
ptg16386157

ptg16386157

800 East 96th Street

Indianapolis, Indiana 46240

 Matthew Scarpino

MOTORS
for MAKERS
 A Guide to Steppers, Servos, and Other Electrical Machines

ptg16386157

 Editor-in-Chief
Greg Wiegand

 Executive Editors
Rick Kughen
Bernard Goodwin

 Development Editor
Greg Kettell

 Managing Editor
Kristy Hart

 Senior Project Editor
Betsy Gratner

 Copy Editor
Bart Reed

 Indexer
Lisa Stumpf

 Proofreader
Leslie Joseph

 Reviewers
John Baichtal
Bryan Bergeron
Rich Blum
Stephen Hobley
James Floyd Kelly
 Pete Prodoehl
Paul Tan

 Publishing Coordinators
Michelle Housely
Cindy Teeters
Kristen Watterson

 Cover Designer
Mark Shirar

 Compositor
Nonie Ratcliff

MOTORS FOR MAKERS: A GUIDE
TO STEPPERS, SERVOS, AND OTHER
ELECTRICAL MACHINES
Copyright © 2016 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in

a retrieval system, or transmitted by any means, electronic, mechanical,

photocopying, recording, or otherwise, without written permission from

the publisher. No patent liability is assumed with respect to the use of the

information contained herein. Although every precaution has been taken in the

preparation of this book, the publisher and author assume no responsibility for

errors or omissions. Nor is any liability assumed for damages resulting from

the use of the information contained herein.

 ISBN-13: 978-0-13-403283-2

 ISBN-10: 0-13-403283-7

 Library of Congress Control Number: 2015951266

 Printed in the United States of America

 First Printing: December 2015

Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Que Publishing cannot attest to the

accuracy of this information. Use of a term in this book should not be regarded

as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate

as possible, but no warranty or fitness is implied. The information provided is

on an “as is” basis. The author and the publisher shall have neither liability

nor responsibility to any person or entity with respect to any loss or damages

arising from the information contained in this book.

 Special Sales
For information about buying this title in bulk quantities, or for special sales

opportunities (which may include electronic versions; custom cover designs;

and content particular to your business, training goals, marketing focus,

or branding interests), please contact our corporate sales department at

 corpsales@pearsoned.com or (800) 382-3419.

 For government sales inquiries, please contact

 governmentsales@pearsoned.com .

 For questions about sales outside the U.S., please contact

 international@pearsoned.com .

ptg16386157

CONTENTS AT A GLANCE

Introduction 1

I Introduction

1 Introduction to Electric Motors 5

2 Preliminary Concepts 13

II Exploring Electric Motors

3 DC Motors 27

4 Stepper Motors 55

5 Servomotors 73

6 AC Motors 89

7 Gears and Gearmotors 113

8 Linear Motors 127

 III Electrical Motors in Practice

9 Motor Control with the Arduino Mega 145

10 Motor Control with the Raspberry Pi 171

11 Controlling Motors with the BeagleBone Black 195

12 Designing an Arduino-Based Electronic Speed Control (ESC) 215

13 Designing a Quadcopter 241

 14 Electric Vehicles 263

 IV Appendixes

A Electric Generators 279

B Glossary 287

 Index 293

ptg16386157

4 Stepper Motors 55

4.1 Permanent Magnet (PM) Steppers 56

4.2 Variable Reluctance (VR) Steppers 59

4.3 Hybrid (HY) Steppers 61

4.4 Stepper Control 63

4.5 Summary 71

5 Servomotors 73

5.1 Hobbyist Servos 74

5.2 Overview of Servo Control 78

5.3 PID Control 85

5.4 Summary 87

6 AC Motors 89

6.1 Alternating Current (AC) 90

6.2 Overview of Polyphase Motors 91

6.3 Asynchronous Polyphase Motors 96

6.4 Synchronous Polyphase Motors 100

6.5 Single-Phase Motors 103

6.6 AC Motor Control 106

6.7 Universal Motors 109

6.8 Summary 110

7 Gears and Gearmotors 113

7.1 Overview of Gears 113

7.2 Types of Gears 117

7.3 Gearmotors 124

7.4 Summary 125

8 Linear Motors 127

8.1 Linear Actuators 128

8.2 Linear Synchronous Motors 131

8.3 Linear Induction Motors 137

CONTENTS

 Introduction 1

Who This Book Is For 2

How This Book Is Organized 2

Let Me Know What You Think 3

I Introduction

1 Introduction to Electric
Motors 5

1.1 Brief History 6

1.2 Anatomy of a Motor 7

1.3 Overview of Electric Motors 9

1.4 Goals and Structure 11

1.5 Summary 11

2 Preliminary Concepts 13

2.1 Torque and Angular Speed 13

2.2 Magnets 18

2.3 Equivalent Circuit Element 21

2.4 Power and Efficiency 23

2.5 Summary 25

II Exploring Electric Motors

3 DC Motors 27

3.1 DC Motor Fundamentals 28

3.2 Brushed Motors 34

3.3 Brushless Motors 42

3.4 Electronic Speed Control (ESC)
Systems 49

3.5 Batteries 51

3.6 Summary 53

ptg16386157

Contents v

12.3 Zero-Crossing Detection 225

12.4 Designing the Schematic 229

12.5 Board Layout 232

12.6 Controlling the BLDC 234

12.7 Summary 239

13 Designing a Quadcopter 241

13.1 Frame 242

13.2 Propellers 243

13.3 Motors 248

13.4 Electronics 250

13.5 Construction 259

13.6 Summary 260

14 Electric Vehicles 263

14.1 Electric Vehicle Conversion 264

14.2 Modern Electric Vehicles 267

14.3 Patents from Tesla Motors 272

14.4 Summary 278

 IV Appendixes

A Electric Generators 279

A.1 Overview 280

A.2 DC Generators 281

A.3 AC Generators 283

A.4 Summary 286

B Glossary 287

 Index 293

8.4 Homopolar Motors 140

8.5 Summary 143

 III Electrical Motors in Practice

9 Motor Control with the
Arduino Mega 145

9.1 The Arduino Mega 146

9.2 Programming the Arduino Mega 149

9.3 The Arduino Motor Shield 158

9.4 Stepper Motor Control 162

9.5 Servomotor Control 166

9.6 Summary 168

10 Motor Control with the
Raspberry Pi 171

10.1 The Raspberry Pi 172

10.2 Programming the Raspberry Pi 174

10.3 Controlling a Servomotor 182

10.4 The RaspiRobot Board 186

10.5 Summary 192

11 Controlling Motors with the
BeagleBone Black 195

11.1 The BeagleBone Black (BBB) 196

11.2 Programming the BBB 198

11.3 PWM Generation 205

11.4 The Dual Motor Controller
Cape (DMCC) 207

11.5 Summary 213

12 Designing an Arduino-Based
Electronic Speed Control
(ESC) 215

12.1 Overview of the ESC Design 216

12.2 Switching Circuitry 218

ptg16386157

ABOUT THE AUTHOR
Matthew Scarpino is an engineer with more than 12 years of experience designing hardware

and software. He has a master’s degree in electrical engineering and is an Advanced Certified

Interconnect Designer (CID+). He is the author of Designing Circuit Boards with EAGLE: Make
High-Quality PCBS at Low Cost .

WE WANT TO HEAR FROM YOU!
As the reader of this book, you are our most important critic and commentator. We value your opin-

ion and want to know what we’re doing right, what we could do better, what areas you’d like to

see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like

about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and

email address. We will carefully review your comments and share them with the author and editors

who worked on the book.

 Email: feedback@quepublishing.com

 Mail: Que Publishing

ATTN: Reader Feedback

800 East 96th Street

Indianapolis, IN 46240 USA

READER SERVICES
Register your copy of Motors for Makers at informit.com for convenient access to downloads,

updates, and corrections as they become available. To start the registration process, go to

informit.com/register and log in or create an account.* Enter the product ISBN, 9780134032832,

and click Submit. Once the process is complete, you will find any available bonus content under

“Registered Products.”

*Be sure to check the box that you would like to hear from us in order to receive exclusive discounts

on future editions of this product.

ptg16386157

INTRODUCTION
When I received my master’s degree in electrical engineering in 2002, I

couldn’t help but feel a little disappointed. I knew all about analog circuit

theory, but I knew next to nothing about practical circuit boards. I could

compute the Lorentz force in an electric motor, but I had no idea how

motor controllers worked in the real world. Put simply, I could write pro-

grams and solve equations, but I couldn’t make anything.

Shortly after I received my degree, the first Arduino boards appeared

in the marketplace. Their simplicity and low cost sparked a worldwide

interest in electronics, and within a few years, the Maker Movement was

born. Makers aren’t interested in heavy mathematics and physics. Makers

are concerned with what they can build. Whether it involves 3D print-

ers or the Raspberry Pi, makers care about cool hardware, especially if it

involves electronics.

But makers get nervous when it comes to motors. Pre-built quadcopters

are growing in popularity, but I don’t see many makers designing their

own electronic speed controls (ESCs) or programming their own robotic

arms. This is perfectly understandable. Motors are more complicated than

other circuit elements. With motors, you don’t just have to be concerned

with electrical quantities such as voltage and current; you have to think

about mechanical quantities such as torque and angular speed.

The topic of electric motors isn’t easy, but the goal of this book is to make

the concepts approachable to non-engineers. I assume a minimal back-

ground in mathematics and physics, and throughout the book, the empha-

sis is always on making . Instead of discussing the Lorentz force and

electromagnetic flux, this book focuses on practical knowledge. Instead of

ptg16386157

Introduction2

bombarding you with equations, I’ll show you the different types of motors available and the ways

they can be controlled.

It takes time and patience to become comfortable with motors, but once you’ve ascended the

learning curve, you’ll be able to work on new and fascinating types of projects. Robots and remote-

controlled vehicles will all fall within your grasp. The road is long, but I assure you that the destina-

tion is worth the journey.

Who This Book Is For
As the title should make clear, this is a book for makers. If you’re looking for a textbook on phasor

diagrams and Maxwell’s equations, this isn’t the book for you. If you’re looking for practical infor-

mation related to motor operation and control, you’ve come to the right place. If you want to know

about the different types of motors and what they’re good for, this is the book to have.

I’ve done my best to make motors comprehensible to non-engineers, but this book is not for begin-

ners. In writing this book, I assume that you already know about volts, amps, and ohms. Further, I

assume that you can look at a simple circuit diagram and get a sense for how the system works.

How This Book Is Organized
To present the topic of electric motors as clearly as possible, I’ve split the content into four parts:

• Part I , “Introduction,” provides an overview of what motors are and how they work. Chapter 1 ,

“Introduction to Electric Motors,” introduces the history of electric motors and explains the two

building blocks that make motor operation possible. Chapter 2 , “Preliminary Concepts,” expands

on this, and explains how motors convert voltage and current into torque and angular speed.

• Part II , “Exploring Electric Motors,” examines the many different types of motors available for

makers. Specifically, the chapters in this part focus on DC motors, stepper motors, and servomo-

tors. Later chapters investigate AC motors, linear motors, and gears. For each type of motor, the

chapter explains how it operates and how it can be controlled.

• Part III , “Electrical Motors in Practice,” presents three real-world applications of electric motors.

Chapters 9 through 11 show how motors can be controlled with the popular circuit boards

Arduino Mega, Raspberry Pi, and BeagleBone Black, respectively. Chapter 12 , “Designing an

Arduino-Based Electronic Speed Control (ESC),” explains how to build an electric speed control

(ESC), and Chapter 13 , “Designing a Quadcopter,” explains how to build a quadcopter. The final

chapter focuses on the important topic of electric vehicles.

• Part IV , “Appendixes,” provides supplemental information that I hope will be helpful. Appendix

A , “Electric Generators,” discusses the topic of electric generators and the different types of

machines that convert motion into electricity. Following that, the glossary in Appendix B pro-

vides definitions for many of the terms discussed throughout the book.

 A handful of chapters present source code and circuit designs related to the content. These source

code files and design files can be downloaded from http://motorsformakers.com .

http://motorsformakers.com

ptg16386157

3Let Me Know What You Think

Let Me Know What You Think
Feel free to email me at mattscar@gmail.com . I’m usually pretty good about responding promptly,

though I won’t promise a response to every concern.

ptg16386157

This page intentionally left blank

ptg16386157

 1

INTRODUCTION TO ELECTRIC
MOTORS

Of the many elements that can be placed in a circuit, none are as versatile

or as exciting as the electric motor. Electric motors make it possible for

robotic hands to grasp, electric cars to roll, and drones to fly. Quadcopters

and 3D printers receive a great deal of attention, but to a system designer,

they’re just specialized motor control circuits.

 In addition to being exciting, motors can also be hard to understand.

When selecting a resistor, a designer only needs to be concerned with

simple properties such as tolerance, temperature, and power rating. But

when selecting a motor, there’s a long list of questions that need to be

addressed:

• Should the motor be direct current (DC) or alternating current (AC)?

• For a DC motor, should it be brushed or brushless?

• For a brushed DC motor, should it be a permanent magnet, series-

wound, or shunt-wound motor?

• For a brushless DC motor, should it be an inrunner or an outrunner?

• Is the motor’s Kv value sufficient for the system’s speed and torque

requirements?

• If the motor’s torque is insufficient, what type of gears should be

attached?

These aren’t easy questions, and most books on electronics and robotics

don’t discuss them in depth. Instead, many books present specific circuits

that require specific motors. They may mention why a particular motor is

suitable for a task, but they don’t provide enough information to enable

you to select the right motor on your own.

ptg16386157

Introduction to Electric Motors6

I

PA
R

T

This book takes a different approach. My goal is to present many different types of motors and show

you how to select the right motor for your project. For each type of motor, I’ll discuss its power

requirements and the methods by which it can be controlled.

 This book is aimed at makers, not scientists or engineers. As I discuss electric motors, I’ll avoid

the lengthy vector equations involving electric and magnetic fields. I studied this material in grad

school, and I assure you that knowing the equations won’t make your quadcopters faster or your

remote-controlled cars more maneuverable.

1.1 Brief History
This book won’t delve into the deep physics underlying motors, but there are two historical develop-

ments that every maker should know about. The first involves a moving needle in Denmark, and the

second concerns a rotating wire in Hungary.

1.1.1 Oersted’s Compass Needle
Hans Oersted was a Danish physicist who studied the relationship between electricity and magne-

tism. In 1820, he noticed something strange: Changing the current in a wire moved the needle of a

nearby compass. Figure 1.1 shows what his experiment looked like.

N

E

S

W

Current-carrying wire

Compass

Figure 1.1
Oersted’s experiment

Despite its simplicity, this experiment demonstrates the interaction between the two basic elements

of an electric motor: changing current and a magnetic field. When these two components are in

close proximity, the result is motion.

1.1.2 Jedlik’s Self-Rotor
Oersted’s experiment caused a flurry of activity in the scientist community. In France, Andre-Marie

Ampere developed equations relating current in a wire to the magnetic field around the wire. In

England, Michael Faraday devised a series of experiments that demonstrate how current-carrying

wires move in the presence of a magnetic field.

ptg16386157

71.2 Anatomy of a Motor

1

C
H

A
PTER

But the credit for the first practical electric motor belongs to the Hungarian physicist Anyos Jedlik.

Instead of placing the wire outside a compass, he wound it into coils and placed the coils inside a

magnetic field. As current changes inside the coils, the coils rotate.

In 1827, Dr. Jedlik called his motor the electromagnetic self-rotor. Figure 1.2 shows what it looks

like.

 Figure 1.2
 Jedlik’s self-rotor

It has been nearly 200 years since Dr. Jedlik constructed his self-rotor, but today’s rotary electric

motors have essentially the same structure:

• The input electrical power is delivered through a current-carrying conductor.

• The current-carrying conductor is placed in the vicinity of a magnetic field.

Pretty simple, isn’t it? The motors presented in this book have different shapes and configurations,

but in nearly every case, the motion is produced by delivering current through a wire in the pres-

ence of a magnetic field.

1.2 Anatomy of a Motor
Engineers like to be precise when describing their systems, and this is especially true for systems

containing motors. The goal of this section is to introduce terminology for the different parts of a

motor. These terms will be employed throughout this book.

 Keep in mind that motors can be thought of as electrical elements or as mechanical elements.

Therefore, the same part may have different names depending on whether the motor is considered

electrically or mechanically.

ptg16386157

Introduction to Electric Motors8

I

PA
R

T

1.2.1 External Structure
To describe the structure of an electrical motor, I’ll start with the outside and proceed inward.

Figure 1.3 presents a simple rotary motor.

Leads

Case

Shaft

Figure 1.3
A simple electric motor

In describing the externals of an electric motor, three terms are commonly employed:

• Case or shell — The external housing surrounding the motor

• Shaft — The metal cylinder extending from the motor’s center

• Wires or leads — The conductors carrying electricity to the motor

These terms should be straightforward to understand. The elec-

trical input is delivered to the motor through its leads. As the

motor operates, it rotates the shaft. This shaft is connected to a

load such as the tire of an RC car.

1.2.2 Internal Structure
Figure 1.4 depicts a cross-section of a rotary motor. As current

enters the motor, the central element rotates inside the case.

There are two ways to look at the motor’s structure—mechani-

cally and electrically. From a mechanical standpoint, the motor

consists of two parts. The rotor is the part that moves, and the stator is the part that stays in place.

The space separating the rotor and stator is called the air gap .

 Viewed electrically, a motor’s structure can be divided into another two parts. The armature is

the part that receives current. In Figure 1.4 , the motor’s central element (the rotor) is the armature

because it receives incoming current.

 note
 In certain types of motors,
the shell rotates and the shaft
remains fixed. One popular
example is the outrunner
brushless DC motor, which is
discussed in Chapter 3 , “DC
Motors.”

ptg16386157

91.3 Overview of Electric Motors

1

C
H

A
PTER

The second electrical part is responsible for generating the magnetic field. If the field is produced

by permanent magnets, as it is in Figure 1.4 , the second part is called the field magnet . If the mag-

netic field is produced by an electromagnet, the second part is called the field winding . Chapter 2 ,

“Preliminary Concepts,” explains how electromagnets work.

1.3 Overview of Electric Motors
When it comes to electric motors, there are a wide range of categories and subcategories to choose

from. Chapters 3 through 8 discuss many of them in detail, and Figure 1.5 depicts a basic decision-

making process that can be used to select which motor is suited for a task.

This diagram can help you make an initial assessment, but it’s not a thorough breakdown of the

many categories of electric motors. Later chapters will fill in the details. Also, some motors don’t

fit into this decision-making process. For example, universal motors (discussed in Chapter 6 , “AC

Motors”) can operate on AC and DC power. Further, if any motor is connected to an encoder or posi-

tion sensor, its angle can be measured and controlled.

One major decision that isn’t mentioned in the flowchart involves the nature of the required motion.

A motor that turns about an axis is a rotary motor . If it moves in a straight line, it’s a linear motor .
The vast majority of electrical motors are rotary, and Figure 1.5 applies to rotary motors only. But

linear motors are important in many applications, especially robotics. These fascinating machines

are discussed at length in Chapter 8 , “Linear Motors.”

Current

Stator

Rotor

Air gap

Field
magnet

Armature

 Figure 1.4
 Internal structure of an
electric motor

ptg16386157

Introduction to Electric Motors10

I

PA
R

T

At a high level, electric motors can be categorized according to the nature of the input power. A DC

motor receives DC (direct current) power, such as from a battery or power regulator. An AC motor

receives AC (alternating current) power, such as from a wall socket.

1.3.1 DC Motors
DC motors accept DC electrical power, such as that provided by a battery. They’re particularly com-

mon in maker projects. For example, every motor in a quadcopter or a remote-controlled car is a DC

electric motor.

DC motors are divided into brushed and brushless motors. As will be explained in Chapter 3 , the

primary distinction between them involves the need for a commutator. Put simply, a commutator

reverses voltage as the motor turns, thereby ensuring that the motor continues to turn. Motors with

a mechanical commutator are called brushed motors or commutated motors. These motors are sim-

ple and inexpensive, but periodic maintenance is needed to keep them working properly.

 Brushless DC motors, commonly called BLDCs, don’t require maintenance as brushed motors do, but

their structure is more complex. This means they cost more money and it takes significantly more

effort to control them.

1.3.2 AC Motors
AC motors are common in industrial and household settings, and you’ll find them in blenders, micro-

waves, and washing machines. AC motors come in two types: synchronous and asynchronous. The

Is the motor
powered by AC

(mains/wall power) or
DC (battery)?

AC DC

NO

Choose a brushless
DC motor

Choose a brushed
DC motor

Choose a synchronous
AC motor

Choose an
asynchronous AC motor

YES

YES

NO

YES

NO

Choose a stepper
or servomotor

Do you need to
control/measure the

precise angle?

Is
low cost/simplicity

more important than
constant speed?

Is
low cost/simplicity

more important than
efficiency and

reliability?

 Figure 1.5
 Motor selection flowchart

ptg16386157

111.5 Summary

1

C
H

A
PTER

difference between them depends on how the motor’s speed should be controlled. The speed of a

synchronous motor is synchronized with the frequency of the incoming AC power.

But the majority of AC motors are asynchronous, which means their speed isn’t synchronized with

the frequency of the incoming power. These motors, frequently called induction motors, are popular,

simple, and reliable. Chapter 6 discusses asynchronous and synchronous motors in detail.

1.4 Goals and Structure
This book has four goals:

• Present the different types of electric motors and their uses.

• Describe the circuits needed to control the different types of motors.

• Explain how to control motors with existing circuit boards.

• Show how to design real-world motor control circuits

Chapters 3 through 8 present many of the different types of electric motors. I’ll introduce DC motors

first, followed by stepper motors in Chapter 4 , “Stepper Motors,” and servomotors in Chapter 5 ,

“Servomotors.” Later chapters discuss AC motors (synchronous and asynchronous) and linear

motors.

 With regard to the second goal, the nature of a motor control circuit depends on the type of motor.

That is, a circuit intended to control a stepper motor can’t provide proper control of a servomotor,

and you can’t control a DC motor with an AC motor control circuit. Therefore, each chapter focusing

on a motor’s type also presents the basics of the motor’s control. For example, the control circuitry

needed for a stepper motor is discussed in Chapter 4 , which presents stepper motors.

 The third goal helps clarify theoretical issues related to motors and motor control. In the world of

maker circuits, three of the most popular development boards are the Arduino Mega, the Raspberry

Pi, and the BeagleBone Black. Chapters 9 through 11 take a close look at these boards and show

how to program them to control different types of motors.

 The last goal is particularly exciting. Chapters 12 through 14 get into the details of real-world motor

control. Chapter 12 , “Designing an Arduino-Based Electronic Speed Control (ESC),” explains how to

design a fully functional ESC circuit, and Chapter 13 , “Designing a Quadcopter,” illustrates the full

process of designing a quadcopter. Chapter 14 , “Electric Vehicles,” explains how electric motors are

used in modern electric vehicles.

1.5 Summary
When it comes to electric motors, there are four levels of understanding:

• Hobbyist — “When I apply voltage and current, the motor’s shaft turns.”

• Maker — “The motor’s shaft turns because the electromagnets in the stator are energized in

sequence. The rotor’s speed is proportional to voltage and the torque is proportional to current.”

ptg16386157

Introduction to Electric Motors12

I

PA
R

T

• Engineer — “The motor’s impedance can be represented by the phasor R
a
 + jωL

a
 . If the input volt-

age is V
m
 sin(ωt + 90°), the torque and speed can be computed as....”

• Scientist — “The electromagnetic tensor traveling through the conductor aligns the domains in

the ferromagnetic material. This produces a magnetic vector field proportional to the material’s

permeability.”

Engineers analyze motors mathematically and scientists are concerned with electromagnetic phe-

nomena, but makers don’t need the heavy math and physics. All a maker needs is an intuitive

understanding of how motors work and how they can be controlled. This won’t be sufficient for

designing new motors, but when it comes to building systems with existing motors, this level of

understanding is all you need.

 With regard to these four levels, this book’s goal is to help you advance from Level 1 (hobbyist) to

Level 2 (maker). Many of the chapters focus on the different types of electric motors and the variety

of methods available for controlling them. After reading this book, you should have a solid grasp of

which motors are suitable for a given task. You should also be able to design control circuits without

needing an existing recipe to fall back on.

This chapter began with a discussion of two scientific developments that led to the creation of mod-

ern electric motors. Hans Oersted discovered that a changing current deflects a compass needle.

Anyos Jedlik went further and showed that coils of current-carrying wire in a magnetic field can

serve as a practical motor. Many aspects of electrical motors have changed since Jedlik’s time, but

these motors still boil down to two parts: one component carries current (the armature) and the sec-

ond produces the magnetic field (the field windings or field magnet).

After discussing the history of motors, this chapter explained aspects of their structure. On the out-

side, a motor has leads that deliver current and voltage to the motor and a shaft that delivers torque

and speed to the load. If a motor is thought of as a mechanical element, it can be divided into the

part that moves (rotor) and the part that doesn’t (stator). As an electrical element, a motor can be

split into the part that receives changing current (armature) and the part that produces the magnetic

field (field magnet or field windings).

 One reason motors make people nervous is that there are so many different types of them. Some

require AC power, some require DC power, and universal motors can run on both kinds of power.

Some motors are designed for motion control, whereas others specialize in torque and speed. This

chapter has presented a brief overview of the different types, and later chapters will provide greater

detail. The next chapter focuses on some basic properties that all motors share.

ptg16386157

PRELIMINARY CONCEPTS
This book presents many types of rotary electric motors, each with a dif-

ferent purpose and structure. But viewed from a high level, these motors

all perform the same operation: They convert voltage and current into

torque and angular speed. In case you’re not familiar with these quanti-

ties, this chapter begins by discussing torque and angular speed, and

then explores the relationship between the two.

The rest of the chapter touches on three crucial subjects that relate to

electric motors:

• Magnets

• Equivalent circuit elements for motors

• Power and efficiency

I’ll keep the math to a minimum, but the terms and concepts involved can

still be confusing. If you don’t fully grasp the content of this chapter after

the first reading, don’t be alarmed. I recommend that you start by acquir-

ing a basic familiarity with the material. Then, as the concepts become

relevant in later chapters, you can return to this chapter to deepen your

understanding.

2.1 Torque and Angular Speed
Force is one of the most fundamental quantities in physics and engineer-

ing, and most people have a basic understanding of it. The average per-

son may not be comfortable with momentum or inertia, but everyone has

an idea of what force is, especially the force of gravity.

 2

ptg16386157

Preliminary Concepts14

I

PA
R

T

Torque isn’t as well understood. Some know that it’s a kind of rotational force, yet torque and force

have different units of measurement. Despite its relative unpopularity, torque is a quantity that

every designer of motor systems needs to understand. The goal of this section is to make this clear

and to show how a motor’s torque relates to its angular speed.

2.1.1 Force
If an object undergoes any change in speed, whether it’s acceleration (increase) or deceleration

(decrease), the change is caused by a force. The amount of force can be obtained mathematically by

multiplying the object’s mass by its acceleration or deceleration.

For example, suppose I hold an object above the ground and let it fall. The object’s change in motion

is caused by the gravitational force acting on it. The amount of force equals its mass multiplied by

the gravitational acceleration, 9.8 m/s 2 . An object’s gravitational force is referred to as its weight.

In America, weight is measured in pounds, and each pound consists of 16 ounces. Scientists and

engineers measure weight and other forces in Newtons, abbreviated N. A force of 1 N is the force

needed to accelerate a 1-kilogram mass by 1 meter per second per second (m/s 2). One pound is

approximately 4.45 Newtons, so my weight of 182 lbs. is close to 810 N.

 Another fundamental aspect about force involves direction. A force’s direction may change over

time, but at any specific time, a force always acts in a straight line. When an object falls to the

ground, it moves in the straight-line direction determined by the gravitational force.

2.1.2 Torque
Like force, torque is proportional to the object’s mass and relates to an object’s acceleration or decel-

eration. Unlike force, torque acts in a circular arc , not a straight line. When you turn a screw or twist

the lid off a jar, you’re exerting torque.

A good example of torque in action is an arm wrestling match. Figure 2.1 on the next page shows

what this looks like.

In an arm wrestling match, each participant struggles to exert more torque than the other. If one

succeeds, the difference in torque forces the opponent’s arm to the table. The greater the difference

in torque, the faster the opponent’s arm will reach the table.

The situation is similar for rotary motors. A motor exerts torque through a shaft that connects to

a load. If the motor can exert sufficient torque, the shaft will turn the load. If it can’t exert enough

torque, the shaft won’t turn.

Earlier, I said that torque acts in a circular arc. An important difference between torque and force is

that the torque depends on the arc’s radius. More precisely, if the force is perpendicular to the arc’s

radius, the torque equals the force multiplied by the radius. Denoting torque as τ (tau), force as F,

and the radius as r, the equation for torque is given as follows:

 rFτ =

This can be confusing, so let’s take another look at the arm wrestling match. Figure 2.2 depicts the

match with labels for force and radius.

ptg16386157

152.1 Torque and Angular Speed

2

C
H

A
PTER

Figure 2.1
A contest of torque

Force

Radius

 Figure 2.2
 Force, radius, and torque

ptg16386157

Preliminary Concepts16

I

PA
R

T

Consider the wrestler on the left. He’s exerting force on his opponent’s hand in order to turn it

in a circular arc. In this case, the arc’s radius is the line from the clasped hands to the table. The

direction of the force changes over time, but it’s always perpendicular to the radius. Therefore, the

torque produced by the arm wrestler equals the force multiplied by the radius.

Scientists and engineers measure torque in Newton-meters, abbreviated N-m, or milliNewton-

meters, abbreviated mN-m. Occasionally, torque will be given in Newton-centimeters, abbreviated

N-cm.

For American motors, data sheets commonly use Imperial units, such as pound-force-feet (lb-ft),

pound-force-inches (lb-in), or ounce-force-inches (oz-in). Table 2.1 provides conversion values

between common units of torque.

Table 2.1 Torque Unit Conversions

From To Multiply By

oz-in N-m 0.007062

oz-in lb-ft 0.005208

oz-in lb-in 0.0625

lb-ft oz-in 192.0

lb-ft N-m 1.356

lb-ft lb-in 12.00

N-m oz-in 141.6

N-m lb-ft 0.7376

N-m lb-in 8.851

lb-in oz-in 16

lb-in N-m 0.1130

lb-in lb-ft 0.08333

The torque exerted by a motor depends in large part on the nature of its load. To see what I mean,

imagine that you’re taking part in an arm wrestling match. If your opponent is much weaker than

you are, you can win the match quickly without exerting yourself. This is the no-load condition .

When a motor is in the no-load condition, there’s no load—the shaft rotates quickly and exerts mini-

mal torque.

 Now suppose your arm wrestling opponent is stronger than you are. No matter how much you exert

yourself, your opponent’s hand won’t budge. This is the stall condition . When a motor is in the stall

ptg16386157

172.1 Torque and Angular Speed

2

C
H

A
PTER

condition, it exerts a great deal of torque, but the rotational speed is zero because the load is too

great.

2.1.3 Angular Speed
Speed measures how quickly an object moves. In other words, speed tells you how far an object

travels in a given amount of time. Angular speed is similar, but identifies the angle an object rotates

through in a given amount of time.

 When I took engineering courses in college, angles were always measured in radians and angular

speed was measured in radians per second. But for electric motors, angle is measured in degrees

(°) and angular speed is measured in revolutions per minute, or RPM. A motor’s rotational speed is

denoted as ω (omega). If an object rotates with a speed of 12°/sec, the speed in RPM can be com-

puted as follows:

12deg

sec

60sec

1min

1 rev

360deg

2 revs

min
2 RPMω = ⎛

⎝⎜
⎞
⎠⎟

⋅ ⎛
⎝⎜

⎞
⎠⎟

⋅
⎛
⎝⎜

⎞
⎠⎟

= =

It’s important to clearly understand the difference between torque and angular speed. Angular

speed tells you how many revolutions an object completes per minute. Torque tells you how much

force the object can exert as it rotates. An object can rotate at high speed with low torque, or with

high torque at low speed.

2.1.4 The Torque-Speed Curve
If a motor’s shaft isn’t connected to a load, the motor’s speed is referred to as its no-load speed ,

denoted ω n . For most motors, this is the maximum speed.

 If the motor’s load is so large that its shaft can’t turn, the motor’s torque is called its stall torque ,

denoted τ s . This is the maximum amount of torque that the motor is capable of exerting.

 When selecting a motor for a project, it’s a good idea to know what these values are. For example,

one brushed DC motor sold on pololu.com has the following characteristics:

• ω n equals 17,000 RPM for an input voltage of 3 V.

• τ s equals 0.75 oz-in for a stall current of 3.85 A.

In an ideal world, in addition to providing ω n and τ s , manufacturers would tell us how the motor

behaves between these extreme states. That is, they’d tell us the motor’s torque and speed when

the load is greater than zero but less than the maximum supportable limit.

 The relationship between a motor’s torque and speed can be illustrated graphically with a line

called the torque-speed curve . Most manufacturers don’t provide torque-speed curves for their

motors, but they can be obtained experimentally with the right measuring equipment, such as a

 dynamometer . Figure 2.3 depicts a simplistic example of a torque-speed curve.

ptg16386157

Preliminary Concepts18

I

PA
R

T

The shape of the torque-speed curve depends in large part on the motor’s type. Also, a curve is

only valid for a given voltage and current. That is, ω n and τ s change as the input electrical power is

increased or decreased.

2.2 Magnets
Whether you’re selecting a motor for a new project or designing a control circuit, it helps to know

how the motor works. I’m not talking about the complex physical laws, but the basic manner in

which it converts electricity into rotary motion. This conversion depends on the interaction of mag-

nets, so let’s review three basic facts:

• Every magnet has two poles: north (N) and south (S).

• Opposite poles attract and like poles repel. In other words, when magnets come close to one

another, they orient themselves to bring opposite poles closer and similar poles further apart.

• Different magnets have different strengths. The stronger the magnet, the more its poles attract/

repel the poles of other magnets.

 If you’re not already familiar with these points, you can verify them easily by experimenting with

bar magnets.

 There are two types of magnets, and both types are common in the world of electric motors:

• Permanent magnets — When certain materials are brought near high electric current, such as

lightning, they acquire permanent magnetic behavior.

• Electromagnets — When a current-carrying wire is wrapped into a coil, it behaves like a magnet.

This behavior is temporary, and stops when current is removed. If the coil is wrapped around an

iron core, the magnetic behavior grows stronger.

Permanent magnets don’t need power to operate and they’re generally strong. Unfortunately, their

poles are always fixed in the same positions and they tend to be expensive.

Stall torque

No-load speed

Rotational speed (RPM)

Torque
(oz-in)

Figure 2.3
An example of
torque-speed curve

ptg16386157

192.2 Magnets

2

C
H

A
PTER

The main advantage of electromagnets is that their magnetic behavior can be controlled by chang-

ing the current. That is, altering the power can alter an electromagnet’s strength and the location of

its poles. The main disadvantage is power consumption — it takes a lot of current to make an electro-

magnet as strong as a permanent magnet.

The ability to control the magnetic behavior of electromagnets is central to the operation of electric

motors. Therefore, it’s helpful (but not necessary) to know how an electromagnet’s current deter-

mines the locations of its north and south poles.

Let’s refer to the side where the current enters as the top of the electromagnet and the side where

the current exits as the bottom . If you look downward at the top of an electromagnet, you’ll see that

the current flows in a clockwise or counterclockwise orientation. This orientation determines the

electromagnet’s pole locations, or its polarity . This is set by two rules:

• If current flows in a counterclockwise direction, the top is the north pole and the bottom is the

south pole.

• If current flows in a clockwise direction, the bottom is the north pole and the top is the

south pole.

Figure 2.4 presents two electromagnets and their north and south poles. Note that, if the direction of

current is reversed, the north and south poles switch positions. Put another way, reversing the cur-

rent reverses the electromagnet’s polarity.

Current North

South

Current

Current
Current

South

North

Current

Current

Current Current

Side View

Top View Top View

Side View
Figure 2.4
Electromagnets and
their poles

ptg16386157

Preliminary Concepts20

I

PA
R

T

Now let’s consider an experiment involving four electromagnets, named A, A’, B, and B’. The A and

A’ electromagnets are connected to the same wire, and so are B and B’. In the center, a permanent

magnet, called a bar magnet , is free to rotate. Figure 2.5 illustrates the positions of the electromag-

nets and bar magnet.

S N

N

S

Current

(a)

S

N

N

S

N

S

A

A'

B B'
Current

NS S

A

A'

B B'

(b)

S NN

(c)

N

S

S

N

S

N

A

A'

B B'
Current

SN N

A

A'

B B'

(d)

N SS

Current

S

N

 Figure 2.5
 An experiment with
four electromagnets

When current is applied to one pair of electromagnets, the bar magnet rotates to align itself with the

electromagnets’ poles. As depicted in the figure, there are four possibilities:

• In Figure 2.5 a , current flows from A to A’. The south pole of A faces the magnet and the north

pole of A’ faces the magnet. The bar magnet aligns itself so that its north pole faces A and its

south pole faces A’.

ptg16386157

212.3 Equivalent Circuit Element

2

C
H

A
PTER

• In Figure 2.5 b , current flows from B to B’. The north pole of B faces the magnet and the south

pole of B’ faces the magnet. The bar magnet rotates so that its north pole faces B’ and its south

pole faces B.

• In Figure 2.5 c , current flows from A’ to A. The north pole of A faces the magnet and the south

pole of A’ faces the magnet. The bar magnet rotates so that its north pole faces A’ and its south

pole faces A.

• In Figure 2.5 d , current flows from B’ to B. The south pole of B faces the magnet and the north

pole of B’ faces the magnet. The bar magnet rotates so that its north pole faces B and its south

pole faces B’.

 If current is delivered to the electromagnets in this sequence, the bar will rotate 360° in the coun-

terclockwise direction. If current is delivered in the reverse sequence, the bar will rotate 360° in the

clockwise direction.

 I recommend that you study Figure 2.5 until you’re comfortable with it. This process of converting

electrical power (current through the electromagnets) into mechanical power (rotation of the bar

magnet) is essentially the same process used by most of the motors in this book.

2.3 Equivalent Circuit Element
When you design circuits with motors, it’s important to know how the motor behaves electrically.

Does it act like a resistor, a capacitor, an inductor, or a diode? Or does it resemble a combination of

these?

Given the diversity of electric motors, it’s impossible to construct a single model that fits all types.

But it is possible to account for electrical characteristics that apply to a wide range of motors. In

particular, this section looks at electrical losses that are common to motors and then discusses the

phenomenon of back-EMF.

2.3.1 Electrical Losses
When a motor rotates with no load, it still draws current. This is called the motor’s no-load current ,
denoted I o . This is needed to magnetize the iron cores of the electromagnets, so the electrical loss is

called iron loss . When you’re analyzing a circuit, this loss is accounted for by subtracting I o from the

current entering the motor.

 Another source of electrical loss in a motor is called copper loss . This relates to the resistance of the

armature, which is the portion of the motor that receives electrical power. An armature’s resistance

is denoted R a , and if I is the current entering the motor, Ohm’s law tells us that the voltage loss

across the armature is (I - I o)R a . Therefore, if V is the motor’s input voltage, the voltage that contrib-

utes to the motor’s operation equals V – (I – I o)R a .

 In addition to resistance, a motor’s armature adds inductance. This inductance, denoted L a , is usu-

ally so small that it doesn’t need to be considered. But the armature’s inductance is proportional to

the frequency of the current flowing through it. Therefore, if the motor is part of a high-frequency

circuit, L a can have a significant effect.

ptg16386157

Preliminary Concepts22

I

PA
R

T

Figure 2.6 presents an equivalent circuit for a motor that takes these losses into account.

Most electromagnets have iron cores, but not all do. Motors without iron cores are called coreless

or air-core motors. Coreless motors are weaker than motors with iron cores, but they’re lighter and

have lower electrical losses.

Motor

VI

Io

I - Io

Power

Ra

Armature
Losses

La

 Figure 2.6
 An equivalent circuit for armature losses

2.3.2 Back-EMF
Electric motors have a fascinating property that every maker should be aware of. As a motor rotates,

the interaction of its conductors and magnets generates a voltage proportional to the speed of rota-

tion. If this rotation is caused by an external force, such as the flowing of a waterfall, this voltage

can be used to provide power. In this case, the motor behaves as a generator, which is the topic of

Appendix A , “Electric Generators.”

But if the motor rotates in response to electrical power, the generated voltage opposes the incoming

current. In this case, the voltage is referred to as back-EMF, where EMF stands for electromotive

force, which is a synonym for voltage. This phenomenon may also be referred to as counter-EMF, or

cemf. Back-EMF increases as the voltage across the motor increases, but it’s always less than the

motor’s input voltage.

The shape of the back-EMF depends on the type of the motor and the power delivered to it. But in

all cases, the back-EMF can be modeled as a voltage source that opposes the direction of the incom-

ing current. This is shown in Figure 2.7 , which presents a more complete circuit model for an elec-

tric motor.

 Back-EMF is particularly important to understand when you’re designing circuits for brushless DC

motors. To control these motors, the controller needs to know the motor’s shaft angle, and it figures

ptg16386157

232.4 Power and Efficiency

2

C
H

A
PTER

out this angle by determining the motor’s back-EMF. Chapter 3 , “DC Motors,” discusses brushless

DC motors and describes different methods of using back-EMF.

I

Io

RaLa + -

Back
EMF

Electric Motor Figure 2.7
 An equivalent circuit for an electric motor

2.4 Power and Efficiency
An electric motor may be able to operate over a range of speed and torque, but every motor has an

operating point at which it’s particularly productive. At this peak efficiency point , the motor con-

verts electrical power to rotational power with an absolute minimum of wasted power.

When you’re selecting a motor for an application, efficiency is a major concern. But before I can

explain how efficiency is computed, I need to introduce the concept of power the way scientists and

engineers understand it. Before I can introduce the concept of power, I need to discuss the concept

of work.

2.4.1 Work
Work is performed whenever a force acts on an object and moves it over a distance. If the force and

distance are parallel, the work is proportional to both the force and the distance. That is, if a force,

F, moves an object by a distance of d in the force’s direction, the work exerted is Fd.

For example, if an object weighing 20 N falls a distance of 2 meters, the work performed by the

gravitational force is 40 N-m. If the object doesn’t move or moves in a direction perpendicular to the

force, the work performed by the force is zero.

Rotational work is similar, but involves torque and angle. If a torque, τ, turns an object through an

angle, θ, the work performed equals τθ. As an example, if you exert a constant torque of τ as you

twist the lid off a jar, and the lid turns an angle of θ, the amount of work you’ve performed is τθ.

2.4.2 Rotational Power
Power is the rate at which work is performed. If work is constant over an interval of time, the power

is computed by dividing work by the time interval. Denoting power as P, work as W, and the time as

t, this relationship can be expressed mathematically:

P W
t

=

 For example, if two electric screwdrivers perform equal amounts of work, but the first finishes

in half the time, we say that on average, the first screwdriver used twice as much power as the

ptg16386157

Preliminary Concepts24

I

PA
R

T

second. Similarly, if one car engine can accelerate from low speed to high speed in less time than

another engine, we say that it’s more powerful.

 Power is measured in watts, abbreviated W, and 1 W equals 1 N-m/s. Another common unit is

 horsepower , or hp; 1 hp equals 745.7 W, and 1 W equals 0.00134 hp. For DC motors, power is com-

monly expressed in watts. For AC motors, power is generally expressed in horsepower.

As mentioned earlier, rotational work equals torque multiplied by the angle through which the

torque is exerted. Rotational power equals torque times the angle divided by time. This is the same

thing as torque times angular speed. Therefore, if torque is given in N-m and angular speed is given

in RPM, the mechanical power in watts can be computed with the following equation:

P 0.1047mechanical τω=

If the angular speed is given in RPM and torque is given in oz-in, the formula for rotational power is

given as follows:

P 0.0007396mechanical τω=

 2.4.3 Electrical Power
Electrical power is even easier to understand than rotational power: Power equals voltage times

current. Denoting voltage as V, current as I, and the power as P, the equation is given as follows:

P VIelectrical =

This assumes that voltage is measured in volts, current is measured in amperes, and power is mea-

sured in watts. If 2 A of current flows at 5 V, the electrical power equals 10 W.

As discussed earlier, the voltage loss due to the armature’s resistance is IR m and the current loss

due to iron loss is I o . Taking these losses into account, the power reaching the motor can be given

as follows:

P V IR I Imotor m o()()= − −

This expression identifies the electrical power that the motor successfully converts to mechani-

cal power. The mechanical power equals torque, τ, multiplied by speed, ω. Equating electrical and

mechanical power, we obtain an important equation:

V IR I I Pm o mechanicalτω()()− − = =

2.4.4 Efficiency
No electric motor converts all of its incoming electrical power to mechanical power. The ratio

between the motor’s input power and output power is called efficiency , denoted as η. This value

can be obtained with the following equation:

ptg16386157

252.5 Summary

2

C
H

A
PTER

P

P
output

input

η =

An ideal electric motor has an efficiency of 1, but real-world motors generally have efficiencies

between 0.5 and 0.9. For example, if a motor produces 1.5 watts of mechanical power for every 2.0

watts of input electric power, its efficiency is 1.5/2.0 = 0.75.

For an electric motor, efficiency can be computed in the following way:

P

P

P

P VI
output

input

mechanical

electrical

η τω
= = =

Using a relationship derived earlier, the numerator can be expressed in terms of voltage, current,

and losses:

P

P

V IR I I

VI

V IR

V

I I

I
mechanical

electrical

m o m oη ()()
= =

− −
=

−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

Efficiency increases as V increases and as R m decreases. Therefore, so long as the voltage is kept

within the motor’s limits, efficiency can be increased by increasing voltage. This explains why high-

power motors running at their rated speed are more efficient than low-power motors running at

their rated speed.

 The relationship between efficiency and current is more complex. On one hand, an increase in cur-

rent increases the copper loss (IR m), so this reduces efficiency. On the other hand, an increase in

current decreases the effect of the iron loss (I o), so this increases efficiency.

 Many vendors specify a motor’s peak efficiency parameters, and it’s a good idea to keep them in

mind. You should always choose a motor whose peak efficiency characteristics closely match those

of the desired workload. That is, the motor’s torque and speed at peak efficiency should be close to

the torque and speed that it’s intended to provide.

 The penalty for motor inefficiency is more than just wasted power. The copper loss in the armature

produces heat equal to I 2 R m . If this heat grows too large, it can damage the motor and the surround-

ing circuitry.

2.5 Summary
When you’re selecting a motor, it’s important to clearly understand the specifications provided by

the manufacturer. These specifications center on four physical quantities: current, voltage, speed,

and torque. Most of these quantities should be clear, but the first part of this chapter discusses the

nature of torque and rotational speed.

 When analyzing a motor’s behavior, we concern ourselves with two extreme conditions: the no-load

condition and the stall condition. The no-load condition arises when the motor rotates quickly with-

out a load. The stall condition occurs when the motor fully exerts itself but fails to move the load.

These conditions play a central role in determining a motor’s torque-speed curve.

ptg16386157

Preliminary Concepts26

I

PA
R

T

To see how electric motors convert electric power to mechanical power, it’s crucial to understand

magnets and electromagnets. An electromagnet is a coil of wire that usually surrounds an iron core.

Unlike permanent magnets, whose magnetic properties are fixed, the behavior of an electromagnet

can be altered by changing the current flowing through the wire. The drawback to using electro-

magnets is that they require a great deal of current.

When you connect a motor to an electrical circuit, it helps to understand the motor’s electrical

characteristics. Two important characteristics are iron loss and copper loss. Iron loss is the current

needed to energize the motor’s electromagnets. Copper loss is the resistive heating (I 2 R) within the

armature.

 Once you have a general idea of the type of motor you’re interested in, the next step is to select

the motor whose characteristics are best suited to the task. To keep wasted power to a minimum,

the motor’s peak efficiency should be reached during normal operation. Efficiency is the ratio of

mechanical power to electrical power, and the higher the efficiency, the more input power is used

productively.

ptg16386157

DC MOTORS
If your gadget is intended to be powered by batteries, solar power, a USB

interface, or any other source of direct current (DC), the only motors you

should consider are DC motors. These are straightforward to use and

understand, and if you grasped the content of Chapter 2 , “Preliminary

Concepts,” you should have no trouble working with them.

When you’re selecting the right DC motor for your application, the first

question to ask is whether it should be brushed or brushless. This is the

primary distinction among DC motors, and a large part of this chapter

discusses motors of both types. Due to their greater complexity, brushless

motors will be examined in greater length.

The first part of this chapter discusses topics that apply to all DC motors.

This section focuses on the relationship between a DC motor’s torque and

current and the relationship between its speed and voltage. This discus-

sion also presents high-level principles behind DC motor control.

The chapter ends with a brief overview of batteries. When it comes

to voltage and current, motor control circuits have specific needs that

require special types of batteries. Motor circuits rely primarily on

rechargeable batteries, and the last part of the chapter explains the pros

and cons of different battery types.

 3

ptg16386157

DC Motors28

II

PA
R

T

3.1 DC Motor Fundamentals
Brushed and brushless DC motors have different internal structures and different methods of con-

trol, but they have four characteristics in common:

• Torque is approximately proportional to current.

• Speed is approximately proportional to voltage.

• Control circuitry employs electrical switches to deliver power to the motor.

• A controller can govern the motor’s operation using PWM (pulse width modulation) signals.

This section discusses each of these topics. Later sections discuss the two types of motors

separately.

3.1.1 Torque, Current, and K T
Ampere’s Force Law tells us how much force a magnetic field exerts on a current-carrying wire. This

is a complex equation that involves vectors and calculus, so I’ll summarize: As the current entering

the armature of a motor increases, the motor’s torque increases.

 Using a digital torque meter, I measured how much current a brushed DC motor draws as its load

increases. Figure 3.1 illustrates the relationship between a motor’s load and the incoming current.

0 1 2 3 4 5 6 7 8 9 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Torque (in oz-in)

C
u
rr
en
t
(i
n
A
m
p
er
es
)

current = 0.44 * torque + 0.24

torque = 2.273 * current – 0.545

no-load current (Io) = 0.24 A

 Figure 3.1
 A DC motor’s
torque and
current

For DC motors, the relationship between torque and current can be approximated with a straight

line. This means that the ratio between torque and current is generally constant. This constant

is referred to as K T , and many datasheets provide this value in ounce-inches/ampere (oz-in/amp),

ptg16386157

293.1 DC Motor Fundamentals

3

C
H

A
PTER

pound-inches/ampere (lb-in/amp), Newton-meters/ampere (N-m/A), or Newton-centimeters/ampere

(N-cm/A). In Figure 3.1 , K T equals 2.273 oz-in/amp.

 As discussed in Chapter 2 , when a motor’s shaft rotates but exerts no torque, it’s in the no-load con-

dition. The current drawn by a motor in its no-load condition is called the no-load current , denoted

as I o . In Figure 3.1 , I o equals 0.24 A.

 I o is the minimum amount of current needed to put the motor in motion. Therefore, if the motor’s

armature receives a current of I, the torque produced by the motor equals K T (I – I o). If the torque is

given in N-m and K T is given in oz-in, the relationship is given as follows:

K I I

K I I

0.278 N
1 oz

0.0254 m
1 in

0.0070612

T o

T o

τ ()
()

= − ⋅
⎛
⎝⎜

⎞
⎠⎟

⋅
⎛
⎝⎜

⎞
⎠⎟

= −

 3.1.2 Rotational Speed, Voltage, and K V
Just as a motor’s torque increases with current, its rotational speed increases with voltage. This

angular speed, denoted as ω, is given in rotations per minute, or RPM. Using a tachometer, I mea-

sured the speed of a brushed DC motor at different levels of voltage. Figure 3.2 presents the results.

0 100

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Rotational Speed (in RPM)

V
o
lt
ag
e
(i
n
vo
lt
s)

voltage = 0.0017 * speed + 0.26

speed = 588.235 * voltage – 152.94

Armature voltage loss (Va) = 0.26 V

200 300 400 500 600 700 800 900

Figure 3.2
Speed versus voltage

As with the torque-current graph, the voltage-speed graph closely resembles a straight line. The

constant that specifies a motor’s speed/voltage ratio is called K V , and this is usually given in units of

RPM/V (revolutions per minute per volt). In Figure 3.2 , K V equals 588.235 RPM/V.

 As discussed in Chapter 2 , every motor’s armature has resistance, R a . Some of the voltage entering

the motor will drop across R a , and we refer to this voltage loss as V a . In Figure 3.2 , V a equals 0.26 V.

 If V is the total voltage applied, the motor’s speed equals K V (V – V a). Denoting the motor’s current as

I – I o , it’s clear that V a = (I - I o)R a .

ptg16386157

DC Motors30

II

PA
R

T

3.1.3 The K T-K V Tradeoff
The last part of Chapter 2 explained that motors convert input voltage (V – V a) and input current

(I – I o) to torque (τ) and speed (ω). This relationship can be expressed by equating the input electri-

cal power to the output mechanical power, which leads to the following equation:

V V I Ia o τω()()− − =

You’ve seen how K T relates to a motor’s torque and how K V relates to a motor’s speed. If K T is given

in oz-in/A and K V is given in RPM, the resulting equation is given as follows:

V V I I K I I

K V V

0.0070612

1min

60sec

2

revolution

a o T o

V a

π

{ }()() ()

()

− − = − ⋅

− ⋅ ⎛
⎝⎜

⎞
⎠⎟

⋅ ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

Combining the constants and dividing both sides by (V – V a)(I – I o) leads to the following result:

 K K1 0.000739447 T V=

This can be simplified to produce the final equation:

K K 1352.36T V =

This result makes it possible to draw three conclusions about electric motors:

• If you know one constant, it’s easy to compute the other. For this reason, most datasheets only

provide K V .

• No motor excels at converting current to torque (high K T) and converting voltage to speed (high

K V). If one value is relatively high, the other must be relatively low.

• If a motor’s purpose is to run quickly, select a motor with

high K V and low K T . If its purpose is to provide torque, select

a motor with high K T and low K V .

 For most applications, the average motor provides too much

speed and too little torque. That is, if you connect an average

brushed motor to a quadcopter’s propeller or a robotic arm, the

motor’s torque won’t be sufficient to turn the shaft.

 For this reason, many systems insert gears between the motor

and the load. Gears make it possible to increase torque and

reduce speed. This topic is discussed at length in Chapter 7 ,

“Gears and Gearmotors.”

 note
 The torque/current and
speed/voltage relation-
ships are just as valid for AC
motors as they are for DC
motors. But DC motor speed
is controlled primarily by
increasing voltage, and AC
motor speed is controlled
primarily by increasing the
frequency of the incoming
power. This is why datasheets
for DC motors specify K V and
datasheets for AC motors
don’t.

ptg16386157

313.1 DC Motor Fundamentals

3

C
H

A
PTER

3.1.4 Switching Circuitry
The preceding chapter explained that the main disadvantage of using electromagnets is power con-

sumption. This is why even small motors may need tens of amps to function properly.

The circuitry that governs a motor’s operation is called the controller. In modern systems, this is an

integrated circuit. In most maker-focused devices, this is a microcontroller or a low-power processor.

These devices run on milliamps, so they can’t directly provide a motor with the power it needs. For

this reason, motor circuits need electrical switches.

Electrical Switches
In an electric circuit, a mechanical switch creates a conductive path when a button is pressed. An

electric switch works in essentially the same way. When the controller applies a small voltage to

one terminal, the switch creates a conductive path that allows current to flow through the other

terminals.

The left side of Figure 3.3 presents the standard two-terminal symbol for a mechanical switch. The

right side presents a three-terminal symbol I created to represent an ideal electrical switch. When

the input voltage is greater than 0 V, the switch closes and creates a conductive path between the

other two terminals. If the input voltage is zero or less, the switch is open and no current flows

between the other two terminals.

Input
voltage

 Figure 3.3
 A mechanical switch and an electrical switch

An example will show how this electrical switch can be used. Suppose that a 3.3 V microcontroller

is employed to control a brushed DC motor. This chip can’t deliver power directly to the motor, but

if power is connected through an electric switch, the controller can govern the motor’s current by

turning the switch on and off. Figure 3.4 shows what this looks like.

When V CONTROLLER is zero, the switch is open. No current flows, so the motor doesn’t turn. But when

V CONTROLLER is greater than zero, the switch closes and delivers current from V POWER through the

motor, causing it to rotate.

Transistors as Electrical Switches
Ideal electrical switches don’t exist in reality, but we can approximate such a switch with a device

called a transistor . To be specific, most modern motor circuits rely on metal-oxide-semiconductor

field-effect transistors (MOSFETs) or insulated-gate bipolar transistors (IGBTs) to serve as switches.

ptg16386157

DC Motors32

II

PA
R

T

Don’t be intimidated by the confusing names. Both types of devices serve the same purpose as the

electrical switch in Figure 3.4 . Both have three terminals — one that receives voltage from the con-

troller and two that pass current when the controller’s voltage is high. Figure 3.5 shows what their

circuit symbols look like.

VCONTROLLER

VPOWER

Motor

 Figure 3.4
 Controlling a motor with an electric switch

GATE

COLLECTOR

EMITTER

+

VGE

-

ICE ~ 0
if VGE < VTH

GATE

DRAIN

SOURCE

+

-

VGS

IDS ~ 0
if VGS < VTH

 Figure 3.5
 Real-world electric
switches: a MOSFET
and an IGBT

As shown in the figure, the input terminal of a MOSFET or IGBT is referred to as the gate. For a

MOSFET, the terminals that deliver current are the drain and source. For an IGBT, the current-

carrying terminals are the collector and emitter.

 Let’s review the properties of an ideal electric switch. When the input voltage is less than or equal

to zero, the resistance between the other two terminals is infinite. When the input voltage is greater

than zero, the resistance between the two terminals is zero.

MOSFETs and IGBTs come close to this ideal, but there are three non-ideal aspects of their behavior

to be aware of:

ptg16386157

333.1 DC Motor Fundamentals

3

C
H

A
PTER

• To close the switch, the voltage between the gate and lower terminal must be greater than a

threshold voltage, denoted as V TH . For a MOSFET, V TH is typically between 0.5 and 1 V. For an

IGBT, V TH is commonly between 3 and 8 V.

• When the gate voltage is less than V TH , the current allowed to pass through the other two termi-

nals is so small as to be considered practically zero.

• When the gate voltage is greater than or equal to V TH , the resistance between the other termi-

nals is low, but it’s not zero. For a MOSFET, the resistance between the drain and source, R DS(on) ,

is as low as 0.03Ω. For an IGBT, the voltage-current relationship isn’t linear, but the voltage drop

between the two terminals is less than that between the terminals of a comparable MOSFET.

 MOSFETs and IGBTs have similar purposes, terminals, and operating characteristics, but MOSFETs

can switch current on/off more quickly and are generally less expensive. In contrast, IGBTs can

switch greater amounts of current, and the voltage drop from collector to emitter is less than the

drain-source voltage drop of a similarly capable MOSFET.

 As a rule of thumb, MOSFETs are better suited for circuits with small- to medium-sized motors.

IGBTs are better suited for circuits with large motors. When working with either type of transistor,

be sure to read the datasheet to ensure that its characteristics are suitable for the circuit.

 Maker circuits tend to be focused on small- to medium-sized motors. Therefore, the rest of this book

will rely exclusively on MOSFETs to serve as electric switches.

3.1.5 Pulse Width Modulation (PWM)
With an electrical switch, the controller can turn a motor’s current fully on or fully off. But what if

you want the motor to rotate at 75% of its full speed? What if you want the motor’s speed to ramp

up gradually? Increasing the controller’s voltage won’t help — once the gate voltage exceeds the

transistor’s threshold voltage, increasing the gate voltage further won’t substantially increase the

current.

Instead, controllers govern the motor’s behavior by delivering pulses that open and close the switch

for precise amounts of time. This pulse delivery is referred to as pulse width modulation, or PWM.

The concept underlying PWM is simple. The controller delivers a series of pulses to the gate of the

switch. These pulses open and close the switch and the switch delivers pulses of current to the

motor. The controller generates pulses at equal intervals, so the wider the pulse, the more current

reaches the motor and the faster it runs.

Figure 3.6 shows what a PWM pulse train looks like. In this case, the controller delivers four pulses

to the switch’s gate.

As labeled in the figure, T is the time between the rising edges of two adjacent pulses. This interval

is referred to as the frame or the period . The controller sets T by configuring the PWM frequency,

which equals 1/T.

 t is the length of time that the controller’s signal is high (greater than the threshold voltage). This

time is referred to as the pulse width . The duty cycle is the ratio of the pulse width to the frame, or

t/T. In Figure 3.6 , the duty cycle is 0.3.

ptg16386157

DC Motors34

II

PA
R

T

For example, if the controller sets the PWM frequency to 500 Hz, T = 1/500 seconds = 2 ms. If the

duty cycle is 0.4, each pulse occupies 40% of the frame, which means t = (2 ms)(0.4) = 0.8 ms. If

the duty cycle is 1.0, the switch remains fully closed and a maximum amount of power reaches the

motor.

Choosing the right PWM frequency is critical. In making this decision, we have two important fac-

tors to consider:

• If the frequency is too low, the rise/fall of the power reaching the motor will cause it to rotate in

a rough, jerky fashion.

• If the frequency is too high, the pulses will be too narrow to open and close the switches prop-

erly. In addition, the electromagnets will generate heat, decreasing the motor’s efficiency.

There are no clear rules regarding PWM frequency, but many servomotor circuits directed at hob-

byists expect a frequency of 50 Hz. This corresponds to a frame of 20 ms. The best place to look for

information is the datasheet, but if the frequency isn’t given, it’s safe to assume that the PWM fre-

quency is 50 Hz.

 Frequencies between 30 Hz and 20 kHz produce noise within the human range of hearing. If this is

a concern, you may want to set the PWM frequency higher than 20 kHz.

3.2 Brushed Motors
This section puts aside general motor theory and starts looking at actual motors. The best place

to start is brushed motors, which are the simplest practical motors discussed in this book. Their

internal structures are simple and they’re easy to control. As an example, Figure 3.7 shows what a

12-volt brushed DC motor looks like.

Despite their simplicity, brushed DC motors have features that may make them unsuitable for

certain applications. To understand why this is the case, you need to be familiar with the idea of

mechanical commutation.

3.2.1 Mechanical Commutation
As discussed in Chapter 1 , “Introduction to Electric Motors,” every electric motor contains two

parts: current in a conductor and a magnetic field. It’s important to note that the current must

change over time. If the current in the conductor is constant, the motor won’t make a complete

rotation.

Controller
Motor
switch

t T

Duty cycle = = 0.3
t
T

 Figure 3.6
 Pulse width modu-
lation (PWM)

ptg16386157

353.2 Brushed Motors

3

C
H

A
PTER

This may seem odd because this chapter focuses on DC motors and DC implies constant current. To

help make this clear, Figure 3.8 presents a loop of wire carrying current between two magnets. The

wire’s orientation changes in each case, but the current, I, is the same.

Figure 3.7
A 12-volt brushed
motor

NS NS
I

F

F
(a)

(c)

(b)

I

F

F

NS
I

 Figure 3.8
 A rotating loop carrying
constant current in a
magnetic field

The arrows labeled F represent the forces acting on the wire. These forces depend on three things:

the wire’s orientation (horizontal, vertical, at an angle), the current’s direction, and the direction of

the magnetic field (from N to S). In Figure 3.8 , the three situations are explained as follows:

• In Figure 3.8 a , the wire is horizontal. The current enters its left side and leaves through its right.

Because of the wire’s position and the direction of the current, two forces act on it: one that

pushes the wire’s left side upward and one that pushes the right side downward. As a result, the

wire rotates in a clockwise orientation.

ptg16386157

DC Motors36

II

PA
R

T

• In Figure 3.8 b , the wire is positioned at an angle. Again, two forces are produced, but now their

directions are different. The upper-left part of the wire is pushed upward and to the right and the

lower-right part is pushed downward and to the left. As a result of these forces, the wire contin-

ues rotating in a clockwise orientation.

• In Figure 3.8 c , the wire is vertical. Because of the wire’s

position and the direction of the current, the net force acting

on the wire drops to zero and the wire’s rotation comes to a

halt.

 For an electric motor, this last situation is unacceptable. In 1832,

Hippolyte Pixii recognized this and devised a clever mechani-

cal solution. He attached metal contacts to the armature that

reverse the current’s direction every time the armature makes

half a revolution. This ensures that the force will always be

greater than zero and that the armature will continue rotating.

 This current reversal is called commutation . The metal con-

tacts form a mechanical commutator, which is more commonly

referred to as a brush . The first practical electric motor, called

Jedlik’s self-rotor, was a brushed motor, and until the 1960s,

brushed motors were the only DC motors available.

3.2.2 Types of Brushed Motors
Brushed motors come in three varieties, and the differences between them depend on how the

motor generates its magnetic field. If the field is generated by a permanent magnet, the motor is

called a permanent magnet DC (PMDC) motor.

 The other two types of brushed motors generate magnetic fields using electromagnets. As dis-

cussed in Chapter 2 , an electromagnet consists of a coil of wire wrapped around an iron core. These

coils of wire are called field windings or field coils . The magnetic field produced by a field winding

is proportional to the current flowing through it.

Permanent Magnet DC (PMDC) Motors
PMDC motors are the most popular brushed motors. Because of their permanent magnets, the mag-

netic field is reliably constant. This means that K V , the ratio of speed to voltage, is constant. Figure

 3.9 illustrates the structure of a brushed DC motor.

One disadvantage of these motors is that permanent magnets lose their magnetization over time.

This means the motor gradually produces less torque and speed. This demagnetization accelerates

when the armature is driven with large startup currents.

 note
 A brush is simply a metal
contact between a rotor and
the external circuit. Brushes
are required for commuta-
tion, but technically speak-
ing, it’s incorrect to say that
a brush is a commutator.
Nevertheless, most of the
literature I’ve encountered
treats “brush” and “commu-
tator” as synonyms. Further,
it’s safe to assume that every
DC motor with a brush also
uses a commutator to reverse
current.

ptg16386157

373.2 Brushed Motors

3

C
H

A
PTER

Series-Wound DC (SWDC) Motors
In an SWDC motor, the field winding is connected in series with the rotor winding, which means the

current entering the field winding is the same as that entering the armature. Figure 3.10 illustrates

the circuit (without electrical losses).

Motor
Leads

Field
magnet

Rotor
windings

Brushes

 Figure 3.9
 Structure of a permanent magnet
brushed DC motor

I

V

Field
winding

Rotor
winding

 Figure 3.10
 A series-wound DC motor

To understand why SWDC motors are useful, it’s important to see what happens when the current

increases. As explained earlier in this chapter, an increase in current produces an increase in torque.

But for an SWDC motor, the increased current also produces an increase in the magnetic field, which

further increases the motor’s torque. This is why the torque produced by an SWDC motor is much

greater than that produced by a PMDC motor.

ptg16386157

DC Motors38

II

PA
R

T

The disadvantage of using SWDC motors involves speed control. The magnetic field strength

changes with current, so the value of K V changes with current. This makes it hard to reliably set the

motor’s speed.

Shunt-Wound DC (SHWDC) Motors
In an SHWDC motor, the field winding is placed in parallel with the armature. This means the volt-

age across the field winding equals the voltage across the armature. The equivalent circuit (without

losses) is depicted in Figure 3.11 .

V
Field

winding
Rotor

winding

 Figure 3.11
 A shunt-wound DC motor

This doesn’t produce as much torque as a series-wound motor, but the torque-speed curve is gener-

ally level. That is, the motor can maintain its speed for different amounts of load. For this reason,

shunt-wound motors are commonly used in systems that need to govern the motor’s speed reliably.

3.2.3 Advantages and Disadvantages
Brushed motors have improved in performance and reliability since the nineteenth century, but a

significant drawback remains: The brush makes contact with the rotor at high speed. As a result,

friction erodes the brush over time. It may take months or years, but eventually, every brushed

motor will require maintenance to continue functioning.

A second disadvantage is that a brushed motor has to rotate the commutator along with the rotor.

This places an additional load on the motor that reduces its efficiency.

Despite these disadvantages, brushed motors are still manufactured and sold in large quantities.

The reasons are cost and simplicity. Brushed motors are less complex than brushless motors, so

they’re less expensive to make. Also, controlling a brushed motor is simpler than controlling a

brushless motor, so the circuitry is more cost effective. If you’re trying to save money on your project

and long-term reliability isn’t a major factor, you should consider brushed motors.

ptg16386157

393.2 Brushed Motors

3

C
H

A
PTER

3.2.4 Control Circuitry
Controlling a brushed motor is straightforward because the motor’s operation is so easy to under-

stand. This section focuses on two types of brushed motor control circuits:

• Single-direction control— If the motor only needs to turn in one direction, the circuit can be eas-

ily constructed with a transistor.

• Dual-direction control— If the motor’s direction needs to be changed, an H bridge should be

added to the circuit.

In each case, this section presents a basic circuit and describes the components required for its

operation.

Single-Direction Control
If a brushed motor only needs to turn in one direction, designing the circuit is easy. The main goal

is to enable the controller to turn the motor’s current on and off. Earlier in this chapter, I explained

how a MOSFET can be used for switching and how the controller can govern the motor with pulse

width modulation (PWM).

Figure 3.12 presents a basic circuit that uses a MOSFET for switching. In this circuit, V POWER serves

as the main power source and V CONTROLLER is the voltage signal from the controller.

R1

R2

VPOWER

VGVCONTROLLER

Figure 3.12
Simple circuit for single-direction motor
control

This circuit has an important problem. As discussed in Chapter 2 , a turning motor generates a volt-

age called back-EMF . If the MOSFET shuts off current after the motor has been running, the motor’s

back-EMF may damage the transistor. For this reason, control circuits connect a diode in parallel

with the motor to provide a path for the back-EMF current. This is called a flyback diode , and Figure

 3.13 shows what the new circuit looks like.

Some control circuits also insert a potentiometer. This allows a user to directly control the current

passing through the motor and thereby increase or reduce the motor’s torque and speed.

ptg16386157

DC Motors40

II

PA
R

T

Dual-Direction Control
The preceding circuit can turn a motor on and off, but it can’t reverse the motor’s direction. To make

this possible, the circuit needs to be able to reverse the direction of the current flowing through the

motor. That is, the circuit needs one path that carries current through the motor in one direction and

another path that carries current in the opposite direction. In addition, the circuit needs a way to

turn the motor’s current on and off.

These requirements can be met by adding an H bridge to the circuit. This component has four elec-

trical switches (S 0 –S 3) that can be controlled independently. Figure 3.14 a shows what this looks like.

 There are many possible states for the switches of an H bridge, but three are particularly important:

• S0 and S3 closed, S2 and S1 open — Current flows through the motor from left to right. This is

depicted in Figure 3.14 b .

• S2 and S1 closed, S0 and S3 open — Current flows through the motor from right to left. This is

depicted in Figure 3.14 c .

• S0 and S2 open — The motor’s position is held in place.

 It’s common to encounter H bridges constructed out of MOSFETs. This is shown in Figure 3.15 .

Rather than construct an H Bridge from discrete transistors, it’s simpler to use an integrated circuit.

The Arduino Motor Shield discussed in Chapter 9 , “Motor Control with the Arduino Mega,” uses the

L298 IC from STMicroelectronics. The RaspiRobot board discussed in Chapter 10 , “Motor Control

with the Raspberry Pi,” relies on the L293DD integrated circuit. If you want to see how H bridges

are used in practice, Chapters 9 and 10 are excellent places to look.

 If you’d rather not design/construct your own control circuit, you can buy an electric speed control

(ESC). These systems receive battery power and produce the pulses needed to power a brushed

motor. However, when you select an ESC, make sure it’s suitable for your motor and keep in mind

that not all ESCs support current reversal.

Flyback
diode

R1

R2

VPOWER

VGVCONTROLLER

 Figure 3.13
 An improved circuit for
single-direction motor
control

ptg16386157

413.2 Brushed Motors

3

C
H

A
PTER

VPOWER

S0

S1

S2

S3

VPOWER

S0

S1

S2

S3

S0

S1

S2

S3

VPOWER

(a)

(b) (c)

I I

Figure 3.14
Controlling motor
direction with an H
bridge

VPOWER

S0 S2

S3S1

Figure 3.15
H bridge consisting of MOSFETs

ptg16386157

DC Motors42

II

PA
R

T

ESCs are convenient for brushed motor systems, but they’re essential for systems containing brush-

less motors. The next section explains why.

3.3 Brushless Motors
The twentieth century brought about a revolution in electronics, as researchers used solid state

physics to miniaturize transistors and other circuit elements. With these new integrated circuits,

engineers were able to design systems more complex than anything dreamed of before.

As circuit designs grew in complexity, so did the designs of electric motors. In 1962, T.G. Wilson

and P.H. Trickey devised a new type of motor that uses electric commutation instead of mechanical

commutation. This new motor isn’t powered by constant DC electricity, but instead receives timed

pulses of DC current. Wilson and Trickey called their new motor a brushless DC motor, or BLDC.

The goal of this section is to present BLDCs in detail. I’ll explain how they work and then discuss

the two different types of BLDCs: inrunners and outrunners. But

first, I want to briefly discuss the scientific principles that make

BLDCs possible.

3.3.1 BLDC Structure
BLDCs are more complex and more expensive than brushed

motors, but because there’s no mechanical contact between the

rotor and stator, they’re more reliable and efficient. Figure 3.16

presents a cross section of a BLDC’s stator and rotor.

Magnets

Stator

A

B

C

A

B

C

Rotor

Windings Figure 3.16
 A brushless DC motor
(BLDC)

 note
 The motor depicted in Figure
 3.16 is a specific type of BLDC
called an inrunner motor.
A later section explains the
difference between inrun-
ner motors and outrunner
motors.

ptg16386157

433.3 Brushless Motors

3

C
H

A
PTER

As shown in the figure, the structure of a BLDC is completely different from that of a brushed motor.

There are multiple current-carrying wires, and they’re in the stator instead of the rotor. These wires

wrap around iron cores, so they behave as electromagnets. In this chapter and throughout the book,

we’ll refer to the BLDC’s electromagnets as windings .

The overall operation of a BLDC isn’t hard to understand. The controller delivers positive and nega-

tive current to different windings in a sequence, and the rotor spins to follow the change in current.

As an analogy, the rotor is like a greyhound in a dog race, constantly following the mechanical rab-

bit as it runs around the track.

The rest of this section goes into greater depth on three structural aspects of a BLDC: the windings,

magnets, and slot/pole configuration.

Windings
In Figure 3.16 , the six windings are fixed into positions called slots . The controller governs the

motor’s operation by delivering current to these windings. The process of delivering current to a

winding is called energizing the winding.

 The windings’ names are important because windings with the same name are connected. That is,

both windings named A receive current at the same time, as do both windings named B and both

windings named C. In this manner, the controller only has to deliver three inputs to the motor. For

this reason, this BLDC is called a three-phase motor . More phases are possible, but most BLDCs are

three-phase motors.

 A BLDC’s windings are energized in a clockwise or counterclockwise manner. As current switches

between the windings, the rotor turns at the same speed. Because the motor’s speed is synchro-

nized with the changing current, BLDCs can be referred to as synchronous motors .

 The term synchronous is usually associated with AC motors, so it may seem surprising to see it

used to describe a DC motor. In fact, the structure of a BLDC is similar to that of a synchronous AC

motor in many respects, and I’ll explain this further in Chapter 6 , “AC Motors.”

 The main difference between a BLDC and an AC motor is that the current delivered to a BLDC’s

windings is constant for the duration of the pulse. In an AC motor, the current delivered to the

windings is sinusoidal.

 At low speeds, a BLDC’s rotor may align itself with the stator slots in such a way that it prefers to

remain in place than continue rotating. This is called cogging , and it can cause the rotor to rotate

in a jerky fashion. One solution is to use motors with slotless stators. Slotless BLDCs require more

windings due to the greater air gap between the rotor and stator, and are therefore more expensive

than regular brushless motors.

Magnets
In a brushed motor, magnets are fixed to the stator. In a brushless motor, magnets are mounted on

the surface of the rotor. The rotor in Figure 3.16 has four magnets, but it’s common to see BLDCs

with many more.

 Each magnetic pole in the rotor is called a pole . In general, increasing the number of poles increases

the torque. BLDC datasheets generally specify how many poles the motor has.

ptg16386157

DC Motors44

II

PA
R

T

Slot/Pole Configuration
Researchers have spent a great deal of time studying how the number of poles and slots affects a

motor’s operation. In an integral slot motor, the number of slots is a multiple of the number of poles.

In a fractional slot motor, the number of slots is not a multiple of the number of poles. To reduce

cogging, fractional slot motors are generally preferred. The motor depicted in Figure 3.16 is a frac-

tional slot motor because the number of slots, six, isn’t a multiple of the number of poles, four.

On occasion, the slots of a brushless motor are referred to as stator poles and the magnets are

referred to as magnet poles. A BLDC’s poles may be given as XN, YP, where X is the number of sta-

tor poles (slots) and Y is the number of magnet poles (magnets).

3.3.2 Inrunner and Outrunner Motors
BLDCs can be divided into two categories depending on the relative positions of the rotor and sta-

tor. If the rotor turns inside the stator, as illustrated in Figure 3.16 , the motor is an inrunner. If the

rotor turns outside the stator, it’s an outrunner. This section discusses both types.

Inrunners
Because the rotor turns inside the stator, an inrunner BLDC motor looks like a regular brushed

motor. Judging by appearances, the main difference is that BLDCs have three inputs instead of two.

This is shown in Figure 3.17 , which depicts the LBA2435 inrunner BLDC from Leopard Hobby.

 Figure 3.17
 An inrunner brushless
motor

Many inrunner motors don’t have iron cores. This reduces the iron loss and increases efficiency, but

it also significantly reduces the amount of torque the motor can exert. In addition, inrunner motors

generally have a low number of poles (commonly only two). For these reasons, inrunner motors usu-

ally aren’t used to turn propellers without attached gearing. Chapter 7 discusses gears in detail.

 To make up for their low torque, most inrunner motors turn at very high speeds. This can be seen

by looking at their K V values, some of which get as high as 7,500 to 10,000 RPM/V.

Outrunners
On an outrunner motor, the rotor is positioned on the outside of the stator. In other words, the

permanent magnets spin around the windings. Figure 3.18 presents the structure of an outrunner

BLDC.

ptg16386157

453.3 Brushless Motors

3

C
H

A
PTER

Because the magnets are on the outer shell, outrunners typically have more magnets than inrunner

motors. The motor depicted in Figure 3.18 has nine poles, but it’s not uncommon to see outrunners

with as many as 16.

 Outrunner motors don’t spin as quickly as inrunners, and their K V values tend to be around 1,000–

2,000 RPM/V. However, they produce significantly more torque. This is why outrunners are com-

monly employed to spin discs in CD/DVD players. Their high torque has also made them popular in

the remote-controlled aircraft community.

Figure 3.19 illustrates the Maytech MTO2830-1300-S outrunner motor. You can see the many inter-

nal windings through the front of the motor. This is a common feature that distinguishes outrunners

from inrunners.

Rotor

Stator

Magnets WindingsOuter shellFigure 3.18
Structure of an
outrunner BLDC

 Figure 3.19
 An outrunner brushless
motor

Another difference between inrunners and outrunners involves the motor’s shaft. For an inrunner

motor, the shaft is connected to the internal rotor. For outrunners, the shaft is connected to the

shell.

ptg16386157

DC Motors46

II

PA
R

T

3.3.3 Controlling BLDCs
Brushless DC motors (BLDCs) are powered with timed pulses of electrical power. The number of

inputs is determined by the motor’s number of phases. In general, it’s safe to assume that a BLDC

receives three inputs.

To control a BLDC properly, the pulses must be timed so that current is delivered when the rotor is

in the right position. To determine the rotor’s position, most BLDC circuits use one of two methods:

They measure the back-EMF produced by the motor’s rotation or they read the rotor’s position using

sensors built into the motor.

Control Signals and Inverters
A three-phase BLDC has three inputs that deliver current to the windings. At any time, one input

will be set high (V+), one will be set low (V-), and one will be left floating. I’ll call these inputs A, B,

and C. Figure 3.20 gives an idea how their signals change over time.

Input
A

V+

V-

F

Input
B

V+

V-

F

Input
C

V+

V-

F

 Figure 3.20
 Input signals for a three-
phase BLDC

For a three-phase BLDC, there are only six unique phase states

before they repeat. As the controller energizes the windings

through these states, the rotor makes a complete rotation (360°).

Therefore, each phase state corresponds to one-sixth of the com-

plete turn, or 60°.

If the controller delivers more current, the motor will exert more

torque as it rotates. If the pulses’ order and timing is reversed,

the motor will turn in the reverse direction. For this reason, BLDC

control circuits don’t require the H bridges needed to reverse

brushed motors.

BLDCs receive power through special switching circuits

called voltage source inverters, usually shortened to inverters .

 note
 Judging from this figure, it
may look as though floating
inputs are set to 0 V. This is
not the case. If an input is
floating, it means the control-
ler isn’t setting its voltage at
all. In other words, the volt-
age of a floating winding is
determined by the motor, not
the controller.

ptg16386157

473.3 Brushless Motors

3

C
H

A
PTER

Figure 3.21 shows what a MOSFET-based inverter looks like. Each transistor has a flyback diode to

discharge current as needed.

+VPOWER

-VPOWER

+A

-A

+B

-B

+C

-C

A B C

Figure 3.21
Switching circuit for three-phase pulse
generation

This circuit has six inputs (+A, -A, +B, -B, +C, and -C) that are connected to the controller. Each

input is connected to the gate of a MOSFET. Each pair of inputs contributes to an output signal (A,

B, or C) that delivers current to the BLDC’s windings.

If a positive input is high, the upper MOSFET conducts positive voltage to the corresponding output.

If a negative input is high, the lower MOSFET conducts negative voltage to the corresponding out-

put. For example, when the -C input is high, its MOSFET conducts -V POWER to the C output, which is

directed to the motor’s winding.

Sensored Control
Earlier, I compared the BLDC rotor following the stator’s windings to a greyhound chasing a

mechanical rabbit around a track. No matter how quickly the greyhound runs, the rabbit must

always be kept ahead of it.

 The situation is similar for BLDCs. The controller must know the rotor’s orientation before it ener-

gizes the windings. Some motors have built-in sensors that identify the rotor’s orientation and/or

speed. If this is the case, the control circuit can use sensored control . If the motor doesn’t have sen-

sors, the control circuit must rely on sensorless control .

 A motor’s sensors may use optical encoding, magnetic encoding, or variable reluctance, but the

most common BLDC sensor is the Hall effect sensor. Many high-end BLDCs, such as those found in

larger RC aircraft, have built-in Hall effect sensors.

 When current flows through a conductor in the presence of a magnetic field, a voltage is generated

that opposes the direction of the current. This is the Hall effect . The voltage is called the Hall volt-

age, V H , and it’s proportional to the product of the current and the magnetic field.

ptg16386157

DC Motors48

II

PA
R

T

If a BLDC has Hall effect sensors, it will have additional electrical connections that enable the con-

troller to read V H for each winding. With this information, the controller can determine how the mag-

netic field is oriented, and therefore how the rotor is oriented. No signal filtering or mathematical

computation is necessary.

 Sensored motor control is easier to implement and more reliable than sensorless control, but sen-

sored BLDCs require additional circuitry, which means larger motors and higher cost.

Sensorless Control
As discussed in Chapter 2 , a motor’s rotation produces a voltage called the back-EMF . Each winding

in a three-phase BLDC produces its own back-EMF, and by measuring the three voltages, a control-

ler can determine how the rotor is oriented.

This raises an important question: If the controller is sensorless, how does it measure back-EMF?

The answer is simple. At any time, two of the BLDC’s phases are set to a voltage (one positive, one

negative) and the third is left floating. The controller measures back-EMF by reading the voltage of

the floating winding.

For example, when A is set to V+, B is set to V-, and C is floating, the controller reads the back-EMF

of C. When C is set to +V and A is set to -V, the controller reads the back-EMF of B. In this manner,

the controller can read the back-EMF of each winding, in turn.

 For a BLDC, the back-EMF of each winding has the same approximate shape. As an example, Figure

 3.22 depicts the back-EMF voltage across the B winding (solid line) relative to the input current

(dashed line).

Input
B

Back-EMF
Winding current

 Figure 3.22
 Back-EMF for a BLDC winding

Back-EMF is proportional to the motor’s speed, so before the

controller can measure back-EMF, the motor must already be

rotating. Therefore, the controller must start the motor until its

windings produce enough back-EMF to allow the controller to

determine the rotor’s orientation.

This can be confusing, so let me summarize the three steps of

sensorless control:

1. The controller delivers current to the motor’s windings to start

rotation.

2. The controller monitors the back-EMF until it can determine

the rotor’s orientation.

n ote
 In a real motor, the shape of
the back-EMF isn’t as perfect
as the figure illustrates. In
particular, the back-EMF of
a floating winding doesn’t
change linearly between high
and low voltage.

ptg16386157

493.4 Electronic Speed Control (ESC) Systems

3

C
H

A
PTER

3. After the controller determines the rotor’s orientation, it uses this information to synchronize the

pulses delivered to the motor’s windings.

 One popular method of computing the rotor’s orientation involves integrating the back-EMF to

determine when it equals zero. This is called zero-crossing detection , or ZCD . When the back-EMF

in the floating winding equals zero, the rotor’s orientation can be readily obtained. The advantage of

the ZCD method is that the computation is simple. However, the back-EMF signal must be filtered

to remove noise and the method doesn’t work well at high speed. A controller relying on ZCD must

limit the motor’s speed accordingly.

 A more recent method of determining the rotor’s orientation makes use of extended Kalman filters

(EKF). Kalman filtering requires a great deal of complex math, but unlike ZCD, this method isn’t

affected by noise. Therefore, if the computation can be performed quickly, an EKF controller allows

higher speed than a ZCD controller.

 Sensorless control systems are simple to manufacture and cost-effective because no additional hard-

ware is needed. However, a startup period is required so that the controller can measure back-EMF.

Further, the process of computing the rotor’s orientation places a limit on the motor’s maximum

speed.

 There’s one last point I want to mention. As shown in Figure 3.22 , the back-EMF of a BLDC winding

is approximately trapezoidal in shape. For this reason, BLDCs are frequently referred to as trapezoi-
dal motors . In contrast, synchronous AC motors are referred to as sinusoidal motors because the

back-EMF in their windings is sinusoidal.

3.4 Electronic Speed Control (ESC)
Systems

Rather than design and build custom controllers, many designers look for prebuilt circuits called

electronic speed control (ESC) systems. Although ESCs are available for brushed motors, because

brushless motors are more complex, most ESCs are intended for BLDCs.

To control brushless motors, ESCs come in two types: sensored and sensorless. Most ESCs are

designed for sensorless control, and if an ESC’s specifications don’t specifically mention sensors, it’s

safe to assume that it’s intended to be used with a sensorless motor.

As an example, Figure 3.23 presents an ESC intended to be connected to a sensorless brushless

motor.

As in most ESCs, the ESC in the figure has three sets of wires:

• Three wires deliver power to the brushless motor.

• Two wires provide power to the ESC. The red wire should be connected to the positive lead and

the black wire should be connected to ground.

• Three wires connect to the controller, possibly through a wireless receiver. These commonly

have names such as POS (positive), NEG (negative), and SIG (signal). SIG receives the PWM

motor control signals.

ptg16386157

DC Motors50

II

PA
R

T

When selecting an ESC for your project, it’s important to read the

specifications. As an example, here are the electrical characteris-

tics of an ESC intended to control a sensorless BLDC:

• Input connectors : Bare wire

• Maximum current : 25 A

• Input voltage : 7.2–14.14 V Ni-Cd/Ni-MH, 7.4–11.1 V Li-Po

• Auto cutoff : Programmable

• Brake : Programmable

• BEC voltage : Dual BEC circuits

The input voltage identifies the type of battery power that should be connected to the ESC. A later

section discusses the important topic of batteries. For now, I want to explain two characteristics of

ESCs: battery eliminator circuits (BECs) and programmability.

3.4.1 Battery Eliminator Circuit (BEC)
Many remote-controlled vehicles have separate battery packs for the motors and the wireless

receiver. However, if the control circuitry includes a BEC, both systems can draw power from the

same set of batteries. Many ESCs contain BECs that provide power to the receiver through the GND

and POS wires.

By making a second battery pack unnecessary, a BEC reduces the weight of the RC vehicle and

removes the need for checking the charge of two battery packs. The disadvantage is that noise from

the motor circuit may interfere with the receiver circuit. Also, if the battery pack runs low on power,

it will reduce power to both the motor and the receiver.

ESC power

Control signal

Connections to motor

 Figure 3.23
 An electronic speed control
for a sensorless BLDC

 note
 If an ESC is intended for
sensored control, it will have
additional connections to
receive sensor data from the
motor.

ptg16386157

513.5 Batteries

3

C
H

A
PTER

3.4.2 Programmability
Some ESCs have operating parameters that can be configured by the user. In many instances, this

configuration is made possible through a USB connection to a PC. For the sample ESC, the cutoff

and braking features are configurable. The first column of Table 3.1 lists programmable features I’ve

encountered in ESCs. The second column provides a description of each.

Table 3.1 Configurable Parameters of Electric Speed Controllers

Configurable Parameter Description

Auto-cutoff Sets the voltage at which the ESC reduces power due to
low-voltage state

 Brake Sets the propeller in its braking position when the throttle is
in its minimum position

 Battery type Sets the type of battery supplying power to the ESC

 Timing Identifies how quickly pulses are delivered to the BLDC

 Reverse Sets the motor to run in the reverse direction

 Reverse delay The amount of delay time before each reverse in direction

 Starting acceleration Defines how quickly the motor should be accelerated during
startup

 Current limiter Sets the maximum amount of current that can be delivered
to the motor

 Switching frequency Sets the PWM frequency of the motor control signal

 Switching frequency affects the length of time between pulses in the controller’s PWM signal. A

higher frequency reduces the time between pulses, which makes the motor more responsive to the

throttle. When the throttle increases, the PWM duty cycle increases. This delivers more current,

which causes the motor to exert more torque as it spins.

3.5 Batteries
For the sample ESC discussed earlier, the battery requirements were given as follows:

Input voltage : 7.2–14.14 V NiMH/Ni-Cd, 7.4–11.1 V Li-Po

 In addition, if you look at specifications for motors, you may see statements such as “2–4 Li-Po/5–12

NiMH” or “Max Li-Po Cell: 3s.” These seemingly inscrutable descriptions refer to batteries. More

specifically, they tell us the type, number, and configuration of batteries that should be used.

 Battery-powered motor circuits tend to rely on one of four types of rechargeable batteries. Table

 3.2 lists each of them. The second column identifies how much energy the battery can store per

kilogram.

ptg16386157

DC Motors52

II

PA
R

T

Table 3.2 Popular Rechargeable Battery Types

Battery Type Energy/Mass Notes

Nickel-cadmium (NiCad or
Ni-Cd)

 40–60 W-h/kg Voltage depression, environ-
mentally unfriendly

 Nickel-metal-hydride
(NiMH)

 60–120 W-h/kg Limited voltage depression

 Lithium-polymer (Li-Po) 100–265 W-h/kg No voltage depression, may
explode if overcharged

 Lithium-Iron-Phosphate
(LiFePO 4 or LFP)

 90–120 W-h/kg Chemically stable, constant dis-
charge voltage

 Nickel-cadmium (Ni-Cd) batteries used to be popular, and many

specifications still include directions for using them in a circuit.

However, their usage has waned significantly for two impor-

tant reasons. The first involves cadmium, which is toxic and

requires special disposal procedures. As a result, the European

Union has banned the sale of Ni-Cd batteries except for specific

applications.

 The second disadvantage of Ni-Cd batteries is voltage depres-

sion. If a Ni-Cd battery is repeatedly overcharged, its voltage will

appear to decrease over time. This effect can be reduced by fully

discharging and recharging the battery.

 Nickel-metal-hydride (NiMH) batteries are a major improvement

on Ni-Cd batteries. A NiMH battery can store more energy than a Ni-Cd battery of similar mass and

can discharge a greater amount of power. In addition, it doesn’t suffer from voltage depression to

the same extent. However, some NiMH batteries lose a significant amount of charge (about 4% each

day) if left uncharged.

 Lithium-polymer (Li-Po) batteries provide a great deal more energy per kilogram than NiMH bat-

teries. This means that if one circuit has NiMH batteries and another has the same weight in Li-Po

batteries, the second circuit will operate longer. Unfortunately, Li-Po batteries can explode if over-

charged or overheated. In addition, a Li-Po battery can be damaged if discharged below 80% of its

energy capacity. This is why many RC enthusiasts set their Li-Po cutoff voltage at around 3 volts.

 The most recent type of battery in Table 3.2 is the lithium-iron-phosphate (LiFePO 4 or LFP) battery.

These batteries don’t provide as much energy per kilogram as Li-Po batteries, but they’re more

stable and can continue functioning after more charge/discharge cycles.

 Having witnessed the explosion of a Li-Po battery, I prefer to use LFP batteries whenever possible.

But there are two issues to be aware of. First, they can be hard to find through regular sources.

Second, many motor circuits and ESCs are particularly designed for NiMH or Li-Po batteries.

 There’s one last point to make: If a motor/ESC specification mentions “4s” or “2p,” it’s referring to

how the batteries are connected to one another. Here, “s” refers to series , so “4s” refers to four bat-

teries in series. Similarly, “p” refers to parallel , so “2p” refers to two batteries in parallel.

n ote
 This table doesn’t mention
lithium-ion (Li-ion) batteries,
which are common in smart-
phones and power tools. This
is because Li-Po batteries
have the same chemistry as
Li-ion batteries, but are pack-
aged differently.

ptg16386157

533.6 Summary

3

C
H

A
PTER

3.6 Summary
DC motors are familiar to makers because they’re the primary motors in robots, electric vehicles, and

3D printers. Every DC motor needs to switch the direction of input current to ensure that the arma-

ture will rotate. This switching is called commutation. Brushed motors use mechanical commutation,

and brushless motors use electrical commutation.

Brushed motors are easy to deal with. The armature consists of a single winding that rotates within

the stator. The speed of the rotation depends on the input voltage, and the torque depends on

the input current. Despite their simplicity, I don’t use brushed motors in my circuits because they

require maintenance and they aren’t as efficient as brushless motors.

Brushless DC motors, or BLDCs, are not easy to deal with. They contain multiple windings, and for

most BLDCs, the windings are connected together so that there are three separate inputs. This type

of BLDC is called a three-phase motor, and its speed depends both on how quickly the windings are

energized and on the incoming voltage. An inrunner is a BLDC whose windings are on the outside

and an outrunner has its windings on the inside.

Controlling a brushed motor is simple, but BLDC control can be complicated because the controller

needs to know how the rotor is oriented. A sensorless control circuit determines the rotor’s orienta-

tion by measuring the back-EMF of the motor’s floating windings. A sensored control circuit locates

the rotor using sensors built into the motor. These may include optical sensors or Hall effect sensors.

Another important consideration is in the choice of batteries. Motor circuits require a great deal of

current, and it wasn’t so long ago that they relied on Ni-Cd batteries exclusively. But today, motor

circuits generally rely on NiMH or Li-Po batteries, which provide a great deal more energy per

kilogram. One new option is the LiFePO 4 (or LFP) battery, which provides a significant amount of

energy and chemical stability.

ptg16386157

This page intentionally left blank

ptg16386157

STEPPER MOTORS
In this and the following chapter, the primary concern is motion control —
making sure the motor turns with a specific angle and/or speed. This

book discusses two types of motors intended for motion control: stepper

motors and servomotors. I’ll refer to them as steppers and servos , respec-

tively, and this chapter focuses on steppers.

 A stepper’s purpose is to rotate through a precise angle and halt. The

speed and torque of the rotation are secondary concerns. As long as the

stepper rotates through the exact angle and stops, its mission is accom-

plished. Each turn is called a step , and common step angles include 30°,

15°, 7.5°, 5°, 2.5°, and 1.8°.

 Due to their simplicity and precision, steppers are popular in electrical

devices. Analog clocks, manufacturing robots, and printers (2D and 3D)

rely on steppers for motion control. An important advantage is that the

controller doesn’t have to read the stepper’s position to determine its ori-

entation. If the stepper is rated for 2.5°, each control signal will turn the

rotor through an angle of 2.5°.

 For many applications, we want the step angle to be as small as possible.

The smaller the motor’s step angle, the greater its angular resolution .

Another important figure of merit is torque, particularly holding torque .

A stepper is expected to hold its position when it comes to a halt, and

holding torque identifies the maximum torque it can exert to maintain its

position.

 4

ptg16386157

Stepper Motors56

II

PA
R

T

Modern steppers can be divided into three categories:

• Permanent motor (PM) — High torque, poor angular resolution

• Variable reluctance (VR) — Excellent angular resolution, low torque

• Hybrid (HY) — Combines structure of PM and VR steppers, provides good torque and angular

resolution

The first part of this chapter examines these categories in detail. In each case, I’ll discuss the

motor’s fundamental operation and present its advantages and disadvantages. The last part of the

chapter explains how steppers can be controlled with electrical circuits.

4.1 Permanent Magnet (PM) Steppers
Small and reliable, permanent magnet (PM) steppers are popular in embedded devices such as disk

drives and computer printers. Figure 4.1 depicts the ST-PM35 stepper from Mercury Motor.

 Figure 4.1
 A permanent magnet (PM)
stepper motor

PM steppers have a lot in common with the brushless DC (BLDC) motors discussed in the preceding

chapter. In fact, you can think of a PM stepper as a BLDC whose windings are energized to provide

discrete rotation instead of continuous rotation.

4.1.1 Structure
The preceding chapter introduced the brushless DC motor and its two subcategories: inrunners and

outrunners. PM steppers are similar to inrunners in many respects, and a good way to introduce

them is to compare and contrast them with inrunner BLDCs. Figure 4.2 illustrates the internal struc-

ture of a simple PM stepper.

There are five important similarities between PM steppers and inrunner BLDCs:

• Neither motor has a brush or a mechanical commutator (all steppers discussed in this book are

brushless).

• The rotor is on the inside, with permanent magnets mounted on its perimeter.

• The stator is on the outside, with electromagnets (called windings) inside slots.

• The controller energizes the windings with pulses of DC current.

• Many of the windings are connected together. Each group of connected windings forms a phase.

ptg16386157

574.1 Permanent Magnet (PM) Steppers

4

C
H

A
PTER

PM steppers are brushless and receive DC pulses from the controller. For this reason, they could

be classified as BLDCs. But in this book, as in other literature, we’ll only employ the term BLDC for

motors that aren’t specifically intended for motion control.

 Let’s look at the differences between the two types of motors. Table 4.1 contrasts the characteristics

of PM steppers with those of inrunner BLDCs.

Table 4.1 Contrasting Characteristics of PM Steppers and Inrunner BLDCs

PM Stepper Inrunner BLDC

Intended for discrete rotation. Intended for continuous rotation.

 Almost always has two phases. Almost always has three phases.

Controller energizes one or two phases
at a time.

Controller energizes two phases at a time
and leaves third phase floating.

Many windings and rotor magnets. Few windings and rotor magnets.

From a structural perspective, the primary difference between PM steppers and inrunners is that

PM steppers have more windings and rotor magnets. As it turns out, this is necessary to make the

angular resolution as small as possible. The following discussion explains why this is the case.

4.1.2 Operation
To understand how a PM stepper operates, it’s crucial to see how its step angle is determined by

the number of windings and rotor magnets. This discussion focuses on the motor depicted in Figure

4.2 . Its stator has 12 windings and its rotor has six magnets mounted on its perimeter.

Stator

Rotor

30 deg.
60 deg.

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

S

N

N

SN

S

Figure 4.2
Internal structure
of a permanent
magnet (PM)
stepper motor

ptg16386157

Stepper Motors58

II

PA
R

T

PM steppers are generally two-phase motors. In the figure, the different phases are denoted A and

B. The windings labeled A’ and B’ receive the same current as those labeled A and B, but in the

opposite direction. That is, if A behaves as a north pole, A’ behaves as a south pole.

Each winding has one of three states: positive current, negative current, and zero current. For this

discussion, positive current implies a north pole and negative current implies a south pole.

Now let’s see how these motors operate. Figure 4.3 illustrates a single turn of a PM stepper. In the

windings, a small “N” implies that the winding behaves like a north pole due to positive current. A

small “S” implies that the winding behaves like a south pole due to negative current. If a winding

doesn’t have an N or S, it isn’t receiving current.

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'
N

S

S

N

N

S

N

S

S
N

N

S

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

S

N

N

S

N

S
N

S

N

S

N

S

(a) (b)

 Figure 4.3
 30°
rotation
of a PM
stepper
motor

In Figure 4.3 a , A is positive (north pole), A’ is negative (south pole), and Phase B isn’t energized.

The rotor aligns itself so that its south poles are attracted to the A windings and its north poles are

attracted to the A’ windings.

 In Figure 4.3 b , B is positive (north pole), B’ is negative (south pole), and Phase A isn’t energized.

The rotor rotates so that its poles align with the B and B’ windings. The rotation angle equals the

angle between the A and B windings, which means the rotor turns exactly 30° in the clockwise

direction. This arrangement of eight windings and six poles is common for PM stepper motors,

though others turn at angles of 15° and 7.5°.

 In case this isn’t clear, let’s look at a second movement. Figure 4.4 presents another 30° rotation of a

PM stepper motor.

In Figure 4.4 a , B is negative (south pole), B’ is positive (north pole), and A isn’t energized. The rotor

is positioned so that its poles align with the B windings.

 In Figure 4.4 b , A is positive (north pole), A’ is negative (south pole), and B isn’t energized. The rotor

turns exactly 30° in the clockwise direction to align itself between the A windings.

ptg16386157

594.2 Variable Reluctance (VR) Steppers

4

C
H

A
PTER

The controller’s job is to deliver current to the windings so the rotor continues turning in 30° incre-

ments. The difference in control signaling is a major difference between steppers and BLDCs. The

last part of this chapter discusses the circuitry needed to govern a stepper’s operation.

4.2 Variable Reluctance (VR) Steppers
Just as resistance determines the flow of electric current, reluctance determines the flow of mag-

netic flux. In a variable reluctance (VR) stepper, the rotor turns at a specific angle to minimize the

reluctance between opposite windings in the stator.

 The primary advantage of VR steppers is that they have excellent angular resolution. The primary

disadvantage is low torque.

 This section presents VR steppers in detail. I’ll explain their internal structure first and then show

how they rotate as their windings are energized.

4.2.1 Structure
Structurally speaking, variable reluctance (VR) steppers have a lot in common with PM steppers.

Both have windings on their stator and opposite windings are connected to the same current source.

However, there are two primary differences between VR steppers and PM steppers:

• Rotor — Unlike a PM stepper, the rotor in a VR stepper doesn’t have magnets. Instead, the rotor is

an iron disk with small protrusions called teeth .

• Phases — In a PM stepper, the controller energizes windings in two phases. For a VR stepper, the

controller energizes every pair of opposite windings independently. In other words, if the stator

has N windings, it receives N/2 signals from the controller.

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'
N

S

N

S

S

N

S

N

N

S

N

S

(a) (b)

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

SN

N

S

NS

S

N

S

N

S

N

Figure 4.4
Further
rotation
of a PM
stepper
motor

ptg16386157

Stepper Motors60

II

PA
R

T

Figure 4.5 illustrates the rotor and stator of a VR stepper. In this motor, the stator has eight wind-

ings and the rotor has six teeth.

C'

A'

B

A

C

D B'

D'N

S

 Figure 4.5
 Structure of a variable reluctance (VR) stepper

The rotor doesn’t have magnets, but because it’s made of iron, its teeth are attracted to energized

windings. In the figure, the A and A’ windings are labeled N and S, which shows how they’re ener-

gized by the controller. The teeth in the rotor align with these windings to provide a path for mag-

netic flux between A and A’.

4.2.2 Operation
As illustrated in Figure 4.5 , only one pair of teeth is aligned with the windings at any time. When

the controller energizes a second pair of windings, the rotor turns so that a different pair of teeth

will be aligned. Because the teeth aren’t magnetized, it doesn’t matter whether a winding behaves

as a north pole or as a south pole.

This can be confusing, so Figure 4.6 illustrates the rotation of a VR stepper. In this example, the

stepper rotates 15° in a counterclockwise orientation.

In Figure 4.6 a , the controller has delivered current to the B and B’ windings, and the rotor has

aligned itself accordingly. In Figure 4.6 b , the C and C’ windings are energized. The C and C’ wind-

ings attract the nearest pair of teeth, which moves the rotor 15° in the clockwise direction.

 If you know the number of windings in the stator (N w) and the number of teeth on the rotor (N t), the

step angle of a VR stepper can be computed with the following equation:

Step angle
N N

N N
� 360 w t

w t

= ° ×
−

In Figure 4.6 , N w equals 8 and N t equals 6. Therefore, the step angle can be computed as 360(2/48) =

15°. The angular resolution can be improved by increasing the number of windings and teeth. With

the right structure, the step angle can be made much less than that of a PM stepper.

ptg16386157

614.3 Hybrid (HY) Steppers

4

C
H

A
PTER

However, there’s a problem. The torque of a VR stepper is so low that it can’t turn a significant load.

For this reason, VR steppers are not commonly found in practical systems. In fact, I’ve only ever

seen a handful of VR motors for sale.

To make up for the shortcomings of VR steppers, engineers have designed a motor that combines

the resolution of a VR motor and the torque of a PM motor. This is called a hybrid (HY) stepper.

4.3 Hybrid (HY) Steppers
A hybrid (HY) stepper provides the best of both worlds. Like a PM stepper, its rotor has magnets

that provide torque. Like a VR stepper, the rotor has teeth that improve the angular resolution. As

an example, Figure 4.7 depicts the JK42HW34 hybrid stepper from RioRand.

C'

A'

B

A

C

D B'

D'

N

S

C'

A'

B

A

C

D B'

D'

(a) (b)

N S

Figure 4.6
15° rotation
of a VR
stepper

Figure 4.7
A hybrid (HY) stepper

ptg16386157

Stepper Motors62

II

PA
R

T

Hybrid motors have two disadvantages. First, HY steppers can be significantly more expensive than

PM steppers. Second, HY steppers are larger and heavier than PM steppers. To see why this is the

case, you need to understand their structure.

4.3.1 Structure
If you followed the discussions of PM and VR steppers, HY steppers won’t present any difficulty.

Their rotors and stators are different from those of either stepper type, but the principle of their

operation is similar.

Rotor
If you compare the HY stepper depicted in Figure 4.7 to the PM stepper in Figure 4.1 , you’ll see that

the HY stepper is longer. The reason for this is that the HY stepper rotor has (at least) two rotating

mechanisms connected to one another. These are called rotor poles , and Figure 4.8 gives an idea of

what they look like.

Teeth

Rotor
poles

North South

 Figure 4.8
 Rotor poles of an HY
stepper

The rotor poles are magnetized so that one behaves like a north pole and one behaves like a south

pole. Each pole has its own teeth, and the teeth of one rotor pole are oriented between those of the

other. The angular difference between the two sets of teeth determines the step angle of the motor.

The more teeth the stepper has, the better the angular resolution.

The rotor in Figure 4.8 has one pair of rotor poles, but other HY steppers may have two, three, or

more pairs. Adding rotor poles increases the stepper’s rotational torque and holding torque, but also

increases its size and weight.

Stator
The stator windings of a PM stepper or VR stepper are too large to attract/repel the teeth of one

rotor pole without repelling or attracting the teeth of the other rotor pole. For this reason, the stator

ptg16386157

634.4 Stepper Control

4

C
H

A
PTER

of an HY stepper has teeth that are approximately the same size as the teeth on the rotor. This is

shown in Figure 4.9 .

A

A'

B'

A'

B

B

A

B'

Figure 4.9
Toothed stator of an HY stepper

In this figure, each winding has three teeth. In a real stepper, the windings may have many more.

If a winding is energized to produce a north pole, its teeth will attract the teeth of the rotor’s south

pole. If a winding behaves as a south pole, its teeth will attract the teeth of the rotor’s north pole.

4.3.2 Operation
Like a VR stepper, an HY stepper can have multiple phases, one for each pair of windings. But the

majority of the HY steppers I’ve encountered are like PM motors. That is, the windings are divided

into two phases: A/A’ and B/B’. These are the phases labeled in Figure 4.9 .

 Each phase receives positive current, negative current, and zero current. When one phase is ener-

gized, its windings attract the teeth of one rotor pole. When the next phase is energized, its wind-

ings attract the teeth of the other rotor pole. Hybrid steppers commonly have 50–60 teeth on a rotor

pole, which increases the angular resolution. It’s common to see hybrid steppers with step angles as

low as 1.8° and 0.9°.

4.4 Stepper Control
Because VR steppers are so scarce, this section focuses on controlling PM and HY steppers, which

are almost always two-phase motors. Some PM and HY steppers are bipolar and have four wires.

Others are unipolar and have five or six wires.

 The terms bipolar and unipolar identify how the wires are connected to the motor’s windings.

Before you design a control circuit for a stepper, you should know whether it’s unipolar or bipolar as

well as the difference between the two types. For this reason, the first part of this section discusses

bipolar and unipolar steppers and how to control them.

ptg16386157

Stepper Motors64

II

PA
R

T

The last part of this discussion presents different methods of delivering current to a stepper’s wind-

ings. These methods include half-stepping, which improves angular resolution but reduces torque,

and microstepping, which improves angular resolution even further.

4.4.1 Bipolar Stepper Control
A two-phase bipolar stepper has four wires. Figure 4.10 shows how they’re connected inside the

stepper.

A

A'

Black

Green

B

B'

Red

Blue

Figure 4.10
Connections of a bipolar
stepper

This figure depicts electromagnets and their corresponding phases: A/A’ and B/B’. As explained

in Chapter 3 , “DC Motors,” the electromagnet’s poles are determined by the nature of the current

flow. If current flows from the black wire to the green wire, A will be the north pole and A’ will be

the south pole. If current flows from green to black, A will be the south pole and A’ will be the north

pole.

 Figure 4.10 identifies the colors of the wires entering the stepper, but these aren’t set by any stan-

dard. Instead, they follow a convention I’ve encountered in many bipolar steppers. If you find a

stepper whose wires have different colors, the first place to look is the stepper’s datasheet. If this

doesn’t help, you can test the wires with an ohmmeter—the resistance between A and A’, like that

between B and B’, is very small. The resistance between wires in different phases is very high.

To design a circuit that drives a bipolar stepper, you need a means of reversing current in the

wires. A common method of accomplishing this involves using H bridges, which were introduced

in Chapter 3 . An H bridge consists of four switches that, when opened and closed properly, make it

possible to deliver current in the forward and reverse directions.

 Figure 4.11 shows how an H bridge can be connected to control one phase (A/A’) of a bipolar motor.

This uses four MOSFETs to serve as the switches.

The current’s direction is controlled by setting voltages on the MOSFET gates. When S 0 and S 3 are

set high and S 1 and S 2 are low, current travels from A to A’, making A the north pole and A’ the

south pole. When S 1 and S 2 are set high and S 0 and S 3 are low, current travels from A’ to A, making

A’ the north pole and A the south pole. When S 0 and S 2 are left low, the winding is unenergized.

ptg16386157

654.4 Stepper Control

4

C
H

A
PTER

Chapter 9 , “Motor Control with the Arduino Mega,” and Chapter 10 , “Motor Control with the

Raspberry Pi,” explain how stepper motors can be controlled with real-world circuitry. In both cases,

the control circuit contains two H bridges capable of governing both phases of a bipolar stepper

motor.

4.4.2 Unipolar Stepper Control
The wiring of a unipolar stepper motor is more complicated than that of a bipolar motor, but the goal

is the same: to energize A, A’, B, and B’ and to set their north/south poles accordingly. To under-

stand how this is done, consider the two circuits depicted in Figure 4.12 .

VPOWER

S0 S2

S3S1

A

A'

 Figure 4.11
 Controlling one phase of a bipolar stepper
with an H bridge

A

A'

VPOWER N

S

A

A'

VPOWER N

S

(a) (b)

Figure 4.12
Electromagnet circuits with a center tap

In both figures, V POWER is connected to the center of the electromagnet’s winding. This type of con-

nection is called a center tap .

 In Figure 4.12 a , the bottom of the winding is connected to ground. Current flows from the center to

ground, energizing the electromagnet and making the bottom of the winding (labeled A’) the south

pole. The north pole is located at the center.

ptg16386157

Stepper Motors66

II

PA
R

T

Now here’s the tricky part: The top of the winding isn’t connected to anything, so no current flows

from the top of the winding to the center. However, the entire iron core is magnetized by the cur-

rent in the lower wire, which means that the top of the winding also behaves as the electromagnet’s

north pole. Therefore, in Figure 4.12 a , A is north and A’ is south.

 Figure 4.12 b illustrates the reverse situation. The top of the winding is connected to the ground, so

current flows from the winding’s center to the top. This makes the top of the winding (A) the south

pole and the center of the winding the north pole. Because the entire iron core is magnetized, the

bottom of the winding (A’) also behaves as the north pole.

 From a circuit designer’s perspective, controlling a two-phase unipolar stepper requires three steps:

1. Provide V POWER to the A/A’ and the B/B’ windings.

2. For each winding, connect one wire to ground to set the magnetic poles.

3. Leave other wires unconnected.

 Figure 4.13 depicts the six wires entering the unipolar stepper: two carry power (V POWERA and

V POWERB) and four are connected to A, A’, B, or B’. Each of the latter four wires is connected to a

MOSFET. When the MOSFET’s gate voltage exceeds its threshold, the wire is connected to ground.

Otherwise, the wire is left unconnected.

VPOWERA S2 VPOWERB S3

S1S0

A

A'

B

B'

 Figure 4.13
 Connections of a
unipolar stepper

ptg16386157

674.4 Stepper Control

4

C
H

A
PTER

When a MOSFET switches on, the corresponding end of the wind-

ing becomes the south pole. The opposite end of the winding

becomes the north pole. For example, when voltage is applied to S 1 ,

the resulting current makes B the south pole and B’ the north pole.

Many unipolar steppers have five wires instead of six. For these

motors, the two supply wires, V POWERA and V POWERB , are connected

together. The other four wires remain unchanged.

 Unipolar steppers are easier to control than bipolar steppers

because there’s no need to manage the switches of two H bridges.

However, when a unipolar stepper is energized, only half of the

electromagnet is used. Therefore, if a unipolar stepper and a bipolar

stepper have the same windings, the unipolar stepper will be half as efficient. This is why I recom-

mend using bipolar steppers whenever possible.

 If you ignore the V POWER wires of a unipolar stepper, you can deliver current directly between A and

A’ and between B and B’. In essence, this is driving a unipolar stepper as a bipolar stepper.

I’d like to make one last point concerning unipolar and bipolar steppers. If you look at a stepper’s

datasheet, the wiring diagrams won’t look like the diagrams presented in this chapter. They repre-

sent windings using simpler symbols, and Figure 4.14 shows a sample diagram for a bipolar stepper

and a unipolar stepper.

 note
 This figure doesn’t assign col-
ors to any of the wires. This is
because I’ve never found two
unipolar steppers that use the
same color convention. Check
the datasheet to see how the
wires should be connected.

BLACK

GREEN

RED BLUE

BIPOLAR

RED

GRN

YEL BLU

UNIPOLAR

WHT

BLK

 Figure 4.14
 Sample wiring
diagrams in
a stepper
datasheet

Like many datasheets, this figure doesn’t identify which winding is A/A’ and which is B/B’. This

isn’t a significant concern. If you replace A/A’ with B/B’ in a control sequence, the motor’s rotation

won’t be seriously affected.

4.4.3 Drive Modes
This chapter has explained how to operate steppers by energizing one or two winding pairs at a

time, but there are a number of different ways to drive a stepper, and this discussion touches on

four of them:

ptg16386157

Stepper Motors68

II

PA
R

T

• Full-step (one phase on) mode — Each control signal energizes one winding.

• Full-step (two phases on) mode — Each control signal energizes two windings.

• Half-step mode — Each control signal alternates between energizing one and two windings.

• Microstep mode — The controller delivers sinusoidal signals to the stepper’s windings.

 Choosing between these modes requires making tradeoffs involving torque, angular resolution, and

power.

Full-Step (One Phase On) Mode
The simplest way to control a stepper is to energize one winding at a time. This is the method dis-

cussed at the start of this chapter. Figure 4.15 shows what the signaling sequence looks like when

controlling a stepper in this mode.

A

B

A'

B'

 Figure 4.15
 Drive sequence in full-step
(one phase on) mode

With each control signal, the rotor turns to align itself with the energized winding. The rotor always

turns through the stepper’s rated step angle. That is, if a PM motor is rated for 7.5°, each control

signal causes it to turn 7.5°.

Full-Step (Two Phases On) Mode
In the full-step (two phases on) mode, the controller energizes two windings at once. This turns the

rotor through the stepper’s rated angle, and the rotor always aligns itself between two windings.

Figure 4.16 illustrates one rotation of a stepper motor driven in this mode.

Figure 4.17 shows what the corresponding drive sequence looks like.

The main advantage of this mode over full-step (one phase on) is that it improves the motor’s

torque. Because two windings are always on, torque increases by approximately 30%–40%. The dis-

advantage is that the power supply has to provide twice as much current to turn the stepper.

ptg16386157

694.4 Stepper Control

4

C
H

A
PTER

Half-Step Mode
The half-step mode is like a combination of the two full-step modes. That is, the controller alternates

between energizing one winding and two windings. Figure 4.18 depicts three rotations of a stepper

in half-step mode.

Figure 4.19 illustrates a control signal for a stepper motor driven in half-step mode.

In this mode, the rotor aligns itself with windings (when one winding is energized) and between

windings (when two windings are energized). This effectively reduces the motor’s step angle by

half. That is, if the stepper’s step angle is 1.8°, it will turn at 0.9° in half-step mode.

The disadvantage of this mode is that, when a single winding is energized, the rotor turns with

approximately 20% less torque. This can be compensated for by increasing the current.

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

S

N

N

S

N

S
S

N

S

N

S

N

N

S

N

S

N

S

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

N

S

N

S

N

S

N

S

N

S

N

S

S

N

N

S

N

S

Figure 4.16
Stepper
rotation
in full-step
(two phases
on) mode

A

B

A'

B'

 Figure 4.17
 Drive sequence in full-
step (two phases on)
mode

ptg16386157

Stepper Motors70

II

PA
R

T

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

S

N

S

N

S

N

N

S

N

S

N

S

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'
N

S

N

S

N

S

S

N

N

S

N

S

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

N

S

N

S

N

S

N

S

N

S

N

S

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

N

S

N

S

N

S
S

N

N

S N

S

S

N

N

S

N

S

S

N

N

S

N

S

 Figure 4.18
 Stepper
rotations in
half-step mode

A

B

A'

B'

 Figure 4.19
 Drive sequence in
half-step mode

ptg16386157

714.5 Summary

4

C
H

A
PTER

Microstep Mode
The purpose of microstep mode is to have the stepper turn as smoothly as possible. This requires

dividing the energizing pulse into potentially hundreds of control signals. Common numbers of divi-

sion are 8, 64, and 256. If the energizing pulse is divided into 256 signals, a 1.8° stepper will turn at

1.8°/256 = 0.007° per control signal.

In this mode, the controller delivers current in a sinusoidal pattern. Successive windings receive a

delayed version of this sinusoid. Figure 4.20 gives an idea of what this looks like.

Using this mode reduces torque by nearly 30%, but another disadvantage involves speed. As the

width of a control signal decreases, the ability of the motor to respond also decreases. Therefore, if

the controller delivers rapid pulses to the stepper in microstep mode, the motor may not turn in a

reliable fashion.

4.5 Summary
This chapter has three goals: explain what stepper motors are, present the main types of steppers,

and show how steppers can be controlled by a circuit. The first goal is straightforward. A stepper

motor is a motor intended to turn at a precise angle (the step angle) and halt. Torque is usually more

of a concern than speed, and the torque exerted to hold the rotor’s position is called the holding

torque.

The first of three types of stepper motor discussed in this chapter is the permanent magnet (PM)

stepper. These motors have almost exactly the same structure as the inrunner brushless DC motors

discussed in Chapter 3 . One significant difference is that PM steppers have many more windings in

the stator and magnets in the rotor. These additional windings and magnets make it possible for the

PM stepper to turn at step angles such as 15° and 7.5°.

The second stepper type is the variable reluctance (VR) stepper. Like PM steppers, these have wind-

ings in the stator. But instead of having magnets on the rotor, the rotor of a VR stepper has teeth.

A rotor can support many more teeth than magnets, so the rotor of a VR stepper turns at smaller

angles than that of a PM stepper. However, because the teeth aren’t magnetized, the rotor is less

A

B

A'

B'

Figure 4.20
Drive sequence
in microstep
mode

ptg16386157

Stepper Motors72

II

PA
R

T

attracted to the stator’s windings. This reduces the stepper’s torque to such an extent that VR step-

pers are rarely encountered in practical systems.

 The last stepper type combines the advantages of PM steppers and VR steppers. The rotor of a

hybrid (HY) stepper is divided into two or more sections called rotor poles. Each rotor pole is mag-

netized to behave like a north or south pole, and each has a set of teeth around its perimeter. These

teeth are attracted to similar teeth on the stator. Because of the rotor’s magnetization, the HY step-

per has torque similar to that of the PM stepper. Because of the rotor’s teeth, the HY stepper has

angular resolution similar to that of the VR stepper. Common step angles of an HY stepper are 1.8°

and 0.9°.

 When you’re designing a control circuit for a stepper, it’s important to know whether the motor is

bipolar or unipolar. A bipolar stepper has four wires that correspond to the A, B, A’, and B’ wind-

ings. These require H bridges to deliver current in the forward and reverse directions. Unipolar

steppers have additional wires that deliver power to the windings. Unipolar steppers are easier to

control than bipolar steppers but are less efficient.

 The drive mode identifies how the controller energizes the stepper’s windings. The simplest drive

mode is full-step (one phase on), in which only one winding is energized at a time. For increased

torque, the full-step (two phases on) mode energizes two windings at a time. For twice the angular

resolution, the half-step mode alternates between energizing one and two windings.

 The fourth drive mode is microstep mode. In this mode, the controller divides its control signals into

multiple signals of sinusoidal shape. This turns the rotor in tiny step angles to ensure that the rota-

tion is as smooth as possible. Microstepping has been analyzed by many engineers and researchers,

but if your system needs smooth motion control, you may want to consider a servomotor instead of a

stepper motor. The next chapter presents this fascinating topic.

ptg16386157

SERVOMOTORS
This chapter focuses on a second type of motor intended for motion con-

trol—the servomotor, or servo . Whereas steppers rotate through an angle

and halt, many servos rotate continuously. Properly controlled, a servo

can do everything a stepper can and more. In addition to setting the rota-

tion angle, the controller can configure the servo’s rotational speed and

acceleration. This added control is the main advantage of servos over

steppers.

 The main disadvantage is that designing a servo controller is a difficult

process. As explained in Chapter 4 , “Stepper Motors,” a stepper can be

controlled with a simple sequence of discrete pulses. With servos, the

control signals are more involved. The goal of this chapter is to explain

why this is the case and to show how this control can be accomplished.

 It’s important to note that the term servomotor doesn’t imply anything

about the motor’s structure. A servo may be brushed or brushless, AC or

DC. The fundamental difference between servomotors and other electric

motors is the availability of position feedback . A servo sends a signal to

the controller that identifies its rotation angle and/or rotation speed. The

controller uses this feedback to determine what control signals to send.

 Unfortunately, most servos directed toward hobbyists don’t provide feed-

back. I’ll refer to these as hobbyist servos , and the first part of this chap-

ter presents them in detail. We’ll also look at encoders, which are systems

that can be connected to motors to provide feedback.

 The rest of the chapter focuses on servos that deliver feedback to the con-

troller. Designing a controller for this kind of servo requires mathematical

modeling—a model of the servo and a model of the controller’s signals.

 5

ptg16386157

Servomotors74

II

PA
R

T

The benefit of this modeling is that the motor can be made to turn with incredible precision. The

drawback is that the mathematical theory has a significant learning curve.

5.1 Hobbyist Servos
Judging from the websites that cater to hobbyists, the main vendors that make hobbyist servos are

Hitec, Fitec, Futaba, and Tower Pro. It’s possible that one of their offerings provides position feed-

back, but I’ve never encountered any.

 Most hobbyist servos have a boxlike shape with three wires. Figure 5.1 shows what the FS5106B

servo from Fitec (frequently spelled FeeTech) looks like.

 Figure 5.1
 The FS5106B servomotor
from Fitec

The three wires connect the motor to power, ground, and the controller. Additional information can

be obtained from its datasheet:

• Internal structure : Brushed DC motor

• Input voltage : 4.8–6 V

• Stall torque : 69.56 oz-in. (4.8 V) or 83.47 oz-in. (6.0 V)

• No-load speed : 55.5 RPM (4.8 V) or 62.5 RPM (6.0 V)

• Running degree : 180° ± 5°

• Pulse width range : 0.7–2.3 ms

• Neutral position : 1.5 ms

• Dead bandwidth : 0.005 ms

ptg16386157

755.1 Hobbyist Servos

5

C
H

A
PTER

The first four parameters should be clear. The FS5106B servo is based on a brushed DC motor that

accepts between 4.8 V and 6.0 V. The torque and speed depend on how much voltage is provided.

The last four parameters may not be clear. They define the nature of the servo’s motion and the type

of signals needed to control it. This section explores both topics.

5.1.1 Pulse Width Modulation (PWM) Control
Chapter 3 , “DC Motors,” explained how DC motors can be controlled by sending pulse width modu-

lation (PWM) signals. As a quick review, PWM delivers pulses of varying width to the motor. Figure

5.2 provides a simple example.

Controller Servo

20ms1.5ms
 Figure 5.2
 Pulse width
modulation (PWM)
for a hobbyist
servo

As given by the “running degree” parameter, the FS5106B’s rotor can turn 180°. The controller sets

the rotor’s angle by sending pulses to the servo and controlling the

width of each pulse.

According to the “pulse width range” parameter, the servo

responds to pulses whose widths are between 0.7 ms and

2.3 ms. The neutral position is set when the pulse width is at

1.5 ms, which is the pulse width illustrated in Figure 5.2 . Similarly,

a pulse width of 0.7 ms turns the rotor to the full left position, and

a pulse width of 2.3 ms sets the rotor to the full right position.

 In theory, we’d like the servo to turn every time the pulse width

changes. But in practice, the servo should ignore minor deviations

in pulse width that may have been caused by noise. This is the

meaning of the “dead bandwidth” parameter, which equals 0.005 ms for the FS5106B. If the pulse

width changes by less than 0.005 ms, the servo won’t move.

 When power is turned off, the servo’s rotor stays in its position. This means that, when power

is turned on again, the controller may not know the rotor’s angle. For this reason, it’s common to

return the servo to the neutral position as soon as power becomes available.

 The best way to understand how controllers govern a servo’s behavior with PWM is to look at exam-

ples. Chapter 9 , “Motor Control with the Arduino Mega,” explains how an Arduino circuit board can

be programmed to control servomotors. Chapter 10 , “Motor Control with the Raspberry Pi,” explains

how the Raspberry Pi single-board computer can generate PWM pulses for servos.

 note
 Many hobbyist servo speci-
fications don’t mention the
time between pulses, called
the period . By convention,
this is set to 20 ms, which
means the controller should
deliver 50 pulses each second.

ptg16386157

Servomotors76

II

PA
R

T

5.1.2 Analog and Digital Servos
According to its specification, the FS5106B is an analog servo instead of a digital servo. From the

controller’s perspective, there’s no difference between the two—both types are controlled by the

same PWM signals. The difference involves the internal circuitry that receives control signals and

delivers power to the motor.

When an analog servo receives pulses from the controller, it amplifies them and sends them to the

motor to provide power. As the rotor approaches the desired position, the power diminishes to zero.

If the widths of the incoming pulses are less than the servo’s dead bandwidth (0.005 ms in the case

of the FS5106B), the motor won’t receive any power.

Digital servos operate in essentially the same way, but a digital servo has a microprocessor that

receives pulses from the controller, processes them, and delivers pulses to the motor. The presence

of the microprocessor provides three advantages:

• Lower dead bandwidth— The processor can respond to pulses that are too small for an analog

servo to notice.

• Higher-frequency power— The pulses sent by the processor have a higher frequency than those

sent by the controller. This makes digital servos more responsive than analog servos.

• Programmability— The processor’s operating characteristics can be configured by the user.

This last point is particularly interesting. Many vendors of digital servos provide programming tools

capable of setting the operating parameters of their motors. For example, a digital servo from Hitec

can be programmed with Hitec’s HFP-10 programmer, which can set the following parameters:

• Direction— Clockwise or counterclockwise

• Speed— Rotation speed in RPM

• Left endpoint/right endpoint— Maximum angles that can be reached

• Dead bandwidth— Minimum pulse width (in microseconds) that the servo will respond to

• Failsafe— The servo’s behavior when the connection to the controller is cut off

 There are two significant disadvantages of using digital servos. The first is cost. Digital servos gen-

erally cost twice as much as comparable analog servos. The second disadvantage involves power.

Because of its microprocessor, a digital servo requires more power than a comparable analog servo.

 A minor disadvantage of digital servos relates to the dead bandwidth. By default, a digital servo

responds to small changes in pulse width that an analog servo would ignore. This can be a problem

in noisy environments, draining current from the power supply. However, if the servo’s dead band-

width is suitably configured with a programmer, this won’t be an issue.

5.1.3 Rotary Encoders
To convert a hobbyist servo (or any electric motor) to a proper servomotor, a mechanism must be

attached that identifies the shaft’s angle. These feedback elements are called rotary encoders. Many

types of encoders are available, but for servo applications, there are two main choices:

ptg16386157

775.1 Hobbyist Servos

5

C
H

A
PTER

• Optical— A sensor detects light passing through a specially patterned disk.

• Magnetic— A sensor detects the moving poles of a magnet.

This discussion presents both types of encoders.

Optical Encoders
Of the many encoders used with servos, optical encoders are the simplest and most common. Their

operation is made possible by a disk connected to the motor’s shaft. This disk is transparent in some

areas and opaque in others.

 On one side of the disk, a light source directs light at one portion of the disk. On the other side, an

optical sensor measures how much light passes through. The sensor delivers its results to a proces-

sor, which may assign a 1 to the presence of light and a 0 to the absence.

The disk’s pattern of transparent and opaque regions usually takes one of two forms. Figure 5.3

illustrates both patterns.

 Figure 5.3
 Optical encoder
disks: incremental
and absolute

The disk on the left has alternating stripes of transparent and opaque regions. As the shaft turns,

the optical sensor measures the time between successive flashes of light. The processor uses this to

determine how quickly the motor’s shaft is turning. Because it provides speed but not position, this

type of encoder is called an incremental encoder .

In contrast, the disk on the right of Figure 5.3 is used by absolute encoders because it identifies the

shaft’s angle as well as its speed. In this case, the light shines along an axial stripe that has alter-

nating transparent/opaque regions. The optical sensor detects this light and passes multiple read-

ings to the processor. The microprocessor converts the pattern of light and darkness into a number

and uses it to determine the shaft’s approximate angle.

ptg16386157

Servomotors78

II

PA
R

T

Magnetic Encoders
Optical encoders are more common, but magnetic encoders are generally more reliable and provide

better resolution. In these encoders, a circular magnet is attached to the shaft. A magnetic sensor

is positioned close to the magnet to detect its north and south poles. As the shaft turns, the sensor

measures the locations of the changing poles and determines the shaft’s angle and speed.

Austria Microsystems produces a family of integrated circuits capable of reading and process-

ing magnet positions. As an example, the AS5145 is a system on a chip that combines Hall effect

magnetic sensors and signal processing circuitry. According to its datasheet, this encoder provides

angular resolution of 0.0879°. This information is provided through a serial connection and through

PWM signals.

5.2 Overview of Servo Control
Chapter 4 discussed the topic of stepper motors and explained how simple they are—a stepper’s

shaft rotates through a specific angle and stops. But if you measure the shaft’s angle as it changes

from the initial angle, θi, to the final angle, θf, you might see something like the graph in Figure 5.4 .

f

i

t

 Figure 5.4
 Motion of a real-world
stepper

As shown, the shaft needs time to ramp up and its angle oscil-

lates before reaching its final angle. Hobbyist servos behave in

the same manner. If the motor is intended for a radio-controlled

aircraft or a paper printer, this isn’t a significant concern.

 However, if the intended application requires high-precision

motor control, such in the case of robotic surgery, you shouldn’t

insert a stepper motor and hope for the best. You need a precise

understanding of how the motor behaves when it receives signals

from the controller. In addition, if the load changes over time, the

controller needs to know how to maintain the rotor’s motion.

 note
 The content in this sec-
tion makes use of calculus,
advanced circuit theory, and
other topics that may lie
beyond the experience of
the average maker. Don’t be
concerned if it isn’t clear. The
important thing is to get a
sense of the overall method
of controlling servomotors
using feedback.

ptg16386157

795.2 Overview of Servo Control

5

C
H

A
PTER

The goal of control theory is to make this fine-tuned control possible. To accomplish this goal, it uses

mathematical representations of the motor and the controller’s signals. This section provides a brief

overview of the theory involved.

5.2.1 Open-Loop and Closed-Loop Systems
If a controller receives feedback identifying a servo’s shaft angle, it can measure the angle over time

to determine the motor’s speed and acceleration. If the motor deviates from the desired behavior,

the controller will send control signals to reduce the deviation.

 This exchange of information—the servo provides its position, the controller provides control sig-

nals—forms a loop. For this reason, systems with feedback are referred to as closed-loop systems .

Systems without feedback are open-loop systems . The block diagrams in Figure 5.5 illustrate the dif-

ference between these two systems.

Controller
r(t) e(t) va(t) (t)

ServoController
va(t) (t)

Servo

Closed-Loop ControlOpen-Loop Control Figure 5.5
 Open-loop
and closed-
loop systems

To analyze closed-loop systems mathematically, we represent each of the signals with functions that

change over time. Here are the four functions commonly encountered in servomotor control:

• θ(t)— The angle of the servomotor’s shaft

• r(t)— The desired angle of the servomotor (called the reference or the setpoint)

• e(t)— The deviation (error) between the motor’s angle and the desired angle

• va(t)— The control signal (voltage) provided by the controller

For the purposes of this chapter, the controller’s signal, v a (t), is an analog function of time. The pri-

mary question of servo control is how v a (t) should be computed from e(t).

 As a real-world example, consider a boat whose steering is automated by a computer. Using sonar,

visual sensors, and weather databases, the computer determines what course to take. This set of

angles forms the system’s setpoint, r(t). The controller receives r(t) and delivers a signal, v a (t), to a

servo connected to the ship’s rudder. As the servo turns, the rudder changes the boat’s heading,

denoted as θ(t).

 If wind blows the boat off-course, the error, e(t), equals the difference between r(t) and θ(t). The

controller receives this error and adjusts v a (t) to return to the boat to a suitable heading. The goal of

control theory is to determine how this new v a (t) should be computed.

ptg16386157

Servomotors80

II

PA
R

T

5.2.2 Modeling a Servomotor
The first step in servomotor control is to obtain a mathematical model for the motor’s behavior. To

be specific, we want to know how its shaft angle changes in response to voltage from the controller.

To derive this relationship, it’s important to keep in mind the physical relationships discussed in

Chapter 2 , “Preliminary Concepts.” This chapter presented an equivalent circuit for an electrical

motor that included the electrical resistance of the armature, R a. Figure 5.6 provides a more com-

plete diagram for a motor’s equivalent circuit:

Motor

ia Ra La

vb

+

-

 Figure 5.6
 Equivalent circuit used in control system design

If i a is the current passing through the armature’s windings, the voltage across the armature’s resis-

tance is R a i a . Similarly, the voltage through the armature’s inductance equals L a multiplied by the

time derivative of i a . Denoting the motor’s back-EMF as v b , the voltage across the armature can be

computed with the following equation:

v L
di

dt
R i va a

a
a a b= + +

Now let’s look at the relationship between the motor’s torque and angular position. If the shaft’s

load has a moment of inertia equal to J and a frictional damping coefficient equal to B, the torque, τ,

can be related to the shaft angle with the following equation:

J
d

dt
B

d

dt

2

2τ θ θ
= +

This torque can be related to the armature’s current with the equation τ = K t i a . The shaft angle can

be related to the back-EMF with the equation v b = K v (dθ/dt). These relationships were introduced in

 Chapter 2 .

 These equations can be combined into a single, lengthy integro-differential equation that relates v a

to θ. However, this equation is hard to understand and nearly impossible to solve directly. To sim-

plify the solution process, control system designers use the Laplace transform.

ptg16386157

815.2 Overview of Servo Control

5

C
H

A
PTER

5.2.3 The Laplace Transform
The Laplace transform makes it easy to deal with complicated equations like those presented in

the preceding discussion. This transform converts equations containing derivatives, integrals, and

exponentials into equations that can be solved algebraically. A full understanding of its operation

requires a deep knowledge of complex analysis, but that’s not necessary. To use the Laplace trans-

form, you just have to know three steps:

1. Convert each term of the ugly equation into a simple term based on the variable s. This is accom-

plished with the forward Laplace transform, denoted L{}.

2. Solve the new equation algebraically.

3. Convert each term of the solution back to the t-domain. This is accomplished with the backward

Laplace transform, denoted L-1{}.

Before proceeding further, let’s look at how this magical process works. Consider the following dif-

ferential equation involving t and the angle θ(t):

d t

dt
t t4

θ
θ() ()− =

Solving this normally requires a fair amount of effort, but the Laplace transform makes it easy. The

first step is to convert each of the three terms. (Note that the initial condition, θ(0), is a constant

value.)

d t

dt
s t 0

θ
θ θ{ }() () ()⎧

⎨
⎩

⎫
⎬
⎭

= −L L

t t4 4θ θ{ } { }() ()=L L

t
s

1
2{ } =L

Placing these new terms into the original equation produces a new equation in terms of s:

s t t
s

0 4
1

2θ θ θ{ } { }() () ()− − =L L

With the derivatives gone, the equation is much easier to deal with. Solving for L{θ(t)} produces the

following equation:

t s
s

1
0

4

2

θ
θ

{ }()
()

=
+

−
L

ptg16386157

Servomotors82

II

PA
R

T

Using partial fraction expansion, this can be simplified in the following way:

t
s s s

1

4

1

16

0
1

16
42θ

θ
{ }()

()
= − − +

+

−
L

At this point, the second step is finished. The last step is to convert each term of the equation so

that it depends on t instead of s. The results are as follows:

t t1 θ θ{ }{ }() ()=−L L

s

t1

4 4
1

2−⎧
⎨
⎩

⎫
⎬
⎭

= −−L

s

1

16

1

16
1 −⎧

⎨
⎩

⎫
⎬
⎭

= −−L

s
e

0
1

16
4

0
1

16
t1 4

θ
θ

()
()

+

−

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

= +⎛
⎝⎜

⎞
⎠⎟

−L

Combining these results together gives us the final answer:

t e
t

0
1

16 4

1

16
t4θ θ() ()= +⎛

⎝⎜
⎞
⎠⎟

− −

Not too hard, is it? The most difficult part is knowing how to convert terms from the t-domain to

the s-domain, and vice-versa. Rather than memorize the conversions, engineers rely on tables of

general-purpose Laplace transformations. Table 5.1 lists seven of the most common transforms.

Other sources provide many more.

Table 5.1 Basic Laplace Transforms

t-Domain s-Domain

1
 s

1

t n

n

s

!
n 1+

e at

 s a

1

−

 sin(at)

a

s a2 2+

ptg16386157

835.2 Overview of Servo Control

5

C
H

A
PTER

t-Domain s-Domain

cos(at)

s

s a2 2+

df t

dt

()
s L {f(t)} – f(0)

f d

t

0
∫ γ γ() f t

s

{ }()L

A few examples will clarify how these transforms are used in practice:

• If f(t) = e 5t + 1, then L {f(t)} = 1/(s – 5) + 1/s.

• If f(t) = sin(2t) + t 3 , then L {f(t)} = 2/(s 2 + 4) + 6/s 4 .

• If L {f(t)} = s/(s 2 + 9), then f(t) = cos(3t).

• If L {f(t)} = s L {g(t)} – g(0), then f(t) = dg(t)/dt.

 The idea of solving an equation by transforming it to another form may seem strange, but the

Laplace transform is indispensable in control system design. Most descriptions of control systems

don’t use the t-domain at all, and rely exclusively on functions in the s-domain.

5.2.4 Block Diagrams and Transfer Functions
The two diagrams in Figure 5.5 are typical of the diagrams used to describe the elements of a con-

trol system. Each arrow carries a signal or physical quantity, such as voltage or shaft angle. Each

block processes an incoming signal to produce an outgoing signal.

Every block has a corresponding function called its transfer function . Unless otherwise stated, this

transfer function is multiplied by the input signal to produce the output signal. For example, if a

block’s function is simply 3, the output signal will equal 3 times the input signal.

Put differently, if a block’s input is X(s) and its output is Y(s), the block’s transfer function must

be Y(s)/X(s). In the case of a servomotor, which converts V a (s) into θ(s), the transfer function is

θ(s)/V a (s).

 It’s interesting to look at the transfer function of a closed-loop system. Figure 5.7 presents a sample

system with two blocks whose transfer functions are G(s) and H(s).

G(s)X(s)
A(s) B(s)

H(s) Y(s)
-

+
 Figure 5.7
 Computing the transfer
function of a closed-loop
system

ptg16386157

Servomotors84

II

PA
R

T

In this diagram, the signal entering the first block is A(s) and the signal leaving it is B(s). Therefore,

G(s) = A(s)/B(s). But what’s the overall transfer function of the system? That is, given G(s) and H(s),

what is Y(s)/X(s)? The answer can be computed in the following way:

 Y s H s B s H s G s A s() () () () () ()= =

A s X s Y s() () ()= −

Substituting the second equation in the first equation produces the following results:

 Y s H s G s X s Y s() () () () ()= −⎡⎣ ⎤⎦

Y s H s G s H s G s X s1() () () () () ()+⎡⎣ ⎤⎦ =

The system’s transfer function can be obtained by dividing both sides by X(s) and 1 + H(s)G(s).

Y s

X s

H s G s

H s G s1

()
()

() ()
() ()=

+

If the entire closed-loop system was replaced by a single block, this would be its corresponding

transfer function.

5.2.5 Transfer Function of a Servomotor
Having discussed the Laplace transform and transfer functions, the next step is to find the transfer

function for a servomotor. This equals θ(s)/V a (s), where θ(s) is the servo’s angle and V a (s) is the con-

trol signal.

 To obtain the transfer function, the first step is to list the equations that describe how a servomo-

tor works. Earlier in this chapter, I derived one equation involving v a and another involving τ. In

 Chapter 2 , I presented an equation that related current and torque and another that related voltage

and speed equations. There are four equations in total:

1. v L
di

dt
R i va a

a
a a b= + +

2. J
d

dt
D

d

dt

2

2τ θ θ
= +

3.
K it aτ =

4.
d

dt
K vv b

θ
=

By applying the Laplace transform, we can convert these equations into a more manageable form.

All initial conditions are assumed to equal zero.

ptg16386157

855.3 PID Control

5

C
H

A
PTER

1. V s sL I s R I s V sa a a a a b() () () ()= + +

2.
s s J s B ss2τ θ θ() () ()= +

3.
s K I st aτ () ()=

4. s K V ss v bθ () ()=

Through substitution and algebraic manipulation, we can compute V a (s) in terms of θ(s). Then it’s

straightforward to obtain the relationship between the armature voltage and the shaft angle:

s

V s

K

JL s JR BL s
K

K
R B sa

t

a a a
t

v
a

3 2

θ

()
()
() =

+ + + +
⎛
⎝⎜

⎞
⎠⎟

This result is important because it gives us precise knowledge of how the servomotor responds to

armature voltage. That is, we can multiply this expression by a voltage function (transformed to the

s-domain, of course) to determine how the shaft angle will be affected. The following section shows

how this transfer function can be used in practice.

5.3 PID Control
After obtaining the transfer function for a servomotor, the next step is to choose a transfer function

for the controller block. This block converts the incoming error, E(s), into a voltage signal to the ser-

vomotor, V a (s). Denoting the controller’s transfer function as C(s) and the motor’s transfer function

as M(s), Figure 5.8 presents the closed-loop control system.

C(s)R(s)
E(s) Va(s)

M(s) (s)

Controller Motor

-
+

Figure 5.8
The closed-loop servomotor system

Earlier, I derived the overall transfer function of an closed-loop control system with two blocks,

which equaled G(s)H(s)/(1 + G(s)H(s)). Similarly, the overall transfer function for the system in

Figure 5.8 is given as follows:

s

R s

C s M s

C s M s1

θ ()
()

() ()
() ()=

+

ptg16386157

Servomotors86

II

PA
R

T

Replacing the servomotor transfer function obtained earlier, this relationship can be expressed with

this equation:

s

R s

C s JL s JR BL s
K

K
R B s

C s JL s JR BL s
K

K
R B s 1

a a a
t

v
a

a a a
t

v
a

3 2

3 2

θ
()

()
()
()

()

()
=

+ + + +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

+ + + +
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+

The C(s) function identifies the controller’s behavior, and there are many possibilities. For servomo-

tors, the most popular method is called PID control , where PID stands for proportional-integral-
differential . In the time-domain, the controller’s signal is given as follows:

c t K e t K f d K
d e t

dt

�
p i

t

d

0
∫ γ γ()() () ()= + +

To see why PID controllers are so helpful, we need to examine the three different constant values:

• Kp, the proportionality constant— Identifies how the controller should respond to the current

value of the error

• Ki, the integral constant— Identifies how the controller should respond to the sum of the error

over time

• Kd, the differential constant— Identifies how the controller should respond to the current slope

of the error

Put another way, K p responds to the present error, K i responds to the past error, and K d responds to

the predicted future error. By combining these terms, we can configure a PID controller to deal with

multiple aspects of the servo’s behavior.

 Using Table 5.1 , the equation for c(t) can be converted to the s-domain. The result is given as

follows:

C s K
K

s
sKp

i
d() = + +

Figure 5.9 shows what the block diagram looks like with a PID controller.

Inserting this expression into the transfer function equation, we get the following result:

s

R s

K
K

s
sK JL s JR BL s

K

K
R B s

K
K

s
sK JL s JR BL s

K

K
R B s 1

p
i

d a a a
t

v
a

p
i

d a a a
t

v
a

3 2

3 2

θ
()

()
()
() =

+ +⎛
⎝⎜

⎞
⎠⎟ + + + +

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

+ +⎛
⎝⎜

⎞
⎠⎟ + + + +

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
+

With the appropriate values for K p , K i , and K d , the controller can set the motor’s behavior with

remarkable precision. Many research papers have been written on how best to accomplish this, and

a full discussion of the different methods lies beyond the scope of this book.

ptg16386157

875.4 Summary

5

C
H

A
PTER

5.4 Summary
Many sellers of 3D printers provide two versions of their offerings. In the low-cost version, the print-

er’s motion control is performed by stepper motors, which are inexpensive and precise, but slow

because of their discrete rotation. In the premium-cost version, motion control is performed with

servos, which rotate continuously with precision and speed. Servos provide many advantages over

steppers because of their feedback, but controlling them is significantly more difficult.

With hobbyist servos, feedback isn’t a concern. These servos are simply DC motors that can be

controlled with PWM signals. They come in two types: digital and analog. A digital hobbyist servo

contains a microprocessor that receives the controller’s pulses and delivers pulses to the underlying

motor. Three advantages of digital servos over analog servos are that they’re more responsive, pro-

vide greater torque, and can be configured through programming.

Any electric motor can be converted into a servo by attaching a rotary encoder. This provides feed-

back to a controller that identifies the shaft’s angle. The most common rotary encoders use light

sensors that measure light passing through a disk. These optical encoders may be absolute, which

means they provide angular position and speed, or incremental, which means they provide speed

without identifying the specific angle.

Controlling a servomotor isn’t a simple process, and the most difficult aspect involves learning and

applying the Laplace transform. Though it can be scary to newcomers, this transform makes it pos-

sible to convert ugly equations into simple equations. This conversion is absolutely necessary when

dealing with complex electromechanical systems such as DC motors.

The most common method of servomotor control is called PID (proportional-integral-differential) con-

trol. A PID controller responds to an error by delivering a signal that sums together three terms. The

proportional term equals the error multiplied by a constant, the integral term equals the sum of the

current error and past errors, and the differential term equals the slope of the current error. It takes

time and effort to properly configure a PID controller, but once the configuration is complete, it can

control a servomotor with speed and precision.

R(s)
E(s) Va(s)

(s)

Kp

sKd

Ki
s

Kt

JLas
3 + (JRa + BLa)s

2 + (Kt/Kv + RaB)s-
+

Figure 5.9
 Computing the transfer function of a closed-loop system

ptg16386157

This page intentionally left blank

ptg16386157

AC MOTORS
Remote-controlled vehicles and hobbyist devices generally rely on DC

motors, but most household/industrial appliances rely on AC motors. The

reason is simple—houses and other buildings provide electrical power as

alternating current (AC). This is why electric fans and blenders, which

have AC motors, can be plugged directly into electrical outlets.

The goal of this chapter is to introduce different types of AC motors and

explain their advantages and disadvantages. Because AC motor tech-

nology is so old (the first practical AC motors were constructed in the

1880s), a wide range of AC motors is available. They can be categorized

in a number of ways, but this chapter classifies motors according to two

criteria:

• Polyphase/single-phase— The electrical content of the motor’s incom-

ing power

• Synchronous/asynchronous— The relationship between the motor’s

speed and the frequency of the incoming power

 This chapter introduces polyphase motors first and then presents single-

phase motors. The last part of the chapter discusses the fascinating top-

ics of AC motor control and universal motors.

 Before I start discussing rotors and stators, I’d like to review the concepts

underlying AC power. The better you grasp this topic, the better you’ll be

able to understand the motors that make use of alternating current.

 6

ptg16386157

AC Motors90

II

PA
R

T

6.1 Alternating Current (AC)
The fundamental difference between AC motors and DC motors is that the power delivered to

an AC motor is sinusoidal. AC power has a number of advantages over DC power, and one major

advantage is that AC voltage can be increased and decreased (that is, stepped up and stepped

down) with transformers. This makes it possible to transmit AC power over long distances at high

voltage and low current. This low current guarantees that the I 2R losses in transmission lines will be

as low as possible.

6.1.1 Single-Phase Power
The power provided by residential electrical outlets is single-phase, which means the power is

received in a single sinusoid. Figure 6.1 shows what single-phase power looks like.

V

t

1
2 f

1
f

3
2 f

2
f

 Figure 6.1
 Single-phase AC
power

In this figure, the sinusoid’s frequency is denoted f, which means it completes a cycle in 1/f seconds.

In the USA and Canada, f equals 60 Hz and the sinusoid’s amplitude is 168 V, which is equivalent to

120 V RMS (root-mean-square). In other nations, it’s common to see line power provided at higher

voltage (230–250 V RMS) and frequencies of 50 Hz.

6.1.2 Three-Phase Power
Single-phase power is fine for households, but it’s insufficient for industrial machines. To meet the

greater need, power is delivered with three sinusoids. This is called three-phase power, and Figure

6.2 depicts sinusoidal power provided in three phases, labeled A (solid line), B (dashed line), and C

(dotted line).

When you’re selecting an AC motor for an application, it’s crucial to know what type of power the

motor requires. Motors designed for three-phase power won’t function properly when given single-

phase power, and single-phase motors will likely break when three-phase power is delivered.

Because of their usage in industry, three-phase motors are more common than single-phase motors.

But if you’re building a product to run on household power, you should take a close look at single-

phase motors.

ptg16386157

916.2 Overview of Polyphase Motors

6

C
H

A
PTER

6.2 Overview of Polyphase Motors
Polyphase motors are the workhorses of industry. Cranes, drills, and electric trains all rely on large-

scale polyphase motors. These motors come in different types to serve different needs, but their sta-

tors all have the same general structure.

 The stator of a polyphase motor contains windings (electromagnets) that produce a rotating mag-

netic field. This rotating field causes the rotor to turn. To understand how polyphase motors work, it

helps to understand this rotating field and how it relates to the rotor’s speed.

6.2.1 Stators
As discussed in Chapter 1 , “Introduction to Electric Motors,” an electric motor is the union of two

parts: the rotor (which rotates when power is delivered) and the stator (which stays in place). In an

AC motor, the structure of the rotor changes according to the motor’s type. For example, the rotor of

an induction motor is markedly different from the rotor of a permanent magnet synchronous motor.

However, every polyphase AC motor discussed in this chapter has the same stator structure. The

stator is always positioned outside the rotor, and its windings receive AC power.

If a motor is intended to receive polyphase power, its windings are grouped into sets called phases .

The stator has one phase for each phase of input power, and windings in the same phase receive

power from the same phase. Figure 6.3 shows what a stator of a three-phase AC motor looks like.

This figure doesn’t show the connections between the windings, but A and A’ are connected

together, B and B’ are connected together, and C and C’ are connected together. The number of

windings per phase is called the number of poles , and it’s always an even number. The motor dis-

played in the figure has six windings divided evenly into three phases. Therefore, it has two poles

(6/3 = 2).

V

t

1
2f

1
f

3
2f

2
f

A B CFigure 6.2
Three-phase AC
power

ptg16386157

AC Motors92

II

PA
R

T

6.2.2 Rotating Magnetic Field
Each phase of the input power (A, B, and C) is delivered to the

corresponding phase in the stator (A/A’, B/B’, and C/C’). In Figure

 6.3 , the three phases are separated from one another in space by

120°. In Figure 6.2 , the three voltages are separated in time by

an interval that corresponds to 120°. This isn’t a coincidence. The

alignment of winding position and voltage phase produces a cru-

cial result: a rotating magnetic field in the stator.

 The stator’s rotating field is vital to the functioning of polyphase

motors. To see how it’s generated, we can examine the effect of

the three-phase voltage on the windings. Figure 6.4 depicts one

cycle of power, with markings at times t 0 , t 1 , t 2 , and t 3 .

A

C'

B

A'

C

B'

 Figure 6.3
 Stator of a three-phase AC motor with two poles

 note
 The following discussion
explains how the stator’s
magnetic field is created. It’s
not important to understand
every detail so long as you’re
satisfied that the stator of a
polyphase motor produces a
rotating field.

V

t

t = t1 t = t3

A B C

t = t2t = t0 Figure 6.4
 Single cycle of
three-phase
power

ptg16386157

936.2 Overview of Polyphase Motors

6

C
H

A
PTER

The magnetic field produced by a winding is proportional to the current flowing through it, which is

proportional to the applied voltage. Therefore, we can gauge the relative strengths of the magnetic

fields by comparing their relative voltages.

To determine the windings’ magnetic fields at t 0 , t 1 , t 2 , and t 3 , we need to find their voltages at

these times for each of the three phases. With the maximum voltage set equal to 1, these values are

listed in Table 6.1 .

Table 6.1 Voltages in Three-Phase Power

 A B C

t 0 0.738 –0.952 0.286

 t 1 0.738 0.357 –0.976

 t 2 –0.762 0.952 –0.310

 t 3 –0.738 –0.381 1.0

 We can visualize the relative magnetic field produced by each winding by drawing an arrow whose

direction is determined by the winding’s orientation (0° for A, 120° for B, or 240° for C) and whose

length is determined by the winding’s voltage. Figure 6.5 depicts these arrows at times t 0 , t 1 , t 2 ,

and t 3 .

A

B

C

A

BC

t0 t1

B

A

C

t2

A

B C

t3

 Figure 6.5
 Magnetic fields at times t 0 , t 1 , t 2 ,
and t 3

The small arrows represent the field of each winding, and the large gray arrow represents the

total magnetic field at the given time. This total field is obtained by arranging the small arrows

in sequence. That is, Arrow B starts at the endpoint of Arrow A, and Arrow C starts at the end of

Arrow B.

Figure 6.6 presents the same three-phase, two-pole stator as in Figure 6.3 , but shows how the

magnetic field behaves from t 0 to t 4 . The field’s direction changes over time, but its strength (repre-

sented by the length of the arrow) remains constant.

As depicted in this figure, the magnetic field performs a complete rotation for each cycle of the

incoming three-phase power.

ptg16386157

AC Motors94

II

PA
R

T

6.2.3 Synchronous Speed
The speed of the stator’s rotating field is referred to as the motor’s synchronous speed . It depends

on the frequency of the input power. For a three-phase motor, if the power changes at 60 Hz, the

field rotates 60 times per second for a synchronous speed of 3600 RPM.

 Many AC motors have more than two poles, and a common number of poles is four. As more poles

are added, the synchronous speed decreases because the field has more windings to pass between.

If a three-phase AC motor has p poles, the synchronous speed (in RPM) is given by the following

formula:

n
f

p

120
s =

For example, a three-phase, two-pole motor powered at 60 Hz has a synchronous speed of 3600

RPM, as computed earlier. If a four-pole motor is powered at 60 Hz, then n s = (120 * 60)/4 = 1800

RPM.

6.2.4 Power Factor
For a DC motor, computing a motor’s input power is simple. Input power = VA, where V is the input

voltage and A is the input current. The computation is easy because the voltage and current are

always proportional to one another.

For AC motors, determining the input power isn’t as simple. This is because the input current and

voltage change with the same frequency, but the crests and troughs of the two sinusoids usually

don’t align. In this case, they are said to be out of phase . This is shown graphically in Figure 6.7 .

t2

t0

t1

t3

 Figure 6.6
 Magnetic field in the stator of a three-phase motor

ptg16386157

956.2 Overview of Polyphase Motors

6

C
H

A
PTER

In this figure, the voltage and current have the same frequency, but their crests are separated by

a time equal to one-eighth of the cycle, or 1/8f. A full cycle corresponds to an angle of 360°, so the

angular interval between the two crests is 360°/8 = 45°. This angle, denoted ϕ, is called the phase
angle . It’s positive if the voltage precedes the current and negative if the current precedes the volt-

age. Ideally, the phase angle is 0°.

 When you’re examining an AC motor, an important performance parameter is its power factor ,
which equals the cosine of ϕ. This tells you how much of the total input power is being used for

work. This useful power is called real power . Ideally, the power factor equals 1 because cos(0) = 1.

But in practice, this value is reduced by a motor’s capacitance or inductance.

 The power factor, commonly denoted PF, can be expressed in another way:

PF
power able to do work real power

total power supplied to motor

� � � � � �

� � � �

()=

In this fraction, the denominator can be calculated by multiplying the amplitude of the current by

the amplitude of the voltage.

An example will make this clear. If a motor has a power factor of 0.8, 80% of the input power will be

used to perform work. If this motor draws 4 A at 50 V, the amount of real power will be (4 A)(50 V)

(0.8) = 160 W.

If the motor has three phases, the equation for the power factor changes slightly:

PF
power able to do work real power

total power supplied to motor

� � � � � �

3· � � � �

()=

For example, suppose each phase of a three-phase motor draws a current of 6 A at a voltage of

200 V. If the power factor is 0.75, the real power is computed as follows:

 Real Power A V W� 3 0.75 6 200 1559�()()()= =

t

1
f

Voltage

Current

2
f

= 45°Figure 6.7
Out-of-phase voltage
and current

ptg16386157

AC Motors96

II

PA
R

T

6.3 Asynchronous Polyphase Motors
If a motor is asynchronous, the speed of its shaft doesn’t equal the motor’s synchronous speed.

To be more specific, the rotor of an asynchronous motor turns at a speed less than the synchro-

nous speed. To see why this is the case, it’s crucial to understand the principle of electromagnetic

induction.

6.3.1 Electromagnetic Induction
If a conductor is brought into a region with a changing magnetic field, it receives a difference in

voltage across its surface. This phenomenon is referred to as electromagnetic induction, and the

voltage is called the induced voltage. The magnitude of the voltage is proportional to how quickly

the magnetic field is changing.

Induced voltage produces a current in the conductor. When a current-carrying conductor is placed

inside a magnetic field, it receives a force that causes the conductor to move. This is the fundamen-

tal principle behind all asynchronous motors, which are commonly called induction motors or AC
induction motors (ACIMs).

In case this isn’t clear, let me express the basic operation of an induction motor in three steps:

1. As discussed in the preceding section, the stator of an AC motor creates a changing magnetic

field in response to polyphase power.

2. The rotor of an induction motor has conductors instead of magnets. When these conductors enter

the stator, each receives an induced voltage.

3. The induced voltage produces a current in each conductor. As a result, a force is exerted on each

conductor, and this force turns the rotor.

The force produced by induction is present only when the rotor’s conductors intersect the stator’s

magnetic field. If the rotor’s conductors travel at the same speed as the field, no force will be pro-

duced because there’s no intersection. Therefore, in an induction motor, the rotor always turns at a

speed lower than that of the stator’s field.

The relationship between an asynchronous motor’s speed and its synchronous speed is called slip.

Denoting the motor’s speed as n, its slip can be computed with the following equation:

s
n n

n
s

s

=
−

When an asynchronous motor receives power, there’s a delay before the rotor starts turning.

Therefore, when a motor is started, n = 0 and s = 1. The slip reaches its minimum value when no

load is attached to the shaft. As the load increases, n decreases and the slip increases.

Slip is usually expressed as a percentage of the synchronous speed. Therefore, if the synchronous

speed is 3,600 RPM and the rotor turns at 3,200 RPM, the slip equals (3600 – 3200)/3600 = 0.111 =

11.1%.

ptg16386157

976.3 Asynchronous Polyphase Motors

6

C
H

A
PTER

6.3.2 Current and Torque
Like many motors, an asynchronous motor requires a significant amount of current to start its opera-

tion. In some cases, this startup current can be four to eight times as large as the current used dur-

ing regular operation. This increased current means increased torque, and in some asynchronous

motors, the starting torque can be two or three times larger than the torque exerted in full-loading

conditions.

When a load is attached to the shaft, the rotor’s speed decreases and its conductors spend more

time intersecting the stator’s rotating field. This induces greater current in the conductors, which

produces a greater torque on the rotor. Therefore, the motor’s torque increases with the applied

load. This is shown in the graph in Figure 6.8 .

Rotor Speed (RPM)

Torque

Breakdown
torque

Pull-up torque

Starting
torque

Full-load torque

Rated
speed

Synchronous
Speed

 Figure 6.8
 Typical speed-
torque graph for
an asynchronous
motor

As the load increases, the torque increases until it reaches the breakdown torque . The pull-up
torque is the minimum torque between the starting torque (also called the locked rotor torque) and

the breakdown torque.

 The speed given on a motor’s datasheet is its rated speed . When the motor runs at its rated speed,

the torque it exerts is its full-load torque . These properties are illustrated in Figure 6.8 with dashed

lines. The motor’s slip can be computed using its rated speed and synchronous speed.

 The motor exerts no torque when its speed matches its synchronous speed. This is because the

rotor’s conductors aren’t intersecting the rotating magnetic field.

6.3.3 Squirrel-Cage Rotor
The oldest and most popular type of asynchronous motor has a cylindrical rotor with conductors

embedded into its surface in a striped pattern. This rotor looks like a running wheel used by gerbils

and hamsters, so it’s called a squirrel-cage rotor . Figure 6.9 gives an idea of what it looks like.

ptg16386157

AC Motors98

II

PA
R

T

The conductors along the surface of the rotor are usually made of copper or aluminum, and the core

is commonly composed of steel. The conductors are connected to one another through the metal end

rings. To reduce cogging, the conductors are skewed at an angle. As discussed in Chapter 3 , “DC

Motors,” cogging occurs when the rotor temporarily locks in place as it turns. This causes the motor

to operate in a sporadic, jerky fashion.

The chief advantage of the squirrel-cage rotor is its simplicity and reliability. The rotor has no com-

mutators, electromagnets, or moving parts, so it can be easily fixed or replaced. Also, because per-

manent magnets are so expensive, squirrel-cage rotors are much cheaper than motors whose rotors

have permanent magnets.

Because of the simplicity, reliability, and low cost, AC motors with squirrel-cage rotors can be con-

structed at large sizes. Whereas DC motors can fit in the palm of your hand, motors with squirrel-

cage rotors can occupy an entire room. Most of the motors in pumps, blowers, heaters, and air

conditioners are AC motors with squirrel-cage rotors.

6.3.4 Wound Rotor
The main drawback of using a motor with a squirrel-cage rotor is that its speed-torque characteristic

can’t be changed. The rotor’s conductors can’t be accessed from outside the motor, so the only way

to increase or decrease the motor’s speed is to change the frequency of the incoming power.

To improve on this, engineers designed a motor whose rotor contains coils of conductive wire

instead of conductive bars. This type of motor is called a wound-rotor motor or a slip-ring motor . For

the sake of brevity, I’ll refer to these motors as WRIMs (wound-rotor induction motors).

 Because of its coils, a WRIM’s rotor is similar to that of a brushed DC motor. However, there are two

important differences:

• Instead of a brush, the coils of a WRIM connect to external circuitry through slip rings on one end

of the rotor. There is one slip ring for each phase.

• Unlike the coils in a brushed DC motor, the WRIM’s coils don’t receive power from outside the

motor.

End rings

Bearing

Shaft

Conductor

 Figure 6.9
 Squirrel-cage
rotor

ptg16386157

996.3 Asynchronous Polyphase Motors

6

C
H

A
PTER

This second point is important to understand. As in all induction motors, a WRIM’s rotor receives

current through induction, not through external power. Instead of power, the rotor’s coils are con-

nected to variable resistances through slip rings on the shaft. Figure 6.10 gives an idea of what the

equivalent circuit looks like.

Rotor
coils Slip

rings
External
resistors

 Figure 6.10
 Rotor circuit of a wound-rotor induction
motor

Increasing the resistance of the WRIM’s coils reduces the strength of the stator’s magnetic field.

This significantly reduces the amount of starting current required by the motor.

For large machines, this can save a great deal of power and can reduce the chances of startup fail-

ure. The graph in Figure 6.11 illustrates the approximate relationship between an induction motor’s

current and speed for different levels of resistance.

Rotor Speed

Percent
of Running

Current

No resistance

400

300

200

100

Low resistance

Moderate resistance

High resistance

 Figure 6.11
 Effect of resistance
on a WRIM’s
current draw

ptg16386157

AC Motors100

II

PA
R

T

Because of the reduced startup current, the WRIM’s initial speed is lower than that of a comparable

motor with a squirrel-cage rotor. This decreased speed means that the conductors intersect the sta-

tor’s magnetic field more often. This interaction increases the rotor’s torque, which means a WRIM’s

starting torque is usually greater than that of a squirrel-cage motor. Figure 6.12 gives an idea of how

a typical WRIM’s torque changes with resistance.

Rotor Speed

Torque

No resistance

High resistance Moderate resistance Figure 6.12
Effect of resistance on a
WRIM’s torque

As shown in the figure, increasing the rotor’s resistance moves the motor’s breakdown torque to the

left. If the breakdown torque is brought all the way to the left, the motor’s starting torque will be

significantly larger than the torque without resistance.

The drawback to the WRIM’s resistance is that its overall torque decreases as the load increases.

For this reason, it’s common for the motor circuit to reduce or remove the WRIM’s resistance as the

load increases.

6.4 Synchronous Polyphase Motors
If a motor’s rotational speed is equal to its synchronous speed, it’s a synchronous motor. These have

the same stator structure as asynchronous motors, but the rotors are significantly different. Based

on rotor structure, synchronous motors can be divided into three categories:

• Doubly excited synchronous motors— The rotor has windings that receive electrical power.

• Permanent magnet synchronous motors— The rotor has permanent magnets embedded into its

perimeter.

• Synchronous reluctance motors— The rotor has teeth that turn with the stator’s magnetic field.

ptg16386157

1016.4 Synchronous Polyphase Motors

6

C
H

A
PTER

This section discusses the motors in each of these categories and explains how their rotors make

synchronous operation possible.

6.4.1 Doubly Excited Synchronous Motors
One type of synchronous motor has windings (electromagnets) in its rotor that receive current from

outside the motor. These motors are called doubly excited because the rotor and stator both receive

power. But the rotor receives DC current instead of AC current, and the current is delivered through

slip rings on the rotor’s shaft.

 The rotor of a doubly excited motor has windings and conductors on its perimeter. In this way, it

combines aspects of a squirrel-cage rotor and a wound rotor. Figure 6.13 gives an idea of what this

looks like.

Slip
rings

Windings

C

End rings

onductor

 Figure 6.13
 Rotor of a doubly excited
synchronous motor

As shown, the rotor’s outer shell has conductors similar to those found on a squirrel-cage rotor.

They serve an important purpose. Doubly excited motors, like many synchronous motors, can’t start

by themselves. That is, the DC power directed to the rotor’s windings isn’t sufficient to start the

rotor turning. However, when voltage is induced in the rotor’s conductors, the force starts the motor.

After the motor starts and current is provided through the slip rings, the rotor’s windings behave

as electromagnets. The electromagnet’s north and south poles are attracted to the opposite poles in

the stator’s rotating field. This attraction turns the rotor, which moves at the same speed as the sta-

tor’s field.

6.4.2 Permanent Magnet Synchronous Motors
A permanent magnet synchronous motor, commonly called a PMSM, has permanent magnets

mounted on the rotor. In this way, it has essentially the same structure as the brushless DC motor

(BLDC) discussed in Chapter 2 , “Preliminary Concepts.” Figure 6.14 depicts the rotor and stator of a

simple PMSM.

ptg16386157

AC Motors102

II

PA
R

T

The fundamental difference between the PMSM and the BLDC is how the stator’s windings are

energized. In a BLDC, the stator’s windings receive pulses of DC current. In a PMSM, the stator’s

windings receive AC power similar to that depicted in Figure 6.2 .

 Because of the difference in power, the back-EMF of a PMSM has a different shape than that of the

BLDC. Whereas the back-EMF of a BLDC is approximately trapezoidal in shape, the back-EMF of a

PMSM is sinusoidal in shape. For this reason, BLDCs are frequently referred to as trapezoidal motors

and PMSMs are referred to as sinusoidal motors.

6.4.3 Synchronous Reluctance Motors
The simplest synchronous motors are the reluctance motors. Their rotors don’t receive power and

they don’t have permanent magnets. Instead, the rotors of a reluctance motor are made of a ferro-

magnetic material (usually iron) that responds to magnetic fields.

On the rotor’s perimeter, regions are removed to concentrate the stator’s field into the remaining

regions. These remaining regions are called salient poles , and Figure 6.15 shows what they

look like.

The principle behind the motor’s operation is just like that of the variable reluctance steppers dis-

cussed in Chapter 4 , “Stepper Motors.” The rotor follows the magnetic field to minimize reluctance

(the magnetic equivalent of resistance) in the stator. The main difference between the variable

reluctance stepper and the synchronous reluctance motor is the power supplied to the stator’s wind-

ings: The stepper receives DC pulses, and the synchronous motor receives AC power.

Synchronous reluctance motors operate at low power, and they’re inexpensive because they don’t

require magnets or coils. The main disadvantage is they exert much less torque than other motors.

For this reason, they can be hard to find. Only a few companies, such as ABB, manufacture these

motors in significant quantities.

Magnets

Stator

A

B

C

A

B

C

Rotor

Windings Figure 6.14
 Cross-section of a
PMSM’s rotor and
stator

ptg16386157

1036.5 Single-Phase Motors

6

C
H

A
PTER

6.5 Single-Phase Motors
If you intend to build a motorized device that runs on household power, you should focus on single-

phase motors. These follow the same essential principles as polyphase motors, but there’s one major

difficulty: Single-phase power can’t produce a rotating magnetic field in the stator in the way that

three-phase power can. Without the rotating magnetic field, the motor can’t start on its own.

For this reason, engineers have devised many methods to generate rotating fields using single-

phase power. Each method corresponds to a different type of motor, and this section discusses three

types of single-phase motors:

• Split-phase motor— Uses a main and auxiliary winding

• Capacitor-start motor— Inserts a capacitor into the stator circuit

• Shaded-pole motor— Blocks off part of a winding to serve as a second pole

 These are all induction motors with squirrel-cage rotors. As discussed earlier, the rotors turn

because of the current induced in their conductors. The speed of rotation is slightly less than the

synchronous speed, which is determined by the changing magnetic field in the stator.

 I’ve heard about single-phase synchronous motors, but I’ve never actually seen one. All the single-

phase motors I’ve encountered belong to the three categories just mentioned.

6.5.1 Split-Phase Motors
The term phase-splitting refers to obtaining two signals with different phases from one single-phase

signal. A split-phase motor generates a rotating magnetic field in the stator by phase-splitting the

single-phase input power.

 To accomplish this goal, a split-phase motor has two windings in its stator: a main winding and an

auxiliary winding. They’re connected to the single-phase power in parallel at an angle of 90°. This is

shown in Figure 6.16 .

Salient
poles

 Figure 6.15
 The synchronous reluctance motor

ptg16386157

AC Motors104

II

PA
R

T

Compared to the main winding, the auxiliary winding has a high resistance and a low inductance.

This ensures that the currents in the two windings are out of phase with one another. The ideal

phase difference is 90°, but the actual phase difference is usually between 30° and 40°. Thankfully,

this is sufficient to produce a rotating magnetic field.

The small phase difference produces a small magnetic field, which results in low torque. But

because of the phase-splitting, split-phase motors are capable of starting by themselves. After the

motor starts and the rotor’s speed approaches the rated speed, a switch opens and removes power

from the auxiliary winding.

6.5.2 Capacitor-Start Motors
A capacitor-start motor has the same essential structure as a split-phase motor, but improves on it

by adding a capacitor in series with the auxiliary winding. Figure 6.17 shows what the stator circuit

looks like.

The capacitor increases the phase difference between the current in the main winding and the cur-

rent in the auxiliary winding. The increase in phase difference produces a corresponding increase in

starting torque, which is the primary advantage of capacitor-start motors over split-phase motors. In

addition, the capacitor reduces the current needed to start the motor’s operation.

In a capacitor-start motor, the circuit’s switch opens when the motor’s speed approaches its rated

speed. This disconnects the capacitor and the auxiliary winding from the power.

One variation on the capacitor-start motor is the permanent split capacitor (PSC) motor. This

removes the switch from the circuit, so the auxiliary winding and its capacitor are always connected

to the main winding. The removal of the switch increases the motor’s reliability and the capacitor

improves the motor’s power factor, but the starting torque isn’t as large as that of a capacitor-start

motor.

A second variation is the capacitor-run motor . This adds a second, larger capacitor in parallel to the

first. Figure 6.18 shows what the stator circuit looks like.

Input
power

Main
winding

Auxiliary
winding

Rotor

Switch

 Figure 6.16
 Stator circuit of a split-phase motor

ptg16386157

1056.5 Single-Phase Motors

6

C
H

A
PTER

Capacitor-run motors provide the same high starting torque as capacitor-start motors and the same

high power factor as permanent split capacitor motors. However, the complexity of the circuit

increases the cost as well as the potential for electrical and mechanical problems.

6.5.3 Shaded-Pole Motors
The shaded-pole motor is the oldest of the single-phase motors discussed here and is also one of the

least expensive. This type of motor doesn’t have any auxiliary windings, and it doesn’t add any new

components. Instead, it changes the shape of the stator’s main winding.

To be specific, a portion of the iron core is cut away and the remaining portion is encircled by a con-

ductive ring. Figure 6.19 shows what this looks like.

Input
power

Main
winding

Auxiliary
winding

Rotor

Switch

Start
Capacitor

Figure 6.17
Stator circuit of a capacitor-start
motor

Input
power

Main
winding

Auxiliary
winding

Rotor

Switch

Run
Capacitor

Start
Capacitor

 Figure 6.18
 Stator circuit
of a capacitor-
run motor

ptg16386157

AC Motors106

II

PA
R

T

The conductive ring is called a shading coil and it serves an important purpose. Like the conductors

in the rotor, the ring receives an induced voltage that produces an induced current. This current is

out of phase from the rest of the current in the winding. As a result, the two out-of-phase currents

produce a rotating magnetic field.

The generated field is so small that shaded-pole motors should only be used in low-torque applica-

tions. Their main advantage is that they’re simple and inexpensive to construct.

6.6 AC Motor Control
Most AC motors don’t have control circuitry—many operators plug the motor into the power outlet

and control it with the On/Off switch. An AC motor’s input power is determined by its locale

(120 V/60 Hz in the U.S. and Canada), so these motors generally run at a fixed speed with a fixed

torque.

One type of motor makes it possible to control speed and torque by connecting or disconnecting

poles in the stator. These motors, called multispeed motors , are used in adjustable devices such as

ceiling fans.

 To provide additional control, engineers have constructed two devices: eddy-current drives and

variable-frequency drives (VFDs). The first part of this section discusses eddy-current drives, and

the rest of this section discusses the operation of VFDs.

6.6.1 Eddy-Current Drives
An eddy-current drive isn’t a traditional motor controller. That is, it doesn’t change any aspect of the

motor’s operation. Instead, it converts the rotation of the motor’s shaft to the rotation of a second

shaft. This second shaft turns with the desired torque and speed.

An eddy current drive consists of four parts:

• A fixed-speed induction motor.

• The clutch, which connects to the motor’s shaft and turns the output shaft.

• A tachometer, which measures the position of the output shaft.

• The controller, which reads data from the tachometer and delivers current to the clutch.

Iron core

Wire

Shading
coil

 Figure 6.19
 Main winding of a shaded-pole motor

ptg16386157

1076.6 AC Motor Control

6

C
H

A
PTER

Figure 6.20 shows how these components are connected.

Shaft

Tachometer

Induction
Motor

Clutch

Output
shaft

Controller

Motor speedCurrent

 Figure 6.20
 Elements of an eddy-current drive

As the motor operates, the clutch converts the rotation of its shaft into the rotation of the output

shaft. An adjustable magnetic field inside the clutch determines how the output torque is related

to the input torque. The speed of the output shaft is determined by the controller, which reads the

position of the output shaft from the tachometer and delivers current to the clutch.

6.6.2 Variable-Frequency Drives
A variable-frequency drive (VFD) is connected between a motor and line power, and its purpose is

to generate power for the motor with the desired voltage and frequency. By using a VFD, you can

tailor the input power to meet the motor’s needs. This can save a significant amount of money and

extend the motor’s life span.

 The operation of a VFD consists of two steps:

• It converts input AC power to DC power. This entails rectification and smoothing.

• An inverter generates a pulse width modulated (PWM) signal with the desired voltage and

frequency.

It’s important to understand that VFDs deliver power in pulse trains, not sinusoidal waveforms.

Figure 6.21 illustrates the operation of a simple VFD.

On the left side, the line current is directed through a series of diodes. These diodes perform full-
wave rectification on the input power. This means the input sinusoid, which ranges from positive to

negative, is converted into a series of half-sinusoids whose values are always positive. This rectified

power is connected across a capacitor, which reduces the ripple and produces near-DC power.

On the right side, the rectified DC power is passed into a series of MOSFETs that serve as electri-

cal switches. As discussed in Chapter 2 , when voltage is applied to a MOSFET’s gate, the resis-

tance between its source and drain becomes negligible. In this circuit, called an inverter , the upper

MOSFETs connect the upper voltage to the motor’s output and the lower MOSFETs connect the

lower voltage.

ptg16386157

AC Motors108

II

PA
R

T

A microprocessor is connected to each of the MOSFETs’ gates. Applying voltage to different gates

generates pulses to be sent to the motor. These pulses are formatted according to pulse width mod-

ulation (PWM), which increases power to the motor by increasing the pulse width.

VFDs commonly deliver power using sinusoidal PWM, or SPWM. This method increases and

decreases the pulse width in a sinusoidal fashion. Figure 6.22 shows how this works.

Line
power

Motor

Rectification and Smoothing Inverter

Variable-Frequency Drive Figure 6.21
 Variable-frequency
drive

 Figure 6.22
 Sinusoidal pulse width modulation
(SPWM)

The sinusoid’s frequency is determined by the VFD settings. In many cases, it’s important that the

motor provide maximum torque regardless of the frequency. For this reason, many VFDs keep the

voltage/frequency ratio constant.

6.6.3 VFD Harmonic Distortion
VFDs provide many advantages, but one disadvantage involves the waveform of the output power.

No matter how good the VFD’s rectifier is, its output power will still contain traces of the original

input AC power. To be specific, its output will contain frequencies at multiples of the original fre-

quency. These frequencies are called harmonics , and having harmonics present in the VFD’s output

can make it difficult to control a motor with precision. For example, if the original AC frequency is

60 Hz, its harmonic frequencies are 120 Hz, 180 Hz, 240 Hz, and so on.

ptg16386157

1096.7 Universal Motors

6

C
H

A
PTER

One significant issue caused by harmonics is noise. Harmonic distortion can cause minor deviations

in the motor’s operation that produce sound. In addition, the high-frequency components in the

power can interfere with electric circuits and RF communication. For this reason, it’s important to

keep VFDs and high-speed motors away from critical circuitry.

With modern VFDs, harmonic distortion isn’t a significant problem. However, if power from a regu-

lar VFD won’t be sufficient, you can get better results from a multipulse VFD. This type of VFD uses

multiple rectification stages.

A 6-pulse VFD rectifies the AC power with the six-diode rectifier presented in Figure 6.21 . A

12-pulse VFD uses two rectification stages, and an 18-pulse VFD uses three. These additional stages

significantly reduce the amount of harmonic frequency content in the VFD’s output. The drawback

of multipulse VFDs is that they’re larger and more expensive than regular VFDs.

 Other methods for reducing harmonic content include low-pass broadband filtering and placing an

inductor in series with the VFD’s power. An inductor’s impedance increases with frequency, and an

inductor used to reduce high-frequency content from a signal is called a DC choke .

6.7 Universal Motors
No discussion of AC motors would be complete without mentioning universal motors , which can run

off of DC power or single-phase AC power. These are commonly found in appliances such as food

processors and vacuum cleaners.

In essence, a universal motor is a series-wound brushed DC motor whose structure is slightly modi-

fied to receive AC power. As discussed in Chapter 3 , a series-wound brushed DC motor has the fol-

lowing properties:

• The rotor’s windings are connected in series to the windings in the stator, which generate a

magnetic field.

• The rotor’s windings receive power through a mechanical commutator called a brush.

The problem with running DC motors on AC power is that the windings in the rotor and stator add

a great deal of inductance to the circuit. This increases the phase difference between voltage and

current to nearly 90°. This reduces the power factor to cos(90°), which equals 0. In other words, the

voltage and current are so out of phase that the motor can’t perform real work.

To help solve this problem, the universal motor has a compensating winding connected in series.

This reduces the inductance in the armature and thereby reduces the phase difference between the

current and voltage. Figure 6.23 presents a simplified circuit for the universal motor.

In addition, the number of wires in the stator’s windings is kept to a minimum. This reduces the sta-

tor’s inductance in a universal motor.

 One important advantage of universal motors is their high starting torque. Because the rotor and

stator windings are connected in series, an increase in current increases both magnetic fields.

Therefore, the motor’s high starting current produces a significant starting torque.

The main drawback of universal motors, like that of brushed DC motors, is the brush. The brush’s

presence reduces the motor’s efficiency, and its operation produces friction and heat that degrade

the motor over time.

ptg16386157

AC Motors110

II

PA
R

T

6.8 Summary
DC motors are more common in maker projects, but AC motors are more numerous throughout the

world. Nearly all the electric motors used in industry and households run on AC current, so it’s a

good idea to understand how they work. The goal of this chapter has been to present different AC

motors so you can select the most suitable motor for your projects.

 There are many different types of AC motors, so it’s important to classify them according to their

operation. Polyphase motors run on AC power with multiple phases (usually three), whereas single-

phase motors run on power with a single phase. In both cases, the input power is delivered to wind-

ings in the stator, which produce a rotating magnetic field.

The speed of a motor’s rotating field is called its synchronous speed. A synchronous motor rotates at

the same speed as its synchronous speed. Asynchronous motors rotate slightly slower.

In an asynchronous motor, the rotor has conductors that receive induced voltage from the rotating

field. This induction causes the rotor to turn at a speed less than that of the field’s rotation, and the

difference between the motor’s speed and the synchronous speed is called slip. The torque-speed

properties of a squirrel-cage induction motor can’t be changed because the rotor’s conductors can’t

be accessed. In contrast, the conductors of a wound-rotor have variable resistance. Increasing resis-

tance reduces the starting current and increases the starting torque.

This chapter presented three types of synchronous motors: doubly excited synchronous motors,

permanent magnet synchronous motors, and synchronous reluctance motors. The only difference

between them is the rotor. The rotor of a doubly excited synchronous motor receives DC current,

and the rotor of a permanent magnet synchronous motor has magnets mounted on its perimeter.

The rotor of a synchronous reluctance motor is made of a ferromagnetic material that follows the

rotating field.

In a single-phase motor, the stator needs special circuitry to generate a rotating field. Split-phase

motors have two windings in the stator, a main winding and an auxiliary winding, but the phase

difference is too small to generate a significant field. For this reason, capacitor-start and capacitor-

run motors have a capacitor in series with the auxiliary winding. In a shaded-pole motor, the stator’s

windings have a blocked-off element encircled by a conductive shading coil. This is sufficient to

generate a rotating field, but these motors are only sufficient for low-torque applications.

I

V

Stator
winding

Rotor

Compensating
winding

Figure 6.23
Universal motor circuit

ptg16386157

1116.8 Summary

6

C
H

A
PTER

AC motors usually receive power directly from household/industry outlets, so motor control isn’t

a significant concern. However, this chapter presented two methods of AC motor control: eddy-

current drives and variable-frequency drives. Eddy-current drives transform the shaft output of one

motor to the output of another shaft. Variable-frequency drives receive power of one voltage and

frequency and provide power with another voltage and frequency.

 Universal motors can run on DC or single-phase AC power. They’re essentially series-wound

brushed DC motors whose inductance is reduced for better AC performance. They’re inexpensive

and provide high starting torque, but the presence of the brush makes them inefficient and prone to

mechanical failure.

ptg16386157

This page intentionally left blank

ptg16386157

GEARS AND GEARMOTORS
If you take an ordinary DC motor from a hobby shop and apply power to

its leads, you’ll see that the shaft rotates quickly—hundreds or thousands

of rotations per minute. But if you attach a significant load to the shaft, it

may not turn at all. This is a frequent problem for makers building motor-

ized systems: The motor rotates at high speed but can’t exert the neces-

sary amount of torque.

A common solution is to buy special motors called gearmotors . A gearmo-

tor is an integrated combination of an electric motor and a gear. The gear

increases the torque delivered to the load and reduces the motor’s speed.

Now the problem is to select the right gearmotor. Should you buy the 6:1

spur gearmotor or the 26:1 planetary gearmotor? What about the gearmo-

tor that ensures low noise by combining a worm gear and a planetary

gear?

 The goal of this chapter is to give you the information you need to under-

stand gearmotors and choose the right one for your project. To introduce

this subject, the chapter begins with an overview that discusses mechani-

cal advantage and the many types of gears available. For each gear, I’ll

explain how it works and present its advantages and disadvantages.

Once you understand the different types of gears, the topic of gearmotors

becomes straightforward.

7.1 Overview of Gears
A gear is a toothed element that can be connected to a motor’s shaft. Its

teeth interact, or mesh , with other toothed elements to change how the

motor’s torque, speed, or direction is applied to the load. The first part of

 7

ptg16386157

Gears and Gearmotors114

II

PA
R

T

this chapter explains how this change in motion works. Then we’ll look at two aspects of gears that

every designer should be familiar with: pitch and backlash.

7.1.1 Power Transmission
As discussed in Chapter 2 , “Preliminary Concepts,” a motor’s power equals its torque multiplied by

angular speed. Put mathematically, P = τω.

 Suppose that a motor’s shaft is attached to a gear (the input gear) that meshes with a second gear

(the output gear). Ideally, the input gear transmits all of its power to the output gear. That is,

τ o ω o = τ i ω i .

 This relationship doesn’t imply that the two gears rotate at the same speed or that they exert the

same torque. Consider the gears depicted in Figure 7.1 . The input gear has six teeth along its perim-

eter and the output gear has 10.

Input gear
(connected to motor)

Output gear
(connected to load)

 Figure 7.1
 Input and output gears

By the time the input gear completes a revolution, the output gear completes only six-tenths of its

revolution. Therefore, the input gear’s rotational speed is greater than that of the output gear. Put

mathematically, ω o = 0.6ω i . Denoting the number of teeth on the input gear as N i and the number of

teeth on the output gear as N o , the relationship between angular speed and the number of teeth can

be expressed with the following expression:

ptg16386157

1157.1 Overview of Gears

7

C
H

A
PTER

N

N
o

i

o

i

ω
ω

=

The output gear is slower than the input gear, but the mechanical power (τω) is the same for both.

Therefore, the output gear must exert greater torque than the input gear. The torque ratio equals

the speed ratio, so we can extend the preceding equation as follows:

N

N
o

i

i

o

o

i

τ
τ

ω
ω

= =

In practical motor systems, it’s common to connect a motor’s gear to a larger gear to increase torque.

This is called gear reduction because the output speed is less than the input speed. The reduction

is usually expressed as X :1, where X is the proportional increase in torque. This increase in torque

is frequently referred to as the gear’s mechanical advantage . It’s also common to see the term gear
ratio used in place of gear reduction .

 For example, a 3:1 gear produces three times the input torque and one-third the speed. A 4:1 gear

produces four times the input torque and one-fourth the speed. Gears can be combined to produce

greater reduction. If a 5:1 gear is connected to a 6:1 gear, the resulting torque will be 6×5 = 30

times greater than the input torque. A combination of gears is called a gear train .

 As gears interact, the contact friction reduces the power transmitted to the output gear. This power

loss is expressed in terms of efficiency. A gear’s efficiency is defined by the following equation:

Power

Powergear
output

input

o o

i i

η τ ω
τ ω

= =

Gears are generally very efficient, with η gear values typically between 90% and 98%. As a later sec-

tion will show, some types of gears are more efficient than others.

 Chapter 2 explained that the efficiency of an electric motor equals the mechanical power (τ i ω i)

divided by the electrical power (VI). If a system contains an electric motor connected to gears, the

system’s efficiency can be determined with the following equation:

VI VIsystem motor gear
i i o o

i i

o oη η η τ ω τ ω
τ ω

τ ω
= ⋅ = ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

In this case, the system’s efficiency equals the product of the efficiencies of the system’s compo-

nents. Multiple gear stages can provide significant gear reduction, but they can also substantially

reduce the system’s efficiency.

7.1.2 Pitch
Gears are simple to understand, but the terminology can be confusing. For example, one spur gear’s

characteristics are given simply as “48P 90T.” The “T” stands for the number of teeth, so the gear

has 90 teeth along its perimeter.

ptg16386157

Gears and Gearmotors116

II

PA
R

T

The “P” stands for pitch, and when we’re discussing gears, there are two types of pitch: circular

pitch and diametral pitch. To help make sense of this, Figure 7.2 presents the same two gears as

 Figure 7.1 , but adds markings that describe pitch.

Pitch
circles

Input
gearCircular

pitch

Pitch
point

Circular
pitch

Output
gear

 Figure 7.2
 Gears and pitch

The center of the figure contains two straight lines: one between the centers of the two gears and

one that corresponds to the gears’ direction of motion. The intersection of these two lines is called

the pitch point .

 Both gears are drawn with a dashed circle that passes through the pitch point. This circle is called

the pitch circle . The diameter of a gear’s pitch circle is its pitch diameter. The pitch radius is half of

the pitch diameter.

 A gear’s circular pitch is the distance between a point on one tooth and a corresponding point on

an adjacent tooth. Circular pitch is measured along the pitch circle, and if two gears have different

circular pitches, they can’t mesh properly.

 A gear’s diametral pitch is the ratio of the number of teeth to the pitch diameter. If you purchase a

gear, this is the value identified with P. For example, if a gear is sold as 48P, it has 48 teeth per inch

of pitch diameter. Other common values are 24P and 32P. As with circular pitch, if two gears have

different diametral pitches, they can’t mesh properly.

ptg16386157

1177.2 Types of Gears

7

C
H

A
PTER

7.1.3 Backlash
In an ideal system, the teeth of two meshed gears would fit so closely together that every motion

of the input gear moves the output gear. Also, if the input gear changes direction, the output gear

changes direction immediately.

In practical systems, there’s always an extra amount of space between the gears’ teeth. This means

that small movements of the input gear may not affect the motion of the output gear. Also, if the

input gear changes direction, it will take time for its teeth to contact those of the output gear. This

lost motion is referred to by a number of names, including slop and play. However, the most com-

mon term I’ve encountered is backlash.

A certain amount of backlash is tolerated to reduce the possibility of jamming and allow for lubrica-

tion, thermal expansion, and minor variations in tooth thickness. To provide backlash, gear design-

ers make the size of the space between teeth larger than the width of a tooth. Put another way, they

make the circular pitch greater than twice the width of a tooth. Another method of increasing back-

lash involves moving the gears further apart.

Backlash can be computed mathematically by subtracting the width of a tooth from the width of the

gap between adjacent teeth. Both dimensions are measured along the gear’s pitch circle.

7.2 Types of Gears
A gear’s purpose is to change the torque, speed, and/or direction delivered by a power source to a

load. The first gears were invented in medieval times, and since then, hundreds of different types

of gears have been constructed. This section won’t present them all, but focuses on six of the most

common gears: spur gears, helical gears, bevel gears, racks and pinions, worm gears, and planetary

gears.

7.2.1 Spur Gears
The oldest and simplest type of gear is the spur gear, which is a disk with teeth extending from its

perimeter. These are the gears depicted in Figures 7.1 and 7.2 . The shafts attached to spur gears

are always parallel to one another.

The principal characteristics of a spur gear are its pitch and number of teeth. This is given by

XP YT, where X identifies the diametral pitch (number of teeth per inch of diameter) and Y is the

number of teeth. As an example, Figure 7.3 presents a 48P 76T spur gear from Traxxas.

One drawback of using spur gears is vibration. As shown in Figure 7.2 , only one or two pairs of

teeth are in mesh at any time. This number is called the gear’s contact ratio, and for spur gears, the

value is generally between 1.2 and 2. Also, the teeth are either fully in contact or not touching at all.

As the gears’ speeds increase, the abrupt changes in contact produce vibration. These vibrations

wear down the gears and affect the stability of the overall system. The most noticeable effect of

gear vibration is noise, which becomes particularly important in automotive systems.

In addition to vibration, the changes in contact produce significant stress in the gears’ teeth. This

increases the possibility of breakage and limits the amount of power that can be transmitted from

one shaft to another.

ptg16386157

Gears and Gearmotors118

II

PA
R

T

7.2.2 Helical Gears
To reduce the vibration associated with spur gears, engineers designed gears whose teeth come

into contact in a more gradual manner. The teeth of these gears are oriented at an angle called the

helix angle . Figure 7.4 shows what the HL20L helical gear from Boston Gear looks like.

Figure 7.3
A 48P 76T spur gear

 Figure 7.4
 The HL20L helical gear

ptg16386157

1197.2 Types of Gears

7

C
H

A
PTER

Because the teeth are slanted, more pairs of teeth can be in mesh at once. The contact ratio of a

helical gear is usually between 2.2 and 4. As a result, the power transmission between two helical

gears is smoother than that between two spur gears, producing less vibration and less noise.

A disadvantage of using helical gears is that some of the force imparted on a tooth is exerted per-

pendicularly to the direction of rotation. This axial force depends on the gear’s helix angle, and

Figure 7.5 makes this relationship apparent.

F
Fx

Ft

 Figure 7.5
 Helix angle and axial force

In this figure, the helix angle is denoted as β. If F is the total force exerted on a tooth with angle β,

the axial force equals F sin(β) and the tangential force equals F cos(β).

To manage the axial force, a system with helical gears needs thrust bearings to prevent damage to

the system. Also, because of the friction involved, helical gears can generate a significant amount of

heat. This makes helical gear systems less efficient than systems with spur gears.

To remove the axial force associated with slanted teeth, helical gears have been developed with

teeth slanted in both directions. These are commonly called herringbone gears, and Figure 7.6 gives

an idea of what they look like.

In most cases, helical gears are connected to parallel shafts. But helical gears can also transmit

power between shafts that aren’t parallel. In this case, the helical gears are called crossed gears . If

the helical gears’ shafts are perpendicular, the gears are called skew gears .

7.2.3 Bevel Gears
Just as a spur gear is a cylinder with teeth on its outer surface, a bevel gear is a truncated cone

with teeth on its outer surface. Figure 7.7 gives a basic idea of what this looks like.

ptg16386157

Gears and Gearmotors120

II

PA
R

T

 Figure 7.6
 Dual-directional teeth of a
herringbone gear

 Figure 7.7
 Geometry of a bevel gear

ptg16386157

1217.2 Types of Gears

7

C
H

A
PTER

In this figure, the angle γ is referred to as the gear’s pitch angle . If two bevel gears are in mesh, the

angle between their shafts equals the sum of the gears’ pitch angles. In most cases, the pitch angle

of a bevel gear is 45° and the shafts of meshed bevel gears are perpendicular. Figure 7.8 shows

what a real-world coupling of bevel gears looks like.

Figure 7.8
Bevel gears oriented at a right angle

If a bevel gear’s teeth are straight, as in a spur gear, it’s referred to as a straight bevel gear. If its

teeth are curved, it’s called a spiral bevel gear. As with the teeth of a helical gear, these curved

teeth increase the contact ratio between two meshed gears, ensuring smooth rotation with minimal

vibration. Both gears depicted in Figure 7.8 are spiral bevel gears.

 One type of spiral bevel gear has a curved overall shape instead of a conical shape. More precisely,

the gear’s shape is that of a hyperbola, and for this reason, the gear is called a hypoid gear .

7.2.4 Rack and Pinion
Just as a bevel gear changes how rotation is oriented, a rack and pinion converts rotational motion

to linear motion. The pinion is a spur gear or helical gear, and the rack gear is a straight bar with

teeth that mesh with the pinion’s. You can think of a rack gear as a spur/helical gear with infinite

radius.

 In many systems, the pinion is the input gear and the rack is the output gear. Figure 7.9 shows

what a rack and pinion looks like.

One important application of rack and pinion gears involves automobile steering. When the steering

wheel turns, its shaft rotates a pinion connected to a rack gear. As the rack moves left and right, it

moves a tie rod that controls the angles of the vehicle’s wheels.

In addition to changing rotational motion to linear motion, the rack and pinion in a steering system

also provides gear reduction. This is why, before the advent of power steering, it took multiple rota-

tions of the steering wheel to change the tires’ angles from fully left to fully right.

ptg16386157

Gears and Gearmotors122

II

PA
R

T

 7.2.5 Worm Gear
 Worm gears can be hard to understand at first, so I’ll compare them to screws. Like a screw, a worm

gear is long and narrow, with a thread wrapped around its outer surface. Unlike a screw, a worm

gear doesn’t taper to a point. Instead, its overall shape is cylindrical with a constant radius.

 When a carpenter uses a screw, he/she rotates the screw, causing the thread to drive further into

the receptacle. A worm gear works in a similar manner. As the worm gear rotates, its thread turns

the teeth of a second gear, which is usually a spur gear or helical gear.

 Like a bevel gear, a worm gear changes the orientation of the input rotation by 90°. Figure 7.10

shows a worm gear meshing with a spur gear.

Pinion

Rack

Figure 7.9
Rack and pinion gear

Worm
gear

Thread Figure 7.10
 A worm gear

ptg16386157

1237.2 Types of Gears

7

C
H

A
PTER

Each time the worm gear completes a revolution, it advances a single tooth of the meshed gear.

Therefore, the gear reduction depends on the number of teeth in the meshed gear. With worm

gears, it’s common to see gear reductions of 20:1 up to 100:1 and 300:1. This significant gear reduc-

tion in a confined space is the most important advantage of worm gears.

A worm drive only transmits power in one direction. That is, in Figure 7.10 , the turning worm gear

rotates the spur gear, but rotating the spur gear will not rotate the worm gear. Put another way, the

input shaft connected to the worm gear is not affected by the output shaft.

As a worm gear rotates, its teeth remain in constant contact with the teeth of the meshed gear.

This ensures silent operation with low vibration, but also produces heat through friction. This loss

of power means that worm gears tend to have low efficiency compared to other gear drives, and the

efficiency decreases as the gear reduction increases.

7.2.6 Planetary Gear
A planetary gear provides significant gear reduction, and unlike any gear mentioned so far, the out-

put shaft has the same direction and center as the input shaft. This means there’s no need for side-

shafts to bear weight.

 A planetary gear consists of a meshed arrangement of simpler gears, and for this reason, it’s com-

monly referred to as a gear train instead of a gear. Figure 7.11 illustrates the internal structure of a

planetary gear.

Planet
gears

Sun
gear

Ring
gear

Figure 7.11
Structure of a
planetary gear

ptg16386157

Gears and Gearmotors124

II

PA
R

T

A planetary gear contains two gears with the same center: the

sun gear on the inside and the ring gear on the outside. Between

the two gears, it has two or more additional gears called planet
gears . Each planet gear is in mesh with the sun gear and the ring

gear.

 The planet gears are generally connected to one another through

a single rotating element called the carrier or cage . As a result,

they rotate uniformly around the sun gear. In this manner, the

planetary gear has three potentially moving parts: the ring gear,

the sun gear, and the planet carrier. All three parts rotate around the same center.

 The gear reduction depends on which gear is used for input and which is used for output. One

common configuration connects the input shaft to the sun gear and the output shaft to the planet

carrier. This not only provides significant gear reduction, but also allows the sun gear to distribute

torque among the planet gears. This enables planetary gears to be used in high-torque applications

that might break a regular gear train.

7.3 Gearmotors
If you’re building a motorized system, you don’t need to work directly with spur gears or worm

gears. It’s more common to purchase a motor with one or more integrated gears. These gearmotors

aren’t necessary if the application involves rotating the wheels of an RC vehicle, but if the motor

needs to lift a robotic arm or turn a propeller through water, they become essential.

A wide variety of gearmotors is available on the market. Besides cost, the main differences between

them involve the gear ratio and the type of the gear integrated into the device. If you have a solid

understanding of gears, it should be straightforward to find a suitable option for your application.

From what I’ve seen, most gearmotors rely on spur gears or helical gears for power transmission.

They can be distinguished by the center of the output shaft, which is parallel to the motor’s cylin-

drical body but offset from the center. Figure 7.12 presents an example: the 29:1 gearmotor from

SainSmart.

In contrast, if a gearmotor’s shaft has the same center as the system’s cylindrical body, the motor

probably contains a planetary gear. If the motor’s shaft is perpendicular to the body, it may contain

a worm gear or a bevel gear. Maxon Motors sells gearmotors that integrate a planetary gear and a

worm gear into the same package.

Gearmotors are frequently used in robotic and high-precision applications, so many gearmotors have

integrated sensors and encoders. As an example, the gearmotor depicted in Figure 7.12 has Hall

effect sensors and a quadrature encoder capable of resolving angles down to 360°/64 = 5.625°.

 note
 I’ve omitted the teeth of the
gears in Figure 7.11, but the
gears that make up a plan-
etary gear are usually spur
gears or helical gears.

ptg16386157

1257.4 Summary

7

C
H

A
PTER

7.4 Summary
When I started working with electric motors, I was surprised by how little torque they provide.

Because they’re so heavy and consume so much current, I assumed that they provide a great deal of

torque. This isn’t the case, but the motor’s torque can be increased using gears.

A gear’s torque increase is expressed as X:1, where X is the ratio of the output torque to the input

torque. This factor, referred to as gear ratio or gear reduction, depends on the ratio of the number of

teeth on the meshed gears. If the input gear has N i teeth and the output gear has N o teeth, the out-

put torque will be N o/N i times as large as the input torque.

In addition to the number of teeth, gears are commonly classified by pitch. The pitch circle is the

imaginary circle surrounding a gear that intersects the point of action. Circular pitch is the distance

between similar points on adjacent teeth, as measured along the pitch circle. Diametral pitch equals

the gear’s number of teeth divided by the diameter of its pitch circle. Unless two gears have equal

circular and diametral pitches, they can’t mesh.

The majority of this chapter has focused on presenting the different types of gears. The simplest

and most common gear is the spur gear, which is a disk with teeth protruding from its outer surface.

The interaction of spur gears can produce vibration and noise, so helical gears have teeth slanted at

an angle. This ensures smoother, quieter operation, but a portion of the transmitted force is directed

axially, which reduces efficiency.

Bevel gears and worm gears change the direction of the applied power. That is, these gears make it

possible for the output shaft to have a different angle than the input shaft. In general, worm gears

provide significantly more gear reduction than bevel gears, but because a worm gear’s teeth are

always in contact, its operation can produce heat that reduces the system’s efficiency.

Figure 7.12
The SainSmart 29:1 gearmotor

ptg16386157

Gears and Gearmotors126

II

PA
R

T

A combination of gears is called a gear train, so technically, both the rack and pinion and plan-

etary gears are gear trains. The rack and pinion converts rotational motion to linear motion (or vice

versa). The planetary gear contains multiple rotating elements, all rotating about the center. The

gear reduction depends on which element is connected to the input and which is connected to the

output.

A gearmotor is an electric motor with one or more integrated gears. Once you have a solid grasp

of the different types of gears available, it’s straightforward to select a gearmotor for your project.

But keep in mind that gears always reduce efficiency, and because of the mechanical contact, gears

always add heat to the system and the possibility of damage.

ptg16386157

LINEAR MOTORS
Until this chapter, every electric motor discussed in this book has pro-

duced rotary motion. Voltage and current go in, torque and rotational

speed come out. This chapter leaves those motors behind and takes a

look at linear motors. These motors move in a straight line with linear

force and speed.

Linear motion is needed in many types of systems, but linear motors

aren’t commonly used by makers or professional engineers. That’s

because these motors aren’t well-understood, there aren’t many manu-

facturers, and they’re expensive. For these reasons, designers frequently

obtain linear motion by connecting rotary motors to mechanical elements.

As an example, the popular 3D printer RepRap obtains linear motion by

connecting stepper motors to a timing belt.

 Despite their rarity, linear motors are worth studying. When it comes to

linear motion, linear motors provide better speed and precision than com-

parable electromechanical linkages—and depending on the motor, they

can make more efficient use of power.

 One major application of linear motors is transportation. Electric trains

rely on linear motors to carry passengers and freight across long dis-

tances. Nations have spent billions on maglev (magnetic levitation) trains,

and much of this effort has been devoted to linear motor research.

 8

ptg16386157

Linear Motors128

II

PA
R

T

This chapter presents an overview of the topic of linear motors, dividing them into four categories:

• Linear actuators

• Linear synchronous motors

• Linear induction motors

• Homopolar motors

In addition to discussing the structure and operation of linear motors, this chapter presents a num-

ber of particularly interesting applications. These include coilguns, rail guns, and maglev trains.

These futuristic technologies are actively researched across the globe, and someday, they may cross

the border from science fiction to commonplace usage.

8.1 Linear Actuators
Chapter 2 , “Preliminary Concepts,” explained the fundamentals of electromagnets. If a current-

carrying wire is wrapped around an iron core, the wrapped core will behave like a magnet, with

north and south poles. If current is reversed, the north and south poles switch sides. If current is

turned off, the magnetic behavior stops.

If an iron core is only partially inserted into a current-carrying coil of wire, an interesting thing hap-

pens. The iron core (called a plunger) experiences a force that draws it fully into the coil. Figure 8.1

shows what this looks like.

I

ICoil Plunger

Force

 Figure 8.1
 Motion of an electrical linear
actuator

This type of device is referred to by many names, including solenoid, solenoid actuator, electric

actuator, magnetic actuator, and linear actuator. Some sources refer to it as a linear motor, but from

what I’ve seen, it’s more commonly called an actuator than a motor. For this reason, I’ll refer to it as

a linear actuator .

 This raises an important question—what’s the difference between an actuator and a motor? The

answer is subtle and relates to the device’s function, not its structure. A motor is a device that con-

verts energy into motion. An actuator is a specific type of motor whose motion is intended to control

another mechanism.

 For example, one common application of a linear actuator is to control the position of a mechanical

switch. In this case, the actuator is called a relay . Other actuators open and close valves. In contrast,

ptg16386157

1298.1 Linear Actuators

8

C
H

A
PTER

if a device’s purpose is simply to effect motion, such as spinning the wheels of a remote-controlled

car or rotating the propellers of a quadcopter, it’s a motor, not an actuator.

Another difference between linear actuators and linear motors involves the nature of the input

power. Every linear actuator I’ve encountered requires DC power, but as later sections will show,

linear synchronous motors and linear induction motors rely on AC power.

8.1.1 Operation and Structure
To see how a linear actuator works, it’s important to grasp the concept of magnetic energy .

Preceding chapters have explained how magnets and electromagnets perform mechanical work. A

device’s magnetic energy is the measure of how much work its magnets are capable of performing.

If current flows through an empty coil of wire, the region inside the coil contains a small amount

of magnetic energy. However, if an iron plunger is fully inserted into the coil, the coil’s energy

increases substantially. If the plunger is partially inserted, the region containing the plunger has

more energy than the region that doesn’t.

The force on the plunger equals this difference in energy divided by the distance between the

plunger and the end of the coil. The mathematical relationship for the force is complicated, but there

are three important relationships to be aware of:

• Force increases with the square of the input current.

• Force increases with the square of the number of turns in the coil.

• Force increases with the cross-sectional area of the coil.

 The force always pulls the plunger into the coil, but linear actuators can be constructed to push or

pull the intended load. Figure 8.2 presents a linear actuator that pulls the load using a hook.

 Figure 8.2
 Linear actuator (pull-type)

The metal casing concentrates the coil’s magnetic field inside the actuator. The plunger is attached

to the casing with a spring. When current is sent through the coil, the force pulls in the plunger and

compresses the spring. When the current is removed, the spring extends, returning the plunger to

its original position.

Figure 8.3 depicts a linear motor that pushes the intended load. Here, the right side of the plunger is

attached to a non-ferromagnetic head that pushes outward when the coil is activated.

When current is delivered to the coil, the force pushes the plunger into the coil. When current is

removed, the spring contracts and returns the plunger to its original position.

ptg16386157

Linear Motors130

II

PA
R

T

 Figure 8.3
 Linear actuator (push-type)

Figure 8.4
Linear actuator from Amico

8.1.2 Sample Linear Actuator
Figure 8.4 depicts a linear actuator sold by Amico. This is a pull-type linear actuator, and when

power is supplied, the plunger retracts 5 mm.

The electrical properties of this actuator are given as follows:

• Required voltage : 5 V DC

• Maximum current draw : 1.1 A

Actuators such as this are commonly used to open doors and hatches in vehicles. Smaller actuators

are used in power door locks in cars. Push/pull actuators lock and unlock the car door when driven

with an electric signal.

8.1.3 Coilguns
In most linear motors, the plunger is attached to a mechanism so that it can be pushed or pulled

repeatedly. However, if the plunger isn’t attached and the coil’s current is sufficiently strong, the

ptg16386157

1318.2 Linear Synchronous Motors

8

C
H

A
PTER

motor can launch the plunger as a projectile. In this case, the plunger is referred to as a sabot and

the motor is called a coilgun .

 Compared to regular linear actuators, coilguns require a great deal of power. For a sabot the size

of a thimble, a coilgun might require as much as 30 V at 15 A, but this power is only required for

the tens or hundreds of milliseconds needed to propel the sabot out of the coil. Because of the large

power requirements over a short time, many designs rely on a bank of large capacitors to store

energy. By discharging the capacitors simultaneously, the power circuit can supply enough electric-

ity to launch the sabot.

 Coilguns have fascinated electrically minded amateurs and professionals since the 1930s. A casual

Internet search on the topic will lead to many hobbyist sites that discuss physics, parts, and circuit

designs. However, due to the large power draw, coilguns have never become practical tools.

This doesn’t mean coilguns won’t be important in the future. As I write this, the United States mili-

tary is investigating the use of coilguns to launch aircraft and mortar rounds from naval carriers.

NASA is looking into coilgun-based launchers for its satellites and rockets.

8.2 Linear Synchronous Motors
For rotary AC motors, asynchronous (induction) motors are more common than synchronous motors.

But when it comes to linear motion, linear synchronous motors, abbreviated LSMs, are more

common.

Chapter 6 , “AC Motors,” presented three different types of synchronous AC motors: doubly excited

motors, permanent magnet motors, and reluctance motors. The vast majority of LSMs I’ve seen have

permanent magnets, so this section focuses exclusively on permanent magnet LSMs. To be specific,

this chapter discusses the structure of permanent magnet LSMs and then presents two real-world

examples: the Yaskawa SGLG motors and the Transrapid maglev train line.

8.2.1 Structure
In general, linear motors are constructed by unrolling rotary motors. Figure 8.5 shows what I’m talk-

ing about. The top portion presents a rotary synchronous motor and the bottom portion shows what

the unrolled LSM looks like.

Like rotary synchronous motors, LSMs receive AC power, usually split into three phases. But the

terms used to describe the elements of an LSM are different:

• The moving element is called the forcer , not the rotor.

• The stationary element is called the rail or track , not the stator.

 In the figure, the magnets are on the forcer and the windings are on the track. This is called a

 long stator design. In a short stator design, the windings are on the forcer and the magnets are

on the track. The following discussion presents three short stator motors: iron-core LSMs, ironless

LSMs, and slotless LSMs. But first, I’d like to explain how synchronous speed is computed for linear

motors.

ptg16386157

Linear Motors132

II

PA
R

T

Linear Synchronous Speed
Chapter 6 explained how one cycle of AC power corresponds to a single rotation of the magnetic

field inside the stator. If the input power has frequency f, the time of the rotation is 1/f.

For linear motors, the situation is similar. One cycle of AC power corresponds to a change in the

magnetic field that travels from Winding A back to Winding A. As shown in Figure 8.6 , this distance

equals 2τ.

Permanent-
Magnet

Synchronous
Motor

Iron Core

Magnets

Iron Core

Magnets

Linear
Synchronous

Motor

 Figure 8.5
 Rotary and linear
synchronous motor

A B C A' B' C' A
 Figure 8.6
 Windings of a linear
motor

ptg16386157

1338.2 Linear Synchronous Motors

8

C
H

A
PTER

If the input power has frequency f, the time required to travel across a cycle is 1/f. Therefore, the

motor’s linear synchronous speed is given by the following equation:

v
distance

time f
f

2

1 /
2s

τ τ= = =

The operating speed of an LSM equals this value. For linear motors, it’s given in units of meters/

second instead of revolutions per minute. Also, the equation doesn’t depend on the number of poles.

This is because an increase in the number of poles produces a corresponding increase in τ.

Iron-Core LSM
An iron-core LSM is essentially similar to the linear motor shown in Figure 8.5 , but the windings are

on the forcer and the magnets are on the rail. Figure 8.7 shows what this looks like.

Forcer
Windings

Rail
Magnets

 Figure 8.7
 Structure of an iron-
core LSM

This is referred to as an iron-core LSM because the forcer’s windings are wrapped around iron

cores. This increases the amount of force the motor can deliver, which increases the maximum load

that it can push, pull, or carry.

One drawback of iron-core LSMs involves the forcer’s weight and the iron’s attraction to the rail

magnets. Because of the weight and magnetic attraction, the motor designer must take careful steps

to ensure that the forcer doesn’t come in contact with the rail. This usually involves a sliding mecha-

nism that keeps the forcer at least 0.75 mm away.

 Because of the iron’s attraction to the rail magnets, the forcer may be reluctant to pass from one

magnet to the next. This phenomenon, called cogging , produces a jerky or rippling motion as the

forcer moves. It can be reduced by moving the forcer at high speed and orienting the magnets at an

angle.

Ironless LSM
As its name implies, an ironless LSM doesn’t have iron cores in its forcer. The windings are

wrapped around air, and for this reason, ironless LSMs are commonly referred to as air core motors.

ptg16386157

Linear Motors134

II

PA
R

T

Without the weight and magnetic attraction associated with iron, the forcer can move smoothly

across the track, without cogging or attraction to the rail’s magnets.

The primary drawback of ironless LSMs is that the forcer can only exert a small amount of force. For

this reason, iron-core LSMs are used in applications involving high loads and ironless LSMs should

be used when precision and speed control are more important.

To increase the force that can be exerted, the track of an ironless LSM has two rows of permanent

magnets. These magnets surround the forcer, which is mounted vertically. Figure 8.8 depicts a

cross-section of a typical ironless LSM.

Forcer
Windings

Rail
Magnets

 Figure 8.8
 Cross-section of an ironless LSM

Another disadvantage of using ironless LSMs is cost. Permanent magnets are expensive, especially

the rare-earth magnets commonly used in linear motors. Ironless LSMs have two rows of magnets,

and this makes them significantly more expensive than iron core LSMs. The expense increases as

the length of the track increases.

 The enclosed structure of the ironless LSM makes it difficult to dissipate heat. For this reason, iron-

less motors can’t be run at the same current levels as an iron-core motor. In addition, it’s common to

have heat sensors on the forcer to ensure that the motor isn’t damaged during operation.

Slotless LSM
A slotless LSM serves as a compromise between an iron-core and an ironless LSM. Like an iron-core

motor, its track has a single row of magnets and the forcer is positioned on top of the track. Like an

ironless motor, the windings are wrapped around air. Figure 8.9 gives an idea of what this

looks like.

Slotless motors can’t support the same high loads as iron-core motors, but because of the iron back-

ing, they can exert more force than ironless motors. They also have better heat dissipation than

ironless motors because the forcer travels on top of the track. Further, the track has only one row of

magnets, which makes it less expensive than motors with two rows of magnets.

ptg16386157

1358.2 Linear Synchronous Motors

8

C
H

A
PTER

The main drawback of slotless LSMs involves efficiency. Slotless motors don’t have iron-core wind-

ings or multiple rows of magnets. Therefore, to obtain the same degree of motion, a slotless motor

requires more power than a comparable iron-core or ironless motor.

8.2.2 Case Study: Yaskawa SGLG
The Yaskawa Electric Corporation manufactures a number of different types of AC motors, including

induction motors and servomotors. Yaskawa also provides drive systems for elevators, pumps, and

air conditioning systems.

Yaskawa manufactures three different lines of linear synchronous motors, each with a different four-

letter designation. The SGLF and SGLT lines of motors are iron-core motors, with forcers that travel

on top of a track. The SGLG line consists of ironless motors with two rows of rare-earth magnets on

either side of the forcer. Figure 8.10 depicts one of the motors in Yaskawa’s SGLG line of motors.

Forcer
WindingsIron

Rail
Magnet

 Figure 8.9
 Cross-section of a slotless LSM

 Figure 8.10
 The Yaskawa SGLG linear
synchronous motor

ptg16386157

Linear Motors136

II

PA
R

T

Table 8.1 compares the characteristics of two motors in the SGLG and SGLF lines. The SGLFW-35A

is an iron-core LSM and the SGLGW-40A is an ironless LSM.

Table 8.1 Comparison of Yaskawa’s Iron-Core and Ironless LSMs

LSM Characteristic SGLFW-35A SGLGW-40A

Forcer windings Iron-core Ironless

 Continuous force 80N 47N

 Continuous current 1.4 A RMS 0.8 A RMS

 Peak force 220N 140N

 Forcer mass 1.3 kg 0.39 kg

 Force constant 62.4 N/A-RMS 61.5 N/A-RMS

 Magnetic attraction 809N 0N

 As shown, the iron-core LSM requires more current than the ironless LSM, but is capable of deliver-

ing more force. Because of the iron in the forcer’s windings, its forcer is over three times as heavy as

that of the ironless motor.

 The magnetic attraction is particularly interesting. In the iron-core motor, the attractive force is over

10 times the force delivered during regular operation. Even with skewed magnets on the track, it’s

safe to assume that cogging may be a problem for the SGLFW-35A.

8.2.3 Case Study: Transrapid Maglev System
The term Transrapid refers to three distinct entities:

• A set of maglev (magnetic levitation) trains built between 1970 and 2007.

• The company that constructed the Transrapid trains (called Transrapid International—a joint

venture of ThyssenKrupp AG and Siemens AG).

• The design technology used to build the Transrapid trains, which refers back to a German patent

in 1934.

Transrapid International has constructed nine train lines, and the most recent is the Transrapid SMT

(Shanghai Maglev Train). This has many advantages over conventional trains, including greater

speed, silent operation, and a lack of moving parts. It’s also the fastest commercial train in current

operation, carrying up to 574 passengers at speeds up to 268 miles per hour.

All of the Transrapid trains rely on iron-core linear synchronous motors for propulsion. Unlike the

other LSMs discussed so far, the windings are located on the rail, which is commonly referred to as

the guideway in maglev systems. Magnets are located on the underside of the train, and Figure 8.11

shows what the overall design looks like.

ptg16386157

1378.3 Linear Induction Motors

8

C
H

A
PTER

As shown in the figure, the train wraps around the bottom of the guideway, where the guideway’s

windings interact with the train’s magnets. These windings receive three-phase AC power, and the

only portion of the guideway that receives power is the region directly under the train. The train can

be brought to a halt by reversing the current in the windings.

 Beneath the guideway’s windings, the forcer magnets are DC-powered electromagnets, not perma-

nent magnets. This is necessary because these magnets serve double-duty. In addition to their role

in propulsion, they attract the train to the guideway, thereby making levitation possible. The power

to these electromagnets is precisely controlled to keep the train at a distance of about 1 cm from the

guideway.

8.3 Linear Induction Motors
Linear induction motors, or LIMs, have a great deal in common with LSMs and can be used in the

same applications. Structurally speaking, the main difference is that LIMs don’t have permanent

magnets. Instead, motion is made possible by a conductor that receives induced voltage from the

traveling magnetic field. The first part of this section discusses how LIMs work.

Like LSMs, LIMs play a central role in the field of maglev trains. The second part of this section

presents Japan’s LINIMO train line, which relies on a large-scale LIM for transport.

8.3.1 Structure and Operation
Chapter 6 introduced the topic of induction motors, which have two fundamental properties:

• AC power enters windings in the stator, which combine to produce a rotating magnetic field.

• The stator’s changing field induces a voltage and current in the rotor’s conductors, which results

in a force that turns the rotor.

Forcer
Electromagnets

Guideway
Windings

 Figure 8.11
 The Transrapid maglev
system

ptg16386157

Linear Motors138

II

PA
R

T

A linear induction motor is constructed by unrolling the elements of a rotary induction motor. That

is, the stator of a linear motor consists of windings arranged in a line. Similarly, the rotor consists of

a linear conductor facing the stator. Figure 8.12 shows what this looks like.

Primary

Secondary
Core Conductor

A B C A' B' C' A

 Figure 8.12
 A linear induction
motor

In this figure, the positions of the two elements can be reversed so that the windings move on top of

the conductor. Because both elements can move, LIMs don’t use the terms rotor and stator . Instead,

the element that creates the changing magnetic field is called the primary and the element that

receives induced voltage is called the secondary .

Linear induction motors are polyphase AC motors. In this case, the secondary receives three-phase

power and directs the current to its A/A’, B/B’, and C/C’ windings.

The changing field in the primary induces a voltage in the secondary’s conductor. Voltage produces

a current, and when a current-carrying conductor enters a changing magnetic field, the result is

force.

A LIM’s speed, denoted as v, is always less than its linear synchronous speed. The relationship

between the two is called the slip, which can be computed with the following equation:

s
v v

v
s

s

=
−

This is the same equation for slip as presented in Chapter 6 . Note that slip is commonly expressed

as a percentage.

8.3.2 The LINIMO Train Line
At the 2005 World Expo, Japan demonstrated one of the first commercially available maglev train

lines: the Linear Motor line, or the LINIMO. This relies on a linear induction motor to transport pas-

sengers from Fujigaoka to Yagusa.

ptg16386157

1398.3 Linear Induction Motors

8

C
H

A
PTER

In 2004, researchers at the Tokyo University of Science released a report that provides information

about the LINIMO’s construction and operation. One notable point is that the motor makes use of a

short stator design. That is, the primary is part of the train, and is positioned above the secondary.

This differs from the long stator design employed by the Transrapid discussed earlier.

Figure 8.13 depicts a cross-section of the LINIMO train and platform. As shown, the overall structure

is similar to that of the Transrapid.

Primary Secondary

Levitation
Electromagnets

Figure 8.13
Cross-section of the LINIMO
system

Relying on induced voltage in the secondary, the LINIMO commonly travels around 60 miles per

hour. This is significantly slower than the Transrapid, which travels around 268 miles per hour.

Also, the LINIMO moves with less force. The train line must be shut down when wind speeds

exceed 25 m/s.

The primary receives three-phase AC power and distributes it to a series of windings. Figure 8.14

shows how a portion of these windings are arranged on one side of the primary.

A A B' C C A' B B C' C'B' A' A

A' B B C' C'A' A A

10
mm

31
mm

12
mm

Figure 8.14
Windings of the LINIMO primary

ptg16386157

Linear Motors140

II

PA
R

T

Each winding in the primary has three turns of wire and each receives 300 A. They’re stacked into

two tiers, with the windings of the second tier staggered relative to those in the first. As shown in

the figure, the windings are only tens of millimeters in size. Personally, I find it incredible that such

small electromagnets can move a large train.

The LINIMO’s secondary is simpler in structure. A layer of aluminum is mounted to the top of an

iron extension to the platform. This conductive layer is referred to as the reaction plate .

 Below the primary, the train has electromagnets that keep the train at the proper distance from the

platform. These are called levitation magnets or lift-guide magnets (LGMs). These electromagnets

receive DC power, and as more current is applied, the attractive force between the magnets and the

platform increases. A proximity sensor is used to ensure that the gap is kept to 8 mm.

8.4 Homopolar Motors
Homopolar motors are the oldest of the electrical motors, and the first was demonstrated in 1821.

Like many of the motors discussed in this chapter, they can be rotary or linear. I would have men-

tioned them earlier in this book, but I’ve never seen a practical application of a rotary homopolar

motor.

In contrast, linear homopolar motors have one famous (infamous?) application: the railgun . This

section discusses this interesting topic, but first, it’s important to understand the principle behind

homopolar motors.

8.4.1 Structure and Operation
As discussed way back in Chapter 1 , “Introduction to Electric Motors,” when current-carrying con-

ductors come near a magnet, the result is physical force. In every motor we’ve seen so far, the con-

ductors and the magnet are positioned close to one another but never come into contact.

But what if the magnet becomes part of the circuit loop? Magnets are conductors. What if the

current-carrying conductor and the magnet were connected? In this case, the resulting force on the

conductor will be the same. However, there’s one important difference: If the conductor can spin

around the magnet, it will do so without the need of a brush. Therefore, homopolar motors can be

thought of as brushless DC motors, but they’re nothing like the BLDCs discussed in Chapter 3 , “DC

Motors.”

 The best way to understand how homopolar motors work is to see a demonstration, the most

common of which involves a battery, a permanent magnet, and conductive wire. This has been

performed countless times in classrooms, going back to the nineteenth century. If you search for

homopolar motor demonstrations on the Web, you’ll probably find a video whose setup looks like

that in Figure 8.15 .

Current flows from the battery’s positive terminal to its negative terminal through the wires.

Because the current-carrying wires are near the magnet’s field, a force is produced that rotates them

around the magnet. It’s important to note that this demonstration drains the battery quickly.

The current’s direction and the magnet’s polarity (direction from north pole to south pole) remain

the same throughout the motor’s operation. This is why the motor is called homopolar. (Homos

means “same” in Greek.)

ptg16386157

1418.4 Homopolar Motors

8

C
H

A
PTER

8.4.2 Railguns
To generate strong forces, motors rely on strong permanent magnets (such as the rare-earth

magnets) or strong electromagnets, which are made up of coils of wire surrounding an iron core.

However, every current-carrying conductor exhibits a degree of magnetic behavior. As more current

flows through the conductor, this magnetic behavior grows stronger.

For example, consider the three conductors shown in Figure 8.16 . The two long conductors are fixed

in place and the short conductor is free to move between them. Each carries the same amount of

current, denoted as I.

For normal levels of current, the magnetic behavior of the conductors is negligible. However, if the

current grows large enough, up around 1000 A to 10,000 A, the magnetic behavior becomes strong

enough to create a force that pushes the conductors apart.

The two long conductors won’t move because they’re fixed in place, but the force on the short con-

ductor will push it to the right. This is shown in Figure 8.17 .

The force increases with the current, and if the current is sufficiently large, the force can launch

the small conductor as a projectile. In this case, the fixed conductors are referred to as rails and the

structure is called a railgun.

Battery

Magnet

Wire

Current

 Figure 8.15
 Homopolar motor
demonstration

ptg16386157

Linear Motors142

II

PA
R

T

The speed of a conventional bullet is limited by the chemical properties of gunpowder, but the

speed of a railgun’s projectile is limited only by the amount of current. For this reason, the U.S. Navy

has experimented with railguns to launch projectiles from ships. In 2008, the Naval Surface Warfare

Center demonstrated a railgun capable of launching a seven-pound conductive bullet at seven times

the speed of sound.

The force exerted on the projectile is also exerted on the rails. Therefore, firing a railgun can cause

significant damage to the gun itself. This damage and the extraordinary power requirements are the

two main drawbacks of railgun technology.

 It’s important to see the differences between railguns and the coilguns discussed earlier in this

chapter. A coilgun propels a ferromagnetic sabot through a coil of wire. The sabot doesn’t make con-

tact with the coil, so there’s no damage to the system. However, the sabot’s speed is limited by the

magnetic properties of the coil. In contrast, the conductive projectile of a railgun is only limited by

the amount of current delivered to the rails.

I

I

I

 Figure 8.16
 Current traveling through parallel
conductors

I

I

I

F

 Figure 8.17
 Railgun operation

ptg16386157

1438.5 Summary

8

C
H

A
PTER

8.5 Summary
Many engineers think of linear motors as strange and foreign, with different terminology and operat-

ing principles. However, if you think of a linear motor as an unwrapped rotary motor, you shouldn’t

find the topic difficult to understand. Linear motors accept the same kind of power as rotary motors,

and synchronous speed is computed in essentially the same way.

One point of confusion involves the terms linear actuator and linear motor. A motor is a device that

produces motion, and an actuator is a type of motor intended to control another mechanism. The

operation of an electric linear actuator is made possible by the tendency of an iron core (the plunger)

to be pulled into an energized coil. A linear actuator that launches the plunger out of the coil is

called a coilgun.

Rotary synchronous motors have a number of different types, but the vast majority of linear syn-

chronous motors, or LSMs, are permanent magnet LSMs. In LSM terminology, the moving element is

called the forcer, and the stationary element is called the rail or track. In an iron-core LSM, the forc-

er’s windings have iron cores that increase force but also increase cogging. In an ironless LSM, the

lack of iron makes for smoother motion, but reduces the amount of force. A slotless LSM combines

aspects of iron-core and ironless motors, but has less efficiency than either.

Linear induction motors, or LIMs, are similar to LSMs, but have conductors in place of permanent

magnets. These conductors receive induced current, which produces force in the presence of the

windings’ magnetic field. As with rotary induction motors, LIMs operate at a speed less than that of

the motor’s synchronous speed. The relationship between a LIM’s speed and its synchronous speed

is called slip.

The last section of this chapter discussed homopolar motors. These motors get their name from the

fact that the electric current and magnetic field keep the same direction throughout the motor’s

operation. These motors are the oldest known electric motors, but they’re also the least used. When

it comes to homopolar motors, the only nontrivial application I know of is the railgun. This consists

of two long conductors (the rails) that exhibit magnetic behavior when driven with high current. If

the current is large enough, it can propel a third conductor with tremendous force.

This chapter has presented two maglev train lines: the Transrapid, which is based on LSM tech-

nology, and the LINIMO, which is based on LIM technology. Maglev trains have many advantages

over regular trains, and after so many decades of research and development, you may wonder why

we’re not all riding them. The answer is cost. Maglev train lines are so expensive to construct that

most governments don’t consider them worth the investment. It’s heartbreaking to see a fascinating

technology fall into disuse, but until we see major developments in linear motors, it looks as though

widespread maglev transport will remain out of reach.

ptg16386157

This page intentionally left blank

ptg16386157

MOTOR CONTROL WITH THE
ARDUINO MEGA

The Arduino family of circuit boards is one of the core technologies that

have made the Maker Movement possible. If you’re new to gadget devel-

opment and you want to get your feet wet, Arduino boards are ideal

because they’re so easy to use and easy to program. If you’re an entre-

preneur who wants to manufacture and sell a gadget, Arduino boards are

ideal because they provide high reliability at low cost.

Many hundreds of thousands of Arduino boards have been sold, and

across the world, electronic hobbyists have incorporated them into

projects. Some projects are simple hobbyist gadgets, such as remote-

controlled musical instruments, but many others have become viable

products, including vehicles, household robots, and health-monitoring

systems.

The goal of this chapter is to explain how Arduino technology can be

used to control electric motors. There are three main parts:

• The Arduino Mega— Understanding the hardware and developing

software

• The Arduino Motor Shield— Understanding motor-control devices

• Motor control— Developing software to control a brushed motor,

stepper motor, and servomotor

This chapter covers a great deal of ground, and as much as I’d like to, I

can’t explore any specific subject in detail. Thankfully, there are count-

less Arduino resources on the Internet. In particular, I recommend the

 9

ptg16386157

Motor Control with the Arduino Mega146

III

PA
R

T

documentation page at http://arduino.cc/en/Reference/HomePage and the Arduino forum at http://

forum.arduino.cc .

9.1 The Arduino Mega
The Arduino Mega isn’t the most powerful or the most recent Arduino board, but it’s one of the

most popular. It’s also fully compatible with existing Arduino hardware and software. Table 9.1

presents basic information about the board.

Table 9.1 Specifications of the Arduino Mega

Parameter Name Parameter Value

Dimensions 4 × 2.1 inches

Operating voltage 5 V

Recommended input voltage 7–12 V

 Clock speed 16 MHz

 Digital I/O pins 54

 Analog input pins 16

 With its limited resources, the Mega isn’t suitable for computing tasks such as text editing or web

surfing. However, when combined with the Arduino Motor Shield, it’s capable of controlling brushed

motors, stepper motors, and servomotors. This section discusses the Arduino Mega’s circuit board

and its brain, the ATmega2560 microcontroller. The motor shield is introduced in a later section.

9.1.1 The Arduino Mega Circuit Board
The design of the Mega makes evident Arduino’s focus on simplicity. The power pins are grouped

together and labeled POWER. The communication pins are grouped together under the heading

COMMUNICATION. Figure 9.1 shows what this looks like.

Most of the board’s perimeter is occupied with raised black components that receive single-wire

connections. These are called headers , and the Mega’s header connections are divided into five

groups:

• Power— Receive or deliver external power

• Analog input— Receive analog data to be converted into digital signals for processing

• Digital— Receive or transmit digital signals

• Communication— Communicate signals through three serial ports

• PWM— Transmit control signals using pulse width modulation

http://arduino.cc/en/Reference/HomePage
http://forum.arduino.cc
http://forum.arduino.cc

ptg16386157

1479.1 The Arduino Mega

9

C
H

A
PTER

For the purposes of this chapter, the most important header signals are in the PWM group. We’ll use

these to generate control signals for DC motors.

The left side of the board has a power jack, and the recommended input voltage is between 7 and

12 volts. However, I prefer to deliver power to the Mega through the USB connector. If the Mega is

connected to a PC by USB, it will draw the current it needs to operate.

In addition to delivering power, the USB connection also makes it possible to transfer programs to

the Mega. However, before we get into Arduino programming, I want to introduce the device that

executes the programs: Atmel’s ATmega2560 microcontroller.

9.1.2 Microcontrollers and the ATmega2560
As shown in Figure 9.1 , the center of the circuit board is occupied by a 100-pin device called the

ATmega2560. This device is a microcontroller , and in essence the entire purpose of an Arduino

board is to provide access to this device. This discussion explains what microcontrollers are and

presents the specific characteristics of the ATmega2560.

Microcontrollers
In my experience, the best way to introduce microcontrollers is to compare them with personal

computers. A PC serves a wide variety of purposes involving data processing and digital communi-

cation. To serve these purposes, the PC requires multiple devices—the CPU to process data, RAM

chips to store temporary data, and the hard disk to store programs, files, and the operating system.

A microcontroller (abbreviated MCU) serves similar purposes, but all of its resources are integrated

onto a single chip. This self-containment provides a number of benefits, including low cost, low

ATmega2560 microcontroller

Analog input pins (A0–A15)

PWM pins (2–13)USB connector

Power jack

Figure 9.1
The Arduino
Mega

ptg16386157

Motor Control with the Arduino Mega148

III

PA
R

T

power operation, and ease of circuit design. The drawback is that the MCU’s on-chip resources

aren’t nearly as impressive as those you’d find in a PC.

An example will make this clear. My laptop has 8 gigabytes of RAM and its processor runs at

3 gigahertz. In contrast, the Mega’s microcontroller has 8 kilobytes of RAM and processes data at

16 megahertz. This means my laptop runs nearly 200 times faster than the Mega and can store one

million times as much data.

 MCUs may not be suitable for personal computing, but they’re ideal for maker projects. If you’re

building a simple robot or automated sensor system, the microcontroller’s lack of resources won’t be

an issue. Instead, you’ll appreciate the low cost, and because MCUs are so self-contained, you’ll find

it easy to design the circuit.

In general, gadgets with microcontrollers operate in three steps:

1. Read data from a sensor, such as a temperature sensor or a pressure sensor.

2. Process the data to judge the state of the system.

3. Use the state information to control a mechanism, such as a motor.

 In Step 1, sensor data can take an infinite number of values, and for this reason, the data is referred

to as analog . Before the data can be processed, it must be converted into the ones and zeros

required by processors. This is digital data. To make this possible, most modern MCUs have mul-

tiple analog-to-digital converters, or ADCs.

 In Step 3, microcontrollers control mechanisms using pulse width modulation (PWM), which has

been discussed at length throughout this book. Later in this chapter, I’ll show how the Mega can

use PWM to control brushed motors and servomotors.

The ATmega2560
Most Arduino boards contain Atmel MCUs, and the Mega is no exception. The Mega relies on

Atmel’s ATmega2560 microcontroller to process its data, and Table 9.2 lists a number of its impor-

tant characteristics.

Table 9.2 Characteristics of Atmel’s ATmega2560 Microcontroller

Parameter Name Parameter Value

Clock speed 16 MHz

 Flash memory 256 KB

SRAM 8 KB

EEPROM 4 KB

Number of pins 100

Analog conversion resolution 10-bit

PWM resolution 8-bit

Temperature range –40° to 85° C

ptg16386157

1499.2 Programming the Arduino Mega

9

C
H

A
PTER

In looking at these values, it’s important to understand the difference between the three different

types of memory:

• Flash memory holds programs, which means the largest program that can run on the Mega is

256 KB.

• SRAM (static random access memory) stores temporary data used by the program.

• EEPROM (electrically erasable programmable read-only memory) stores settings and other

parameters.

The SRAM memory is cleared whenever power is removed. In contrast, the Flash memory and

EEPROM maintain their contents without power.

 The ATmega2560 MCU has 100 pins: 11 power pins and 89 pins for input/output. Most of the

I/O pins can serve multiple roles, and configuring the pins’ roles is a major concern in MCU

development.

 Thankfully, the Arduino framework makes pin configuration easy: 54 of the ATmega2560’s I/O pins

are accessible through the Mega’s headers, and the process of configuring their operation is almost

trivially simple.

 The ATmega2560 has many incredible characteristics that have endeared it to makers across the

world, but to really appreciate this device, you need to get your hands dirty and start writing pro-

grams. The next section explains how this is done.

9.2 Programming the Arduino Mega
In general, microcontroller programming isn’t pleasant. You need to be aware of memory maps,

peripheral buses, interrupt vectors, and countless data/control

registers. Also, when you change to a new MCU, you practically

have to rewrite your code from scratch.

 The great innovation of the Arduino framework is that it dramati-

cally simplifies writing code for MCUs. If you’re familiar with

the C programming language, you can come up to speed with

Arduino in minutes—and as new Arduino boards come out, you

can compile and run your programs without modification.

 This section explains how to write, compile, and execute Arduino

programs, commonly called sketches . However, before you can

start programming, you need to get the Arduino environment up and running.

9.2.1 Preparing the Arduino Environment
The Arduino environment is a software package that consists of three components:

• USB drivers needed to communicate with Arduino boards

• A compiler that converts sketch code into executables for microcontrollers

 note
 This chapter assumes a basic
familiarity with C program-
ming. If you don’t have this
background, my favorite
introductory book is C for
Dummies by Dan Gookin.

ptg16386157

Motor Control with the Arduino Mega150

III

PA
R

T

• An integrated development environment (IDE) for writing, editing, compiling, and uploading

sketches

The Arduino environment can be downloaded from http://arduino.cc/en/Main/Software . Two

releases are available, and it’s important to understand the difference between them:

• Arduino 1.0. x — This environment is stable and supports boards with 8-bit processors such as the

Arduino Mega.

• Arduino 1.5. x — This environment supports boards with 32-bit microcontrollers, such as the

Arduino Yún and the Arduino Due. At the time of this writing,

this is a beta release , and to quote the site: “You may encoun-

ter bugs or unexpected behaviours.”

 To program the Arduino Mega, you’ll need the first option.

To download it, open http://arduino.cc/en/Main/Software in a

browser, scroll until you see the Arduino 1.0. x heading, and click

the link corresponding to your operating system.

 After you’ve downloaded the Arduino file, you’re ready to install

the application. The installation process depends on your operat-

ing system:

• For Windows, the instructions are at http://arduino.cc/en/

Guide/Windows .

• For Mac OS X, the instructions are at http://arduino.cc/en/Guide/MacOSX .

• For Linux, the operating instructions depend on the distribution. The list of supported distribu-

tions and their instructions can be found at http://playground.arduino.cc/Learning/Linux .

If you’ve completed the directions, you should have an executable that brings up the Arduino IDE.

Figure 9.2 shows what this looks like on my Windows 7 computer.

When the environment starts for the first time, it has no idea what Arduino board you’re using or

how to access it. Therefore, before you start coding, you need to tell the environment about your

board. For boards connected by USB, I recommend five steps:

1. Connect the Arduino Mega to a USB cable and connect the other end of the cable to a PC.

2. Launch the Arduino environment.

3. In the main menu, go to Tools > Board and select the option Arduino Mega 2560 or Mega ADK.

4. In the main menu, go to Tools > Serial Port and select the serial port to which the Arduino Mega

is connected. The process of determining the connected serial port depends on the operating

system.

5. In the main menu, go to File > Save As and enter blink for the name of the sketch. Click Save.

 After these steps are completed, the environment should look similar to that shown in Figure 9.3 .

 note
 The newer environment soft-
ware (version 1.5. x) has been
in beta for a long time. Many
people are happy with it, but
I’ve found it to be unreliable.
This is why this chapter relies
on the Arduino Mega for
motor control instead of a
newer board.

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/MacOSX
http://playground.arduino.cc/Learning/Linux

ptg16386157

1519.2 Programming the Arduino Mega

9

C
H

A
PTER

 Figure 9.2
 The Arduino development
environment

 Figure 9.3
 The fully configured environment

ptg16386157

Motor Control with the Arduino Mega152

III

PA
R

T

The final step saves an empty sketch to a file called blink.ino (*.ino is the extension for Arduino

sketches). By default, this is saved in the Arduino\blink directory, which is located in the user’s

documents folder. For example, on my Windows system, blink.ino is saved to the C:\Users\Matt\

My Documents\Arduino\blink directory.

9.2.2 Using the Environment
Once you’ve configured the environment for your board, the hard part is over. Now all you need to

do is edit code and use the buttons above the editor.

 To explain how this is done, I’m going to walk through the process of compiling and uploading a

simple sketch. Listing 9.1 presents the code for blink.ino.

Listing 9.1 Ch9/blink.ino—Causing an LED to Blink
/* This sketch sets the voltage of Pin 13 high and low.

This causes the LED connected to the pin to blink. */

// Assign a name to Pin 13

int led_pin = 13;

// At startup, configure Pin 13 to serve as output

void setup() {

 pinMode(led_pin, OUTPUT);

}

// Repeatedly change the voltage of Pin 13

void loop() {

 digitalWrite(led_pin, HIGH); // set the pin voltage high

 delay(1000); // delay one second

 digitalWrite(led_pin, LOW); // set the pin voltage low

 delay(1000); // delay one second

}

If you’d rather not code this by hand, you can load my blink.ino sketch. Every code example in this

book is contained in an archive called mfm.zip, which can be freely downloaded from http://www.

motorsformakers.com .

 After downloading the archive and extracting its contents, you’ll

find blink.ino in the Ch9 directory. You can load this into the envi-

ronment by going to the main menu and selecting File > Open.

After the code has been entered, the next step is to compile

it into a binary suitable for the Mega. This is accomplished by

clicking the leftmost button above the editor, which features a

check mark. If the code has errors, an error message in orange

text will identify the first error and the line of code that produced

it. If there are no errors, a “Done compiling” message will be

displayed.

 note
 If you enter the code by
hand, you’ll see the number
in the lower-left corner of
the editor change as you
type. This identifies the line
number the cursor is on, and
it took me far too long to
figure that out.

http://www.motorsformakers.com
http://www.motorsformakers.com

ptg16386157

1539.2 Programming the Arduino Mega

9

C
H

A
PTER

If clicked, the button with a right-pointing arrow will recompile the sketch and upload it to the

board. If this succeeds, a “Done uploading” message will be displayed and the program will start

executing on the board. On the Arduino Mega, the LED next to Pin 13 will start blinking—one sec-

ond on, one second off.

9.2.3 Arduino Programming
An Arduino program consists of statements that have the same structure and syntax as statements

in the C programming language. That is, each statement ends with a semicolon and statements can

be grouped into named blocks called functions . Arduino supports many of the basic C data types,

and for many Mega programs the only data type you’ll need is the int type.

Unlike C, sketches don’t have a top-level main function. Instead, every sketch can be divided into

three parts:

• Global variables— This part declares and initializes variables that can be used throughout the

sketch.

• setup() — Contains statements to be executed when the board starts up or resets.

• loop() — Contains statements to be repeated after the setup function finishes.

A simple example will clarify how Arduino programs work. The code in Listing 9.1 repeatedly sets

the voltage for Pin 13 high and low, delaying one second with each change. This causes the LED

connected to Pin 13 to blink.

 To understand the blink sketch, you need to be familiar with the

functions provided by the Arduino framework. This discussion

doesn’t cover all of them, but focuses on functions in four catego-

ries: digital I/O, timing, analog read, and analog write. Table 9.3

lists each of them with a description.

Table 9.3 Important Sketch Functions

Category Function Description

Digital I/O pinMode(int pin_num,
int mode_type)

 Configures whether a pin’s mode is
 INPUT , OUTPUT , or INPUT_PULLUP

 digitalRead(int pin_num) Returns HIGH or LOW , depending on the
input voltage

 digitalWrite
 (int pin_num,
 int level)

 Sets the output pin’s voltage to HIGH or
 LOW

 Timing delay(int time) Waits a number of milliseconds before
completing

 delayMicroseconds
 (int time)

 Waits a number of microseconds before
completing

n ote
 HIGH and LOW are regular
 int values. HIGH equals 1
and LOW equals 0.

ptg16386157

Motor Control with the Arduino Mega154

III

PA
R

T

Category Function Description

 millis() Returns the number of milliseconds since
the program started

 micros() Returns the number of microseconds
since the program started

 Analog read analogReference
 (int ref_type)

 Sets the maximum voltage for analog
input

 analogRead() Returns the input analog voltage

Analog
write

 analogWrite
 (int pin_num,
 int duty_cycle)

 Delivers PWM pulses with the desired
duty cycle

This table lists less than half of the functions available for Arduino programming. For the full list,

visit the reference site at http://arduino.cc/en/Reference/HomePage .

Digital I/O
As discussed earlier, the Mega’s pins can be divided into five groups: power, analog input, com-

munication, digital, and PWM. With the exception of the power pins, every pin on the Mega can be

configured to serve one of three roles:

• INPUT— An input pin’s digital voltage level (HIGH or LOW) can be read with digitalRead .

• INPUT_PULLUP — An input pin whose default state is HIGH .

• OUTPUT — An output pin’s voltage can be set with digitalWrite .

 A pin’s mode determines whether it’s an input pin or an output pin. To configure this mode, the

 pinMode function requires two arguments: the pin’s number and the desired mode. By default,

every pin’s mode is set to INPUT . The following code sets Pin 10 to behave as an OUTPUT pin:

pinMode(10, OUTPUT);

If pinMode sets a pin in INPUT or INPUT_PULLUP mode, digitalRead returns an int corresponding

to its voltage level. For INPUT mode, digitalRead returns HIGH if connected to a voltage greater

than 3 V and LOW if connected to a voltage less than 2 V. For INPUT_PULLUP mode, digitalRead

returns HIGH by default, and returns LOW when the pin is connected to ground.

 If pinMode sets a pin’s mode to OUTPUT , then digitalWrite can be called to set its voltage level.

This function accepts two arguments: the pin number and the voltage level. If the second argument

is HIGH , then digitalWrite sets the pin’s voltage to 5 V. If the second argument is low, the pin’s

voltage is set to 0 V.

 As a brief example, the following code reads the voltage level of Pin 7 and writes the voltage level

to Pin 9:

res = digitalRead(7);

digitalWrite(8, res);

http://arduino.cc/en/Reference/HomePage

ptg16386157

1559.2 Programming the Arduino Mega

9

C
H

A
PTER

If this code is placed inside the loop function, it will be executed repeatedly. If it’s placed inside the

setup function, it will be run once per execution of the program.

Timing
The Arduino timing functions are easy to understand and use. There are four in total: Two specify

timing delays and two identify how long the program has been running.

When a program updates a pin’s state, such as when digitalWrite changes a pin’s voltage, you

may want to maintain this state for a duration of time. This is made possible by the delay and

delayMicroseconds functions.

 For example, the blink application sets Pin 13’s voltage from HIGH to LOW and back again. With each

change, the delay function maintains the state for 1 second. This is accomplished with the follow-

ing code:

delay(1000);

Once delay starts, further statements won’t execute until it finishes. Its argument identifies the

wait time in milliseconds. If the argument is 250, delay will prevent statements from executing for

a quarter of a second.

In many applications, a millisecond can be too long. If this is the case, you can call delayMicro-

seconds . This is similar to delay , but the argument identifies the wait time in microseconds. A

microsecond is one-thousandth of a millisecond, so delayMicroseconds(500) waits for 500 micro-

seconds, which equals one-half of a millisecond, which equals 0.0005 seconds.

 In a sketch, the loop function executes until power is removed. This means you can’t halt the loop

function or break out of it. However, if you want to execute code for a specific duration of time, you

can use the millis and micros functions. These tell you how long the program has been running,

and their return values are given in milliseconds and microseconds, respectively.

 An example will show how millis is used in practice. The following code sets Pin 13 to HIGH for

the first 5 seconds, LOW for the next 5 seconds, and back to HIGH :

if (millis() < 5000)

 digitalWrite(13, HIGH);

else if (millis() < 10000)

 digitalWrite(13, LOW);

else

 digitalWrite(13, HIGH);

micros allows more precise time measurement. This can be helpful when you’re controlling a mech-

anism or communicating with another device.

Analog Read
If you want to read data from a sensor or another analog device, Arduino provides two crucial func-

tions: analogReference and analogRead .

ptg16386157

Motor Control with the Arduino Mega156

III

PA
R

T

An analog signal can take an infinite number of values, but the Mega’s pins can’t read an infinite

number of values. Therefore, when writing a sketch that reads analog data, you need to know the

maximum voltage that can be read.

By default, the maximum analog voltage that can be read by the Mega is 5 V. This means the analog

inputs can only distinguish inputs between 0 V and 5 V. This maximum can be changed with the

analogReference function, whose argument can take one of four values:

• DEFAULT — The default value of 5 V.

• INTERNAL1V1 — A maximum of 1.1 V.

• INTERNAL2V56 — A maximum of 2.56 V.

• EXTERNAL — The maximum is set by the voltage on the AREF pin.

 If the board is oriented as shown in Figure 9.1 , AREF is the leftmost pin in the top header. If

analogReference is called with its argument set to EXTERNAL , the board’s analog pins will read

input voltages between 0 V and the voltage on AREF . Note that AREF must be set to a voltage

between 0 V and 5 V.

 Like digitalRead , analogRead accepts the pin number that the voltage should be read from. Also

like digitalRead , analogRead returns an int . However, there are two major differences between

these functions:

• The int returned by analogRead ranges from 0 and 1023, where 0 represents a voltage of 0 V

and 1023 represents the maximum voltage.

• analogRead can only be called for specially configured analog input pins. As shown in Figure

 9.1 , the Arduino Mega has 16 analog input pins, A0–A15.

 An example will make this clear. The following code reads the analog voltage on Pin A5:

analog_v = analogRead(A5);

Another point about the analog input pins is that they can be accessed by the digital I/O functions,

digitalRead and digitalWrite . For example, the following code reads the digital voltage level

from Pin A5:

digital_v = digitalRead(A5);

Like regular digital pins, the analog input pins are configured in INPUT mode by default. With the

pinMode function, they can be configured in the OUTPUT or INPUT_PULLUP mode.

Analog Write
The analogWrite function is so important that it deserves its own category. When I first saw this

function, I assumed the microcontroller had digital-to-analog converters (DACs) capable of convert-

ing integer values into true analog outputs. Unfortunately, the Mega doesn’t have any DACs, so it’s

incapable of producing real analog values.

ptg16386157

1579.2 Programming the Arduino Mega

9

C
H

A
PTER

Instead, analogWrite on the Mega produces a train of pulses formatted with pulse width modula-

tion (PWM). As introduced in Chapter 2 , “Preliminary Concepts,” PWM is the primary mechanism

for controlling most DC motors. Pulses in a PWM signal have the same height and period, but the

pulse width may vary over the course of the signal. The ratio of the pulse width to the period is the

duty cycle.

 To generate a PWM signal, the analogWrite function needs two arguments:

• Pin number— analogWrite is available only for a specific set of pins (2–13, 44–46 on the Mega).

It cannot be called on the analog input pins.

• Duty cycle— This value determines the time width of the pulse relative to the time between

pulses. This takes a value between 0 (always off) and 255 (always on).

The code in Listing 9.2 shows how analogWrite can be used to generate pulses.

Listing 9.2 Ch9/pwm.ino—Pulse Width Modulation
/* This sketch produces a pulse-width modulation (PWM) signal

whose duty-cycle switches between 0%, 25%, 50%, and 75%. */

// Assign a name to Pin 13

int pwm_pin = 13;

// Configure Pin 13 as an output pin

void setup() {

 pinMode(pwm_pin, OUTPUT);

}

// Switch the duty-cycle between 25% and 75%

void loop() {

 analogWrite(pwm_pin, 0); // set duty cycle to 0%

 delay(1000); // delay one second

 analogWrite(pwm_pin, 64); // set duty cycle to 25%

 delay(1000); // delay one second

 analogWrite(pwm_pin, 128); // set duty cycle to 50%

 delay(1000); // delay one second

 analogWrite(pwm_pin, 192); // set duty cycle to 75%

 delay(1000); // delay one second

}

In this sketch, setup configures Pin 13 in OUTPUT mode. Then loop calls analogWrite four times,

changing the duty cycle from 0% to 25% to 50% to 75%. This changes the brightness of the LED con-

nected to Pin 13. After each change, the sketch delays for one second. Figure 9.4 gives an idea of

what these pulses look like.

The time between pulses (period) varies from board to board, and occasionally from pin to pin.

Based on my tests on the Mega, the period for Pins 2, 3, and 5–12 is 2.05 ms. The period for Pins 4

and 13 is about 1.025 ms. Put another way, the PWM frequency for Pins 2, 3, and 5–12 is 488 Hz and

the PWM frequency for Pins 4 and 13 is 976 Hz.

ptg16386157

Motor Control with the Arduino Mega158

III

PA
R

T

It’s possible to change the PWM frequencies of the Arduino Mega with special code. This topic lies

beyond the scope of this book, but there are plenty of online resources that explain how it can be

done.

9.3 The Arduino Motor Shield
The Arduino Mega has many capabilities, but it can’t deliver enough current to control a motor. It

also lacks the H bridge needed to reverse a motor’s direction. Therefore, before the Mega can con-

trol a motor, it must be connected to the Arduino Motor Shield.

 In Arduino parlance, a shield is a secondary circuit board that can be connected on top of an

Arduino board. Many different types of shields are available for Arduino devices, including shields

for wireless communication, GPS tracking, and MP3 playing. The motor shield contains resources

needed for motor control, and Figure 9.5 shows what it looks like.

The motor shield may seem confusing because of the many connections to support different types of

motors. The goal of this section is to explain how it works. Later sections explain how the shield can

be used to control specific motors.

9.3.1 Power
The logic devices on the motor shield receive power from the Arduino Mega, but this isn’t sufficient

to deliver power to a motor. For this reason, the motor shield has its own power connections: the

Vin and GND screw terminals in the lower-left of the figure. Vin accepts voltages between 7 V and

12 V and can receive as much as 2 A of current per motor.

If Vin is set to a high voltage, it’s important to keep the shield’s power from affecting the Arduino

Mega. The official directions recommend removing the “Vin Connect” jumper on the underside of

the shield. I recommend bending the shield’s Vin pin (at the far right of the POWER header) so that

it doesn’t connect to the Mega.

Above the Vin and GND screw terminals, the motor shield has four connections for output power.

These can provide power to two brushed motors or one stepper motor. Later sections explain how

this is accomplished.

25% duty cycle 50% duty cycle 75% duty cycle0% duty cycle
 Figure 9.4
 PWM output from
 analogWrite

ptg16386157

1599.3 The Arduino Motor Shield

9

C
H

A
PTER

9.3.2 The L298P Dual H Bridge Connections
Chapter 3 , “DC Motors,” introduced the H bridge, whose four switches make it possible to reverse

current to a motor. The motor shield contains two H bridges in the form of the L298P integrated

circuit. This chip uses bipolar junction transistors (BJTs) to serve as switches, and Figure 9.6 shows

how the first H bridge is connected to the shield’s signals.

This circuit is complex, but keep in mind that its primary purpose is to deliver power to the motor

outputs, MOT_A+ and MOT_A-. To turn the motor in the forward direction, MOT_A+ should be con-

nected to Vin and MOT_A- should be connected to GND. To reverse the motor’s direction, MOT_A+

should be connected to GND and MOT_A- should be connected to Vin.

The PWM_A signal receives PWM pulses from the Arduino Mega board. When this is high, the cir-

cuit functions normally. When it’s low, no voltage is applied to the switches’ inputs, which means

MOT_A+ and MOT_A- are left unconnected.

If PWM_A is high, the states of the four switches are controlled by DIR_A and BRAKE_A. If DIR_A is

high, S 0 connects MOT_A+ to Vin. If DIR_A is low, S 2 connects MOT_A+ to GND.

Analog
inputs

Analog input pins (A0–A15)

Board
power (GND)

Board
power (Vin)

Motor
power (B+)

Motor
power (B-)

Motor
power (A+)

Motor
power (A-)

Two wire interface (TWI) PWM pins (2–13)

Analog
(PWM)
outputs

L298P Dual H bridge

 Figure 9.5
 The Arduino Motor Shield (v1.1)

ptg16386157

Motor Control with the Arduino Mega160

III

PA
R

T

The right of the diagram shows how BRAKE_A affects the circuit. When BRAKE_A is low, DIR_A# is

the inverse of DIR_A. This means MOT_A- is connected to GND when MOT_A+ is connected to Vin,

and vice versa.

 However, when BRAKE_A is high, DIR_A# equals DIR_A. This means MOT_A+ and MOT_A- are

always connected to the same source. Because the voltage difference between MOT_A+ and

MOT_A- is zero, no current flows through the motor, so it comes to a halt.

To control a motor properly, it’s important to know how the signals in Figure 9.6 relate to the

Arduino Mega’s pins. Table 9.4 lists each of the motor signals and their corresponding pins.

Table 9.4 Motor Signals and Arduino Pins

Motor Signal Arduino Mega Pin Description

DIR_A 12 Controls the direction of Motor A

DIR_B 13 Controls the direction of Motor B

PWM_A 3 PWM signal for Motor A

PWM_B 11 PWM signal for Motor B

BRAKE_A 9 Halts Motor A when high

BRAKE_B 8 Halts Motor B when high

SNS_A A0 Current sensing for Motor A

SNS_B A1 Current sensing for Motor B

DIR_A

BRAKE_A
PWM_A

MOT
A+

MOT
A-

Vin

S0

S1

S2

S3

SNS_A

GND

DIR_A#

 Figure 9.6
 H bridge
connections

ptg16386157

1619.3 The Arduino Motor Shield

9

C
H

A
PTER

9.3.3 Controlling a Brushed Motor
An example will clarify how the dual H bridge and its connections can be used to control a motor.

The code in Listing 9.3 controls a brushed DC motor whose wires are connected to the shield’s

Motor Power A+ and Motor Power A- screw terminals.

Listing 9.3 Ch9/brushed.ino—Brushed DC Motor Control
/* This sketch controls a brushed motor. It drives it in the

forward direction at 75% duty cycle and halts. Then it

drives it in reverse at 75% duty cycle and halts. */

// Assign names to motor control pins

int dir_a = 12;

int pwm_a = 3;

int brake_a = 9;

// Configure the motor control pins in output mode

void setup() {

 pinMode(dir_a, OUTPUT);

 pinMode(pwm_a, OUTPUT);

 pinMode(brake_a, OUTPUT);

}

// Deliver power to the motor

void loop() {

 // Drive the motor forward at 75% duty cycle

 digitalWrite(brake_a, LOW);

 digitalWrite(dir_a, HIGH);

 analogWrite(pwm_a, 192);

 delay(2000);

 // Halt the motor for a second

 digitalWrite(brake_a, HIGH);

 delay(1000);

 // Drive the motor in reverse at 75% duty cycle

 digitalWrite(brake_a, LOW);

 digitalWrite(dir_a, LOW);

 analogWrite(pwm_a, 192);

 delay(2000);

 // Halt the motor for a second

 digitalWrite(brake_a, HIGH);

 delay(1000);

 }

ptg16386157

Motor Control with the Arduino Mega162

III

PA
R

T

When the processing loop starts, DIR_A is set to 1 and PWM_A is set to 192. This drives the motor

forward at 75% duty cycle. After a halt period, DIR_A is set to 0 and PWM_A is set to 192. This

drives the motor in reverse at 75% duty cycle.

9.4 Stepper Motor Control
Of the many motors discussed in this book, stepper motors are the easiest to understand: They

rotate through a fixed angle and halt. But they aren’t the easiest motors to control. Bipolar steppers

have four connections that require signals, and unipolar steppers have six.

The motor shield makes it straightforward to control a stepper. Not only is the shield’s hardware

ideally suited for the purpose, but Arduino provides free software to get your sketches working.

This free software is packaged in the form of a library , so the first part of this section explains how

to obtain the Stepper library and use its functions.

9.4.1 The Stepper Library
When you install the Arduino environment, you can call about 40 functions, not including the Stream

and Serial functions. This set of functions can be extended using libraries. For example, one library

contains functions for communicating across a serial peripheral interface (SPI) bus. Another contains

functions that control liquid crystal displays (LCDs).

 To see what libraries are available, visit http://arduino.cc/en/Reference/Libraries . Most of these

libraries fall into one of two categories: standard libraries and contributed libraries. Contributed

libraries must be downloaded and installed into the Arduino environment. Standard libraries don’t

have to be downloaded or installed. They’re already included in the environment.

To access functions from a standard library, open a sketch in the environment’s editor. Then, in the

main menu, go to Sketch > Import Library and select the library you’re interested in. This section

relies on the Stepper library, and if you select this option, the following code will be prepended to

the sketch:

#include <Stepper.h>

With this line added to the sketch, you can call the functions of the Stepper library. Table 9.5 lists

each of them and provides a description of its purpose.

Table 9.5 Functions of the Stepper Library

Function Description

Stepper(int steps_per_rev,
 int pin1, int pin2)

 Returns a Stepper object with the given number of
steps per revolution and connection pins

 Stepper(int steps_per_rev,
 int pin1, int pin2,
 int pin3, int pin4)

 Returns a Stepper object with the given number of
steps per revolution and connection pins

 setSpeed(int rpm) Used to set the stepper speed in revolutions per minute

 step(int steps) Used to tell the stepper to turn one or more steps

http://arduino.cc/en/Reference/Libraries

ptg16386157

1639.4 Stepper Motor Control

9

C
H

A
PTER

These functions are straightforward if you know what objects and classes are. Just in case you

don’t, I’ll provide a brief overview of object-oriented theory. Then I’ll explain how to use the func-

tions in Table 9.5 .

Objects and Classes
The first two functions in Table 9.5 aren’t like any of the other functions discussed in this chapter.

That is, they’re not called in the setup or loop method. Instead, their purpose is to create a new

global variable, and for this reason, the Stepper function must be coded above the setup function.

 The variable created by the Stepper functions isn’t an int or a float , but has the Stepper data

type. Technically speaking, Stepper is a class , and any variable created by the Stepper method is

an object . Object-oriented programming (OOP) is a deep topic, and many books have been written

on it. However, for Arduino development, you need to understand only four points:

• Every object is created by a function called a constructor . A class may have multiple constructors,

and each must have the same name as its class.

• An object may contain variables of its own. These are called member variables .

• An object may contain functions of its own. These are called member functions .

• An object’s member variables and functions can be accessed by following the object name with a

dot (.) and the name of the variable or function.

 In Table 9.5 , the first two functions are constructors and the second two functions are member func-

tions. As an example, the following code creates a Stepper object using the first constructor in the

table. Later in the sketch, the loop function calls one of the object’s member functions.

Stepper s = Stepper(200, 6, 5);

...

loop() {

 ...

s.step(1);

...

}

The first line calls the Stepper constructor. Like a regular function, the constructor accepts argu-

ments and returns a variable. In this case, the variable is a Stepper object named s .

 This object has two member functions it can call: setSpeed and step . In this code, the object’s

 step function is called inside loop . The dot between s and step identifies step as a member of the

 s object. It’s important to note that a member function must be called with its associated object.

Stepper Functions
In both Stepper constructors, the first argument sets the number of steps the motor needs to turn

to complete a revolution. For example, if each turn of the stepper rotates by an angle of 1.8°, the

number of steps in a revolution is 360°/1.8° = 200. The constructor requires that this be given as

an int .

ptg16386157

Motor Control with the Arduino Mega164

III

PA
R

T

The constructors’ other arguments identify which pins control the stepper motor. Depending on the

nature of the motor, it may be connected to two or four pins.

 After the Stepper object is created, setSpeed specifies the desired speed of the motor. By combin-

ing the steps per revolution and the revolutions per minute, the program determines the time delay

between steps.

 For example, suppose the motor takes 150 steps to complete a revolution and setSpeed is called

with a speed of 20 revolutions per minute. The program will determine that the motor should take

150 × 20 = 3000 steps in a minute, or 50 steps per second. Therefore, the program will delay

1/50 = 0.02 seconds between steps.

The last function in the table is step , whose argument identifies how many times the motor should

step. If the argument is 1, the motor will step once and control will return to the program. If the

argument is greater than 1, the motor will step multiple times. In this case, the program will halt

until the steps are completed. If the argument is negative, the stepper will rotate in the reverse

direction.

9.4.2 Controlling a Stepper Motor
As discussed in Chapter 4 , “Stepper Motors,” stepper motors come in two types: bipolar and

unipolar. As a quick review, here are their characteristics:

• Bipolar steppers have four wires. Unipolar motors have five or six.

• Bipolar steppers require two H bridges for control. Unipolar stepper control is less complex.

• Bipolar steppers are significantly more efficient because they utilize the entire length of each

winding when energized.

The drawback of using bipolar steppers is the need for two H bridges, but the motor shield’s L298P

provides two H bridges, so this isn’t a concern. Therefore, this discussion focuses on controlling

bipolar steppers. If you have a unipolar stepper, these directions still apply. Just ignore the center

tap connections and connect the remaining wires as needed for a bipolar stepper.

Both types of stepper motors have two phases: A/A’ and B/B’. Figure 9.7 shows how these phases

are related to motor’s windings and external connections.

Looking back at Figure 9.6 , it should be clear that A and A’

should be connected to the MOT_A+ and MOT_A- screw ter-

minals in the lower-left corner of the shield. Similarly, B and B’

should be connected to MOT_B+ and MOT_B-. In Figure 9.5 ,

these connections are labeled Motor Power (A+), Motor Power

(A-), Motor Power (B+), and Motor Power (B-).

 The output of the two H bridges is determined by DIR_A and

DIR_B, which correspond to Pins 12 and 13. Therefore, these are

the pins provided to the Stepper constructor. This is shown in

 Listing 9.4 .

 note
 Don’t be concerned if the col-
ors in Figure 9.7 don’t match
the wires of your stepper.
You can tell which wires are
paired together by testing
the resistance between them.
Also, it doesn’t matter if you
connect B/B’ in place of A/A’.
The stepper will still rotate.

ptg16386157

1659.4 Stepper Motor Control

9

C
H

A
PTER

Listing 9.4 Ch9/stepper.ino—Stepper Motor Control
/*

This sketch controls a bipolar stepper motor,

stepping ten times in the forward direction and

ten times in the reverse direction.

The steps/revolution is set to 200 (1.8 deg/step)

and the speed is set to 10 RPM.

 */

#include <Stepper.h>

// Set the pin numbers

int pwm_a = 3;

int pwm_b = 11;

int dir_a = 12;

int dir_b = 13;

// Create a stepper object

Stepper s = Stepper(200, dir_a, dir_b);

void setup() {

 // Set speed to 10 revs/min

s.setSpeed(10);

 // Make sure the two H Bridges are always on

 pinMode(pwm_a, OUTPUT);

 pinMode(pwm_b, OUTPUT);

 digitalWrite(pwm_a, HIGH);

A

A'

Black

Green

B

B'

Red

Blue

 Figure 9.7
 Connections of a bipolar
stepper

ptg16386157

Motor Control with the Arduino Mega166

III

PA
R

T

 digitalWrite(pwm_b, HIGH);

}

void loop() {

 // Ten steps in the forward direction

s.step(10);

delay(1000);

 // Ten steps in the reverse direction

s.step(-10);

delay(1000);

}

In addition to DIR_A and DIR_B, this sketch sets the values of PWM_A and PWM_B. These signals

need to be set high to ensure that both H bridges will function normally. Note that, when controlling

a stepper, you don’t really need PWM signals or braking.

9.5 Servomotor Control
Chapter 5 , “Servomotors,” discussed the topic of servos and how most servos used by makers don’t

provide feedback to the controller. This section explains how to control these hobbyist servos by

accessing the Arduino Motor Shield. The first part of the section discusses the Servo library and its

functions. The second part presents the servo-control code.

9.5.1 The Servo Library
Like the Stepper library discussed earlier, the Servo library is a standard library, which means it

comes preinstalled with the Arduino environment. To access this library in a sketch, go to the main

menu, select Sketch > Import Library, and select the Servo option. This will prepend the following

code to the sketch:

#include <Servo.h>

Just as the Stepper library defines a class called Stepper , the Servo library defines a class called

Servo. This class contains a number of methods, and Table 9.6 lists each of them.

Table 9.6 Functions of the Servo Library

Function Description

attach(int pin) Associates the Servo object with the given pin

 attach(int pin, int min,
int max)

 Associates the Servo object with the pin and sets the
pulse widths for the min/max servo angle

 attached() Returns 1 if the servo is attached to a pin and 0 if not

ptg16386157

1679.5 Servomotor Control

9

C
H

A
PTER

Function Description

detach() Used to delete the association between the Servo object
and its pin

 write(int angle) Used to set the servo’s angular position

 writeMicroseconds(int time) Used to set the pulse width of the signal delivered to
the servo

 read() Returns the last angle written to the servo

 None of these functions is a constructor, so these functions can’t create Servo objects. Instead, a

 Servo object can be declared like any other variable. This is shown in the following line of code:

Servo sv;

The Servo object must be associated with the pin that will deliver PWM control signals to the

motor. This association is created by the attach function, which can be called with one argument

or three arguments.

When you’re controlling a servo’s shaft, the minimum pulse width produces the minimum angle

(usually 0°) and the maximum pulse width produces the maximum angle (usually 180°). If attach

is called with one argument (the PWM pin number), the minimum pulse width is 544 and the maxi-

mum pulse width is 2400.

 If attach is called with three arguments, the first argument is the PWM pin number, the second is

the minimum pulse width, and the third is the maximum pulse width. As an example, the following

code associates sv with Pin 8 and sets the min/max pulse widths to 900/2100:

sv.attach(8, 900, 2100);

After the Servo object is associated with its pin, the angle of the motor’s shaft can be set with

 write or writeMicroseconds . The write function accepts the desired angle in degrees, and

the program determines the appropriate pulse width. If the desired pulse width is already known,

writeMicroseconds accepts the pulse width in milliseconds.

9.5.2 Controlling the Servomotor
As discussed in Chapter 5 , hobbyist servomotors generally have three wires:

• Power— Provides about 5–6 V to power the motor (usually the red wire)

• Signal— Controls the servo with PWM signals

• Ground— Provides electrical ground (usually the black wire)

In Figure 9.5 , the shield has two orange connectors labeled Analog (PWM) Outputs. These connec-

tors have three pins each: power, PWM control, and ground, in that order.

 Unfortunately, the connections of my hobbyist servos are ordered with the PWM control signal first,

followed by the power and ground. For this reason, I’ve found it necessary to separate the servomo-

tor’s wires and manually connect them to the shield’s header connections.

ptg16386157

Motor Control with the Arduino Mega168

III

PA
R

T

The code in Listing 9.5 shows how to control a servomotor whose PWM control wire is connected to

Pin 6.

Listing 9.5 Ch9/servo.ino—Servomotor Control
/*

This sketch controls a hobbyist servomotor.

It rotates the shaft 180 degrees forward and 180 degrees back.

 */

#include <Servo.h>

Servo sv; // Servo object

int angle; // servo's angular position

void setup() {

 // Attach the Servo object to Pin 6

 sv.attach(6, 800, 2200);

}

void loop() {

 // Rotate from 0 to 180 degrees

 for(angle = 0; angle < 180; angle += 1) {

 sv.write(angle);

 delay(10);

 }

 // Rotate from 180 to 0 degrees

 for(angle = 180; angle >= 1; angle -=1) {

 sv.write(angle);

 delay(10);

 }

}

In this case, the minimum angle corresponds to a pulse width of 800 microseconds and the maxi-

mum angle corresponds to a pulse width of 2200 microseconds. These values are specified in the

attach function.

9.6 Summary
After so many chapters discussing motor theory, it’s good to see how real-world motors can be con-

trolled with real-world electronics. Many motor control systems cost a great deal of money, but the

Arduino Mega and Arduino Motor Shield are both inexpensive and easy to use. With the Arduino

programming environment, you can have a motor control sketch coded and compiled in less than an

hour.

ptg16386157

1699.6 Summary

9

C
H

A
PTER

The primary device of the Arduino Mega is the ATmega2560 microcontroller. This single chip con-

tains all the ROM, RAM, and processing power needed to execute Arduino sketches, but the Mega

doesn’t have the resources needed to control motors.

In contrast, the Arduino Motor Shield is designed to control brushed DC motors, stepper motors, and

servomotors. Its primary device is the L298P, which contains two H bridges. The H bridge connec-

tions are complex, but they allow the shield to halt a motor, deliver PWM signals, and reverse the

motor’s direction. In addition, the shield can deliver more electrical power than the Mega can.

The capabilities of the Arduino programming environment can be extended with libraries. The first

library discussed in this chapter is the Stepper library, which makes it possible to control stepper

motors. This library has four functions, and two of them are constructors that return a Stepper

object. After this object is created, its member functions— setSpeed and step —can be called.

The functions of the Servo library make it possible to control servomotors. To accomplish this in

code, a sketch needs to declare a Servo object and associate it with a pin capable of delivering

PWM signals. When you’re using this library, it’s important to know the minimum and maximum

pulse widths needed to set the angle of the servomotor’s shaft.

ptg16386157

This page intentionally left blank

ptg16386157

MOTOR CONTROL WITH THE
RASPBERRY PI

The Raspberry Pi combines the processing resources of a personal com-

puter with the small size of an Arduino board. In fact, the Raspberry Pi

(shortened to RPi) is even smaller than the Arduino Mega discussed in

the preceding chapter—and despite the RPi’s superior capabilities, the

two boards have approximately the same cost.

To be precise, the RPi is a single-board computer , or SBC . Instead of rely-

ing on a microcontroller, its data crunching is performed by a full proces-

sor: the Broadcom BCM2835. In addition, the RPi has enough memory to

store a complete operating system.

 In my opinion, the ability to support an operating system is the RPi’s

greatest strength. With an OS running on the device, I don’t have to

worry about low-level memory access—the system takes care of it for me.

Also, if the operating system is based on Linux, as most RPi OSes are, I

don’t have to learn a new programming language. I can use code that I’ve

written for other Linux systems.

 Despite its many strengths, the RPi has three disadvantages that every

maker should keep in mind:

• Power— The RPi B+ consumes 3 W, which is over five times the power

required by most Arduino boards.

• No analog input— The RPi can deliver PWM signals, but it has no

analog-to-digital converters capable of reading analog inputs.

 10

ptg16386157

Motor Control with the Raspberry Pi172

III

PA
R

T

• Proprietary design— The design files for the RPi are not freely available. Therefore, if you’d like

to design a product similar to the RPi, you’ll have to start from scratch.

None of these drawbacks affects the ability of the RPi to control motors. This chapter explains how

to program the RPi and how to use the RaspiRobot board to control servomotors, brushed motors,

and stepper motors. But first, I’d like to provide an overview of the RPi’s circuit board and processor.

10.1 The Raspberry Pi
Despite occupying the same area as a credit card, the RPi has enough computational power to run

an operating system, display video to a monitor, and communicate over Ethernet—all at the same

time. These capabilities are made possible by the densely packed circuit board and the BCM2835.

This section discusses both topics.

10.1.1 The Raspberry Pi Circuit Board
The first Raspberry Pi board was released in early 2012, and was called the Model A. The Model B+

provides more connectors and general-purpose input/output (GPIO) pins. This chapter focuses exclu-

sively on the Model B+, and Figure 10.1 shows what it looks like.

GPIO pins

USB ports

HDMI
connector

Audio/visual jackUSB power

Display serial interface Figure 10.1
 The Raspberry Pi
Model B+

ptg16386157

17310.1 The Raspberry Pi

10

C
H

A
PTER

Table 10.1 lists the board’s basic characteristics.

Table 10.1 Technical Specifications of the Raspberry Pi Model B+

Parameter Name Parameter Value

Dimensions 3.37 × 2.205 inches (85.6 × 56 mm)

Operating voltage 5 V

SDRAM 512 MB

Nonvolatile memory MicroSD card

 General-purpose input/output (GPIO) pins 40

 In addition to its GPIO pins, the RPi has five USB connectors: one to provide power to the board and

four to communicate with external devices. These USB ports make it possible to connect a keyboard

and mouse, and the HDMI connector makes it possible to connect a monitor.

 Because of these connections, the RPi can be accessed as a standalone personal computer. The RPi

doesn’t provide all the capabilities of a traditional PC, but it serves as an excellent way for users to

run programs and interact with a Linux-based operating system. This interaction is made possible

by the BCM2835, which is discussed next.

10.1.2 The BCM2835 System on a Chip (SoC)
The BCM2835 serves as the central brain of the Raspberry Pi. It isn’t labeled in Figure 10.1 because

it’s stacked beneath the Samsung RAM chip in the center-left of the board.

 Many sources refer to the BCM2835 as a processor, but this device contains two processing units:

an ARM1176JZ-F general-purpose data processor and a dual-core VideoCore graphics processor.

These processing units are properly called cores , and because the BCM2835 contains multiple cores,

the proper term for the device is a system on a chip , or SoC .

 To appreciate the RPi’s computing power, it’s good to be familiar with both cores of the BCM2835.

This discussion provides a brief overview of the ARM1176 processing core and the VideoCore IV

graphics processing core.

The ARM1176 Processing Core
When most people think about companies that make processors, they think of corporations such as

Intel and AMD. These companies produce physical chips, such as the Core i7 and Athlon.

ARM Holdings plc also makes processors, but it doesn’t manufacture physical devices. Instead, it

sells processor designs to other companies, which incorporate them in their chips. The BCM2835 is

a perfect example. Broadcom manufactures and sells the BCM2835 device, but the device’s proces-

sor design, or core, was designed by ARM.

ARM cores are divided into families, and the ARM11 family was released in 2002. The processors in

this family can operate on 32 bits at a time, and their execution speed ranges from 750 MHz up to

1 GHz. This family contains the ARM1176, which is the core that processes data in the Raspberry Pi.

ptg16386157

Motor Control with the Raspberry Pi174

III

PA
R

T

One of the main benefits of using an ARM11 processing core is the availability of SIMD (single-

instruction, multiple data) processing. Each ARM11 processor has a vector floating-point (VFP)

coprocessor capable of performing arithmetic operations on multiple floating-point values at the

same time. This coprocessor is vitally important for computational tasks involving audio and video.

The VideoCore IV Graphics Processing Core
When I started working with the Raspberry Pi, the feature that amazed me the most was its graph-

ics. The user interface to the Raspbian operating system isn’t just functional—its desktop has a

level of polish that I never would have believed possible for a board as small (and as cheap!) as the

Raspberry Pi.

This incredible capability is made possible by the dual-core VideoCore IV graphics processing core.

Just as ARM Holdings plc designs cores that process data, VideoCore designs cores that process

graphics. The computational characteristics of the VideoCore IV include the following:

• Displays graphics at 720p standard resolution

• Renders 25 million triangles per second

• Supports high-speed anti-aliasing for 2D rendering

• Renders graphics with 16-bit high dynamic range (HDR)

• Supports the full OpenGL-ES 1.1 and 2.0 standards

 In my opinion, the last point is particularly impressive. I’ve spent years developing applications

with the Open Graphics Library (OpenGL), but the target was always a high-performance graphics

card requiring hundreds of watts. The fact that a low-power system such as the RPi supports full

OpenGL-ES rendering leaves me astounded.

10.2 Programming the Raspberry Pi
Developing software for the RPi is similar to developing software for a regular computer, with

one significant exception: The operating system must be downloaded, installed, and inserted. By

inserted , I mean that the RPi accesses its operating system through a MicroSD card that must be

inserted into the receptacle on the rear side of the board. This card must be purchased separately

from the RPi, and you can find a list of supported cards at http://elinux.org/RPi_SD_cards .

Many operating systems have been ported to run on the RPi, including Fedora Linux (called Pidora),

Arch Linux, and Debian (called Raspbian). The Raspberry Pi Foundation recommends Raspbian,

which is optimized to run on the RPi. Raspbian provides nearly all of the features you’d expect from

a Debian distribution and all the utilities you need to be productive.

This section starts by providing an overview of the Raspbian environment. The next part explains

how to write and execute Python scripts, and how to access the board’s general-purpose input/out-

put (GPIO) pins in Python.

The last part of this section explains how to enable pulse width modulation (PWM) on the RPi. Once

you understand how to generate PWM signals, you’re well on your way to controlling motors.

http://elinux.org/RPi_SD_cards

ptg16386157

17510.2 Programming the Raspberry Pi

10

C
H

A
PTER

10.2.1 The Raspbian Operating System
After the operating system is installed, the RPi can be connected to a monitor through the board’s

HDMI port. Figure 10.2 shows what Raspbian’s initial desktop looks like.

 Figure 10.2
 The Raspbian desktop

Just as in Windows or Mac OS, applications can be executed by double-clicking icons in the

Raspbian desktop. The following list presents a subset of the available applications:

• Epiphany— A scaled-down web browser

• IDLE— Development environment for Python coding (all versions less than 3.0)

• LXTerminal— A terminal for entering commands

• IDLE3— Development environment for Python 3. x coding

• WiFi Config— Configuration tool for Wi-Fi communication

• Shutdown— Shuts down the Raspberry Pi

ptg16386157

Motor Control with the Raspberry Pi176

III

PA
R

T

By launching the terminal application, you can use all the utilities common to Linux distributions,

such as ls, cd, cat, and rm. For this chapter, the only application you need to be familiar with is

IDLE. The following discussion explains how it can be used to edit, compile, and run applications.

10.2.2 Python and IDLE
The Raspberry Pi development tools support a number of languages, including Python, C, C++,

Java, and Ruby. The Raspberry Pi foundation recommends Python, which is also the most supported

and widely used language. A full discussion of the Python language is beyond the scope of this

book, but for beginners, I recommend the online book Python for You and Me at http://pymbook.

readthedocs.org .

 The RPi desktop provides two graphical utilities for editing Python: IDLE for Python 2. x and IDLE3

for Python 3. x . IDLE stands for Integrated DeveLopment Environment, and this chapter focuses on

Python 2. x . Figure 10.3 shows what the IDLE dialog looks like.

 Figure 10.3
 The Python
Integrated
DeveLopment
Environment (IDLE)

This dialog provides access to a shell that allows you to enter Python commands. If you type 2+2

and press Enter, the shell will respond with 4 . If you type print Hello world , the shell will

respond with Hello world .

To take full advantage of the Python language, you can store statements in files called scripts . To

create a script in IDLE, go to File > New File in the main menu or press Ctrl+N. This opens a second

window that allows you to edit a script. Figure 10.4 shows what this window looks like.

In addition to syntax coloring, IDLE’s editor window provides many standard capabilities for work-

ing with script code:

• To check the script for errors, go to Run > Check Module or press Alt+X.

• To save the script’s content, go to File > Save or press Ctrl+S.

• To run the script’s commands, go to Run > Run Module or press F5.

http://pymbook.readthedocs.org
http://pymbook.readthedocs.org

ptg16386157

17710.2 Programming the Raspberry Pi

10

C
H

A
PTER

When a Python script is executed from the editor, the first window displays the output. It also dis-

plays any errors that arise during the script’s execution.

 Python makes it possible to access many of the RPi’s resources, including the network connection,

USB connections, and the graphical processor, but motor control requires access to the RPi’s

general-purpose input/output (GPIO) pins. I’ll discuss this next.

10.2.3 Interfacing GPIO
At the top of the circuit board, the 40-pin header makes it possible to connect the RPi to external

circuits. Twenty-six of the header’s pins are accessible as GPIO pins. These pins are numbered from

2 to 27, and Figure 10.5 shows where they’re located.

 Figure 10.4
 The IDLE editor
window

2 3 4 17 27 22 10 9 11 5 6 13 19 26

14 15 18 23 24 25 8 7 12 16 20 21 Figure 10.5
 GPIO pins of the
Raspberry Pi B+

Two software modules make it possible to access these pins in Python:

• RPI.GPIO— This is available from http://sourceforge.net/projects/raspberry-gpio-python and is

released under the MIT license.

• RPIO— This is available from http://pythonhosted.org/RPIO and is released under the GPL3

license.

http://sourceforge.net/projects/raspberry-gpio-python
http://pythonhosted.org/RPIO

ptg16386157

Motor Control with the Raspberry Pi178

III

PA
R

T

Both modules make it possible to configure GPIO pins and read/write digital values. RPI.GPIO is

installed in Raspbian by default, but at the time of this writing, only RPIO enables access to pulse

width modulation at the hardware level. Because PWM is central to motor control, this discussion

relies on RPIO, which can be installed by entering the following commands in a terminal:

sudo apt-get install python-dev python-pip

sudo pip install -U RPIO

After the module is installed, its features can be accessed in Python with a statement such as

import RPIO . Table 10.2 lists many of the GPIO-related functions in this module and provides a

description of each.

Table 10.2 GPIO Functions of the RPIO Module

Function Description

setmode(int num_mode) Identifies the method of pin numbering

setup(int pin, int mode) Configures a pin as an input or output

setup(int pin, int mode,
 int res_mode)

 Configures a pin as an input or output, and con-
nects a pull-up or pull-down resistor

 output(int pin, int level) Sets a pin’s logic level to RPIO.HIGH or RPIO.LOW

 int input(int pin) Reads the logic level at the given pin

 cleanup() Sets pins to default state

 add_interrupt_callback
 (int pin, callback_func,
 edge='both',
 pull_up_down=RPIO.PUD_OFF,
 threaded_callback=False
 debounce_timeout_ms=None)

 Associates a callback function with the given pin
and an event that meets the specified criteria

 wait_for_interrupts
 (threaded=False,
 poll_timeout=1)

 Halts processing until an interrupt occurs

 del_interrupt_callback
 (int pin)

 Used to remove callbacks associated with the pin

 The first function in this table is particularly important. The RPi supports two numbering schemes

for its GPIO pins:

• RPIO.BOARD — The numbers printed on the board (1 in the upper-left, 40 in the lower-right).

• RPIO.BCM — The numbers are set by how the GPIO pins are connected to the BCM2835.

ptg16386157

17910.2 Programming the Raspberry Pi

10

C
H

A
PTER

To specify how the pin numbers should be interpreted, the setMode function accepts either value.

The RPIO.BCM mode is the numbering scheme illustrated in Figure 10.5 , and it makes it easier to

interface external devices. For this reason, all the code in this chapter starts with the following line:

RPIO.setmode(RPIO.BCM)

The rest of the functions in Table 10.2 can be divided into two groups: those that involve input and

output, and those related to events. The following discussion presents the functions in both groups.

Input and Output Pins
After the pin numbering method is set, the next step involves specifying which pins are input pins

and which are output pins. This is accomplished with the setup function, which accepts a pin num-

ber and either RPIO.IN (input) or RPIO.OUT (output). As an example, the following code configures

GPIO Pin 24 as an output pin:

RPIO.setup(24, RPIO.OUT)

If a pin is configured for output, its logic level can be set with the output function. This accepts the

pin number and the logic level. If the logic level is set to RPIO.HIGH or 1, the pin’s voltage will be

set to 3.3 V. If the logic level is set to RPIO.LOW or 0, the pin’s voltage will be set to 0 V.

If a pin is configured for input, its logic level can be read with the input function, whose only argu-

ment is the pin number. From my tests, this returns 1 if the pin’s voltage is greater than 1.6 V and

returns 0 if the voltage is less than 0.6–0.7 V. If the voltage is between 0.7 V and 1.6 V, input ’s

return value can’t be determined.

The code in Listing 10.1 shows how setup , input , and output are used in practice. This script

reads from GPIO Pin 17 and sets the value of GPIO Pin 24.

Listing 10.1 Ch10/check_input.py—Checking a Pin’s Logic Level
"""

This code repeatedly checks the logic level of in_pin.

If the level is low, out_pin is set high and the reading continues.

If the level is high, the script completes.

"""

import RPIO

Set input pins

in_pin = 17;

out_pin = 24;

Specify use of BCM pin numbering

RPIO.setmode(RPIO.BCM)

ptg16386157

Motor Control with the Raspberry Pi180

III

PA
R

T

Configure pin directions

RPIO.setup(in_pin, RPIO.IN)

RPIO.setup(out_pin, RPIO.OUT)

Wait for in_pin to reach low voltage

while(RPIO.input(in_pin) == RPIO.LOW):

 RPIO.output(out_pin, RPIO.HIGH)

Return pins to default state

RPIO.cleanup()

In this script, each iteration of the while loop checks the state of the input pin. If the pin’s level is

low, the voltage of the output pin is set high. The loop continues until the input pin’s voltage is set

high.

By default, the logic level of an input pin is floating, which means it may randomly take high or

low values. The initial logic level can be controlled in code by adding an optional third argument to

setup. This argument sets the pull_up_down variable to one of three values:

• RPIO.PUD_UP — Connects a pull-up resistor to the pin.

• RPIO.PUD_DOWN — Connects a pull-up resistor to the pin.

• RPIO.PUD_OFF — Doesn’t connect the pin to a pull-up or pull-down resistor. This is the default

state.

 As an example, the following code configures Pin 17 to serve as an input pin connected to power

through a pull-up resistor:

RPIO.setup(17, RPIO.IN, pull_up_down=RPIO.PID_UP)

In Listing 10.1 , the final function executed in the script is cleanup . This returns each GPIO pin to its

default configuration and logic level.

Handling Interrupts
The last three functions in Table 10.2 relate to interrupts. An interrupt is a state change that may

cause the processor to stop what it’s doing, execute a routine to handle the interrupt, and then

return to its processing. RPIO makes it possible to handle two types of interrupts: networking inter-

rupts and GPIO interrupts. This discussion is concerned with GPIO interrupts.

 The add_interrupt_callback function tells RPIO that a pin should be monitored for a specific

type of event. This function accepts six arguments and the last four are optional:

• The GPIO pin to be monitored.

• The name of the function to handle the interrupt.

ptg16386157

18110.2 Programming the Raspberry Pi

10

C
H

A
PTER

• The type of logic level change:

• rising — The pin’s logic changes from low to high (rising edge).

• falling — The pin’s logic changes from high to low (falling edge).

• both — Either rising or falling.

• The input pin’s connection to the power/ground:

• RPIO.PUD_UP — Connects a pull-up resistor to the pin.

• RPIO.PUD_DOWN — Connects a pull-down resistor to the pin.

• RPIO.PUD_OFF — Leaves the pin’s logic level floating.

• The handling function’s execution in a thread:

• true— RPIO calls the interrupt-handling function in a separate thread.

• false— The current program halts to execute the interrupt handling function.

• The minimum number of seconds allowed between interrupts.

 Only the first two arguments are required, and the second argument identifies which function

should be called to handle the interrupt. This function is referred to as a callback function or just

a callback , and RPIO passes two arguments to it: the pin number and an integer that identifies

whether the event involved a rising edge (1) or a falling edge (0).

 Interrupts and callbacks can be hard to understand, so Listing 10.2 shows how they’re configured

and used in code. This script monitors Pin 17 and calls a different callback depending on the event.

Listing 10.2 Ch10/interrupt.py—Responding to Logic Level Changes
"""

This code sets up interrupt handling for Pin 17.

A change in the logic level executes a callback

that prints a message.

"""

import RPIO

def edge_detector(pin_num, rising_edge):

 if rising_edge:

 print("Rising edge detected on Pin %s" % pin_num)

 else:

 print("Falling edge detected on Pin %s" % pin_num)

Define input pin

in_pin = 17

Specify use of BCM pin numbering

RPIO.setmode(RPIO.BCM)

ptg16386157

Motor Control with the Raspberry Pi182

III

PA
R

T

Configure pin direction

RPIO.setup(in_pin, RPIO.IN)

Configure interrupt handling for rising and falling edges

RPIO.add_interrupt_callback(in_pin, edge_detector, edge='both')

RPIO.wait_for_interrupts()

Return pin to default state

RPIO.del_interrupt_callback(in_pin)

RPIO.cleanup()

After setting the callback with add_interrupt_callback , the script calls wait_for_interrupts .

If called without arguments, this function halts processing until an interrupt occurs. However, if the

first argument sets threaded to TRUE , the waiting will be performed in a background thread. The

following code shows how this is used:

RPIO.wait_for_interrupts(threaded=TRUE)

The last function in Table 10.2 is del_interrupt_callback . This accepts a pin number and

removes all callbacks assigned to that pin.

10.3 Controlling a Servomotor
As discussed in Chapter 5 , “Servomotors,” a hobbyist servomotor is controlled with three pins:

power (usually 5–6 V), ground, and control. The control pin sets the angle of the servomotor’s shaft

by providing a train of pulses formatted according to pulse width modulation (PWM).

Chapter 2 , “Preliminary Concepts,” explained the basics of PWM. This section explains how to gen-

erate a PWM signal on the RPi and how to use this to control a servomotor.

10.3.1 Configuring PWM
As discussed in Chapter 2 , pulse width modulation (PWM) controls motors by generating pulses of

varying width but spaced at a constant interval (the period). RPIO includes a PWM module whose

functions generate pulses by accessing the processor’s underlying direct memory access (DMA)

capability.

 This low-level DMA access makes it possible to generate PWM signals without interrupting regular

processing. You don’t have to understand how DMA works on the processor, but there are two vital

facts to keep in mind:

• RPIO provides access to 15 DMA channels, numbered from 0 to 14.

• A DMA channel can be associated with one or more GPIO pins. After the association is made, it

will be able to deliver pulses to those pins with high precision and resolution.

Table 10.3 lists many, but not all, of the PWM functions provided by RPIO.PWM.

ptg16386157

18310.3 Control l ing a Servomotor

10

C
H

A
PTER

Table 10.3 Functions of the RPIO.PWM Module

Function Description

setup(pulse_incr_us=10,
 delay_hw=0)

 Initializes the DMA channels for use

init_channel(int dma_channel,
 subcycle_time_us=20000)

 Configures the cycle with a specific period (20 ms by
default)

 add_channel_pulse
 (int dma_channel, int pin,
 int start, int width)

 Generates pulse of the given width for the pin

clear_channel
 (int dma_channel)

 Clears all pulses from the channel

clear_channel_gpio
 (int dma_channel, int pin)

 Clears the pulse for the specified pin from the
channel

 cleanup() Halts PWM and DMA

The first function, setup , must be called before any of the other functions in the table. Both of
its parameters are optional, and the first identifies the desired pulse width resolution. I recom-
mend setting this value to 1. The second parameter can be set to PWM.DELAY_VIA_PWM or PWM.
DELAY_VIA_PCM .

 After setup initializes the DMA operation, init_channel configures a specific channel for use. The

first parameter identifies the channel number, and may be set to any number between 0 and 14.

The second sets the desired time between the pulses’ rising edges. The default time is set to 20 ms,

which is the pulse interval expected by every servo I’ve encountered.

The most important function in the table is add_channel_pulse , which generates pulses for a

particular pin. The first two parameters identify the DMA channel and the GPIO pin. The third and

fourth parameters characterize the shape of the pulses. The start parameter identifies the offset of

the pulse relative to the start of the period, and the width parameter identifies the pulse’s width.

Figure 10.6 gives an idea what this look like.

start

width

start

width

20 ms
(default)

Figure 10.6
Pulses generated by
RPIO.PWM

The start parameter may not seem useful at first because the same time offset is applied to every

pulse, but it’s helpful when you want to generate multiple pulses within a single period. For exam-

ple, the following code generates two pulses for DMA Channel 5 and GPIO Pin 18. Both pulses have

a width of 2 ms and the second pulse is delayed by 8 ms.

ptg16386157

Motor Control with the Raspberry Pi184

III

PA
R

T

PWM.add_channel_pulse(0, 18, 0, 1000)

PWM.add_channel_pulse(0, 18, 8000, 1000)

The last three functions in Table 10.3 become important when PWM signaling is no longer needed.

The clear_channel function clears all pulses from the given DMA channel, and clear_channel_

gpio clears the DMA pulses for a specific GPIO pin. The cleanup method halts all PWM and DMA

operation.

 The code in Listing 10.3 demonstrates how to generate PWM signals on the Raspberry Pi. It initial-

izes DMA Channel 0 and delivers pulses to GPIO Pin 18. Each pulse has a width of 1000 ms.

Listing 10.3 Ch10/pwm.py—Generating a PWM Signal
"""

This code generates a pulse-width modulation (PWM)

for Pin 18 whose pulses have a width of 1ms.

"""

import RPIO.PWM as PWM

import time

Define PWM pin

pwm_pin = 18

Initialize DMA and set pulse width resolution

PWM.setup(1)

Initialize DMA channel 0

PWM.init_channel(0)

Set pulse width to 1000us = 1ms

PWM.add_channel_pulse(0, pwm_pin, 0, 1000)

time.sleep(10)

Clear DMA channel and return pins to default settings

PWM.clear_channel(0)

PWM.cleanup()

As the program executes on the RPi, RPIO prints the following status messages to the console:

Using hardware: PWM

PW increments: 1us

Initializing channel 0...

add_channel_pulse: channel=0, start=0, width=1000

init_gpio 18

Generating the PWM signal isn’t enough—the program must be delayed so that it delivers multiple

pulses to the output pin. As demonstrated in the code, this can be accomplished with the sleep

function of the time module. This accepts a delay value in seconds, so sleep(10) delays the pro-

gram’s execution for 10 seconds.

ptg16386157

18510.3 Control l ing a Servomotor

10

C
H

A
PTER

10.3.2 Controlling a Servo
The PWM module provides access to a class called Servo, which provides two methods specifically

suited for controlling servomotors:

• set_servo(int pin, int width)— Delivers a PWM signal through the specified pin whose

pulses have the specified width (in microseconds)

• stop_servo(int pin)— Halts the PWM signal for the given pin

The main advantage of using these methods over the regular PWM methods is that there’s no need

to initialize DMA or set the appropriate DMA channel. That is, there’s no reason to call PWM.setup

or PWM.init_channel.

To see how these functions can be used to control a real servomotor, consider the FS5106B from

Fitec. Like many servomotors, it expects control pulses to have their rising edges spaced 20 ms

apart. The shaft rotates to the minimum angle when the pulse width equals 0.7 ms and rotates to its

maximum angle when the pulse width equals 2.3 ms. A pulse width of 1.5 ms sets the shaft to its

neutral position.

The code in Listing 10.4 shows how set_servo and stop_servo can be used to control the Fitec

FS5106B. This program rotates the servo’s shaft from the minimum angle to the maximum angle,

and then returns to the minimum angle.

Listing 10.4 Ch10/servo.py—Control a Servomotor
"""

This code controls a servomotor, rotating from

the minimum to maximum angle and back.

"""

import RPIO.PWM as PWM

import time

Define control pin and pulse widths

servo_pin = 18

min_width = 700

max_width = 2300

Create servo object

servo = PWM.Servo()

Set the angle to the minimum angle and wait

servo.set_servo(servo_pin, min_width)

time.sleep(1)

Rotate shaft to maximum angle

for angle in xrange(min_width, max_width, 100):

 servo.set_servo(servo_pin, angle)

 time.sleep(0.25)

ptg16386157

Motor Control with the Raspberry Pi186

III

PA
R

T

Rotate shaft to minimum angle

for angle in xrange(max_width, min_width, -100):

 servo.set_servo(servo_pin, angle)

 time.sleep(0.5)

Stop delivering PWM to servo

servo.stop_servo(servo_pin)

Every time the set_servo method is called, time.sleep is called afterward to delay the program.

This is necessary to give the motor enough time to reach the desired angle.

10.4 The RaspiRobot Board
Due to the RPi’s worldwide popularity, many makers have designed expansion boards that

extend its capabilities. The PiFace board provides switches, relays, and LEDs. The PiRack has

headers that make it possible to connect other circuit boards to the RPi. If you want to see what

types of expansion boards are available, a good place to look is https://www.modmypi.com/

raspberry-pi-expansion-boards .

 The RaspiRobot board is an expansion board whose components enable the RPi to control motors.

 Figure 10.7 shows what it looks like.

GPIO connections

LEFT_MOT+

L293DD

Switch 1 and 2

Open collector outputs

LEFT_MOT–

RIGHT_MOT+

RIGHT_MOT–

GND

Vin

 Figure 10.7
 The RaspiRobot expansion board

https://www.modmypi.com/

ptg16386157

18710.4 The RaspiRobot Board

10

C
H

A
PTER

The six screw terminals on the left are particularly important. The upper four connections (LEFT_

MOT+, LEFT_MOT-, RIGHT_MOT+, and RIGHT_MOT-) can deliver power to two brushed DC motors

or one stepper motor. The lower connections (GND and Vin) provide power to the RaspiRobot board.

Vin must be connected to 7–12 volts of DC power.

To take advantage of the RaspiRobot’s capabilities, you need to know how its peripherals are con-

nected to the Raspberry Pi’s GPIO pins. Table 10.4 lists the RaspiRobot’s signal names and their cor-

responding GPIO pins.

Table 10.4 RaspiRobot Signals and GPIO Pins

RaspiRobot Signal RPi GPIO Pin Description

LEFT_GO_PIN 17 PWM signal for left motor

 LEFT_DIR_PIN 4 Controls the direction of left motor

 RIGHT_GO_PIN 10 PWM signal for left motor

 RIGHT_DIR_PIN 25 Controls the direction of left motor

 SW1_PIN 11 Connected to Switch 1

SW2_PIN 9 Connected to Switch 2

LED1_PIN 7 Connected to LED 1

LED2_PIN 8 Connected to LED 2

OC1_PIN 22 Open collector output 1

 OC2_PIN 27 Open collector output 2

 OC2_PIN_R1 21 Open collector resistor output 1

 OC2_PIN_R2 27 Open collector resistor output 2

 TRIGGER_PIN 18 Transmits trigger pulse for sonar

 ECHO_PIN 23 Receives sonar echo

 The first four signals provide motor control. They’re connected to the board’s central integrated

circuit, the L293DD Quadruple Half-H Driver. This device produces the LEFT_MOT+, LEFT_MOT-,

RIGHT_MOT+, and RIGHT_MOT- signals that drive the motors. This section explains how this

device works and then discusses the process of coding applications that control brushed DC motors

and stepper motors.

10.4.1 The L293DD Quadruple Half-H Driver
Chapter 2 explained how an H bridge makes it possible to deliver current to a motor in the forward

and reverse directions. H bridges can be implemented with discrete transistors, but many circuits

rely on integrated circuits. The L293 is one of the most popular ICs for this purpose, and many com-

panies sell their own variants.

ptg16386157

Motor Control with the Raspberry Pi188

III

PA
R

T

The RaspiRobot board contains the L293DD device from ST Microelectronics. This 20-pin surface-

mount chip contains four half-H bridges, which can be connected to form two full H bridges. The

device receives four inputs (LEFT_GO_PIN, LEFT_DIR_PIN, RIGHT_GO_PIN, and RIGHT_DIR_PIN)

and delivers four outputs (LEFT_MOT+, LEFT_MOT-, RIGHT_MOT+, and RIGHT_MOT-) that provide

power to the RaspiRobot’s motor connections.

 Figure 10.8 shows how one of the L293DD’s H bridges is connected. In this schematic, the

RaspiRobot directs LEFT_GO_PIN and LEFT_DIR_PIN to an H bridge that produces LEFT_MOT+ and

LEFT_MOT-.

LEFT_
GO_PIN

LEFT
MOT+

LEFT
MOT-

Vin

S0

S1

S2

S3

GND

LEFT_
DIR_PIN

 Figure 10.8
 Functional diagram
of one-half of the
L293DD

If LEFT_GO_PIN is low, none of the switches (S 0 through S 3) can receive any input voltage. For this

reason, LEFT_GO_PIN is driven by a PWM signal from the controller. The higher the PWM duty

cycle, the longer the switches are closed.

 If LEFT_GO_PIN is high, LEFT_DIR_PIN determines the values of LEFT_MOT+ and LEFT_MOT-. If

LEFT_DIR_PIN is high, S 0 and S 3 are closed, setting LEFT_MOT+ equal to Vin and LEFT_MOT- equal

to GND. If LEFT_DIR_PIN is low, S 1 and S 2 are closed, setting LEFT_MOT+ equal to GND and LEFT_

MOT- equal to Vin.

10.4.2 RaspiRobot Python Code
The RaspiRobot’s features can be accessed through the GPIO and PWM functions discussed earlier,

but there’s an easier way. Simon Monk, the designer of the RaspiRobot, provides a Python module

called rrb2.py that simplifies developing code for the RPi and RaspiRobot. This code can be freely

downloaded from https://github.com/simonmonk/raspirobotboard2 .

This source file defines a class called RRB2 , which contains a wide range of methods that access the

RaspiRobot’s features. Some methods access switches and others activate the board’s LEDs. Six of

the class’s methods make it possible to control the operation of two brushed motors–one on the left

and one on the right. These methods are listed in Table 10.5 .

https://github.com/simonmonk/raspirobotboard2

ptg16386157

18910.4 The RaspiRobot Board

10

C
H

A
PTER

Table 10.5 Motor Control Methods of the RRB2 Class

Function Description

forward(seconds=0,
speed=0.5)

 Drives the motor forward at the given speed for the specified
amount of time

reverse(seconds=0,
speed=0.5)

 Drives the motor in reverse at the given speed for the specified
amount of time

left(seconds=0,
speed=0.5)

 Drives the motor forward at the given speed for the specified
amount of time

right(seconds=0,
speed=0.5)

 Drives the motor in reverse at the given speed for the specified
amount of time

stop() Halts the motor

set_motors
 (float left_pwm,
 int left_dir,
 float right_pwm,

 int right_dir)

 Specifies the pins to be used for motor control

 The first five methods accept the same two arguments: the time in seconds and the speed, which

corresponds to the PWM duty cycle. The speed parameter must be given a value between 0.0 (no

power to motors) and 1.0 (full power to motors).

 The last method in the table, set_motors , provides direct access to the two motors. The first pair

of parameters sets the duty cycle and direction of the left motor, and the second pair sets the duty

cycle and direction of the right motor. A direction value of 0 rotates in the forward direction and a

value of 1 rotates in the reverse direction.

 The RRB2 class also contains member variables that correspond to signals of the RaspiRobot board.

These have the same names as the signals listed in the left column of Table 10.4 . For example,

rather than remember that Pin 25 controls the direction of the right motor, you can use RRB2.

RIGHT_DIR_PIN , which equals 25.

10.4.3 Controlling Brushed DC Motors
The methods of the RRB2 class make it easy to control two brushed DC motors, so long as the left

motor is connected to LEFT_MOT+ and LEFT_MOT- and the right motor is connected to RIGHT_

MOT+ and RIGHT_MOT-. Listing 10.5 shows how two such motors can be controlled through the

RaspiRobot. This code drives the motors forward for 5 seconds, backwards for 4 seconds, right for

3 seconds, and left for 2 seconds.

Listing 10.5 Ch10/brushed.py—Control Two Brushed DC Motors
"""

This program controls two brushless DC motors:

Forward for five seconds, backwards for four seconds,

right for three seconds, and left for two seconds.

"""

ptg16386157

Motor Control with the Raspberry Pi190

III

PA
R

T

import rrb2

Create RRB2 object

robot = rrb2.RRB2()

Rotate forward for five seconds

robot.forward(seconds=5, speed=1.0)

Rotate backward for four seconds

robot.reverse(seconds=4, speed=0.8)

Turn left for three seconds

robot.left(seconds=3, speed=0.6)

Turn right for two seconds

robot.right(seconds=2, speed=0.4)

Stop motor

robot.stop()

This code is straightforward to understand. It starts by creating an RRB2 object, and it’s worth not-

ing that the RRB2 constructor accepts a revision value that identifies the RaspiRobot version. By

default, this is set to 2.

10.4.4 Controlling a Stepper Motor
The RaspiRobot code doesn’t provide any functions specifically for stepper motors, but the

setMotors method in Table 10.5 can serve the purpose. But before I get into the code, I’d like

to review a few basic concepts related to steppers. Chapter 4 , “Stepper Motors,” provides a

full discussion of this topic.

Basics of Stepper Control
Stepper motors come in two types: unipolar and bipolar. Unipolar steppers have four connections

and are more efficient than bipolar steppers, but they require more complex control circuitry (two

H bridges). A bipolar stepper can be connected as a unipolar motor by leaving its power wires

unconnected.

The RaspiRobot board contains two H bridges and has only four terminals available for controlling

motors. Therefore, this discussion assumes that the target stepper is a unipolar stepper or a bipolar

stepper connected to run as a unipolar stepper.

 Stepper motors have two phases, A/A’ and B/B’. For a stepper, these windings must be driven so

that the rotor is attracted to one phase and repelled by the other, and then repelled by the first

phase and attracted to the second. Figure 10.9 shows how this works.

ptg16386157

19110.4 The RaspiRobot Board

10

C
H

A
PTER

In Figure 10.9 a, the A/A’ windings are energized in such a way that A behaves as a north pole and

A’ behaves as a south pole. The B/B’ windings are left unenergized. In Figure 10.9 b, the situation

is reversed: the A/A’ windings are left unenergized and the B/B’ windings are energized so that

B behaves as a north pole and B’ behaves as a south pole. As a result, the rotor steps through an

angle of 30°.

Controlling a Stepper with the RRB2 Class
To see how the RaspiRobot can control a stepper, you need to think of the A/A’ windings as the left

motor and the B/B’ windings as the right motor. Then, if setMotors is called with the right values

in the right sequence, the stepper will rotate through its step angle. The code in Listing 10.6 shows

how this can be done.

Listing 10.6 Ch10/stepper.py—Control a Stepper Motor
"""

This program controls a stepper motor by

energizing its phases in a given sequence.

"""

import rrb2

import time

Create RRB2 object

robot = rrb2.RRB2()

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'
N

S

S

N

N

S

N

S

S
N

N

S

A
B

B'

A'

A

B
A'

B'

A

B

A'

B'

S

N

N

S

N

S

N

S

N

S

N

S

(a) (b)

Figure 10.9
Operation
of a stepper
motor

ptg16386157

Motor Control with the Raspberry Pi192

III

PA
R

T

Set number of repetitions and step delay

num_reps = 10

step_delay = 0.4

Repeat the energizing sequence num_reps times

for x in range(0, num_reps):

 robot.set_motors(1.0, 1, 0.0, 0)

 time.sleep(step_delay)

 robot.set_motors(0.0, 0, 1.0, 1)

 time.sleep(step_delay)

 robot.set_motors(1.0, 0, 0.0, 0)

 time.sleep(step_delay)

 robot.set_motors(0.0, 1, 1.0, 0)

 time.sleep(step_delay)

Stop motor

robot.stop()

In this code, the PWM duty cycle is set to 1.0 when the winding is energized and 0.0 when it

isn’t. When the duty cycle is 1.0, the direction value (0 or 1) sets the polarity of the corresponding

winding.

10.5 Summary
The Raspberry Pi packs a great deal of functionality into a tiny form factor. Thanks to the BCM2835,

it can process graphics and general-purpose data at high speed. Its connectors and external devices

make it possible to connect to the RPi as though it was a regular personal computer, complete with

an Ethernet connection, HDMI connection, and multiple USB ports.

This chapter is primarily focused on the RPi’s ability to control motors. In presenting this subject,

I’ve had to make a number of decisions: Raspbian as the operating system, Python as the program-

ming language, IDLE as the text editor, and RPIO as the GPIO-control module. Other choices are

available in each case, but these options are easy to work with and very well supported.

The Model B+ version of the RPi provides 40 GPIO pins. The RPIO module makes it possible to

specify whether they read input or write output. Programs can respond to changes to a pin’s state

by configuring interrupts and interrupt-handling routines. If the program assigns a callback function

for an interrupt, that function will be called if the corresponding event takes place.

RPIO.PWM makes it straightforward to generate pulse width modulated (PWM) signals. To make life

even simpler, the Servo class in RPIO.PWM provides two methods, setServo and stopServo , that

make it easy to control servomotors through PWM.

ptg16386157

19310.5 Summary

10

C
H

A
PTER

Simon Monk’s RaspiRobot board extends the RPi’s capabilities by enabling it to control brushed

DC motors and stepper motors. This control is made possible by the L293DD. The H bridges in this

device receive input from the RPi’s GPIO pins and deliver power to the motor(s) connected to the

RaspiRobot board.

Instead of controlling the RaspiRobot’s inputs directly, it’s easier to call functions in the rrb2 mod-

ule. This defines a class named RRB2 whose methods drive two brushed DC motors forward or in

reverse. The set_motors method of this class provides control over the duty cycle and direction of

each motor. For this reason, it’s ideal for controlling the four inputs of a single stepper motor.

ptg16386157

This page intentionally left blank

ptg16386157

CONTROLLING MOTORS WITH
THE BEAGLEBONE BLACK

The BeagleBone Black (BBB) is a single-board computer similar to the

Raspberry Pi discussed in the previous chapter. The two computers have

a lot in common: Both provide a wide range of capabilities on a board

the size of a credit card. Both process data with an ARM processing core,

both have 512 MB of RAM, and both have enough resources to run a full

operating system. They’re also approximately the same price ($35 for the

Raspberry Pi, $55 for the BeagleBone Black).

 Unlike the Raspberry Pi, the BBB contains a number of peripheral cores

that serve roles similar to those of microcontrollers. These cores enable

the BBB to convert analog signals to digital data and generate high-

precision pulse width modulation (PWM) signals. When it comes to

controlling motors, these are important capabilities.

 The BBB’s capabilities can be extended with an expansion board called

the Dual Motor Controller Cape, or DMCC. This provides many of the

same features as the add-on boards presented in Chapter 9 , “Motor

Control with the Arduino Mega,” and Chapter 10 , “Motor Control with

the Raspberry Pi.” In addition, it contains a processor that reads a motor’s

position and computes the feedback needed to set the motor’s speed.

The last part of this chapter explains how to use the DMCC to control DC

motors.

However, before delving into motor control, it’s important to be familiar

with the capabilities of the BeagleBone Black. This chapter begins by

discussing the board’s features and the Debian operating system. I’ll also

 11

ptg16386157

Controll ing Motors with the BeagleBone Black196

III

PA
R

T

present the fundamentals of BBB programming with Python and show how to access its general-

purpose input/output (GPIO) pins.

11.1 The BeagleBone Black (BBB)
The BBB’s circuit board provides a great deal of connectivity through its Ethernet, USB, HDMI,

and MicroSD connectors. To access this connectivity in an application, you need to write code for

the AM3359, which serves as the board’s central device. This section discusses the board and the

AM3359.

11.1.1 The BBB Circuit Board
In 2008, Texas Instruments released the first BeagleBoard to showcase the computational power of

its processing devices. In 2011, the company released a second version of the BeagleBoard with a

more powerful processor and many more peripheral connections.

 In 2013, TI released a version of the BeagleBoard called the BeagleBone Black. This provides a

higher clock speed than the previous version and twice as much memory at half the price. This

chapter focuses on Revision C of the BBB, and Figure 11.1 shows what its front side looks like.

GPIO pin header – P9

Ethernet

GPIO pin header – P8

4GB Flash

AM3359 SoC
USB port

(host)
 Figure 11.1
 The BeagleBone
Black, Revision C

ptg16386157

19711.1 The BeagleBone Black (BBB)

11

C
H

A
PTER

Table 11.1 lists the board’s basic characteristics.

Table 11.1 Technical Specifications of the BeagleBone Black

Parameter Value

Dimensions 3.402 × 2.098 inches (86.40 × 53.3 mm)

Operating voltage 5 V

 RAM 512 MB DDR3

Nonvolatile memory 4 GB Flash memory and MicroSD card

 General-purpose input/output (GPIO) pins 65

 The BBB has two USB ports. The port on the front side makes it possible to connect as a host, which

enables the BBB to access devices such as keyboards and mice. The port on the rear is used to con-

nect as a device, which allows the BBB to be connected to a host such as a personal computer. The

board can receive power through this rear connection or through the 5 V DC power jack.

 With only one USB connection for devices, the BBB can’t be immediately accessed as a standalone

computer. However, if the BBB is connected to a USB hub, a keyboard and mouse can be connected

through the hub.

 The design files for the BeagleBone Black are freely available for download. This makes it possible

to construct similar boards for your electronic projects. The schematics and design files can be

obtained from the BBB wiki at http://elinux.org/Beagleboard:BeagleBoneBlack .

11.1.2 The AM3359 System on a Chip (SoC)
The central device of the BBB, the AM3359, is called a system on a chip, or SoC. This is because

it has multiple processing cores on a single device. To be specific, the AM3359 contains an ARM-

based processing core (Cortex-A8) and a dedicated core for processing graphics (SGX530). It also

has a subsystem made up of two real-time processing cores that serve many of the same roles as

microcontrollers.

The Sitara Cortex-A8 Processing Core
As discussed in Chapter 10 , ARM Holdings plc sells processor designs to companies who integrate

them in their chips. Texas Instruments purchased an ARM core for the BBB and rebrands it as the

Sitara core. This core processes 32-bit data, runs at low power, and is capable of operating on mul-

tiple floating-point values at once using SIMD (single-instruction, multiple data) instructions.

To be specific, the AM3359’s ARM core is a Cortex-A8 core. Its most important advantage is its

dual-issue design. This enables the Cortex-A8 to process twice as many instructions in a given time

as earlier ARM cores.

Another strength of the Cortex-A8 is its ability to execute NEON instructions. These instructions are

specifically geared toward high-speed mathematics, and they operate on multiple values at once.

Thanks to its NEON support, the BBB can crunch numbers at remarkably high speed.

http://elinux.org/Beagleboard:BeagleBoneBlack

ptg16386157

Controll ing Motors with the BeagleBone Black198

III

PA
R

T

The SGX530 3D Graphics Engine
The AM3359 contains a core specifically designed for graphics processing. This SGX530 core was

designed by PowerVR, which is now a division of Imagination Technologies. This is the same graph-

ics core used by the iPhone 4.

The processing characteristics of the SGX530 are given as follows:

• Displays graphics at 720p standard resolution

• Renders 14 million triangles per second

• Processes 200 million pixels per second

• Supports the full OpenGL-ES 1.1 and 2.0 standards

 The SGX530 has many strengths, but it’s not capable of decoding video. Therefore, the BBB relies

on the Cortex-A8 to deliver output to the HDMI connector. For this reason, the BBB isn’t suitable for

graphics-intensive applications such as games.

The Programmable Real-Time Unit Subsystem and
Industrial Communication Subsystem (PRU-ICSS)
Within the AM3359, the PRU-ICSS contains two real-time cores called programmable real-time units,

or PRUs. These PRUs are 32-bit processors, but they can’t execute all the instructions you’d expect

from a full processor. Each has 8 KB of program memory and 8 KB of data memory.

The primary purpose of the PRU-ICSS is to handle basic input/output processing for the BBB,

thereby freeing the ARM core to work on higher-level tasks. To serve this purpose, the PRU-ICSS

contains its own Ethernet processing capability, a universal asynchronous receiver/transceiver

(UART), and a dedicated interrupt controller for responding to external events.

11.2 Programming the BBB
Thanks to the ARM processor, the process of building applications for the BBB is similar to that for

any ARM-based system. In fact, programming the BBB is easier because there are so many free

resources online. One good place to look for information and support is http://beagleboard.org/

Support/bone101 .

But before you write code, you need to be familiar with the operating system. This section starts by

providing an overview of the Debian OS, which comes preinstalled on the BBB.

Afterward, I’ll explain how to write and execute Python scripts, and I’ll show how the Adafruit_

BBIO library makes it possible to access the board’s general purpose input/output (GPIO) pins in

Python. The last part of this section explains how to code applications that generate pulse width

modulation (PWM) signals on the BBB.

http://beagleboard.org/Support/bone101
http://beagleboard.org/Support/bone101

ptg16386157

19911.2 Programming the BBB

11

C
H

A
PTER

11.2.1 The Debian Operating System
With its high-powered processor and generous amount of memory, the BeagleBone Black can run a

full operating system. All of the OSes I’ve encountered are based on Linux: Many users run Debian

and some run Ubuntu. Another popular operating system is Ångström, a Linux distribution devel-

oped specifically for embedded devices.

Some versions of the BBB have Ångström preinstalled, but current versions have Debian. From

a developer’s perspective, the differences between them are slight. One important point is that

Ångström relies on opkg for package management and Debian relies on apt-get.

The MicroSD connector on the rear of the board makes it possible to install a new operating system,

but this chapter focuses on the preinstalled Debian operating system. Figure 11.2 shows what the

desktop looks like on my version of the BeagleBone Black.

 Figure 11.2
 The Debian
desktop

The default desktop doesn’t have any icons, so users initially have to navigate using keystrokes or

by clicking items in the menu at the bottom of the screen. I prefer to interact with the BBB through

a secure shell (SSH), which allows me to enter and execute commands from my personal computer.

When using SSH, there are two points to be aware of:

ptg16386157

Controll ing Motors with the BeagleBone Black200

III

PA
R

T

• The BBB’s default IP address is 192.168.7.2.

• The BBB has a root account that doesn’t require a password.

Combining this information, a user can launch an SSH session with the following command:

ssh root@192.168.7.2

In addition to entering commands via SSH, I prefer to transfer files using secure copy (SCP). The

following command transfers data.txt from the current directory on my development system to the

BBB’s root directory:

scp data.txt root@192.168.7.2:/root

This command transfers /root/data.txt to the /home/matt folder on my development system:

scp root@192.168.7.2:/root/data.txt /home/matt

11.2.2 The Adafruit-BBIO Module
When I started working with the BBB, I wanted to program the AM3359 at a low level to obtain

maximum performance and full configuration options. I learned about pin control multiplexing,

device tree overlays, and all the registers the AM3359 uses to configure its operation. I even coded

assembly language routines to run on the PRU-ICSS. In the end, I decided that low-level access to

the BBB isn’t worth the effort.

Thankfully, our friends at Adafruit developed a Python package that simplifies the development

process. It’s called the Adafruit_BBIO library and it’s almost exactly similar to the RPIO module dis-

cussed in the preceding chapter. This might be preinstalled on your board, but in case it isn’t, the

following commands will install everything you need:

sudo apt-get update

sudo apt-get install build-essential python-dev python-setuptools

sudo apt-get install python-pip python-smbus –y

sudo pip install Adafruit_BBIO

After you’re finished, you’ll have all the tools needed to start coding Python scripts that use

Adafruit_BBIO. You can execute a script on the command line by entering python followed the

script’s name. For example, the following command executes test.py:

python test.py

There’s one last point I’d like to mention. In addition to C, C++, and Python, the BBB supports a

fascinating language called BoneScript. This is a variation of JavaScript that makes use of the

node.js framework. It was specifically developed to run on the BBB, and there are many tutorials

and free resources on the Web. I chose Python for this chapter because the DMCC, discussed later

in this chapter, can be accessed through Python but not BoneScript.

ptg16386157

20111.2 Programming the BBB

11

C
H

A
PTER

11.2.3 Accessing GPIO Pins
To connect to external circuits, the BBB has 92 pins that can be accessed through two 46-pin head-

ers, P8 and P9. Each pin has a name that identifies its location in the header, such as P8.5. Some

of these pins are configured for GPIO, and these pins have names that identify their position in the

GPIO sequence. Figure 11.3 presents labels for the 24 leftmost pins in the P8 header.

P8_1
GND

P8_2
GND

P8_4
GPIO
1_7

P8_6
GPIO
1_3

GPIO
1_12

GPIO
0_26

GPIO
1_14

GPIO
2_1

GPIO
1_31

GPIO
1_5

GPIO
1_1

P8_12P8_14P8_16P8_18P8_20P8_22P8_24

P8_3
GPIO
1_6

P8_5
GPIO
1_2

P8_11
GPIO
1_13

P8_15
GPIO
1_15

P8_17
GPIO
0_27

P8_21
GPIO
1_30

P8_23
GPIO
1_4

Figure 11.3
GPIO pins of the
BeagleBone Black
(Header P8)

If you’re willing to write C code and device tree overlays, you can configure GPIO pins in many dif-

ferent ways. However, if you only want to read or set the pins’ voltage, the Adafruit_BBIO library is

ideal. Table 11.2 lists seven of its functions.

Table 11.2 GPIO Functions of the Adafruit_BBIO Module

Function Description

setup(string pin, int mode) Configures a pin as an input or output

output(string pin, int level) Sets the logic level to HIGH or LOW

 int input(string pin) Reads the logic level at the given pin

 cleanup() Sets the pins to the default state

 wait_for_edge(string pin,
 int event)

 Halts processing until the specified event
occurs on the specified pin

 add_event_detect(string pin,
 int event)

 Watches for the specified event on the speci-
fied pin

 event_detected(string pin) Returns whether the watched event has
occurred on the pin

 These functions can be divided into two categories. The first contains functions related to basic pin

configuration. The second contains functions that relate to events and event handling.

ptg16386157

Controll ing Motors with the BeagleBone Black202

III

PA
R

T

Basic Pin Configuration
GPIO pins can be configured for input (reading the pin’s voltage level) or output (setting the pin’s

voltage level). This configuration is performed by the setup function, which accepts a pin string fol-

lowed by either GPIO.IN or GPIO.OUT .

A pin string can be given as the header location ("P8_12") or as the GPIO number ("GPIO1_12").

For example, the following code configures Pin 14 in Header 8 as an output pin:

GPIO.setup("P8_14", GPIO.OUT)

Pin P8_14 corresponds to GPIO0_26. Therefore, the same configuration can be accomplished with

the following line:

GPIO.setup("GPIO0_26", GPIO.OUT)

The logic level of an output pin is set with the output function, which accepts a pin string and the

logic level. If the logic level is set to GPIO.HIGH or 1, the pin’s voltage is set to 3.3 V. If the logic

level is set to GPIO.LOW or 0, the voltage is set to 0 V.

The logic level of an input pin is read with the input function, whose only argument is the pin

string. In my tests, input returns 1 if the pin’s voltage is greater than 1.4 V and returns 0 if the

voltage is less than 1.1 V. If the voltage is between 1.1 V and 1.4 V, input’s return value can’t be

determined.

The code in Listing 11.1 shows how setup, input, and output are used in practice. This script

reads from Pin 16 in Header 8, and depending on its value, sets the value of Pin 18.

Listing 11.1 Ch11/test_input.py—Checking a Pin’s Logic Level
"""

This script repeatedly checks a pin's logic level.

If the logic level is low, a second pin is set high.

If the logic level is high, the loop terminates.

"""

import Adafruit_BBIO.GPIO as GPIO

Assign names

input_pin = "P8_16";

output_pin = "P8_18";

Set pin directions

n ote
 The code in this chapter imports the Adafruit_BBIO.GPIO module as GPIO and the Adafruit_BBIO.PWM
module as PWM. Therefore, when discussing constants and functions in these modules, this chapter uses
GPIO. name and PWM. name .

ptg16386157

20311.2 Programming the BBB

11

C
H

A
PTER

GPIO.setup(input_pin, GPIO.IN)

GPIO.setup(output_pin, GPIO.OUT)

Wait for input_pin to reach low voltage

while(GPIO.input(input_pin) == GPIO.LOW):

 GPIO.output(output_pin, GPIO.HIGH)

Return pins to default state

GPIO.cleanup()

In this script, every iteration of the while loop checks the state of the input pin. If the pin’s level is

low, the voltage of the output pin is set high. The loop continues until the input pin’s voltage is set

high. Then the cleanup function returns the pins to their original states.

Events and Event Handling
Many GPIO applications are reactive in nature. That is, they perform operations only in response to

external stimuli. In Listing 11.1 , the code uses a while loop to wait until the input pin’s logic level

is set high. The Adafruit_BBIO module provides an easier, more flexible way to do this with the

 wait_for_edge function. Its signature is given as follows:

wait_for_edge(string pin, int event)

When this function executes, it waits until the specified event occurs on the given pin. A GPIO

event corresponds to a change in the pin’s logic level, which may be a rising edge (low to high) or a

falling edge (high to low). The second parameter of wait_for_edge specifies the type of event and

can take any of the following values:

• GPIO.RISING — The function stops waiting when the pin’s level changes from low to high.

• GPIO.FALLING — The function stops waiting when the pin’s level changes from high to low.

• GPIO.BOTH— The function stops waiting whenever the pin’s logic level changes.

 For example, the following code waits until a falling edge occurs on Pin P8_18:

wait_for_edge("P8_18", GPIO.FALLING)

Rather than halt the processor until an event occurs, it’s usually more efficient to check the pin’s

state periodically while performing other work. This is made possible by the add_event_detect

and event_detected functions. The first is similar to wait_for_edge , but instead of halting the

processor until the event occurs, it tells the processor to turn on detection for that event.

 If detection has been turned on for an event, event_detected returns 1 if the event has occurred

and 0 if it hasn’t. The following code shows how add_event_detect and event_detected work

together to respond when a falling edge takes place on Pin GPIO1_23:

ptg16386157

Controll ing Motors with the BeagleBone Black204

III

PA
R

T

add_event_detect("GPIO1_23", GPIO.FALLING)

while(condition == True):

 ...perform other tasks...

 if(event_detected("GPIO1_23")):

 ...respond to the falling edge...

It’s important to keep in mind that neither add_event_detect nor event_detected halt the pro-

cessor. Therefore, this code allows the processor to keep busy as it waits for the event.

 The add_event_detect function has two optional parameters that affect how the event is pro-

cessed. Its full signature is given as follows:

add_event_detect(string pin, int event, callback= func , bouncetime= time)

The third parameter identifies a function, called a callback function, to be called when the event

occurs. When called, this function receives a string parameter that identifies the name of the pin

that produced the event.

When a user presses a button connected to a GPIO pin, the pin may generate multiple events in

rapid succession. Rather than respond to every event, it’s more efficient to respond to the first and

ignore further events for a given time. The last parameter of add_event_detect makes this pos-

sible, and it accepts a value for bouncetime in milliseconds.

 The code in Listing 11.2 shows how add_event_detect can be used to execute a callback function.

In this program, the event_callback function receives the pin string and prints a message.

Listing 11.2 Ch11/callback.py—Responding to Events in a Callback
"""

This code configures a callback that responds

to changes to the logic level for Pin P8_18.

"""

import Adafruit_BBIO.GPIO as GPIO

import time

def event_callback(pin):

 print("The event was received by Pin %s." % pin)

Define pin to be tested

test_pin = "P8_18";

Set pin direction

GPIO.setup(test_pin, GPIO.IN)

Configure a callback to be executed

GPIO.add_event_detect(test_pin, GPIO.BOTH, event_callback)

ptg16386157

20511.3 PWM Generation

11

C
H

A
PTER

Delay for ten seconds

time.sleep(10)

Return pin to default state

GPIO.cleanup()

If the logic level on P8_18 changes, the processor executes the event_callback function, passing it

the name of the pin. When the function executes, it receives the parameter and prints a message:

The event was received by Pin P8_18.

The call to time.sleep tells the processor to wait 10 seconds before continuing. While the delay

continues, the processor continues to check for rising/falling edges on the test pin.

11.3 PWM Generation
As discussed in Chapter 3 , “DC Motors,” a PWM signal consists of a series of pulses with varying

widths. These signals are used to control brushed and brushless DC motors. This section explains

how the Adafruit_BBIO.PWM module makes it possible to generate PWM pulses. Table 11.3 lists

five of the module’s functions.

Table 11.3 Functions of the Adafruit_BBIO.PWM Module

Function Description

start(string pin, float duty,
 freq= freq , polarity= pol)

 Used to generate PWM for the given pin with the
specified duty cycle and frequency

 set_duty_cycle(string pin,
 float duty)

 Used to change the duty cycle for the given pin

 set_frequency(string pin,
 float freq)

 Used to change the pulse frequency for the given pin

 stop(string pin) Halts PWM generation for the given pin

 cleanup() Returns pins to their initial configuration

 The first function, start , is the most important. This has two required parameters: the name of the

pin and the desired duty cycle. The duty cycle must be given as a float between 0.0 and 100.0.

The following code generates a PWM signal on Pin P8_18 with a duty cycle of 25%:

GPIO.start("P8_18", 25)

start’s optional third parameter sets the PWM frequency. By default, this equals 2000 Hz, which

means the time between the rising edges of two adjacent pulses is 1/2000 = 0.5 ms. This is strange,

because many servomotors expect a PWM period equal to 20 ms, which corresponds to a frequency

ptg16386157

Controll ing Motors with the BeagleBone Black206

III

PA
R

T

of 50 Hz. The following call to start generates a PWM signal with a duty cycle of 10% and a fre-

quency of 50 Hz:

GPIO.start("P8_18", 10, 50)

start’s optional fourth parameter makes it possible to change the signal’s polarity. This can be

set to 0 or 1. The default value is 0, which keeps the signal low until a pulse brings it high. If the

polarity is set to 1, the signal stays high until a pulse brings it low. Figure 11.4 shows the difference

between the two signals.

20 ms

start("P8_19", 25, 50, 0)

20 ms

start("P8_19", 25, 50, 1)

 Figure 11.4
 Setting the PWM
polarity

After start is called, set_duty_cycle and set_frequency can be called to change the PWM duty

cycle and frequency. As in the start function, the duty cycle and frequency are given as floating-

point values.

 The code in Listing 11.3 demonstrates how to generate PWM signals using the Adafruit_BBIO.PWM

module. The program delivers pulses to Pin P8_19, and each pulse has a duty cycle of 40%. In keep-

ing with servo requirements, the frequency is set to 50 Hz.

Listing 11.3 Ch11/pwm.py—Generating a PWM Signal
"""

This code generates a pulse-width modulation (PWM) signal

for Pin P8_19 with a 40% duty cycle and a frequency of 50 Hz.

"""

import Adafruit_BBIO.PWM as PWM

import time

Define PWM pin

pwm_pin = "P8_19"

Set duty cycle to 40%, frequency to 50 Hz

PWM.start(pwm_pin, 40, 50)

ptg16386157

20711.4 The Dual Motor Control ler Cape (DMCC)

11

C
H

A
PTER

Delay for ten seconds

time.sleep(10)

Halt PWM and return pin to initial settings

PWM.stop(pwm_pin)

PWM.cleanup()

The PWM signal is delivered through P8_19, and this wasn’t selected arbitrarily. This pin is con-

nected to the processor’s enhanced high-resolution pulse width modulator, or EHRPWM. You can

check this by looking at Pages 70 and 72 of the BBB’s system reference manual. Other suitable PWM

pins are P8_13, P9_14, and P9_16.

 Using the Adafruit_BBIO library, programs can generate PWM signals with precise timing. However,

the BBB’s pins deliver a maximum of 3.3 V, so the amplitude of the pulses can’t exceed 3.3 V. This

isn’t enough voltage to power a servomotor directly, but it’s more than sufficient to provide control

signals to an electronic speed control (ESC) or an expansion board such as the Dual Motor Controller

Cape, which is the topic of the following section.

11.4 The Dual Motor Controller
Cape (DMCC)

The BeagleBone Black’s capabilities can be extended with expansion boards that connect to its P8

and P9 headers. These expansion boards are referred to as capes , presumably because Snoopy the

beagle wore a cape when imagining himself as the Red Baron.

 BBB capes have been designed for many applications, including audio processing, LCD control, and

Wi-Fi communication. The site http://elinux.org/Beagleboard:BeagleBone_Capes presents a wide

range of capes that are compatible with the BBB.

 The Dual Motor Controller Cape, or DMCC, is sold by Exadler Technologies at http://exadler.

myshopify.com . Figure 11.5 shows what it looks like. The headers on the top and bottom make it

possible to stack additional DMCC boards.

The three connectors on the right are particularly important. The top and bottom connectors deliver

power to two motors, and keeping with Exadler’s documentation, we’ll refer to them as Motor 1 and

Motor 2. The middle connector receives external power. The input voltage must be set between 5 V

and 28 V.

The DMCC’s processing is performed by three integrated circuits. A DSPIC33FJ32MC304 generates

PWM signals to set the motors’ speeds. Two VNH5019A devices provide H bridges that receive

PWM signals and deliver current to motors in the forward or reverse directions. Figure 11.6 gives a

better idea of how the DMCC’s components work together.

The full schematic and design files for the DMCC can be downloaded for free at https://github.com/

Exadler/DualMotorControlCape . To read these files, you need to install the EAGLE circuit design

tool. For more information on EAGLE, I recommend Designing Circuit Boards with EAGLE by

Matthew Scarpino.

http://elinux.org/Beagleboard:BeagleBone_Capes
http://exadler.myshopify.com
http://exadler.myshopify.com
https://github.com/Exadler/DualMotorControlCape
https://github.com/Exadler/DualMotorControlCape

ptg16386157

Controll ing Motors with the BeagleBone Black208

III

PA
R

T

DSPIC33 digital
signal controller

Power to Motor 1

Input power

VNH5019A H bridge drivers

Quadrature
 encoder

inputs

Power to Motor 2

 Figure 11.5
 The Dual Motor Controller Cape, Mk 6

Quadrature
Encoder B

Motor 2
position

DSPIC33
FJ32MC304

Motor 1
Control

Motor 2
Control

VNH5019A

Motor 2
Power

Motor 2

Motor 1

Quadrature
Encoder A

Motor 1
position

BeagleBone
Black

I2C
pins

VNH5019A

Motor 1
Power

 Figure 11.6
 Functional
schematic of DMCC
motor control

ptg16386157

20911.4 The Dual Motor Control ler Cape (DMCC)

11

C
H

A
PTER

As illustrated in Figure 11.6 , the DMCC’s operation consists of four steps:

1. A program running on the BeagleBone Black specifies which motors should rotate and the speed

and direction of the rotation.

2. The DSPIC33 receives the desired motor parameters from the BBB and the motors’ actual behav-

ior from the quadrature encoders. With this information, it generates PWM signals for the motors.

3. The H bridges in the VNH5019A deliver current to the connected motors.

4. The motors rotate as they receive current. Their quadrature encoders convert their shaft angles

into electrical signals.

This section discusses these steps in detail and then shows how to control DC motors with the

DMCC.

11.4.1 BBB-DMCC Communication
Despite the many connections in the header, the DMCC reads data from only two BBB pins: P9_19

and P9_20. They tell the DMCC how the motors should rotate.

 The data transfer protocol used by these pins is I2C, which stands for Inter-Integrated Circuit. This

simple method relies on two signals to carry data:

• Serial data line (SDA)— Transfers bits between devices

• Serial clock (SCL)— Data clock

 In I2C communication, the device that drives the clock is called the master and the other device or

devices are called slaves. In BBB-DMCC communication, the BBB is the master and each connected

DMCC is a slave. The lowest DMCC is Slave 0, and each DMCC stacked on top of it receives an ID

incremented by 1.

 Every I2C data transfer consists of a sequence of 8-bit messages. The master initiates a transfer by

holding SCL high and changing SDA from high to low. The message starts with a slave’s ID and a

bit that identifies whether the master intends to send or receive data. The transfer ends when the

master holds SCL high and changes SDA from low to high.

11.4.2 PWM Signal Generation
The DMCC controls the motors’ speeds using PWM signals generated by the DSPIC33FJ32MC304,

which I’ll shorten to DSPIC33. This device is a digital signal controller , which is a microcontroller

with so much number-crunching power that it can serve the same role as a digital signal processor.

In the DMCC, the DSPIC33 reads two pieces of information. From the BBB’s I2C connection, it

receives the desired motor parameters. From the two quadrature encoder inputs, it reads the current

speed of the motors.

 The DSPIC33 computes the error between the desired speed of the motors and their actual rotation.

To reduce this error, it generates a control signal using the PID (proportional-integral-differential)

method discussed in Chapter 5 , “Servomotors.” This control signal is the sum of three values:

ptg16386157

Controll ing Motors with the BeagleBone Black210

III

PA
R

T

• Proportional gain— Proportional to the current error

• Integral gain— Proportional to the sum of the error over time

• Differential gain— Proportional to the most recent change in error

 The DSPIC33 adds these values together to generate the PWM signals that need to be sent to the

motors. More precisely, it determines the PWM duty cycle that will reduce the difference between

the motors’ desired behavior and their actual behavior. Then the device delivers PWM pulses and

enable signals to the VNH5019A connected to the desired motor.

11.4.3 Switching Circuitry
The DMCC contains two VNH5019A devices, and each VNH5019A contains two half-H bridges.

As described in Chapter 3 , an H bridge makes it possible to drive a motor in forward or reverse by

delivering positive or negative current, respectively. Figure 11.7 gives an idea of how this works.

PWM OUTA

VCC

S1

S2

S3

GNDA

S0

OUTB

ENA ENB

GNDB

 Figure 11.7
 Operation of the
VNH5019A H bridge

The two half-H bridges in the VNH5019A are denoted as A and B. Each has separate enable signals

(EN A and EN B) and delivers a separate output (OUT A and OUT B). In general, OUT A is connected to

one terminal of a motor and OUT B is connected to the other.

 There’s only one PWM signal. When this is high, the switches open and close according to the val-

ues of EN A and EN B . For example, when PWM and EN A are high, OUT A receives current from V CC .

When PWM is low, the switches remain open, so no current flows to OUT A or OUT B .

In the DMCC, the values of EN A , EN B , and PWM are set by the DSPIC33. It’s safe to assume that EN B

is the inverse of EN A . If this is the case, switches S 0 and S 3 will be closed when EN A is high, driv-

ing current from OUT A to OUT B . When EN A is low, switches S 1 and S 2 will be closed, driving current

from OUT B to OUT A .

ptg16386157

21111.4 The Dual Motor Control ler Cape (DMCC)

11

C
H

A
PTER

11.4.4 Motor Control
Exadler Technologies has provided source code for controlling motors with the DMCC. The files can

be freely downloaded from https://github.com/Exadler/DMCC_Library . Once you’ve downloaded

the files to the BBB, change to the directory containing setupDMCC.py and enter the following

command:

python setupDMCC.py install

This compiles the *.c code and installs the DMCC module in Python’s dist-packages directory. Once

this is done, you can write and execute scripts that make use of the DMCC module. Table 11.4 lists

ten of the module’s functions.

Table 11.4 Functions of the DMCC Module

Function Description

getMotorCurrent(int board,
 int motor)

Returns the current of the given motor

getMotorDir(int board,
 int motor)

Returns the direction of the given motor

getMotorVoltage(int board,
 int motor)

Returns the voltage of the given motor

 getQEI(int board, int motor) Returns the quadrature encoder value for the given
motor

 getQEIDir(int board,
 int motor)

Returns the quadrature encoder direction for the
given motor

 getTargetPos(int board,
 int motor)

Returns the position of the given motor

getTargetVel(int board,
 int motor)

Returns the velocity of the given motor

setMotor(int board,
 int motor, int power)

Delivers the specified power to the given motor

 setPIDConstants(int board,
 int motor, int posOrVel,
 float P, float I, float D)

 Assigns the PID values to control the given motor’s
position or velocity

 setTargetPos(int board,
 int motor, int pos)

 Sets the position of the given motor

 In each of these functions, the first parameter identifies the board of interest. This is useful if mul-

tiple DMCC boards are stacked on top of one another. The bottom board is specified with 0 and suc-

cessive boards have values incremented by 1.

 The second parameter sets the motor of interest. This should be set to 1 to specify Motor 1 and 2 to

specify Motor 2.

https://github.com/Exadler/DMCC_Library

ptg16386157

Controll ing Motors with the BeagleBone Black212

III

PA
R

T

Of these functions, the most important is setMotor , which drives a motor with the specified amount

of power. The power value can be set to any integer between –10000 and 10000. A positive value

drives the motor in the forward direction, and a negative value drives the motor in the reverse

direction.

 For example, the following code drives Motor 1 on Board 0 in the forward direction with power set

to half of the maximum:

setMotor(0, 1, 5000)

Listing 11.4 presents a simple script that drives the motor forward at full speed for 5 seconds and

then stops. Then it drives the motor in reverse at half speed for 10 seconds and stops.

Listing 11.4 Ch11/motor.py—Controlling a Motor with the DMCC
"""

This drives a motor forward at full speed for 5 seconds, stops,

drives the motor backward at half-speed, and stops.

"""

import DMCC as DMCC

import time

Drive motor forward

setMotor(0, 1, 10000)

time.sleep(5)

Stop

setMotor(0, 1, 0)

time.sleep(3)

Drive motor backward

setMotor(0, 1, -5000)

time.sleep(10)

Stop

setMotor(0, 1, 0)

time.sleep(3)

The DMCC module is easy to work with, but one shortcoming is the difficulty in driving a stepper

motor. With two H bridges available, it isn’t difficult to code a Python function that delivers the

phase changes required by a stepper. However, in the DMCC module, the only motor-driving func-

tion is setMotor , which doesn’t allow you to configure the output signals.

ptg16386157

21311.5 Summary

11

C
H

A
PTER

11.5 Summary
The BeagleBone Black is one of the most powerful single-board computers available for hobbyists. It

lacks a video decoder, but its ARM processor can process data and crunch numbers at high speed.

Its many external connectors make it possible to access the board in a number of ways.

This chapter has focused on programming in Python on the Debian OS, but these aren’t the only

options available. A number of Linux-based operating systems can run on the BBB, including

Ubuntu and Ångström. Applications can be written in many languages, including C, C++, Java, and

BoneScript.

If you want to access the BBB’s pins in Python, you can’t do much better than the Adafruit_BBIO

library. This library provides the Adafruit_BBIO.GPIO module, whose functions read and set the volt-

age levels of GPIO pins. It also provides functions that wait for rising and falling edges to occur on

GPIO pins.

Adafruit_BBIO also provides the Adafruit_BBIO.PWM module, whose functions generate pulse width

modulation (PWM) signals. Keep in mind that the default PWM frequency is 2000 Hz, which is much

faster than the 50 Hz expected by many hobbyist servomotors. Also, the maximum PWM amplitude

is 3.3 V, which is less than the required voltage for many servomotors.

The Dual Motor Controller Cape (DMCC) is an extension board for the BBB that makes it possible to

control motors. A digital signal controller reads the motors’ positions and constructs a control signal

based on the PID control method. It delivers PWM pulses to a pair of H bridge components, and

these components deliver power to the motors. The functions provided by the DMCC module make

it possible to configure the motors’ behavior and read their operating characteristics.

ptg16386157

This page intentionally left blank

ptg16386157

DESIGNING AN ARDUINO-
BASED ELECTRONIC SPEED
CONTROL (ESC)

Chapters 9 through 11 explained how to control motors using popular

boards such as the Arduino Mega and Raspberry Pi. This chapter puts

aside existing boards and explains how to design a motor control board

from scratch. To be specific, the goal is to design an electronic speed

control (ESC) capable of controlling a brushless DC motor (BLDC). As dis-

cussed in Chapter 3 , “DC Motors,” an ESC receives low-voltage signals

from a controller and generates the high-current pulses needed to drive

the motor.

 For the sake of simplicity, this chapter’s ESC will be constructed as an

extension board for Arduino family of circuit boards (particularly the

Arduino Mega). This means the extension board will receive signals from

the Arduino’s Atmel microcontroller and deliver power to a BLDC.

 This chapter goes into great depth on a number of topics related to BLDC

control, including the electrical characteristics of MOSFETs and MOSFET

drivers. It also presents the process of designing the circuit board, from

connecting components in the schematic to positioning device packages

 12

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)216

III

PA
R

T

in the board design. However, before getting into technical detail, the first section presents an over-

view of the circuit’s design process.

12.1 Overview of the ESC Design
For this chapter, I’d originally intended to present a PC-programmable ESC similar to a commercial

ESC for RC cars and aircraft. That is, the circuit receives power and PWM pulses, and it delivers

control signals to the BLDC. To ensure proper timing, the ESC also receives information from the

motor about the rotor’s orientation. Figure 12.1 illustrates the overall operation.

Rotor orientation
Controller

Personal
Computer

Processor BLDC
Switching
Circuitry

ESC

PWM

Config.
data

 Figure 12.1
 Operation of
a standard
programmable ESC

This type of circuit is popular in the RC community, but as a maker project, it has three significant

issues:

• To use the circuit, an external controller is needed to generate PWM signals.

• Programming the ESC’s microcontroller requires a deep understanding of the C programming

language and the microcontroller’s architecture.

• To make the ESC programmable, additional software must be written to run on a personal

computer.

Given the complexity of testing and programming a standard ESC, I decided to combine the ESC’s

functionality with the simplicity of the Arduino framework. Therefore, the ESC circuit presented in

this chapter receives control signals from an Atmel microcontroller on a standard Arduino board.

Figure 12.2 depicts the functional schematic for the simplified circuit. I’d considered giving it a

name such as the ArduESC or ESCuino, but in the interest of good taste, this chapter will refer to it

simply as the ESC Shield.

ptg16386157

21712.1 Overview of the ESC Design

12

C
H

A
PTER

This schematic’s structure is reflected in the design of the circuit board. The switching is performed

by six transistors, and Figure 12.3 shows how they’re positioned on the front side of the circuit

board described in this chapter.

Arduino
Switching
Circuitry

BLDCPWM

Zero-Crossing
Detector

BEMF
Sensorless

Input

Sensored
Input

ESC
Figure 12.2
Functional schematic of the
ESC Shield

Figure 12.3
The front side of the ESC Shield

Figure 12.4 shows what the rear side of the board looks like. The pins on the top and bottom fit into

the headers on an Arduino board.

The next two sections present the components that make up the ESC’s functional blocks. The next

section discusses the board’s switching circuit, and the section after that explains the zero-crossing

circuit.

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)218

III

PA
R

T

12.2 Switching Circuitry
DC motors require more power than microcontrollers can provide. For this reason, motor control cir-

cuits place electric switches between the controller and the motor. These switches receive signals

from the controller and deliver power to the motor in pulses of high voltage and current.

As discussed in Chapter 3 , the two most common types of electrical switches are metal-oxide-

semiconductor field-effect transistors (MOSFETS) and insulated-gate bipolar transistors (IGBTs).

MOSFETs are better suited to small- and medium-sized circuits, so the ESC Shield relies on

MOSFETs to switch motor power on and off. The first part of this section goes into detail regarding

which MOSFETs were chosen and why.

To ensure that the MOSFETs operate at maximum speed, the ESC circuit places additional devices

between the Arduino microcontroller and the MOSFETs. These are called MOSFET drivers, and the

second part of this section explains how they work.

 Figure 12.5 expands on Figure 12.2 and shows how the circuit’s MOSFETs and MOSFET drivers are

connected to one another.

12.2.1 MOSFET Switches
Chapter 3 explained the basics of MOSFETs, and I’ll briefly review the topic here. Figure 12.6

depicts the schematic symbol of an n-type enhancement-mode MOSFET. As shown, the device has

three terminals: the gate, source, and drain.

 Figure 12.4
 The rear side of the ESC Shield

ptg16386157

21912.2 Switching Circuitry

12

C
H

A
PTER

Enhancement-mode MOSFETs can operate in three states, but for motor circuits, we’re only con-

cerned with two:

• The cut-off state (off)— If the gate-source voltage (V GS) is lower than a threshold voltage (V TH),

the MOSFET is in the cut-off state. The resistance between the source and drain is nearly infinite

and the drain-source current, I DS , is nearly zero.

• The saturation state (on)— If V GS is greater than V TH and the drain-source voltage (V DS) is greater

than V G S - V TH , the MOSFET is in the saturation state. The resistance between the drain and

source, R DS(ON) , drops to a few hundredths of an ohm. This allows current to flow freely from the

drain to the source.

Arduino
MOSFET

Driver
BLDC

PWM

Zero-Crossing
Detector

BEMFSensorless
Input

Sensored
Input

ESC

MOSFET
Driver

MOSFET
Driver

MOSFET
Switches

MOSFET
Switches

MOSFET
Switches

Figure 12.5
ESC circuit with
MOSFET drivers
and MOSFET
switches

GATE

DRAIN

SOURCE

+

-

VGS

IDS ~ 0
if VGS < VTH

Figure 12.6
The MOSFET circuit symbol

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)220

III

PA
R

T

MOSFETs are not ideal switches. The threshold voltage is greater than 0 V, the drain-source resis-

tance is greater than 0Ω, and the switching time isn’t instantaneous. However, their behavior is suf-

ficiently close to the ideal that most motor circuits you’ll encounter rely on them for switching.

Selecting a MOSFET
If you look at a datasheet for a MOSFET, you’ll find a vast list of parameters that describe the tran-

sistor’s operation. With names such as V BR(DSS) and Q G , it’s understandable why newcomers are

frequently confused. To help clear the confusion, Table 12.1 lists six parameters commonly encoun-

tered in MOSFET datasheets and explains what they mean.

Table 12.1 MOSFET Operational Parameters

Parameter Full Name Description

V DS or V BR(DSS) Drain-source voltage Maximum voltage between drain and source
that the MOSFET can block in its off state

 I D Drain current Maximum current that can flow between the
drain and source when the MOSFET is in
the on state

 R DS(ON) Drain-source resistance Resistance between the drain and source
when the MOSFET is in the on state

Q G Gate charge The amount of charge needed at the gate to
put the MOSFET in the on state

 P d or P TOT Total power Maximum amount of power that can be dis-
sipated by the MOSFET

V GS(TH) orV TH Threshold voltage Gate-source voltage needed to put the
MOSFET in the on state

 The first two characteristics are particularly important. If a MOSFET can’t withstand the power

supply’s voltage or conduct the amount of current required by the motor, it will fail and potentially

break the circuit.

 Motors require significant amounts of current, so the resistance, R DS(ON) , is a major concern. The

larger the resistance, the larger the voltage drop between the drain and source. High resistance

means more heat, which equals I 2 R DS(ON) . I prefer MOSFETs with resistances around 5 mΩ, so even if

the current is 20 A, the voltage drop is only 0.1 V. For high-power motor control circuits, IGBTs are

preferred over MOSFETs because the voltage drop is smaller.

 The gate charge, Q G , is also important. A MOSFET’s gate voltage, V GS , doesn’t change instanta-

neously. Similar to a capacitor, its voltage depends on the charge it receives (voltage = charge/

capacitance). Q G identifies the amount of charge the gate needs to reach the threshold voltage. It

takes time to charge and discharge the gate, so the smaller the Q G , the faster the gate’s voltage will

reach the threshold voltage for a given amount of current.

ptg16386157

22112.2 Switching Circuitry

12

C
H

A
PTER

The IRFR7446 MOSFET
The IRFR7446 power MOSFET from International Rectifier delivers high power with low resistance

and low gate charge. For this reason, I’ve selected this device to serve as the switch in the ESC

Shield. Its operating characteristics are given as follows:

• Maximum drain-source voltage (VBR(DSS)): 40 V

• Maximum drain-source current: 120 A

• On-state drain-source resistance (RDS(ON)): 3.9 mΩ

• Typical gate charge (QG) : 65 nC at V GS = 10 V

 The gate charge of 65 nC is low compared to most power MOSFETs, but for high-speed power

switching, this charge must be provided in a very short amount of time. This means the MOSFET’s

gate must be driven at high current. The Arduino microcontroller can’t provide the required level of

current, so the ESC makes use of MOSFET drivers. I’ll discuss them shortly.

Body Diodes
Regarding MOSFETs, one more topic needs to be discussed. In a motor control circuit, MOSFETs are

commonly connected in pairs, such as that shown in Figure 12.7 .

+VPOWER

-VPOWER

control
signal
(high)

to motor

control
signal
(low)

Figure 12.7
MOSFETs and diodes

In this figure, each MOSFET has a diode connected in parallel that conducts current from the source

to the drain. These diodes provide a path for current to flow away from the motor’s windings after

the MOSFET has turned off. These diodes are frequently called free-wheeling diodes, suppression

diodes, or flyback diodes.

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)222

III

PA
R

T

In many MOSFET circuits, Schottky diodes are commonly used because of their rapid switching and

low forward voltage drop. However, power MOSFETs, such as the IRFR7446, have built-in diodes

called body diodes . Datasheets for power MOSFETs provide two important operating characteristics

related to body diodes. In both cases, the lower the value, the better.

• V SD — The forward voltage drop of the body diode (0.9 V for the IRFR7446)

• t rr — The reverse recovery time (20 ns for the IRFR7446)

 This second parameter merits explanation. When a diode’s voltage is switched from forward to

reverse, its stored energy causes current to flow briefly in the reverse direction. This brief time

is called the reverse recovery time , and in motor circuits, it’s important that this be as small as

possible.

12.2.2 MOSFET Drivers
For a MOSFET to switch power quickly, its gate must be rapidly charged and discharged. This

requires more current than the Arduino’s microcontroller can provide by itself. For this reason, high-

speed ESCs insert amplifiers between the microcontroller and the MOSFETs. These devices are

referred to as MOSFET drivers or charge pumps.

 Some circuits use one driver per MOSFET, but it’s easier to use an IC capable of driving the two

MOSFETs in a half-H bridge. Figure 12.8 gives an idea of how this works.

MOSFET
Driver

+V

-V

POWER

Controller PWM

POWER

 Figure 12.8
 MOSFET driver for a half-H bridge

The MOSFET that connects the motor to positive power is the high-side transistor and the MOSFET

that connects the motor to negative power is the low-side transistor. A driver that can provide

switching current to both is called a high-side/low-side driver.

 When you’re selecting the right driver, the first step is to determine how much current is needed

by the switch. This depends on the MOSFET’s gate charge and how quickly the MOSFET needs to

switch power on and off. Mathematically, the relationship between the gate charge (Q G), the time

needed to switch on/off (t switch), and the required current (I) is given as follows:

ptg16386157

22312.2 Switching Circuitry

12

C
H

A
PTER

I
Q

t
G

switch

=

For the IRFR7446, Q G equals 65 nC when V GS = 10 V. For the ESC, a safe switching time is 500 ns.

Replacing these values in the equation produces the following result:

I
nC

ns
A

65

500
0.13= =

The IR2110 High-Side/Low-Side Driver
To drive its MOSFETs, the ESC Shield relies on the IR2110 high-side/low-side driver. This driver’s

typical output current is 2 A, which is more than sufficient to drive the IRFR7446 MOSFET. The

surface-mount package has 16 pins, but only 11 of them are used. Figure 12.9 shows how these 11

pins are connected to the controller, to power, and to the high-side/low-side MOSFETs.

VCC

MOTOR

VMOT

VB

HO

VS

LO

Controller

HIN

LIN

COM

VDD

VSS

SD

IRS2110

 Figure 12.9
 The IR2110 high-side/
low-side driver circuit

The IR2110 signals are given as follows:

• HIN and LIN receive PWM signals from the controller.

• VDD and VSS are the voltage and ground as seen from the controller.

• HO and LO provide switching power to the MOSFETs’ gate terminals.

• VB and VS serve as the high-side and low-side floating supplies.

• VCC is the low-side fixed supply voltage.

• COM is the low-side return (ground).

• SD tells the IR2110 to turn off (shut down) the output voltages HO and LO.

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)224

III

PA
R

T

The driver’s overall operation is straightforward to understand. When HIN is high, HO switches

power to turn the high-side MOSFET fully on. When LIN is high, LO switches power to turn the

low-side MOSFET fully on. It is vital that HIN and LIN are never high at the same time. If they’re

both high, the result is a short circuit from power to ground. This is called shoot through , and it can

cause significant overheating problems.

 The different voltage inputs can be confusing. For the ESC Shield, VDD is set to 5 V. VCC is set

between 10 and 20 V, and the ESC Shield sets it to 12 V. If VCC reaches a voltage less than about

8.5 V, the IR2110’s undervoltage detector prevents HO and LO from delivering current.

12.2.3 Bootstrap Capacitor
To keep the high-side MOSFET fully on, its gate voltage must be raised 10 to 15 V above the source

voltage. However, the source voltage can be as high as VMOT, which is higher than VCC. To pro-

vide the IRS2110 with enough power to drive the high-side MOSFET, many circuits connect a capac-

itor across VB and VS. This is called a bootstrap capacitor.

 To see why this capacitor is helpful, it’s important to examine the circuit’s behavior as the high-side

and low-side MOSFETs switch on and off.

• When LIN is high and the low-side MOSFET is fully on, VS is connected to ground. In this case,

the bootstrap capacitor charges to VCC minus the diode drop.

• When HIN is high and the high-side MOSFET is fully on, VS is connected to VMOT. Now the

potential difference across the bootstrap capacitor (VB – VS) equals VMOT plus VCC minus the

diode drop.

 Choosing the capacitance of the bootstrap capacitor requires effort. If the capacitance is too low,

it won’t be able to hold enough charge to raise the voltage of VB. If the capacitance is too high, it

will take too long to charge properly. As given by Application Note 978 (AN978) from International

Rectifier, the capacitance can be computed with the following equation:

C

Q
I

f
Q

I

f

V V V V

2 2 G
qbs

ls
Cbs

cc f LS Min

(max) (leak)

≥
+ + +⎡

⎣⎢
⎤
⎦⎥

− − −

Table 12.2 provides a description of the variables in this expression. The third column lists the

approximate values for the components in the ESC Shield.

Table 12.2 Variables in the Bootstrap Capacitance Equation

Variable Description Value

Q G Gate charge of the high-side MOSFET 65 nC

 I qbs(max) Maximum V BS quiescent current 230 μA

 f Operating frequency 50 Hz

 Q ls Level shift charge required per cycle 5 nC

ptg16386157

22512.3 Zero-Crossing Detection

12

C
H

A
PTER

Variable Description Value

I Cbs(leak) Capacitor leakage current 0.5 μA

 V CC Supply voltage 12 V

 V f Voltage drop across bootstrap diode 0.7 V

 V LS Voltage drop across low-side MOSFET 0.06 V

V Min Minimum difference between V B and V S 9.4 V

 In this table, the voltage drop across the low-side MOSFET is obtained by multiplying the desired

current by the MOSFET’s R DS(on) value. For the ESC Shield, this is (20 A)(3.0 mΩ) = 0.06 V. Also,

because tantalum capacitors have nearly no leakage current, this value may be set to zero.

 When the table’s values are inserted into the equation, the result is a capacitance of about

5.16 μF. For this reason, the ESC Shield will use a 4.7 μF tantalum capacitor to serve as the

bootstrap capacitor.

12.3 Zero-Crossing Detection
In my opinion, the main disadvantage of working with BLDCs is that the controller needs to deter-

mine the motor’s state in order to deliver power. This is straightforward when the motor has a sen-

sor or encoder, but if no sensor or encoder is available, the circuit becomes more complicated.

Chapter 3 explained the basic process of controlling a three-phase BLDC—the controller drives two

phases at a time, leaving the third to float. By measuring the floating voltage of the undriven phase,

the controller can determine when to send power to a motor. This is called zero-crossing detection,

and it’s the most common method for determining when to deliver power to a sensorless motor.

As the motor rotates, it generates an internal voltage in its windings called the back-EMF. Figure

12.10 shows a basic approximation of the back-EMF in a BLDC. In a real circuit, the shape of a wind-

ing’s back-EMF can be dramatically different when the winding isn’t receiving voltage.

Zero-crossings

Back EMF

V
 Figure 12.10
 Ideal back-EMF of a
three-phase BLDC

The point at which a winding’s back-EMF crosses zero is difficult to obtain because a motor’s back-

EMF can’t be measured directly. To see why this is the case, consider the circuit in Figure 12.11 .

This contains the equivalent circuit for the BLDC and a portion of the control circuitry.

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)226

III

PA
R

T

RB

LB

BEMFB

LC

BEMFCBEMFA

LA

RA RC

+
-

+ - +-

RP

RP

RP

O

P

CA

B

IB

IA IC

VMOT

AH

AL

BH

BL

CH

CL

 Figure 12.11
 BLDC equivalent
circuit and control
circuit

In this diagram, the BLDC’s three windings are connected at the point O. This point is commonly

called the neutral point or the star point. If we knew the voltage at O, it would be straightforward to

determine when the back-EMF in the floating winding crosses zero volts.

ptg16386157

22712.3 Zero-Crossing Detection

12

C
H

A
PTER

Unfortunately, we can’t obtain V O without drilling into the motor, so we create a virtual neutral point

at point P outside the motor. This allows us to find the zero-crossing by measuring V P and the volt-

age of the floating winding.

 Four steps are required to derive the relationships between the zero-crossing, V P , and the floating

voltage:

1. Relate V P to the voltages of the three windings: V A , V B , and V C .

2. Relate V O to the voltages of two energized windings.

3. Relate V O to the voltage of the floating winding and the floating back-EMF.

4. Combine the results to solve for the floating back-EMF.

The remainder of this section presents these steps in the given order.

12.3.1 Step 1: Relate V P to the Voltages of the
Three Windings

The first step is simple. The virtual neutral point, P, connects to each winding through a resistor

whose resistance equals R P . The voltage at P, V P , can be computed in terms of the winding voltages

(V A , V B , and V C) using Kirchoff’s Current Law:

V V

R

V V

R

V V

R
0A P

P

B P

P

C P

P

−
+

−
+

−
=

V V V V3 0A B C P+ + − =

V
V V V

3P
A B C=

+ +

12.3.2 Step 2: Relate V O to the Voltages of Two
Energized Windings

In the figure, suppose that switches B H and C L are closed and the rest of the switches are open. This

means Winding B is connected to high voltage (V B = V HIGH) and Winding C is connected to low volt-

age (V B = 0). Because the other switches are open, no current flows to Winding A, whose voltage is

left floating. With I A = 0, Kirchoff’s Current Law at point O tells us that I C = –I B .

 An energized winding generates back-EMF in response to applied current. Windings B and C have

currents of equal magnitude but opposite direction, so their back-EMF voltages have equal magni-

tude and opposite sign. In other words, because I C = –I B , BEMF C = –BEMF B .

 Now let’s compare the voltage across Winding B (V B – V O) and the voltage across Winding C

(V C – V O). These potential differences can be computed with the following equations:

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)228

III

PA
R

T

V V I R L
dI

dt
BEMFB O B B B

B
B− = + +

V V I R L
dI

dt
BEMFC O C C C

C
C− = + +

It’s safe to assume that the resistances and inductances are the same for both windings. Replacing

I B with –I C and BEMF B with –BEMF C , the equation for the voltage across Winding B can be given as

follows:

V V I R L
dI

dt
BEMF

V V

B O C C C
C

C

C O()

− = − − −

= − −

Rearranging this relationship produces the following result:

V
V V

2O
B C=

+

12.3.3 Step 3: Relate V O to the Voltage of the Floating
Winding and the Floating Back-EMF

If switches A H and A L are open, no current flows through Winding A. This means there’s no voltage

drop across R A or L A . Therefore, the voltage across Winding A can be computed with the following

equation:

V V BEMFA O A− =

Rearranging this equation produces the following expression for V O :

V V BEMFO A A= −

12.3.4 Step 4: Combine the Results to Solve for the
Floating Back-EMF

At this point, we have three equations. Two solve for V O and one solves for V P :

V
V V

2O
B C=

+

V V BEMFO A A= −

V
V V V

3P
A B C=

+ +

ptg16386157

22912.4 Designing the Schematic

12

C
H

A
PTER

By manipulating the first two equations, we can arrive at the following equation for the floating

back-EMF:

BEMF
V V V2

2A
A B C=

− −

Combining this result with the third equation produces the final result:

V V BEMF
2

3P A A− = −

The exact value of the floating back-EMF isn’t important. What is important is that it crosses zero

at the same moment that V P – V A equals zero. Similarly, the floating back-EMF of Winding B equals

zero when V P – V B equals zero, and the floating back-EMF of Winding C equals zero when V P – V C

equals zero. By measuring V P – V A , V P – V B , and V P – V C , the controller can detect the zero-crossing

point of each winding in a straightforward manner.

12.4 Designing the Schematic
Like the Arduino Mega and the Arduino Motor Shield, the ESC Shield is designed with the EAGLE

circuit design tool. This design process consists of two steps: constructing the circuit’s sche-

matic with the component’s symbols and then laying out the actual circuit with the component’s

packages.

 This section focuses on the circuit’s schematic design, which is performed in EAGLE’s schematic

editor. The goal of the schematic is to identify the circuit’s components and the manner in which

they’re connected. Rather than connect all the components in a single mess of wires, I like to

split the design into subcircuits. The schematic for the ESC Shield can be split into three main

subcircuits:

• Header connections

• MOSFETs and MOSFET drivers

• Zero-crossing detection

This section discusses each subcircuit and shows what it looks like in the schematic. If

you have EAGLE, you can view the schematic by downloading the book’s archive from

http://www.motorsformakers.com . The esc_shield.sch file can be found in the Ch12 folder.

12.4.1 Header Connections
One of the many advantages of the Arduino framework is that its circuit boards have identical con-

nections for expansion boards. That is, Arduino boards have header connections with the same

sizes and positions.

To see what I mean, look back at Chapter 9 , “Motor Control with the Arduino Mega,” and compare

the headers of the Arduino Mega and the Arduino Motor Shield. The motor shield has four headers:

one with 10 pins, two with eight pins, and one with six pins. This arrangement is standard among

http://www.motorsformakers.com

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)230

III

PA
R

T

Arduino shields, so you’ll find the same four headers on the Arduino Proto Shield and the Arduino

LCD Shield.

The ESC Shield relies on similar headers to connect to an Arduino board. In addition, it has two

headers that connect to the BLDC and a power supply. Figure 12.12 illustrates the four Arduino

headers (J1-J4), the BLDC header (J5), and the power supply header (J6).

+AREF
++3.3V

++5V

J1 J2
1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
9

10

+D_GND
+CTRL_AH
+CTRL_AL
+CTRL_BH
+CTRL_BL

+CTRL_CH
+CTRL_CL

+MTR_VA
+MTR_VB
+MTR_VC

+HE_A
+HE_B
+HE_C

J5
1
2
3
4
5
6
7
8

J3
1
2
3
4
5
6
7
8

GND

GND

GND

+ZC_A
+ZC_B
+ZC_C
+ZC_P

J4
1
2
3
4
5
6

++3.3V

++12V
+MTR_PWR

J6
1
2
3

 Figure 12.12
 Header connections

This figure illustrates the signal names used throughout the ESC Shield. Table 12.3 lists these sig-

nals and their headers.

Table 12.3 ESC Shield Signals

Signal Description

CTRL_AH High control signal for Winding A

CTRL_AL Low control signal for Winding A

CTRL_BH High control signal for Winding B

CTRL_BL Low control signal for Winding B

CTRL_CH High control signal for Winding C

 CTRL_CL Low control signal for Winding C

ZC_A Check zero-crossing for Winding A

 ZC_B Check zero-crossing for Winding B

 ZC_C Check zero-crossing for Winding C

 ZC_P Voltage of the virtual neutral point

ptg16386157

23112.4 Designing the Schematic

12

C
H

A
PTER

Signal Description

HE_A Hall effect signal for Winding A

HE_B Hall effect signal for Winding B

HE_C Hall effect signal for Winding C

The following subcircuits show how these signals are connected components inside the ESC Shield.

12.4.2 MOSFETs and MOSFET Drivers
The ESC Shield uses MOSFETs to switch power to the BLDC and MOSFET drivers to deliver power

to them. Each winding in the BLDC requires a pair of MOSFETs, and each pair is controlled by a

single MOSFET driver. Therefore, the ESC Shield contains three MOSFET drivers and six MOSFETs.

Figure 12.13 shows how they’re connected in the circuit.

+CTRL_AH

U1

++5V

++12V

+UF4007

+MTR_VA

+ C1 R1

Q1

Q2

R3

4.7

R2

10k

R4

10k

MTR_PWR

IRFR7446-DPAK

IRFR7446-DPAK

4.75.6uF

+D1

HIN VB

HO

VS

LO

NC4

NC5

LIN
+

V
D

D

V
C

C

V
S

S

C
O

M

SD

NC1

NC2

NC3

IR2110S

GND GND

+CTRL_AL

Figure 12.13
MOSFET driver
subcircuit

In this figure, C1 is the bootstrap capacitor that raises the voltage at VB. As discussed earlier, its

capacitance is 4.7 μF.

 This subcircuit places two 10 kΩ resistors (R2 and R4) between the gate and source of each

MOSFET. This pulls down the transistors’ gates, which helps prevent the MOSFETs from being

turned on by external voltage sources, such as static electricity.

 The circuit also places two 4.7 Ω resistors in series with the gate of each MOSFET. This slightly

reduces the switching efficiency (–0.8%) but significantly decreases the ringing in the circuit, thus

increasing stability. For more information, I recommend the AB-9 application bulletin from Fairchild

Semiconductor.

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)232

III

PA
R

T

12.4.3 Zero-Crossing Detection
An earlier discussion explained how a winding’s zero-crossing can be detected by subtracting the

winding’s voltage from the voltage of a virtual neutral point, P. Figure 12.14 shows the subcircuit

that accomplishes this.

R19

10k

R20

10k

10k

R21

GND

+ZC_P

+ZC_C +C4

+100
pF

+C5

+100
pF

+C6

+MTR_VA

+MTR_VB

+MTR_VC

+100
pF

+ZC_B +ZC_A R16+

1k+

R17+

1k+

R18+

1k+

R13

R14

R15

10k

10k

10k

 Figure 12.14
 Zero-crossing
detection subcircuit

The Arduino’s analog inputs can only read voltages between 0 and 5 volts. The motor voltage can

be considerably larger, so a voltage divider is needed to reduce the winding voltages. In each case,

a capacitor is inserted in parallel to filter ringing from the motor voltage.

12.5 Board Layout
With the schematic design completed, the next step is to design the circuit board. In keeping with

the convention established for Arduino shields, its dimensions are 2.1" by 2.7", with the four Arduino

headers (J1-J4) positioned on the long edges. The J5 header, which connects to the motor, is placed

on one short edge. The J6 header, which connects to external power, is placed on the other short

edge.

The shield isn’t large enough to contain all six MOSFETs and all three drivers on the same side.

Therefore, I’ve positioned the MOSFETs on the front side and the drivers on the rear. Figure 12.15

shows what the front side looks like.

In the lower right, the network of resistors makes it possible to compute the voltage at the virtual

neutral point. This voltage and the voltages of the three windings are sent to the microcontroller

through four of its analog input pins.

 Figure 12.16 depicts the rear side of the ESC Shield. This contains the three MOSFET drivers that

deliver current to the gates of the MOSFETs.

Differently sized traces carry different amounts of power. That is, traces carrying greater power are

wider than those carrying less power. This is why the traces carrying power to the motor are larger

than the traces carrying analog signals.

ptg16386157

23312.5 Board Layout

12

C
H

A
PTER

 Figure 12.15
 ESC Shield board
design (front)

 Figure 12.16
 ESC shield board
design (rear)

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)234

III

PA
R

T

12.6 Controlling the BLDC
At this point, you should have a solid understanding of the ESC Shield circuit and its manner of

operation. The goal of this section is to explain how it can be used to provide power to a BLDC. The

first part presents the overall process of driving a BLDC, and the second part explains how this pro-

cess can be approximated with an Arduino sketch.

12.6.1 General BLDC Control
Unlike brushed DC motors, BLDCs require a startup process before they can operate normally. For

sensorless BLDCs, this general startup process involves four steps:

1. Position the rotor in a known starting orientation.

2. Slowly turn the rotor clockwise or counterclockwise.

3. Accelerate the rotation until the voltage of the motor’s virtual neutral point is large enough to

measure.

4. Measure the zero-crossing interval to determine when pulses should be delivered to the motor’s

windings.

For the first step, the controller delivers current to all three windings to set the rotor’s initial orienta-

tion. To be specific, it delivers current to the high switch of Winding A, the low switch of Winding

B, and the low switch of Winding C. Figure 12.17 shows what this looks like.

VMOT

BH

BL

AH

AL

CH

CL

IA

ICIB

 Figure 12.17
 Setting
the rotor’s
orientation

If the controller provides too much current, the rotor will move rapidly and oscillate around this ini-

tial position. Therefore, the controller starts with a low duty cycle and gradually increases it until

the rotor’s orientation is set.

 The next step is to get the rotor moving quickly enough so that its back-EMF will be high enough to

allow the controller to perform the zero-crossing measurement discussed earlier. To accomplish this,

ptg16386157

23512.6 Control l ing the BLDC

12

C
H

A
PTER

the controller delivers current to each of the three windings in a staggered sequence. Chapter 3 dis-

cussed this sequence, and Figure 12.18 gives an idea of what it looks like.

CTRL_AH HIGH

CTRL_AL HIGH

CTRL_BH HIGH

CTRL_BL HIGH

CTRL_CH HIGH

CTRL_CL HIGH

2 t t 1 rev = 6 t
 Figure 12.18
 BLDC driving sequence

In this diagram, each switch closes for a time equal to 2t, and the winding is left floating for a time

equal to t. A complete revolution corresponds to an interval of 6t, so if the desired speed is ω goal (in

RPM), the relationship between ω goal and t can be computed as follows:

ω

ω

=
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

⎞
⎠⎟

=

t

t

1 rev
6 sec

 rev
1min

1min
60sec

10

goal

goal

For example, if the goal is to rotate the motor at 400 RPM, the final value of t should be 0.025 sec.

However, before the controller sets the final value of t, it needs to monitor the motor’s rotational

speed and gradually decrease or increase t as needed.

 As discussed earlier, the controller determines the motor’s speed by measuring the voltage at the

motor’s virtual neutral point. By comparing this voltage to the voltage in each winding, the control-

ler can measure the zero-crossing intervals to determine how quickly the BLDC is rotating.

12.6.2 Interfacing the BLDC Through Arduino
The 8-bit microcontroller in the Arduino Mega isn’t particularly powerful, but it’s capable of approxi-

mating the BLDC control method discussed in this chapter. Chapter 9 presented the basics of

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)236

III

PA
R

T

programming the Arduino Mega. Pins 2–13 can be accessed as PWM pins, and six of these pins are

needed to provide control pulses to the ESC Shield.

In addition, Pins A0 through A3 make it possible for the Mega to check the zero-crossing of the

motor’s back-EMF. Table 12.4 lists the Arduino numbers for these pins and the corresponding

names of the ESC Shield signals.

Table 12.4 Signal Pins of the ESC Shield

Arduino ID ESC Shield Signal Description

13 CTRL_AH High control signal for Winding A

12 CTRL_AL Low control signal for Winding A

 11 CTRL_BH High control signal for Winding B

 10 CTRL_BL Low control signal for Winding B

 9 CTRL_CH High control signal for Winding C

 8 CTRL_CL Low control signal for Winding C

 A0 ZC_A Check zero-crossing for Winding A

 A1 ZC_B Check zero-crossing for Winding B

 A2 ZC_C Check zero-crossing for Winding C

 A3 ZC_P Voltage of the virtual neutral point

 In the first step of BLDC control, the goal is to bring the rotor to a known orientation. To accomplish

this, the controller gradually provides power to the high switch of Winding A (CTRL_AH), the low

switch of Winding B (CTRL_BL), and the low switch of Winding C (CTRL_CL). In code, this can be

done by calling analogWrite and increasing the duty cycle over time.

 Once the rotor is in position, the microcontroller starts the motor’s operation by delivering power to

its windings in sequence. For Winding A, this means providing power to the high switch (CTRL_

AH) with the low switch off, then to the low switch (CTLR_AL) with the high switch off, and then

to neither switch. The controller delivers a similar sequence to all three windings in a staggered

fashion.

 As the motor turns, the controller monitors the virtual neutral point. By comparing this value to the

voltage of each winding, the controller determines when the winding’s back-EMF crosses zero. By

measuring the interval between zero-crossings, the controller can determine when to deliver pulses

to the motor.

 The sketch presented in Listing 12.1 shows how the BLDC control procedure can be approximated

on an Arduino board. Note that the ESC Shield must be connected to power, a BLDC, and the head-

ers of a compatible Arduino board.

ptg16386157

23712.6 Control l ing the BLDC

12

C
H

A
PTER

Listing 12.1 Ch12/bldc.ino—BLDC Control
/* This sketch controls a BLDC by applying voltage to the

 six switches on the ESC Shield discussed in Chapter 12 */

 // Assign names to the pins

 int i, t, va, vp;

 int old_time, zc_interval;

 int ctrl_ah = 13;

 int ctrl_al = 12;

 int ctrl_bh = 11;

 int ctrl_bl = 10;

 int ctrl_ch = 9;

 int ctrl_cl = 8;

 int zc_a = 0;

 int zc_b = 1;

 int zc_c = 2;

 int zc_p = 3;

 int time_goal = 50;

 void setup() {

 // Bring rotor to a known initial position

 for (i=0; i<255; i+=5){

 analogWrite(ctrl_ah, i);

 analogWrite(ctrl_bl, i);

 analogWrite(ctrl_cl, i);

 delay(60);

 }

 // Set initial timing value

 old_time = millis();

 // Start turning the rotor slowly

 for (t=500; t>200; t-=50) {

 rotate(t);

 }

 t = 200;

 }

 void loop() {

 // Check for zero-crossing

 vp = analogRead(zc_p);

 va = analogRead(zc_a);

 if((vp - va < 10) || (va - vp < 10)) {

 zc_interval = millis() - old_time;

 old_time = millis();

ptg16386157

Designing an Arduino-Based Electronic Speed Control (ESC)238

III

PA
R

T

 if(zc_interval - time_goal > 50) {

t -= 25;

 }

 else if(time_goal - zc_interval > 50) {

t += 25;

 }

 }

 // Rotate the BLDC

 rotate(t);

}

// Rotate the motor at the given value of t

void rotate(int t) {

 digitalWrite(ctrl_ah, HIGH);

 digitalWrite(ctrl_al, LOW);

 digitalWrite(ctrl_bh, LOW);

 digitalWrite(ctrl_bl, HIGH);

 digitalWrite(ctrl_ch, LOW);

 digitalWrite(ctrl_cl, LOW);

 delay(t);

 digitalWrite(ctrl_ah, HIGH);

 digitalWrite(ctrl_al, LOW);

 digitalWrite(ctrl_bh, LOW);

 digitalWrite(ctrl_bl, LOW);

 digitalWrite(ctrl_ch, LOW);

 digitalWrite(ctrl_cl, HIGH);

 delay(t);

 digitalWrite(ctrl_ah, LOW);

 digitalWrite(ctrl_al, LOW);

 digitalWrite(ctrl_bh, HIGH);

 digitalWrite(ctrl_bl, LOW);

 digitalWrite(ctrl_ch, LOW);

 digitalWrite(ctrl_cl, HIGH);

 delay(t);

 digitalWrite(ctrl_ah, LOW);

 digitalWrite(ctrl_al, HIGH);

 digitalWrite(ctrl_bh, HIGH);

 digitalWrite(ctrl_bl, LOW);

 digitalWrite(ctrl_ch, LOW);

 digitalWrite(ctrl_cl, LOW);

 delay(t);

 digitalWrite(ctrl_ah, LOW);

 digitalWrite(ctrl_al, HIGH);

 digitalWrite(ctrl_bh, LOW);

ptg16386157

23912.7 Summary

12

C
H

A
PTER

 digitalWrite(ctrl_bl, LOW);

 digitalWrite(ctrl_ch, HIGH);

 digitalWrite(ctrl_cl, LOW);

 delay(t);

 digitalWrite(ctrl_ah, LOW);

 digitalWrite(ctrl_al, LOW);

 digitalWrite(ctrl_bh, LOW);

 digitalWrite(ctrl_bl, HIGH);

 digitalWrite(ctrl_ch, HIGH);

 digitalWrite(ctrl_cl, LOW);

 delay(t);

}

The setup function performs the first two steps of the BLDC control process. That is, it sets the

orientation of the rotor by gradually increasing the duty cycle of the PWM signal delivered to CTRL_

AH, CTRL_BL, and CTRL_CL. Then it starts the rotor turning by calling the rotate function, which

delivers power to the windings in the manner depicted in Figure 12.18 .

 The loop function starts by measuring the voltage at the virtual neutral point, vp , and the voltage

of Winding A, va . If these values are sufficiently close to one another, a zero-crossing is detected. If

the motor is rotating slower than the desired speed, the value of the time delay (t) is reduced. If the

motor is rotating faster than the desired speed, the value of the time delay is increased.

 This sketch has one significant flaw. The zero-crossing detection needs to be performed in a sepa-

rate execution thread than the delivery of power to the windings. Unfortunately, Arduino program-

ming doesn’t support threads. Because of this flaw, the ESC Shield is limited in its ability to control

BLDCs. Nevertheless, the design process discussed in this chapter can be used to develop general-

purpose ESC circuits.

12.7 Summary
When I first learned the difference between brushed motors and BLDCs, I wondered why so many

systems still rely on brushed motors. I hope this chapter clarifies why brushed motors remain popu-

lar. BLDCs are very difficult to control, requiring significant resources to deliver power to the mul-

tiple phases.

A large part of this chapter has focused on the switching circuit that turns motor power on and

off. In the ESC Shield, MOSFETS are employed to serve as switches. However, to fully turn on a

MOSFET, the gate voltage must be raised higher than the drain voltage and the gate’s charge must

be moved quickly. To provide high voltage and high current, the ESC relies on MOSFET drivers.

To control a BLDC effectively, the control circuit needs to synchronize its power delivery with the

rotor’s orientation. Most motors don’t have sensors, so circuits must gauge the rotor’s orientation by

measuring the back-EMF of the BLDC’s windings. This chapter explained how measuring the zero-

crossing of the back-EMF makes it possible to control the motor effectively.

The final part of this chapter presented the circuit design for the ESC Shield. The schematic design

illustrates which components are present in the design and how they’re connected. The board

design positions the components’ positions on the actual board area.

ptg16386157

This page intentionally left blank

ptg16386157

DESIGNING A QUADCOPTER
Within the maker community, one of the most popular applications

of electric motors involves spinning the propellers of a quadcopter.

Quadcopters and other remotely piloted aircraft have received a great

deal of attention in recent years, and corporations are eager to use them

to deliver goods and provide ground imagery. At the same time, skeptics

worry that their usage threatens personal privacy.

No matter which side of the controversy you take, there can be no ques-

tion that building a quadcopter is an exciting challenge. In addition to

electrical engineering, a designer must be familiar with concepts from

mechanical engineering and aeronautical engineering.

I’m not an expert, but I have successfully built and flown a custom quad-

copter. This chapter presents my decision-making process and the steps I

took to construct the vehicle. Throughout the design process, my primary

priorities were simplicity and reliability. The quadcopter presented in

this chapter won’t break any records, but it flies reliably and doesn’t cost

nearly as much as a prebuilt professional model.

 This chapter discusses each of the different components that make up

a quadcopter, starting with the frame. Next, we’ll look at selecting the

propellers and motors. To assist in the selecting process, I’ll derive an

expression for a propeller’s upward force in terms of its diameter, pitch,

and rotation speed.

 A significant portion of this chapter is devoted to the electronics needed

to power and control a quadcopter. Four subsystems are involved: the

receiver, the flight controller, the electronic speed control (ESC), and

the battery. Toward the end of the chapter, I’ll explain each of these

 13

ptg16386157

Designing a Quadcopter242

III

PA
R

T

subsystems and show how they’re connected together. I’ll also do my best to justify the decisions I

made in choosing the parts for the vehicle discussed in this chapter.

13.1 Frame
A quadcopter’s frame holds the vehicle’s electronics, supports the motors and propellers, and sets

the overall shape of the system. It should have a landing gear or other mechanism to allow it to land

without damaging the system. For these reasons, selecting the frame is one of the most important

decisions to make.

The first issue to consider is the material. From what I’ve seen, quadcopter frames are constructed

of one of four materials:

• Aluminum— Vibrates, bends on impact, expensive

• Carbon fiber— Light, rigid, absorbs vibration, expensive

• Plastic— Heavy (depending on the plastic), absorbs vibration, inexpensive

• Wood— Absorbs vibration, can break and warp, inexpensive

Carbon fiber is the usual choice for professional and high-performance quadcopters. It provides a

great deal of stiffness at low weight, but in some cases, the material may block radio signals.

The chief disadvantage of carbon fiber is the price: Carbon fiber frames generally cost between

thousands and tens of thousands of dollars. Therefore, for inexperienced makers and makers on

a budget, I recommend plastic frames. They’re not as stiff or as light as carbon fiber frames, but

they’re durable, and can be easily replaced if broken.

 For these reasons, I’ve chosen the Flip Sport frame from hoverthings.com to serve as the frame for

the quadcopter discussed in this chapter. This was specifically designed for durability, with arms

made of a reinforced plastic called fiberglass. In my usage, it has survived a handful of crashes with-

out suffering any noticeable injury. Figure 13.1 shows what the Flip Sport frame looks like.

 Figure 13.1
 The Flip Sport quadcopter
frame

ptg16386157

24313.2 Propellers

13

C
H

A
PTER

This frame is easy to assemble and is capable of withstanding impact. Further characteristics are

given as follows:

• The frame’s mass is 200 grams, or 0.44 pounds.

• The length from one motor shaft to the opposite motor shaft is 385 mm (15.158 inches).

• The price of the frame at http://www.getfpv.com is $89.99.

 The frame’s shape determines the maximum diameter of the quadcopter’s propellers. The frame’s

designers recommend propellers with diameters of 8, 9, or 10 inches. The following section explores

the topic of propellers in detail.

13.2 Propellers
After choosing the quadcopter’s frame, the next step is to select the propellers. There are three

important factors to consider:

• Diameter

• Pitch

• Material

For the last item, the three main choices for propeller materials are plastic, nylon, and carbon fiber.

Carbon fiber is the most expensive, just as it is for the frame. However, carbon fiber propellers are

more reasonably priced, so this discussion focuses exclusively on carbon fiber propellers.

The first two items merit greater attention. With so many sizes and shapes available, it’s crucial

to understand how a propeller’s diameter and pitch affect its motion. Therefore, the first part of

this section provides a mathematical derivation of how diameter and pitch relate to the propeller’s

upward force.

13.2.1 Propeller Dynamics
A propeller’s job is to produce force. For helicopters and quadcopters, the upward force is commonly

called lift or thrust. As designers, we want to select a propeller that will produce enough thrust to

raise the quadcopter while using as little power as possible.

 As makers, the only factors we control are diameter, pitch, and rotation speed. Therefore, the funda-

mental question is, how does a propeller’s diameter, pitch, and speed relate to its thrust?

If you search on the Internet, you’ll find many generally accepted answers to this question. One

common equation relates a propeller’s power to its pitch, diameter, and speed with the following

relationship:

P pd1.31 4 3ω=

In this equation, p is the pitch in feet, d is the diameter in feet, and ω is the rotational speed in thou-

sands of RPM. P is the propeller’s power in watts.

http://www.getfpv.com

ptg16386157

Designing a Quadcopter244

III

PA
R

T

I searched for the origin of this equation, and to the best of my knowledge, it was first presented in

the Electric Motor Handbook by Robert J. Boucher. I tracked down a copy of this book and found the

equation presented in Chapter 4 . However, the book doesn’t provide any explanation for how the

equation was obtained.

 In my opinion, the best fundamental discussion of propeller dynamics (for non-specialists) can be

found at http://www.electricrcaircraftguy.com , a blog managed by an aerospace engineer named

Gilbert Staples. The following discussion covers the same subject matter as the blog, but I’ve

reworded and restructured the derivation.

Pushing Air Down
In his famous book Stick and Rudder , Wolfgang Langewiesche summarizes aerodynamics very sim-

ply: the wing keeps the airplane up by pushing the air down . A similar statement can be made for

propellers and quadcopters. If the thrust of the air pushed downward by the propellers exceeds the

system’s weight, the quadcopter rises.

 Air that isn’t affected by a propeller is said to be in the freestream state. In this case, the air simply

drifts from place to place, and this velocity is denoted by v 0 .

 The air pushed downward by a propeller is called downwash . The velocity of the downwash is

called the exit velocity , or v e . Figure 13.2 gives a basic idea of how v 0 and v e are related.

freestream (unaffected) air
v0

ve

downwash

ve

downwash

 Figure 13.2
 Freestream velocity and exit velocity

The velocity of the air near the propeller doesn’t change instantaneously from v 0 to v e . The change

in the velocity over time is defined as acceleration, and the downward force exerted by the propeller

can be expressed as the product of this acceleration and the mass of the downwash, denoted by m:

F m
v v

t
e 0=

−⎛
⎝⎜

⎞
⎠⎟

It’s common to rearrange this equation so that force is expressed using the change in the mass over

time. This new equation is given as follows:

http://www.electricrcaircraftguy.com

ptg16386157

24513.2 Propellers

13

C
H

A
PTER

F
dm

dt
v v m v ve e0 0() ()= − = −�

According to this equation, the velocity of the air above and below the propeller remains constant,

but the mass of the downwash changes over time. This change in mass over time is referred to as

mass flow rate , and is denoted by ∙m.

Mass Flow Rate
We can’t measure the mass flow rate directly, but we can express ∙m in terms of quantities that can

be measured. The air’s mass equals the product of its density (kg/m 3) and its volume (m 3). Denoting

density as ρ and volume as V, m = ρV.

Consider the cylinder of air above the propeller. If the propeller’s radius is r, this cylinder has a

volume equal to πr 2 h, where h is the height of the cylinder. Figure 13.3 shows what the cylinder

looks like.

h

r

Cylinder volume = r 2h Figure 13.3
 Cylinder of air above a propeller

The mass of air in the cylinder can be expressed with this equation:

 m r h2ρπ=

Suppose that the mass of air in this cylinder flows through the propeller in time t. This change in

mass over time can be expressed in the following way:

change r
h

t
2ρπ= ⎛

⎝⎜
⎞
⎠⎟

As h and t approach zero, the fraction becomes the derivative of the cylinder’s height with respect

to time. This derivative equals the air’s exit velocity, v e . The change in mass equals the mass flow

rate, which can now be expressed in the following way:

m r ve
2ρπ=�

ptg16386157

Designing a Quadcopter246

III

PA
R

T

Replacing this in the preceding expression for force leads to the following equation:

F m v v r v v v r v v ve e e e e0
2

0
2 2

0ρπ ρπ ()() ()= − = − = −�

A propeller’s length is given in terms of its diameter, d, which is frequently given in inches. To con-

vert this into metric, d must be multiplied by 0.0254 meters/inch. Replacing this in the force equa-

tion gives this result:

F
d

v v v d v v v
0.0254

4
5.067 10e e e e

2

2
0

4 2 2
0

ρπ
ρ() () ()()= − = ⋅ −−

According to the International Standard Atmosphere (ISA) model, the density of air at sea level at

15°C is 1.225 kg/m3. Replacing this value for ρ produces the following:

F d v v v6.207 10 e e
4 2 2

0() ()= ⋅ −−

This assumes that the diameter is given in inches and that the velocities are given in meters per

second.

Propeller Pitch
If you take two random screws and start screwing them into a block of wood, one will penetrate

further into the wood than the other. The depth of penetration for a single turn is called the screw’s

pitch. If a screw has a quarter-inch pitch, one turn of the screw will penetrate a quarter of an inch.

A propeller’s pitch works in the same way. In theory, a propeller’s pitch tells you how far the propel-

ler will move with each revolution. Note that the motion is perpendicular to the propeller’s rotation.

Denoting the distance traveled as x, the equation for pitch can be expressed as follows:

pitch
x

rotation
=

To relate pitch to the force equation, we set the exit velocity equal to the change in x over time.

This allows us to solve for v e in terms of the pitch:

v
dx

dt

d

dt

d

dt

pitch rotation
pitch

rotation
pitche ω() ()= =

⋅
= ⋅ = ⋅

Here, ω is the propeller’s angular velocity. This is given in RPM, and pitch is usually given in inches.

To obtain v e in metric units (m/s), we need to add conversion factors. Denoting pitch as p, we arrive

at the following equation:

v p p
0.0254m

in

1min

60sec
4.233 10e

4ω ω()= ⋅ ⎛
⎝⎜

⎞
⎠⎟

⋅ ⋅ ⎛
⎝⎜

⎞
⎠⎟

= ⋅ −

ptg16386157

24713.2 Propellers

13

C
H

A
PTER

Replacing this in the earlier force equation gives the following result:

 F d p p v2.628 10 4.233 107 2 4 2

0ω ω() ()()= ⋅ ⋅ −⎡⎣ ⎤⎦
− −

Gilbert Staples points out that this equation does not accurately illustrate the propeller’s downward

force. In fact, he states that it “doesn’t even show the appropriate trends for how thrust changes

with varying diameter and pitch.”

 The problem is that pitch doesn’t accurately represent how far the propeller travels per revolu-

tion. In other words, v e is not adequately approximated by dx/dt. To bring the equation in line with

experimental data, Gilbert Staples multiplies the force expression by a term involving the inverse of

the propeller’s pitch ratio (p/d). This produces the following result:

F d p p v
d

p
2.628 10 4.233 10

3.29546
7 2 4 2

0

1.5

ω ω() ()()= ⋅ ⋅ −⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

− −

The precise expression for the force isn’t particularly important, but the form of this equation allows

us to draw two important conclusions:

• Of the diameter, pitch, and speed, the diameter has the greatest effect on the resulting force. A

small increase in diameter produces a significant increase in force.

• The effect of the propeller’s pitch is relatively minor as compared to the diameter and speed.

These conclusions assist in the process of selecting a propeller. The next discussion presents the

selection process I employed for the quadcopter.

13.2.2 Selecting the Propeller
As mentioned earlier, the distance between opposite motor shafts on the Flip Sport frame is

385 mm. Therefore, the distance between adjacent motor shafts is 272.24 mm, which equals

about 10.72 inches. Figure 13.4 illustrates how these dimensions relate to the quadcopter’s frame.

To keep the propeller blades from coming into contact, each propeller must have a diameter less

than 10.72 inches. For this reason, this system’s propellers have 10-inch diameters.

Surveying the market for propellers with 10-inch diameters, it looks as though the large pitch values

lie between 4.5 inches and 4.7 inches. For this reason, I’ve selected the 10×4.5 (10-inch diameter,

4.5-inch pitch) carbon fiber propeller from Tarot RC Helicopters. They’re constructed from carbon

fiber, and Figure 13.5 shows what they look like.

Helicopter propellers are specifically marked as CW (clockwise) or CCW (counterclockwise) accord-

ing to their intended spin direction. The 10×4.5 propellers from Tarot RC Helicopters are sold in

pairs, and each pair has one CW propeller and one CCW propeller. When connecting propellers

to the quadcopter, make sure that similarly oriented propellers are positioned opposite from one

another.

ptg16386157

Designing a Quadcopter248

III

PA
R

T

385 mm
(15.16 in)

272.24 mm
(10.72 in)

272.24 mm
(10.72 in)

 Figure 13.4
 Determining maximum propeller
size

 Figure 13.5
 10×4.5
carbon fiber
propellers
from Tarot RC
Helicopters

13.3 Motors
For a normal-sized quadcopter, 10×4.5 propellers are fairly large. This means it takes a significant

amount of torque to turn them with enough speed to keep the system aloft. As discussed in Chapter

3 , “DC Motors,” motors with high Kv values spin quickly but don’t provide a lot of torque. Therefore,

quadcopters with large propellers should have motors with lower values of Kv.

All quadcopters are powered by battery, so their motors must be DC motors: brushed or brushless.

Brushed motors are simpler to control but less efficient and less reliable. Therefore, the design in

ptg16386157

24913.3 Motors

13

C
H

A
PTER

this chapter makes use of brushless DC motors (BLDC) exclusively. Chapter 3 explains the distinc-

tion between brushed and brushless motors in detail.

 Another important point to keep in mind when selecting a motor is the diameter of its shaft. A

motor’s shaft must fit comfortably inside the propeller and the frame. For the Tarot propellers, the

diameter of the aperture is 5 mm, so the motor’s shaft must have a diameter less than (but not too

much less than) 5 mm.

 These constraints—BLDC, low Kv, and shaft diameter less than 5 mm—limit the number of suitable

motors. Based on these criteria, I’ve selected the MN3110 KV470 motor from T-Motor, whose web-

site is www.rctigermotor.com . Figure 13.6 shows what these BLDCs look like.

Figure 13.6
The MN3110
K470 BLDC from
T-Motor

The motor’s Kv is 470, which is lower than that of most BLDCs on the market. In addition, the diam-

eter of the shaft is 4 mm, which makes it small enough to fit inside one of the propellers from Tarot

RC Helicopters. Table 13.1 lists the full set of characteristics for the MN3110 KV470 motors.

Table 13.1 Specifications of the MN3110 KV470 BLDC from T-Motor

Characteristic Value

Kv 470

 Shaft diameter 4 mm

 Weight 80 g

 Idle current at 10 V 0.3 A

http://www.rctigermotor.com

ptg16386157

Designing a Quadcopter250

III

PA
R

T

Characteristic Value

Maximum current 15 A

Configuration 12N14P

 Internal resistance 135 mΩ

 The motor’s electrical characteristics determine what kind of batteries should be employed. This is

discussed as part of the next section, which presents how I selected the electronic components of

the quadcopter.

13.4 Electronics
Now that the quadcopter’s mechanical components have been selected, it’s time to look at the elec-

tronics. At minimum, a quadcopter’s circuitry can be divided into four parts:

• Transmitter/receiver— Sends control signals from the user to the quadcopter

• Flight controller— Delivers pulses to the ESCs

• Electronic speed control (ESC)— Provides power to the motors

• Battery— Powers the quadcopter’s electronic components

 Figure 13.7 shows how control data is transferred among the first three elements. The quadcopter’s

battery isn’t shown in the figure, but it provides power to the receiver, flight controller, and ESCs.

Transmitter
Flight

Controller

ESC ESC

ESCESC

Quadcopter

User

Receiver

 Figure 13.7
 Quadcopter control electronics

This section discusses the four elements just listed. In each case, I’ll present a set of selection crite-

ria and explain the thought process behind choosing the hardware.

ptg16386157

25113.4 Electronics

13

C
H

A
PTER

13.4.1 Transmitter/Receiver
Quadcopters are controlled by radio-frequency (RF) signals sent by the user’s transmitter. The quad-

copter reads the signals using an element called a receiver. In general, transmitters are complex and

expensive whereas receivers are simple and cheap.

When you’re working with transmitters and receivers, it’s important to be familiar with the con-

cept of channels. In RF communication, a channel represents an independent stream of data. When

controlling an RC aircraft, each channel manipulates a different actuator. For example, one channel

might control the ailerons while another controls the flaps.

For quadcopters, a minimum of four channels are needed. These channels control the vehicle’s

elevation, roll, pitch, and yaw. In addition, many quadcopters accept additional inputs that control

different aspects of the quadcopter’s operation. For this reason, most modern transmitters and

receivers usually support at least six channels for communication.

Transmitter
When you’re selecting a transmitter, an important concern is the mode. A transmitter’s mode deter-

mines which channels are affected by the left and right stick. The most common mode is Mode 2, in

which the left stick controls the rudder and throttle of a traditional RC aircraft. The right stick con-

trols the ailerons and elevator. To make this clear, Figure 13.8 shows which channels correspond to

the sticks and switches on a Mode 2 DX6i transmitter from Spektrum.

Other features related to RC transmitters are listed as follows:

• Model memory— The transmitter stores settings for different vehicles.

• Trim— Enables fine tuning of the vehicle’s operation.

• Programmability— Enables the transmitter to be configured through a PC connection.

• Mixing— Allows channels to be combined so that a pair of control surfaces can be controlled at

the same time.

• LCD display— Provides information about the transmitter/receiver pairing.

For quadcopters, these features are nice to have but they’re not necessary. Therefore, most trans-

mitters for RC aircraft are suitable for quadcopter control.

For this design, I chose the DX6i transmitter from Spektrum. It’s more expensive than many of the

other receivers, but it provides a wealth of useful features. The main reason I chose the DX6i was

availability—I couldn’t find any other suitable receivers in stock anywhere.

Receiver
After the transmitter has been selected, the next step is to find a compatible receiver. Compatibility

is primarily determined by the transmitter’s modulation. Modulation refers to the manner in which

the control data is converted to RF signals. Table 13.2 lists three common modulation methods.

ptg16386157

Designing a Quadcopter252

III

PA
R

T

Table 13.2 Common Modulation Methods for Quadcopter Transmitters

Modulation Method Description

DSM2 (Direct Spectrum Modulation,
2 nd generation)

 Uses a globally unique identifier (GUID) to bind the
receiver to the transmitter

DSMX (Direct Spectrum Modulation X) Similar to DSM2, but hops between 23 frequencies in
the 2.4 GHz band

 FAAST (Futaba Advanced Spread
Spectrum Technology)

 Uses a globally unique identifier (GUID) to identify
one of 36 frequency hopping sequences

These methods prevent interference by employing spread spectrum communication methods. In

addition, each operates in the 2.4 GHz band, which limits the effective range to the line of sight.

The DX6i transmitter uses DSMX modulation for its control signal, so a compatible receiver must

support DSMX. For this reason, I chose the AR610 receiver from Spektrum. Figure 13.9 shows what

it looks like.

As shown, the receiver’s pins are arranged in a grid containing three rows. With the exception of

the BND/DAT column, the pins in the first row provide control signals to the flight controller. The

pins in the second and third rows accept positive and negative voltage, respectively.

Throttle (Channel 3)/
Rudder (Channel 4)

Gear
(Channel 5)

Flap (Channel 6)
Aileron (Channel 1)/
Elevator (Channel 2)

 Figure 13.8
 The DX6i
transmitter
from
Spektrum
(Mode 2)

ptg16386157

25313.4 Electronics

13

C
H

A
PTER

Before a receiver can operate normally, it must be bound to a transmitter. That is, the receiver and

transmitter must share their IDs so that they recognize one another and can communicate. The bind-

ing process depends on the specific receiver and transmitter.

 For example, binding the AR610 receiver to the DX6i transmitter requires six steps:

1. Insert a plug across the pins in the AR610’s BIND/DAT column.

2. With the DX6i off, move its throttle (the left stick) to the lowest position.

3. Provide power to the AR610 by connecting voltage (3.5–9.6V) across any adjacent positive/

negative pins.

4. While holding the Trainer/Bind switch of the DX6i, turn on the transmitter. The LED of the

AR610 should start blinking red.

5. Continue holding the Trainer/Bind switch until the AR610’s LED becomes constant red.

6. Remove the plug from the AR610’s pins.

 It’s easy to verify that the receiver and transmitter have been bound successfully. When the trans-

mitter is turned on and the receiver has voltage, the receiver’s LED should become constant red.

Signal pins

Positive voltage

Negative voltage

Figure 13.9
The AR610 six-channel
receiver

ptg16386157

Designing a Quadcopter254

III

PA
R

T

13.4.2 Flight Controller
At minimum, the flight controller’s job is to accept input from the receiver and generate control sig-

nals for the motors. In addition, many controllers can determine their location through GPS, keep the

vehicle level using gyroscopes and accelerometers, and examine the surrounding environment with

cameras and atmospheric sensors.

Most flight controllers are proprietary, which means they don’t provide any information about their

internal design and operation. However, the OpenPilot community, whose main website is www.

openpilot.org , has designed a number of open-source flight control circuits that are excellent for

quadcopter control.

At present, the two OpenPilot flight controller boards are the Revo (Revolution) and the CC3D

(CopterControl 3D). The Revo provides more features, but the OpenPilot store (store.openpilot.org)

never seems to have one in stock. Therefore, this discussion focuses on the CC3D, which is illus-

trated in Figure 13.10 .

Receiver
connection

Main portFlexi port

PC connection

STM32F103 microcontroller

Connections
to ESCs

 Figure 13.10
 The CC3D flight
controller board

http://www.openpilot.org
http://www.openpilot.org

ptg16386157

25513.4 Electronics

13

C
H

A
PTER

Four important features of the CC3D are listed here:

• Receives up to six channels from the receiver

• Processes data and generates pulses with an STM32F103 microcontroller

• Measures the vehicle’s motion and orientation with an MPU-6000 six-axis gyroscope/

accelerometer

• Stores configuration data with a 16 MB Flash device

If you want to see know a quadcopter really works, it’s crucial to understand how the flight control-

ler operates. Figure 13.11 presents a simplified schematic of the CC3D’s flight controller.

STM32F103
Microcontroller

MPU6000
Gyroscope/

Accelerometer

USB

RC
Receiver

Flash
Memory

ESC 1

ESC 2

ESC 3

ESC 4

ESC 5

ESC 6

Figure 13.11
Simplified schematic of
the CC3D controller

To control the quadcopter, the CC3D makes use of two important devices. The STM32F103 serves

as the controller’s brain, processing incoming data and delivering control signals to the ESCs. The

MPU6000 gyroscope/accelerometer determines the quadcopter’s angular orientation and accelera-

tion, and provides the information to the microcontroller.

The microcontroller’s program is commonly called firmware. To update the CC3D’s firmware and

configure its operation, download OpenPilot’s Ground Control Station (GCS) software from https://

www.openpilot.org/product/openpilot-gcs .

The STM32F103 Microcontroller
Microcontrollers are popular in embedded applications, and Chapter 9 , “Motor Control with the

Arduino Mega,” explained how the Arduino Mega relies on an Atmel microcontroller to control

https://www.openpilot.org/product/openpilot-gcs
https://www.openpilot.org/product/openpilot-gcs

ptg16386157

Designing a Quadcopter256

III

PA
R

T

motors. The CC3D processes data with the STM32F103 microcontroller, which serves the same roles

as the Arduino Mega’s microcontroller, but provides many more capabilities.

The STM32F103 is a 32-bit device that runs at a maximum speed of 72 MHz. Like the Raspberry Pi

discussed in Chapter 10 , “Motor Control with the Raspberry Pi,” it processes data with a processing

core from ARM. This core is called the Cortex-M3, and unlike the Raspberry Pi’s processor, it’s spe-

cifically designed for microcontrollers.

 The main advantage of using the Cortex-M3 is that it can perform many operations beyond those

available for an 8-bit Atmel MCU. The main drawback is that the Arduino programming language

isn’t available for the STM32F103. So if you want to write applications, you need to understand the

C programming language and the microcontroller’s architecture.

The MPU6000 Gyroscope/Accelerometer
Most quadcopter pilots don’t control each of the four motors individually. Instead, they tell the

flight controller to stay level and only change its angular orientation when it’s commanded to fly in

a direction. For the CC3D, the flight controller determines its orientation by reading data from the

MPU6000 gyroscope/accelerometer from InvenSense.

The MPU6000 contains three MEMS (microelectromechanical systems) gyroscopes that identify the

device’s rate of rotation around the x, y, and z axes. This motion is provided in degrees per second

(dps) and the maximum value can be set to 250, 500, 1000, or 2000 dps. In addition, the MPU6000

has three accelerometers that provide the device’s acceleration along the x, y, and z axes. The accel-

eration is provided in terms of the gravitational constant (g), and the full-scale values can be set to

2g, 4g, 8g, and 16g.

 On the CC3D, the STM32F103 reads data from the MPU6000 using the serial peripheral interface,

or SPI. As the master, the MCU sends commands on the MOSI (Master Output, Slave Input) line.

In response, the MPU6000 provides angular rate and acceleration data on the MISO (Master Input,

Slave Output) line.

13.4.3 Electronic Speed Control (ESC)
Chapter 3 explained how an ESC makes it possible to control a three-phase BLDC with pulse width

modulation (PWM). A quadcopter requires four ESCs, but rather than purchase four separate control-

lers, it’s more convenient to use a single device called a four-in-one ESC. This simplifies wiring and

construction, but adds to the overall cost.

 A four-in-one ESC has one pair of wires for power and four separate connections to the quadcopter’s

BLDCs. In addition, it has a 12-pin connector for receiving control signals from the flight controller.

Each row of three pins (signal, 5 V, and ground) provides control of one motor.

 In addition to cost, there are at least five other issues to consider when selecting an ESC:

• Battery eliminator circuit (BEC)— Provides power to the receiver, eliminating the need for a sep-

arate receiver battery. Some ESCs have switching battery eliminator circuits (SBECs), also called

universal battery eliminator circuits (UBECs), which switch power on and off.

ptg16386157

25713.4 Electronics

13

C
H

A
PTER

• Current— Different ESCs regularly accept different amounts of current, ranging from 20 A per

motor to 40 A per motor. It’s vital that the ESC can supply enough current to the motors to keep

the quadcopter aloft.

• Weight— The lower the weight, the better.

• Programmability— Most ESCs have microcontrollers that can be configured with new firmware.

If an ESC has a microcontroller from Atmel, it can be configured with firmware from Simon Kirby

(SimonK), which can be downloaded freely from https://github.com/sim-/tgy . I haven’t used it,

but many claim that the firmware improves stability and control by increasing the rate at which

pulses are sent to the motors.

• Wire length— The wires should be long enough to reach all of the quadcopter’s motors.

 Another significant concern is heat. Low-quality ESCs overheat with high current and cut off power

to the motors. Manufacturers don’t discuss this in their specifications, so it’s important to look at the

reviews of any ESC you intend to buy. A popular method of dissipating heat is to glue an aluminum

plate to the ESC.

 For the quadcopter discussed in this chapter, 25 A of current will be more than sufficient to turn

the propellers. For this reason, I’ve selected the Skywalker Quattro 25Ax4 from Hobbywing. This

accepts 25 A of current with bursts of up to 30 A, and provides power to the receiver through a

UBEC. Figure 13.12 shows what it looks like.

 Figure 13.12
 The Skywalker Quattro 25Ax4 ESC from
Hobbywing

https://github.com/sim-/tgy

ptg16386157

Designing a Quadcopter258

III

PA
R

T

In my experience, the Skywalker Quattro has continued functioning through many hours of flight.

Many reviewers have had similar experiences, but others have reported that the ESC overheated

during flight and caused the quadcopter to crash.

13.4.4 Battery
One advantage of having a four-in-one ESC with a BEC is that power only has to be connected to

one system. According to the specifications of the Skywalker Quattro 25Ax4, the battery require-

ments are “2S-4S (7.4V-14.8V).” As discussed in Chapter 3 , the “2S-4S” means that sufficient power

can be drawn from two to four Li-Po cells connected in series. Li-Po cells are generally 3.7 V, so the

total expected voltage ranges from 7.4 V to 14.8 V.

When you’re selecting a Li-Po battery, two factors to consider are its capacity and burst rate

(C-value). The capacity identifies the total current the battery is capable of supplying at the speci-

fied voltage. It’s common to see capacity values given in thousands of milliamp-hours (mAh).

The burst rate identifies the battery’s maximum rate of discharge. The maximum amount of current

that can be drawn from the battery equals its C-value multiplied by its capacity. For example, if a

battery with 2100 mAh capacity has a C-value of 20, it can safely discharge a current of 2100 × 20 =

42000 mA = 42 A.

 A battery’s capacity determines how long current will be available to turn the motor’s shaft.

However, the greater the capacity, the greater the weight. Therefore, for quadcopters, the increased

weight of a high-capacity battery may actually reduce the flying time despite the total amount of

current it can provide.

 For the quadcopter discussed in this chapter, a 3S Li-Po battery will provide sufficient voltage

(11.1 V). Current is a priority, so a high discharge rate is needed. Venom RC makes a 3S Li-Po bat-

tery with a capacity of 5,000 mAh and a discharge rate of 35. This means the maximum current is

175 A, which is far more than the quadcopter will need. Figure 13.13 shows what the Venom RC

looks like.

Figure 13.13
The Venom RC 35C 5000 mAh
Li-Po battery

ptg16386157

25913.5 Construction

13

C
H

A
PTER

This battery provides a handful of different connectors for the power wires, which makes it straight-

forward to connect the battery’s power to the four-in-one ESC.

13.5 Construction
At this point, most of the quadcopter parts have been selected. But there’s one last concern:

The frame is too small to comfortably support the electronics, particularly the Venom RC battery.

Therefore, I purchased the Tab Center Plate Kit from www.hoverthings.com . This provides two

large plates, screws, and standoffs.

 After procuring the parts, I constructed the quadcopter by following eight steps:

1. Assemble the Flip Sport frame. Keep in mind that the four arms are connected to the bottom of

the center plate.

2. Attach each carbon fiber propeller to a BLDC. Make sure to insert a centering ring inside each

propeller before connecting it to the shaft.

3. Attach each BLDC/propeller to an arm of the frame using the four screw holes in the rear of the

motor. Make sure the clockwise propellers are positioned opposite one another and the counter-

clockwise propellers are positioned opposite one another.

4. The four-in-one ESC fits into the space on the frame’s underside between the arms. Attach the

ESC to the underside and connect its wires to the four BLDCs. Use zip ties as needed to secure

the wires to the frame.

5. The Tab Center Plate Kit contains two cross-shaped plates. Connect one plate to the underside of

the frame.

6. Align the battery so that its power wires can reach the power wires of the four-in-one ESC.

Sandwich the battery between the two plates of the Tab Center Plate Kit. I used Velcro straps to

hold the plates and battery in place.

7. Secure the flight controller and receiver to the top of the frame. Make sure the ESC’s control

wires can reach the controller.

8. Connect the ESC’s control wires to the flight controller and connect the flight controller to the

receiver. After these wires are connected, connect the battery’s power wires to the ESC.

 If the parts have been successfully assembled and connected, the lights on the flight control-

ler should turn on. Figure 13.14 shows what my quadcopter looks like before the ESC wires are

connected.

When I started flying the quadcopter, it took some time to get used to the controls. But since then,

I’ve gained a great deal of experience and I look forward to adding more components.

http://www.hoverthings.com

ptg16386157

Designing a Quadcopter260

III

PA
R

T

As I said at the beginning of the chapter, I’m not an expert at designing or building quadcopters.

Therefore, I recommend that you supplement the material in this chapter with the expert advice

from the following sites:

• http://copter.ardupilot.com/wiki/initial-setup/assembly-instructions/hoverthings-flip-sport-

quadcopter provides a more in-depth guide to building quadcopters using the Flip Sport frame.

• http://quadcoptersarefun.com/BuildAQuadcopter.html provides many helpful pointers and

recommendations for quadcopter components.

• http://www.instructables.com/id/Scratch-build-your-own-quad-copter is an excellent guide for

building a quadcopter from scratch.

 Lastly, if you run into any issues or difficulties, the forums at www.rcgroups.com and

www.hobbyking.com have plenty of knowledgeable people willing to share their expertise.

13.6 Summary
Motor circuits are always fun to operate, but nothing beats the excitement of watching a quadcopter

fly. The goal of this chapter has been to explain how to select the parts of a quadcopter and assem-

ble them into a working system.

Figure 13.14
The quadcopter

http://www.instructables.com/id/Scratch-build-your-own-quad-copter
http://copter.ardupilot.com/wiki/initial-setup/assembly-instructions/hoverthings-flip-sportquadcopter
http://copter.ardupilot.com/wiki/initial-setup/assembly-instructions/hoverthings-flip-sportquadcopter
http://quadcoptersarefun.com/BuildAQuadcopter.html
http://www.rcgroups.com
http://www.hobbyking.com

ptg16386157

26113.6 Summary

13

C
H

A
PTER

Given the importance of the quadcopter’s propellers, I’m surprised by how little information is

available describing how their shape and motion affect the thrust. This chapter has presented a

derivation that relates thrust to diameter, pitch, and speed, but this should only be used as an

approximate relationship. It’s interesting to note that the derivation implies that diameter plays a

much larger role than pitch in determining how much thrust a propeller can provide.

Many of the components discussed in this chapter, including the frame, transmitter, and receiver,

are matters of taste. However, when you select the motors and propellers, keep in mind that a pro-

peller with a large diameter will require significant torque. To provide the torque, you need a motor

with a low value of Kv. It’s also important to make sure that the motor’s shaft isn’t too large for the

propeller.

 Most flight controllers are proprietary, but the design for the CC3D discussed in this chapter has

been released as open source. This circuit board relies on an STM32F103 microcontroller for data

processing, and in addition to receiving data from the receiver, it accesses the quadcopter’s accel-

eration and orientation from the MPU6000 gyroscope/accelerometer. The board’s design and ground

control software can be obtained from www.openpilot.org .

http://www.openpilot.org

ptg16386157

This page intentionally left blank

ptg16386157

ELECTRIC VEHICLES
Of the many applications of electric motors, none is as exciting as their

use in automobiles. This chapter focuses on all-electric automobiles, com-

monly referred to as electric vehicles , or EVs . EVs provide many advan-

tages over vehicles with combustion engines, including greater reliability,

less pollution, less noise, and a decreased reliance on fossil fuels.

 A handful of books have already been written on electric vehicles, so this

chapter will be limited to providing a broad overview of the topic. I’ll start

by presenting the topic of EV conversion, which involves replacing a car’s

combustion engine with an electric motor. In addition to discussing the

concepts involved, this section discusses the kinds of motors and batter-

ies commonly used in EV conversion.

 The second part of the chapter looks at the state of the art in EV technol-

ogy. In particular, this section examines three of the most popular EVs on

the market as of April 2015: the Tesla Model M, the Nissan Leaf, and the

BMW i3. For each vehicle, we’ll look at the car’s performance, the struc-

ture and operation of its motor, and its battery technology.

 The last part of the chapter examines four patents from Tesla Motors. In

2014, Elon Musk decided that defending his company’s patents was more

trouble than it was worth, so he released them into the public domain.

Two of the patents discussed in this chapter involve induction motor

design, and two others deal with methods of controlling electric motors.

 14

ptg16386157

Electric Vehicles264

III

PA
R

T

14.1 Electric Vehicle Conversion
Many car owners would like to replace their car’s combustion engine with an electric motor. This

process, called EV conversion, provides the benefits of owning an electric vehicle without the high

cost of buying a new one. In general, EV conversion costs about $10,000, whereas new EVs fre-

quently cost between $30,000 and $80,000.

Few auto mechanics are sufficiently knowledgeable and supportive to convert vehicles from gas to

electric. EV conversion shops exist, but they’re few and far between. For these reasons, conversion

is usually performed by dedicated amateurs.

This section doesn’t discuss EV conversion in great depth, but presents a few of the technologies

that play a crucial role. To be specific, this section looks at electric motors, controllers, batteries, and

transmission.

14.1.1 Motors
When you’re converting a car to electric, the motor is one of the most expensive components, com-

monly costing thousands of dollars. I’ve only encountered a handful of companies that make motors

specifically intended for electric vehicles, and their features and capabilities vary widely.

Choosing an EV’s motor is a major decision, so it’s important to be familiar with the technology.

This discussion starts by explaining how electric motors compare with combustion engines, and

then presents the differences between AC and DC motors in electric vehicles. The last part presents

different manufacturers of EV motors and their offerings.

Motors, Engines, and Power
When carmakers boast about a new racing engine, the foremost figure of merit is maximum horse-

power (hp). As discussed in Chapter 2 , “Preliminary Concepts,” 1 hp is the power needed to raise

550 pounds in one second. For an average-sized sedan, the engine’s maximum horsepower is usu-

ally somewhere between 200 and 250 hp.

For electric motors, power is usually expressed in kilowatts (KW), where 1 KW equals 1.341 hp. In

most converted EVs, the electric motors put out between 60 and 70 KW, which comes to a range of

approximately 80 to 93 hp. As will be shown later in this chapter, the horsepower of a manufactured

EV is significantly higher.

This may seem startling, because a combustion-powered 80 hp car will be extremely sluggish, but

there are crucial differences between the power of an electric motor and the power of a combustion

engine. A combustion engine only reaches its maximum horsepower when it reaches high speed.

Its power and torque are dramatically lower at low speed, so it must accelerate to reach its rated

horsepower.

As explained in Chapter 2 , the input power to an electric motor equals the product of voltage and

current. The battery holds the voltage constant, and the current depends on the applied load. This

means the power of an electric motor is available immediately after starting. This is why an electric

motor can go from 0 to 60 mph in approximately the same time as it takes for a combustion engine

with a higher maximum power.

ptg16386157

26514.1 Electric Vehicle Conversion

14

C
H

A
PTER

DC Motors and AC Motors
Until recently, AC motors have been considered too expensive and too complex for EV conversion.

For these reasons, many sources, including The Electric Vehicle Conversion Handbook and Building
an Electric Vehicle, recommend brushed DC motors. These motors are popular, particularly in fork-

lifts, and they’re inexpensive and simple to control.

But as explained in Chapter 3 , “DC Motors,” the commutator of a brushed DC motor reduces the

motor’s reliability and efficiency. In addition, it’s hard to maintain constant speed as the load

changes. This is why vehicles with brushed DC motors have difficulty maintaining speed over hilly

terrain.

An important advantage of AC motors involves regenerative braking. A regenerative brake slows a

vehicle by using the rotation of the tires to charge the battery. In this case, the motor behaves like a

generator, which is the topic of Appendix A , “Electric Generators.” Regenerative braking can save a

significant amount of power, particularly on long drives, but it’s not easily workable for DC motors.

Another advantage of AC motors is that they can maintain torque at varying levels of speed. This

means that an AC motor can handle different terrains and acceleration without losing power.

A disadvantage of AC motors involves the complexity of control. It’s straightforward to control a

brushed DC motor with a battery’s DC power, but AC motors require three-phase sinusoidal power.

This power can be generated with power inverters, but these systems are more expensive than con-

trollers for brushed DC motor controllers.

Manufacturers
An Internet search for “electric vehicle motors” brings up a handful of companies that make

brushed DC motors for EV conversion. These include D&D Motor Systems and Netgain. Netgain’s

WarP series of motors is particularly popular in EV conversion, and its most recent model, the

WarP 11, delivers 34.4 hp of power at 144 V.

For AC motors, two highly respected sources are Siemens and BRUSA. Siemens produces a wide

range of AC motors, but from what I’ve seen, they specialize in selling to EV manufacturers instead

of conversion enthusiasts. BRUSA sells its motors online, but the least expensive motor I’ve encoun-

tered was over $11,000.

A third company, called Hi Performance Electric Vehicle Systems (HPEVS), provides AC motors

at prices between $3,000 and $6,000. Table 14.1 lists four of its offerings and presents the power,

weight, and voltage for each.

Table 14.1 Specifications of AC Electric Motors from HPEVS

Motor Power Weight Voltage

AC-34 65 hp @ 2900 RPM 85 lb/38.5 kg 48/72/96/108 V

AC-35 63 hp @ 2900 RPM 85 lb/38.5 kg 48/72/96/108/144 V

AC-50 71 hp @ 2900 RPM 115 lb/52.2 kg 48/72/96/108/144 V

AC-51 88 hp @ 2900 RPM 115 lb/52.2 kg 96/108/144 V

ptg16386157

Electric Vehicles266

III

PA
R

T

The main site for HPEVS is http://www.hpevs.com . Looking through its offerings, you may notice

some motors with the “X2” designation. This implies that two matched motors can be inserted into

an electric vehicle. This dual-motor configuration delivers more horsepower but consumes more cur-

rent from the battery.

14.1.2 Controllers
For brushed DC motors, control circuits are simple to design and understand. The first concern is

power delivery. The controller must be able to deliver enough power to the motor to ensure suitable

driving while preventing too much power from damaging the electronics.

The second concern involves controlling the motor’s torque and speed. When comparing controllers,

you may want to return to Chapter 3 to review the different types of brushed DC motors:

• Permanent magnet— Constant magnetic field

• Series-wound— Improved torque, worse speed control

• Shunt-wound— Good speed control

• Compound— Combination of series-wound and shunt-wound

 Each controller is best suited for a specific type of motor. Netgain provides controllers for its WarP

motors. D&D Motor Systems and Curtis Instruments also sell controllers for brushed DC motors.

To drive an AC motor, the controller needs to convert battery power to three-phase sinusoidal

power. For this reason, the terms AC controller and power inverter are generally synonymous, but in

most EVs, AC controllers do more than just deliver AC power. Many inverters can be tuned to opti-

mize the power frequency, and some can be programmed to support different modes of operation.

Many different types of AC controllers are available, but two companies provide controllers specifi-

cally intended for electric vehicles. Curtis Instruments sells a number of AC controllers, and many

conversion enthusiasts have reported they work well with HPEVS motors. In addition, BRUSA pro-

vides controllers that operate with high performance and high efficiency.

14.1.3 Batteries
The type and number of batteries is another major concern in the EV conversion process. From what

I’ve seen, EV batteries come in one of three types:

• Lead-acid— Low cost, high weight

• Lithium-ion— Low weight, high cost

• Lithium-iron-phosphate (LFP)— Low weight, high safety, high cost

The specific energy of lead-acid batteries (33–42 Wh/kg) is significantly lower than the specific

energy of lithium-ion batteries (100–265 Wh/kg). This means an EV with lead-acid batteries will be

significantly heavier than an EV with the same amount of lithium-ion batteries.

Despite this, many converted vehicles rely on lead-acid batteries because of cost. A 12 V 80 Ah

lead-acid battery costs about $300, whereas a 12V 80 Ah lithium-ion battery costs about $1,000.

http://www.hpevs.com

ptg16386157

26714.2 Modern Electric Vehicles

14

C
H

A
PTER

However, lead-acid batteries become unusable after approximately 600 cycles, whereas lithium-ion

batteries can last approximately 1,000 cycles. When selecting EV batteries, it’s important to keep

these trade-offs in mind.

Another trade-off involves safety. In 2013, three Tesla Model S vehicles caught fire because their

lithium-ion batteries were damaged. Manufacturers are taking pains to ensure that these batter-

ies are kept safe from harm, but lithium-ion chemistry is inherently volatile. For this reason, some

EV conversion experts strongly recommend lithium-iron-phosphate (LFP) batteries, which are more

stable than lithium ion batteries but provide less specific energy.

After the type of battery has been chosen, the next step is to determine how many are needed. This

is determined by the requirements of the controller and the motor. For example, if the controller

requires 96 V, it will take eight 12 V batteries connected in series to provide the necessary voltage.

The current to the controller can be doubled by adding another eight batteries in parallel.

14.1.4 Transmission
An automobile’s transmission is the mechanical system that transfers the motor’s/engine’s power

to the wheels. When it comes to electric vehicles, there are two main issues related to the transmis-

sion: connecting the electric motor to the transmission and the need for manual transmission over

automatic transmission.

The structure of an automobile’s transmission changes from vehicle to vehicle. Therefore, to connect

an electric motor to the transmission, you need an adapter specifically built for that motor and vehi-

cle. EV conversion kits provide prebuilt adapters, but in many cases, a custom adapter needs to be

fabricated. This can be a complex process, and for an in-depth presentation, I recommend Building
an Electric Vehicle by Ken Watkins.

A vehicle with an automatic transmission will automatically change gears as it moves. They’re avail-

able in most automobiles with combustion engines, but they’re not practical in EVs. This is because

automatic transmissions significantly reduce the horsepower provided by the motor. Further, they

add a layer of complexity that most EV conversion amateurs aren’t willing to deal with. For this rea-

son, nearly all converted EVs have manual transmissions.

14.2 Modern Electric Vehicles
If you want to understand the current state of EV technology, the best place to look is the market-

place. As I write this in April 2015, the most popular EVs are the Tesla Model M, the Nissan Leaf,

and the BMW i3. This section provides a technical overview of each car, with particular emphasis on

the motor and battery.

14.2.1 Tesla Motors Model S
In 2008, Tesla Motors released the Tesla Roadster, the first EV to be taken seriously by auto con-

noisseurs. In 2012, it released the Tesla Model S, which improves on the Roadster in many respects.

Figure 14.1 shows what the Model S looks like.

ptg16386157

Electric Vehicles268

III

PA
R

T

The Model S, like all EVs from Tesla, relies on an induction motor to provide motion. As discussed in

Chapter 6 , “AC Motors,” an induction motor is an AC motor whose cylindrical rotor has conductive

plates mounted on its perimeter. As AC current enters the stator, the magnetic field induces volt-

age in the rotor. The interaction between the rotor’s induced voltage and the stator’s field produces

motion. As a review, Figure 14.2 shows what the rotor of a squirrel cage induction motor looks like.

Figure 14.1
The Tesla Model S

End rings

Bearing

Shaft

Conductor

Figure 14.2
Rotor of a
squirrel cage
induction motor

In 2007, Wally Rippel, a Principal Power Electronics Engineer at Tesla Motors, posted a message on

the Tesla Motors blog titled “Induction Versus DC Motors.” He discusses the technology underlying

induction motors and brushless DC motors (BLDCs), and explains why Tesla Motors prefers induc-

tion motors for its vehicles. His message cites two main reasons:

• The rare-earth permanent magnets in a BLDC, such as dysprosium and neodymium, are prohibi-

tively expensive.

ptg16386157

26914.2 Modern Electric Vehicles

14

C
H

A
PTER

• A BLDC’s magnets produce a constant magnetic field. In an induction motor, the magnetic field

is determined by V/f. This means the electrical losses in an induction motor can be controlled by

reducing V/f as needed.

The choice of motors in the Model S has yielded impressive performance results. The base Model S

runs at a maximum of 362 hp and the Performance Model S runs at 416 hp. Table 14.2 provides fur-

ther performance numbers for different variants of the Model S.

Table 14.2 Performance Characteristics of the Tesla Model S

Model Battery Capacity

 Equivalent
 Miles Per Gallon
 (City)

 Equivalent
 Miles Per Gallon
 (Highway)

Model S 60 KWh 94 97

Model S 85 KWh 88 90

Model S AWD 85 KWh 86 94

Model S AWD-85D 85 KWh 95 106

Model S AWD-P85D 85 KWh 89 98

Model S batteries are all based on lithium-ion technology. Currently, the largest battery has a capac-

ity of 85 KWh, which allows the vehicle to travel 265 miles (426 km) before having to recharge. Tesla

Motors also provides a 70 KWh battery option, which replaces its old 60 KWh battery option.

14.2.2 Nissan Leaf
In 2010, Nissan Motor Company released the Nissan Leaf, a compact hatchback that runs on battery

power. It won the World Car of the Year Award in 2011, and Figure 14.3 shows what it looks like.

Figure 14.3
The Nissan Leaf

ptg16386157

Electric Vehicles270

III

PA
R

T

Like the Model S, the Leaf relies on an AC motor to provide motion. This means it uses an inverter

to convert the battery’s DC power to three-phase sinusoidal power.

In contrast with the induction motor of the Model S, the Leaf’s motor is a synchronous AC motor. In

this case, the rotor generates a magnetic field using permanent magnets. Figure 14.4 illustrates the

rotor and stator of a synchronous AC motor.

Magnets

Stator

A

B

C

A

B

C

Rotor

Windings Figure 14.4
 Rotor of a
synchronous AC
motor

In November 2012, Steve Rousseau wrote a short article about the Nissan Leaf’s motor for Popular
Mechanics . The topic involves the rare-earth metals that serve as the rotor’s permanent magnets.

According to the article, Nissan’s scientists have devised a new process for combining the rare-earth

metals dysprosium and neodymium, thereby reducing the amount of dysprosium needed by 40%.

This gives an idea of how important rare-earth elements are for electric motors in vehicles such as

the Leaf.

With its synchronous motor, the Nissan Leaf runs at a peak horsepower of 110 hp. This enables it to

accelerate from 0 to 60 mph in 9.9 seconds. For the 2010/2011 model, the top speed has been mea-

sured at 93 mph, or 150 kph.

For power storage, Nissan provides a 24 KWh lithium-ion battery. According to the U.S. Environmen-

tal Protection Agency, the range of the Nissan Leaf is 73 miles, or 117 km.

Despite having less battery capacity and a lower-power motor, the Nissan Leaf is currently out-

selling the Model S across the world. The reason is pricing. The manufacturer’s suggested retail

price (MSRP) of the base 2015 Nissan Leaf is $29,680. The MSRP of the base 2015 Tesla Model S is

$69,900.

ptg16386157

27114.2 Modern Electric Vehicles

14

C
H

A
PTER

14.2.3 BMW i3
In 2013, BMW released the i3, the first of its “Project i” line of vehicles. This EV won the World Car

Design of the Year award in 2014, and Figure 14.5 shows what it looks like.

 Figure 14.5
 The BMW i3

The BMW i3 resembles the Nissan Leaf in a number of respects. Both rely on synchronous AC

motors to provide mechanical power, and both have relatively small batteries. This small battery

size reduces the car’s price and weight, but also reduces the distance it can travel between charges.

At minimum, the i3 relies on a 170 hp synchronous AC motor to turn the wheels. This allows the

vehicle to accelerate from 0 to 60 mph in under eight seconds. The i3’s maximum speed is 93 mph.

In addition to the electric motor, the i3 can have an optional gasoline engine called a range

extender, or REx. This is essentially a motorcycle engine, and though it increases the vehicle’s

speed and range, it requires stops for fuel as well as electricity.

For power, the i3 relies on a 22 KWh lithium-ion battery. The vehicle’s range depends on its operat-

ing mode, which can be set to one of three options:

• COMFORT— Range of 80–100 miles

• ECO PRO— Reduces air conditioning, limits maximum speed to 80 mph, and extends range

by 12%

• ECO PRO+— Completely deactivates air conditioning, limits maximum speed to 55 mph, and

extends range by 24%

 One important advantage of the BMW i3 relates to the materials used in its construction. The i3’s

frame is made out of carbon fiber reinforced plastic, or CFRP. This dramatically reduces the vehicle’s

weight without sacrificing its durability. This explains why the i3’s range is longer than you’d

expect from a comparable EV with a 22 KWh battery.

ptg16386157

Electric Vehicles272

III

PA
R

T

14.3 Patents from Tesla Motors
In June 2014, Elon Musk posted an announcement on the Tesla Motors blog titled “All Our Patent

Are Belong To You.” He expressed his disappointment with patents, stating that they “stifled inno-

vation” and that “receiving a patent really just meant that you bought a lottery ticket to a lawsuit.”

To encourage the development of electric vehicles, he decided that all patents awarded to Tesla

Motors would be freely available to the public. Or as he put it, “Tesla will not initiate patent law-

suits against anyone who, in good faith, wants to use our technology.”

Now that these patents are essentially in the public domain, I selected four that I found particularly

interesting:

• Patent 7,960,928— Controlling motor operation based on user input and/or vehicle information

• Patent 8,154,167— A new design for induction motor lamination

• Patent 8,453,770— Control system for dual-motor vehicles

• Patent 8,572,837— Method for making efficient rotors in electric motors

Most of the technical content in this book, such as the operation of an AC motor, has been known

for nearly a century. However, these patents represent the latest state of the art, and if Tesla Motors

considered them worthy of patent protection, they’re worth our examination.

14.3.1 Flux Controlled Motor Management
Patent 7,960,928 introduces a method of motor control that acquires data from a variety of inputs.

The patent presents five operational modes that determine the motor’s behavior:

• Performance mode— The controller optimizes the vehicle’s torque and speed.

• Efficiency mode— The controller optimizes the vehicle’s fuel efficiency.

• Regenerative mode— The controller optimizes the energy recovered through regenerative

braking.

• Thermal mode— The controller keeps the vehicle’s internal temperature to a minimum.

• Traction mode— The controller maximizes the tires’ grip on the road.

The patent recognizes that more than one mode may be selected at any given time. Most of the pat-

ent’s description focuses on how the motor’s speed and torque should be controlled in each case.

For example, the section on thermal management explains how the motor’s heat is determined by

the currents in the rotor and stator. Therefore, if thermal mode is selected, the controller needs to

keep the current to a minimum.

The vehicle’s on-board electronics determine which modes are active at any given time. The follow-

ing text, taken directly from the patent, gives an idea of how this works:

“...when a throttle (or torque command input) is hard pressed, the vehicle settings can change

(e.g. automatically or manually) to the maximum performance mode (e.g., still using the first

ptg16386157

27314.3 Patents from Tesla Motors

14

C
H

A
PTER

regeneration mode). Then when highway cruising is detected or selected, the vehicle settings

can change back to the maximum efficiency mode (e.g. still using the first regeneration mode).

When highway passing is detected or desired, the vehicle settings can change back to maximum

efficiency mode....”

Figure 14.6 provides a graphical illustration of the controller’s overall process for managing the

motor’s operation.

Receive at least one of a user
input or vehicle information. 1405

Select one of a plurality of
available flux modes using at
least one of the user input or

the vehicle information.

Calculate a control signal using
the selected flux mode to

control a motor of an electric
vehicle.

1410

1415

 Figure 14.6
 Motor control decision-making process

Controlling the AC motor in a commercial system is a complex process in the best of cases, but

reading this patent gives an idea of how complicated it is to manage the operation of an EV motor.

14.3.2 Induction Motor Lamination Design
Patent 8,154,167 presents an innovative design for AC induction motors. This is essentially a varia-

tion of the squirrel-cage rotor discussed in Chapter 6 . That is, the cylindrical rotor has conductors

that receive induced voltage from the stator, but no permanent magnets.

 This patent presents a new design for an induction motor’s rotor and stator. Figure 14.7 illustrates

the cross-section.

The patent is very specific about the geometry of the features depicted in the figure. For example,

the patent’s claims include the following:

• The motor should have 60 stator teeth and 74 rotor teeth.

• The length of each rotor/stator tooth should be 4–6 times its width.

• The length of each rotor tooth should be 1–1.2 times the length of each stator tooth.

• The air gap between the rotor and stator should be kept between 0.5 and 0.8 millimeters.

ptg16386157

Electric Vehicles274

III

PA
R

T

The windings in each stator slot are separated into two layers. These windings carry current in

three phases, denoted as A, B, and C. Figure 14.8 gives an idea of how the phases are organized in

the stator’s 60 slots.

The patent explains how the winding coils can be inserted in the stator slots to enable automatic

manufacturing:

“...due to the winding approach provided by this invention, the inter-pole connections are accom-

plished during the winding and coil insertion process, not after coil insertion as is common in

prior art winding patterns ... The elimination of the post-insertion inter-pole connection steps

simplifies motor production, thus reducing cost and motor complexity while improving motor reli-

ability and quality.”

The patent description ends by discussing the simulated electromagnetic fields surrounding the

rotor and stator. The design and placement of the teeth are specifically chosen to optimize the

induced current in the rotor’s conductors.

Air gap

Stator teeth

Stator slots

Rotor slots
Rotor teeth

Rotor

Stator

 Figure 14.7
 Cross-section of the
patented induction motor
design

ptg16386157

27514.3 Patents from Tesla Motors

14

C
H

A
PTER

14.3.3 Dual-Motor Drive and Control System
Most EVs have one motor, but Patent 8,453,770 is concerned with controlling vehicles with two

motors. Dual-motor vehicles have a number of advantages over single-motor EVs:

• Superior power optimization and system efficiency.

• Load balancing ensures that motors operate in their optimal temperature range.

• Weight distribution in the vehicle design is simplified.

• The control system can be optimized for different environments and operating modes.

Another advantage of dual-motor systems is that one motor can be used for regular, low-speed

usage while the other is reserved for high-speed or high-load conditions. This improves the vehicle’s

efficiency and lengthens the operational life of the two motors.

A disadvantage of having two motors is that the controller has to perform additional computation to

generate control signals. Patent 8,453,770 focuses on the decision-making process employed by the

controller, which it refers to as the torque control unit. This control unit consists of three parts:

• Traction control command generation unit— Computes speed, wheel slip ratios, and slip errors

• Torque split unit— Computes optimal torque requests for each motor

• Traction control unit— Minimizes slip errors

1st Layer

2nd Layer (in bold & italics)

Slot

Slot

Slot

Slot

Upper
Lower

1

A1 A1

A1 A1 A1 B4 B4 B4 A1 A1 A1 A2 A2

A1 A1 A2 A2 C1 C1 A2 A2

A2A2 A2C1 C1 C1A2

B4 B4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Upper
Lower

31 32 33 34

C1 C1 C2 C2 B3

B3 B3 B3

B3 C2

C2 C2 C2

C2 B3 B3 B4 B4

B3B3 B3 B4 B4 B4C1C1 C1 C2 C2 C2

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Upper
Lower

1

A1 A1 C3 C3

C3

C3

C3

C4

C4

C4 C4

C4

B1

B1

B1 B1 C4 C4

C4

C4 B1 B1

B1

B1

B1

B2

B2

B2 B2

B2C4B1A1 A1 B4 B4 A1 A1

A1

A1

A1

A2

A2

A2 A2 C1

C1

C1 C1 A2 A2

A2 A2

A2

C1A2B4

B4

B4

A1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Upper
Lower

A3

A3

A3

A3

A3

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

C1

B2 B2

B2

B2 A3 A3

A3

A3

A3

A4

A4

A4 A4 C3

C3

C3 C3 A4 A4

A4

A4

A4C3A4B2C2 B3

B3

B3 B3 C2 C2 B3 B3

B3

B3

B3

B4

B4

B4 B4

B4C2

C2

C2B3

C1

C1

C1

C1

C2

C2

C2

C2

Figure 14.8
Two layers of
windings in the
induction motor
design

ptg16386157

Electric Vehicles276

III

PA
R

T

To perform its function, the torque control unit receives input from multiple sensors on the vehicle,

including speed sensors, steering sensors, brake sensors, and gear-selection sensors. Figure 14.9

gives an idea of how the sensors deliver data to the controller, and how the controller interacts with

the rest of the vehicle.

1335

1333

1300

1306

1301

1321
905 903

1307

1304

1309
601

607

1101

1315

1317

1323
1319

911 909
1311

1303

605
603

1313

1305

1325 1327

1329

Accelerator
Sensor

Torque
Controller

Steering
Sensor

Brake
Sensor

ESS

Control
Module

Control
Module

MotorInverter

Inverter Motor

Tran/Diff

1331

Vehicle
Stability
Control

Gear
Selection
Sensor

Mode
Selection
Sensor

 Figure 14.9
 Torque control unit in a
dual-motor system

The patent’s claims go into detail regarding the type of control methods employed by the control-

ler’s circuitry. For example, the traction control unit relies on a second stage feedback loop to reduce

speed disturbances in both motors. It may also use a feedforward control circuit to manage torque

production.

In the figure, ESS stands for energy storage system, which could be a battery or supercapacitor. The

ESS has sensors for temperature, voltage, and current, and they provide data to the torque-limiting

unit. These torque-limiting units compute the maximum torque that can be exerted by the two

ptg16386157

27714.3 Patents from Tesla Motors

14

C
H

A
PTER

motors. The torque control unit uses this information to determine how much torque should be pro-

vided by each motor.

14.3.4 Method for Making Efficient Rotors
Whereas the preceding patents have dealt with motor design and control, Patent 8,572,837 is con-

cerned with manufacturing. Specifically, it explains how to efficiently construct the cylindrical rotor

of an AC induction motor.

As discussed in Chapter 6 , the rotor of an induction motor turns because of currents induced in its

conductors by the stator’s field. A chief issue with manufacturing this motor involves inserting the

conductors into the rotor so that they’re equally spaced but only touch one another at the rotor’s

ends. Another issue involves designing the rotor so that it can be manufactured by an automatic

process. Figure 14.10 shows what the proposed process looks like.

234 Fin

238 Hole

232 Collet

210 Laminated
Discs

212 Bars

214 Slugs

236 Hole

240 Holes

220 Bolt

222 Plate

224 Nut

230 Collar

 Figure 14.10
 Method of manufacturing the rotor of an
induction motor

The central portion of the rotor is composed of laminated steel discs with grooves that extend radi-

ally outward. Conductive bars, usually made of copper or aluminum, are inserted into the grooves,

and each bar runs the length of the cylinder. On either end of the cylinder, the bars come in contact

ptg16386157

Electric Vehicles278

III

PA
R

T

with one another through conductive slugs. The plate and collar on either end are used to compress

the discs and clamp the assembly in place. In addition, beryllium bands may be used to compress

the slugs.

 The central concern of the patent is the rotor’s conductive bars. Lowering the bars’ resistance

increases the motor’s efficiency, and because copper is a better conductor than aluminum, the pat-

ent focuses on copper bars. To electrically connect the bars with low resistance, the patent states

that the slugs should be made from silver-plated copper.

Silver has a low melting point, so when the rotor assembly is heated in the furnace, the silver melts,

improving the contact between the bars and the slugs. When the assembly is cooled, the rotor’s

bars and slugs are fully connected. The plates and collars are then removed and the rotor can be

inserted into an induction motor.

14.4 Summary
The importance of electric vehicles can’t be overstated. In addition to reducing pollution, they help

liberate society from its dependence on fossil fuels. At the time of this writing, EVs are too expen-

sive and insufficiently powerful to threaten traditional vehicles in the marketplace, but the day of

their ascendance is rapidly approaching.

 For many, the only practical way to get involved in EV technology is to convert an existing vehicle.

EV conversion is expensive, but not as expensive as purchasing a new EV. The primary decisions

to make involve selecting the motor and the battery. Brushed DC motors are inexpensive and easy

to control, but are inefficient, unreliable, and tend to have issues with speed control. AC motors are

more expensive and complex, but they allow for regenerative braking, which means the vehicle’s

motion can recharge the battery during travel.

Regarding battery selection, lead-acid batteries are inexpensive but provide little current capacity

for the weight. Lithium-ion batteries provide excellent current capacity, but are expensive and can

be volatile if mishandled. Lithium-iron-phosphate batteries don’t provide as much current capacity

per weight as lithium-ion batteries, but are generally safer and easier to manage.

The second part of this chapter discusses three electric vehicles currently available in the market-

place: the Tesla Motors Model S, the Nissan Leaf, and the BMW i3. The Model S provides more

horsepower than the other offerings as well as greater current capacity, but the price tag is 2–3

times as large.

 The last part of the chapter presents four patents that Tesla Motors recently released into the public

domain. These patents provide a fascinating degree of insight into the cutting edge of electric motor

technology. Two of the patents illustrate methods of controlling motors in electric machines. It’s

informative to see how many factors go into the controller’s decision-making process.

All the EVs from Tesla Motors rely on induction motors, so it’s no surprise that many of the com-

pany’s patents relate to induction motors. Of the patents discussed in this chapter, one presents

the design of an induction motor with teeth on the rotor and stator. Another presents a method of

manufacturing the rotor of an induction motor.

ptg16386157

ELECTRIC GENERATORS
The chapters in this book have focused on motor action, which converts

electrical power to mechanical power. This appendix takes a look at the

reverse process, which converts mechanical power to electrical power.

This is called generator action, and machines that take advantage of this

action are called electric generators. As will be shown, motors and gen-

erators have a lot in common.

Electrical generators serve a vital role in today’s society. When catas-

trophe strikes, the first priority is to return the generators to working

condition. In addition to providing power to businesses and residences,

generators also make it possible for automobiles to power their electrical

components, such as the headlights, power steering, and power locks.

To present this topic, this appendix divides generators into two catego-

ries: AC and DC. Both types have similar internal structures, but DC gen-

erators have to do extra work to make the output power suitable for DC

circuits. Generators of DC power are called dynamos, and the first part of

this appendix looks at how they work and how they rectify and smooth

the output.

AC generators are much more common than DC generators, and most of

this appendix is devoted to this topic. In particular, the category of AC

generators will be further subdivided into those that rely on permanent

magnets and those that don’t. The generators in the first category are

called magnetos and are used in applications requiring simplicity and

high reliability. The generators in the second category are called self-

excited generators, and are used in modern vehicles and power produc-

tion facilities.

 A

ptg16386157

Electric Generators280

IV

PA
R

T

A.1 Overview
Chapter 1 , “Introduction to Electric Motors,” presented the basics of electric motors and showed

how a current-carrying conductor in the presence of an electric field receives a force. This force,

called the Lorentz force, is responsible for the motion of electric motors.

The reverse phenomenon can also take place. That is, when a conductor without current moves

inside a magnetic field, it receives an induced voltage that produces a current. As discussed in

Chapter 6 , “AC Motors,” this is how induction motors work. However, in a generator, the motion is

the input and the induced voltage is the output.

In a generator, the motion may involve the conductor or the field-producing element. As with

motors, the moving element is called the rotor and the stationary element is called the stator.

Further, the element receiving the induced voltage is called the armature and the element that gen-

erates the magnetic field is the field magnet or field winding.

Figure A.1 gives an idea of how a basic generator works. In this case, the conductive armature

rotates inside the poles of a magnet. As it rotates, the induced voltage causes current to flow

through the wire.

N S

Rotation
(input)

Induced
Current
(output)

Slip rings

Brushes

 Figure A.1
 A simple electric generator

The input mechanical power turns the conductor inside the magnet. The rotation induces a voltage

inside the conductor that produces current. The current reaches the external circuit through slip

rings, which are connected to contacts called brushes.

The input power equals the product of the rotor’s torque, τ, and rotational speed, ω. The output

power equals the product of the induced voltage, V, and the resulting current, I. Therefore, the effi-

ciency of a generator can be expressed with the following equation:

P

P

P

P

VIoutput

input

electrical

mechanical

η
τω

= = =

ptg16386157

281A.2 DC Generators

A

A
PPEN

D
IX

The generator depicted in this figure may produce enough electricity to light a small bulb, but not

much more. Generators need to be large to produce useful amounts of electricity. For example, if you

convert a stationary bicycle into an electric generator and start pedaling, you’ll probably only gener-

ate between 80 W and 100 W, which is barely enough power to run a small television.

Just as motors can run on DC or AC electrical power, electrical generators can produce DC or AC

electric power. The rest of this chapter presents the generators of both types.

A.2 DC Generators
Through much of the nineteenth century, power was transferred as

direct current instead of the alternating current we use today. This

made it necessary to build generators of DC electricity, which were

originally called dynamo-electric machines or simply dynamos.

A dynamo’s operation is essentially similar to that of the generator

depicted in Figure A.1 . In fact, a dynamo’s structure looks a lot like

that of the brushed DC motor presented in Chapter 3 , “DC Motors.”

Both have commutators, permanent magnets, and brushes that con-

nect wires to the rotating conductor. The main difference between

the two is that the nature of the input/output power is reversed:

Dynamos accept mechanical power as input and produce electrical

power as output.

 As the rotor completes a rotation, the current produced by the dynamo grows and diminishes. The

commutator switches the direction of the current every half-turn, thereby ensuring that the current

always flows in the same direction. Figure A.2 shows what the resulting current looks like.

 note
 Dynamos aren’t the only
type of DC electrical genera-
tors. Homopolar generators
and magnetohydrodynamic
(MHD) generators also pro-
duce DC power, but these
topics lie beyond the scope of
this discussion.

V Figure A.2
 Rectified power produced
by a dynamo

Before this output can be used to power a DC system, it must be brought to a more constant level

through a process called smoothing. This can be accomplished by placing a capacitor in parallel

with the load. This is called a smoothing capacitor or a reservoir capacitor, and the higher the capac-

itance, the smoother the output. Figure A.3 shows what the circuit looks like.

Figure A.4 shows what the resulting power looks like. The variation in the output voltage is referred

to as ripple.

ptg16386157

Electric Generators282

IV

PA
R

T

If a smoothing capacitor won’t be sufficient, the ripple can be reduced further with a filter made up

of two capacitors and an inductor. This is called a pi filter, and Figure A.5 shows what it looks like.

C
GeneratorG

 Figure A.3
 Simple smoothing circuit

V Figure A.4
 Smoothed voltage with
ripple

C1
GeneratorG

C2

L1 Figure A.5
 Pi filter for improved smoothing

In this circuit, the first capacitor (C1) looks like a short circuit for AC current and prevents a large

part of the input’s AC component from reaching the output. The impedance presented by the induc-

tor (L1) further diminishes the AC component passing through it. The second capacitor (C2) carries

AC power away from the output, which should now be sufficiently smooth for most applications

requiring DC power.

ptg16386157

283A.3 AC Generators

A

A
PPEN

D
IX

A.3 AC Generators
Generating DC power was a major concern in the nineteenth century, but in time, all large-

scale electrical machinery came to rely on AC power. The reason has to do with transformers.

Transformers make it possible to step up (increase voltage, reduce current) or step down (reduce

voltage, increase current) AC power. Low current means low transmission losses, so modern power

systems apply step-up transformers before transmission. When the destination is reached, a step-

down transformer increases the current to a usable level.

Because AC power can be transmitted with minimal losses, all the power generators in current use

are AC generators. This means that generating AC power efficiently is a major concern. This section

introduces the operation of AC generators and then presents different types of generators used in

industry.

A.3.1 Operation of an AC Generator
Electrical engineers across the world have spent over a century improving the design of AC gen-

erators, but the basic principle is fairly simple. AC generators are similar to the DC generators

discussed earlier, but with one major difference: the output of an AC generator doesn’t need to be

rectified or smoothed. This means that no commutator is needed to reverse the current’s direction.

Figure A.6 depicts an example of the output of a single-phase AC generator.

VFigure A.6
Unrectified power from
an AC generator

Three characteristics of an AC generator’s power can be determined as follows:

• The amplitude of the generated power is proportional to the strength of the field magnets.

• The number of phases in the output power equals the number of conductors rotating between

the magnets.

• The frequency of the generated power is determined by the rotational speed of the rotor and the

number of poles.

ptg16386157

Electric Generators284

IV

PA
R

T

This last point is important to understand. Denoting the rotor’s speed as n s and the number of poles

as p, the equation for the frequency of the power produced by an AC generator is given as follows:

f
n p

120
s=

This is essentially the same equation as the one presented in Chapter 6 , which computes the speed

of a synchronous AC motor. As an example, if the rotor of a four-pole generator turns at 90 rotations

per minute, the generated power will have a frequency equal to (90)(4)/120 = 360/120 = 3 Hz.

A.3.2 Magnetos and Self-Excited Generators
There are many ways to classify AC generators, just as there are

many ways to classify AC motors. They can be categorized by

size, weight, torque, and speed. Some are single-phase whereas

others are polyphase.

This section categorizes generators according to the element that

generates the magnetic field. If a generator uses permanent mag-

nets to produce its field, it’s referred to as a magneto. If it relies

on energized coils in the rotor, it’s called a self-excited generator.

Magnetos
In Figure A.1 , the bars labeled “N” and “S” represent the poles

of a permanent magnet. AC generators with permanent magnets are called magnetos, and they’re

simple and reliable. For this reason, they’re commonly used in applications requiring high reliability,

such as in aircraft and lighthouses.

 In most magnetos, the magnets are located outside the wires that will receive the induced current.

The magnets rotate around the wires, which stay in position. In other words, the magnets are on

the rotor and the armature is on the stator. This structure is similar to that of the outrunner brush-

less DC motor discussed in Chapter 3 . This is shown in Figure A.7 .

Magnetos are frequently used to provide the current needed by small ignition engines, such as

those in lawnmowers and old-fashioned automobiles. In this case, the generator’s purpose is to pro-

vide isolated pulses of high voltage instead of continuous power.

Self-Excited Generators
Unlike magnetos, self-excited generators create magnetic fields by sending DC current through

windings in the rotor called field coils. Put another way, these generators require electrical and

mechanical power as input and produce electrical power as output. This process of using electricity

to produce electricity is called self-excitation.

 note
 Some sources use the
term alternator to refer
to self-excited AC genera-
tors, whereas other sources
employ the term for all AC
generators. Because of the
confusion, this appendix
avoids the term entirely.

ptg16386157

285A.3 AC Generators

A

A
PPEN

D
IX

This may seem inefficient, but these generators have one major advantage over magnetos: They

can produce a great deal more electrical power. For example, one major application of self-excited

generators involves providing power to the electronic components in modern cars and trucks, such

as the headlights. These components can collectively require as much as 100 A, which is beyond the

capability of a magneto. But with enough battery current and windings in the rotor, a self-excited

generator can produce this level of current and more.

To show how this works, Figure A.8 presents the basic structure of a self-excited generator.

Current-carrying
wire

Stator

Rotor

Permanent
magnets

 Figure A.7
 Magneto rotor and stator

Field coils

Armature
windings

Rotor

Stator

Figure A.8
Rotor and stator of a self-excited
generator

ptg16386157

Electric Generators286

IV

PA
R

T

One important use of self-excited generators is within automobiles. In this case, the current to

the field windings is provided by the battery. The current produced by the generator is rectified,

smoothed, and delivered to the vehicle’s electronics. In addition to powering systems such as the

headlights and power steering, this generated current also charges the battery.

In addition to powering automobiles, self-excited generators are commonly used to provide elec-

tricity to buildings and residences. At the time of this writing, the top five largest power produc-

tion facilities rely on hydroelectric power, in which water rotates a turbine inside a self-excited

generator.

As an example, the largest facility in the world is the Three Gorges Dam, which contains 32 self-

excited generators. Each is capable of generating 700 MW of power, and the outer diameter of each

generator’s stator is 70 feet.

A.4 Summary
Electric motors are fun and interesting, but without electric generators, society as we know it would

collapse. Thankfully, if you understand the basics of how motors work, it’s easy to understand

how generators work. In a motor, a current-carrying conductor in the presence of a magnetic field

receives motion. In a generator, a conductor moving in the presence of a magnetic field receives

current.

Every generator produces changing levels of current, but DC generators require special circuitry

to make the output power suitable for DC devices. The commutator provides rectification, which

ensures that all the current flows in one direction. In addition, smoothing circuits are employed to

remove variation from the output power.

The majority of the electric generators we encounter in daily life are AC generators. Some AC gen-

erators, called magnetos, contain permanent magnets. Self-excited generators have windings in the

rotor and stator. These generators are capable of generating much more power than magnetos, and

for this reason, they’re used in automobiles and large-scale power generating facilities.

ptg16386157

GLOSSARY
When you’re learning about electric motors, one of the main difficulties

involves keeping track of all the terminology. The goal of this glossary is

to provide simple definitions for many of the terms used throughout this

book.

absolute encoder— An encoder that provides the controller with the

motor’s speed and position.

AC motor— A motor that runs on AC (alternating current) power. May be

synchronous or asynchronous, single-phase or polyphase.

 air gap— Space separating the rotor and stator in an electric motor.

 aircore motor— Motor whose electromagnets lack iron cores.

 Arduino— Family of microcontroller-based circuit boards that are wildly

popular among makers because of their simplicity, low cost, and free

design.

 armature— Conductive element of the motor that carries current.

 asynchronous motor— A motor that operates at a different speed than

the frequency of the incoming power (frequently a synonym for induction

motor).

 auto-cutoff— Voltage level at which the ESC will automatically reduce

power to the motors.

 back-EMF— Voltage generated by an electric motor during its operation.

The voltage is proportional to the motor’s speed and is oriented to oppose

the current entering the motor.

 battery eliminator circuit (BEC)— A feature of many ESCs that provides

power to the RC receiver. This makes it unnecessary to create a separate

connection for the receiver.

 B

ptg16386157

Glossary288

IV

PA
R

T

bipolar stepper— Stepper with a four-wire connection, where each wire connects to one pole of the

internal electromagnets. This stepper requires an H bridge (or a similar circuit) to provide control.

brush— A metal contact, usually between a moving element (such as a rotor) and a stationary

element.

 brushed motor— A DC motor that uses a commutator to switch the direction of current in the arma-

ture. These motors are inexpensive and simple to control, but require maintenance because of the

brush.

 brushless DC motor (BLDC)— A DC motor controlled with timed pulses of current. The lack of a

commutator gives BLDCs high reliability and excellent performance, but they’re difficult to control.

closed-loop control system— Control system that provides feedback to the controller.

cogging— The tendency of the rotor to briefly lock in place as it rotates.

 commutation— The process of reversing the flow of current with every half-revolution of the rotor.

Used in brushed DC motors and DC generators.

 copper loss— Power loss caused by the armature’s electrical resistance. If the current is I and the

armature resistance is R a , the copper loss equals I 2 R a .

 coreless motor— Motor whose electromagnets lack iron cores.

 dead bandwidth— Maximum pulse length (in seconds) that a servomotor will ignore. If a pulse’s

length is greater than the dead bandwidth, the servomotor will rotate in response.

 duty cycle— In a train of PWM pulses, duty cycle is the ratio of the width of a pulse to the spacing

between the pulses. This value is commonly expressed as a percentage.

 dynamometer— Instrument for measuring torque and power, commonly used to measure an electric

motor’s operational characteristics.

 electric speed control (ESC)— Circuit that accepts signals from a controller and delivers power to a

DC motor (frequently used with brushless DC motors).

 electromagnet— Magnet formed by flowing current through a coil of wire. In a high-strength electro-

magnet, the wire is wound around an iron core.

 encoder— Mechanism that attaches to a motor to provide feedback to a controller. Encoders are usu-

ally optical or magnetic.

 field coil/field winding— Windings whose purpose is to generate the motor’s magnetic field.

 field magnet— Permanent magnet(s) whose purpose is to generate the motor’s magnetic field.

 flyback diode— A diode placed in parallel with a motor to provide a path for current produced by the

motor’s back-EMF.

 fractional slot motor— A motor whose number of windings (slots) is a not a multiple of the number

of poles.

 H bridge— A circuit with four switches capable of delivering current in two directions. This makes it

possible to operate a motor in forward and reverse.

 half-step— Method of controlling a stepper motor in which the controller alternates between ener-

gizing one winding and two windings. This rotates the stepper half its usual angle, but the torque

changes depending on how many windings are energized.

ptg16386157

289Glossary

B

A
PPEN

D
IX

Hall effect sensor— A sensor that changes its output voltage when a magnetic field is present.

 hobbyist servo— A DC motor with three connections: power, ground, and control. The PWM pulses

control the rotor’s angle, and the motor doesn’t provide feedback to the controller.

 holding torque— Torque exerted by a stepper motor to maintain its angular orientation.

horsepower (hp)— Measurement of power exerted by a motor or engine, where 1 horsepower (hp)

equals 745.699872 watts.

 hybrid (HY) stepper— Stepper motor that combines characteristics of permanent magnet steppers

and variable reluctance steppers to provide high angular resolution and significant torque.

 incremental encoder— An encoder that tells the controller the motor’s speed but not its position.

 inrunner— A brushless DC motor (BLDC) whose rotor is on the inside and whose stator is on the

outside. In general, inrunners provide greater speed than outrunners but less torque.

 insulated-gate bipolar transistor (IGBT)— A transistor whose resistance between the source and

drain terminals changes when voltage is applied to the gate terminal. This is commonly used to

switch power to a motor on and off. It doesn’t switch as quickly as a MOSFET, but can handle

higher current and provides a lower voltage drop when switched on.

 integral slot motor— A motor whose number of windings (slots) is a multiple of the number of poles.

 inverter or power inverter— A circuit that produces precise waveforms needed to power motors. For

BLDCs, inverters generate timed pulses at different voltage levels. For AC motors, inverters gener-

ate sinusoids in one or more phases.

 Jedlik, Anyos— Hungarian engineer who constructed the first practical electric motor.

 Laplace transform— Mathematical transform that converts differential equations (hard) into alge-

braic equations (easy), and back again.

 linear motor— An electric motor that produces linear motion as output, as opposed to a rotary motor,

which produces rotation.

 lithium-iron-phosphate (LiFePO 4 or LFP)— New battery technology used in some motor control

applications. LiFePO 4 batteries don’t provide as much energy as Li-Po batteries, but they’re more

stable.

 lithium-polymer (Li-Po)— Battery technology commonly used in motor control. Li-Po batteries pro-

vide excellent energy per weight, but can be unstable if mishandled.

 metal-oxide-semiconductor field-effect transistor (MOSFET)— A transistor whose resistance

between the source and drain terminals changes when voltage is applied to the gate terminal. This

is commonly used to switch power to a motor on and off. It provides faster switching than an IGBT,

but presents a greater voltage drop when switched on.

 microstep— Method of controlling a stepper motor in which control pulses are split into multiple

short pulses, frequently in a sinusoidal pattern.

 no-load speed— A DC motor’s speed when no load is attached. This is generally the motor’s maxi-

mum speed. Denoted as ω n .

 Oersted, Hans Christian— Danish physicist who studied the motion of compass needles in the pres-

ence of a current-carrying conductor.

 open-loop control system— Control system that doesn’t provide feedback to the controller.

ptg16386157

Glossary290

IV

PA
R

T

outrunner— A brushless DC motor (BLDC) whose stator is on the inside and whose rotor is on the

outside. In general, outrunners provide greater torque than inrunners but less speed.

peak efficiency point— Operation conditions at which a motor operates with maximum efficiency.

permanent magnet DC motor (PMDC)— DC motor that uses permanent magnets to produce the

magnetic field.

 phase angle— In electronics, this identifies the angle between AC voltage and current. This is posi-

tive if the voltage precedes the current and negative if the current precedes the voltage.

 PID (proportional-integral-differential) controller— Controller that computes control signals with a

weighted sum of the error’s proportional, integral, and differential aspects.

 polarity— The relative locations of a magnet’s north and south poles.

 polyphase motor— An AC motor that receives multiple (usually three) phases of sinusoidal power.

power— Rate at which work is performed. Electrical power equals current times voltage. For rota-

tion, power equals torque times rotational speed. For linear motion, power equals force times

velocity.

 power factor— Number between 0 and 1 that identifies how much of the input power is being con-

verted to real work. This is important when designing systems with AC motors.

power inverter— See inverter .

 pulse width modulation (PWM)— Method of providing power to a motor using a train of evenly

spaced pulses.

 rotary motor— An electric motor that produces rotation as output, as opposed to a linear motor,

which produces linear motion.

 rotor— The portion of the motor that moves as the motor operates.

 RPM— Revolutions per minute, a common measurement for rotational speed, where 1 RPM equals

6°/sec.

 sensored motor control— Controlling a motor (generally a BLDC) by reading position data from its

sensors (generally a Hall effect sensor).

 sensorless motor control— Controlling a motor (generally a BLDC) without any sensors present on

the motor. This usually involves monitoring the back-EMF to determine when zero-crossings occur.

 series-wound DC motor (SWDC)— A DC motor that uses field windings in series with the armature

to produce the magnetic field.

 servomotor— A motor that provides feedback to the controller to enable high-precision operation. A

servo that doesn’t provide feedback is a hobbyist servo .

shunt-wound DC motor (SHWDC)— A DC motor that uses field windings in parallel with the arma-

ture to produce the magnetic field.

stall torque— A DC motor’s torque when the load is too large to turn. This is the maximum torque

the motor is capable of exerting. Denoted as τ s .

 stator— The portion of the motor that remains stationary as the motor operates.

 step angle— Angle that a stepper motor rotates through with each excitation. Common angles are

30°, 15°, 7.5°, 5°, 2.5°, and 1.8°.

ptg16386157

291Glossary

B

A
PPEN

D
IX

stepper motor— An electric motor (usually brushless DC) that rotates through a specific angle (step

angle) and stops.

synchronous motor— A motor that operates at the same speed as the frequency of the incoming

power.

 torque— Physical quantity similar in concept with rotational force. If the force acting along a circular

arc is perpendicular to the circle’s radius, the torque equals the product of the force and radius.

 torque-speed curve— Curve that identifies a motor’s torque at different levels of speed.

 unipolar stepper— Stepper with a six-wire connection, where the wires connect to poles or center

taps. This is simpler to control than a bipolar stepper, but provides less torque because only half of

an electromagnet is being used at any time.

 variable reluctance (VR) stepper— Stepper motor whose rotor is a toothed iron disk. It provides high

angular resolution but low torque.

 watt (W)— Measurement of power, where 1 watt (W) equals 0.00134102209 horsepower (hp).

ptg16386157

This page intentionally left blank

ptg16386157

 Numbers
48P 76T spur gear, 118

 A
AC generators, 279 , 283 - 284

 classifying, 284

 magnetos, 284 - 285

 self-excited generators,
 285 - 286

 AC motors, 10 - 11 , 90

 asynchronous polyphase
motors, 89 , 96

 current and torque, 97

 electromagnetic
induction, 96

 squirrel-cage rotors, 97 - 98

 wound rotors, 98 - 100

 controls, 106

 eddy-current drives,
 106 - 107

 variable-frequency drive
(VFD), 107 - 108

 VFD harmonic distortion,
 108 - 109

 EV conversion, 265

 polyphase motors, 89 , 91

 power factor, 94 - 95

 rotating magnetic fields,
 92 - 94

 stators, 91 - 92

 synchronous speed, 94

 single-phase motors, 89 , 103

 capacitor-start motor,
 104 - 105

 shaded-pole motor,
 105 - 106

 split-phase motors,
 103 - 104

 single-phase power, 90

 synchronous polyphase
motors, 89 , 100

 doubly excited
synchronous motors, 101

 permanent magnet
synchronous motors,
 101 - 102

 synchronous reluctance
motors, 102 - 103

 three-phase power, 90 - 91

 universal motors, 109 - 110

 actuators. See linear
actuators

 Adafruit_BBIO.PWM
module, 205

 Adafruit-BBIO module

 BeagleBone Black (BBB), 200

 GPIO (general-purpose input/
output) pins, 201

 add_event_detect, 204

 add_interrupt_callback, 182

 RPIO, 180

 advantages

 brushed motors, DC
motors, 38

 of digital servomotors, 76

 air-core motors, 22

 alternators, 284

 AM3359, BeagleBone Black
(BBB), 197

 PRU-ICSS, 198

 SGX530 3D graphics engine,
 198

 Sitara Cortex-A8 processing
code, 197

 Ampere, Andre-Marie, 6

 Force Law, 28

 analog servomotors, 76

 analogRead, Arduino Mega,
 155 - 156

 analogReference, Arduino
Mega, 156

 analogWrite, Arduino Mega,
 156 - 158

 Angstrom, 199

 angular speed, 17

 measuring, 17

 AR610 six-channel receiver,
 245 - 246

 Arduino, interfacing BLDC
through, 235 - 239

INDEX

ptg16386157

Arduino 1.0.x294

Arduino 1.0.x, 150

 Arduino 1.5.x, 150

 Arduino boards, 145

 Arduino Mega. See Arduino
Mega

 ATmega2560, 148 - 149

 circuitry, 146 - 147

 microcontrollers, 147 - 148

 stepper motor controls,
stepper libraries, 162 - 164

 Arduino files, installing, 150

 Arduino Mega, 146

 Arduino Motor Shield. See
Arduino Motor Shield

 ATmega2560, 148 - 149

 circuitry, 146 - 147

 microcontrollers, 147 - 148

 programming, 149

 analogRead, 155 - 156

 analogWrite, 156 - 158

 digital I/O, 154 - 155

 global variables, 153

 loop(), 153

 preparing the
environment, 149 - 152

 setup(), 153

 sketch functions, 153 - 154

 using environments,
 152 - 153

 servomotor controls, 166

 Servo library, 166 - 167

 stepper motor controls, 162

 Arduino Motor Shield,
 158 - 159

 brushed motors, 161 - 162

 L298P dual H bridge
connections, 159 - 160

 power, 159

 Arduino pins, motor
signals, 160

arm wrestling, torque, 15

ARM1176 processing core,
BCM2835, Raspberry Pi,
 173 - 174

 armatures, 9

 resistance of the armature, 21

 AS5145, 78

 asynchronous polyphase
motors, AC motors, 96

 current and torque, 97

 electromagnetic induction, 96

 squirrel-cage rotors, 97 - 98

 wound rotors, 98 - 100

 ATmega2560, 147 - 149

 Austria Microsystems, 78

 axial force, helical gears, 119

 B
back-EMFs, 22 - 23 , 225

 BLDC (brushless DC motor),
 48 - 49

 backlash, gears, 117

 batteries, 250

 DC motors, 51 - 52

 EV conversion, 266 - 267

 lithium-ion batteries, 52

 lithium-iron-phosphate (LFP)
batteries, 267

 nickel-cadmium batteries, 52

 quadcopter, 258 - 259

 rechargeable battery types,
 51 - 52

 battery eliminator circuit
(BEC), ESCs (electronic
speed controls), 50

 BBB. See BeagleBone Black
(BBB)

 BCM2835

 Raspberry Pi, 173 - 174

 ARM1176 processing core,
 173 - 174

 VideoCore IV graphics
processing core, 174

 BeagleBone Black (BBB),
 195 - 196

 AM3359, 197

 PRU-ICSS, 198

 SGX530 3D graphics
engine, 198

 Sitara Cortex-A8
processing code, 197

 circuit boards, 196 - 197

 Debian operating system,
 199 - 200

 DMCC (Dual Motor Controller
Cape), 207 - 209

 communication, 209

 motor controls, 211 - 212

 PWM generation, 209 - 210

 switching circuitry, 210

 GPIO (general-purpose input/
output) pins

 configuring, 202 - 203

 event handling, 203 - 205

 programming, 198

 Adafruit-BBIO module, 200

 GPIO (general-purpose
input/output) pins,
 201 - 205

 PWM generation, 205 - 207

 Revision C, 196

 BEC (battery eliminator
circuit), ESCs (electronic
speed controls), 50

 bevel gears, 120 - 121

 bipolar, 63

 bipolar stepper control, 64 - 65

ptg16386157

constructing, quadcopters 295

bipolar steppers, 164 - 165

BLDC (brushless DC
motor), 42

 controlling, 46 - 49

 ESCs (electronic speed
controls), 234

 general control, 234 - 235

 interfacing through
Arduino, 235 - 239

 inrunner motor, 44

 outrunner motors, 44 - 45

 structure of, 42 - 44

 block diagrams, servomotors,
 83 - 84

 BMW i3, 271

 board layout, ESCs
(electronic speed controls),
 232 - 233

 body diodes, MOSFETs
(metal-oxide-semicon-
ductor field-effect
transistors), 221 - 222

 bootstrap capacitors,
switching circuitry, ESCs
(electronic speed controls),
 224 - 225

 Boucher, Robert J., 244

 bouncetime, 204

 breakdown torque, 97

 brushed DC motors,
RaspiRobot, 189 - 190

 brushed motors, 10

 Arduino Motor Shield,
 161 - 162

 DC motors, 34 - 35

 advantages/
disadvantages, 38

 control circuitry, 39 - 42

 inrunner motor, 44

 PMDC motors, 36 - 37

 SHWDC (shunt-wound
DC) motors, 38

 SWDC (series-wound)
motors, 37 - 38

 mechanical commutation,
 35 - 36

 brushes, 36

 brushless motors, 10

 DC motors, 42

 controlling, 46 - 49

 outrunner motors, 44 - 45

 structure of, 42 - 44

 C
callbacks, 182

 capacitor-start motor, 103

 single-phase motors, AC
motors, 104 - 105

 carbon fiber, 242

 case studies, linear
synchronous motors

 Transrapid Maglev System,
 136 - 137

 Yaskawa SGLG, 135 - 136

 cases, 8

 CC3D flight controller board,
 254 - 255

 circuit boards

 BeagleBone Black (BBB),
 196 - 197

 Raspberry Pi, 172 - 173

 circuitry

 Arduino Mega, 146 - 147

 control circuitry, brushed
motors, 39 - 42

 DC motors, 31

 electrical switches, 31 - 32

 circuits

 back-EMFs, 22 - 23

 electrical losses, 21 - 22

 classes, stepper libraries, 163

 classifying, AC
generators, 284

 cleanup method, 184

 clear_channel, 184

 closed-loop systems,
servomotors, 79

 cogging, 43

 reducing, 44

 coilguns, linear actuators,
 130 - 131

 combustion engines, 264

 communication, DMCC (Dual
Motor Controller Cape),
BeagleBone Black (BBB),
 209

 commutated motors, 10

 commutation, 36

 comparing

 PM (permanent magnet)
stepper motors and inrunner
motors, 57

 VR (variable reluctance)
steppers versus PM
steppers, 59

compass needle
experiment, 6

 configuring,

 GPIO (general-purpose input/
output) pins, BeagleBone
Black (BBB), 202 - 203

 PWM, servomotors, Raspberry
Pi, 182 - 184

 constructing, quadcopters,
 259 - 260

ptg16386157

contact ratio, gears296

contact ratio, gears, 118

 contrasting, PM (permanent
magnet) stepper motors
and inrunner motors, 57

 control circuitry, brushed
motors, DC motors, 39 - 42

 control signals, BLDC
(brushless DC motor), 46 - 47

 controllers, EV conversion,
 266

controlling

 brushless motors, DC motors,
 46 - 49

 servomotors, 78 , 167 - 168

 block diagrams, 83 - 84

 Laplace transform, 81 - 83

 modeling, 80

 open-loop and closed-loop
systems, 79

 transfer functions, 83 - 85

 stepper motors, 164 - 166

controls

 AC motors, 106

 eddy-current drives,
 106 - 107

 variable-frequency drive
(VFD), 107 - 108

 VFD harmonic distortion,
 108 - 109

 PID control, servomotors,
 85 - 87

 stepper motors, 63 - 64

 bipolar stepper control,
 64 - 65

 unipolar stepper controls,
 65 - 67

 copper loss, 21

 coreless motors, 22

 Cortex-A8, 197

counter-EMF, 22

 current

 asynchronous polyphase
motors, AC motors, 97

 DC motors, 28 - 29

 efficiency, 25

 cut-off state (off), 219

 D
DC generators, 279 , 281 - 282

 DC motors, 10 , 28

 batteries, 51 - 52

 brushed motors, 10 , 34 - 35

 advantages/
disadvantages, 38

 control circuitry, 39 - 42

 mechanical commutation,
 35 - 36

 PMDC motors, 36 - 37

 SHWDC (shunt-wound
DC) motors, 38

 SWDC (series-wound)
motors, 37 - 38

 brushless motors, 10 , 42

 controlling, 46 - 49

 inrunner motors, 44

 outrunner motors, 44 - 45

 structure of, 42 - 44

 circuitry, 31

 electrical switches, 31 - 32

 commutated motors, 10

 current, 28 - 29

 ESCs (electronic speed
controls), 49 - 50

 EV conversion, 265

 KT, 28 - 29

 KT-KV, 30

 KV, 29

 PWM (pulse width
modulation), 33 - 34

 rotational speed, 29

 torque, 28 - 29

 voltage, 29

 dead bandwidth
parameter, 75

 Debian operating system,
BeagleBone Black (BBB),
 199 - 200

 designing schematics,
ESCs (electronic speed
controls), 229

 header connections, 229 - 231

 MOSFETs
(metal-oxide-semiconductor
field-effect transistors), 231

 zero-crossing detection
(ZCD), 232

 digital I/O, programming,
Arduino Mega, 154 - 155

 digital servomotors, 76

 direction, force, 14

 disadvantages

 brushed motors, DC
motors, 38

 of digital servomotors, 76

 Raspberry Pi, 171 - 172

 DMCC (Dual Motor Controller
Cape), 207 - 209

 BeagleBone Black (BBB)

 communication, 209

 motor controls, 211 - 212

 PWM generation, 209 - 210

 switching circuitry, 210

 doubly excited synchronous
motors, 100 - 101

 drive modes, stepper motors,
 67 - 68

 full-step (one phase on)
mode, 68

 full-step (two phases on)
mode, 68 - 69

ptg16386157

EV conversion 297

 half-step mode, 69 - 70

 microstep mode, 71

 DSPIC33, 209 - 210

 Dual Motor Controller Cape
(DMCC), 207 - 209

 dual-direction control,
brushed motors (DC
motors), 39 - 41

 dual-motor drive and control
system, Tesla Motors
(patents), 275 - 277

 DX6i transmitters, 252

 dynamics, propellers,
 243 - 247

 mass flow rate, 245 - 246

 propeller pitch, 246 - 247

 pushing air down, 244 - 245

 dynamos, 281 - 282

 E
EAGLE, 229

 eddy-current drives, AC
motors, 106 - 107

 EEPROM (electrically
erasable programmable
read-only memory), 149

 efficiency, 24 - 25

 current, 25

 gears, 115

 efficient motors, Tesla
Motors, patents, 277 - 278

 electric motors

 AC motors, 10 - 11

 DC motors, 10

 overview, 9 - 10

 electric vehicles (EVs), 263

 BMW i3, 271

 EV conversion, 264

 batteries, 266 - 267

 controllers, 266

 motors, 264 - 266

 transmission, 267

 Nissan Leaf, 269 - 270

 Tesla Motors Model S,
 267 - 269

 electrical losses, 21 - 22

 electrical power, 24

 electrical switches

 DC motors, 31 - 32

 transistors, 32 - 33

 electromagnet circuits with
center taps, 65

 electromagnetic induction,
asynchronous polyphase
motors (AC motors), 96

 electromagnetic self-rotor, 7

 electromagnets, 18 - 21

 electronic speed controls
(ESCs), 1

 electronics, quadcopters, 250

 batteries, 258 - 259

 ESCs (electronic speed
controls), 256 - 258

 flight controllers, 254 - 256

 transmitters/receivers,
 251 - 253

engineers, 12

 Epiphany, 175

 ESC Shield, 216 - 218

 board layout, 232 - 233

 designing schematics

 header connections,
 229 - 231

 MOSFETs (metal-oxide-
semiconductor
field-effect transistors),
 231

 signal pins, 236

 ESCs (electronic speed
controls), 1 , 41 , 215 , 250

 BEC (battery eliminator
circuit), 50

 BLDC (brushless DC
motor), 234

 general control, 234 - 235

 interfacing through
Arduino, 235 - 239

 board layout, 232 - 233

 considerations when
selecting, 50

 DC motors, 49 - 50

 designing schematics, 229

 header connections,
 229 - 231

 MOSFETs (metal-oxide-
semiconductor
field-effect transistors),
 231

 zero-crossing detection
(ZCD), 232

 MOSFET drivers, 222 - 224

 overview of design, 216 - 218

 programmability, 51

 quadcopters, 256 - 258

 switching circuitry, 218 - 219

 bootstrap capacitors,
 224 - 225

 MOSFET switches,
 219 - 222

 zero-crossing detection
(ZCD), 225 - 229

 EV conversion, 264

 AC motors, 265

 batteries, 266 - 267

 controllers, 266

ptg16386157

EV conversion298

 DC motors, 265

 motors, 264 - 266

 transmission, 267

 event handling, GPIO
(general-purpose input/
output) pins, BeagleBone
Black (BBB), 203 - 205

 event_callback, 205

 event_detected, 204

 events, GPIO
(general-purpose input/
output) pins, BeagleBone
Black (BBB), 203 - 205

 EVs (electric vehicles). See
electric vehicles (EVs)

 exit velocity, 244

 external structures,
motors, 8

 F
Faraday, Michael, 6

 field magnets, 9

 field winding, 9

 Fitec, servomotors, 74

 flight controllers, 250

 quadcopters, 254 - 256

 Flip Sport frame,
quadcopters, 242

 floating back-EMF, 228 - 229

 flux controlled motor
management, Tesla Motors,
patents, 272 - 273

 force, 13 - 14

 direction, 14

 Force Law, 28

 frames, quadcopters, 242 - 243

frequency

 PWM (pulse width
modulation), 34

 switching, 51

 full-step (one phase on)
mode, stepper motors, 68

 full-step (two phases on)
mode, stepper motors,
 68 - 69

 functions

 DMCC module, 211

 Servo library, 166 - 167

 stepper libraries, 162

 G
gear reduction, 115

 gear trains, 115

 gearmotors, 113 , 124 - 125

 gears, 114 , 117

 backlash, 117

 bevel gears, 120 - 121

 contact ratio, 118

 efficiency, 115

 helical gears, 118 - 120

 input gears, 114

 mechanical advantage, 115

 output gears, 114

 pitch, 115 - 116

 planetary gears, 123 - 124

 power transmission, 114 - 115

 rack and pinion gears,
 121 - 122

 spur gears, 117 - 118

 vibration, 118

 worm gears, 122 - 123

 general-purpose input/
output (GPIO) pins, 172

generators, 279

 AC generators, 279 , 283 - 284

 classifying, 284

 magnetos, 284 - 285

 self-excited generators,
 285 - 286

 DC generators, 279 , 281 - 282

 homopolar generators, 281

 overview, 280 - 281

 self-excited generators, 279

global variables,
programming (Arduino
Mega), 153

GND screw terminals, 159

GPIO (general-purpose
input/output) pins, 172

 Adafruit-BBIO module, 201

 BeagleBone Black (BBB),
 201 - 205

 events/event handling,
 203 - 205

 configuring, 202 - 203

 input and output pins,
 179 - 180

 interrupts, 180 - 182

 Raspberry Pi, 177 - 182

 RaspiRobot, 187

 GPIO functions, RPIO
module, 178

 GPIO.BOTH, 203

 GPIO.FALLING, 203

 GPIO.RISING, 203

 gravitational force, 14

 H
H bridge, 41

H bridge connections,
Arduino Motor Shield,
 159 - 160

ptg16386157

LCDs (l iquid crystal displays) 299

half-H bridge, MOSFET
drivers, 222

 half-step mode, stepper
motors, 68 - 70

 Hall effect sensor, 47

 harmonic distortion, VFD
(variable-frequency drive),
 108 - 109

 header connections,
designing schematics, ESCs
(electronic speed controls),
 229 - 231

 helical gears, 118 - 120

 Hi Performance Electric
Vehicle Systems (HPEVS),
 265 - 266

 Hitec, digital servomotors, 76

 HL20L helical gear, 118

 hobbyist, 11

 hobbyist servomotors, 74 - 75

 analog and digital servos, 76

 PWM (pulse width
modulation), 75

 rotary encoders, 76 - 77

 magnetic rotary
encoders, 78

 optical rotary encoders, 77

 homopolar generators, 281

 homopolar motors, 140

 railguns, 141 - 142

 structure of, 140 - 141

 HPEVS (Hi Performance
Electric Vehicle Systems),
 265 - 266

 HY (hybrid), 56

 hybrid (HY), 56

 hybrid (HY) steppers, 61 - 62

 operations, 63

 structure of, 62 - 63

 I
I2C (Inter-Integrated

Circuit), 209

 i3 (BMW), 271

 IDLE, 175

 Raspberry Pi, 176 - 177

 IDLE3, 175

 IGBTs (insulated-gate
bipolar transistors), 32 - 33

 induced voltage, 96

 inductance, La, 21

 induction motor lamination
design, Tesla Motors,
patents, 273 - 275

 induction motors, Tesla,
 268 - 269

 INPUT, Arduino Mega, 154

 input and output pins, GPIO
(general-purpose input/
output) pins, 179 - 180

 input gears, 114

 INPUT_PULLUP, Arduino
Mega, 154

 inrunner motor, 42 , 44

 versus PM (permanent
magnet) stepper motors, 57

 installing, Arduino files, 150

 insulated-gate bipolar
transistors (IGBTs), 32 - 33

 Inter-Integrated Circuit
(I2C), 209

 internal structures,
motors, 8 - 9

 interrupts, GPIO
(general-purpose input/
output) pins, 180 - 182

 inverters, BLDC (brushless
DC motor), 46 - 47

Io, 29

 no-load current, 21

 IR2110 high-side/low-side
drivers, 223 - 224

 IRFR7446, MOSFETs
(metal-oxide-
semiconductor field-effect
transistors), 221

 iron cores, 22

 iron-core LSM, 133

 ironless LSM, 133 - 134

 J-K
Japan, LINIMO train line,

 138 - 140

Jedlik, Anyos, 7

 Jedlik’s self rotor, 36

 Kd, 86

 Ki, 86

 Kp, 86

 KT, DC motors, 28 - 29

 KT-KV, DC motors, 30

 KV, DC motors, 29

 L
L293DD Quadruple Half-H

Driver, RaspiRobot, 187 - 188

 L298P dual H bridge
connections, 159 - 160

 La, 21

 Langewiesche, Wolfgang,
 244

 Laplace transform,
servomotors, 81 - 83

 LCDs (liquid crystal
displays), 162

ptg16386157

leads300

leads, 8

 levitation magnets, 140

 LFP (lithium-iron-phosphate)
batteries, 52 , 267

 LGMs (lift-guide magnets),
 140

 libraries

 Servo library, 166 - 167

 stepper libraries, 162 - 164

lift, propellers, 243

 lift-guide magnets
(LGMs), 140

 LIMs (linear induction
motors), 137

 LINIMO train line, 138 - 140

 structure of, 137 - 138

 linear actuators, 128 - 129

 coilguns, 130 - 131

 how they work, 129 - 130

 samples, 130

 linear induction motors
(LIMs), 137

 LINIMO train line, 138 - 140

 structure of, 137 - 138

 linear motors, 127

 homopolar motors, 140

 railguns, 141 - 142

 structure of, 140 - 141

 linear actuators, 128 - 129

 coilguns, 130 - 131

 how they work, 129 - 130

 samples, 130

 linear induction motors
(LIMs), 137

 LINIMO train line, 138 - 140

 structure of, 137 - 138

 linear synchronous
motors, 131

 structure of, 131 - 135

 linear synchronous
motors, 131

 case studies

 Transrapid Maglev
System, 136 - 137

 Yaskawa SGLG, 135 - 136

 structure of, 131 - 135

 iron-core LSM, 133

 ironless LSM, 133 - 134

 slotless LSM, 134 - 135

 speed, 132 - 133

 LINIMO train line, 138 - 140

 Li-Po (lithium-polymer)
batteries, 52

 Li-Po batteries, 258 - 259

 liquid crystal displays
(LCDs), 162

 listings

 Ch9/blink—Causing an LED
to Blink, 152

 Ch9/brushed.ino—Brushed
DC Motor Control, 161

 Ch9/pwm.ino—Pulse Width
Modulation, 157

 Ch9/servo.ino—Servomotor
Control, 168

 Ch9/stepper.ino—Stepper
Motor Control, 165 - 166

 Ch10/brushed.py—Control
Two Brushed DC Motors,
 189 - 190

 Ch10/check_input.py—
Checking a Pin’s Logic
Level, 179 - 180

 Ch10/interrupt.py—
Responding to Logic Level
Changes, 181 - 182

 Ch10/pwm.py—Generating a
PWM Signal, 184

 Ch10/servo.py—Control a
Servomotor, 185 - 186

 Ch10/stepper.py—Control a
Stepper Motor, 191 - 192

 Ch11/callback.py—
Responding to Events in a
Callback, 204 - 205

 Ch11/motor.py—Controlling a
Motor with the DMCC, 212

 Ch11/pwm.py—Generating a
PWM Signal, 206 - 207

 Ch11/test_input.py—
Checking a Pin’s Logic
Level, 202 - 203

 Ch12/bldc.ino—BLDC
Control, 237 - 239

 lithium-ion batteries, 52

 lithium-iron-phosphate (LFP)
batteries, 52 , 267

 lithium-polymer (Li-Po)
batteries, 52

 logic level, 181

 input and output pins, 179

 loop(), programming,
Arduino Mega, 153

 Lorentz force, 280

 LXTerminal, 175

 M
magnet poles, 44

magnetic fields, rotating
magnetic fields (polyphase
motors), 92 - 94

 magnetic rotary encoders, 78

 magnetohydrodynamic
(MHD) generators, 281

 magnetos, 284 - 285

 magnets, 18 - 21

 brushless motors, DC
motors, 43

 electromagnets, 18 - 21

 permanent magnets, 18

ptg16386157

operating systems 301

makers, 1 , 11

 manufacturers, motors, EV
conversion, 265 - 266

 mass flow rate, propellers,
 245 - 246

 materials, for frames of
quadcopters, 242

 MCU (microcontroller),
Arduino Mega, 147 - 148

 measuring

 angular speed, 17

 power, 24

 torque, 16

 voltage, 24

 weight, 14

 mechanical commutation,
brushed motors, 35 - 36

 memory, types of, 149

 metal-oxide-semiconductor
field-effect transistors
(MOSFETs), 32 - 33

 method for making efficient
rotors, Tesla Motors,
patents, 277 - 278

 MHD
(magnetohydrodynamic)
generators, 281

 microcontrollers, Arduino
Mega, 147 - 148

 micros, Arduino Mega, 155

 microstep mode, stepper
motors, 68 , 71

 MN3110 K470 BLDC
(T-Motor), 249 -250

 Model B+, Raspberry Pi,
 172 - 173

 modeling servomotors, 80

 MOSFET drivers

 ESCs (electronic speed
controls), 222 - 224

 designing schematics, 231

 IR2110 high-side/low-side
drivers, 223 - 224

 MOSFETs (metal-oxide-
semiconductor field-effect
transistors), 32 - 33 , 218 - 219

 body diodes, 221 - 222

 ESCs (electronic speed
controls), 219 - 222

 designing schematics, 231

 selecting, 220

 H bridge, 41

 IRFR7446, 221

 operational parameters, 220

 motor controls, DMCC (Dual
Motor Controller Cape),
BeagleBone Black (BBB),
 211 - 212

 motor selection flowchart, 10

 motor signals, Arduino
pins, 160

 motors

 AC motors. See AC motors

 considerations when
selecting, 5

 EV conversion, 264 - 266

 manufacturers, 265 - 266

 external structures, 8

 induction motors, Tesla,
 268 - 269

 inrunner motor, 42 , 44

 internal structures, 8 - 9

 linear motors. See linear
motors

 outrunner motors, 44 - 45

 quadcopters, 248 - 250

 servomotors. See servomotors

 sinusoidal motors, 49

 stepper motors. See stepper
motors

 universal motors, AC motors,
 109 - 110

 WRIMs (wound-rotor
induction motors), 98

 MPU6000 gyroscope/
accelerometer, 256

 Musk, Elon, 263 , 272

 N
NEON, 197

Newton-meters, 16

Newtons, 14

Ni-Cd batteries, 52

nickel-cadmium batteries, 52

nickel-metal-hydride (NiMH)
batteries, 52

 NiMH (nickel-metal-hydride)
batteries, 52

 Nissan Leaf, 269 - 270

 N-m (Newton-meters), 16

 no-load current, 21

 O
objects, stepper libraries, 163

 Oersted, Hans, compass
needle, 6

 omega, 17

 open-loop system,
servomotors, 79

 operating systems

 Debian operating system,
BeagleBone Black (BBB),
 199 - 200

 Raspbian, 175 - 176

ptg16386157

operational parameters, MOSFETs (metal-oxide-semiconductor f ield-effect transistors)302

operational parameters,
MOSFETs (metal-oxide-
semiconductor field-effect
transistors), 220

 operations

 hybrid (HY) steppers, 63

 PM (permanent magnet)
stepper motors, 57 - 59

 VR (variable reluctance)
steppers, 60 - 61

 optical rotary encoders, 77

 OUTPUT, Arduino Mega, 154

 output gears, 114

 outrunner motors, 44 - 45

 P
p (parallel), 52

 parameters, dead bandwidth
parameter, 75

 patents, Tesla Motors, 272

 dual-motor drive and control
system, 275 - 277

 flux controlled motor
management, 272 - 273

 induction motor lamination
design, 273 - 275

 method for making efficient
rotors, 277 - 278

 permanent magnet DC
(PMDC) motors, 36 - 37

 permanent magnet
synchronous motors, 100

 synchronous polyphase
motors, 101 - 102

 permanent magnets, 18

 permanent motor (PM), 56

 permanent split capacitor
(PSC) motor, 105

 pi filters, 282

 PiFace, 186

 pinMode, Arduino Mega, 154

 PiRack, 186

 pitch, gears, 115 - 116

 pitch points, 116

 Pixii, Hippolyte, 36

 planetary gears, 123 - 124

 PM (permanent magnet)
stepper motors, 56

 versus inrunner motor, 57

 operations, 57 - 59

 structure of, 56 - 57

 PM (permanent motor), 56

 PMDC motors, 36 - 37

 PMSM (permanent magnet
synchronous motor),
 101 - 102

 poles, brushless motors, DC
motors, 44

 polyphase motors, AC
motors, 89 , 91

 power factor, 94 - 95

 rotating magnetic fields,
 92 - 94

 stators, 91 - 92

 synchronous speed, 94

 power

 Arduino Motor Shield, 159

 defined, 23

 electrical power, 24

 measuring, 24

 rotational power, 23 - 24

 work, 23

 power factor, polyphase
motors, AC motors, 94 - 95

 power transmission, gears,
 114 - 115

 preparing, Arduino
environment, Arduino
Mega, 149 - 152

 processors, ARM1176
processing core, Raspberry
Pi, 173 - 174

 programmability, ESCs
(electronic speed
controls), 51

 programmable real-time unit
subsystem and industrial
communication subsystem
(PRU-ICSS), 198

 programming

 Arduino Mega, 149

 analogRead, 155 - 156

 analogWrite, 156 - 158

 digital I/O, 154 - 155

 global variables, 153

 loop(), 153

 preparing the
environment, 149 - 152

 setup(), 153

 sketch functions, 153 - 154

 using environments,
 152 - 153

 BeagleBone Black (BBB), 198

 Adafruit-BBIO module, 200

 GPIO (general-purpose
input/output) pins,
 201 - 205

 Raspberry Pi, 174

 GPIO (general-purpose
input/output) pins,
 177 - 182

 IDLE, 176 - 177

 Python, 176 - 177

 Raspbian operating
system, 175 - 176

 propeller pitch, 246 - 247

ptg16386157

Rippel, Wally 303

propellers

 dynamics, 243 - 247

 mass flow rate, 245 - 246

 propeller pitch, 246 - 247

 pushing air down, 244 - 245

 quadcopters, 243

 selecting for quadcopters,
 247 - 248

PRU-ICSS (programmable
real-time unit subsystem
and industrial
communication
subsystem), 198

PSC (permanent split
capacitor) motor, 105

pull-up torque, 97

 pulse delivery, 33

 pulse width modulation
(PWM), 33 - 34

 pushing air down, propellers,
 244 - 245

 PWM (pulse width
modulation), 33 - 34

 Arduino Mega, 158

 frequency, 34

 hobbyist servomotors, 75

 servomotors, Raspberry Pi,
 182 - 184

 PWM generation

 BeagleBone Black (BBB),
 205 - 207

 DMCC (Dual Motor Controller
Cape), BeagleBone Black
(BBB), 209 - 210

 Python

 Raspberry Pi, 176 - 177

 RaspiRobot, 188 - 189

 RPI.GPIO, 177

 RPIO module, 177

 Q
quadcopters, 241

 constructing, 259 - 260

 electronics, 250

 batteries, 258 - 259

 ESCs (electronic speed
controls), 256 - 258

 flight controllers, 254 - 256

 transmitters/receivers,
 251 - 253

 frames, 242 - 243

 motors, 248 - 250

 propellers, 243

 dynamics, 243 - 247

 dynamics, mass flow rate,
 245 - 246

 dynamics, propeller pitch,
 246 - 247

 dynamics, pushing air
down, 244 - 245

 selecting, 247 - 248

 R
Ra, 21

 rack and pinion gears,
 121 - 122

 radio-frequency (RF)
signals, 251

 railguns, homopolar motors,
 141 - 142

 Raspberry Pi, 171- 172

 BCM2835, 173 - 174

 ARM1176 processing core,
 173 - 174

 VideoCore IV graphics
processing core, 174

 circuit boards, 172 - 173

 disadvantages, 171 - 172

 Model B+, 172 - 173

 programming, 174

 GPIO (general-purpose
input/output) pins,
 177 - 182

 IDLE, 176 - 177

 Python, 176 - 177

 Raspbian operating
system, 175 - 176

 RaspiRobot, 186

 brushed DC motors,
 189 - 190

 L293DD Quadruple Half-H
Driver, 187 - 188

 Python, 188 - 189

 stepper motors, 190 - 192

 servomotors, 182

 configuring PWM, 182 - 184

 controlling Servo, 185 - 186

 Raspbian, 174

 operating systems, 175 - 176

 RaspiRobot, 186 - 187

 brushed DC motors, 189 - 190

 L293DD Quadruple Half-H
Driver, 187 - 188

 Python, 188 - 189

 stepper motors

 basics, 190 - 191

 RRB2 class, 191 - 192

 RC transmitters, 252

 receivers, 252 - 253

 rechargeable battery types,
 51 - 52

 reducing cogging, 44

 resistance of the
armature, 21

 Revision C, BeagleBone
Black (BBB), 196

 RF (radio-frequency)
signals, 251

 Rippel, Wally, 268

ptg16386157

ripples304

ripples, 282

 rotary encoders, 76 - 77

 magnetic rotary encoders, 78

 optical rotary encoders, 77

rotating magnetic fields,
polyphase motors, AC
motors, 92 - 94

 rotational power, 23 - 24

 rotational speed, DC
motors, 29

 rotational work, 23

 rotor of a squirrel cage, 268

 rotors, 9 , 280

 hybrid (HY) steppers, 62

 squirrel-cage rotors, 97 - 98

 wound rotors, asynchronous
polyphase motors, 98 - 100

 RPi. See Raspberry Pi

 RPI.GPIO, 177

 RPIO module, 178

 RPIO.BCM, 178

 RPIO.BOARD, 178

 RPIO.PUD_DOWN, 180

 RPIO.PUD_OFF, 180

 RPIO.PUD_UP, 180

 RPIO.PWM, 182

 RRB2, RaspiRobot, 188

 S
s (series), 52

SainSmart 29:1 gearmotor,
 125

 saturation state, 219

scientists, 12

s-domain, 83

 selecting

 MOSFETs
(metal-oxide-semiconductor
field-effect transistors), 220

 propellers, for quadcopters,
 247 - 248

 self-excited generators, 279 ,
 284 - 286

 self-rotors, 7

 sensored controls, BLDC
(brushless DC motor), 47 - 48

 sensorless controls, BLDC,
 48 - 49

 series-wound DC (SWDC)
motors, 37 - 38

 Servo, Raspberry Pi, 185 - 186

 Servo library, 166 - 167

 servomotor controls, 166

 controlling servomotors,
 167 - 168

 Servo library, 166 - 167

 servomotors, 73

 controlling, 78 , 167 - 168

 block diagrams, 83 - 84

 Laplace transform, 81 - 83

 modeling, 80

 open-loop and closed-loop
systems, 79

 transfer functions, 83 - 85

 hobbyist servomotors, 74 - 75

 analog and digital servos,
 76

 PWM (pulse width
modulation), 75

 rotary encoders, 76 - 78

 PID control, 85 - 87

 Raspberry Pi, 182

 configuring PWM, 182 - 184

 controlling Servo, 185 - 186

 setup(), programming
Arduino Mega, 153

SGX530 3D graphics
engine, 198

 shaded-pole motor, 103

 single-phase motors, AC
motors, 105 - 106

 shafts, 8

 shells, 8

 shunt-wound DC (SHWDC)
motors, 38

 Shutdown, Raspberry Pi, 175

 SHWDC (shunt-wound DC)
motors, 38

 signal pins, ESC Shield, 236

 single-direction control,
brushed motors, DC motors,
 39 - 40

 single-phase motors

 AC motors, 103

 capacitor-start motor,
 104 - 105

 shaded-pole motor,
 105 - 106

 split-phase motors, 103 - 104

 single-phase power, AC
motors, 90

 sinusoidal motors, 49

 sinusoidal pulse with
modulation (SPWM), 108

 Sitara Cortex-A8 processing
code, 197

 sketch functions,
programming Arduino
Mega, 153 - 154

 Skywalker Quattro 25Ax4
(Hobbywing), 257

 slip, 96

 slotless LSM, 134 - 135

ptg16386157

synchronous speed, polyphase motors, AC motors 305

slots, brushless motors
(DC motors), 44

 smoothing capacitors, 281

 SoC (system on a chip), 197

 speed

 angular speed, 17

 linear synchronous motors,
 132 - 133

 rotational speed, 29

 split-phase motors, 103

 single-phase motors, AC
motors, 103 - 104

 spur gears, 117 - 118

 SPWM (sinusoidal pulse
width modulation), 108

 squirrel-cage rotors, 97 - 98

 SRAM (static random access
memory), 149

 Staples, Gilbert, 247

 stators, 9 , 280

 hybrid (HY) steppers, 62 - 63

 polyphase motors, AC motors,
 91 - 92

 step-down transformers, 283

 Stepper functions, 163 - 164

 stepper libraries, 162 - 164

 objects and classes, 163

 Stepper functions, 163 - 164

 stepper motor controls, 162

 stepper libraries, 162 - 164

 objects and classes, 163

 Stepper functions, 163 - 164

 stepper motors, controlling,
 164 - 166

 stepper motors, 55 , 78

 bipolar stepper control,
 164 - 165

 controlling, 164 - 166

 controls, 63 - 64

 bipolar stepper control,
 64 - 65

 unipolar stepper controls,
 65 - 67

 drive modes, 67 - 68

 full-step (one phase on)
mode, 68

 full-step (two phases on)
mode, 68 - 69

 half-step mode, 69 - 70

 microstep mode, 71

 hybrid (HY) steppers, 61 - 62

 operations, 63

 structure of, 62 - 63

 PM (permanent magnet)
stepper motors, 56

 operations, 57 - 59

 structure of, 56 - 57

 RaspiRobot

 basics, 190 - 191

 RRB2, 191 - 192

 VR (variable reluctance)
steppers, 59

 operations, 60 - 61

 structure of, 59 - 60

 steps, 55

 step-up transformers, 283

 STM32F103 microcontroller,
 255 - 256

 straight bevel gear, 121

 structure of

 BLDC (brushless DC motor),
 42 - 44

 homopolar motors, 140 - 141

 hybrid (HY) steppers, 62 - 63

 LIMs (linear induction
motors), 137 - 138

 linear synchronous motors,
 131 - 135

 iron-core LSM, 133

 ironless LSM, 133 - 134

 slotless LSM, 134 - 135

 speed, 132 - 133

 PM (permanent magnet)
stepper motors, 56 - 57

 VR (variable reluctance)
steppers, 59 - 60

 SWDC (series-wound)
motors, 37 - 38

 switching circuitry

 DMCC (Dual Motor Controller
Cape), BeagleBone Black
(BBB), 210

 ESCs (electronic speed
controls), 218 - 219

 bootstrap capacitors,
 224 - 225

 MOSFET switches,
 219 - 222

 switching frequency, 51

 synchronous polyphase
motors, AC motors, 100

 doubly excited synchronous
motors, 101

 permanent magnet
synchronous motors,
 101 - 102

 synchronous reluctance
motors, 102 - 103

 synchronous reluctance
motors, 100 , 102 - 103

 synchronous polyphase
motors, 102 - 103

 synchronous speed,
polyphase motors, AC
motors, 94

ptg16386157

synchronous/asynchronous, AC motors306

synchronous/asynchronous,
AC motors, 89

system on a chip (SoC),
AM3359, 197

 T
Tab Center Plate Kit, 259

 Tesla Motors, patents, 272

 dual-motor drive and control
system, 275 - 277

 flux controlled motor
management, 272 - 273

 induction motor lamination
design, 273 - 275

 method for making efficient
rotors, 277 - 278

 Tesla Motors Model S,
 267 - 269

 Tesla Roadster, 267

 Three Gorges Dam, 286

 three-phase power

 AC motors, 90 - 91

 voltage, 93

 thrust, 243

 time.sleep, 186 , 205

 toothed stators, hybrid (HY)
steppers, 63

 torque, 14 - 17

 arm wrestling, 15

 asynchronous polyphase
motors, AC motors, 97

 breakdown torque, 97

 DC motors, 28 - 29

 measuring, 16

 pull-up torque, 97

 unit conversion, 16

 torque-speed curve, 17 - 18

transfer functions,
servomotors, 83 - 85

 transformers, 283

 transistors as electrical
switches, 32 - 33

 transmission, EV conversion,
 267

 transmitters/receivers, 250

 quadcopters, 251 - 253

 Transrapid Maglev System,
 136 - 137

 Trickey, P.H., 42

 trr, 222

 U
UART (universal

asynchronous receiver/
transceiver), 198

unipolar, 63

 unipolar stepper controls,
 65 - 67

 unit conversion, torque, 16

universal asynchronous
receiver/transceiver
(UART), 198

 universal motors, AC motors,
 109 - 110

 V
variable reluctance (VR), 56

 variable-frequency drive
(VFD), AC motors, 107 - 108

vector floating-point (VFP),
 174

 velocity, exit velocity, 244

 Venom RC 35C 5000 mAh
Li-Po battery, 258

VFD (variable-frequency
drive)

 AC motors, 107 - 108

 harmonic distortion, 108 - 109

VFP (vector floating-point),
 174

vibration, spur gears, 118

 VideoCore IV graphics
processing core, BCM2835,
Raspberry Pi, 174

 Vin, Arduino Motor
Shield, 159

 voltage

 DC motors, 29

 measuring, 24

 three-phase power, 93

 VR (variable reluctance), 56

 VR (variable reluctance)
steppers, 59

 operations, 60 - 61

 structure of, 59 - 60

 VSD, 222

 W-X
Watkins, Ken, 267

weight, 14

 measuring, 14

WiFi Config, 175

Wilson, T.G., 42

windings

 brushless motors, DC motors,
 43

 PM (permanent magnet)
stepper motors, 58

 zero-crossing detection
(ZCD), 227 - 228

wires, 8

ptg16386157

zero-crossing detection (ZCD) 307

work, 23

 rotational work, 23

 worm gears, 122 - 123

 wound rotors, asynchronous
polyphase motors, AC
motors, 98 - 100

 wound-rotor induction
motors (WRIMs), 98

 WRIMs (wound-rotor
induction motors), 98

 Y-Z
Yaskawa SGLG, 135 - 136

 zero-crossing detection
(ZCD), 49

 ESCs (electronic speed
controls), 225 - 229

 designing schematics, 232

ptg16386157

This page intentionally left blank

ptg16386157

Other Books

YOU MIGHT LIKE!

SAVE 35%
Use discount code MAKER

Visit quepublishing.com
to learn more!

* Discount code MAKER is valid for a 35% discount off the list price of eligible titles purchased on
informit.com or quepublishing.com. Coupon not valid on book + eBook bundles. Discount code may

not be combined with any other offer and is not redeemable for cash. Offer subject to change.

ISBN: 9780789749840 ISBN: 9780789755988 ISBN: 9780789755476 ISBN: 9780789753861

ISBN: 9780789755735 ISBN: 9780789755384 ISBN: 9780789755261 ISBN: 9780789755001

ptg16386157

9780134031347

http://www.quepublishing.com

	Contents
	Introduction
	Who This Book Is For
	How This Book Is Organized
	Let Me Know What You Think
	I: Introduction
	1 Introduction to Electric Motors
	1.1 Brief History
	1.2 Anatomy of a Motor
	1.3 Overview of Electric Motors
	1.4 Goals and Structure
	1.5 Summary

	2 Preliminary Concepts
	2.1 Torque and Angular Speed
	2.2 Magnets
	2.3 Equivalent Circuit Element
	2.4 Power and Efficiency
	2.5 Summary

	II: Exploring Electric Motors
	3 DC Motors
	3.1 DC Motor Fundamentals
	3.2 Brushed Motors
	3.3 Brushless Motors
	3.4 Electronic Speed Control (ESC) Systems
	3.5 Batteries
	3.6 Summary

	4 Stepper Motors
	4.1 Permanent Magnet (PM) Steppers
	4.2 Variable Reluctance (VR) Steppers
	4.3 Hybrid (HY) Steppers
	4.4 Stepper Control
	4.5 Summary

	5 Servomotors
	5.1 Hobbyist Servos
	5.2 Overview of Servo Control
	5.3 PID Control
	5.4 Summary

	6 AC Motors
	6.1 Alternating Current (AC)
	6.2 Overview of Polyphase Motors
	6.3 Asynchronous Polyphase Motors
	6.4 Synchronous Polyphase Motors
	6.5 Single-Phase Motors
	6.6 AC Motor Control
	6.7 Universal Motors
	6.8 Summary

	7 Gears and Gearmotors
	7.1 Overview of Gears
	7.2 Types of Gears
	7.3 Gearmotors
	7.4 Summary

	8 Linear Motors
	8.1 Linear Actuators
	8.2 Linear Synchronous Motors
	8.3 Linear Induction Motors
	8.4 Homopolar Motors
	8.5 Summary

	III: Electrical Motors in Practice
	9 Motor Control with the Arduino Mega
	9.1 The Arduino Mega
	9.2 Programming the Arduino Mega
	9.3 The Arduino Motor Shield
	9.4 Stepper Motor Control
	9.5 Servomotor Control
	9.6 Summary

	10 Motor Control with the Raspberry Pi
	10.1 The Raspberry Pi
	10.2 Programming the Raspberry Pi
	10.3 Controlling a Servomotor
	10.4 The RaspiRobot Board
	10.5 Summary

	11 Controlling Motors with the BeagleBone Black
	11.1 The BeagleBone Black (BBB)
	11.2 Programming the BBB
	11.3 PWM Generation
	11.4 The Dual Motor Controller Cape (DMCC)
	11.5 Summary

	12 Designing an Arduino-Based Electronic Speed Control (ESC)
	12.1 Overview of the ESC Design
	12.2 Switching Circuitry
	12.3 Zero-Crossing Detection
	12.4 Designing the Schematic
	12.5 Board Layout
	12.6 Controlling the BLDC
	12.7 Summary

	13 Designing a Quadcopter
	13.1 Frame
	13.2 Propellers
	13.3 Motors
	13.4 Electronics
	13.5 Construction
	13.6 Summary

	14 Electric Vehicles
	14.1 Electric Vehicle Conversion
	14.2 Modern Electric Vehicles
	14.3 Patents from Tesla Motors
	14.4 Summary

	IV: Appendixes
	A: Electric Generators
	A.1 Overview
	A.2 DC Generators
	A.3 AC Generators
	A.4 Summary

	B: Glossary
	A
	B
	C
	D
	E
	F
	H
	U
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

