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Preface

This book is intended for senior undergraduate and graduate students
and practicing engineers who wish to familiarize themselves with electric
power system dynamics. The objective of this book is to bridge a major
gap in power system engineering between recent literature dealing with the
dynamic performance of large electric power systems and classic books on
power system stability before the inception of digital computers and modern
control theory.

Since the development of large-scale electric power system interconnec-
tion, power system engineering has gone through great changes, and many
new power system dynamic problems have emerged. Among them are low-
frequency intersystem oscillations, torsional oscillations due to subsyn-
chronous resonance of capacitor-compensated transmission lines, and the
derivation of dynamic equivalents for large electric power system dynamic
studies. Although most of these dynamic problems have been solved, the
solutions can be improved with the aim of still better and more economical
results.

This book deals with analysis and controller design aspects of these
problems. Emphasis is placed on basic concepts and fundamental principles,
not on ramifications. The book develops in such a way that only elementary
matrix algebra and some knowledge of machines and power systems are
required in reading the first few chapters. Control theory and computational
techniques are developed along with the progress of the full text. The book
is primarily an outgrowth of many years’ teaching at both undergraduate
and graduate levels at the University of British Columbia.

The book comprises seven chapters. An introduction to the modern
electric power system and power system dynamic problems is given in

X
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Chapter 1, and basic models for power system dynamic studies are included
in Chapter 2. Subsequently, each chapter deals with a specific class of electric
power system dynamic problems: low-frequency intersystem oscillations
and supplementary control of the phase compensation type in Chapter 3;
linear optimal control to stabilize one machine as well as multimachine,
multimode systems in Chapter 4; control of torsional oscillations due to
subsynchronous resonance of capacitor-compensated transmission lines in
Chapter 5; derivation of dynamic equivalents of the external system for.large
electric power system dynamic studies in Chapter 6; and transient stability
control of electric power systems in Chapter 7. Inasmuch as the subject
material of the last two chapters is rapidly evolving, it is included as an intro-
duction for beginners. For the readers’ convenience, several computer pro-
grams and subprograms are included as an Appendix.

The author wishes to express his gratitude to the IEEE for permission to
reprint a number of illustrations from their publications, to NSERC,
Canada, for financial support, and to Academic Press. The subject material
of this book is based on a large number of publications by many experts
and acknowledgment of sources can therefore be made only through the
lists of references. The author is especially indebted to Dr. Brian J. Cory who
reviewed the manuscript and made many valuable suggestions, and to many
pioneers and experts who have inspired and encouraged this endeavor.
Among them are Mr. C. H. Chen of EPRI; Professor Guo Jing-De of China ;
Professor Shigeo Takata of Japan; Professor Fred Evans and Professor
John Anderson of Australia; Mr. R. H. Park, Mr. C. Concordia, and
Professor O. I. Elgerd of the United States; and Dr. H. Ellis, Dr. P. Kunder,
Dr. A. M. El-Serafi, Dr. Eugene Hilland Dr. T. H. D. Lee of Canada. He also
wishes to thank his colleagues at the University of British Columbia for their
advice and suggestions, and his former students for their contributions.
Finally, the manuscript preparation would not have been possible without
the assistance of my son Dr. Yuan Yu and my wife Iris.



Chapter 1 Electric Power System
and Dynamic Problems
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With the advent of interconnection of large electric power systems, many

new dynamic power system problems have emerged [1], which include the:

* low-frequency oscillations of the interconnected large electric power systems
[1-5], the subsynchronous torsional oscillations of turbines in a steam-—
electric power plant with capacitor-compensated transmission lines [6-9],
and many others [10-22]. When engineers are confronted with a challenging
problem, it is their responsibility to conceive new and improved analytical
tools to solve the problem. On the other hand, once a new tool is available,
they will use it to reexamine the problem to find still better and more eco-
nomical solutions.

The large-scale power system interconnection was initiated at a time

; when digital computers and modern control thecry began to develop.
Although these events seemed to be coincidental, like the two wheels of a
cart, they certainly have advanced together. In thisregard, the recent develop-
ment in analysis and control of electric power systems is but one application
of modern computation and control techniques, among other notable appli-
cations such as space projects and economic systems.

The large-scale power system interconnection is intended to make elec-
tric energy generation and transmission more economical and reliable. The
economic aspect is manifested through the drastic reduction of spinning
reserve or the standby generating capacity for maintenance or emergency
use, from 259 or more of the total capacity a few decades ago to much less
in modern electric power systems. The reliability of the interconnected
system is also enhanced by virtue of the capability of transferring power
ireadily from one area to others within the system. But in the meantime, the
imultiple interconnections of multi-areas make the system much more

1
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1 Electric Power System and Dynamic Problems

. vulnerable to instability, not only because of the complexity of multi-area
| interconnections but also because of the drastic reduction of spinning
t reserves of individual areas.

New developments and new designs of power system components have
also made their presence felt in the time of growing interconnection. For
instance, the HVDC tie of the Pacific Northwest and Southwest Power Pools,
the series capacitor compensation of long transmission lines, the fast excita-
tion, and the larger per unit reactances and smaller inertia constants of the
rew synchronous gencrator designs have added complexities to an already
complicated large interconnected electric power system.

The increasingly challenging dynamic electric power system problems,
however, are not hopelessly unmanageable. On the contrary, while the
electric power system continues to grow in size and complexity, engincering
experience is also accumulated and control and computation techniques
advanced. Thus a challenging new problem is always met by new ideas and
new methods aimed at solving the problem.

The planning and operation of a power system involves many engineering
phases [23-29], which include the load forecast, the energy source investiga-
tion, the design and construction of power plant and transmission lines,
system protection, and the day-to-day and hour-to-hour energy dispatch.
This book will address itself, however, to only one of the most important
aspects, namely, electric power system dynamics or the dynamic behavior
and control problems of electric power systems, which may be considered
as the development of classical electric power system stability studies [30—34].
Modern electric power systems and dynamic problems are presented in this
chapter, and the basic components of an electric power plant in the first
section.

1-1 BASIC COMPONENTS OF AN
ELECTRIC POWER PLANT

To understand the dynamic behavior of an electric power system and to
design a control to improve its performance, it is necessary to be familiar
with the basic components of an electric power plant, especially those that
have significant effects on the dynamic behavior of electric power systems.

Mechanical-Electric Energy Conversion

Although the direct conversion to electric energy from other energy forms
such as solar and fusion is being developed, the prime energy sources of
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electric energy generation are still fossil fuels, hydropower and nuclear
energy, and to a much lesser extent, tide and wind. These energies either are
already in the form of mechanical energy as in the case of hydropower, tide,
-and wind or must first be converted into mechanical energy through steam
turbines before the final process of mechanical-electric energy conversion,
:as with fossil fuel and fission material. Therefore, the important components
basic to an electric power plant are the hydro and steam turbines, the electric
generator, the governor control of the energy input to the turbines, and the
exciter and voltage regulator control of the electric energy output of the
generator. The major portion of the generated electric energy is transmitted
to load centers through transmission lines, although some electric energy
must be used for local supply, and some losses always occur in the generation
and transmission process.

The basic components of an electric power plant may be schematically
shown as in Fig. 1-1. In the figure, the turbine and governor with a speed
feedback Aw are shown on the left, the generator SG, exciter EX, and voltage
regulator VR with a voltage feedback Av, are shown in the middle, and the
transformer and transmission line are shown on the right.

The Steam Turbine

The steam—mechanical energy conversion is a thermodynamic process by

" which the steam is expanded through the high-, medium-, and low-pressure
turbines, normally all on one shaft. High-pressure and high-temperature
steam energy from a boiler is converted into mechanical energy through
the turbine blades, and transmitted to the shaft. There are other important
parts of the turbines: the control valves, which control the steam input;
the intercept valves, which can be used to divert the steam from the high-
pressure turbine directly to the steam condensér; the steam chamber in
front of the high-pressure turbine, which causes a time delay of the steam

FLD
GATE OR WDG
VALVE LINE

POWER
POOL

YREF VREF

Fig. 1-1 Basic components of an electric power plant.
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4 1 Electric Power System and Dynamic Problems

flow; the reheater between the high- and medium-pressure turbines, which

causes another time delay; dand the crossover connection between the
»medium- and low-pressure turbines, which causes still another time delay
of the steam flow. Many other types of steam turbines are in use [35].

The Hydraulic Turbine

One of the oldest and most important prime movers, which has been

serving mankind for thousands of years, is the water wheel. For large-scale
electric energy generation, the water wheel has evolved into modern hydraulic
turbines of power capacity as large as hundreds of megawatts. In most
‘cases, the potential energy of water in a reservoir 1s converted into kinetic
‘energy in the penstocks, and is then delivered to the turbine shaft.
" There are many types of hydraulic turbines. The Kaplan turbine of the
reaction type, with controllable wicket gates and adjustable runner blades,
is efficient for very low and medium water heads. The Francis turbine, which
is also of the reaction type, is efficient for medium and high water heads.
The Pelton wheel, which is of the impulse type, is efficient for a very high
water head. Transfer functions of hydraulic turbines can be found in refer-
ence [35].

The Governor

| The function of a governor of an electric power plant is to maintain a
4 constant speed, usually the synchronous speed of the turbine-generator set.
A speed drop of the set due to an increase of electric power output will send
the speed signal to the governor to increase the mechanical power input to
+ the turbine(s), and a speed rise to decrease the mechanical input, maintaining
a constant speed.

The governor of the major plant of a power area or subsystem is also
given the function of power and frequency control of the area in a large
interconnected electric power system. The governor responds not only to
the scheduled electric power interchange among areas. but also to the change
in system frequency due to local load variations. Another use of the governor
is to implement a supplementary governor control to improve the stability
of an electric power system.

There are two types of governors for both steam power and hydropower
plants: the mechanical-hydraulic governor and the electric-hydraulic gov-
ernor. More information can be found in reference [35]. One such system is
shown in Fig. 1-2.
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A Governor for a Hydroelectric Plant
]

Figure 1-2 shows a mechanical-hydraulic governor for a hydroelectric
power plant [36]. The flyballs on top are held in position by springs during
normal operation. Whenever a speed increase Aw is sensed by the flyballs,
the vertical rod a” of the pilot valve will be lifted, and the fluid under pressure
in the pilot valve will pass into the actuator servo to push a downward. In
the meantime, the distribution valve with the vertical rod g’ also will be
pushed downward ; the fluid in the distribution valve will pass into the gover-
nor servo and push to the left so as to close the water gate to reduce the hydro
energy input. The entire mechanism also works in the reverse direction, and a
speed decrease will increase the hydro energy input. A dashpot in the middle
of the figure is devised to stabilize the actuator itself. The transfer function
of this governor and hydraulic power will be derived in Chapter 2.

The Synchronous Generator

The mechanical-electric energy conversion takes place in an electric
generator, usually of the three-phase synchronous type, and is based on
‘Faraday’s induction law. The essential components are (1) an armature
winding, (2) a magnetic field, and (3) a mechanical energy input, in the form
of a force or a torque, which causes a relative motion of the armature wind-
ing with respect to the field.

FLYBALLS

-—— FLUID
PILOT

x VALVE
~— FLUID
DISTRIBUTION
VALVE GATE
; TURBINE
T0 CLOSE
GATE SERVO WATER

Fig. 1-2 A governor for a hydroelectric power plant.
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One must note that whenever there is a voltage induced in the generator
armature winding due to its relative motion with respect to the magnetic
field, there is also an electric torque opposite to the mechanical torque of the
prime mover when the generator has a load.

The three-phase synchronous generator used for large-scale electric
energy generation has two synchronously rotating fields: one dc-excited
field on the rotor with a field winding mechanically rotated normally at
the synchronous speed and the other ac-excited on the stator with the three-
phase armature winding, each phase winding 120° apart from the others
electrically, and each phase current with a 120° time phase difference with
respect to the others. The rotating field of the three-phase winding with three-
phase excitation will be analyzed in Chapter 2. For the moment, the difference
‘between the two fields should be noted. The speed of the three-phase ac
field on the stator is completely dictated by the system frequency, and the
field appears in and around the air gap of the machine instantly because of
the nature of the electromagnetic field. On the other hand, the speed and

“hence the dc field of the rotor are affected by the inertia and damping of the
rotating system. Only in the steady state, when the mechanical energy input
and the electric energy output plus the system losses are in complete balance,
will there be neither acceleration nor deceleration of the rotating system. In
such a case, the two rotating fields, one dc and one ac, will be moving to-
gether synchronously, with the N poles of the ac field facing the S poles of the
dcfield, and the S poles of the ac field facing the N poles of the dc field across
the air gap of the machine. However, when a disturbance occurs to the system
and the input-output energy balance is upset, the N-to-S and S-to-N bonds
will be shaken, causing a possible stability problem.

The Exciter and Voltage Regulator

For years the dc excitation of a synchronous machine field winding has
been provided by the commutator-type rotating exciter. However, static
exciters using thyristors and other devices are now available, which respond
much more rapidly than the commutator type. Transfer functions and block
diagrams of static exciters and voltage regulators for computer simulation
can be found n reference [37]. )

A rotating exciter and voltage regulator system is shown in Fig. 1-3 [38].
The ac terminal voltage of the synchronous generator SG is sensed by a
potential transformer PT, rectified and filtered, and then compared with a
voltage reference vpep to obtain the voltage deviation Ar,. After being
amplified by an amplifier AMPL, the signal is used to control the exciter
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=

(ﬂPT
RECT. & FILT

Fig. 1-3 A rotating exciter and voltage regulator system [38].

field, and the exciter output in turn to control the generator field excitation.
The negative feedback works in such a way that the excitation will be in-
creased whenever the terminal voltage drops below the voltage reference
level and decreased whenever the terminal voltage rises above the voltage
reference level. There is also a stabilizing transformer ST for the stabiliza-
tion of the excitation system itself. The transfer functions and block diagrams
of this excitation system will be derived in Chapter 2.

Although the original function of the exciter and voltage regulator system
is to maintain a prescribed constant voltage at the synchronous generator
terminal, the system also can be used to improve the dynamic and transient
stabilities of a power system through supplementary excitation controls.
These topics will be treated in subsequent chapters.

Summary of Section 1-1

In this section, an introduction has been given to the basic components
of an electric power plant, which are important to power system dynamic
studies: the hydraulic and steam turbines, which convert the hydraulic
power or steam power to mechanical power; the governor, which controls
the steam or hydraulic power of the turbine(s); the generator, wherein the
mechanical—electric energy conversion takes place; and the exciter and
voltage regulator, which. control the electric power output. Although the
governor has been used mainly to maintain a constant speed, and the excita-
tion system to maintain a prescribed terminal voltage of the synchronous
generator, they also can be used for power system stability control, which
will be presented in later chapters. Details of modeling these system com-
ponents—turbines, generators, governors, and excitation systems—will be
presented in Chapter 2. Prior to that, an introduction to modern electric
power systems will be given in the next section.
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1-2 MODERN LARGE ELECTRIC POWER SYSTEMS

In the early stages of electric power system development, electric power
plants burning oil or coal were built for local loads. With the development
of hydroelectric power from the middle to the upper streams of rivers,
electric power plants became more and more remote from local loads. High-
voltage transmission lines were built, large and small electric power plants
were interconnected for more economical and reliable generation and trans-
mission of electric energy, and the electric power system began to take shape.
As the trend continued, large and small electric power systems were also
interconnected, which then grew to form national and international large
electric power systems. Examples are as follows.

The North American Electric Power System

Almost all North American electric power systems of the United States
and Canada are connected into one system, called NERC, the National
Electric Reliability Council, which consists of nine regions as shown in
Fig. 1-4 [39]. There are a few isolated power areas that are not connected
to the system. There is only one weak link between the North American
western system, which consists of only the WSCC region but has a vast
espanse of geographic area, and the North American eastern system, which
emcompasses all the NERC system except WSCC. The number of inter-
regional connections are shown in the figure. The major transmission volt-
ages are either 500 kV ac or +400 kV dc [39, 40].

The evolution of large-scale electric power system interconnections is
interesting. British Columbia Hydro may be taken as an example. There were

(7
7
2 :
o
10
(8} =z
e WSCC MAINTECAR—MAAC! <
= 1 1 o
L;% 1 =
o <
8 23
IERCOT SERC

Fig. 14 The North American electric power system. (From [39], courtesy of [IEEE, © 1977.)
WSCC: Western Systems Coordinating Council; MARCA : Mid-Continent Area Reliability
Coordinating Agreement; NPCC: Northeast Power Coordinating Council; ERCOT: Electric
Reliability Council of Texas; SPP: Southeast Power Pool; MAIN: Mid-America Interpool
Network; ECAR: East Central Area Reliability Coordinating Agreement; MAAC: Mid-
Atlantic Area Council; SERC: Southeastern Electric Reliability Council.



1-2 Modern Large Electric Power Systems

many relatively small electric power companies in British Columbia, Canada,
but gradually they were consolidated into two major “areas,” the British
Columbia Hydro and the West Kootenay, which in turn were joined by
many other “areas” to form the Pacific Northwest Power Pool. The WSCC
system was formed later by interconnecting the Pacific Northwest Power
Pool and the Southwest Power Pool into one “region,” extending from
northern British Columbia, Canada, to the Mexican border, and from the
Pacific coast to Colorado and other inland areas.

The British Super-Grid

After the original successful grid interconnection of all generating stations
in Britain, a Super-Grid was completed and the transmission voltage raised
from 275 kV to 400 kV [41]. According to a CEGB report [41], the British
grid interconnects five regions: the Northwest, the Northeast. the Southwest,
the Southeast, and the Midlands. The five regions and their headquarters
are shown in Fig. 1-5. The Super-Grid is also connected to Scotland by
275-kV ac lines and to France across the Channel by +100-kV dc cables.

The Electric Power System in Western Europe
The electric power systems in western Europe are mainly interconnected
by 400-kV ac lines, as shown in Fig. 1-6 [42]. There are also dc connections,

for example, +250-kV dc between Denmark and Sweden, and +250-kV

TO SCOTLAND

| |

N.W. N.E.
MANCHESTER LEEDS
MIDLANDS
BIRMINGHAM
S.W. S.E.
BRISTOL LONDON
l TO FRANCE

Fig. 1-5 The British Super-Grid.
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Fig. 1-6 The electric power system in Western Europe.
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between Denmark and Norway. Finland, Austria, and Yugoslavia are also
connected to eastern Europe. Belgium is connected either to West Germany
through the Netherlands or to France, but not simultaneously.

‘The Electric Power System in Japan

There are nine regions of the electric power system in Japan, as shown in
Fig. 1-7 [43], with Kyushu Electric Power in the southwest and Hokaido
Electric Power in the Northeast. The major transmission voltage of the
Japan electric power system is 500-kV ac, except for 275-kV dc between
Tohoku (northeast) and Hokaido (Northern Sea district). Note that while
the Japan Northeast electric power system is of 50 Hz, the Japan Southwest
is of 60 Hz, and they are linked together by two 300-MW f{requency converter

|HOKURIKUI | HOKAIDO
l

[kvushu b esukoku |— KANSAq—{CHUB

| SAKUMA AND
SHIKOKU | | SHINSHINANO
60Hz | 50 Hz

Fig. 1-7 The Japan eclectric power system.
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stations at Sakuma and Shinshinano, which are capable of converting electric
energy from one frequency to the other readily.

Comments

This section gives some notable examples of national and international
large interconnected electric power systems. It must be noted that the inter-
connections, capacities, and voltage levels of these systems are constantly
Increasing.

Among the aforementioned systems, the North American electric power
system is probably the most complicated. Since there are so many intercon-
nections among regions, a major fault in any one region will normally affect
the dynamic behavior of all neighboring regions and propagate beyond.
Careful planning and effective protection are therefore necessary.

The transmission capacity of the British power grid is almost twice that
of its generation capacity [44]. Therefore, the system is little affected by the
loss of a line. This transmission capacity, however, cannot be afforded by
the North American electric power system because of the longer distances
involved.

The Japan electric power system is rather lucky with its two-frequrncy
composition of 50 Hz in the Northeast and 60 Hz in the Southwest. The
mterconnection of the two-frequency system using dc converters was con-
sidered a great inconvenience, but its asynchronous ties improve the stability
of the entire system.

Summary of Section 1-2

In this section, some national and iternational large electric power
systems have been presented. The intention of large-scale electric power
system interconnection is to achieve economical and reliable electric energy
generation and transmission. Although it is understood that each participant
in a power pool should have sufficient generating-capacity reserve or spinning
reserve to meet sudden load increases or system maintenance requirements,
some participants may not have enough reserves and rely heavily on inter-
connections. Such a practice makes system operation increasingly difficult.

One of the most important features of an electric power system is that
there is practically no energy storage in the system. The electromagnetic
and electrostatic energy storage associated with transmission is negligibly
small as compared to the huge amount of electric energy transmitted. There-
fore, the mechanical energy input to the system and the electric energy output
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of the system plus energy losses of generation and transmission must be
kept in balance everywhere in the system at all times. Despite accumulated
valuable engineering experience and constant technical innovations, power
system failures still occur. There are many increasingly challenging power
system dynamic problems confronting power engineers, which will be intro-
duced in the next section.

1-3 PROBLEMS OF ELECTRIC
POWER SYSTEM DYNAMICS

In this section, problems associated with the dynamic behavior of electric
power systems will be discussed. The analysis and solution of these problems
will be treated in later chapters.

The term “dynamics™ used here has a broader meaning than that asso-
ciated with the term “stability’ in the classical literature on electric power
systems. It not only includes the stability analysis of electric power systems,
but also deals with such topics as dynamic equivalents, torsional oscillations,
and control. On the other hand, a line must be drawn to exclude some
problem areas for various reasons. Examples include power and frequency
control, which has been thoroughly treated in other books [26, 27]; the
asynchronous operation of synchronous generators [21, 22], which is not
a general practice; and the dual-axis excited synchronous generator [19, 20],
which is generally considered uneconomical.

Before addressing these power system dynamic problems, we shall first
present some stability definitions.

Stability Definitions

The power system stability definitions in the literature have been chang-
ing and the well-accepted definitions are two: the transient stability due to

\ large disturbances, and the steady-state stability due to small disturbances.

However, whether a disturbance is large or small is sometimes hard to define,
as it may well depend on the capability of stability control.

Consider the two swing curves in Fig. 1-8 for a system with the same
initial load P,, and the same disturbance AP,. Curve A corresponds to the
system with an effective stability control and curve B without.

For the system without an effective stability control (curve B), the
system will lose its stability at the first swing. The disturbance will be con-
sidered as large, and it will be a “transient stability” problem. For the system
with an effective stability control (curve A), however, the system is not only
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Fig. 1-8 A power system with and without stability control.

stable but also linearly stable. The disturbance will be considered small,
and it will be a ““steady-state stability” problem. Therefore, whether a dis-
turbance should be categorized as large or small depends very much on the
“effectiveness of the stability control, and there are cases that cannot be ade-
{ quately classified as either the steady-state stability or the transient stability.
There is another term often used in the literature, namely, “dynamic
stability,” which can be used properly to describe the case of curve A of
Fig. 1-8. Therefore, the following stability definitions will be adopted in this
book.

: Steady-state stability refers to the stability of a power system subject to
- small and gradual changes in load, and the system remains stable with
~ conventional excitation and governor controls.

Dynamic stability refers to the stability of a power system subject to a
relatively small and “sudden” disturbance; the system can be described by
linear differential equations, and the system can be stabilized by a linear
and continuous supplementary stability control. Typical examples are the
low-frequency oscillations of the interconnected large electric power systems
and the torsional oscillations of a steam—electric power plant due to the
subsynchronous resonance of the capacitor compensated transmission line.

Transient stability refers to the stability of a power system subject to a
sudden and severe disturbance beyond the capability of the linear and con-
tinuous supplementary stability control, and the system may lose its stability
at the first swing unless a more effective countermeasure is taken, usually of
the discrete type, such as dynamic resistance braking or fast valving for the
clectric energy surplus area, or load shedding for the electric energy deficient
area. For transient stability analysis and control design, the power system
must be described by nonlinear differential equations.

Nonlinear stability is a mathematical term that refers to a general class
of stability problem treated in all systems engineering, not just power system
engineering. Here the system again must be described by nonlinear equa-
tions, but not necessarily nonlinear differential equations. Both the steady-
state stability analysis using the equal-area criterion [33] and the transient
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stability analysis by Lyapunov’s direct method [18] are good examples of
~nonlinear stability studies.

Low-Frequency Oscillations of Large Electric Power Systems

One of the most important stability problems arising from large-scale
.electric power system interconnections is the low-frequency oscillations of
linterconnected systems [2—5]. The frequency is of the order of a fraction of
‘1 Hz to a few Hz. Examples include oscillations of the Saskatchewan—
Manitoba—West Ontario system [3], the WSCC system [4], and the Southern

Scotland electric power system connected to the British grid [46]. The oscilla-
: tions may be sustained for minutes and grow to cause system separation if
‘no adequate damping at the system oscillating frequency is available.

The low-frequency oscillations are attributed to the oscillations of the
mechanical mode of the system and can be approximately analyzed with a
linear “one-machine infinite-bus” model as follows [5]. Since the torque and
speed may be treated as phasors during the periodic oscillations, a linearized
torque equation can therefore be written

MA® + DAw = AT, — AT, (1-1)

where M A represents the accelerating torque, D Aw the mechanical damp-
ing torque, AT, the mechanical torque input, and A7, the electric torque
output, all in per unit of value. Other quantities are as follows: the speed @
~1in per unit of value, the inertia constant M in seconds, and the mechanical
. damping coefficient D in per unit of value.
When the synchronous speed 27/ rad/s is chosen as the base speed and
' denoted by w,, where fis the system frequency, the per-unit (pu) rotor speed
can be expressed in terms of the base speed and the torque angle d in electrical
radians as follows:
N (1-2)

w, dt’ w, dt

) =

Next, since the mechanical damping of a machine in a large power system
is negligibly small as compared with the damping required to attenuate the
system oscillations, the D Aw term of (1-1) may be neglected. Assuming also
that the speed governor is not fast enough to affect the mechanical torque
AT, ~ 0,and that the electric torque A7_ has only a synchronizing component

that may be denoted by K, Ad, Eq. (1-1) may be written in the frequency
domain as

(Ms? + K wp)Ad = 0, Aw = 5 Adjw, (1-3)
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The solution of the undamped natural mechanical mode trequency becomes

w, = KoM (1-4)

Note that although Aw of (1-1) is in per unit of value, @, of (1-4) is in radians

per second, since M is in seconds and w,, is in radians per second. Since K
is in the range of 0.5 to 1 and M in the range of 5 to 10, w,, is of the order of
+ /0. '0.2nf rad/s and the oscillating frequency f, of the order ot w,/2n Hz. M@ iy
The techniques of stabilizing the low-frequency oscillations will } & pic-
sented in Chapter 3.

Dynamic Stability and Linear Optimal Control
The low-frequency oscillations of large interconnected electric power i
systems, characterized by the mechanical mode oscillations, is not the only
electric power system dynamic problem that can be analyzed by linear dif-
ferential equations. There is a general class of electric power system dynamic
problems that may involve several oscillating modes or several machines,
and the oscillating frequencies are not necessarily very low. One examplc
is the torsional oscillation of a steam—clectric generating unit caused by the
subsynchronous resonance of a capacitor compensated transmission system.
It sometimes manifests multiple torsional mode oscillations. In such cases
proper damping must be provided to all oscillating modes. Another example
is multimachine system stabilization. Individual machines may have dit-
ferent requirements of damping torque and synchronizing torque, and multi-
machine multimode power system stabilization techniques must be sought.

The linear optimal control (LOC) developed in modern control theory
provides just the right answer [10, 11]. It minimizes oscillations of all modes
and optimizes the control effort at the same time. The first part implies that
it will provide not only adequate damping but also proper synchronizing
torques to all machines when the LOC is applied to a multimachine electric
power system, and these damping and synchronizing torques are properly
coordinated.

The principle of linear optimal control (LOC) and the application of LOC
to electric power systems will be presented in Chapter 4.

Subsynchronous Resonance and Torsional Oscillations

Subsynchronous resonance (SSR) may occur in a steam—clectric power
plant connected to a capacitor compensated transmission system [6—9]. The
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torsional oscillations of a steam—electric generating plant with high- medium-
and low-pressure turbines, generator, and rotating exciter, all on one shatft,
usually fall within the range of the system frequency or at subsynchronous
frequencies. When a resonant frequency of the transmission system is com-
plementary to any one of the torsional oscillating frequencies of the turbine-
generator mass-spring system (i.e., when the two trequencies add up to the
system frequency), the SSR will develop. The electric resonance of the trans-
mission system and the torsional oscillations of the mass-spring system of
the turbine-generator set will be mutually excited, and the torsional oscilla-
tions may grow to the extent that the shaft becomes seriously damaged.
Transmission of bulk electric energy over a long distance by capacitor-
compensated transmission lines is far more economical than building more
parallel transmission lines without the capacitor compensation. Generating
electricity at the coal mine is much better than generating electricity near
the load center in a thermal plant close to populated areas. For these reasons,
the coal mine electricity generation and capacitor-compensated line trans-
mission are very attractive. '
The analysis of SSR and countermeasures will be presented in Chapter 5.

Dynamic Equivalencing of Large Electric Power Systems

As the interconnection of large electric power systems continues to grow,
the system becomes larger and larger, covering an immense geographic area
and including a huge number of electric machines [12-14]. For instance, the
WSCC system has about 300 major generating units and covers about 50%,
of the area of North America. It is very difficult, if not impossible, to include
all these machines in the dynamic studies for all conceivable contingencies,
anywhere and everywhere in the system, even with a very large and fast com-
puter. Indeed, we would be dealing with machines with reliable data and with
significant effect, and machines without reliable data or significant effect,
without discrimination. Furthermore, data acquisition and transmission
present a very difficult problem even for off-line dynamic studies, not men-
tioning the possible need of on-line stability control.

One sensible approach is to draw a boundary line for a “‘study system”
that includes a small number of machines of great concern, and separate
them from the “‘external system,”” which may have a very large number of
machines but of secondary concern. The “‘external system™ will then be
replaced by a small number of “dynamic equivalents™ [12-14]. Our atten-
tion will not be focused on the dynamic behavior of the external system
itself, but on the dynamic interacting effect of the external system on the
study system.
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The derivation of dynamic equivalents of large electric power systems
will be presented in Chapter 6.

Nonlinear Stability Analysis and Transient Stability Controls

When a very large disturbance occurs suddenly to a power system be-
cause of a serious fault, more effective countermeasures than the linear
continuous supplementary stability control must be taken immediately to
balance the mechanical power input and the electric power output and to
maintain the system stability. In the worst case, the faulted area must be
isolated and the system separated, resulting in “island” operation.

There are also many effective measures, usually of the discrete type, which
may be used to counter a serious fault {15, 16]. These measures include, for
instance, dynamic resistance braking for a temporary electric energy surplus
area, generator tripping for a permanent electric energy surplus area, and
load shedding for a permanent electric energy deficiency area. For con-
venience, these countermeasures to control the transient stability of a power
system due to a serious fault will be classified into two categories, the plant
controls and the system controls. These topics will be introduced in Chap-
ter 7.

There are also many nonlinear stability analysis techniques. One tech-
nique that has been fascinating power engineers for years, Lyapunov's direct
method [17, 18], will also be introduced in Chapter 7.

Basic Models for Power System Dynamic Studies

For any power system dynamic study, a proper and adequate power
system model must be chosen to include all significant components relevant
to the problem in the model, and to exclude insignificant components irrele-
vant to the problem from the model. For example, for the study of low-
frequency oscillations of a large electric power system as a one-machine
infinite-bus system, a simple mechanical model with only one inertia con-
stant, a simple synchronous generator model with only one field circuit dif-
ferential equation, and an excitation system is sufficient. On the other hand,
for the study of torsional oscillations of a steam turbine—generator plant
due to the subsynchronous resonance of a capacitor-compensated transmis-
sion system to which the plant is connected, the simple model for the low-
frequency study is neither proper nor adequate. For that study, the turbines
and generator set must be considered as a multiple mass-spring system, and
all generator windings, transmission lines, and the capacitor compensation
must be described by differential equations.
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Although there are many power system dynamic problems, the number
of basic component models needed to describe any power system dynamic
problem is rather limited. The basic models include the high- and low-order
synchronous machines, the exciter and voltage regulator systems, and the
turbines and governors.

The basic component models for power system dynamic studies will be
presented in Chapter 2.

Summary of Section 1-3

In this section, an introduction has been given to the electric power
system dynamic problems: the low-frequency oscillations of large electric
power systems, the dynamic stability and the linear optimal control, the
subsynchronous resonance and torsional oscillations, the dynamic equiva-
lents of large electric power systems, nonlinear stability analysis and transi-
ent stability controls, and the basic component models for power system
dynamic studies. More details will be presented in subsequent chapters.

1-4 SUMMARY

In the first section of this chapter, an introduction to the basic com-
ponents of electric power plants for dynamic studies was given : the hydraulic
and steam turbines, which provide the mechanical energy input; the syn-
chronous generator, which converts mechanical energy into electric energy;
the governor, which controls mechanical power input; and the excitation
system, which controls electric power output. In the second section, examples
of some notable national and international electric power systems are pre-
sented. In the last section, important electric power system dynamic problems
are introduced. Since a proper and adequate model must be chosen for any
power system dynamic studies, the basic component models of electric power
systems will be presented next in Chapter 2.

Problems

1-1 An electric power system tends to develop low-frequency oscillations.
Find the undamped mechanical mode frequencies in Hz for

(a) K, = 0.8 pu, M=15,6,7,8,9s,

(b) M=07s, K, =0.5,06,0.7,0.8, 0.9 pu,
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if the system can be modeled as a one-machine infinite-bus system and the
system frequency is 60 Hz.

1-2 Repeat Problem 1-1 for a system frequency of 50 Hz.

1-3  An electric power system has a low-frequency oscillation of 1 Hz.
What will be the equivalent inertia M of the system if X, = 0.7 pu and the
system can be modeled as a one-machine infinite-bus system? Assume that
there is no system damping and the system frequency is

(a) 60 Hz,
(b) 50 Hz.

1-4 (a) Draw a connecting diagram for the electric power system in your
area including major power plants, transmission lines, interconnections with
the neighboring areas, and other components important to power system
dynamic studies.

(b) Are there stability and other dynamic problems of the system?

(¢c) Whatstabilizing and control means are used or are being considered
to solve those problems?

References

] R. T. Byerly and E. W. Kimbark, eds., “Stability of Large Electric Power Systems."
IEEE Press Book, IEEE, New York, 1974.

H. M. Ellis, J. E. Hardy, A. L. Blythe, and J. W. Skooglund, Dynamic stability of the
Peace River transmission system. J[EEE Trans. Power Appar. Syst. 586-600, June (1966).
O. W. Hanson, C. J. Goodwin, and P. L. Dandeno, Influence of excitation and speed
control parameters in stabilizing intersystem oscillations. IELE Trans. Power Appar.
Swyst. 1306-1313, May (1968).

[4] F. R. Schleif, H. D. Hunkins, G. E. Martin, and E. E. Hattan, Excitation control to
improve power system stability. IEEE Trans. Power Appar. Syst. 1426-1434, June (1968).

[5] F.P.deMello and C. Concordia, Concepts of synchronous machine stability as affected
by excitation control. IEEE Trans. Power Appar. Syst. 316-329, April (1969).

[6] C.E.J. Bowler, D. N. Ewart, and C. Concordia, Self excited torsional frequency oscilla-
tions with series capacitors. IEEE Trans. Power Appar. Syst. 1688-1695, Sept./Oct. (1973).

[71 R. G. Farmer, A. L. Schwalb, and E. Katz, Navajo project report on subsynchronous
resonance—analysis and solutions. /EEE Trans. Power Appar. Syst. 1226—1232, July/Aug.
(1977).

[8] L. A. Kilgore, D. G. Ramey. and M. C. Hall, Simplified transmission and generation
system analysis procedures for subsynchronous resonance problems. /[EEE Trans. Power
Appar. Syst. 1840-1846, Nov.;Dec. (1977).

[9] Yao-nan Yu, M. D. Wvong, and K. K. Tse, Multi-mode wide-range subsynchronous
stabilization. IEEE PES Summ. Meet. IEEE PES Paper A 78 554-8 (1978).

[10] Yao-nan Yu, K. Vongsuriya, and L. N. Wedman, Application of an optimal control
theory to a power system. JEEE Trans. Power Appar. Syst. 55-62, Jan. (1970).

[11] J. H. Anderson, The control of a synchronous machine using optimal control theory.

Proc. IEEE 90,2535 (1971).

— —
[o%) [}



20

(12]

[13]

[14]

1 Electric Power System and Dynamic Problems

J. M. Undrill, J. A. Casazza, E. M. Gulachenski, and L. K. Kirchmayer, Electrome-
chanical equivalents for use in power system stability studics. IEEE Trans. Power Appar.
Syst. 2060-2071, Sept./Oct. (1971).

R. Podmore and A. Germond, Development of dynamic equivalents for transient stability
studies. Spec. Rep.—Electr. Power Res. Inst. EPRI EL-456 (Paio Alto, Calif.) (1977).

W. W. Price, D. N. Ewart, G. M. Gulachemsli, and R. F. Silva, Dynamic equivalents
from on-line measurements. IEEE Trans. Power Appar. Syst. 1349-1357. July/Aug.
(1975).

R. H. Park, Improved reliability of bulk power supply by fast load control. Proc. Am.
Power Conf. 30, 1128-1141 (1968).

[EEE Committee, A description of discrete supplementary controls for stability. /EEE
Trans. Power Appar. Syst. 149165, Jan./Frb. (1978).

A. H. El-Abiad and K. Nagappan, Transient stability regions of multi-machine power
systems. JEEE Trans. Power Appar. Syst. 169179, Feb. (1966).

Yao-nan Yu and K. Vongsuriya, Nonlinear power system stability study by Liapunov
function and Zubov’s method. IEEE Trans. Power Appar. Syst. 14801485, Dec. (1967).
S. C. Kapoor, S. S. Kalsi, and B. Adkins, Improvement of alternator stability by con-
trolled quadrature excitation. Proc. Inst. Electr. Eng. 116, 771-780 (1969).

S. Takada, E. Ohta, and Y. Nagamura, Suppression of hunting in two-axis synchronous
machine by control of field winding. Electr. Eng. Jpn. pp. 28-37 (1968).

M. M. Botvinnik, *‘Asynchronized Synchronous Machine.” Pergamon, Oxford, 1964.
O. P. Malik and B. J. Cory, Study of asynchronous opcration and resynchronization of
synchronous machines. Proc. Inst. Electr. Eng. 113, 1977 1990 (1966).

“Electrical Transmission and Distribution,” Westinghouse Reference Book, Chapter 13,
Westinghouse, East Pittsburgh, 1964.

1. Hano, “‘Operating Characteristics of Electric Power Systems.” Denki Shoin, Tokyo,
1967.

V. A. Venikov, “Transient Phenomena in Electrical Power Systems.”™ 1958, ‘Abridged
English edition. Pergamon, Oxford, 1964.

L. K. Kirchmayer, “Economic Control of Interconnected Systems.” Wiley, New York,
1959.

N. Cohn, “Control of Generation and Power Flow on Interconnected Systems.” Wiley,
New York, 1966.

G. W. Stagg and A. H. El-Abiad, “Computer Methods in Power System Analysis.”
McGraw-Hill, New York, 1968.

O. 1. Elgerd, “Electric Energy System Theory.” McGraw-Hill, New York, 1971.

S. B. Crary, “Power System Stability,” Vols. I and II. Wiley, New York, 1945, 1947-

E. W. Kimbark, “Power System Stability,” Vols. I, II, and III. Wiley, New York, 1948,
1950, 1956.

J. R. Mortlock and M. W. Humphrey Davies, ‘“"‘Power System Analysis.” Chapman &
Hall. London, 1962.

W. D. Stevenson, “Elements of Power System Analysis,” 2nd ed. McGraw-Hill. New
York,1962

P. M. Anderson and A. A. Fouad, “Power System Control and Stability.” Towa State
Univ. Press, Ames, lowa, 1977.

IEEE Committee, Dynamic models for stcam and hydro turbines in power system
studies. IEEE Trans. Power Appar. Syst. 1904-1915, Nov./Dec. (1973).

L. M. Hovey and L. A. Bateman, Speed regulation lests on a hydro station supplying an
isolated load. Trans. Am. Inst. Electr. Eng., Part 3 81, 364 -371 (1962).

IEEE Committee. Computer representation of -excitation systems. IEEE Trans. Power
Appar. Syst. 1460-1464, June (1968).



(381
1391

(401

References 21

H. F. Messerly and R. H. Bruck, Steady state stability of synchronous generators as
affected by regulators and governors. Proc. Inst. Electr. Eng., Part C 102, 24-34 (1955).
IEEE Committee, “Symposium on Reliability Criteria for Power System Dynamic
Performance,” Publ. 77CH1221-1-PWR. IEEE, New York, 1977. '

IEEE Committee, Dynamic performance characteristics of North American HVDC
systems for transient and dynamic stability evaluations. IEEE Trans. Power Appar.
Syst. 3356-3364, July (1981).

Central Electricity Generating Board, *“CEGB Annual Report,” Vol. 2, CEGB, London,
1972-1973.

1. Hano, chief ed., “Power Engineering Desk Book.” Denki Shoin, Tokyo, 1970; com-
munication with Dr. M. Dommelen of Belgium, 1980.

Official Report, “Electric Power Industry in Japan.” Overseas Electrical Industry Survey
Institute, Tokyo, 1978.

G. Shackshaft, private communication, Central Electricity Generating Board, June 1974.
Kyushu Electric Power Co., Japan, private communication with power engineers, Oct.,
1977.

T. R. Foord, Glasgow University, Scotland, private communication, June 1974.



Chapter 2 Basic Models
for Power System
Dynamic Studies

For any electric power system dynamic study, a proper mathematical
model must be chosen. Yet the selection of a power system model cannot be
dissociated from the problem itself, nor from the computational facilities
and control techniques available. It is neither adequate nor practical to
devise a “universal model” for all power system dynamic problems.

When the power system stability problem was investigated years ago
using an ac calculating board, the model of voltage behind reactance with a
second-order torque equation was the best choice; the system was relatively
small, and there were no other computational facilities available. With
modern digital computers, however, there is a tendency to overrepresent an
electric power system.

There are various kinds of power system dynamic problems: high- or
low-frequency oscillations, large or small system disturbances, and large
or small electric power systems. However, there are only a limited number
of system components important to the dynamic study: the hydraulic and
steam turbines, the synchronous generator, the governor, and the excitation
system. For each of them, several basic models are recommended by the
professional societies, and can be adapted for the studies of specific problems.
Among the basic models, those of the synchronous generator are probably
the most important and complicated. Therefore, the fundamental equations
of synchronous machines will be presented first in this chapter.

2-1 FUNDAMENTAL EQUATIONS
OF SYNCHRONOUS MACHINES

The power system dynamic problems are mainly those of the synchronous
machines in a power system. For instance, the low-frequency oscillations
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of a large clectric power system are due to the mechanical mode oscillations
of the machines in the system, and the torsional oscillations of a steam-
electric plant at the subsynchronous frequencies are due to the mechanical
oscillations of the steam turbines, the synchironous generator, and the exciter
interacting with the electrical resonance of a capacitor-compensated trans-
mission system.

Fundamental equations of synchronous machines were derived by Park
and others years ago [ 1-7]. Park’s equations have the simplest form and are
most well known. His voltage equations are described by a coordinate system
consisting of a d axis or direct axis fixed on the field winding axis or pole
axis, and a q axis or quadrature axis fixed in quadrature with respect to the
d axis. In this section, Park’s equations are rederived from the concepts of
two-phase equivalent and commutator coordinates. For the original deriva-
tion, see references [ 1, 2].

Park’s Voltage Equations of Synchronous Generators

Park’s synchronous machine may be schematically shown as Fig. 2-1.
There are three armature phase windings a, b, and ¢ on the stator of the
machine, which have been replaced by two equivalent armature phase wind-
ings, a d winding on the d axis and a q winding on the q axis. There are two
damper windings on the rotor, D on the d axis and Q on the q axis, which are
permanently short-circuited. There is also a field winding F on the d axis,
which is dc-excited.

Since there is no static coupling between any d-axis winding and any
g-axis winding, Park’s voltage equations for a synchronous machine have
the simplest form. The equations may be written as follows [1-7],

Va= R(—=14) + piy — 2P0
Vo= R(—1,) + pi, + Aqp0

q
Ve = Relg + plg (2-1)
0 = Rplp + plp
0 = Rolg + pig

In (2-1), V denotes a voltage in volts, I a current in amperes, R a resistance
in ohms, /2 a flux linkage in webers, and p0 a speed in electrical radians. per
second. Subscripts d, g, F, D, and Q signify the windings. Both d and g
windings have the same resistance; it is denoted by R,. Negative signs are
given to I; and I since the armature winding of a generator is an “active”
network that converts mechanical energy into electric energy.

In engineering analysis, the International System of Units (Systéme
International d’Unités, SI) is recommended, which consists mainly of the
MKS units, such as meter (m), newton-meter (N-m), weber (Wb), and so on.
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Td axis
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Q q g axis

Fig. 2-1 Park’s synchronous machine.

In modern electric power system analysis, however; equations are pref-
erably written in per unit of value. Therefore, we must first be familiar with
the basic per-unit relations, especially those for electric power system dy-
namic studies.

Per-Unit Relations

Let a power system frequency be f(Hz), a machine angle be 8(rad), and
the corresponding speed be pf or . (rad/s) where p denotes the differential
operator d/dt(1/s). Let the system speed 2nf(rad/s) be chosen as the base
speed wy(rad/s). The per unit machine speed w(pu) becomes

w(pu) = w (rad/s)/my(rad/s) - (2-2a)
where

0, = p@, Wy = 27[f (2"2b)

In Eq. (2-2a), the unit of a variable is explicitly expressed and included
in parentheses following the variable. We may write a parameter with its
unit in the same way. Thus we may write a base voltage as Vy(V), a base
current as I,(A), a base resistance as Ry ({2}, and a base flux linkage as 4,(Wb),
where the subscript b signifies a base value. Then we have

Vol V) = Ry (E)1,(A)
and (2-3)
Vo(V) = wy(rad/s)i,(Wb)

Dividing through various terms of the first equation of (2-1) by a base voltage
of the proper form, we shall have

va(pu) = —r,(puiy(pu) + Yu(pu/s)/wy(rad/s) — wlpupp,(pu) (2-4a)
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Therefore, Eqgs. (2-1) can be written in per unit of value, similarly to (2-4a),
resulting in the following:

va = 1 —ig) + Ya/wy — g

v = 1l —ig) + Yo/, + iy

vp = Feip + W/, (2-4b)
0 = rpip + Yp/oy

0 = rqiq + Volw,

In Egs. (2-4b), 1, i, r, , and w, respectively, denote the voltage, current, re-
sistance, flux linkage, and speed, all in per unit of value, and the subscripts
d, q, F, D, and Q signify the respective windings. The time derivative of
is iy and 2nf radian per second is chosen as the base speed ,. But , will
become unity if one radian per second is chosen as the base speed.

Other important per-unit relations for power system dynamic studies
are as follows. First

X(Q) = w (rad/s)L(H), X(Q) = wy(rad/s)L(H)

therefore we have

x(pu) = wL(pu) and x(pu) =~ L{pu) ~ (2-5a)
at the system frequency. Since

AWDb) = L(H)I(A) and A(Wb) = L (H)I[,(A)
we have
Wpu) = L{pu)itpu) = x(puli(pu) ~ (2-5b)

although we still can distinguish a per-unit reactance x from a per-unit

inductance L by writing

1 .
Y(pu) = — x(pwi(pu),  we =17 (2-5¢)
Wo

Finally, since
T.(N-m) = P (W)/w_(mech. rad/s)
To(N-m) = P, (W)/w,,(mech. rad/s)

where ,, is the mechanical speed, w,,, the base mechanical speed, and N-m
is the abbreviation of newton-meter, we also have

Tc(pu) = Pc(pu)/w(pu)5 w~1 (Z_Sd)



26 2 Basic Models for Power System Dynamic Studies

Note that the electrical per-unit speed and the mechanical per-unit speed
are equal since an electrical speed including the base speed is p/2 times the
corresponding mechanical speed, where p/2 is the number of pole pairs.
The time constant of a machine winding circuit will be expressed in
seconds in this book. For instance, the field winding circuit time constant
Le(H) _ 1 Xe(€) I xg(pu)

Taold) = 2@ = 3/ (rads) RelQ) — onfrad)s) relpy) 0

the base ohm being the same for resistance and reactance.

The Mechanical-Electric Energy Conversion Torque

To apply Park’s equations for power system dynamic analysis, the me-
chanical—electric energy conversion torque, or simply the electric torque,
is calculated as follows. Since the mechanical-electric energy conversion is
taking place only in the armature windings through their speed voltages, the
electric torque

T, = Pjo = [if—wyy) + ilap))o =i — i, (2-6)

Note that an armature winding is always considered to be moving with
respect to the field, which is deemed stationary.

Two-Phase Equivalent of the Three-Phase Winding

The derivation of the two-phase equivalent of Fig. 2-1 for a three-phase
armature winding of a synchronous machine can be achieved as follows:
first, replacing the three-phase winding by a two-phase winding with the
same exciting effect at any point around the machine air gap between the
stator and the rotor; and second, observing the two-phase equivalent from
a commutator coordinate system with two sets of fictitious brushes on the
d and q axes [8].

The time variation of magnetomotive forces (mmfs) and their space dis-
tribution around the air gap of the three-phase windings a, b, and ¢ can be
expressed by

A, = A, sin w,t-cos 0
A, = A, sin{w.t — 27/3) - cos(d — 2x/3) (2-7)
A, = A sin(w.t — 47/3)-cos(8 — 4x/3)

where the time variation of mmfs stemming from the currents are represented
by the sine functions, w,t is a time angle, @, equals 2zf, f is the system



2-1 Fundamental Equations of Synchronous Machines 27

frequency, and time zero is chosen when the a-phase current is zero and
increasing. The space distributions of the mmfs are represented by the cosine
functions, 8 is a space angle, and the space origin is chosen at the a-winding
axis; see Figs. 2-2 and 2-3a.

In Egs. (2-7), a symmetrical three-phase winding with a balanced three-
phase current has been assumed, and the maximum mmf per phase may be
calculated from

_4K,KN :

A, = x p v 21 (2-7a)
The first factor 4/7 stems from the Fourier series analysis; the second consists
of the winding distribution factor K, the winding pitch factor K, the
number of turns in series per phase N, and the number of poles p; and the
last is the maximum value of the rms phase current I. For a symmetrical
three-phase winding with unbalanced three-phase currents, the currents
should be resolved into three symmetrical components, and the positive
sequence current can be resolved into the d and q components.

Equations (2-7) represent three “alternating mmfs” with the time varia-
tion and the space distribution explicitly expressed by two separate functions.

Figure 2-2 shows the space distributions of the a-phase mmf at two
instants. As in the case of a typical alternating mmf, the nodal points of the
mmf distribution are fixed but the magnitude varies with time.

The picture changes completely when the three-phase mmfs of Eq. (2-7)
are combined, resulting in

A, + Ay + A, = 34, sin(w,.t — 0) (2-8)

The resulting mmf is an explicit function of both time and space. In other
words, the space varies with time. It is no longer an “alternating mmf{” with
fixed nodes and time-varying amplitude, but a “revolving mmf” with a con-
stant wave front.

To find the speed of the resulting mmf of Eq. (2-8), let us imagine that we
are sitting somewhere on the wave front, as if we were aboard a moving ship.
Since we do not detect any change in our position with respect to the ship’s

Aq
b=ty

g=0 8
Fig. 2-2 a-phase mmf.
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deck although the ship itself is moving, it suggests that
d 4 .
5 [34,, sin(wt — 0)] =0 (2-8a)

Therefore we have
0 =, =2nf = f(2n) (2-8b)

That is a speed of 2xf electrical rad/s, 2= rad, or one “pole-pair” (one N and
one S) per cycle, or the “synchronous speed.” Therefore, three symmetrical
phase windings with three balanced phase currents always give rise to a single
revolving field at synchronous speed.

The three-phase winding with balanced currents is not the only con-
figuration that gives rise to a revolving field. So does a two-phase or semi-

quarter-phase winding with balanced currents. Let the two-phase winding
mmfs be

L= 3A, sinw,tcosl
R (2-9)
2

A, sin(w.t — 7)-cos(@ — 37)

In other words, for an ¢-winding coaxial with winding a, an z-phase current
in phase with the a-phase current, a f§ winding in quadrature with « or a,
a f-phase current lagging behind the «-phase current by n/2, and each mmf
magnitude of x and 8 being 3 times that of the three phases, it can be shown
that the three-phase winding and the two-phase winding will have exactly
the same resulting mmf with the same exciting effect at any point around the
machine air gap between the stator and the rotor. These two sets of windings
are shown in Fig. 2-3a and b. The damper windings are omitted for clarity.

]d axis 1d axis

(a) (b)

Fig. 2-3 A three-phase winding and its two-phase equivalent.
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The d and q Commutator Coordinates

Since the armature windings are moving relatively with respect to the
field, the mutual inductance of a and F in Fig. 2-3a and that of « and F in
Fig. 2-3b, for instance, are functions of the space angle 6. Consequently, the
voltage equations of the two-phase equivalents are not much simpler than
those of the original three-phase windings. However, the results would be
much simpler if the phenomena of the two-phase equivalents were observed
from two sets of fictitious commutator brushes on the d axis and q axis,
as in Fig. 2-4, like dc commutator windings. This is essentially the basic
concept leading to the simplicity of Park’s equations. While the two com-
mutator phase windings can be identified as d and g, the « and § windings
may be deemed as the slip-ring windings.

The conversion of Fig. 2-3b into Fig. 2-4 makes the configuration of
windings much simpler, since d and q are in quadrature or orthogonal and
there is no static coupling of any winding on the d axis with any winding
on the q axis. Therefore, Egs. (2-1) can be readily written except for the speed
voltage terms.

The Speed Voltages

The speed voltages of Egs. (2-1) can be derived from a general inductance
formula for rotating electric machines [7], and a general speed voltage sign
rule for the cross-field commutator armature windings [ 8].

Consider two typical windings of an electric machine, an induced voltage
winding m and an excitation winding n, as shown in Fig. 2-5. The two wind-
ings may be both moving, both stationary, or one moving while the other is
stationary. The induced voltage can be expressed in either of the two forms

d
= — —(N 2-10
en = — 3 (Vo) (2-10a)
d
= — —(L_.i 2-10b
em dt( mnln) ( )
d axis
5 =4
,/

q axis
.—m-—-

Fig. 24 The d and g commutator coordinates.
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q axis

Fig. 2-5 Two typical windings of an electric machine.

where L., is the mutual inductance of windings m and n, N, the effective

number of turns per phase of winding m, N, that of winding n, N i, the mmf,
and ¢, the flux due to N i, . In the linear case, we shall have

L mi = de)n/in = Nm(NninP)/in = NmNnP (2-100)

where P is the average permeance per pole. In other words, the inductance
of an electric machine can be calculated from the flux linkage per unit exciting
current.

For a salient-pole machine, the effective permeance of the d axis and that
of the q axis are different. Therefore, the d and q components of the inductance
must be calculated separately. Assume that both the mmf of the n winding
and linkage of the m winding can be resolved into the d and q components,
and the d axis is chosen as the reference; the component mmfs, fluxes, and
flux linkages are shown in the accompanying tabulation, where P; and P,

d component q component
Mmf of n N,i, cos 8, N,i sin @,
Flux due to N, i, N, cos 8, Py Nyi,sin 6, P,

Flux linkage with m N,i,cos @ Py N, cosb, Nolysin0,-P - N, sin 0,

are the average permeances per pole of the respective axes. Therefore, the
mutual inductance L, of windings m and n becomes

Lig = Liyngay €08 6, €08 0, + L0 Sin 0, 810 6, (2-11)
Lonay 2 NuNo Py, L £ NN, P, (2-11a)

mn(g)

@

where L, is a function of both 6, and 0,. Since “n” could be “m” itself,
the general mutual inductance formula L, also includes self-inductance as
a special case. Equation (2-11) also applies to a cylindrical-rotor machine.
In that case, P, equals P, and hence L4 equals L,.

In the derivation of L., the leakage inductance [, was not included.
Therefore, the complete voltage equation of winding m should be written [8]

Vo = (P + [Pl + PLoa(Orms 0, (2-12)
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The first term of the RHS of Eq. (2-12) represents the leakage impedance
voltage of winding m. The second term may be expanded into three terms,
Ob. 8L

P[Ln(00,0.)in] = Lonpin + 0 =22 30 i agm“ 6.i, (2-13)
There are two speed voltages on the RHS of Eq. (2-13). The first one is due to
the speed 6., of the induced voltage winding, which is relevant to the me-
chanical-clectric energy conversion process. The second one is due to the
speed 0, of the excitation winding, which s irrelevant to the energy conversion
process. Furthermore, a commutator winding as an excitation winding with
stationary brushes always appears to be stationary. Therefore,

6, =0 (2-14)

and Eq. (2-13) becomes

U = [Pm + (ln + Lon)PJin + g

2-15
- (-15)

Note that both Egs. (2-13) and (2-15) are written in a general form applicable
to machines with any number of windings. In such a case, v, and i, are
column matrices and r_, [, 0,,, and 0, become diagonal matrices.

Our present concern is to find the speed voltages of the synchronous
machine in Park’s coordinates. From Eq. (2-11), we have

0L
of

= — Lppa) Sin 0, €08 0, + Ly 0 €08 0, sin 0, (2-16)

m

For all combinations of a d- or g-axis commutator armature winding with a
cross-field excitation, either 90° leading or lagging in the direction of rota-
tion of the armature winding, we have

O 0° 90" 180" 270 0° 90- 180" 270
0, 90 180 270~ 0- -90°  0° 90" 180
Speed voltage sign + + + + — = — —

A general rule emerges:

The speed voltage of a commutator winding is always positive if the
cross-field excitation is leading in the direction of rotation of the armature
winding, and negative if the cross-field excitation is lagging in the direction
of rotation of the armature winding,.



32 2 Basic Models for Power System Dynamic Studies

Therefore, according to Fig. 2-1, the speed voltage of d winding in Eq. (2-1)
1s negative, and that of ¢ winding positive.

Discussion of Equation (2-1)

For synchronous motors, the negative signs of iy and i in Eq. (2-1) will
be removed since the armature winding of a motor is a “passive” electric
network that converts electric energy into mechanical energy.

For a synchronous generator that has a second damper winding S on the
q axis of the rotor, a voltage equation similar to the Q winding may be added.
Similarly, for a dual-axis excited synchronous generator that has a second
field winding G on the g axis of the rotor, a voltage equation similar to the
F winding must be added.

Saturation of the synchronous machines may be considered. It 1s the
magnetic circuit, not the winding, that is saturated. Therefore, the total
excitation of the magnetic circuit, not just the field current, should be used
to find the saturation factor.

Summary of Section 2-1

In this section, Park’s voltage equations of synchronous generators are
derived from the concepts of a two-phase equivalent of a three-phase winding
and commutator coordinates with fictitious brushes. A general rule to deter-
mine the speed voltage signs of the d and g windings is presented. A dis-
cussion of equations for synchronous motors, generators with more than one
rotor winding, and saturation is also included.

2-2 FLUX LINKAGES, REACTANCES,
AND TIME CONSTANTS

To develop the high- and low-order synchronous machine models from
Park’s equations for various power system dynamic studies, it is necessary
to have clear definitions of the flux linkages, the reactances, and the time
constants of the machine. During the development of synchronous machine

| theory, many reactances and time constants have been defined. They include
' the synchronous reactances for steady-state analysis; the transient reactances,
. which include the field winding effect for electric transient analysis and cer-
' tain dynamic studies; the subtransient reactances, which further include the
" damper effect for the fastest electric transient analysis and other dynamic
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studies; and the transient and subtransient time constants associated with
the reactances.

The d- and q-Axis Flux Linkages and Equivalent Circuits

Consider the flux linkages of the d- and g-axis windings of Fig. 2-1.
Assuming only one common mutual reactance for all windings per axis, the
flux linkages may be expressed as follows. Including w, of Eq. (2-5¢) to dis-
tinguish a per-unit reactance from a per-unit inductance, we shall have

F Yy de Xmd  Xmd| | —la
1 .
Ve |=——| Xma Xr  Xma 53 (2-17)
o
| ¥p N [ *md Xmd Xp ip
¢’q W 1 Xq  Xmq| |7
=-— ) (2-18)
| Yo | ®olxmg X lq

In Egs. (2-17) and (2-18), the total reactances of the respective windings are
denoted by x4, Xg, xp, X, and X, and the mutual reactances of the respective
axes by x4 and x,,,. All flux linkages, speed, reactances, and currents are
in per unit of value. The speed w,, although one per unit, is used in these
equations to convert a per-unit reactance into a per-unit inductance. For
the flux linkages to have the simple form of Egs. (2-17) and (2-18), certain
relations exist [ 10], which will be discussed in a later part of this section.
Based on Eqs. (2-17) and (2-18), the d- and g-axis equivalent circuit for
the synchronous machine, similar to those of the three-winding transformer
and the two-winding transformer, may be drawn as in Fig. 2-6. In the figure,
r.. 'es I'n, and rq, respectively, denote the individual resistances of the d
and q windings, the field winding, the D-damper winding, and the Q-damper
winding, and x;, X, Xip, and x;q the respective leakage reactances.

A

X1
mgq

(a) d axis (b) g axis

Fig. 2-6 The d- and g-axis cquivalent circuits of the synchronous machine.
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Reactances and Time Constants

Based on Fig. 2-6, the following reactances can be defined:
Synchronous reactances
Xg £ x4 Xpas X B2 X+ X (2-19)
Field and damper total reactances
Xg 2 Xip + X Xp 2 Xip + Xma> Xg & Xig + Xpg  (2-20)

Transient reactances

X1FXmd
X R X+, X B X+ X (2-21)
Xip + Xma
Subtransient reactances
XiFX1DXmd XX,
v+ . X8 + 2R 00)

b
XigXip T XipXma + XipXmd Xiq t Xma

Note that all synchronous, transient, and subtransient reactances are defined
from the series—parallel reactances of Fig. 2-6 as seen from the armature
terminals. All resistances, being relatively small as compared with the respec-
tive reactances, are neglected.

Again based on Fig. 2-6, the following time constants in seconds can be
defined. According to Eq. (2-5¢), we shall have

Transient time constants

1
Ty, £ (iF + Xma) (2-23a)
WpT'F
e L (x b1 ) (2-23b)
© e\ (/%) 4 (1/%ma)

Subtransient time constants

T/ & L X;p + :
o WyI'p ° (1/x5) + (1/Xpa)

(1>

s Al 1
Td R("“’ T Wx) + W) + (1/xmd))
1

Wypl'g

(2-24)

>

Tes (X1 + Xmg)

oo & L
T e\ (1) + (1/Xpng)
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Note also that all time constants are defined by the ratio of the series—parallel
reactances as seen from an individual winding over the resistance of that
winding. All other winding resistances, being small as compared with the
respective reactances, are neglected. Two kinds of time constants are defined:
one with the armature winding circuit opened, and the other with the
armature winding short-circuited. The open-circuited time constants are
identified with an additional subscript o.

These reactances and time constants were originally used in electric
transient analysis. At the very beginning of a transient state, or in the sub-
transient state, there will be sudden changes in armature currents and mmfs
due to a fault or switching. Changes also occur in field as well as damper
currents and mmfs due to the transformer action between the stator and
rotor windings. Therefore, the subtransient reactances and time constants
will be used for the subtransient state analysis.

During the subiransient state, the damper winding effect will rapidly
disappear due to the small time constants of the damper windings. After
the subtransient state, the field winding effect still exists due to the large time
constant of the field winding. Therefore, transient reactances and time
constants will be used for the transient state analysis.

It should be noted that the subtransient, transient, and steady states
are not discrete phenomena. They actually constitute a continuous process.
For details, see reference [9].

The synchronous, transient, and subtransient reactances and time con-
stants are also used in power system dynamic studies. Both field winding
effect and damper winding effect are felt whenever there are rotor oscillations
with respect to the synchronously rotating field on the stator.

Example 2-1. Show that there are two identities relating reactance and
time constant definitions,

T/ x/ T!/ x//
/‘3 ==t S = —? (2-25)
Ty Xg Ts Xa
Solution: From the definitions, we have
Ty _ Xp T X Xna/(X) + Xppa) . 1 <x n XiF X md ) _ Xq
—& - - . o
T Xig T Xma X) + Xpg Xip + Xpg Xa

and

" " -
Ty X+ X X1 Xig /(X XE + XipXind + XmaX1)

T4, Xip + XipXma/(XiF + Xa)

B (g + Xpa)
(X5 + XpXmg + XmaX1)

(equation continues)
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X(XipXip + XipXma + XiFXmg) + XipXipXmg
Xip(Xir + Xpa) + XipXpg

- i "
X+ XpXpXma/(XipXiF + XipXma t XipXma) | Xg

X; + XjpXma/(XF + Xpma) Xq

Reactance Matrices and Mutual Reactances

Let the two-axis flux linkage equations be written in SI units as

=

Ly L Lo —1 Xo X Xol|[-I
;*F = %LFa Ly Lgp Iy |= wic %XFa X Xep Ig (2-26)
4D %LD;, Lpe Lp Ip _%‘XDa Xpr Xp L Iy

Gl Ly Lao] [—14 L[ Xe Xao [

Jol3Loe Lo Io| ~ 03X Xo I | (2-27)

where the flux linkages A are in webers, currents I in amperes, inductances
L in henrys, reactances X in ohms, the speed w, = 2zf rad/s, and

a

XFa:XaF’ XDa:XaD= XDF=XFD7 XQa:XaQ

LFa = LaF’ LDa = LaDa LDF = LFD: LQ' = LaQ (2—28)

Previous analysis has shown that for the two-phase equivalent to have the
same exciting effect as the three-phase winding at any point around the air
gap of the synchronous machine, both the mmf of d and that of q windings
of Fig. 2-4 must be increased to 3/2 times that of each of the three phase
windings of Fig. 2-3a. This numerical factor has been used to modify Lg,, X,,
etc., of the first columns of the inductance and reactance matrices of Egs.
(2-26) and (2-27), but is implicitly included in the total inductances L4 and
L, and the total reactances X4 and X of the two equations. Also included
in other diagonal elements of these matrices are the leakage inductances
and reactances, and X, Xp, etc., are the total reactances of the respective
windings.

It 1s noted that the L and X mattices of Egs. (2-26) and (2-27) are not
symmetrical. To make them symmetrical and to convert them into per-unit
values, certain conditions must be met. Since our primary concern is the
reactance matrices, let all reactances of these two equations be divided by
the base reactances, each of which equals the base voltage divided by the
base current of the respective windings. We shall have the per-unit reactances
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as follows:
1 I¢ 1
xd:XDia xdF=XaF7:’ de:XaDTI/)B‘B
1 1 I
Xpa = (%XFa)V_:B7 Xp = XF_I%’ Xgp = XFDT/li (2-29)
I I 1
X = (3X _B’ =X ﬂ, X = X -PB
na = 3Xpa) Vo XpF DF Vo Xp D Vos
and
1 I
Xq = qu%}’ Xqq = Xqq I?B
B
(2-30)
Iy Ion
Xqq = Xqu Vow” @ XQV_QB

In these equations, the subscript B is used to identify the base values; V)
and I;; are the base voltage and the base current for the d and q windings,
Vep and I those for the field winding, etc.

Altlough the original reactance matrices of Eq. (2-26) and (2-27) are not
symmetrical, the per-unit reactance matrices will be symmetrical if the fol-
lowing conditions are met:

3Vels = Veglgp = Vpplpg = Voslos (2-31)

Moreover, one may have the same per-unit mutual reactance per axis, X4
for all d-axis windings and x,, for all qu-axis windings if the following
conditions are further observed:

Xar = Xap = Xpp = Xinds X‘qQ = Xmq (2—32)

The voltages and currents are also converted into per unit. The per-unit
reactance matrices were included in (2-17) and (2-18). For details, see ref-
erence [10].

Determination of Synchronous Machine Parameters from Test

According to the IEEE test procedures for synchronous machines [9],
eight Park’s d-axis parameters, r,, x4, x5, x4, T4, T4y, T4 and T, can be
determined from test. However, by virtue of the two identities of (2-25), only
six of the eight Park’s parameters can be used for the calculation of the seven
circuit parameters r,, g, I'n, ¥1, Xp, X1p» and x4 of Fig. 2-6a. Therefore, one
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additional test is required to find all circuit parameters from Park’s param-
eters. Three alternative tests are proposed in reference [10].
One of them is to define a new damper time constant with the field wind-
ing open,
XD

Tp & ) Xp £ Xip + Xma (2-33)
WD

and determine it from a varying-slip test. Another is to determine T}, from
a current decaying test by short-circuiting an armature winding on the d
axis, being excited by dc, while the field winding is left open. Still another
is to define a new reactance xj,, similar to xj, but with the field winding
open, and determine it from a modified Dalton and Cameron test. Therefore,
all equivalent circuit parameters can be calculated from the test results of
IEEE testing procedures in conjunction with either one of the methods just
described. Details of the additional texting and calculation of the circuit
parameters from the test results are given in reference [10].

There 1s a renewed interest in testing synchronous machine parameters
due to the requirement for more accurate synchronous machine models for
modern large electric power system dynamic studies. More references are
given at the end of this chapter [11-17]. Some tests are performed on-line.

Summary of Section 2-2

In this section, synchronous machine reactances and time constants are
defined, and concepts of transient and subtransient presented. Because of
the two-phase-equivalent excitation of the three-phase winding on the stator,
and the single-phase excitation of windings on the rotor, the mutual induc-
tance between a stator and a rotor winding in SI units is not reciprocal; a
factor 2 is involved in Egs. (2-26) and (2-27). These asymmetrical reactance
matrices in SI units, however, can be made symmetrical in per unit of value
and with a common mutual reactance for all windings per axis when certain
conditions are met. It is also pointed out that one more test, in addition to the
IEEE testing procedures, is required to determine all equivalent circuit
parameters of the synchronous machine.

There is also renewed interest in testing synchronous machine param-
eters for more accurate modeling. References are given at the end of this
chapter [11-17].

2-3 LOW-ORDER SYNCHRONOUS GENERATOR MODELS

As stated at the beginning of this chapter, the selection of synchronous
generator models for power system dynamic studies depends not only on
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the nature of the problems themselves, but also on the computational facili-
ties and control techniques available.

Many synchronous machine models have been developed for dynamic
studies. A second-order model and a third-order model will be presented
in this section. The former was used with an ac calculating board, and the
latter is being used with the digital computer. Both models are still used
to describe some synchronous machines in large electric power systems.

The Second-Order Synchronous Generator Model

For the second-order synchronous generator model [ 18], only the torque
relation is described by differential equations, the rest being algebraic. The
complete model includes the following equations:

b =2:(Tn—T. - Tp) per unit/s (2-34)
o = wylw — 1) elec rad/s

where
T,~P, ~ ex'Z‘sin o per unit (2-35)

e = v, + jxji per unit
Equation (2-34) corresponds to the original nonlinear version of (1-1),
but is written in the state variable form in two first-order differential equa-
tions, which is required for modern analysis and digital integration. In Eq.
#(2-34), M is the accelerating torque, T, the mechanical input torque, 7T,
“the electric output torque, and Ty, the mechanical damping torque, all in per
?unit of value. Note that while the torque angle ¢ in electrical radians is in
Park’s coordinates, (w — 1) is the per-unit relative speed of the coordinates
with respect to the system synchronous speed (27f'), which is chosen as .
Equation (2-35) may be considered as the auxiliary equation of (2-34).
T, equals P, divided by the speed w, and w is very close to one per unit.
i The ¢’ of the second equation of (2-35) is known as the voltage behind the
! transient reactance. Therefore, the electric power P, may be calculated as
follows. According to Fig. 2-7,

Xyicos O = e'sind (2-35a)
Therefore
. e, .
P, =ricosf = —x—,smé (2-35b)
d

Note that the resistance voltage r,i has been neglected in Fig. 2-7.
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Fig. 2-7 A voltage bechind reactance.

The torque equation of a generating unit may be written in SI units,
which consist mainly of the MKS units as follows,

do (MKS
J'—widt—) = T,(MKS) — T.(MKS) — T,(MKS) (2-36)
where J is the moment of inertia of the rotating system of the generating
unit, w,, the mechanical speed, T,, the input mechanical torque, 7, the output
electric torque, and Ty, the mechanical damping torque, all in MKS. Let a
base torque be

T,(MKS) £ P,(MKS)/o,,(MKS) (2-37)

where P, is the base power and ,,,, the base mechanical speed corresponding
to the rpm on the nameplate. Also, two inertia constants may be defined,

M22H,  HA2LJ02(MKS/PMKS) -  (2-38)

where $Jw?2, is the kinetic energy of the rotating system at the base speed
and P, the base power. In other words, H represents MJ per MW rating of-
the generating unit, and has a unit of seconds. Dividing (2-36) by (2-37) gives

Joge d 0 To(MKS)  T,(MKS) T,(MKS) (2-39)
P, dtw,, Ty(MKS) T,(MKS) T,(MKS)

or
Ma(pu) = T, (pu) — T.(pu) — Tp(pu) (2-40)
which will be written hereafter simply as
Mo =T, —T.— Ty, perunit (2-41)

Since the MKS electrical speed is p/2 times the MKS mechanical speed,
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and it is also true for the base speeds, we shall have

_ @{MKS) _ 0,(MKS)

OPY) = " (MKS) ™~ t(MKS)

(2-42)

Conventionally, the unit “electrical radian” is chosen for the torque angle
0, and w, or (2nf) radian per second for the base speed m,. Therefore,

0 = w,(w — 1) rad/s (2-43)
where
Wy, = 2nf rad/s (2-44)

Finally, the torque equation in the state variable form becomes

o= %(Tm — T, — Tp) per unit/s
) (2-34)
0 = wy(w — 1) elec. rad/s

These two first-order differential equations and the algebraic equations of
(2-35) constitute the second-order model of the synchronous machine.
There are alternative forms of Eq. (2-34). For instance, if 6 is in radians
and w and w, in radians per second, se shall have
M= E(Tm — T, — Ty) rad/s?

o (2-34a)

0 =w— w, rad/s
and if ¢ is in electrical degrees and w and wy, in degrees per second, we shall

have

180
o= 10T, T Ty degs?

(2-34b)
=00 — w, deg/s

Note that T,,, T,, and T, are still in per unit of value in these equations.

The Third-Order Synchronous Generator Model

For certain power system dynamic studies, the change in flux linkage
of the field winding cannot be neglected, although the changes in flux linkages
of other windings are still negligible. Therefore, there is one more state
equation for the third-order synchronous machine model [19, 20].
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The state equations of the third-order model may be written

D = ! T, T, T,
W = M( m ~ fe T D)
d = cob(w - 1) (2-45)

eq = Td [Eep — e — (xg — xq)iq]

and the auxiliary equations

2 -
T, =P, =~ 6L51b+————(x *q)
X4 2x4x,

12

sin 26
(2-46)

’

€q = U + jXala + jXq(jig)
Consider the third equation of (2-4). It can be written as

'ﬁF/wb = Vg — rply (2-47)

Although Eq. (2-47) is already in the state variable form, traditionally, the
field flux linkage is replaced by a voltage, and the flux linkage equation is
converted into a voltage equation.

Let some new voltages be defined as follows,

L7 Gode, B2 xpgir,  Epp 27E (248)
Xp Fe
where ¢, E, and Egp are all internal voltages of the armature, ve is the
voltage applied to the field winding, i the field current, x4 the per-unit
mutual reactance of the d axis, and rg the resistance of the entire field circuit.
Epp may be interpreted also as the field voltage as seen from the armature.
Erp equals E only in the steady state, since a field voltage variation does not
produce a field current variation immediately in the transient state due to
the field time constant.

Multiplying both sides of Eq. (2-47) by x,,,/rF and utilizing the definitions
of Eq. (2-48) and the field time constant

XF

Ty & (2-23a)

Wy'E
we shall have
Ty, = Epp — E (2-49)

To complete the derivation, let the armature voltage and current in d
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and q components be
U= Uy + jg, [ =ig4 + Jjig (2-50)

Let w of the first two equations of (2-4) be approximated by the synchronous
speed w, and Y, ¥, , and r, be neglected. We shall have two equations for
the armature windings
Uq Wty = Xyiq 2-51)
Uy = QoWq = Xpalp — Xaig = E — X4iy
For the last part of this derivation, the relations of Eq. (2-17) and (2-18) are
utilized.

A phasor diagram for a low-order synchronous generator in steady state
and transient state may therefore be drawn as Fig. 2-8. Note that while E
of Eq. (2-51) represents only the voltage magnitude, E in Fig. 2-8 is a phasor
in phase with ji,. The voltage phasors ¢’ of the second-order model and ¢
of the third-order model are

e =, + jxii
e (2-52a)

’

ey = v+ jxgiy + ixg(jiy)
They are different not only in phase, but also in magnitude. Another phasor
relation

E, = v+ jx,i (2-52b)

is useful for the measurement of the phase difference 6 between E_ and v,.
Let us continue the derivation of the third equation of (2-45). Since

e, = E — (xg — xy)ig (2-53)

in magnitude according to Fig. 2-8, which also can be derived directly from

ixq {ig)
gla-4

jXgi j’(d ig
E _]qu
q

e’q § e-l- -/ Jx'd ld

vt
s 5/ 17 |iig
Ivg

4 id
Fig. 2-8 A phasor diagram for low-order synchronous generators.
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e, of (2-48) and y of (2-17), then
WoWy = Xpip — Xpalg, Ip =0 (2-17a)

and

€y = (Xpa/Xp)o¥r = E — (Xpa/X¢)ia
=E — (xq — x})iq (2-53a)
In the last part of this derivation, the identity
xrznd/xF = Xg — Xg (2-54)

has been applied, which can be proved from the reactance definitions of
Egs. (2-19) and (2-21). Finally, substituting E from (2-53) into (2-49) gives

5 1 ; e
¢ =7 [Eep — €y — (xq — x4)iq] (2-45a)
do
which is the last equation of (2-45).
The electric torque T, of Eq. (2-45) can be derived from the electric power
P, as follows. Since, in per unit of value,

T.=P,./o, w~1
] N ) ] ) (2-55a)
P, = Re[(iy + ji)*(vg + jvg)] = iavq + igp,

and the voltage and current component magnitudes can be found from Fig.
2-8,

Ug = v, SIN 0, v ¥z> cos 0

¢ o (2-55b)

iy = (e, — v, cos 8)/xy, i, = v, 81In d/x
d q t d q t q

substituting (2-55b) into (2-55a) results in T, of (2-46).

Summary of Section 2-3

In this section, the second-order and the third-order synchronous gen-
erator models are derived. The former has been used since the advent of
the ac calculating board, and the latter since the development of the digital
computer. The main difference is the inclusion of the field winding differential
equation in the third-order model. There is some difference between e, and
¢’ according to the phasor diagram of Fig. 2-8, but there will be only a small
difference between Ae; and Ae’ in their linearized form.
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2-4 HIGH-ORDER SYNCHRONOUS GENERATOR MODELS

For certain power system dynamic studies, more elaborate synchronous
generator models than the third order are required. Not only the field wind-
ing voltage relation, but also the armature and damper winding voltage
relations must be described by differential equations.

Basic \y Model of Synchronous Generators

For the high-order modeling, flux linkages themselves in (2-4) can be
chosen as state variables. Including (2-34), the complete set of state equations
for the synchronous generator may be written

6 = 32 (Tn = T, — Ty)
6 = oo —1)
Yalo, = vy + ryiq + o
Yo /wy = Uq + Fyiq — oy (2-56)
l}}F/wb = Up — rFi’F
/oy, = —rpip
lﬁQ/wb = —rglg
where
T, = ig¥s — ia¥q (2-6)

Indeed, these equations have the simplest form. There are concerns that these
flux linkages are not directly measurable. However, they can be expressed
in terms of power, reactive power, voltages, and currents in most cases.

Equations (2-56) and (2-6) form the basic  model for synchronous
machines. They are nonlinear because of the variable products i ,, i, ,
g, Wy, and the possible inclusion of the saturation effect in /4 and y,.
Equations (2-56) and (2-6) will be linearized when they are applied to solve
dynamic problems of a power system encountering relatively small dis-
turbances.

High-Order E and {y Models of Synchronous Machines

Conventionally, voltages instead of flux linkages have been chosen as
the state variables, such as the use of ¢ of (2-45) instead of Y of (2-47) for the
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third-order synchronous machine model. Olive’s seventh-order model [21]
will be derived in this subsection. For the derivation, the following voltage
definitions may be defined:

X
;A “'md A ¥
€y = — Wo¥r; €q1 = Xmalr
Xp
%
7 A 7'md A oo s
eq - x wOst eq?_ = Xmdlp
D
(2-57)
X
v A Xmg N ;
€q = —— 0eYq, €42 = Xmglq
*q
X
/A 7'mq A :
€q = WoWs, €41 = Xmgls

S

The last two definitions are required only when there is a second damper
winding S on the g axis. The notation is a compromise of various notations
used by many authors. Note that, in (2-57), a voltage is always denoted by
e, a flux linkage by y, a current by i, etc., and the speed w,, although being
unity for the base speed we have chosen, is always kept in the equation to
avoid confusing a voltage with a flux linkage. For convenience, Olive’s
notations of reference [21] and ours are compared as follows:

Olive’s 4 Ve e, e; e e, ¢, —¢€ X's

Ours v Egp €, e ey e

g €y €2 Cg2 XS

ql

To derive Olive’s high-order synchronous machine model with only one
damper winding on the q axis, the following identities are useful,
Xq — X§ = Xina/Xp
%y — By =%l
XhalXe + Xp — 2X;00)

Xq — Xq =
d ¢ (xpxp — xrznd)

(2-58)
2 2
x/ _ X” = 'xmd(xF - xmd)
¢ ¢ Xp(xpxp — xha)

Xg = X5 (xp + Xp — 2Xpma)Xg

’

Xg — Xg B (xg — de)2

The first identity of (2-58) is the same as (2-54), the second is similar to the
first since there is only one rotor winding on the q axis, and the third may
be derived from the original reactance definitions of (2-19) and (2-22). The
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fourth identity is the difference of the first and the third, and the last is the
ratio of the third and the fourth.

The machine armature open-circuited time constants become

Xp 1 X2

T, N _ md
do — A . ’
Wypl'p  Wpl'E Xq — Xg
1 X,EX 1 xpxp — x2
A IF-~md FD 'md
T4 = ——{xip + =— (2-59)
Wyl'p Xp Wpl'p XF
, a X0 1 X

qo

- "
(})er wer xq == xq

and Olive’s seventh-order synchronous machine model may be written as

1

& =3 (T = T. = Tp)
5 = wy(w—1)
Ya/wy = vg + Tyig — (xqlq — €42)
tj}q/wb = Ug + Tlg + (X4iq — €41 — eqz) (2-60)
é; = (Egp — eql)/Téo
€3 = —e43/Tqo
o - — (xg — x3) €42
4 (xq — xg) Tgo

Derivations of the third and fourth equations of (2-60) involve only the
flux linkage equations of (2-17) and (2-18) and the voltage definitions of (2-57).
The fifth state equation corresponds to (2-49) and the sixth is similar to the
fifth except that the Q winding is permanently short-circuited.

To derive the last state equation of (2-60), let both sides of the sixth
equation of (2-56) be multiplied by w,X,,4/ Xp. The LHS becomes é; accord-
ing to (2-57), and the RHS

2
Wyl'p . Oyplp €42 XpXp — Xpa
- Xmalp = — €y = Sime———— (2-61)
Xp do XgXp

according to (2-59). In Olive’s original derivation, however, the following
assumption was tacitly made:

Xp & Xpa (2-62)
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and the last equation of (2-58) becomes

X5 — X4 N X (2-63)
X3 = Xg Xp— Xma

Therefore,
o (le - x:;) qu
¢ = — = % 2-60a
4 (Xd - x:i’) Tt,i,o ( )

To solve Olive’s differential equations, the following auxiliary equations
are required:

’

. xd - xd
€q = —(xg — xg)ig + ey + ——— €.,
Xa — X4
e, = —(xq4 — x3)iqg — e, +e
q d d/*d ql q2
1 4 JOX= (2_64)
eg = (xq — xg)iy — €q4>

— (< F L " R =
T, = egiq + ejiq — (xg — Xy

Derivations of (2-64) involve voltage and flux linkage definitions and some
identities of (2-58).

Other High-Order Synchronous Machine Models

Formulation similar to the ¥y model of (2-56) can be found in reference
[22], except for differences in notation. There are also other high-order E
and ¥ models. An example can be found in reference [23], which has two
rotor windings per axis.

Summary of Section 2-4

In this section, two high-order models for synchronous generators have
been presented, a seventh-order ¥y model (2-56) and a seventh-order E and
¥ model (2-60). Both are useful for power system dynamic studies, and they
can be readily extended to include more field and damper windings on the
rotor. There are many ways to model a synchronous generator and one
must choose a proper model for a particular power system dynamic study.

Having gained sufficient knowledge of synchronous machine modeling,
we shall turn our attention to other important power system component
models
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2-5 EXCITER AND VOLTAGE REGULATOR MODELS

Consider the excitation system first. The original function of the exciter

+ and voltage regulator is to provide an adequate excitation to the synchronous

" machine field winding, an excitation increase for a voltage drop, and an

excitation decrease for a voltage rise. Traditionally, a voltage error is defined
by

Av, & Vgee — B, : (2-65)
in power engineering, which is equivalent to
Av, = —(v, — vger) (2-66)

including an error and a negative feedback as emphatically advocated by
control engineers. In these two equations, v, represents the generator terminal
voltage measured through a potential transformer, rectified and filtered, and
vrer A reference voltage. X
The original function of the excitation system, however, has been con-
{ stantly expanded. Supplementary excitation controls are designed not only
: to enhance the damping of the power system during low frequency oscilla-
tions, but also to improve the transient stability of a power system when
seriously disturbed.

A Continuously Acting Excitation System

There are two IEEE committee reports on excitation system modeling
[24, 25]. Figure 2-9 shows the most commonly used Type 1 continuously
acting excitation system [24]. The first block from the left represents the
transfer function of rectifier and filter of the measured terminal voltage v,
which has a very small time constant. The voltage error Ay, is obtained from

YR MAX
1 Ka L AT 1 Erp
Yt 1+sTg T+sTy [ > Kg+sTg
YRMIN
OTHER
SIGNALS sKEg
1+STF

Fig. 229 1EEE Type | excitation system. (From [24], courtesy of IEEE, © 1968.)
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a comparison of v, with a reference voltage vy at the first summer. Other
signals, such as supplementary excitation to improve the dynamic stability
of a power system, can be also added to that summer.

The block after the second summer represents the transfer function of a
voltage regulator that has a time constant T, and a gain K,. The linear
proportionality and the ceiling voltages vg yax and vg yix are also shown in
- the next block.

The last block on the forward branch with a negative feedback Sy repre-
sents the transfer function of the exciter. It has an output voltage Erp corre-
sponding to the generator internal voltage Egp of (2-48). There are two
constant K¢ and T of this block, but T is not itself a time constant because
of the presence of the other constant K.

There are two negative feedback loops of the Type 1 excitation system.
One of them has a factor Sp that represents the saturation effect of the
exciter. The other includes a time constant 7y and a gain Ky of a stabilizer
of the excitation system. Both of them require further explanation.

Typical data of the Type 1 excitation system are as follows [24]:

T 1, K, Upmax  Urmin T K Sy Skg.7s Ty Ky

0-0.06 0.06-0.2 25-50 1.0 —1.0 05 —0.05 0267 0.074 035-1 0.01-0.08

where Sg and Sg ;5 are saturation factors corresponding to the maximum
Egp and 0.75 times the maximum, respectively.

Saturation Function and Schleif ’s Analysis

The saturation effect is generally a function of the total excitatiog of a
magnetic circuit. The saturation function Sg or f(E.p) of Fig. 2-9 is deter-
mined from Fig. 2-10 by

A—-B

SE = f(EFD) = B

(2-67)

In Fig. 2-10 the no-load saturation curve NL and the constant resistance
load saturation curve CR are determined directly from tests. The air gap
line AG tangential to the lower part of NL is drawn to separate the excitation
B for the air gap from the excitation (A — B) for the iron part of the magnetic
circuit. The saturation factor S; or (A — B)/B is a function of Egy. To
characterize the function, two specific values are recommended by the
IEEE Committee, one at the maximum Egp, and the other at 0.75 times the
maximum.
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NL

(
!
1
1
1
1
1
i
1

f
t
1
3
'
'
1

=87 excrb cur.

Fig. 2-10 Determination of the saturation factor Sg.

It is pointed out by Schleif that T; of the exciter block in Fig. 2-9 is not
itself a time constant, that — K is the slope of the field rheostat line (K < 0)
of the exciter, and that the transfer function shall be obtained as follows
[24, 26].

Let the saturation block of Fig. 2-9 be redrawn as Fig. 2-11a with both
saturation function S and constant K as negative feedbacks, and let both
Sg and — K versus Egp, be plotted as Fig. 2-11b. According to (a), the com-
bined feedback equals (S + Kg) or Sg — (—K,). Let a be the slope dif-
ference of Sg and — K, or (S + Kg), at the intersection. Then we have

1
[or — (Sg + Kg)Egp] = T(UR — akpp) (2-68)

Tg

Eep = —
D= T

Therefore g
Eep 1 1/a

Ur _a+STE:1+sTE/a

(2-69)

and that will be the transfer function of the exciter block of Fig. 2-9 [26].

S
= 1
x S N
@ a 14+ E
A a
w | E
w
EFD(PU)
(b) (c)

Fig. 2-11 Transfer function of the last block of Fig. 2-9. (From [26], courtesy of IEEE,
© 1975.) :



52 2 Basic Models for Power System Dynamic Studies
The Stabilizing Circuit

Reference [27] has shown that there are many ways to realize the stabil-
izing function sKg/(1 + sTy) of Fig. 2-9. In Fig. 1-3 a series transformer ST
was used [28]. Let a two-winding transformer with a high-impedance
secondary circuit be used as shown in Fig. 2-12. Let the resistance, the
leakage reactance, and the mutual reactance be denoted by R, L, and M,
and the subscripts 1 and 2 be used to identify the primary and the secondary
circuits of the transformer, respectively. Let us also define

Ke 2 M/R,, Ty 2 LR, (2-70)
Since i, ~ 0 because of the high-impedance circuit,

vy =Ry + sLq)iy + sMi, = (R, + sLy)i,

(2-71)
v, = sMi; + (R, + sL,)i, ~ sMi,
we will have
vy _ sM _ sKg (2-72)
vy, Ry+sL, 1+ sTg
Ry L
HIGH Z b—
PRIMARY SECONDARY
4
o m—A, o

M Ly Ry

Fig. 2-12 A stabilizing transformer.

The stabilizing circuit of Fig. 2-9 is therefore a negative derivative feed-
back control, and its function is to improve the response of the excitation
. system. However, a stabilizing circuit good for this subsystem is not neces-

\ sarily helpful for the overall performance of the entire electric power system.
K

Summary of Section 2-5

In this section, the most commonly used IEEE Type 1 excitation system
[24] has been presented. Schleif s analysis of the saturation and field rheostat
effect on the transfer function is also included. Finally, the realization of the
stabilizing circuit using a series transformer is shown. There are a large
variety of exciters and voltage regulators in use. Information can be found
in power engineering practice.
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2-6 HYDRAULIC POWER AND GOVERNOR MODELS

: The original function of a governor is to maintain a constant speed of

! the prime mover by controlling the energy input using a speed deviation as

. the control feedback. The speed deviation is obtained by comparing the
actual speed w with a reference speed wggy,

Aw = wppr — @ = — (0 — Wger) (2-73)

‘which is a negative feedback. The governor is so designed that a speed drop
f of the prime mover below a reference level will bring about an energy in-
" crease, and a speed increase above the reference level will bring about an
" energy decrease.

The original governor function has also been expanded to include, for
instance, the area power and frequency control, that is, maintenance of the
electrical and mechanical energy balance at a constant frequency not only
within an area of the system but also including the committed interchanges
with the neighboring areas. This function is usually designated to the area’s
major generating plant being used as the spinning reserve. The power and
frequency control presents a very important power system dynamic problem,
but it has already been thoroughly treated elsewhere [ 26, 27, 29 of Chapter 1],

. i >
and will not be addressed in this book. )

Hovey’s Hydraulic Power and Governor Model

The transfer function block diagram of Fig. 2-13, derived by Hovey [29],
corresponds to the mechanical-hydraulic governor for a hydroelectric power
plant as shown in Fig. 1-2. The first block from the left on the forward branch
of Fig. 2-13 represents the transfer function of an actuator with an output
signal a. The second block represents a gate servo with an output signal g,
and the last block the hydraulic power of turbine and penstock with an
output AT,,. In addition, there is also a dashpot feedback block with an

ACTUATOR  GATE SERVO HYDROPOWER

Aw 1 a 1 g |1-5Tw AT
TN | oisly 1+5sTg 1+.55Ty
d
StsTr
1+sTr
DASHPOT

Fig. 2-13. Hovey’s hydro and governor transter functions.
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output d. Not represented in the linear model of Fig. 2-13 are the servo
speed and gate opening limits. There is a minor departure from the original
presentation; the output of the last block was a water head h, but has been
changed to AT, in Fig. 2-13.

The transfer functions are derived as follows:

Hydropower. Consider the last block on the forward branch of Fig.
2-13 first. Let the water velocity be U, the gate opening be G, and the water
head be H, all in MKS. We shall have

U=K/H-G MKS
KG AH
JE 2

where K is a constant. Dividing both sides of the second equation of (2-74)
by the base values, and approximating H by H, and G by G, gives
AU 1AH AG

— =+ — - unit 2-75
U, "2 H, + G, per uni (2-75)

(2-74)

AU = + K/HAG MKS

or simply g

u = 0.5h + g perunit (2-76)

The subscript b is used to signify the base values in (2-75) and equations to
follow.

Next, since a gate closure decreasing the water flow will increase the
water pressure, and a gate opening will decrease the water pressure, we will
have

pLAAU = —GpAAH MKS (2-77)

where G, is the gravity constant, p the water density, L the effective length
of the waterway including the penstock, and A its cross section, all in MKS.
Furthermore, let a water time constant T, be defined by

T. 2 U,L/G.H,) s (2-78)

Dividing both sides of (2-77) by G.pAH,, we have

AU AH .
T, <U—l:> = — 0, per unit (2-79)
or

sT,u = —h per unit (2-80)
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Substituting (2-76) into (2-80), we have

—sT,

h = ‘l—'mq per unit (2'81)

Finally, according to Paynter and Vaughan’s discussion of [29], a
mechanical power or torque variation AT,, may be approximated by
AT, ~g + 1.5h per unit (2-82)

if the turbine and load self-regulation can be neglected. Therefore, we will
have

1 —sT,, )
AT, ~ m g per unit (2-83)
which is the transfer function of the last block of Fig. 2-13.

Gate Servo. There is a time lag of the gate servo of Fig. 1-2. Letting the
gate servo time constant be T, the gate equation may be written

g=g/T, or g =sT.y (2-84)

But ¢’ is moving in the same direction as a and in the opposite direction to g,
according to Fig. 1-2, so

g’ =a—g (2-85)
Substituting g’ of (2-84) into (2-85) and solving for ¢ gives

_ 1
1 +5Tga

g (2-86)

which is the transfer function of the second forward block of Fig. 2-13.

Actuator Servo. Thereis also a time lag of the actuator servo of Fig. 1-2.
Let it be T,. Since ¢ and ¢ are moving in opposite directions due to the
actuator servo, we have

a=—da/T, or a = —sTa (2-87)

But ¢ is also affected by the mechanical linkages. It will be lifted by a speed
increase —Aw, an uplift of a dashpot rod 4, and a pulling down of a through
a pivoted linkage with an adjustable arm-length ratio ¢. Therefore, we also
have

ad=—Aw+d+ ca (2-88)
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Substituting a’ of (2-88) into (2-87) and solving for a gives

a =

- D
p— (Aw — d) (2-89)

which corresponds to the first forward block of Fig. 2-13.

The adjustable arm-length ratio o is called the permanent droop of a
governor, and is usually set at a value of 0.04 to 0.05 per-unit speed variation
to one per-unit load or “full load” variation.

\  Similar to Schleif’s observation of the IEEE Type 1 exciter [24, 26], it
is noted that T, itself is not a time constant and 1/¢ is the governor’s overall
gain.

Dashpot. The dashpot of Fig. 1-2 contains oil and is partitioned by a
separator with tiny holes. The oil can be squeezed from one side to another
slowly through those tiny holes. There is also a spring attached to the dashpot
_to support d but not 4.

Let the spring constant be K and the dashpot oil constant be B, and let
a dashpot relaxation time constant be defined by B/K. Since the two vertical
rods ¢ and d” of the dashpot are moving in opposite directions, we will have

B

a (K + sB)d = —sBd’ (2-90)
or ‘
(1 + sTp)d = —sT.d’ (2-91)
where
4 B/K (2-91a)

But d’ is also connected to a by a mechanical linkage through an adjustable
arm-length ratio 9,. Since d’ and a are moving in opposite directions,

d' = —da (2-92)
Substituting d’ of (2-92) into (2-91) and solving for d gives

sT,d,

s 2-93
1+ 5T, a ( )

which corresponds to the beedback block of Fig. 2-13.

The adjustable arm-length ratio J, is called the transient droop or tem-
I porary droop of a governor, and is usually set at a value of 0.3 to 0.4 per unit.
\ The optimum settings according to reference [29] are

T, =5T,, d, = 2.5T,/(2H) (2-94)
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IEEE’s Mechanical-Hydraulic Governor for Hydroturbines

In an IEEE committee report [30], the block diagram shown in Fig.
2-14 is recommended for the representation of the mechanical-hydraulic
governor for hydroturbines. The speed reference SR of Fig. 2-14 corresponds
to our wggr, the controlled valve or gate position Cy to g, the time constant
T,to T,, T to T,, and the transient droop ¢ to d,. Note that the transient
droop and permanent droop compensation blocks are now connected across
the pilot valve (actuator) and gate servos in Fig. 2-14. Typical data are given
as follows:

Parameters  T(7)) T.(T) (1) G 3(6,)
Typical value 5.0 0.04 0.2 0.05 0.3
Range 2.5-25 0.03-0.05 02-04 0.03-0.06 0.2-1

Electrical-Hydraulic Governors for Hydroturbines

_ There are also electrical-hydraulic governors for hydroturbines, by which
~ the mechanical part of the governor is replaced by electrical circuits. It not
. only improves the linearity of the dynamic response of the governor, but also
~ provides a variety of choices of proportional, integral, derivative and com-
bined controls. For details, see references [ 30-32].

RATE POSITION
LIMIT LIMIT
SR 1 1 [{1 | [ |nonuiNEAR| Cv
14sTp Te ] s | | FUNCTION
PILOT VALVE  DISTRIBUTION VALVE
AND SERVO AND GATE SERVO
3sTq
1+sTg
TRANSIENT DROQP
COMPENSATION

LT [
PERMANENT DROQOP
COMPENSATION

Fig. 2-14 IEEE’s mechanical-hydraulic governor for hydroturbines. (From [30], courtesy
of IEEE, © 1973.)
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Summary of Section 2-6

In this section, governors for -hydroturbines are presented. Hovey’s
derivation of the transfer functions of hydraulic power and governor is
given. Although the original function of a governor is to maintain a constant
speed of a generating unit, the governor of a major generating unit in a power
area is also used for the area power and frequency control.

2-7 STEAM TURBINE AND GOVERNOR MODELS

There are also mechanical-hydraulic governors and electro-hydraulic
governors for steam turbines. Although the steam governors are designed
mainly to maintain a constant speed by controlling the steam energy input
to the turbines, the steam control valves and intercept valves also can be used
~ to improve power system stability.

Steam Turbine Models

Six steam turbine models are included in an IEEE Committee report [ 30]:

Type A: Nonreheat

Type B: Tandem compound, single reheat

Type C: Tandem compound, double reheat

Type D: Cross compound, single reheat

Type E: Same as D, but with different shaft arrangement
Type F: Cross compound, double reheat

Figure 2-15 shows a functional diagram of the Type B steam turbine.
There are four turbines of Type B: the high-pressure turbine HP, the medium-
pressure turbine IP, and the two low-pressure turbines LPA and LPB, all
on one shaft. Each turbine and shaft constitutes a torsional mass-spring

REHEATER CROSSOVER

VALVE

POSITION STEAM

— — = — — =l s i A
CHEST oF 4§ SHAFT

.

TO CONDENSER

Fig. 2-15 Functional diagram of tandem-compound single-reheat stcam turbines. (From
[30], courtesy of IEEE. ) 1973.)
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system. There are a steam chest in front of HP, a reheater between HP and
1P, and a steam crossover connection between IP and LPs, and each of them
causes a time lag of steam flow. After the steam—mechanical energy con-
version in the turbines, the steam is discharged into a water-cooled steam
condenser and then reenters the working cycle.

Figure 2-16 shows the transfer functions of the Type B steam turbine. The
time constants of the steam chest, the reheater, and the crossover connec-
tion, respectively, are denoted by Tiy, Try. and T.o, and the fractions of
torques contributed by respective turbines are Fiyp, Fip, Fips, and Lypg.
The control valves CV and the intercept valves IV are also included. In
case of a severe system fault, CV can be used to shut off the steam power
completely and IV can be used to divert the steam power directly to the steam
condenser to rapidly reduce the steam energy input to the turbines to main-
tain power system stability. This part of the discussion will be presented in
Chapter 7..

In Fig. 2-16, the governor-controlled steam power input is denoted by
iPsyv and the turbine mechanical power output by P, . The fractions Fyp,

/JF,P, F s and F|p; are proportional constants, and

Fup + Fip + Fipa + Frpg = 1 (2-95)

Mechanical-Hydraulic Governors for Steam Turbines

Figure 2-17 shows a nonlinear mathematical model of mechanical-
hydraulic governors for steam turbines, recommended by IEEE [30]. The
linear model is similar to the nonlinear one except that CAM and VALVE
are omitted.

The speed reference SR as shown in the figure can be set a priori or auto-
matically adjusted according to the area power and frequency control
requirement. The valve position Cy, corresponds to the steam power input

Pm

%

Fup [Fr ] [ Fea] [ Fiegl

Pey O 1 1 1 1
1+sTey 1+sT 1+STRH2 1+sTeqg

cv REY v

Fig. 2-16 Transfer functions of tandem-compound single-reheat steam turbines. (From
[30], courtesy of IEEE, © 1973.)
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RATE POSITION
LIMITS LIMITS
Z 1 a [ f Cy
N/ Tom s J
CAM VALVE
SERVOMOTOR

T0 OTHER VALVES

Fig. 2-17. Mechanical-hydraulic governors for steam turbines. (From [30], courtesy of
1EEE, & 1973.)

to the steam turbine. Typical data are

X < 8 g
Parameters Kg; Ty Tom Cy open Cy cLose

Values 20 0.1 0.2-0.3 0.1 pu/s/value 1.0 pu/s/value

KG is a gain, corresponding to the reciprocal value of o, the permanent droop
- of the hydroturbine governor, Ty, the time constant of the speed relay, and
" Tgy that of the servomotor. Cy is the servo speed.

Electrical-Hydraulic Governors for Steam Turbines

In the same IEEE committee report [30], the electrical-hydraulic gov-
ernor models for steam turbines are also included. Figure 2-18 shows General
Electric EHC governor model and Fig. 2-19 Westinghouse EH governor
model for steam turbines. In both models, #y;, denotes the high-pressure
turbine steam flow, and K, of Fig. 2-18 or Ky of Fig. 2-19 is a feedback
gain associated with the steam flow. The ny,p signal is used to improve the
linearity of governor response.

CvoPEN CvMax

HIII_ Cy
J

Cvcrose Cvmin

HP

Fig. 2-18 General Electric EHC governor model for steam turbines. (From [30], courtesy
of IEEE, © 1973.)
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Cyoren  Cymax

+_TSM_]|_il_J

CvcLose Cymin

Ke

L.

Fig. 2-19  Westinghouse EH governor model for steam turbines. (From [30], courtesy of
IEEE, © 1973.)

Typical parameter values are

Parameters Kg  Tgy Cy open Cy crose

Values 20 0.1 0.1 pu/s/valve 0.1 pu/s/valve

K; of Fig. 2-18 equals 3.0 for governors with high-pressure turbine steam
feedback and 1.0 for those without. For Fig. 2-19, Kpr = 1, and T; of the
same model = 1-2 s. For details, see reference [30].

Summary of Section 2-7

In this section, mathematical models of steam turbines and governors
are presented. Transfer functions of the tandem-compound single-reheat
turbines are described in detail. The control valves and intercept valves
shown in Fig. 2-16 may be used to improve the transient stability of a power
system. Other mechanical-hydraulic and electrical-hydraulic governors for
steam turbines are also included. For details, see references [30-32].

2-8 SUMMARY

In the first section of this chapter, the synchronous generator equations
are derived from the concepts of two-phase equivalent and commutator
coordinates. The per-unit relations are clearly explained. Section 2-2 defines
the flux linkages, reactances, and time constants. The low-order synchronous
generator models are derived in Section 2-3, and the high-order models in
Section 2-4. Following that, models for computer simulation are presented
in the subsequent sections: excitation systems in Section 2-5, hydraulic power
and governors in Section 2-6, and steam turbines and governors in Section
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2-7. Both mechanical-hydraulic governors and electrical-hydraulic governors
are presented.

Other electric power system component models for power system dy-
namic studies are being developed; for instance, the model of HVDC power
modulation and that of the dynamic load. Modeling is very important. A
mode!l more elaborate than necessary may cloud the issue and miss the
point, and an oversimplified model may be totally inadequate for the required
system representation.

Problems

2-1 Find the d-axis circuit parameters X4, Xip> Xip» ¥p, and rp from the
d-axis Park’s parameters x,, xj, x4, T4, and T}j,, assuming that x, and r,
of Fig. 2-6a have been determined.

2-2  Find the reactive power expressions similar to the power expressions
of (2-35) and (2-46) for

(a) the second-order synchronous machine, and

(b) the third-order synchronous machine.
2-3 Some identities and auxiliary equations are very useful for the deriva-
tion of high-order synchronous machine models. Prove

(a) all equations of (2-58), and

(b) all equations of (2-63).
2-4 Figure 2-4P shows an excitation system for a synchronous generator.
The generator field winding is excited by a main exciter that in turn is
excited by a pilot exciter. The pilot exciter, the main exciter, and the generator
field winding circuit, respectively, are identified by the subscripts 1, 2, and F;
the resistance, inductance, voltage, and current, respectively, are denoted by
r, L, v, and i; and the speed voltage of the pilot exciter is k,i;, and that of the

a1 7if2 ia2=ig

Lo rep Li2 F
1l Fa1 12 ra2 \
Lat La2 3
k Ky

1
1

°

Fig. 2-4P A rotating excitation system.
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main exciter k.;,. Find the transfer function of the excitation system in
terms of time constants and gains with v;; of the pilot exciter as the input
and i of the generator as the output.
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Chapter 3 Low-Frequency Oscillations
and Supplementary Controls

fn

POWEREN.IR

Since the development of interconnection of large electric power systems,
there have been spontanecous system oscillations at very low frequencies in
the order of several cycles per minute [1-7]. Once started, they would con-
tinue for a while and then disappear, or continue to grow, causing system
separation.

The first example of intersystem low-frequency oscillations was observed
during a trial interconnection of the Northwest Power Pool and the South-
west Power Pool before the existence of the WSCC (Western Systems
Coordinating Council) [ 2]. The interconnected system operated satisfactorily
for a while, but low-frequency oscillations at about 6 cycles per minute
developed. The interconnection was then tripped off, leaving the Northwest
Power Pool oscillating at about 3 cycles per minute and the Southwest Power
Pool oscillating at about 11 cycles per minute. It was noted that the North-
west Power Pool had predominantly hydroelectric power plants and the
Southwest Power Pool predominantly steam—electric power plants.

With more experience accumulated from interconnected electric power
system operation, power system engineers are now convinced that the low-
frequency oscillations are due to the lack of damping of the mechanical
mode of the interconnected system, and the desired additional damping can
be provided by supplementary excitation control.

To date, most major electric power plants in North America are equipped
with supplementary excitation control, commonly referred to as the power
system stabilizer (PSS). However, low-frequency oscillations still occur. Note
that so far the PSSs have been designed primarily from a one-machine
infinite-bus model. In recent years, progress has been made in coordinated

65



66 3 Low-Frequency Oscillations and Supplementary Controls

application of PSS to a multimachine system [ 8], and coordination of PSSs
already installed in power systems [9, 10].

3-1 A POWER SYSTEM MODEL
FOR LOW-FREQUENCY OSCILLATION STUDIES

During low-frequency oscillations, the current induced in a damper
-winding is still negligibly small; hence the damper windings can be completely
‘ignored in system modeling. As for the d and q armature windings of a

synchronous machine, their natural oscillating frequency is extremely high,
their eigenmodes will not affect the low-frequency oscillations, and hence
; they can be described simply by algebraic equations. What is left is the field
' winding circuit of the machine, which must be described by a differential
equation, not only because of its low eigenmode frequency, but also because
it is connected directly to the excitation system to which the supplementary
. excitation control is applied. Of course, the excitation system itself must be
described by differential equations. Finally, the torque differential equation
- of the synchronous machine must be included in the model.

Transfer Functions for Low-Frequency Oscillation Studies

With these considerations, a complete system model for low-frequency
oscillation studies can be derived, and a block diagram may be drawn as
Fig. 3-1 [11-13].

There are two major loops in Fig. 3-1, the mechanical loop on top and
the electrical loop at the bottom. The mechanical loop is based on Egs.
(2-34) but linearized, with AT, being replaced by D Aw. The linearized
equations are used because we are dealing with periodic small oscillations.
The incremental torque (AT, — AT,) is considered as the input and the
torque angle Ad as the output. The mechanical loop has two transfer func-
tion blocks from left to right. The first block is based on the equation of
torque equilibrium, and the second block shows the relation of the angle
and speed for the units chosen. In these blocks, M is the inertia constant, D
the mechanical damping coefficient, and 2nf the synchronous speed.

The electrical loop of Fig. 3-1 has a supplementary control ug minus
the incremental terminal voltage Ay, as the input and the incremental in-
ternal voltage Ae; as the output, which is multiplied by K, to become part
of the electric torque AT, of the system. It has two transfer function blocks-
from right to left. The first block represents an exciter and voltage regulator
system of the fast-response type with a time constant 7T, and an overall
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I
Aw A3
1
v {2nf)/s

KA +LIE

1 +sT
A UE_AVt -

K3

1
1+5Td0 Kq

Fig. 3—1;"! Transfer function block diagram for low-frequency oscillation studies. (From
[11—[3],_‘,,06'urtesy of IEEE. © 1969, 1952, 1971.)

“‘gain K,. This block should be expanded when the system has rotating
exciter and voltage regulator. The second block represents the transfer
function of the field circuit as affected by the armature reaction, with an
“effective time constant T} K; and a gain K.

Finally, Av, consists of two components, K5 Ad due to the torque angle
variation Aé and K4 Ae; due to the internal voltage variation Ae,. Here
Av, means (v, — vger), and a negative sign is given to Av, because of the
negative feedback.

The d and q Components of the Armature Current

For the calculation of constants K, K,, ..., K of Fig. 3-1, the armature
current components iy and i, must be known. Figure 3-2 shows the one-
machine infinite-bus model of a power system with a synchronous generator

Fig. 3-2 A one-machine infinite-bus power system.
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/; SG, an armature current i, a terminal voltage v,, an infinite-bus voltage v,,

! a series transmission impedance Z, and a shunt load admittance Y.

" Let the current and voltage phasors be drawn as shown in Fig. 3-3, and
a torque angle J be defined as the angle between the infinite-bus voltage v,
and the internal voltage e;.

Let
iRy 4 i, v 2 ovg+ g (3-1)

[phasor v,] £ ¢,(sin§ + jcos d)
where (3-2)
8L (e, )

For convenience, the following constants and parameters are introduced:
1+ ZY 2 C, +jC,

R — C,xy, X, 2 X+ Cx,

X +Cyxy, R, 2R—Cyx, (3-3)
Z: 2R R, + XX,

Yo £ (Ci X, — CR)ZE Y, £ (CiRy + C,X,)/Z2

li>

R,
X,

>

From Fig. 3-2, we shall have
i=Y,+Z o, —v,) or Zi=(1+4ZYw -1, (34

Separating the last equation into real and imaginary parts, the results can
be written in matrix form in real numbers as follows,

A
X R, G, Gl ot

where
C,21+RG—-XB, C,2XG+RB (3-52)
q axis
3 I
i
) 5
d axis

Fig. 3-3 Current and voltage phasors.
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But according to Fig. 2-8, the magnitudes of v, and v, are

vd_O,_O——xqid i
-0l o =

Substituting (3-6) into (3-5) and solving for i, and i, gives

| [Ya]l, w[ Ry X,|[sind
[iq]—[yq:teq Z§|:_X2 R, cos o (3-7)

Linearization of (3-7) results in
Aig Y, F,
= Aé, Ad 3-
][ [ o
where Yy and Y, are given in (3-3),
Fy v, | =R, X, || cosd,
= . 3-9
[Fq] Z?Z l: X, R, :l[sm 50] -9)

and 9, is the nitial angle.

Constants K, K,, ..., K,
K, and K, from Electric Torque. The electric torque of a synchronous
machine near the synchronous speed can be approximated by
T, = P, = iqvq + ig0, per unit (3-10)
Substituting v4 and v, from (3-6) into (3-10) yields
T, = ijeq + (xq — xa)iaig (3-11)
Substituting Aiy and Ai; of (3-8) into the linearized results of (3-11) gives
AT, = K, Ad -~ K, Ae, (3-12)

k,] [o Fo F[Geg = Xiie ]
[Kj = [z] i [Yd Yq][ego 4 (i, = x;)r;m] &L

K, and K, from the Field Voltage Equation. The ficld winding circuit
voltage equation of (2-45) may be linearized and written

(1 + sTa)A€, = A — (xg — x))Al (3-14)

where
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Substituting Aiy of (3-8) into (3-14) results in

(I + sTy,K;)Aey = K3[AEg, — K, Ad] (3-15)
where

Ky = 1/[1 + (x4 — x3) 4]

) (3-16)
Ky = (x4 — x3)F,

K and K from the Terminal Voltage Magnitude. The magnitude of
; the generator terminal voltage can be expressed mn terms of its d and q com-
| ponents as

v =v}+ud (3-17a)
and the deviation as

Aut = (Udo/vto)Avd = (qu/vto)AUq (3'17b)

Substituting (3-8) into the linearized results of (3-6) and Avy and Ay, thus
obtained into (3-17b) gives

Av, = K5 AS + Kg Aé, Y (3-18)

HEAAT
K UQO/vtO Y, Y, xquO/UIO
In (3-19), F4 and F are given in (3-9) and Y; and Y, in (3-3).

In this section the initial values of currents, voltages, and their com-
ponents are all identified by subscript 0, e.g., i40.

where

Summary of Section 3-1

In this section the transfer function block diagram of Fig. 3-1 for low-
frequency oscillation studies is derived. It is based on a one-machine, infinite-
bus power system model with a local load [13]. Constants K, and K, are
derived from the electric torque expression, K5 and K, from the field winding
circuit equation, and K and K, from the generator terminal voltage mag-
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nitude. For the calculation of these constants, the initial currents, voltages,
and torque angle of the system in the steady state must be known.

3-2 INITIAL CURRENTS, VOLTAGES,
AND TORQUE ANGLE

The initial currents, voltages, and torque angles in steady state are
usually found from a load flow study for a multimachine system. For a
one-machine infinite-bus system, two cases are conceivable:

1. The electric power P, the reactive power Q.y, and the machine
terminal voltage |v,o| are given;

2. The electric power P.,, the machine terminal voltage |v,0|, and the
infinite-bus voltage |v,| are given.

Example 3-1. Find the initial steady-state value of the d and q com-
ponent currents, voltages and the torque angle of the one-machine, infinite-
bus system as shown in Fig. 3-2 for given P, Q.o and v, [14].

Solution: The second subscript 0 to identify the initial values will be
omitted in this section for conciseness, but the first subscript o in v, will be
kept to signify the infinite-bus voltage. The power and reactive power of a
synchronous machine can be calculated from

P +jQe = (g + Jjig)*(va + Jjug) (3-20)

The magnitude of vy and that of v, can be calculated from (3-6), and the
machine terminal voltage v, can be expressed in terms of v, and v,. There
are five independent equations

P, =i, + i Q. = Igly — Ila

q7q?
Vg = Xlg» Dg = €y — Xjig (3-21)
vl =03 + v}
for the five unknowns iy, iy, v4, ¢4, and e, .
If i, is eliminated from the first two equations of (3-21), we have

Puy — Qg = it} (3-22)

Solving i, and v, respectively, from the third and the last equation of (3-21),
and substituting the results into (3-22) gives

Pe(Uf - Ui)l/z - chd = Ud(vlz//x( (3—23)
1
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Therefore, v,y can be found first, which leads to the following:
va = Peu[PZ +(Q2 + v/x,)"] "7
v = (7 — v
Iq = Va/Xq (3-24)
g = (P — igv,)v4 or (Q. + igpg)/v,
e, = Uy + Xgig
The initial values of v, and ¢ remain to be determined. From the torque
angle definition of Fig. 3-3 and Eq. (3-5{)_, we have

Uga = Uy SIN & = Cyvi = Coog — Rig + Xiq (3-25)
Voq = 0o €08 6 = Cyv4 + Cyvq — Xig — Ri,

Consequently,
0= tal’l_l(vod/qu), Vs = (Ugd + qu)l/'z (3_26)

Example 3-2. Find the initial steady-state values of the d and g com-
ponent currents, voltages, and the torque angle of the one-machine, infinite-
bus system as shown in Fig. 3-2 for given P,,, |v,|, and |v,|.

Solution: Again the second subscript o to identify the initial values will
be omitted for conciseness, but the subscript o of v, will remain.

Let the transmission line impedance angle be defined by

o £ tan” Y(X/R) (3-27)
and other angles as shown in Fig. 3-4 be defined by
Be Lle,v), vE Lo, ¢= L) (3-28)

Then, the angle  can be calculated from the partly dotted right-angled
triangle in Fig. 3-5 as follows:

x,|i| cos ¢

—tgn 1. AT
f = tan o] + xi] sin ¢

(3-29)

Fig. 3-4 Phase angles.
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Fig. 3-5 Calculation of f.

For the calculation of y, v, may be chosen as the reference phasor. Accord-
ing to Figs. 3-2 and 3-4,

UO
R +jX] T RAgX (3-30)

i=|wW’BG+JB)+
Since (P, + jO.) is defined by i*v,,
P~ jQ. =it = oG + K2P) + 8 - /2] - “eleie

(3-31)

or

o)
X
o)

Therefore y can be found from either P, or @, of (3-32). From P, we have

(3-32)

i |vl|2(G + R/|Z|2) — P,
= — 3-33
y = cOoS Uolb‘t I/|Z| o ( )

Having found f and y, the torque angle, the currents, and the voltages
can be calculated as follows:

d=p+y
vg = |p|sin B, Vg = Iv,‘cosﬂ N
ig = |i|sin(B +%), iy = |i|cos(B + )

ey = vq + Xgylg

(3-34)
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Summary of Section 3-2

In this section two examples of calculating the initial steady-state values
of currents, voltages, and torque angle of a one-machine, infinite-bus system
are shown: one for given electric power, reactive power, and machine terminal
voltage, and the other for given electric power, machine terminal voltage,
and infinite-bus voltage. The results are useful for calculating constants
K,, K,,..., K¢ of Fig. 3-1. For a multimachine system, these initial values
can be found from a load flow study.

3-3 IMPROVING SYSTEM DAMPING
WITH SUPPLEMENTARY EXCITATION

A power system may lose its stability due to the lack of damping or
inadequate synchronizing torque as shown in Fig. 3-6a and b, respectively.
The sustained low-frequency oscillations of a large electric power system
are due to the lack of damping of the system mechanical mode. A synchronous
machine may have mechanical damping adequate for the machine itself, but
not sufficient for the machine operating in a large electric power system.
Therefore, supplementary damping must be sought.

Desired Damping to Attenuate Low-Frequency Oscillations

Because of the periodical variations of angle, speed, and torque in a
large electric power system during the low-frequency oscillations, like
current and voltage, these physical quantities can be treated as phasors
as well. Figure 3-7 shows an electric torque AT, and a mechanical torque
AT, on the Ad—Aw phase plane at the oscillating frequency.

- Consider the torque equation (2-41). Since we are dealing with small
- oscillations, the equation can be linearized, resulting in

MAG = AT, — AT, — AT, (3-35)
S 8
‘ Vo \/mme 1 TIME
(a) (b)

Fig. 3-6 Unstable electric power system.
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Aw
AT
-A3 A3
Aﬂ-h

Fig. 3-7 Torque phasors on the Ad-Aw phase plane.

To derive an extra damping ATy through supplementary excitation, AT,
must be in phase with Aw according to (3-35) and Fig. 3-7. Similarly, an extra
damping through the governor control must be in phase with — Aw.

Consider a general case of supplementary excitation and governor con-
trol of low-frequency oscillations. Let the extra electric damping AT be
included in AT, and the extra mechanical damping ATy, be included in AT,
and let

ATy = —DyAw, ATy = Dy Aw (3-36a)

Assume that the original AT, from regular governor control 1s still negligible,
and let the original AT, from voltage regulator control be K, Ad. We have

AT, ~ ATy = —Dy Aw

AT, = K; Ad + Dg Aw {(3-36b)
AT, = DAw
and
[Ms* + (Dy + Dg + D)s + 0, K,]Ad =0 (3-37)
since
Ad = (wy, Aw)/s, Wy = 27nf (3-38)
Normalization of (3-37) yields
- (s + 2L,w,5 + ©2)AS =0 (3-39)
Therefore
s= (0t j/1 - Qo (3-40)
where

0, = S KM, L, = (Dy+ Dy + DYQwoyM)  (3-402)

and o, is the undamped mechanical mode oscillating frequency in radians
per second for {, = 0, and {, is the damping coefficient in per unit. The
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characteristic equation is normalized because only in this form can we have
a clear idea of the magnitude and degree of damping.

Supplementary Excitation Control Design

The supplementary excitation control of the low-frequency oscillations
. 1s currently known as the power system stabilizer (PSS). The idea of supple-
\ mentary excitation is to apply a signal through the excitation system to
iincrease the damping torque of the generator in a power system. For the

lone-machine, infinite-bus model of Fig. 3-1, the supplementary control ug
is applied through the T, Tj,, and K, blocks to obtain the extra damping
AT;. Since Fig. 3-1 is a linearized model, the superposition principle applies.

Because of the phase lags of (1 + sT,) and (1 + sT}, K;) for s = jo,, a
phase lead compensation must be included in the supplementary excitation
design, so as to have a damping torque AT in phase with Aw at the oscillating
frequency. The compensation also must have a gain in order to have an ade-
quate magnitude of damping.

Various input signals can be used for the supplementary excitation
design: the speed deviation Aw, the accelerating power AP,, or the system
frequency Af. The PSS may be designed from the undamped natural me-

- chanical mode frequency jw,, or from the complex frequency ¢ + jow of the
mechanical mode obtained from system eigenvalue analysis.
Consider the jo, design first. Let Aw be the control input. A general
design procedure may be outlined as follows.

a. Find o, from the Mechanical Loop Alone First. Directly from
Fig. 3-1 but neglecting the damping, or from (3-37) but neglecting all damp-
ings, the characteristic equation of the mechanical loop may be written

Ms? + w,K, = 0 (3-41)

and the solutions are

w, = Jo, K /M (3-42)

where w,, is the undamped natural frequency of the mechanical mode, @, or
2nf is the system frequency, both in radians per second, K, is a constant for

- given system parameters and operating conditions, and M is the inertia
constant in seconds.

s= +jo

- ns

b. Find the Phase Lag / Gy between ug and ¢ of the Electrical Loop.
The transfer function between ug and e of Iig. 3-1, including the feedback
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effect of K, 18

Gy = Koks (3-43)
(I + sTAL + sTg,K3) + KaK3Ke
and the phase lag may be calculated from
phase lag of Gg = / Ggl,— 0, (3-44)

¢. Design a Phase Lead Compensation / G for the Phase Lag / Gg.
When Aw is chosen as the supplementary excitation input, we shall have

LiGat £6Gs =0, 2G<l (3-45)

The phase lead compensation may be realized by operational amplifiers,
and the simplest transfer function may be chosen in the form of

Ge = ! b ' k=1 2 T, > 1 (3 46)
- = =10r &
C 1 STZ > s 1 2

; There is a phase angle limit that a compensation block can provide, and T,
" cannot be too small. For a T, chosen as 0.2 s and T, as 10T, the phase
lead provided by each compensation block is about 34° for s = j2x rad/s
“corresponding to 1 Hz.

d. Design a Gain K. for the Supplementary Excitation. For this
excitation control design, Dy and D of (3-40) are neglected. A reasonable
choice for the damping coefficient {, of the normalized characteristic equa-
tion (3-39) is about 0.1 to 0.3 per unit. From (3-40), neglecting Dy and D,
we have

Dp ~2{ o M (3-47)
But according to Fig. 3-1 and including the supplementary excitation, we
also have

DE = KCKZIGC|

GE's:j(on (3_48)

S= jo,
Therefore
20,0, M

K¢ = = (3-49)

e. Design a Reset Block for u#;. The supplementary excitation control
. should be activated only when the low-frequency oscillation begins to
. develop, and it should be automatically terminated when the system oscilla-
! tion ceases. It should not interfere with the regular function of excitation
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during steady-state operation at the system frequency. A reset block is there-
fore necessary, which may have the form of

sT

Greser = T+ sT (3-50)

Since the reset block should not have any effect on phase shift or gain at the

oscillating frequency, it can be achieved by choosing a large T value, so
that sT is much larger than unity and

GrEsET]s= jo = 1 (3-50a)

Figure 3-8 shows the block diagram of a supplementary excitation control

with one compensation block and one reset block. The supplementary

excitation will not have any effect on the steady state of the system, since in
steady state

sAw =0 (3-51)

f. Eigenvalue Analysis of the System with and without #;. Although
this step was not performed in the early development of PSS, it is very useful
to find how much damping the various modes of a system have at the oscil-
lating frequencies. For a typical eigenvalue (o + jo), the oscillating frequency
is w rad/s or w/(27) Hz, and the damping coefficient { is found from the real
part of the normalized eigenvalue, namely,

{ =0//6? + ®® per unit ) (3-52)

State Equations of the One-Machine Infinite-Bus System

To find the eigenvalues of a system, the system equations must be written
in the standard state variable form in the first-order differential equations,
with all derivatives as a column matrix on the LHS of the equations, and the
rest on the RHS of the equations. For a system Wlthout control, the state
equations may be simply written as

X = Ax, up =0 (3-53)

ST Xg KC(1+ST1)
Aw 1+sT (1+STZ) ug

Fig. 3-8 A supplementary excitation control.
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where x is the state variable vector and A4 the system matrix. The state equa-
tions of the one-machine, infinite-bus system may be derived from Fig. 3-1
as follows:

MsAw = —AT, = —(K, Ad + K, Ae))
sAd = w, Aw
(1 + sT4,K3) Aey = K5(— K, Ad + AEgp)
(1 + sT,)AEgp, = Ku(ug — Av) = Ku(ug — K5 Ad — K Aey)

Since s Aw, s A, s Ae, and s AEg;, correspond to A, AS, Aé,, and A,
respectively, the state variable vector becomes

(3-54)

x = [Aw, Ad, Ay, AEg, " (3-55)
and the system matrix elements can be found according to the relation
Ad Aw
AS AS
= A (3-56)
Aé, Ae;
AEgy AEg,
Therefore, we have
0 —K, /M —K, M 0
w, 0 0 0
[4] = (3-56a)

0 - K4/Tc,io - 1/(T£/10K3) 1/T(,io
0 _KAKS/TA _KAKG/TA "‘1/TA

For the system with the supplementary excitation control ug, the system
equations may be written

X = Ax + Bug = A.x (3-57)

where B is the control matrix, v the supplementary excitation, and A, the
controlled system matrix. If the supplementary control has the form of Fig.
3-8, the additional equations are

(1 4+ sT)xs = sT Aw
(1 + sThup = Kl + sTy)xs
The new state variable vector becomes

x = [Aw, Ad, Ae,, AEpp, X5, ug | (3-59)

(3-58)
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and the controlled system matrix becomes

[ { 0 0
(4] I 0 0
A
|0 0
|
[4.] = i 0 KA/Ty| (3-60)
0 —K/M —K,yM 0| —UT 0
|
o KK KeKoTo (IKef| T _ 1
i MT, MT, | T, 7 B
"‘1‘/ -

For the derivation of (3-60), s Aw, and sx5 of (3-58) mﬁst be successively
substituted by algebraic relations from earlier derivations.

Example 3-3. Design a supplementary excitation ug for a one-machine,
infinite-bus system using Aw as the control input and o, for the design. The
system is similar to Fig. 3-1 and all data are given in per unit of value, except

“that M and time constants are in seconds.

Generator M=926 T, =776 D~0
xg=0973 x;=019 x,= 0550
Excitation K, =50 Ty = 0.05
Line and load R=—-0034 X =097 G=0249 B=0262
Initial state P,=10 Q. = 0015 v, = 1.05,

Note that the negative R stems from deriving the one-machine, infinite-bus
model! for a multimachine system by equivalencing smaller generators by
equivalent impedances with negative resistances. Design the supplementary
excitation and compare the eigenvalues of the system with and without the
supplementary control. It is a 60-Hz system.

Solution: Theinitiald and g current and voltage components and torque
angle of the initial steady state are found from (3-24) and (3-26) as follows:

Vao = 04659 v, = 09410 iy, = 04354 i, = 0.8471
eqo = 1.024 v, = 1.051 5, = 68.01°
The K constants from (3-13), (3-16, and (3-19) are
K, = 0.5441 K, = 12067 K;=0.6584 K, = 0.6981
Ks; = —0.0955 K, = 08159
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For the supplementary excitation design, it is found that one compensa-
tion block is sufficient. The following values are chosen
(=03 T,=01 T=30
The results are
w, = 4707 rad/s LG, = —47.57° |G| = 1.001
T, = 0.6851 s Ke= 709

Therefore, the control including the reset biock becomes
_ (14 06855\ (70913 9)\ d
e\ Tr0rs NT53s )0
The system matrix 4 of (3-56) for the system without control and the

controlled system matrix 4. of (3-60) are then constructed. Double precision
1s used to find the system eigenvalues, and the results are

System mode Without uy With g
Mechanical 0.195 + j4.96 —1.127 + j4.33
Electrical —10.393 + ;3.284 —4.618 1 j7.483
Control — —0.3439, —15.726

Since an eigenvalue with a positive real part corresponds to an eigenmode
with a negative damping, the unstable system without the supplementary
excitation ug is stabilized by the supplementary excitation, and the new
mechanical mode damping becomes

¢, = 1127/ /1127 + 4332 = 0.252

which is close to what is designed for.

The various eigenmodes are identified one at a time. It may begin with
the mechanical loop alone, which is a second-order system, and the un-
damped natural mechanical mode frequency w, is found to be 4.707 rad/s.
The next step is an eigenvalue analysis of the fourth-order system of Fig. 3-1
without ur. Two pairs of eigenvalues are found, as shown in the table.
Because of the dynamic interaction between the electrical and mechanical
loops, there is a change in the mechanical mode eigenvalues, from + j4.707
to 0.295 + j4.96. But the frequency change is relatively small. The other
pair, which has a different frequency, belongs to the electrical mode. The
final step is the eigenvalue analysis of the entire system, including the supple-
mentary excitation ug, which is of the sixth order, and hence has two more
eigenvalues. The frequencies of the electrical and mechanical modes have
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some changes between the fourth-order and the sixth-order eigenvalue anal-
ysis. Therefore, the two new eigenvalues belong to the mode of control.

Summary of Section 3-3

In this section the principle and procedure of supplementary excitation
design of one-machine, infinite-bus system are presented, and a numerical
example of design is given. The basic idea is to provide extra damping to the
machine through the excitation system, in phase with the speed deviation Aw
at the oscillating frequency. The phase lag of the excitation loop must be
compensated, an adequate damping magnitude must be chosen, and a reset
block provided. The reset block is used to activate the control only when the
low-frequency oscillations begin to develop, and the control action is auto-
matically terminated after the system ceases to oscillate so that the control
will not interfere with the regular function of the excitation system.

The effect of the supplementary excitation control is significant, and the
designed damping is close to the value chosen.

From eigenvalue analysis, various eigenmodes of the one-machine,
infinite-bus system can be identified: the mechanical mode from the second-
order system, the electrical mode from the fourth-order systcm, and the
control mode from the sixth-order system. Should there be two mode fre-
quencies that are very close, for instance, the electrical and the mechanical,
they can still be distinguished from each other by artificially varying one of
the parameters, for instance, the electrical loop gain K, . This technique can
be developed to identify various modes of very high order electric power
systems.

3-4 THE DEVELOPMENT OF SUPPLEMENTARY
EXCITATION CONTROL

In this section some historical developments of supplementary excita-
tion control will be reviewed, and current development trends will be intro-
duced. More references can be found in Byerly and Kimbark [15].

Peace River Project of British Columbia Hydro

When the Peace River Project of British Columbia Hydro was developed,
dynamic resistance braking was used to improve the transient stability, and
supplementary excitation was used to enhance the damping of the low-
frequency system oscillations [1]. The generation at Portage Mountain was
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modeled as “one-machine” with fixed-shaft power input, and the Bonneville
Power Administration System as an “infinite bus” for the supplementary
excitation design. Many signals were examined and Aw was found to give
particularly good results, which was further confirmed in a field test [16].
{In the final application, the incremental accelerating power AP, was used as
sf\the supplementary excitation input. Jones and Luini pointed out in their dis-
cussion in Shier and Blythe [ 16] that when

AP, « AP, (3-61)
the incremental kinetic energy of the rotating system can be expressed by
-62
AKE:JAPadt: —JAPcdt (3-62)
Hence

Aw = —kJAPe dt, KE=1Jo? -~ (3-63)

IIn other words, the integral of the incremental accelerating power is pro-
! portional to the incremental speed Aw.

Moose River Project of Ontario Hydro

During the development of the Moose River Project of Ontario Hydro

[17], it was found that the damping effect of the amortisseur windings was
! quite small, that the speed governor could not contribute significant damping

to the low-frequency system oscillations due to the water inertia, and that a
rotating exciter was not as good as a fast-response rectifier exciter. The fast-

_response exciter was chosen and a supplementary excitation was designed.

A toothed steel wheel was mounted below the generator guide bearing, and
several shaft positions were sensed by magnetic pickups, which were pro-
cessed to produce the speed deviation signal for the supplementary excitation
input. Field tests showed that both dynamic and transient stabilities were
improved by the supplementary excitation control. In the discussion in
Dandeno et al. [17], Schleif and Hunkins reported that the damping effect
of the amortisseur windings was rather appreciable toward the higher end
of the low-frequency band of oscillations.

First Interconnection of Pacific Power Systems at Glenn Canyon

When the Pacific Northwest and Southwest Power Pools were first inter-
connected at Glenn Canyon [ 18], the generators with rotating exciters and
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voltage regulators were modeled on an analog computer as a one-machine, ‘
~infinite-bus system. The generator terminal frequency Af was used as the
: supplementary excitation input. Two phase compensation blocks were used
- to improve the system damping over a wide frequency range of low-frequency
| oscillations. A reset block was designed with a chosen time constant of 10 s
' to avoid the phase shift effect toward the lower-frequency end of oscillations.
The results of analog studies were further verified in field tests. In a discussion
in Schleif et al. [18] by Krahn, it is confirmed from digital simulation that
the low-order generator model without damper windings could be used for
the low-frequency oscillation study, which was used in the analog study.

deMello and Concordia’s Analysis

Most of the analytical results of deMello and Concordia [11] have been
introduced in the earlier part of this chapter. Considerations were given to
the design of a universally applicable stabilizing function under a wide range
of conceivable inertia, impedance, load values, and oscillating frequencies,
from 0.5 to 2 Hz with 0.1-Hz and 4-Hz extremities. The universal function
has the following form:

Aviger  60s(1 + s/8)? -
Aw (1 + 35)(1 + 5/20)%

(3-64)

In their discussion of system dynamics it was pointed out that although
K, of the mechanical loop was positive in most cases, it could be negative
for a very long transmission line with a heavy load. In such a case, K| Ad
would represent a negative synchronizing torque and the system might lose
stability at the first swing.

In investigating the voltage regulator effect, it was pointed out that while
a considerable large voltage-regulator gain was desirable for steady-state
operation, a much smaller gain was more appropriate in transient state.
The voltage-regulator gain could be reduced during the transient by a com-
pensating block (1 + sT,)/(1 + sTp)|s- ., where T, < T, resulting in T,/T,
only.

Complex Frequency Design of Supplementary Excitation

Since the electrical loop of Fig. 3-1 interacts with the mechanical loop,
the supplementary excitation control should probably be designed from the
mechanical mode complex frequency based on eigenvalue analysis of the

_entire system, not just from jo, of the mechanical loop alonc [19]. A pro-
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cedure for complex-frequency supplementary-excitation design may be out-
lined as follows.

a. Find the Mechanical Mode Complex Frequency ¢ + jo. It can be
found from an eigenvalue analysis of the entire system without uy.

b. Find the Phase’Lag of Gg(o + jo) Let the phase lag be
[ Gglo + jow) &y, <0 (3-65)

c¢. Design a Phase Lead Compensation for / Gg(6 + jo). If Aw is
chosen as the control input and if one compensation block is sufficient,

1 45T,
R sT, (3-462)
we shall have
1+ 5T,
y=0 -66
£ [ F5T, + (3-66)
or
L1+ sT)= (1L 4+ sT,)— 7 (3-67)
Let
¢ & tan" [(0T,)/(1 + oT,)] (3-68)
we shall have
T,
tan ' ——=¢ —y 3-69
an 1 + 0T, ¢ = ( )
therefore
t. —
1 an(é — ) (3-70)

" w—atan(p — 7)

The formulation can be modified for multiple-block phase compensa-
tion. For instance, if two identical blocks are used for the design, / Gglo + jom)
may be defined as

[Gyo +jw) 22y,  3<0 (3-65a)

and there will be no changes in other equations.
The formulation also includes the jw, supplementary excitation design
as a special case. By then, o equals zero and w becomes w,, in these equations.

d. Design an Adequate Damping Magnitude for the Mechanical Mode.
Equation (3-47) is still valid. But Egs. (2-48) and (2-49) must be modified as
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follows:
Dg = KcK5|Gels=c+ jol Gels =0 + jw (3-48a)
and 7
200, M
K| Gels=g+ jol Gils =0 + jo

. For the supplementary excitation design, an adequate {, must be chosen.
As stated earlier, only when the characteristic equation is in the normalized
form can we have a clear idea of the magnitude and degree of damping.
Because when the second-order system

[Ms* + Dgs + 0, K, ] A6 =0 (3-37a)

Kg = (3-49a)

- 1s normalized, it becomes
(s + 20,05 + 02)AS =0 (3-39)
the solutions of the characteristic equation are

s=(-latj1~Qw, - (3-71)

which corresponds to

s=a+jo (3-72)
Therefore

w, = /o* + @* |Cn| =0/ /0 + @* (3-73)
Note that

|-LaxjV/1-0l=1 (3-74)
‘In other words, the increase of positive damping or the negative real part of
an eigenvalue will not change w, but will rotate the eigenvalue locus counter-

clockwise as shown in Fig. 3-9 according to (3-71). Again the {, value may
be chosen as 0.1-0.3 per unit for this design.

Im

o+jw jwn

Re

Fig. 3-9 Shift (¢ + jw) counterclockwise.
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e. Design a Reset Block for uz. Same as (3-50).

f. Find the Figenvalues of the System with and without #;. An
example of the complex-frequency supplementary-excitation design is given
in Moussa and Yu [19], although the paper mainly deals with the dynamic
interaction between machines and loops. The mechanical mode eigenvalues
of machine 1 of (¢ + jw) design and of jw, design are as follows:

Machine 1 Without ug Desired shift (o £ jw) design Jjo,, design

Mechanical loop  0.336 + j5.13  —2.56 4+ j442  —2.56 + j4.42 -1.87 + j5.13

While the (¢ + jw) design gives exactly the desired damping, the jw, design
does not.

Damping and Synchronizing Torques of the System of Fig. 3-1

Since the damping torque and synchronizing torque are both important
to power system stability, they will be accurately calculated. In small oscil-
lations, the synchronizing torque is in phase with Ad or —jAw, and the
damping torque in phase with Aw or j Ad. Therefore, they can be calculated
as follows.

Example 3-4. Find the damping torque and synchronizing torque of
Fig. 3-1 for the system with supplementary excitation control.

Solution: Being a linear system, the superposition principle applies.
There are four components of AT, of Fig. 3-1:

AT|g, = K, AS
1+ sT,
AT, = KoK Kol + 5T,) A (3-75a)
O OK3KeKs + (1 + 5T Ks)(1 + sT)
K,K;KsK,

AT, = : AS 3-75b

s KKKy + (1 + sTiK)(1 + sTy) ( )
AT sT Kl + sTy) K,K;3K, R

e = 1% sT (L+5T,) K3KeKa + (1 + sTiuKa)(1 + sTp)

To calculate AT, g,, both K4 and K, blocks may be considered as the nega-
tive feedback; to AT,|¢,, only K,; and to AT,|,_, the reset and compensation
blocks are in series with the transfer function of AT, . Let

AT, = AT)x, + AT)x, + AT}, + AT)].. (3-76a)
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We now have the synchronizing torque component ATy and the damping
torque component AT as follows:
ATy = AT,
AT, = AT,

component in phasce with Ad

(3-76b)

component in phase with Aw

For the calculation, the mechanical mode eigenvalue ¢ + jo must be used
for s.

Coordination of Power System Stabilizers

To date, the supplementary excitation or PSS design has been based on
the one-machine, infinite-bus model. After the installation of PSSs on most

-machines of a large electric power system, low-frequency oscillations may

still occure becuase of the lack of coordination of these stabilizers designed

- from the one-machine, infinite-bus model. In recent years, progress has been

'made in coordinated application of power system stabilizers [8] and coor-

dination of power system stabilizers already installed in power systems
[9, 10].

In deMello et al. [ 8], a ten-machine system is investigated. Each machine
is modeled as a second-order system and an eigenvalue and eigenvector
technique is used to find where in the system the power system stabilizers
are most needed. For each eigenvalue, there is an eigenvector that has ten
components, and the machine corresponding to the largest eigenvector
component will need the PSS most. The search begins with the eigenvector
corresponding to the eigenvalue with the lowest frequency. The results are in
full agreement when each machine is modeled as a fourth-order system [20].

Progress also has been made in coordinating the existing power system
stabilizers of multimachine systems [9, 10]. In Gooi et al. [ 10], the stabilizers
for a thermal unit, a nuclear unit, and a hydro unit of an operating system
are coordinated to optimize their performance by adjusting the PSS param-
eters using a multimachine power system model and an iterative procedure.
The multimachine model 1s an extension of Fig. 3-1; each of K, K,, ..., K
parameters becomes K ;;, K,;;, etc. Derivation of the multimachine model
will be given in Chapter 6.

The ultimate solution of the stabilization of low-frequency oscillations
of a multimachine system should be a multimode stabilizer design based on

the multimachine model.

Summary of Section 34

This section has reviewed some important historical developments of
PSS design including the Peace River Project of B.C. Hydro, the Moose River
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Project of Ontario Hydro, the first interconnection of the Pacific Power
system at Glenn Canyon, and a systematic analysis by deMello and Con-
cordia. A complex frequency design procedure of the supplementary excita-
tion was then proposed, and damping and synchronizing torque calculation
procedure given. Finally, the coordinated application of stabilizers to a
multimachine system and the coordination of existing stabilizers of power
systems were introduced. Since the PSS design so far is based on a one-
machine, infinite-bus model, a procedure for multimachine PSS design
should be developed in the future.

3-5 IMPROVING SYSTEM DAMPING
WITH GOVERNOR CONTROL

This section will introduce a supplementary governor control to enhance
the damping of low-frequency oscillations. It was tried [21] but discontinued "
since the development of supplementary excitation control. As in the case of
fast valving, which was developed 50 years ago [23] and has gained renewed
interest in recent years, we shall not entirely rule out the possibility of re-
development of supplementary governor control in the future.

First Try at Grand Coulee

When an interconnection of the Northwest and Southwest Power Pools
of North America was tried at Grand Coulee, a supplementary governor
control was designed for a large hydrogenerating unit to damp the low-
frequency oscillations of the entire system [21]. The unit was situated at a
strategic point, the control was effective, but the hard-working governor
oil pumps developed serious overheating problems due to prolonged opera-
.tion. An interesting point that should be noted was that the dashpot transfer
function was removed from the supplementary governor control design.
Unaware of the earlier development [21], another supplementary governor
control was designed later, independently, in Moussa and Yu [22].

The Effect of a Governor of a Hydroplant on System Damping

Consider again the transfer functions of Hovey’s hydrogovenor of Fig.
2-13. For typical data of hydropower plants given in Ramey and Skooglund
[32] of Chapter 2, the AT, (jw,) locus of Hovey’s system with a dashpot is

fshown in Fig. 3-10a, and without the dashpot in Fig. 3-10b [22]. Since a
“supplementary mechanical damping torque AT,, will be in phase with — Ao,
a governor without dashpot should be used for the control design.
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Fig. 3-10 AT, (jw,,) loci of a hydroplant with and without dashpot.

A Supplementary Governor Control Design

Our purpose is to design a supplementary mechanical damping in phase
with —Aw according to Fig. 3-7 and the first equation of (3-36a),

ATy = — Dy Aw (3-36a)

Let the hydraulic power transfer function be examined first. Since the water
time constant T, is in the order of seconds and the mechanical oscillating
‘frequency is in the order of radians per second, the last block of Fig. 2-13

becomes

AT 1~ T,

m__ - 7w A “2 3_7
g 1 + 0.557T, (=F0)

$= jwon
The minus sign is exactly what is desired for the supplementary governor
control design.

With the dashpot transfer function removed from Fig. 2-13, the design
procedure is very simple; we shall have one compensation block for the
governor servo, another for the actuator servo, an adequate stabilizer gain,
and a reset block. Therefore, a general form of the supplementary governor
control for a hydro plant may be approximated by

sT 14+ sT,/o 1 + 5T,

K Aw 3-78
o T BMITST 1 + 5T, 1+ 5T, E78)

A numerical example is given in Moussa and Yu [22],

_ 22s 14+ 04s 1 + 0.5s ®
“6 T 1351 + 0.05s 1 + 0.05s

The ATy jw, ) locus of the system with the supplementary governor control is
shown as Fig. 3-11.
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Fig. 3-11 AT, (jw,,) locus of system with supplementary governor control.

The mechanical mode eigenvalues of the system for different electric
power outputs are

P,,(pu) 0.30 1.0 1.2
Withug ~ —0.536 + j5.19  —223 + 454  —385 + j4.10
Without  —0.049 + /5.14 0.238 + j4.60 0.590 + j3.57

For details, see Moussa and Yu [22].

Summary of Section 5-3

In this brief section the supplementary governor control of low-frequency
oscillations of a hydroelectric power system and a simple design procedure
are presented. Although it is currently not the practice, we should not rule
out the possible development of such a control scheme in the future, especially
for long-term dynamics studies.

3-6 SUMMARY

In the first two sections of this chapter, a one-machine, infinite-bus
electric power system for supplementary excitation control design is derived,
and methods to find the initial currents, voltages, and torque angles are
given. The model is derived for the low-frequency oscillation studies. Follow-
ing that, the principle, procedure, and example of supplementary excitation
control design are presented in Section 3-3, and some important historical
developments are reviewed and current developments introduced in Section
3-4. Finally, a supplementary governor control to improve the damping of
a hydroelectric power system is presented in Section 3-5.

The main concern of this chapter is to increase the damping of the
mechanical mode low-frequency oscillations of a one-machine, infinite-bus
system, and the basic concept of the supplementary excitation or governor
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control design is the phase compensation of the control signal input. There
are, however, a general class of power system dynamic problems that in-
volves many oscillating modes and many machines; and both the damping
and the synchronizing torque are of great concern. These problems and
control design techniques will be presented in the subsequent chapters.

Problems

3-1 Find the initial steady-state current and voltage in d and q components
and the torque angle of a synchronous generator in a one-machine, infinite-
bus system with generator terminal voltage v, = 1.02 pu, power output
P, =09 pu, and infinite-bus voltage v, = 1.06 pu. The system parameters
corresponding to Fig. 3-2 are x4 = 1.0, x, = 0.6, x; = 0.2, Z = 0.2 + j1.0,
Y =0pu
32 (a) Find the Ky, K,,..., K, constants of Fig. 3-1 for the system of
Problem 3-1;

(b) Find the eigenvalues of the system without a supplementary control.
Assume that T, = 7.76 s, K, = 50, T, = 0.05s.

3-3 (a) Designa supplementary excitation control for the aforementioned
system using Aw as the control input and w, for the design, and assuming
one compensation block with T, = 0.1 s, one reset block with T =5 s,
and a damping coefficient {, = 0.3 pu;

(b) Find eigenvalues of the system with the supplementary control;

(c) Find the damping and synchronizing torque of the system with and
without the control.

3-4 If a governor transfer function as shown in Fig. 3-4P is included in the
low-order system model, what will become Fig. 3-1 and the state equation
(2-56)? P, approximately equals T,, when @ is per unit.

1
AP,
9 | 1+sTy m

Fig. 3-4P A two-lime constant governor.
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Chapter 4 Linear Optimal Stabilization
of Electric Power Systems

This chapter will develop a general linear stabilizing technique for
electric power systems, which is not only applicable to the one-machine,
low-frequency, mechanical-mode oscillations, but also applicable to multi-
machine, multimode high- and low-frequency oscillations. One example is
the optimal stabilization of the low-frequency oscillations of a multimachine
system, and the other is the effective stabilization of the subsynchronous
torsional oscillations of several possible modes of the steam turbines, gen-
erator, and exciter mass-spring system.

The stabilizing technique aforementioned was originally developed by
control engineers and is known as linear optimal control. The system to be
controlled is described by linear state equations and the control is designed
by minimizing a function of both state deviations and control effort. When
the technique is applied to electric power systems, however, further develop-
ments are necessary, which will be presented in this chapter. For conciseness,
some abbreviations will be adopted: LOC for linear optimal control and
LOS for linear optimal stabilization.

4-1 PRINCIPLE OF LINEAR OPTIMAL CONTROL (LOC)

The LOC of electric power systems presented in this chapter is derived
from the minimization of the state variable deviations and control effort
at the same time. The system state equations, or the state variable equations,
must be sought first. A performance index of the system is then chosen, which
shall be a function of both the state deviations and the control effort. Finally,
the state equations are appended to the performance index by a co-state

95



96 4  Linear Optimal Stabilization of Electric Power Systems

variable vector to find the linear optimal control (LOC). The co-state variable
vector in modern control theory corresponds to the Lagrange multipliers
in classic mechanics.

The System State Equations

Since modern control theory and computation technique are all devel-
oped with the state equations, a proper model should always be chosen and
the state equations for a system formulated before an optimization technique
is applied to find the optimal control.

After a proper model is chosen, the model for the system without control
is first described by a set of nonlinear differential equations written in the
form of

X = f(x) (4-1)

where x is the state variable vector. For instance, the state variable vector
of (2-56) is

X = [C(), 5’ lpd? l//Fs ll/D’ po:lT (4'2)

For the LOC design, the nonlinear state equation of the system without
control must be linearized with respect to an initial steady state represented
by w,, &y, ctc. Including control, the linearized system state equation
becomes

AXx = AAx + Bu (4-3)

For a power system with both excitation and governor control, the control
vector becomes

u= [ug, ug]" (4-4)
For conciseness, however, Eqg. (4-3) will be written hereafter simply as
X = Ax + Bu (4-5)

In (4-5), x is called the state vector, u the control vector, A the system matrix,
and B the control matrix. Although A is always a square matrix, B is usually
a rectangular matrix and the number of columns of the B matrix depends
on how many feedback loops are used for the design.

There are generally two types of linear differential equations: equations
with time-varying coefficients such as the sine and cosine functions associated
with inductances when synchronous machines are described in a-b-c phase
coordinates; and equations with time-invariant coefficients or constant
coefficients such as the inductances when the synchronous machines are
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described in Park’s d-q coordinates. Since Park’s equations are used for
most power system dynamic studies, our main concern is with the linear
differential equations with constant coefficients.

The Performance Index

For the LOC design of an electric power system, a performance index
of the quadratic form is usually chosen:

1 o
J = QJ [x"Ox + u"Ru] dt (4-6)
0

where Q is the weighting matrix of the state variable deviations and R that
of the control effort. In most cases, both Q and R are chosen as diagonal
matrices. Therefore, all terms in the brackets have the form of energy. For
instance, 3q,,, - Aw? is the kinetic energy of the rotating system, g, Ad? the
potential energy of the system, and so on. In classical mechanics, they are
called the generalized energy functions [ 1, 2].

The performance index is also called the performance function, the cost
function, or the cost index bydifferent authors, and the choice of Q elements,
as found from power system dynamic studies, depends on many factors, for
instance, on the units chosen for the individual state variables. Whether the
unit of the speed Aw is in rad per second or in per unit of value certainly
makes the values of Aw, and hence the choice of gq,,,, quite different.

The Linear Optimal Control (LOC)

The LOC is derived from the minimization of the performance index as
described by Eq. (4-6) in conjunction with the state equation (4-5). Some
theories are involved that can be found in control literature [ 3-5]. The major
step of the minimization is to append (4-5) to (4-6) to form a Hamiltonian
generalized-energy function,

H 2 3[x"0x + u"Ru] + p"[Ax + Bu] (4-7)

The unknown vector p corresponds to the Lagrange multipliers in classical
mechanics and is called the co-state vector in modern control theory.
Note that the Hamiltonian energy function is a scalar, and there will be
no effect on results whether or not the RHS of (4-7) is transposed for dif-
ferentiation.

To find the LOC, the following condition must be satisfied.

CH/0u = 0 (4-8)
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Carrying out the differentiation, we shall have
Ru+ B'p=0 (4-9a)
and the control law
u= —R™'BTp (4-9b)

Note that the term $u'Ru must be differentiated twice, once as it is and the
second time as its transpose. Note also that the term pT Bu must be transposed
before it is differentiated with respect to u. The co-state vector p remains
to be found.

State and Co-state Equations

In classic mechanics, the Hamiltonian H is generally related to the
Lagrangian L as follows

H(p, x,1) = x"p — L(x, X, 1) (4-10)

where H and L are both functions of time.
Let us find the derivatives of both sides of (4-10) separately. From the
LHS of (4-10), we have

H 0H OH
dH = dea— + dxT— + dt — (4-11)
dp Ox ot

From the RHS, we have

oL oL oL
dH = (d5p + dp™%) — (dx™ 3= 4 ax™ 2 4+ (4-12)
Oox ox ot

Comparison of the last term of both equations gives

oH 0L

- = 4-13
ot ot ( )

which is not required in our studies as we are dealing with the time-invariant
power system state equations.
To continue the derivation, the Lagrange—Euler equation of the con-
servative system in classic mechanics [1, 2] may be applied,
L.l (9":> (4-14)
dx  dt\ox

Since in forming the Hamiltonian H of (4-7) we have introduced a new un-
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known p, we may also make a new assumption that

oL
P (4-15)

ox
resulting in the cancellation of the first and the fourth terms of the RHS of
(4-12). Differentiation of p and application of the Lagrange—Euler equations

yields
d (0L 0
)= — | — = i 4_
P=u <0x> 3% (4-16)
Comparison of the dx" terms on the RHS of both {(4-11) and (4-12) gives
0H
p=——=— (4-17a)
ox
Finally, direct comparison of the dp" terms of both equations results in
0H
X =— (4-17Db)
op

Equations (4-17b) and (4-17a) constitute the state and co-state equations of
the system.
We shall apply these results to (4-7). For conciseness, let

S £ BRIBT (4-18)
From (4-9) and (4-18), the control term of Eq. (4-5) becomes
Bu= —BR 'BTp= —Sp (4-19)

Partial differentiation of H of Eq. (4-7) with respect to x and p, respectively,
gives

cH
%= = Ax + Bu= Ax — Sp

I —

4-20
- (4-20)

—

p= —(Qx + A'p)

There is no surprise that we have obtained the same state equations (4-5)
in (4-20) from the new formulation, but we also have obtained the co-state
equation in (4-20), and they may be written together as

m B [_2 :Hm (4-21)

The last equations are very useful in LOC design.
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Summary of Section 4-1

In this section, the principle of linear optimal control is presented and
the control law derived. It is based on the concept of minimization of the
state variable variations and the control effort at the same time. To find
the control, a performance index of the quadratic form is chosen, to which
the state equations are appended to form a Hamiltonian by Lagrange
multipliers or a co-state vector, and the Hamiltonian is minimized. The

state equations are then rederived and the co-state equations are found from
the Hamiltonian. Finally, the state and co-state equations are written to-

gether for LOC design.

4-2 SOLUTION OF THE RICCATI MATRIX EQUATION

To find the LOC, it is necessary to find the solution of the co-state variable
vector p. Since we are dealing with the linear state space, the co-state variable
vector p can be related to the state variable vector x linearly by

p = Kx (4-22)

where K is called the Riccati matrix, which is a square matrix. Therefore, the
solution of p can be found if K is found.

The Riccati Matrix Equation

Consider the general case that K is also a function of time. The time
derivative of p of (4-22) becomes
p=Kx+ Kx (4-23)

Note that each term of (4-23) is a column matrix, and the results from the
differentiation also must be written as such. Substitution of x and p of (4-21)
into (4-23) and replacing p by Kx gives

—(Q + ATK)x = Kx + (KA — KSK)x
or
KA+ A'K — KSK + Q= —K (4-29)

which is the Riccati matrix equation [ 3, 4]. Since the transpose of the entire
Riccati matrix equation results in

AK" + K'"A - K'SK" + Q= — K" (4-25)
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In other words, KT also satisfies Eq. (4-24), K is a symmetric matrix, and
KT=K (4-26)
Note that Q and R are symmetric matrices. So is S, since
S*=(BR'B*Y = BR™B"=§ (4-27)

When synchronous machines of a power system are described in Park’s
d-q coordinates, the coefficients of the system equations are all time in-
variant. Therefore, we have a time-invariant system, and hence

KA+ A'"K — KSK + Q =0, K = const (4-28)

Iterative Solution of K

Two methods of solving the Riccati matrix equation (4-28) for K will be
presented in this book. Consider an iterative solution first. Let (4-28) be
written

K(A —SK)+ (4 — SK)TK + (Q + KSK) =0
or (4-29)
KA.+ ATK+0' =0
where
A, & A — SK, Q0 =0 + KSK (4-29a)
Note that A, represents the controlled system matrix, since
X =Ax + Bu= Ax — Sp=(4 — SK)x (4-29b)

according to (4-20) and (4-22).
The form of (4-29) lends itself to an iterative solution,

KWAW 4 AI(.i)K(.i) + Q«(j) =0 v
where (4-30)
A(CJ) = A — SKU*H, Q'(j) — Q 4+ KU-hggU-n

But the system corresponding to A{! must be already stable according to
Puri and Gruver [6]. In other words, all eigenvalues of A" must already be
on the LHS of the complex variable plane. Wedman [7] developed an eigen-
value shift technique using the sensitivities of system eigenvalues with respect
to the K elements to obtain an A{". Siggers [8] came up with a still simpler
method by assuming an artificial large mechanical damping to start the
computation, but gradually removing it when the convergence was underway.
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Closed Form Solution of X

The Riccati matrix K also can be calculated from the eigenvectors of
the state and co-state system matrix. Let the matrix of (4-21) be

NN )
[M]:[_Q _AJ (4-31)

which is a 2n by 2n matrix for an nth-order system. The eigenvalues of this
matrix on the complex variable plane are so distributed that they are sym-
metrical not only with respect to the real axis but also to the imaginary axis
[9]. Let the 2n eigenvalues be written as a diagonal matrix

[M%F‘Aj, [A-]= —[AL] (4-32)

where [A_] represents the eigenvalues on the LHS and [A.] those on the
RHS of the complex variable plane, respectively.
Since for each eigenvalue, a corresponding eigenvector can be found from

[(M][x] = [x]%, i=1,...,2n (4-33)

where x; is a column matrix and /; a scalar, the 2n eigenvector equations may
be written in matrix form [ 10] as

[M][XT = [X][A] (4-34)

Here [A] is a diagonal eigenvalue matrix with 2n elements, and [ X ] is a 2n
column eigenvector matrix with 2» elements per column.
Let the eigenvector matrix be partitioned into four n by » matrices such

that
[X]= [X‘ X"'J (4-35)

where the first column partitioned matrices corresponds to [A_] and the
second column to [A,]. It can be shown that [ X ][X,]™" satisfies the
Riccati matrix equation (4-28).

Example 4-1. Show that [ X, ][ X;]| ' satisfies the Riccati matrix equa-
tion (4-28).

Solution: Let Eq.(4-34) be written in the partitioned matrix form accord-
ing to (4-35) and (4-32). We shall have

s e[ ST ] e
_Q —'AT Xll XlV XII XIV A+
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Zpue—o - 4-36) can be expanded into four matrix equations. Considering
these associated with [A ] alone, we shall have

AX,— SX; = XA_ (4-37a)
—0X, - ATX; = XyA_ (4-37b)
Solving for A_ from (4-37a), substituting the result into (4-37b), and post-
multiplying both sides by X ! gives
—Q — ANXu X1 ) = Xu[ Xy HAX, — SXy)]X(!
or
(Xu X1 I)A + AT(XHXFI) - (XIXXI‘I)S(XIIXI_I) + Q=0 (4-38)

Since (X X7 !) satisfies the Riccati matrix equation (4-28), it is the solution
of the Riccati matrix K of Eq. (4-28):

K= XuX;' (4-39)
The linear optimal control now becomes
Bu= —Sp= —SKx = —S(X; X[ ")x (4-40)

Note that for an nth-order electric power system, K, S, Xy, and X, are all
n by n matrices.

Summary of Section 4-2

In this section the Riccati matrix equation is derived, and two methods
of solving the matrix equation are given: the iterative solution, which was
used in the early development of linear optimal stabilizer design for power
systems, and the closed-form solution in terms of eigenvectors, which has
been used ever since [ 11, 12].

There are still some problems of the LOC design that must be addressed,
for instance, the selection of the weighting matrices Q and R, the design of
an LOC over a wide range of power system operating conditions, and so on.
Before applying the LOC design technique to high-order electric power
systems, let us employ a simple numerical example to demonstrate the
effectiveness of LOC in the next section.

4-3 LOC DESIGN OF A SECOND-ORDER SYSTEM

For the LOC design of an electric power system, an adequate model for
synchronous generator and control loop(s) must be chosen, which is usually
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of a high order and invariably involves digital computation. To demonstrate
the effectiveness of LOC, we shall briefly present a second-order system LOC
design.

Example 4.2. Consider the mechanical loop of Fig. 3-1 alone and design
an LOC for the system using the mechanical torque signal as the control
input as shown in Fig. 4-1. The system dataare M = 10s, D = 0, K, = 0.5,
f = 60 Hz.

(a) Find the eigenvalues of the system without control.

(b) Design an LOC for the system and find the eigenvalues of the system
with control.

Solution: (a) The state equations of the system without control may be

written
Ad _ 0 377 [ AS
%) ~K, /M D/M | Aw

For the data given, the characteristic equation of the system becomes

—A 3 0 1241885 =0
005 —2

and the eigenvalues are
A= 1j4342 elec. rad/s

which represents an oscillatory system since there is no damping.
(b) The system with control may be written

AS _ 0 37740 ] o]u
A —K,/M D/M || Aw M|t

For the data given,

L] ~[ous "0 Jau] + o]

up 1 w |27 ad

+ D+sM S

Fig. 4-1 A second-order electric power system.
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and the system and control matrices become

a0 ¥ g _fo
~005 0 | 0.1

For the LOC design, let

025 0]
oo

-

which means that, in selecting the Q matrix, the speed deviation is weighted
four times that of the angle deviation. There is a good reason for that, as
it is the acceleration that causes the speed deviation, which in turn causes
the angle deviation.

Having decided B and R, R being unity, we shall have

s=BrB =| %o 017=]0 ©
0.1 0 001

Since K is a symmetric matrix, we may write

o0 0k k]_[ o 0
0 001k, ks 001k, 001k,

and we found that only k, and k5, the second row of K elements, are required
for the LOC design. Applying (4-28), we have

[k, sz[ 0 377}{0 —0.05:|[k1 kz:l
ky kyl_—005 0 377 0 k, ks
[kl kz][o 0 ][lq k{' [0.25 0}
— + =0
ky k310 0.01]1Lk, ks 0 1
From the first column and the first row we have

k2 + 10k, —25=10, k, = 2.071 or —12.07

and from the second column and the second row we have

0.01k2 + 754k, + 1 =0,  ky = + /1 + 754k,

Since the state variables and the co-state variables are co-related by the
Riccati matrix K linearly in the state space, K elements must be real. There-
fore, k, equals —12.07 must be rejected because it leads to an imaginary k-.
Next, the negative k5 solution also must be rejected because it leads to an
unstable system. The final solutions of k, and k are

k, = 2071,  ky = 3953
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and the LOC becomes

0 0 A
Buy = —SKx = ~
0.02071 39531 Aw

The eigenvalues of the controlled system are generally found from
|[A—SK]—-1]=0
where [ is an identity matrix. Therefore we have

-2 377
—-0.707 — 1 —3.953

or
4%+ 39531 + 2665 =0
The eigenvalues of the controlled system are
A= —1.9765 + j4.769
and the damping factor
{, =Rel/|l| = —0.383

which characterizes a fairly stable system.

Summary of Section 4-3

To demonstrate the effectiveness of LOC, a second-order electric power
system is chosen for the control design. The initially oscillatory system is well
stabilized by the LOC. Although the power system in the example is simpli-
fied, the effectiveness of LOC is convincingly demonstrated.

4-4 EARLY EXPERIENCE WITH LOC DESIGN

When the principle of LOC was first applied to a power system, the main
difficulties in design were the solution of Riccati matrix K and the selection
of the weighting matrices Q and R. The iterative process of solving K was
improved [7, 8] and the eigenvector solution developed (Example 4-1 and
[9]). At that time, no example of high-order LOC design could be found in
control literature, and unit matrices were chosen for Q and R.

The first application of LOC to power systems was to design a stabilizer
for a hydroelectric power plant [13].
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Modeling a Hydroelectric Power System

For the linear optimal stabilizer (LOS) design, the system was modeled
as a one-machine, infinite-bus system, with only one major generating plant
left and all other plants being replaced by equivalent impedances with
negative resistances. The synchronous generator was modeled as a third-
order system, the exciter and voltage regulator as a second-order system, and
the governor and hydraulic power as a third-order system, and the trans-
mission system was described by algebraic equations. It was readily found
that although the dashpot of a governor was useful to improve the governor
performance itself, it has a tendency to prolong system oscillations follow-
ing a disturbance; it was removed from the governor model for the design.

The Selection of the Weighting Matrix Q

Figure 4-2 shows the swing curve of the hydroelectric power system
without any supplementary control. It was assumed that there was a large
angular swing but other state deviations were zero. This could happen after
a severe fault occurred to a system. The system was very oscillatory and
would take a long time to reach the steady state.

To design an LOC to improve the stability of the system, two Q matrices
were chosen: one as a diagonal matrix with all unit elements

0 = DIAG[1,1,1,1,1,1,1,1]

and the other also as a diagonal matrix but with q,, and q,; weighted ten
times larger than the other state variables

0 = DIAG[10,10,1,1,1,1, 1, 1]

A3

2 4 6 8
' 1 I 1 1 1 1

:FIME (s)

Fig. 42 Swing curve of the system without any supplementary control.
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Fig. 43 Swing curve of the system with LOC Q = DIAG][1,1,1,1,1,1,1,1].

Nonlinear Simulation Test

With the LOC designed, the system was given a nonlinear simulation
test, by which the system was described in detail by high-order nonlinear
differential equations. Many nonlinearities could be included, but the most
important ones were the ceiling voltage of the excitation system and the
speed and opening limits of the governor. Other nonlinearities are the product
of variables such as the torque components ig, and i, and the speed
voltages wyry and wy,. The saturation of the magnetic circuit was not con-
sidered in this study.

Only the nonlinear simulation test results of the Aé swing curves for the
system with LOC are recorded here as Figs. 4-3 and 4-4 for comparison.
The oscillations in Fig. 4-2 are stabilized as shown in Figs. 4-3 and 4-4, and
the effect of LOC 1s noticeable. It is also noted that the choices of Q make the
results quite different.

Differences in LOC and Conventional PSS Designs

Whereas the objective of the conventional PSS design as presented in
Chapter 3 is to improve the system mechanical mode damping alone, that of
the LOC design is to minimize the system state variation in conjunction
with the control effort. The minimization of state variation does imply that

Ad

2 4 6

TIME (s)
Fig. 44 Swing curve of the system with LOC @ = DIAGJ[10,10,1,1,1.1,1,1].
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not only the system damping but also the synchronizing torque are being
improved. The other difference is in the realization of control schemes.
Whereas the conventional PSS has been designed with a single signal input
using phase compensation and for a narrow band of oscillating frequencies,
the LOC synthesizes the control input from many state variable signals that
themselves have different phases, has no need of compensation blocks, and
is good over a wide band of frequencies. Still another and probably the most
significant difference is that the conventional PSS design is based on a one-
machine infinite-bus model, whereas the LOC design can be readily applied
to multimachine electric power systems.

Summary of Section 44

In this section, the first application of LOC to stabilize an electric power
system is briefly recapitulated. The hydroelectric power plant is modeled
as an eighth-order system, a third-order for the synchronous machine, a
second-order for the excitation, and a third-order for the governor and
hydraulic power. Two performance indices with different weighting matrices
were chosen, and two LOCs were designed. From the nonlinear simulation
tests it was found that the LOC of electric power systems is very effective
and that the selection of the weighting matrix Q is very important to the LOC
design. Toward the end of the section, the differences in LOC and conven-
tional PSS designs are discussed.

4-5 LOC DESIGN WITH DOMINANT EIGENVALUE SHIFT

Since the selection of the weighting matrix @ is very important to the
LOC design, the selection must be done systematically. One idea is to link
the selection with the left-shift of the dominant eigenvalues of an electric
power system as much as possible within the exciter and governor’s capabil-
ity, which will be developed and applied for the LOC design in this section
[11,12].

The dominant eigenvalues are the eigenvalue pair closest to the imagi-
nary axis if they are already on the LHS of the complex plane; there will be

no system eigenvalues on the RHS of the complex plane as long as there is
an LOC.

General Procedure of LOC Design

Before presenting an algorithm for the selection of the weighting matrix
QO with dominant eigenvalue shift for the LOC design, the general procedure
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of LOC design may be recapitulated as follows:

(a) Select a proper linear model for the electric power system and obtain
the state equations in the form

X = Ax + Bu (4-5)
(b) Select the weighting matrices Q and R of the performance index
J= %Lm [xTOx + u"Ru] dt (4-6)
(c) Construct the state and co-state system matrix M
M=[ & =3 :l (4-31)
—Q —AT
where
S 4 BR™'BT (4-18)
and compute the eigenvalues
A= | (4-32)
L A,
and eigenvectors
o (4-35)
| Xy Xy
(d) Calculate the Riccati matrix K and the control Bu:
K= X,X7', Bu= —SK (4-39), (4-40)

(e) Find the eigenvalues of the system with LOC
X =Ax + Bu= (A — SK)x (4-29a)

(f) Using a nonlinear model for the system, including especially the
controller’s limits such as the excitation ceiling voltage, find the dynamic
response of the system to a given disturbance.

An Algorithm of LOC Design with Dominant Eigenvalue Shift

Figure 4-5 shows an algorithm of LOC design [11] by selecting the
weighting matrix Q with the dominant eigenvalue shift:

(a) Begin with an initial weighting matrix Q, say, a unit matrix.
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yes

previous K

Ml

Fig. 4-5  An algorithm of LOC design with dominant eigenvalue shift.

(b) Find the state and co-state system matrix M, the eigenvalues A, the
eigenvector matrix X, and the Riccati matrix K.

(c) Determine whether the controller has exceeded the exciter voltage
limit and/or the governor limit. If not, proceed with the dominant eigenvalue
shift. If yes, stop and print K of previous results.

(d) For the shift

A=+ Al Al < 0 (real) (4-41)

each weighting matrix element is changed by small amounts and calculated
from the eigenvalue sensitivity 4 ,,

Ag=Ail,, Agq<c (4-42)

where 4, is the sensitivity of the dominant eigenvalue with respect to a Q
element

Ay & (@M)0q (4=43)

(e) Update Q and reenter the interative loop.
(f) Reorder the eigenvalues for the next shift.

After a dominant eigenvalue shift, the eigenvalues of the system will move
with respect to each other, and they can be redivided into three groups:
the most dominant eigenvalue pair; the less dominant eigenvalues, some
of which may have negative real parts five to ten times the dominant ones;
and the rest. Only the dominant ones need be left-shifted, the movement of
the less dominant ones to the right will be prohibited, and the movement
of the rest eigenvalues shall be free. For details, sece Moussa and Yu [11].

The calculation of eigenvalue sensitivity with respect to a Q element is
shown in Example 4-3.

Example 4-3. Find the sensitivity of eigenvalue 4; of the system with
LOC with respect to g or the element of the weighting matrix Q.
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Solution: The eigenvector x; of the state and co-state matrix M is cal-
culated from

Mx; = A;x; (4-44)
and the eigenvector v; of MT from
MTUi - /{ivi (4-45)

Note that M and M" have the same set of eigenvalues but different eigen-
vectors.

Partial differentiation of (4-44) with respect to the weighting matrix
element g gives

M’qxi -+ Mxi’q = /.ul-’qx,» —+ lix,»‘q (4-46)

Note that each term of the preceding equation is a column matrix. Premulti-
plying each term of the last equation by z;" and applying (4-45) yields

Aig = viTM,qx,-/Ci (4-47)
where
tlx, = C, (4-48)

which is a scalar. Since the eigenvector matrices may be written

X, X X — X
X [ I m}, V= [ 13% u} (4-49)
X" XIV _Xlll XI
For the ith row of [ X}y, — X ;"] and the ith column of [ X, X;;]"

n

Ci = ‘21 [XIVi(j)Xli(j) - Xllli(j)Xlli(j)] (4‘50)

J=

wherej=1,...,i,..., n Finally

[ 0 O} [ : O]
AM = , M, = (4-51)
—-AQ 0 ' -1 0

where I is an identity matrix. Therefore

A __1_ _— — 0 0 Xl )
Aig = Ci[XIVi () — X (J)][—I 0:|l:XIIi(j):|

1
= a XIIIiT(j)XIi(j) (4‘52)

Generally, there are n elements of Q. Therefore

Ai‘q = [';“l-,ql7/1i,q27"'7/l "")'i,qn]T (4'53)

iqjs
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Linear Optimal Stabilization of a One-Machine, Infinite-Bus System

The dominant eigenvalue shift technique of LOC design was applied
to the linear optimal stabilization of a one-machine, infinite-bus system [ 11].
Six cases were investigated, including the system without supplementary
control and the system with a phase-compensation supplementary excitation
control. For comparison, they are identified as follows:

system without any supplementary control, u = 0;

system with a phase-compensation excitation control, ugc;

system with a linear optimal excitation control, u;

system with a linear optimal governor control, ug;

. same as case 4 but without dashpot, ug;

system with linear optimal excitation and governor control, ug plus ug. .

Su s L~

For the studies, the following models are used:

X = [AlpFW AUF7 Aé; Aw)T
x = [AYg, Avg, AS, Aw, a, a;, g, h]"
x = [AYg, Avg, AS, Aw, g, h]"

The first model is used for u = 0, ugc, and ug studies, which is essentially the
same as Fig. 3-1; the second model for ug study, which also includes a
governor with dashpot; and the third model for ug and ug plus ug. studies,
which also includes a governor but without dashpot. In the second model,
Hovey’s original governor transfer functions are used, of which a; corre-
sponds to the dashpot feedback d of Fig. 2-13, and h, the waterhead, can be
replaced by the mechanical torque output 7, as shown in (2-81) and (2-83)
of Chapter 2. In the third model, the actuator time constant is neglected but
not the permanent droop.

Applying the dominant eigenvalue shift technique presented in this sec-
tion, four LOCs corresponding to ug, ug, ug , and ug plus ug. are designed.
Typical Q matrices from the dominant eigenvalue shift LOC design are

0.e = DIAG[2524, 0, 914, 23856]
Queuce = DIAG[1.42, 0, 0.0859, 25.8, 82.28, 0.025]

Although it is very difficult to find a general rule for the choice of all weighting
matrix elements since most state variables are different physical quantities,
like speed, flux linkage, governor opening, and so on, one result clearly
emerges that g,,, is always much larger than g,;. There may be two reasons:
one is that it is the Aw change that causes the Ad change; and the other is
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that while A¢ is in radians, Aw is per unit, or (27f') rad/s, which is a much
larger unit but is a time derivative.

A set of swing curves from the nonlinear simulation test results chosen
from Moussa and Yu [11] is shown here as Fig. 4-6. For all tests, a three-
phase fault for five cycles was assumed on one of the double-circuit trans-
mission lines followed by the faulted line removal, fault clearing, and the
system restoration at the end of 30 cycles. The system without any supple-
mentary control is unstable (curve 1). Although the system with conventional
PSS or the phase-compensation supplementary excitation (curve 2) is stable,
it has not quite settled down at the end of 3 s. It is interesting to note that
the system with all LOCs is stabilized within 3 s, the most effective one is the
linear optimal excitation and governor control without dashpot (ug plus ug ),
and almost equally effective but having much simpler design and instru-
mentation is the linear optimal excitation control (ug).

Linear Optimal Stabilization of a Multimachine System

Since the state equation
X = Ax + Bu 4-5)

1s in the general form, it is applicable to any number of machines. So is the

=)

L

= 11 u=o

2 20 uge
3 ug

AS (deg)

TIME (s)
(b}

Fig. 46 Nonlinear simulation tests of a one-machine system.
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dominant eigenvalue shift technique developed for the LOC design. A three-
machine, infinite-bus system was also investigated [12]. The system matrix
was partitioned as follows:

X Ay A A X !
Xy [=|421 A2z Axs||x2| + [B]| u2 (4-54)
X3 Az Asy Ass|]xs Uy

where x,, x,, and x5, respectively, are the state variable vectors of machines
1,2,and 3; u,, u,, and u5 are the controls; B is the control matrix; A, A,,.
and A5 are the local system matrices of the individual machines; and the
off-diagonal matrices A4,,, 4,3, and so on, represent the paths of dynamic
interaction between machines. Note that (4-54) can be expanded to any
number of machines using high- or low-order machine and control models.

For the multimachine stability study, the individual machine coordinates
d,-q, may be related to common system coordinates D-Q as in Fig. 4-7,
where 0, is the phase angle difference of the d, axis with respect to the D
axis or the q, axis with respect to the Q axis. d, can be positive or negative.

Although the machines are usually described in common or individual
rotating coordinates, the transmission network is static. Let the current
vector [1], the voltage vector [v], the transmission admittance matrix [ Y],
and the transmission impedance matrix [Z] in the static coordinates be
identified by an extra subscript N, and those in the rotating coordinates
by an extra subscript m. It is assumed that the load damping is negligibly
small and all load buses can be eliminated after a load flow study. Otherwise,
the load should be properly modeled and included in the system model. Then
we have the machine bus current vector in the static coordinates,

[ix] = [Yn1on] (4-55)
and the current vector in the common rotating coordinates,
[ 1 = [Md[#n]e™® (4-55a)

where ¢/“<' is a synchronously rotating phasor.

Q axis
9, axis Yka Vi
d, axis
fka Ykd k
SK
kD D axis

Fig. 4-7 Individual machine and common systcm coordinates.
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Therefore, the current and voltage of the kth machine in the individual
coordinates become

D@l = g, pi{@et F o)
'“\ joct -km f(wel +6k) (4-56)
lA’NeJ c — lkmeJ el )
or
UaN = Vkm€ ™, fin = fme’™ (4-56a)
For n machines, it must be written,
. —_ jo3 " 5 ;L .
[on] = ] [vn),  i=1...k...n @-57)

lixn] =[€°1[im), Jj=1L...k...n

Since all voltage and current vectors are column matrices, [¢/*] and [/ ]
are diagonal matrices. Substituting (4-57) into (4-55) gives

[vnl] = [Zm] [iln]
where (4-58)
(2] = [e 0] [e™]

Thus we have found a relation between the machine terminal voltages and
currents in terms of the transmission admittances, and the highest-order
matrix inversion is [ Yy ] ! for an n-machine system.

The dominant eigenvalue shift technique is then applied to the linear
optimal excitation control (LOEC) design of a three-machine system de-
scribed by (4-56), of which machine 1 is a thermal plant of 360 MW, machine
2 a hydroplant of 503 MW, and machine 3 also a hydroplant, but of 1673 MW.
Four LOECs were designed:

1. a ugy design by which u,, u,, and u, are designed simultaneously for
the entire system;

2. a ug design by which u; and u, are omitted from (4-54) and u; is
designed for the entire system;

3. a ug design by which not only u; and u,, but also X, and X,, are
omitted from (4-54), and only u; is designed for the entire system;

4. completely ignoring the dynamic interaction between machines, u,,
u,, and u, are designed separately from local system dynamics,

X, = Ayxy + Byuy, Xy = Ay,x, + Bou,, Xz = Aszzxy + Biuy  (4-54a)

Full state variable feedbacks are used for ugy and uy LOEC designs. For
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ug design, the partitioned matrix equation

0 Ay A | Az [
0 | =4 Ass | Assf|xs (4-54b)
X3 Az As; I Asz || X3

is used for the elimination of x; and x, leaving only the x; state variables
for the feedback.

Typical results of the nonlinear simulation tests are shown in Fig. 4-8.
The LOEC designs of case 4 do not work in harmony, leading only to system
instability, which is rather as expected. Among the other three LOEC
designs, ugy of case 1 gives the best result but requires the full state feedback.
ug; of case 2 is also effective, but also requires full state feedback. Therefore,
the best choice is Ui of case 3, one LOEC of the largest machine in the
system for the entire system, which requires the least instrumentation, but
is almost equally effective as ugy,.

16}
o 12t J
§ 18 /1',..4
w 4l \,"
< 0 A - 1 -
Ll 2
1 1 1
1 2 3
(a) MACHINE No.1 TIME (s)
161 >
— 5 ,/
@120 h_-
=) rd
= - 7/
(2 8 27N

{c) MACHINE No. 3 TIME (s)

Fig. 48 Nonlincar simulation tests of a three-machine system: 1, wpy; 2, i 3, ug; 4,
separate designs.
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Summary of Section 4-5

In this section the dominant eigenvalue shift technique for LOC design
is presented, and the weighting matrix ¢ i1s decided from the dominant
eigenvalue shift. The technique is then applied to various LOC designs of a
one-machine, infinite-bus system: the linear optimal excitation control ug,
the linear optimal governor control ug, the linear optimal governor control
without dashpot ug., and the linear optimal excitation and governor control
without dashpot uy plus ug.. Nonlinear computer simulation results as
shown in Fig. 4-6 indicate that (1) the system without control (u = 0) is
unstable, (2) the system with a conventional PSS is stable, but not quite
stabilized at the end of 3 s, (3) the system with an LOEC uy gives the best
result and the system is stabilized in less than 2 s, (4) the system with a linear
optimal governor control ug also works, (5) the system with a linear optimal
governor control without dashpot u. gives even better results, but still not
as good as the system with u;; control, and (6) the system with linear optimal
excitation and governor control without dashpot is equally effective as the
ug control, but requires more instrumentation. Therefore, the LOEC uy, is
the best of all.

The dominant eigenvalue shift technique for LOC design is also applied
to a multimachine system. Four types of LOEC are designed: three LOECs
for three machines designed simultaneously (), one LOEC for the entire
system using {ull system state variable for the feedback (ug), also one LOEC
for the entire system but using only the state variables of the local machine
for the feedback (ug), and three LOECs designed separately by considering
the local machine dynamics alone and completely neglecting the dynamic
interaction between machines. The last design does not work at all as found
from the computer simulation test (curve 4, Fig. 4-8), which is rather as
expected. Among the other three, it is noted that one LOEC of the largest
power plant of the system can be designed for the stabilization of the entire
system using the state variables of the local machine alone as the feedback
(curve 3).

4-6 LOC DESIGN WITH EIGENVALUE ASSIGNMENT

Since a single variable nth-order ordinary differential equation can be
transformed into n first-order multivariable state equations, and vice versa,
and since the eigenvalues of systems of linear transformation are identical,
the LOC can be designed for a system with its statc matrix equation in a
canonical form, and a simple eigenvalue assignment technique can be devel-
oped, which will be presented in this section [14].



4-6 LOC Design with Eigenvalue Assignment 119
Three Sets of State Equations

For the design, three sets of state equations are involved. The first is a
matrix state equation of which some state variables are not directly measur-
able. For instance,

% = Ax + Bu (4-5)
where

x = [AS, Aw, AYg, Ay, A, AEg, [T (4-59)
which corresponds to the ¢ model of (2-56) with the omission of /4 and i,
and the addition of the excitation voltage AEgy. The three flux linkages
of (4-59), however, are not directly measurable, but they can be expressed
in terms of Ay, AP,, and Aig, which are measurable.

Let the second matrix state equation be

Z=Fz + Gu (4-60)
where

z = [AS, Aw, Av,, AP,, Air, AEgp]" (4-60a)
and let the two sets of state variables be related by
z=Cx (4-61)

where C is a transformation matrix that is a square matrix in this particular
case. Differentiating (4-61) and substituting (4-60) and (4-5) into the result
gives

7=Cx=CAC 'z + CBu= Fz + Gu (4-60b)
where

F & CAC™, G- CB (4-60c)

To change (4-60) into a canonical form, another transformation is re-
quired. Let the third matrix state equation in canonical form be

y=Fy+ Gu (4-62)
where

Y1 =V, Y2 = Vs, s Vn-1="Vu (4-62a)
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and
f0 10 0]
0 0 1 0
Eo= ? f) 9 9 (4-62b)
0 0 0 1
|-y —a, —ay o —a, ]

The first (n — 1) rows of F, are simply a restatement of the relation of (4-62a)
and the last row corresponds to

.)}n: Ty Yy T Oy V-1 T T T %Yy T 0 Yy
or
Ay, d*ly, "2y, dy,
dr" o dr—1 + g A2 T Oﬁz_dT Tay =0 (36k)

To find the relation of the y and z state variables, let

z="Ty (4-63)
Then we have
y=T Y% =T 'FTy+ T 'Gu=F,y + Gyu (4-62d)
where
F,2T"'FT, G,2T"'G (4-62¢)

The transformation matrix 7 can be found from a comparison of the eigen-
values of the two system matrices F of (4-60) and F, of (4-62). Since the
determinants of the two corresponding characteristic equations may be
written

AL = F| = (A= 2 — A3)+ (2 — 4,) (4-64)

|l — F| =2+ 0, "'+ oo A2+ oy (4-65)
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and since the eigenvalues of the two equations are equal, we shall have
. n
= — 3 A i=1,2...,n
i=1

Gy y = Aghy + Agda + o+ Ay,

Ay—2 = _(/{1/12;‘3 + /."1/:'2/"4 + o+ /A'n—Z;tn—I/ln) (4'66)

o, = (1) Z A;

i=1

F, can thus be decided, and the transformation matrix 7 can be determined
from

TF, =FT (4-67)
For details, see Habibullah and Yu [14].

Equations for the Eigenvalue Assignment

For the LOC design, a performance index for the system represented by
the y state equations may be chosen as

1 lve}
J = zj [¥"Qy + u'Ru] dt (4-68)
0

Because of the canonical form, the weighting matrices now become
Q = qIn’ R = rIr (4'69)

where ¢ and r are scalars, and I, and I, are identity matrices of different
orders.

With the system state equations in the canonical form, the state and co-
state matrix equation (4-21) becomes

; F, —(/nGGY |y
U I 47) oG || (4-70)
Do o qIn _Fo Do

where p, is the co-state variable vector corresponding to the y state variable

vector, and the characteristic equation becomes

(AL, = F)(4L, + F3) = (a/r)GyGa | = 0 (4-71)

Let a linear optimal excitation control (LOEC) be designed for the y
system with matrix state equation in the canonical form. Since there is only



122 4 Linear Optimal Stabilization of Electric Power Systems

one control loop and AEgy is the last state variable, we shall have

G, =[0,0,0,0, 1" (4-72)
Therefore, the characteristic equation becomes
|11, — F,||AL, + Fi| + g/r =0 4-73)
or
Ao a2 AT+ (=D ]+ (=1 g/r =0
(4-74)

The last two equations indicate that the eigenvalues of the state and co-state
system are function of the scalar ratio g/r. One can find the eigenvalue loci
by varying g/r, and also left-shift the dominant eigenvalue from the loci with
an optimal control. Note that the as and hence F, are known from eigenvalues
of the system matrix F.

LOEC Design with Eigenvalue Assignment

The first step is to find the eigenvalue loci of the state and co-state system
by varying the g/r ratio. Since the eigenvalues of this system are symmetrical
with respect not only to the real axis but also to the imaginary axis of the
complex plane, we should only be interested in the eigenvalue loci mainly
on the LHS of the plane, which corresponds to the state equations of the
system with control.

The second step is to select a set of eigenvalues from the loci for a g/r
ratio, shift the dominant eigenvalues close to the imaginary axis to the left
to a desired position, and design the LOC. Since the characteristic equation
of the system without control

AL, — Fo| = |AL, — F|
= (A= 22— A (h — 4,)
="+ q "t 4 o (4-75)

and that with control
I)”In - (Fo - GOSO)I = (/ﬂ“ - 11)(2 - 22) o ()" - 2")
=+ 4 4y (4-76)

where 4;,i = 1,...,n, are the desired new eigenvalues of the controlled sys-
tem, the differences

B =4 — o, i=1,2,...,n 4-77)
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are due to the control of the system. Let the state equation of the system with
control be

y=F,y+ Gu = (F, — G,S,)y (4-78)
the control becomes
u=—Sy=—-S5T7""z (4-79)
where
S, = DIAG[ B4, B5,---, B, ] (4-80)

Note that each term of (4-78) is a column matrix.

It is interesting to note that although the matrix state and co-state equa-
tion is still required for the LOC design by this method, there is no longer
any need to solve the Riccati matrix equation.

Wide Power Range System Stabilization

The eigenvalue assignment technique developed in this section for LOC
design is applied to a one-machine, infinite-bus system to design a controller
that can effectively stabilize the system over a wide-range operating condi-
tion [14]. Having obtained a power system model for a given operating
condition, the x-state equations are transformed into the z-state and y-state
equations for the LOC design. The first step is to find the eigenvalue loci
in the y state by varying g/r. The second step is to choose a set of eigenvalues
on the loci for a given g/r, left-shift the dominant eigenvalue to a desired
position, and design an LOC. The third step is to design several LOCs by
choosing several g/r ratios, find the best LOC that can stabilize the system
over a wide power range of P, = 0.3 to 1.25 per unit, and test the control on
the corresponding nonlinear model.

Results of Habibullah and Yu [14] are summarized as follows. The
system state variables are given as (4-59), the eigenvalues of the system with-
out control are 0.203 + j4.99, —8.465 + j5.26, —13.2, —27.3 and the system
is unstable.

Following the first step eigenvalue assignment LLOC design using the
canonical form, the eigenvalue loci for various g/r ratios are plotted as
Fig. 4-9. Similar to the system without control, there are two conjugate
eigenvalue pairs and two real eigenvalues of the system with LOC. All
eigenvalues are moving to the left with the increase of ¢/r. Not shown in
the figure are A, and 2, which are conjugate with A, and 25, respectively.
Note that 4, is on the RHS of the complex plane when g/r equals zero or the
system is without control.
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Fig. 4-9 Eigenvalue loci of a power system as the function of ¢/r.

Examination of Fig. 4-9 shows that only 4, and 4, need a left shift. Since
it can be started from any point set of 2, and 4,, three point sets are chosen,
and three different controllers, I, II, and III, are designed. The eigenvalue
loci for the system with different controllers and that without control are
plotted in Fig. 4-10 where points 1, 2, 3,. .., 7 correspond to

P., = 1.25, 1.20, 1.15, 0.952, 0.70, 0.50, 0.30

per unit, respectively. Among the controllers, only 111 can effectively stabilize
the system over a wide power range of P, from 0.3 to 1.25 per unit.

Stabilizer III is further given a nonlinear computer simulation test for
a P, of 1.23, 0.95, and 0.3 per unit. The results are shown in Fig. 4-11 as
curves 1, 2, and 3, respectively. The system remains stable under all power
conditions. But the results suggest that probably one should use P., = 1.25
per-unit overload condition, instead of the full load condition, for a power
system stabilizer design.

1
13 No control

{2

Fig. 4-10 Eigenvaluc loci of the system with different controllers.
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AS(rad)

Fig. 4-11 Nonlinear simulation test of stabilizer 111.

Summary of Section 4-6

In this section an eigenvalue assignment technique for LOC design is
developed and applied to a one-machine, infinite-bus system. Three sets
of state equations are involved: one conventional, the other with all mea-
surable state variables, and the third in canonical form.

In canonical form, the characteristic equation of the state and co-state
system matrix becomes a function of a single scalar ratio g/r. The eigenvalue
assignment LOC design may proceed in two steps: (1) find the eigenvalue
loci in the y state by varying ¢/r; and (2) choose a set of eigenvalues of the
loct for a given g/r, left-shift the dominant eigenvalue to a desired position,
and design an LOC. For wide-power range stabilization, however, another
step 1s required; design several LOCs by choosing several g/r ratios, find
the best LOC that can effectively stabilize the system over a wide power
range of operating conditions, and give the control a nonlinear computer
simulation test. It is found that it is the overload, not the underload, that one
should pay more attention to in the stabilizer design.

The LOC design technique using the canonical form has been extended to
output feedback using minimum measurements [ 15, 16], and can be further
extended for the stabilization of a multimachine system.

4-7 OTHER DEVELOPMENTS OF LOC DESIGN AND TESTING

There are many other significant contributions to the LOC design for
the stabilization of electric power systems, and to micromachine testing in
the laboratory. A number of references are given at the end of this chapter
[17-36], and there are many others. Some references are summarized in
this section.
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A Micromachine Model and LOC Testing

When the principle of LOC was first applied to the stabilization of a power
system [ 13], the phase compensation PSS had already been well developed
by the power industry. Following the first wave of development of design
techniques of LOC [11-14, 17-32], people began to turn their attention
to the microalternator test in research laboratories. One laboratory setup
and test results are summarized in this subsection.

Figure 4-12 schematically shows a dynamic power system model for
LOC and other stability control tests [34]. A student laboratory de-motor,
synchronous-generator set was adapted to simulate a megawatt hydraulic or
steam turbine generator plant with various kinds of stability controls util-
izing electronic circuits and power amplifiers. A large turbine generator set
was simulated on the micromachine on a per unit basis.

For the given small motor-generator set without the facility of changing
the rotors, there are only a limited number of large machine parameters
that can be exactly simulated on the small machine set. Sensitivity analysis
[33] indicates that the dynamic response of a simulated power system is most
sensitive to the errors of the g-axis synchronous reactance x,, the inertia
constant M, and the field circuit time constant Tj,. Both x, and M can be
exactly simulated with proper choices of the base voltage and base power
for the small machine, and T}, , which is about 0.24 s for the small machine,
can be increased to 6—7 s for large machines by inserting into the field wind-
ing circuit an active electronic circuit which will produce a negative resistance
effect (—R).

The general layout of the dynamic power system model is schematically
shown in Fig. 4-12: the turbine and governor and valving controls are on

TURBINE GENERATOR TRANSMISSION
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Fig. 4-12 A dvnamic power system model for control test.
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the left, the generator and excitation controls are at the center, and the trans-
mission and fault simulation and braking resistance control are on the right.

At the top left of Fig. 4-12 are the hydraulic power output HYDRO,
which affects the dc motor power input by controlling its armature current,
and a governor that has a conventional negative feedback Aw in addition
to an optional phase-compensation supplementary governor control ug.
At the bottom left are the steam turbine power output THRM and a governor
that also has a conventional negative feedback Aw in addition to an optional
fast valving control FV. The dc motor M in the figure, representing the
hydraulic or steam turbines, is given a constant field excitation ;. It has a
starting rheostat, and its armature current I, is controlled by either HYDRO
or THRM to simulate the controlled turbine(s).

The time constant T, of the synchronous generator G is adjustable by
varying the —R effect. The field winding is connected to the exciter and
voltage regulator EX-VR, which has a conventional negative feedback of
Av, in addition to two optionals: a linear optimal control EX-CONTR with
various input signals and a forced excitation control FE.

At the top right of Fig. 4-12 a transmission system is shown. It constitutes
three-phase, three-section, double-circuit transmission lines connected to
an infinite bus with a voltage v,. Each section is simulated by a 7 circuit with
inductor and capacitor, and one circuit is installed with fault simulation and
timing devices F & T. A three-phase fault can be simulated on the line in-
cluding grounding, faulted-line opening, fault clearing, and cleared-line
restoration by relays and circuit breakers. The time and sequence of operation
can be set a priori by decade counters from 0.00 to 9.99 s, and the entire
process will be automatically executed with a single pushbutton. At the
bottom right of Fig. 4-12 is a braking resistance BR.

There are also the synchronizing and various protection devices, including
an emergency shutdown pushbutton, which are not shown. Most devices,
except the machine and transmission, are simulated by analogs and power
amplifiers, and the fast valving FV, the fast excitation FE, and the dynamic
resistance braking BR are provided with control logics.

Figure 4-13 shows one set of test results on the micromachine. The
system that was unstable due to the lack of damping is shown on top. The
same system becomes stabilized in a few seconds with an LOC, and the result
is shown at the bottom. The large swings were clipped in recording. This
micromachine test further shows the effectiveness of LOC.

Linear Optimal Excitation and Steam Valving Control

Comprehensive microalternator test results of linear optimal excitation
and steam valving control of a power system are reported in Lu et al. [37].
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Fig. 4-13 Micromachine test of LOC.

A 600-MW turbogenerator connected to an infinite bus through a long trans-
mission line is simulated on a dynamic power system model. The system is
described by the following state equation:

X = Ax + Bu 4-5)
where

x = [AP,, Aw, Av,, AP,,, Au]" (4-81)

and AP, and Ay respectively represent the mechanical power input and the
regulated steam valve opening.

A linear optimal excitation and steam valving control of the system is
designed, and both the mechanical power input and the electric power
output of the turbine-generator are controlled upon a system disturbance.
Comparisons are made between the following three cases:

1. the system without any supplementary control;
2. the system with a phase compensation PSS;
3. the system with linear optimal excitation and steam valving.

For a relatively small three-phase disturbance, the system without any
supplementary control takes a longer time and more swings to reach the
steady state, the system with the phase-compensation PSS takes less time
and fewer swings, and the system with the LOC still less. The stability limits
are

Control Omex (deg) Py (PU)
1 No supplementary 98 0.93
2 Conventional PSS 113 1.05
3 Linear optimal 20 1.14
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For relatively large disturbances, the stability limits of the system from
the microalternator test are

Control Onex (deg) P max (PU)

1 No supplementary 70 73 U5 0.51 0.60 0.62
2 Conventional PSS 7275 77 0.55 0.65 0.70
3 Lincar optimal 87 93 100 0.83 0.92 1.00

(type of fault) 3 2¢ 1¢ 39 20 1¢

Swing curves 1, 2, and 3 of the three cases are recorded m Fig. 4-14.
There is a three-phase fault on one of the double-circuit transmission line
for 0.15 s, the fault is then cleared, and the line is restored at 0.75 s. The
results not only indicate that the LOC is more effective in stabilizing the
system than conventional PSS, but also clearly demonstrate the coordinated
effort of the steam valving control of the mechanical power input and the
excitation control of the electric power output.

When a three-phase fault occurs in the system, the electric power output
P, drops immediately and the excitation rises rapidly to its ceiling value
(Fig. 4-14). In the meantime, the steam valves closc as fast as possible to
reduce the mechanical power input P,. When the faulted line is tripped
off at 0.15 s, the speed begins to drop, the excitation rapidly falls to zero, and
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Fig. 4-14 Excitation and steam valving control of a power system.
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the steam valves begin to increase the opening to prevent an excessive down-
swing of the speed. At about 0.6 s, there is a tendency for both § and w to
increase and the excitation v rapidly rises. There is another excitation drop
after the line is restored at 0.75 s and a rise to steady state after that. The
system is completely stabilized within 2.5 s (curve 3), which presents a
striking contrast to the system with a conventional PSS (curve 2) or the system
without any supplementary control (curve 1).

Note also that although the system equations for LOC design are linear,
the control signals vg, etc., are by no means small. The coordinated effort of
several large input signals makes the LOC far more effective than other types
of linear controls.

A Parallel ac—de System Model for LOC Design

Figure 4-15 shows a one-machine infinite-bus system with parallel ac—dc
transmission lines. The generator has a terminal voltage v, and the infinite
bus a voltage v,. The dc line, which is in parallel with the ac line, has a rectifier
at the sending end and an inverter at the receiving end, although the rectifier
and inverter functions are interchangeable for a dc line in a large electric
power system. At the generator terminal bus, there is a local load R, a
capacitor bank C to supply the reactive power required by the dc system,
and several harmonic filters to improve the wave form of ac voltage and
current.

To derive a reasonable low-order model for such a system for dynamic
studies [29], let us start with a full high-order model and find the eigenvalues
of the system for order reduction. The generator G may be described by
seven state equations, five for the windings and two for the torque equi-
librium; the excitation system by one; the dc line may be represented by a
7 equivalent and described by three equations; and the ac line also may be
be represented by a m equivalent but requires six equations in d and g
components.

Vt Vo
AC LINE
: m oc une —
RECTIFIER INVERTER
aR CONTROL o CONTROL

HARMONIC
FILTERS

Fig. 4-15 A parallcl ac—dc electric power system.
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In addition, there will be two equations for the rectifier and inverter cur-
rents, and two for the firing angle functions cos oz and cos ;.

So far we have 21 state equations. But there are two more for the capacitor
for the reactive power supply, and four each for the 5th-, 7th-, 11th-, and
13th-order filters in d and q components. Therefore, we have altogether 39
state differential equations.

The number of eigenvalues of a system matrix is equal to the number of
state variables of the system, and each eigenvalue or eigenvalue pair can be
associated with a system component although the dynamic interacting effect
among system components is included. Although it is not easy to identify
an eigenvalue or eigenvalue pair with the corresponding system component,
the task can be done carefully. It may begin with the lowest order of the
system, say, the machine torque equation alone, and neglect the other
system components. There will be only one eigenvalue pair. Then the field
winding and the excitation system equations may be added, like the 4th-
order system model of Fig. 3-1. Another eigenvalue pair may be obtained,
and there will be some change in the mechanical mode eigenvalues of the
torque equation. In case the two pairs of eigenvalue frequencies are very
close, an artificially large change in excitation system parameter(s) may be
assumed. There will be a substantial change in the electrical mode frequency,
but not the mechanical mode. Thus the original electrical mode can be iden-
tified. After that, the state equations of other windings of the machine, the
ac transmission line, the dc line, the capacitor, and the filters can be added
in steps to build up the entire system and to identify the corresponding
system components of the eigenmodes one by one.

The identification will be easier with more experience. For instance, we
know that the frequency of the mechanical mode is always low, that of the
stator windings always high, that of the dampers always real and negative.

The eigenvalues of the ac—dc system as shown in Fig. 4-15 for a given
operating condition are:

Harmonic filters (16) —8.95 + j1490, —9.50 + j2245, —18.0 £+ j2191,

—23.7 +j2947, —55.0 £ j4358, —73.0 + j5118,
—92.0 + j3568, —123 + j4335

ac line (6) —2620 + j4267, —59.1 £+ j1216, —50.0 + j376
Stator windings (2) —847 + j1892

dec line (3) —185 £ j761, —20.5 4+ j1327

Shunt capacitor (2) —18250 + j59136

Damper windings (2) —41.9, —26.1

dc currents (2) — 360, —360

cos oy, COS 9y (2) —362, —35156

AS, Ao, Ay, Avg (4) —0.052 + j7.10, —0.336 + j1.11
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These eigenvalues are not listed in the original sequence as they are found,
but listed for the convenience of order reduction of the model. Note that
listed with the dc line are two eigenvalue pairs instead of three eigenvalues,
due to the coupling of one of the dc line eigenvalues with one of the firing-
angle function eigenvalues in a reduced-order model analysis.

For power system dynamic analysis, which involves mainly the low fre-
quencies, any eigenmode with a frequency higher than the synchronous
frequency can be ignored, although it would be different for the electric
transient analysis, which always involves the high frequencies. Also the
eigenmodes with fast decay or those with largest negative real values can be
ignored except for those modes associated with the control loops. Therefore,
areduced 6th-order model can be developed for the ac—dc system for dynamic
analysis by retaining only the state variables corresponding to the last two
rows of the foregoing listed eigenvalues, resulting in

x = [Ad, Aw, Ay, Avg, A cos ag, A cos %" (4-82)

Although most state variable derivatives of the original 39th-order ac—dc
system can be ignored, the algebraic equations of transmission lines, capacitor
current for the reactive power supply, generator stator windings, etc., which
represent the interaction between components, cannot. To arrive at the
reduced 6th-order model from the original 39th-order model of the ac—dc
system, the following matrix equation reduction process may be followed.
Let the original system equation be

- [HJ = l:_ALl_ ’Alz}[x_l:l - (4-83)
X5 Azy I Az || X2

Let x, be the six state variables to be retained, (4-82), and let x, be the state
variables that will be eliminated. In other words,

[%,] =0 (4-83a)
Eliminating x, from (4-83) gives
[%:1] = [411 — 41245 45,1 [x,] (4-34)

which corresponds to the reduced 6th-order of the ac—dc system.

Figure 4-16 compares the swing curves of the reduced-order model
(curve 2) with the original 39th-order system (curve 1), both with the same
fault. Also shown in the figure is curve 3, which is based on the nonlinear
full model computer simulation test for the same fault but with an LOC
designed from the reduced 6th-order linear model. The results show that
the dynamic responses of the reduced 6th-order model and the original
39th-order system for the same fault are very close, and the LOC designed
from the reduced order are extremely effective in stabilizing the ac—dc system.
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Fig. 4-16 Comparison of the 6th- order and the 39th-ordér system.

Summary of Section 4-7

In this section, additional developments of LOC design and system
modeling are presented. A dynamic power system model usually known as
the micromachine or microalternator model is described, and test results
for the machine-simulated power system with and without an LOC are
shown. The LOC is very effective in stabilizing the system. Test results of
another dynamic power system model of linear optimal excitation and steam
valving control by a different group are also shown. The simultaneous con-
trol of the mechanical power input by fast valving and the electric power
output by excitation is far more effective in stabilizing a faulted power system
than the phase compensation PSS. The coordinated effort of the fast valving
and excitation by LOC 1s also manifested.

Toward the end of this section, a reduced 6th-order model of an ac-dc
system is derived from an original 39th-order system, and the technique of
order reduction is shown. Computer simulation test results show that the
low-order model is fairly accurate, which can be used for LOC design to
stabilize an ac—dc system.

4-8 SUMMARY

In Sections 4-1 and 4-2 the principle of linear optimal control and the
derivation and solution of the Riccati matrix equation for the LOC design
are presented. To demonstrate the effectiveness of LOC, a second-order
numerical example is shown in Section 4-3. The first application of LOC
to power system stabilization is summarized in Section 4-4 and the main
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finding is that in LOC design it is very important to select a proper weighting
matrix for the state variables.

Two systematic methods of selecting the weighting matrices are then
developed. In Section 4-5 the weighting matrix Q is decided simultaneously
with the dominant eigenvalue shift to the left as much as actual controllers
permit. The technique is applied to the LOC design of a one-machine
mfinite-bus system as well as a multimachine system. The main findings of this
study are: (1) g,,, 1s much larger than g,; because of the units chosen and
also the cause—effect relation; (2) an LOC is more effective than a phase-
compensation PSS, a linear optimal governor control with dashpot is not
as good as that without, and a linear optimal excitation control (LOEC) is
almost as good as the linear optimal excitation and governor control without
dashpot, which is the best; and (3) the LOECs for individual machines in
a multimachine system cannot be designed separately and must be designed
together, although one LOEC can be designed for the largest machine in the
system for the stabilization of the entire system.

An eigenvalue assignment technique for the LOC design is developed
in Section 4-6. The system matrix state equation is ultimately transformed
in a canonical form, and the characteristic equation of the system state and
co-state equations becomes a simple function of a single scalar ratio g/r
of the system weighting matrices ¢, and rI, where I, and I, arc identity
matrices. The system state eigenvalue loci are plotted for various g/rs,
several sets of eigenvalues on the loci corresponding to different g/rs are
chosen and the dominant eigenvalues are shifted to the left, and the LOCs
thus designed for a given operating condition are then tested for the electric
power output P, from 0.3 to 1.25 per unit to find the best LOC that can
effectively stabilize a system over the wide power range operating condition.
The design technique has been applied to a one-machine infinite-bus system,
and is being extended to multimachine systems.

In the last section of the chapter, Section 4-7, other developments of
LOC of electric power systems are briefly presented. Some details of the
layout of a dynamic power system model are presented first, along with
some test results of LOC to show its effectiveness. Following that, micro-
machine test results of linear optimal excitation and steam valving control
by another group are presented. The simultaneous control of the mechanical
power input by steam valving and the electric power output by excitation
is extremely effective. The coordinated effort of controls is manifested.
Finally, a technique of reducing a 39th-order ac—dc system model to a rea-
sonably low-order model of the 6th order for the LOC design are presented.
Once again the effectiveness of LOC is demonstrated.

With the design technique greatly improved, and the effectiveness clearly
shown, the LOC certainly provides a better means than a conventional PSS
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in the coordinated stabilization of modern large multimachine electric power
systems.

Problems

4-1 Derive the co-state equation of (4-20) from (4-7) and (4-17a).

4-2 Design two different LOCs for the system of Example 3-3 by selecting
(a-) qu = 1’ qArS = 1= ch;l = 1’ QAEFD = 1
(b)  gaw = 50, gas = 10, Grcy = L, Qages = 1

and find the eigenvalues of the system with and without LOC.

4-3 Find the matrix state equation of x5 of (4-54b) after eliminating x,
and x,.

4-4 Find the linear transformation relation between [Ayg, Ay, AYg]"

of (4-59) and (Av,, AP, Aig ] of (4-60a) of the 6th order system. It is suggested
that (2-17) and (2-18) may be utilized for the derivation,

Ayl T -4y ]
AY, Aig
Av, | = ? Aiy, (4-4P)
AP, —Ai
A ] L 1L Aig

that (4-4P) be found first, and that the following assumptions be made:
Ya=0,¢,=0,0 =1
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Chapter 5 Subsynchronous Resonance
and Torsional Oscillations

g 4

POWEREN.IR

In this chapter, a relatively new power system dynamic problem will be
presented, namely, the subsynchronous torsional oscillations of the steam
turbines and generator shaft. The oscillations are caused by the electrical
resonance of the synchronous generator and the capacitor-compensated
transmission lines. The phenomena are generally known as subsynchronous
resonance or SSR [1]. Countermeasures will be presented; and one of them
that is especially effective, the linear optimal excitation control, will be given
in detail.

In recent years, many thermal—electric power plants are being built at
coal mines far away from load centers. Bulk electric power is transmitted
over long distance to the load centers by series capacitor-compensated
transmission lines, eliminating the need for more parallel and uneconomical
transmission lines.

A capacitor-compensated transmission line, however, is not without
difficulty. When the degree of series capacitor compensation is increased, an
electrical resonance of the generator, transformer, transmission line, and
capacitor may develop, usually at the subsynchronous frequency. If the
resonant frequency becomes complementary with that of the torsional
oscillation of the mass springs of the mechanical system, they will be mutually
excited, causing serious shaft and other damages.

Let us explain the SSR problem and some countermeasures first.

5-1 SUBSYNCHRONOUS RESONANCE (SSR)
AND COUNTERMEASURES

Since the first two shaft failures due to SSR occurred at the Mohave
station in 1970 and 1971 2], causes of the shaft failures have been analyzed,
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problems identified, and countermeasures suggested [3]. Some counter-
measures are already in practice. Also reported are the methods of testing
the mechanical mode natural oscillating frequencies [ 4, 5]. These and other
important results will be highlighted in this section.

Induction Generator Mode of a Synchronous Machine

When an clectrical resonance occurs in a capacitor-compensated trans-
mission line that is connected in series with a synchronous generator, there
will be a revolving field on the generator stator corresponding to the resonant
frequency. When the resonant frequency f, is below the system frequency f,
or at the subsynchronous frequency, f, < f, the revolving field due to the
electric resonance is rotating at a subsynchronous speed. Since the generator
rotor itself is mechanically rotating at the synchronous speed, the syn-
chronous machine behaves like an induction generator with respect to the
subsynchronously rotating field due to the electric resonance.

Figure 5-1 shows the well-known equivalent circuit of a three-phase
induction generator, by which the per unit relative speed of the rotor with
respect to the stator rotating field or the “slip” s is negative,

SEe = Nfe<0,  fe<[ (5-1)

An electrical resonance will occur when the total reactance of the capacitor-
compensated line and synchronous machine becomes zero and the total
resistance becomes negative.

Although Fig. 5-1 is helpful to illustrate the concept of induction generator
mode of the synchronous generator, it is not sufficient for calculating the
equivalent resistance and reactance of a synchronous machine. For more
details, see Kilgore et al. [6].

Torsional Interaction

The high-, medium-, and low-pressure steam turbines, the generator, and
the exciter are usually on the same shaft, constituting a linear mass-spring
system. There are generally m — 1 modes of torsional oscillations for an
m-mass-spring system, in addition to a zero mode by which the entire mass-

s Xg Xr

Ir
S

O~

Fig. 5-1 Equivalent circuit of induction generator; s < 0.
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spring system oscillates in unison. These oscillations usually occur at sub-
synchronous frequencies. They are also affected by the interaction with the
electric torques of the generator and exciter.

When a torsional oscillation occurs to the turbines and generator rotating
system at a subsynchronous frequency f,,, while the generator field winding
itself on the rotor is rotating at an average speed corresponding to the system
frequency f, there will be voltages and currents induced in the generator
armature three-phase winding at frequencies f/ + f,,. Should the induced
current of the subsynchronous frequency /' — /,, coincide or be very close
to an electric resonance frequency f. of the generator and transmission
system,

o Su= e (5-2)
the torsional oscillation and the electrical resonance will be mutually ex-
cited or reinforced resulting in SSR. In such a case, the electrical resonance
acts as a negative damping to the torsional oscillation, and the torsional

oscillation acts as a negative resistance to the electrical resonance, which can
be proved by computer simulation test.

Natural Oscillating Frequencies

In Table 5-1 the electrical system natural frequencies f, of a rather com-
plicated system under certain operating conditions are listed in column 1
and frequencies of the corresponding torsionals f — f,,, not the torsional
frequencies themselves [, , in column 2. The five torsionals f,, are identified
as modes 1, 2, 3, 4, and 5 [3] There is also mode zero by which all mass
springs oscillate in unison. Examination of Table 5-1 indicates that torsional
mode [ is most vulnerable to SSR, since the electrical natural frequency
44.5 Hz of column 1 and the corresponding torsional 44.2 Hz of column 2
are so close.

Scanning programs are written to find the electrical natural frequencies
of complicated electrical system. Methods of testing the torsional natural
frequencies have developed as:

(1) engaging and disengaging the turning gears of the turbines and
generator repeatedly;

{2) synchronizing the generator to the system manually and deliberately
with a small phase angle mismatch;

(3) varying the frequency of excitation of the generator to excite the
torsionals one by one;

{(4) inserting and bypassing some series capacitor modules repeatedly.
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Table 5-1

Natural Oscillating Frequencies®

Electrical system Corresponding
natural frequencies torsionals
J.(Hz) /= fu (Hz) Mode
445
442 1
433
38.8 2
34.0 3
30.7
28.3
26.7 4
25.5
10.5
10.0
6.8 5

“ Courtesy of IEEE, © 1977, [3].

The third method is probably the best, giving the most accurate results. For
details, see Walker ez al. [4, 5].

Countermeasures of SSR

To prevent SSR and to protect the system, many countermeasures of
SSR have been developed.

Poleface Amortisseurs. Poleface amortisseurs have the effect of decreas-
ing induction generator equivalent rotor resistance.

Static Blocking Filters. To block the electric resonance current of the
transmission system {rom entering the generator, which may interact with
the torsional modes, high-Q parallel resonance filters are designed and
tuned to the torsional mode natural frequencies, and inserted between the
wye-connected high voltage winding of the step-up transformer and the
ground as shown in Fig. 5-2.

When electrical resonance corresponding to any one torsional mode
natural frequency begins to develop, the impedance of one of the mode filters
will become extremely large to prevent further growth of the electric reso-
nance current, but will be small at other frequencies. In Fig. 5-2, four mode
filters are connected in series. There is little likelihood that mode 5 of Table
5-1, which corresponds to the highest frequency of /., will be excited by an
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Fig. 5-2 Schematic of static blocking filters (From [3], courtesy of IEEE, © 1977.)

electrical resonance. There are also current limiter and overvoltage protection
of the system as shown in Fig. 5-2 [3].

The main difficulty in the blocking filter design is to maintain constant
filter parameter values in an environment of drastic changes in temperature
between day and night. It is also very expensive because the filter units are
designed for high voltage and large current, and the insulation level of the
transformer must be increased.

Excitation Control. The excitation control of SSR, if workable, will be
far less expensive than using static filters, since it is the low-energy side that
is being controlled. There is great difficulty with the phase compensation
PSS type of control, because several controls designed for individual torsional
modes of different frequencies will interfere with each other. However, all
torsional modes including mode 0 of a power system over a wide range of
capacitor compensation can be stabilized if a linear optimal excitation con-
trol (LOEC) is designed. The LOEC design technique and test results will
be presented in subsequent sections of this chapter.

Dual-Gap Flashing. To protect the generating unit itself from shaft
damage due to SSR in a system with large capacitor compensation, a dual-
gap flashing scheme of capacitors has been developed. Air gaps parallel to
the capacitor will flash over at a lower current level of about 2.2 per unit
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to reduce a transient torque impact to the generator shaft, and the current
level will be reset each time after flashing to about 3.0-3.5 per unit to allow
a current decay to the level for successful reinsertion of the series capacitor
[3]

Other SSR Countermeasures. Many other SSR countermeasures have
been developed: the dynamic filter [ 11], the reactive power control [12], the
damping of SSR by an HVDC link [13], the thyristor control of the series
capacitor [ 14], and many others. For details, see the references.

The Concept of Shaft Life

The life expectancy of a turbine-generator shaft depends on not only the
magnitude of the transient torque but also the fatigue of the steel shaft [3].
Figure 5-3 shows the relation between the oscillating shaft torque and the
loss of shaft life. Level A is the infinite-life level; any oscillating torque
magnitude (one-half peak to peak) below this level for any length of time
will not damage the shaft at all. Level B is the once-in-a-lifetime level; the
entire shaft life will be lost immediately for any oscillating torque magnitude
equal to or above this level. Between A and B, there will be a percentage life
expenditure corresponding to the oscillating shaft torque each time; the
effect is cumulative, and the life will be completely lost when the accumu-
lation reaches 1007 .

ONCE-IN-A-LIFETIME LEVEL
B

OSCILLATING
SHAFT
TORQUE

INFINITE~-LIFE LEVEL

0 20 40 60 80 100

PER CENT LIFE USED PER
INCIDENT

Fig. 5-3 Shaft torque versus loss of shaft life. (Ffom [3], courtesy of IEEE.  1977.)
Summary of Section 5-1
An introduction has been given to the SSR problem and countermeasures.

It includes the induction generator concept of the synchronous generator
during SSR, the torsional interaction of the electrical resonance and torsional
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oscillations, the methods of testing torsional mode natural frequencies, and
various countermeasures. Also included is the concept of shaft life.

SSR phenomena are relatively new and the countermeasures are still
evolving. One of the most effective and also the least expensive counter-
measures of SSR, namely, the linear optimal excitation control (LOEC) of
SSR, will be presented in subsequent sections.

5-2 A UNIFIED ELECTRICAL AND MECHANICAL
MODEL FOR SSR STUDIES

Although the induction gencrator and torsional interaction concepts
lend a clear insight into SSR phenomena, it might not be sufficiently accurate
for analysis. Since SSR constitutes the electrical resonance, the torsional
oscillation, and the interaction between them, a single, unified, and complete
electrical and mechanical system model for SSR study is very desirable. The
SSR system model should include the mass-spring system of turbines,
generator, and exciter, the turbine torques and governor, the capacitor-
compensated transmission line, the synchronous generator, and the excita-
tion system.

Basic Equations of the Mass-Spring System

Consider a steam turbine, generator, and exciter set. Let the tandem-
compound, single-reheat steam turbines be chosen as an example. A sche-
matic of the mass-spring system is shown in Fig. 5-4. In the figure there are
six rotating masses; the high-pressure turbine (HP), the medium-pressure
turbine (IP), the two low-pressure turbines (LPA and LPB), the generator
(GEN), and the exciter (EX), all on one shaft. Also, sections of shaft behave
like springs and together they constitute a linear six-mass-spring system.

Assume an inertia constant M for each rotating mass and a stiffness K
for each shaft section. The torsional relation of the ith mass-spring system
may be depicted as in Fig. 5-5. In the figure the shaft torque on the left and
the external torque input 7T; are in one direction; and the accelerating torque
M,,, the damping torque D;»; on the mass, and the shaft torque on the
right are in the opposite direction. Therefore, the torque equilibrium of the

*ith-mass-spring system in linear form becomes

MA@; = AT, — D; Aw; + K (A — AG;) — K ;+1(80; — AD,.y)  (5-2)

HP 1P LPA LPB GEN EX

Fig. 5-4 A linear six-mass-spring lurbine-generator system.
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Ki-1,i(8j_1-8;) E
Ki, i+ (8;- e|+1)

MG Djw;

Fig. 5-5 The ith-mass-spring system.

where
Ki~1.ifi=1 =0, Ki.i+1|i=m:0, i=1,2,...,m (5-2a)

Note that there is no torsional torque at the two extreme ends of the shaft,
and T; becomes negative if it is an electric torque output.

When Eq. (5-2) is applied to the linear six-mass-spring system of Fig. 5-4,
the turbines, generator, and exciter from left to right are identified, respec-
tively, by subscripts H, 1, A, B, G, and X, and the shalft stiffness by Ky, K|,
etc., the state equations of the linear six-mass-spring system become

) 1
Aoy = 7 [ATy — Dy Awy — Kiyy(A0y — AD)]
H
Aby = o, Awy
1
Ady = - [AT, = Dy Aw, + Kyi(Aby — AB) — Kiz(A8; — AO,)]
I
Af, = o, Ao,
1
Ay = i [AT, — Dp Awy + Kip(AO; — AOy) — Kap(AO, — Alg)]
A
AG,\ = w, Ay (5-3)
1 3
Ay = A [ATy — Dy Awg + Kap(A, — ABy) — Kyg(AGy — AS)]
B

Ay = w, Awg

Ad = ]VIG [ AT, — Dg Aw + Kg(ABy — Ad) — Kx(Ad — AGX)]
Ad = w, Aw

Ady =~ 4X [ AT, — Dg Awx + Kgx(AS — Aby)]

Ay = w, Aoy



146 5 Subsynchronous Resonance and Torsional Oscillations
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CH RH Tco

Fig. 56 Transfer functions of steam turbines.

where the ’s are the speeds in per unit value, w, is the base speed or 2zf
rad/s, the &’s are the mechanical angles in mechanical radians, and ¢ is the
electrical angle in electrical radians, with 65 and 6 being equal for two-pole
machines. Note that the generator electric torque output AT, and the exciter
electric torque output AT,, are negative inputs, and (5-3) 1s a set of linearized
equations. For eigenvalue analysis and for LOEC design, the nonstate
variables AT, and AT, must be eliminated.

Turbine Torque and Governor System

The transfer functions of steam turbines are shown in Fig. 5-6 [15].
There are four turt-ine torques with a total output of AT,,,

ATy + AT, + AT, + AT, = AT, (5-4)

All turbine torques are proportional, with each turbine contributing a frac-
tion, and the sum of the fractions is

There are also three time constants due to the steam flow, Ty in the chamber
in front of the high pressure turbine, Ty in the reheater between the high-
and medium-pressure turbines, and T, in the crossover connection between
the medium- and low-pressure turbines.

A two-time-constant governor is assumed in Fig. 5-7 where a denotes
the speed relay position and g the governor opening.

+ e 3 1 g
1+STSR 1+STSM

+| Y6

Fig. 5-7 A two-time-constant governor.
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Therefore, three differential equations can be written for the turbine
torques

(1 + sTey) ATy = Fyg
(1 + sTru) AT, = (F/Fy) ATy

(5-6)
(I + sTco) AT, = (Fo/F\) AT,
ATy = (Fp/Fa) AT,
and two for the governor
(1 = sTgw)a = Kg(Aw + ug), Aw & wgye — o, (5-7)

(1 +sTsu)g =a

where a supplementary governor control is included in (5-7) as ug. Both
(5-6) and (5-7) can be written in the time domain in the standard state variable
form. Note also that the governor gain Kg in (5-7) is the reciprocal of speed
regulation which is usually set at 4 to 59 for a full-load to no-load variation.

The Capacitor-Compensated Transmission Line

A series capacitor-compensated transmission line may be represented by
an RLC circuit as in Fig. 5-8. Let the total resistance and total reactance,
respectively, of the line and transformer be R and L, the series capacitance
be C, the voltage across the capacitor be e, the voltage per phase at the
generator terminal be v, that in front the capacitance be v, and that at the
infinite bus be v,. The basic equations are

[i]ubc = P[C] [eC]abc

(5-8)
[vabe = [R + PL][i]soe + [€clabe + [vo]uve

where
[abe = [fas fesic]s  [clabe = [as 5. €c]”
[2dave = [%as 05 ¥e]Ts [P0 Jave = [Poas Vobs Voc " (5-9)
[R] =R[U].  [L]=L[U] [C]=C[U].

where R, L, and C are scalars and [ U] is a unit matrix.

Fig. 58 A capacitor-compensated transmission line.
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Since the line and transformer are connected in series with the generator,

the line current and voltage also must be transformed into d-q components,
resulting in :

Aiy 1 Aé 4 1 {0 —1] Aey]
= — -10
[AJ oo [Aéc‘j * Xc[l OJ[Aqu_ (5-19)
Al‘d _ R —X Ald i 1 Al-d 4 Aecd 4 _AUOd (5_1 1)
Av, X R Ai, wy | A, Ae, Avg,

and

In the foregoing equations, Ae,y and Ae,, of (5-10) are chosen as the state
variables, and Avy and Av, of (5-11) are used to eliminate Av,. The coordinate
transformation of the capacitor current will be shown in Example 5-1, and
that of the voltage will be left as an exercise.

Example 5-1. Transform [i],,, of (5-8) into d-q components.
Solution: Let the transformation matrices be

0 d g a b c
all ¢ -8 NS T A
[T]=b|1 ¢ —s"|. [T]'=3d| C ¢ | 1)
c|l1 v —5~ g |-8 —5* —8s"
where
C' £ cos 0, C" & cos(f — 1207), C"” & cos(f — 240°)

(5-12a)
S'25sinf,  S”2sin(0 — 120, S 2 sin(f — 240°)

Here Park’s original transformation matrix is denoted by [T], abbreviations
C', C", etc., are introduced for conciseness, and C’ is used to distinguish it
from the series capacitance C. Since

[7]7'[1] = [U]
[T17'[cllT] = [T] ' clu][T] = [C]

the capacitor current components of (5-8) in d-q coordinates beéome
[Joaq = [T]""[{Jaee = [T17'PICIT I ec Jouq
_ 4 @ .
= [T [ Tlpleclosa + [T17" 5 LLCILTI] O [ec]oue

= [Clplec]oaq

(5-13)
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i 4 4[o-s -c
+3C| ¢ ¢ C0 =8 —C" |- p0[ecloaq
_SI _S// 4S”/ O _SU/ _ CIH

00 O
= [Clplec)oag + C|0 0 —1] pB-[ec]ogq (5-14)
01 0

When the synchronous machine equations are written in per unit value,
and 27/ is chosen as the base speed, then

Pl = w (5-15)

which is approximately 1 per unit of value. In other words, when p is in per
27/ second instead of per second, we shall have

1 d 1
L K = e X (5—153.)

§ o, dt’ £ oy

where ¢ is in seconds. Finally, since C in per unit value is the reciprocal of
X in per unit value, we shall have

Al 1 [Ae,] 1[0 =17 A,
- — 5.10
[Aiq] 0oXc [Aécq] L [1 OJ[Aqu] (5-10)

and there will be no zero-axis component for balanced three-phase operation.

The Synchronous Generator

Assume that there i1s a second damper winding S on the q axis, with a
voltage equation

pibs = s/, = —rsis (5-16)

in addition to Egs. (2-4). We have now two rotor windings per axis; D and
F on the d axis and Q and S on the q axis. For the SSR study, however, it
is more convenient to choose the generator currents, instead of the flux
linkages, as the state variables. Therefore, the synchronous generator voltage
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equations in linear form become
1 H i 3
— (—xq Aly + Xpg Alp + X, Aip)
w, :
= (—Xq Aly + X Alg + Xpq Als) + Y0 A + 1, Aly + Avy

| ; ; .
— (= Xq Aly + X Alg + Xpq Alg)

@Dy,
= —(—Xg Aly + Xpg Bip + X,q Aip) — Y40 A + 1, Aiy + Avy
1 : : .
w—(_xmd Aiy + xg Alp + x4 Alp) = — 75 Al + Avg (5-17)
b
1 : . : .
— (= Xq Alg + X4 Al + xp Alp) = —1p A
Wy,
1 . . .
;(—xmq Al + xg Aig + X4 Ais) = —1g Al
b
1 H 5 H 3
co_(_x'"q Aig + X, Alg + x5 Alg) = —rg Aig
b

The initial flux linkages from the steady state are

= (Xpalpo — Xqlao)/Wo = (E — X4igo)/®
Vao XmalFo Xqig0)/®o = ( alao)/@o (5-18)

Yao = Xqlqo/ Do Wy =1

The Excitation System
A two-time-constant excitation system is assumed in Fig. 5-9. The system
equations may be written
(1 + sTy) Avg = Ku(Av, + ug)

(5-19)
(1 + sTg) AEpp = Avg

Ka | avg 1 AEgp

1+sTA 1+STE

Vg

Fig. 59 A two-time-constant excitation system.
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where

Egp & XomaUp/FEs Av, = Uper — Uy (5-19a)

State Variable Equations and Nonstate Variables

The complete system equations for SSR study will be written in the
standard state variable form

[x] = [A][x] + [B][4] (4-5)

which can be partitioned into the mechanical and electrical parts as
X A Ang J
-l el o
Xg Apm Age || X5 Ug

[x] = [xu, x£]", [u] = [ug. ug]" (5-20a)

ug vanishes if only the excitation loop is used for control.
There are 17 mechanical system equations, 12 of (5-3), 3 of (5-6), and 2
of (5-7); and the state variables are

[xm] = [Awy, Aly, Aoy, ADy, Awy, AD,, Awg, Aby,
Aw, AS, Awy, Ay; ATy, AT, AT, a, g]"

where

(5-21)

Equations of (5-3) are already in the standard state variable form and Egs.
(5-6) and (5-7) can be readily written in such a form. There are, however, two
nonstate variables AT, and AT,, that must be eliminated The exciter torque
AT, is very difficult to calculate, but relatively small, and may be neglected.
The general electric torque AT, can be calculated as follows. Since

T, =ighq — ig¥q
= (1wo)ig — Xgia + Xpaiy + Xpain) — la(—Xqiq + Xmqio + Xmgls)]  (5-22)
we have
AT, = (Hwo)[ —(xg — xg)igo Alg + (Xpnaipo — (Xq — Xq)iao) Alg
+ XpaigolAiy + Aip) — XpglaolAlg + Alg)] (5-23)

There are 12 electrical system equations, 4 of (5-10) and (5-11), 6 of
(5-17), and 2 of (5-19), but (5-11) will be used to eliminate Av,. The remaining
10 electrical state variables are

[x:] = [Aesq, Aeyy; Ay, Aiy, Aig, Aip, Aly, Aig; Avg, AEgp )" (5-24)
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and the nonstate variables A, of (5-19) can be eliminated from

v? = v 4+ v?
oo (5-25)
Av, = (v40/v0) Avg + (UqO/UtO) AUq
where Avy and Av, can be found from (5-11),
Avy = R Aiy — X Aig + (X/o,) Aiy + Aey + Avgy (5.26)

Av, = X Aig + R Aiy + (X/w,) Al + Aeyq + Avg,

We shall continue to eliminate Avgy and Avgg, the d and q infinite-bus
voltages. Let the angle between e, and v, be defined as d, as shown in Fig.
5-10. Then we have

Vog = Ug SIN 9, Doq = Vg €OS &

X ) ] (5-27)
Avgy = vg €08 g AD, Avy, = —vg sin 6 Ad

Finally, the electrical system state equations can be written first in the
form of

[Del[%e] = [Cullxm] + [Cellxe] + [Br]ug (5-28a)

and then

[x:] = [De] [ Cullxu] + [Pe] '[Cellxe] + [De] ™' [Belue  (5-28b)

which corresponds to the second row of (5-20).
The complete electrical and mechanical model of a one-machine, infinite-
bus system for SSR study 1s a 27th-order system.

& q axis

d axis
Fig. 5-10 Defining d,.

Summary of Section 5-2

In this section a single, unified, and complete electrical and mechanical
model of a one-machine, infinite-bus system for SSR study is derived. The
effect of the mass-spring system, the turbine torques and governor, the
capacitor-compensated transmission line, the generator, the excitation and
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control, and the interaction of the electrical and mechanical systems are all
included in one model. The model will be used for SSR analysis and control
design in subsequent sections.

5-3 FEASIBILITY OF EXCITATION CONTROL
AND OTHER STUDIES

The single, unified, and complete electrical and mechanical system model
for SSR study is used to investigate (a) the capacitor compensation effect on
SSR, (b) the phase-compensation PSS effect on SSR, and (c) the feasibility of
linear excitation control of SSR [16]. Important results are presented in this
section.

A Functional Block Diagram of the Complete SSR System

A functional block diagram of the complete SSR system may be drawn
as in Fig. 5-11. The steam turbine torques, controlled by the governor, are
acting on the mass-spring system. The generator receives the mechanical
torque from the turbines through the shaft, and also receives the excitation
from the excitation system that controls the electric power output of the
generator. The generator is connected to the capacitor-compensated trans-
mission line, which corresponds to the First Bench Mark Model of IEEE [17].

The First Bench Mark Model recommended by an IEEE committee for
SSR study is shown in Fig. 5-12, which is a one-machine, infinite-bus system.
From the generator on the left, there are the transformer, the blocking filter,
the line impedance, the series capacitor with dual gap protection, and the
infinite bus. Also shown in the figure are two fault reactances x; at two
different locations. A fault may be assumed either at bus A or bus B, but not
simultaneously.

TURBINE MASS—SPRING TRANSMISSION
TORQUES SYSTEM P SYSTEM
m
AT,
EXCITATION
u
GOVERNOR cveren e

Fig. 5-11 A functional block diagram of the complete SSR system.
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Fig. 5-12 The First Bench Mark Modetl of IEEE. (From [17], courtesy of IEEE, © 1977.)

System Data

For the SSR studies in the subsequent sections, most data are taken from
the First Bench Mark Model and other references.

Inertia and Stiffness Constants. They are given in [17] as

My = 0.185794
MH = 0311138 Ry = 19303
= 0.
= 3492
M, = 1.717340 II;‘A _ 332
My = 1768430 " D
= 1.73699 e

Mo 0 Koy = 2.822

My = 0.068433

Turbine Torques and Governor. Turbine torque and governor param-
eters are chosen from another IEEE committee report [15] as

Fy =03, Fy =026,  F,=022, Fy=022
Ty =03,  Tay =70, Teo = 0.2
Ks =95  Tp=02 Teu = 0.3

Transformer and Transmission Line. The transformer and transmission
line parameters according to [17] are

Ry =001, X,;=014, R, =002, X, =056

The capacitor compensation is expressed in terms of the X /X ratio, and
the following ratios are chosen for various SSR studies:

Xo/Xy =0.1,02,03,...,09

The Synchronous Generator. The synchronous generator parameter
values in [ 17] are given in terms of x4, X}, etc., but they can be converted into
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the equivalent circuit parameter values according to [18] as

X,q = 1.660, xg = 1.790, xp = 1.700, xp = 1.666

Xpq = 1580, x, = 1710,  xo=1695  x= 1825
rp=0001,  rp=00037,  rg=00053  rg=00182
Fy = 0.0015

Exciter and Voltage Regulator. A fast-response excitation system is as-
sumed and the following data are chosen from reference [19]:

Kg =350, Ty=0002, T, =00l

A Power System Stabilizer. A phase-compensation PSS with Aw as the
input is designed and the parameter values are

Ke=20, T,=0125 T, =0.05 (comp. block), T = 3.0 (reset block)

The Initial Operating Conditions. The initial operating conditions of the
synchronous generator in steady state are

P,=09, =105 PF=009(ag)

Capacitor Compensation Effect on SSR

Eigenvalue analysis is employed to find the capacitor compensation
effect on SSR. Eigenvalue loci of the entire system for Xo/X; = 0.1-0.9 per
unit in 0.1 steps are plotted in reference [16], and some results are listed in
Table 5-2.

The technique of identifying eigenvalues with system components has
been explained in Section 4-7, Chapter 4, in modeling an ac—dc system.

The capacitor compensation effects on an SSR system are as follows:

(a) There is little change in Ay, the eigenvalue pair corresponding to the
high-pressure turbine mass-spring system, and it always has a negative real
part.

(b) There are unstable eigenvalue modes of other mass-spring systems,
like 4 at 0.2 per unit compensation, /, at 0.3 and 0.5 per unit compensation,
etc. The possibility of existence of two unstable eigenvalue modes simul-
taneously with the mass-spring system increases with an increase of capacitor
compensation.

(¢) All other eigenvalue modes are stable: the capacitor compensation
/¢, the generator windings A4y, Ap, ..., Ap, the excitation system Ayyx and
/kra» the turbine torque transfer function ¢y, gy and Z¢q, and the governor
AGOVR -
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Table 5-2

Eigenvalues of the 27th-Order System

XX,
0.2 0.3 0.5

d —0.1817 + 29818  —0.1818 + ;298.18  —0.1818 + ;298.18
1 —0.2104 + ;203.20 +0.1541 + j204.35 +0.1560 + ,202.68
Aa —0.2266 + j160.66 —0.2496 + j160.72 +0.9100 + j161.42
Ay —0.6679 £ j127.03 —0.6706 + j127.03 —0.6799 + ;127.08
I —0.2660 + 99.13 ~0.2877 + /99.21 ~0.3545 + /99.79
/G +0.0415 + ;8.0234 —0.0479 + 78.4801 —0.2674 + j9.5459
Je —6.072 + j241.01 —6.198 + [209.20 —6.839 + j161.47
Jag —6.980 + j512.30 ~7.022 + j542.80 —7.080 + j591.15
Ap —2.020 —1.983 -1.907

Ao —25.40 —25.41 —-2542

2 —32.58 —31.92 —32.81

s —8.568 —8.440 —8.128

in —102.0 —101.9 — 1018

Fta ~500.0 ~500.0 ~500.0

. —2.927 —3.034 ~3.334

o ~0.1416 ~0.1417 —0.1418

7o —4.668 —4.616 —4.050

Jgoyn  —4704 + 07567 —4673 & 06269  —4.794 + j0.3198

(d) Other findings are that the oscillating frequency of 4, , increases with
the degree of capacitor compensation, but is usually above the synchronous
frequency; whereas the frequency of /. decreases with the increase of com-
pensation, which is below the synchronous frequency and hence may excite
the torsional oscillation modes.

PSS Effect on SSR

The PSS adds another eigenvalue pair to the system. The PSS effect on
7. of the mass-spring system is significant. The /g eigenvalue pair that has
the lowest oscillating frequency of about 9 rad/s or 1.5 Hz is pushed far into
the left region on the complex plane by the PSS, greatly enhancing the
positive damping. But in the meantime it also pushes 1, and Z; more to the
right, and they are already close to the imaginary axis or even on the RHS
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of the complex plane, manifesting a detrimental effect of PSS on other modes
vulnerable to SSR.

Feasibility of Linear Excitation Control with a Multiple Feedback

In reference | 16 ], the feasibility of linear excitation control with a multiple
feedback was investigated. The turbine torque and governor state equations,
although included in the initial eigenvalue analysis and final computer
simulation test, were neglected in the control design. For further order
reduction of the system for the control design, the damper winding equations
were also neglected, but their effect was compensated for in the design process.

The basic idea of the new control design is to relocate the unstable
eigenvalue modes of the mass-spring system in the stable region. From the
eigenvalue analysis of the original high-order system without control over
a wide range of capacitor compensation, it is found partly from Table 5-2
that, for this particular system, /;, 4,, and A need relocation badly. We shall
also give more left-shift to 45 to compensate for the damper winding cffect,
which is omitted in the model for control design.

Some techniques of the eigenvalue-assignment LOC design developed in
Section 4-6, Chapter 4, are applied here for the new control design, but it is
not yet optimal. Three sets of state equations similar to (4-5), (4-60), and
(4-62) are required:

X = Ax + Bu
2 =Fz + Gu {5:29)
¥ = Foy + Gou

The x-state equations are those in the general form, the z-state equations
are those with all measurable variables, and the y-state matrix equation is in
the canonical form. Since the eigenvalues of the system matrices F and F,
are identical for a linear transformation, the determinants of the charac-
teristic equations of the system without control are

AL = F|l =4 = 240 = 22} (A — 2)

(5-30)
|Al — Fyl =2 + o, A"V 4o, 2" 2 4 4oy

and those of the system matrix in canonical form and with control are
|l = (Fy — GoSo)| = (A = 2,)(2 = 22} (2 = 2,)
|21 — (Fy — GoSo)| = A" + 8,771 + Gy A2 By

Therefore, the new eigenvalues of the system matrix in canonical form and
with control /; can be related with the eigenvalues of the system without
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control Z; by the desired eigenvalue shift f; as follows
A=A+ B, i=i2...n (5-32)

Note that the solution of the Riccati matrix equation is not involved in this
design process.

Finally, the new control Gqu of (5-29) is written as — G,S,y. In the charac-
teristic equation of (5-31), however, y is deleted. Therefore S, of (5-31)
constitutes the desired shift of (5-32), and

Gout = —GySyy (5-33)
So =[B1: B2 . B.] (5-34)
In 7 state with all measurable state variables,
Gou = —GoSoy = —GoS,T 'z (5-35)
where
z="Ty (5-36)

Note that each term of (5-35) is a column matrix, and the coeflicients of u,
y, and z should be read as diagonal matrices.

With the three turbine torque equations, two governor equations, and
three damper winding equations neglected, A, /., and Aig of the reduced
19th-order system and the desired new eigenvalues 4;, 2, and 1, as assumed
are as follows:

Modes . 7
1 —0.2290 + j203.22 —3.5 + j203.22
A —0.2273 + j160.66 —3.5 £+ j160.66
G —0.2266 + j7.9054 —11.0 + j7.9054

After the control design, the eigenvalues of the original 27th-order system
with and without the new control are given in Table 5-3. Also listed are the
eigenvalues of the reduced 19th-order system with control for comparison.
The dampings of 1, %,, and % are not as large as assumed in the design
mainly due to the omission of damper windings. Although the control is
designed for a 30%, compensation, both eigenvalue analysis and computer
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Table 5-3
Eigenvalues of the 27th- and Reduced-Order Models

Model
19th with control 27th no control 27th with control

- —0.1818 + ;298.18 —0.1818 + ;298.18 —0.1817 + ,298.18
7 —0.2290 + j203.22 +0.1541 + ;204.35 —0.4879 %+ ;202.65
Ia —0.2273 + j160.66 —0.2496 + j160.72 —0.2555 + j160.31
o —0.6677 + j127.03 —0.6707 + j127.03 —0.6695 + j127.04
A —0.2627 + 99.14 —0.2827 + ;99.21 —0.2759 + j99.22
‘G —0.2266 + ;7.9054 —0.0479 + ;8.4801 —0.1758 + j9.0741
ic —3.658 + j238.75 —6.198 + ;209.40 —6.235 + j209.64
D —4.821 + j514.02 —7.022 + j542.80 —7.055 + jS42.71
Ap —1.983 .
& 9540 —2.907 + j0.2930
A —31.92 —25.40
Ae —8.006 —8.440

—12.78 £ j283.06
Avr —93.68 —101.9
Agta —499.5 —-500.0 —684.2
i —3.034 —0.4650
i —0.1417 -0.1410
’.co —4.616 —4.560
A GOVE —4.673 + j0.6269 —4.783 + j0.8535

nonlinear simulation test indicate that the control thus designed can effec-

o/

tively stabilize the SSR system up to 709, compensation.

Summary of Section 5-3

Using the unified electrical and mechanical model developed in the last
section, and also the reduced-order model, several SSR studies are carried
out in this section. It is found that more than one torsional mode of oscil-
Jation may exist for a system with high capacitor compensation; that al-
though a conventional phase-compensation PSS increases the damping of
J mode significantly, it also has a detrimental effect on other torsional
modes; and that the linear excitation control of multimode SSR for system
with a wide range of capacitor compensation is feasible.
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5-4 LINEAR OPTIMAL EXCITATION CONTROL OF SSR

Several aspects of the linear excitation control of SSR presented in the
last section can be improved (a) to find a still lower order model for the
design (b) to apply the principle of LOC, and (c) to make all control feedback
signals measurable [20].

Before improving the control design technique, we shall identify first the
torsional modes and the mode shapes of the six-mass-spring system.

Torsional Oscillation Modes and Mode Shapes

The six torsional oscillation modes of the six-mass-spring system will
be identified as mode 0, 1, 2, 3, 4, and 5. Mode 0 signifies that the six masses
oscillate in unison without a shaft twist (oscillating in the opposite direction).
Mode 1 has one shaft twist, mode 2 has two twists, and so on.

The mode shapes are found from the eigenvectors, which are found from
the eigenvalues of the mass-spring system. For the system shown in Fig. 5-4,
using the inertia and stiffness constants given in Section 5-3 and neglecting
the damping, the oscillating frequencies from the imaginary part of various
eigenvalues of the mass-spring system are as follows:

GEN LPA EX LPB 1P HP
Frequency (rad/s) 9.469 99.35 127.1 l6t.4 202.9 298.2
(Hz) 1.51 15.7 20.2 257 323 475

For each eigenvalue, there is an eigenvector that has six components. When
the six components of each eigenvector are normalized with respect to the
largest component, the six mode shapes of torsional oscillations of all eigen-
vectors emerge as Table 5-4. While the eigenvector components are arranged
in the same order as the mass-spring system, the torsional modes are arranged
according to the increasing number of twists. Therefore, the mode shapes
can be plotted as in Fig. 5-13.

Order Reduction of the Unified SSR Model for LOEC Design

To find the lowest unified electrical and mechanical SSR model for the
LOEC (linear optimal excitation control) design, we can no longer neglect
the damper windings in the SSR model. However, we may combine the two
damper windings on the ¢ axis, @ and S, into one, as it does not make any
appreciable difference in the overall performance of the SSR system [21].
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Table 54

Normalized Eigenvectors of the Six-Mass-Spring System

Modec

0 1 2 3 4 5
HP 1 —-0.777 0.1099 1 0.864 ~0.781

P 1 —0.584 0.065 0.342 —0.044 1
LPA 1 —0.342 0.015 —0.229 —0.503 —~0.113
LPB 1 0.112 —0.040 —0.095 1 0.021

GEN 1 0.373 —0.037 0.166 —0.621 —0.0045

EX 1 1 1 —0.253 0.377 0.009

Similar to the approach in the.last section, the smallest time constant of
the fast excitation system and all five time constants of the turbine torques
and governor system can be neglected for the LOEC design.

So far, the 27th-order unified electrical and mechanical SSR model
developed in Section 5-2 has been reduced to the 20th order; it is still too
high for a LOEC design with all measurable feedback signals.

The Equivalent Mass-Spring System

We shall give a hard, close look into the mass-spring system. From the
eigenvalue analysis of the original high-order SSR system for a wide range of
capacitor compensation (X /X, = 0-0.9), it is found that for the First Bench
Mark Model only modes 1, 3, and 4 are vulnerable to torsional oscillations
as shown in Table 5-5. Typical eigenvalues of the mass-spring system are
given in Table 5-6.
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Fig. 5-13 Torsional mode shapes of mode 1,2, ..., 5.
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Table 5-5

Possible Unstable Modes

Mode Frequency (Hz) Compcnsation
0 -2 Under 309,
1 15.7 (102 radys) Over 709,
3 25.7 (161 rad/s) At 50%,, 60%
4 32.3 (203 rad/s) At 40%, 50%., 60%,, 70%;,

Therefore, a low-order equivalent mass-spring system can be derived by
retaining the vulnerable mode frequencies only, by adding My to Mg, My
to M,, and My to M, and by adjusting the stiffness constants of the re-
maining shaft.

Consider the mass-spring system of Fig. 5-4 as described by (5-3). Neglect-
ing the damping D’s and eliminating A(’s, the characteristic equation of the
system may be written in matrix form as

|A[I] = [M] 'w,[K]| =0 (5-36)

where each solution of A gives one eigenvalue pair since each Ad equation
of (5-3) corresponds to a second-order differential equation after eliminat-
ing Af.

After six eigenvalue pairs are found {rom (5-36) for the data given in
Section 5-3, the same equation (5-36) is applied repeatedly for the successive
order reduction of the mass-spring system as follows:

(a) Add My to Mg to eliminate mode 2, which corresponds to Ay,
substitute the known frequencies to be retained into (5-36) of the reduced
order (12 —2), one at a time, to find a new Ky, which, and only which, is
treated as the unknown, and adjust the average values of Ky to the least-

Table 5-6

Typical Eigenvalues of the Mass-Spring System

Compcnsation

30¢, 50, 80°,
Jy  —0.1818 + ;298.18  —0.1818 + ;298.18  —0.1818 + ;298.18
I —0.4938 + 203.60  +0.1237 + ;202.87  +0.0134 + j202.89
Jn —02513 + j160.64  +0.2603 £ j161.38  —0.0967 & j160.52
iy —0.6705 + j127.02  —0.6828 + j127.05  —0.5998 + ;126.94
by —0.2811 + /99.136  —0.3528 + /99.345  +1.7178 + ;102.17

g —0.003) + /8.4105 —0.2327 3 j9.4692 —0.7619 + j11.662
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Table 5-7

Mass-Spring Eigenvalues of Various SSR Models

Order
26th 16th 14th

u —0.1818 + ;298.18

4 +0.1237 + ;202.87 +0.1033 + ;204.01 +0.0167 + 4200.32
7 +0.2603 + j161.38 +0.2341 + j161.72 +1.0147 + j160.11
lx —0.6828 £+ j127.05

I —0.3528 + j99.345 —0.3053 + j100.05

‘G —0.2327 + j9.4692 —0.2566 + j9.4905 —0.2408 + 9.5172

squares error of all remaining frequencies. For the adjustment, the sensitivity
of the frequencies with respect to the new Ky may be utilized.

(b) Add My to M, to eliminate mode 5, which corresponds to Ay, and re-
peat the process similar to (a) using an eighth order of (5-36) to find a new K.

() Add M, to M, to eliminate mode 1, which corresponds to Ay, and
repeat the process similar to (a) using a sixth order of (5-36) but this time to
find still newer K,, and Ky, one at a time. Note that this reduced-order
model is good only for the capacitor compensation up to 70%;.

In the order reduction process, attention should be paid only to the
eigenvalue frequencies of the vulnerable modes to be retained, and not to
the damping.

The mass-spring eigenvalues of the 26th-order SSR system (with only
one damper winding on the q axis) are shown in Table 5-7. Also shown are
those of the reduced 16th-order model with the omission of turbine and
governor time constants, etc., with My combined with M, and with My
combined with M;; and those of the 14th-order model with My further com-
bined with M, .

The mode shapes of the original six-mass-spring system are shown in
Fig. 5-14 as (a), those of the five-mass-spring system as (b), and those of the
four-mass-spring system as (c). They are very close.

Both the 16th and the 14th reduced SSR order modcls can be used for
the LOEC design.

Procedure of LOEC Design

The gencral procedure of LOC design developed in Chapter 4 may be
summarized as follows:



164 5 Subsynchronous Resonance and Tussional Oscillations

7

State equations

X = Ax + Bu (4-5)
Performance index
J= J [x"0x + u"Ru] di (4-6)
0
State and co-state system matrix
A —8§ 4-31
M= < |5 S =BR'B" ( )
—Q -4 (4-18)
Eigenvector matrix
Xy X
X :|: 1 m:l (4-35)
Xy Xy
Riccati matrix
K= XX (4-40)
Control
Bu = —SKx (4-41)
(2) (3) (1
I— T | T T/ e T —— 1
Ll HP H IP H: 4 LPA HLPBH; :GENH EX I:
Kni  Kia Kag  Kpe  Kpx
MODE 1{15.7 Hz) 1 1

A— H— Al

ki

MODE 2 (208.2Hz) /

0
-1

1 MODE 3(25.5Hz) 1 1
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Fig. 5-14 Mode shapes of the original and equivalent mass-spring systems.
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Therefore, the matrix state equation of the controlled system may be written

x =[4— SK]x (4-5a)
Let the system matrix with a LOEC be
A2 A-SK&2A-F (5-37)

and let the last state variable be Auvg of the voltage regulator of an nth-order

system F becomes
0
GE P 472
nl J nk J nn

Although there are generally » feedback gains, f,;, fu2, ---> [, Of (5-372),
some of them are not as sensitive to the system eigenvalues as others. There-
fore, eigenvalue sensitivity may be utilized to simplify the excitation feedback
control signals.

Example 5-2. Find the system eigenvalue sensitivity with respect to the
LOEC feedback gains.

Solution: The sensitivity coefficient may be calculated as follows. Let

AX; = X, (5-38a)

Alv, = A, (5-38b)

The variation of (5-38a) becomes
AACX,- + AC Axi = A;‘ixi + ;“i Axx' (5“39)

Premultiplying both sides of (5-39) by ©{, the last terms of both sides of
(5-39) will cancel each other according to (5-38b), resulting in

T AA X,
Ad, = 2 DA (5-40)

vl x;

For the sensitivity study, A4, becomes —AF, the variation of 4 being zero.
Since the effect of deleting the kth feedback element on the ith eigenvalue is

Ajy = 2B g (5-41)
l;‘ X

i 13

the total effect of deleting (d) feedback elements becomes

) vi(n)x(d) .
Adyay = — Z ‘)T—fnd (342
@ UiX



166 5 Subsynchronous Resonance and Torsional Oscillations
The LOEC Design and Test Results

For the LOEC design, the state variables of the 14th-order system are
[x]u = [Awla Ay, Awyg, Abg, Aw, Ad;

Aig, Aig, Aig, Aip, Aig, Aeyy, Ae.,, Avg|" (5-43)

cq*

and the following weighting matrices are chosen
[@],4 = DIAG[5000, 50, 55000, 50, 3000, 25;
1000, 1000, 0, 5, 5, 1, 1, 0] (5-44)
[R] =1

A linear optimal excitation control is then designed and the control is
tested on the original 26th-order system with the following statc variables,

[x]26 = [Awy, Ay, Awy, ADy, Awy, ADy, Awg, Aby, Aw, AS, Awy, Aby:;
ATy, AT, AT,, a,y;

Aly, Aiy, Aig, Aip, Aig, Aeyy, Aey, Avg, AEg | (5-45)

cq

The sensitivity of the control gains on the eigenvalues are examined. It is
found that only the gains of the following seven variables

[x], = [Awg, AS, Aig, Aig, Aig, Aiy, Ave]" (5-46)

have substantial effects on the eigenvalue shift of the controlled system, and
the gains of the other seven

[x]5 = [Awy, Aby, Aby, Aw, A, Ae.y, Ae ., ]T (5-47)

may be neglected.
Since the seven control signals of (5-46) are not all measurable, they may
be replaced by

[x]. = [Awg, Ad, AP, AQ,, Ai,, Aig, Avg]" (5-48)
Tofind AP,, AQ,, and Ai,, the following equations in per unit value are useful,
P = Yqig — Yqla
Q. = Walq + Wi, (5-49)
i =i+
Note also that as Ay, is relatively small,
Al/)Q ~ 0
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Table 5-8

Eigenvalues of the Original System with Low-Order LOC

Compensation
30% 50% 80%
Ja —0.1818 + ;298.18 —0.1818 + ;298.18 —0.1818 + ;298.18
4 —0.8842 + j201.52 —0.4554 + j203.44 —0.4788 + ;203.09
7y —0.2672 £ j160.45 —0.4192 + j160.36 —0.2693 + j160.58
/x —0.6927 + j127.09 —0.7322 + j127.16 —0.2864 + j127.16
/n —0.4608 + /99.295 —0.5894 + ;99.490 —0.6186 + j100.85
‘6 —1.3517 + j6.3035 —1.6931 £+ j7.1144 —2.5196 + ;8.2862
then
Aig ~ Ai, (5-50)

Eigenvalue analyses are repeated with the 26th-order system for various
degrees of compensation with the LOEC designed for the reduced 14th-order
model and neglecting the less-sensitive feedback signals. Typical results are
given in Table 5-8. The system is stable for up to 80%; capacitor compensation.

The LOEC is further given a computer simulation test using a nonlinear
26th-order model. A 209, pulsed torque AT, is applied to the system for
0.2 s. A typical dynamic response of the shaft between the two low-pressure
turbines is shown in Fig. 5-15. It clearly indicates the existence of two
torsional oscillation modes, one low frequency and one high frequency, and
they all attenuate in about S s.
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Fig. 5-15 Typical torsional oscillations of the system with LOEC.
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Summary of Section 5-4

In this section a linear optimal excitation control (LOEC) is designed to
stabilize the torsional oscillations of a one-machine, infinite-bus system. To
save computation of the design, the order of the system is reduced. Only
one damper winding is assumed per axis, one time constant is assumed for
the excitation system, and five time constants of turbine torque and governor
system are neglected. Equivalent mass-spring systems are further derived by
combining some masses together yet retaining all vulnerable torsional
oscillation frequencies found from eigenvalue analysis of the original high-
order system over a wide range of capacitor compensation, resulting in
16th- and 14th-reduced-order systems.

The 14th-order model is used for the LOEC design, and the feedback
signals of the designed control are further examined and the less sensitive
ones rejected, resulting in a feedback of only seven measurable signals.

Both linear test (eigenvalue analysis) and nonlinear simulation test (using
a nonlinear model) indicate that the LOEC can effectively stabilize the SSR
system over a wide range of capacitor compensation up to 80Y%;.

The LOEC design technique is being extended to multimachine SSR
stabilization.

5-5 SUMMARY

In this chapter a relatively new power system dynamic problem, the
torsional oscillations of the steam turbine generator shaft due to the electri-
cal resonance of the capacitor compensated transmission system, or the SSR
problem, is investigated.

Following a brief presentation of the SSR problem and the counter-
measures in practice or being proposed to date in Section 5-1, emphasis is
placed on excitation control of SSR in the subsequent sections. A single
unified and complete electrical and mechanical model of a one-machine,
infinite-bus system for SSR studies is developed in Section 5-2, and the effect
of capacitor compensation on SSR and the feasibility of excitation control
of SSR is investigated in Section 5-3.

Convinced of the feasibility of excitation control of SSR, Section 5-4
improves the design technique by reducing the order of the system model
from the 27th to the 16th or 14th for the LOEC design in order to save com-
putation. An equivalent mass-spring technique is developed. Linear optimal
control design techniques are also applied, the designed LOEC is further
examined, and some of the less-sensitive control signals are rejected, resulting
in a LOEC with only seven measurable feedback signals. Both eigenvalue
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analysis and nonlinear simulation test of the original high-order system
confirm that the LOEC thus designed is highly effective in stabilizing the
system vulnerable to SSR over a wide range of capacitor compensation.

Problems

5-1 Find the equivalent resistance and reactance of Fig. 5-1. Under what
conditions will SSR occur to a one-machine, infinite-bus system if the syn-
chronous generator can be represented by Fig. 5-1, the total resistance of
transformer and transmission line is R, , the total reactance X , and the line
compensation capacitive reactance X?

5-2  Derive (5-11) from [, ] Of (5-8) through coordinate transformation.
Assume a balanced three-phase voltage.

5-3 (a) Find the eigenvalues and eigenvectors of the mass-spring system
of Fig. 5-4 alone, using the data for the First Bench Mark Model of Fig. 5-12
and neglecting all damping and mechanical input torques.

(b) What are the mechanical mode frequencies in hertz?

5-4 In the final design of LOC of SSR, part of the state variable vector
[Aid, Aiy, Aig, AiD]T of (5-46) is replaced by [APC, AQ., Ai,, AiF]T of (5-48).
Find the linear transformation relation.
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Chapter 6 Dynamic Equivalents
of External Electric
Power Systems

Most power system dynamic studies were originally based on one-
machine, infinite-bus models and were found satisfactory. With the increasing
interconnection of power plants in modern large electric power systems,
power system dynamic studies become much more complex. There are, for
instance, about 300 machines in the WSCC system and also about 300
machines i the Northeastern and Michigan system, considering major
machines alone [ 1].

Although computer programs have the capability of handling a great
number of machines and buses, difficulties still remain. In addition to the
large amount of computation, full information on the entire system is re-
quired. Some of this may be difficult, if not impossible, to obtain. Moreover,
results of hundreds of swing curves can hardly be given meaningful inter-
pretations because they are so involved.

A sensible thing to do is to consider only the local system under study in
detail, and to represent the external systems by equivalents. Static equivalents
for load flow studies are fairly well developed, and the development of the
dynamic equivalents for dynamic studies is is progress. This chapter deals
with the dynamic equivalents of the external system. Our primary concern is
the dynamic interacting effect of the external system on the local system under
investigation. As long as the interacting effect of the external system on the
study system can be faithfully represented, the behavior of the various
machines within the external system are of secondary interest.

Dynamic equivalents are used for stability analysis, stabilizer design, and
investigation of the electric power transfer limits among areas. Much thought
has been given in this regard. One idea is to distribute the inertia of the
machine to be eliminated to other interconnected machines in proportion to
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their transfer admittances [2, 3]. Another is to draw boundaries for areas
that are severely affected, less affected, and least affected by a fault, in ac-
cordance with a distance factor of swing angle approximated by (3)at* where
t is the duration of fault and a the acceleration calculated from the steady-
state transfer power divided by the machine inertia [4]. Still another suggests
that three machine models of different degree of detail be used, a nonlinear
full model, a linear model, and a constant voltage behind reactance, decided
by a factor of Ad,[Y;;/Y;] where A, is the rotor angle deviation from the
steady state based on an initial stability analysis, and Y;; and Y; are the self
and transfer admittances, respectively [5].

The major approaches of dynamic equivalencing for stability studies are
three: the modal approach, which keeps the main eigenvalues of the external
system [6-9]; the coherency approach, which separates machines in groups
and combines machines within each group closely swinging together into
one equivalent [1, 10-13]; and the estimation approach, which derives the
equivalents for the external system through estimation [ 14-18]. These three
techniques will be introduced in this chapter, with emphasis on the esti-
mation; it is the only technique that does not require any information of the
external system.

Some references on estimating static equivalents and machine parameters
are also given at the end of this chapter [19-30].

6-1 EIGENVALUE-BASED DYNAMIC EQUIVALENTS

In the first two papers on modal dynamic equivalents, which were called
electromechanical equivalents [6, 7], a large electric power system was
divided into three parts, the study system, the surrounding external system,
and the remainder beyond the surrounding system. Terminals between the
study system and the external system were retained. The original picture is
schematically redrawn as Fig. 6-1.

Since the data for the remaining portion of an extensive large system
were difficult to obtain, and the remainder’s effect on the study system was

STUDY o
SYSTEMI |t

H———

TERMINALS
Fig.6-1 Study and external systems.

EXT!%RN.SYS. REMAINDER
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secondary, it was suggested that it be represented by a few equivalent gener-
ators with highly simplified models.

The main problem was the simplification of the external system which
was considered sufficiently remote from the site of disturbance, yet had
significant influence on the study system. The idea was to derive relatively
simple dynamic equivalents for the external system through eigenvalue
analysis. This approach of deriving dynamic equivalents will be referred to
hereafter as the modal approach.

Equivalencing Technique

The general procedures for deriving the dynamic equivalents of the
external system by the modal approach are as follows [6, 7]:

(1) The external system state equations are first described by the non-
linear differential equations,

x = F(x, v,) (6-1)

where x 1s the state variable vector, and ¢, the terminal voltage as shown
in Fig. 6-1.

(2) Equations (6-1) are linearized on the assumption that the disturb-
ance propagated from the study system to the external system is sufficiently
small. Including a set of current deviation equations at the terminals, the
complete external system equations may be written as

¥y = Ay + B Ay, (6-2a)
Ai, = Cy' + D Ag, (6-2b)
where y is the deviation of x, Ay, that of v,, y" a subset of y, Ai, that of the
terminal currents, and A4, B, C, and D are the matrix coefficients. The dynamic
behavior of the external system is now described by matrix equation (6-2a),
while the current deviations are described by matrix equation of (6-2b),
which can be found from a load flow study.
(3) The system matrix 4 of (6-2) is diagonalized using the eigenvector
matrix of 4 for the transformation, resulting in
z = Az + E Ay,
z=Ty

(6-3)

where z is the new state variable vector, A the system eigenvalue matrix in
diagonal form, E a new coefficient of Av,, and T the transformation matrix
that constitutes the eigenvectors of 4.



174 6 Dynamic Equivalents of External Electric Power Systems

(4) Neglect the eigenvalues of fast decay and those of high frequencies,
and keep only the main eigenvalues, resulting in a lower-order external
system.

To validate the method, a power system was computer simulated with
the study system chosen in two different ways and a fault assumed at different
locations [6, 7]. In one case the voltage regulator gains were increased to
ten times the ordinary values to bring the system to the verge of dynamic
instability. In another case the duration of a three-phase fault was increased
to bring the system to the verge of transient instability. The dynamic re-
sponses of the system with reduced-order external equivalents were com-
pared with those of the original system for an intentional disturbance. Re-
sults were in good agreement. It was observed that the system with equiva-
lents was slightly less stable than the original system, and there were some
discrepancies in eigenvalues for different choices of the reference machine in
the external system for the linerization. There were interesting discussions of
the paper, and one of them pointed out that some thought should be given
to the modal interaction of the machines of the study system and those of
the external system [6, 7.

The NPCC System Test

The dynamic equivalencing technique of the modal approach was
further tested on the vast NPCC (Northeast Power Coordinating Council)
system | 8]. The test system constitutes five areas: (1) New England, (2) upper
New York State, (3) southeast New York State, (4) Ontario Hydro, and (5)
Michigan and PJM (Pennsylvania—New Jersey—Maryland), and the entire
system was represented by 48 machines and 136 buses. A three-phase fault
for six cycles was assumed on two different buses of area 1. In one study area
I alone was considered as the study system and the other areas were con-
sidered as the external system. In another study all areas except area 5 were
considered as the study system and only area 5 was considered as the ex-
ternal system. In all studies, constant impedance loads were considered, and
each machine of area 5 was represented by a voltage-behind-reactance.

The computer time saving in stability analysis was about 249 with
respect to a reference run when area 1 only was considered as the study sys-
tem, but there was not much saving when area 5 was considered as the ex-
ternal system. The overall computer time saving by this method is not much
because of the heavy computation of diagonalization of a large system matrix
by eigenvectors. It was also noted in reference | 8 | that the reference machine
in the external system for the linearization process must be properly chosen.
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Fig. 6-2 System mode identification. (From [9] courtesy of IEEE, © 1978.)

System Mode Identification

Also based on the modal concept, but without going through the equiva-
lencing process, a technique of identifying the major modes of a power system
was proposed [9] It was advocated that the swings of a local system in a
large electric power system can be approximated by a few major modes, onc
local mode and one or two interarea modes. For instance, the response of a
power system was approximated by

2
5(t) = Y A" sin(wg + ¢;) (6-4)
i=1
and the damping factors and the oscillating frequencies were identified with
an adaptive reference model as shown in Fig. 6-2.
In the process, the reference model response is compared with the system
response, and the model parameters are repeatedly adjusted until the re-
sponse error reaches the minimum.

Summary of Section 6-1

In this section the dynamic equivalencing techniques of the modal ap-
proach are presented. A large electric power system is divided into three
parts, the study system, the external system, and the remainder. The external
system, which includes a large number of machines, is represented by equiva-
lents. The procedures are as follows: (1) Describe the external system by
high-order nonlinear differential equations, (2) linearize the equations, (3)
diagonalize the system matrix, and (4) neglect the fast decaying and high
frequency eigenvalues. The diagonalization of a large system matrix using
eigenvectors is time-consuming, and a proper choice of a reference machine
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in the external system for the linearization is important. Also based on the
modal concept, but assuming that there are only a few major modes of a
local system in a large electric power system, an identification technique is
also mtroduced. All these techniques are useful, and we shall present other
dynamic equivalencing techniques in the subsequent sections.

6-2 COHERENCY-BASED DYNAMIC EQUIVALENTS

Another prevailing dynamic equivalencing technique is based on the
concept of coherency of swinging machines [1, 10-12]. From a transient
stability analysis of a large electric power system, a number of groups of
generating units, swinging coherently together at the same frequency and at
close angles, are identified; and all units of each group are combined into one
or two dynamic equivalents, e.g., one thermal unit and one hydro unit. Since
the equivalents are expressed in terms of machine and control parameters,
the basic system structures are retained. For a very large electric power
system, however, heavy computations are involved because of the transient
stability analyses of the system for various contingencies. Examples of co-
herent groups can be found in reference [1].

Dynamic Aggregation

The equivalencing process of the coherency approach is called dynamic
aggregation [ 11], which may be summarized as follows.

Equivalent Bus. All generators belonging to the same coherent group
are connected to an equivalent bus through ideal transformers, each with a
complex ratio, to match their terminal voltages and phase angles with those
of the equivalent bus. The complex ratios are calculated from

a;= Uj/vu j=1L...,n (6-5)

where v; and v, respectively, are the terminal voltage phasor of the individual
machine and the voltage phasor of the equivalent bus. The equivalent bus
voltage may be chosen from the voltage of any individual bus or the average
values of the coherent group.

Rotor Dynamics. The mechanical equations of individual machines of
a coherent group may be written

2H (dw,/df) = P,,; — P,, — Djw,,  j=1,...,n (6-6)
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Since the speeds of all machines in a coherent group are the same, the aggre-
gated mechanical equations may be written

(3 2H)deo/dt) = 3. Pryj = Y Poy = (Y. DYoo j=1,..,n  (67)

Note that all equations of (6-6) must be written on the same MVA and the
same kV bases for the entire clectric power system.

Turbines and Governors. The basic equations of the turbines and the
governors of a coherent group may be written

PoLi(s) = Gis)Awls), j=1,....n (6-8)
Therefore

Y P =D Gis)] Awls), j=1,...,n (6-9)
J J

For the aggregation of the transfer functions, Bode plots may be used.
For unknown transfer functions of machines in the group, standard param-
eter values may be assigned. To approximate the aggregated results, the
least-squares-error curve-fitting technique can be applied. An example of
Bode plots of the aggregated phase angles and magnitudes of a coherent
group of machines are shown in Fig. 6-3 in dotted lines, and the curve fitting
results in solid lines.

Excitation System. Similar techniques can be applied to derive the
equivalent transfer function for the excitation systems. The basic equations
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Fig. 6-3 Bode plots of aggregated and equivalent transfer functions. (From [11] courtesy
of IEEE, © 1978.)
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of the excitation systems may be written

erp(s) = Gg(9)Av(s), j=1,..,n (6-10)

and the equivalent transfer function

Gels) = ZLUD = Y W()Gusls),  j=1l...n (6-11)
t j

where Gy (s) represents the transfer function of individual excitation, Gg(s)
the equivalent, erp, ;(s) the individual field voltage, e (s) the equivalent, Ar,
the equivalent terminal voltage, and W(s) a weighting factor. For details,
see reference [ 11].

Power System Stabilizers. The transfer functions of power system stabi-
lizers may be written

— Y W(G(9Gs (s j=Li..eun (6-12)

j
and the equivalent

ep(s)

u(s)

= G(5)Gs(s) (6-13)

where Gg(s) was determined from (6-11), and Gg(s) may be determined from
the least-squares fitting.
Most notation used in this section follows reference [11].

Coherent Equivalents with Simplified Power System Model

Since the most time-consuming part of computation in dynamic equiva-
lencing of a large electric power system by the coherent approach is the
transient analysis of the system, Podmore suggested that the synchronous
generators be modeled by constant voltages behind reactances, and that the
excitation, governor, and turbine systems be neglected in the model [12].
In his formulation, the machine equations are written

M‘LAffi AP, — AP.. — D.Aw.

di mj e T AR J

Ad .
489 _ onf) Ao
di

(6-14)
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and the power equation

AP, i [ Ao
AP, Af
" QLG = J AE (6-15)
AQL L LAU
which is approximated by
[APGJ _ [ 6Pg/AS EJPG/EOJ*Aé} (6-16)
AP, | OP /A6 0P /cb || AO

based on the assumption that the power and reactive power flows can be
decoupled, and that

AE ~0, ¢Pg/év ~0, 6P /év~0 (6-17)

In these equations, Pg;, Qg, £, and ¢ are the power, reactive power, voltage,
‘and angle of the generator internal buses, and P, Q,, v, and 0 those of the
load buses, respectively.

Based on the simplified linear model and with a trapezoidal integration
algorithm [31], the computer time required for the coherency equivalencing
is drastically reduced. Tt was observed that although the system damping
was affected by the simplified modeling, the oscillating frequency was not.

Figure 6-4 compares swing curves of two machines (1 and 2) of the original
system (solid lines) with those of the two machines of the equivalent system
(broken lines). They are close. Discussions on the paper suggest that (1) a
second-order equivalent may not be satisfactory for generators close to the

150
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Fig. 64 Swing curves of original and equivalent systems. (From [12] courtesy of 1EEE,
» 1978.)
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fault, (2) the coherent groups before and after a switching may change, and
(3) dissimilar generators in a given power plant may not swing coherently.

Power Transfer Limits of Coherent Groups

The coherency concept has also been developed at CEGB (Central
Electricity Generating Board), England, to study the power transfer limits
among machine groups [13]. A criterion based on the rotor angle deviations
of individual machines is used to separate the machines into coherent groups.
A group leader, usually the largest machine of the group, is chosen, the
capacity of the group leader is modified to represent the total MVA of the
entire group, and the inertia is adapted to [ (MVAH,)/MVA,],i = 1,...,n,
for a group with #» machines. The resistance and reactance of a machine group
are also adapted to (r- MVA),_,.../(new MVA) and (x- MVA),_.,../(new
MVA), respectively. Power transfer limits are determined from load flow
and transient stability studies with these group equivalents. For details, see
reference [13].

Summary of Section 6-2

In this section, the dynamic equivalencing techniques based on the co-
herency concept are presented. From a transient stability analysis of an
electric power system, the generating units are separated into a number of
coherent groups. Each group of machines, swinging together at the same
frequency and at close angles, are combined into one equivalent. The speed
deviations being the same, the torque equations of the machines in one group
can be added together on the same MVA and the same kV bases to find the
equivalent damping and inertia constant. For the excitation and governor
loop transfer functions, Bode plots are used for the aggregation, and the
equivalent transfer functions are obtained from the least-squares fitting.

Since the most computer-time-consuming part of the process is the
transient stability analysis of a large electric power system, it is suggested
that the synchronous machines of the system be modeled by voltages behind
reactances and the control loop transfer functions be neglected in the equiva-
lencing process. This simplification is found to perform satisfactorily.

The coherency concept is also developed for the study of the power
transfer limits among groups of machines. A leader machine is chosen for
each group to represent all machines of the group, with modified inertia,
resistance, and reactance. The technique was reported by CEGB engineers.
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6-3 ESTIMATED DYNAMIC EQUIVALENTS

The third approach for obtaining external dynamic equivalents is de-
riving the equivalents through estimation using information only from the
study system [14-16]. In such a case, unlike the modal approach or co-
herency approach, no information about the external system is required.
This is very desirable since so many machines, loads, and lines of the external
system are involved, and the data are very difficult to obtain and some of
them are not even available. Moreover, sooner or later, we may have to face
the problem of deriving the external dynamic equivalent with on-line com-
putation for security assessment of stable system operation. In such a case,
we do not have any other choice but to estimate the external dynamic equiva-
lent on line.

Pioneer work of dynamic equivalent estimation has been done, which
will be presented in this section; other techniques are being developed, which
will be presented in subsequent sections.

Maximum Likelihood Identification

Identification of external dynamic equivalent of a power system using
a stochastic process was reported in references [ 14, 15]. A maximum likeli-
hood function and a Kalman filter were used. For the on-line measurements,
random load fluctuations normally appearing in the system recording at the
power system boundary are processed by a low-pass filter, and the un-
desirable noises are removed. The general procedures are shown in Fig. 6-5.

In the figure, a likelihood function of the residual §z is constructed, which
is the difference between the on-line measurement z and the predicted mea-
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Fig. 6-5 Maximum likelihood identification. {From [15] courtesy of IEEE, © 1975.)
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Fig. 6-6 Likelihood function of one parameter.
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surement 2. The function is then optimized and a new parameter vector « of
the system is found to estimate a new system state . The Kalman filter gain
K is calculated at each step, which itself involves many iterations. A new
measurement £ is predicted and compared with the on-line measurement z
at that instant to give a new residual dz. The process is repeated until the
likelihood function reaches maximum, which gives the best estimated param-
eter values. A typical likelihood function versus one parameter is shown in
Fig. 6-6. The mathematics of the process are rather involved and some
details are given in reference [ 14].

The identification technique was applied to a three-machine electric
power system with two machines in the study system and one in the external
system. Each machine of the study system was represented by two state
variables, 6 and w, and a voltage behind reactance; and the external system
by two state variables P; and Q,, the power and reactive power, respec-
tively. Test results have shown that the technique is feasible and that further
development is required [ 15].

Discussion of the papers pointed out that the noises due to load fluctu-
ations may have a significant single-phase component, and that the model
identified may depend on the magnitude of the measurement signals.

Least-Squares-Error Identification

The least-squares-error technique was applied to identify both static and
dynamic equivalents of an external electric power system, and the static
equivalent was estimated first {16]. A stochastic process was used. It was
assumed that the impact of disturbance of the study system on the external
system was small, that the external system can be represented by a stochastic
process, that the unknown disturbance due to momentary imbalance of the
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external generation and load was small, and that the power and reactive
power inputs to the external system at the boundary were observable.
The process is represented by a linear difference equation of the form

n m

yky =) apylk —j) + Z a,., wk —j) + Z Z bk — j) + w(k) (6-18)

j=1 j=1i=1

where y(k) are the state variables of the external equivalent, e.g., the changes
in its internal voltage AE! and its phase angle Ad;, at time k of the process;
y(k — j),j = 1,...,n are a series of values of y(k) of order n of an autoregres-

sive process and a; the corresponding coefficients; w(k — j), j =1, ..., m,
are the residval errors of p(k — j) of order m and 4, the corresponding
coefficients; u;(k — j), j = 1, ..., n, are a series of the ith observable input

variables, e.g., the tie-line power AP or the reactive power AQ;, and b;;,
i=1,...,nj=1,...,n are the corresponding coefficients; and w(k) is the
error of y(k) at time k.

Since u;(k — j), i = 1,..., [, are deterministic, the first three terms on the
RHS of (6-18) can be combined, resulting in

y(k)y = a"z(k — s) + w(k) (6-19)
where
a" = [a; - yyms byy by b
Tk — s) = [yl — 1) y(k — n), wlk — 1)+ w(k — m), (6-19a)

uk — 1) uy(k — n), uyk — 1) uy(k — n)- -,k — n)]
Let the estimate a be d, and the residual error be
Wik, d) = y(k) — d"z(k — s) (6-20)

and let a square error function of size N be

I1M<

2(k, &) (6-21)

Recursive formulas for the parameter identification can be found from the
minimization of J with respect to é¢. When the internal voltages AE{ and
angles Ad; are chosen for the external equivalent, as the state variables, and
the tie-line power AP} and reactive power AQ; as the input variables, the
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P (k) P(k) Pk} |E (k) =Ej+AE}(k)

E; (k) /8;(k)

. /8.
i 8%(k) = 8;+ A8, (k)
[
1 i /i

Fig. 6-7 Equivalent of the leasi-squares identification. (From [16] courtesy of IEEE, ©) 1976.)

recursive formulas become

AE[(k) = i [a; AE[(k — j) + by; AP{(k — j) + by; AQi(k — j)]

i=1

+ Y apy wrlk — ) (6-22)

=1

MG = 3 [e; Aditk — j) + dy; APk — J) + da; AQUk — )]

J=i

+ Z an+] () _.]) (6—23)

i=1

and the equivalent system may be drawn as Fig. 6-7.
In the process the static equivalent must be estimated first. Several
equivalent models were proposed. For details, see reference [ 16].
Discussions of the paper pointed out that information on the external
system was required for the static equivalent estimation and that validity of
the models for identification may depend on the nature and location of the
disturbance within the study system.

Summary of Section 6-3

In this section two external dynamic equivalent estimation techniques
are introduced. By the maximum likelihood technique, the likelihood func-
tion of the residual error of the on-line measurement minus the predicted
measurement is repeatedly minimized until it reaches an optimum. A new
state is estimated in each iteration using the Kalman filter. The best estima-
tion of equivalent parameters corresponds to the maximum of the likelihood
function.

A least-squares technique using a stochastic process for the external
dynamic equivalent estimation is also introduced. But the external static
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equivalent must be cstimated first, which requires full information on the
external system.

Using a deterministic process for the external dynamic equivalent esti-
mation without the need for any external information, a much simpler
least-squares technique with less computation will be derived in the sub-
sequent sections.

6-4 ESTIMATION WITH AN INTENTIONAL DISTURBANCE

One difficulty of all the foregoing dynamic equivalencing techniques of
the external system is the heavy computational requirement: the diago-
nalization of a very large system matrix using eigenvectors of the modal
approach, the transient stability analysis of a large electric power system
and the dynamic aggregation of the coherency approach, and the iterative
stochastic process of the estimation approach.

Another difficulty with these techniques is the requirement for full system
data on the external system except in the maximum likelihood approach,
which 1s almost impossible for large electric power systems. As for low-pass
filtered tie-line recording for the stochastic process, it is time consuming to
compute and there might be a single-phase dc component.

An Intentional Disturbance

To overcome these difficulties, a deterministic process with an inten-
tional disturbance for the estimation of external dynamic equivalent is
proposed [17, 18, 32] . The disturbance is so chosen that the system response
to the disturbance is much larger than the load fluctuations observed on the
tic line, so that the recording noises will not have any significant effect on the
estimated results. The system voltage regulation due to the intentional dis-
turbance, of course, must be kept within the safety limits.

There are many ways to generate such a disturbance: a pulsed excitation,
a ramp torque, or a temporary switching off of one line section. The last
approach is the least desirable since it does alter the structure of the study
system. The first is the simplest to apply as it changes the system operating
condition only temporarily.

Figure 6-8 shows the response of a machine due to a disturbance in a
study system. A 5%, pulsed excitation is applied to the machine for one
second, and the terminal voltage Av,, the electric power AP,, and the speed
Aw of the machine are recorded for four seconds from computer simulation
for the dynamic equivalent estimation. The voltage regulation is well within
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Fig. 6-8 Syslem responses to a pulsed change of cxcitation.

the safety limit, and the power variation is much larger than the load fluctu-
ations usually found from tie-line recording. There is, of course, no single-
phase component. Therefore, these recordings can be used for the deter-
ministic estimation process. In examples to be presented in later sections, it
is found that actually only two seconds of Fig. 6-8 recordings are sufficient
for the equivalent estimation.

In practice, it is recommended that the pulsed excitation be carefully
tried in the beginning, gradually increased, and finally increased to the de-
sired level good enough for the equivalent estimation.

Equivalent Models and the Least-Squares Error

The objective of deriving an external dynamic equivalent is to find a
simple representation of the dynamic interacting effect of the external sys-
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tem on the study system. For that, many models with various degrees of
details could be chosen. But some criteria must be derived for the choices
of the model.

The choices of a model for any power system dynamic studies, of course,
cannot be dissociated from the problem itself. One has to know whether it
is for the low-frequency oscillation study, or for the subsynchronous reso-
nance and torsional oscillation study, or for the transient stability study.
Therefore, the external dynamic equivalent should be represented by an
equivalent machine instead of a static electrical circuit.

To describe both study system and external system, it is also desirable
to have a model in common, and the model can be adapted to describe the
individual machines as well as the equivalents. This suggests that the fourth-
order model of Fig. 3-1 of Chapter 3 might be a good start, although the
model must be extended to describe a multimachine system. The derivation
of such a model will be presented in Section 6-4.

The next question is, in how much detail should the external system be
represented? Shall we use a full model similar to Fig. 3-1, or omit the T
block, or even the T, block? On the other hand, can we add an extra section
of transmission line between the study system and the external system, and
some local load for the external equivalent? In any case, the external system
should be neither overrepresented nor underrepresented.

To find the most adequate model for the external equivalents of a power
system, the following guidelines are proposed:

(1) The error of the predicted and observed measurements must be
minimum.

(2) The estimated equivalent parameter values must be unique for any
initial guess.

Let a least-squares-error function be chosen as

Fe= J T — (e )[R — §(t, )] di (6-24)

0

While the measurement vector y is a function of time only. the predicted
measurement ¥ is a function of both time and the unknown equivalent
parameter vector z being estimatcd at each step. R of (6-24) is a diagonal
weighting matrix for the error function [ ); — y;(2)], and should be so chosen
that a variable with a large unit and hence a small numerical value. like Aw
in per unit value instead in radians per second, be given a large weighting
factor, and a variable with a small unit be given a small weighting factor.

After the J function is chosen, the next step is to ensure that J is sensitive
with respect to all parameters of the equivalent model chosen. like Fig. 6-9a.
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Fig. 6-9 J is sensitive to «, but not o, (*: optimum values).

The lack of sensitivity, as demonstrated by Fig. 6-9b, implies that the equiva-
lent is overrepresented, and a model of reduced order and/or less parameters
should be sought for the equivalent.

Although the sensitivity test is necessary, it may not be sufficient. The
ultimate guidelines are still that the estimation error J be minimum and
the estimated parameter values be unique. Of course, we may start from a
low-order model with least parameters and increase the order and/or the
number of parameters whenever warranted.

System Equations and Estimation Algorithm

The system equations inciuding both study system and external system
are written in the linear form of

X=Ax +d
{6-25)
y = Hx

where x is the system state variable vector, y the output or measurement
vector, d the intentional disturbance, 4 the system matrix, and H the output
matrix. Equation (6-25) can be used also to describe the study system plus
the equivalents or the equivalent system, but the system order and number of
variables will be reduced owing to the equivalents.

Prior to estimation, the initial steady state of the system must be known,
which can be found from a load flow study; and the y measurements must
be prerecorded for off-line estimation, although on-line estimation is also
conceivable if a fast computer is available.

For the estimation, however, most terms of (6-25) should be explicitly
expressed as functions of &, the unknown parameters to be estimated,

o) = A(@)F () + d

_ (6-26)
Vo) = H(o)%()



6-4 Estimation with an Intentional Disturbance 189

DATA INPUT

ORIGINAL SYSTEM
RESPONSE x

i

MEASUREMENTS
y =Hx

l

EQIVALENT SYSTEM
RESPONSE X

!

PREDICTED M.
Y(a)=Hla)x(a)

[UPDATE o] I

LEAST-SQUARES
ERROR J

Fig. 6-10 A deterministic estimation algorithm.

The error function J of (6-24) is calculated from (6-25) and (6-26). Note that
the independent variable ¢ is omitted from (6-25) and (6-26) for conciseness.
All predicted values are shown witha ~, e.g., X.

Figure 6-10 illustrates the deterministic estimation algorithm, including
the following steps:

(1) Find the initial steady state of the system.

(2) Find the system response x or | X dt and the measurement y of the
original system to an intentional disturbance d at instant ¢ beginning at ¢,.

(3) Compute the equivalent system response % or | % d and the predicted
measurement y of the equivalent system, which are functions of both ¢ and
a, for the same intentional disturbance at the same instant.

(4) Compute the least-squares-error J and adapt the equivalent param-
eters o until J reaches the minimum.

Note that for the development of the estumation technique, both x and
y are computed in step 2, but y is prerecorded for off-line estimation or
recorded on-line for on-line estimation.

There are also two problems associated with the algorithm of Fig. 6-10:

(a) to find an adequate model for the external equivalent;
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Fig. 6-11 Algorithm to find an adequate model for the equivalent.

(b) to adapt the step size of z at each iteration to ensure fast convergence
of the computation.

An algorithm to find an adequate model is given in Fig. 6-11. For this,
a large step size may be used.

A Self-Adaptive Step Size

To ensure fast convergence of the iterative scheme as shown in Fig. 6-10,
the steepest descent method is adopted, but the step sizes of the equivalent
parameters are adapted at each step as follows. Let

Opew = Yold — 0 (6‘27)
and
dou = KJ, (6-28)

J, or ¢J/Cu 1s the sensitivity vector of J with respect to %, and K 1s a diagonal

matrix to be decided. As is well known in computation, when J approaches

a minimum, the convergence is very slow for a small K, but may overshoot

or even diverge for a large K. Therefore, K must be automatically adapted.
Let the step size be constrained by

(S0)TG(62) = C? (6-29)

where G is a positive definite diagonal weighting matrix and C a constant.
G can be properly chosen for various estimated parameters with different
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units, and C can be adjusted in the process. Let the optimum J be J*(¢), and

JHx) = J(x) + 29 (6-30)
where

g = (02)"G(ox) — C* (6-31)

and 4 is a Lagrange multiplier. Since for an optimum J*,

J¥=J, +7g,=0 (6-32)

J, = —22G(0%) {6-33)
Substituting o« of (6-28) into (6-33) and solving for K gives

1 -1
K=-6 (6-34)

Substituting K back into (6-28) gives
N l _1
de=|—-=—|G 1, (6-35)
2/,
Substituting du of (6-35) into (6-29) and solving for —1/2/4 yields
1 : _ 142
5 C[J;G '] "2 (6-30)

Therefore, K of (6-34) becomes
K =C[J;G )] 26! (6-37)

The step size of Fig. 6-10 will now be adapted according to (6-27).
The advantages of this scheme are:

(1) J, can be calculated numerically and it does not require the com-
putation of J, and J_' as required by other schemes, which is very
time-consuming.

(2) The step size is automatically adjusted at each iteration to ensure
fast convergence.

(3) By selecting proper values for the diagonal elements of the weighting
matrix G, different step sizes can be chosen for different parameters, which
usually have different units and ranges of values.

(4) C also can be adjusted: it can be decreased when J tends to diverge
and increased if the convergence is too slow.
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Summary of Section 6-4

In this section estimation techniques for dynamic equivalents of a power
system with an intentional disturbance in the study system are presented.
The objective of an intentional disturbance is to intensify the interacting
effect of the external system on the study system so that the load fluctuation
noises normally observed on the tie-line recordings become insignificant.
Then a deterministic process can be used for the estimation, which is much
less time-consuming than a stochastic process. On the other hand, the
intentional disturbance must be kept within the safe voltage regulation limit
of the power system.

The concepts of least-squares error and sensitivity are applied to develop
the estimation algorithm and to select the equivalent model. To ensure fast
convergence in computation, the steepest descent with automatically self-
adaptive step sizes is adopted.

We shall continue to develop a multimachine power system model in
the next section, and use the model and apply the dynamic equivalent estima-
tion techniques developed in this section to estimate dynamic equivalents
of a large electric power system in Section 6-6._

6-5 A MULTIMACHINE ELECTRIC POWER
SYSTEM MODEL

In this section, Fig. 3-1 of Chapter 3 will be extended to describe a multi-
machine electric power system |17, 33]. Figure 3-1 [34] is chosen as the
basis because this is a model familiar to most power engineers. It can be
used to describe large and small machines in a system, or adapted for the
external equivalent representation by omission of, for instance, the T, block
or even the T}, block, and/or by approximation, for instance, x, = X,.

When Fig. 3-1 is extended to describe a multimachine system, a typical
block diagram of the ith machine can be represented by Fig. 6-12. Because of
the interaction among machines, the branches and loops become multiplied;
for instance, K, becomes K,,;, i =1,...,n j=1,...,n T, becomes T,
i=1,..., n etc. The state variables also become multiplied; for instance,
Ad becomes Ad;, i =1,...,n

Phasor Diagram of the ith Machine

The phasor diagram of the ith machine of a multimachine system may
be shown as in Fig. 6-13. While d; and q; are the coordinates for the ith
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Fig. 6-12 Basic model for a multimachine system.

machine alone, D and Q are the coordinates for all machines of the entire
system. The phase angle difference between d; and D, or g; and Q, is denoted
by J;, which is constantly changing and could be positive or negative.

In Fig. 6-13, the phasors of voltages and currents are shown with a bar,
like E;, V., or I,. But the bar will be removed when the magnitude is con-
sidered, like £;, I ;, etc. This convention will be followed throughout the
derivation of the multimachine model in this section. Therefore, the terminal
voltage V; of the ith machine of the system in common coordinates becomes

V, = E,;e/®%7% — jxiI; + (xg — xg) e (6-38)
Q axis qiaxis
Eqi Jlxqi =xgi1qi)
jxgl
Vi
3 ii )
at D axis
Si
Tdi di axis

Fig. 6-13 A phasor diagram of the /th machinc.
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Note that
E; = BP0, ;= jL e (6-38a)
For n machines of an n-machine system, (6-38) may be written in matrix form
[7] = (X0 9[E,] — jlxillT] + [x, — xille PI1] (639)

Since each term of (6-39) is a column matrix, the coefficients [89%=9],
[e™#], [xa], and [x, — x}] should all be read as diagonal matrices.

Current Components

To find K5, Ky;j, - - -, Kg;; of Fig. 6-12, the current components must be
found first, a process similar to the derivation of Fig. 3-1. After a load flow
study of a power system, the load buses can be eliminated. Note that the
algebraic sum of currents of a load bus is zero. Let the generator current
matrix equation be

1] =[%][V] (6-40)
where [ V] is the generator terminal voltage vector and | Y, ] the transmission
admittance matrix. Substituting the solution of [ V] of (6-40) into (6-39) and
solving for [I] gives

(1] = [YI[[e"*° "M Ea] + [xq — xille ”](La]] (6-41)

where

(Y] 2 [[v]™" +ilxall™ (6-41a)

For the ith machine of an n-machine system in D-Q coordinates, the
current has » terms

I = ¥ Y[e"®™9Ey,; + (x; — xizle™ 1] (6-42)
ji=1
including the term of j = i.

In d; — g; coordinates,

ii e= T,-ej‘s‘

n
Yij[ej(ﬁijfmjvl‘)O)E’;j + (xqj . x(’jj)ej(ﬂij+éu)1qj:| (6'43)
=1

J

where

Y, 2 Ve, 5,268 -3, (6-43a)
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Therefore

lai = Re(i;) Z Yl =S + (g — x3) Cigly]
(6-44)
i = Im(y;) = Z J[Cu o gy — xLlii)Siquj]
7=

where

II

C é COS(ﬁU + 51]) Si‘ £ si ﬂu + bu)
Let the deviation of i; be defined by
A(idi + jiqi) = AIdi T J AIqi (6'45)

From (6-44) and for n machines, we will have

[Ala] = [Pa][A0] + [Qu][AE,] + [M,][AL]

(6-452)
[L][AL] = [P,][A5] + [Q,][AE,]
where
Py = =Y [CyEq; + (xq; — xa5)8id;]  J#1i
Py = =Y [SiEq — (xg; — xg)Cuiily;]  j#i
Pyi= =) Puj, Pqii:_.z.P;lif
Qaij = J;lSnp Qqij = Yijéij’l J=1L...m (o)
Ly = —Yifxy; — x3)S;; j#i

Ly =1 — Yyulxg — x5S,

qii

Mdij - Y(X

ij\**qj

— x;))Cy; j=1...,n

For the calculation of all P, Q, L, and M coeflicients of (6-45b), initial values
of E; and 0, (for C;;and S;;), j = 1, ..., n, must be used.

qj Q.I’

The solutlons of [Ald] and [Al] of 6 45a) become

[Als] = [Ya][AE;] + [Fa][Ad]
[AL] = [Y][AE] + [F,][Ad]

(6-46)

where
[ = [0 + (M), (R = R+ [uliF)
[Yq] = [Lq]il[Qq]’ [Fq] = [Lq]hl[Pq]
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K, K,;, K,;;, and K,

15

An electric torque approximately equals an electric power when the
synchronous speed is chosen as the base speed. For the ith machine,

T, ~ Re(I}V)) = I E,; + I(xy; — x4 )ai (6-47)
For n machines and in linear form p
[AT] = [Lao] TAE] + [Lao][xq = xe][AL]
+ [E]T[AT] + [Tao) [xq — xa][AL,] (6-48)
which can be written
[AT.] = [K,][Ad] + [K,][AEL] (6-49)
where
Kiii = DFgy + OF i Kyij = DFgi; + QF
Ky =D Y + QY + 1o Kyi; =D Yy + QY
and

D, = (xq; — X3 qi0> Q. = (xg; — x4 Maio + Egio (6-49a)

Ky K35 Ky, and Ky,

The internal voltage equation for » machines may be written

[[1] + s[TG][AE,] = [AEen] — [xa — xa)[Al4] (6-50)

where [ 1] is a unit matrix, and [ T}, ] a diagonal matrix. Substituting [Al,]
of (6-46) into (6-50) and shifting terms gives

[[1] + [xe = 5610 Ya] + s[Tao][AE]

= [AEpp] — [xo — xi][Fa][A4] (6-51)
For the ith machine, it may be written
[1 + sTaoiK3u] AEy = Ky, [AEFDi - fi 13:1 AE,; — jiil Ky A(S‘,] (6-52)
where

Ky = [1 4 [xa; — x3:] Yai] ™

Kgy = [[»\'di - xéi] Ydij]_l

Kai = [xa — xa][Fair)

Koy = [xai = x4J[Faif]

(6-52a)
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K, K, K¢, and K
Similar to (3-6) but for » machines,

[AVa] = [x,][Al]
[aV,] = [AE] 5 [x][AL]

Furthermore

(6-53)

(AV ] = [Vl ' [Vao J[AVa] + [Vio] ' [Vao J[AV,]  (6-54)

We have
[AV] = [K;5][Ad] + [Ke][AE,] (6-55)
where
LSRN EN EARCA BAIEN 6550
[Ke] = [D]lxo][Ya] = [Q][xa][ Y] + [2.]
and

[D = Vo] ' [Vaol:  [Q] = [Vio] " [Vao)

In these equations, Vyy, Vyo, Vg0, Dy, and Q, should be read as diagonal
matrices, and AV, and AV, as vectors. Note that we have used V’s and I's
instead of v’s and i’s to denote voltages and currents in individual machine
coordinates in this section since Eq. (6-45).

Summary of Section 6-5

In this section, a multimachine electric power system model is developed.
It is an extension of Fig. 3-1 of Chapter 3.

The procedure of derivation is similar to that of Fig. 3-1; that is, to find
the d and q current components of the ith machine first. It is found from a
voltage phasor diagram for the ith machine in both d;-qg; and D-Q coordinates
and the voltage and current relation of the transmission system. Having
found the d and q current components including the transmission relation,
Ky, Kiijs Ky, and Ky;; are found from the electric torque expression,
Ky, K35, Ky, and Ky;; from the internal voltage equation, and Ks;;, K5,
Ke;i, and K, from the terminal voltage relation.

The model can be used to describe a multimachine system in general or
adapted to represent an external dynamic equivalent in particular.
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6-6 DYNAMIC EQUIVALENTS OF A
THIRTEEN-MACHINE SYSTEM .
The external dynamic equivalent estimation technique with a deter-
ministic process, using an intentional disturbance within the study system,
developed in Section 6-4, and the multimachine electric power system model
derived in Section 6-5, have been applied to estimate the equivalents of
several systems [ 17, 18, 32]. In this section, the application to a 13-machine
system and the estimation and test results will be presented [ 17].

A 13-Machine Electric Power System

A 13-machine electric power system is shown in Fig. 6-14. There are 13
generating units as indicated by circled numbers, with data shown separately
in Table 6-1. There are 22 buses identified by a, b, ..., v with bus load ad-
mittance Y,, Y, etc., shown separately in Table 6-2. Transformers are shown
with impedances underneath, and transmission lines with impedances in
blocks. All reactances and admittances are given on the basis of 100 MVA
and 345 kV, and the inertia constants on the basis of 100 MW.
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Fig. 6-14 A I3-machine electric power system. (From [17] courtesy of IEEE, & 1981.)
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Table 6-1

Generator and Excitation Data“

199

& MW M x5 X4 v, T K, T,
1 960 6546 0.0208 01675 01675 6.7 100 0.02
2 600 5520 0.0560 03030 02820 55 100 0.02
3 660 64.56 00440  0.1715  0.1023 6.1 100 0.02
4 100 1664 01269  1.192 1.192 56 185 0.20
5 135 652 02467 08667  0.5207 3.5 40 0.06
6 390 3836 0.0386 03158 02624 43 160 0.03
7 184 2794 0.0789  0.4993 04819 33 185 0.20
8 35047 3500 0.0010  0.0010  0.0010 (constant £})

9 600 7800 0.0179 01285  0.1230 4.0 50 0.02
10 800 6340  0.0579 02106 02050 48 400 0.02
1 140 1610 01060  1.540 1.490 7.9 45 0.06
12 691 7042 0.0285  0.1801  0.1376 5.5 {(no V.R))
13 563 5672 00392 03366 03270 55 160 0.02

“[17]. courtesy of IEEE, {© 1981.

The excitation data are also included in Table 6-1. Generating unit 8
itself actually represents an equivalent of a large electric power system. But
the data still can be used to test the equivalencing techniques. As for the
damping, it is assumed that {,; = 10% on the individual machine basis.

The Equivalent System and External Equivalent Models

The three generating units 1, 2, and 3 of Fig. 6-14, which are of main
concern, constitute the study system, and the rest becomes the external
system. Because of the three buses on the boundary, three external dynamic
equivalents are assumed as in Fig. 6-15.

Several models with various degrees of detail were considered for the
13-machine and other system external equivalent studies [17, 18, 32]. The

most useful ones are

(a) a second-order model with Ad and Aw as the state variables and M,
{,» and x} as the unknown parameters;

Table 6-2

Load Admittances

~
i

=500+ 219 Y, =
Y, =320+ /128 Y =
Yo =200+ 053 Y

r

1

3.06 + j1.IS
2.68 + j1.00
3.97 + j1.25

Y;

Y,

I}

2.20 + j0.60
7.70 + j1.60

Y =333+ 114

Y, = 3.40 + j0.85

Y,

n

= 358, + j0.90

Y, = 8.45 + j2.16
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'STUDY
SYSTEM
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Fig. 6-15 The equivalent system.

(b) a third-order model with Ad, Aw, and AE] as the state variables and
M, (,, Ty, x3, and x4 as the unknown parameters.

Among those parameters, the damping coefficient of the ith machine is
defined by

h L:ni = Dei/(:za)m'Mi) 6 56
where o — N/———K”iwb/Mi (6-56)

ni

and the damping effect of a PSS or a LOC is included in D,;. The damping
coeflicient {; is chosen over D,; in the modeling because, similar to (3-39),
{ai 18 the damping coefficient of the normalized torque equation, which is
more meaningful.

For the estimation of the three dynamic equivalents (El, E2, and E3)
of the 13-machine system, only the second-order model (a) with three un-
known parameters gives the minimum error and unique parameter values
regardless of the initial guess.

The intentional disturbance described in Section 6-4 can be applied to
any one machine of the study system, and the response of any one machine
of the study system can be used for the external dynamic equivalent estima-
tion. Examples include response of machine 2 due to a disturbance of machine
1, or response of machine 1 due to a disturbance on machine 1 itself. For the
development of the estimation technique, responses due to an initial dis-
turbance are obtained from computer simulation of the full 13-machine
system. Typical responses of machine 1 due to a 5%, pulsed excitation on
machine 1 itself have been recorded in Fig. 6-8.

Theoretically, there is no restriction of the number of responses that
must be used for the equivalent estimation. To ensure accuracy of the
particular study, however, all three responses, Av,, AP, and Aw are used.

Many estimations are made based on the techniques developed in Section
6-4 using different sets of responses and various initial guesses. Typical
results are shown in Table 6-3.

In the table the last three columns list the estimated parameter values
(with initial guesses in parentheses) using responses of machine 1, 2, and 3
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Table 6-3

Estimated Parameter Valucs

Case I-N Case 1 Case 11 Case 111
M, 45.92(80.0) 45.89(30.0) 45.99(40.0) 46.12(40.0)
Gy 1.891(3.0) 1.886(0.70) 1.811(1.5) 1.790(1.5)
XaEy 0.0569(0.50) 0.0570(0.30) 0.0568(0.10) 0.0560(0.10)
Mg, 136.9(30.0) 137.0(50.0) 137.7(130) 138.1(130)
Cra 2.511(3.0) 2.519(0.80) 2.531(2.0) 2.498(2.0)
Mo 0.3421(0.60) 0.3411(0.40) 0.3382(0.30) 0.3321(0.30)
M, 117.7(30.0) 117.3(70.0) 116.9(110) 118.1(110)
e 1.995(3.0) 1.989(0.30) 2.011(2.5) 2.105(2.5)
N3 0.4568(0.80) 0.4363(0.50) 0.4410(0.40) 0.4215(0.40)

due to a 5%, pulsed excitation applied to the individual machines, respec-
tively. The estimated results are unique and close regardless of the initial
guesses and whichever set of responses is used for the estimation. To find
the noise effect on the estimation, 109, noise generated by a computer pro-
gram is arbitrarily added to the responses for estimation, and the estimated
results corresponding to case I are listed as case I-N. The addition of 109
noise does not have any effect on the estimated results.

Three-Phase Short-Circuit Test

Having identified the parameter values of the three equivalents, the study
system plus the equivalents is given a three-phase short-circuit test. A three
phase short-circuit is assumed to occur each time for six cycles on the terminal
bus of machine I, 2, or 3 of the study system, respectively, and all machine
responses are recorded. The same short circuit is also assumed on the same
bus each time of the original 13-machine system, and again all machine
responses are recorded.

Figure 6-16 shows a typical comparison. The short circuit is assumed to
occur on the terminal bus of machine 1, and the responses of machine 3 are
recorded. The machine responses of the original 13-machine system are
shown in solid lines and those of the equivalent system in dashes. The results
are very close. More comparisons are recorded in reference | 17]. The results
show that the equivalents thus obtained faithfully represent the interacting
effect of the external system on the study system, which proves that the
estimation technique developed in Section 6-4 gives accurate results.
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Other Remarks

A Two-Machine Study System. When only machines 1 and 2 of the
13-machine system are considered as the study system, there are only two
dynamic equivalents. The second-order three-parameter model is still valid
but the new estimated parameter values are

Mg, = 3948 (g = 1.055 X4p; = 0.01352
Mg, = 1548 (g = 2.987 Xgp2, = 0.1868
Nonradial System. The 13-machine system shown in Fig. 6-14 happens

to be a radial system. To find whether the estimation technique developed
in Section 6-4 is also applicable to a nonradial system, two more transmission
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lines close to the study system were assumed
Zro = 1.0 + j6.0, Zop = 0.5 + j4.0

and the unknown parameters of the three external equivalents were re-
estimated. It was found that the estimation technique still gave unique and
accurate results, but there were changes in the estimated parameter values,
especially Xjg;, Xig2, and xgg;, which was rather expected. For other details,
see reference [17].

On-line Estimation. On-line updating of the off-line estimation is quite
conceivable. The CPU time of the three equivalent estimation of the 13-
machine system is ~70-80 s. This is based on the assumption that there is
no prior knowledge of what range of the estimated parameter values would
be. With more information on the system and a better initial guess, the CPU
time can be drastically reduced. Therefore, with the known off-line estimated
parameter values, on-line updating of the values once a minute, for instance,
is readily achievable. Onc example shows that after doublmg the 1mpeddncc.v
of one transmission line by switching, it takes only six iterations, ot less than’
three seconds, to obtain a new estimation, using the old estﬁmated Valuesf r
the initial guess. More details are given in reference [17]

Summary of Section 6-6

In this section a 13-machinc electric power system 1s used as an example
to test the deterministic estimation procedures developed in Section 6-4.
Three generating units are included in the study system and three external
dynamic equivalents are assumed. From responses of any machine of the
study system due to an intentional pulsed excitation on the said machine or
any other machine, the external equivalent parameters can be estimated.
The second-order model with three unknown parameters gives minimum
error and unique estimated parameter values despite different initial guesses.
An addition of 10%, noise does not affect the estimated results.

To find whethex the estimated external dynamic equivalents are faith-
fully representing the dynamic interacting effect of the external system on
the study system, a three-phase fault is assumed on both the original 13-
machine system and its equivalent system. The responses of the original
system and the equivalent system agree with each other rather closely,
indicating that the external dynamic equivalents obtained by this method
are very accurate.

The CPU time of off-line estimation is ~70-80s. But to update the
estimation on-line with prior knowledge of the off-line results takes only a
few seconds.
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6-7 SUMMARY

For the dynamic stability study of large electric power systems, it is
desirable to model the study system in detail and the external system by
simple dynamic equivalents. What we want is a faithful representation of the
dynamic interacting effect of the external system on the study system, not
the dynamic behavior of the external system itself, which usually involves a
large number of machines.

Three dynamic equivalencing techniques are introduced: the modal
approach in Section 6-1, the coherency approach in Section 6-2, and the
estimation approach in Section 6-3. Among them, the estimation approach
is the only one that does not require any information on the external system.

The estimation approach with a stochastic process requires heavy com-
putation. This difficulty, however, can be overcome by using a deterministic
process with an intentional disturbance as developed in Section 6-4. The
disturbance is so controlled that the machine responses of the study system
arc much larger than the load fluctuations normally observed on the tie
line, yet well within the system voltage regulation safety limit. For the
description of a multimachine system and equivalents, a multimachine
model is developed in Section 6-5. Based on the deterministic cstimation
technique developed in Section 6-4, dynamic cquivalents of a 13-machine
system are estimated in Section 6-6, which results in minimum cstimation
error and unique parameter values. The results are further tested by applying
a three-phase short circuit on the original 13-machine system as well as on
the equivalent system. Comparison of system responses shows that the
dynamic equivalents thus determined are faithfully representing the dynamic
interacting effect of the external system on the study system.

Problems

6-1 There are three coherent generating plants. The turbine and governor
transfer functions are G,(s), G,(s), and G;(s), and the respective mechanical
input powers are P, P.,, and P, 5 per unit on individual 400, 300, and
600-MW bases. Find an equivalent turbine and governor transfer function
on a 1000-MW basis.

6-2 Figure 6-12 is a linear model and superposition principle applies. What
are the damping and synchronizing torque effects of a supplementary control
of the jth machine on the ith machine? Assume that

;
AS; = Gy jug;, AEL; = Gy

where uy; is the supplementary control of the jth machine.
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Chapter 7 Lyapunov Stability and Transient
Stability Controls

In this chapter an introduction will be given to nonlinear stability analysis
and transient stability controls. A stability definition adopted previously in
Section 1-3, Chapter 1, refers to the transient stability as the power system
stability due to a severe disturbance, which exceeds the capability of stability
control of the linear type, PSS or LOC. The system stability may be lost at
the first swing, and very drastic countermeasures, usually of the discontinuous
type, such as dynamic resistance braking, fast valving, generator tripping,
or load shedding, may be required to maintain overall system stability. The
system using these controls must be described by nonlinear differential
equations; its analysis is very involved even for a one-machine system.

One nonlinear stability analytical technique that has fascinated power
engineers for years is Lyapunov’s direct method. An introduction to the
principle and an application of the method will be presented in this chapter.
However, the transient stability analysis in general and the transient stability
control design in particular will not be addressed in this book. Instead,
emphasis will be placed on presenting the main concepts of the nonlinear
stability analysis and transient stability controls.

7-1 LYAPUNOY’S DIRECT METHOD AND APPLICATION

The method begins with the choice of a Lyapunov function related to
the system state equations [1-11]. By simply examining the nature of the
function with certain criteria, the nature of stability of the system can be told
without solving the nonlinear differential equations. Both the strength and
limits of Lyapunov’s direct method will be presented and the best use of the

207
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method will be suggested in this section. Let us define a Lyapunov function
first.

Lyapunov Function

If a scalar function V exists in the state space of the system under in-
vestigation such that the function is positive definite, and its time derivative
V s negative definite or negative semidefinite, then the V function is a
Lyapunov function of the system.

Examples of positive definite and positive semidefinite functions are the
following. First,

Vi=yi+y5+y; (7-1)

is a positive definite function because it has a positive value at any point in
the space and vanishes only at the origin. Next,

Vo= yi+ (o= 37 + (s + 27 (7-2)

is a positive semidefinite function since it does not vanish at the origin; it
vanishes at the point (0, 3, —2), although it has positive values at any other
points in the space. Note that — V, is a negative definite function, and —V,
a negative semidefinite function of the foregoing examples.

Let a scalar function of a system under investigation be

V = V(y). k=1,2,...,n (7-3)
where the kth state variable of the system y, is time dependent. Then
V=C, C = constant (7-4)

represents a hypersurface in the n-dimensional space, corresponding to the
system state at some instant; and the time derivative of V

. W) %
V= Zcryk, k=1,...,n (7-5)
k=1 C)k

is a space vector because JV/dy, is the y, component of the gradient V' with
respect to y,., and y, is the time derivative of y,.
Let the state equations of a system under investigation be
Ve = Yi(Vis Vase oo Vu)s k=1,....n (7-6)

and @V /(3y,) of (7-5) be expressed by its components in terms of the magni-
tude of the total gradient and direction cosines. We should have

oV n % 273172
eI [ 2. <%) } cos(it, y),  k=1,...n (7-7)
'k k=1 “ ¥k
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where the square root part is the magnitude and cos(#, y,) the direction
cosine of the gradient ¢V/¢y,, i being a unity normal at the hypersurface
V= C, C > 0. Substituting (7-7) into (7-5) gives

. n 6V 27172 n
V = I: Z (“) :' ) [Cos(ﬁa yk) ’ Yk(yl s ,"‘2) stim Ay yn):l
k=1

I
k=1 \CVk

n g 271172
k=1 \OVk

where N is the normal on the hypersurface. In other words, while the system
state corresponds to the hypersurface V = C at some instant, the time
derivative of ¥, or V, is normal to the hypersurface.

Since a positive N points outward from the hypersurface and a negative
N inward, a negative definite V' for a positive definite V implies that the
hypersurface keeps on shrinking until it is reduced to the origin, which
corresponds to a system ultimately returning to the steady state after a
disturbance, implying a stable system. On the other hand, if V is also positive
definite for a positive definite V, the hypersurface will keep on expanding,
implying an unstable system. Furthermore, if V is negative semidefinite and
V' 1s positive definite, the system after disturbance is still stable but will not
return to the steady state corresponding to the origin.

Lyapunov’s Direct Method

If a Lyapunov function V' can be found for a system, which is positive
definite, and V is negative semidefinite, the system is stable. Furthermore, if
V is negative definite for a positive definite V, the system is not only stable,
but also asymptotically stable.

Figure 7-1 shows regions of stability of a second-order system, where A
is the boundary wherein the mathematical solution exists, B the true stability
boundary, C the stability region found from a Lyapunov function, and 0 the

w

FRN\
NJ/

Fig. 7-1 Region of stability of a second-order system.
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origin. Mathematically,
0cCcBcA (7-9)

which reads that 0 belongs to C, C belongs to B, etc.

Curves 1, 2, and 3 of Fig. 7-1 show three different trajectories on the
phase plane, which, in general, would be in an n-dimensional space. Curve 1
shows that after a disturbance, a system not only moves within the stability
region of a Lyapunov function, but also ultimately returns to the origin; the
system is asymptotically stable. Curve 2 shows that although after a dis-
turbance the system stays within the stability region of Lyapunov function,
it does not return to the origin; the system is simply stable. Curve 3 shows
that although the system trajectory after a disturbance ultimately stays
within the stability region B found from the mathematical solution, it lies
outside the region of the Lyapunov function; hence nothing can be told,
stable or not, by the Lyapunov direct method.

Attempts are also made to construct a Lyapunov function that will
approach the true stability boundary as closely as possible.

Zubov’s Method of Constructing a Lyapunov Function

Based on the concept of positive definite V' and negative definite or
negative semidefinite V, Zubov suggested that the Lyapunov function be
constructed using the following equation [2, 8]

1 EEV
b3

Ay
k=1 CYk

Be=—¢{l = V) (7-10)

The LHS of (7-10) is no more than V of (7-5). On the RHS, a positive definite
or a positive semidefinite function of the quadratic form may be chosen for
¢, and V is normalized such that

0<V <l (7-11)

The direct solution of V from Zubov’s equation is possible only for special

cases. For high-order nonlinear systems, ¥ may be expressed as a series
beginning with the second-degree term,

V=V, +Vs+ +7V, (7-12)

where V), is the second-degree term, V5 the third-degree term, etc.
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To determine various terms of V, the ¢ function must be chosen first
and y, must be expanded in a Taylor series,

n

Y = Y. agyy + (higher degree terms) (7-13)
k=1

Substituting the first-degree terms of (7-13) into (7-10) and comparing re-
sults on both sides of the same degree, V, can be determined. Since the only
second-degree terms on the RHS of (7-10) is the function ¢, the equation to
determine V, may be written

n ",V n
Z - 2(2 aikyk> =—¢ (7-14)

i=1 O¥i \u=1

V, thus determined will be homogeneous of the second degree including y2,
2 s A Y
¥2: ¥1¥z, VaVs, ClC

Next V5, may be determined from

n "\I/ " n aI/
> %( > a,-ky,‘) + Y —2(all 2nd degree terms of ;) = 0 (7-15)
i=1 Vi \u=1 i=1 C)i
since there are no third-degree terms on the RHS of (7-10).
The higher-degree terms of V' generally can be determined from

n Gan n
Z ( Z aik_)"k) = Rm(yl s> V25 e yn)s m = 47 59 67 ete. (7—16)
k

i=1 OVi \k=1

where R, is a known function of the mth degree determined from ¢, V,,
I/3= EECEIRY V

m

sand V, _,.

Example of Constructing a Lyapunov Function by Zubov’s Method

An example of constructing the Lyapunov function by Zubov’s method
with various degrees of truncation, V(5), V(8), V(10), V(16), and V(26), for
a power system stability study is given in reference [8]. A one-machine
infinite-bus system was modeled by a second-order differential equation

a2 . do H
Mdtz + D(9) i P, — P M = o (7-17)
The first term on the LHS is the accelerating torque, the second term the
damping torque, P; on the RHS is the mechanical power input, and P, the
electric power output. For the second-order system, torque and power are
approximately equal, if they are in per unit value and 2nf is chosen as the
base speed. For a salient pole machine connected to a transmission line with
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a reactance x and a local susceptance B,

P, =P, sino -+ Pgsin 26 (7-17a)

€

where
P, = voEy/(xg + x — xx¢B) (7-17b)
P, =03(xh — x/[2(x5 + x — xx;B)(x, + x — xx3B)]  (7-17¢)

The damping coefficient D{) derived from Park’s equation can be found
from reference [ 8],

7

v — x) T4 vi(x, — x)T
0( d)2 sm2 (3 + 0( q, q)/) q0
(xg + x) (xq + x)°

The state deviation equation from an initial state may be written in the
following normalized form
d*é' do’

W+D(5)d—+R((5) (7-18)

where 121 /P M (7-18a)

and ¢’ is the deviation of 4. D(6") and R(J') were then expanded in Taylor
series to construct a Lyapunov function by Zubov’s method. Several positive
definite ¢ functions were chosen in the form of

¢ = ad? + pw? (7-19)

and the Lyapunov stability boundaries found from one Lyapunov function
for various truncation of the V series of (7-12) are shown in Fig. 7-2.

A three-phase fault for five cycles was assumed on one circuit of a double
circuit of the one-machine, infinite-bus system, and the system was restored
at the end of the 24th cycle. The phase plane trajectory of the system with the
disturbance found from integration is shown in Fig. 7-2. The true stability
boundary from mathematical solution is also recorded.

From this study, it is found:

D(5) = cos* & (7-17d)

(1) that very heavy computation is required to construct the Lyapunov
stability boundaries by Zubov’s method even for a second-order system;

(2) that the Lyapunov stability region is not necessarily closer to the
true stability boundary by increasing the number of terms of the truncated
Taylor series; for instance, the stability region of V(26) is even smaller than
that of V(16);

(3) that the system was found stable according to V(10), V(16), and
V(26), but unstable according to ¥(5) and V(8), indicating an uncertainty by
the method.
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TRUE STABILITY SYSTEM TRAJECTORY
BOUNDARY

$=0, (8% + w?)
X: FINAL SWITCHING

Fig. 7-2  Stability boundaries and phase plane trajectory of a power system.
Optimization of a Lyapunov Function

Another attempt was made to approach the true stability boundary by
optimizing a Lyapunov function [10]. The process may be summarized as
follows:

(a) Select a positive definite function of the system, say the energy
function.

(b) Differentiate it and omit some terms of the result to obtain a negative
definite or negative semidefinite V.

(c) Integrate V to find V.

(d) Optimize V.

The method had some success and was applied to a third-order electric
power system. But the computation involved remains very heavy.

Comments

From the foregoing results and many other studies, it is suggested that
the Lyapunov direct method is not suitable for transient stability study of
high-order large electric power systems. However, it can be economically
used for power system planning [ 11], in which a relatively simple Lyapunov
function may be chosen, heavy computation is not involved, and an accurate
stability boundary is not a problem since power system stabilizers can be
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designed later. It would be different in power system operation. By then we
must know not only whether the system is stable for certain contingencies,
but also how stable the system is and how long it will take for the system to
reach stability.

Summary of Section 7-1

The principle of the Lyapunov direct method for nonlinear stability
analysis has been presented in this section.

Constructing a Lyapunov function by Zubov’s method to approach the
true stability boundary is also presented and applied to a second-order
electric power system. Extensive computation is involved and there is no
guarantee that it would get closer to the true stability boundary by increasing
the truncated series terms by Zubov’s method.

A process of optimizing a Lyapunov function is also briefly presented.
The major steps are: to select a positive definite function for the system.
to differentiate it and omit some terms to find V, to integrate ¥ to find V,
and to optimize V to obtain a Lyapunov function. Again, computation is
extensive.

All studies suggest that the Lyapunov direct method is not suitable for
high-order large power system transient stability studies. However, it can
be economically used for system planning for which a relatively simple
Lyapunov function can be chosen and the true stability boundary is not a
problem. Power system stabilizers can be designed at a later stage for the
improvement of power system stability.

7-2 PLANT CONTROL OF POWER SYSTEM
TRANSIENT STABILITY

Instead of pursuing a rigorous power system transient stability analysis,
the main concepts of various types of transient stability controls of power
systems will be presented in this and the subsequent sections. Also presented
are strategies of coordinating the transient stability control and the dynamic
stability control. For convenience, the transient stability controls will be
divided into two groups: the plant controls such as fast steam valving,
forced excitation, and dynamic resistance braking; and the system controls
such as generator tripping, load shedding, and so on.

The most important single concept of power system stability control is
the energy balance of the mechanical power input and the electric power
output plus various losses of the system at all times.
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Small and gradual changes in load or generation concern the steady state
stability of a power system and can be taken care of by automatic voltage
regulator and governor. Small system swings due to a relatively small dis-
turbance of a system such as a temporary imbalance of the energy input—
output of a power plant concern the dynamic stability of a power system and
can be taken care of by some supplementary linear excitation and/or governor
controls, PSS or LOC. For very large system swings due to severe system
disturbances beyond the capability of linear continuous supplementary con-
trols, much more drastic countermeasures, usually of the discrete type [12],
must be quickly taken to maintain the overall energy input—output balance
of the entire system to maintain system stability.

After the transient stability control is applied to a power system re-
sponding to a temporary but severe disturbance, the system swings are
usually quickly harnessed and reduced to the extent that the dynamic stability
control can take over. This is the essence of coordinating the transient
stability control and the dynamic stability control.

Dynamic Resistance Braking

Dynamic resistance braking may be applied to a power plant or a power
pool where there is a temporary but very large electric power surplus due
to a serious system fault that causes the system to lose its stability quickly.
In such a case, the dynamic stability control, PSS or LOC, is no longer
effective.

Braking Resistance of B. C. Hydro. Dynamic resistance braking was
first developed by B. C. Hydro for the transient stability control of Peace
River Hydro plants [ 13]. The ultimate capacity of the project was 2350 MW,
and it was found from computer simulation that a 600-MW braking re-
sistance in 200-MW blocks would give the optimum performance, that the
required time of application was about one second, and that the resistance
might have to be applied repeatedly. For economic considerations, the three-
phase resistance banks were not connected directly to the generating units,
but connected to the 500-kV transmission system through a 500/138 kV
stepdown transformer.

In the discussion of reference [13] and later in his own paper [14] Park
maintained that consideration must be given to the prefault condition, the
severity of the fault, and the postfault generator performance. He suggested
that the braking resistance be applied momentarily for a severe fault, dis-
connected shortly after the peak speed, and reapplied if it is warranted.

Braking Resistance of BPA. Dynamic resistance braking also can be
applied to a temporarily surplus electric power pool. The WSCC (Western
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Systems Coordinating Council) power system along the Pacific coast con-
stitutes mainly hydropower plants of the Northwest Power Pool and thermal
power plants of the Southwest Power Pool, and the electric power is normally
exported from the north to the south through two 500-kV ac lines from
BPA (Bonneville Power Administration) to San Francisco and one +400-kV
HVDC line from BPA to Los Angeles. One of the transient stability problems
is temporary loss of the +£400-kV HVDC line, which has a transmission
capacity of 1400 MW. When that happens, the system will disintegrate if no
counter measures are taken.

A braking resistance was designed and installed at the Chief Joseph
substation of BPA [15]. It has a capacity of 1400 MW, the same as the
capacity of the HVDC line. It 1s designed as a countermeasure to the tem-
porary loss of the HVDC line. To initiate the braking resistance application,
two signals, a sudden power drop of more than 300 MW and a simultaneous
decrease in bus voltage greater than 109, at John Day substation or Chief
Joseph substation, must be detected. The duration of application is about
one second, which is about one-quarter of the natural oscillating period of
the Pacific Northwest power pool.

A photograph of three resistance towers for the three phases are shown
in reference [15]; each tower is 90 ft high and supports a 3-inch, 19-strand,
stainless-steel resistance wire 14,000 ft long, strung zigzag in 60-ft loops. The
braking resistance is connected to a 230-kV bus. Because of the temperature
rise, the resistance power may decrease from 1400 MW to 1000 MW in
seconds. Multiple applications were not considered [15].

Fast Steam Valving

There are three types of fast steam valving: bypass valving, momentary
valving, and sustained valving [12]. Bypass valving, developed in Europe,
permits the steam power of both high- and low-pressure turbines to be by-
passed for as long as 15 min. Therefore, the generator may remain running
after full load rejection, is ready for resynchronization after the system fault
clearing, and may quickly return to full load operation. The momentary
valving refers to a rapid closure of the intercept valves, immediately followed
by full opening at a slower speed. The technique was developed in the USSR.
Since the unit returns to full load, a strong postfault transmission tie is
necessary. Otherwise, the unit may lose its synchronism at the second positive
swing. The sustained valving also refers to a rapid closure of the intercept
valves, but both control valves and intercept valves are repositioned for
reopening. The advantage of the sustained valving is that with simultaneous
valving of several generating units, the output of a power plant can be greatly
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reduced without tripping any generating unit, and full load operation can be
resumed within minutes after fault clearing.

The idea of fast steam valving is not new. Patents were granted in 1925
and 1928, and tests performed in 1929 and 1930 [16]. Interest diminished
because of the development of fast circuit breakers, but has been renewed
because of the difficulty of maintaining the stability of large electric power
systems; more effective means to maintain stability must be sought. In
applying fast valving, the stress of valves and shaft, the effect of safety valves,
the change in steam pressure and temperature, the feedwater supply, and
so on, must be duly considered in the turbine and boiler design.

Cushing et al’s Paper. In a paper by New England power engineers,
the momentary fast valving was viewed as a natural extension of the modern
electromechanical governor control to limit the overspeed of steam turbines
[17]. Whenever a mismatch of the steam power input and the electric power
output exceeds certain limit, the intercept valves are closed in full stroke
within 0.1-0.2 s, followed by a slower reopening. The fast closure can quickly
reduce the steam power as much as 709, so that the system will not lose its
stability at the first swing, which can hardly be achieved by conventional
speed governor. The slower reopening allows plenty of time for critical
switching. For details, see reference [17].

Park’s Paper. Both momentary and sustained valving were discussed
at length [16]. For the momentary valving, the rapid closure and slow
reopening were emphasized; the application should be held unless and until
the delay of fault clearance had been evident; and consideration must be
given to the severity of fault, the prefault system condition, and the postfault
generator performance. It was also reported that sustained valving has been
used in Germany since the late 1960s and there was no problem with the
high-pressure safety valves. More details can be found in reference [ 16].

Other references of fast valving are given at the end of this chapter
[18-23].

Forced Excitation

Modern fast-response static exciters also have the capability of reversing
the direction of excitation if so designed. Therefore, they can be used not
only to control the positive swings of a power system in severe disturbances,
but also to control the negative swings.

Forced-Excitation Analysis. Forced excitation to improve the tran-
sient stability of a power system was first analyzed by Smith’s group [ 24, 25].
which they called “bang-bang” excitation control. Both positive and nega-
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tive pulsed excitations were used [24]. Deviations of Ad, Aw and Aip were
chosen as the state variables and the control design was formulated as a
time minimal problem. In particular, a synchronous machine returning to
stability after a load rejection was investigated. Laboratory test results
showed that the angle and speed excursions were greatly reduced by the
control. Another analysis of the forced excitation control also can be found
in reference [ 26 ].

Ontario Hydro’s Paper. Ontario Hydro engineers found that the tran-
sient stability of a power system can be improved substantially by modifying
the conventional supplementary excitation control of the phase-compensa-
tion type, but applied discretely [27]. A five-area, 94-bus, 44-generator system
was investigated, with major generators of two areas and the 230 and 500-kV
high-voltage buses represented in details and the rest of the system by
equivalents. A three-phase fault was assumed. Simulation testing showed
that there were two system oscillating frequencies, a higher frequency of
1.25 Hz and a lower frequency of 0.5 Hz, and the conventional power system
stabilizer was not suitable for the low-frequency mode. There were difficulties
of introducing another power system stabilizer of the phase-compensation
type. As an alternative, a discrete control was introduced using the integral
of speed deviation as the control input, and it was applied only when the
transient stability of the system was threatened. As a result, the transicnt
stability of the system was considerably improved. For details, see reference

[27]

Laboratory Test of Transient Stability Controls

The plant controls of transient stability described in this section were
tested in a research laboratory in conjunction with a linear optimal control
[28, 29]. The general layout of the test model in a laboratory was shown as
Fig. 4-12 in Chapter 4. It has the facility of braking resistance (BR), forced
excitation (FE), fast valving (FV), and linear optimal controls.

Figure 7-3 shows the instability of the test model simulated power system
due to a severe fault. The system was operating on the verge of transient
instability. When a three-phase fault occurred to the system and if there
were no transient stability control of the system, the system would lose its
stability immediately at the first swing followed by slipping poles. The
vertical scale of Fig. 7-3 corresponds to 72° per 10 small divisions, and the
horizontal to 10 divisions per second. The lower part of the swing curve is
clipped in recording.
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TR

Fig. 7-3 Transient stability of a power system.

Figure 7-4 demonstrates the effect of transient stability controls in con-
junction with a linear optimal control (LOC). For the same fault, the swing
curve of the system with a resistance braking (BR) is shown on top, that
with a forced excitation (FE) in the middle, and that with a momentary
intercept valving (FV) at the bottom. For the operating and fault conditions
of Fig. 7-3, the system becomes stabilized in less than 8 s with any one of the
three transient stability controls, in conjunction with a linear optimal con-
trol. Some details are as follows.

Dynamic Resistance Braking. The braking resistance is connected to
the generator terminal bus of the test model. It is divided into three banks
per phase, automatically selected according to the severity of the fault in
terms of AP, or Aw, and can be repeatedly applied up to three times. The
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Fig. 7-4  Effect of transient stability controls.
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control schemes are

First application: when AP, drops more than 20%;
Removal: 0.05 s after peak Ad
Reapplication: when Aw > 1.5 rad/s and Aw» > 0

The first and the last criteria depend on the capability of the dynamic stability
control. For the linear optimal control installed, it has a capability of stabiliz-
ing the system even for a AP, change of more than 309%,: but it is safe to
overlap the transient and dynamic stability controls. The second criterion
is to make sure that the swing curve has come down and is not going up,
which could happen when the braking resistance is taken off too soon. Of
course, the braking resistance is applied only to the positive upswings and
is not applied during negative swings or downswings.

Momentary Intercept Valving. The governor-controlled steam turbines
and intercept valving are simulated by analog as shown schematically in
the lower left corner of Fig. 4-12. There is also a conventional speed governor
control. For the momentary intercept valving, logic circuits are designed
following control strategies similar to those of the braking resistance control.

Forced Excitation Control. The control is applied to both positive and
negative swings. The control strategies for the positive swings are exactly
the same as the other two schemes. The “negative” forced excitation is ap-
plied only at the peak Ad and is removed at the minimum Aw during the
negative swing.

Summary of Section 7-2

In this section, concepts of dynamic resistance braking, fast steam valving,
and forced excitation control of a system with fault are presented. Several
braking resistance schemes are in practice in North America [ 13, 15]. They
are operating with great success. While bypass valving has been developed
mainly in Europe [ 16], momentary intercept valving has been developed in
the United States [ 16, 17]. Sustained valving with repositioned control and
intercept valves has great appeal because of the capability of fast reloading
without generator tripping. Although forced excitation has the capability of
controlling not only the positive swings but also the negative swings of a
power system, so far it has not received much attention in the power industry.

Laboratory test results of resistance braking, momentary intercept
valving, and forced excitation are also shown, and control strategies are
presented. They must be applied and removed at the right moment, and it
1s desirable to apply them with an overlapping of the dynamic stability
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control scheme. Test results of Fig. 7-4 show that all three aforementioned
transient stability control schemes are very effective.

7-3 SYSTEM CONTROL OF POWER SYSTEM
TRANSIENT STABILITY

An introduction of all other transient stability controls besides resistance
braking, fast steam valving, and forced excitation, which may be called the
system controls, will be given in this section. For details, see the literature,
especially the IEEE committee report [12].

High-speed Reclosing of Circuit Breakers

Since about 80%, of line faults are caused by lightning, fast reclosing
circuit breakers may be considered as the first-line protection of electric
power systems. The deionization time of arc due to fault current is about
200 ms [30, 31], and the breaker should remain open during that time.
On the other hand, the circuit breaker must be reclosed before the generator
swings over the critical stability limit. Should there be an unsuccessful
reclosure, it may cause serious damage to the fault location and also to the
shaft [32, 33]. Therefore, the high-speed reclosure of circuit breakers alone
may not be sufficient for transient stability control.

Single-Pole Switching

When a single-phase fault occurs in a power system, there is no need
to interrupt services in the other two phases. Single-pole switching schemes
have been developed, by which the breaker of each phase can be switched on
and off independently. The critical fault clearing time can therefore be in-
creased to as long as five cycles, and a mechanical failure of any one pole
will not propagate to the other two poles [34, 36]. However, the effect of
the unbalanced current and heating of the generator and the transient
torque to the shaft must be duly considered in applications.

Series Capacitor Insertion

When a fault occurs in one circuit of a double-circuit transmission
system and the faulted section is switched off, temporary insertion of a series
capacitance can enhance the power transferability, and the transient stability
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of the system can be improved [37]. The idea has been tested in a research
laboratory. It is found that a capacitance should be inserted when the
generator is over the synchronous speed and should be removed when the
generator is under the synchronous speed, and that there is a limit on the
capacitance that can be inserted; otherwise it will cause overshoot and
negative damping to the generator [38].

Transmission line switching to improve the transient stability of a power
system can be formulated as a time minimal problem and solved by a two-
point-boundary-value technique of control theory [39].

Power Modulation of HVDC Line

A typical HVDC line has two converters: a rectifier at the sending end
and an inverter at the receiving end. Each converter constitutes a set of
valves and the power rectified or inverted can be easily controlled by firing
angles of the converters in conducting mode. The direction of power flow
can also be readily reversed by interchanging the functions of rectifier and
inverter.

Because of the capability of fast power modulation of the HVDC line,
it can be used for both dynamic and transient stability controls. A power
modulation has been implemented on the Pacific +400-kV HVDC intertie
that is roughly in parallel with the two 500-kV ac lines of the WSCC system.
A continuous control proportional to the rate of change of power of the
parallel ac interties is used to improve the dynamic stability, and a discrete
control at various power levels is used to improve the transient stability of
the parallel ac—dc system [40].

Generator Tripping

For a power surplus area with energy imbalance due to a permanent
fault, some generating units of the area must be tripped off to maintain the
system stability. This has been a practice for many years in the hydroelectric
power system. For instance, should the Pacific 1400-MW HVDC intertic
be out of service for some time, some hydroelectric generating units of the
WSCC system in the north must be taken out of service to avoid overloading
the parallel 500-kV ac transmission lines and to maintain system stability
[12].

Generator tripping has also been extended to thermal—electric units. In
such cases, consideration must be given to the long procedure of plant shut-
down, starting up, resynchronization, and reloading. It takes hours to com-
plete the entire process. The simultancous sustained fast valving of several
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generating units described in the last section seems to offer a very attractive
alternative to the generator tripping of the thermal-electric unit.

Load Shedding

When the generation of a power area cannot meet the load requirement
and there 1s no assistance available from neighboring areas, the only way to
avoid system frequency deterioration and collapse is to shed some area loads.

To develop a load shedding scheme for a power area, consideration must
be given to (1) the lowest frequency at which the power house auxiliaries can
function, (2) the ability of the spinning reserve to catch up with the frequency
deterioration in time, and (3) the time needed to activate the relays and
circuit breakers [41]. Further consideration must be given to the following:
(1) Is the load interruptable, such as heating, air conditioning, aluminum
refinery, etc., (2) have all other control means been applied, and (3) have all
reserves been utilized [42]?

One of the earliest load shedding schemes in North America, reported by
AEP (American Electric Power Service Corp.) of ECAR (East Control Area
Reliability Agreement) and activated by underfrequency relays, is shown
in the accompanying tabulation [43, 44]. There is a delay in the first load

Frequency (Hz) Load shedding (%,)

595
59.4
59.3
59.1
59.0
58.9

vttt

L R RV R VS Y V)

shedding to allow the spinning reservés to catch up with the frequency
deterioration. Subsequent load shedding is necessary only when the fre-
quency decline cannot be arrested by the spinning reserves. A smaller shed-
ding of 339, in the first three steps is chosen to avoid shocks to the system,
but a larger step of 5% per 0.1 Hz is employed in subsequent sheddings to
arrest the fast frequency decline. After a total load shedding of 259 and as
soon as the system frequency has deteriorated to 58 Hz, the generating units

should be isolated without delay. For details, see references [43, 44].

Controlled System Separation

When a major generation loss or a major transmission line loss occurs
in a large electric power system, all available control means have been
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applied, and the system still cannot be rescued, there is no other way but to
separate the system into several areas or islands to avoid a cascade cata-
strophic failure of the entire system. However, the separated areas or islands
must be definable, and separation schemes must be examined and planned
a priori, so that not only are the generation and load of each isolated area
fairly in balance, but also that there is an appropriate reactive power supply
for each area, i.e., not too much to cause an abnormal voltage rise or too
little to cause a voltage collapse. It also requires all kinds of protection. It is
a very complicated problem. Many valuable lessons have been learned from
past power system failures. Should system separation become absolutely
necessary, it must be executed in orderly fashion and be well controlled.

Summary of Section 7-3

In this section an introduction has been given to the system control of
transient stability of electric power systems, including single-pole switching,
series capacitor insertion, HVDC power modulation, generator tripping,
under-frequency load shedding, and so on. Experience and analysis have
helped us to understand the problem better with time. But it remains a very
challenging problem because of the ever-increasing size and complexity of
modern electric power systems.

7-4 SUMMARY

In the first section of this chapter, Lyapunov’s direct method of nonlinear
stability analysis is introduced. The advantage of the method is that the
stability of a system can be assessed without solving the nonlinear differential
equations. The disadvantages of the method are that nothing can be told
beyond the region of the chosen Lyapunov function and that heavy com-
putation is always involved should one attempt to find the true stability
boundary by the direct method. Therefore, the best use of the method is
probably for power system planning.

In the last two sections of this chapter, transient stability controls of
electric power systems are introduced. There are times when system dis-
turbances are so severe that they exceed the corrective capability of linear
continuous dynamic stability controls, PSS or LOC, and more drastic
countermeasures such as dynamic resistance braking, fast valving, generator
tripping, and load shedding must be taken to balance the system energy
input-output to maintain the stability. The problem is too complicated to
entail a rigorous analysis especially for large electric power systems. This
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book takes a moderate approach by presenting the concepts of these con-
trols only. It is hoped that this chapter (and this book in general) will serve
as an introduction to the rapidly advancing technology of the dynamic
problems of modern electric power systems.
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Appendix Computer Programs

For the readers’ convenience several computer programs, subprograms,
and examples are included in this appendix.

MAIN PROGRAMS*

M1 To find initial state, K constants, system matrix, and eigenvalues
for the one-machine infinite-bus system of Fig. 3-1 without ug control.
PSS To design excitation control from ®,, the undamped mechanical
niode frequency, for the one-machine infinite-bus system of Fig. 3-1.
" LOC To design LOC for the one-machine infinite-bus system of
Fig. 3-1.

SUBPROGRAMS*

KCONST To find initial state and K constants for the system.
AMEIG To form system matrix A and find its eigenvalues.
EXCTR Excitation control design.

AMCEIG To find eigenvalues of the system with u;.
AMATRX To form system matrix 4 for LOC design.
MMATRX To form composite matrix M for LOC design.

* The Computing Centre of the University of British Columbia is gratefully acknowledged
for printing the originals of these programs.
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EIGNV To find eigenvectors of the matrix M.

XMATRX To separate XII from XI.

RICCT To find Riccati matrix, design LOC, and find eigenvalues of
the system with LOC.

WATFIYV SUBPROGRAMS

WATFIV hbrary subprograms called by the written main programs or
subprograms for the computation are not included in this appendix.
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A MAIN PROGRAM TO FIND INITIAL STATE, K CONSTANTS,
SYSTEM MATRIX,AND EIGENVALUES ROR THE ONE-MACHINE
INFNITE-BUS SYSTEM OF FIG.3-1 WITHOUT UE CONTROL

PAR1=(P,Q,V,R,X,G,B)
PAR2= (XD, XQ,XDP,M,KA,TA, TDOP)

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 PAR1(7),PAR2(7),K(6) ,KA,M
REAL*8 A(20,20),AA(20,20),VECR(20,20),EVR{20) ,EVI(20)

DATA INPUT

N=4
READ(5,51) (PARt(1),1=1,7)
READ(5,51) (PAR2(I),1=1,7)

INITIAL STATE AND K CONSTANTS

CALL KCONST(PAR!,PAR2,K)

SYSTEM MATRIX A AND EIGENVALUES

CALL AMEIG(PARZ,K,A)
¥

FORMAT(7F10.4)
STOP
END

KCONST A SUBPROGRAM TO FIND INITIAL STATE AND

K CONSTANTS FOR THE SYSTEM OF FIG.3-1

PAR1=(P,Q,V,R,X,G,.B,)
PAR2=(XD,XQ,XDP,M.KA,TA, TDOP)

SUBROUTINE KCONST(PAR1,PAR2,K)
IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 PAR1(7),PAR2(7),K(6),KA M
REAL*8 I,IP,IR,ID,IQ

COMPLEX*16 CS,CV,CVO,CE,CI,CIL,CIT,CY,CZ,SUM, YMC
P=PAR1(1)

Q=PAR1(2)

V=PAR1(3)

R=PAR1{4)

X=PAR1{5)

G=PAR1({6)

B=PAR1(7)

XD=PAR2(1)

XQ=PAR2(2)

XDP=PAR2(3)

M=PAR2(4)

KA=PAR2(5)

TA=PAR2(6)

TDOP=PAR2(7)

INITIAL STATE

SUM=DCMPLX(P,Q)
CS$=DCONJG (SUM)

PR COMPONENTS, POWER COMPONENT INPHASE WITH V AND
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61 C REACTIVE POWER COMPONENT 90 DEG.LEADING
62 VR=0.

63 CV=DCMPLX(V,VR} )
64 CI=CS/CV T
65 ¥MC=(0.,1.) (A
66 CE=CV+(YMC*XQ)*CI  \;}*"~
67 EP=DREAL (CE) EIva

68 ER=DAIMAG(CE) . =~ *“

69 BETA=DATAN2 (ER,EP)

70 IP=DREAL(CI)

71 IR=DAIMAG(CI)

72 I=DSQRT(IP**2+IR**2)

73 PHI=DATAN2(IR,IP)

74 PF=DCOS (PHI)

75 ~ CY=DCMPLX(G,B)

76 CZ=DCMPLX (R, X)

77 " CIL=CY*CV

78 CIT=CI-CIL

79 CVO=CV-CZ*CIT

80 VOP=DREAL (CVO)

81 VOR=DAIMAG{CVO)

82 VO=DSQRT (VOP**2+VQR**2)

83 GAMA=DATAN2 (VOR, VOP)

84 DEL=BETA-GAMA

85 &

86 C DQ COMPONENTS

87 VD=V*DSIN(BETA)

88 VQ=V*DCOS (BETA}

89 VOD=VO*DSIN(DEL)

90 VOQ=VO*DCOS ( DEL)

91 ID=I*DSIN(BETA-PHI)

92 I0=1*DCOS (BETA-PHI)

93 EQP=VQ+XDP*ID

94 WRITE(6,62)

95 WRITE(6,63)

96 WRITE(6,61) BETA,GAMA,DEL,PHI ,EQP,VO
97 WRITE(6,64)

98 WRITE(6,61) V,1,P,Q,PF

99 WRITE(6,65)

100 WRITE(6,61) VD,VQ,1D,IQ

101 o]

102 C K CONSTANTS

103 SUM=1.+C2Z*CY

104 C1=DREAL (SUM)

105 C2=DAIMAG (SUM)

106 R1=R-C2*XDP

107 R2=R-C2*XQ

108 X1=X+C1*XQ

109 X2=X+C1*XDP

110 Z2=R1*R2+X1*X2

111 ¥D=(C1*X1-C2%R2) /22

12 ¥Q=(C1*R1+C2%X2) /22 -

113 CDEL=DCOS (DEL)

114 SDEL=DSIN(DEL)

115 FD=-V0O* (R2*CDEL-X1*SDEL) /22
116 FQ=VO* (X2*CDEL+R1*SDEL) /Z2
117 VDD= (XQ-XDP) *1Q

118 VQQ=EQP+(XQ-XDP)*1ID

119 K(1)=FD*VDD+FQ*VQQ

120 K{2)=1Q+YD*VDD+YQ*VQQ
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121 K{(3)=1./(1.+(XD-XDP)*YD)

122 K(4)=(XD-XDP)*FD

123 CBETA=DCOS (BETA)

124 SBETA=DSIN(BETA)

125 XDD=-XDP*CBETA

126 X0Q=XQ*SBETA

127 K(5)=FD*XDD+FQ*XQQ

128 K(6)=CBETA+YD*XDD+YQ*XQQ

129 WRITE(6,66)

130 WRITE(6,67)

131 WRITE(6,61) K(1),K(2),K(3),K(4),K(5),K(6)
132 C

133 61 FORMAT(4X,6F10.4)

134 62 FORMAT(//,3X,'INITIAL STATE',/)

135 63 FORMAT(6X,'BETA',6X, 'GAMA',6X, 'DELTA',5X, 'PHI", 7X,
136 'EQP',7X,'V0O")

137 64 FORMAT(6X,'V',9X,'I',9%X,'P',9%,'Q"',9%, 'PF")
138 65 FORMAT(6X,'VD',8X,'VQ',8X,'ID',8%,'1Q")

139 66 FORMAT(//,3X,'K CONSTANTS',/)

140 67 FORMAT(6X,'K1',8X,'K2',8X,'K3',8X,'K4',8X,"'K5"',8X, 'K6")
141 RETURN

142 END

143 ¢

144 (o

145 C  AMEIG A SUBROUTINE TO FORM SYSTEM MATRIX A AND FIND
146 C ITS EIGENVALUES

147 o

148 SUBROUTINE AMEIG(PAR2,K,A)

149 IMPLICIT REAL*8 (A-H,0-2)

150 REAL*8 PAR2(7),K(6),KA,M

151 REAL*8 A(20,20),AA(20,20),VECR(20,20),EVR(20),EVI{(20)
152 c

153 M=PAR2(4)

154 KA=PAR2(5)

155 TA=PAR2(6)

156 TDOP=PAR2(7)

157 C

158 N=4

159 DO 1 I=1,N

160 DO 1 J=1,N

161 1 A(I,J)=0.

162 A(1,2)=-K(1)/M

163 A(2,1)=377.

164 A(1,3)=-K(2)/M

165 A(3,2)=-K(4)/TDOP

166 A(3,3)=-1.0/(TDOP*K(3))

167 A(3,4)=1.0/TDOP

168 A(4,2)=-KA*K(5)/TA

169 A(4,3)=-KA*K(6)/TA

170 A(4,4)=-1.0/Ta

171 WRITE(6,62)

172 C KEEP A AND FIND EIGENVALUES

173 C DPRMAT AND DGCOPY ARE WATFIV LIBRARY SUBPROGRAMS
174 CALL DPRMAT(A,N,N,N,N,1,1,20,1)

175 CALL DGCOPY(A,AA,N,N,20,20)

176 WRITE(6,63)

177 CALL DREIGN(AA,N,20,EVR,EVI,VECR,IERR,0,0)
178 DO 2 I=1,N

179 WRITE(6,64) EVR(I),EVI(I)

180 2 CONTINUE
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62 FORMAT(//,3X,'A MATRIX')
63 FORMAT(//,3X,'SYSTEM EIGENVALUES',/)
64 FORMAT(6X,E12.5,"+J(' ,E12.5,')")

RETURN
END

DATA INPUT

1.0 0.015
0.973 0.55

INITIAL STATE

BETA GAMA
0.4598 =~

v I
1.0500 0.

vD Vo
0.4659 0

K CONSTANTS
K1 K2
0.5441 1

A MATRIX

1
0.0
377.0000
0.0
0.0

N =

SYSTEM EIGENVALUE

0.29510E+00+J
0.29510E+00+J
-0.10393E+02+J

1:05
0.19

7273

9525

L9410

.2067

2
-0.5876299E-01-0
0.0

0.0

ID

K3

-.034
9.26

DELTA

1.1871

1.0000

0.4354

0.6584

50.

PHI
-0.0150

0.0150

0.847

K4
0.6981

3
.1303181

-0.8896615E~-01-0.,1957125
95.53201

S

( 0.49596E+01)
(-0.49596E+01)

( 0.32837E+01)
-0.10393E+02+J(-0.32837E+01)

-815.9298

.997 .249

0.05

EQP \¢]
1.0237

PF
0.9999

K5 K6
-0.0955

0.0
0.0
0.1288660
~20.00000

.262
7.76

1.0509

0.8159
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PSS A MAIN PROGRAM TO DESIGN EXCITATION CONTROL FROM WN,

THE UNDAMPED MECHANICAL MODE FREQUENCY,FOR THE
ONE-MACHINE INFINITE-BUS SYSTEM OF FIG.3-1

R(I),I=1,6
PAR=(M,KA,TA,TDOP, ZETA,TR)
IB NO.OF COMPENSATION BLOCKS

WN OMEGA N

GAMA  PHASE ANGLE OF GE
THETA PHASE ANGLE OF (1+ST1)
PHI PHASE ANGLE OF (1+ST2)
THETA-PHI +GAMA=0

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 PAR(6),K(6),M,KA, KC
REAL*8 A(20,20)

DATA INPUT
N=4
READ(5,51) (K(I),I=1,
READ(5,51) (PAR(I),I=
READ(5,50) IB

EXCITATION CONTROL DESIGN
CALL EXCTR(PAR,K,IB,KC,T1,T2)

SYSTEM MATRIX A AND EIGENVALUES
CALL AMEIG(PAR,K,A)

EIGENVALUES OF THE SYSTEM WITH CONTROL
CALL AMCEIG{PAR,K,KC,T1,T2,IB,A)

FORMAT(215)
FORMAT(7F10.4)
STOP

END

EXCTR A SUBPROGRAM FOR EXCITATION CONTROL DESIGN

IB(1) ONE COMPENSATION BLOCK T2=0.
IB(2) TWO COMPENSATION BLOCK T2=0.

SUBROUTINE EXCTR(PAR,K,IB,KC,T1,T2)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 PAR(6),K(6),M,KA,KC,T1,T2

M=PAR(1)
KA=PAR(2)
TA=PAR(3)
TDOP=PAR(4)
ZETA=PAR(S)
TR=PAR(6)

FIND GE
WN=DSQRT(377.*K(1)/M)
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62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
38
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
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3

61
62
63
64

CAL

FIN

FIN

RES

AME

XX=WN* (TA+TDOP*K(3))
YY=1.-(WN**2)*TA*TDOP*K(3)+KA*K(3)*K(6)
ZZ=DSQRT{XX**2+YY*x*2)

GE=KA*K(3)/22

GAMA=-DATAN2 (XX, YY)

CULATE T1 OR T2
GOTO(1,2),1B
T2=0.1

XX=WN*T2

Yy=1,

PHI=DATAN2{XX, YY)
THETA=PHI ~GAMA
ZZ=DTAN(THETA)
T1=2Z/WN

GOTO 3

T2=0.1

XX=WN*T2

YY=1,
PHI=NATAN2 (XX, YY)
THETA=PHI-GAMA/2.
ZZ=DTAN(THETA)
T1=22/WN

GOTO 3

D GC
GC=DSQORT{ 1.4 (WN*T1}**2) /DSQRT(1.+(WN*T2)**2)

D KC
DE=2*ZETA*WN*M
KC=DE/(K(2)*GE*GC)

ET TIME CONSTANT IS IN DATA INPUT

WRITE(6,62)

WRITE(6,63)

WRITE(6,61) GAMA,THETA,PHI,GE,GC
WRITE(6,64)

WRITE(6,61) WN,KC,TR,T1,T2

FORMAT(4X,7F10.4)

FORMAT(//,3X, 'EXCITATION CONTROL')

FORMAT(/, 6X, 'GAMA' ,6X, 'THETA',5X, 'PHI',7X, 'GE',8X, 'GC")
FORMAT(/,6X,'WN' ,8X,'KC',8X, 'TR',8X,'Ti1",8X, 'T2")
RETURN

END

IG A SUBPROGRAM TO FORM SYSTEM MATRIX A AND FIND ITS
EIGENVALUES

SUBROUTINE AMEIG(PAR,K,A)

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 PAR(6),K(6),M,KA,KC

REAL*8 A(20,20),VECR(20,20),EVR(20),EVI{(20),AA(20,20)

M=PAR(1)
KA=PAR(2)
TA=PAR(3)
TDOP=PAR(4)
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121 C

122 N=4

123 DO 1 I=1,N

124 DO 1 J=1,N

125 1 A(1,J)=0.

126 A(1,2)=-K(1)/M

127 A(2,1)=377.

128 A(1,3)=-K(2)/M

129 A(3,2)=-K(4)/TDOP

130 A(3,3)=-1.0/(TDOP*K(3))

131 A(3,4)=1.0/TDOP

132 A(4,2)=-KA*K(5)/TA

133 A(4,3)=-KA*K(6)/TA

134 A(4,4)=-1.0/TA

135 WRITE(6,62)

126 C DPRMAT AND DGCOPY ARE WATFIV LIBRARY SUBPROGRAMS
137 CALL DPRMAT(A,N,N,N,N,1,1,20,1)

138 CALL DGCOPY(A,AA,N,N,20,20)

139 WRITE(6,63)

140 CALL DREIGN(AA,N,20,EVR,EV1,VECR,IERR,0,0)
141 ¢ EIGENVECTOE AND SCALING NOT REQUIRED
142 DO 2 I=1,N

143 WRITE(6,64) EVR(I),EVI(I)

144 2 CONTINUE

145 C

146 62 FORMAT(//,3X,'A MATRIX')

147 63 FORMAT(//,3X, 'SYSTEM EIGENVALUES',/)
148 64 FORMAT(6X,E12.5,'+J(',B12.5,'}")

149 RETURN

150 END

151 c

152 c

153 C AMCEIG A SUBPROGRAM TC FIND EIGENVALES OF THE SYSTEM MATRX
154 G WITH UE CONTROL

155 C

156 o) A MATRIX OF THE SYSTEM WITH CONTROL
157 C IB NO.OF COMPENSATION BLOCKS

158 C

159 SUBROUTINE AMCEIG(PAR,K,KC,T1,T2,IB,A)
160 IMPLICIT REAL*8 (A-H,0-2)

161 REAL*8 PAR(6),K(6),M, KA, KC

162 REAL*8 A(20,20),VECR(20,20),EVR(20),EVI(20)
163 C

164 M=PAR(1)

165 KA=PAR(2)

166 TA=PAR(3)

167 TDOP=PAR(4)

168 TR=PAR(6)

169 ¢

170 N=4

171 GOTO(1,2),1B

172 1 N=N+2

173 GOTO 3

174 2 N=N+3

175 3 DO 4 I=1,N

176 DO 4 J=5,N

177 A(J,1)=0.

178 4 A(1,J)=0.

179 A(4,6)=KA/TA

180 A(5,2)=-K(1)/M
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181
182
183
184
185
186
187
188
189
190
191
182
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
End of file

62
63
64

A(5,3)=-K(2)/M

A(5,5)=-1./TR

A(6,2)=A(5,2)*KC*T1/T2
A(6,3)=A(5,3)*KC*T1/T2
A(6,5)=KC*(1.-T1/TR) /T2

A(6,6)=-1./T2

IF(IB.EQ.1) GOTO 5

A(4,6)=0,

A(4,7)=KA/TA

A(7,2)=A(6,2)*T1/T2
A(7,3)=a(6,3)*T1/T2
A(7,5)=A(6,5)*T1/T2
A(7,6)=A(6,6)*T1/T2

A(7,7)==1./T2

WRITE(6,62)

DPRMAT AND DREIGN ARE WATFIV LIBRARY SUBPROGRAMS
CALL DPRMAT(A,N,N,N,N,1,1,20,1)

CAaLL DREIGN(A,N,20,EVR,EVI,VECR,IERR,0,0)
EIGENVECTORS AND SCALING NOT REQUIRED
WRITE(6,63)

DO 6 I=1,N

WRITE(6,64) EVR(I),EVI(I)

CONTINUE

FORMAT(//,3X,'SYSTEM WITH CONTROL')
FORMAT(//,3X,'SYSTEM EIGENVALUES',/)
FORMAT(6X,E12.5,'+J(',E12.5,')}")
RETURN

END
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DATA INPUT
0.5441 1.2067 0.6584 0.6981 -0.0995 0.8159
9.26 50. 0.05 7.76 0.3 5.0
2 1
EXCITATION CONTROL
GAMA THETA PHI GE GC
~-0.8301 1.2700 0.4399 1.0006 3.0543
WN KC TR T1 T2
4.7066 7.0910 5.0000 0.6850 0.1000
A MATRIX
1 2 3 4
1 0.0 -0.5875810E-01-0.1303132 . 0.0
2 377.0000 0.0 0.0 0.0
3 0.0 -0.8996134E-01-0.1957260 0.1288660
4 0.0 99.50000 -815.9000 ~20.00000
SYSTEM EIGENVALUES .
0.30765E+00+J3( 0.49713E+01)
0.30765E+00+J(~0,49713E+01)
-0.10406E+02+J( 0.33060E+01)
~0.10406E+02+J(-0.33060E+01)
SYSTEM WITH CONTROL
1 2 3 4 5
1 0.0 -0.5875810E-01-0. 1303132 0.0 C.0 0.0
2 377 .0000 0.0 0.0 0.0 0.0 0.0
3 0.0 -0.8996134E~-01-0. 1957260 ©.1288660 0.0 0.C
4 0.0 99 .50000 -815.9000 -20.00000 0.0 100C
5 0.0 -0.5875810E-01-0. 1303132 0.0 -0. 2000000 0.C
6 0.0 -2.854217 -6.330057 0.0 61.19448 -10.0

SYSTEM EIGENVALUES

-0.18677E+02+J3( 0.0 )
-0.46019E+01+J( 0.74077E+01)
-0.46019E+01+3(-0.74077E+01)
-0.11568B+01+J( 0.43965E+01)
~0.11568E+01+J(~0.43965E+01)
-0.20148E+00+J( 0.0 )
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LOC A MAIN PROGRAM TO DESIGN LOC FOR THE ONE-MACHINE
INFINITE-BUS SYSTEM OF FIG,3-1

R{(1),1I=1,6
PAR2=(XD,XQ,XDP,M,KA, TA, TDOP)
PAR3=(PAR(I),I=1,N)--Q ELEMENTS

IMPLICIT REAL*8 (A-H,0-2Z)

REAL*8 K(6),PAR2(7),PAR3(20)

REAL*8 A(20,20),B(20),0(20,20},5(20,20),M(20,20)
REAL*8 ER(20),EI(20),VR(20,20),RK(20,20),AC(20,20)
COMPLEX*16 VCM(20,20),AVCM(20,20),X1(20,20),X11(20,20)

DATA INPUT
N=4
READ(5,51) {(K(1)
READ(5,51) (PAR2
READ(5,51) (PAR3

o~
=t

A MATRIX
CALL AMATRX(PAR2,K,A)

M MATRIZX
NN=2*N
CALL MMATRX(PAR2,PAR3,A,S,M)

EIGEVECTOR MATRIX OF M MATRIX
CALL EIGNV(M,ER,EI,VR,VCM)

XI AND XII MATRICES
CALL XMATRX(ER,EI,VCM,AR,AI ,AVCM,XI,XII)

LOC DESIGN
CaLL RICCT(A,XI,XII,RK,S,AC)

FORMAT(7F10.4)
STOP
END

AMATRX A SUBPROGRAM TO FORM SYSTEM MATRIX A FOR LOC DESIGN

SUBROUTINE AMATRX(PARZ2,K,A)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 PAR2(7),K(6),M,KA
REAL*8 A(20,20)

N=4

DO 1 I=1,N
DO 1 J=1,N
A{1,J)=0
M=PAR2(4)
KA=PAR2(5)
TA=PAR2(6)

TDOP=PAR2(7)
A(1,2)=-K(1)/M
A(2,1)=377.
A(1,3)=-K(2)/M
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A(3,2)=~K(4)/TDOP
A(3,3)=-1.0/{(TDOP*K{3))
2(3,4)=1.0/TDOP
a{4,2)=-KA*K(5) /Ta
A(4,3)=-KA*K(6)/TA
A(4,4)=-1.0/TA

WRITE(6,62)

CALL DPRMAT(A,4,4,4,4,1,1,20,1)
DPRMAT IS A WATFIV LIBRARY SUBPROGRAM
FORMAT(//,3X,'A MATRIX')

RETURN

END

MMATRX A SUBPROGRAM TO FORM COMPOSITE MATRIX M FOR
LOC DESIGN

SUBROUTINE MMATRX(PAR2,PAR3,A,S,M)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 PAR2(7),PAR3(20)

REAL*8 A(20,20),B(20),0(20,20),8(20,20) ,M(20,20)
N=4

NN=2*N
CONTROL MATRIX B
DO 1 I=1,N

B(I1)=0.

B(4)=PAR2(5)/PAR2(6)
Q MATRIX

DO 3 I=1,N

DO 2 J=1,N

0(1,J)=0.0

CONTINUE

DO 4 I=1,N

Q(I,I)=PAR3(I)
WRITE(6,62)
CALL DPRMAT(Q,N,N,N,N,1,1,20,1)

R MATRIX (IT BECOMES A SINGLE ELEMENT FOR THIS DESIGN)
R=1.
DO 5 I=1,N
DO 5 J=1,N
R(1,J)=0.0
IF(I .EQ. J) R(I,J)=1.
CONTINUE

S MATRIX
DO 7 I=1,N
DO 6 J=1,N
S(1,J)=B(I)*B(J)}/R
CONTINUE
WRITE(6,63)
CALL DPRMAT(S,N,N,N,N,1,1,20,1)
DPRMAT IS A WATFIV LIBRARY SUBPROGRAM

M MATRIX
DO 9 I=1,NN
DO 8 J=1,NN
M(1,J)=0.0
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9 CONTINUE
DO 11 I=1,N

62
63
64

2

DO 10 J=1,N

M(1,J)=A(1,J)

M(I+N,J+N}=-A(J,I)

M(I,J+N)=-S(1,J)

M(I+N,J)=-Q(1,J)

CONTINUE

WRITE(6,64)

CALL DPRMAT(M,NN,NN,NN,NN,1,1,20,1)

FORMAT(//,3X,'Q MATRIX')

FORMAT(//,3%,'S MATRIX')
FORMAT(//,3%,'M MATRIX')
RETURN

END

EIGNV A SUBPROGRAM TO FIND EIGENVECTORS OF THE MATRIX M

ER=EIGENVALUE(REAL) EI=EIGENVALUE(IMAGIN)

VR=EIGENVECTOR (REAL) M=EIGENVEC(IMAGIN) ,AFTER CALL

VCM=EIGENVECTOR MATRIX VCMA=VCM REARRANGED

NB NO.OF WRITING BLOCKS
IV THE BEGINNING NO.OF EIGENVALUES OF EACH ROW
IE THE ENDING NUMBER OF EIGENVALUES OF EACH ROW

SUBROUTINE EIGNV(M,ER,EI,VR,VCM)
IMPLICIT REAL*8 (A-H,0-2)

REAL*8 M(20,20),ER(20),EI(20),VR(20,20)
COMPLEX*16 VCM(20,20),DCMPLX

N=4

NN=2*%N

CALL DREIGN (M,NN,20,ER,EI,VR,IERR,1,1)
DREIGN IS A WATFIV LIBRARY SUBPROGRAM
EIGENVECTORS AND SCALING ARE REQUIRED
WRITE(6,62)
DO 1 I=1,NN
WRITE(6,63) ER(I),EI(I)
CONTINUE
WRITE(6,64)
NUMBER OF WRITING BLOCKS
NB=NN/4
IF(4*NB.LT.NN) NB=NB+1
DO 5 IB=1,NB
IF(NN.GT.4) GOTO 2
ONLY ONE BLOCK
V=1
1E=NN
GOTO 3
MORE THAN ONE BLOCK
IV=(IB-1)}*4+1
IE=1V+3
IF(IE.GT.NN) IE=NN
WRITE(6,65)
WRITE(6,66)(ER(1),EI(I),I=IV,IE)
WRITE(6,65)



181
182
183
184
185

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

[eNeXe e NS

~

62
63
64
65
66
68

ad e

Computer Programs 243

DO 4 I=1,NN

WRITE(6,68) I1,(VR(I,J),J=1V,IE)
WRITE(6,68) I,(M(1,J),J=IV,IE)
WRITE(6,65)

CONTINUE

WRITE(6,65)

CONTINUE

DO 7 I=1,NN

DO 6 J=1,NN
VCM(1,J)=DCMPLX(VR(I,J),M(1,J))
CONTINUE

FORMAT(//,3X,'SYSTEM EIGENVALUES')
FORMAT(6X,E12.5,'+J(' ,E12.5,")")
FORMAT('1',//,3X, 'EIGENVALUES AND CORRESP.EIGENVECTORS')

FORMAT (4X, 4 (' ———-——mmmmmm oo oo ')}
FORMAT(3X,'|',4(F10.4,'+J(',F10.4,")|"))
FORMAT(I12,1X,'|"',4(7X,E10.4,7%,"|"})
RETURN

END

XMATRX A SUBPROGRAM TC INDENTIFY NEGATIVE EIGENVALUES AND
CORRESP.EIGENVECTORS, AND TC SEPARATE XII FROM XI

SUBROUTINE XMATRX(ER,EI,VCM,AR,AI ,AVCM,XI ,XII)

REAL*B ER(20),EI(20),AR(20),A1(20)

COMPLEX*16 VCM(20,20),AVCM(20,20),X1(20,20),XI1(20,20)
INTEGER MARK(20)

N=4

NN=2*N

SEPARATE GROUP 1 (LAMDA-) FROM GROUP O(LAMDA+)
DO 2 I=1,NN
IF(ER(I).LT.0.D0) GOTO 1
MARK(I)=0
GOTO 2
MARK(I)=1
CONTINUE

FIND XI OF (LAMDA-)

J=0

DO 5 I=1,NN
IF(MARK(I).EQ.0) GOTO 4
AR(I-J)=ER(I)
AI(I-J)=EI(I)

DO 3 K=1,NN
AVCM(K,I1-J)=VCM(K,TI)

GO TO 5

J=J+1

CONTINUE

FIND XII OF (LAMDA-)}
N=NN/2
DC 8 I=1,N
DO 7 J=1,NN
IF (DABS(ER(J)+AR(I)).GT.1.0D-10) GOTO 7
AR(I+N)=ER(J)
AI(I+N)=EI(J)

DO 6 K=1,NN
AVCM(K,I+N)=VCM(K,J)
ER(J)=0.D0
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GO TO 8
7 CONTINUE
8 CONTINUE
C

aoonn aononaoan

[eXeNe]

End of file

aw,m
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63
64
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DO 10 I=1,N

DO 9 J=1,N
XI1(I,J)=avcM(I,Jd)
XII(1,J)=AVCM(I+N,J)
CONTINUE

RETURN

END

RICCT A SUBPROGRAM TO FIND RICCATI MATRIX,LOC
AND EIGENVALUES OF THE SYSTEM WITH LOC

ER=EVR EI=EVI VR=VECR M=VECI(AFTER THE RECALL)
VECM=EIGENVECTOR MATRIX VECMA=VECM REARRANGED

SUBROUTINE RICCT(A,XI,XII,RK,S,AC)

REAL*8 A(20,20),5(20,20),RK(20,20),SK(20,20),AC(20,20
REAL*8 VR(20,20),ER(20),EI(20),AR(20),AI(20)
COMPLEX*16 VCM(20,20),AVCM(20,20),DET,DCOND
COMPLEX*16 XI(20,20),XI1(20,20),GAIN(20,20),DCMPLX
N=4

RICCATI MATRIX
CDINVT AND CDMULT ARE WATFIV LIBRARY SUBPROGRAMS
CALL CDINVT(XI,N,20,DET,DCOND)
CALL CDMULT(XII,XI,GAIN,N,N,N,20,20,20)
DO 6 I=1,N
DO 5 J=1,N
RK(I,J)=DREAL(GAIN(I,J))
CONTINUE
WRITE(6,62)
CALL DPRMAT(RX,N,N,N,N,1,1,20,1)

A-SK
DGMULT IS A WATFIV LIBRARY SUBPROGRAM
CALL DGMULT(S,RK,SK,N,N,N,20,20,20)
DO 8 I=1,N
DO 7 J=1,N
AC(1,J)=A(1,J)-SK(I,J)
CONTINUE
WRITE(6,63)
CALL DPRMAT(AC,N,N,N,N,1,1,20,1)

EIGENVALUES
CALL DREIGN(AC,N,20,ER,EI,VR,IEER,(,0)
WRITE(6,64)
DO 9 I=1,N
WRITE(6,65) ER(I),EI(I)
CONTINUE

FORMAT('1',//,3X, 'RICCATI MATRIX')
FORMAT(//,3X, 'SYSTEM MATRIX WITH LOC')

FORMAT(//,3X, 'EIGENVALUES OF THE SYSTEM WITH LOC')
FORMAT(6X,E12.5,'+J(',E12.5,")")

RETURN

END



DATA INPUT

0.5441 1.2067 0.6584 0.6981 -0.0855 0.8158
0.973 0.55 0.19 9.26 50. 0.05 T
10. 2. 1. 1.
A MATRIX
1 2 3 4
i1 0.0 -0.5875810E-01-0. 1303132 0.0
2 377 .0000 0.0 0.0 0.0
3 0.0 -0.8986134E-01-0. 1957260 0.1288660
4 0.0 95 .50000 -815.9000 -20.00000
Q MATRIX
1 2 3 4
1 10.00000 0.0 0.0 0.0
2 0.0 2.000000 C.0 0.0
3 0.0 0.0 1.000000 0.0
4 0.0 .0 0.0 1.000000
S MATRIX
1 2 3 4
1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 1000000.
M MATRIX
1 2 3 4
1 0.0 ~0.5875810E-01-0. 1303132 0.0
2 377 .0000 0.0 c.0 0.0
3 0.0 -0.8986134E-01-0. 1957260 0.1288660
4 0.0 95. 50000 -815.9000 -20.00000
5 -10.00000 -0.0 -0.0 -0.0
6 -0.0 -2.000000 -0.0 -0.0
7 -0.0 -0.0 -1.000000 -0.0
8 -0.0 -0.0 -0.0 -1.000000
5 6 7 8
=00 -0.0 -0.0 -0.0
-0.0 -0.0 -0.0 -0.0
-0.0 -0.0 -0.0 -0.0
-0.0 -0.0 -0.0 -1000000.
-0.0 -377.0000 -0.0 -0.0
0.5875810E-01-0.0 0.8986134E-01 -95.50000
0.1303132 -0.0 0.1857260 815.9000
-0.0 -0.0 -0.1288660 20.00000

SYSTEM EIGENVALUES
-0.10001E+04+J( 0.0
0.100C01E+04+J( 0.0
-0.22406E+00+JU( 0.47186E+01)
-0.22406E+00+J(-0.47186E+01)
0.22406E+00+JU( 0.47186E+01)
0.22406E+00+J(-0.47186E+01)
0.44111E+00+J( 0.0 )
-0.44111E+00+J( 0.0

)
)

)
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EIGENVALUES AND CORRESP.EIGENVECTORS

[ -1000.0948+J( 0.0 )| 1000.0948+U( 0.0 )| -0.2241+J( 4.7186) | ~0.2241+J( -4.7186) |
0.3971E-05 0.8607E-05 0.2155E-01 0.2155E-01
0.0 0.0 0.9148E-02 -.9148E-02
-.1497E-05 0.3245E-05 0.6477E+00 0.6477E+00
0.0 0.0 - . 1753E+01 0. 1753E+01
0.3047E-01 .6606E-01 0.7628E-01 0.7628E-01
0.0 .0 0.2562E-01 -.2562E-01
-.2364E+03 -.5128E+03 -.5027E+00 - .5027E+00
0.0 0.0 0. 1564E+01 - . 15B4E+01
- . 8349E-02 0.1882E-01 0.4286E+03 0.4286E+03
0.0 0.0 0.1818E+03 -.1818E+03
-.2215E-01 -.4991E-01 0.2530E+01 0.2530E+01
0.0 0.0 - .5256E+01 0.5256E+01
0.1891E+Q0O 0.4269E+00 O.3895E+01 0.38395E+01
0.0 0.0 -, 1217E402 0.1217E+02
-.2318E+00 0.5231E+00 0.1693E-04 0.1693E-04
0.0 0.0 -.2169E-03 0.2169E-03



LYT

-.2621E-01 -.2621E-01 -.3258E-02 0.1230E-01
~.1493E-01 0.1483E-0t 0.0 0.0
-.1290E+01 -.1280E+01 ~.2786E+01 -.1051E+02
0.2033E+01 -.2033E+01 0.0 0.0
0.8584E-01 0.8584E-01 0. 1267E+01 0.4782E+01
0.5813E-01 -.5813E-01 0.0 0.0
-.2749E+01 =.2749E+01 0.4317E+01 -.1645E+02
0.4752E+01 -.4752E+01 0.0 0.0
0.1341E+04 0.1341E+04 -.4507E+02 -.5547E+03
0.7640E+03 -.7640E+03 0.0 0.0
0.8766E+01 0.8766E+01 0.5282E-01 -.6484E+00
-.1723E+02 0. 1723E+02 0.0 0.0
0.2132E+02 0.2132E+02 ~.3371E+02 0.1268E+03
-.3686E+02 0.3686E+02 0.0 0.0
-.1152E-03 -.1152E-03 ~.1388E-~02 -.4584E-02
0.6359E-04 -.6359E£-04 0.0 0.0
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RICCATI MATRIX

1 2 3 4
1 20458. 13 0.5826451 -167.4120 -0.2118704E-01
2 0.5826451 3.100279 6.681898 0.9548164E-03
3 -167.4120 6.681898 41.67039 0.4567936E-02
4 -0.2119704E-01 0.9548164E-03 0.4567936E-02 0.9807881E-03

SYSTEM MATRIX WITH LOC

1 2 3 4
T 0.0 -0.5875810E~01-0. 1303132 0.0
2 377.0000 0.0 0.0 0.0
3 0.0 -0.8996134E-01-0. 1957260 0.1288660
4 21197.04 -859.3164 -5383.836 -1000.788

EIGENVALUES OF THE SYSTEM WITH LOC
-0.10001E+04+J( 0.0
-0.22406E+00+J( 0.47186E+01)
~0.22406E+00+J(-0.47186E+01)
-0.44111E+00+J( 0.0 )
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Algorithm
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Athans, M., 135

Basic models, 17
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Bayne, J. P., 226
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Block diagram
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hydro power and governor, 53
multimachine, 193
single-machine, 67
steam turbine, 59
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K,,... K, 69

Ky, .- Kgij, 196
Converti, V., 225
Coordinates

common, 115

commutator, 29

dandq, 29

individual machine, 115

rotating, 115

static, 115

Coordinate transformation, current, 148

Cory, B. J., 20, 136, 205

Cost function, see Performance index

Co-state equation, 99
Cost index, see Performance index
Crary, S. B., 20
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Dandeno, P. L., 63, 83
Dashpot, 5, 53, 89, 90
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Dawson, G. E., 137
Dc system. see Parallel ac—dc system
Debs, A. S., 206
deMecllo, F. P., 63, 84, 88, 93
Dommel, H. W., 206
Doroshenko, G. A., 226
Dunlop, R. D., 227
Dynamic equivalent, 17
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dynamic aggregation, 176
simplified model, 178
clectromechanical, 172
estimated, 172, see also Estimated dynamic
equivalent
modal, 172
system mode identification, 175
Dynamic power system model, see a/so Micro-
machine test
sensitivily analysis. 126
Dynamics, 12

E

Eigenvalue
parallel ac—dc system, 151
SSR system, 156, 159, 161163, 167
system with and without ug, 81
Eigenvalue loci, 124
Eigenvalue sensitivity
control feedback, 165
machine parameters, 126
weighting matrix, 111
El-Abiad, A. H., 20, 205, 225
Elangovan, S., 136
Electric power system
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Japan, 10
Kyushu Electric, 93
North American, see North American elec-
tric power system; B.C. Hydro;
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Electric torque, 26, 39, 42, 45
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Ellis. H. M., 19,92, 225

El-Serafi, M. A., 170

El-Sharkawi, M. A, 205, 206

Energy conversion torque. see Electric torque
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dynamic, se¢e Dynamic equivalent
mass-spring system. 161, 164
two-phase, 28

Equivalent circuit, 33

Estimated dynamic equivalent
deterministic process. se¢ Estimation with

intentional disturbance

stochastic process
least-squares-error autoregressive, 183
maximum likelihood, 181

Estimation with intentional disturbance
algorithm, 189
equivalent model, 199
intentional disturbance, 185
least-squares-error, 186
on-line, 203
self-adaptive step size, 190

Evans. F. J.. 226

Ewart, D. N_, 205

Excitation system
continuously acting IEEE Type 1, 49

Schleif’s analysis, 150

rotating, 7

Exciter and voltage regulator, see Excitation

system
External system, 172

Falb, P. L., 135
Farmer, R. G., 169
Fleming, R. J., 93,136
Flux linkage, 33
Foord, T. R, 21,93
Fouad, A. A., 20, 170
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General inductance, 29
speed vollage sign rule, 31
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Goldstein, M., 135
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gate servo, 55

hydro power, 54
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Humphreys, P., 205
Hunkins, H. D., 83
Hurley. J. D., 63
HVDC, 2. 216, 222

I
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Individual machine coordinates, 115
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Index 251

Kats, E., 169
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multimachine system, 196
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Lagrange-Euler equation, 98
Lagrange multiplier, 97
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Larson, R. E., 226
Laughton, M. A, 205
Lee, T.H., 93
Letov, A. M., 225
Leum. M. E., 64
Lewis, W. A, 63
Lim, C. M., 136
Linear optimal control (LOC), 15
excitation and steam valving, 129
hydroelectric power system, 107
multimachine system, 114
one-machine system, 113, 119
parallel ac—dc system, 130
second-order system, 104
SSR system, 166
Linear optimal control design
dominant eigenvalue shift, 110
algorithm, 111
eigenvalue assignment, 118
characteristic equation, 121
eigenvalue loci, 124
performance index, 97
Riccati matrix equation, 100, see also
Riccati matrix equation
state and co-state equation, 98
state equation, 96
Linear optimal excitation contro! (LOEC)
multimachine system, 114
SSR system. 166
Lokay, H. E., 228
Lu, Q. 117
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Micromachine test

LOC, 128

transient stability control, 219
Minisey, S. M., 226
Mittelstadt, W. A, 225, 227
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alternating, 27
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three-phase, 26

two-phase, 28
Modeling ac—dc system, 130
Morgan, W. A_, 225
Mortlock, J. R., 20
Moussa, H. A. M., 87. 94,111, 136
Multimachine system
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K;; constant, 196

phasor diagram, ith machine, 193
Murotani, K., 170
Mutual inductance L, 30

mn >

N

Namba, M., 63
Natural oscillating frequency

electrical mode, 141

mechanical mode, 141
NERC (National Electric Reliability Council)
Nonlinear simulation test, see Systcm
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North American electric power system

ECAR, 8

ERCOT, 8

MAAC, 8

MAIN, 8

MARCA. 8

NPCC, 8

SERC, 8

SPP, 8

WSCC, 8. see also WSCC
Northeastern and Michigan system, 171
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Olive, D. W., 46, 64
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initial values, 71, 72
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state equations, 79, 80
transfer function, 67
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electrical mode, 81
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mechanical mode, 76, 81, 84
torsional, see Torsional oscillations

P

Pacific power pools, 83
Parallel ac—dc system, 130
Park, R. H., 20, 23, 37. 63, 217, 225, 227
Park’s voltage equation. 23
Performance index, quadratic form, 97, 121
Per unit reactance, 25
Per unit value, see Unit system
Phasor diagram, 43, 44, 193
Phillips, R. A., 64, 93
Planning and opecration, 2
Podmore, R., 178, 205
Power system. see Electric power system
Power system dynamic problem
asynchronous operation, 12
dual-axis excitation, 12
dynamic stability, 13
low frequency oscillations, 14
power and frequency control, 12
subsynchronous resonance. 15, see also
Subsynchronous resonance
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transient stability, 13, see also Transient
stability control
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equivalent, see Estimation with intentional
disturbance
multimachine system, 193
one-machine system, 67
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SSR system, see Subsynchronous resonance
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mentary excitation control; Supplemen-
tary governor control
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development
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deMello and Concordia’s analysis, 84
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Pacific power system, 83
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PSS, see Power system stabilizer
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SI see Unit system
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Speed deviation, 53

Speed voltage sign rule, 31
Spinning reserve, 1

SSR, see Subsynchronous resonance
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asymptotic, 210
boundary, 212
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Lyapunov, 210
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region, 209
steady state, 13
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transient, 13, see also Transient stability

control

Stability limit, 128, 129

Stabilizing circuit, 52
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