

Minimum-phase All-pass

o : : . — o : : : —

3t 1 3r 1

2r 1 2r ]

T 1 r .. pole at o]

g X0 g o o
E : E

b i 1l i

b i ol i

_al i sl i

-4 L L 1 1 L 1 -4 1 1 L L 1 ]

-2 -1 0 1 2 -2 -1 0 1 2
Re(z) Re(z)

Next, we need to modify the first stage because we need to make sure that the all-pass
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system really is all-pass, so add a pole at z = 1/2 and a zero at z = 0.

To preserve the original system, we can cancel these newcomers by placing a zero at

z =1/2 and a pole at z = 0 in the minimum-phase system.

Minimum-phase All-pass

o T . . of T T 1

3F 3+ 1

2t 2+ -

1 1 R E
8o % o 8ol o ]
E £

1k 1k J

ys s J

_al 3l J

4 1 1 L 4L L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

Combining these, the minimum-phase system and all-pass systems are as shown below.

Minimum-phase All-pass

o : : o : : : —
3 3F 1
2F 2r : 1
r T : pole at |
E 0 X S or O O

E £ :
1t b i
b b i
_al sl i
-4 1 1 L -4 L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

In the minimum-phase system, the pole at z = 1/2 from the first stage has been cancelled
by the zero added in the second stage. Another way to look at that is that for this
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particular system, we started with an all-pass pair (a pole at z = 1/2 and a zero at z = 2,
so we could have put these into the all-pass system initially.

The minimum-phase system function is:

3
Z —_— =
HMl(Z) = > 4
3
= 1- Zz_l
The all-pass system function is:
z(z —2)
Hop(2) = ——1=
73
1—2z71

(=R

In constructing these systems, we didn’t come across any decision where we could have
chosen different routes. If we wanted to change one of the systems, we would have to add
the same number of poles and zeros to it, and these would have to be cancelled by zeros
and poles in the other system to preserve the original system.

We can’t add poles or zeros to the minimum phase system, because if we did, then when
we added the cancelling zeros or poles to the all-pass system, they would have to be
reflected outside the unit circle to keep the latter system all-pass. These items outside
the unit circle could not be cancelled in the minimum phase system. Finally, we cannot
change the all-pass system because if we added a zero and a pole, then to keep the system
all-pass, we would have to reflect a pole or zero to the other side of the unit circle, and
the items outside the unit circle could not be cancelled in the minimum-phase system.
Therefore, the decomposition is unique up to a scale factor.

One way to carry out the minimum-phase and FIR linear-phase decomposition is as
follows. In the first stage, collect all zeros and poles that are inside the unit circle (zero
at z = 3/4, pole at z = 1/2) into the minimum-phase system. The other zeros and poles
(zero at z = 2, pole at z = 00) go into the linear-phase system.
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Minimum-phase Linear-phase

below.

af ] af ]
3l 1 3l 1
2f 1 2t 1
T 1 T pole at o

—~ —

o X0 : = o o

E E

-4t

0
Re(z)

Minimum-phase

-2
-3

-4t

0
Re(z)

Im(z)

-4

0
Re(z)

Next, we need to modify the first stage because we need to make sure that the linear-phase
FIR system really is linear-phase FIR, so add a zero at z = 1/2. Since the system has to
have the same number of zeros and poles, we also need to add a pole. For an FIR system,
the pole must be at z = 0 or at z = oco. We choose to add the pole at z = 0 because we
will have to cancel the pole by a zero in the minimum-phase system.

To preserve the original system, we can cancel these newcomers by placing a pole at
z =1/2 and a zero at z = 0 in the minimum-phase system.

Linear-phase

-2+

-3+

-4
L L L L

-2 -1 0 1
Re(z)

Combining these, the minimum-phase system and FIR linear-phase

systems are as shown
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Minimum-phase Linear-phase

Im(z)
=3
o
X
.0 .
Im(z)
(=]
X
¢}
e}

-2 -1 1 2 -2 -1

0
Re(z)

The minimum phase system function is:

HMQ(Z) =

— | ™
= —_ N —~
I\
[
|
e L
N~

INTREN g
NI
-

|
o=
N\
—
S—
o

~—

The FIR generalized linear-phase system function is:

Hi(2) = (z—3)(2—-2)

Since this expression for Hy(z) has even symmetry and an odd number of taps, we would
not necessarily expect a zero at z =1 or at 2 = —1, and this is consistent with the pole-
zero diagram above. In constructing these systems, we didn’t come across any decisions
where we could have chosen different routes. Furthermore, we cannot change the minimum
phase system. If we tried adding a pole and zero to it, these would have to be cancelled
in the FIR linear phase system. But the zero in the linear-phase system would have
to be reflected outside the unit circle to maintain linear-phase, and this could not be
compensated for in the minimum-phase system. Similarly, we cannot add a pole and zero
to the FIR linear-phase system because if we did, then to keep it linear-phase, we would
have to reflect the zero outside the unit circle, and this could not be cancelled in the
minimum-phase system. Therefore, the decomposition is unique.
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Solution from Spring05 PS2

The pole-zero diagram for the original system is as follows:

Original system
T T T T T
151 4
1r 4
pole at e
051 : 4
g o X0 O
E
-0.51 4
b 4
-1.51 4
1 I I 1 Il I 1 I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2
Re(z)

(a) One way to carry out the minimum-phase and all-pass decomposition is as follows. In the
first stage, collect all zeros and poles that are inside the unit circle (zero at z = 3/4, pole
at z = 1/2) into the minimum-phase system. The other zeros and poles (zero at z = 2,
pole at z = 00) go into the all-pass system.

Minimum-phase All-pass

o : : . — o : : : —

3t 1 3r 1

2r 1 2r ]

T 1 r pole at o

g X0 g o o
E : E

b i 1l i

b ; i ol i

_al i sl i

-4 L L 1 1 L 1 -4 1 1 L L 1 ]

-2 -1 0 1 2 -2 -1 0 1 2
Re(z) Re(z)

Next, we need to modify the first stage because we need to make sure that the all-pass
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system really is all-pass, so add a pole at z = 1/2 and a zero at z = 0.

To preserve the original system, we can cancel these newcomers by placing a zero at

z =1/2 and a pole at z = 0 in the minimum-phase system.

Minimum-phase All-pass

o T . . of T T 1

3F 3+ 1

2t 2+ -

1k 1+ Sl 4

g o X0 5 of o x 1
E £

1k 1k J

ys s J

_al 3l J

4 1 1 L 4L L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

Combining these, the minimum-phase system and all-pass systems are as shown below.

Minimum-phase All-pass

o : : . o : : : —
3 3F 1
2F 2r : 1
r T ©. pole at e
E 0 X S or O X O

E £ :
1t b i
b b i
_al sl i
-4 1 1 L -4 L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

In the minimum-phase system, the pole at z = 1/2 from the first stage has been cancelled
by the zero added in the second stage. Another way to look at that is that for this
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particular system, we started with an all-pass pair (a pole at z = 1/2 and a zero at z = 2,
so we could have put these into the all-pass system initially.

The minimum-phase system function is:

3
Z —_— =
HMl(Z) = > 4
3
= 1- Zz_l
The all-pass system function is:
z(z —2)
Hop(2) = ——1=
73
1—2z71

(=R

In constructing these systems, we didn’t come across any decision where we could have
chosen different routes. If we wanted to change one of the systems, we would have to add
the same number of poles and zeros to it, and these would have to be cancelled by zeros
and poles in the other system to preserve the original system.

We can’t add poles or zeros to the minimum phase system, because if we did, then when
we added the cancelling zeros or poles to the all-pass system, they would have to be
reflected outside the unit circle to keep the latter system all-pass. These items outside
the unit circle could not be cancelled in the minimum phase system. Finally, we cannot
change the all-pass system because if we added a zero and a pole, then to keep the system
all-pass, we would have to reflect a pole or zero to the other side of the unit circle, and
the items outside the unit circle could not be cancelled in the minimum-phase system.
Therefore, the decomposition is unique.

One way to carry out the minimum-phase and FIR linear-phase decomposition is as
follows. In the first stage, collect all zeros and poles that are inside the unit circle (zero
at z = 3/4, pole at z = 1/2) into the minimum-phase system. The other zeros and poles
(zero at z = 2, pole at z = 00) go into the linear-phase system.
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below.

Im(z)

Minimum-phase

X0

-2 -1 1

0
Re(z)

Minimum-phase

Im(z)

Linear—phase

-4

0
Re(z)

Linear-phase

Next, we need to modify the first stage because we need to make sure that the linear-phase
FIR system really is linear-phase FIR, so add a zero at z = 1/2. Since the system has to
have the same number of zeros and poles, we also need to add a pole. For an FIR system,
the pole must be at z = 0 or at z = oco. We choose to add the pole at z = 0 because we
will have to cancel the pole by a zero in the minimum-phase system.

To preserve the original system, we can cancel these newcomers by placing a pole at
z =1/2 and a zero at z = 0 in the minimum-phase system.

gl &% g E
£ £

L 4l ,
Y Ll ,
st sl ,
-4 -4+ 4

. . ‘ ‘ ‘ ‘ . . ‘

-2 -1 0 1 -2 -1 [} 1 2

Re(z) Re(z)

Combining these, the minimum-phase system and FIR linear-phase systems are as shown
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Minimum-phase Linear-phase

Im(z)
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The minimum phase system function is:

HMQ(Z) =
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The FIR generalized linear-phase system function is:

Hi(2) = (z—3)(2—-2)

Since this expression for Hy(z) has even symmetry and an odd number of taps, we would
not necessarily expect a zero at z = 0 or at z = 7, and this is consistent with the pole-zero
diagram above. In constructing these systems, we didn’t come across any decisions where
we could have chosen different routes. Furthermore, we cannot change the minimum
phase system. If we tried adding a pole and zero to it, these would have to be cancelled
in the FIR linear phase system. But the zero in the linear-phase system would have
to be reflected outside the unit circle to maintain linear-phase, and this could not be
compensated for in the minimum-phase system. Similarly, we cannot add a pole and zero
to the FIR linear-phase system because if we did, then to keep it linear-phase, we would
have to reflect the zero outside the unit circle, and this could not be cancelled in the
minimum-phase system. Therefore, the decomposition is unique.
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Solution from Spring04 PS2

The pole-zero diagram for the original system is as follows:

Original system
T T T T T
151 4
1r 4
pole at e
051 : 4
g o X0 O
E
-0.51 4
b 4
-1.51 4
1 I I 1 Il I 1 I I
-2 -1.5 -1 -0.5 0 0.5 1 15 2
Re(z)

(a) One way to carry out the minimum-phase and all-pass decomposition is as follows. In the
first stage, collect all zeros and poles that are inside the unit circle (zero at z = 3/4, pole
at z = 1/2) into the minimum-phase system. The other zeros and poles (zero at z = 2,
pole at z = 00) go into the all-pass system.

Minimum-phase All-pass

o : : . — o : : : —

3t 1 3r 1

2r 1 2r ]

T 1 r pole at o

g X0 g o o
E : E

b i 1l i

b ; i ol i

_al i sl i

-4 L L 1 1 L 1 -4 1 1 L L 1 ]

-2 -1 0 1 2 -2 -1 0 1 2
Re(z) Re(z)

Next, we need to modify the first stage because we need to make sure that the all-pass
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system really is all-pass, so add a pole at z = 1/2 and a zero at z = 0.

To preserve the original system, we can cancel these newcomers by placing a zero at

z =1/2 and a pole at z = 0 in the minimum-phase system.

Minimum-phase All-pass

o T . . of T T 1

3F 3+ 1

2t 2+ -

1k 1+ Sl 4

g o X0 5 of o x 1
E £

1k 1k J

ys s J

_al 3l J

4 1 1 L 4L L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

Combining these, the minimum-phase system and all-pass systems are as shown below.

Minimum-phase All-pass

o : : . o : : : —
3 3F 1
2F 2r : 1
r T ©. pole at e
E 0 X S or O X O

E £ :
1t b i
b b i
_al sl i
-4 1 1 L -4 L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

In the minimum-phase system, the pole at z = 1/2 from the first stage has been cancelled
by the zero added in the second stage. Another way to look at that is that for this
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particular system, we started with an all-pass pair (a pole at z = 1/2 and a zero at z = 2,
so we could have put these into the all-pass system initially.

The minimum-phase system function is:

3
Z —_— =
HMl(Z) = > 4
3
= 1- Zz_l
The all-pass system function is:
z(z —2)
Hop(2) = ——1=
73
1—2z71

(=R

In constructing these systems, we didn’t come across any decision where we could have
chosen different routes. If we wanted to change one of the systems, we would have to add
the same number of poles and zeros to it, and these would have to be cancelled by zeros
and poles in the other system to preserve the original system.

We can’t add poles or zeros to the minimum phase system, because if we did, then when
we added the cancelling zeros or poles to the all-pass system, they would have to be
reflected outside the unit circle to keep the latter system all-pass. These items outside
the unit circle could not be cancelled in the minimum phase system. Finally, we cannot
change the all-pass system because if we added a zero and a pole, then to keep the system
all-pass, we would have to reflect a pole or zero to the other side of the unit circle, and
the items outside the unit circle could not be cancelled in the minimum-phase system.
Therefore, the decomposition is unique.

One way to carry out the minimum-phase and FIR linear-phase decomposition is as
follows. In the first stage, collect all zeros and poles that are inside the unit circle (zero
at z = 3/4, pole at z = 1/2) into the minimum-phase system. The other zeros and poles
(zero at z = 2, pole at z = 00) go into the linear-phase system.

251




Ch05 223-259.gxd 4/16/10 5:13 PM Page 252

—p—

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

below.

Im(z)

Minimum-phase

X0

-2 -1 1

0
Re(z)

Minimum-phase

Im(z)

Linear—phase

-4

0
Re(z)

Linear-phase

Next, we need to modify the first stage because we need to make sure that the linear-phase
FIR system really is linear-phase FIR, so add a zero at z = 1/2. Since the system has to
have the same number of zeros and poles, we also need to add a pole. For an FIR system,
the pole must be at z = 0 or at z = oco. We choose to add the pole at z = 0 because we
will have to cancel the pole by a zero in the minimum-phase system.

To preserve the original system, we can cancel these newcomers by placing a pole at
z =1/2 and a zero at z = 0 in the minimum-phase system.

gl &% g E
£ £

L 4l ,
Y Ll ,
st sl ,
-4 -4+ 4

. . ‘ ‘ ‘ ‘ . . ‘

-2 -1 0 1 -2 -1 [} 1 2

Re(z) Re(z)

Combining these, the minimum-phase system and FIR linear-phase systems are as shown
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Minimum-phase Linear-phase

Im(z)
=3
o
X
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Im(z)
(=]
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-2 -1 1 2 -2 -1

0
Re(z)

The minimum phase system function is:

HMQ(Z) =

The FIR generalized linear-phase system function is:

M) - Lot

= z [(1 — %z_1> (1- 2,2_1)]

= z—-25+z71

Since this expression for Hy(z) has even symmetry and an odd number of taps, we would
not necessarily expect a zero at z = 0 or at z = 7, and this is consistent with the pole-zero
diagram above. In constructing these systems, we didn’t come across any decisions where
we could have chosen different routes. Furthermore, we cannot change the minimum
phase system. If we tried adding a pole and zero to it, these would have to be cancelled
in the FIR linear phase system. But the zero in the linear-phase system would have
to be reflected outside the unit circle to maintain linear-phase, and this could not be
compensated for in the minimum-phase system. Similarly, we cannot add a pole and zero
to the FIR linear-phase system because if we did, then to keep it linear-phase, we would
have to reflect the zero outside the unit circle, and this could not be cancelled in the
minimum-phase system. Therefore, the decomposition is unique.
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Solution from Fall03 PS2

The pole-zero diagram for the original system is as follows:

0.5

Im(z)

Original system
T T T T T
pole at e
X0 O
1 L L 1 L L 1 L L
-2 -1.5 -1 -0.5 0 0.5 1 15 2
Re(z)

(a) One way to carry out the minimum-phase and all-pass decomposition is as follows. In the
first stage, collect all zeros and poles that are inside the unit circle (zero at z = 3/4, pole
at z = 1/2) into the minimum-phase system. The other zeros and poles (zero at z = 2,
pole at z = 00) go into the all-pass system.

Minimum-phase All-pass

o : : . — o : : : —

3t 1 3r 1

2r 1 2r ]

T 1 r pole at o

g X0 g o o
E : E

b i 1l i

b i ol i

_al i sl i

-4 L L 1 1 L 1 -4 1 1 L L 1 ]

-2 -1 0 1 2 -2 -1 0 1 2
Re(z) Re(z)

Next, we need to modify the first stage because

we need to make

sure that the all-pass
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system really is all-pass, so add a pole at z = 1/2 and a zero at z = 0.

To preserve the original system, we can cancel these newcomers by placing a zero at

z =1/2 and a pole at z = 0 in the minimum-phase system.

Minimum-phase All-pass

o T . . of T T 1

3F 3+ 1

2t 2+ -

1k 1+ Sl 4

g o X0 5 of o x 1
E £

1k 1k J

ys s J

_al 3l J

4 1 1 L 4L L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

Combining these, the minimum-phase system and all-pass systems are as shown below.

Minimum-phase All-pass

o : : . o : : : —
3 3F 1
2F 2r : 1
r T ©. pole at e
E 0 X S or O X O

E £ :
1t b i
b b i
_al sl i
-4 1 1 L -4 L L 1 1 L 1

-2 -1 0 -2 -1 0 1 2
Re(z) Re(z)

In the minimum-phase system, the pole at z = 1/2 from the first stage has been cancelled
by the zero added in the second stage. Another way to look at that is that for this
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particular system, we started with an all-pass pair (a pole at z = 1/2 and a zero at z = 2,
so we could have put these into the all-pass system initially.

The minimum-phase system function is:

3
Z —_— =
HMl(Z) = > 4
3
= 1- Zz_l
The all-pass system function is:
z(z —2)
Hop(2) = ——1=
73
1—2z71

(=R

In constructing these systems, we didn’t come across any decision where we could have
chosen different routes. If we wanted to change one of the systems, we would have to add
the same number of poles and zeros to it, and these would have to be cancelled by zeros
and poles in the other system to preserve the original system.

We can’t add poles or zeros to the minimum phase system, because if we did, then when
we added the cancelling zeros or poles to the all-pass system, they would have to be
reflected outside the unit circle to keep the latter system all-pass. These items outside
the unit circle could not be cancelled in the minimum phase system. Finally, we cannot
change the all-pass system because if we added a zero and a pole, then to keep the system
all-pass, we would have to reflect a pole or zero to the other side of the unit circle, and
the items outside the unit circle could not be cancelled in the minimum-phase system.
Therefore, the decomposition is unique.

One way to carry out the minimum-phase and FIR linear-phase decomposition is as
follows. In the first stage, collect all zeros and poles that are inside the unit circle (zero
at z = 3/4, pole at z = 1/2) into the minimum-phase system. The other zeros and poles
(zero at z = 2, pole at z = 00) go into the linear-phase system.
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below.
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0
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Linear-phase

Next, we need to modify the first stage because we need to make sure that the linear-phase
FIR system really is linear-phase FIR, so add a zero at z = 1/2. Since the system has to
have the same number of zeros and poles, we also need to add a pole. For an FIR system,
the pole must be at z = 0 or at z = oco. We choose to add the pole at z = 0 because we
will have to cancel the pole by a zero in the minimum-phase system.

To preserve the original system, we can cancel these newcomers by placing a pole at
z =1/2 and a zero at z = 0 in the minimum-phase system.
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Re(z) Re(z)

Combining these, the minimum-phase system and FIR linear-phase systems are as shown
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Minimum-phase Linear-phase
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The minimum phase system function is:

HMQ(Z) =

The FIR generalized linear-phase system function is:

M) - Lot

= z [(1 — %z_1> (1- 2,2_1)]

= z—-25+z71

Since this expression for Hy(z) has even symmetry and an odd number of taps, we would
not necessarily expect a zero at z = 0 or at z = 7, and this is consistent with the pole-zero
diagram above. In constructing these systems, we didn’t come across any decisions where
we could have chosen different routes. Furthermore, we cannot change the minimum
phase system. If we tried adding a pole and zero to it, these would have to be cancelled
in the FIR linear phase system. But the zero in the linear-phase system would have
to be reflected outside the unit circle to maintain linear-phase, and this could not be
compensated for in the minimum-phase system. Similarly, we cannot add a pole and zero
to the FIR linear-phase system because if we did, then to keep it linear-phase, we would
have to reflect the zero outside the unit circle, and this could not be cancelled in the
minimum-phase system. Therefore, the decomposition is unique.

258



Ch05 223-259.gxd 4/16/10 5:13 PM Page 259 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Solution from Spring03 PS2

(a) All-pass: Poles at z = 1/2 and oo, and zeros at z = 0 and 2.
Min-Phase: Pole at z = 0, and zero at z = 3/4.

— 9,1
HA(Z) = Z?Ei — 3.52)1) Hl(z) = B(l - 0.75271)

H4(z) and H;(z) are unique up to a scale factor, since we can’t add poles and zeros to the
all-pass sytem, because one of them would be outside the unit circle; which the min-phase
system can’t cancel.

(b) FIR: Poles at z = 0 and oo, and zeros at z = 1/2 and 2.
Min-Phase: Second order pole at z = 1/2, and zeros at z = 0 and 3/4.

_ Z—l
HL) = Ca1—2: )1 -05eY) e = DAZ0T)

Due to similar reasoning with part (a), Hr(z) and Ha(z) are unique up to a scale factor.
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5.34. Appears in: Fall05 PS1, Spring05 PS1, Fallo4 PS1, Fall02 PS1, Spring01l PS2. Note:
Spring01 PS2 uses different plots than Fall04 and Fall02. The problem statement in Spring01
has also been modified for Fall02 and Fall04. The Spring01 version of the problem is included
after the Fall04 and Fall02 version.

Problem

Filter A is a discrete-time LTI system with input z[n] and output y[n].

zln] ———{ Filter A —— y[n]

The frequency response magnitude and group delay functions for Filter A are shown in
Figure 1. The signal x[n], also shown in Figure 1, is the sum of three narrowband pulses. In
particular, Figure 1 contains the following plots:

o z[n].

| X (e7%)], the Fourier transform magnitude of x[n].

Frequency response magnitude plot for filter A.

Group delay plot for filter A.

In Figure 2 you are given 4 possible output signals, y;[n] i = 1,2,...,4. Determine which
one of the possible output signals is the output of filter A when the input is z[n]. Provide a
justification for your choice.
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Figure 1: The signal and the filter for Problem
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Possible output y1[n]
o
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Possible output y2[n]
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o
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1
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o
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o

Figure 2: Possible output signals for Problem.
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Spring01 Version of Problem Filter A is a discrete-time LTI system. Its frequency response
magnitude and group delay functions are shown in Figure 2.6a. A signal, z[n], also shown in
Figure 2.6a, is the sum of three narrowband pulses which do not overlap in time. In Figures 2.6b

and 2.6¢ you are given 8 possible output signals, y;[n] i =1,2,...,8. Determine which of the
possible output signals is the output of filter A when the input is z[n]. Clearly state your
reasoning.

Figure 2.6a contains the following plots:

e z[n|.

e |X(e7¥)], the Fourier transform magnitude of x[n].
e Group delay plot for filter A.

e Frequency response magnitude plot for filter A.
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0.5 B
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-1 L ' L L L ' L
[} 50 100 150 200 250 300 350 400
n
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< 10| B
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0O koo " A
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s
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g
L2 150
oy
S 100
o
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< [0}
[0} 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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Frequency Response Magnitude of filter A
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51
=
2 -100
=
&
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Figure 2.6a
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Solution from Fall05 PS1
y[n] = ya[n]

Justification:

The input signal x[n] is made up of three narrow-band pulses: pulse-1 is a low-frequency
pulse (whose peak is around 0.127 radians), pulse-2 is a higher-frequency pulse (0.37 radians),
and pulse-3 is the highest-frequency pulse (0.57 radians).

Let H(e’*) be the frequency response of Filter A. We read off the following values from the
frequency response magnitude and group delay plots:

|H(e] 0127r)) 1.8
|H (O3 &~ 1.7
|H(ej O57r)) 0

| ~

| ~

| ~
74(0.127) ~ 40 samples
74(0.37) ~ 80 samples

From these values, we would expect pulse-3 to be totally absent from the output signal
y[n]. Pulse-1 will be scaled up by a factor of 1.8 and its envelope delayed by about 40 samples.
Pulse-2 will be scaled up by a factor of 1.7 and its envelope delayed by about 80 samples. The
correct output is thus ya[n].

Solution from Spring05 PS1
y[nl = y2[n]

Justification:

We see that the input signal z[n| is made up of three narrow-band pulses; pulse-1 is a low-
frequency pulse (whose peak is at .127 radians) pulse-2 is a higher-frequency pulse (whose peak
is at .37 radians), and pulse-3 is the highest-frequency pulse (whose peak is at .57 radians).

From the given figure, we can also read off the following values of the filters frequency
response magnitude and group delay. Call H(e/*) the frequency response magnitude of Filter

A. Then

|H(e/127))| ~ 1.8
|H(e?3)| ~ 1.75
|H(6‘7( 57?)) 0

| ~

| ~

| ~
74(.127) ~ 40 samples
7y(.3m) &

~ 80 samples

From these values, we would expect pulse-3 to be totally absent from the output signal y[n].
We would expect pulse-1 to be scaled up by a factor of 1.8, and its envelope delayed by about
40 samples. Pulse-2 will be scaled up by a factor of 1.75, with its envelope delayed by about
80 samples. The output which corresponds to this is ya[n].
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Solution from Fall04 PS1
y[n] = ya[n]

Justification:

We see that the input signal z[n| is made up of three narrow-band pulses; pulse-1 is a low-
frequency pulse of frequency .127 radians, pulse-2 is a higher-frequency pulse of frequency .37
radians, and pulse-3 is the highest-frequency pulse of frequency .57 radians.

From the given figure, we can also read off the following values of the filters frequency
response magnitude and group delay. Call H(e/*) the frequency response magnitude of Filter
A. Then

|H(e?0127))| ~ 1.8
|H (/™) ~ 1.75
[H (/™) ~ 0

| ~

| ~

| ~
74(.127) =~ 40 samples
7y(.3m) ~

~ 80 samples

From these values, we would expect pulse-3 to be totally absent from the output signal y[n].
We would expect pulse-1 to be scaled up by a factor of 1.8, and its envelope delayed by about
40 samples. Pulse-2 will be scaled up by a factor of 1.75, with its envelope delayed by about
80 samples. The output which corresponds to this is ya[n].

Solution from Fall02 PS1
y[n] = ya[n]

Justification:

We see that the input signal x[n] is made up of three narrow-band pulses; pulse-1 is a low-
frequency pulse of frequency .127 radians, pulse-2 is a higher-frequency pulse of frequency .37
radians, and pulse-3 is the highest-frequency pulse of frequency .57 radians.

From the given figure, we can also read off the following values of the filters frequency
response magnitude and group delay. Call H(e/*) the frequency response magnitude of Filter
A. Then

|H (7012 1.8
|H (3] 1.75
HEEE)| ~ 0
74(.127) 40 samples
Ty(.3) 80 samples

From these values, we would expect pulse-3 to be totally absent from the output signal y[n].
We would expect pulse-1 to be scaled up by a factor of 1.8, and its envelope delayed by about
40 samples. Pulse-2 will be scaled up by a factor of 1.75, with its envelope delayed by about
80 samples. The output which corresponds to this is yo[n].

Solution from Spring01 PS2
N/A
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5.35. (a)
X(2) = S(z)(1 — e~%278)

Hi(z) =1-e 8,78

There are 8 zeros at z = e~ “e’%* for k = 0,...,7 and 8 poles at the origin.

Im

1zI>0

Re

8th order pole
(b)
Y (z) = Hz(2)X(2) = Hz2(2)H1(2)S(2)

1 1
Hi(z)  1—e8;-8

|z| > e~ stable and causal, |z| < e”* not causal or stable

Hz(z) =

(c) Only the causal hy[n] is stable, therefore only it can be used to recover s[n].

e—t!ﬂ

, n=0,8,16,...
hin] = { 0, otherwise

(d)

s[n] = é[n] = z[n] = é[n] — e~3*5[n — 8]
z[n] * ha[n] [n] — e 8%*4[n — 8
+ e 8%(8[n — 8] — e~%*5[n — 16))
+ e 1%%(§[n — 16] — e~®*6[n - 32]) + - - -
8[n}

I
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5.36.
hln] = (%) " ufn] + (%)nu[n]

1 1 2271 1
H = = 6 s > -
(@) =1 Ty ey g Il > 3

(a)

Since h[n], z[n] = 0 for n < 0 we can assume initial rest conditions.

ol = 3ol 1] = ol — 2) + 22n] = 3ol 1]

(b)
mil={ g S
(c)
Y(Z) pry -m 9
H(z) = XG) = > Rmjz™™, N=10°+1
m=0
N-1
yln] = Y hlmlen — m)
m=0

(d) For IIR, we have 4 multiplies and 3 adds per output point. This gives us a total of 4N multiplies
and 3N adds. So, IIR grows with order N. For FIR, we have N multiplies and NV — 1 adds for the
nt? output point, so this configuration has order N2.
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5.37. Convolving two symmetric sequences yields another symmetric sequence. A symmetric sequence con-
volved with an antisymmetric sequence gives an antisymmetric sequence. If you convolve two antisym-
metric sequences, you will get a symmetric sequence.

A: hy[n] * ha[n] * hg[n] = (hi[n] * ha[n]) * hs[n)
hi[n] * he[n] is symmetric about n =3, (-1<n<7)
(h1[n] * ha[n]) * h3[n] is antisymmetric about n =3, (-3<n<9)
Thus, system A has generalized linear phase
B : (hi[n] * ha[n]) + hs[n]

hy[n] * ho[n] is symmetric about n = 3, as we noted above. Adding h3[n] to this sequence will destroy
all symmtery, so this does not have generalized linear phase.
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5.38.

(1-0.52"1)(1 + 2jz71)(1 - 2jz

H(z) =

q

(1= 0.8z-1)(1 + 0.82-1)

D2j

Im

q

4
.

o
124/5) Re

D-2j

(a) A minimum phase system has all poles and zeros inside |z| = 1

Hl(z) =

(1-05z71) (1 + 227?)

(1-0.64z72)

D
K

Hgp(2) =

/ Q(172)

q
3

1
O-(1/2)j

R
3

(1+427?)
(1+3z72)

d2j
Im

X(1/2)j

Re
X~(1/2)j

-2
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(b) A generalized linear phase system has zeros and poles at z = 1, —1,00r o0 or in conjugate reciprocal
pairs.
(1-0.5271)
Hy(2) =
2(2) (1-0.64z-2)(1 + 12z72)
Im
ﬁ( (1/12)]
4I5 T 1=4s)Re
X-(1/2)
3rd order zero
Hin(z) = (14 §272)(1 +427%)
b2;
Im
O(12)
o Re
O-(1/2)j
4th order pole
(P—Zj
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5.39. The input z[n] in the frequency domain looks like

X(é¢
4 (10r) () A (10m)
5
:n -05t-04n O 0.4% 0.5 1: 0}
while the corresponding output y[n] looks like
Y(&9)
1 Oe—j1 Ow
- -03cr O 0.3n T )
Therefore, the filter must be
H(e')
2 e—j10m
-7 -03r O 0.3n T o

In the time domain this is

_ 2sinf[0.37(n — 10)]
hin] = m(n — 10)
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5.40. Problem 1 in spring2003 midterm exam.

Problem

H(z) is the system function for a stable LTI system and is given by:

(1-922)(1+ %zil)

H (Z) = 1

1— §Z

(a) H(z) can be represented as a cascade of a min-phase system H,,;,(z) and a unity-gain
all-pass system H4(z). Determine a choice for Hy,,(2) and Ha(z) and specify whether
or not they are unique up to a scale factor.

(b) Is the min-phase system, Hin(2), an FIR system? Explain.

(c) Is the min-phase system, H;n(2), a generalized linear phase system? If not, can H(z)
be represented as a cascade of a generalized linear-phase system Hj,(2) and an all-pass
system H49(2)? If your answer is yes, determine Hy,(2) and Has(2). If your answer is
no, explain why such representation does not exist.
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Solution from Spring03 midterm

(a) To find the poles and zeros of H(z), rewrite it as

Zeros: z =3, =3, —1/3

Poles: z=10,0, 1/3

The zeros at 3 and —3 can’t be in the minimum phase system, so they must go in the
all-pass system. In order to make the latter all-pass, it must also have poles at 1/3 and
—1/3. Since these were not part of H(z), they must be cancelled by zeros in the minimum
phase system. Inserting the zero at 1/3 in the minimum phase system cancels the pole
that was there.

« |
—
~—

1 1 2
" (1-321)(1+3

T e

The product of these two functions is the original H(z) given in the problem. Since we
want the all-pass system to have unity gain, |Ha(z)| = 1 for any z on the unit circle, e.g.
z = 1. This yields |K| = 1/9.

Decompositions into minimum phase and all-pass systems are unique up to a scale factor.
(b) Yes, Hp,in(z) is FIR. All its poles are at the origin.

(¢) The phase of Hpn (ej“’) is

9 . 1 .
—3 sin(w) — 5 sin(2w)
—arctan ( T

1+ 2 cos(w) + & cos(2w)

This is not a linear or affine function of w. However, we can rewrite H(z) as the product
of the following two systems:

Hy(z) = (1+3271) (1 + %z1>

1—3271
HAQ(Z) - 1_ lz—l
3

This is equivalent to Hj,(z) = 1+ (10/3)27' + 272 The impulse response has even
symmetry and the system is linear phase.
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5.41. (a)

(b)

(©)

Property | Applies? | Comments

Stable No For a stable, causal system, all poles must be
inside the unit circle.

IIR Yes The system has poles at locations other than
z=0o0r z=o00.

FIR No FIR systems can only have poles at z = 0 or
z = oo.

Minimum No Minimum phase systems have all poles and zeros

Phase located inside the unit circle.

Allpass No Allpass systems have poles and zeros in conjugate
reciprocal pairs.

Generalized Linear Phase No The causal generalized linear phase systems
presented in this chapter are FIR.

Positive Group Delay for all w No This system is not in the appropriate form.

Property Applies? | Comments

Stable Yes The ROC for this system function,
|z| > 0, contains the unit circle.

(Note there is 7th order pole at z = 0).

IIR No The system has poles only at z = 0.

FIR Yes The system has poles only at z = 0.

Minimum No By definition, a minimum phase system must

Phase have all its poles and zeros located
inside the unit circle.

Allpass No Note that the zeros on the unit circle will
cause the magnitude spectrum to drop zero at
certain frequencies. Clearly, this system is
not allpass.

Generalized Linear Phase Yes This is the pole/zero plot of a type II FIR
linear phase system.

Positive Group Delay for all w Yes This system is causal and linear phase.
Consequently, its group delay is a positive
constant.

Property Applies? | Comments

Stable Yes All poles are inside the unit circle. Since
the system is causal, the ROC includes the
unit circle.

IIR Yes The system has poles at locations other than
z=0o0r z=o00.

FIR No FIR systems can only have poles at z =0 or
zZ = 00.

Minimum No Minimum phase systems have all poles and zeros

Phase located inside the unit circle.

Allpass Yes The poles inside the unit circle have
corresponding zeros located at conjugate
reciprocal locations.

Generalized Linear Phase No The causal generalized linear phase systems
presented in this chapter are FIR.

Positive Group Delay for all w Yes Stable allpass systems have positive group delay

for all w.
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5.42. (a) Yes. By the region of convergence we know there are no poles at 2 = oo and it therefore must be
causal. Another way to see this is to use long division to write H;(z) as

2—5

Hy(z) = %_—1- =14z 42 2+23+27%, 2| >0
(b) hi[n] is a causal rectangular pulse of length 5. If we convolve h; [n] with another causal rectangular
pulse of length N we will get a triangular pulse of length N +5 — 1 = N + 4. The triangular pulse
is symmetric around its apex and thus has linear phase. To make the triangular pulse g[r] have at
least 9 nonzero samples we can choose N = 5 or let hy[n] = hy[n].

Proof:

Il

G(e™) Hi () Hp(e™) = H(e7*)

1 __e—ij 2
[l—e'j“’}

[e—jus/z (e75/2 — e—juS/Z)] 2

e—jw/2 (ejw/Z - e-—jw/Z)

sin (5w/2) 4,
sin? (w/2)

(c) The required values for h3[n] can intuitively be worked out using the flip and slide idea of convo-
lution. Here is a second way to get the answer. Pick h3[n] to be the inverse system for hy[n] and
then simplify using the geometric series as follows.

1—-271
1—-2-5
Q-2 [1+2% 4271042718+ ]

1ezlygz=5 ;=64 =10 _ —11 4 —15_ -16 .

H3(z) =

I

This choice for h3[n] will make g[n] = d[n] for all n. However, since we only need equality for
0 < n <19 truncating the infinite series will give us the desired result. The final answer is shown
below.

1
h4fn]

O—O O O—O o S

of s 10| T 7 15 n
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5.43.

(a) To be rational, X(z) must be of the form

M
[Ma-az
X(z)= bo k=1

Qo N
[Ta-dz"
k=1

Because x[n] is real, its zeros must appear in conjugate pairs. Consequently, there are two more
zeros, at z = 2e77™/4, and z = 1e~73"/4. Since x[n] is zero outside 0 < n < 4, there are only four
zeros (and poles) in the system function. Therefore, the system function can be written as

1 1 . 1 . 1 .
= — —ein/t,—1 - —eddm/4,-1 — —e—im/4,—-1 _ Ze—J3m/4,-1
X(2) (1 3¢ "2 ) (1 7€ z ) (1 5¢ z ) (1 5¢€ z )

Clearly, X(z) is rational.
(b) A sketch of the pole-zero plot for X (z) is shown below. Note that the ROC for X(z) is |z] > 0.

2)

Re

ony
N

4th order pole

(c) A sketch of the pole-zero plot for Y (z) is shown below. Note that the ROC for Y(z) is |z| > .

Y(2)

-/

Re

xx
(\
ji

4th order zero
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5.44
A. Given

()= z7 (1—22_1) 1

(Z)_ 2(1_%2—1) > |Z|>3’
we have
H(ejw) _ e (1 B 2_€_jw)
2(1-4e)
=_e—j3w (1_%ejw) )
(1—%e’f‘”)

Now 1-1¢’” and 1-1e™/” are complex conjugates, and therefore have the same

magnitude. Further, |-~/ 3“" =1. We conclude that H (z) is an all-pass system.

B. We can write

1
H(z)zm(l—Zz_l)z_z, |Z| >4
Z|>%; H

max

Then H,, (z)=——

1-1z717
Inverse transforming gives 4 [n]=1(%) u[n], A, [#]=06(n)-26[n—1], and
h,[n]=6[n-2].

(Note that the factor of 4 can be alternatively placed in the maximum-phase term.)

(z)=1-2z";and H,(z)=2".

= [o]—
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5.45
Assume that each impulse response corresponds to at most one frequency response.

A. h[n] isaType I FIR filter. Frequency reponse C corresponds to a Type I filter, as

’HC (¢/) %0 for =0 or w=1.

B. h,[n] isaType Il FIR filter. Frequency response B corresponds to a Type II filter, as
’HB (ej‘”)‘ =0 for w=7.

C. h,[n] is a Type 11 filter. The frequency response must be D, as D is the only frequency

response for which ‘HD (ej‘”)| =0 for =0 and w=7r.

D. h,[n] isa Type IV filter. Frequency response A corresponds to a Type IV filter, as
’HA (ej‘”)‘ =0 for ®=0.
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5.46

Systems B, C, D, and E are IIR systems. All of these have poles at places other than the
origin and infinity.

Systems A and F are FIR systems. These have poles only at the origin.

A causal LTI system is stable if and only if all of its poles lie inside the unit circle.
Systems A, B, C, E, and F (i.e., all but D) are stable.

. A stable causal system is minimum phase if its inverse system is also stable and causal.

This means that all of the zeros as well as all of the poles must lie inside the unit circle.
System E is the only minimum-phase system.

A system that is causal with a rational frequency response must be an FIR system to have
linear phase. Both systems A and F are linear phase systems, as for both of these systems
the zeros occur in reciprocal pairs or at z ==1.

System C is allpass. It is the only system for which poles and zeros occur in conjugate
reciprocal pairs.

Only System E has a stable and causal inverse. This is the only system having all of its
zeros inside the unit circle.

System F has the shortest impulse response, with seven nonzero samples. System A has
12 nonzero samples, and the remaining systems are IIR.

Systems A and F are lowpass systems. Systems B and D are eliminated as they each
have a zero at @=0. System C is an allpass system. System E will have a frequency
response whose magnitude tends to peak at frequencies near the system poles. None of
these poles are near @=0 and one of them is near =7 .

The “minimum group delay” property is an attribute of a minimum phase system.
System E is the only minimum phase system in the given set. (Note that System E has
the minimum group delay among systems with the same magnitude response. System E
may not have the minimum group delay among the systems shown.)
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5.47

(o) =1 (o) (o)
= jA, (ejw ) 4, (ejw ) oo +M)[2
B. The overall impulse response has length M, + M, +1.

C. The delay of the overall system is (M, +M,)/2 samples.

D. The overall system is a Type-IV generalized linear-phase system. Note that M, + M, is
an odd integer.
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5.48. (a)
A 1
H(z) = G- LA+ 1)’ |z > 5 h[n] causal
H(l)=6=>A=4
(b)
4 1
H(z) = 0= %2—1)(1.,. %z—l)’ |2| > 3
__#® )
- l—%z‘1 * 1+§z"1
Wl = 12 (%) ufn] + 3 (-%) ]
(© @
1 -1z71
z[n] = u[n] — -2-u[n -1 e X(2)= T |z| > 1
Y(z) = X(2)H(2)
12270 4
= 0 —22‘1 = 327+ 327 g
4

T Q- h(I+ L)

3 1

= 1o 1+ 3271
y[r] = 3u[n]+ (-—%) u[n]

(ii)
z(t) = 50 + 10 cos(207t) + 30 cos(407t)
1
T= '4—0 t=nT
z[n] = 50+ 10cos %n + 30cos7n

= 50+ 5¢/("™/2) 4 5e=I(n7/2) 4 15¢77 4 159"
Using the eigenfunction property:

y[n] = 50H (e7°)+5¢7(""/) H (7("/2)) 4 5¢~3("7/2) f (=4(*/2)) + 157" H (7™ ) +15¢ 7" H (e77")

: 4
H(e™) = 1—

3e—j"’ — %e—j2w

H(e®) = 6, H("/D) =7 () ~ 12, He /D) =7 () + 3%,
H(ei™) =4, H(e™i™) =4

y[n] = 300 + 24v/2 cos (;—rn —tan~! (;1;)) + 120 cos7mn
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5.49.
21
H(z) (1—2z71)(1 - 2z71)(1 - 4z71)
1 28 48

-1 1-27  1-41

Since we know the sequence is not stable, the ROC must not include |z| = 1, and since it is two-sided,
the ROC must be a ring. This leaves only one possible choice: the ROC is 2 < |z| < 4.

(a)
hn] = (%) " uln] — 28(2)"uln] — 48(4)"u[=n — 1]
(b)
B == ;z‘l T —2:.7.—1
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5.50. Since H(e'™) has a zero on the unit circle, its inverse system will have a pole on the unit circle and
thus is not stable.
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5.51. (a)

(1-2z7"1)(1+ 3271)(1+0.9271)
=200 +07j-D)(1=07jz-0)
1-0.6271 —2.352"2 - 0923

1-2"140.49272 - 0.4923
Y(z)

X(z)

H(z)

Cross multiplying and taking the inverse z-transform gives

y[n] — y[n — 1] + 0.49y[n — 2] — 0.49y[n — 3] = z[n] — 0.6z[n — 1] — 2.35z[n — 2] — 0.9z[n — 3]

(b)
im
X
K
Note that since h[n] is causal, ROC is |z]| > 1.
(c)
IHE™ |
20
0_1; 0 T
w

(d) (i) The system is not stable since the ROC does not include |z] = 1.
(ii) Because h[n] is not stable, h[n] does not approach a constant as n — co.
(iii) We can see peaks at w = £ in the graph of |[H(e’*)| shown in part (c), so this is false.
(iv) Swapping poles and zeros gives:

Im

)

>’\I\
Re

There is a ROC that includes the unit circle (0.9 < [z| < 2). However, this stable system
would be two sided, so we must conclude the statement is false.
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5.52.
(-3 -3e -2 6(1-32 N1 -3z -5271)
X()=— 1= gz) = a —.éz“l)
6(1-2az71)(1- az7')(1 —5az7?)

a™z[n] & X(a™'z) = 5 (1= 6az-T)

A minimum phase sequence has all poles and zeros inside the unit circle.
le/2l <1 = Ja| <2
la/4 <1 = |af <4
1

[fal <1 = |a|<§

1

[6a] <1 = |a|<-6—

Therefore, a™z[n] is real and minimum phase iff « is real and |a| < }.
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H(z)
JHl (z)

Hy(2)

Hs(z2)

5.53. (a) The causal systems have conjugate zero pairs inside or outside the unit circle. Therefore

(1 — 0.9¢7%67271)(1 — 0.9 770672 1)(1 — 1.25e7087271)(1 — 1.25¢ 77087~ 1)
(0.9)%(1.25)%(1 — (10/9)e*672~1)(1 — (10/9)e~70-672~2)

(1 —0.867087271)(1 — 0.8¢ 7087 ;1)

(0.9)2(1 — (10/9)e°67272)(1 — (10/9)e 70672 ~1)(1 — 1.25¢70-872 1)

(1 - 1.25¢770-87,~1) 4

(1.25)%(1 — 0.9¢7%67271)(1 — 0.9¢770-572~1)(1 — 0.8¢7087 2 1)

(1 —0.8e770-875-1)

H,(2) has all its zeros outside the unit circle, and is a maximum phase sequence. H3(z) has all its
zeros inside the unit circle, and thus is a minimum phase sequence.

(b)
H(z) 1+ 2.5788271 + 3.4975272 + 2.50742 72 + 1.26562*
h{n] 8[n] + 2.57884[n — 1] + 3.49758[n — 2] + 2.50744[n — 3] + 1.26565[n — 4]
Hy(z) = 1.2656+2.5074z! + 3.497527% + 2.578827% 4 2 ~*
hi[n] = 1.26565[n]+ 2.50746[n — 1} + 3.49756[n — 2] + 2.57886[n — 3] + d[n — 4]
Hy(z) = 0.81+2.1945z7" +3.3906272 + 2.8917z~3 + 1.56252~*
ha[n] = 0.81[n] + 2.19456[n — 1] + 3.39066[n — 2] + 2.89174[n — 3] + 1.56258[n — 4]
H3(z) = 1.5625+2.891727! + 3.390622 + 2.194527% + 0.81z™*
h3[n] 1.56256[n] + 2.89178[n — 1] + 3.39065[n — 2] + 2:19455[n — 3] + 0.815[n — 4]
()
n | E(n) | Ei(n) | E2(n) | E5(n)
0| 10| 16| 07| 24
1| 77| 79| 55| 108
2| 199 201 170| 223
3( 22| 268| 253| 27.1
4| 278 278 278 278
5( 27.8| 278| 27.8| 27.8
278 278 278 278
262 “g° "o 68 “g° “9
Eln) 19.9 7 E1 [l 20.1
7.7 7.9
1 T 1.6 T
Q [)
0 1 2 3 4 5 n 0 1 2 3 4 5 n
253 27.8 2;1')8 27.1 zz) 8 278
E,[n] ¢ E[n] 23 ¢ i
17
10.8
5.5 24
o7 T %
0 1 2 3 4 5 n 0 1 2 3 4 5 n

The plot of E3[n] corresponds to the minimum phase sequence.
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5.54. All zeros inside the unit circle means the sequence is minimum phase. Since

M M
Y |hminlnl? 2 Y (R[]

n=0 n=0

is true for all M, we can use M = 0 and just compute h%[0). The largest result will be the minimum
phase sequence.
A|B|C|D|E| F | G |H
445(284(18[28|1.8[177.7|113.8| 7.1

The answer is F'.
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5.55.

(i) A zero phase sequence has all its poles and zeros in conjugate reciprocal pairs. Generalized
linear phase systems are zero phase systems with additional poles or zeros at z = 0,00,1 or
—1.

(ii) A stable system’s ROC includes the unit circle.

(a) The poles are not in conjugate reciprocal pairs, so this does not have zero or generalized linear
phase. H;(z) has a pole at z = 0 and perhaps z = co0. Therefore, the ROC is 0 < |z| < oo, which
means the inverse is stable. If the ROC includes z = oo, the inverse will also be causal.

(b) Since the poles are not conjugate reciprocal pairs, this does not have zero or generalized linear
phase either. H;(z) has poles inside the unit circle, so ROC is |z| > 2 to match the ROC of H(z).
Therefore, the inverse is both stable and causal.

(c) The zeros occur in conjugate reciprocal pairs, so this is a zero phase system. The inverse has poles
both inside and outside the unit circle. Therefore, a stable non-causal inverse exists.

(d) The zeros occur in conjugate reciprocal pairs, so this is a zero phase system. Since the poles of the
inverse system are on the unit circle a stable inverse does not exist.
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5.56. (a)
Ae¥) =1, |w|<m
$w) = —ow, |w|<m
d(w)
AE) N on
1 :
e o o ® o 0 —n o n m
ol D
- 0 T ©
(b)
™ o ow i sinm(n — a)
= = jaw jwn —
Hin] = 5. [ eieveindn = ZrR o
q)
a=3
0 1 2 3 4 5 6 n
Q
a=3.5
e o o 0 ? 2 7 5 ? o o o
) 1 | 3 4 | 6 n
[~]
a=325
o o o O 9 2 T 5 Q o o @
® 1 b 3 4 ) 6 n

(c) If a is an integer, then h[n] is symmetric about about the point n = a. If & = %, where M is odd,
then h[n] is symmetric about -—21"1, which is not a point of the sequence. For « in general, h[n] will
not be symmetric.

ﬂ

POWEREN.IR
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H(eM)

Let

Then

and we have

H(e™)

5.57. Type I: Symmetric, M Even, Odd Length

M
> hlnje=ien

n=0

(M=-2)/2 M
> hnlem+ 3" hinle™i" + h[M/2]e~(M/2)
n=0 n=(M+2)/2

(M-2)/2 (M=-2)/2

> h[pleT"+ Y R[M —mle M=) 4 p[af/2)e~iw(M/2)
m=0
(M=-2)/2 (M-2)/2
Z hm]esw((M/2)=m) 4 Z h[m]e“jw((M/z)*’")+h[M/2])

n=0

e—w(M/2)

m=0 m=0

e (M/2)

m=0

(M—-2)/2
( >~ 2hm]cosw((M/2) —m)+h[M/2])

M/2
e~ M/2) " 2h[(M/2) — n] coswn + h[M/2])

n=1

Type II: Symmetric, M Odd, Even Length

2h[(M/2) —n]), n=1,...,M/2
M/2
H(e™) = e71“M/2) ™ g[n] coswn
n=0
M/2 M
Alw) = a[n]cos(wn), a= —, =0
) 2;2 [n] cos(wn) 5 B
M
= S hfnje=ien
n=0
(M-1)/2 ) M
= Z h[n]e™7™ + Z hln]e~ 7™
n=0 n=(M+1)/2
(M=1)/2 (M=1)/2
= Z hln]e™“™ + Z h[M — m]e=«(M-m)
n=0 m=0
(M-1)/2 (M-1)/2
= e Jw(M/2) ( Z him]esw(M/2)=-m) 4 Z h[m]e—jw((Mﬂ)-m))
m=0 m=0

I

(M-1)/2
e"j“’(M/z)( > 2h[m]cosw((M/2)—m))

m=0

(M+1)/2
= e—iw(M/2) ( Z 2h[(M +1)/2 — n]cosw(n — (1/2)))

n=1

Let

bln] =2h[(M +1)/2-n], n=1,...,(M+1)/2
Then

(M+1)/2
H(e) = e M/ N pln]cosw(n — (1/2))
n=1
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and we have
(M+1)/2 M
Alw) = ,,Z_:l blnjcosw(n — (1/2)), a= 50 p=0
Type III: Antisymmetric, M Even, Odd Length
M .
H(e™) = Y h[nle™*"
n=0
(M=2)/2 . M )
= > e ™40+ > hlnleen
n=0 (M+2)/2
(M-2)/2 (M-2)/2 ]
- Z h[n]e—gum + Z h[M _ m]e—Jw(M—m)
n=0 m=0
(M-2)/2 - (M-2)/2
= e/ [ S pimleieM/D-m _ S plmlemielM/D-m)
m=0 m=0
(M-2)/2
= e M/ | ¥ 2h[m]sinw((M/2) ~m)
m=0
M/2
= e—iw(M/2)i(n/2) Z 2h[(M/2) — n]sinwn
n=1
Let
c[n]:h[(M/Z)-'n], n=11"'sM/2
Then
M/2
H(ejw) = e‘jW(M/z)ej("/z) Z c[n] sinwn
n=1
and we have M/2
. M ™
Aw) = Z c[n]sin(wn), a= > B= 5
n=1
Type IV: Antisymmetric, M Odd, Even Length
M .
H(e®) = Z h[nle™7%"
n=0
(M-1)/2 . M .
= Z h[nle 7™ + z h[n]e™ 7"
n=0 n:(M+1)/2
(M=-1)/2 (M-1)/2 )
- z h[n]e—jwn + z h[M — m]e—Jw(M-—m)
n=0 m=0
(M-1)/2 (M-1)/2
= M) [ 3 pmlei(M/D=m) S e (/2 -m)
m=0 m=0
(M-1)/2
= e iwM/2) | Z 2h[m]sinw((M/2) — m)
m=0
(M+1)/2
= e—iw(M/2),i(x/2) Z 2h[(M +1)/2 — n]sinw(n — (1/2))
n=1
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Let
dln]=2h[(M +1)/2-n}, n=1,...,(M+1)/2
Then
(M+1)/2
H(e) = e M/2eit/2) 5™ gln]sinw(n - (1/2))
n=1
and we have
(M+1)/2 o .
Alw) = ﬂ; d[n]sinw(n - (1/2)), a= = 8= 5
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5.58. Filter Types II and III cannot be highpass filters since they both must have a zero at z = 1.

Type I — Type I could be highpass:

-
Type II — Type IV can be highpass:

—>
Type III — Type III cannot be highpass:

-
Type IV — Type II cannot be highpass:

-
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5.59. (a) Minimum phase systems have all poles and zeros inside |z| = 1. Allpass systems have pole-zero
pairs at conjugate reciprocal locations. Generalized linear phase systems have pole pairs and zero
pairs in conjugate reciprocal locations and at z = 0,1, —1 and co. This implies that all the poles
and zeros of H,,;,(z) are second-order. When the allpass filter flips a pole or zero outside the unit
circle, one is left in the conjugate reciprocal location, giving us linear phase.

(b) We know that h[n] is length 8 and therefore has 7 zeros. Since it is an even length generalized
linear phase filter with real coefficients and odd symmetry it must be a Type IV filter. It therefore
has the property that its zeros come in conjugate reciprocal pairs stated mathematically as H(z) =
H(1/2*). The zero at z = —2 implies a zero at z = —%, while the zero at z = 0.8¢/("/%) implies
zeros at z = 0.8e=7(™/4) 7 = 1.25¢3(*/4) and z = 1.25¢~3("/4)_ Because it is a IV filter, it also must
have a zero at z = 1. Putting all this together gives us

H(z) = (1+2z7Y)(1+0.52"1)(1 - 0.8¢7"/z~1)(1 — 0.8¢~7("/ ;1)
(1 —1.25e7™/4z=1)(1 — 1.25e (/4 ;1)1 — z71)
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5.60. False. Let h[n] equal

_ sinwc(n —4.3) jwy _ €YY, w| < we
hin} = w(n —4.3) > H(e") = 0, otherwise

Proof: Although the group delay is constant ( grd [H(e’”)] = 4.3 ) the resulting M is not an integer.

hin] = h[M —n]
H(™) = zeMYH(e )
e—j4.3w — :i:ej(M+4.3)m7 lwl < we
M = -86
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5.61. The type II FIR system Hj(z) has generalized linear phase. Therefore, it can be written in the form
HI[(ejw) — Ae(ejw)e—jwM/2

where M is an odd integer and A.(e’*) is a real, even, periodic function of w. Note that the system
G(z) = (1 — z71) is a type IV generalized linear phase system.
1-e™9v
e Iw/2(giw/? _ g=iw/2)

= e 7/%(2jsin(w/2))

= 2sin(w/2)e"w/2+im/2

= Ao(ejw)e—jw/2+j1r/2
Ao(e’?) = 2sin(w/2)

w

LG(e¥) = —-2-+—2‘

G(e™)

The cascade of Hy(z) with G(2) results in a generalized linear phase system H(z).

H(eju) Ae(ejw)Aa(ejw)e—jwM/Ze—jw/2+j1r/2

1l

Alo(ejw)ejwM'/2+j1r/2

where A’',(e’*) is a real, odd, periodic function of w and M’ is an even integer.

Thus, the resulting system H (e?“) has the form of a type III FIR generalized linear phase system. It is
antisymmetric, has odd length (M is even), and has generalized linear phase.
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5.62. (a) The LTI system S, is characterized as a lowpass filter.
The z-transform of h[n] is found below.

yinl ~yln 1]+ gyl -2 = aln]

Y(2) - V()2 + %Y(z)z‘z = X(2)
Y(2) (1 -zl 4 %z‘z) = X(2)

1 1
A-z1+1z?) (-1z1)

Hl(z) =

This system function has a second order pole at z = % (There is also a second order zero at z = 0).
Evaluating this pole-zero plot on the unit circle yields a low pass filter, as the second order pole
boosts the low frequencies.

Since
Hy(e¥) Hy(—€)
Hz(z) = Hl(—z)

Il

If we replace all references to z in H;(z) with —z, we will get Ha(2).

1
Hy(z) = ——
2() = Ty
Consequently, H»(z) has two poles at z = —3}. (There is also a second order zero at z = 0).

Evaluating this pole-zero plot on the unit circle yields a high pass filter, as the second order pole
now boosts the high frequencies.
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6.1. We proceed by obtaining the transfer functions for each of the networks. For network 1,
Y (z) = 2rcos8z7 1Y (2) — r2272Y (2) + X (2)
or
Y(2) 1
X(z)  1-2rcosfz—! +r2z-2
For network 2, define W(z) as in the figure below:

Hl(Z) =

W(z)

rcosf
—rsiné 1

y Trsiné

y[n]

then
W(z) = X(z) —rsinfz71Y (z) + rcos 027 W (z)

and
Y(z) = rsin@z7 W (z) + rcos8271Y(2)
Eliminate W (z) to get
Y(z) rsinfz~!
X(z)  1—2rcosfz=1+r2z-2

Hence the two networks have the same poles.

Hy(z) =
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6.2. The only input to the y[n] node is a unity branch connection from the z[n] node. The rest of the network
does not affect the input-output relationship. The difference equation is y[n] = z[n].
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6.3.
2+ i—z‘l

H(z)= ——F—5—
(=) 141271 - 322

System (d) is recognizable as a transposed direct form II implementation of H(z).
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6.4. (a) From the flow graph, we have:

Y(z) = 2X(2) + (i—X(z) - %Y(z) + %Y(z)z‘l)z_l

That is: 1 3 1
21 _ 9 2y _ 2
Y(z)(1+4z e ) X(z)(2+4z )

The system function is thus given by:

_Y() 24327
T X(2) T 1+i21-37

H(z)

(b) To get the difference equation, we just inverse Z—transform the equation in a. We get:

y[n] + zll-‘y[n -1] - gy[n - 2] =2z[n] + i—a:[n -1].
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6.5. The flow graph for this system is drawn below.

y[n]

(a)
win] = z[n] + 3w[n — 1] + wn — 2]
yln] = wn] +yln — 1] + 2y[n - 2]
(b)
W(z) = X(2) + 327 W (z) + 2 2W(2)
Y(z) = W(2) + 27'Y (2) + 2z72Y (2)
So

Y(2)
X(2)

H(z)

1
(1—2"1-22"2)(1-32"1—272)
1
1—-4z"1 47273 +22-¢°

(c) Adds and multiplies are circled above: 4 real adds and 2 real multiplies per output point.

(d) It is not possible to reduce the number of storage registers. Note that implementing H(z) above
in the canonical direct form II (minimum storage registers) also requires 4 registers.
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6.6. The impulse responses of each system are shown below.
4 4
3 3
1 1 1 1
(2) ! ! (b) ? ?
0 l ! 0 l l
-1 -1
-2 -2
3 3 3
2 2 2 2
11 1 1
(@ T e T @ T T T ?
o ¢ & 0 4 &
-1 -1 -1 -1
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6.7. We have

14272
H(z) = —4——.
@) 1- %z‘z
Therefore the direct form II is given by:
-1/4
zln] ¢—» > o yln]

z—-l

1/4
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6.8. By looking at the graph, we get:

y[n] = 2y[n — 2] + 3z[n — 1] + z[n — 2.
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6.9. The signal flow graph for the system is:

z[n] ¢—s

w1 [n]
wz(n]
ws|n]
wy[n]

y[n]

From the above equation, we have:

(b) From part (a) we have:

Y

H(z)

(a) First we need to determine the transfer function. We have

z[n] — w3[n] + dwyn — 1]
ws [n]

wan — 1]

21U3 [n]

wa[n] + z[n — 1] + wq[n].

Taking the Z—transform of the above equations, rearranging and substituting terms, we get:

1432714272878

The difference equation is thus given by:

1+2"1—-82-2

y[n] + y[n — 1] - 8y[n — 2] = z[n] + 3z[n — 1] + z[n — 2] — 8z[n - 3].
The impulse response is the response to an impulse, therefore:

hn] + h[n — 1] — 8h[n — 2] = 8[n] + 36[n — 1] + 8n — 2] — 86[n — 3].

hl0] =1
h[1} =3 - h[0] = 2.

y[n] +y[n — 1] — 8y[n - 2] = z[n] + 3z[n — 1] + z[n — 2] — 8z[n — 3].

309




ChO6 301-322.gxd 4/16/10 5:37 PM Page 310 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6.10. (a)

wl = gyl + 2]

v[n] —;-y[n] + 2z[n] + w[n — 1]

y[n] v[n — 1] + z(n].

(b) Using the Z—transform of the difference equations in part (a), we get the transfer function:

_Y(z) 1422714272

H(z) = X(z)  1- %z'l - %z‘z'

We can rewrite it as :

1+ hHa+zY)
- 1+ %z‘l)(l —z-1)

H(z)

We thus get the following cascade form:

TETT

~1/2

(c) The system function has poles at z = —% and z = 1. Since the second pole is on the unit circle,

the system is not stable.
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6.11. (a) H(z) can be rewritten as:
2716272+ 8278
H(z) = 1-1x-1
2
We thus get the following direct from II flow graph :
z[n] ——ouln]
(b) To get the transposed form, we just reverse the arrows and exchange the input and the ouput. The
graph can then be redrawn as:
zln] @—p o > ——oyln]
4 -1
T 1/2
Y ) ‘z—l
—6
*——0
1 kTt
8
*—r—=e
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6.12. We define the intermediate variables w;[n], we[n] and ws[n] as follows:

-1 win] 2
z[n] g—p 1ln] > > oy[n]
We thus have the following relationships:
wifn] = —z[n]+ wz[n] + ws[n]
we[n] = z[n— 1]+ 2ws[n]
win] = waln—1]+yn—1]

y[n] = 2wi[n].
Z —transforming the above equations and rearranging and grouping terms, we get:

Y(z) —-2+6271+2272
XG) - 1-81

H(z) =

Taking the inverse Z —transform, we get the following difference equation:

y[n] — 8y[n — 1] = —2z[n] + 6z[n — 1] + 2z[n - 2].
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6.13.
1-1 -2
H(z) = ——2——.
=) 1-%z71—- 32272

The direct form I implementation is:

z(n] @ @ > T > > 0.7/['”']
2_1" 4
? )
z"lv L
-1/2
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6.14.

14227141272
H(z) = -1, & 8

_1,-1__1,-2°
5% 52

The direct form II implementation is:

z[n] @— >—> *—> *>— o v[n]
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6.15.

z[n] o

To get the transposed direct form II implementation, we first get the direct form II:

> o y[n]

direct form II:

> L 3 > L 3 >
4 21
-1 ~7/6
@ < @—>
4 \ E
-1/2 1/6
[ >

Now, we reverse the arrows and exchange the role of the input and the ouput to get the transposed

zln] @—s—@—» *~— > o uln]

Y Azﬁl

-7/6 -1

@ > . 4 <
Y ‘z_l

1/6 -1/2

*— * «
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6.16. (a) We just reverse the arrows and reverse the role of the input and the output, we get:

z[n] @ > >— —> o—> o—> Cy["]

4 271 4

-2
9

’

4 z7ly 4

1/4 3
[ = ——> L)

(b) The original system is the cascade of two transposed direct form II structures, therefore the system

function is given by:
1-2z7143272 1,
H(Z) = (———1-:——%—-‘2?-)(1 - —2'2 ).

The transposed graph, on the other hand, is the cascade of two direct form II structures, therefore
the system function is given by:

1

— 9,1 -2
H(z)=(1- _2.z—1)(1__g___+_3_’f__

1,2
1-3z

).

This confirms that both graphs have the same system function H(z).
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6.18. The flow graph is just a cascade of two transposed direct form II structures, the system functic
thus given by:

1+ 42714272 1
1) = () )

‘Which can be rewritten as:

(1+2z71)(1-2271)

O = o mmn ey

In order to implement this system function with a second-order direct form II signal flow grapl

pole-zero cancellation has to occur, this happens if a = %, a=-2o0ra=0.Ifa= %, the overall sys
function is:
142271
Hz)= ——y—.
(2) 1+3z71- 322
If a = -2, the overall system function is:
12271
H(z) = 3

1, - 3. -2°
1+ EZ 1 §Z 2
And ﬁnally' ifa= 0, the overall system function is:

(1+2:7Y)(1 - 2271)
H(z) = 14 Lz-1-3;-2
4 8
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6.18. The flow graph is just a cascade of two transposed direct form II structures, the system function is
thus given by:

1+ 42714272 1
1) = () )

‘Which can be rewritten as:

(1+2z71)(1-2271)

O = o mmn ey

In order to implement this system function with a second-order direct form II signal flow graph, a

pole-zero cancellation has to occur, this happens if a = %, a=-2o0ra=0.Ifa= %, the overall system
function is:
142271
Hz)= ——y—.
(2) 1+3z71- 322
If a = -2, the overall system function is:
12271
H(z) = 3

1, - 3. -2°
1+ EZ 1 §Z 2
And ﬁnally' ifa= 0, the overall system function is:

(1+2:7Y)(1 - 2271)
H(z) = 14 Lz-1-3;-2
4 8
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6.19. Using partial fraction expansion, the system function can be rewritten as:

-8 1
H(z) = + +9
(2) 1- %z“l 1+ %z—l

Now we can draw the flow graph that implements this system as a parallel combination of first-order
transposed direct form II sections:

9
@ > L J
A
r
-8
:c[n] [ — r 3 > > > > .y[n]
-1
1/3
A\ 4
1
‘ > »>- > L )
21
-2/3
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6.20. The transfer function can be rewritten as:

(1+2z71+327%)
(1+31z2)(1-32"1+272)

H(2) =

which can be implemented as the following cascade of second-order transposed direct form II sections:

z[n] o—s — *—> *—» > o [n]
Y z7t A
2
¢ ° Y
1 z71 4
5/4 -1/4
*— ® -
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6.21.

1 _Y(2)
—eiwoz=1 7 X(z)

h[n] = e?“°"u[n] +— H(z) = I

So y[n] = e?°y[n — 1] + z[n]. Let y[n] = y,[n] + jy;[n]. Then y.[n] + jy:[n] = (coswo + j sinwo)(y-[n —
1] + jyi[n — 1]) + z[n]. Separate the real and imaginary parts:

yr[n] = z[n] + coswoy-[n — 1] — sinwpy;[n — 1]
yiln] = sinwoyr[n — 1] + coswoyi[n — 1].
z[n] yr(n]
~— d
COs Wy
yiln]
L

ﬂ

POWEREN.IR
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6.22.

(1+271)?
(1-%z"H)(1-3z71)

1+271 14271
H(z) = (1_ %z‘l) (1_ %z‘l) .

H(z) =

z{n] y[n]
o—r - > > > > > s J
41 21
1/4 1/2
14271 1+2z71
H(z) = .
(2) (1-—%41—1) (1—43.:—1)
z[n] y[n]
[ > —- > > > > > -@
z71 27!
1/2 1/4

Plus 12 systems of this form:

z[n] yln]

@o—r— - > > > >
2z~ 27! z71 z71

1/4 1/2

Y
\
[ ]

with the three types of 1st-order systems taken in various orders.
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6.23. Problem 1 in Fall 2003 Midterm exam Appears in: Spring04 PS3.
Note: The Fall2003 Midterm version additionally includes a part (d):

(d) (5%) For the most accurate placement of the zeros, which form(s) would you chose: direct,
cascade, or parallel? Explain briefly.

Problem

We want to implement a causal system H(z) with the pole-zero diagram shown below. For all
parts of this problem, z1, 29, p1, and ps are real, and a gain constant that is independent of
frequency can be absorbed into the K term in each flowgraph.

A4
21 Zy P1 P2

(a) Fill in the following flowgraph, in terms of the variables z1, z9, p1, and ps.

X[n] K yln]
=
=
S
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(b) Fill in the following flowgraph, in terms of the variables z1, z2, p1, and pa.
Co~ ‘= 13”7 €15~
X[n] K
yin]
271 Zi1
€10~ C12~ C14— Cl6—
(¢) Write down the system of linear equations for the variables A, B,...,G in terms of the
variables z1, z9, p1, and ps.
€17~
A
€18~ €20~
B D
xIn] K yln]
%
-1
€19~ z
C
€21 €23~
E G
-1
0~ z
F
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Solution from Spring04 PS3

The system function is proportional to:

(1 — zlz_l) (1 — 222_1)
(1 =p1z7!) (1 = p2z71)
o l—(z1+ 29)2 L 4 2120272
1= (p1+p2)zt 4 pipez?

(a) c1=1, co=p1+ps, c3=-pip2, =0
cs=1, cg=—(21+22), cr=2z129, cg=0

(b) co=1, cio=p1, cu=1, cra=-z
az=1, cu=ps cs=1 c=—2

(¢c) B=1, C=p, E=1, F=p

From a partial fraction expansion,

1— (214 2)2 ' 21202 2 = AL —prz7 ) (L —poz™ ') + D(1 — poz™) + G(1L — p1z7 )

Therefore A, D, and G can be found by solving the following system of equations:

1 = A+D+G
—(21+22) = —A(p1+p2) — Dps— Gpy
2122 = AP1P2

_ (21 _pl)(ZQ —Pl)

p1(p1 — p2)

_ (21 —p2)(22 —p2)

 ppa—m)
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Solution from Fall03 Midterm
Problem

The system function is proportional to:

(1 — 212_1) (1 — 222_1)
(I=prz ) (L=poz 1)
1= (n+ 29)27 4 2120272
1= (p1+p2)zT 4 pipaz?

(a) c1=1, co=pi+p2, cz3=—-pip2, c1=0

cs=1, c=—(x14+2), =22, =0
(b) co=1, cio=p1, cu=1 cr=-2n
ci3=1, ca=p2, cs5=1, ci6=—2

(C)B:17 C:pl
E=1 F=po

From a partial fraction expansion,

L= (214 22)z7 + 212022 = A(L=p1z7 ) (L = p2z™ ) + D(1 = paz™") + G(1 = pr27")
Therefore A, D, and G can be found by solving the following system of equations:
1 = A+D+G

—(21+22) = —A(p1+p2) — Dp2— Gpy
2122 = Ap1p2
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6.24
-3z +12°
H(z) = 0 :
e
o 1=3 +§z
-3z 438274277
1) Direct Form I
x[n] % >y[n]
= =
> HV
| =307 35 |
z z
v > < 4
1/3 —38/75 i
< y
-2/15
i1) Direct Form II
x[n] % > > >y[n]
Z—l
3/5 | —3/10"
Z—l
< v >
—-38/75| 1/3
5!
< v
-2/15
ii1) Cascade Form
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x[n] > > > »y[n]
z z!
m 4
4/5 | -3/10 -1/5
Z—l
< A 4
_ -2/3  1/3
iv) Parallel Form
1/2
] P ]
Z—l
4
4/5
Z—l
A 4
-2/3
112 .
271
4
-1/5
v) Transposed Direct Form II
x[n] - > »y[n]
5!
~3/104" 3/5
=
\ 4 ol v
1/3 1-38/75
5!
< v
-2/15
2. Label the interior nodes of the transposed direct form II structure
v, [n],v,[n],v,[n],v,[n] counting from the top down. Then we have
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yln]=v 7]
vo[n]zx[n]+v1[n—l]

v [n]=2y[n]-3x[n]+v,[n-1]
v [n]==%yn]+ix[n]+v[n-1]

vs[n]==%yln].

Taking the z-transform of these equations gives
Y(2)=V,(2)
Vy(2)=X(2)+277(2)
Vi(2)=3Y(2)-5X(2)+277.(2)
V2 (2) ==Y (2)+3X (2)+277:(2)
Vi(z) ==Y ().

Substituting Eq. (5) into Eq. (4) gives
V()= 2 ()41 X (1) 327 (2)

:—(%+%2_')Y(Z)+%X(Z)'

Substituting into Eq. (3) gives
4 (Z)=%Y(Z)—i)f(2)+2‘1 (~(@+%")Y(2)+4X(2))
(3% -7 )+ ()X (),

Now substitute into Eq. (2):
Vy (Z)ZX(Z)+Z_1 { (% B - %Z_Z)Y(Z)+(—%+%Z_1)X(Z)}
2(1—%271 +1z7 )X(z)+(%zf1 877 —%273)1/(2).
Finally, substitute into Eq (1):

(=047 +)X @ -2 -2
(1—%z_l+§—§z_2+%z ) (1—%2 +1z7 )X(z)
H(z) Y(z) 1- 1302 +%z )

This final expression is the correct system functlon.
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6.25

1+0.81z7 1+2z7!

H(z)

1032 —04z7 14082
(1 + 0.9z )(1 —j0.9z7" )(1 +2z7" )

(1

D.

H(z)z

—0.82‘1)(1+0.52‘1)(1+0.82") '

B. Yes, the overall system is stable. All of the poles are inside the unit circle, which
guarantees stability for a causal system.

C. No, the system is not minimum-phase. There is a zero outside the unit circle at z=-2.

142z7'4+0.81z7%+1.62z
1405271 —-0.64z2-0.322

x[n] A > > y[n]
Z—I
2 A 05
Z—l
v >le v
0.81 1T 0.64
Z—l
\ 4 < A\ 4
1.62  0.32
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6.26. Causal LTI system with system function:

—1,-1
1 52

1- %z‘l + %z‘z)(l + %z‘l) )

H(z) =

(a) (i) Direct form I
1- %z—l
-3zl Z22 4+ L2(-3)

H(z) = T

SO
1 1 5 1
bo—"l,b1=—g a.ndal———,az_———-,as_———-—u_

-1/5 1/4

(ii) Direct form II.

————o——9— —e
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(iii) Cascade form using first and second order direct form II sections.
1—-3z271 1
H(z) = > .
(=) (1 + 3271 )(1 —2z714 %z—z)
So
bor=1,bn=-%,bn=0,
boz2=1,b12=0, b2 =0and
ann=-%,a01=0,012=1%,a0n=-}
z[n] y[n]
L > > >— > L 4 > —0
Z_l z—l
A Y
< > o o——9
~1/4 -1/5 1/2 4zt
A
-1/3
(iv) Parallel form using first and second order direct form II sections.
We can rewrite the transfer function as:
125 T3 — 1357 "
H(z) = .
() 143271 1-1271- 122
So o7
el =155 ,e11 =0,
€02 = 35 > €12 = —155 , and
an=-%,021=0,a12=73,0a22 = —3.
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z[n]

(v) Transposed direct form II
We take the direct form II derived in part (ii) and reverse the arrows as well as exchange the

input and output. Then redrawing the flow graph, we get:

-1/4

27/125

z—l

L 9
4
y[n]
o*—r 9
7 3
> ®

1/3

~5/24

-1/12

[ :Jl [ﬂﬁ >~ L 2 > @
z[n] y[n]
A z~1 {y
)
Ry SV |
12‘1 Y
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(b) To get the difference eqﬁation for the flow graph of part (v) in (a), we first define the intermediate
variables: wy[n] , wz[n] and ws[n] . We have:

(1) w1[n] = z[n]+wan —1]

(@) waln] = goln] +usln ~ 1] - 2z
(@) wsln] = ~gvl] ~ 75yln 1]
@ sl = wln)

Combining the above equations, we get:
1 5 1 1
y[n] — Zy[n -1+ ﬁy[n -2]+ ﬁy[n - 3] = z[n] - gac[n -1].

Taking the Z-transform of this equation and combining terms, we get the following transfer func-

tion:
1-1z71
H(z) = 5
() 1—2z714 2224 5273

which is equal to the initial transfer function.
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6.27. (a)

(b)

H(z) = ———

y[n] = z{n] + ay[n — 1]

Hr(z) = 1—_3;;:1 = H(z)

1+ 127!
H(z) = 1-3z71

y[n] z[n]

yln] = ln] + goln ~ 1] + 5yln ~ 1]

1+ %z‘l
1-1z7?

Hr(z) = = H(2)
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(c)
H(z) =a+bz ! +cz72
y[n] z7! 271
[ o < - <
a b c
z[n]
- - < @
y[n] = azn] + bz[n — 1] + cz[n — 2]
Hr(z)=a+bz"' +cz7% = H(z)
(d)
rsinfz7!
H(z) = 1—2rcosfz—! +r2z—2
y[n]
[ 4 < —@-

—rsiné Y

T cosd . z[n]

I
[ J

|4 X+z27'U
U rcosOV — rsinfY
W = rsindV +rcosfz"'W
Y = z7'w
= :}-’;— = HT(Z)
rsinfz~!
T T-2rcos@z-! +r2z2
= H(z).
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6.28. (a)
H(z) = 1 _12_1 [1 — %z—‘l%j——l%z‘z +1+2271 4+ z_z]
243 4824 a3 4 Tt
1— 148,72 Ip-3
(b)
yln] = 2z[n]+ ga:[n -1+ gw[n -2+ %z{n -3+ gz[n -4

11 5 7
+ gy[n -1 - Zy[n -2]+ gy[n - 3]

(c) Use Direct Form II:

z[n] y[n]

{7 z"l
4
1 -s5/4 9/8
¢ ——> ®
v z—l
7/8 11/8 |
-—Q > 9
\
7/8
[ —
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6.29. (a) We can rearrange H(z) this way:

(1+271)? (1+271)? 1 1
H(z) = . ) R S
(=) 1-2271 4272 1427143272 (1+27) 1-2z-14 Z;-2 0.2
z[n] ufn] v[n] w(n] 0.2
——9o ¢ ¢ ¢ ¢ 9o ¢ —¢ o —¢—o N
Y 21 ‘ | Bt z-ly \
2 A 1/2 3 —1 2 2 'y A 2
z7t \ P | v 21
1 -t -1/2 ~7/8
—— e — o—r— [ —e

The solution is not unique; the order of the denominator 2nd-order sections may be rearranged.

(b)
uln] = zn]+2zn—1)+z[n-2]+ %u[n —1]—u[n — 2]
on] = un]—vfn—1]- %’u[n ~ 9
wln] = vn]+2vn-1]+v[n ~-2]
y[n] = wn]+2wn-1]+whn-2]+2yn-1]- %y[n -2
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6.30. Appears in: Fall0b PS4.
Problem

Determine and draw the lattice filter implementation of the following causal all-pole system
function:
1

1 + %2*1 — 272 4 %2*3 + 2274

H(z)

Is the system stable?
Solution from Fall05 PS4

The all-pole filter is fourth-order with coefficients:

@__3 @_ @__ 3 @_

ap’ =g Oy = 1, a3’ = W= —2.

We know immediately that ks = af) = —2. To find the remaining reflection coefficients, we

need to run the recursion in reverse and find the coefficients for successively lower order filters.
Letting M = 4 in equation (11) of the lattice filter notes,

a(g) _ a§4) + k4a§4) —0

! 1— k3
&):a9+m@:1
2 1— k3 3
NOR a?”+hwg):_§
s 1— k3 4

We identify ks = aég) = —% and proceed to M = 3:

o _ ag?,) + kgag%) _ 4
! 1— k32 7
a(2) B agg) + kgagg) . E
S 1—k3 21
_ 2 _ 16 1
Thus ko = ay”’ = 57. Finally,
a(l) _ (1+ kg)a?) _ ag2) _ _B
! 1— k3 1 — ko 5’
and k1 = —%.

The lattice structure for H(z) is shown below:
Since |k1| > 1 and |kq| > 1, the all-pole filter cannot be stable.

z[n]
-2 '
2
21 21 21
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6.31 (AVO)
(a) To determine y[1], sum the gains of all paths with a single delay to the output. This gives

y=1+(=1)G)=5

(b) The flow graph for the inverse filter will be a cascade of FIR stages with the k-coefficients in
the reverse order.

x[n]

(c) When the FIR lattice of part (b) is driven by an impulse, the response is seen to be
Py [n] = 5[”]"" (_1 + (_1)(_%))5[’7_1]_%5[”_2]

The transfer function is

This is the transfer function for the inverse filter. The transfer function for the given lattice is
then
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6.32.

(a) Transpose = reverse arrows direction and reverse the input/output, we get:

wzn]
z[n] @—o» > > > > > o ¥[n]
-1 1/2 ,
-1/2
i win] ) w3(n] ) z:1
(b) From part (a), we have:
(1) wa[n] = 2z[n]+ ws[n]

(2) wa[n] = z[n] + wifn — 1]
1
(3) wsln] = —53fn] + 2yl — 1
(4) yln] = wa[n] + y[n — 1]
Taking the Z—transform of the above equations, substituting and rearranging terms, we get:
1- %z"l -2273)Y(2) = (227 + 1) X (2).

Finally, inverse Z —transforming, we get the following difference equation:

yfn] -;-y[n — 1] - 2y[n — 2] = z[n] + 2a[n — 1].

(c) From part (b), the system function is given by:

142271
H(z) = —7¥———.
2 1- 12712272
It has poles at
s= -t _andz=-—o
T 1-v33 1+33

which are outside the unit circle, therefore the system is NOT BIBO stable.

(d)

y[2] = z[2] + 2z[1] + %y[l] + 2y[0]
y[0] = 2[0] = 1
y[1] = z[1] + 22[0] + Ly[0] =} +2+ 3 =3

Therefore, . 3 19
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6.33. Problem 3 in midterm exam.

Problem

For this problem you may find the information on page 77 useful.

Consider the LTT system represented by the FIR lattice structure in Figure 1.

Y
Y

3

Y
°
=,
=,

N[
|
w
[
[N]

21 21 21

Figure 1:

(a) Determine the system function from the input z[n] to the output v[n] (NOT y[n]).

(b) Let H(z) be the system function from the input z[n] to the output y[n], and let g[n] be
the result of expanding the associated impulse response h[n] by 2:

hln]——= 12 g[n]

The impulse response g[n] defines a new system with system function G(z).

We would like to implement G(z) using an FIR lattice structure as defined by the figure

on page ??7. Determine the k-parameters necessary for an FIR lattice implementation of
G(2).

Note: You should think carefully before diving into a long calculation.
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Solution from Fall05 Midterm

The output v[n] is taken after two stages, so we perform the lattice recursion up to order
p=2.

1
k:l——i, ke=3, ky3=2
agl) = k‘l = —%
(2) 1 1
ay _ ag) —ky ag) :[1]
al? 0 -1 3
V(z) _ -1 —2
X() =1—z 3z

Note the change of signs in going from a,(f) to the system function.

Since g[n] is h[n] expanded by 2, G(z) = H(z?). We replace z by z? in Figure 1. We then
expand each of the three sections as shown below:

kp kyp
—)
kp kyp
271 21

The resulting flowgraph for G(z) is in the form of a 6th-order FIR lattice. We read off the
six k-parameters as:

2—2

by = —
ke =

kg = 2
k, = 0, p=1,35
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6.34
by (7] hy [n]

hy [n] = (%)n/4 u[n], for n an integer multiple of 4
’ 0, otherwise.

The filter with impulse response /4, [#] is an IR filter.

(b) The two filters from part (a) have system functions H, (z)=1+z"+z"+z" and
H,(z)= 11;_4 respectively. The flow graph below shows a direct form implementation of

the two filters in cascade followed by a compressor.

x[n] > > . » L4 — y[n]
-1 -1
z z

» \ 4
A
-1 -1
z z
\ 4 » A 4
A
-1 -1
z z
\ 4 > A 4
-1
z
1
A
-
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We can simplify the design (although without changing the number of coefficient multipliers)
by applying the identity of Figure 4.31. The result is shown below.

x[n] ———— 14 ‘ > y[n]
z! | z!
> PRERR /
A <
=
\ 4 »
"
=
Y »

(c) Only one out of every four input samples propagates through the compressor and gets
multiplied by the coefficient 4. Thus there is + multiplication per input sample.

Every output sample is derived from a multiplication of the previous sample by 1. Thus
there is one multiplication per output sample.
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6.35
(a)
€ [n] ) [”] & [”]
1 1 1 1
2 2 2
1 1
291 1
; i AR £ 2 U
123 4 123 4 123 4

(b) First, e, [n] is a three-point system, but symmetry can be used to reduce the number of
multiplies to two.

Next, ¢ [n] requires three multiplies per output sample.

Next e, [n] requires three multiplies per output sample. However, e, [#] can be

implemented using pole-zero cancellation as shown. This requires only two multiplies per
output sample. 1
2

g

v

P

A
4
<«

is
v 38

»
>

Finally, e,[n] requires three multiplies per output sample.

Altogether this is 10 multiplies per output sample.

The compressor reduces the required rate of multiplies relative to the input samples. We
need 10/4=2.5 multiplies per input sample.
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(¢) The given system is now

x[n] » L4 » E,(z) - > y[n]
72
r—» l4 » E, (z) >
This is equivalent to
x[n] E, (') » L4 »— y[n]
s
\4 E, (24) » L4 >

The system function is H (z)=E, (24 )+ zE, (24) . This gives a frequency response of

H (ef‘") =E, (ej o ) +e*E, (ej o ) The components of the frequency response are shown

below. E, ( e j4w)
1
| .
- T 2 . z T
2 4 4 2
E, (ej 4"’)

I

_z
2

ENE

_>
ENE
S

1
4
T

2

Note that the areas of the impulses scale when the frequency axis is scaled.

Including the factor of e/*“, we obtain the frequency response H (e"") shown below.

ENE

—-r/2 0 /2

ENES
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6.36. (a) Hy(e/w) = H(elw+m).

Hy(e?)

! i .

1 1 >
—1
- -5

[SE]
8
€

(b) For Hy(z) = H(—2), replace each z~! by —z7'. Alternatively, replace each coefficient of an
odd-delayed variable by its negative.

(c)
[ > L 4 > ——> ’ »> )
z[n] yln]
\ B
4 'y
-1 2
L 4 < > 9
Y z‘_l
r I
2 -1
[ = < L 2 > 9
y 21
¥ § 7 3
-2 1

|
®
1
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6.37.
z[n] y[n]
*— 4 — ¢ ———0
b \ 4
1 a
[ - —9
21
; w(n] —‘I
(a)
y[n] = z[n] + abw[n] + bw[n — 1] + aby[n]
wn] = —y[n].
Eliminate w{n):
y[n] z[n] — aby[n] — by[n — 1] + aby[n]
y[r] = =z[n]-byln—1]
So: 1
HE@ = 1
(b)
z[n] y[n]
[ >— o > > 2 ]
21
b
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6.38. (a)
z[n] z71 z7! 7t 7!
a a? a? at
(b) From
N2 Ni _ o Nz+1
k=N, a
it follows that
7 8,—8
Z n.,—n _ 1-a°z
a"z "= 1 —
= az
(c)
z([n] 28
@ > > > >
2! —a®

Y

o
yln]
(d) (@) (c) has the most storage: 9 vs. 7.

(ii) (a) has the most arithmetic: 7 adds + 7 multiplies per sample, vs. 2 multiplies + 2 adds per
sample.
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6.39.
(a)
. | ettorng =0
008l it e e e e
o.0e}- p e
002 e el e
(b)
14
1 27
H(z) = — l1+cos| —(n—-n z™n
@ = 53 |1+ (=)
n=0
14 T .
= — ) 27"+ — —[ejl-g("‘"°)+e_jﬂ'("_"°)] z "
15 = 15 n=02
o 11-z7¥% 1 1e~ 7801 — (e7$5271)19)
T 151—-2-1 ' 152 1-e% 21
11ei5mo 1- (e'j%z"l)“]
152 l—e_.jgx';'z—l

1 le_j%"o
2o +
—z7l 1Tt

1 -
= 1—5(1—2 15) [1

%e] 3{;‘710 ]

1-e iz

()

H(e™) = 1 it [sin((lSw)/2)_le‘jf_ssin((ISw)ﬂ) 1 e’ sin((15w)/2) ]

15 sin(w/2) 2 sin((w-—2%)/2)  2sin((w + (27)/15)/2)
—j15w —j3%z0 j2Tno
H(ew) = ~=° - . ¢ T Ll —
15 1—-e v 1 —el1se—iw 1—e? %e—]w

When ng = 15/2, .

w 1 |ed%(1—e915) %ej”_(z’;/m (1 — e=915)
H(C ) = 1_5 % —eI% - ejw—(Z'rr/lS! =15 -
— €
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%ejﬂﬂ%i&l(l _ e_jlsw) :|

- w+{27/15) . w+(27/15)
J 3 —e™J Z

1 —-Jw7(e_7w s _ e-jw%)
15 2jsin§
.;.e"jw7e_’j1L5(ej"’J§§ — e_j’-"'l-f)

2j sin (——L—L—l“" 22" 15 )

lemiwTeifs (g7 v — e=7%v)

2j sin (-L—L—l‘”+ 2x/15 )

=37 | sin(15w/2) fe % sin(15w/2)
- 15 sin(w/2) sm( 2" 15 )

3¢’ sin(15w/2)

i
i3 s
sm( 21r 15 )

(@™ tor = 1572

When ng = 0,

H(e) = e—iwT sm(15w/2)+% =375 sin(15w/2)

15 sin(w/2) sin (w-—(221r/15))

% 715 sin(15w/2)
(w+ w+(2m/15) )
N tor 0 = O
'
ool M e . . PN I
. . . . . SR
osh N VO o
ol .. . o -
0af J
0.2 -
oal
0.5 1 1.6 2 25 3

The system will have generalized linear phase if the impulse response has even symmetry (note it
cannot have odd symmetry), or alternatively, if the frequency response can be expressed as:

H(e™) = e7797 4, (%)
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where A.(e’“) is a real, even, periodic function in w. We thus conclude that the system will have
generalized linear phase for ng = -lzék, where k is an odd integer.
(d) Rewrite H(z) as

_ ,-15
H(z)=1 z

1 , cos 21m0 _ cos (4 + 220) 271
15 1-21 1—2cos 2Tz~ + 22
1/15
> > > > > >— @ >
2] ? )
2-15 21
A /
-1
a
[ +>- ———>— >
4
'y
¥ B
[ - L 2 >
A 4
-1
——

where a = cos(27no/15), 8 = — cos(2m(ng + 1)/15), and v = 2 cos(27/15).
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6.40. (a)
G . u[n] -
zTn] - " T+r - o ;[n]
-7 T -1
1-7r
P n] < Z T
u[n] = Gzn]+wn - 1]
win] = —rufn]— (1-r)yln - 1]
yin] = (L+r)ufn] —ryln-1].
(b)
U(z) = GX(2)+z 'W(2)
W) = —ru(z)-(1-r)z"'Y(2)
Y(z) = (1+7)U(2)—rz7'Y(2).
Solve for U(z) in terms of X (z) and Y (z):
2)—(1—r)z72
0 = SO =00V ()
Then cx . 2y
Y(z)=(1+7) { (2) < (+ ;_’:)f (=) } —r271Y (2)

Y()1+rz ) =G +r)X(2) - (1 =r2)272Y(2) —rz7 1Y (2) — r227%Y (2)
Y(z)(1+2rz7  +272) = G1 + 1) X (2)

G(1+r7)
14+ 2rz71 + 272

From the quadratic formula, the poles are at (—r + jv/1 —r2)"! and (~r — jv/1 —r2)~!. The
magnitude of each pole is 1. The angles are

—tan"l( 1-—r2) and tan"l( l—rz)
r r ’

Hy(2) =

respectively.
(¢) Uz) = 27H(GX (2) + W(2)), W(2) = —rU(2) = (1 - 7)Y (2), and Y (2) = 27 ((1 +7)U(2) —rY (2))

lead to
G(1+7)z2

) = T n e

= 272 H (2).
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6.41. (a)
yiln] = (1 +r)zi[n] +rzz[n]
y2[n] = —rzi[n]+ (1 = r)z2[n).
(b)
niln] = (@ +a)zi[n] +dz2n] (a=r=4d)
y2[n] = (1 +cd)zz[n]+abzi[n] (c=d=-1).
(c)
nn] = (A +e)zn]+ezzfn] (e=r)
y2[n] = efzi[n]+ (1 +ef)zln] (f=-1).

(d) B and C preferred over A:
(i) coefficient quantization. If r is small, 1 + r may not be precisely representable even in floating
point. Also, network A has 4 multipliers that must be quantized, while B and C have only 1.

(ii) computational complexity. Networks B and C require fewer multiplications per output sample.
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6.42.
-1
z7t - 0.54
H ( z) = 1-
1-—0.542"
(a)
d
[ 2 > - - > L)
z[n] y[n]
z—l
b c
cdz™t +d
H(z) = i
1-0b2—

so set b = 0.54, ¢ = —1.852, and d = —0.54.
(b) With quantized coefficients b, &, and d, éd # 1 and d # —b in general, so the resulting system would

not be allpass.

(c)
]

] yln]

1
r (54 271
-1

(d) Yes, since there is only one “0.54” to quantize.

H(z) = (12 :la;—al) (1Z:Ib;—b1 )

*—r
z[n]

(e

Cascading two sections like (c) gives
z71 w(n] z7t
» > - > > > > > o
a P b 27t
win — 1] -1

-1
The first delay in the second section has output w[n — 1] so we can combine with the second delay

of the first section.
z~1 -1
(Y > > > > <
z[n]
a 2zt b 271
y[n]
> > > —@

(f) Yes, same reason as part (d).
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6.43. (a) We have:

y[n]

z[n]

First, we find the system function, we have:

1) wiln] = z[n]+wzln—1]
(2) we[n] = z[n]+ws[n - 1]
(3) ws[n] = 2wi[n]+wsln - 1)
4) yln] = wsn]

(8) waln] = -y[n] - w2[n]

Taking the Z-transform of the above equations and combining terms, we get:
A=2")Y(2) +27Y(2) = (2+ 271 X ().
The system function is thus given by:

_Y() 2+

H(z) = X(z)  142z71-22

Since the system function is second order (highest order term is 2~2 ), we should be able to im-
plement this system using only 2 delays, this can be done with a direct form II implementation.
Therefore, the minimum number of delays required to implement an equivalent system is 2.

(b) Now we have:

wy [n] w3(n] ws[n]
z[n] z~1 z7t y[n]
1
ws[n] ) -1 wa[n]
Let’s find the transfer function, we have:

(1) wifn] = z[n]+ w2[n —1]

(2) wz[n] = z[n]+ws[n—1]

@) ws[n] = 2win]

(4) wa[n] = -—ws[n—1]-y[n]

(5) ws[n] = ws[n]+ wen —1]

(6) yln] = wsln]
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Taking the Z-transform of the above equations and combining terms, we get:

1-2"%)(2+227Y)

1+2z"HY(2) = T2,

X (2).
The system function is thus given by:

_Y(2) _ 2(1+2z71)(1 —271)
X(z2) 1-2z2 ’

Since the transfer function is not the same as the one in part a, we conclude that system B does not
represent the same input-output relationship as system A. This should not be surprising since in
system B we added two unidirectional wires and therefore changed the input-output relationship.
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6.44.
z71-1
H(Z) = -]jﬁf.
3
(a) Direct form I:
2—1/3
z[n| g—» > > > > o y(n]
21 21

z

From the graph above, it is clear that 2 delays and 2 multipliers are needed.
(b)

1 _ 1 -1
(1= 327 )Y () = (-5 +27)X()

Inverse Z —transforming, we get:

yln] — 3l — 1) = — 5ln] +aln - 1]

yln] = 3 (sl — 1]~ alnl) + zfn 1]

Which can be implemented with the following flow diagram:

z[n| g—s > > e y[n]

Y
A

1/3

\
L4
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(c)
z~l - % z71 -2
HG) = (o)

This can be implemented as the cascade of the flow graph in part (b) with the following flow graph:

z[n] @—s > > > o y[n]
2
-1 2zt
However the above flow graph can be redrawn as:
-1 2zt
z[n] [ — > -
z7! 2
> >- > ] y[n']

Now cascading the above flow graph with the one from part (b) and grouping the delay element
we get the following system with two multipliers and three delays:

-1 21
z[n] @— - > - -
1/3 ZI l?
- > > o v

| N

Y
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6.45
(a) From Eq. (6.120),
Kinax < w;
S o]
For the given systems, #[n]=ba"u[n]. Then we have
1
Xpax <o
Z|bam|
m=0
__
S
_1-d]
2
(b)
e [n] e, [n] e [n]
o, o 20,
x[n] L b Jyfn] x[n] —2 L > (]
z™! z!
v 4
a a
b . b
(c) For System 1 we have H,(z)=——,s0 H, (e-’ ):—_.. Then
l—az l—ae™
" o |’
@, (e'] ): | l—aB—l[’wr +0,
- fébz +0,.
l+a” —2acosw
For System 2 we have H,(z)= # ,s0 H, (/)= ﬁ. Then
2
q)fva (ejw) = 20-3. 2
o ‘1 —ae_’“"
20;

l+a*—2acosw
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(d) For System 1,

o; =§ _”,rq)flfl (ejw)d‘"

_ L —0-129 |b|2 da)+Lr o.dw
2 —”|1_ ae‘f“”z 27 drt

2712

o:b
= £ +o0,,

—a

where the method of Example 6.11 was used to evaluate the integral.

For System 2,

1 ox .
O';Z ZEL[(szfz (e’ )da)

2
ZL 2izda)
2w d-n

1—ae

—ja)|
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6.46
(a) For the allpass system
(=) ~a)
H =
(Z) (1 —az™! )(1 —a'z"! )
77— (a +d )z_' + |a‘2
- l—(a+ a )z_1 +|a|2 z72
27 =2rcosOz +r?
1-2rcos @z +rz72
7,2
x[nl Y 7Y > > y[n]
z! 5!
"—2r cos Ha “:2;’ cos il Direct Form I
z! 5!

Y > P v

7"2

X [I’Z] L > 7y >y [I’l]
Z—l
> A\ .
22 cos8 |=2rcoso? Direct Form II
271
< v >
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(b), (c) e[1]
40,
2 I N
7 R
x[n] oy > > y[n]
-1 -1
z z
Y <€ 3 Direct Form |
—2rcosOt * 2rcos@
—1 -1
z z
A > < A

—-r

e, [n] e [n]

20; 20;
x[n] —— 5 y[]
* . x
‘FZr cos v—2r cos & Direct Form [1
271
Y r >
_rz

(d) In the direct form II realization, the noise power spectrum at the output is given by
. . 2
®,, (e)=20,|H (") +20;,

Since the system is allpass,

H (e"' © )‘ =1. Consequently, the parameters of the system have

no effect on the output noise power.

In the direct form I realization, the noise power spectrum at the output is given by
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2

A 40
® jo) — B
Sih (e ) ‘(l—aeijw)(l—a*eijw)r

This spectrum will show a peak near @= 6 caused by the system poles. This spectral peak
will become more prominent as » — 1, enhancing the output noise power.

(e) For the direct form II realization,

0';2— ! j”d) (ef”’)da)

L,
—gf_”40'3da)
=40,.

For the direct form I realization,

1 gr Y
o) ZE,[_”‘DM (ej )da)

2

_ L z 4o, do
2z (1 —ae ) (1 —a'e’” )‘2
1 (r 40, do

e . R
2r ”|1—2rcost9e 4 rle 12“"

1+77 ) 1
1-r" J1-2rcos(26)+r"’
where the technique of Example 6.12 was used to evaluate the integral.

=40,
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6.47
(a) Flow graph #1:

x[n] : l%

> y[n]

»
>
A 4

A

A

Flow graph #2:

y[n]

4
Ll
A 4
A

d d
< <

a
(b) The power density spectrum of the output noise for flow graph #1 is
I

jw| - :
|1—ae"”

@, (ejw) =0

B 2
11— ae |

The total output noise power is

1 cr .
o) zﬂf_”q’fm (ej )d“’

2

1 ¢~ o
_ B
Ey Pl
7 |1—ae- ‘
_ 0,
_l—az’

where the method of Example 6.11 was used to evaluate the integral.

(c) The noise in flow graph #2 is filtered through a cascade of two stages. The second stage has
a pole on the unit circle at @=0. This pole will cause a peak in the noise power density
spectrum. Consequently, flow graph #2 would be expected to produce the largest total noise
power at the output. (In fact, the noise power at the output of flow graph #2 will be infinite.)
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o e [1]

I
0.5

A

x[n] 0.8 ¢ e3[n]

A

y[n]
= [n]

2
075 +

WYe

L hl
A 4

09 o

<«

0.5
1-0.8z"
be the system function of the lower branch to the right of the noise source, i.e.

1 . L
H,(z)= 7097 Then the power density spectrum of the output noise is given by

(b) Let H,(z) be the system function of the upper branch, i.e. H,(z)= . Let H,(z)

@, (ejw) = O'é

H,(e”)[ +203|H, () +03

2
S B LC) B S S
]1—0.8e-ﬂ"| |1 + 0.9e_Jw|
0.250; 20, g
2

T 1.64—1.6cosw 1.81+18cosw

(c) The total noise component of the output is given by

1 = "
O-;:E _”q)ﬁ(ej )d(l)
2 2
_ L 02503 L1 200 et [ otde
277 11-0.8¢ | 2777 1140.9¢ ] 2z
2 2
_ 0.250'32 20; -
1-(0.8)  1-(~0.9)
=12.20;,

where the method of Example 6.11 was used to evaluate the integrals.
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6.49
(a) From Eq. (6.120),

1
X <L<—.

-5 .

Substituting the coefficients of the given impulse response gives
1

X, <—————=0.625.
0.4+0.8+0.4

(b) o -1

0.4 0.8 0.4

% > > 7[n]
for ’
eln]  eln]  eln]

—2x15

Since quantization is to (B+1)=16 bits, we have o, = =77.6x107".

(c) Let H (ej‘”) be the frequency response of the digital filter. The total noise power at the
output is given by
1 ¢7
2

o; =5 _”d)ﬁ, (ej“’)da)

- éfﬂ o, |H (e )|2 dw+$_|._”” 30,dw

2
=0, ), h*[n]+30;

n=0
= (04) +(0.8) +(04) +3]o;
=307x107".
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rom the given impulse response, z)=04+0.8z" +0.4z". en
(d) F he gi impul p H()O4081O42Th

@, (¢)=03|H () +307

) o _j20? 2
=0,[0.4+0.8¢7+0.4e7| +30;,
=0.64(1+cosw)’ o2 +307

=(3.96+1.28 cos @+0.32cos 2) 03

=307%x107"7 +99.3x10™" cos w+24.8x10™" cos 2.
This power density spectrum is plotted below.

x 10 Power Density Spectrum

4.5

35

@)
N
(6]
X
N
/

o (rad/sample)
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7.1. Using the partial fraction technique, we see

sta _ 05 05
(s+a)>+b2 s+a+jb s+a—jb

H.(s) =

Now we can use the Laplace transform pair

e~ u(t) «— 1
S+a
to get
1 : .
_ 2 p=(a+ib)t | ,—(a—jb)t
he(t) = 5 (7" + e ().
(a) Therefore,
hi[n] = h(nT)= % [e—(a+jb)nT + e-—(a—jb)nT] uln]
0.5 0.5 o
Hi(2) 1= e-@iMT,~1 T [Z o-(a-i0T 1" |2] > e
(b) Since
t
sc(t) = / he(7)dr He(s) _ S.(5)
-0 $§
we get,
—_ s+a _ A; A, A3
Se(s) = s(s+a+jb)(s+a—jb) s + STai b + pr—
where

. a A = — 0.5
1T a2+ b2’ 27T Ta+jb

Though the system hz[n] is related by step invariance to h.(t), the signal s3[n] is related to s.(t) by
impulse invariance. Therefore, we know the poles of the partial fraction expansion of S.(s) above
must transform as z; = e**T, and we can find

_ 4 Ay A
SZ(z) T 1-2-1 + 1 — e—(a+ib)Ty-1 + 1 — e—(a—30)T -1

Now, since the relationship between the step response and the impulse response is

saln] = z": holk] = i ho[kluln — k] = ha[n] * u[n]
k=—00 k=—o00
Hz(z)

1—-21

Sz(z) =

We can finally solve for Hj(z)

Hy(z) = Sa(2)(1-2z71)
1-2z"1 1-2z"1 oT

—e-@rT,—1 4 1 — e— (@30T z~1° 2| > e

A; +A21

where A; and A, are as given above.
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()
n 1 n
= == —(a+jb)kT ~(a—jb)kT
alf = Y mE=3 (e +e )
k=-—o00 k=0 v
11— e—(a+_’ib)(n+1)T 1-— e—(a—jb)(n+1)T
= 3 [ 1= e—@enT T 1 e-@mT ] uln
= [31 + Bze“(a+jb)Tn + B;e-(a—jb)Tn] u[n]
where
B, 1—e°T cosbT By = e—(a+i®)T

T 1—2e-9T cosbT + e-2T° 1= e—(a+)T

;From this we can see that

B, B, B;
51(2) 1= 21 T T e-(@rT,-1 T [ e=(a=itT5-1
# S2(2)

since the partial fraction constants are different. Therefore, s;[n] # s2[n], the two step responses
are not equal.

Taking the inverse z-transform of Hj(z)
haln] = Aid[n] + 4, [em@HITy[n] - (T Dy 1]
+ A; [e-(a—jb)Tnu[n] _ e-—(a—jb)T(n—l)u[n _ 1]]
where A; and A, are as defined earlier. By comparing h;[n] and h2[n] one sees that hy[n] # ha[n].

The overall idea this problem illustrates is that a filter designed with impulse invariance is different
from a filter designed with step invariance.
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7.2. Recall that Q@ = w/Ty.
(a) Then
0.89125 < |H(jQ)| <1, 0<|Q| <0.2n/T,
[H(jQ)| < 0.17783, 0.3 /Ty < |9 < 7/Ty

The plot of the tolerance scheme is

I HGQ) |

1+
0.89125 =

P e et e e SRR R S

0.17783 1
0

0 0.2, 0.3uT, T Q

(b) As in the book’s example, since the Butterworth frequency response is monotonic, we can solve

|H.(j0.27/Ta)|* = : sv = (0.89125)%

14 (0.27r
Q.Ty
1 _ 2
1+ <Qch>
to get R.Ty = 0.70474 and N = 5.8858. Rounding up to N = 6 yields Q.T; = 0.7032 to meet the
specifications.

|He(j0.37/Ta)|* =

(c) We see that the poles of the magnitude-squared function are again evenly distributed around a
circle of radius 0.7032. Therefore, H,.(s) is formed from the left half-plane poles of the magnitude-
squared function, and the result is the same for any value of Ty. Correspondingly, H(z) does not
depend on Tj.
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7.3. We are given the digital filter constraints

1-6 < [H(E*) <1+68, 0<|w <wp
|H(e?)] < &2, ws S| <7

and the analog filter constraints

1-8 < |H(GQ) <1, 0<|Q<Q,
|H:(jQ)] < b2, Q<9

(a) If we divide the digital frequency specifications by (1 + d;) we get

N 1-6
1-4 = 1+4;
.26
o = 1+6
s d2
& = 1+46;

(b) Solving the equations in Part (a) for é; and &, we find

~

01
& = _
! 2-4
25,
& = 2
2 2- 4

In the example, we were given

b 1 — 0.89125 = 0.10875
6, = 0.17783

Plugging in these values into the equations for é; and d,, we find

01 0.0575
d02 = 0.1881

The filter H'(z) satisfies the discrete-time filter specifications where H'(z) = (1 + 61)H(z) and
H(z) is the filter designed in the example. Thus,
0.2871 — 0.44662 1 —2.1428 + 1.1455z1
1—1.29712-1 + 0.6949z-2 ~ 1 —1.06912~! + 0.36992 2
1.8557 — 0.6303z~!
1-0.9972z"1 + 0.25702‘2]
0.3036 — 0.4723z7! —2.2660 + 1.211427!
1-1.29712"1+ 0.6949z—2 ' 1— 1.0691z-1 + 0.3699z~2
1.9624 — 0.66652 !
1-0.99722-1 + 0.257022

H'(z) = 10575 [

(c) Following the same procedure used in part (b) we find

0.0007378(1 + 2~1)®
(1 — 1268621 + 0.7051z-2)(1 — 1.0106z! + 0.3583z~2)

H'(2)

1l

1.0575 [

1
X 120904421 + 0.2155z‘2]
0.0007802(1 + z~1)°
(1—1.26862-1 + 0.70512-2)(1 — 1.0106z— + 0.3583z-2)
1
* 1-0.9044z-1 + 0.21552-2
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(c) Following the same procedure used in part (b) we find

0.0007378(1 + z~1)®
(1 — 1.2686z—1 + 0.7051z-2)(1 — 1.0106z~* + 0.3583z~2)

H'(2)

1.0575 [

1
X 1-0904d2-1 + 0.2155z—2]
0.0007802(1 + z~1)°
(1—1.26867-1 + 0.70512-2)(1 — 1.0106z—1 + 0.3583z-2)
1
* 1-0.0044z-1 + 0.21552—2

375



ch07 371-392.gxd 4/16/10 5:55 PM Page 376 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.4. (a) In the impulse invariance design, the poles transform as z; = e**T¢ and we have the relationship

1 Ta
s+a 1—e-aTaz-1

Therefore,
_ 2/T4 1/Ty
He) = 53671 " 5702
1 0.5

s+01 s+0.2
The above solution is not unique due to the periodicity of z = e/“. A more general answer is
2 / Td _ 1 / Td
- . [
s+(0.1+]2—f_}ff) s+(0.2+]%{—)

H(s) =

where k and [ are integers.
(b) Using the inverse relationship for the bilinear transform,

_ 1+ (T4/2)s
=1 (T)2)s

we get
2 1

1—e-02 (L_;:) T 104 (_i_;_:_)
2(s+1) (s+1)
s(1+e92) + (1—e02) s(1+e 0% +(1—e09)

( 2 ) s+1 _ ( 1 ) s+1
1+e702) \ s+ =07 T+e 04 ) \s+ iz20g

Since the bilinear transform does not introduce any ambiguity, the representation is unique.

H.(s) =

Il
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7.5. (a) We must use the minimum specifications!
6 = 0.01
Aw = 0.057
A = -20log;,6 =40
A-8
M+1—-m+1—90.2—+91
B = 0.5842(A — 21)°* + 0.07886(A — 21) = 3.395
(b) Since it is a linear phase filter with order 90, it has a delay of 90/2 = 45 samples.
(c)
Hy(e")
1
-n -0.6251 -0.3n 0 0.3n  0.625n 1; ®
haln] = sin(.6257(n — 45)) — sin(.37(n — 45))
4= w(n — 45)
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7.6.

(b)

The Kaiser formulas say that a discontinuity of height 1 produces a peak error of 4. If a filter has
a discontinuity of a different height the peak error should be scaled appropriately. This filter can
be thought of as the sum of two filters. This first is a lowpass filter with a discontinuity of 1 and
a peak error of . The second is a highpass filter with a discontinuity of 2 and a peak error of 24.
In the region 0.37 < |w| < 0.4757, the two peak errors add but must be less or equal to than 0.06.

§+25 < 0.06
Smax = 0.02

A = —2010g(0.02) = 33.9794
B = 0.5842(33.9794 — 21)°* + 0.07886(33.9794 — 21) = 2.65

The transition width can be

DAw 0.5257 — 0.4757

0.37 — 0.27 or Aw
0.057 rad

0.17 rad

We must choose the smallest transition width so Awmax = 0.057 rad. The corresponding value of
M is
33.9794 -8

= =1T72. 7
3.285(0.05m) 2o T3
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7.7. Using the relation w = QT, the passband cutoff frequency, w,, and the stopband cutoff frequency, w;,
are found to be
wp, = 2m(1000)10*
0.27 rad
27(1100)10™4
= 0.227 rad

I

Ws

Therefore, the specifications for the discrete-time frequency response Hy(e?™) are
0.99 < |Hd(ej'”)| < 1.01, 0 < |w] £0.207
|Ha(e’)] <0.01, 0227 <|w|<m
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7.8. Optimal Type I filters must have either L + 2 or L + 3 alternations. The filter is 9 samples long so its
order is 8 and L = M/2 = 4. Thus, to be optimal, the filter must have either 6 or 7 alternations.

Filter 1: 6 alternations Filter 2: 7 alternations
Meets optimal conditions Meets optimal conditions
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7.9. Using the relation w = QT, the cutoff frequency w, for the resulting discrete-time filter is
we = QT

[27(1000)][0.0002]

= 0.4n rad
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7.10. Using the bilinear transform frequency mapping equation,

Q.T
-1 c
2tan (———2 )

o tan-1 (27r(2000)(0.4 x 10-3))

2
0.75897 rad

We
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7.11. Using the relation w = QT,
= Y
Q = T
w/4
0.0001
= 25007

= 2r(1250) %‘i
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Qe

7.12. Using the bilinear transform frequency mapping equation,

7o ()

0.001 2
2000 5?—

27(318.3) -I;S‘é
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7.13. Using the relation w = QT
We
Q.

2r /5
2m(4000)
= 50 us

This value of T is unique. Although one can find other values of T’ that will alias the continuous-time
frequency 2. = 27(4000) rad/s to the discrete-time frequency w. = 27/5 rad, the resulting aliased filter
will not be the ideal lowpass filter.
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7.14. Using the bilinear transform frequency mapping equation,

Q = 2 tan (wc +227rk

We
an ()
2 3m/5Y _
T= 27(300) ta.n( 5 ) = 1.46 ms

The only ambiguity in the above is the periodicity in w. However, the periodicity of the tangent function
”cancels” the ambiguity and so T is unique.

T ) , k an integer
2 t
T

‘ﬁ

POWEREN.IR
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7.15. This filter requires a maximal passband error of &, = 0.05, and a maximal stopband error of §; = 0.1.
Converting these values to dB gives
ép=—26 dB
és=-20dB
This requires a window with a peak approximation error less than -26 dB. Looking in Table 7.1, the
Hanning, Hamming, and Blackman windows meet this criterion.
Next, the minimum length L required for each of these filters can be found using the "approximate
width of mainlobe” column in the table since the mainlobe width is about equal to the transition width.
Note that the actual length of the filter is L = M + 1.
Hanning:
8r
0lr = —
S 7
M = 80
Hamming:
8w
0.17T = ﬁ
M = 80
Blackman:
127
1 = —
0.1m %
M = 120
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7.16. Since filters designed by the window method inherently have §; = &, we must use the smaller value for

s.
§ = 0.02
A = -20log;,(0.02) = 33.9794
B = 0.5842(33.9794 — 21)°* + 0.07886(33.9794 — 21) = 2.65
A-8 33.9794 - 8

M

= 2285Aw . 2.285(0.65m —0.637) L0095 = 181
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7.17. Using the relation w = Q7T', the specifications which should be used to design the prototype continuous-
time filter are

-0.02< H(jQ) <002, 0< [Q < 2m(20)

0.95 < H(jQ) < 1.05,  2x(30) < [Q] < 27(70)
-0.001 < H(jQ) < 0.001, 2x(75) < || < 27(100)

Note: Typically, a continuous-time filter’s passband tolerance is between 1 and 1 — §; since historically
most continuous-time filter approximation methods were developed for passive systems which have a
gain less than one. If necessary, specifications using this convention can be obtained from the above
specifications by scaling the magnitude response by l_lﬁ.
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7.18. Using the bilinear transform frequency mapping equation,

2 ws\ _ 2 027\ rad
Q, = rtan (?)-2“0_3 tan( - )—21r(51.7126) :
2 wp\ _ 2 0.3m\ _ rad
Q, = Ttan(y)—zxw_s tan( = )_27r(81.0935) -

Thus, the specifications which should be used to design the prototype continuous-time filter are

|H.(j)| < 0.04, Q] < 27(51.7126)
0.995 < |H ()| < 1.005, || > 27(81.0935)

Note: Typically, a continuous-time filter’s passband tolerance is between 1 and 1 — §; since historically
most continuous-time filter approximation methods were developed for passive systems which have a
gain less than one. If necessary, specifications using this convention can be obtained from the above

specifications by scaling the magnitude response by T.éﬁ'
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7.19. Using the relation w = QT,

w
Q

w/4
27 (300)
= 417 ps

This choice of T is unique. It is possible to find other values of T that alias one of the given continuous-
time band edges to its corresponding discrete-time band edge. However, this is the only value of T that

maps both band edges correctly.
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7.20. True. The bilinear transform is a frequency mapping. The value of H(s) for a particular value of s
gets mapped to H(e/“) at a particular value of w according to the mapping

s 2 (1= e~
T Ti\l+eiv )’
The continuous frequency axis gets warped onto the discrete-time frequency axis, but the magnitude
values do not change. If H(s) is constant for all s, then H(e?*) must also be constant.
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7.21. (a) Using the bilinear transform frequency mapping equation,
2 wp
Qp = T; tan ( 2 )
we have
2 m
Tg = —t -
¢ 0, (4)
2
= o
(b)
wp = 2tan™? (QPTd)
2
A
A o
(O]
p
0 >
0
Td
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(©)

ws = 2tan~! (QsTd)
2
wp = 2tan”! (Q”Td)
2
Aw = w, —wp =2 [tan"l (Qssz) I (Qm)]
A
JU
A®
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7.22
A.

Strictly speaking, the input x_ (#) must be bandlimited to 5000 Hz to ensure that there is

no aliasing when sampled at 10000 samples/sec. As a practical matter, it may be
adequate to bandlimit the input to 7000 Hz. Frequency components between 5000 and
7000 Hz will alias to the range € =273000 to 275000 rad/s, or @=0.67 to 7, using
@ = QT . Thus the aliased components will fall in the stopband of the discrete-time
lowpass filter.

For the continuous-time system, the passband edge is
Q = p/T =0.47x10000 = 272000 rad/s . The stopband edge is

Q. =, /T =0.62x10000 = 273000 rad/s . Within the passband the specifications are
(1-6)<|H,, (jQ)<(1+4), |Q<Q,
0.99 <|H,, (jQ)|<1.02, |Q|<272000.
Within the stopband the specifications are
i, (JQ)<6,, Q,<Q<275000

|, ()| <0.001, 273000 < Q < 275000.

The given filter is a linear phase filter whose impulse response has a length of 28
samples. The group delay of the filter is & =27/2=13.5 samples. Since samples are

spaced 10~ seconds apart, the delay in seconds is 13.5x107* =1.35 ms.
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7.23. (a) Applying the bilinear transform yields
H(z)

I

H.(s) |3= 2 (1—:-1)

Tg\13z—1

Ty (14271
(=) e

which has the impulse response

hin] = T;— (u[n] + u[n —1])

(b) The difference equation is
T.
yln] = 5 (aln] + ofn — 1]) + y[n — 1]

This system is not implementable since it has a pole on the unit circle and is therefore not stable.

(c) Since this system is not stable, it does not strictly have a frequency response. However, if we ignore
this mathematical subtlety we get

i Ty (1+e 3@
e = 3 ()

T (ejw/z + e-ju/z)

2 ejw/2 — e“j“’/2
= g—; cot(w/2)

and since the Laplace transform evaluated along the 2 axis is the continous-time Fourier transform
we also have

. 1
Hc(] Q) - ]_Q_
THEY) | IH () |
-t - 0 n2 =n @ -n 0 w2 =n Q
ZH(e®) <H_(Q)
/2 — 2
T : T
-n 0 ) - 0 Q
-1/2 I -1/2

In general, we see that we will not be able to approximate the high frequencies, but we can
approximate the lower frequencies if we choose Ty = 4 /.
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(d) Applying the bilinear transform yields
G(z) = Hc(s) |s=?_z_(1—:—1)

d \14="

21—z
= mliee HP!

which has the impulse response

Il

ol = 7 [=D"ufn] - (<1 uln - 1]

- Tl [2(=1)"ufn] — 6[n]]

(e) This system does not strictly have a frequency response either, due to the pole on the unit circle.
However, ignoring this fact again we get

wy _ 2 [l—e¥
G(CJ) - Fd[1+e"j”]

9 (ejw/z _ e—jw/Z)

i"; eju/2 + e—jw/2
_ %
= 7 tan(w/2)
L 1GE) 1 : 1G9 |
o W2
- 0 n2 = ©® -T 0 w2 = Q
T2 |, /2
. -7
0 T o 0 n Q
-2 C— -T/2

Again, we see that we will not be able to approximate the high frequencies, but we can approximate
the lower frequencies if we choose Tyg = 4/m.

(f) If the same value of Ty is used for each bilinear transform, then the two systems are inverses of
each other, since then

H(e7)G(e*) = 1
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7.24. We start with |H.(5Q)],

IH_ () |
L 1o

-10=n 0 10 Q

(a) By impulse invariance we scale the frequency axis by Tq to get

. e w 2k
Jw — Y — Y e
=) 3 A (i +i%r)
IH1(ej°’)l
10x
-t -0.1r 0O.1x 1lt [0

Then, to get the overall system response we scale the frequency axis by T and bandlimit the result
according to the equation

= | HETL 101 <5
e, G0 = { | N
| Heﬁ1(jQ) |
10n
-1000% 0 1000% Q

(b) Using the frequency mapping relationships of the bilinear transform,
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2
Tq

Q@ = Ztan (%),

2

w = 2tan”! (Q—zT‘E),

-7

according to the equation

we get
iy _ J 1tan (%) ], |w| <2tan™'(107) = 0.98x
|Ha(e7)] = { 0, otherwise
IH, () |
T 10n
0.9\81!
; 0 K ®

Then, to get the overall system response we scale the frequency axis by T and bandlimit the result

oot < | [ Ha(€T), 191 < F
e, = { | oS
IHeﬁz(jQ)l
T 10n
-9800n 0 980on  Q
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7.25. (a) By using Parseval’s theorem,

2 _ i " Jwy|2

¢ = 5| IBEPd
= > len]?

n=-—00
where
hd[n]’ n < 0,
e[n] = hd[n] - h[n], 0<n<M,

ha[n], n>M

(b) Since we only have control over e[n] for 0 < m < M, we get that ¢? is minimized if h{n] = hq[n]
for0<n<M.

(c)

_J 1, 0<n<M,
wln] = 0, otherwise.

which is a rectangular window.
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7.26. (a) Answer: Only the bilinear transform design will guarantee that a minimum phase discrete-time
filter is created from a minimum phase continuous-time filter. For the following explanations
remember that a discrete-time minimum phase system has all its poles and zeros inside the
unit circle.

Impulse Invariance: Impulse invariance maps left-half s-plane poles to the interior of the z-plane
unit circle. However, left-half s-plane zeros will not necessarily be mapped inside the z-plane
unit circle. Consider:

N N
A J[(s-s))
N Ak k=1 J;}c
— - J
He(s) = z:s—sk_ N
k=1 H(s — 5¢)
=1
N N
ZTdAk H(l - e’jT‘z_l)
N k=1 j=1
TaAx j#k
H(z) = kz T =
=1 H (1- es‘T‘z‘l)
=1

If we define Poly,(z) = [J}=: (1 — e%7T4z™1), we can note that all the roots of Poly,(z) are
i#k

inside the unit circle. Since the numerator of H(z) is a sum of AxPoly;(z) terms, we see
that there are no guarantees that the roots of the numerator polynomial are inside the unit
circle. In other words, the sum of minimum phase filters is not necessarily minimum phase.
By considering the specific example of

_ s+ 10
T (s+1)(s+2)
and using T' = 1, we can show that a minimum phase filter is transformed into a non-minimum

phase discrete time filter.
Bilinear Transform: The bilinear transform maps a pole or zero at s = so to a pole or zero

T
(respectively) at zp = E‘ﬁ% Thus,
2

He(s)

l | 1+%‘80
2| = |—%—
0 1—%80

Since H(s) is minimum phase, all the poles of H.(s) are located in the left half of the s-plane.
Therefore, a pole sg = o + j must have o < 0. Using the relation for so, we get
(1+Zo2+ ()

(1-ZTop + (Z0y

lzo] =
< 1

Thus, all poles and zeros will be inside the z-plane unit circle and the discrete-time filter will
be minimum phase as well.

(b) Answer: Only the bilinear transform design will result in an allpass filter.
Impulse Invariance: In the impulse invariance design we have

wer- £ (%)

k=-00

The aliasing terms can destroy the allpass nature of the continuous-time filter.
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Bilinear Transform: The bilinear transform only warps the frequency axis. The magnitude
response is not affected. Therefore, an allpass filter will map to an allpass filter.

(c) Answer: Only the bilinear transform will guarantee
H(e)w=0 = He(j0)la=0
Impulse Invariance: Since impulse invariance may result in aliasing, we see that
H(e™) = H.(50)
if and only if
. = 2wk .
B = ¥ H (i) = o)
k=—00

or equivalently
[o )
2wk
z H, (J Td—) =0

which is generally not the case.
Bilinear Transform: Since, under the bilinear transformation, = 0 maps to w =0,

H(e%) = H.(j0)

for all H.(s).

(d) Answer: Only the bilinear transform design is guaranteed to create a bandstop filter from a
bandstop filter.
If H.(s) is a bandstop filter, the bilinear transform will preserve this because it just warps the
frequency axis; however aliasing (in the impulse invariance technique) can fill in the stop band.
(e) Answer: The property holds under the bilinear transform, but not under impulse invariance.

Impulse Invariance: Impulse invariance may result in aliasing. Since the order of aliasing and
multiplication are not interchangeable, the desired identity does not hold. Consider H,, (s) =
H,,(s) = e~sT/2,

Bilinear Transform: By the bilinear transform,
2 (1-271
= H{—|——m
#o = #(z (175)

2 [1-2z"1 2 (1—2"1
He, (T., (Hr‘)) He, (ﬁ' (Hz'l))

H,(z)H(z)

(f) Answer: The property holds for both impulse invariance and the bilinear transform.
Impulse Invariance:

k=—o00
= i Ho (i (= + —2£k + {Z‘ Ho(i(=+ gﬁk
= R c1 |7 T T, = c2\J Ty T,

Hy(e7“) + Ha(e?)

It

402




ch07 393-432.gxd 4/16/10 5:59 PM Page 403 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Bilinear Transform:

H(z)

2 (1-271
H‘(E(Hz-‘))
2 (1—-271 2 [1~2z71
- (g (1559)) e (7 (559))

H,(z) + Hy(2)

(g) Answer: Only the bilinear transform will result in the desired relationship.
Impulse Invariance: By impulse invariance,

H (%) = i H (j(w +21rk))
1 = a =t
Mt Ta T4
. > 2k
B = 3 H, (j (;;+_Tg))
k=-—o00

We can clearly see that due to the aliasing, the phase relationship is not guaranteed to be
maintained.
Bilinear Transform: By the bilinear transform,

Hy(e79) H,, (jT% tan(w/2))

Hie®) = He (i tan(o/2)

therefore,

H, (e.‘iw) H, (J% ta'n(""'/z)) { e—.‘i"/z, O<w<m
oy : = ein/z,  —
H(eiv) H., (]T%tan(wﬂ)) el™/2, T<w<O0
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7.27. (a) Since
; s 27k
- & 0+ 5)
( ) k;—z—:co (J (Td Td
and we desire
H(e’) lu=0= Hc(jQ) |n=o,

we see that -
. fw 27k .
HENomo= Y He (i (5 + ) ) bomo = Helilamo
S d d
requires
k=--0c0 Td

k#0

(b) Since the bilinear transform maps {2 = 0 to w = 0, the condition will hold for any choice of H.(j2).
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7.28.

jwy — 17 | %
H(e )_{0 E<|wl <

(a)
hn] = h2n]

Hy(e™) = Y h2n]eln

n=-—00

= Z h{n]eih'i"'L
n even
o0

= Y S+ () A

n=-—0oo

= %H(ef%) + %H (ef%)
H,(e")

1/2

- -r/2 0 n/2 T ©
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(b)

H,(e7*) > hn/2Jeion

n even

> h[n]e=ivrn

n=-—o0

= H (&™)

H,(e")

1

-n~71/8 -n/8 0 /8 8 1
(c)
Hy(e™) = H (™)

Hy(e")

— +1

- -3n/4 0 3n/4 T ©
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7.29. (a) We have

1-2z71
1+2z-1

1—e v
1+eiv

eiw/2 _ g=iw/2

o =

eiw/2 1 e—Jjw/2

0 = ()

Q, = tan (“—2‘—) —F wp, = 2tan"(Q,)

(b)

1+2z7?
1-2-1

1+e v
1-ew
eiw/2 4 g=iw/2

N =

e.’iw/z - e_j“"/2

Q = —cot (g—)

_ ta w—-—T
= n 2

Q, = tan (51212—_—7-[) — wp, =+ 2tan"1(Qy)

()

(d)
H3(z) = H1(2)|z=-2

The even powers of z do not get changed by this transformation, while the coefficients of the odd
powers of z change sign.
Thus, replace 4, C,2 with —A4,-C, —2.
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(d)

(b)

(©)

7.30. (a) Substituting Z = e/® and z = ¢ we get,

e = _eiw
ej(2w+1r)
9 —
0=2w+m7 +— w= ) L
H, (")
¢ 9c R < c >
TA
- -r/2 0 /2 T o

hin] «— H(e®)
hiln] «— H(eﬂ%ﬂ))

In the frequency domain, we first shift by = and then we upsample by 2. In the time domain, we
can write that as

_ f (=1)*2h[n/2], for n even
hafn] = { 0, for n odd
In general, a filter

bo+brz7t + bz -+ bp_12M T f bz ™™
ap+a1z7 +az 2 +---+any_1z¥N "1 +ayz—N

H(z)=

will transform under H; (2) = H(—22) to

bo— b1z 2+ boz ™t 4+ - — bpr_122M~2 4 by z—2M
ap— a1z~ 2 +agz~t +- - —apy_122VN-2 + anz—2N

Hi(z) =

where we are assuming here that M and N are even. All the delay terms increase by a factor of
two, and the sign of the coefficient in front of any odd delay term is negated.
The given difference equations therefore become

gln] = =z[n]+aigln —2] - b1 fn - 4]

fln] —azg[n — 2] - b2f[n — 2]

yln] cLfln] + cagln — 2]

To avoid any possible confusion please note that the br and a; in these difference equations are
not the same by and aj shown above for the general case.
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7.31. We are given
H(z) = H.(s S
(2) = He(s) |s=ﬁ[%:;__?]
where a is a nonzero integer and § is a real number.

(a) Itis true for 8 > 0.

Proof:
1-—27¢
s = F [1 + z‘“]
s+s27% = B-Bz7¢
s=B = —Bz7%—sz"¢
B-s = z7%B+s)
z7® = B=s
B+s
a B+s
2 = 5

The poles s; of a stable, causal, continuous-time filter satisfy the condition Re {s} < 0. We want
these poles to map to the points z in the z-plane such that |zx| < 1. With a > 0 it is also true
that if |zx| < 1 then |2¢| < 1. Letting s = o + jw we see that

Izk| < 1
I < 1
|B+0+3Q < |B-0-3j9
B+o)2+0* < (B-0)+0°
208 < —208
But since the continuous-time filter is stable we have Re{sx} < 0 or o < 0. That leads to
-B<B

This can only be true if 8 > 0.
(b) It is true for 8 < 0. The proof is similar to the last proof except now we have |z*| > 1.

(c) We have

2 l+s
1-s s=jQ

z

?|

|z

lz| =

Hence, the jQ axis of the s-plane is mapped to the unit circle of z-plane.

(d) First, find the mapping between Q and w.

— e~ J2w
edv — e—iw
T dvteiv
Q = tan(w)
w = tan"}()

Therefore,

- jw T 3
s <@ <146, i< FPu{E <pl<n}

Note that the highpass region 37/4 < |w| < = is included because tan(w) is periodic with period
.
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7.32. (a)

14271 s+1
s = =

= ¢z
1-271 s—1
Now, we evaluate the above expressions along the j§ axis of the s-plane
iN+1
ia-1
1

x
I

(b) We want to show |z| < 1 if Re{s} < 0.
o+jQ+1
oc+j2-1
- VerEw
S Vooipew

Therefore, if 2| < 1

(e+1)2%+Q% < (0-1)7%+Q?
o < -0

it must also be true that 0 < 0. We have just shown that the left-half s-plane maps to the interior

of the z-plane unit circle. Thus, any pole of H.(s) inside the left-half s-plane will get mapped to
a pole inside the z2-plane unit circle.

(c) We have the relationship

1+e9¢
0= Tew
eiw/2 | g—iw/?
= gelz _e-iwlz
2 = -cot(w/2)

] = |cot(r/6) = V3
] = |cot(r/2)] =0
| = lcot(r/4) =1

I

It

Therefore, the constraints are

0.95 < |H ()| <105, 0<|Q<1
|H.(7Q)] €0.01, V3<1|9|
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7.33
A. Given é;|dB =-60 dB, we have 4=60. Then ﬁ:%:%:ﬁS and
60—-8
_(00=8)7 4y
(&%)
B. For filter g[n] we require @ =%, @ =%, and J;|  =3,| , =—60 dB. Then we have
A'=60, f/=65,and =08 s
(5-7)
5 o ()
-2r = z 2r @
‘P(e/a))‘:‘G(ejIOw)‘
B 100 50 5
a11
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D. The filter g[n] will be cascaded with p[n]. To ensure that the original specifications are

”

met, we require that q[n] satisfy a);' =2, W =%-%=0.187, and JﬂdB =-60 dB.

s

(60-8)x
7(0.187-0.017)
Now if g[n] has 75 samples, then p[n] will have 741 samples. The convolution,

E. For the filter g[n] we have 4”"=60, f”=6.5,and M" = =437=44.

K [n]=q[n]* p[n], will therefore have 785 samples.

F. Convolving the input with g[n] requires 45 multiplications per output sample. Then

convolving with p[n] requires 75 multiplications per output sample (not counting

multiplication by zero). The total for this approach is 120 multiplications per output
sample. For the original filter /[n], 744 multiplications per output sample were
required.
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7.34
A. We find the passband and stopband edges of the discrete-time filter by using the
transformation w= Q7T , where - =24,000. The specifications for the discrete-time

filter are shown below.

0.1

()

=z —2z T
a)s_3 a)p_3

B. The mapping between @ and €, is Q, =tan(@/2). Then Q, =tan(27/6)=1.73 and
Q, =tan(7/6)=0.577 . The specifications for ‘GHP (jQ, )| are shown below.

G (7))

0.1
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C. The mapping between Q, and Q, is Q, =1/Q,. Then Q =1/1.73=0.577 and
Q_=1/0.577=1.73. The specifications for ‘GBW (jQ, )| are shown below.

|G (J2,)|
1 i
0ol |

0.14---------

One way of writing the frequency response of a Butterworth filter is

. 2 1
‘GBW (]QZ)‘ = _an-
R
QP
At Q, :Qp we have
! -=0.9°=0.81
l+e
so £ =0.235.
At Q, = fls we have
1 —=0.1"=0.01.
1.73
1+0.235| ——
0.577

Solving gives N =2.75. Since the filter order must be an integer we round up to N =3.
We now have

JPRNE: 1
|GBW (]Qz )‘ = a v
1+0.235 2
0.577
B 1
- 6
1+ 0.785&
0.577
_ 1
= —.
14 2
0.735
We therefore have € =0.735 and N =3.
414
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D. An analog Butterworth filter has poles on a circle in the s-plane. We have

Im{sz}

(0.735)°

(s+0.735)(s—0.735e127”)(5 _0.735e—f%)

B 0.397
s +1.47s*+1.085+0.397

Gy (Sz ) =
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7.35
A.

From the figure, H (e-’ “’) exhibits eight alternations of the error on the interval 0<S @< 7

as an approximation to an ideal lowpass filter with the given parameters. Because a
lowpass filter designed with the Parks-McClellan algorithm has either L+2 or L+3
alternations and because we are told that there is another filter out there that meets the
specs with N, > N,, we should consider the L+3 case to find the smaller value of N .

With L+3=8 alternations, L=5. Then, since (N, —1)/2=5, we have N, =11 as the

only possible value.

Since there are 8 alternations, L can be no greater than 6. Therefore (N2 - 1) / 256,
which implies N, <13. Since the only other possible value of N for a lowpass filter

was found in A, we have N, =13 as the only possible value.

Yes. Since both filters have identical frequency responses, they must have identical
impulse responses.

While the alternation theorem states that for a given r there is a unique r th order
polynomial that satisfies it, the theorem makes no claim about how this polynomial may
or may not relate to a polynomial satisfying the alternation theorem for a different value
of r.

It turns out that in this case, the single 5™ order polynomial satisfying the alternation
theorem for , = L, =5 is identical to the single 6" order polynomial satisfying the

alternation theorem for r, =L, =6.
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7.36
(a) The Parks-McClellan algorithm minimizes

2

E(ejw)W(ejw)

max
ol (0.0 @0 ][0y 7]

where E (e”") = [H (ej“’)—H . (ej“’ )] and W (ef‘") is the weighting function. To ensure that
the resulting filter meets the criteria, we need to choose W (e*" “’) such that

é‘lW(ej”’)

= constant .

Wy <O

= constant , &, (ej @ )‘ = constant , and S,V (ej “’)

0<w<e 0, <<,

Letting the constant equal 1,

/6, 0<|oj<a
w(e”)=11/6,, o, <|e|<e,
1/6,, @, <|o|<m.

Note that W/ (ej ”’) is undefined outside these bands, since the transitions are ignored.

(b) As shown in the graph, the filter 4 (e*’ “’) has eight alternations. Since there can be at most

L —1 alternations inside the bands, L —12>4 interior alternations implies L >5. Also, at
least L +2 alternations are needed to satisfy the alternation theorem, so L +2 <8 implies
L<6,s0 L=5or6. Since the filter is Type I, N =2L+1, which implies N =11 or

N =13. Thus the filter has at most 13 nonzero values in its impulse response.

el N-l 2 2(N-1)
(c) We have 4 (ej “’) = 2 a,e”’™ , which implies B (ej“’) =k (z ae’™ ] +k, = z b e
n=0 m=0

n=0

2(N-1)+1-1

(squaring a polynomial doubles the order). Thus L, = =2L,, which is twice

the order of the Chebyshev polynomial for 4 (ej‘”) . Since L, =25 we have L, 210, and

B (ej “’) needs at least L, +2 =12 alternations to satisfy the alternation theorem. The figure,

however, shows that B (ej ‘”) has only eleven alternations, so it does not satisfy the

alternation theorem.
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7.37. (a) Expanding the sum to see things more clearly, we get

Hc(s) = Z (s s )k +Ge(s)

= A A .. ———A—+G(s)

s—5sg (s — 50)2 (s ~ so)”

Now multiplying both sides by (s — so)” we get
(s —s0)"He(s) = As(s — 50)" "  + Az2(s — 50) 2 4 --- + Ar + (5 — 50)"Ge(5)
Evaluating both sides of the equal sign at s = sy gives us
= (s — 50) He(s) |s=so

Note that (s — s0)"G.(s) = 0 when s = so because G.(s) has at most one pole at s = sg.

Similarly, by taking the first derivative and evaluating at s = so we get

I

3 (r ~ k) Ai(s = s0) "+ + % [(s — 50)"Ge(s)]

k=1

= (r=1Ai(s—s0)" 2+ (r—2)A2(s—50)" 3+ +A,_1+0+ -;—s [(s = 50)"Gc(5)]

2 (s ~ so) H(s)]

A = di [(s = 50)" He(5)] ls=so

This idea can be continued. By taking the (r — k)-th derivative and evaluating at s = s¢ we get
the the general form

r—k
Ap = E lk)' (;s"k [(s = s0)"Hc(s)] |3_80)

(b) Using the following transform pair from a lookup table,

k-1 1
-(rl)—!e“"u(t) — GTaF Re{s} > -a
we get
he(t) = L7 {Hc(s)}

= {Z (s s )k +G¢($)}

ZAk 1), e*u(t) + ge(t)
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7.38. (a)
Hy(e”) = [1 - 2u(w)]e?™/2~™) for—m<w<m

lHd(ejw)l =1, Yw

Jwy _ F-Tw, —T<w<0

LHa(e )_{ -f-Tw, O<w<mw
4Hd(ei"’)

T w2

: T

—TC 0 .

(b) A Hilbert transformer of this nature requires the filter to have a zero at z = 0 which introduces the
180° phase difference at that point. A zero at z = 0 means that the sum of the filter coefficients
equals zero. Thus, only Types III and IV fulfill the requirements.

(c)
Hy(e?) = [1-2u(w)]e?™/2-%7)
1 [° . 1 /™ . )
hd[n] - e](7r/2—w-r)ejwndw_ _[ e](n/z-—ur)e]wndw

27 J_, 2m Jq

_ eI /0 ej“’("“”)dw—eﬁ /"ej‘”("“”dw
2r J_, 2r Jo

_ l—c:snin—!:——r! . n # T

0, n=r

(n—-7)
0, n=r1

co2
2 sin n!n-—r!ZZ
{ 2 n#T

For the windowed FIR system to be linear phase it must be antisymmetric about —"21 Since the
ideal Hilbert transformer hy[n] is symmetric about n = 7 we should choose 7 = 4.

(d) The delay is M/2 = 21/2 = 10.5 samples. It is therefore a Type IV system. Notice the mandatory
zero at w = 0.

IH(E)!
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(e) The delay is M/2 = 20/2 = 10 samples. It is therefore a Type III system. Notice the mandatory
zeros at w = 0 and .

IH(E®)!

1 -

420
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7.39. (a) It is well known that convolving two rectangular windows results in a triangular window. Specifi-
cally, to get the (M +1) point Bartlett window for M even, we can convolve the following rectangular
windows.

/2 = M _
1‘1[71] = > n——O,...,2 1
0, otherwise
ra[n] = rn-1]
Using the known transform of a rectangular window we have

oy 2 sin(wM/4) _ji,(2-1
Wr(e") = \/% snrn < Y

o 2 sin(wM/4) _;, My
Wrs(¢) \/;s—n(m (+4)
Wa(e) Wk, (€7)Wr, (e’*)

2 (sin (wM/4) ) 2 e—iwM/2

M \ sin(w/2)

Note: The Bartlett window as defined in the text is zero at n = 0 and n = M. These points are
included in the M + 1 points.
For M odd, the Bartlett window is the convolution of

[2 — M—1
7'3[77,] — M n—O,...,-——-2
0, otherwise
/2 — M-1
r4[n] - e n—l,..., 3
0, otherwise

In the frequency domain we have

Wi, () = \/% sin(w(M +1)/4) _jy(2z2)

sin(w/2)
oy _ [ 2 sinw(M~1)/4) (s
Wr(e™) = \/;"—M/—z)—‘e )
Wa(e?) = Way(e)Wh,(e™)
2 (sin[w(M + 1)/2]) (sin[w(M - 1)/2]) i M/2
M sin(w/2) sin(w/2)
421
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(b)

wln] = [A + B cos (-2—;.—?) + Ccos (%)} wr(n]

W(e) = {27rA6(w)+B7r[6(w+%})+5(w‘g]§)]+C“[6(w+%)+6( —%/IE)]}

® [sin(w(M +1)/2)) _j,
51?{ sin(w/2)  © M/z}

where ® denotes periodic convolution.
(c) For the Hanning window A = 0.5, B = —0.5, and C = 0.

wHanning[n] = [0.5 — 0.5cos (2—;;—7')} wy[n]
WhHanning(¢”) = 05Wa(e™) - 0.25Wr(e™) ® [6 (“ + %) +6 ( B '2’1\})]

0.5Wg(e™) — 0.25 [Wa(eﬂw%)) + WR(ei(w—%>)]

where in(w(M +1)/2))
jwy Sin(w —jw
Wr(e™) = T sin(w/2) "

Below is a normalized sketch of the magnitude response in dB.

Normalized Magnitude plot in dB
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7.40. (a) The delay is % = 24.
(b)

H (")l

1

1/2 1/2

- -0.6n -0.3xn 0 0.3n 0.6n T ®

This can be viewed as the sum of two lowpass filters, one of which has been shifted in frequency
(modulation in time-domain) to w = n. The linear phase factor adds a delay.

_ sin(0.31(n—24)) 1 (n—24) 5in(0-4m(n — 24))

hg[n] = w(n— 24) +2( 1) (n — 24)

(c) To find the ripple values, which are all the same in this case since it is a Kaiser window design, we
first need to determine A. Since we know (3 and A are related by

0.1102(A — 8.7), A> 50
B=368=1{ 0.5842(4—21)* +0.07886(A — 21), 21 < A <50
0, A<21

we can solve for A in the following manner:
1. We know 8 = 3.68. Therefore, from the formulas above, we see that 4 > 21.
2. If we assume A > 50 we find,

3.68 0.1102(A4 — 8.7)
A = 421

But, this contradicts our assumption that A > 50. Thus, 21 < 4 < 50.
3. With 21 < A < 50 we find,

3.68 = 0.5842(A4 —21)%* 4 0.07886(4 — 21)
A = 424256
With A, we can now calculate 4.
§ = 107420
- 10—42.4256/20
0.0076
423
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The discontinuity of 1 in the first passband creates a ripple of 6. The discontinuity of 1/2 in t
second passband creates a ripple of §/2. The total ripple is 36/2 = 0.0114 and we therefore hav

0 =82 =43 =0.0114

Now using the relationship between M, 4, and Aw

A-38
M = Tane
42.4256 - 8

Putting it all together with the information about H;(e’) we arrive at our final answer.
0.9886 < |H(e’”)| < 1.0114, 0<w <0.257
|H(e)| < 0.0114,  0.357 < w < 0.557
0.4886 < |H(e’*)| < 0.5114, 065r<w<m
With A, we can now calculate 4.

§ = 1074720
10——42.4256/20

0.0076

The discontinuity of 1 in the first passband creates a ripple of 6. The discontinuity of 1/2 in the
second passband creates a ripple of §/2. The total ripple is 36/2 = 0.0114 and we therefore have

0 =82 =43 =0.0114

Now using the relationship between M, 4, and Aw

A-38
M = Tane
42.4256 - 8

Putting it all together with the information about H;(e’) we arrive at our final answer.
0.9886 < |H(e’”)| < 1.0114, 0<w <0.257
|H(e7?)] <0.0114, 0.357 < w < 0.557
0.4886 < |H(e’¥)] < 0.5114, 0657 <w<T
HE®) |

1 * 25,

0.5+

)

. %2y

0 0.25x 0.35n 0.55% 0.651 M Q
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7.41. (a) Since H(e’°) # 0 and H(e’™) # 0, this must be a Type I filter.
(b) With the weighting in the stopband equal to 1, the weighting in the passband is %f.

W(w)
1.6
1+
00 0.4n 0.58n 1|t ®
(c)
IE(w)!
TN W\
: ® n
0 / \9/ ® </ \/ o
P ;
-5, 4

(d) An optimal (in the Parks-McClellan sense) Type I lowpass filter can have either L + 2 or L + 3
alternations. The second case is true only when an alternation occurs at all band edges. Since this
filter does not have an alternation at w = 7 it should only have L 4 2 alternations. From the figure,
we see that there are 7 alternations so L = 5. Thus, the filter length is 2L + 1 = 11 samples long.

(e) Since the filter is 11 samples long, it has a delay of 5 samples.
(f) Note the zeroes off the unit circle are implied by the dips in the frequency response at the indicated

frequencies.
Im o
B
oS X y Re
o

10th order pole
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7.42. (a) The most straightforward way to find h4[n] is to recognize that Hy(e’*) is simply the (periodic)
convolution of two ideal lowpass filters with cutoff frequency w, = w/4. That is,

) 1 [7 . _—
Hy(e?*) = o Hips(€7%) Hips (e7“9))d8

-
where W<
; 1 w| <z
jw) — ’ >3

Hips (e™) { 0, otherwise

Therefore, in the time domain, hgln] is (hips[n])?, or

i) = ()’

sin®(n/4)
m2n2

(b) h[n] must have even symmetry around (N —1)/2. h[n] is a type-I FIR generalized linear phase
system, since N is an odd integer, and H(e’¥) # 0 for w = 0. Type-I FIR generalized linear phase
systems have even symmetry around (N — 1)/2.

(c) Shifting the filter hg[n] by (N — 1)/2 and applying a rectangular window will result in a causal
h[n] that minimizes the integral squared error ¢. Consequently,

where
{ 1, 0<n<N-1
wln] =

426
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(d) The integral squared error €
e=L / |A(e) — Ha(e™)[" do
Tom J_, d

can be reformulated, using Parseval’s theorem, to

oo

=) _la[n] - han]®

—-00

Since
L e
afn] = { 0, otherwise
—(N-1)/2-1 (N-1)/2 oo
€ = > lanl—haln]®+ Y lafnl-han]*+ D lafn] - haln]l®
e —(N-1)/2 (N—1)/2+1
—(N-1)/2-1 ©
= > JranP+0+ Y Jhaln]?
—o0 (N-1)/2+1
By symmetry,
oo
e=2 Y Ihdnll
(N-1)/2+1
427



ch07 393-432.gxd 4/16/10 6:00 PM Page 428 $

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7.43. (a) A Type-I lowpass filter that is optimal in the Parks-McClellan can have either L + 2 or L + 3
alternations. The second case is true only when an alternation occurs at all band edges. Since this
filter does not have an alternation at w = 0 it only has L + 2 alternations. From the figure we see
there are 9 alternations so L = 7. Thus, M = 2L = 2(7) = 14.

(b) We have
th[n] = —ej""h;,p[n]
Hup(e?¥) = —Hpp(e™™)
= —A (/WM ilw-mF
Ae(ei(w—vr))e—jw%
= B.(e™)e ¥
where

B(e?) = Ac(e7™™)
The fact that M = 14 is used to simplify the exponential term in the third line above.

(c)

B, (€")

(d) The assertion is correct. The original amplitude function was optimal in the Parks-McClellan
sense. The method used to create the new filter did not change the filter length, transition width,
or relative ripple sizes. All it did was slide the frequency response along the frequency axis creating
a new error function E'(w) = E(w — 7). Since translation does not change the Chebyshev error

(max |E(w)|) the new filter is still optimal.
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7.44. For this filter, N = 3, so the polynomial order L is

N-1
= e—=]
L 2

Note that h[n] must be a type-I FIR generalized linear phase filter, since it consists of three samples,
and H(e’¥) # 0 for w = 0. h[n] can therefore be written in the form

hln] = ad[n] + bd[n — 1] + ad[n — 2]
Taking the DTFT of both sides gives

H(e¥) = a+be™ +ae 2
= e ¥(ae’ + b+ ae™¥)
e (b + 2a cos w)

b+ 2acosw

A(e??)

The filter must have at least L + 2 = 3 alternations, but no more than L + 3 = 4 alternations to satisfy
the alternation theorem, and therefore be optimal in the minimax sense. Four alternations can be
obtained if all four band edges are alternation frequencies such that the frequency response overshoots

at w = 0, undershoots at w = -’35, overshoots at w = 7, and undershoots at w = .

Let the error in the passband and the stopband be 4, and 4;. Then,

A(eJ:“’) |w=0 = 144
A(e".w) lw=1r/3 = 1- 6?
A(e"_w) Iw=7r/2 = d
A(er) ‘w=1r = -4
Using A(e’”) = b + 2acosw,
A(eJ:“’) lw=0 = b+2a
A(e{w) lw=1r/3 = b+a
A(eJ.w) lw=1r/2 = b
A(e7°) |u=n = b—2a
Solving these systems of equations for a and b gives
a - -2_
T 5
2
b =3

Thus, the optimal (in the minimax sense) causal 3-point lowpass filter with the desired passband and
stopband edge frequencies is

hfn] = 2éln] + 2oln — 1] + —Z—é[n g
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7.45. True. Since filter C is a stable IIR filter it has poles in the left half plane. The bilinear transform maps
the left half plane to the inside of the unit circle. Thus, the discrete filter B has to have poles and is
therefore an IIR filter.
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7.46. No. The resulting discrete-time filter would not have a constant group delay. The bilinear trans-
formation maps the entire 7 axis in the s-plane to one revolution of the unit circle in the z-plane.
Consequently, the linear phase of the continuous-time filter will get nonlinearly warped via the bili-
nar transform, resulting in a nonlinear phase for the discrete-time filter. Thus, the group delay of the
discrete-time filter will not be a constant.
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8.1. We sample a periodic continuous-time signal with a sampling rate:

Qs 1 6

ST 10
(a) The sampled signal is given by:
z[n] = zc(nT)

Expressed as a Discrete Fourier Series:

9
z[n] = Z arel Ekn

k=-9

We note that, in accordance with the discussion of Section 8.1, the sampled signal is represented
by the summation of harmonically-related complex exponentials. The fundamental frequency of
this set of exponentials is 27 /N, where N = 6.

Therefore, the sequence z[n] is periodic with period 6.
(b) For any bandlimited continuous-time signal, the Nyquist Criterion may be stated from Eq. (4.14b)
as:
F, s 2 2Fy )
where F; is the sampling rate (Hz), and Fn corresponds to the highest frequency component in
the signal (also Hz).

As evident by the finite Fourier series representation of z.(t), this continuous-time signal is, indeed,
bandlimited with a maximum frequency of F, = z=7 Hz.

Therfore, by sampling at a rate of F; = '1-(')§:; Hz, the Nyquist Criterion is violated, and aliasing
results.

(c) We use the analysis equation of Eq. (8.11):

From part (a), Z[n] is periodic with N = 6.
Substitution yields:

i

5 9
X[k] ) ( > amejgﬁl"‘") eI kn

n=0 \m=-9

i i amej(zn/e)(m—-k)n

n=0 m=-9

We reverse the order of the summations, and use the orthogonality relationship from Example 8.1:
_ 9 0
X[kl=6 ) am Y [m—k+rN]
m=-9 T=—00
Taking the infinite summation to the outside, we recognize the convolution between a,, and shifted

impulses (Recall a,, = 0 for |m| > 9). Thus,

X[k] =6 Z vak-sr

r=—00

Note that from X[k], the aliasing is apparent.
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8.2. (a) Using the analysis equation of Eq. (8.11)

N-1
X[kl =Y zn]wg"
n=0
Since Z[n] is also periodic with period 3NV,
} 3N-1
Xkl = Y anwiR
n=0
N-1 2N-1 3N—-1
= D anWiR + Y anWsR + D ZnlWi
n=0 n=N n=2N

Performing a change of variables in the second and third summations of X [&],
_ N-1 N-1 N-1
Xslk] = Y ZnIWsg + WiV > #[n+ NIWSE + WY Y &[n + 2NIW3%
n=0 n=0 n=0
Since Z[n] is periodic with period N, and W% = W,(ﬁ) ",

_ . . N-1 .
Xalk] = (147278 4 e ) 5™ amiw ™

n=0

= (1 +emi2m(®) 4 e-ﬂ"@%)) X[k}

| 3X([k/3], k=3¢
B 0, otherwise

(b) Using N = 2 and Z[n] as in Fig P8.2-1:
) N-1
X[k = > anwgr

n=0
1

= Z :E[n]e_j%lk"

n=0
#[0] + Z[1]e~I"*
1+2(-1)F

_ 3, k=0
-1 k=1
Observe, from Fig. P8.2-1, that Z[n] is also periodic with period 3N = 6:

3N-1
Xk = Y EnWiR

n=0
5

> &[nje5kn

n=0
(14 e 7%k 4 e 7 %¥k)(1 4 2(-1)%)
(14 e 7%5* 4 e 75 X[k/3)

9, k=0

-3, k=3

0, k=1,2,4,5

I

I
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8.3. (a) The DFS coefficients will be real if Z[n] is even. Only signal B can be even (i.e., Zp[n] = Z5[—n};
if the origin is selected as the midpoint of either the nonzero block, or the zero block).

(b) The DFS coefficients will be imaginary if Z[n] is even. None of the sequences in Fig P8.3-1 can be

odd.

(c) We use the analysis equation, Eq. (8.11) and the closed form expression for a geometric series.
Assuming unit amplitudes and discarding DFS points which are zero:

X alk]

Xs(k]

Xcl(k]

3

§ :ejzslkn

n=0

1-— ej{-‘ik

1-ei%k

1-(-1)%

—1—:?:_—,':— =0,k=:l:2,j:4,...
2

> o
n=0

1-el33k

1-el%k

3
n=0 n=4

3

Y (ej%kn - ej%k(n+4))
n=0

ey 1—ei™F

1—eI™) ——

( € ) 1-— e];k

0, k=4+244,...
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8.4. A periodic sequence is constructed from the sequence:

z[n] = a™uln] , |a| <1

as follows:
o0
En] = Z zjn+rN],|al <1
r=-00
(a) The Fourier transform of z[n]:
- o o
X)) = z z[n]e 7"
n=-—0oo
o0
= Z ane-jwn
n=0
1
= — 1
1- e’ lod <
(b) The DFS of Z[n]:
N-1
XK = D anwhr
n=0
N-1 oo
= Z Z z[n + rN|WE?
n=0 r=-—o0
N-1 oo
= Z o™t Ny[n + rNJWE?
n=0 r=—00
N-1 oo
— Z a"+rNWII\‘,n
n=0 r=0

Rearranging the summations gives:

*) N-1
o S anwie

r=0 n=0

X[x)
1 — alVe-i2mk

o
= ZQTN (-—-————%?_k—) , |a| <1

— ae™d
—o0 1-ce

1 [(1-—aNei?mk
T I-af ( 1-ae 7% ) »la <1
1

1= ce—7C@nk/N) ° laf <1

X(k]
(c) Comparing the results of part {a) and part (b):

X[k] = 'X(ejw)|w=21rk/N :
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8.5. (a)
z[n] = d[n]
N-1
X[k] = > oW, 0<k<(N-1)

n=0

1

I

(b)
zln] = dn—ngl,r 0<nE<(N-1)
N-1
X[kl = Y dn-no]Wg, 0<k<(N-1)
n=0
= Wi

1, n even
0, nodd
N-1
Y alnWh, 0<k<(N-1)
n=0
(N/2)-1
= Z ngkn
n=0
1-e
1 — e—Ji(mk/N)
N/2, k=0,N/2
0, otherwise

()

8,
S
I

2
=
I

—-j2nk

X[¥]

(d)

8,
S,
Il

1, 0<n<((N/2)-1)
0, N/2<n<(N-1)
N-1
XK = Y Wi, 0<k<(N-1)
n=0
(N/2)-1
= > Wi
n=0
1—e~I7k
1= e-i@mk)/N
N/2, k=0

2
T=emsammy Fodd

0, keven,0<k<(N-1)

X[¥]

I

(e)

ofn] {'a“, 0<n<(N-1)

0, otherwise

N-1
XK = Y a"WR, 0<kS(N-1)
n=0
1- aNe—-jZﬂ'k
1- ae—j(ZWk)/N

1-aV

1 — ge—i@nk)/N

X[¥]
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8.6. Consider the finite-length sequence

evn, 0<n<(N-1)
z[n] = )
0, otherwise

(2) The Fourier transform of z[n):

o
X)) = z z[n)e7n
n=—oc0
N-1
= Z ejwone—jwn
n=0
i 1— e—j(w—wo)N
X() =

e—i(w=wo)(N/2) (sin [(w - wo)(N/z)])

e—i(w—wo)/2 sin [(w — wo)/2]

jw — —j(w—wo -1 sin [(w - wo)(N/2)]
X(er) = et (ST

(b) N-point DFT:
N-1
XK = D zRWE, 0<k<(N-1)

n=0
_ 2 efwonyykn
- N

n=0
1 — e—i((27k/N)—wo) N

1 — e—3((27k/N)-wo)

= i wo) (25 ')Sm[(T“—wo) %]
in [(25E - Wo)/2]

Note that X[k] = X(ejw)lw=(21rk)/N
(c) Suppose wg = (27wko)/N, where kg is an integer:
1 — e—ilk—ko)2x
1 — e—Ji(k—ko)(2m)/N

= gmien/N)(k—ko)(N-1)/2) _SINT(k ~ ko) _
sin(w(k — ko)/N)

X[K]
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8.7. We have a six-point uniform sequence, z[n], which is nonzero for 0 < n < 5. We sample the Z-transform

of z[n] at four equally-spaced points on the unit circle.

X[k] = X(z)|z=e(2""/‘)

We seek the sequence z;[n] which is the inverse DFT of X[k]. Recall the definition of the Z-transform:

[ ]

X(z)= Z z[n]z™"

n=—oo

Since z[n] is zero for all n outside 0 < n < 5, we may replace the infinite summation with a finite
summation. Furthermore, after substituting z = e/(27%/4) we obtain

5
X[kl =) znwf~, 0<k<4

n=0

Note that we have taken a 4-point DFT, as specified by the sampling of the Z-transform; however, the
original sequence was of length 6. As a result, we can expect some aliasing when we return to the time
domain via the inverse DFT.

Performing the DFT,
Xkl =W+ W+ W2+ W+ WHE LW, 0<k<4
Taking the inverse DFT by inspection, we note that there are six impulses (one for each value of n

above). However,
Wik = W and Wt = W,

so two points are aliased. The resulting time-domain signal is

2
(]
1 1
AJ |
0 2 3
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8.8. Fourier transform of z[n] = (1/2)"u[n]:

oo

Z z[n]e "I

n=-—oo
oo n
= X(3)
n=0
1

— 1l.—-jw
1-3e™?

X (e7°)

Now, sample the frequency spectra of z[n):

Y[k] = X(ejw)’w=21rk/101 0 S k S 9

We have the 10-pt DFT:

1
Y = {orSemmy  0SkS9

= Z y[nwi

n=0

Recall: n N
(1> DFT 1- ()

2) N-pt 1-— Le=i@nk/N)

So, we may infer:
@)

= <n<
y[n] = (o’ 0<n<9
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8.9. Given a 20-pt finite-duration sequence z[n}:

(a)

We wish to obtain X (&7“)|y=4x /5 using the smallest DFT possible. A possible size of the DFT is
evident by the periodicity of e’|,—4x/5. Suppose we choose the size of the DFT to be M = 5.
The data sequence is 20 points long, so we use the time-aliasing technique derived in the previous
problem. Specifically, we alias z[n] as:

oo

z[n] = Z z[n + 5r)

r=-—00

This aliased version of z{n] is periodic with period 5 now. The 5-pt DFT is computed. The desired
value occurs at a frequency corresponding to:
ork _ 4
N 5
For N = 5, k = 2, so the desired value may be obtained as X[k]|x=2-

Next, we wish to obtain X (e/*)|,=10x/27-
The smallest DFT is of size L = 27. Since the DFT is larger than the data block size, we pad z[n]
with 7 zeros as follows:

2afn] = z[n], 0<n<19
2 0, 20<n<26

We take the 27-pt DFT, and the desired value corresponds to X [k] evaluated at k = 5.
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8.10. From Fig P8.10-1, the two 8-pt sequences are related through a circular shift. Specifically,
z2[n] = z1[((n — 4))s]

From property 5 in Table 8.2,
DFT{z;[((n - 4))s]} = Wg* X1 [K]

Thus,

X[k] We* X, (k]
e‘j""Xl[k]

Xalk] = (-1)*X[k]

I
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8.11. We wish to perform the circular convolution between two 6-pt sequences. Since z»[n] is just a shifted
impulse, the circular-convolution coincides with a circular shift of z;{n] by two points.

Il

21[n]@)=2[n]
z1[n)®¥[n — 2]
z1{((n - 2))s6]

y[n]

I

y[n]

w 0
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8.12. (a)

transforms to

3
X[k = Zcos(%’l)wf", 0<k<3
n=0
The cosine term contributes only two non-zero values to the summation, giving:
X[k] = 1-e7™, 0<k<3
1-wi

(b)
h[n]=2", 0<n<3
3
Hk] = Y 2"Wf", 0<k<3

n=0

= 1+2W} +4W2k + 8wk

(c) Remember, circular convolution equals linear convolution plus aliasing. Weneed N >3+4-1=6
to avoid aliasing. Since N = 4,we expect to get aliasing here. First, find y[n] = z[n] * h[n]:

Y] = =ln] * hln]

-
o 0 w
w e o

®
o e =

-8

For this problem, aliasing means the last three points (n = 4, 5, 6) will wrap-around on top of the
first three points, giving y[n] = z[n]@h[n]:

(=]

y[n] = z{n)@h(n]

® o
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(d) Using the DFT values we calculated in parts (a) and (b):

Y[k] = XI[KkH[K]
14+ 2WF +4W2k 4 W3k — w2k — w3k — 4w ik — swi*

Since Wik = WQ¥ and W5k = Wf
Yik] = -3-6Wf+3Wi+6W7*, 0<k<3

Taking the inverse DFT:
y[n] = —36[n] — 66[n — 1]+ 36[n — 2] +66[n—3], 0<n<3
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8.13. Using the properties of the DFT, we get y[n] = z[((n — 2))s], that is y[n] is equal to z[n] circularly
shifted by 2. We get:

2 2
y[n]
1111
IT, .
01 2 3 4 5
446
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8.14. z3[n] is the linear convolution of z;[n] and z3[n] time-aliased to N = 8. Carrying out the 8-point
circular convolution, we get:
9 9 9 9
z3[n]
8 8

| I 7 I

T [ n

0 1 2 3 4 5 6 7 8
We thus conclude z3[2] = 9.
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8.15. y[n] is the linear convolution of z;[n] and z2([n] time-aliased to N = 4. Carrying out the 4-point circular
convolution, we get:

1 2a+1 a 2+a
yln]
- * -&- n
-1 0 1 2 3 4 5
Matching the above sequence to the one given, we get a = —1, which is unique.
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8.16. X,[k] is the 4-point DFT of z[n] and z;[n] is the 4-point inverse DFT of X;[k], therefore z;[n] is z[n]
time aliased to N = 4. In other words, z;[n] is one period of Z[n] = z[((n))s]. We thus have:

4=5bH+1.

Therefore, b = 3. This is clearly unique.
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8.17. Looking at the sequences, we see that z;[n] * z2[n] is non-zero for 1 < n < 8. The smallest N such that
21[n] @ r2[n] = z1[n] * z2[n] is therefore N = 9.
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8.18. Taking the inverse DFT of X;[k] and using the properties of the DFT, we get:
z1[n] = z[((n + 3))s]-

Therefore:
z1[0] = z[3] =c.

We thus conclude that ¢ = 2.

ﬁ

POWEREN.IR
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8.19. z;[n] and z[n] are related by a circular shift as can be seen from the plots. Using the properties of the
DFT and the relationship between X;[k] and X[k], we have:

z1[n] = z[((n — m))s)-

m = 2 works, clearly this choice is not unique, any m = 2 + 6/ , where [ is an integer, would work.
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8.20.
Xy [k] = X [k]etI@rk2/N),
Using the properties of the DFT, we get:
z1[n] = z[((n + 2))n]-

From the figures, we conclude that:
N =5.

This choice of N is unique.
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8.21. (a) We seek a sequence §;[n] such that
Yi[k] = X, (k] X2[k]

From the discussion of Section 8.2.5, §j[n] is the result of the periodic convolution between Z;[n]

and 512 ['n]
N-1

filn) = Y #1[m)Zzn —m

m=0

Since Z»[n] is a periodic impulse, shifted by two, the resultant sequence will be a shifted (by two)
replica of ;[n].

6
5 5 i
2 2 1
0 I 0
14 Ty .
3 6 8 9

10 11 12 13 14 15

~ 0 ~

Using the analysis equation of Eq. (8.11), we may rigorously derive i [n]:

6
Xk = Y amnwrn

n=0

= 6+ 5WF + aW?k + 3W3k 2wk + WF

6
Xkl = ) ZnWr”
n=0
w7k
X1 [k] Xa[k)
= 6W2k + 5W3k + 4wk 4 Wk 4 2wk + Wk
Noting that W7* = /¥ (78) = 1 = W2, we use the synthesis equation of Eq. (8.12) to construct
#1[n]- The result is identical to the sequence depicted above.
(b) The DFS of the signal illustrated in Fig. P8.21-2.is given by:

Yi[k]

Il

Xslk] = Y Zsnwr”

n=0

1+ Wik

Therefore:

Il

X1 [k] X3[k] )
Since the DFS is linear, the inverse DFS of Y;[k] is given by:
i}z[n] =1I; [n] + [n - 4].

Ya(k)
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8.22. For a finite-length sequence z[n], with length equal to N, the periodic repetition of z[—n] is represented
by
z[((-n))n] = z[((-n + €N))n], £ integer
where the right side is justified since z[n] (and z[—n]) is periodic with period N.
The above statement holds true for any choice of £. Therefore, for £ = 1:

z[((—n))n] = 2[((—n + N))n]
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8.23.

(a) When multiplying the DFT of a sequence by a complex exponential, the time-domain signal
undergoes a circular shift.

For this case,
Y[k] = WakX([k], 0<k<5
Therefore,
ylrl=z[(n-4))s], 0<n<5

4
3

2 n

Tl I y[]
® To—c *—o n
-10 1 2 3 4 56 7

(b) There are two ways to approach this problem. First, we attempt a solution by brute force.
X[k] = A+3WE+ 2w+ W, WE=e9C"*/® and0<k<5
Wikl = Re{X[]}
1 *
= 3 (XM + X[

1 - - _
= 5(4+3W§+2W62’°+W63’°+4+3W6 koW L wisk)

WII\CJ = e—j(21rlc/N)
WI\_rk = ej(21rk/N) = (27 /NYN—k) _ W]IVV—k

W = 4+ g [ W+ wa=] + [wzk + we=] + 2 [wek + we™], o<k<s

So,
win] = 4[] + 5 (bln ~ 1]+ 6ln ~5]) + 5fn — 2] + 5fn — 4
+3 (30— + 6n - 3))
wln] = 48]+ 36n — 1]+ 5fn — 2] + 8 — 3 + Ofn — 4] + Siln-5), 0<n<s

Sketching w(n]:

4
3/2 , 1 1 3/2 win]
ol 1 oot . .
-10 1 2 3 4 56 7
456




ch08.gxd

4/16/10 6:05 PM Page 457 CE

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

As an alternate approach, suppose we use the properties of the DFT as listed in Table 8.2.

Wik = Re{X[k]}
_ XK+ X[
- XWX
wi] = 3 IDFT{X[H}+ 5 IDFT{X"[k]}

B = DO

(aln) + =" (((-n))w))
For 0 < n < N —1 and z[n] real:

wn] = % (z[n] +z[N — n])

) 3

I . 2 I z[N —n],for N =6
——0—0- ? T *—o n
-10 1 2 3 4 56 7

So, we observe that w(n] results as above.

(c) The DFT is decimated by two. By taking alternate points of the DFT output, we have half as
many points. The influence of this action in the time domain is, as expected, the appearance of
aliasing. For the case of decimation by two, we shall find that an additional replica of x[n] surfaces,
since the sequence is now periodic with period 3.

From part (b):
X[k]=4+3W§ +2WZF+ Wk, 0<k<5

Let Q[k] = X[2K],
Q] =4+ 3WF +2WZ + W3, 0<k<2

Noting that W3F = W*
q[n]5= 56[n] +30n—1]+20n—-2], 0<n<2

3

T 2 q(n]
*— T *—o—o— T
-10 1 2 3 4 5
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8.24. We may approach this problem in two ways. First, the notion of modulo arithmetic may be simplified
if we utilize the implied periodic extension. That is, we redraw the original signal as if it were periodic
with period N = 4. A few periods are sufficient:

6 6 6
5
4 4
3 I 3
1 2 3

-4 -3 -2-10

- 8
Z[n
3
I I n
5 6 7
To obtain z;[n] = z[((n — 2))4], we shift by two (to the right) and only keep those points which lie in
the original domain of the signal (i.e. 0 <n < 3):

4

3

I xl[n]
*—o L —e—o- n
-2-10 1 2 3 45"

To obtain z2[n] = z[((—n))4], we fold the pseudo-periodic version of z[n] over the origin (time-reversal),
and again we set all points outside 0 < n < 3 equal to zero. Hence,

*—o
-2-10 1

Note that z[((0))4] = z[0], etc.

In the second approach, we work with the given signal. The signal is confined to
0 < n < 3; therefore, the circular nature must be maintained by picturing the signal on the circumfer-

ence of a cylinder.
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8.25. No. Recall that the DFT merely samples the frequency spectra. Therefore, the fact the Im{X[k]} =0

for 0 < k < (N — 1) does not guarantee that the imaginary part of the continuous frequency spectra is
also zero.

For example, consider a signal which consists of an impulse centered at n = 1.
zn]=46n-1], 0<n<1

The Fourier transform is:

X)) = e
Re{X(¢’*)} = cos(w)
Im{X(e™)} = -—sin(w)

Note that neither is zero for all 0 < w < 2. Now, suppose we take the 2-pt DFT:
X[kl = Wy, 0<k<1

1, k=0
- -1, k=1

So, Im{X[k]} =0, Vk. However, Im{X(e’*)} #0.
Note also that the size of the DFT plays a large role. For instance, consider taking the 3-pt DFT of

zln] = 4dn-1, 0<n<2
X[k = Wf, 0<k<2
1, k=0

e~i7/3) k=1

e~i(@n/3) k=9

Now, Im{X[k]} #0,for k=1or k = 2.
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8.26. Both sequences z[n] and y[n] are of finite-length (N = 4).

Hence, no aliasing takes place. From Section 8.6.2, multiplication of the DFT of a sequence by a complex
exponential corresponds to a circular shift of the time-domain sequence.

Given Y [k] = W3k X[k], we have
yln] = z[((n - 3))4]

We use the technique suggested in problem 8.28. That is, we temporarily extend the sequence such that
a periodic sequence with period 4 is formed.

34
z[n]

1/2 34 13/412
I /1/4 I /1/4I I /1/4
¢ K K .
3 4 5 6 7

-4-3-2-10 1 2

Now, we shift by three (to the right), and set all values outside 0 < n < 3 to zero.

3/4

I /1/4 y[n]
*—e ? ——e—e n

-2-10 1 2 3 45
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8.27
A. We know
Nl —jz—ﬂkn
X[k] = Zx[n]e N
n=0
~ N-l —/zlkn
X [k] = Zi [n] e
n=0
= E x[n] e_/%ne_j%kn
n=0
Nl — i En(1+2k)
=Y x|nle
2 7]

1+2k
M . Then

F[i]= 3 slle ™ = x ()

L

Let @, =

, k=0,1,...,N-1.

B. The frequencies of sampling are given by

142k
o, =¥, k=0,1...,N—1.

C. Given the modified X [k], we can use the inverse transform to find %[n]. To get x[n]

from %[n] it is a simple point-by-point multiplication given by

x[n]=¢'V %[n].

461



ch08.gxd

4/16/10 6:05 PM Page 462 CE

© 2010 by Oppenheim. Published by Pearson Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ.
All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this
material may be reproduced, in any form or by any means, without permission in writing from the publisher.

8.28
A. Using the analysis equation

X[k1=§x[n]ws"

5
=Y x[n]w
n=0

=6W) +5W) + 4wt + 3w +2W + wk,

W [k]=w,* X [k]
=6W 2 +5SWF +4+3WE +2m W

2k

Using the fact that W) =e e
A4k Ark
Wh=e' o =¢ 6 xe ™ (since e ™ =1)
ek
—o ' = W64k ,
and similarly
png ::nifk.

Then
Wlk]=4+3W + 20 + W + 6w, " +5w.".

Using the synthesis equation,
5
wln]= éZW[k]Wé"”.
k=0

We could go ahead and solve the problem in this “brute force” method, but notice that
each §[n—k|—22—W, . Then,

wln]|=46[n]+36[n-1]+26[n-2]+8[n-3]+65[n—4]+55[n-5].

w[n]

Notice that multiplying by W, " in frequency has the effect of a shift of 2 in time, but
modulo 6.
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C. One way to do this is to compute the linear convolution and then add copies of it shifted
by N (6 in this case). Another method is to use the DFT, find the product H [k] X [k],

and then take an inverse DFT. We know

X[k]=6W)+5Wf +aw* +3w " + 2w + w2t

Hlk]|=1+w}+W*
Then
Y, [k])=6+5W, +4w " 3w + 2 +W"
+ W +SWE AW 13w 2w+ Wt
+‘6;¢2?k +_5I¢2M’+_4pvgﬂt4_3laifk +-2142fk-kpf%7k

=9+ 120} +15W  + 120" + 9w + 6w,

where we have used W,* =1 and W* =W/ . Now we have
Y, [n]=96[n]+128[n—1]+156[n-2]+128[n—-3]+95[n—4]+65[n-5].

v, [n]
. _ . o[ 7T . 1 5
tlrpe domain P 2o 12
aliased " Qe / 9

< -

To ensure that no time-domain aliasing occurs in the output, N should be large enough
to accommodate the length of the linear convolution. Thatis, N >26+3—-1=8

X [n]

6

T 17

2 1 I 1 2 3 4

1
L .,
5

This new input when convolved with k[n] will give the circular convolution found in C.

We merely extend x[n] as a periodic signal with period 6 samples.
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8.29
A e[
56
1__
— .T L g T. L g .T g T. ——0—0—0—0—90 71
-5 -1 1 5 10
B.
C7[n]=ic[n—r7], n=0,1,...,6
5h P
T.1117
} } } } } L g t t t —@ } } } } —n
=5 -1 1 5 10
C.
cll[n]=ic[n—r11], n=0,1,...,10
56 T 2
S0 AP B I
; } ; } } L g —@ t »—e —® —® —n
-5 -1 1 5 10

D. W' = rotate right by 5.

d, [n]
S5+ °
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8.30

NN,
N, =21+18=39
N,=31+31=62.

B. The sequence y,[n] is the 32-point circular convolution of x, [#] with 4 [n]. Thatis,

=3

M [n]= 2y[n+r32]

=y[n+32], n=0,1,...31,
since y[n+32] is the only one that fits in 0 <n <31,

C. If we add zeros at the ends too, we can get y,[n]=y[n] if N>62.
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8.31. (a) The linear convolution, z1[n] * z2[n] is a sequence of length 100 + 10 — 1 = 109.
9 10 10 9
. L ® 8

T 7 6 z1[n] * z2[n]

8

7

6
5 5
4 4
3 3
2 2
1 I T 1

® ? T | eee T T ° n
10 1 2 3 4 56 7 8 9 99 100 101 102 103 104 105 106 107 108 109

(b) The circular convolution, z;[n] 2 [n], can be obtained by aliasing the first 9 points of the linear
convolution above:

10 10 10 10 10 10 10 10 10 10 10

n

01 2 3 4 5 67 8 9 99

(c) Since N > 109, the circular convolution z; [r] 2 [n] will be equivalent to the linear convolution

of part (a).
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8.32. Circular convolution equals linear convolution plus aliasing. First, we find y[n] = z;[n] * z2[n]:

0 1 2 3 4 5 6 7

Note that y[r] is a ten point sequence (N =6 +5 — 1).

(a) For N = 6, the last four non-zero point (6 < n < 9) will alias to the first four points, giving us

vi[n] = 21 [n}@e2[n]

10 ? s

6 y1[n]

@ T *—o n
-1 0 1 2 3 4 5 6 7

(b) For N = 10, N > 6 + 5 — 1, so no aliasing occurs, and circular convolution is identical to linear
convolution.
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8.33. We have z[n] for 0 <n < P.
We desire to compute X (z)|,—.-i=+/~) using one N-pt DFT.

(a) Suppose N > P (the DFT size is larger than the data segment). The technique used in this case
is often referred to as zero-padding. By appending zeros to a small data block, a larger DFT may
be used. Thus the frequency spectra may be more finely sampled. It is a common misconception
to believe that zero-padding enhances spectral resolution. The addition of a larger block of data
to a larger DFT would enhance this quality.

So, we append N, = N — P zeros to the end of the sequence as follows:

l[]_ :z:[n], OSTLS(P—I)
T™=Y0 P<n<nN

e — | NptDFT |, X[k (0<k<N)

(b) Suppose N > P, consider taking a DFT which is smaller than the data block. Of course, some
aliasing is expected. Perhaps we could introduce time aliasing to offset the effects.
Consider the N-pt inverse DFT of X[k],

N-1
2[n] = % Y X[EWE, 0<n<(N-1)
k=0

Suppose X[k] was obtained as the result of an infinite summation of complex exponents:

N-
a:[n] = l z:l i z[m]e—j(ZWk/N)m W—kn
N k=0 N

m=0
Rearrange to get:
el 1 N-1
gfn]= Y z[m] (_ > e—j(zw/N)(m_n)k)
m=-=00 N k=0

Using the orthogonality relationship of Example 8.1:

z[n] = Z z[m] z 8[m —n +rN]
z[n] = _z: z[n — rN]

So, we should alias z[n] as above. Then we take the N-pt DFT to get X[k].
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8.34
The z-transform X, (z) of x,[n] is given by

N-1
Xl(z)=2xl[n]z_".
n=0
1 -
At z=Je Y we have

27wkn

N-1 27hn
X,(2) it = 22 k0N

Now X, [k] is given by
2rckn

X[ S sl

27kn

:Nz‘ixz[((—n))jv]ej Ny, k=0,..,N-1.

n=0

Then if X, [k]=X,(z)| _, -2, k=0,...,N wehave

1 N 2
2=

x[n](3) " =x, [((—n))N], n=0,...,N-1.
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8.35. (a) Since

z[n], 0<n<N-1
z2[n]=¢ —z[n-N), N<n<2N-1
0, otherwise

If X (k] is known, z3[n] can be constructed by :

Xk ——01u{ N-ptIDFT |—»z[n}

Scale by —1

[ Shifc by N
[ 4
——»{ concatenate I——-L 2N-pt DFT—I———> X[k

(b) To obtain X[k] from X; [k], we might try to take the inverse DFT (2N-pt) of X;[k], then take the
N-pt DFT of z;[n] to get X[k].
However, the above approach is highly inefficient. A more reasonable approach may be achieved if
we examine the DFT analysis equations involved. First,

2N-1
Xk = > a[nWwi, 0<k<(2N-1)

n=0
N-1

= > Wi
n=0
N-1

= Y z[nwy/P", 0<k<(N-1)
n=0

Xik = X[k/2l, 0<k<(N-1)

Thus, an easier way to obtain X [k] from X;[k] is simply to decimate X,[k] by two.

Xy k] $2 L, X[¥
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8.36
Given
x[O] =1,x[1] =O,x[2] =2,x[3]: 2,x[4] =b,x[5] =1,
we have
X () =1+2e7"+2e7*" +be *" + &7
Define

X, [K]=x(e) . k=0123.

a):%k
Sampling X (¢’*) with N =4 causes time-domain aliasing of x[n]. That is,
x,[0]=x[0]+x[4].x [1] = x[1]+x[5].x [2] = x[2]. x,[3] = x 3],
or
x [0]=14b,x [1]=1,x[2]=2,x[3] =2

We are given x,[0]=4,s0 b=3.

Note that this can also be solved by direct calculation.
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8.37. (a) Overlap add:

(b)

(©)

If we divide the input into sections of length L, each section will have an output length:
L+100—-1=L+99

Thus, the required length is
L =256 — 99 = 157

If we had 63 sections, 63 x 157 = 9891, there will be a remainder of 109 points. Hence, we must

pad the remaining data to 256 and use another DFT.
Therefore, we require 64 DFTs and 64 IDFTs. Since h{n] also requires a DFT, the total:

65 DFTs and 64 IDFTs

Overlap save:

We require 99 zeros to be padded in from of the sequence. The first 99 points of the output of
each section will be discarded. Thus the length after padding is 10099 points. The length of each
section overlap is 256 — 99 = 157 = L.

We require 65 x 157 = 10205 to get all 10099 points. Because h[n] also requires a DFT:

66 DFTs and 65 IDFTs

Ignoring the transients at the beginning and end of the direct convolution, each output point
requires 100 multiplies and 99 adds.

overlap add:
# mult 129(1024) 132096
#add = 129(2048) = 264192

overlap save:

# mult 131(1024) = 134144
#add = 131(2048) = 268288

direct convolution:

# mult 100(10000) = 1000000
#add = 99(10000) = 990000
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8.38. We have the finite-length sequence:

z[n] = 28[n] + é[n — 1] + 6[n — 3]
(i) Suppose we perform the 5-pt DFT:

Xk)l=2+WE+W3 0<k<5
where W = e=i(¥)k,

(ii)) Now, we square the DFT of z[n]:

Y]

Il

X2[k]

2+ 2WF + 2wk

+2WE + Wik + Wt
+2W3 L Wik L WS, 0<k<5

Using the fact W* = W2 =1 and Wk = W}
Y[k] =3 +5WE + W2k + awWd + W, 0<k<5
(a) By inspection,

y[n] =38[n) 4+ 56[n — 1] +d[n — 2] +46[n —3] +d[n—4], 0<n<5

(b) This procedure performs the autocorrelation of a real sequence. Using the properties of the DFT,
an alternative method may be achieved with convolution:
y[n] = IDFT{X?[k]} = z[n] * z[n]

The IDFT and DFT suggest that the convolution is circular. Hence, to ensure there is no aliasing, the
size of the DFT must be N > 2M — 1 where M is the length of z[n]. Since M =3, N > 5.
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8.39. (a) Since z[n] is 50 points long, and h[n] is 10 points long, the linear convolution y[n] = z[n] * h[n]
must be 50 + 10 — 1 = 59 pts long.

(b) Circular convolution = linear convolutin + aliasing.
If we let y[n] = z[n] * h[n], a more mathematical statement of the above is given by

oo

o] @hln) = Y yln+rN], 0<n<(N-1)

r=—00

For N = 50, .
> 2[n)6Oh[n] = y[n] + yln +50,, 0<n<49

We are given: a:[n][n] =10

Hence,
y[n)+y[n+50] =10, 0<n <49

Also, y[n] =5, 0<n<4
Using the above information:

n=0 y[0]+y[50] = 10

: y[50] = 5
n=4 y[4+yb4 = 10
y[54 = 5
n=>5 y[5]+y[55] = 10
: y[s5] = 7?7
n=8 y[8]+y[58] = 10
y[58] = ?
n=9 y[9] = 10
n=19 y[49] = 10

To conclude, we can determine y[n] for 9 < n < 55 only. (Note that y[n] for 0 < n < 4 is given.)
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8.40. (i) This corresponds to z;[n] = =}[((—n))~], where N = 5. Note that this is only true for z;[n].

(ii) X;(e’*) has linear phase corresponds to z;[n] having some internal symmetry, this is only true for
zy[n].

(iii) The DFT has linear phase corresponds to Z;[n] (the periodic sequence obtained from z;[n]) being
symmetric, this is true for ;[n] and z3[n] only.
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8.41
A DFT X [k] will exhibit generalized linear phase if the periodic extension of the signal

x[n] has even or odd symmetry. Of the three given signals, only x, [n] has the required

symmetry.

LIy L,

S °
1 2 3 4 5 6

The figure shows even symmetry about »=1. Therefore for this signal, o =1.

For a direct demonstration, we can calculate X, [k]. That is,

6 —j27zfﬁ
— 7
X, [k]= Y x[n]e
n=0
—j2ﬁk —j27riﬁ —j27réﬁ
=ae "+be T +be 7
—j27rk —j2r— J ﬂz—k
=ae T+be T +be 7

3k
—j2r— Jj2r— —j2r—
=la+be 7 +be 7

=(a+2bcos (3k/7))e_j2”7,

which is in the required form with ar=1.
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8.42
Initially we have

x[0]=1+j3,x[l]=0,x[2]:2—j,x[3]:0,
x[4]=-1-73,x[5]=0,x[6]=-1+j3,x[7]=0.
Let X [k] represent the DFT of x[n]. Then if X [k]= X [k+1] we have %[n]=x[n]e”’*"
That is,
#[0]=1+j3,2[1]=0.2[2]=-1- j2.%[3] =0,
x[4]=1+j3,%[5]=0,%[6]=-3-j,x[7]=0.
If we compress X [k] by a factor of M =2 we obtain Y[k]= X[2k], k=0,1,2,3. Thatis,
Y[k]=X[2k+1], k=0,1,2,3. The inverse DFT y[n] of Y[k] is the quantity we seek.

Compressing X [k] in the frequency domain will cause aliasing of X[n] in the time domain.
We have

k=0\ m=0
7 ] 3. Lrmmk
= Z F[m]iY e 4
m=0 k=0

i)? m]Zé‘[n m-— 4r] n=0,1,2,3.

r=—co

The last expression is the convolution of x[ ] with a train of impulses spaced every four
samples. Taking into account that X[#] has a length of eight samples, we have
y[n]=z[n]+x[n+1], n=0,1,2,3.

That is,
y[0]=2+6,y[1]=0,y[2]=—4-j3,5[3]=0.
Then
7,[0]=2,y,[1]=0,y,[2]=-4,y,[3]=0
and

Vi [0] =6,y [1] =0,y [2] ==3,y, [3] =0.

Note that this problem can also be solved by direct calculation.
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8.43

A. R, [m]=x[n]#x[-n] =0 for m<—1023, m>1023.
|, [ = X [k] x,, [K] = N-point DFT{x[ ((-n)), ]*x[~]}
gy [m]= N-point IDFT{ N-point DFT{ x[((—n))NJ % X [n]}}

_ (), Jxln]

0, otherwise.

For N=2047 and 0Sm<N -1, g, [m]= x[((—n))2047]*x[n]‘ . For smaller N,

n=

0<m<N-1

n=m

circular convolution introduces time aliasing. To obtain R_[m] use

R [m]= &aoir [m]- 0<m<1024
b g2047[2047+m], —1024 <m < -1.

B. For 0Sm<N-1, g, [m]= x[((—n))N]*x[n]‘ . We would now like to use a variant

of the earlier technique but for smaller N . For general evan N our “post-processing”

step is
gy [m], 0Sm<N+1
R =
gy [N+m], —T<mS—l.

If we want R, [m]=R_[m] for |m|<10, we need to ensure that the time aliasing from

circular convolution does not affect g, [m] for 0<m <10 and for N-11<m<N-1.

For the lowest possible N, N =1024, we have only g, [0] unaffected by aliasing. For

N=1025, g, [0], g,[1], and g, [1024] are unaffected, etc. Keeping this trent in mind
we pick N =1034. Our post-processing step becomes

R [m]: g1034[m], 0<m<10
A g1034[1034+m], -10<m<-1.
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8.44. Problem 5 in Fall2005 midterm exam.

Problem

In Figure 1, z[n] is a finite sequence of length 1024. The sequence RIk] is obtained by taking
the 1024-point DFT of z[n] and compressing the result by 2.

[n] ] XI#] R[K] VK] , y[n]
1024-point 12 192 1024-point
DFT IDFT
512-point
IDFT
r{n]
Figure 1:

(a) Choose the most accurate statement for r[n], the 512-point inverse DFT of R[k]. Justify
your choice in a few concise sentences.

A, rln]==z[n], 0 <n <511

B. r[n] =z[2n], 0 <n <511

C. r[n]=z[n]+zn+512], 0 <n <511
D. r[n] = z[n]+ z[-n+512], 0 <n <511
E. r[n]=z[n]+ x[1023 —n], 0 <n <511

In all cases r[n] = 0 outside 0 < n < 511.

(b) The sequence Y[k] is obtained by expanding R[k] by 2. Choose the most accurate state-
ment for y[n], the 1024-point inverse DFT of Y[k]. Justify your choice in a few concise
sentences.

A yln] = {% (¢[n] +2[n +512]), 0<n <511
L(wn] + x[n—512]), 512 <n < 1023

B. yln] x[n], 0<n<5l11
. y[n] =
Y [n —512], 512 <n < 1023

z[n], m even
c y[n]:{o[] n odd
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D. ylnl x[2n], 0<n<511
. n| =
Y r2(n —512)], 512 <n <1023

E. yln] =1 (z[n] +2[1023 —n]), 0 < n <1023

In all cases y[n] = 0 outside 0 < n < 1023.

Solution from Fall05 Midterm

Answer: C

Compressing the 1024-point DFT X [k] by 2 undersamples the DTFT X (e/“). Undersam-
pling in the frequency domain corresponds to aliasing in the time domain. In this specific case,
the second half of x[n] is folded onto the first half, as described by statement C.

Answer: A

We can first think about how expanding by 2 in the time domain affects the DFT. Expanding
a time sequence z[n] by 2 compresses the DTFT X (¢/“) by 2 in frequency. As a result, the
2N-point DFT of the expanded sequence samples two periods of X (/) and equals two copies
of the N-point DFT X|[k].

By duality, expanding the DFT R[k] by 2 corresponds to repeating r[n]| back-to-back, with
an additional scaling by % Thus statement A is correct.

Alternatively, Y[k] = 1 (1+ (—1)¥) X[k]. Modulating the DFT by (—1)* corresponds to a
circular time shift of N/2 = 512.
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8.45. Problem 3 in Spring2005 final exam.

Problem

Below are two finite-length sequences x1[n] and z2[n] of length 7. X;(e/“) denotes the DTFT
of z;[n], and X;[k] denotes the seven-point DFT of x;[n].

al o - ab o -
3l 1 3 .
2| 1 2t .
= =
< >
1 T T | | T T T |

For each of the sequences z1[n] and x3[n], indicate whether each one of the following prop-
erties holds:

(a) X;(e’*) can be written in the form
X;(e/¥) = Aj(w)e?™¥ | for w € (—m, ),
where A;(w) is real and «; is a constant.
(b) X;[k] can be written in the form
Xi[k] = Bj[k]e/*,

where B;[k] is real and (; is a constant.

Solution from Spring2005

For the case of a length-7 sequence, we have generalized linear phase if and only if there is even or
odd symmetry about the n = 3 sample. Neither sequence has this property.

Linear phase in the DFT arises if the periodic extension of the signal has even or odd symmetry.
The periodic extension of z1[n] has the required symmetry but the periodic extension of x2[n| does not.
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8.46. z3[n] is z;[n] time aliased to have only N samples. Since
1 n
z1ln] = (3)"uln,
We get:
@)" - _
zf]={ T o =0 N1
0 , otherwise
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8