

Berger Automating with SIMATIC S7-1500

Automating with
SIMATIC S7-1500
Configuring, Programming and Testing
with STEP 7 Professional

by Hans Berger

Publicis Publishing

Bibliographic information from the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

The author, translators, and publisher have taken great care with all texts and
illustrations in this book. Nevertheless, errors can never be completely avoided.
The publisher, author, and translators accept no liability, for whatever legal reasons,
for any damage resulting from the use of the programming examples.

www.publicis-books.de

Print ISBN 978-3-89578-404-0
ePDF ISBN 978-3-89578-919-9

Editor: Siemens Aktiengesellschaft, Berlin and Munich
Publisher: Publicis Publishing, Erlangen
© 2014 by Publicis Erlangen, Zweigniederlassung der PWW GmbH

The publication and all parts thereof are protected by copyright.
Any use of it outside the strict provisions of the copyright law without
the consent of the publisher is forbidden and will incur penalties.
This applies particularly to reproduction, translation, microfilming
or other processing, and to storage or processing in electronic systems.
It also applies to the use of extracts from the text.

Printed in Germany

Preface

5

Preface

The SIMATIC automation system unites all of the subsystems of an automation
solution under a uniform system architecture to form a homogenous whole from
the field level right up to process control.

The Totally Integrated Automation (TIA) concept permits uniform handling of all au-
tomation components using a single system platform and tools with uniform oper-
ator interfaces. These requirements are fulfilled by the SIMATIC automation sys-
tem, which provides uniformity for configuration, programming, data manage-
ment, and communication.

This book describes the newly developed SIMATIC S7-1500 automation system.
S7-1500 controllers are compact in design and can be modularly expanded. The
CPUs feature integrated bus interfaces for communicating with other automation
systems via Industrial Ethernet and, depending on the type of module, via
PROFIBUS DP as well.

The STEP 7 Professional engineering software in the TIA Portal makes it possible to
use the complete functionality of the S7-1500 controllers. STEP 7 Professional is the
common tool for hardware configuration, generation of the user program, and for
program testing and diagnostics.

STEP 7 Professional provides five programming languages for generation of the us-
er program: Ladder logic (LAD) with a graphic representation similar to a circuit di-
agram, function block diagram (FBD) with a graphic representation based on elec-
tronic circuitry systems, a high-level Structured Control Language (SCL) similar to
Pascal, statement list (STL) with formulation of the control task as a list of
commands at machine level, and finally GRAPH as a sequencer with sequential pro-
cessing of the user program.

STEP 7 Professional supports testing of the user program by means of watch tables
for monitoring, control and forcing of tag values, by representation of the program
with the current tag values during ongoing operation, and by offline simulation of
the programmable controller.

This book describes the configuration, programming, and testing of the S7-1500
automation system using the engineering software STEP 7 V12 SP 1 in connection
with a CPU 1500 with firmware version V1.1 and the simulation software PLCSIM
version V12 SP 1.

Erlangen, May 2014 Hans Berger

The contents of the book at a glance

6

The contents of the book at a glance

Start

Overview of the SIMATIC S7-1500 automation system.

Introduction to the SIMATIC STEP 7 Professional V12 engineering software.

The basis of the automation solution: Creating and editing a project.

SIMATIC S7-1500 automation system

Overview of the SIMATIC S7-1500 modules: Design of an automation system, CPUs, signal,
technology and communication modules.

Device configuration

Configuration of a station, parameterization of modules, and networking of stations.

Tags, addressing, and data types

The properties of inputs, outputs, I/O, bit memories, data, and temporary local data as oper-
and areas, and how they are addressed: absolute, symbolic, and indirect.

Description of elementary and structured data types, data types for block parameters, point-
ers, user and system data types.

Program execution

How the CPU responds in the STARTUP, RUN, and STOP modes.

How the user program is structured with blocks, what the properties of these blocks are, and
how they are called.

How the user program is executed: startup characteristics, main program, interrupt process-
ing, troubleshooting, and diagnostics.

The program editor

Working with the PLC tag table, creating and editing code and data blocks, compiling blocks,
and evaluating program information.

The ladder logic programming language LAD

The characteristics of LAD programming; series and parallel connection of contacts, the use
of coils, standard boxes, Q boxes, and EN/ENO boxes.

The function block diagram programming language FBD

The characteristics of FBD programming; boxes for binary logic operations, the use of stan-
dard boxes, Q boxes, and EN/ENO boxes.

The structured control language SCL

The characteristics of SCL programming; operators and expressions, working with binary
and digital functions, control of program execution using control statements.

The contents of the book at a glance

7

The statement list programming language STL

The characteristics of STL programming; programming of binary logic operations, applica-
tion of digital functions, and control of program execution.

The sequential control programming language GRAPH

What a sequential control is, and what its elements are: sequencers, steps, transitions, and
branches. How a sequential control is configured using GRAPH.

Description of the control functions

Basic functions: Functions for binary signals: binary logic operations, memory functions,
edge evaluations, SIMATIC timer/counter functions, IEC timer/counter functions.

Digital functions: Functions for digital tags: transfer, comparison, arithmetic, math, con-
version, shift, and logic functions.

Program control: Branching in the program using jump functions, calling and ending func-
tions and function blocks, ARRAY and CPU data blocks.

Online operation and program test

Connecting a programming device to the PLC station, switching on online mode, transfer-
ring the project data, and protecting the user program.

Loading, modifying, deleting, and comparing the user blocks.

Working with the hardware diagnostics and testing the user program.

Distributed I/O

Overview: The ET 200 distributed I/O system.

How a PROFINET IO system is configured, and what properties it has.

How a PROFIBUS DP master system is configured, and what properties it has.

Communication

The communication functions used to implement open user communication.

The properties of S7 communication and with what communication functions it is pro-
grammed.

How PtP communication is implemented.

Appendix

How external source files are created and imported for STL and SCL blocks.

How a project created using STEP 7 V5.x is migrated to the TIA Portal.

How the Web server is configured in the CPU, and what features it offers.

Technology functions: counting, measuring, motion control, PID control

How the user program is tested offline using the S7-PLCSIM simulation software.

Table of contents

8

Table of contents

1 Introduction . 23

1.1 Overview of the S7-1500 automation system . 23
1.1.1 SIMATIC S7-1500 programmable controller . 24
1.1.2 Overview of STEP 7 Professional V12 . 25
1.1.3 Various programming languages . 27
1.1.4 Execution of the user program . 29
1.1.5 Data management in the SIMATIC automation system 31

1.2 Introduction to STEP 7 Professional V12 . 32
1.2.1 Installing STEP 7 . 32
1.2.2 Automation License Manager . 33
1.2.3 Starting STEP 7 Professional . 33
1.2.4 Portal view . 33
1.2.5 The windows of the Project view . 35
1.2.6 Help information system . 37
1.2.7 Adapting the user interface . 37

1.3 Editing a SIMATIC project . 38
1.3.1 Structured representation of project data . 39
1.3.2 Project data and editors for a PLC station . 39
1.3.3 Creating and editing a project . 43
1.3.4 Working with reference projects . 45
1.3.5 Creating and editing libraries . 46

2 SIMATIC S7-1500 automation system . 47

2.1 S7-1500 station components . 47
2.2 S7-1500 CPUs . 49

2.2.1 CPU versions . 49
2.2.2 Control and display elements . 49
2.2.3 SIMATIC Memory Card . 51
2.2.4 Memory areas in an S7-1500 station . 52
2.2.5 Bus interfaces . 54

2.3 Signal modules . 55
2.3.1 Digital input modules . 55
2.3.2 Digital output modules . 56
2.3.3 Analog input modules . 57
2.3.4 Analog output modules . 57

2.4 Technology modules . 58
2.5 Communication modules . 59
2.6 Other modules . 60

2.6.1 System power supply modules . 60
2.6.2 Load power supply modules . 60

Table of contents

9

3 Device configuration . 61

3.1 Introduction . 61
3.2 Configuring a station . 63

3.2.1 Adding a PLC station . 63
3.2.2 Adding a module . 63

3.3 Parameterization of modules . 65
3.3.1 Parameterization of CPU properties . 65
3.3.2 Addressing modules . 68
3.3.3 Assigning parameters to signal modules . 70

3.4 Configuring a network . 73
3.4.1 Introduction, overview . 73
3.4.2 Networking a station . 74
3.4.3 Node addresses in a subnet . 76
3.4.4 Communication services and types of connection 76
3.4.5 Configuring a connection . 78
3.4.6 Configuring a PROFINET subnet . 80
3.4.7 Configuring a PROFIBUS subnet . 84

4 Tags, addressing, and data types . 86

4.1 Operands and tags . 86
4.1.1 Introduction, overview . 86
4.1.2 Operand areas: inputs and outputs . 87
4.1.3 Operand area: bit memory . 90
4.1.4 Operand area: data . 92
4.1.5 Operand area: temporary local data . 93

4.2 Addressing of operands and tags . 94
4.2.1 Signal path . 94
4.2.2 Absolute addressing . 95
4.2.3 Symbolic addressing . 98
4.2.4 Addressing of a tag area . 99
4.2.5 Addressing a constant . 99

4.3 Indirect addressing . 100
4.3.1 Overview . 100
4.3.2 Indirect addressing of ARRAY components . 100
4.3.3 Indirect addressing of a tag in an ARRAY DB . 102
4.3.4 Indirect addressing of a data block . 102
4.3.5 Indirect addressing with an ANY pointer . 103
4.3.6 Indirect addressing with PEEK and POKE (SCL) . 105

4.4 Addressing of hardware objects . 107
4.5 General information on data types . 107

4.5.1 Overview of data types . 107
4.5.2 Implicit data type conversion . 108
4.5.3 Overlaying tags (data type views) . 111

4.6 Elementary data types . 113
4.6.1 Bit-serial data types BOOL, BYTE, WORD, DWORD, and LWORD 113
4.6.2 Data type CHAR . 113
4.6.3 BCD numbers BCD16 and BCD32 . 115
4.6.4 Fixed-point data types without sign USINT, UINT, UDINT, ULINT 116
4.6.5 Fixed-point data types with sign SINT, INT, DINT, and LINT 117

Table of contents

10

4.6.6 Floating-point data types REAL and LREAL . 118
4.6.7 Data types for durations . 120
4.6.8 Data types for points in time . 121

4.7 Structured data types . 123
4.7.1 Date and time DATE_AND_TIME (DT) . 123
4.7.2 Date and time DATE_AND_LTIME (DTL) . 125
4.7.3 STRING data type . 125
4.7.4 Data type ARRAY . 126
4.7.5 Data type STRUCT . 129

4.8 Parameter types . 129
4.8.1 Overview . 129
4.8.2 TIMER and COUNTER parameter types . 131
4.8.3 Parameter types for IEC timer functions . 132
4.8.4 Parameter types for IEC counter functions . 132
4.8.5 Parameter types BLOCK_FC and BLOCK_FB (STL) 132
4.8.6 Parameter type DB_ANY . 133
4.8.7 Parameter type VOID . 133
4.8.8 Parameter types POINTER, ANY, and VARIANT . 134

4.9 Pointer . 134
4.9.1 Introduction . 134
4.9.2 Area pointer . 135
4.9.3 DB pointer . 135
4.9.4 ANY pointer . 135

4.10 PLC data types . 137
4.10.1 Programming a PLC data type . 137
4.10.2 Using a PLC data type . 138
4.10.3 Comparing PLC data types . 138

4.11 System data types . 139
4.11.1 System data types for IEC timer functions . 139
4.11.2 System data types for IEC counter functions . 140
4.11.3 Data type ERROR_STRUCT . 141
4.11.4 Start information . 142

4.12 Hardware data types . 143

5 Program execution . 144

5.1 Operating states of the CPU . 144
5.1.1 STOP operating state . 145
5.1.2 STARTUP operating state . 146
5.1.3 RUN operating state . 148
5.1.4 Retentive behavior of operands . 148

5.2 Creating a user program . 149
5.2.1 Program draft . 149
5.2.2 Program execution . 153

5.3 Programming blocks . 155
5.3.1 Block types . 155
5.3.2 Block properties . 157
5.3.3 Block interface . 157
5.3.4 Programming block parameters . 161

Table of contents

11

5.4 Calling blocks . 163
5.4.1 General information on calling of code blocks . 163
5.4.2 Supplying the block parameters . 165
5.4.3 Calling a function (FC) . 166
5.4.4 Calling a function block (FB) . 167
5.4.5 “Passing on” of block parameters . 168

5.5 Startup program . 169
5.5.1 Startup organization blocks . 169
5.5.2 Resetting retentive data . 170
5.5.3 Determining a module address . 171
5.5.4 Parameterization of modules . 174

5.6 Main program . 177
5.6.1 Main program organization blocks . 177
5.6.2 Process image updating . 179
5.6.3 Cycle time . 182
5.6.4 Response time . 184
5.6.5 Stopping and delaying the program . 186
5.6.6 Time . 187
5.6.7 Read system time . 191
5.6.8 Runtime meter . 191

5.7 Interrupt processing . 192
5.7.1 Introduction to interrupt processing . 192
5.7.2 Time-of-day interrupts . 196
5.7.3 Time-delay interrupts . 200
5.7.4 Cyclic interrupts . 203
5.7.5 Hardware interrupts . 207
5.7.6 Assigning interrupts during runtime . 209
5.7.7 Reading additional interrupt information . 210

5.8 Error handling . 212
5.8.1 Causes of errors and error responses . 212
5.8.2 Local error handling . 213
5.8.3 Global error handling (synchronous error) . 215
5.8.4 Enabling and disabling synchronous error processing 218
5.8.5 Asynchronous errors . 220
5.8.6 Disable, delay, and enable interrupts and asynchronous errors 223

5.9 Diagnostics in the user program . 225
5.9.1 Diagnostics interrupt . 226
5.9.2 Read start information . 227
5.9.3 Diagnostic functions in the user program . 228

5.10 Configuring alarms . 235
5.10.1 Introduction . 235
5.10.2 Configuring alarms according to the alarm number procedure 238
5.10.3 Blocks for programming alarms . 242
5.10.4 CPU alarm display . 244

6 Program editor . 247

6.1 Introduction . 247
6.2 PLC tag table . 248

6.2.1 Creating and editing a PLC tag table . 248

Table of contents

12

6.2.2 Defining and processing PLC tags . 248
6.2.3 Comparing PLC tag tables . 251
6.2.4 Exporting and importing a PLC tag table . 252
6.2.5 Constants tables . 252

6.3 Programming a code block . 253
6.3.1 Creating a new code block . 253
6.3.2 Working area of the program editor for code blocks 254
6.3.3 Specifying code block properties . 256
6.3.4 Protecting blocks . 259
6.3.5 Programming a block interface . 260
6.3.6 Programming a control function . 262
6.3.7 Editing tags . 267
6.3.8 Working with program comments . 269

6.4 Programming a data block . 270
6.4.1 Creating a new data block . 270
6.4.2 Working area of program editor for data blocks 271
6.4.3 Defining properties for data blocks . 272
6.4.4 Declaring data tags . 274
6.4.5 Entering data tags in global data blocks . 275

6.5 Compiling blocks . 276
6.5.1 Starting the compilation . 276
6.5.2 Compiling SCL blocks . 277
6.5.3 Eliminating errors following compilation . 278

6.6 Program information . 279
6.6.1 Cross-reference list . 279
6.6.2 Assignment list . 281
6.6.3 Call structure . 282
6.6.4 Dependency structure . 283
6.6.5 Consistency check . 283
6.6.6 Resources of the CPU . 284

6.7 Language settings . 285

7 Ladder logic LAD . 287

7.1 Introduction . 287
7.1.1 Programming with LAD in general . 287
7.1.2 Program elements of ladder logic . 290

7.2 Programming binary logic operations with LAD . 290
7.2.1 NO and NC contacts . 291
7.2.2 Series and parallel connection of contacts . 292
7.2.3 T branch, open parallel branch . 293
7.2.4 Negate result of logic operation in the ladder logic 293
7.2.5 Edge evaluation of a binary tag in the ladder logic 294
7.2.6 Validity check of a floating-point tag in the ladder logic 294
7.2.7 Comparison contacts . 295

7.3 Programming memory functions with LAD . 295
7.3.1 Simple and negating coils . 296
7.3.2 Set and reset coils . 296
7.3.3 Retentive response due to latching . 298
7.3.4 Edge evaluation with pulse output in the ladder logic 299

Table of contents

13

7.3.5 Multiple setting and resetting (filling the bit array) in the ladder logic 299
7.3.6 Coils with time response . 300
7.3.7 Coils with counter response . 302

7.4 Programming Q boxes with LAD . 303
7.4.1 Memory boxes in the ladder logic . 304
7.4.2 Edge evaluation of current flow . 304
7.4.3 SIMATIC timer functions in the ladder logic . 305
7.4.4 SIMATIC counter functions in the ladder logic . 306
7.4.5 IEC timer functions in the ladder logic . 307
7.4.6 IEC counter functions in the ladder logic . 307

7.5 Programming EN/ENO boxes with LAD . 308
7.5.1 Edge evaluation with an EN/ENO box . 310
7.5.2 Transfer functions in the ladder logic . 310
7.5.3 Arithmetic functions in the ladder logic . 311
7.5.4 Math functions in the ladder logic . 312
7.5.5 Conversion functions in the ladder logic . 313
7.5.6 Shift functions in the ladder logic . 314
7.5.7 Logic functions in the ladder logic . 314
7.5.8 Functions for strings in the ladder logic . 315

7.6 Program control with LAD . 316
7.6.1 Jump functions in the ladder logic . 316
7.6.2 Block call functions in the ladder logic . 319
7.6.3 Block end function in the ladder logic . 320
7.6.4 EN/ENO mechanism in the ladder logic . 320

8 Function block diagram FBD . 323

8.1 Introduction . 323
8.1.1 Programming with FBD in general . 323
8.1.2 Program elements of the function block diagram 325

8.2 Programming binary logic operations with FBD . 325
8.2.1 Scanning for signal states “1” and “0” . 325
8.2.2 Programming a binary logic operation in the function block diagram 326
8.2.3 AND function in the function block diagram . 328
8.2.4 OR function in the function block diagram . 329
8.2.5 Exclusive OR function in the function block diagram 329
8.2.6 Combined binary logic operations, negating result of logic operation 329
8.2.7 T branch in the function block diagram . 330
8.2.8 Edge evaluation of binary tags in the function block diagram 331
8.2.9 Validity checking of floating-point numbers in the function

block diagram . 331
8.2.10 Comparison functions in the function block diagram 332

8.3 Programming standard boxes with FBD . 333
8.3.1 Assignment and negating assignment . 334
8.3.2 Set and reset boxes . 335
8.3.3 Edge evaluation with pulse output in the function block diagram 335
8.3.4 Multiple setting and resetting (filling the bit array) in the function

block diagram . 336
8.3.5 Standard boxes with time response . 337
8.3.6 Standard boxes with counter response . 338

Table of contents

14

8.4 Programming Q boxes with FBD . 339
8.4.1 Memory boxes in the function block diagram . 340
8.4.2 Edge evaluation of the result of logic operation in the function

block diagram . 340
8.4.3 SIMATIC timer functions in the function block diagram 341
8.4.4 SIMATIC counter functions in the function block diagram 342
8.4.5 IEC timer functions in the function block diagram 343
8.4.6 IEC counter functions in the function block diagram 343

8.5 Programming EN/ENO boxes with FBD . 344
8.5.1 Edge evaluation with an EN/ENO box . 346
8.5.2 Transfer functions in the function block diagram 346
8.5.3 Arithmetic functions in the function block diagram 347
8.5.4 Math functions in the function block diagram . 348
8.5.5 Conversion functions in the function block diagram 349
8.5.6 Shift functions in the function block diagram . 349
8.5.7 Logic functions in the function block diagram . 350
8.5.8 Functions for character strings in the function block diagram 351

8.6 Program control with FBD . 352
8.6.1 Jump functions in the function block diagram . 353
8.6.2 Block call functions in the function block diagram 354
8.6.3 Block end function in the function block diagram 355
8.6.4 EN/ENO mechanism in the function block diagram 356

9 Structured Control Language SCL . 359

9.1 Introduction . 359
9.1.1 Programming with SCL in general . 359
9.1.2 SCL statements and operators . 361

9.2 Programming binary logic operations with SCL . 361
9.2.1 Scanning for signal states “1” and “0” . 361
9.2.2 AND function in SCL . 364
9.2.3 OR function in SCL . 365
9.2.4 Exclusive OR function in SCL . 365
9.2.5 Combined binary logic operations in SCL . 365
9.2.6 Negate result of logic operation in SCL . 366

9.3 Programming memory functions with SCL . 367
9.3.1 Value assignment of a binary tag . 367
9.3.2 Setting and resetting in SCL . 367
9.3.3 Edge evaluation in SCL . 367

9.4 Programming timer and counter functions with SCL 368
9.4.1 SIMATIC timer functions in SCL . 368
9.4.2 SIMATIC counter functions in SCL . 369
9.4.3 IEC timer functions in SCL . 370
9.4.4 IEC counter functions in SCL . 371

9.5 Programming digital functions with SCL . 372
9.5.1 Transfer function, value assignment of a digital tag 372
9.5.2 Comparison functions in SCL . 372
9.5.3 Arithmetic functions in SCL . 373
9.5.4 Math functions in SCL . 375
9.5.5 Conversion functions in SCL . 375

Table of contents

15

9.5.6 Shift functions in SCL . 378
9.5.7 Word logic operations, logic expression in SCL . 378
9.5.8 Functions for strings in SCL . 379

9.6 Program control with SCL . 380
9.6.1 Working with the ENO tag . 380
9.6.2 EN/ENO mechanism with SCL . 381
9.6.3 Control statements . 383
9.6.4 Block functions . 392

10 Statement list STL . 395

10.1 Introduction . 395
10.1.1 Programming with STL in general . 395
10.1.2 Structure of an STL statement . 397
10.1.3 Entering an STL statement . 398
10.1.4 Addressing of 64-bit tags . 399
10.1.5 STL networks in LAD and FBD blocks . 400

10.2 Programming binary logic operations with STL . 400
10.2.1 Processing of a binary logic operation, operation step 401
10.2.2 Scanning for signal states “1” and “0” . 402
10.2.3 AND function in the statement list . 403
10.2.4 OR function in the statement list . 403
10.2.5 Exclusive OR function in the statement list . 403
10.2.6 Combined binary logic operations in the statement list 404
10.2.7 Control of result of logic operation . 407

10.3 Programming memory functions with STL . 408
10.3.1 Assignment in the statement list . 408
10.3.2 Setting and resetting in the statement list . 409
10.3.3 Edge evaluation in the statement list . 409

10.4 Programming timer and counter functions with STL 410
10.4.1 SIMATIC timer functions in the statement list 410
10.4.2 SIMATIC counter functions in the statement list 411
10.4.3 IEC timer functions in the statement list . 413
10.4.4 IEC counter functions in the statement list . 414

10.5 Programming digital functions with STL . 415
10.5.1 Transfer functions in the statement list . 415
10.5.2 Comparison functions in the statement list . 418
10.5.3 Arithmetic functions in the statement list . 422
10.5.4 Math functions in the statement list . 426
10.5.5 Conversion functions in the statement list . 428
10.5.6 Shift functions in the statement list . 430
10.5.7 Word logic operations in the statement list . 432
10.5.8 Functions for strings in the statement list . 435

10.6 Program control with STL . 436
10.6.1 Jump functions in the statement list . 436
10.6.2 Block call function in the statement list . 438
10.6.3 Block end functions in the statement list . 440

10.7 Further STL functions . 441
10.7.1 Working with status bits . 442
10.7.2 EN/ENO mechanism in the statement list . 447

Table of contents

16

10.7.3 Accumulator functions . 448
10.7.4 Working with the data block registers . 451
10.7.5 Partial addressing of data operands . 453
10.7.6 Absolute addressing of temporary local data . 454
10.7.7 Working with the address registers . 454
10.7.8 Memory-indirect addressing . 458
10.7.9 Register-indirect addressing . 461
10.7.10 Direct access to complex local tags . 463
10.7.11 Data storage of the block parameters of a function (FC) 465
10.7.12 Data storage of the block parameters of a function block (FB) 467
10.7.13 Data storage of a local instance in a multi-instance 468
10.7.14 Null instructions . 471

11 S7-GRAPH sequential control . 472

11.1 Introduction . 472
11.1.1 What is a sequential control? . 472
11.1.2 Properties of a sequential control . 473
11.1.3 Program for a sequential control, quantity framework 474
11.1.4 Operating modes . 474
11.1.5 Procedure for configuration . 475

11.2 Elements of a sequential control . 475
11.2.1 Steps and transitions . 475
11.2.2 Jumps in a sequential control . 477
11.2.3 Branching of a sequencer . 477
11.2.4 GRAPH-specific tags . 478
11.2.5 Permanent instructions . 479
11.2.6 Step and transition functions . 480
11.2.7 Processing of actions . 483

11.3 Configuring a sequential control . 489
11.3.1 Programming the GRAPH function block . 489
11.3.2 Configuring the sequencer structure . 490
11.3.3 Programming steps and transitions . 492
11.3.4 Programming permanent instructions . 493
11.3.5 Configuring block-independent alarms . 494
11.3.6 Attributes of the GRAPH function block . 494
11.3.7 Using the GRAPH function block . 495

11.4 Testing the sequential control . 497
11.4.1 Loading the GRAPH function block . 498
11.4.2 Settings for program testing . 498
11.4.3 Using operating modes . 499
11.4.4 Synchronization a sequencer . 500
11.4.5 Testing with program status . 501

12 Basic functions . 503

12.1 Binary logic operations . 503
12.1.1 Introduction . 503
12.1.2 Working with binary signals . 504
12.1.3 AND function, series connection . 507
12.1.4 OR function, parallel connection . 507

Table of contents

17

12.1.5 Exclusive OR function, non-equivalence function 508
12.1.6 Negate result of logic operation, NOT contact . 508

12.2 Memory functions . 510
12.2.1 Introduction . 510
12.2.2 Simple and negating coil, assignment . 511
12.2.3 Single setting and resetting . 511
12.2.4 Multiple setting and resetting . 513
12.2.5 Dominant setting and resetting, memory function 514

12.3 Edge evaluation . 515
12.3.1 Principle of operation of an edge evaluation . 515
12.3.2 Edge evaluation of a binary tag (LAD, FBD) . 517
12.3.3 Edge evaluation with pulse output (LAD, FBD) 518
12.3.4 Edge evaluation with a Q box (LAD, FBD) . 519
12.3.5 Edge evaluation with an EN/ENO box (LAD, FBD) 520
12.3.6 Edge evaluation with SCL . 521
12.3.7 Edge evaluation with STL . 523

12.4 SIMATIC timer functions . 524
12.4.1 Overview . 524
12.4.2 Programming a timer function . 527
12.4.3 Timer response as pulse . 529
12.4.4 Timer response as extended pulse . 531
12.4.5 Timer response as ON delay . 533
12.4.6 Timer response as retentive ON delay . 535
12.4.7 Timer response as OFF delay . 537

12.5 IEC timer functions . 539
12.5.1 Introduction . 539
12.5.2 Pulse generation TP . 540
12.5.3 ON delay TON . 541
12.5.4 OFF delay TOF . 542
12.5.5 Accumulating ON delay TONR . 543
12.5.6 Loading an IEC timer function with a duration 544
12.5.7 Resetting an IEC timer function . 545

12.6 SIMATIC counter functions . 545
12.6.1 Overview . 545
12.6.2 Programming a counter function . 549
12.6.3 Principle of operation of a counter function . 550
12.6.4 Enabling a counter function with STL . 551

12.7 IEC counter functions . 553
12.7.1 Introduction . 553
12.7.2 Up counter CTU . 554
12.7.3 Down counter CTD . 555
12.7.4 Up/down counter CTUD . 556

13 Digital functions . 558

13.1 General information . 558
13.2 Transfer functions . 559

13.2.1 General information on the “simple” transfer function 559
13.2.2 Copy tag, MOVE box for LAD and FBD . 559
13.2.3 Copy string, S_MOVE box for LAD and FBD . 560

Table of contents

18

13.2.4 Value assignments with SCL . 561
13.2.5 Loading and transferring with STL . 562
13.2.6 Copy data area (MOVE_BLK_VARIANT) . 564
13.2.7 Copy data area (MOVE_BLK, UMOVE_BLK) . 566
13.2.8 Fill data area (FILL, FILL_BLK, UFILL_BLK) . 567
13.2.9 Copy and fill data area (BLKMOV, UBLKMOV, FILL) 567
13.2.10 Swap bytes (SWAP) . 570

13.3 Comparison functions . 570
13.3.1 Execution of “simple” comparison function . 570
13.3.2 Comparison function T_COMP . 572
13.3.3 Comparison function S_COMP . 572
13.3.4 Range comparison . 573

13.4 Arithmetic functions . 574
13.4.1 Arithmetic functions for numerical values . 574
13.4.2 Arithmetic functions for date and time . 576
13.4.3 Decrementing and incrementing . 576

13.5 Math functions . 578
13.5.1 General function description . 578
13.5.2 Trigonometric functions SIN, COS, TAN . 579
13.5.3 Arc functions ASIN, ACOS, ATAN . 580
13.5.4 Generate square and extract square root . 580
13.5.5 Logarithm and power . 581
13.5.6 Extract decimal points, generate absolute value and negation 582
13.5.7 Calculating with the CALCULATE box in LAD and FBD 583

13.6 Conversion functions . 586
13.6.1 Data type conversion with the conversion function CONVERT 586
13.6.2 Data type conversion with ROUND, CEIL, FLOOR, and TRUNC 591
13.6.3 Data type conversion with T_CONV . 592
13.6.4 Data type conversion with S_CONV . 594
13.6.5 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG 594
13.6.6 Conversion functions STRG_VAL and VAL_STRG 596
13.6.7 Data type conversion of hexadecimal numbers 597
13.6.8 Scaling and normalizing . 599

13.7 Shift functions . 603
13.7.1 General function description . 603
13.7.2 Shift to right . 603
13.7.3 Shift to left . 605
13.7.4 Rotate to right . 605
13.7.5 Rotate to left . 606

13.8 Logic functions . 607
13.8.1 Word logic operations . 607
13.8.2 Invert, generate one's complement . 609
13.8.3 Coding functions DECO and ENCO . 610
13.8.4 Selection functions SEL, MUX, and DEMUX . 611
13.8.5 Minimum selection MIN, maximum selection MAX 612
13.8.6 Limiter LIMIT . 612

13.9 Processing of strings (data type STRING) . 615
13.9.1 Output current length of a string LEN . 615
13.9.2 Output maximum length of a string MAX_LEN 615

Table of contents

19

13.9.3 Combine strings CONCAT . 616
13.9.4 Output left part of string LEFT . 617
13.9.5 Output right part of string RIGHT . 617
13.9.6 Output middle part of string MID . 617
13.9.7 Delete part of a string DELETE . 618
13.9.8 Insert string INSERT . 618
13.9.9 Replace part of string REPLACE . 620
13.9.10 Find part of string FIND . 620

14 Program control . 622

14.1 Jump functions . 623
14.1.1 Introduction . 623
14.1.2 Absolute jump . 623
14.1.3 Conditional jump functions . 625
14.1.4 Jump list . 627
14.1.5 Jump distributor . 628
14.1.6 Loop jump . 630

14.2 Calling of code blocks . 631
14.2.1 General information on block calls . 631
14.2.2 Calling a function FC . 632
14.2.3 Calling a function block FB . 634

14.3 Block end functions . 636
14.3.1 Block end function RET (LAD and FBD) . 636
14.3.2 RETURN statement (SCL) . 636
14.3.3 Block end functions BEC, BEU, and BE (STL) . 637

14.4 Data block functions . 638
14.4.1 Read data block attributes . 638
14.4.2 Reading and writing the load memory . 639
14.4.3 ARRAY data blocks . 641
14.4.4 System blocks for access to ARRAY data blocks 642
14.4.5 CPU data blocks . 644

15 Online mode and program test . 647

15.1 Connection of a programming device to the PLC station 648
15.1.1 IP addresses of the programming device . 648
15.1.2 Connecting the programming device to the PLC station 649
15.1.3 Assigning an IP address to the CPU . 651
15.1.4 Switching on online mode . 651
15.1.5 Resetting the CPU memory . 652
15.1.6 Reset to the factory settings . 652

15.2 Transferring project data . 653
15.2.1 Loading project data for the first time . 654
15.2.2 Reloading the project data . 656
15.2.3 Protecting the user program . 657
15.2.4 Working with online project data . 660
15.2.5 Working with the memory card . 661

15.3 Working with blocks in online mode . 662
15.3.1 Introduction . 662
15.3.2 Changing and loading a block . 663

Table of contents

20

15.3.3 Download without reinitialization . 665
15.3.4 Uploading a block from the CPU . 667
15.3.5 Working with setpoints . 668
15.3.6 Comparing blocks . 669

15.4 Hardware diagnostics . 672
15.4.1 Status displays on the modules . 672
15.4.2 Diagnostic information . 673
15.4.3 Diagnostics buffer . 674
15.4.4 Diagnostic functions . 675
15.4.5 Online tools . 676
15.4.6 Further diagnostic information via the programming device 676

15.5 Testing the user program . 677
15.5.1 Defining the call environment . 678
15.5.2 Testing with program status . 679
15.5.3 Monitoring of PLC tags . 682
15.5.4 Monitoring of data tags . 683
15.5.5 Testing with watch tables . 684
15.5.6 Testing with the force table . 689

15.6 Measured value recording with the trace function 691
15.6.1 Introduction . 691
15.6.2 Creating the trace configuration . 691
15.6.3 Loading a trace and recording . 692
15.6.4 Saving and evaluating recorded traces . 693

16 Distributed I/O . 696

16.1 Introduction, overview . 696
16.2 ET 200 distributed I/O system . 697

16.2.1 ET 200MP . 697
16.2.2 ET 200M . 698
16.2.3 ET 200SP . 698
16.2.4 ET 200S . 699
16.2.5 ET 200pro . 700
16.2.6 ET 200eco and ET200eco PN . 700

16.3 PROFINET IO . 701
16.3.1 PROFINET IO components . 701
16.3.2 Addresses with PROFINET IO . 704
16.3.3 Configuring PROFINET IO . 705
16.3.4 Coupling modules for PROFINET IO . 708
16.3.5 Real-time communication in PROFINET . 710
16.3.6 Special PROFINET configurations . 715

16.4 PROFIBUS DP . 716
16.4.1 PROFIBUS DP components . 716
16.4.2 Addresses with PROFIBUS DP . 720
16.4.3 Configuring PROFIBUS DP . 721
16.4.4 Coupling modules for PROFIBUS DP . 724
16.4.5 Special PROFIBUS configurations . 728

16.5 System blocks for distributed I/O . 730
16.5.1 Read and write user data . 730
16.5.2 Read diagnostic data from a DP standard slave 733

Table of contents

21

16.5.3 Receive and provide a data record . 734
16.5.4 Activate/deactivate distributed station . 736

16.6 DPV1 interrupts . 737
16.7 Isochronous mode . 738

16.7.1 Introduction . 738
16.7.2 Isochronous mode with PROFINET IO . 739
16.7.3 Isochronous mode with PROFIBUS . 742
16.7.4 Isochronous mode interrupt . 745
16.7.5 Isochronous process image updating . 746

17 Communication . 748

17.1 Overview . 748
17.2 Open user communication . 751

17.2.1 Basics . 751
17.2.2 Data structure of open user communication . 752
17.2.3 Establish connection and send data with TSEND_C 753
17.2.4 Establish connection and receive data with TRCV_C 754
17.2.5 Configuring open user communication . 755
17.2.6 Further functions of open user communication 758

17.3 S7 communication . 761
17.3.1 Basics . 761
17.3.2 One-way data exchange . 761
17.3.3 Two-way data exchange . 763
17.3.4 Configuring S7 communication . 766

17.4 Point-to-point communication . 767
17.4.1 Introduction to point-to-point communication 767
17.4.2 Configuring the CM PtP communication module 768
17.4.3 Point-to-point communication functions . 769

17.5 Further communication functions . 773
17.5.1 USS protocol for drives . 773
17.5.2 Modbus RTU . 775
17.5.3 Modbus TCP . 777

18 Appendix . 780

18.1 Working with source files . 780
18.1.1 General procedure . 780
18.1.2 Programming a code block in the source file . 782
18.1.3 Programming a data block in the source file . 788
18.1.4 Programming a PLC data type in the source file 791

18.2 Migrating and upgrading projects . 792
18.2.1 Migrating a project . 792
18.2.2 Upgrading a project . 796

18.3 Web server . 796
18.3.1 Enable Web server . 796
18.3.2 Reading out Web information . 797
18.3.3 Standard Web pages . 797
18.3.4 Read out service data . 800
18.3.5 Initialize Web server and synchronize Web pages (WWW) 801

Table of contents

22

18.4 Technology functions . 801
18.4.1 Technology modules TM Count 2×24V and TM PosInput 2 801
18.4.2 Technology objects for counting and measuring 804
18.4.3 Technology objects for motion control . 807
18.4.4 Technology objects for PID control . 810

18.5 Data logging and transferring recipes . 813
18.5.1 Introduction to data logging . 813
18.5.2 Using data logging . 814
18.5.3 Functions for data logging . 814
18.5.4 Introduction to recipe transfer . 816
18.5.5 Functions for the recipe transfer . 818

18.6 Simulation with PLCSIM . 819
18.6.1 Differences from a real CPU . 819
18.6.2 Installing PLCSIM . 819
18.6.3 Starting and saving the simulation . 820
18.6.4 Testing with the SIM table . 822
18.6.5 Testing with the sequence table . 823
18.6.6 Applying the test functions of STEP 7 . 825

Index . 827

1.1 Overview of the S7-1500 automation system

23

1 Introduction

1.1 Overview of the S7-1500 automation system

SIMATIC S7-1500 is the modular automation system for the medium and upper per-
formance ranges. Different versions of the controllers allow the performance to be
matched to the respective application. Depending on the requirements, the pro-
grammable controller can be expanded by input/output modules for digital and
analog signals and technology and communication modules. The SIMATIC S7-1500
automation system is seamlessly integrated in the SIMATIC system architecture
(Fig. 1.1).

Fig. 1.1 Components of the SIMATIC S7-1500 automation system

SIMATIC controllers control the machine
Several versions of the

controllers expand the range of use.
or plant.

The distributed I/O expands
the interface to the machine
or plant.

SIMATIC NET

SIMATIC HMI

SIMATIC ET200 STEP 7 Professional
(TIA Portal)

SIMATIC S7-1500

Networking allows data exchange
between devices and online access
at any location.

STEP 7 is the engineering software
for configuring and programming.

S

SIMATIC S7-1500 automation system

S

ESC OK

Operator control and
for controlling

during operation
monitoring
the plant

S

1 Introduction

24

The SIMATIC ET200 distributed I/O allows for additional expansion using input/output
modules which are connected to the central controller via PROFIBUS DP or
PROFINET IO. The distributed stations can be installed in a control cabinet or – if pro-
vided with special designs for increased mechanical requirements – directly on the
machine or system.

SIMATIC HMI (HMI = Human Machine Interface) is used to control and monitor a
machine or plant and its function. Depending on their version, the devices can pro-
vide control functions via process images, display system status and alarm mes-
sages, and manage the automation data in the form of recipes or measured value
archives.

SIMATIC NET handles the exchange of data via various bus systems between the
SIMATIC controllers, the distributed I/O, the HMI devices, and the programming
device. The programming device can be a personal computer, an industrial PC, or a
notebook with a Microsoft Windows operating system.

The SIMATIC components are configured, parameterized, and programmed using
the STEP 7 Engineering Software. The TIA Portal (TIA = Totally Integrated Automa-
tion) is the central tool for managing automation data and the associated editors in
the form of a hierarchically structured project.

1.1.1 SIMATIC S7-1500 programmable controller

The most important components of an S7-1500 programmable controller are
shown in Fig. 1.2.

Fig. 1.2 Components of an S7-1500 controller

Central controller

Signal modules
(SM)

Can be plugged onto the rack:

The rack has 32 slots. An optional power
supply occupies slot 0 and the CPU
occupies slot 1. To the right of the CPU,
there is room for up to 30 modules
(including power supply modules).

Technology modules
(TM)

Communication modules
(CM)

CPU
(central processing unit)

Power supply module
(PS)

Rack

Components of an S7-1500 controller

S

ESC OK

1.1 Overview of the S7-1500 automation system

25

The CPU contains the operating system and the user program. The user program
is saved powerfail-proof on the SIMATIC Memory Card, which is inserted in the
CPU. The user program is executed in the CPU's work memory. The bus interfaces
present on the CPU establish the connection to other programmable controllers.

Signal modules (SM) are responsible for the connection to the controlled machine
or plant. These input and output modules are available for digital and analog sig-
nals with different voltages and currents.

Technology modules (TM) are signal-preprocessing, “intelligent” I/O modules
which prepare and process signals coming from the process independent of the
CPU and either return them directly to the process or make them available at the
CPU's internal interface. Technology modules are responsible for handling func-
tions which the CPU cannot usually execute quickly enough such as counting
pulses.

Communication modules (CM) allow data traffic in excess of the functionality
provided by the standard interfaces on the CPU with regard to protocols and com-
munication functions.

The (system) power supply modules provide the internal voltages required by the
programmable controller. Up to three system power supply modules can be used in
the programmable controller as needed. Load voltages or load currents are pro-
vided via external load current supplies (power modules, PM), which can also pro-
vide 24 V primary voltage for system power supply modules.

1.1.2 Overview of STEP 7 Professional V12

STEP 7 is the central automation tool for SIMATIC. STEP 7 requires authorization
(licensing) and is executed on the current Microsoft Windows operating systems.
Configuration of an S7-1500 controller is carried out in two views: the Portal view
and the Project view.

The Portal view is task-oriented. In the Start portal you can open an existing proj-
ect, create a new project, or migrate a project. A “project” is a data structure con-
taining all the programs and data required for your automation task. The most
important STEP 7 tools and functions can be accessed from here via further portals:
The Devices & networks portal for hardware configuration, the PLC programming
portal for processing the user program, the Motion & technology portal for generat-
ing technology objects, the Visualization portal for configuring HMI systems, and
the Online & Diagnostics portal for the online mode of the programming device (Fig.
1.3).

The Project view is an object-oriented view with several windows whose contents
change depending on the current activity (Fig. 1.4). In the Device configuration, the
focal point is the working area with the device to be configured. The Device view
includes the rack and the modules which have already been positioned. A further
window – the inspector window – displays the properties of the selected module,
and the task card provides support by means of the hardware catalog with the avail-
able modules. The Network view allows networking between PLC and HMI stations.

1 Introduction

26

Fig. 1.3 Tools in the Start portal of STEP 7 Professional V12

Fig. 1.4 Example of a Project view: Working area of the device configuration

1.1 Overview of the S7-1500 automation system

27

When carrying out PLC programming, you edit the selected block in the working
area. You are again shown the properties of the selected object in the inspector win-
dow, where you can adjust them. In this case, the task card contains the program
elements catalog with the available program elements and statements. The same
applies to the processing of PLC tags or to online program testing using watch
tables.

And you always have a view of the project tree. This contains all objects of the STEP 7
project. You can therefore select an object at any time, for example a program block
or watch table, and edit this object using the corresponding editors which start
automatically when the object is opened.

1.1.3 Various programming languages

You can select between five programming languages for the user program: ladder
logic (LAD), function block diagram (FBD), structured control language (SCL),
statement list (STL), and sequential control (GRAPH).

Using the ladder logic, you program the control task based on the circuit diagram.
Operations on binary signal states are represented by serial or parallel arrange-
ment of contacts and coils (Fig. 1.5). Complex functions such as arithmetic func-
tions are represented by boxes which you arrange like contacts or coils in the ladder
logic.

Using the function block diagram, you program the control task based on electronic
circuitry systems. Binary operations are implemented by linking AND and OR func-
tions and are terminated by memory boxes (Fig. 1.6). Complex boxes are used to han-
dle the operations on digital tags, for example with arithmetic functions.

Structured control language is particularly suitable for programming complex
algorithms or for tasks in the area of data management. The program is made up of
SCL statements which, for example, can be value assignments, comparisons, or
control statements (Fig. 1.7).

Using the statement list, you program the control task using a sequence of state-
ments. Every STL statement contains the specification of what has to be done, and

Fig. 1.5 Example of representation in ladder logic

1 Introduction

28

possibly an operand with which the operation is executed. STL is equally suitable
for binary and digital operations and for programming complex open-loop control
tasks (Fig. 1.8).

Fig. 1.6 Example of representation in function block diagram

Fig. 1.7 Example of SCL statements

Fig. 1.8 Example of STL statements

1.1 Overview of the S7-1500 automation system

29

Using GRAPH, you program a control task as a sequential control in which a
sequence of actions prevails. The individual steps and branches are enabled by step
enabling conditions which can be programmed using LAD or FBD (Fig. 1.9).

1.1.4 Execution of the user program

After the power supply has been switched on, the control processor checks the exist-
ing hardware and parameterizes the modules. A startup program is then executed
once, if present. The startup program belongs to the user program which you pro-
duce. Modules can be initialized, for example, by the startup program.

The user program is usually divided into individual sections called “blocks”. Orga-
nization blocks (OB) represent the interface between operating system and user
program. The operating system calls an organization block for specific events and
the user program is then processed in it (Fig. 1.10).

Function blocks (FB) and functions (FC) are available for structuring the program.
Function blocks have a memory in which local tags are saved permanently. Func-
tions do not have this memory.

Program statements are available for calling function blocks and functions (start of
execution). Each block call can be assigned inputs and outputs, referred to as “block
parameters”. During calling, tags can be transferred with which the program in the
block is to work. In this manner, a block can be repeatedly called with a certain func-
tion (e.g. selection of tag values), but with different parameters sets (e.g. for differ-
ent calculations) (Fig. 1.11).

The data of the user program is saved in data blocks (DB). Instance data blocks have
a fixed assignment to a call of a function block and are the tag memory of the func-
tion block. Global data blocks contain data which is not assigned to any block.

Fig. 1.9 Example of a GRAPH sequencer and step configuration

1 Introduction

30

Following a startup, the control processor updates the input and output signals in
the process images and calls the organization block OB 1. The main program is
present here. Once the main program has been processed, the control processor
returns to the operating system, retains (for example) communication with the
programming device, updates the input and output signals, and then recom-
mences with execution of the main program.

Cyclic program execution is a feature of programmable logic controllers. The user
program is even executed if no actions are requested “from outside”, e.g. if the con-
trolled machine is not running. This provides advantages when programming: For
example, you program the ladder logic as if you were drawing a circuit diagram, or
program the function block diagram as if you were connecting electronic compo-
nents. Roughly speaking, a programmable controller has a characteristic like, for
example, a contactor or relay control: the many programmed operations are effec-
tive quasi simultaneously “in parallel”.

In addition to the cyclically executed main program, it is possible to carry out inter-
rupt-controlled program execution. You must enable the corresponding interrupt
event for this. This can be a hardware interrupt, such as a request from the con-
trolled machine for a fast response, or a cyclic interrupt, in other words an event
which takes place at defined intervals.

The control processor interrupts execution of the main program when an event
occurs, and calls the assigned interrupt program. Once the interrupt program has
been executed, the control processor continues execution of the main program
from the point of interruption.

Fig. 1.10 Execution of the user program

Startup
program

Alarm and
error program

Main
program

Execution of the user program

Switching on

Updating of
inputs and outputs

Interruption
(alarm or error)

Operating state
STARTUP

Operating system User program

Operating state
RUN

OB

OB

FB
FC

FB
FC

FB
FC

FB
FC

FB
FC

FB
FC

OB

Interruption

1.1 Overview of the S7-1500 automation system

31

1.1.5 Data management in the SIMATIC automation system

The automation data is present in various memory locations in the automation sys-
tem. First of all, there is the programming device. All automation data of a STEP 7
project is saved on its hard disk. Configuration and programming of the project
data with STEP 7 are carried out in the main memory of the programming device
(Fig. 1.12).

The automation data on the hard disk is also referred to as offline project data. Once
STEP 7 has appropriately compiled the automation data, this can be downloaded to
a connected programmable controller. The data downloaded into the user memory
of the CPU is known as the online project data.

Fig. 1.11 Multiple use of a block with different tags in each case

“Selection” block with the one-time written program

Two-time call of “Selection” with different parameter sets in each case

1 Introduction

32

The user memory on the CPU is divided into two components: The load memory on
the SIMATIC Memory Card – an SD memory card – contains the complete user pro-
gram with the configured initial data, including the configuration data. The work
memory contains the executable user program with the current control data.

The project data can be transferred between the programming device and CPU
using the SIMATIC Memory Card. The normal case is an online connection for trans-
fer, testing, and diagnostics.

1.2 Introduction to STEP 7 Professional V12

1.2.1 Installing STEP 7

STEP 7 Professional V12 is executed on
the operating systems Windows XP Pro-
fessional SP3, Windows 7 (Professional,
Enterprise, Ultimate) SP1 (32-bit and 64-
bit), Windows 2003 Server R2 Standard
Edition SP2, and Windows 2008 Server
Standard Edition SP2. You require
administration rights in order to install
STEP 7, and to work with STEP 7 you must
at least be logged-on as a main user.

Fig. 1.12 Data management in the SIMATIC S7-1500 automation system

Work memoryRetentive memory

Main memory

Hard disk

Load memory

SIMATIC Memory Card

The load memory contains the
project data transferred to the
CPU. Together with the current

values of the tags from the
work memory, they form the

online project data.

The retentive memory
contains the tags
whose values are

retained even when
deenergized.

The offline project data
is saved on the hard

disk.

All project data is
processed in the

programming device's
main memory.

Programming device CPU 1500

Transfer with online
connection or SIMATIC

Memory Card

Transfer
when switching on

Saving the
project data

Data management in the SIMATIC S7-1500 automation system

The work memory
contains the executable part

of the user program (code and
data), which is executed

during runtime.

1.2 Introduction to STEP 7 Professional V12

33

In order to be able to work with STEP 7, you need a programming device with at
least one Core i5, 2.4 GHz processor or a comparable processor. The main memory
should have a minimum size of 3 GB for a 32-bit operating system and 8 GB for a
64-bit operating system. On the hard disk, STEP 7 Professional requires approxi-
mately 2 GB of free space in the system drive.

For the online connection to the programmable controller, an interface module is
required on the programming device for the connection to Industrial Ethernet.
If you want to work on the programming device using an SD memory card, you
need a corresponding card reader.

Installation, repair, and uninstalling are carried out using the setup program
start.exe on the DVD. You can also uninstall STEP 7 Professional normally in
Windows using the Software application (Windows XP) or the Programs and
functions application (Windows 7) in the Windows Control Panel.

1.2.2 Automation License Manager

You require a license (user authorization) in order to use STEP 7. Licenses are man-
aged by the Automation License Manager, which is installed together with STEP 7
Professional. The license for STEP 7 Professional (license key) is provided on a
USB flash drive. You will be requested to provide authorization during installation
if a license key is not yet present on the hard disk. You can also carry out the autho-
rization following installation of STEP 7.

The license key is stored on the hard disk in specially identified blocks. To avoid
unintentional destruction of the license key, you should observe the information
for handling license keys in the help text of the Automation License Manager. If you
lose the license key, e.g. due to a defective hard disk, you can revert to the trial
license delivered with STEP 7, which is valid for a limited duration.

The Automation License Manager also manages license keys of other SIMATIC prod-
ucts such as STEP 7 V5.5 or WinCC.

1.2.3 Starting STEP 7 Professional

You start STEP 7 Professional either using the Start button of
Windows and Programs > Siemens Automation > TIA Portal V12, or by
double-clicking on the icon on the Windows desktop. The Totally
Integrated Automation Portal (TIA Portal) is the software framework
in which STEP 7 is embedded. TIA Portal may also contain other applications that
use the same database, such as WinCC Professional V12.

1.2.4 Portal view

Following initial starting-up, STEP 7 Professional displays the Start portal. A portal
provides all functions and tools required for the respective range of tasks in the
Portal view. The scope of the portals as well as the range of functions and tools
depends on the installed applications. The Start portal of STEP 7 Professional V12
permits selection of the following portals (Fig. 1.13):

1 Introduction

34

b In the Devices & networks portal, you can configure the hardware of the program-
mable controller, i.e. you select the hardware components, position them, and
set their properties. If several devices are networked, you can define the connec-
tions here.

b The PLC programming portal contains all the tools required for generating the
user program for a PLC station.

b In the Motion & technology portal, you create technology objects, such as a PID
temperature regulator or a high-speed counter.

b In the Visualization portal, you generate the operator control and monitoring
interface for HMI stations. Here you can configure, for example, the process
images, the control elements, and alarms.

b Using the Online & Diagnostics portal, you can connect the programming device
to a programmable controller, transfer and test programs, and search for (and
detect) faults in the automation system.

Additional functions included in the Start portal are: Create new project,
Open existing project, and Migrate project. The Welcome Tour and First steps provide
an introduction to STEP 7. Installed software provides an overview of further
SIMATIC applications that are currently available on the programming device.
You can call Help in every portal. The User interface language allows you to set the
language for working with STEP 7.

Fig. 1.13 Portal view: First steps after opening a project

1.2 Introduction to STEP 7 Professional V12

35

1.2.5 The windows of the Project view

The Project view shows all elements of a project in structured form in various pro-
cessing windows. You can move from the Portal view to the Project view using the
Project view link at the bottom left of the screen, or STEP 7 automatically switches
to the Project view depending on the selected tool.

Fig. 1.14 shows the windows of the Project view in an example of block program-
ming. Different window contents are displayed depending on the currently used
editor.

a Main menu and toolbar, shortcut menu

Underneath the title bar is the main menu with all menu commands. The menu
commands available for selection depend on the currently marked object; menu
commands which cannot be selected are displayed in gray. The same functionality
is available – somewhat user-friendlier – with the shortcut menu: If you click on an
object with the right mouse button, a window is opened with the currently select-
able menu commands. Underneath the main menu is the toolbar with the graphi-
cally represented “main functions”. The main menu and the toolbar are always
present in all editors.

Using Options > Settings in the main menu, you can adapt the user interface.
For example, under General you can define the user interface language in which

Fig. 1.14 Components of Project view using example of block programming

1 Introduction

36

STEP 7 is used, and the mnemonics (the representation of the operands: “I” for
international input, or “E” in German).

s Working window

In the center of the screen is the working window. The contents of the working win-
dow depend on the editor currently being used. In the case of device configuration,
the working window is divided in two: the objects (stations and modules) are dis-
played in graphic form in the top part, and in tabular form in the bottom part. When
programming the PLC, the top part of the working window contains the interface
description of the block and the bottom part contains the program. You use the
working window to configure the hardware of the automation system, generate the
user program, or configure the process images for an HMI device.

d Inspector window

The inspector window underneath the working window shows the properties of the
object marked in the latter, records the sequence of actions, and provides an over-
view of the diagnostics status of the connected devices.

During configuration or programming you set the object properties in the inspec-
tor window, for example the addresses and symbol names of inputs and outputs,
the properties of the PROFINET interface, tag data types, or block attributes.

f Project tree

The project tree window is displayed with the same content for all editors. Its hier-
archical structure contains all project data and the required editors. With the proj-
ect open, it shows the folders for the PLC, HMI and PC stations included in the proj-
ect, and further subfolders within these folders, e.g. for program blocks, PLC tags,
and watch tables with a PLC station or, for example, the process images and the HMI
tags in the case of an HMI station.

A double-click on an object with project data automatically starts the associated
editor. The project tree also includes editors such as Add new device, Device
configuration, or Online & diagnostics, which you can start directly by means of a
double-click.

The lower section of the project tree contains a details view of those objects which
are present in the hierarchy underneath the object marked in the project tree.

g Task window

To the right of the working window is the task window with the task cards. This con-
tains further objects for processing in the working window. The contents of the task
window depend on the currently active editor. In the case of the hardware
configuration, for example, the hardware catalog with the available components is
shown here, in the case of PLC programming the program elements catalog
appears, with Online & Diagnostics the online tools, and with the Visualization the
library for the process image control and display elements.

You can also call the libraries in this window: Global libraries supplied with STEP 7,
or the project library in which you can save reusable objects such as program blocks,
templates for process images, or control elements with special configurations.

1.2 Introduction to STEP 7 Professional V12

37

h Reference projects

The Reference projects palette shows the reference projects that are open in addition
to the current project. Using the View > Reference projects command from the main
menu, you can switch the palette display on and off.

j Editor and status bar

At the bottom left of the Project view you can change to the Portal view. In the middle
you can see the tabs of the open windows. Click on a tab to display its contents in the
top level of the working window. This makes it easy to change quickly between dif-
ferent window contents. The status bar on the far right indicates the current status
of project execution.

1.2.6 Help information system

During programming, the help func-
tion of STEP 7 provides you with com-
prehensive support for solving your
automation task.

To call the help function, click on Help in
the Portal view or select the Help > Show
help command in the main menu in the
Project view. A window appears with the
help information system (Fig. 1.15).

The online help is roughly divided
according to the project execution
steps: Configuration, parameterization
and networking of devices, structuring
and programming of the user program,
visualization of processes, and utiliza-
tion of the online and diagnostics func-
tions.

Readme provides general information
on STEP 7 and further information
which could not be included in the
online help. A comprehensive descrip-
tion of all available basic and extended
statements can be found under
Programming a PLC > References.

1.2.7 Adapting the user interface

The language of the user interface can be changed. In the main menu, select the
General section under Options > Settings. In the User interface language drop-down
list, you can select the desired language from the installed languages. The texts of
the user interface are then immediately displayed in the new language. You can also
define here how the TIA Portal is to be displayed following the next restart.

Fig. 1.15 Start page of the information
system

1 Introduction

38

You can show or hide the displayed windows using the menu command View. You
can always change the size of windows by dragging on its edge with the mouse.
Windows can be minimized into symbols which appear in one of the navigation
bars in the left, bottom or right margin of the screen.

You can separate the working window completely from the Project view so that it is
displayed as a separate window (symbol for Float in the title bar of the working win-
dow), and also insert it again (symbol for Embed). Using the symbol for Maximize,
all other windows are closed and the working window is displayed in maximum
size. The working window can be divided vertically or horizontally, permitting you
to view two working areas simultaneously.

You can change the width of table columns by dragging with the cursor in the table
header. In the case of columns that are too narrow, the entire content of the individ-
ual cells will appear as a tooltip when the cursor is briefly hovered over the relevant
field.

1.3 Editing a SIMATIC project

Fig. 1.16 shows all tools and data which can be of importance in an automation task.
Of prime importance is the project, which contains all the automation data required

Fig. 1.16 Project components, libraries, and programming device design

Global libraries

Programming device design

System libraries User libraries

< Global library >

Online access

< User library >

Card Reader/USB memory

Libraries delivered with STEP 7 Libraries configured by users themselves

Global libraries contain elements for use across projects.

Contains the programming device resources relevant to the project

All the data for an automation task is combined in a project.

A project includes at least one station. Contains cross-station data

Contains all the data for a
controller

Contains text lists for system and user messages

Contains all the data for an HMI
device

Contains all the data for a PC
system or PC application

Contains project texts, project languages, and
graphics

Contains the templates and settings for
documentation of project data

PLC station Common data

HMI station

PC station
Documentation settings

Languages and resources

Stations

Project

Common project data

< Project library >

Contains data compiled by the user

Project library

1.3 Editing a SIMATIC project

39

for control and operation of the machine or plant. The project data is roughly
divided into the data for the individual stations and the common project data which
applies to all stations in the project.

A station can be a controller (PLC station), an HMI device (HMI station), or a PC sta-
tion. A project can include several stations, but at least one station must be present.
The data present in a PLC station is described later in this book. Common project
data includes, for example, centrally managed message texts or texts for multilin-
gual projects.

A project library can be created for each project. Objects which are used in several
projects are combined in global libraries. Also relevant to a project is the program-
ming device design with interface modules (e.g. LAN adapters) and memory card
readers.

1.3.1 Structured representation of project data

The project tree in the Project view displays the project data and the programming
device design in a tree structure (Fig. 1.17).

The structure also includes the editors (tools) required for generating and editing
the data. The project tree does not include the project library. This is represented in
a task card together with the global libraries in the task window under Libraries.

You can replace the names shown in angle brackets by names more appropriate to
your automation task.

1.3.2 Project data and editors for a PLC station

If you add a PLC station (an S7-1500 controller) to the project, STEP 7 creates the
corresponding structure in the project data (Fig. 1.18). A station is always required
for editing in a project so that STEP 7 can create the data structures required for
programming or configuration. If you wish to write a user program without previ-
ously selecting a specific CPU, you can select the “unspecified CPU 1500” from the
hardware catalog and replace it later with a “real” CPU 1500.

The user program which controls the machine or process is located in the Program
blocks folder. The program comprises blocks (separate program components)
which are either stored directly in the Program blocks folder or – if there is a large
number – in subfolders which you can create and configure yourself. The Main
block (“main program”, the name is the symbol for the block and can be changed)
is the organization block OB 1 and is created automatically. The processing
sequence of the blocks is defined in the user program by “block calls” and can be
made visible using the Program info editor (further down in the project tree) in a
call and dependency structure.

The Program blocks folder contains a System blocks subfolder with the system and
standard blocks used in the program. This is created automatically when a block of
this type is used.

1 Introduction

40

The Technology objects folder contains the configuration data for the objects of axis
controls, control loops (PID controllers), and high-speed counters. A new technol-
ogy object can be generated using the Add new object editor.

The External sources files folder contains the program sources for STL and
SCL blocks. The Add new external file editor is used to import a program source and
to save it in this folder. The External sources files folder can be configured using self-
created subfolders.

The PLC tags folder contains the assignment of the absolute address to the symbolic
address (name) of inputs, outputs, and bit memories, as well as SIMATIC timer func-

Fig. 1.17 Project structure in the project tree

< Project >

Online access

Card reader/USB memory

Interface x1

< PLC station >

Common data

Documentation settings

Interface x2

< PLC ... >

< PLC station_1 >

Languages & resources

Add new device

...

...

...

Devices & networks

Update accessible
devices

Add user-defined
card reader

Card reader

Adds a new station to the project

Folder with the data of a found station

Alarm classes, text lists for user and system alarms

Templates and settings for documentation

List with project texts in different languages
Selection of languages for display and alarm texts
Collection of language-dependent graphic symbols

Starts the device and network configuration

Searches for stations connected to this interface (module)

Adds a card reader

Card reader in the programming device

Folder for all data of an automation system

Folder for all interfaces of the programming device

Folder for all card readers of the programming device

Interface of programming device

Folder for all data of a PLC station

Folder for common data in the project

Folder for documentation settings

Further interfaces (interface modules) if applicable

Folder for the data of a further PLC station

Folder for language-dependent objects

Project tree with opened project

1.3 Editing a SIMATIC project

41

Fig. 1.18 Structure of the project data for a PLC station

< PLC_xxx >

Program blocks

Watch and force table

PLC data types

Local modules

Technology objects

System blocks

External sources

PLC tags

< Group_1 >

< Group_1 >

< Group_1 >

< Technology object_1 >

Device configuration

Add new block

Add new watch table

Add new data type

< PLC data type_1 >

Add new object

Add new external file...

< External program source >

Show all tags

Add new tag table

Default tag table [n]

< Tag table [n] >

Online & diagnostics

Main [OB1]

< Watch table_2 >

< Block_2 >

<Tag table_1 [n]>

< Block_1 >

< Watch table_1 >

Force table

Text lists

PLC alarms

Program info

Traces

Starts the editor for device configuration

Creates a new block and opens it

Creates a new watch table and opens it

Adds a new PLC data type

Self-created PLC data type

Self-created watch table

Table with the force tags

Station-specific texts for user and system alarms

PLC, user diagnostics and system alarms

Shows program structure, assignment list, CPU resources

Editor for recording and displaying measured value series

Self-created block

Creates a new technology object and opens it

Imports a program source

Imported program source

Shows all PLC tags of all tables

Adds a new tag table

Automatically created tag table with n tags

Self-created tag table with n tags

Starts the editor for the online connection and diagnostics

Self-created groups with further watch tables can be used under
Watch and force tables for structuring.

Folder for all data of a PLC station (name can be freely selected)

Folder for all blocks of the user program

Folder for all watch and force tables

Folder for all PLC data types

Folder for the local modules of the PLC station

Folder for all technology objects

Folder for the system blocks used

Folder for the program source files

Folder for all PLC tags

Under Program blocks, further blocks can be created in addition
to the permanently existing Main [OB1] block (main program).
The block collection can be structured using self-created groups
which contain further blocks.

Self-created groups with further tag (partial) tables can be used
under PLC tags for structuring.

Self-created technology object

Data structure of a PLC station

1 Introduction

42

tions and SIMATIC counter functions. Example: The symbolic address “Switch on
motor” can be assigned to the input with the absolute address %I1.0. A PLC tag is
applicable throughout the CPU, it is a “global” tag. The PLC tags folder can be con-
figured using self-created subfolders. A subset of the PLC tags is listed in a tag table.
The Show all tags editor lists all PLC tags used from all tag tables.

The PLC data types folder contains user-defined data types. A PLC data type com-
bines various data types in the form of a named data structure. A PLC data type can
be assigned to a local tag in a block or serve as a template for the structure of a data
block. The PLC data types folder can be configured using self-created subfolders.

All created watch tables and the force table can be found in the Watch and force
tables folder. A watch table is used during testing of the user program. It contains
tags whose current value can be monitored and also changed during runtime. The
Force table can be used to assign a fixed value to peripheral inputs and outputs. The
Watch and force tables folder can be configured using self-created subfolders.

Using the Traces editor, the recording of measured value series is planned, the cor-
responding tasks are sent to the CPU, and the recordings are displayed and man-
aged in tables and graphs in the form of a curve chart.

Program info provides information about

b the call structure – which block calls which other block

b the dependency structure – which block is called by which other block

b the assignment list – which global operands are already used and which address-
es are still unused

b the resources – how much space is required by the program in the load and work
memory

Under PLC alarms you see an overview of which program alarms and system alarms
are currently present and edit them.

Message texts are stored under Text lists. In the case of the user-defined text list, you
can specify the value ranges which trigger the alarms and the associated texts; with
a system-defined text list, the contents are specified by STEP 7. Text lists created
under a PLC station contain station-specific texts, those created under a project
contain cross-station texts.

The Local modules folder contains all configured modules of the PLC station. Open-
ing a module initiates device configuration. The module properties are displayed in
the inspector window.

You start configuration of a station using the Device configuration editor, which is
located in the first position in the project structure of the station. There is no cor-
responding folder for the data of the device configuration in the project tree. The
configuration data is located “behind” the Device configuration editor. When you
start the editor, the data is displayed in the form of a pictorial representation of the
programmable controller in the working window and in a register-oriented repre-
sentation of the module properties in the inspector window. The bottom section of

1.3 Editing a SIMATIC project

43

the working window additionally displays the configuration table with the modules
as a drop-down list.

Online & diagnostics starts the editor for the online connection and online func-
tions. For example, you can use a (software) control panel in online mode to control
the operating states of the CPU, to set the CPU's IP address and time, or read the
CPU's diagnostics buffer.

1.3.3 Creating and editing a project

Creating a new project

You can create a new project in the Portal view if you click on Create new project in
the Start portal. Assign a name to the project and set a path in which the project is
to be saved. After clicking the Create button, any project which is open is closed, the
new project is created, and the next steps are displayed in the Start portal for selec-
tion:

b Configure a device
STEP 7 changes to the Devices & networks portal in which you can insert a new
CPU 1500 (a PLC station) into the project and open it for editing.

b Write PLC program
STEP 7 changes to the PLC programming portal in which you can edit the Main
block (organization block OB 1) or add a new block and open it for editing.

b Configure an HMI screen (using the supplied WinCC Basic)
STEP 7 changes to the Visualization portal in which you can create a new
HMI station or configure an already existing one. From this portal you start con-
figuration of the process images, editing of HMI tags and alarms, and the
HMI simulator. If WinCC Comfort, Advanced or Professional is installed, it is
started under this portal.

b Open the project view
STEP 7 changes to the Project view in which you can perform the next steps such
as adding another PLC station, modifying the configuration of an existing
PLC station, adding and programming a block, or configuring the process
images for an HMI station.

In the Project view you can create a new project using the Project > New menu
command. Assign a name to the project in the dialog window, set the path in which
the project is to be saved, and click on the Create button.

Editing an existing project

You can open an existing project in either the Portal view or the Project view. In the
Start portal, either activate Open existing project in the Portal view or Project > Open
in the Project view. Select the desired project from the list of projects last used. Any
project which is open is closed and the selected project is opened.

During editing in the Project view, you can save the entered project data using the
Project > Save or Project > Save as menu command. You can close the project using

1 Introduction

44

Project > Close – following confirmation of whether changes are to be saved –
without exiting STEP 7.

You can delete a (closed) project from the hard disk – following confirmation –
using Project > Delete project.

Compiling and downloading project data

Before project data can be downloaded to a station, it must be made readable for the
respective processor: It must be “compiled”. The project data is compiled
station-by-station. The scope of the compilation can be varied depending on the
type of station. For example, the command from the Compile > Software (only
changes) shortcut menu only compiles those software components which have
been changed since the last compilation.

The same applies to downloading of the compiled data to a station. You can select
for a PLC station whether you wish to download only the hardware configuration,
or only the user program, or both.

Printing project data

The project data can be printed in the form of a circuit manual. You can use the doc-
umentation function to set the layout of the printout. The settings in the main
menu under Options > Settings and General > Print settings apply to all projects in
the TIA Portal. The templates for the project circuit manual are saved in the project
tree in the Documentation settings folder. You can add your own templates or
change existing ones.

In the global Documentation templates library under Master copies in the Document
information group, you can find the templates to design a circuit manual, in the
Frames group are the templates for the page frames, and in the Cover Pages group
are the cover page templates. To copy templates to the project, in the Libraries task
card, open the Documentation templates library and drag a template from the
Document information folder, for example DocuInfo_ISO_A4_Portrait, to the
Document information folder under Documentation settings. Copy a cover page from
the Cover Pages folder to the Cover pages folder and a frame from the Frames folder
to the Frames folder.

Double-clicking on a template in the project tree opens the template for editing.
For example, you add a new text field or graphical symbol to the cover page. You are
supported by the Toolbox task card, which contains object templates for a text box,
a date/time field, a field for the page number, a field for free text, and a graphic
placeholder. In the frame template you complete the title block and in the docu-
ment information template you enter the data for the circuit manual.

You select the objects to be printed in the project tree or in a library. To display
the print preview, select Print preview... from the shortcut menu or Project > Print
preview… from the main menu. In the dialog window you can set the document
information to be used, select the printout of the cover page and table of contents,

1.3 Editing a SIMATIC project

45

and specify whether all project data or a compact selection should be displayed in
the print preview.

To print, select the objects to be printed and click on the Print icon in the toolbar or
select Project > Print… in the main menu or Print… in the shortcut menu. In the dialog
window, you then specify the printer, the document layout, and compact or full
printout.

Archiving and retrieving a project

You can reduce the size of the project on the hard disk in two ways:

b You create a minimized project. This reduces the opened project to its essential
components and saves it as a copy. You can open and continue to edit a mini-
mized project as usual.

b You create a project archive. This reduces the opened project to its essential com-
ponents and compresses it. The compressed project archive can only be edited
further after it is retrieved.

To archive a project, open it. If you make changes to the project, save it before you
archive it. Then select the command Project > Archive… from the main menu. In the
dialog window under File type, select either TIA Portal project minimized or TIA Por-
tal project archives from the drop-down menu. If you want to create a minimized
project copy, save the copy under a different name and/or a different directory.
A project archive is saved with the file extension .zap12. The project name and proj-
ect path can be retained.

To retrieve a project, close any open projects and select the command Project >
Retrieve from the main menu. In the dialog window, specify the name of the project
archive with the file extension .zap12 and, in the next dialog window, specify the
directory in which the retrieved project is to be saved. Then the retrieved project is
opened.

1.3.4 Working with reference projects

You have the capability of opening projects in addition to the current project. These
projects are write-protected, i.e. they cannot be modified. You can import individual
objects from these “reference projects” into the current project and you can com-
pare a PLC station of a reference project to a station of the current project or a dif-
ferent reference project.

You open a reference project using the Open reference project icon in the project tree
on the Reference projects palette. Select the desired project from the subsequent
dialog window and open it.

The read-only reference project is opened. You can open individual objects of this
project, but you cannot change them. You can copy individual objects of the refer-
ence project into the current project: Select the object in question, press and hold
the mouse button, and “drag” the object into the current project. You can process
the copied object further here.

1 Introduction

46

To compare two PLC stations, select the station and then select the command
Compare > Offline/offline from the shortcut menu. The station is displayed in the left
pane of the compare editor. Now press and hold the mouse button and “drag” the
PLC station to be compared into the header of the right pane. This can be a station
from a reference project or from a library. The compare editor marks different
objects with symbols (green circle: no differences, semi-circles in various colors:
differences exist, unfilled semi-circle: object does not exist). You can select individ-
ual objects and start a detailed comparison via the shortcut menu if the type of the
object allows it. Actions such as overwriting an object are not possible for a refer-
ence project. You can compare additional stations by “dragging” the corresponding
station into the header of one of the panes.

1.3.5 Creating and editing libraries

Libraries are used to save reusable program components. These could include sta-
tions, blocks, PLC tag tables, process images, or picture elements, for example.
A project library and global libraries are available.

The libraries are displayed in a task card of the task window. The library contents
can be listed with the symbol open or close the element view in the Elements pallet
in the Details mode, List mode, or Overview mode. The Info pallet shows further
information on the selected library element.

A project library which you can fill with objects is automatically created when you
create a project. You can structure the contents of the project library using folders.
A project library is always opened, saved, and closed together with the project.

Components which can be used in multiple projects are saved in global libraries.
There are global system libraries which are supplied with STEP 7, and global user
libraries which you create yourself. A global library is opened, saved, and closed
independent of the project. If you wish to use a global library simultaneously with
other users, the library must be opened in read-only mode.

To create a global library, open the Libraries task card in the task window and click
on the Create new global library icon in the Global libraries palette. In the dialog
window, specify the name and path of the library before you click on the Create but-
ton. Using the other symbols in the Global libraries palette, you can open a global
library, save the changes to the library, and close the library.

2.1 S7-1500 station components

47

2 SIMATIC S7-1500 automation system

2.1 S7-1500 station components

A programmable controller including all I/O modules is referred to as a “station”.
An S7-1500 station can contain the following components:

b Rack

b Power supply (PS)

b Central processing unit (CPU)

b Input/output modules (signal modules, SM)

b Technology modules (TM)

b Communication modules (CM)

A station can also encompass distributed I/O which is connected to the CPU or a
communication module via a PROFINET IO or PROFIBUS DP bus system.

Design variants

An S7-1500 station comprises one rack with a maximum of 32 slots. It can be
divided into as many as three “power segments”. A power segment comprises a cur-
rent source (PS or CPU) and the modules to be supplied as current sinks. The num-

Fig. 2.1 S7-1500 station with CPU 1516-3 PN/DP

2 SIMATIC S7-1500 automation system

48

ber of modules a power segment encompasses depends on the electrical power that
is provided and consumed. An additional load current supply is needed for supply-
ing the sensors and actuators (Fig. 2.2).

Fig. 2.2 Design variants of an S7-1500 station

Maximum configuration

Configuration without system power supply, one power segment

Configuration with system power supply, one power segment

Central configuration of an S7-1500 station

S

ESC OK

S

ESC OK

S

ESC OK

PS

PS

PS

CPU

CPU

CPU PS

... ...

...

...

...

Modules

Modules

Modules Modules Modules

The CPU is supplied with 24 V DC, and the
CPU in turn supplies the other modules via
the backplane bus.

A system power supply (PS) supplies the CPU
and the remaining modules with power via the
backplane bus.

Additionally, two power segments with system
power supply and modules can be arranged to
the right of the CPU.

The rack can hold a total of 32 modules. This means that up to 30 additional modules (including
system power supplies) can be arranged to the right of the CPU.

Power segment Power segment Power segment

Maximum 30 modules

2.2 S7-1500 CPUs

49

If a power supply module is used for the first power segment, it is plugged into the
first slot on the far left (slot 0). The CPU is always plugged into slot 1 next to it. To the
right of the CPU, there is room for another 30 modules, including any additional
system power supply modules. Each module occupies one slot independent of its
width. The modules must be inserted without gaps.

The power supply for the module electronics and the data exchange between the
modules is accomplished via the backplane bus. The backplane bus is made up of
“U-connectors” between the modules. One U-type-connector is needed for each
module.

2.2 S7-1500 CPUs

2.2.1 CPU versions

CPUs for S7-1500 are available in several
versions for different applications. Com-
mon to all CPUs is the scope of control
functions (operands, tag types, data types,
binary logic operations, fixed-point and
floating-point arithmetic, etc.). Within the
versions, the CPUs differ in their memory
size, the range of operands, and the pro-
cessing speed (Table 2.1).

Standard controllers

Three versions of standard-design control-
lers are currently available: CPU 1511-1 PN,
CPU 1513-2 PN, and CPU 1516-3 PN/DP.

It is possible to connect to Industrial Ether-
net using the PN interface. Each CPU can
be both an IO controller and an “intelli-
gent” IO device on PROFINET IO. A CPU
with a DP interface can be the DP master on
PROFIBUS DP.

2.2.2 Control and display elements

The control panel with the display and sta-
tus LEDs above the control panel are located on the front side of the CPU. The mode
switch, slot for the SIMATIC Memory Card, and interface connections are located
behind the control panel.

Fig. 2.3 CPU 1516-3 PN/DP

2 SIMATIC S7-1500 automation system

50

Table 2.1 Selected data of a CPU 1500 with Firmware V1.1

CPU 1511-1 PN CPU 1513-2 PN CPU 1516-3 PN/DP

User memory
Work memory

for program
for data

Retentive memory
Load memory on the
memory card up to

150 KB
1 MB
128 KB

2 GB

300 KB
1.5 MB
128 KB

2 GB

1 MB
5 MB
128 KB

2 GB

Hardware
configuration
Racks
Modules per rack

1
max. 32

1
max. 32

1
max. 32

Address ranges
in the process image

per IO subsystem

32 KB inputs,
32 KB outputs
8 KB inputs,
8 KB outputs

32 KB inputs,
32 KB outputs
8 KB inputs,
8 KB outputs

32 KB inputs,
32 KB outputs
8 KB inputs,
8 KB outputs

Blocks
Number (total)
OB/FB/FC size
DB size

2000
150 KB
1 MB

2000
300 KB
1.5 MB

6000
512 KB
5 MB

Bit memory
SIMATIC timers
SIMATIC counters

16 KB
2048
2048

16 KB
2048
2048

16 KB
2048
2048

Temporary local data
per priority class
per block

64 KB
16 KB

64 KB
16 KB

64 KB
16 KB

Interfaces
PROFINET

PROFIBUS
Interfaces via CM

1 (IO controller/device)

–
4 (PROFINET + PROFIBUS)

1 (IO controller/device)

–
6 (PROFINET + PROFIBUS)

1 (IO controller/device)
1 (Industrial Ethernet)
1 (DP master)
8 (PROFINET + PROFIBUS)

Number of connections
maximum
reserved for PG, HMI, and
Web server
via integrated interfaces

96
10

64

128
10

88

256
10

128

Execution times
for binary operations
for word operations
for fixed-point arithmetic
for floating-point
arithmetic

60 ns/statement
72 ns/statement
96 ns/statement

384 ns/statement

40 ns/statement
48 ns/statement
64 ns/statement

256 ns/statement

10 ns/statement
12 ns/statement
16 ns/statement

64 ns/statement

2.2 S7-1500 CPUs

51

Status LEDs

The operating state of the CPU is indicated by LEDs on the front side above the con-
trol panel:

STOP/RUN Continuous yellow light in STOP operating state
Continuous green light in RUN operating state
Flashing light in STARTUP operating state

ERROR Flashing red light in the event of an error
Continuous red light if hardware is defective

MAINT Continuous yellow light indicates a maintenance request

Display and control keys on the control panel

The color display shows – structured in several menus – the status and properties
of the CPU, diagnostics alarms, the date/time, and information about the inserted
modules.

The control keys are designed as membrane keyboard. These can be used to select
the menus in the display and to set the date, time, access protection, language, and
IP address. The memory of the CPU can also be reset to the factory settings.

The control panel can be replaced during ongoing operation.

The control panel can be secured using a lead-wire seal or with a bracket lock in
order to prevent unauthorized operation of the mode switch or unauthorized
removal of the memory card.

Mode switch

The mode switch is designed as a toggle switch with the positions RUN, STOP, and
MRES. In the RUN position, the user program is executed and the programming
device has unlimited access to the CPU.

The user program is not executed in the STOP position, but the CPU retains its com-
munication capability. For example, a new user program can be downloaded using
the programming device or the diagnostics buffer can be read out with the CPU at
STOP.

In the MRES position (master reset), the CPU parameters are reset. MRES functions
like a pushbutton. A memory reset can be carried out for the CPU using a special
input sequence, or it can be reset to the delivered state.

2.2.3 SIMATIC Memory Card

The SIMATIC Memory Card is an SD memory card (secure digital memory card),
which is pre-formatted by Siemens.

The data is stored retentive on the memory card, but can be read, written, and
deleted like with a RAM. This feature permits data backup without a battery.

2 SIMATIC S7-1500 automation system

52

The complete load memory is present on the memory
card, meaning that a memory card is always required to
operate a CPU 1500.

The memory card can be used as a portable storage
medium for user programs or firmware updates. You can
apply the user program to read or write data blocks on the
memory card by means of special system functions, for
example read recipes from the memory card or create a
measured value archive on the memory card and supply it
with data.

The SIMATIC Memory Card is available for various mem-
ory capacities up to 2 GB. Please note that formatting the
memory card using Windows tools makes it unusable for
a CPU 1500.

The SIMATIC Memory Card has a serial number to which you can “tie” program
blocks. This means that the user program is only loaded into the CPU if the “cor-
rect” memory card is inserted (copy protection similar to a dongle).

2.2.4 Memory areas in an S7-1500 station

Fig. 2.5 shows the memory areas in the programming device, in the CPU, and in the
signal modules which are important for the user program.

The programming device contains the offline data. This consists of the user pro-
gram (program code and user data), the system data (e.g. hardware, network and
connection configuration), and further project-specific data such as the PLC tag
table.

The signal modules contain memories for the signal states of the input and output
signals.

The online data consists of the user program and the system data which is located
in three memory areas: in the load memory, in the work memory, and in the system
memory.

Load memory

The load memory contains the complete user program including configuration data
(system data). The load memory is located entirely on the SIMATIC Memory Card.
The user program is always initially transferred from the programming device to the
load memory, and then from there to the work memory. The program in the load
memory is not executed as the user program.

Data blocks that contain recipes, for example, can be identified as “not relevant to
execution”, and in this case they are not transferred to the work memory. These
data blocks can be accessed from the user program using system functions.

Fig. 2.4 SIMATIC
Memory Card

2.2 S7-1500 CPUs

53

Work memory

The work memory is designed as a fast RAM completely integrated in the CPU. The
CPU's operating system copies the “execution-relevant” program code and the user
data into the work memory. “Execution-relevant” is a property of the existing
objects, and is not tantamount to the fact that a specific code block is actually called
and executed. The “actual” user program is executed in the work memory.

The work memory of a CPU 1500 consists of two parts: The code work memory con-
tains the program code. The data work memory contains the user data and the data
of the technology objects.

When uploading the complete user program to the programming device, the blocks
are fetched from the load memory, supplemented by the current values of the data
from the work memory.

System memory

The system memory contains the process images for the inputs and outputs. These
are copies of the input and output signals from the modules. The system memory
also contains the operand areas Bit memories, SIMATIC timer/counter functions,
and Temporary local data. The temporary local data are intermediate memories for
program execution in the blocks of the user program.

Fig. 2.5 Memory areas for the user program

� Execution-relevant
parts of code blocks

� Bit memory

SIMATIC timer functions

SIMATIC counter functions

Temporary local data

�

�

�

� Retentive tags
(bit memories, timers,
counters, data tags)

Data of technology
objects
�

� Execution-relevant
parts of data blocks
and technology objects

Further data such as
Recorded data
sequences (DataLog)

Recipes

�

�

� Input signals

Output signals�

� Process image
input

Process image
output
�

Online project data:
Hardware configuration

User program

Project information

�

�

�

Offline project data:
Hardware configuration

User program

Project information

�

�

�

Code work memory Retentive memory

Data work memory

Load memory

System memory

Project

I/O

Programming device

Signal modules

SIMATIC Memory Card

Central processing unit (CPU)

Memory areas in an S7-1500 station

2 SIMATIC S7-1500 automation system

54

Retentive memory

The retentive memory contains the bit memories, SIMATIC timer-/counter func-
tions and data tags that are defined as retentive. The values in the retentive mem-
ory are retained after a power failure or if the power supply is switched off and on.
The values are deleted if the memory is reset or if the CPU is reset to the factory set-
tings.

2.2.5 Bus interfaces

Each CPU 1500 has an integrated PROFINET interface (PN interface) with two ports
for setting up a linear topology. The CPU 1516-3 PN/DP also has an additional
PROFINET interface with a port for connecting to Industrial Ethernet and a
PROFIBUS DP interface (Fig. 2.6).

The first PN interface connects the CPU to a
PROFINET IO system. The CPU can be operated
as IO controller or as IO device. The PN inter-
face has two ports which are interconnected by
a switch. This permits simple configuration of
a quasi-linear topology. A programming
device or an operator control and display unit
can also be connected to the PN interface. Data
transfer to other devices is possible using open
user communication over Industrial Ethernet.

The second PN interface connects the CPU to
Industrial Ethernet. It has its own IP address,
which makes it possible to connect to a com-
pany network separately from the process
subnetwork. A programming device or an
operator control and display unit can also be
connected to the port of this PN interface.
Data transfer to other devices is possible
using open user communication over Indus-
trial Ethernet.

The DP interface connects the CPU to the
PROFIBUS DP bus system. The CPU is the DP
master.

Routing of data records is possible via the PN
and DP interfaces, i.e. data can be transmitted
beyond the limits of subnets. These interfaces also support time synchronization.

The bus interfaces are numbered: X1 for the first interface (PN) with ports P1 and
P2, with CPU 1516: X2 for the second interface (Ethernet) and X3 for the DP inter-
face.

Fig. 2.6
The bus connections and
control elements under the
front flap of a CPU 1516-3PN/DP

2.3 Signal modules

55

2.3 Signal modules

Signal modules (SM) are peripheral input/output modules which establish the con-
nection between the CPU and the machine or process. The following types of mod-
ule are available for SIMATIC S7-1500:

b SM 521 Digital input modules

b SM 522 Digital output modules

b SM 531 Analog input modules

b SM 532 Analog output modules

A signal module can be inserted in the rack at one of the slots 2 to 31.

Common properties

A green RUN LED and a red error LED indicate the operating state of the module. On
most of the modules, a green power LED indicates the presence of the load voltage.

Correspondingly configured modules provide a statement about the validity of the
process signal along with the value status. If the value status is activated, the infor-
mation in the process image input is available. In the value status, one bit per pro-
cess channel indicates with signal state “0” that the assigned process signal or the
assigned analog value is invalid. For input modules, the value status lies in the con-
nection to the user data in the process image. For output modules, input bytes are
also occupied for the value status.

2.3.1 Digital input modules

The digital input modules are used by the CPU to record the operating states of the
controlled machine or plant. These modules are signal conditioners for binary pro-
cess input signals. Process signals present with a DC or AC voltage level from 24 V
to 230 V are converted into signals with an internal level.

If a module converts a positive (DC) voltage at the input into signal state “1”, it is
called a “sinking input”. A “sourcing input” converts a positive voltage at the input
into signal state “0”. Further information can be found in Chapter 12.1.2 “Working
with binary signals” on page 504.

Depending on the module, the input channels are isolated either individually or in
groups. There are simple input modules and modules with diagnostic capability
with hardware and diagnostic interrupt triggering (Table 2.2).

The digital input modules have two or four bytes, corresponding to 16 or 32 input
signals. The presence of a process signal is indicated by an LED at the input channel.

2 SIMATIC S7-1500 automation system

56

2.3.2 Digital output modules

The digital output modules are used by the CPU to con-
trol the connected machine or plant. These modules are
signal conditioners for binary process output signals
(Fig. 2.7). The internal signals are amplified and output
in the following current and voltage ranges (rated val-
ues):

b With electronic amplifiers from 24 V DC and a cur-
rent of 0.5 A and 2 A

b With electronic amplifiers from 120 V to 230 V AC and
a current of 2 A

b With relay contacts with a DC voltage of 24 V or an al-
ternating voltage of 230 V and a current of up to 5 A

Depending on the module, the output channels are iso-
lated either individually or in groups. The module types
include simple digital output modules, digital output
modules with diagnostic capability, and modules with
or without integral short-circuit protection (Table 2.2).

The digital output modules have two or four bytes, cor-
responding to 16 or 32 output signals. All modules indi-
cate a delivered process signal by means of an LED on
the output channel.

The digital output modules are disabled in the STOP
and STARTUP operating states. In this case they deliver either a configured substi-
tute value or retain the last output value.

Table 2.2 Overview of digital modules

Module type Short designation Description

SM521 digital input
modules

DI 16 × 24 V DC HF Diagnostic interrupt, hardware interrupts, isochronous
mode, value status, sinking input

DI 32 × 24 V DC HF

DI 16 × 24 V DC SRC BA Sourcing input

DI 16 × 230 V AC BA –

SM522 digital out-
put modules

DQ 16 × 24 V DC / 0.5 A ST Transistor output, diagnostic interrupt, isochronous
mode, value status

DQ 32 × 24 V DC / 0.5 A ST

DQ 8 × 24 V DC / 2 A HF Transistor output, diagnostic interrupt, value status

DQ 8 × 230 V AC / 2 A ST Triac output

DQ 8 × 230 V AC / 5 A ST Relay output, diagnostic interrupt, value status

Fig. 2.7 SM 522 digital
output module,
DQ 32 × 24 V DC / 0.5 A ST

2.3 Signal modules

57

2.3.3 Analog input modules

The CPU can use analog input modules to process ana-
log measured variables after they have been converted
into digital values by the modules. These modules are
signal conditioners for analog process input signals
(Fig. 2.8).

Voltage and current transmitters, thermocouples,
resistors or thermoresistors can be connected to the
modules depending on the design. The measuring
range can be set as desired per channel or per channel
group. The resolution is 16 bits including sign. An ana-
log value (a channel) occupies 16 bits, in other words
two bytes. The analog input modules have 8 channels,
corresponding to an address range of 16 bytes (Table
2.3).

One status LED per channel indicates whether the
channel is deactivated, working properly, or an error
has occurred.

The input channels are not isolated from each other.
There is galvanic isolation between the channels and
the backplane bus and between the channels and the
internal power supply.

2.3.4 Analog output modules

The CPU can use analog output modules to continuously provide actuators with
analog setpoints. These modules are signal conditioners for analog process output
signals (Table 2.3).

The modules can output a voltage value in the ranges of 0 to 10 V, 1 to 5 V, or -10 to
+10 V or a current value in the ranges of 0 to 20 mA, -20 to +20 mA, or 4 to 20 mA.
The resolution is 16 bits including sign. The output channels are not isolated from

Table 2.3 Overview of analog modules

Module type Short designation Description

SM531 analog
input modules

AI 8 × 16 bit ST For the measurement types voltage, current, resistor, thermo-
resistor, and thermocouple
Diagnostic interrupt, hardware interrupt

AI 8 × 16 bit HS For the measurement types voltage and current
Diagnostic interrupt, hardware interrupt, isochronous mode

SM532 analog
output module

AO 4 × 16 bit ST For the output types voltage and current
Diagnostics interrupt

AO 4 × 16 bit HS For the output types voltage and current
Diagnostic interrupt, isochronous mode

Fig. 2.8
SM 531 analog input mod-
ule, AI 8 × U/I/RTD/TC ST

2 SIMATIC S7-1500 automation system

58

each other. There is galvanic isolation between the channels and the backplane bus
and between the channels and the load voltage L+.

An analog value (an analog channel) occupies 16 bits, in other words two bytes.
The analog output modules have 8 channels, corresponding to an address range of
16 bytes. One status LED per channel indicates whether the channel is deactivated,
working properly, or a diagnosis event has occurred.

The analog output modules are disabled in the STOP and STARTUP operating states.
In this case they deliver either a configured substitute value or retain the last out-
put value.

2.4 Technology modules

Technology modules (TM) are signal-preprocessing,
“intelligent” modules which prepare and process sig-
nals coming from the process independent of the CPU,
and either return them to the process or make them
available to the user program at the CPU's internal
interface. They are responsible for handling functions
which the CPU cannot usually execute quickly
enough, such as counting pulses (Fig. 2.9).

The following technology modules are available:

b TM Count 2 × 24 V (6ES7 550-1AA0-0AB0)

Technology module for counting pulses, for measuring
a frequency, time period or velocity, and for position
detection for motion control; with two 32-bit counter
channels and a maximum signal frequency of 200 kHz
(this corresponds to max. 800 kHz with fourfold evalu-
ation); for connection of 24 V incremental encoders
with and without N signal, 24 V incremental encoders
with and without direction signal, and 24 V incremental
encoders with separate signals for counting up and
counting down; three configurable digital inputs per
channel for starting, stopping, synchronizing or saving
the count value (capture function), and two configu-
rable digital outputs for outputting a comparison
result.

b TM PosInput 2 (6ES7 551-1AB00-0AB0)

Technology module for counting pulses, for measuring a frequency, time period or
velocity, and for position detection for motion control; with two 32-bit counter
channels and a maximum signal frequency of 1 MHz (this corresponds to
max. 4 MHz with fourfold evaluation); for connection of SSI absolute value encod-
ers, RS 422/TTL incremental encoders with and without N signal, RS 422/TTL incre-

Fig. 2.9 TM Count 2 × 24 V
counter module

2.5 Communication modules

59

mental encoders with and without direction signal, and RS 422/TTL incremental
encoders with separate signals for counting up and counting down; two configu-
rable digital inputs per channel for starting, stopping, synchronizing or saving the
count value (capture function), and two configurable digital outputs for outputting
a comparison result.

2.5 Communication modules

The communication modules (CM) relieve the CPU of
communication tasks. They establish the physical
connection to a communication partner, take over
establishment of the connection and data transport
on this, and provide the required communication ser-
vices for the CPU and the user program (Fig. 2.10).

The following communication modules are available:

b CM PTP RS232 BA (6ES7 540-1AD00-0AA0)

Communication module for point-to-point connec-
tion to an interface; physical transmission character-
istics RS 232 with up to 19.2 Kbit/s; maximum frame
length: 1 KB; supported protocols: Freeport and 3964
(R), USS protocol via system functions.

b CM PTP RS422/485 BA (6ES7 540-1AB00-0AA0)

Communication module for point-to-point connec-
tion to an interface; physical transmission character-
istics RS 422/485 with up to 19.2 Kbit/s; maximum
frame length: 1 KB; supported protocols: Freeport
and 3964 (R), USS protocol via system functions.

b CM PTP RS232 HF (6ES7 541-1AD00-0AB0)

Communication module for point-to-point connec-
tion to an interface; physical transmission character-
istics RS 232 with up to 115.2 Kbit/s; maximum frame length: 4 KB; supported pro-
tocols: Freeport, 3964 (R) as well as Modbus RTU Master and Modbus RTU Slave,
USS protocol via system functions.

b CM PTP RS422/485 HF (6ES7 541-1AB00-0AB0)

Communication module for point-to-point connection to an interface; physical
transmission characteristics RS 422/485 with up to 115.2 Kbit/s; maximum frame
length: 4 KB; supported protocols: Freeport, 3964 (R) as well as Modbus RTU Master
and Modbus RTU Slave, USS protocol via system functions.

Fig. 2.10
CM PtP RS232 BA
communication module

2 SIMATIC S7-1500 automation system

60

b CM 1542-5, PROFIBUS (6GK7 542-5DX00-0XE0)

Communication module for PROFIBUS; physical transmission characteristics
RS 485 with up to 12 Mbit/s; operation as DPV1 master or DPV1 slave; PG/OP com-
munication, S7 communication; open user communication.

b CP 1543-1, Industrial Ethernet (6GK7 543-1AX00-0XE0)

Communication module for Industrial Ethernet up to 1000 Mbit/s; TCP/IP, ISO, UDP,
IP broadcast/multicast, open user communication, among others; addressing with
IPv4/IPv6; can be used for safety applications.

2.6 Other modules

2.6.1 System power supply modules

The system power supply modules (PS) provide the
operating voltage for the modules in the rack.

Depending on the power supply module, the primary
voltage is either an alternating voltage of 120/230 V
(PS 507) with an output power of 60 W or a 24 V
direct voltage (PS 505) with an output power of 25 W
and 60 W.

A green RUN LED and a red error LED indicate the
operating state of the module. A yellow MAINT LED
signals a maintenance request.

2.6.2 Load power supply modules

The load power supply modules (power modules,
PM) provide 24 V direct voltage, which can be used as
the supply voltage for sensors and actuators (load
power supply of the I/O modules), CPUs, and system
power supply modules. The modules are in the
S7-1500 design.

The primary voltage of the PM 1507 load power sup-
ply modules is 120/230 V AC with an output power of
70 W and 190 W.

A green RUN LED and a red error LED indicate the
operating state of the module. A yellow MAINT LED
indicates the stand-by state.

Fig. 2.11
PS 505 24 V/25 W
power supply

3.1 Introduction

61

3 Device configuration

3.1 Introduction

Device configuration entails planning the hardware design of the automation sys-
tem. Configuration is carried out offline without a connection to the CPU. You can
use this tool to add PLC stations to a project and equip these with modules which
you then address and parameterize. You also use this tool to carry out the network-
ing of PLC stations or the creation of distributed I/O stations.

This chapter primarily describes the configuration of an individual PLC station
with a CPU 1500 standard controller and provides an overview of the networking
options. Configuration of the distributed I/O is described in Chapters 16.3
“PROFINET IO” on page 701 and 16.4 “PROFIBUS DP” on page 716.

Starting

You can start the device configuration in the Portal view when setting-up a new
project if the Open device view checkbox is activated following addition of a CPU.
When opening an existing project, start the device configuration by selecting
Configure a device.

In the Project view, you can start the device configuration in the project tree either
by double-clicking on the Devices & networks editor under the project or on the
Device configuration editor under the PLC station.

Working area of the device configuration

Fig. 3.1 shows the working area of the device configuration in the Project view
(without project tree).

Three views are available in the Working window:

b The Device view shows the current configuration of the PLC station. The config-
uration is shown as a graphic in the top part of the window, and as a table in the
bottom part.

b In the Network view you can see – if more than one station is present in the
project – the connections between the stations, also as a graphic in the top part
of the window and as a table with the existing stations and their interconnections
in the bottom part. Further information can be found in Chapter 3.4 “Configur-
ing a network” on page 73.

b You can use the Topology view to display and configure the port connections with
an Ethernet network as a graphic in the top part of the window and as a table in

3 Device configuration

62

the bottom part. Further details on the Topology view are described in
Chapter 16.3.5 “Real-time communication in PROFINET” on page 710.

In all cases, you can “fold shut” the bottom part of the working window.

The Inspector window is positioned below the working window. In the Properties
tab, this shows the properties of the object selected in the working window. The Info
tab contains general information on the configuration session and the compilation,
and the cross-reference list. The Diagnostics tab shows the operating mode of the
stations and the alarm display.

The Hardware catalog is available on the right in the task window. It shows all
hardware components which can be configured with the current version of STEP 7.
If you select a component in the lowest level of the hardware catalog, a brief
description of the most important properties is shown in the information area of
the hardware catalog.

You can change the size of all windows. You can “fold shut” all windows except the
working window and thus provide more space for the latter. The working window
can also be maximized and displayed as a separate window.

Fig. 3.1 Example of working area of device configuration (Device view)

3.2 Configuring a station

63

Save, compile, and download

You save the entered data on the hard disk by saving the complete project (using
the Project > Save command in the main menu). In order to download the configu-
ration data to a CPU, it must first be compiled in a form understandable to the CPU
(using Edit > Compile). Any errors occurring during compilation are indicated in
the inspector window under Info. Only error-free (consistent) compilations can be
downloaded to the CPU using Online > Download to device.

Upgrading and support

To subsequently install device master data files (GSD), select Options > Install
general station description file (GSD) in the main menu. Enter the source path in the
subsequent dialog and select the file to be installed.

To subsequently install support packages, for example hardware support packages
(HSP) for new modules, select Options > Support packages in the main menu. The
Detailed information window displays the installed products and components as
well as operating system information. Under Installation of Support Packages, you
can select whether you wish to download the update from the Internet or from the
file system.

3.2 Configuring a station

“Configuring” is understood to be the addition of a PLC station to the project, the
arranging of the modules in a rack, and the fitting of modules with submodules.

3.2.1 Adding a PLC station

When creating a new project, you normally add a PLC station at the same time.
You can add further PLC stations in both the Portal view and the Project view. In the
Portal view, you can add a new station in the Devices & networks portal using the
Add new device command. In the Project view, double-click on Add new device in the
project tree.

Select the desired CPU in the selection window and assign it a meaningful name.
Before clicking on the OK button, make sure that the Open device view checkbox is
activated in the window at the bottom left (Fig. 3.2).

You have now configured a rack with a CPU inserted in slot 1. Slot 0 on the far left is
intended for a power supply module.

3.2.2 Adding a module

If you have not already done so, open the PLC station in the Device view. To insert a
module, select it in the hardware catalog (the symbol of the module in the lowest
catalog level). You are then provided with a description of the selected module in
the information window of the hardware catalog. The permissible slots in the rack

3 Device configuration

64

are highlighted. You position the new module by double-clicking on the module
symbol or by dragging it with the mouse to the rack.

If you activate the Filter checkbox in the hardware catalog, only modules from
the selected device family will be shown; in our case only the modules for
SIMATIC S7-1500.

The I/O modules can be arranged as desired during the configuration on slots 2
to 31, even with gaps. For the compilation, however, the modules must be inserted
without gaps.

The modules are supplied with power from the backplane bus of the CPU or a sys-
tem power supply (see Section “Design variants” on page 48). Observe the power
consumption in a power segment when arranging the modules. Any imbalance in
the power will be reported as an error during the compilation.

You can delete an inserted module again (remove it from the rack) or replace it by
a different, equivalent one.

Fig. 3.2 Selection window Add new device

3.3 Parameterization of modules

65

3.3 Parameterization of modules

“Parameterization” or “assigning parameters” is understood to be the setting of
module properties. These include, for example, setting addresses, enabling inter-
rupts, or defining communication properties.

Module parameterization is carried out for a selected module in the inspector win-
dow in the Properties tab. Select the properties group on the left side and set the val-
ues in interactive mode on the right. You can stop the setting of properties at any
time and continue later.

Only a portion of the total parameters described below can be assigned to individ-
ual modules.

3.3.1 Parameterization of CPU properties

The CPU's operation system operates with the default settings for program execu-
tion. You can change these default settings in the hardware configuration during
parameterization of the CPU and match them to your specific requirements. Subse-
quent modification is possible at any time.

When starting up, the CPU adopts the settings deviating from the default settings
in STARTUP mode. These settings then apply to further operation.

To parameterize the CPU properties, select the CPU in the working window of the
device configuration. If the project contains several stations, select the desired sta-
tion in the toolbar of the working window.

Set the name of the PLC station in the General section under Project information
and the module ID under Identification & Maintenance. Using the higher level des-
ignation, you can identify the CPU according to its function in the plant, for exam-
ple, and you can use the location designation – which can be part of the equipment
designation – to describe the arrangement of the PLC station on the machine or
within the plant.

In the PROFINET interface section you set the connection to an Ethernet subnet
and define the IP address, the subnet mask, and the PROFINET device name.
For more information on the format of the IP address, refer to Chapter 3.4.6 “Con-
figuring a PROFINET subnet” on page 80. Under Operating mode you can activate
the operation as an IO device. The IO controller mode is a fixed default setting. Fur-
ther settings define, for example, the real-time properties of the PROFINET IO com-
munication, the interconnection of the ports, and the activation of the web server
via this interface.

In the DP interface section (for CPU 1516) you can define the connection to a
PROFIBUS subnet, the node address, and other properties such as the properties of
the SYNC/FREEZE groups. The DP master mode is a fixed default setting. You change
the network parameters in the Properties tab of the inspector window in the
Network view with the PROFIBUS subnet selected. For more information, refer to
Chapter 3.4.7 “Configuring a PROFIBUS subnet” on page 84.

3 Device configuration

66

You can set the startup characteristics of the CPU under Startup (Fig. 3.3).
As Startup after POWER ON you can select between No restart (remain in STOP mode),
Warm restart - RUN, and Warm restart - Operating mode before POWER OFF.

During startup, the CPU compares the modules that are actually inserted to the con-
figuration. You can set the strictness of the check under Comparison preset to actual
configuration: Start up CPU only if compatible or Startup CPU even if mismatch.

The duration for distributed I/O parameterization is monitored during a startup;
you can set the parameterization time. A module is considered to be absent if the
monitoring time for it expires.

In the Cycle section, you define the cycle monitoring time under Maximum cycle
time. It is signaled if the cycle monitoring time is exceeded and this can lead to the
STOP operating state. You can also specify the Minimum cycle time, which indicates
the minimum duration of program cycle execution.

In the Communication load section, you set the time share for communication
under Cycle load due to communication. In addition to execution of the user pro-
gram, the CPU also carries out communication tasks, for example data transmis-
sion to another PLC station or downloading of blocks from a programming device.
This communication requires time, some of which has to be added to the execution
time of the main program. Specification of the communication load can be used to
control influencing of the cycle time to a certain extent. The time available for com-
munication is entered as a percentage with this parameter (communication load).
The cycle time is then extended by the factor 100 / (100 – communication load).

System and clock memory are operands controlled by the operating system which
can be scanned in the user program. For example, there is a bit memory which indi-
cates the occurrence of a diagnostic event, or a bit memory which changes its signal
state at a frequency of 2 Hz. During parameterization of the CPU, you activate the
system memories and/or the clock memories and assign an address to them. Fur-
ther information on bit memories in general and on system and clock memories
can be found in Chapter 4.1.3 “Operand area: bit memory” on page 90.

In the System diagnostics section, you activate the system diagnostics and define
the category of the alarms to be output and whether the alarms must be acknowl-
edged.

In the Web server section, you can activate the web server and set its properties.
Further details can be found in Chapter 18.3 “Web server” on page 796. The prop-

Fig. 3.3 Startup parameters with a CPU 1500

3.3 Parameterization of modules

67

erties of the display in the front flap of the CPU are set in the Display section. Such
properties are, for example, waiting times for standby and energy-saving mode and
password-protected display. The language in which the project texts are displayed
in the web server and on the display can be defined in the User interface
languages section.

In the Time of day section, you can set the time zone for the integral real-time clock
and activate the daylight saving time switchover (difference between daylight sav-
ing and standard time, beginning and end of the daylight saving time).

In the Protection section, you can protect the program in the CPU from unautho-
rized access. Here, you can assign a password for each type of access (read access,
full access, HMI access) or completely block access to the CPU (Fig. 3.4). Further
details can be found in Chapter 15.2.3 “Protecting the user program” on page 657.
In this properties group, you can also set the access permission for S7 communica-
tion with GET and PUT.

The System power supply section shows the power balance of the first power seg-
ment in the rack. If to the left of the CPU there is a system power supply module
which supplies the CPU, place a checkmark in the box Connection to supply
voltage L+.

The Connection resources section shows the number and distribution of the
reserved and available resources for the configured connections of the station and

Fig. 3.4 Settings for access protection

3 Device configuration

68

the communication-capable modules in the station. Further details are described
in Chapter 3.4.5 “Configuring a connection” on page 78.

The assigned inputs and outputs are shown in the Overview of addresses. The
module addresses, the assigned process image partitions with any assigned organi-
zation blocks, and the slots are displayed. The display encompasses the modules
that are both centrally and decentrally configured via PROFINET and PROFIBUS.

3.3.2 Addressing modules

Slot address, geographic address

Every slot in a PLC station has a fixed address. A module is unequivocally defined
by the slot address (“geographic address”). The CPU in an S7-1500 station has,
for example, the slot address of Rack 0, Slot 1.

If interface submodules are present on the module, each submodule is assigned an
additional module address. In this manner, every binary signal, every analog sig-
nal, and every serial connection in the system can be addressed unequivocally.

In the same manner, modules of the distributed I/O also have a “geographic”
address. In this case, the number of the PROFINET IO system or DP master system
and the station number replace the rack number.

By positioning a module on a rack in the hardware configuration, you automatically
define the slot address. The CPU's operating system requires the slot address in
order to explicitly address a specific module, e.g. during parameterization. The slot
address is not usually required in the user program, and is not used either.

Hardware identifier

The configuration editor assigns a hardware identifier for each object, including
modules. This is a constant value which cannot be changed by the user. With the
hardware identifier, you can address a module in the user program, for example
when querying the module status (see Chapter 4.4 “Addressing of hardware
objects” on page 107). All of the hardware identifiers used in the PLC station are
listed in the default tag table in the System constants tab (Chapter 4.12 “Hardware
data types” on page 143).

Logical address, user data address

Every peripheral byte is addressed by a number, the “logical” address. This logical
address defines the slot, and this corresponds to the absolute address. This is also
referred to as the user data address since you can use this address to access the user
data of the input/output modules in the user program, either via the process image
(inputs I and outputs Q) or directly on the modules (peripheral inputs I:P and
peripheral outputs Q:P). The range of the logical addresses starts with zero and
ends with 32 767, for inputs and outputs respectively.

3.3 Parameterization of modules

69

Module start address

The module start address is the smallest logical (user data) address of a module;
it identifies the relative byte zero of the module. The following module bytes are
then occupied consecutively with the logical addresses.

Using the hardware configuration you determine the position of the user data
addresses of a module in the address volume of the CPU by specifying the module
start address. The lowest logical address is the module start address, also for mod-
ules of the distributed I/O and even for the virtual slots in the user data interface of
an intelligent IO device or an intelligent DP slave.

The module start address is used in some cases to identify a module. It has no spe-
cial significance beyond that.

Configuring user data addresses

When configuring the modules, STEP 7 automatically assigns a module start
address starting with zero. You can see this address in the configuration table in the
bottom part of the working window or in the properties of the selected module in
the inspector window under I/O addresses. You can change the automatically
assigned start address (Fig. 3.5).

The logical addresses of the individual modules – independent of whether they are
centrally located or belong to the distributed I/O – must not overlap. For the input
and output modules, the logical addresses are assigned separately so that an input
byte can have the same number as an output byte.

All of the inputs and outputs of a module have a process image in the system mem-
ory of the CPU. During addressing, you set the way in which the process image of
the module is to be updated in the I/O addresses properties group. The entry

Fig. 3.5 Example of parameterization of I/O addresses of a digital input module

3 Device configuration

70

Automatic update means that the process image of this module will be automati-
cally updated before calling organization block OB 1. You can set a process image
partition and link it to a specific organization block. This process image partition
will then be updated when this organization block is called. If you do not assign an
organization block, the process image update can be initiated in the user program
using system blocks. If you do not assign a process image (entry None), you must
address the user data of the module directly via the I/O operand area. Further
details are described in Chapter 5.6.2 “Process image updating” on page 179.

3.3.3 Assigning parameters to signal modules

To parameterize the module properties, select the module in the working window
of the Device view and set the properties in the inspector window on the General
tab.

Common properties

In the General section of the module properties, you can enter a name under Project
information of the module and enter the higher level designation and location des-
ignation under Identification & Maintenance.

The configuration of modules with many I/O channels is simplified by the Channel
template. By default, all of the channels have the properties that are set in the chan-
nel template. Deviations from the template can be individually configured for the
corresponding channel.

In the section Module parameters > General, you configure the behavior during a
startup in the Comparison preset to actual module drop-down list if the actual mod-
ule differs from the configured module: From CPU, Startup CPU only if compatible,
or Startup CPU even if mismatch.

For correspondingly configured modules, you can configure a value status, which
indicates the validity of an assigned I/O signal with one bit each. For additional
details, see Section “Value status” on page 90. You activate the value status under
Module parameters > xx Configuration (xx = depending on the module type DI, DQ,
AI, or AQ).

The start address of the module, the assignment to a process image and to an orga-
nization block can be set under xx > I/O addresses (xx = depending on the type of
module DIn, DQn, AIn, or AQn; n = number of I/O channels). An example is shown
in Fig. 3.5 on page 69.

Hardware identifier shows the hardware identifier of the module, which is assigned
and listed in the System constants tab of the default tag table by the configuration
editor.

Digital input modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section DIn > Inputs > Channel. To adjust the settings, select Manual
under Parameter settings.

3.3 Parameterization of modules

71

In the Diagnostics field, activate the events (No supply voltage L+, Wire break) which
cause a diagnostic alarm to be sent when they occur, e.g. to the diagnostics buffer.

The input delay can be set in the Input parameters field. The longer the input delay,
the more immune the input signal is to high-frequency interfering signals.
However, this also increases the period until a change in the input signal is recog-
nized by the module.

The Hardware interrupts field contains the assignment of a hardware interrupt to a
status change of the input signal. You can assign a hardware interrupt organization
block to each signal edge and specify its processing priority.

Digital output modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section DQn > Outputs > Channel (Fig. 3.6):

In the Channel group diagnostics field or in the Diagnostics field, activate the events
(No supply voltage L+, Short circuit to ground) which cause a diagnostic alarm to
be sent when they occur, e.g. to the diagnostics buffer.

In the Output parameter field there is the entry from the channel template if the
Parameter settings are set to From template. If you set the parameter settings to
Manual, you can select the response of the output channel during the transition to
the STOP operating state from a drop-down list: Shutdown, Keep last value, or
Output substitute value 1.

Fig. 3.6 Example of parameterization of a digital output channel

3 Device configuration

72

Analog input modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section AIn > Inputs > Channel. To adjust the settings, select Manual
under Parameter settings.

In the Diagnostics field, activate the events (No supply voltage L+, Overflow,
Underflow, Common mode error, Reference junctions, Wire break) which cause a
diagnostic alarm to be sent when they occur, e.g. to the diagnostics buffer.

In the Measuring field, set the type of measurement (e.g. Voltage, Current, Resistor,
Thermocouple) and the associated parameters (Fig. 3.7).

The Hardware interrupts field contains the assignment of a hardware interrupt to a
limit violation of the input signal (the exceeding or undershooting of two configu-
rable limits). You can assign a hardware interrupt organization block to each limit
violation and specify its processing priority.

Fig. 3.7 Example of parameterization of an analog input channel
(diagnostics, measurement type)

3.4 Configuring a network

73

Analog output modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section AQn > Outputs > Channel. To adjust the settings, select Manual
under Parameter settings.

In the Diagnostics field, activate the events (No supply voltage L+, Wire break,
Short circuit to ground, Overflow, Underflow) which cause a diagnostic alarm to be
sent when they occur, e.g. to the diagnostics buffer.

In the Output field, set the type of measurement (Deactivated, Voltage, Current) and
the associated parameters and the response of the output channel when transition-
ing to the STOP operating state (Shutdown, Keep last value, or Output substitute
value).

3.4 Configuring a network

3.4.1 Introduction, overview

The network configuration permits the graphic display (on screen) and graphic
documentation (on paper) of the configured networks and their stations. Configu-

Fig. 3.8 Example of working area of network configuration (network view)

3 Device configuration

74

ration of the networking is part of the device configuration. If a PLC station is oper-
ated on its own, without HMI station and without data communication to other
PLC stations, the network configuration is not required. Connection of a program-
ming device for transfer of the user program and for program testing does not
require configuration either.

You can access network configuration with the project opened in the Portal view via
Devices & networks and Configure networks or in the Project view with the
Devices & networks editor which is positioned in the project tree underneath the
project. In the working window of the device configuration, change to the Network
view tab (Fig. 3.8).

In the top part of the working window, the Network view graphically displays all
PLC, PC, and HMI stations present in the project as well as the networking, provided
this has already been configured during device configuration. The lower part of the
working window (closed and not visible in the figure) contains the tabs Network
overview, Connections, I/O communication, and VPN. You can drag further stations
with the mouse from the hardware catalog into the working area and thus add them
to the project. Information on the selected object is displayed below the hardware
catalog. If you select an object in the working window, the inspector window dis-
plays the properties of the object.

3.4.2 Networking a station

“Networking” of stations corresponds to the wiring of modules with communica-
tion capability, i.e. a mechanical connection is established. A logical connection is
additionally required in order to transfer data via the cable. The logical connection
defines the transmission parameters between the modules.

The working window of the configuration editor shows the existing stations with
the modules with communication capability. The interfaces for the subnets are
highlighted.

Adding a station in the network configuration

In the hardware catalog under Controllers > SIMATIC S7-1500 > CPU > [folder:
CPU 15xx…] > [CPU], select the desired CPU and drag it with the mouse into the
working area. The graphic shows the CPU with the existing bus interfaces as a rep-
resentative for the complete PLC station.

If you drag the CPU to an existing subnet and if the CPU has an interface matching
the subnet, the interface is directly connected to the subnet when adding.

Adding a communication module in the network configuration

In the hardware catalog under Controllers > SIMATIC S7-1500 > Communication
modules > [folder: Subnet] > [folder: Modules] > [Module], select the desired commu-
nication module and drag it with the mouse into the station graphic on the working
area. The module is shown with the existing bus interfaces in the PLC station next
to the CPU.

3.4 Configuring a network

75

A CM module added in this manner is positioned by the configuration editor in the
lowest vacant slot in the rack.

If you drag the CM module to an existing subnet and if the CM module has an inter-
face matching the subnet, the interface is directly connected to the subnet when
adding and the CM module is displayed individually as a graphic. In the Device
view, the CM module is then positioned in a rack which is otherwise empty.

Adding a subnet

Select the desired bus interface in the station graphic and then select the Add sub-
net command from the shortcut menu. A subnet corresponding to the bus interface
is added.

Networking a station

Click on the Network button in the toolbar of the working window in order to net-
work stations.

If a subnet has not yet been created, select the bus interface in one of the stations
and drag it to a bus interface of the other station which matches the subnet.
The subnet is then added; the interfaces are connected by a colored line.

If the matching subnet is already present, select the bus interface in the station and
drag it to the subnet. The interface is connected to the subnet by a colored line.

Properties of the Ethernet network

The network configuration shows the Ethernet connections between several sta-
tions as a linear bus connection: all stations are hanging quasi on one line. Actually,
an Ethernet connection is a point-to-point connection between the stations: each
station is connected to exactly one partner station. The PROFINET interface of a
CPU 1500 has two ports which are interconnected by an integrated switch. A linear
network can thus quasi be set up.

The individual ports are shown in the topology view and you can then interconnect
them and set their properties.

Disconnecting a module from the subnet or assigning it to a different subnet

If you wish to disconnect a module from the subnet, select the bus interface and
then the Disconnect from subnet command in the shortcut menu. If all modules
have been disconnected from a subnet, it is shown as an isolated subnet at the top
left in the working area.

If you wish to assign a module to a new subnet, select the bus interface and then the
Assign to new subnet command in the shortcut menu. If several suitable subnets are
available, select the appropriate one from the displayed list.

3 Device configuration

76

3.4.3 Node addresses in a subnet

Each module – each “node” – connected to a subnet requires an unambiguous
address on the subnet (the “node address”) with which the module can be
addressed within the subnet. When assigning node addresses, attention must be
paid to the particular properties of the associated subnet.

Display of node addresses

To display the node addresses in the Network view, click in the toolbar of the work-
ing window on the Show address labels icon. The Network view shows the name of
the subnet and the node address. If the bus interface is not connected to a subnet,
only the node address is displayed (Fig. 3.9).

Setting node addresses

When networking a module, the configuration editor automatically claims the next
unused node address for the bus interface. You can change this automatically
assigned address in the module properties in the inspector window with the bus
interface selected.

3.4.4 Communication services and types of connection

The connection type specifies the protocol for the data exchange. You select the con-
nection type during the configured setup of the connection, depending on the com-
munication service to be carried out. The connection type is determined by the
communication functions during the programmed setup (Table 3.1).

PG communication is used for connecting a programming device to a PLC station.
The necessary connection is automatically set up during the setup of the online
mode. Data can be transferred via a PROFINET or PROFIBUS subnet and via a subnet
gateway.

Fig. 3.9 Display of node addresses in the network view

3.4 Configuring a network

77

HMI communication is used for connecting an HMI device to a PLC station. When
the online mode with the PLC station is initiated by the HMI device, the necessary
connection is automatically set up. A configured HMI connection is necessary in
order to be able to configure the data exchange between the PLC station and the
HMI station.

Open user communication is used for data exchange between PLC stations or with
external devices. It takes place via PROFINET (exception: open user communication
via FDL). A TCP, ISO-on-TCP and a UDP connection can be programmed with both
the configuration editor and with the communication functions. The communica-
tion functions are needed in both cases. Configured connections are set up stati-
cally and are permanently assigned to the connection resources. Programmed con-
nections can be set up dynamically and the connection resources can be released
after the data transfer. Programming open user communication via TCP,
ISO-on-TCP and UDP is described in Chapter 17.2 “Open user communication” on
page 751.

Open user communication via ISO is used for transferring data via Industrial
Ethernet. The CP 1543-1 communication module can exchange data with devices
that support the ISO transport connection. The communication service is suitable
for large volumes of data which are acknowledged upon receipt. The interfaces in
the user program of an S7 station are SEND/RECEIVE and FETCH/WRITE. For PC sta-
tions, there are C-functions for ISO transport services.

Open user communication via FDL (Fieldbus Data Link) is used for transferring
data via PROFIBUS FDL. The CM 1542-5 communication module can exchange data
with devices that support the sending or receiving of data according to the
SDA function (Send Data with Acknowledge). The receipt of data is confirmed by an
acknowledgement. The interface in the user program of an S7 station is
SEND/RECEIVE. For PC stations, there are C functions for the FDL services.

Table 3.1 Communication services and types of connection (selection)

Communication service Connection type Connection setup Subnet

PG communication – automatic PN DP

HMI communication HMI connection configured automatic PN DP

Open user communication
via TCP/IP
via ISO-on-TCP
via UDP
via ISO 1)

via FDL 2)

E-mail
FTP 1)

TCP connection
ISO-on-TCP connection
UDP connection
ISO connection
FDL connection
–
–

configured
configured
configured
configured
configured

programmed
programmed
programmed

programmed
programmed

PN
PN
PN
PN

PN
PN

DP

S7 communication S7 connection configured PN DP

Point-to-point communication – programmed PtP

1) via CP 1543-1
2) via CM 1542-5

3 Device configuration

78

Using e-mail communication, process data can be sent as an e-mail via Industrial
Ethernet. The necessary connection is programmed with the communication func-
tion TMAIL_C (see Chapter 17.2.6 “Further functions of open user communication”
in Section “Send e-mail” on page 758).

S7 communication is used for the exchange of data between PLC stations via
PROFINET or PROFIBUS. An S7 connection is configured using the configuration
editor. The communication functions for a unilaterally configured connection are
PUT and GET. For a bilaterally configured connection, they are BSEND/BRCV and
USEND/URCV. Chapter 17.3 “S7 communication” on page 761 describes how you
can program S7 communication.

Point-to-point communication transfers data via a serial point-to-point connection.
The CM PtP communication modules handle the data traffic via an RS 232 or
RS 422/485 port. The PtP connection is programmed using communication func-
tions (see Chapter 17.4 “Point-to-point communication” on page 767).

3.4.5 Configuring a connection

In order to configure a connection, click on the Connections button in the toolbar of
the working window, and select the connection type in the adjacent list. The devices
suitable for this connection type are then displayed highlighted in the Network
view.

Click with the left mouse button on a station, drag the connection line with the
mouse button pressed to the other station, and release the button. A connection
with the connection name is displayed as a blue/white patterned line. If no network-
ing has been configured, a suitable subnet will be automatically created. Several
logical connections can be created using one cable. These connections are then also
present in the connection table in the Connections tab in the bottom part of the
working window (Fig. 3.10).

If you wish to determine which connections have been created in a subnet, click the
Connections button and move the cursor to the subnet in the graphic display. If you
click on one of the connections listed in the tooltip window, this connection is dis-
played highlighted in the Network view.

Connection properties

A connection is defined unequivocally by means of the “connection ID”. In the com-
munication functions program, this connection ID specifies the connection via
which the data is to be transmitted. The connection ID can have different values in
the two connection partners.

The connection partners, the connection path, and the node addresses are dis-
played in the inspector window in the Properties tab under General. Fig. 3.10 shows
the connection properties for an HMI connection. If a station has several suitable
interfaces, you can select the appropriate one from a drop-down list. In the lower
part of the property sheet, you can set additional connection properties depending
on the type of connection.

3.4 Configuring a network

79

Connection resources

Every connection requires connection resources (memory areas in the operating
system of the module) for the end point of the connection and for the transition
point in a CM/CP module. For example, one connection is occupied in the CPU if
S7 functions are executed over a bus interface of the CPU; the same functions over
the bus interface of the CP module occupies one connection resource each in the
CP module and in the CPU.

Each CPU has a specific number of possible connections. Restrictions and rules
apply to use of the connection resources. For example, not every connection
resource can be used for every connection type. Connections are reserved for
PG communication, HMI communication, and communication with the web server.
These cannot be used for any other purpose.

The available connection resources depend on the CPU and the communication
modules used and must not exceed a defined upper limit for the PLC station.

Fig. 3.10 Representation of an HMI connection in the network configuration

3 Device configuration

80

The connection resources of an S7-1500 station are displayed in the properties of
the CPU. The display also contains the connection resources of the existing commu-
nication modules (Fig. 3.11).

3.4.6 Configuring a PROFINET subnet

The X1 interface of a CPU 1500 is a PROFINET interface, which can function in the
IO controller and IO device modes in addition to transferring data via Industrial
Ethernet. The interface has two ports which are interconnected by a switch. The
CPU 1516 has a second PN interface X2 only for transferring data via Industrial
Ethernet. Therefore, this interface lacks the setting options for PROFINET IO. This
interface has only one port. In addition, CP 1543-1 communication modules can be
operated in an S7-1500 station for the transfer of data to Industrial Ethernet.

To configure a PROFINET subnet, drag the PN interface of one station to the
PN interface of the other station with the mouse. A PROFINET subnet will be created
automatically. You can also drag a PN interface to an existing PROFINET subnet.

Setting the properties of a PROFINET subnet

To set the properties, select the PROFINET subnet and then the Properties tab in the
inspector window. Under General, you can assign a different name to the subnet
and also change the subnet ID if appropriate.

In the Domain management section, you compile the node groups for real-time
communication (Sync domains) and media redundancy (MRP domains). You can
find more details in Chapters 16.3.5 “Real-time communication in PROFINET” on
page 710 and “Media redundancy” on page 716. Under Overview isochronous mode
you can view an overview of all of the components involved in isochronous mode
and the relevant parameters. You can find the description for this in Chapter 16.7.2

Fig. 3.11 Connection resources of an S7-1500 station

3.4 Configuring a network

81

“Isochronous mode with PROFINET IO” on page 739.

Setting the properties of a PN interface

To set the properties, select the PN interface and then the Properties tab in the
inspector window. Under General you can set a different name for the interface.
Under Ethernet addresses you set the IP address and the subnet mask of the CPU
(Fig. 3.12).

Ethernet address (MAC address)

The MAC (Media Access Control) address is an unambiguous address assigned to
the device and defined by the manufacturer. It consists of three bytes with the man-
ufacturer ID and three bytes with the device ID. The MAC address is usually printed
on the device and is assigned to the latter during the configuration – if this has not
already been carried out in the factory. The bytes are assigned in hexadecimal form
(symbols 0 to F), where the individual bytes are separated by colons; example:
01:23:45:67:89:AB.

Fig. 3.12 Example of the properties window of a PN interface for PROFINET IO

3 Device configuration

82

IP address and subnet mask

Each station on the Industrial Ethernet subnet which uses the TCP/IP protocol
requires an IP (Internet Protocol) address. The IP address must be unique on the
subnet. The IP address consists of four bytes, each separated by a dot. Each byte is
represented as a decimal number from 0 to 255.

The IP address consists of the subnet address and the station address. The contri-
bution made by the network address to the IP address is determined by the subnet
mask. This consists – like the IP address – of four bytes which normally have a value
of 255 or 0. Those bytes with a value of 255 in the subnet mask determine the sub-
net address, those bytes with a value of 0 determine the node address (Fig. 3.13).

Values other than 0 and 255 can also be assigned in a subnet mask, thereby dividing
up the address volume even further. The bits with “1” must be occupied beginning
from the left without gaps.

The IP address is assigned one time for the IO controller when configuring with the
hardware configuration for the nodes of a PROFINET IO system. Starting from this,
the hardware configuration assigns the IP addresses to the IO devices in ascending
order.

Device name, device number

Every IO controller and every IO device has a device name. The device name is made
up as standard from the name of the CPU used, the interface number, and the name
of the PROFINET IO system: <CPU>.<Interface>.<IO system>. You can change the
name of the respective component in its properties.

The interface number is only used if the CPU has more than one PN interface.
The name of the IO system can be automatically appended to the device name, sep-
arated by a dot. To do this, activate the Use name as extension for PROFINET device
name checkbox in the properties of the PROFINET IO system.

Fig. 3.13 Example of the structure of an IP address

IP address

Subnet address

Subnet mask

Station address

192

192

255

0

168

168

255

0

1

0

0

1

3

0

0

3

The subnet address is
left-justified in the
IP address and is
generated by the
bit-by-bit ANDing of
the IP address with the
subnet mask.
The bit positions of the
subnet mask occupied
by "1" must be
positioned left-justified
without gaps.

IP address and subnet mask

3.4 Configuring a network

83

If the names used do not correspond to the conventions of IEC 61158-6-10 (name
components basically consisting of lower-case letters, numbers, and hyphens sep-
arated by a dot), STEP 7 generates a so-called “converted” name which is then down-
loaded to the device.

As a supplement to the device name, the hardware configuration assigns a device
number to each IO device which is independent of the IP address and which you can
change. Using this device number (station number) you can address the IO device
from the user program, e.g. as an actual parameter on a system block.

IP address of the router

A router establishes the connection between two subnets. If the target of a device
connection is in a different subnet, the IP address of the corresponding router must
also be specified. The connections of the router belong to two different subnets, and
the IP addresses must also be selected accordingly.

Setting the interface parameters

If the parameters of the PROFINET interface have not already been set during the
hardware configuration, they can be defined during the network configuration.

Prerequisite: A project with two or more stations is open and the device configura-
tion shows the stations in the Network view.

b Select the PROFINET interface, e.g. by clicking with the mouse in the graphic dis-
play or on the corresponding line in the tabular device or network overview.

b In the Properties tab of the inspector window, select the Ethernet addresses
section under General.

b If the subnet has not yet been created, click on the Add new subnet button to
connect the interface to a subnet.

b Enter the IP address and the subnet mask.

b Enter whether an IP router is used, and then the router address if applicable.

For operating on PROFINET IO, you can set the operating mode to IO Device, the
assigned IO controller, and the structure of the transfer areas in addition to the per-
manently set IO controller mode in the Operating mode section. Under Advanced
options you can set, among others, the options for real-time mode. Refer to
Chapter 16.3.3 “Configuring PROFINET IO” on page 705 for how to configure a
PROFINET IO system.

Release this PN interface for access under Web server access. You can configure the
activation of the web server in the properties of the CPU.

Hardware identifier shows the hardware identifier of the interface, which is
assigned and listed in the System constants tab of the default tag table by the con-
figuration editor.

3 Device configuration

84

3.4.7 Configuring a PROFIBUS subnet

The third bus interface X3 of a CPU 1516 is a DP interface for operating as a
DP master (firmware version 1.0). In each S7-1500 station, CM 1542-5 communica-
tion modules can be operated. They can be either a DP master or DP slave.

To configure a PROFIBUS subnet, drag the DP interface of one station to the
DP interface of the other station with the mouse. A PROFIBUS subnet will be created
automatically. You can also drag a DP interface to an existing PROFIBUS subnet.

Setting the properties of a PROFIBUS subnet

To set the properties, select the PROFIBUS subnet and then the Properties tab in the
inspector window. Under General, you can assign a different name to the subnet and
also change the subnet ID if appropriate. Under Network settings, you set the highest
node address, the transmission speed, and the profile in this subnet. Observe the
technical specifications of the involved modules when doing this (Fig. 3.14).

The selectable bus profiles have the following properties:

b The DP bus profile contains the optimized settings of the bus parameters for de-
vices which comply with the requirements of the EN 50170 Volume 2/3, Part 8-2
PROFIBUS standard, for example all SIMATIC S7 DP masters and DP slaves.

b Compared to the DP bus profile, the Standard bus profile additionally contains
the option for considering non-configured nodes during calculation of the bus
parameters, for example nodes from other projects.

b Select the Universal bus profile if the PROFIBUS FMS service is to be used in the
PROFIBUS subnet.

b When using the User-defined bus profile, you can set the parameters of the
PROFIBUS subnet yourself in the subnet properties. Correct functioning is only
guaranteed if the bus parameters are matched to one another. You should only
change the default values if you are familiar with how to configure the bus pro-
file for PROFIBUS.

Fig. 3.14 Example of network settings on the PROFIBUS

3.4 Configuring a network

85

Setting the properties of a DP interface

To set the properties, select the DP interface and then the Properties tab in the
inspector window. Under General you can set a different name for the interface.
Under PROFIBUS address you set the node address of the CPU (Fig. 3.15).

Every station on the PROFIBUS DP has a node address (station number) with which
it can be addressed unequivocally on the bus. The addresses in a PROFIBUS subnet
can be freely assigned in the range from 1 to 126. The node address 0 is reserved as
standard for a programming device, which can be connected temporarily to the
PROFIBUS subnet for servicing purposes.

The configuration editor assigns node addresses from 2 upwards as standard. It is
recommendable to assign the addresses without gaps.

Under Operating mode you set whether the module is to be operated as a DP master
or DP slave. There is only one DP master in a DP master system.

Under Time synchronization you set the synchronization mode for the real-time
clock. As master, the real-time clock synchronizes the clocks in other devices; as
slave, the real-time clock is synchronized by a clock in another device. This setting
is independent of the mode as DP master or DP slave.

SYNC/FREEZE is a function for simultaneous output (SYNC) and/or reading-in
(FREEZE) of the signal states of the DP slaves involved. Here you set which SYNC or
FREEZE group the module is to belong to. Further details can be found in
Chapter 16.4.5 “Special PROFIBUS configurations” on page 728.

Hardware identifier shows the hardware identifier of the interface, which is
assigned and listed in the System constants tab of the default tag table by the con-
figuration editor.

Fig. 3.15 Example of the properties window of a DP interface

4 Tags, addressing, and data types

86

4 Tags, addressing, and data types

4.1 Operands and tags

4.1.1 Introduction, overview

In order to control a machine or process, signal states and numerical values are
processed. Inputs are scanned and their signal states linked together in accordance
with the control task; the results then control the outputs. It is similar with the
numerical values; these are selected, calculated, compared, and saved. The PLC sta-
tion provides the following memory areas for these variable values (Fig. 4.1):

b Peripheral inputs are the memory areas on the input modules. They constitute
the direct interface to the controlled machine or plant, e.g. in order to scan the
settings of control elements or sensors.

b Inputs are an image of the peripheral inputs in the CPU's work memory. These are
normally processed by the user program when signal states of the machine or

Fig. 4.1 Operand areas in a PLC station

SIMATIC
timer functions

SIMATIC
counter functions

Data blocks with the Data operand area

b

b

b

Global data blocks with freely-configurable data structure

Instance data blocks with the data structure of a block (static local data)

ARRAY data blocks with the data structure of the ARRAY data type

Type data blocks with the data structure of a PLC or system data type

CPU data blocks created during runtime by means of the program

b

b

Process
image output

Peripheral
outputs

Process
image input

Peripheral
inputs

System memory

User memory

Input
modules

Output
modules

Bit memory

Temporary
local data

Operand areas in a CPU 1500

4.1 Operands and tags

87

plant are to be scanned and linked. The totality of the inputs is the process image
input.

b Peripheral outputs are the memory areas on the output modules. They constitute
the direct interface to the controlled machine, e.g. in order to control displays,
valves, or contactors.

b Outputs are an image of the peripheral outputs in the CPU's work memory. These
are normally processed by the user program if the results of the control func-
tions are to be output. The totality of the outputs is the process image output.

b Bit memories are a memory area in the CPU's system memory and are used as a
global intermediate memory for signal states and numerical values.

b The SIMATIC timer/counter functions save their data – contrary to the IEC tim-
er/counter functions – at a fixed position in the system memory. Therefore the
SIMATIC timer/counter functions have a fixed number range and their number
depends on the memory space provided by a CPU for this purpose. You can find
a description of these functions in Chapters 12.4 “SIMATIC timer functions” on
page 524 and 12.6 “SIMATIC counter functions” on page 545.

b Temporary local data refers to memory areas assigned by the CPU to a code block
during processing. The program can temporarily store signal states and numer-
ical values in the block; these lose their validity when processing of the block has
been completed.

b The term Data describes tags in the user memory which are compiled in data
blocks with various structures. A data block, which is assigned to a code block
(instance data block), contains the operand area static local data.

Access to the signal states and numerical values (the addressing) can be absolute or
symbolic. Absolute addressing uses operands such as %I2.5, for example, which
comprise the operand ID (I in this case) and the memory address (byte 2 bit 5 in this
case). If a name and a data type are assigned to an operand (symbolic addressing),
this is known as a tag. For example, the operand %I2.5 could have the name
“Switch on machine” and the data type BOOL.

The data type of an operand or tag defines which values the individual bits of the
operand or tag have. An individual bit has the data type BOOL and one refers to a
binary operand or binary tag. Operands and tags with a data width of one byte
(8 bits), one word (16 bits), one doubleword (32 bits), or one long word (64 bits) are
referred to as digital operands or digital tags. The data types for digital tags are
extremely diverse. For example, the data type INT (integer) refers to a 16-bit wide
fixed-point number, the data type CHAR to a character in ASCII code, and the data
type ARRAY to a combination of several tags with the same type of data under one
tag name.

4.1.2 Operand areas: inputs and outputs

The peripheral inputs are the operands on the input modules. They contain the sig-
nal states delivered by the machine or process to the programmable controller via

4 Tags, addressing, and data types

88

the wiring. These signal states are automatically copied by the CPU's system pro-
gram into the process image input prior to each processing cycle of the user pro-
gram (see Chapter 5.6.2 “Process image updating” on page 179).

The process image input is located in the CPU's system memory. It contains the
operand area Inputs. The inputs are used to scan binary signals in the user program
and to link their signal states. This means that the input modules are not directly
scanned in the normal case, it is the process image input which is scanned.

The peripheral inputs are read-only. Inputs can be read and written. Inputs not
occupied by peripheral inputs can be used as additional intermediate memories
like the bit memories.

The peripheral outputs are the operands on the output modules. They contain the
signal states with which the machine or process is controlled via the wiring.
The CPU's system program automatically transfers the signal states of the process
image output to the peripheral outputs prior to each processing cycle of the user
program (see Chapter 5.6.2 “Process image updating” on page 179).

The process image output is located in the CPU's system memory. It contains the
operand area Outputs. The outputs are used to save the results of the control func-
tions in the user program and to output these to the machine. This means that the
output modules are not directly written in the normal case, it is the process image
output which is written.

Outputs can be read and written. Outputs not occupied by peripheral outputs can
be used as additional intermediate memories like the bit memories.

Access to the peripheral outputs is write-only. Writing of the peripheral outputs is
automatically tracked by the process image output, and therefore there is no differ-
ence in the signal states of the outputs and the peripheral outputs with the same
address.

User data area

With SIMATIC S7, every module can have two address areas: a user data area which
can be directly addressed by loading and transferring, and a system data area for
the transfer of data records.

When the modules are addressed it is irrelevant whether they are located in central
racks or are used as distributed I/O. All modules are arranged equally in the (logi-
cal) address volume.

The user data properties of a module depend on the module type. These are digital
or analog I/O signals for signal modules or, for example, control and status infor-
mation for technology and communication modules. The amount of user data is
module-specific. There are modules which occupy one, two, four, or more bytes in
this area. Occupation always commences at the relative byte 0. The address of the
relative byte 0 is the module start address, which is defined by the hardware con-
figuration.

4.1 Operands and tags

89

The user data represents the I/O operand area, divided into peripheral inputs and
peripheral outputs depending on the transfer direction. The data transfer between
the I/O area and the process images can be controlled from the system program or
from the user program.

Consistent user data transfer

Data consistency means that data is handled together. Transfer of the data block
must not be interrupted and the data source and destination must not be changed
during the transfer either.

A CPU 1500 retains the data consistency for tags with all elementary data types and
system data types. This means a read or write operation for a tag with one of these
data types cannot be interrupted.

The following system functions are available for the consistent transfer of large vol-
umes of data: UBLKMOV, which performs an uninterruptable transfer of a tag or an
absolutely addressed data area, UMOVE_BLK, which performs an uninterruptable
transfer of elements of an ARRAY data field, and UFILL_BLK, which fills an area of
an ARRAY data field without interruption. Since the copy process using these sys-
tem functions cannot be interrupted by other actions of the operating system, the
response time to an interrupt that occurs during the transfer can be increased.

Interrupt events can be blocked and released using the system functions DIS_IRT
and EN_IRT. The system functions DIS_AIRT and EN_AIRT allow higher-priority
interrupt events to be delayed. During the blocking or delaying phase, the process-
ing of the program cannot be interrupted (this includes any data transfer that was
initiated by the user program during this time).

On the system side, communication with the programming device or with other
PLC stations can interrupt the execution of the program, because the communica-
tion takes place in “time slice mode” during program execution. Communication
has priority 15. A program in an organization block which has an execution priority
higher than 15 thus cannot be interrupted by communication functions of the oper-
ating system.

Data between the CPU and an IO device or a DP standard slave can be consistently
transferred using the system functions described in Chapter 16.5.1 “Read and write
user data” on page 730.

During data exchange between PLC stations, the volume of the consistently trans-
ferred data depends on the communication functions used. The coordination of
access to the transferred data in the user program can take place using the control
parameters of the communication functions. For the unilaterally configured data
transfer with GET and PUT, during which the operating system takes over the data
transfer in the server CPU, the maximum volume of consistently transferred data is
462 bytes for a CPU 1500.

Diagnostic and parameter data in data records is always transferred consistent, for
example diagnostic data with RALRM or parameter data transferred to and from
modules with RDREC and WRREC.

4 Tags, addressing, and data types

90

Value status

The value status (quality information, QI) indicates the validity of an I/O signal. The
value status occupies one bit per I/O channel in the process image input. If this bit
has signal state “0”, the value of the assigned I/O channel is invalid.

The value status is activated for correspondingly configured modules with the
hardware configuration. For digital input modules, the value status is then saved at
the user data address in the process image. Depending on the number of output
signals, additional input bytes are assigned for digital output modules. The process
is similar for analog modules: The value status of analog input modules is then
saved at the user data address in the process image input (one bit per analog chan-
nel). For analog output modules, an additional input byte is assigned for the value
status.

The value status is transferred along with the user data.

4.1.3 Operand area: bit memory

The bit memories are, as it were, the “auxiliary contactors” of the controller. They
mainly serve to save binary signal states. They can be treated like outputs, but are
not connected “to the outside”. The bit memories are located in the CPU's system
memory and are thus always available.

The bit memories are used if intermediate results are to be valid beyond block lim-
its and are to be processed in several blocks.

Bit memories can be read and written without limitation.

Retentive bit memories

Some of the bit memories can be “retentive”, i.e. this part retains its signal state
even when deenergized. Retentivity always starts at memory byte 0 and ends at the
set upper limit. You can set the retentivity in the PLC tag table or in the assignment
list. Further information can be found in Chapter 5.1.4 “Retentive behavior of oper-
ands” on page 148.

System memory

A CPU 1500 provides a memory byte whose signal states are controlled by the CPU's
operating system. Fig. 4.2 shows the structure of this system memory byte.
You define the number of the system memory byte when assigning the CPU param-
eters. The tags with default identifiers are entered in the PLC tag table when the sys-
tem memory byte is activated. You can change the default identifiers. The individ-
ual bits have the following meanings:

b Bit 0: Is set to signal state “1” if the main program is executed for the first time
after the CPU is switched on. For all of the other execution cycles, it has signal
state “0”.

4.1 Operands and tags

91

b Bit 1: Is set to signal state “1” if the diagnostics state changes compared to the
previous program cycle; otherwise it has signal state “0”. During STARTUP and
in the first RUN cycle, bit 1 has signal state “0”.

b Bit 2: Is always set to signal state “1” (TRUE); can be used in the program as a
binary constant.

b Bit 3: Is always set to signal state “0” (FALSE); can be used in the program as a
binary constant.

Please note that the system memory byte must not be overwritten by the user pro-
gram since this could result in incorrect responses in the user program and oper-
ating system.

Clock memories

Many processes in the controller require a periodic signal. This can be implemented
using timer functions (clock generator), cyclic interrupts (time-based program exe-
cution), or in a particularly simple manner with clock memories.

Fig. 4.2 Assignment of the system and clock memory byte

Clock memory byte Clock_Byte

0.625 Hz (slow flashing light) Clock_0.625Hz
0.5 Hz Clock_0.5Hz

1 Hz Clock_1Hz
1.25 Hz (flashing light) Clock_1.25Hz

2 Hz Clock_2Hz
2.5 Hz (fast flashing light) Clock_2.5Hz

5 Hz (flickering light) Clock_5Hz
10 Hz Clock_10Hz

System memory byte System_Byte

without function
without function

without function
without function

Always "0" AlwaysFALSE
Always "1" AlwaysTRUE

Diagnostics changed DiagStatusUpdate
Initial run FirstScan

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Assignment of clock memory and system memory byte

The tags are entered in the PLC tag table
with default identifier when the
corresponding byte is activated.

4 Tags, addressing, and data types

92

Clock memories are memories whose signal state changes periodically with a
pulse-to-pause ratio of 1:1. The clock memories are combined in one byte whose
individual bits correspond to fixed frequencies (Fig. 4.2). You define the number of
the clock memory byte when assigning the CPU parameters. The tags with default
identifiers are entered in the PLC tag table when the clock memory byte is activated.
You can change the default identifiers.

Note that the clock memories are updated asynchronous to processing of the main
program. The clock memories are also updated in the startup program.

Please note that the clock memory byte must not be overwritten by the user pro-
gram since this could result in incorrect responses in the user program and oper-
ating system.

4.1.4 Operand area: data

The operand area Data is organized in data blocks which are present in the user
memory. Data blocks are available in several versions:

b Global data blocks have a data structure which is defined when configuring the
data block.

b Instance data blocks are derived from function blocks. The data structure of an
instance data block is defined in the function block. An instance data block con-
tains the values of the block parameters and static local data for calling the func-
tion block, for an “instance”. The instance data is local data for the program in
the function block. Certain system blocks also use instance data blocks.

b ARRAY data blocks have the structure of the ARRAY data type: They consist of tags
with similar data types. The index starts with zero and has a configurable upper
limit.

b Type data blocks are derived from data types. The data structure of a type data
block is based on a PLC data type or system data type.

b CPU data blocks are data blocks that are created with CREATE_DB during runtime
by the user program.

Data blocks are global objects which are addressed in absolute mode using a num-
ber, or symbolically using a name. The name of the data block must be unique on
the CPU. The data tags (data operands) within a data block are local data; they are
declared when creating the data block (global data block, ARRAY data block), func-
tion block (instance data block), data type (type data block), or template (CPU data
block). The name of a data tag must be unique in the data block. In association with
the data block, a data tag has the characteristic of a global tag.

Data tags can basically be read and written without limitation; limitations may exist
with certain (system) data types. The data tags of a data block with the activated
attribute Data block write-protected in the device cannot be overwritten by the pro-
gram.

The data present in data blocks can be retentive, i.e. it retains its value even when
deenergized. Further information can be found in Chapter 5.1.4 “Retentive behav-

4.1 Operands and tags

93

ior of operands” on page 148.

4.1.5 Operand area: temporary local data

Temporary local data includes operands that are saved in the local data stack
(L stack) in the CPU's system memory. Temporary local data is available in each code
block. It serves as a buffer for results that are produced during block processing.
Its contents are lost at the end of block processing. The data cannot be accessed
from other blocks.

The operating system of a CPU 1500 provides 64 KB of temporary local data for each
priority class (e.g. in the main program or in the hardware interrupt program) and
a maximum of 16 KB for processing an individual block.

Organization blocks with standard access (the block attribute Optimized block
access is deactivated) provide 20-byte long start information in the temporary local
data. The general structure is described in Chapter 4.11.4 “Start information” on
page 142. A supplemental description on the contents of the start information can
be found at the corresponding organization block. In some cases, organization
blocks with the activated Optimized block access attribute provide start information
in the block interface as input parameters.

The amount of temporary local data required by a block which has already been
compiled can be seen in the call structure of the user program. With the project
open, select the Program blocks folder in the project tree and then select the
Call structure command from the shortcut menu. The occupied temporary local
data is displayed in the call path and per block in the table which is then output.

Use of temporary local data

The tags in the operand area Temporary local data are declared in the block inter-
face. They can accept all of the elementary, structured, PLC and most system data
types. All operations which also apply to the bit memories are permissible for the
temporary local data. Note, however, that the values of the temporary local data lose
their validity when block processing is finished. For example, a temporary local
data bit is not suitable as an edge memory bit since it does not retain its signal state
beyond block processing.

Within the block, the temporary local data can be read and written without limita-
tions. Temporary local data cannot be preallocated with a specific value. In order to
use temporary local data for meaningful purposes, it must be written before being
read.

For blocks with standard access, the temporary local data have a quasi-random
value before they are written for the first time. For blocks with the Optimized block
access attribute activated, tags with an elementary data type or components of
structured tags with an elementary data type have the default value preset. For tem-
porary local data with a PLC data type, the components are given the start value
from the declaration of the PLC data type (exception: STRING tags). STRING tags are

4 Tags, addressing, and data types

94

provided with the correct length specifications and the characters are preset
with '$00'.

Temporary local data is addressed symbolically. The exceptions for STL are
described in Chapter 10.7.6 “Absolute addressing of temporary local data” on page
454.

4.2 Addressing of operands and tags

4.2.1 Signal path

By wiring the machine or plant you define which signals are connected to the
PLC station, and where (Fig. 4.3).

An input signal, e.g. the signal from pushbutton +HP01-S10 with the significance
“Switch on motor”, is connected to a specific terminal on an input module. You con-
figure the slot in which the module is inserted in the hardware configuration using
STEP 7. You also use the hardware configuration to set the module start address
with which the signals are addressed by the module in the user program. This set-
ting is simultaneously the address in the process image.

Fig. 4.3 Signal path from sensor to process image

+HP01
-S10

System memory

7 6 5 4 3 2 1 0

Byte 4

Byte 5

Absolute
addressing

Process
image input

00

77

00

77

Byte 4Relative
byte 0

Bit

(Byte 5)Relative
byte 1

Peripheral
inputs

Input
terminals

Input module

Module
start address

Slot
address

Signal path from the sensor to the process image

The identifies a
specific module in the station.
It contains the number of the
rack and the number of the
slot.

slot address The
identifies the module in the
"logical" address space of the
station. It represents the
lowest byte of the module.

module start address The
is derived from the

module start address. In the
example, the absolute address
of the input signal is: %I5.2.

address in the process
image

4.2 Addressing of operands and tags

95

The CPU copies the signal from the input module into the process image input by
default every time before program execution is started, where it is then addressed
as the operand “Input” (e.g. %I 5.2). The expression “%I 5.2” is the absolute address.

You can now give this input a name in that you assign a name corresponding to the
significance of this input signal (e.g. “Switch on motor”) to the absolute address in
the PLC tag table. The expression “Switch on motor” is the symbolic address.

The same applies analogously to the output signals. In the hardware configuration
you define the slot for the output module and also the module start address. This is
then also the address in the process image output. You can also assign a name to this
address in the PLC tag table.

4.2.2 Absolute addressing

During absolute addressing, a signal state or a numerical value is addressed
directly via the address in the operand area. The operand, for example %I2.5, con-
tains the operand ID, the byte address, and – with binary operands – the bit address
separated by a dot. The operand ID contains the operand area and specification of
the operand width. An absolute address is displayed with a preceding percent
sign (%).

The bits in a byte are counted from right to left, starting with zero. Counting is
started from the beginning for each byte. Each operand area is organized in bytes.
The bytes are counted commencing at the start of the area with zero. With an oper-
and of byte width, the number of the byte is specified as the byte address; with an
operand of word width, the number of the least significant byte; and with an oper-
and of doubleword width, the least significant byte number in the doubleword. Fig.
4.4 clarifies this using an example of memory bytes %MB24 to %MB27.

The absolute addressing of a 64-bit wide tag (the absolute addressing of a long
word) is not possible.

Fig. 4.4 Example of bit and byte assignments

%MW24

%MD24

%MW26

%MB24

%MW25

%MB26%M25.1 %M27.7

24 25 26 27Byte number

Bit number

Absolute bit and byte addressing

7 7 7 76 6 6 65 5 5 54 4 4 43 3 3 32 2 2 21 1 1 10 0 0 0

4 Tags, addressing, and data types

96

Absolute addressing of inputs, outputs, and bit memories

The addresses of the peripheral inputs and outputs (the input and output channels
on the modules) are defined during configuration of the station design using the
hardware configuration. The assigned inputs and outputs in the process image
have the same addresses. To identify a peripheral address, “:P” is appended to the
input or output address (Table 4.1).

A peripheral address is only considered to be present if the correspondingly
addressed module is also present. Access to a non-existent peripheral address trig-
gers an error. The operand areas Inputs, Outputs, and Bit memories are present in
the complete, CPU-specific length. Therefore inputs and outputs which are not
assigned to a module can also be addressed. In this case they behave like bit mem-
ories.

Absolute addressing of data operands

Addressing of tags in an ARRAY data block is described in Chapter 4.3.3 “Indirect
addressing of a tag in an ARRAY DB” on page 102.

A data operand is a local tag within a data block. If addressing of the data operand
is carried out in conjunction with the data block, the data operand is unique on the
CPU, in other words it is a global tag. In the case of this “complete addressing”, the
data block precedes the data operand. For example, %DB10.DBW4 addresses data
word 4 in data block 10. The data operand itself can be addressed with a width of
bit, byte, word or doubleword (Table 4.2).

Table 4.1 Absolute addressing of inputs, outputs, and bit memories

Operand
area

Operand ID Bit
(1 bit)

Byte
(8 bits)

Word
(16 bits)

Doubleword
(32 bits)

Input I %Iy.x %IBy %IWy %IDy

Peripheral
input

The input operand is
expanded with :P

%Iy.x:P %IBy:P %IWy:P %IDy:P

Output Q %Qy.x %QBy %QWy %QDy

Peripheral
output

The output operand is
expanded with :P

%Qy.x:P %QBy:P %QWy:P %QDy:P

Bit memory M %My.x %MBy %MWy %MDy

y = byte address; x = bit address

Table 4.2 Absolute complete addressing of data operands

Operand
area

Operand ID Bit
(1 bit)

Byte
(8 bits)

Word
(16 bits)

Doubleword
(32 bits)

Data DB %DBz.DBXy.x %DBz.DBBy %DBz.DBWy %DBz.DBDy

z = data block number, y = byte address, x = bit address

4.2 Addressing of operands and tags

97

The numbering of the data blocks commences at 1 and ends at a CPU-specific upper
limit. Data block DB 0 does not exist. The number and size of the data blocks de-
pends on the CPU used. A data block for a CPU 1516 can be 5 MB in size, for example.

Data operands can only be addressed in absolute mode if the Optimized block access
block attribute is deactivated in the data block. The absolute address of a data oper-
and is shown in the Offset column of the block interface once the data block has
been compiled.

The STL programming language gives you the capability of opening the corre-
sponding data block beforehand and then only addressing the data operands them-
selves (“partial addressing”). This option is described in Chapter 10.7.5 “Partial
addressing of data operands” on page 453.

You can also address a data operand in a data block which was transferred via a
block parameter with the data type DB_ANY. Further details can be found in
Chapters 4.8.6 “Parameter type DB_ANY” on page 133 and 4.3.4 “Indirect address-
ing of a data block” on page 102.

Absolute addressing of static local data

The static local data – just like the block parameters – are local tags in a function
block which are addressed symbolically. The exceptions for STL are described in
Chapter 10.7.5 “Partial addressing of data operands” on page 453.

The values of the block parameters and the static local data of a function block are
present in a data block, and therefore these tags can be addressed by each code
block like “normal” data tags. For data blocks with the Optimized block access attri-
bute deactivated, absolute addressing can be used.

Absolute addressing of temporary local data

The temporary local data are local tags in a code block which are addressed symbol-
ically. The exceptions for STL are described in Chapter 10.7.6 “Absolute addressing
of temporary local data” on page 454.

Absolute addressing of SIMATIC timer/counter functions

The SIMATIC timer/counter functions present in the system memory are addressed
by a number starting at 0. The upper limit of the numbering – according to the max-
imum number of timer and counter functions – is CPU-specific. The timer and
counter functions can be selected as desired within the quantity framework. Exam-
ple of absolute addressing: %T15 corresponding to the timer function number 15.
Table 4.3 shows the operand IDs of these functions.

Table 4.3 Absolute addressing of SIMATIC timer and counter functions

Operand area Operand ID Address

SIMATIC timer function T n

SIMATIC counter function C n

n = number

4 Tags, addressing, and data types

98

4.2.3 Symbolic addressing

During symbolic addressing, an operand is assigned an alphanumeric identifier
(name, symbol) and a data type. This is called a tag. For example, the operand %I2.5
could have the name “Switch on machine” and the data type BOOL. The tag “Switch
on machine” can then be used in the program instead of the operand %I2.5.

Tag names can be made up of letters, digits, and special characters (except double
quotes). No distinction is made between upper and lower case when checking the
name.

Symbolic addressing of global tags

Global tags can be addressed by any block in the entire program. They are declared
in the PLC tag table, and have a unique name within the user program. Global tags
are located in the operand areas Inputs, Outputs, Bit memories, SIMATIC timer
functions, and SIMATIC counter functions. The name of a peripheral input is
derived from the name of the input. The name of a peripheral output is derived
from the name of the output.

Global tags must not have a name which has already been assigned to a constant,
PLC data type or block. The program editor indicates the name of a global tag in
quotation marks.

Symbolic addressing of block-local tags

Block-local tags are declared within a block in its interface definition. They have a
unique name within the block. The same tag name can be used in another block
with another meaning. The operand areas of the block-local tags are

b the temporary local data in the system memory for code blocks,

b the block parameters for functions (FC) and function blocks (FB),

b the static local data in the instance data block for function blocks (FB), and

b the data operands for data blocks (DB).

The program editor indicates the name of a block-local tag with a preceding num-
ber character (#). If the name includes special characters, it is additionally indicated
in quotation marks.

Symbolic addressing of data tags

Symbolic addressing of data tags is carried out during complete addressing. Sym-
bolic partial addressing is not possible. With complete addressing, the data tag is
given the characteristic of a global tag. Example: The tag name Activate_motor can
be present in both data blocks “Motor_1” and “Motor_2”. The address “Motor_1”.Acti-
vate_motor addresses a different tag than the address “Motor_2”.Activate_motor.
The general symbolic address of a data tag is: “Data block name”.Tag name. All data
tags can thus be addressed, even those in an instance data block.

4.2 Addressing of operands and tags

99

If the instance data of a function block must be addressed, i.e. the block parameters
and static local data, only the tag name, along with a preceding number character,
is specified: #Local data. For a function block, the instance data are local tags.

4.2.4 Addressing of a tag area

It is possible to address an area within a tag (“slice access”). This area can be a bit,
byte, word, or doubleword.

If the block attribute IEC check is activated, the tag must have a bit-serial data type.
If the block attribute IEC check is deactivated, it can also be a fixed-point data type.
You address the areas within the tags as follows:

b A bit: Tag_name.X<bit number>

b A byte: Tag_name.B<byte number>

b A word: Tag_name.W<word number>

b A doubleword: Tag_name.D<doubleword number>

The numbering begins with zero at the least significant subarea in each case and
must remain within the tag length.

Example: A tag with the name Temperature and data type INT is stored in the data
block Store. The most significant bit (the sign bit of data type INT) is addressed with
“Store”.Temperature.X15.

4.2.5 Addressing a constant

A constant is a fixed numerical value. The notation for a directly entered constant
and the value range depend on the required data type (see Table 4.6 on page 114).
Constants in floating-point format can be entered in exponential format
(e.g. +1.234567E+02) or in decimal format (e.g. -123.4567).

Globally valid constants can be assigned a name in a PLC tag table in the User
constants tab. Letters, digits, and special characters – except double quotes – are
permissible for the name. All elementary data types are permissible.

The name of a constant is unique on the CPU. A name with which another constant,
PLC tag, PLC data type, or block has already been identified cannot be assigned to a
constant. No distinction is made between upper and lower case when checking the
name. The program editor represents a symbolically addressed constant in quota-
tion marks.

The constants created by the configuration editor or the program editor are listed
in the default tag table in the System constants tab. They can be used with their
name or with the numeric value (see Chapter 4.12 “Hardware data types” on page
143).

4 Tags, addressing, and data types

100

4.3 Indirect addressing

4.3.1 Overview

Indirect addressing allows you to address operands whose addresses are only
defined during runtime. You can also use indirect addressing to repeatedly execute
program sections, e.g. in a loop, and address different operands in each cycle.

Since with indirect addressing the addresses are only calculated during runtime,
the danger exists that memory areas can be overwritten unintentionally.
The automation system could then react in an unexpected manner! Therefore be
extremely careful when using indirect addressing!

You have the following options for indirect addressing:

b Indirect addressing of ARRAY components.
The index of an ARRAY tag is variable and can be calculated during runtime.

b Indirect addressing of components in an ARRAY data block.
A data tag in an ARRAY data block can be addressed via an index with a variable
value.

b Indirect addressing of a data block.
The number of a data block that is transferred via a block interface can be
changed during runtime.

b Indirect addressing using the “variable” ANY pointer.
The value of a tag in the temporary local data with the data type ANY can be
changed during runtime and used as an address for any operand area.

b For SCL: with PEEK and POKE.
PEEK reads a value from an operand with an address than can be dynamically
preset. PEEK writes a value to an operand with an address than can be dynami-
cally preset.

b For STL: with address registers.
Addressing via an address register allows access to operands with an address
that is only calculated during runtime. The description can be found in
Chapters 10.7.8 “Memory-indirect addressing” on page 458 and 10.7.9 “Register-
indirect addressing” on page 461.

4.3.2 Indirect addressing of ARRAY components

A tag with the data type ARRAY comprises a fixed number of components with the
same data type. Each array component can be individually addressed via an index
with limits that are defined when the ARRAY tags are declared. Example: A tag with
the name #Measurement_series and the data type ARRAY [1..12] OF INT consists of
12 components. The first component is addressed with #Measurement_series[1].

An array component can also be addressed with an index tag with a value that is
only calculated during runtime. Example: #Measurement_series[#index] addresses
the array component with an index that is the value of the #index tag.

4.3 Indirect addressing

101

The index tag can be an absolutely or symbolically addressed global or local tag
with a fixed-point data type (except for LINT and ULINT for LAD, FBD and STL). This
indirect addressing is also possible with multi-dimensional arrays and with the
addressing of partial arrays. An example is shown in Fig. 4.5.

Note: For an indirectly addressed ARRAY component which is created as an actual
parameter on an in/out parameter, a change to the index tags in the block program
has no effect. The value is written back into the same ARRAY component from which
it was read.

Fig. 4.5 Examples of dynamic indexing of array components

MOVE

MOVE

IN

IN

OUT

OUT

LAD, FBD

Examples of dynamic indexing of array components

DeclarationName

Array_1dim

Array_3dim

#Array_3dim[#index1,#index2,#index3]

#Array_3dim[#index1,#index2]

index1

index3

index2

var_int

var_word

#var_word

#Array_1dim

Static

Static

Static

Static

Static

Static

Static

ARRAY [1..4] OF WORD

ARRAY [1..4,1..4,1..4] OF WORD

INT

INT

INT

INT

WORD

One-dimensional array

Three-dimensional array

Index tag

Index tag

Index tag

INT tag

WORD tag

DescriptionData type

SCL

STL

#var_word := #Array_3dim[#index1, #index2, #index3];
#Array_1dim := #Array_3dim[#index1, #index2];

L #Array_3dim[#index1, #index2, #index3]
T #var_word

CALL BLKMOV
Variant
SRCBLK := #Array_3dim[#index1, #index2]
RET_VAL := #var_int
DSTBLK := #Array_1dim

Dynamic addressing of a component in a three-dimensional array

Assignment of a partial array

Static local tags in the interface of a function block

4 Tags, addressing, and data types

102

4.3.3 Indirect addressing of a tag in an ARRAY DB

An ARRAY data block consists of data tags which all have the same data type and are
addressed via an index. The general syntax for addressing a tag in an ARRAY data
block is as follows:

b For LAD, FBD, and STL: “<DB_name>”.THIS[<Index>].<Component_name>

b For SCL: “<DB_name>”.“THIS”[<Index>].<Component_name>.

<DB_name> is the name of the ARRAY data block. <Index> addresses a component
(a data tag) in the ARRAY data block. <Index> can be a constant or a tag with a fixed-
point data type. <Index> always begins with zero and ends at a configurable upper
limit. <Component_name> is the name of a component. If the component has a
structured data type, the individual elements of the data type – separated by a dot –
can be addressed directly.

The way in which an ARRAY data block is added is described in Chapter 14.4.3
“ARRAY data blocks” on page 641. Functions are available for accessing an ARRAY
data block in the load memory. These are described in Chapter 14.4.4 “System
blocks for access to ARRAY data blocks” on page 642. With these blocks, the data
block can also be indirectly addressed.

Fig. 4.6 shows an example of the structure of the data tags and their addressing in
an ARRAY data block. A PLC data type with the name Fan_data_type has been cre-
ated. Based on this PLC data type, an ARRAY data block with 6 components (num-
bered 0 to 5) has been added. All of the components have the PLC data type Fan_-
data_type. The tags for controlling the fan are addressed in the program (Start,
Start_EM, Stop, Drive). The fans to be controlled are selected using the #Number tag.

4.3.4 Indirect addressing of a data block

A data block is transferred to the called block via a block parameter with the data
type DB_ANY (see Chapter 4.8.6 “Parameter type DB_ANY” on page 133). In the pro-
gram of the called block, you can access a data operand of this transferred data
block, although the data block and thus its structure is not known at the time the
program is created.

LAD, FBD, SCL: A data operand in a transferred data block is addressed with the
absolute address. If, for example, the block parameter with the data type DB_ANY
has the name #Data, you can address a bit with #Data.%DBXy.x, a byte with
#Data.%DBBy, a word with #Data.%DBWy, and a doubleword with #Data.%DBDy
with y as byte number and x as bit number. Note that you can only determine the
absolute address of a data operand – after the compilation – in a data block with the
Optimized block access attribute deactivated.

STL: A data block that was transferred via a block parameter can be opened in the
statement list both via the DB register and via the DI register. Then the data oper-
ands of this data block can be completely or partially addressed. Further details can
be found in Chapters 10.7.4 “Working with the data block registers” on page 451
and 10.7.5 “Partial addressing of data operands” on page 453.

4.3 Indirect addressing

103

4.3.5 Indirect addressing with an ANY pointer

An ANY pointer in the representation of a constant P#Operand Type Quantity points
to an operand area with fixed address. Even if you provide a tag for a block param-
eter with the data type ANY, the program editor will generate a constant ANY
pointer to this tag. In neither case is it possible to change the tag or data area during
runtime.

An exception is made by the program editor if the actual parameter itself is in the
temporary local data and is of the type ANY. No other ANY pointer is then produced;
in this case the program editor interprets this ANY tag as an ANY pointer to an actual
parameter. This means that the ANY tag must be formatted like an ANY pointer and
written with the required values in the user program prior to its use. The structure
of an ANY pointer is described in Chapter 4.9.4 “ANY pointer” on page 135.

Fig. 4.6 Example of tag addressing in an ARRAY data block

4 Tags, addressing, and data types

104

You can use the “variable” ANY pointer in a block with the Optimized block access
attribute deactivated. To do this, first create a tag with the data type ANY in the tem-
porary local data of the block interface. Overlay this tag with a data structure, which
makes it possible to provide the individual components of the ANY pointer with val-
ues. You can now create the ANY pointer that is compiled in this way on a block
parameter with the data type ANY of a block or of a (program) function.

Fig. 4.7 shows an example of application of the “variable” ANY pointer in the SCL
programming language. It can also be formulated in LAD, FBD, or STL. The example
contains the program for a function (FC) with the name “Copy”, which transfers a

Fig. 4.7 Example of a “variable” ANY pointer in the SCL programming language

4.3 Indirect addressing

105

data area from one data block to another, where the addresses and the length of the
area can be changed during runtime. The values for the source area and destination
area that are individually specified via block parameters are compiled into two ANY
pointers. At the end, the copy process is started with the BLKMOV function. The
error information from BLKMOV is passed on to the function value (return value)
of the “Copy” function and can be evaluated in the program of the calling block.

4.3.6 Indirect addressing with PEEK and POKE (SCL)

PEEK and POKE address a value in an operand area whose address (memory location)
can be set during runtime. PEEK reads the value of an operand, POKE writes a value
to an operand. POKE_BLK transfers an indirectly addressed operand area (Fig. 4.8).

The operand areas addressed with PEEK and POKE are Inputs, Outputs, Memory
bits, and Data blocks. The parameter AREA with the data type BYTE defines the oper-
and area together with the parameter DBNUMBER. The byte address is provided at
the parameter BYTEOFFSET. For a binary operand, the bit number is added at the
parameter BITOFFSET. DBNUMBER, BYTEOFFSET, and BITOFFSET have data type
DINT. In the framework of the implicit data type conversion, these parameters can
also be supplied with tags that have other fixed-point data types.

PEEK reads the value of a digital operand and makes it available as a function value.
The default data type is BYTE; it is used to read one byte. If two bytes should be read,
note the statement PEEK_WORD; for four bytes, PEEK_DWORD.

PEEK_BOOL reads the value of a binary operand and makes it available as a function
value.

POKE writes the value specified at the parameter VALUE with data type BYTE,
WORD, or DWORD (corresponding to one, two, or four bytes) to the specified oper-
and area.

POKE_BOOL writes the value (data type BOOL) specified at the parameter VALUE to
the specified binary operand.

POKE_BLK transfers a source operand area, defined with the parameters AREA_SRC,
DBNUMBER_SRC, and BYTEOFFSET_SRC, to an operand area defined with the
parameters AREA_DEST, DBNUMBER_DEST, and BYTEOFFSET_DEST. The number of
bytes transferred is specified in the COUNT parameter.

Example: The values in a bit memory address area should be deleted. The bit mem-
ory address area begins at the address #M_addr and is #M_dis bytes long. Both tags
are declared with the INT data type.

FOR #i := #M_addr TO #M_addr + #M_dis - 1 DO
POKE(area := 16#83,

dbnumber := 0,
byteOffset := #i,
value := 16#00);

END_FOR;

The tag #i with data type INT is
used as a control tag in the FOR
statement and contains the
address of the memory byte
that is currently overwritten
with 16#00.

4 Tags, addressing, and data types

106

Fig. 4.8 Indirect operand addressing with PEEK and POKE

Indirect addressing of an operand

Indirect addressing of an operand area

PEEK and POKE address an operand whose address is only defined during runtime
(indirect addressing).

POKE_BLK transfers an indirectly addressed operand area to another indirectly addressed
operand area.

SCL

SCL

Function:
PEEK reads the value of an indirectly addressed
digital operand and makes it available as a function
value with the specified data type (BYTE, WORD,
DWORD).

PEEK_BOOL reads the value of an indirectly
addressed binary operand and makes it available as
a function value.

Function:
POKE_BLK reads the number of bytes specified at
the COUNT parameter from the source operand
area (SRC) and writes them to the destination
operand area (DEST).

Function:
POKE writes the value of the tag specified at the
VALUE parameter to an indirectly addressed digital
operand.

POKE_BOOL writes the value of the bit tag specified
at the VALUE parameter to an indirectly addressed
bit operand.

Data types:
The operand area is defined at the AREA parameter with the data type BYTE:
B#16#81 for inputs, B#16#82 for outputs, B#16#83 for bit memories, and B#16#84 for data.
The value zero is assigned to the DBNUMBER parameter at inputs, outputs and bit memories,
and at the data operand area with the data block number.
DBNUMBER, BYTEOFFSET, and BITOFFSET have a fixed-point data type, VALUE has a bit-serial
data type.

Data types:
The operand area is defined at the AREA_xxx parameter with the data type BYTE:
B#16#81 for inputs, B#16#82 for outputs, B#16#83 for bit memories, and B#16#84 for data.
The value zero is assigned to the DBNUMBER_xxx parameter at inputs, outputs and bit
memories, and at the operand area data with the data block number.
DBNUMBER_xxx, BYTEOFFSET_xxx, and COUNT have a fixed-point data type.

#tag := PEEK (
AREA :=
DBNUMBER := ... ,
BYTEOFFSET := ...);

#bit_tag := PEEK_BOOL(
AREA :=
DBNUMBER := ... ,
BYTEOFFSET := ... ,
BITOFFSET := ...);

_Data type
...

...

,

,

POKE_BLK(
AREA_SRC :=
DBNUMBER_SRC := ... ,
BYTEOFFSET_SRC := ... ,
AREA_DEST :=
DBNUMBER_DEST := ... ,
BYTEOFFSET_DEST := ... ,
COUNT := ...);

...

...

,

,

POKE(
AREA :=
DBNUMBER := ... ,
BYTEOFFSET := ... ,
VALUE := ...);

POKE_BOOL(
AREA :=
DBNUMBER := ... ,
BYTEOFFSET := ... ,
BITOFFSET := ... ,
VALUE := ...);

...

...

,

,

4.5 General information on data types

107

4.4 Addressing of hardware objects

The configuration editor assigns an unambiguous ID (the “hardware identifier”) for
each hardware object. Thus, for example, each station, each module, each interface,
or even each transfer area of an I-device can be addressed. The hardware identifier
is specified in the object properties. It is a constant and cannot be changed. For
example, the hardware identifier of a signal module does not change if the user
data addresses (the logical addresses) are changed. Exception: For organization
blocks, the value of the hardware identifier corresponds to the number of the orga-
nization block and can be changed later.

The data type of the hardware identifier follows that of the referenced object. Every
hardware identifier has a name which you can change in the object properties
(under General). The name, value, and data type of the current hardware identifiers
are listed in the System constants tab of the default tag table.

Fig. 4.9 shows an example of the addressing of a module. When the module is
“inserted” into the rack, the configuration editor assigns a name (displayed in the
object properties under General, can be changed) and a value (under Hardware
identifier, cannot be changed). The name and the value are listed in the System
constants tab. When the module is addressed (in the example with the system block
LOG2GEO), the parameter LADDR is provided with the value or the name from the
system constants table.

4.5 General information on data types

4.5.1 Overview of data types

Data types define the properties of tags, basically the representation of the contents
and the permissible value range. STEP 7 provides predefined data types. The data
types are globally available and can be used in any block. A distinction is made
between:

b Elementary data types, which are pre-defined and cannot be further subdivided

b Structured data types, which are predefined and comprise a combination of ele-
mentary data types

b Parameter types as predefined, additional data types for the transfer of tags to
block parameters of functions and function blocks

b PLC data types, which a user can compile from existing data types

b System data types, which are provided by the program editor in STEP 7 and have
a fixed structure

b Hardware data types, which are defined by the configuration editor in STEP 7

When linking tags, e.g. when comparing or adding, or when supplying block
parameters, the tags involved must have the same or a comparable data type. The
block attribute IEC check governs the test for a comparable data type: If it is acti-

4 Tags, addressing, and data types

108

vated, the test is stricter. The block attribute Optimized block access can also play a
role in the application of data types.

The data types of tags can be converted. This may happen automatically with the
implicit data type conversion or with functions for (explicit) data type conversion
(see Chapter 13.6 “Conversion functions” on page 586).

4.5.2 Implicit data type conversion

The implicit data type conversion occurs automatically when a function is executed
if the data types of the involved tags are compatible. If the IEC check attribute is acti-
vated, the bit length of the source data type must not exceed that of the destination
data type. For example, a tag with data format DWORD (source data type) cannot be
applied to an input or output parameter which expects the data type WORD (desti-

Fig. 4.9 Using the hardware identifier

4.5 General information on data types

109

nation data type). Conversely, it is possible to apply a WORD tag to an input or out-
put parameter with the data type DWORD. The programmed bit length must agree
with the expected bit length for an in-out parameter. The block attribute IEC check
is used to set the strictness of the compatibility check (see Table 4.4).

For LAD and FBD, the implicit conversion is marked with a split rectangle symbol on
the function input or output. At a transition from dark gray to light gray, a data type

Table 4.4 Implicit data type conversion

to

from B
O

O
L

B
Y

TE

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
SI

N
T

U
IN

T

U
D

IN
T

U
LI

N
T

SI
N

T

IN
T

D
IN

T

LI
N

T

R
EA

L

LR
EA

L

S5
TI

M
E

TI
M

E

LT
IM

E

D
A

TE

TO
D

LT
O

D

D
T

LD
T

D
TL

C
H

A
R

ST
R

IN
G

BOOL

BYTE X X X O O O O O O O O O

WORD O X X O O O O O O O O O O O

DWORD O O X O O O O O O O O O O O O

LWORD O O O O O O O O O O O O O O O O

USINT O O O O X X X O X X X X X O

UINT O O O O O X X O O X X X X O O

UDINT O O O O O O X O O O X O X O O O

ULINT O O O O O O O O O O O O O O O O O

SINT O O O O O O O O X X X X X O

INT O O O O O O O O O X X X X O O

DINT O O O O O O O O O O X O X O O O

LINT O O O O O O O O O O O O O O O O O

REAL O O O O O O O O O X

LREAL O O O O O O O O O O

S5TIME O

TIME O O O X O

LTIME O O O O O O

DATE O O O O

TOD O O O O X

LTOD O O O O O

DT X X

LDT O O O O O X

DTL O X

CHAR O O O O O O O O O O O O X

STRING X

Implicit data type conversion is possible: X Independent of attribute IEC check
O With deactivated attribute IEC check

4 Tags, addressing, and data types

110

conversion is possible without any loss of accuracy. At a transition from dark gray
to white, an error may occur during the conversion. The ENO output is then set
to “0”.

In Fig. 4.10, the display of the implicit data type
conversion for LAD is displayed just as it is used
for FBD. The IEC check attribute is deactivated.
The addition is carried out according to the char-
acteristic of the INT data type. A conversion from
SINT to INT is possible without any loss of accu-
racy. An error can occur during a conversion
from DINT to INT.

For SCL, an implicit data type conversion is displayed with a yellow underscore if
loss of accuracy can occur. A warning is then issued during compilation. To improve
clarity, implicit data type conversion can also be programmed with SCL. The state-
ment is Source data type_TO_Destination data type, for example

#var_word := BYTE_TO_WORD(#var_byte);

Implicit data type conversion is not possible in the programming language STL.
STL interprets the contents of accumulators according to the executed operation
and independent of the significance of the bit assignments, i.e. independent of the
(actual) data type. For example, the +I operation (integer addition) interprets the
contents of the accumulators as numbers with data format INT and adds them
together according to the integer rules. The programmer is responsible for ensur-
ing that numbers with data format INT are actually present in the accumulators
during execution of the operation.

An error is reported if the permissible numerical range of the destination data type
is left or the sign is lost during implicit conversion.

Implicit conversion of bit-serial data types

Implicit conversion is not possible for the data type BOOL.

If the length of the source tag is equal to or shorter than the destination tag for the
data types BYTE, WORD, DWORD and LWORD, the bit pattern is entered right-justi-
fied in the destination tag and the free bit positions are filled with “0”. If the source
tag is longer than the destination tag, the bit pattern is entered in the destination
tag starting from the right and the “excess” bit positions are ignored.

During a conversion to a floating-point data type, the value of the source tag is con-
verted into the format of the destination data type. Example: DW#16#0000_000A is
converted into REAL#10.0 (DW#16#4120_0000).

Implicit conversion of fixed-point data types

During a conversion from a fixed-point data type to a floating-point data type, the
value of the source tag is converted into the format of the destination tag. During a
conversion from a fixed-point data type to a fixed-point data type, the value of the

Fig. 4.10 Implicit data type
conversion

4.5 General information on data types

111

source tag is transferred without changes and right-justified to the destination tag
and the sign is updated.

Implicit conversion of floating-point data types

During a conversion from a floating-point data type to a fixed-point data type, the
value of the source tag is rounded and converted into the format of the destination
tag. Example: LREAL#317.8 is converted to INT#318 and this value is then converted
to USINT#62.

Implicit conversion of duration data types

If the value of the source tag lies outside the value range of the destination type, the
value of the destination tags is not changed. In all other cases, the bit pattern of the
source tag is transferred unchanged to the destination tag.

Implicit conversion of date and time

For a conversion to a date/time data type, the value of the source tag is entered in
the destination tag in the proper format, with a possible loss of accuracy. For a con-
version to a different data type, the bit pattern of the source tag is transferred
unchanged to the destination tag.

4.5.3 Overlaying tags (data type views)

A tag can be “overlaid” by further data types. It is then possible to address the con-
tents of tags completely or partially using various data types. The memory require-
ments of the overlaying data type definition must not be greater than the “original”
tag (the new data type must “fit” into the tag). Table 4.5 shows which combinations
are permitted when overlaying.

You can program overlaying only in the interface of code blocks. In addition, the
attribute Optimized block access must be deactivated. Exception: If the retentivity
setting for a tag in a function block is Set in IDB, this tag can also be overlaid with
another data type. For an FC block, the overlaying tag must have the same width as
the “original” tag.

You initially declare the tag with the “original” data type and with any default set-
ting. In the next line you write the tag which is to “overlay” the one above it. You
then write the keyword AT in the Data type column to indicate that this is a “over-
laid” data type definition, and then complete the input using the RETURN key. You
subsequently assign this tag with the additional data type envisaged for it.

You can overlay a tag with several data type definitions which you differentiate by
different names. A default setting with fixed values (initialization) is not possible.

Example: You declare an input parameter in the block interface of a function block
with Station as the name and STRING[12] as the data type. You can overlay this input
parameter with an additional STRUCT data type with the name Length and the com-
ponents maximum and current, each with the data type USINT (Fig. 4.11). You can

4 Tags, addressing, and data types

112

now address the current length of the tag #Station with #Length.current in the block
program. You can address an individual character with #Station[<index>],
for example, #Station[1] for the first character.

Table 4.5 Permitted combinations when overlaying data types

Declaration
section (FB)

“Original” data
type

can be overlaid with data type

Input Elementary
Structured
ANY, POINTER
DB_ANY

Elementary
Elementary
–
Elementary

Structured
Structured
Structured
Structured

–
ANY, POINTER
–
–

Output, Static Elementary
Structured
ANY, POINTER
DB_ANY

Elementary
Elementary
–
Elementary

Structured
Structured
–
Structured

–
–
–
–

InOut Elementary
Structured
ANY, POINTER
DB_ANY

Elementary
–
–
–

–
Structured
–
–

–
–
–
–

Temp Elementary
Structured
ANY, POINTER
DB_ANY

Elementary
Elementary
–
–

Structured
Structured
Structured
–

–
ANY, POINTER
–
–

Declaration
section (FC)

“Original” data
type

can be overlaid with data type

Input, Output,
InOut

Elementary
Structured
ANY, POINTER
DB_ANY

elementary 1)

–
–
elementary 1)

–
structured 1)

–
structured 1)

–
–
–
–

Temp Elementary
Structured
ANY, POINTER
DB_ANY

Elementary
Elementary
–
–

Structured
Structured
Structured
–

–
ANY, POINTER
–
–

Declaration
section (OB)

“Original” data
type

can be overlaid with data type

Temp Elementary
Structured
ANY, POINTER
DB_ANY

Elementary
Elementary
–
–

Structured
–
Structured
–

–
ANY, POINTER
–
–

1) only with the same width

Fig. 4.11 Example of declaration of a “overlaid” data type

4.6 Elementary data types

113

You use a tag with an overlaying data type definition like any other tag, but only
locally in the block. In the example, the calling block writes a string into the input
parameter Station; the overlaying data type definition as a byte structure is not
accessible to it.

4.6 Elementary data types

Elementary data types are pre-defined data types which cannot be further subdi-
vided. You can find an overview of the elementary data types in Table 4.6. The data
types BCD16 and BCD32 are not data types in the closer sense – they cannot be
assigned to a tag; they are only relevant to data type conversion. The elementary
data types can be used together with tags from all operand areas.

4.6.1 Bit-serial data types BOOL, BYTE, WORD, DWORD, and LWORD

Fig. 4.14 shows the structure of the data types BYTE, WORD, DWORD, and LWORD.

A tag with data type BOOL represents a bit value (e.g. input %I1.0). The tag can have
the value “0” or “1”, or FALSE or TRUE.

A tag with data type BYTE occupies 8 bits. The individual bits have no significance.
The hexadecimal notation for constants is B#16#00 to B#16#FF.

A tag with data type WORD occupies 16 bits. The individual bits have no signifi-
cance. The hexadecimal notation for constants is W#16#0000 to W#16#FFFF.
A constant of word width can also be written as a 16-bit binary number
(2#0000_…_0000 to 2#1111_…_1111).

A tag with data type DWORD occupies 32 bits. The individual bits have no signif-
icance. The hexadecimal notation for constants is DW#16#0000_0000 to
DW#16#FFFF_FFFF. A constant of doubleword width can also be written as a
32-bit binary number (2#0000_..._0000 to 2#1111_..._1111).

A tag with data type LWORD (long word) occupies 64 bits. The individual bits
have no significance. The hexadecimal notation for constants is
LW#16#0000_0000_0000_0000 to LW#16#FFFF_FFFF_FFFF_FFFF. A constant
of long word width can also be written as a 64-bit binary number
(2#0000_..._0000 to 2#1111_..._1111).

4.6.2 Data type CHAR

A tag with data type CHAR (character) occupies one byte. The data type CHAR rep-
resents a single character which is saved in ASCII format. The character is entered
in single quotation marks. Example of the notation: ’A’ or CHAR#’A’. Special charac-
ters can be entered with a preceding dollar sign; Fig. 4.13 shows a selection.

A single character of a tag with the data type STRING has the data type CHAR and
can also be used accordingly. Example: If Author is the name of the string with the
content 'Berger', then the tag Author[1] has the value 'B' and the data type CHAR.

4 Tags, addressing, and data types

114

Table 4.6 Overview of elementary data types

Bit-serial data types

BOOL

BYTE

WORD

DWORD

LWORD

1 bit

8 bits

16 bits

32 bits

64 bits

1-bit binary value

8-bit binary value

16-bit binary value

32-bit binary value

64-bit binary value

0, 1, FALSE, TRUE

B#16#00 to B#16#FF

W#16#0000 to W#16#FFFF

DW#16#0000 0000 to DW#16#FFFF FFFF

LW#16#0000 0000 0000 0000 to
LW#16#FFFF FFFF FFFF FFFF

Characters

CHAR 8 bits A character in ASCII code ’a’, ’A’, ’1’, …

BCD numbers 1)

BCD16

BCD32

16 bits

32 bits

3 decades with sign

7 decades with sign

–999 to +999

–9 999 999 to +9 999 999

Unsigned fixed-point numbers

USINT

UINT

UDINT

ULINT

8 bits

16 bits

32 bits

64 bits

Unsigned 8-bit fixed-point number

Unsigned 16-bit fixed-point number

Unsigned 32-bit fixed-point number

Unsigned 64-bit fixed-point number

0 to 255

0 to 65 535

0 to 4 294 967 296

0 to 18 446 744 073 709 551 615

Fixed-point numbers with sign

SINT

INT

DINT

LINT

8 bits

16 bits

32 bits

64 bits

8-bit fixed-point number

16-bit fixed-point number

32-bit fixed-point number

64-bit fixed-point number

–128 to +127

–32 768 to +32 767

–2 147 483 648 to +2 147 483 647

–9 223 372 036 854 775 808 to
+9 223 372 036 854 775 807

Floating-point numbers

REAL

LREAL

32 bits

64 bits

32-bit floating-point number

64-bit floating-point number

approx. ±1.18×10–38 to ±3.40×1038

approx. ±2.23×10–308 to ±1.80×10308

Durations

S5TIME

TIME

LTIME

16 bits

32 bits

64 bits

Duration in SIMATIC format
(in intervals of 10 ms)

Duration in IEC format
(number of milliseconds)

Duration in IEC format
(number of nanoseconds)

S5T#0h0m0s0ms to
S5T#2h46m30s0ms

T#–24d20h31m23s648ms to
T#+24d20h31m23s647ms

LT#–106751d23h47m16s854ms775us808ns to
LT#+106751d23h47m16s854ms775us807ns

Points in time (date and time of day)

DATE

TOD

LTOD

LDT

16 bits

32 bits

64 bits

128 bits

Date
(number of days)

Time of day
(number of milliseconds)

Time of day
(number of nanoseconds)

Date and time of day
(number of nanoseconds)

D#1990-01-01 to
D#2168-12-31

TOD#00:00:00.000 to
TOD#23:59.59.999

LTOD#00:00:00.000000000 to
LTOD#23:59:59.999999999

LDT#1970-01-01-0:0:0.000000000 to
LDT#2262-04-11-23:47:16.854775807

1) Not data types in a narrower sense; only relevant to data type conversion

4.6 Elementary data types

115

4.6.3 BCD numbers BCD16 and BCD32

BCD numbers do not have their own data type. For a BCD number, use the data type
WORD or DWORD and enter only the numbers 0 to 9 or 0 and F for the sign in the
hexadecimal form W#16#xxxx or DW#16#xxxx_xxxx. For a positive, three-decade
decimal number you can also use the notation C#0 to C#999.

BCD numbers are used, for example, in association with the conversion functions.
The sign of a BCD number is located in the left-justified (highest) decade. Thus one
decade is lost in the number range (Fig. 4.14).

The sign of a BCD number present in a 16-bit word is in the bits 12 to 15, where only
bit 15 is relevant. Signal state “0” means that the number is positive. Signal state
“1” represents a negative number. The sign does not influence the assignment of
the individual decades.

Fig. 4.12 Assignment of bit-serial data types

Fig. 4.13 Structure of the CHAR data type

7 6 5 4 3 2 1 0 7

7

7

23

55

15

1531

63

0

0

0

16

48

8

824

56

Byte m

Byte m

Byte mByte m

Bit number

Byte m+1

Byte m+1

Byte m+1

Byte m+2 Byte m+3

Byte m+7

Data type DWORD

Data type LWORD

Data type WORDData type BYTE

...

7 6 5 4 3 2 1 0

Byte m

Bit

ASCII code

Data type CHAR

CHAR

Special characters for CHAR

$$

$'

$L or $l

$P or $p

$R or $r

$T or $t

HEX

16#24

16#27

16#0A

16#0C

16#0D

16#09

Meaning

Dollar symbol

Single inverted comma

Line feed (LF)

Form feed (FF)

Carriage return (CR)

Tabulator

4 Tags, addressing, and data types

116

The sign of a BCD number present in a 32-bit word is in the bits 28 to 31.

The numerical range available for 16-bit BCD numbers is 0 to ±999, and for
32-bit BCD numbers 0 to ±9 999 999.

4.6.4 Fixed-point data types without sign USINT, UINT, UDINT, ULINT

The data type USINT (unsigned short integer, unsigned short fixed-point number)
occupies one byte. The numerical range extends from 20 to 28–1, i.e. from 0 to 255,
or in hexadecimal notation from B#16#00 to B#16#FF (Fig. 4.15).

The data type UINT (unsigned integer, unsigned fixed-point number) occupies one
word. The numerical range extends from 20 to 216–1, i.e. from 0 to 65 535, or in
hexadecimal notation from W#16#0000 to W#16#FFFF.

Fig. 4.14 Structure of BCD data types

Fig. 4.15 Bit assignment of data types USINT, UINT, UDINT, and ULINT

Byte m

Byte m

Byte m+1

Byte m+1

Byte m+2 Byte m+3

10Sign

Sign: 0 0 0 0 = positive
1 1 1 1 = negative Sign

10

10

10

10

10

10

10 10 10 01234

0

5

1

6

2

7

7

15

15

2331 3

3

11

11

1927 4

4

12

12

2028 0

0

8

8

1624

BCD number, 3 decades

BCD number, 7 decades

31 ...

63 ...

15 ...

15 ...7...

... 16

... 48

... 0

... 0

... 0... 0

Data type UDINT

Data type ULINT

Data type UINTData type USINT

2 ...

2 ...

2 ...2 ...

... 2

... 2

... 2... 2

7

7

77

0

0

00

2 ...

2 ...

... 2

... 2

15

15

8

8

2 ...

2 ...

... 2

... 2

23

55

16

48

2 ...

2 ...

... 2

... 2

31

63

24

56 ...

4.6 Elementary data types

117

The data type UDINT (unsigned double integer or unsigned, double-width fixed-point
number) occupies one doubleword. The numerical range extends from 20 to 232–1,
i.e. from 0 to 4 294 967 295, or in hexadecimal notation from DW#16#0000 0000 to
DW#16#FFFF FFFF.

The data type ULINT (unsigned long integer, unsigned long fixed-point number)
occupies one long word. The numerical range extends from 20 to 264–1, i.e. from 0
to 18 446 744 073 709 551 615, or in hexadecimal notation from
LW#16#0000 0000 0000 0000 to LW#16#FFFF FFFF FFFF FFFF.

4.6.5 Fixed-point data types with sign SINT, INT, DINT, and LINT

With the fixed-point data types with sign, the signal state of the highest bit rep-
resents the sign. Signal state “0” means that the number is positive. Signal state “1”
represents a negative number. The representation of a negative number is as a
two's complement.

The data type SINT (short integer, short fixed-point number) occupies one byte.
The numerical range extends from –27 to +27–1, i.e. from –256 to +255, or in hexa-
decimal notation from B#16#80 to B#16#7F (Fig. 4.16).

The data type INT (integer, fixed-point number) occupies one word. The numerical
range extends from –215 to +215–1, i.e. from –32 768 to +32 767, or in hexadecimal
notation from W#16#8000 to W#16#7FFF.

The data type DINT (double integer, double-width fixed-point number) occupies
one doubleword. The numerical range extends from –231 to +231–1, i.e. from
–2 147 483 648 to +2 147 483 647, or in hexadecimal notation from
DW#16#8000 0000 to DW#16#7FFF FFFF.

Fig. 4.16 Bit assignment of data types SINT, INT, DINT, and LINT

31 30 ...

63 62 ...

15 ...

15 14 ...7 6 ...

... 16

... 48

... 0

... 0

... 0... 0

Data type DINT

Data type LINT

Data type INTData type SINT

2 ...

2 ...

2 ...2 ...V V

V

V

... 2

... 2

... 2... 2

7

7

76

0

0

00

2 ...

2 ...

... 2

... 2

15

14

8

8

2 ...

2 ...

... 2

... 2

23

55

16

48

2 ...

2 ...

... 2

... 2

30

62

24

56

V = sign:
0 = positive
1 = negative

...

4 Tags, addressing, and data types

118

The data type LINT (long integer, long fixed-point number) occupies one long word.
The numerical range extends from –263 to +263–1, i.e. from –9 223 372 036 854 775 808
to +9 223 372 036 854 775 807, or in hexadecimal notation from
LW#16#8000 0000 0000 0000 to LW#16#7FFF FFFF FFFF FFFF.

4.6.6 Floating-point data types REAL and LREAL

A tag with data type REAL or LREAL represents a fractional number which is saved
as a floating-point number. A fractional number is entered either as a decimal frac-
tion (e.g. 123.45 or 600.0) or in exponential form (e.g. 12.34e12 corresponding to
12.34·1012). The representation comprises 7 or 17 relevant positions (digits) which
are positioned in exponential form in front of the “e” or “E”. The data following “e”
or “E” is the exponent to base 10. Conversion of the REAL or LREAL tags into the
internal representation of a floating-point number is carried out by the program
editor. Table 4.7 shows the internal range limits of a floating-point number.

For floating-point numbers, a distinction is made between “normalized” floating-
point numbers, which can be shown with complete accuracy, and “denormalized”
floating-point numbers with limited accuracy. A CPU 1500 cannot calculate with
denormalized floating-point numbers. A denormalized floating-point number is
interpreted like a zero. If a calculated result falls in this range, it is displayed as zero
and an downward violation of the numerical range is reported.

Table 4.7 Internal range limits of a floating-point number

Sign Exponent
for REAL

Exponent
for LREAL

Mantissa Meaning

0 255 2047 Not equal to 0 Not a valid floating-point number
(+NaN, Not a Number)

0 255 2047 0 +Inf, Infinity

0 1 … 254 1 … 2046 Any Positive, normalized floating-point number

0 0 0 Not equal to 0 Positive, denormalized floating-point number

0 0 0 0 + Zero

1 0 0 0 – Zero

1 0 0 Not equal to 0 Negative, denormalized floating-point number

1 1 … 254 1 … 2046 Any Negative, normalized floating-point number

1 255 2047 0 – Inf, Infinity

1 255 2047 Not equal to 0 Not a valid floating-point number
(–NaN, Not a Number)

4.6 Elementary data types

119

Data type REAL

The valid range of values of a REAL tag (normalized 32-bit floating-point number)
is between the limits:

–3.402 823 × 10+38 to –1.175 495 × 10–38

±0
+1.175 495 × 10–38 to +3.402 823 × 10+38

A tag with data type REAL consists internally of three components: the sign, the
8-bit exponent to base 2, and the 23-bit mantissa. The sign can have the values “0”
(positive) or “1” (negative). The exponent is saved increased by a constant
(bias, +127) so that it has a range of values from 0 to 255. The mantissa represents
the fractional part. The whole number part of the mantissa is not stored, because it
is always equal to 1 within the valid range of values (Fig. 4.17). A number in the
REAL format is displayed by STEP 7 rounded to seven decimal points.

Data type LREAL

The valid range of values of a LREAL tag (normalized 64-bit floating-point number)
is within the limits:

–1.797 693 134 862 3158 × 10+308 to –2.225 073 858 507 2014 × 10–308

±0
+2.225 073 858 507 2014 × 10–308 to +1.797 693 134 862 3158 × 10+308

A tag with data type LREAL consists internally of three components: the sign, the
11-bit exponent to base 2, and the 52-bit mantissa. The sign can have the values “0”
(positive) or “1” (negative).

The exponent is saved increased by a constant (bias, +1023) so that it has a range of
values from 0 to 2047. The mantissa represents the fractional part. The whole num-
ber part of the mantissa is not stored, because it is always equal to 1 within the valid
range of values. A number in the LREAL format is displayed by STEP 7 rounded
to 15 decimal points.

Fig. 4.17 Bit assignment of data types REAL and LREAL

31 30 ...

63 62 ...

V = sign of mantissa

... 23

... 52

Data type REAL

Data type LREAL

Exponent

Exponent

Mantissa

Mantissa

2 ...

2 ...

V

V

... 2

... 2

7

10

0

0

22 ...

51 ...

... 0

... 0

2 ...

2 ...

2

2

... 2

... 2

–2

–2

–1

–1

-23

-52

4 Tags, addressing, and data types

120

4.6.7 Data types for durations

Data type S5TIME

A tag with data type S5TIME is used for the duration of a SIMATIC timer function.
It occupies a 16-bit word with 1+3 decades (Fig. 4.18).

The time duration is displayed in hours, minutes, seconds, and milliseconds. Con-
version into the internal representation is handled by STEP 7. The internal repre-
sentation is a BCD number from 000 to 999. The time frame can adopt the following
values: 10 ms (0000), 100 ms (0001), 1 s (0010), and 10 s (0011). The duration is the
product of the time frame and time value. Depending on the time scale, different
limits result for the time value:

Examples: S5TIME#500ms (= W#16#0050)
S5T#2h46m30s (= W#16#3999)

Fig. 4.18 Bit assignment of data types S5TIME, TIME, and LTIME

Time scale 10 ms 100 ms 1 s 10 s

Time value S5T#10 ms to
S5T#9s990ms

S5T#100ms to
S5T#1m39s900ms

S5T#1s to
S5T#16m39s

S5T#10s to
S5T#2h46m30s

31 30 ...

63 62 ...

15 16

... 48

... 0

... 0

Data type TIME

Data type LTIME

2 ...

2 ...

V

V

... 2

... 2

7

7

0

0

2 2
15 8

2 ...

2 ...

... 2

... 2

23

55

16

48

2 ...

2 ...

... 2

... 2

30

62

24

56

V = sign: 0 = positive
1 = negative

V = sign: 0 = positive
1 = negative

15 0

Data type S5TIME

10 1010 10
2 00 1

Time scale Time value

Time scale: 0 0 0 0 10 ms
0 0 0 1 100 ms
0 0 1 0 1 s
0 0 1 1 10 s

Number of milliseconds (duration)

Duration = Time value x Time scale

Number of nanoseconds (duration)

...

4.6 Elementary data types

121

Data type TIME

A tag with data type TIME (duration) occupies a doubleword. The representation
contains the data for days (d), hours (h), minutes (m), seconds (s) and milliseconds
(ms), whereby individual time units can be omitted. If only one time unit is speci-
fied, a decimal representation is possible. If more than one time unit is specified,
the values for the time units are limited: Days from 0 to 24, hours from 0 to 23,
minutes and seconds from 0 to 59, and milliseconds from 0 to 999 (Fig. 4.19).

The content of the tag is interpreted as milliseconds (ms) and saved as a
32-bit fixed-point number with sign. The range of values extends from
T#–24d20h31m23s648ms to T#24d20h31m23s647ms.

Examples: TIME#2h30m (= DW#16#0089_5440)
T#2.25h (= DW#16#007B_98A0)

Data type LTIME

A tag with data type LTIME (duration) occupies a long word. The representation
contains the data for days (d), hours (h), minutes (m), seconds (s), milliseconds
(ms), microseconds (us), and nanoseconds. Individual time units can be omitted. If
only one time unit is specified, a decimal representation is possible. If more than
one time unit is specified, the values for the time units are limited: Days from
0 to 106 751, hours from 0 to 23, minutes and seconds from 0 to 59, and millisec-
onds, microseconds and nanoseconds from 0 to 999 (Fig. 4.19).

The content of the tag is interpreted as nanoseconds (ns) and saved as a 64-bit fixed-
point number with sign. The range of values extends from
LT#–106751d23h47m16s854ms775us808ns to
LT#+106751d23h47m16s854ms775us807ns

Examples: LTIME#2h20s (= LW#16#0000_0691_0989_0800)
LT#15.25h (= LW#16#0000_31EE_66FF_8800)

4.6.8 Data types for points in time

Data type DATE

A tag with data type DATE is saved in a word as an unsigned fixed-point number.
The content of the tag corresponds to the number of days since 01.01.1990.
The representation contains the year, month, and day, each separated by a dash
(Fig. 4.19). The range of values extends from D#1990-01-01 to D#2168-12-31.

Examples: DATE#1990-01-01 (= W#16#0000)
D#2168-12-31 (= W#16#FF62)

TIME_OF_DAY (TOD)

A tag with data type TIME_OF_DAY occupies a doubleword. It contains the number
of milliseconds since the beginning of the day (0:00 o'clock) as an unsigned fixed-
point number. The representation contains the data for hours, minutes, and sec-

4 Tags, addressing, and data types

122

onds, each separated by a colon. The specification of milliseconds, which follows
the seconds and is separated by a dot, can be omitted (Fig. 4.19). The range of val-
ues extends from TOD#00:00:00.000 to TOD#23:59.59.999.

Examples: TIME_OF_DAY#00:00:00 (= DW#16#0000_0000)
TOD#23:59:59.999 (= DW#16#0526_5BFF)

LTIME_OF_DAY (LTOD)

A tag with data type LTIME_OF_DAY occupies a long word. It contains the number
of nanoseconds since the beginning of the day (0:00 o'clock) as an unsigned fixed-
point number. The representation contains the data for hours, minutes, and sec-
onds, each separated by a colon. The specification of milliseconds, microseconds
and nanoseconds, which follows the seconds and is separated by a dot, can be omit-
ted (Fig. 4.19). The range of values extends from
LTOD#00:00:00.000_000_000 to LTOD#23:59:59.999_999_999.

Examples: LTOD#12:05:00 (= LW#16#0000_2790_220C_3800)
LTOD#23:59:59.999_999_999 (= LW#16#0000_4E94_914E_FFFF)

DATE_AND_LTIME (LDT)

A tag with data type DATE_AND_LTIME occupies a long word. It contains the number
of nanoseconds since 01.01.1970 (0:00 o'clock) as an unsigned fixed-point number.

Fig. 4.19 Bit assignment of data types DATE, TOD, LTOD, and LDT

31 ...

63 ...

127...

15 16

... 48

... 112

... 0

... 0

... 0

Data type DATE_AND_LTIME (LDT)

Data type TIME_OF_DAY (TOD)

Data type LTIME_OF_DAY (LTOD)

2 ...

2 ...

2 ...

... 2

... 2

... 2

7

7

7

0

0

0

2 215 82 ...

2 ...

2 ...

... 2

... 2

... 2

23

55

119

16

48

112

2 ...

2 ...

2 ...

... 2

... 2

... 2

31

63

127

24

56

120

15 0

Data type DATE

2 27 02 215 8

...

...

Number of days since 01.01.1990

Number of milliseconds since the beginning of the day (0:00 o'clock)

Number of nanoseconds since the beginning of the day (0:00 o'clock)

Number of nanoseconds since 01.01.1970 (0:00 o'clock)

4.7 Structured data types

123

The representation contains the year, month and day, each separated by a hyphen.
After a colon come the hours, minutes and seconds, each separated by a colon.
The specification of milliseconds, microseconds and nanoseconds, which follows
the seconds and is separated by a dot, can be omitted (Fig. 4.19). The range of val-
ues extends from LDT#1970-01-01-0:0:0.000_000_000 to
LDT#2262-04-11-23:47:16.854_775_807.

Examples:
LDT#2012-07-23-11:55:00 (= LW#16#12A3_73DB_640A_C800)
LDT#2262-04-11-23:47:16.854_775_807 (= LW#16#7FFF_FFFF_FFFF_FFFF)

4.7 Structured data types

Structured data types consist of a combination of elementary data types under one
name (Table 4.8). These data types can only be used locally in the interface of code
blocks and in data blocks; they are not approved for the operand areas Inputs (I),
Outputs (Q), and Bit memories (M) in the PLC tag table.

4.7.1 Date and time DATE_AND_TIME (DT)

The data type DATE_AND_TIME (DT) represents a specific point in time consisting
of the date and time, with the accuracy of one millisecond. The representation
contains the year, month and day, each separated by a hyphen. After another
hyphen come the hours, minutes and seconds, each separated by a colon. The
specification of milliseconds, which follows the seconds and is separated by a dot,
can be omitted.

Table 4.8 Overview of structured data types

Data type Length Meaning, remark

DATE_AND_TIME 8 bytes Date and time (accuracy: milliseconds)
Example: DT#1990-01-01-00:00:00

DATE_AND_LTIME 16 bytes Date and time (accuracy: nanoseconds)
Example: DTL#1970-01-01-00:00:00.000_000_000

STRING 2+n bytes A string with n characters.
Examples: 'Hans', 'Motor switched off'

ARRAY variable A combination of several equivalent data types.
Example: The tag Setpoint has the data type ARRAY[1..32] of INT

The individual components are then:
Setpoint[1]; Setpoint[2]; ... ; Setpoint[32]

STRUCT variable A combination of several different data types.
Example: The tag Valve has the data type STRUCT.

It can then contain the components:
Valve.Switch_on; Valve.Switch_off; Valve.Fault; etc.

4 Tags, addressing, and data types

124

A tag with data type DATE_AND_TIME occupies 8 bytes. Saving in the memory com-
mences at a byte with even address. All values are present in BCD format (Fig. 4.20).
The range of values extends from DT#1990-01-01-00:00:00.000 to
DT#2089-12-31-23:59:59.999.

Fig. 4.20 Structure of data type DATE_AND_TIME (DT)

Fig. 4.21 Structure of data type DATE_AND_LTIME (DTL)

Byte n

Byte n+5

Byte n+2

0 to 99

1 to 12

1 to 31

1 = Sunday to 7 = Saturday

0 to 23

0 to 59

0 to 59

0 to 999

RangeAssignmentAddress

Byte n+1

Byte n+6

Byte n+3

Byte n+7

Byte n+4

n = even

*)

*)

Data type DATE_AND_TIME (DT)

Month

Day

Minutes

Hours

Seconds

Year

Milliseconds

Day of the week

10
0

10
0

10
0

10
0

10
0

10
0

10
1

10
0

10

0

10
1

10
1

10
1

10
1

10
1

10
1

10
2

347

0

All data
in BCD format

Byte n

Byte n+5

Byte n+2

1970 to 2554

1 to 12

1 to 31

1 = Sunday to
7 = Saturday

0 to 23

0 to 59

0 to 59

0 to 999 999 999

RangeData typeComponentAssignmentAddress

Byte n+1

Byte n+6

Byte n+3

Byte n+7

Byte n+4

Byte n+8

Byte n+10

Byte n+9

Byte n+11

UINTYEAR

USINTMONTH

USINTDAY

USINTWEEKDAY

USINTHOUR

USINTMINUTE

USINTSECOND

UDINTNANOSECOND

n = even

*)

*)

Data type DTL

Month

Day

Day of the week

Minutes

Hours

Seconds

Year

Nanoseconds

4.7 Structured data types

125

4.7.2 Date and time DATE_AND_LTIME (DTL)

The data type DATE_AND_LTIME (DTL) represents a specific point in time consist-
ing of the date and time, with the accuracy of one nanosecond. The representation
contains the year, month and day, each separated by a hyphen. After another
hyphen come the hours, minutes and seconds, each separated by a colon. The
specification of nanoseconds, which follows the seconds and is separated by a dot,
can be omitted.

A tag with data type DTL occupies 12 bytes. Saving in the memory commences
at a byte with even address. The values are available in the form of an
unsigned fixed-point number (Fig. 4.21). The range of values extends from
DTL#1970-01-01-00:00:00.000_000_000 to DTL#2554-12-31-23:59:59.999_999_999.

Each component of a tag in DTL format can also be addressed individually. If a
DTL tag has the name #Start_time, the hour can be addressed with #Start_time.HOUR
and the minutes can be addressed with #Start_time.MINUTE. Both components have
the data type USINT.

4.7.3 STRING data type

The data type STRING represents a string consisting of two bytes for the length data
and up to 254 bytes for the characters in ASCII code. Saving in the memory com-
mences at a byte with even address. The program editor reserves an even number
of bytes for a string.

If a STRING tag is saved as a value, the maximum length can be defined in square
brackets when the tag is declared. This corresponds to the maximum number of
characters in ASCII code. If the length specification is omitted, the standard length
of 254 characters is defined. When saved as a pointer (block parameter for an
FC block, in/out parameter for a function block), only the standard length of
254 characters is accepted.

The current length is entered for the default setting or when processing the string
(the actually used length of the string = number of valid characters). The maximum
length is present in the first byte of the string, the second byte contains the actual
length; this is followed by the characters in ASCII format (Fig. 4.22).

Example: The tag Machine is to be defined with a maximum length of 12 characters
and should have 'Drill' as the default setting.

Machine : STRING [12] := ’Drill’

The first byte of the tag then has the value 12, the second byte the value 6, the third
byte the character 'B' etc.

A constant with data type STRING is written with single quotation marks, for exam-
ple 'Hans Berger'. Special characters are entered with a preceding dollar sign.
Fig. 4.13 on page 115 shows a selection.

A STRING tag cannot be assigned a default value when declared in the temporary
local data. In order to use STRING tags in the temporary local data for meaningful

4 Tags, addressing, and data types

126

purposes, they must be written before being read. For blocks with standard access,
the contents of the range lengths and characters are quasi-random before they are
written for the first time. For blocks with the Optimized block access attribute acti-
vated, the range lengths have plausible values and the characters have the
value ’$00’.

The characters in a STRING tag can also be addressed individually (not with SCL).
The first character (the third byte) is accessed using Tag_name[1], the n-th charac-
ter using Tag_name[n]. The individual components have the data type CHAR. In the
example above, the tag Machine[3] has the character 'h'. The index can also be a tag
in fixed-point format.

Special functions are available for processing STRING tags, for example to separate
a partial string or to combine two STRING tags into a single one (see Chapter 13.9
“Processing of strings (data type STRING)” on page 615).

4.7.4 Data type ARRAY

The data type ARRAY represents a data structure comprising a fixed number of com-
ponents with the same data type. For the components, all data types except ARRAY
are permissible.

A tag with data type ARRAY commences at a byte with even address. Components
with data type BOOL commence in the least significant bit; components with data
type BYTE and CHAR in the right byte. The individual components are listed consec-
utively. The program editor reserves an even number of bytes for an ARRAY tag (Fig.
4.23).

When creating an ARRAY tag, the number range of the components is specified in
square brackets, and the data type following the keyword OF. Example: A tag with

Fig. 4.22 Structure of STRING data type

n

Byte No.

n+1

n+2

n+3

...

n+m+1

...

n+k+1

(k)

Current
length (m)

Maximum
length (k)

Maximum length

Current length

1st character

2nd character

...

m-th character

...

...

Data type STRING

n = even*)

*) 0 to 254

0 to 254

RangeData type

USINT

USINT

CHAR

CHAR

CHAR

CHAR

CHAR

CHAR

(m, m k)≤

4.7 Structured data types

127

Fig. 4.23 Structure of data type ARRAY

Byte n

Byte n

Byte n

Bit number

Byte n+1

Byte n+1

Byte n+1

Byte n+2

Byte n+2

Byte n+3

Byte n+3

Byte n+4

Byte n+5

7 6 5 4 3 2 1 0

Array of
components of bit width

Array of
components of byte width

Array of components of word width

Arrays of components of
doubleword and long word width
are structured in the same way.

n = even

*)

*)

*)

*)

8

...

7

...

6

...

5

...

4

12

3

11

2

10

1

9

Byte 1

Byte 2

Byte 3

etc.

Word 1

Word 2

etc.

Date type ARRAY (one-dimensional)

Byte n+4

Byte n

Byte n+5

Byte n+1

Byte n+6

Byte n+2

Byte n+7

Byte n+3

Byte n+8

Byte n+10

Byte n+9

Byte n+11

1. Dimension

2. Dimension

2. Dimension

2. Dimension

Example of the byte assignment
of the tag with the
data type ARRAY[1..2,1..3,1..2] OF BYTE

#ArrayTag

n = even

*)

*)

Date type ARRAY (multi-dimensional)

#ArrayTag[1,1,1]

#ArrayTag[1,1,2]

#ArrayTag[1,2,1]

#ArrayTag[1,2,2]

#ArrayTag[1,3,1]

#ArrayTag[1,3,2]

#ArrayTag[2,1,1]

#ArrayTag[2,1,2]

#ArrayTag[2,2,1]

#ArrayTag[2,2,2]

#ArrayTag[2,3,1]

#ArrayTag[2,3,2]

The memory location of an ARRAY tag always commences at a byte with even address. The program
editor always reserves an even number of bytes for an ARRAY tag.

4 Tags, addressing, and data types

128

the name Measured value is to have 16 components of data type INT, which are num-
bered commencing with 1.

Measured value : ARRAY[1..16] OF INT

The number range extends from –2 147 483 648 to 2 147 483 647. The lower range
value must be smaller than the upper value. The maximum number of components
depends on the data type of a component and on the memory space available in the
block in which the ARRAY tag is created.

The components of an ARRAY tag can be addressed individually and can be handled
like tags with the same data type. For example, the component Measured value[10]
on a block parameter can be created with the data type INT.

During addressing, the index can also be a tag with a fixed-point data type and thus
allow indirect addressing which is only defined during runtime. Further details are
described in Chapter 4.3.2 “Indirect addressing of ARRAY components” on page
100.

Multi-dimensional arrays

ARRAY tags can have up to 6 dimensions. The same applies as to one-dimensional
arrays. The dimension areas are written in the declaration in square brackets, each
separated by a comma. Fig. 4.24 shows an example of the declaration of a
three-dimensional array.

In the multi-dimensional arrays, the components are saved starting with the first
dimension. With bit and byte components, a new dimension always commences in
the next byte, with components of other data types always in the next word (in the
next byte with even address, see Fig. 4.23).

When addressing an array component, you can specify a constant or a tag with a
fixed-point data type for the index. For SCL, it is also permissible to specify an
expression with a fixed-point data type. Example:

#var_word := #Array_3dim[12, #index, 2*#index];

Addressing of partial arrays is also possible: With multi-dimensional arrays, you
can handle the partial arrays like correspondingly dimensioned tags: You omit

Fig. 4.24 Example of the declaration of an array tag

4.8 Parameter types

129

array indices starting from the right, and obtain a partial area of the original array
with a smaller dimension. An example is shown in Chapter 4.3.2 “Indirect address-
ing of ARRAY components” on page 100.

4.7.5 Data type STRUCT

The STRUCT data type represents a data structure comprising a fixed number of
components with different data types. All data types are permissible for the compo-
nents.

A tag with STRUCT data type commences at a byte with even address, followed by
the components in the declared sequence. Components with the BOOL data type
commence in the least significant bit of the next vacant byte, components with the
BYTE or CHAR data type in the next vacant byte. Components with other data types
commence at a byte with even address. The program editor reserves an even num-
ber of bytes for a STRUCT tag (Fig. 4.25).

When declaring a STRUCT tag, the tag name with the STRUCT data type is specified
first, followed underneath by the individual components with their own data type.

Example: A tag with the name Fan is to comprise four components: switch_on
(BOOL), switch_off (BOOL), speed (INT), and delay (TIME). Fig. 4.26 shows the dec-
laration of the tags.

A component of a STRUCT tag can also be addressed individually by positioning the
name of the structure, separated by a dot, in front of the component name.
A STRUCT component can be handled like a tag with the same data type. For exam-
ple, the component #Fan.speed can be created on a block parameter with the
INT data type.

Nested structures

A nested structure contains at least one further structure as component. A nesting
depth of up to 8 levels is possible. All components can be addressed individually.
The individual names are each separated by a dot.

Example: StructureTag.Structure_Level2.Component_Level2.

4.8 Parameter types

4.8.1 Overview

The parameter types are additional data types for block parameters. In addition to
the data types shown in Table 4.9, there are the PLC data types, the system data
types, and the hardware data types, which – with certain restrictions – can also be
used in the block interface.

4 Tags, addressing, and data types

130

Fig. 4.25 Structure of STRUCT data type

Byte n+6

Byte n+2

Byte n+11

Byte n

Byte n+7

Byte n+3

Byte n+1

Byte n+10

Byte n+8

Byte n+4

Byte n+9

Byte n+5

Byte n+12

Byte ...

7 6 5 4 3 2 1 0

Bit components

Bit components

Byte component

Byte components

Word components

or

Doubleword components

n = even

*)

*)

8

...

...

7

...

...

6

...

...

5

...

...

4

12

4

3

11

3

2

10

2

1

9

1

Byte 1

Byte 1

Byte 2

Byte 3

(Filler byte)

Word 1

Word 2

etc.

Data type STRUCT

…

Byte m

…

Byte n

Byte q

A tag of data type STRUCT commences at a byte
with even address and always occupies an even
number of bytes.

A tag of data type STRUCT commences at a byte with even address and always occupies an even
number of bytes.

…

…

…

…

Byte p

Byte s

…

*)

*)

*)

*)

*)
STRUCT

STRUCT

Data type 7

Data type 1

Data type 3

Data type 8

Data type 10

Data type 12

Data type 5

Data type 2

Data type 4

Data type 9

Data type 11

Data type 6

Data type STRUCT, nested structure

Byte with even number*)

4.8 Parameter types

131

4.8.2 TIMER and COUNTER parameter types

The SIMATIC timer and counter functions transferred at the block interface are of
parameter types TIMER and COUNTER. These types of block parameter can only be
declared in the declaration section Input. The content of the block parameter is the
number of the transferred timer and counter operands.

TIMER and COUNTER are also used in the PLC tag table as data types for SIMATIC
timer and counter functions.

Fig. 4.26 Example of the declaration of a tag with STRUCT data type

Table 4.9 Overview of parameter types

Parameter type Description Examples of actual parameters

TIMER SIMATIC timer function %T15 or name

COUNTER SIMATIC counter function %C16 or name

Function_xTIME IEC timer function
With the function TP, TON, TOF,
or TONR and different time value
lengths

The actual parameter is a
> Local instance: #Instance name
> Single instance: “Data block name”

Function_xCOUNTER IEC counter function
with the function CTU, CTD or
CTUD and different count value
lengths

The actual parameter is a
> Local instance: #Instance name
> Single instance: “Data block name”

BLOCK_FC Function %FC17 or name (FC without block parameter!)

BLOCK_FB Function block %FB18 or name (FB without block parameter!)

DB_ANY Data block %DB19 or name or UINT tag

VOID No function value
(without data type)

Without actual parameter (only with
functions FC)

POINTER DB pointer As pointer: P#M10.0 or P#DB20.DBX22.2
As operand: %MW20 or %I1.0 or #Name

ANY ANY pointer As area: P#DB10.DBX0.0 WORD 20
or any (complete) tag

VARIANT VARIANT pointer As area: P#DB10.DBX0.0 WORD 20
or any (complete) tag
or type data block

4 Tags, addressing, and data types

132

4.8.3 Parameter types for IEC timer functions

The data types in Table 4.10 are available for the transfer of IEC timer functions to
the block interface. The structure of the data types corresponds to the structure of
the system data type IEC_TIMER (see Chapter 4.11.1 “System data types for IEC
timer functions” on page 139).

The data types can be used in the declaration sections Input (input parameters),
InOut (in/out parameters), and Static (static local data). If an IEC timer function is
transferred as input parameter, its components can only be scanned. You supply a
block parameter with the data type of an IEC timer function with the name of the
instance data, either with the data block if the call is created as a single instance, or
with the instance name if the call is created as a local instance in a function block.

The data types for IEC timer functions can also be used in PLC data types.

4.8.4 Parameter types for IEC counter functions

Depending on the counter type and the data type of the count value, there are the
data types shown in the table for the transfer of IEC counter functions to the block
interface. The structure of the data types corresponds to the structure of the system
data type IEC_xCOUNTER (see Chapter 4.11.2 “System data types for IEC counter
functions” on page 140).

The data types can be used in the declaration sections Input (input parameters),
InOut (in/out parameters), and Static (static local data). If an IEC counter function is
transferred as input parameter, its components can only be scanned. You supply a
block parameter with the data type of an IEC counter function with the name of the
instance data, either with the data block if the call is created as a single instance, or
with the instance name if the call is created as a local instance in a function block.

The data types for IEC counter functions can also be used in PLC data types.

4.8.5 Parameter types BLOCK_FC and BLOCK_FB (STL)

Code blocks FC and FB, which are programmed using STL, can be transferred to a
block with the STL program via block parameters. With the data type BLOCK_FB, a
function block can be transferred via a block parameter. With the data type

Table 4.10 Parameter types for IEC timer functions

Timer function Parameter type
with TIME duration

Parameter type
with LTIME duration

Pulse generation TP_TIME TP_LTIME

ON delay TON_TIME TON_LTIME

OFF delay TOF_TIME TOF_LTIME

Accumulating ON delay TONR_TIME TONR_LTIME

4.8 Parameter types

133

BLOCK_FC, a function (FC) can be transferred. An FC block that is transferred in this
way must not have any block parameters. A function block must not have any
instance data blocks and thus no block parameters and no static local data.
The operations UC and CC that are used for the call are described in Chapter 10.6.2
“Block call function in the statement list” on page 438.

A block parameter with the BLOCK_FB or BLOCK_FC parameter type can only be
declared in the declaration section Input. The content of the block parameter is the
number of the transferred block.

4.8.6 Parameter type DB_ANY

A data block can be transferred to the called block via a block parameter with the
data type ANY_DB. The actual parameter can be the absolute address of a data block
(e.g. %DB10), the symbolic address of a data block (e.g. “Station data”), or a tag with
the data type UINT.

A block parameter with the DB_ANY parameter type can only be declared in the dec-
laration section Input. The content of the block parameter is the number of the
transferred block.

A block parameter with the data type DB_ANY cannot be the instance data block of
a function block or of a system block.

A data tag in this data block can be addressed in the program of the called block
with #BlockParameterName.%DataOperand. In this way, a data block whose number
is only known during runtime can be addressed. Further details can be found in
Chapter 4.3.4 “Indirect addressing of a data block” on page 102.

4.8.7 Parameter type VOID

The VOID parameter type (= without type) is used for the value of functions FC if the
function value is not to be displayed. Additional information on the function value
can be found in section “Using a function value of a function (FC)” on page 167.

Table 4.11 Parameter types for IEC counter functions

Counter function Parameter type Data type of the
count value

Parameter type Data type of the
count value

Up counter CTU_SINT
CTU_INT
CTU_DINT
CTU_LINT

SINT
INT
DINT
LINT

CTU_USINT
CTU_UINT
CTU_UDINT
CTU_ULINT

USINT
UINT
UDINT
ULINT

Down counter CTD_SINT
CTD_INT
CTD_DINT
CTD_LINT

SINT
INT
DINT
LINT

CTD_USINT
CTD_UINT
CTD_UDINT
CTD_ULINT

USINT
UINT
UDINT
ULINT

Up/down counter CTUD_SINT
CTUD_INT
CTUD_DINT
CTUD_LINT

SINT
INT
DINT
LINT

CTUD_USINT
CTUD_UINT
CTUD_UDINT
CTUD_ULINT

USINT
UINT
UDINT
ULINT

4 Tags, addressing, and data types

134

4.8.8 Parameter types POINTER, ANY, and VARIANT

POINTER parameter type

A tag with elementary data type is transferred at a block parameter of the type
POINTER. Such a block parameter can be declared in the declaration sections Input
and InOut, and with functions (FC) also in the subsection Output. The content of the
block parameter is a DB pointer which points to the actual parameter to be trans-
ferred (see Chapter 4.9 “Pointer” on page 134).

ANY parameter type

A tag with any data type or a data area is transferred at a block parameter of the type
ANY. Such a block parameter can be declared in the declaration sections Input and
InOut, and with functions (FC) also in the subsection Output. The content of the
block parameter is an ANY pointer which points to the actual parameter to be trans-
ferred (see Chapter 4.9 “Pointer” on page 134).

Parameter type VARIANT

A block parameter with data type VARIANT contains a pointer to a tag or a data area.
VARIANT can be used in the declaration sections Input, InOut, and Output. Actual
parameters of all data types are approved for a block parameter of type VARIANT.
The actual parameter can be an absolutely or symbolically addressed tag, an oper-
and area that is absolutely addressed with an ANY pointer, or a type data block.

You can “pass on” a block parameter with the parameter type VARIANT to a block
parameter of a called block that also has the parameter type VARIANT.

4.9 Pointer

4.9.1 Introduction

A pointer is a reference to a tag, an operand, or an operand area. It is structured in
such a way that it contains the bit address, the byte address, the operand ID if appli-
cable, the area length, and the data type. STEP 7 knows the following types of point-
ers:

b Area pointers; these have a length of 32 bits and contain an address and possibly
the operand ID.

b DB pointers; these have a length of 48 bits and contain the number of the data
block in addition to the area pointer.

b ANY pointers; these have a length of 80 bits and contain further data such as the
data type of the operand in addition to the DB pointer.

For STL, the area pointer is used for indirect addressing. The DB pointer is used as
actual parameter for a block parameter with the data type POINTER or VARIANT,
and the ANY pointer is used as actual parameter for a block parameter with the data
type ANY or VARIANT.

4.9 Pointer

135

4.9.2 Area pointer

An area pointer is used for the indirect addressing for STL.

The area pointer contains the operand address and possibly also the operand area.
Without an operand area, it is an area-internal pointer. If the pointer also contains
the operand area, one refers to a cross-area pointer. The two types of pointer are dis-
tinguished by the assignment of bit 31 (Fig. 4.27).

You can load an area pointer as a constant into accumulator 1 or into one of the
address registers. The notation for this is as follows:

P#y.x for an area-internal pointer (e.g. P#22.0) and

P#Zy.x for a cross-area pointer (e.g. P#M22.0)

where x = bit address, y = byte address, and Z = area. Specify the operand ID as the
area (I, Q, M, DBX, DIX, L, and P). The operand area I/O cannot be reached using a
pointer.

The area pointer always has a bit address which also always has to be specified for
digital operands; the bit address is 0 (zero) for digital operands. You can use the
area pointer P#M22.0, for example, to address the memory bit M 22.0, but also the
memory byte MB 22, the memory word MW 22, or the memory doubleword MD 22.

4.9.3 DB pointer

A DB pointer is used for transferring a tag to a block parameter or function param-
eter.

A DB pointer also contains, supplementary to the area pointer, a data block number
as UINT number. It specifies the data block if the area pointer contains the operand
areas Global data (DBX) or Instance data (DIX). In all other cases, zero is present
instead of the data block number (Fig. 4.27).

You have already become acquainted with the pointer's notation in the complete
addressing of data operands. The data block and the data operand are also specified
here separated by a dot: P#Data_block.Data_operand.

Examples:

b P#DB10.DBX20.5 Data bit 20.5 in data block 10

b P#DB102.DBD250.0 Data doubleword 250 in data block 102

4.9.4 ANY pointer

The ANY pointer is used for transferring a tag or an operand area to a block param-
eter or function parameter.

Supplementary to the DB pointer, the ANY pointer also contains the data type and a
repetition factor. It is thus possible to additionally point to an (absolutely
addressed) operand area. The representation of a constant is:
P#[Data_block.]Operand Type Quantity.

4 Tags, addressing, and data types

136

Fig. 4.27 Structure of the pointers

Byte n

Byte n

Byte n

Byte n+1

Byte n+1

Byte n+1

Byte n+2

Byte n+2

Byte n+2

Byte n+3

Byte n+3

Byte n+3

Area-internal pointer

Zero pointer

Cross-area pointer

Data block Data block

Quantity

B#16#10

Area Area

number number

Data type

pointer pointer

Byte n Byte n+4

Byte n

Byte n+2 Byte n+6

Byte n+2

Byte n+1 Byte n+5

Byte n+1

Byte n+3 Byte n+7

Byte n+3

Byte n+4 Byte n+8

Byte n+5 Byte n+9

DB pointer

ANY pointer

Operand area in the area pointer:
B#16#81 Inputs (I)
B#16#82 Outputs (Q)
B#16#83 Bit memories (M)
B#16#84 Global data (DBX)
B#16#85 Instance data (DIX)
B#16#86 Temporary local data (L)
B#16#87 Temporary local data

of preceding block (V)

Data type in the ANY pointer:
B#16#00 NIL B#16#08 REAL
B#16#02 BYTE B#16#09 DATE
B#16#03 CHAR B#16#0A TOD
B#16#04 WORD B#16#0B TIME
B#16#05 INT B#16#0C S5TIME
B#16#06 DWORD B#16#0E DT
B#16#07 DINT B#16#13 STRING

Pointers for indirect addressing

Bit address

Bit addressOperand area

Byte address

Byte address

An area pointer contains the reference to a tag or an operand. An area-internal pointer contains the
byte and bit address, a cross-area pointer additionally contains the operand area. A zero pointer
points to “nothing” and is used as placeholder.

The is used for the
indirect addressing via address
registers for STL.

The is used as block
parameter with the data type
POINTER. If the actual parameter is
not a data operand, the data block
number is occupied with B#16#00.

The is used as block
parameter with the data type ANY.
It is used to point to an individual
 tag, to an operand, or to an
operand area.

area pointer

DB pointer

ANY pointer

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Z Z Z Z Z Z Z Z

0 0 0 0 0 y y y

0 0 0 0 0 0 0 0

0 0 0 0 0 y y y

y y y y y y y y

0 0 0 0 0 0 0 0

y y y y y y y y

y y y y y x x x

0 0 0 0 0 0 0 0

y y y y y x x x

4.10 PLC data types

137

Examples:

b P#DB11.DBX30.0 INT 12 Area with 12 words in the %DB11 starting at %DBB30

b P#M16.0 BYTE 8 Area with 8 bytes starting at %MB16

b P#I18.0 WORD 1 Input word %IW18

b P#I1.5 BOOL 1 Input %I1.5

The program editor then applies an ANY pointer which agrees with the data in the
representation of the constant with regard to type and quantity. Note that the oper-
and address in the ANY pointer must always be a bit address.

If a data area is addressed in absolute mode, the Optimized block access block attri-
bute must not be activated in the data block (standard access). The use of an abso-
lutely addressed operand area makes sense if there is no tag defined for this area.

You can create a “zero pointer” with P#P0.0 VOID 0.

The ANY_pointer is a constant which permanently points to a tag or an operand
area. How to create a “variable” ANY pointer is described in Chapter 4.3.5 “Indirect
addressing with an ANY pointer” on page 103.

4.10 PLC data types

A PLC data type is one with its own name. It is structured like the STRUCT data type,
i.e. it consists of individual components which can have different data types. You
can use a PLC data type if you wish to assign a name to a data structure, for example
because you frequently use the data structure in your program. A PLC data type is
valid throughout the CPU (global).

4.10.1 Programming a PLC data type

All PLC data types are combined in the project tree under a PLC station in the
PLC data types folder. To create a PLC data type, double-click on Add new data type

Fig. 4.28 Example of programming a PLC data type

4 Tags, addressing, and data types

138

in the PLC data types folder. Enter the individual components of the PLC data type
in sequence in the declaration table with name, data type, default value, and com-
ment (Fig. 4.28).

You can change the standard name User_data_type_n, where n is the consecutive
number: Select the PLC data type in the project tree with the right mouse button,
select the Properties command from the shortcut menu, and enter the new name
under General. The name must not already be assigned to a PLC tag, a user constant,
or a block. The operand ID is UDT (user-defined data type), the number is assigned
by the program editor.

4.10.2 Using a PLC data type

A PLC data type can be assigned to any tag which is present in a global data block
or in the interface of a code block. The default setting for the PLC data type can be
changed. You then address the individual components of the tag using
#tag_name.comp_name.

You can also assign a PLC data type to an input or an output in a PLC tag table. Then,
however, the PLC data type cannot have any components with the data type STRING.
Specify the bit 0 in the lowest byte as the absolute address for the operand area.
Example: %I64.0.

You can nest PLC data types. A (different) PLC data type can be used in a PLC data
type.

With a PLC data type as the basis, you can also generate a data block: In the project
tree, double-click on Add new block in the Program blocks folder. Click on the
Data block button in the Add new block window, and select the PLC data type from
the Type drop-down list. The data structure of this type data block is then defined
by the PLC data type and can no longer be changed. The default setting is imported
by the PLC data type and can be changed.

4.10.3 Comparing PLC data types

The PLC data types of the opened PLC station can be compared to the PLC data types
in the CPU (offline/online comparison) or to the PLC data types in a different station
from the same project, from a reference project, or from a library (offline/offline
comparison). To perform the comparison, select the PLC station in the project tree
and choose the command Compare > Offline/online or Compare > Offline/offline.
An online connection to the CPU is required for the offline/online comparison.

This starts the compare editor, which shows the PLC station with the contained
objects on the left side, including the PLC data types. For the offline/online compar-
ison, the user program objects from the CPU are displayed on the right side. For an
offline/offline comparison, use the mouse to move a PLC station from the same
project, from a reference project, or from a library into the title bar on the right side
of the compare editor. You can move other PLC stations into the title bar on one of
the two sides at any time in order to carry out further comparisons.

4.11 System data types

139

The “Status and action area” is located between the two tables. Above this is the swi-
tchover button with the scale. In the automatic comparison (the switchover button
with the scale is white), the PLC data types are automatically assigned on the left
and right side based on their names and the comparison icons are displayed in the
center. Activate the manual comparison by clicking on the switchover button.
The switchover button is now gray. Manually assign the PLC data types to be com-
pared by selecting them using the mouse. The result of the comparison is displayed
in the bottom area of the comparison window in the “Property comparison”.
The lower area can be opened and closed using the arrow buttons.

For a detailed comparison, select a PLC data type and click on the Start detailed
comparison icon. The compared PLC data types are displayed next to each other. The
columns Status and Action are located between the lists. You can select the desired
action from a drop-down list.

A filled green circle means that the objects are identical. A blue-orange semicircle
(offline/online comparison) or a blue-gray semicircle (offline/offline comparison)
indicates that the objects differ. If one half of the circle is not filled, the correspond-
ing object is missing. An exclamation mark in a gray circle indicates an object with
differences in the identified folder.

In the Action column, you can select an action from a drop-down list for different
objects, for example copying with an arrow in the direction in which you are copy-
ing. Clicking on the Execute actions icon starts the set actions. Note that you can nei-
ther add, delete, nor overwrite objects in reference projects.

4.11 System data types

System data types (SDT) are pre-defined data types which, like the data type
STRUCT, consist of a fixed number of components which can have different elemen-
tary data types each. System data types are provided with STEP 7 and cannot be
changed. The system data types can only be used together with certain functions or
statements.

4.11.1 System data types for IEC timer functions

For the instance data of an IEC timer function, a CPU 1500 has two system data
types: IEC_TIMER for durations with the data type TIME, and IEC_LTIMER for dura-
tions with the data type LTIME.

If you use one of the statements TP, TON, TOF or TONR, the program editor –
depending on the specification Single instance or Multi-instance – creates a data
block or a local instance with the data type IEC_TIMER or IEC_LTIMER. You can
also create a type data block or a local instance with the data type IEC_TIMER or
IEC_LTIMER yourself. IEC_TIMER or IEC_LTIMER consists of the components
shown in Table 4.12.

4 Tags, addressing, and data types

140

You can address the individual components of the data type as usual as the data tag
“Data block”.component or as the local tag #LocalInstance.component.

Example: You create a local instance with the name #Duration and the data type
IEC_TIMER. You can then scan the time status with #Duration.Q.

4.11.2 System data types for IEC counter functions

For the instance data of an IEC counter function, a CPU 1500 has eight system data
types – depending on the data type of the count value (Table 4.13).

Table 4.12 Structure of the system data types IEC_TIMER and IEC_LTIMER

Name Designation Data type for IEC_TIMER Data type for IEC_LTIMER

ST (internal) TIME LTIME

PT Preset time TIME LTIME

ET Elapsed time TIME LTIME

RU (internal) BOOL BOOL

IN Start input BOOL BOOL

Q Timer status BOOL BOOL

Table 4.13 System data types for IEC counter functions

IEC data type Data type of the
count value

IEC data type Data type of the
count value

IEC_SCOUNTER
IEC_COUNTER
IEC_DCOUNTER
IEC_LCOUNTER

SINT
INT
DINT
LINT

IEC_USCOUNTER
IEC_UCOUNTER
IEC_UDCOUNTER
IEC_ULCOUNTER

USINT
UINT
UDINT
ULINT

Table 4.14 Structure of the system data types IEC_xCounter

Name Designation Data type

CU Up counter input (count up) BOOL

CD Down counter input (count down) BOOL

R Reset input BOOL

LD Load input BOOL

QU Status up BOOL

QD Status down BOOL

PV Preset value SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT *)

CV Count value SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT *)

*) dependent on the system data type (IEC_SCOUNTER, IEC_COUNTER, IEC_DCOUNTER, etc.)

4.11 System data types

141

If you use one of the statements CTU, CTD or CTUD, the program editor – depending
on the specification Single instance or Multi-instance – creates a data block or a local
instance with the data type IEC_xCOUNTER. You can also create a type data block or
a local instance with the data type IEC_xCOUNTER yourself. IEC_xCOUNTER con-
sists of the components shown in Table 4.14.

You can address the individual components of the data type as usual as the data tag
“Data block”.component or as the local tag #LocalInstance.component. Example: You
create a local instance with the name Number and the data type IEC_COUNTER.
You can then scan the count value with #Number.CV.

4.11.3 Data type ERROR_STRUCT

The data type ErrorStruct is a data structure with predefined assignment. The data
type is used by the functions for error evaluation GetError and GetErrorID. Infor-
mation concerning an error that occurred is output with this structure (Table 4.15).
A tag with data type ErrorStruct commences at a word limit (at a byte with even
address).

Additional information is output depending on the assignment of the structure
component MODE (Table 4.16). When declaring an ErrorStruct tag, the data type is
selected from the drop-down list. The components can also be addressed individu-
ally: Tag_name.Component_name.

The assignment of the ERROR_ID and handling of the error evaluation is described
in Chapter 5.8.2 “Local error handling” on page 213.

Table 4.15 Structure of ErrorStruct data type

Name Data type Note, assignment

ERROR_ID WORD Error ID (see text)

FLAGS BYTE 16#00

REACTION BYTE Reaction to error
16#00: none, no writing (write error)
16#01: replace, read a zero (read error)
16#02: skip statement (system error)

CODE_ADDRESS CREF

BLOCK_TYPE BYTE Type of block in which the error occurred
16#01: OB, 16#02: FC, 16#03: FB

CODE_BLOCK_NUMBER UINT Number of block in which the error occurred

OFFSET UDINT Internal memory address at which the error occurred

MODE BYTE Assignment for the significance of the supplied data (A) to (E)
(see text)

OPERAND_NUMBER UINT Internal operand number of operation

POINTER_NUMBER_LOCATION UINT Internal pointer address of operation (A) (see text)

SLOT_NUMBER_SCOPE UINT Internal address in memory (B) (see text)

DATA_ADDRESS NREF

AREA BYTE Addressed memory area on occurrence of error (C) (see text)

DB_NUMBER UINT Number of data block on occurrence of error, otherwise
zero (D) (see text)

OFFSET UDINT Bit offset on occurrence of error (E) (see text)

4 Tags, addressing, and data types

142

4.11.4 Start information

If the attribute Optimized block access is deactivated for an organization block, the
operating system of the CPU transfers start information in the temporary local data
when the organization block is called. The start information can only be directly
scanned in the program of the organization block. The system block RD_SINFO also
permits access to the start information from the blocks called in the organization
block.

The program editor automatically configures the start information when adding an
organization block to the user program. The tag names and comments in English
can be adapted according to your requirements.

This start information is 20 bytes long for every organization block and practically
identical. The “standard structure” of the start information shown in Table 4.17 can
be found as a basic framework in all organization blocks. Individual tags can have
different names and different data types for some organization blocks. If the addi-
tional information and the data ID contain relevant information, this is specified in
the description of the individual organization blocks.

For an organization block with the Optimized block access attribute activated, the
CPU operating system transfers any existing start information in the Input declara-
tion section. This start information is described for the corresponding organization
blocks.

Table 4.16 Information output depending on access type MODE

MODE (A) (B) (C) (D) (E)

16#00 – – – – –

16#01 – – – – OFFSET

16#02 – – AREA – –

16#03 LOCATION SCOPE – NUMBER –

16#04 – – AREA – OFFSET

16#05 – – AREA DB_NUMBER OFFSET

16#06 POINTER_NUMBER_
LOCATION

SLOT_NUMBER_
SCOPE

AREA DB_NUMBER OFFSET

16#07 POINTER_NUMBER_
LOCATION

SLOT_NUMBER_
SCOPE

AREA DB_NUMBER OFFSET

Memory area Assignment of AREA component

System memory (temporary
local data)

16#40…4E, 16#86, 16#87, 16#8E, 16#8F, 16#C0…CE

Process image input (I) 16#81

Process image output (Q) 16#82

Bit memories (M) 16#83

Data operands (DB) 16#84, 16#85, 16#8A, 16#8B

4.12 Hardware data types

143

4.12 Hardware data types

Hardware data types refer to all data types which can accept the hardware identifi-
ers in the default tag table in the System constants tab. A hardware object is
addressed in the program with a hardware identifier. The data type and the value
are predefined, the name can be changed in the object properties (see also
Chapter 4.4 “Addressing of hardware objects” on page 107). Fig. 4.29 shows the Sys-
tem constants tab with a selection of hardware data types.

Table 4.17 Structure of the start information

Byte Data type Tags Meaning, remark

0 BYTE EV_CLASS Bits 0 to 3: Event identifier
Bits 4 to 7: Event class

1 BYTE EV_NUM
STRT_INF

Event number

2 BYTE PRIORITY Priority class, number of execution level

3 BYTE NUM OB number
B#16#FF for an OB number >254

4 BYTE TYP2_3 Data ID 2_3: identifies the information entered in ZI2_3

5 BYTE TYP_1 Data ID 1: identifies the information entered in ZI1

6 … 7 WORD ZI1 Additional information 1

8 … 11 DWORD ZI2_3 Additional information 2_3

12 … 19 DATE_AND_TIME DATE_TIME Beginning of event

Fig. 4.29 Examples of hardware data types

5 Program execution

144

5 Program execution

5.1 Operating states of the CPU

A CPU 1500 recognizes the following operating states in which it is ready for oper-
ation:

b STOP, when the user program is not being executed

b STARTUP, when the startup program is being executed

b RUN, when the main program and the interrupt routine are being executed

If the CPU is not ready to operate, there is either no power supply or the CPU is
defective.

Fig. 5.1 illustrates the operating state transitions:

a After it is switched on, the CPU switches over to the STARTUP operating state if
Warm restart is set as the startup type and the online project data is consistent.

s After a successful startup, the CPU switches to the RUN operating state.

d If No startup is set as the startup type, the CPU switches to the STOP operating
state after being switched on.

f g The CPU switches to the STOP operating state if a “serious” error occurs
during STARTUP or RUN, the system block STP is being executed, or the CPU is
stopped by the operator.

Fig. 5.1 Operating states and operating state transitions of a CPU 1500

STOP

STARTUP

RUN

f

a

s

d

g

h

POWER ON
After it is switched on, the CPU – if the corresponding
conditions are fulfilled – switches to the STARTUP operating
state and then to RUN .
The CPU switches to STOP if the startup conditions are not
fulfilled after switching on , or if a “serious” error occurs
during STARTUP or RUN
The CPU can switch from the STOP operating state via
STARTUP h to RUN s .

.

a s

d
f g

Operating states of a CPU 1500

5.1 Operating states of the CPU

145

h The CPU switches from STOP to the STARTUP operating state if it is started by the
operator and the online project data is consistent.

Using the mode switch on the CPU, you can activate the operating states STOP and
RUN. The operating states are displayed on the CPU display and are indicated by the
RUN/STOP LED: In the STOP operating state, the LED displays a continuous yellow
light. In the RUN operating state, the LED is green.

On the programming device, you can control the operating states in online mode
using the online tools and you can display them in various ways, e.g. with the
online tools or in the inspector window in the tab Diagnostics > Device information.

5.1.1 STOP operating state

The STOP operating state is reached

b after the power supply is switched on at the CPU and No restart is configured as
the startup type,

b after changing the mode switch from RUN to STOP,

b if a “serious” error occurs during program execution,

b if the STP system block is executed in the user program, and

b following a stop request from the programming device.

The CPU enters the cause of the STOP operating state into the diagnostics buffer. In
this operating state you can also read out the CPU information using a program-
ming device in order to find the reason for the stop.

The user program is not executed in the STOP operating state. The CPU takes over
the device settings – either the values you have set with the hardware configuration
when parameterizing the CPU, or the standard settings – and sets the connected
modules to the parameterized initial state.

In the STOP operating state, the CPU can execute passive one-way communication
functions if, for example, data is requested or sent by another station via S7 com-
munication. The real-time clock continues to run in the STOP operating state.

You can parameterize the CPU in the STOP operating state, for example set the IP
address, transfer or modify the user program, and you can also carry out a memory
reset for the CPU.

Disabling of output modules

All output modules are disabled when in the STOP operating state (OD or BASP sig-
nal, output disable or command output disable). Disabled output modules output a
zero signal or – if configured accordingly – a parameterized substitute value.

5 Program execution

146

5.1.2 STARTUP operating state

The STARTUP is executed when the CPU changes from the STOP operating state to
the RUN operating state. In the STARTUP operating state, the CPU initializes itself
and the modules controlled by it.

In the STARTUP operating state, the CPU updates the SIMATIC timer functions, the
clock memories, the runtime meters and the real-time clock, and executes the user
program in a startup organization block.

No interrupt events – except errors – are processed during execution of the startup
program. Interrupts occurring during the startup are executed after the startup but
before the main program.

A CPU 1500 carries out a warm restart when started up (Fig. 5.2).

Warm restart startup type

A manual warm restart is triggered

b by the mode switch on the CPU on a transition from STOP to RUN, or

Fig. 5.2 CPU activities in the STARTUP and RUN operating states

RUN

STARTUP

Switching on

Operating system activities
(e.g. communication with the PG)

Reset process image input

Update process image input

Disable peripheral outputs
(switch off, retain last value,
or output substitute value)

Reset non-retentive bit memories and
SIMATIC timer/counter

functions

Reset non-retentive data operands
to initial values

Transfer process image output
to the modules

Enable peripheral outputs

Update process image
input

Execute startup program
Execute main program
(including all interrupt
and error programs)

CPU 1500 activities in the STARTUP and RUN operating states

5.1 Operating states of the CPU

147

b by operator input on the programming device; the mode switch must be at RUN
for this.

A manual warm restart can always be triggered, except if the CPU requests a mem-
ory reset.

An automatic warm restart is triggered by switching on the power supply if

b the CPU was not at STOP when the voltage was switched off, the mode switch is
set to RUN, and the startup type Warm restart was parameterized in the
CPU properties under Startup after POWER ON, or

b the CPU was interrupted during a warm restart by a power failure.

With a warm restart, the CPU deletes the process image input and initializes the
process image output and the peripheral outputs, i.e. the outputs and the periph-
eral outputs are switched off, retain their last value, or output a parameterized sub-
stitute value depending on the parameterization. This is followed by disabling of
the peripheral outputs by the OD or BASP signal (output disable or command out-
put disable).

The CPU deletes the non-retentive bit memories, SIMATIC timers, and SIMATIC
counters, and sets the non-retentive data operands to the start values from the load
memory. The values of the operands set as retentive are retained. The current pro-
gram and the retentive data in the work memory are retained, as are the data blocks
generated per system block.

Hardware compatibility

The modules are parameterized as was defined by the hardware configuration. If a
module other than the configured module is plugged in, you can configure the
startup behavior of the CPU:

In the module properties of the CPU, under Startup and Comparison preset to actual
configuration, you can choose between Start up CPU only if compatible and Startup
CPU even if mismatch.

In the properties of a signal module, under Module parameters > General, you can
set the individual startup behavior in the Comparison preset to actual module field
depending on the module: From CPU, Start up CPU only if compatible, or Startup CPU
even if mismatch.

Startup program

If startup organization blocks are available, they are called one-time (see
Chapter 5.5 “Startup program” on page 169). The peripheral inputs can be accessed
directly during the startup program and the outputs and peripheral outputs can be
controlled. However, the signal states at the output terminals are not yet changed
because the peripheral outputs are still disabled.

The process image input is updated following execution of the startup program,
and the process image output is transferred to the I/O. Disabling of the peripheral

5 Program execution

148

outputs is then canceled. Following a warm restart, execution of the main program
always commences at the beginning.

5.1.3 RUN operating state

The RUN operating state is reached from STARTUP operating state. In the RUN oper-
ating state, the user program is executed and the PLC station controls the machine
or process.

The following activities are executed cyclically by the CPU (see also Fig. 5.2 on
page 146):

b Transmission of process image output to the output modules

b Updating of the process image input

b Execution of the main program, including interrupt and error programs

The main program is present in organization block OB 1 and in further organiza-
tion blocks of the Program cycle event class. If further organization blocks are pres-
ent for the main program, they are executed following the OB 1 in order of their
numbering.

In the RUN operating state, the CPU has unlimited communication capability.
All functions provided by the operating system, e.g. time-of-day and runtime
meter, are in operation.

Further information on execution of the user program in the RUN operating state
can be found in Chapter 5.6 “Main program” on page 177 (including process
images, cycle time, response time, time-of-day), in Chapter 5.7 “Interrupt process-
ing” on page 192 (time-of-day, time-delay, cyclic and hardware interrupts), and in
Chapter 5.8 “Error handling” on page 212 (including OB 82 diagnostics interrupt
and OB 80 time error).

5.1.4 Retentive behavior of operands

A memory area is retentive if its contents are retained even when the power supply
is switched off, as well as on a transition from STOP to RUN following power-up.
The values of the set retentive tags are stored in the retentivity memory, which has
a CPU-specific size. It can accommodate bit memories, SIMATIC timer functions,
SIMATIC counter functions, and tags from data blocks.

Retentivity settings for bit memories and SIMATIC timer/counter functions

You set the retentive memory area for the bit memories and the SIMATIC
timer/counter functions in the PLC tag table or in the assignment list. Click on the
symbol for retentivity in the toolbar of the working window and enter the number
of retentive memory bytes and the number of retentive timer and counter func-
tions. The retentivity area always begins with the address zero. A memory tag occu-
pying more than one byte must not exceed the limit between the retentive and
non-retentive areas.

5.2 Creating a user program

149

A retentive operand is marked with a checkmark in the Retain column of the PLC tag
table. You can activate/deactivate the retentivity mark in the assignment list via an
icon in the toolbar of the working window.

Retentivity settings for global data tags

If the Optimized block access attribute is activated in a global or type data block,
individual tags can be defined as retentive. In the case of a tag with a structured
data type, only the complete tag can be set to retentive. If the attribute is not acti-
vated, the retentivity setting applies to the entire data block.

Retentivity settings for tags in function blocks

If the Optimized block access attribute is activated in a function block, the retentiv-
ity of individual tags can be set in the interface area. Select the settings for each tag
from a drop-down list:

b Non-retain
The tag in the instance data block is always non-retentive.

b Retain
The tag in the instance data block is always retentive.

b Set in IDB
The retentivity setting for the tag can be made in the instance data bock.

The standard setting is “Non-retain”. For a tag with a structured data type, the
retentivity setting applies for the whole tag.

If the attribute Optimized block access is not activated, the setting can be made in
the instance data block, but only for the complete data block. The Optimized block
access property of the function block is “bequeathed” to the associated instance
data blocks.

5.2 Creating a user program

5.2.1 Program draft

You define the structure of the user program during the draft phase by adaptation
to technological and functional conditions; this is important for program creation,
testing, and startup. In order to achieve effective programming, it is therefore nec-
essary to pay particular attention to the program structure.

Analysis of a complex automation task means division of it into smaller tasks or
functions based on the structure of the process to be controlled. You define the indi-
vidual tasks by determining the function and then defining the interface signals to
the process or to other individual tasks. You can adopt this structuring of individual
tasks in your program. This means that the structure of your program corresponds
to the structure of the automation task.

5 Program execution

150

A structured user program is easier to configure and program section by section,
and means that more than one person can carry out the work in the case of very
large user programs. Last but not least, program testing, servicing, and mainte-
nance are simplified by this division.

With a linear program structure, the entire user program is present in one single
block – a good solution for small programs. The individual control functions are
program parts within this block, and are executed in succession. A block can be
divided into so-called networks (not with SCL), each of which has part of the block
program. STEP 7 numbers all networks in succession. During editing and testing,
you can directly reference each network using its number.

The networks are executed in the order of their numbering, but can also be
bypassed depending on conditions. The program can be tested in sections using
jump instructions temporarily inserted during commissioning.

A modular program structure is used if the task is very extensive, if you wish to
repeatedly use program functions, or if complex tasks exist. Structuring means
dividing the program into sections – blocks – with self-contained functions or a
functional correlation, and exchanging as few signals as possible with other blocks.
If you assign a specific (technological) function to each program section, manage-
able blocks are achieved with simple interfaces to other blocks.

In Fig. 5.3, a simple example is used to compare linear program structures with
modular program structures. With the linear program structure, the individual
control functions are written in succession into a block. In the modular program
structure, each control function is present in a block which is called by a “higher”
block. Further blocks can be called in turn in the called block.

Blocks can also be used repeatedly. Let us assume in the example that the control
of motors 1 to 3 has the same function, only the input and output signals and the
control operations are different. A Motor block can then be called three times with
different signals (parameters) and control the motors independently of one
another.

Practice-oriented program organization

In the block at the highest position in the call hierarchy (in the main program), you
should call the blocks located “underneath” in such a manner that you achieve
rough structuring of your program. Program structuring is possible according to
technological or functional aspects.

The following explanations can only present a rough and very general view which
can provide a beginner with food for thought with regards to program structuring
and ideas for realization of his control task. Advanced programmers usually have
enough experience to allow them to find a program structure appropriate to the
specific control task.

Technological program structuring is strongly based on the structure of the
plant to be controlled. The individual parts of the plant or the process to be con-
trolled correspond to the individual program sections. Subordinate to this rough

5.2 Creating a user program

151

structuring is the scanning of limit switches and HMI devices and the control of
final controlling elements and display units (specific to each plant unit). Signal
exchange between the individual plant units (or better: program sections) takes
place by means of global tags.

Functional program structuring is based on the control function to be executed.
This type of program structuring does not initially take into account the structure
of the plant to be controlled. The division of the plant only becomes visible in the
subordinate blocks if the control function achieved using the rough structuring is
divided further.

In practice, mixed forms of the two structuring concepts are usually present. Fig.
5.4 shows an example: The operating mode program and the data processing pro-
gram reflect a plant-independent division of functions. The program sections Feed
1, Feed 2, Process, and Remove base their technological structuring on the plant
units to be controlled.

Fig. 5.3 Comparison between linear and modular program structures

Operating modes

Block call

Operating modes

Control motor 1

Control motor 1

Control motor 2

Control motor 3 Control motor 3

Control valve 1
Control valve 1

Control valve 2 Control valve 2

Display control Display control

Error evaluation Error evaluation

Data transfer Data transfer

Linear
program structure

Main program Main program

Valve control

Motor control

Modular program structure

Control motor 2

Linear and modular program structures

5 Program execution

152

The example also shows the use of different types of block (further information on
the types of block can be found in Chapter 5.3.1 “Block types” on page 155).
The organization block OB 1 contains the main program; the blocks for the operat-
ing modes, for the individual plant units, and for data processing are called in it.
These blocks are function blocks (FB) with an instance data block (DB) as the data
memory. Feed 1 and Feed 2 have an identical structure; FB 20 is used to control a
feeder unit, in the case of Feed 1 with DB 20 as the instance data block, and in the
case of Feed 2 with DB 21.

In the Feed controller, the function FC 20 processes the interlocks; it scans inputs or
bit memories, and controls the local data of FB 20. Function block FB 101 contains
a conveyor belt control; it is called once per conveyor belt. The call is carried out as
a local instance so that its local data is present in the instance data block DB 20.
The same applies to the data acquisition FB 29.

Data processing FB 50 with DB 50 processes the data acquired with FB 29 (and other
blocks) which is present in the global data block DB 60. Function FC 51 prepares this
data for transmission. Transmission is controlled by FB 51 (with DB 51 as the
instance data block), in which the USEND and URCV are called for communication
with another station. The system blocks store their instance data in the
“higher-level” DB 51 in this case as well.

Fig. 5.4 Example of program organization

Main program

Operating modes

Feed 1

Process

Feed 2

Remove

Data processing

Communication

Interlocks

Delivery data

Belt control 1

Data preparation

Data acquisition

Belt control 2

etc.

OB 1

FB 10

FB 20

FB 20

FC 10

FB 30

USEND

FB 101

FB 40

FC 51

URCV

FB 101

FB 50

FB 51

FB 19

DB 10

DB 20

DB 21

DB 30

DB 59

DB 40

DB 50

DB 51

Example of program organization

+

+

+

–

–

–

5.2 Creating a user program

153

Block nesting depth

A further block can be called within a block, and then another one in this, etc.
The number of such “horizontal” call levels, the nesting depth, is limited. In Fig.
5.4, for example, block FB 20 is called in block OB 1 (nesting depth 1), and then
block FC 20 in FB 20. This corresponds to a nesting depth of 3.

The maximum nesting depth is 24 per priority level for a CPU 1500. If more blocks
are called in a “horizontal” level, the CPU will generate a program execution error.

Blocks which are called in succession (linear, “vertical”) do not generate a new call
level and therefore do not affect the nesting depth.

5.2.2 Program execution

The complete program of a CPU comprises the operating system and the user pro-
gram (control program).

The operating system is the totality of all statements and declarations of internal
operating functions (e.g. saving of data in event of power failure, activation of pri-
ority classes etc.). The operating system is a fixed part of the CPU which you cannot
modify. However, you can reload the operating system from a FLASH memory card,
e.g. for a program update.

The user program is the totality of all statements and declarations programmed by
you for signal processing by means of which the plant (process) to be controlled is
influenced in accordance with the control task.

Program execution types

The user program consists of program sections which are executed by the CPU for
specific events. These events can be, for example, the starting up of the automation
system, an interrupt, or detection of a program error (Fig. 5.5). The programs
assigned to the events are divided into priority classes which define the sequence
of program execution if several events occur simultaneously and thus the interrupt
capability hierarchy.

The main program, which is executed cyclically by the CPU, has the lowest execu-
tion priority. All other events can interrupt the main program following each state-
ment; the CPU then executes the associated interrupt or error program and subse-
quently returns to execution of the main program.

A specific organization block (OB) is assigned to each event. The organization
blocks represent the event classes in the user program. If an event occurs, the CPU
calls the associated organization block. An organization block is part of the user
program which you can program yourself. There are organization blocks with per-
manently assigned number and organization blocks with a freely assignable num-
ber.

5 Program execution

154

Startup program

Program execution commences in the CPU with the startup program in the
STARTUP operating state, after switching on the power supply, for example.
The startup program is optional. If you wish to create a startup program, use orga-
nization block OB 100 (Startup). You have the capability of assigning additional
organizational bocks to the startup program. These are then processed in the order
of their OB number after OB 100. Additional code blocks can be called up in a
startup organization block. Following execution of the startup program, the CPU
commences with execution of the main program.

Main program

The main program is present as standard in organization block OB 1 (Program
cycle), which is always executed by the CPU. The first statement in OB 1 is identical
to the program start of the main program. You have the capability of assigning
additional organizational bocks to the main program. These are then processed in
the order of their OB number after OB 1. Additional code blocks can be called up in
a main program organization block. The main program is the totality of all of the
cyclically processed organization blocks.

Following execution of the main program, the CPU branches to the operating sys-
tem and, following execution of various operating system functions (e.g. update

Fig. 5.5 Program execution modes of a SIMATIC user program

Cycle start

Switching on

<Interrupt> Interruption

Interruption<Error>

Operating system

STARTUP operating state

RUN operating state

Startup program

Interrupt program

Error program

Main program

User program

Program execution modes of the user program

5.3 Programming blocks

155

process images), calls OB 1 and the organization blocks assigned to the main pro-
gram again.

Interrupt routine and error program

Events that can interrupt the main program are interrupts and errors. Interrupts
have their origin in the plant to be controlled (hardware interrupt), in the CPU
(time-of-day, time-delay and cyclic interrupts), or originate from the modules
(diagnostics interrupt).

A distinction is made between asynchronous and synchronous errors. An asynchro-
nous error is an error which is independent of program execution, for example a
power supply failure in a station of the distributed I/O. A synchronous error is
caused by the program execution, for example the addressing of a non-existent
operand or an error during conversion of a data type.

5.3 Programming blocks

5.3.1 Block types

You can divide your program into individual sections as required. These program
parts are called “blocks”. A block is a part of the user program that is defined by its
function, structure or application. Each block should feature a technological or
functional framework.

User blocks

You can select different types of block depending on the application:

b Organization blocks OB
The organization blocks represent the interface between operating system and
user program. The CPU's operating system calls the organization blocks when
specific events occur, e.g. in the event of a hardware interrupt or cyclic interrupt.
The main program is located in organization block OB 1 by default. There are
organization blocks with a fixed number and a fixed assignment to an event and
there are organization blocks with a freely selectable number and a freely select-
able assignment to an event. When calling, the organization blocks make start
information available that can be evaluated in the user program.

b Function blocks FB
A function block is part of the user program whose call can be programmed us-
ing block parameters. A function block has a tag memory which is located in a
data block – the instance data block. If a function block is called as a single in-
stance, a separate instance data block is assigned to the call. When called as a lo-
cal instance, the data is stored in the instance data block of the calling function
block.

5 Program execution

156

b Functions FC
The blocks referred to as “functions” are used to program frequently recurring
automation functions. The calls can be parameterized. Functions do not store in-
formation and have no assigned data block.

b Data blocks DB
Data blocks contain data of the user program. A data block can be generated as
global data block, instance data block, ARRAY data block, type data block, or CPU
data block. With a global data block, you program the data tags directly in the
data block. For an instance data block, the programming of the assigned func-
tion block defines which data tags the data block has. An ARRAY data block con-
sists of tags which all have the same data type. A type data block has the structure
of a PLC data type and a CPU data block is created during runtime in the user pro-
gram with CREATE_DB.

The number of organization blocks and their block numbers are defined in part by
the operating system. The block numbers of the other types of block can be
assigned as desired within the permissible range. Note that the number range is
larger than the number of permissible blocks. Blocks should preferably be symbol-
ically addressed using a name.

System blocks

System blocks are components of the operating system. They can contain programs
(system functions SFC or system function blocks SFB) or data (system data blocks
SDB). System blocks make a number of important system functions accessible to
you, for example manipulating the internal CPU clock or the communication func-
tions. Some of the functions offered under the extended statements in the program
elements catalog are system functions or system function blocks.

You can call system functions and system function blocks, but you cannot modify
them or program them yourself. The blocks themselves do not require space in the
user memory; only the block call and the instance data blocks of the system func-
tion blocks are in the user memory.

System data blocks contain configuration data, for example module parameters.
These blocks are created and managed by STEP 7 itself. As a rule, system data blocks
are located in the load memory. You can only access the contents of system data
blocks in special cases, such as when parameterizing modules with the aid of sys-
tem blocks.

Standard blocks

In addition to the functions and function blocks you create yourself, off-the-shelf
blocks are also available from Siemens. These so-called standard blocks can be pro-
vided on a data medium or are delivered together with STEP 7, for example as
extended statements or in the global libraries. You cannot view or edit the range of
standard blocks. Standard blocks behave like user blocks: They require space in the
user memory.

5.3 Programming blocks

157

Standard blocks also share the number range with the user blocks. If a standard
block is added to the user program by means of an extended statement, for exam-
ple, the number of the standard block can no longer be occupied by a user block.
If a user block is already present with the number of the standard block which you
add to the user program, the number of the standard block is initially retained. The
standard block is then assigned a different, unused number during the next com-
pilation.

5.3.2 Block properties

Table 5.1 shows the modifiable block properties. The block attributes that are spe-
cially intended for blocks with the GRAPH program or for blocks in connection with
the engineering tool Continuous Function Chart (CFC) are not included in the table.
Additional properties can be set for some organization blocks, e.g. the phase offset
for cyclic interrupt processing. These are described in the corresponding chapters.

Each block has other properties which cannot be set by the user and which provide
information about the status of the block, for example the time of creation and
compilation.

You configure the properties of a block using the program editor when the block is
created, as described in Chapters 6.3.3 “Specifying code block properties” on page
256 and 6.4.3 “Defining properties for data blocks” on page 272. These chapters
also contain a detailed description of the block attributes.

5.3.3 Block interface

The block interface contains the declarations of the local tags that are used solely
within the block. These are the block parameters and the temporary and static local
data. The block interface is shown as a table in the top part of the working window
and contains – depending on the block type – the sections shown in Table 5.2.

Input parameters

An input parameter transfers a value to the program in the block and may only be
read in the block program. Input parameters are shown in the block call in the
sequence of their declaration, with LAD and FBD on the left side of the call box and
with STL and SCL at the start of the parameter list.

An input parameter with data type STRING has an adjustable maximum length in a
function block, and a fixed maximum length of 254 characters in a function.
The data type TIMER can be used to transfer a SIMATIC timer function, and the data
type COUNTER to transfer a SIMATIC counter function. Some organization blocks
with the activated block attribute Optimized block access provide start information
in the block interface as input parameters.

A block parameter with the data type DB_ANY transfers a data block to the called
block. For blocks with the STL program, a block parameter with the data type
BLOCK_FB transfers a function block and a block parameter with the data type

5 Program execution

158

BLOCK FC transfers a function to the called block. The transferred code blocks must
not have any block parameters themselves.

Table 5.1 Configurable block properties

Property Block Description

Block type, number,
name

OB, FB, FC,
DB

A block is unambiguously defined by the type and number
(e.g. FB 10). A configurable ID (user-specific ID) can also be assigned
to each block under “Name”.

Constant name,
event class, priority

OB An organization block is assigned to a specific event class and is
addressed in the user program with its constant name. For some orga-
nization blocks, the execution priority can be set.

Process image partition
number

OB Indicates the process image partition assigned to the organization
block.

Language OB, FB, FC Setting of the programming language for the block program
(LAD, FBD, SCL, STL, GRAPH).

Block information OB, FB, FC,
DB

The block information includes the block title (the “header”), the block
comment, the author, the version, the block family, and the
user-defined ID.

Protection OB, FB, FC

DB

A code block can be provided with access protection (“know-how pro-
tection”) and copy protection.
A data block can be provided with access protection (“know-how pro-
tection”).

Download without
reinitialization

FB,
DB

Allows specific changes to the block interface during operation,
without resetting the current values.

Block attributes Block Description

IEC check OB, FB, FC Defines how strictly the data type test is carried out.

Handle errors within
block

OB, FB, FC Defines how the operating system should treat a program execution
error in the block.

Block can be used as a
know-how protected
library element

OB, FB, FC Indicates whether the block can be used with know-how protection in
a library.

Optimized block access OB, FB, FC,
DB

Defines the storage and access to the block-local tags. For organization
blocks, this defines the type of the start information.

Only store in load
memory

DB The data block is not transferred to the work memory (for global,
ARRAY and type data blocks) or is only generated in the load memory
(for CPU data blocks).

Data block write-pro-
tected in the device

DB The data block cannot be written from the user program (for global,
ARRAY, type and CPU data blocks).

Set data in the stan-
dard area to retentive

Instance DB Activates the retentivity setting for all tags which have the setting
Set in IDB in the block interface (for instance data blocks).

Set ENO automatically FB, FC (SCL) Generates additional program code for error monitoring during the
compilation (only for SCL).

Parameter passing
via registers

FB, FC (STL) Allows a special type of parameter assignment (only for STL).

5.3 Programming blocks

159

Output parameters

An output parameter transfers a value to the calling block and may only be written
in the block program. Output parameters are shown in the block call in the
sequence of their declaration, with LAD and FBD on the right side of the call box and
with STL and SCL following the input parameters in the parameter list.

An output parameter with data type STRING has an adjustable maximum length in
a function block, and a fixed maximum length of 254 characters in a function.

Caution: Output parameters which cannot be assigned a default value must be writ-
ten in the block during each block processing. This applies, for example, to all out-

Table 5.2 Declaration sections in the block interface

Section Type, function, and data types Included in

Input Input parameters

may only be read in the program of the block

Elementary and structured data types,
PLC, system and hardware data types,
TIMER, COUNTER, DB_ANY, POINTER, ANY, VARIANT
FB: STRING of adjustable length
FC: STRING of standard length 254
Blocks with STL program: BLOCK_FC, BLOCK_FB

FC and FB

Output Output parameters

may only be written in the program of the block

Elementary and structured data types, PLC data types, DB_ANY
FB: STRING of adjustable length
FC: STRING of standard length 254, POINTER, ANY, VARIANT

FC and FB

InOut In/out parameters

may be read and written in the program of the block

Elementary and structured data types, PLC and system data types,
STRING of standard length 254, DB_ANY, POINTER, ANY, VARIANT

FC and FB

Temp Temporary local data

may be read and written in the program of the block,
are only valid during current block processing

Elementary and structured data types, PLC data types,
STRING of adjustable length, VARIANT
OB, FC: DB_ANY
Blocks with standard access: ANY

FC, FB and OB

Static Static local data

may be read and written in the program of the block,
is saved in the instance data block and remains valid even following block pro-
cessing

Elementary and structured data types, PLC and system data types,
STRING of adjustable length, DB_ANY

FB

Return Function value

may only be written in the program of the block,
is an output parameter with the return value of a function

Elementary data types, DTL, PLC data types,
STRING of adjustable length, DB_ANY, POINTER, ANY (not with SCL), VOID

FC

5 Program execution

160

put parameters in the case of a function (FC) and thus also to the function value.
Note: Set and reset statements do not execute an action if the result of the logic
operation = “0”, and therefore do not write to an output parameter!

In/out parameters

An in/out parameter transfers a value to the program in the block and can return it
to the calling block, usually with a changed content. An in/out parameter can be
read and written in the called block. In/out parameters are shown in the block call
in the sequence of their declaration, with LAD and FBD on the left side of the call
box under the input parameters and with STL and SCL at the end of the parameter
list.

An in/out parameter with data type STRING has a fixed maximum length of
254 characters.

Function value

The function value of an FC block is an output parameter which is handled in a spe-
cial manner. It bears the name of the block with the default data type VOID (= no
type). The function value is used with the SCL programming language. It is possible
here to integrate FC blocks with function value in formulae (in expressions). The
function value then corresponds to the value used for calculation in the formula.
Any programming language can be used for the FC block in this case. An example
is shown in the section “Using a function value of a function (FC)” on page 167.

For LAD, FBD and STL, you can ignore the function value if the data type VOID is
set in the interface description. You can also assign a different data type to the
function value, and this is then displayed as the first output parameter with the
name Ret_Val. In the program of the called block, you then treat the function value
in the same way as an output parameter.

Temporary local data

Temporary local data is stored in the system memory of the CPU. It is used as inter-
mediate memory for the block program and is only available during block process-
ing. It is not displayed on the call box or in the parameter list of the call statement.
Further information can be found in Chapter 4.1.5 “Operand area: temporary local
data” on page 93.

The temporary local data is addressed symbolically. The local data can also be abso-
lutely addressed only for STL (see Chapter 10.7.6 “Absolute addressing of tempo-
rary local data” on page 454).

Static local data

The static local data is stored in the instance data of the called function block –
when called as a single instance in the assigned instance data block and when called
as a local instance in the instance data of the calling function block. It can be read

5.3 Programming blocks

161

and written in the program of the called block. Static local data retains its value
until written again. It is not displayed on the call box or in the parameter list of the
call statement.

The static local data is addressed symbolically. The local data can also be absolutely
addressed only for STL (see Chapter 10.7.5 “Partial addressing of data operands” on
page 453).

The static local data is usually only processed in the function block itself. However,
since the static local data is saved in a data block, you can access it at any time like
tags in a global data block, e.g. using “Data_block_name”.tag_name.

5.3.4 Programming block parameters

By means of block parameters you enable parameterization of the processing spec-
ification (the block function) present in a block.

The example shows the programming of a block, which selects a value from three
digital values according to the following criteria: The maximum value of two digital
values Number_1 and Number_2 is searched for and, depending on the signal state
of the binary tag Switch, this maximum or a substitute value will be output.
The block is to be used multiple times in the user program with different tags. The
tags are therefore transferred as block parameters – in our example, four input
parameters and one output parameter. Since the selection logic need not perma-
nently save values internally, a function FC is suitable as the block type (Fig. 5.6).

The values to be transferred are declared as input parameters in the Input section
with name and data type, the selected value as an output parameter in the Output
section, also with name and data type. An additional tag is required as an interme-
diate memory for the maximum value. This is declared in the Temp section, since
its value is not required outside the block.

The program in the block can be written in the language with which the block func-
tion is best mapped, independent of the programming language with which the
block is subsequently called. The block parameters used in the block program are
called formal parameters. They are handled like tags which have the same data type.
They are the placeholders for the current tags used later at runtime.

After the “Selection” block is programmed, it can be called in the user program. Dif-
ferent values are transferred to “Selection” at the block parameters with each call.
These values can be constants, operands, or tags; they are referred to as actual
parameters. During runtime, the formal parameters are replaced with the actual
parameters. Section “Example of a block call” on page 163 shows how the selection
block programmed here is called and supplied with current tags.

5 Program execution

162

Fig. 5.6 Example of programming with block parameters

Selection

Number_1

Number_2

Default_value

Result

INT

Input
parameter

Output
parameter

Name: Selection
Type: FC
Number: 311

Declaration

Number_1

Number_2

Result

Interface

Block properties

Program

Parameter

Block type,
name

Switch

Name Data type

Default_value

Switch

Input INT

INT

INT

BOOL

INTOutput

Maximum INTTemp

Programming block parameters

In the block program, the block parameters are called . They are used like tags
which have the same data type. The number symbol (#) in front of the name identifies the formal
parameters and the other tags of the block interface as (block-)local tags.

formal parameters

Block program
in ladder logic

Block program
in function block
diagram

Block program
in Structured Control
Language

Block program
in statement list

5.4 Calling blocks

163

5.4 Calling blocks

5.4.1 General information on calling of code blocks

If blocks are to be processed, they must first be called in the program. The organi-
zation blocks which are started by the operating system when certain events occur
are an exception.

With LAD and FBD, the call functions are boxes with an enable input EN and an
enable output ENO. A conditional block call can be implemented using the enable
input EN. The enable output ENO can be used to signal a malfunction determined
in the block to the calling block. In SCL, the enable input EN and the enable output
ENO are implicitly available parameters that you can add to the first or last position
in the parameter list if needed. With STL, this “EN/ENO mechanism” can be mapped
using STL statements.

The call box or call function shows all block parameters which were declared when
the block was created. If you subsequently change the block interface of the called
block, you must update the changes in the block call otherwise the program editor
will signal an “Interface conflict”. Finding and eliminating an interface conflict is
described in Chapter 6.6.5 “Consistency check” on page 283.

A prerequisite for calling a block is that it exists; at least its interface must be pro-
grammed. You call a block by selecting it under Program blocks in the project tree
and dragging it into the program of an opened block using the mouse.

If you drag a block directly from a library into an opened block, it is copied into the
Program blocks folder. If it is a system or standard block, it is saved in the
Program blocks > System blocks > Program resources folder.

The call functions are described in detail in Chapter 14.2 “Calling of code blocks”
on page 631.

Example of a block call

Chapter 5.3.4 “Programming block parameters” on page 161 shows how a block
(an FC function) is programmed with a block parameter. You can now call the
“Selection” function in your program and transfer the values with which the block
should work to the block parameters. These values can be constants, operands or
tags; they are referred to as actual parameters (Fig. 5.7).

During runtime, the control processor replaces the formal parameters by the actual
parameters. When calling the “Selection” block in the example, the maximum value
of the “Measurement 1” and “Measurement 2” tags is selected and with signal state
“0” of the “Test mode” tag, it is transferred to the “Temperature” tag. If “Test mode”
has signal state “1”, the “Test value” tag is copied to the “Temperature” tag.

The “Selection” block can also be called multiple times in the user program, each
time with a different parameter assignment. The existing program is then pro-
cessed multiple times with various tags.

5 Program execution

164

Fig. 5.7 Example of a block call with block parameters

Example of calling a block

During the block call, the block parameters are supplied with tags with which the program in the
block is to work. These tags are called .

It can be called after programming the “Selection” block. To program the block call, open the block in
which the “Selection” is to be called and drag the “Selection” block from the project tree into the
working window. Then write the actual parameters to the block parameters.

During runtime, the actual parameters (the current tags) are used instead of the formal parameters
("placeholders") used in the block.

The “Selection” block can also be called multiple times with different actual parameters. The same
function is thus processed with different tags in each case.

actual parameters

Block call in FBD

Actual
parameter

Actual
parameter

Block
parameter

Block call in SCL

Actual
parameter

Block
parameter

Block call in STL

Actual
parameter

Block
parameter

Block call in LAD

Actual
parameter

Actual
parameter

Block
parameter

5.4 Calling blocks

165

5.4.2 Supplying the block parameters

The data type of the actual parameter must compatible with the data type of the
block parameter. The data type test can be controlled in the calling block using the
IEC check attribute. If the attribute is activated, the test is conducted using stricter
criteria. If possible, the program editor uses implicit data type conversion.

Assigning elementary data types to block parameters

At block parameters with elementary data type, you can use tags from the
Inputs, Outputs, Bit memories, Data, Temporary local data and Static local data
operand areas. A data tag in a data block must be addressed completely with the
(“Data_block”.Data_tag) data block.

Constants and peripheral inputs are only permissible for input parameters, periph-
eral outputs only for output parameters.

At a block parameter with an elementary data type, you can also create a component
of an array (ARRAY) or of a structure (STRUCT, DTL, PLC and system data type) if the
data type of the component is compatible with the block parameter.

Assigning structured data types to block parameters

At block parameters with structured data type, you can use tags from the operand
areas Data, Temporary local data and Static local data.

Input parameters with the data type DT, DTL or STRING can be provided with a con-
stant. When calling a function block for an input and output parameter with the
data type STRING, the maximum length of the actual parameter must match the
maximum length of the block parameter, because the value of the actual parameter
is saved in the instance data. In all of the other cases, the block parameter consists
of a pointer, which points to the actual parameter so that the maximum length of
the actual parameter is not defined (up to 254 characters).

Note that an actual parameter with data type STRING which has been declared in the
temporary local data cannot be assigned a default value and therefore has any con-
tent. It must be provided with plausible values before being used as an actual
parameter (at least the current and maximum length). This is handled by the pro-
gram editor for a block with the Optimized block access attribute activated.

For supplying a block parameter with the ARRAY data type, an actual parameter
with exactly the same structure is allowed – the number and data type of the com-
ponents must match. A partial array (part of a multidimensional array) can also be
used as actual parameter.

For supplying a block parameter with one of the data types STRUCT, PLC data type
or system data type, actual parameters with exactly the same structure are
allowed – the arrangement and the data type of the components must match.

5 Program execution

166

Assigning a parameter type to block parameters

On a block parameter with the data type TIMER, a SIMATIC timer function (T) is per-
mitted as the actual parameter. On a block parameter with the data type COUNTER,
a SIMATIC counter function (C) is permitted.

At a block parameter of the type IEC timer/counter function, an instance data block
of an IEC timer/counter function, a local instance of an IEC timer/counter function,
or an in/out parameter of the type IEC timer/counter function can be created.

At an (input) block parameter with the data type DB_ANY, a data block can be cre-
ated as an actual parameter. With LAD, FBD and SCL, data tags in this transferred
data block can be addressed in the program of the called block. With STL, this data
block can be opened with the statement OPN via the DB register and with the state-
ment OPNDI via the DI register, e.g. for the partial addressing of data operands.

At a block parameter with the data type BLOCK_FC or BLOCK_FB, a block (FC or FB)
which does not have its own block parameters can be created. This block can be
called with one of the STL statements UC or CC if the block attribute Parameter pass-
ing via register is activated.

On a block parameter with the parameter type POINTER, a tag with elementary data
type or a pointer (e.g. P#DB10.DBX20.5) is permitted. The tag can also be a com-
pletely addressed data tag or a component of an array or of a data structure and
must be located in a memory area with standard access. A zero pointer (a pointer to
“nothing”) is specified with P#0.0.

Tags of all data types are approved for a block parameter with the parameter type
ANY. The tags which must be connected to the block parameters or which are mean-
ingful are defined by the programming within the called block. You can also specify
a constant with the format of the ANY pointer “P#[Data block.]Operand Data_type
Quantity”, and thus define an absolutely addressed area. Supplying with temporary
local data of data type ANY is handled separately (see Chapter 4.3.5 “Indirect
addressing with an ANY pointer” on page 103).

Tags of all data types are allowed on a block parameter with the parameter type
VARIANT, including operand areas addressed with an ANY pointer. An entire data
block can only be an actual parameter if is derived from a PLC data type or a system
data type (type data block). The tags (operands or data types) which can be con-
nected to the block parameters or which are meaningful are defined by the program
within the called block.

5.4.3 Calling a function (FC)

For an FC block, the block parameters are pointers to the actual operands. There-
fore all of the block parameters must be supplied with actual operands when calling
a function.

For LAD and FBD, connect the enable input EN and the enable output ENO as
needed; for SCL only the use of ENO is allowed for an FC function.

5.4 Calling blocks

167

Using a function value of a function (FC)

The function value of a function has no effect when declared with data type VOID.
If the function value has a different data type, it is handled like an output parame-
ter.

When calling the block, the function value is represented as the first output param-
eter in LAD, FBD, and STL – provided it does not have data type VOID. SCL handles
a function with function value like a tag with the data type of the function value. Fig.
5.8 shows an example: The block “Call2” is programmed like the block “Call” in the
Fig. 5.6 on page 162, with the difference that the result of the selection is assigned
to the function value instead of to an output parameter. The function value has the
data type INT. It can be further processed directly in an expression in SCL. The
example shows an arithmetic expression.

5.4.4 Calling a function block (FB)

Call type of a function block

When calling a function block, you are requested to specify the storage location of
the instance data. This is the data with which the function block works internally:
the block parameters and the static local data.

Specify a data block if the call takes place in an organization block or a function.
The call then takes place as a “single instance”, and the data block is the instance

Fig. 5.8 Use of the function value with SCL

Example of application of the function value

Block interface

Block call in an expression

The block interface of the called block contains the four
input parameters and the function value as result of the
selection of the three digital tags. The program in the
“Selection2” block can be written in any programming
language.
When called in LAD, FBD and STL, the function value is
handled like an output parameter.

in the example with the data type INT.

The “Selection2” function can now be used in an expression in the programming language SCL. The
function is handled like a tag which has the data type of the function value.

Number_2

Default_value

Switch

Maximum

Selection2

Number_1

Name

Return

Input

Temp

Declaration

INT

INT

BOOL

INT

INT

INT

Data type

"Temperature" := "Selection2" (Number_1 "Measurement_1",

Number_2

:=

:= "Measurement_2",

Default_value

Switch "Test_mode") + "Correction_value";

:=

:=

"Test_value",

In the “Selection2” function, the function value is declared in the block interface in the Return section,

5 Program execution

168

data block for this call. If you call the function block as a single instance for a second
time, enter a different data block as the instance data block. This then contains the
data for the second call. Assign a separate data block to each call of a function block
as single instance.

When calling a function block in another function block, you have the following
options: You can call the function block as a “single instance” or as a “local
instance” (“multi-instance”). With a single instance, the call is assigned a separate
data block as instance data block. When calling a local instance, the called function
block stores its instance data in the instance data block of the calling function
block. You then specify the name with which the local instance can be addressed in
the static local data of the calling function block. You can also repeatedly call a
function block in another function block as a local instance using different names
in each case.

Chapter 10.7.13 “Data storage of a local instance in a multi-instance” on page 468
describes how the block parameters and the static local data are saved when calling
as a local instance in a multi-instance.

Supplying block parameters of an FB

The block parameters of a function block are located in the instance data.

Block parameters with saved values do not have to be supplied when the function
block is called. If the supply is omitted, the function block works with the “old” val-
ues from its last call or with the default settings.

Block parameters which are saved as pointer to the actual parameter must be sup-
plied with an actual parameter when called. These are block parameters with the
parameter type POINTER, ANY or VARIANT and in/out parameters with a structured
data type. During programming, the program editor uses three question marks to
indicate that a block parameter must be supplied or three periods to indicate that
a supply can be omitted.

You can supply the EN enable input and ENO enable output as required.

5.4.5 “Passing on” of block parameters

The “passing on” of block parameters is a special form of access and supply of block
parameters. The parameters of the calling block are “passed on” to the parameters
of the called block. In this case, the formal parameter of the calling block is then the
actual parameter of the called block.

It generally also applies here that the actual parameter must have a data type that
is compatible with the formal parameter, the testing of which is controlled by the
attribute IEC check. Note in this context that the maximum length may have to be
considered in the validity check for data type STRING.

It additionally applies that you can only connect an input parameter of the calling
block to an input parameter of the called block, and an output parameter only to an

5.5 Startup program

169

output parameter. You can connect an in/out parameter of the calling block to all
declaration types of the called block. Exception: An in/out parameter with the data
type POINTER or ANY cannot be created at an output parameter.

The “passing on” of block parameters also applies in the same manner to state-
ments (program functions) which are represented with inputs and outputs similar
to a block call. If these statements are supplied with block parameters, input (block)
parameters can only be connected to function inputs, output (block) parameters
only to function outputs. In/out parameters can be connected to function inputs and
outputs.

5.5 Startup program

A CPU 1500 carries out a warm restart when started up. The activities carried out
during the warm restart are described in Chapter 5.1.2 “STARTUP operating state”
on page 146.

5.5.1 Startup organization blocks

A CPU 1500 provides 100 organization blocks with the numbers OB 100 and from
OB 123 for the startup program. A startup organization block is assigned to the
Startup event class. It is of hardware data type OB_STARTUP. The constant names
and the values are listed in the System constants tab of the default tag table.
The name of the constant can be changed in the block properties under General.

Start information

A startup organization block with the attribute Optimized block access activated
provides the start information shown in Table 5.3 in the Input declaration section.
A startup organization block with the attribute Optimized block access deactivated
(OB with standard access) provides 20-byte long start information in the Temp dec-
laration section, the standard structure of which is described in Chapter 4.11.4

Table 5.3 Start information for a startup organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input LostRetentive BOOL = “1” if retentive data areas have been lost

Input LostRTC BOOL = “1” if the time of the real-time clock has been lost

The Optimized block access attribute is deactivated (standard access):

Temp STOP WORD Number of the STOP event

Temp STRT_INFO DWORD Additional information for the current startup

5 Program execution

170

“Start information” on page 142. This contains the tags specified in Table 5.3. Using
these tags, you can determine which event triggered the last STOP and with which
event the CPU has been started, e.g. with a manual startup using the mode switch
(see reference of the startup organization blocks in the STEP 7 help). With this
information you can create an event-triggered startup program.

Using the startup program

The startup program is executed one time. The startup organization blocks are
called in the order of their numbering. A startup program is not essential. If no
startup program is required, simply omit the organization blocks with the Startup
event class.

The startup program can have any length. There is no time limit for executing the
startup program; the cycle time monitoring is not active. The process image input
is reset during execution of the startup program, i.e. scanning of an input delivers
the signal state “0”. However, you can scan the signal states or analog values
directly on the module terminals by means of the operand area “Peripheral inputs”.

No interrupt events – except errors – are processed during execution of the startup
program. Interrupts occurring during the startup are executed after the startup but
before the main program.

Configuring the startup program

To configure the startup program, add an organization block with the event class
Startup and enter the name, programming language, and number. The defined
execution priority 1 cannot be changed.

5.5.2 Resetting retentive data

INIT_RD resets the values of the retentive tags (bit memories, data tags, and
SIMATIC timer/counter function). Resetting is executed if the signal state at param-
eter REQ is “1”. The Ret_Val parameter outputs error information. INT_RD can only
be called in a startup organization block. Fig. 5.9 shows the graphic representation
of INT_RD.

Fig. 5.9 System block for resetting the retentive data

INIT_RD

REQ Ret_Val

Resetting retentive data

Reset all
retentive data

In the STARTUP operating state, INIT_RD
resets the values of the tags that are marked as
retentive tags.

5.5 Startup program

171

5.5.3 Determining a module address

Signal modules, or more precisely the user data on input/output modules, are
addressed in two manners: You use the logical address in the user program to
address the inputs and outputs. This corresponds to the absolute address and can
be made easier to read by using symbols. The smallest logical address of a module
is the base address or module start address. The CPU addresses the modules using
the geographic address. You require the geographic address if you wish to learn the
module's slot. A module can also be addressed via its hardware identifier, which
can be found in the module properties and in the System constants tab in the
default tag table.

The following system blocks convert the various addressing options of a module
(logical address, geographic address, hardware identifier):

b GEO2LOG Determine the hardware identifier from the geographic address

b LOG2GEO Determine the geographic address from the hardware identifier

b LOG2MOD Determine the hardware identifier from the logical address

b IO2MOD Determine the hardware identifier from an address list

b RD_ADDR Determine the address range of a module

Fig. 5.10 shows the graphic representation of the system blocks. These system
blocks can be called in all priority classes, i.e. in the program of all organization
blocks. You find them in the program elements catalog under Extended
instructions > Addressing.

The following blocks are also available for the migration of S7-300/400 programs:

b GEO_LOG Determine logical start address

b GADR_LGC Determine logical address of a module channel

b RD_LGADR Determine all logical addresses of a module

b LOG_GEO Determine geographic address

b LGC_GADR Determine slot address of a module

These system blocks are not intended for new applications and are therefore not
described in further detail in the following.

GEO2LOG Determine the hardware identifier from the geographic address

GEO2LOG provides the hardware identifier of an object, with a geographic address
that is specified as the parameter GEOADDR. Table 5.4 shows the structure of the
GEOADDR system data type.

The component HWTYPE of the parameter GEOADDR defines the object with the
hardware identifier that is output at the LADDR parameter. The components of
GEOADDR which are used to define the object are placed in parentheses:

b HWTYPE = 1: Hardware identifier of the PROFINET IO system (IOSYSTEM)

b HWTYPE = 2: Hardware identifier of the IO device (IOSYSTEM, STATION)

5 Program execution

172

b HWTYPE = 3: Hardware identifier of the rack (IOSYSTEM, STATION)

b HWTYPE = 4: Hardware identifier of the module (IOSYSTEM, STATION, SLOT)

b HWTYPE = 5: Hardware identifier of the submodule (IOSYSTEM, STATION, SLOT,
SUBSLOT)

The AREA component is not evaluated. If the addressed object does not exist, error
information is output at the RET_VAL parameter.

LOG2GEO Determine the geographic address from the hardware identifier

At parameter GEOADDR, LOG2GEO provides the geographic address of an object
with a hardware identifier that is specified at the parameter LADDR. Table 5.4 shows
the structure of the GEOADDR parameter.

If the hardware type of LOG2GEO is not supported, the value 0 is output at the com-
ponent HWTYPE. If the addressed object does not exist, error information is output
at the RET_VAL parameter.

Fig. 5.10 System blocks for determination of module addresses

GEO2LOG

LOG2MOD

LOG2GEO

IO2MOD

RD_ADDR

Determine hardware
identifier

Determine hardware
identifier

Determine
addressgeographic

Determine hardware
identifier

Determine address
range of a module

GEOADDR

IO

ADDR

LADDR

ADDR

GEOADDR

LADDR

RET_VAL

RET_VAL

RET_VAL

RET_VAL

LADDR

RET_VAL

PICOUNT

PQCOUNT

LADDR

HWID

PIADDR

PQADDR

Determining a module address

GEO2LOG determines the hardware identifier
of a module (LADDR) from the geographic
address (GEOADDR).

LOG2MOD determines the hardware identifier
of the module (HWID) from any logical
address (IO and ADDR).

LOG2GEO determines the geographic address
of a module (GEOADDR) from the hardware
identifier (LADDR).

IO2MOD determines the hardware identifier of
the module (LADDR) from a list of logical
addresses (ADDR).

RD_ADDR determines the module start
address (PIADDR, PQADDR) and the number of
allocated address bytes (PICOUNT, PQCOUNT)
from the hardware identifier of the module
(LADDR).

5.5 Startup program

173

LOG2MOD Determine the hardware identifier from a logical address

LOG2MOD determines the hardware identifier from any logical address of the mod-
ule. You define the type of logical address at the IOID parameter:

b B#16#00 Input/output is defined by bit 15 of ADDR

b B#16#54 Input address

b B#16#55 Output address

You specify any logical address of the module at the ADDR parameter. The parame-
ter HWID provides the hardware identifier of the module. Error information is out-
put at the RET_VAL parameter if the specified address is invalid.

IO2MOD Determine the hardware identifier from an address list

IO2MOD determines the hardware identifier of a module from a logical address or
from a list of logical addresses at parameter ADDR (data type VARIANT). The hard-
ware identifier is output at the LADDR parameter. The hardware identifier is gener-
ated from the first list entry. If this is invalid, error information is output at the
RET_VAL parameter. The remaining list entries are ignored.

RD_ADDR Determine the address range of a module

RD_ADDR returns the module start address and the number of allocated address
bytes of a module with a hardware identifier that is located at parameter LADDR.
The start addresses are output at the parameters PIADDR (inputs) and
PQADDR (outputs), the number of bytes allocated by the module are output at
PICOUNT (input bytes) ad PQCOUNT (output bytes). If the hardware identifier is
invalid, error information is output at the RET_VAL parameter.

Table 5.4 Structure of the GEOADDR parameter

Name of the
component

Data type Assignment, note

HWTYPE UINT Hardware type
1: IO system
2: IO device
3: Rack
4: Module
5: Sumodule

AREA UINT Area code
0: Central module

IOSYSTEM UINT PROFINET IO system
0: Central controller

STATION UINT Station number
With AREA = 0: number of the rack

SLOT UINT Slot number of the rack

SUBSLOT UINT Slot number of the submodule

5 Program execution

174

5.5.4 Parameterization of modules

Most S7 modules can be parameterized, i.e. properties can be set on the module
which are different from the default settings. To assign parameters, open the mod-
ule in the hardware configuration and configure the module properties in the
inspector window. When started, the CPU automatically transfers the configured
module parameters to the modules and for the distributed I/O following the
“return” of a station.

Specific module parameters can be changed during runtime with the aid of system
blocks. Note that with a renewed startup the parameters set on the modules by the
system blocks are overwritten by the parameters set (and saved on the CPU) using
the hardware configuration.

Asynchronously working system blocks

Asynchronous execution means that the result of the block function is not immedi-
ately available following calling of the block. Execution of the function extends over
several calls and is triggered by the block parameter REQ = “1”. The BUSY parameter
has signal state “1” during job execution, and the error information has the value
W#16#7001 (job being executed). The error information is located either in the
parameter RET_VAL or in bytes 2 and 3 of the STATUS parameter.

A specific task is specified by the hardware identifier of the module and the data
record number. As long as BUSY = “1”, a renewed call for the same job with REQ =
“1” has no effect and the error information is set to W#16#7002.

BUSY has signal state “0” when the job has been completed. If completed without
errors, the error information has the value W#16#0000; with the system function
RD_REC, the number of transmitted bytes is present in RET_VAL. In the event of an
error, the error information contains the error code.

You can use a program loop in which the asynchronous system block is called in the
startup program to “wait” for the end of job processing. You are advised not to do
this in the main, interrupt or error program, since it can result in undesirable
delays in the cycle processing time and thus in the response time, and the cycle
monitoring time may then be triggered.

Please note that the maximum number of simultaneously running asynchronous
system blocks depends on the CPU used.

Module and data record addressing

Use the hardware identifier of the module (module ID) for addressing for the data
record transfer. The hardware identifier is located in the module properties under
Hardware identifier and in the System constants tab of the default tag table. During
runtime, you can determine the hardware identifier using the system block LOG2-
MOD from the logical module address.

Data records have a number from 0 to 240. You can consult the manual of the mod-
ule to learn whether a module can be parameterized during runtime and, if so,

5.5 Startup program

175

which number and which configuration the data records have. The Table 5.5 shows
a basic overview of the system data records for module parameterization and mod-
ule diagnostics.

System blocks for the transmission of data records

The following system blocks for transferring data records to and from modules are
available for a CPU 1500:

b WR_DPARM Write configured parameters to the module

b RDREC Read data record

b WRREC Write data record

You find WR_DPARM in the program elements catalog under Extended instructions >
Module parameter assignment. You find RDREC and WRREC in the program ele-
ments catalog under Extended instructions > Distributed I/O.

The following blocks are also available for the migration of S7-300/400 programs:

b RD_DPAR Read predefined parameters

b RD_DPARA Read predefined parameters

b RD_DPARM Read predefined parameters

b RD_REC Read data record

b WR_REC Write data record

These system blocks are not intended for new applications and are therefore not
described in further detail in the following. Fig. 5.11 shows the graphic represen-

Table 5.5 Overview of system data records for modules

Writing data records
Usable
system blockNumber Number Size per data record

0 Parameter – WR_DPARM

1 Parameter – WR_DPARM

2 to 127 User data Up to 240 bytes WR_DPARM, WRREC

128 to 240 Parameter Up to 240 bytes WR_DPARM, WRREC

Reading data records
Usable
system blockNumber Content Size per data record

0 Module-specific diagnostic data 4 bytes RDREC

1 Channel-specific diagnostic data 4 to 220 bytes RDREC

2 to 127 User data Up to 240 bytes RDREC

128 to 240 Diagnostic data Up to 240 bytes RDREC

5 Program execution

176

tation of the system blocks for module parameterization described in the follow-
ing.

Using the hardware identifier at the parameter LADDER or ID, you can specify the
module whose parameter data is to be read or written. You create the data record
number at the parameter RECNUM or INDEX. RECORD specifies the data area in
which the read data record is to be stored or from which the data record that is to
be written will be transferred. The actual parameter at RECORD can be any tag or an
operand area that is absolutely addressed with the ANY pointer.

WR_DPARM Write predefined parameters

WR_DPARM transfers a data record from the system data located in the load mem-
ory to the module. You specify the data record number at the RECNUM parameter.
You address the module with the hardware identifier at the LADDR parameter.

The data record is completely read for the task initiation with REQ = “1”; the transfer
can be distributed across several program cycles. The parameter BUSY has signal
state “1” during the transfer.

Fig. 5.11 System blocks for module parameterization and transmission of data records

WR_DPARM
Write predefined
parameters

REQ

LADDR

RECNUM

RET_VAL

BUSY

Parameterization of modules

WR_DPARM transfers the data record with the
number specified at the parameter RECNUM
from the system data in the load memory to
the module to which the LADDR parameter is
pointing.

RDREC reads the data record with the number
INDEX from the module and saves it in the
data area RECORD.

WRREC writes the data record from the data
area RECORD with the number INDEX to the
module.

RDREC
Variant

Instance data

WRREC
Variant

Instance data

Read data record

Write data record

REQ

INDEX

REQ

ID

MLEN

RECORD

ID

INDEX

LEN

RECORD

VALID

DONE

ERROR

ERROR

LEN

BUSY

BUSY

STATUS

STATUS

5.6 Main program

177

RDREC Read data record

RDREC reads a data record from the module whose hardware identifier is in the
ID parameter. You specify the data record number at the INDEX parameter. The
read data record is stored in the target area, which is specified by the RECORD
parameter. This can be a tag or an operand area that is absolutely addressed with
the ANY pointer. The target area must be large enough to accommodate the data
record. The MLEN parameter specifies how many bytes are to be read.

The job is triggered with “1” at the REQ parameter. The transfer can be divided
between several program cycles; the BUSY parameter has signal state “1” during
the transfer.

Signal state “1” in the VALID parameter signals that the data record has been read
without errors. The LEN parameter then indicates the number of transferred bytes.
In the event of an error, ERROR is set to “1”. Error information is then written to the
STATUS parameter.

WRREC Write data record

WRREC writes a data record to the module whose hardware identifier is in the
ID parameter. You specify the data record number at the INDEX parameter. The data
record that is to be read is taken from the source area, which is specified by the
RECORD parameter. This can be a tag or an operand area that is absolutely
addressed with the ANY pointer. The LEN parameter specifies how many bytes are
to be written.

The job is triggered with “1” at the REQ parameter. The transfer can be divided
between several program cycles; the BUSY parameter has signal state “1” during
the transfer.

Signal state “1” in the DONE parameter signals that the data record has been writ-
ten without errors. In the event of an error, ERROR is set to “1”. Error information
is then written to the STATUS parameter.

5.6 Main program

The main program is the cyclically processed user program; this is the “normal”
way in which programs are executed in PLCs. The large majority of control systems
only use this form of program execution. If event-driven program execution is
used, it is usually only an addition to the main program.

5.6.1 Main program organization blocks

A CPU 1500 provides 100 organization blocks with the numbers OB 1 and from
OB 123 for the main program. A main program organization block is assigned to
the Program cycle event class. It is of hardware data type OB_PCYCLE. The constant
names and the values are listed in the System constants tab of the default tag table.
The name of the constant can be changed in the block properties under General.

5 Program execution

178

Start information

A main organization block with the attribute Optimized block access activated pro-
vides the start information shown in Table 5.6 in the Input declaration section.
A main program organization block with the attribute Optimized block access deac-
tivated (OB with standard access) provides 20-byte long start information in the
Temp declaration section, the standard structure of which is described in
Chapter 4.11.4 “Start information” on page 142. This contains the tags specified in
Table 5.6. Using these tags you can determine the current cycle time and its fluctu-
ation per program.

Using the main program

The main program is cyclically executed, i.e. if the execution has reached the end of
the main program, a minimum cycle time is waited through (if configured) before
the execution of the main program is started again from the beginning. The main
program organization blocks are called in the order of their numbering.

The main program runs in the lowest priority class and can be interrupted by alarm
and error events. The corresponding organization blocks are then called and pro-
cessed. After processing an interrupt, the main program continues from the point
of interruption (see Chapters 5.7 “Interrupt processing” on page 192 and 5.8 “Error
handling” on page 212).

The execution of the main program with all interrupt events that occurred in the
current processing cycle is monitored by the cycle time monitoring (see
Chapter 5.6.3 “Cycle time” on page 182).

Configuring the main program

To configure the main program, add an organization block with the event class
Program cycle and enter the name, programming language, and number. The
defined execution priority 1 cannot be changed.

Table 5.6 Start information for a main program organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input Initial_Call BOOL = “1” for the first call of the organization block

Input Remanence BOOL = “1” if retentive data is available

The Optimized block access attribute is deactivated (standard access):

Temp PREV_CYCLE INT Runtime of previous cycle (in ms)

Temp MIN_CYCLE INT Minimum cycle time since last startup (in ms)

Temp MAX_CYCLE INT Maximum cycle time since last startup (in ms)

5.6 Main program

179

5.6.2 Process image updating

The process image is part of the CPU's internal system memory (see Chapter 4.1
“Operands and tags” on page 86). The process image consists of the process image
input (operand area “Inputs I”) and the process image output (operand area
“Outputs Q”). It has a size of 32 KB per area. The user data of all of the modules is
located in the address area of the process image.

The process image input and output can be comprised of several process image par-
titions, independent of one another. The updating of the process image (parti-
tions), i.e. the data transfer from and to the modules, can take place automatically
or be controlled by system functions via the user program.

Benefits of a process image

The use of a process image has many benefits:

b The scanning of an input or the controlling of an output is significantly faster
than the addressing of an input or output module, e.g. the setting times at the
I/O bus are omitted and the response times of the system memory are shorter
than the response times of the module. This means that the program is executed
faster.

b Inputs can also be set and reset since they are stored in a Random Access
Memory. Digital input modules can only be read. The setting of the inputs can
simulate encoder statuses during the program test or commissioning, thereby
simplifying the program test.

b Outputs can also be scanned since they are stored in a Random Access Memory.
Digital output modules can only be written. The scanning and linking of the out-
puts does away with the additional saving of output bits to be scanned by the
user.

b The signal state of an input is the same throughout the entire program cycle
(data consistency during a program cycle). If a bit on an input module changes,
the change of the signal state is transferred to the input at the start of the next
program cycle.

b A multiple signal state change of an output during a program cycle has no effect
on the bit on the output module. The signal state of the output at the end of the
program cycle is transferred to the module.

The downside of these benefits is an increased response time of the program; see
Chapter 5.6.3 “Cycle time” on page 182 for more details.

Activating the automatic process image update

If the value Automatic update is entered in the Process image field under
I/O addresses, the user data of this module is updated before the main program is
executed. Initially, the process image output is transferred to the output modules.
After this, the signal states of the input modules are imported into the process
image input. This is then followed by the execution of the main program (Fig.
5.12).

5 Program execution

180

Process image partitions

With a CPU 1500, you can divide the process image into as many as 31 process
image partitions. You can assign a module to a process image partition in the mod-
ule properties. Enter a value PIP1 to PIP31 from the drop-down list in the Process
image field under I/O addresses.

Carry out the assignment separately for the process image input and process image
output. A module can only be assigned to a single process image partition and only
with all of its addresses. All of the modules addressed in the process image which
you do not assign to a process image partition PIP1 to PIP31 are in the “residual pro-
cess image” (process image of main program).

Assigning a module to a process image partition makes sense if all of the user data
of the module is processed in an interrupt routine or if specific program sections

Fig. 5.12 Automatic process image update

PII

PIPQ

PIIPIQ

PIPI

PIQ

Start of current
cyclic processing

Beginning of
interruption

End of
interruption

Start of next
cyclic processing

Cycle (processing) time of main program

PIQ = process image output of main program
PII = process image input of main program
PIPQ = process image partition output
PIPI = process image partition input

Main
program

Main
program

Interrupt
program

Main
program

Automatic update of the process images

Automatic update of the main program process image

Automatic update of an assigned process image partition

The user data of all modules with the value as process image is updated before the
main program is executed. First, the process image output is sent to the output modules. Then the
signal states of the input modules are transferred to the process image input. This is then followed by
the execution of the main program. The main program process image comprises the addresses of the
module, which are updated automatically and are not assigned to any (other) process image partition.

Automatic update

If the user data of a module are located in a process image partition and the process image partition is
assigned to an organization block, the processing of the organization block is initiated with the
update of the process image partition input. The program of the organization block is executed
afterwards. Processing of the interrupt ends with the transmission of the process image output to the
output modules.

5.6 Main program

181

are to be provided with their own process image. If you use the isochronous mode
interrupt, you must assign the participating modules to a process image partition.

You can also simultaneously assign an organization block while assigning the pro-
cess image partition. Then the assigned process image partition is automatically
updated when the organization block is executed (Fig. 5.12). You can assign the
organization block in the module properties under I/O addresses in the Organiza-
tion block field. Choose an existing organization block from a drop-down list or cre-
ate a new one using the Add object button.

Deactivating the automatic process image update

If you choose the entry None in the Process image field under I/O addresses in the
module properties, the user data of this module will not be updated. The user data
of the module must then be accessed via the I/O operand area.

If you select a process image partition in the Process image field and do not select
an organization block in the Organization block field, the user data of this module
will not be automatically updated. You then have the option of initiating the updat-
ing of the process image partition with system blocks (or to access the user data of
the module via the I/O operand area).

Process image update with system blocks

The system functions UPDAT_PI and UPDAT_PO are available for updating the pro-
cess image partitions via the user program. In the isochronous interrupt organiza-
tion blocks, you can use the system functions SYNC_PI and SYNC_PO for updating
the process image partitions (see Chapter 16.7.4 “Isochronous mode interrupt” on
page 745).

UPDAT_PI Update process image partition of inputs
UPDAT_PO Update process image partition of outputs

UPDAT_PI updates a process image partition of the inputs, UPDAT_PO a process
image partition of the outputs. You cannot update the process image of the main
program with these system blocks. You find the system blocks in the program ele-
ments catalog under Extended instructions > Process image (Fig. 5.13).

Fig. 5.13 System blocks for a process image partition update

UPDAT_PI

UPDAT_PO
Process image

output
update
partition

Process image partition update

PART

PART

RET_VAL

RET_VAL

FLADDR

FLADDR

UPDAT_PI updates the process image partition
input whose number is specified at the PART
parameter. If an access error occurs, the first
faulty address is located in the FLADDR
parameter.

UPDAT_PO updates the process image
partition output whose number is specified at
the PART parameter. If an access error occurs,
the first faulty address is located in the
FLADDR parameter.

Process image
input

update
partition

5 Program execution

182

You can call these system functions at any point in the user program. You enter the
number of the process image partition (1 to 31) at the PART parameter. The selected
process image partition may not be automatically updated (no assignment to an
organization block or deactivation of automatic updating of the main program pro-
cess image) and it may not be updated with the system blocks SYNC_PI or SYNC_PO.

The updating of a process image can be interrupted by an organization block with
a higher priority class. If an error occurs during the updating of the process image,
e.g. because a module can no longer be addressed, it is reported back via the func-
tion value RET_VAL of the system block. The first error-causing address is then
located in the FLADDR parameter.

5.6.3 Cycle time

Cycle monitoring time

Execution of the main program is monitored with regard to timing by means of the
cycle monitoring time. The default value for the monitoring time is 150 ms. You can
set this value within the range from 1 ms to 6000 ms by parameterizing the CPU
accordingly (Fig. 5.14).

Fig. 5.14 Cycle processing time and minimum cycle time

Start of actual
cyclic processing

Automatic
process image
update

Automatic
process image
update

Start of next
cyclic processing

Cycle (processing) time of main program

Minimum cycle time

Main program Main program

interruption

Main program

Cycle processing time and minimum cycle time

Cycle processing time

Cycle monitoring time

Minimum cycle time

The cycle monitoring time comprises the complete duration of main program execution, including all
interruptions.

The cycle monitoring time monitors the duration of main program execution.
If it expires, the CPU operating system signals an error.
The cycle monitoring time can be extended (“retriggered”).

If a minimum cycle time is activated, cyclic execution of the main program begins only after the
minimum cycle time has expired. This must be greater than the cycle processing time.

5.6 Main program

183

The cycle processing time comprises:

b The total processing time of the main program (processing times of all organiza-
tion blocks with the event class Program cycle),

b The processing times for higher priority classes which interrupt the main pro-
gram (in the current cycle),

b The time required to update the process images and

b The time for communication processes by the operating system, e.g. access op-
erations of programming devices to the CPU (the program status in particular
takes a long time!).

If processing of the main program takes longer than the set cycle monitoring time,
the CPU calls the organization block OB 80 Time error. If this is not present, a
CPU 1500 ignores the error message. If the cycle monitoring is triggered for a
second time during a program cycle, the CPU goes to STOP – even if an OB 80 is
present.

Minimum cycle time

In addition to the maximum cycle (monitoring) time, you can also set a minimum
cycle time in the CPU properties. The minimum cycle time must be longer than the
cycle (processing) time and shorter than the cycle (monitoring) time.

When the minimum cycle time is activated, the CPU waits at the end of the main
program execution until the minimum cycle time has elapsed and only then it
begins with a new program cycle. If execution of the main program takes longer
than the set minimum cycle time, this has no further effects.

With a minimum cycle time, you can reduce large fluctuations in the processing
time and thus large fluctuations in the response time. While the CPU waits for the
minimum cycle time to elapse, it can perform communication tasks.

RE_TRIGR Restart cycle monitoring time

RE_TRIGR restarts the cycle monitoring time. This then starts with the value set
during CPU parameterization. ENO has signal state “1”. RE_TRIGR does not have
any parameters (Fig. 5.15).

You can find RE_TRIGR in the program elements catalog under Basic instructions >
Program control operations. The RE_TRIGR function is only executed if it is called in
the main program. The cycle monitoring time is not restarted by a call in the startup
program or in an interrupt routine, and ENO has the signal state “0”.

Fig. 5.15 System block for retriggering the cycle monitoring time

The call retriggers the cycle monitoring time
with the configured duration.

Retrigger cycle monitoring time

RE_TRIGR
Retrigger
monitoring

cycle
time

5 Program execution

184

Communication load

The CPU's operating system requires a certain time for communication with the
programming device or with other stations. In the CPU properties, you can set the
maximum percentage of the cycle time which is to be available for communication
tasks. If you set a high percentage, it may be necessary to adapt the cycle monitor-
ing time. 50% is set by default.

If k represents the communication load in percent, the execution time of the main
program changes by a factor of 100 / (100 – k). This does not account for any inter-
ruptions due to alarm or error events.

The processing of organization blocks with a processing priority higher than 15 is
not interrupted by communication.

Cycle statistics

If you are connected online to the programming device with a running CPU, you can
use the Online & diagnostics command from the project tree to start the task card
with the online tools. The Cycle time section shows the shortest, current, and lon-
gest cycle (processing) time in milliseconds and presents these graphically.

You can also obtain data on the current cycle time of the last cycle as well as the min-
imum and maximum cycle times since the last startup from the start information
of a main program organization block if the Optimized block access attribute is
deactivated.

RUNTIME Runtime measurement

RUNTIME measures the program runtime between two calls. The same actual
parameters that were applied to the parameters during the first call must be
applied during the second call. RUNTIME is available in the SCL and STL program-
ming languages. You can find RUNTIME in the program elements catalog under
Basic instructions > Program control operations (Fig. 5.16).

If RUNTIME is called once in a main program organization block, RUNTIME will out-
put the current runtime of the main program at the parameter RET_VAL after the
second program cycle and after each additional one.

5.6.4 Response time

If the user program in the main program works with the signal states of the process
images, this results in a response time which is dependent on the cycle execution
time (in short: cycle time). The response time lies between one and two cycle times,
as demonstrated in the following example (Fig. 5.17).

If a limit switch is activated, for example, it changes its signal state from “0” to “1”.
The PLC detects this change during subsequent updating of the process image and
sets the input allocated to the limit switch to “1”. The program evaluates this
change by resetting an output, for example in order to switch off the corresponding
drive. The new signal state of the output that was reset is transferred at the end of

5.6 Main program

185

program execution; only then is the corresponding bit reset on the digital output
module.

In a best-case situation, the process image is updated immediately following the
change in the limit switch's signal. It then only takes one cycle for the correspond-
ing output to respond. In a worst-case situation, updating of the process image has

Fig. 5.16 System block for measuring the runtime

Fig. 5.17 Response times of the main program

The first call starts the runtime measurement and saves the start time in the MEM array. The second
call determines the difference between the start time (saved in MEM) and the time of the call and
outputs the runtime in seconds at the parameter RET_VAL.

Measure runtime with RUNTIME

Measure runtime

First call:
save start time

Second call:
output runtime

Calculated runtime

User program

Data types:
MEM: LREAL
Ret_Val: LREAL

SCL
#var_retval := RUNTIME(#var_mem);

STL
CALL RUNTIME

Ret_Val := #var_retval
MEM := #var_mem

PII

PII = process image input
PIQ = process image output

PII PIIPIQPIQ PIQ

Change of the sensor signal
with immediate transfer
to process image

Change of the sensor signal
without transfer
to process image

Transfer
to process image

Change of the
output signal

Response time = one cycle time

Response times when using process images

Response time = two cycle times

Change of the
output signal

Main program Main program

5 Program execution

186

just been completed when the limit switch's signal changes. It is then necessary to
wait approximately one cycle for the PLC to detect this change and to set the input
in the process image. The response then takes place after one further cycle.

The response time to a change in the input signal can thus be between one and two
cycles. Added to the response time are the delays for the input and output modules,
the switching times of contactors, and so on.

In certain cases you can reduce the response times by addressing the I/O directly or
by calling program sections depending on events (hardware interrupt).

Uniform response times or equal time intervals in the process control can be
achieved if a program section is always executed at regular intervals, e.g. a cyclic
interrupt program. Program execution isochronous with the processing cycle of a
PROFINET IO system or PROFIBUS DP master system also results in calculable
response times.

5.6.5 Stopping and delaying the program

STP Stop program execution

The system function STP terminates program execution; the CPU then switches to
the STOP operating state. STP has no parameters (graphic representation is shown
in Fig. 5.18).

The CPU terminates processing of the user program and updates the process image
output. In the module properties of correspondingly designed modules, you can
set the signal states of the digital and analog outputs which the CPU is to output in
the STOP operating state: Shutdown, Keep last value, or Output substitute value.
As standard, the signal state “0” is output at the digital outputs and a value of zero
at the analog outputs at STOP.

In the STOP operating state, the CPU continues communication with the program-
ming device and the diagnostics activities.

Fig. 5.18 System blocks for stopping or delaying program execution

STP terminates the execution of the user
program execution and switches the CPU
to the STOP operating state.

Stopping and delaying the program execution

STP

WAIT

WT

Stop program
execution

Delay program
execution

WAIT delays the execution of the user
program by the specified number of
microseconds.

5.6 Main program

187

WAIT Delay program execution

The system function WAIT holds program execution for a defined duration (Fig.
5.18).

The system function WAIT has the input parameter WT with data type INT in which
you can specify the hold time in microseconds (µs). The maximum hold time is
32 767 µs, the smallest possible hold time corresponds to the CPU-dependent exe-
cution time of the system function.

WAIT can be interrupted by events of higher priority.

5.6.6 Time

Each CPU 1500 has a real-time clock with a typical deviation of 2 s per day. The dura-
tion of the buffering is approx. 6 weeks at an ambient temperature of 40 °C. The
time is not affected by a memory reset. When it is reset to the factory settings, the
clock starts at DTL#2012-01-01-00:00:00 GMT.

The clock can be synchronized and can be set or queried in the user program using
the display of the CPU, a programming device, or system blocks.

Module time, local time, daylight saving/standard time

The time set in the CPU's real-time clock is the module time (basic time). This is
decisive for all timing processes controlled by the CPU, e.g. entry of time stamp in
the diagnostics buffer and in the block properties. WR_SYS_T sets the module time,
RD_SYS_T reads the module time. The module time can also be set using the display
of the CPU or online using the programming device. The time is converted to
UTC time.

The local time is set by addition of a correction factor which can also be negative.
Configuration is carried out when parameterizing the CPU with the device config-
uration. The local time can be used to visualize time zones. It is read with RD_LOC_T
and set with WR_LOC_T.

WR_SYS_T Set module time

WR_SYS_T (Write System Time) sets the CPU's clock to the value specified at the
IN parameter (Fig. 5.19). The module time can be defined in the data format
DATE_AND_TIME (DT) or DATE_AND_LTIME (DTL or LDT). This value does not
include the local time and the daylight saving/standard time ID. The error informa-
tion is output in the RET_VAL parameter (0 = no error). In the event of an error,
ENO is set to signal state “0”.

RD_SYS_T Read module time

RD_SYS_T (Read System Time) reads the CPU's current module time and outputs it
in the OUT parameter (Fig. 5.19). The module time can be output in the data format
DATE_AND_TIME (DT) or DATE_AND_LTIME (DTL or LDT). This value does not

5 Program execution

188

include the local time and the daylight saving/standard time ID. The error informa-
tion is output in the RET_VAL parameter (0 = no error). In the event of an error,
ENO is set to signal state “0”.

Configuring the local time

The time zone and the switching over between daylight saving and standard time is
set in the properties of the CPU: Select the CPU in the device configuration, and
open the Time of day section in the Properties tab in the inspector window. Set the
time zone (local time), check the Enable daylight savings time changeover box, spec-
ify the time difference between daylight saving and standard time and also the
dates and times of changeover (Fig. 5.20).

WR_LOC_T Set local time

WR_SYS_T (Write Local Time) sets the CPU's clock (Fig. 5.19). You specify the local
time at the LOCTIME parameter. WR_LOC_T then calculates the module time based
on the setting to local time in the properties of the CPU and uses it to set the clock.

The local time is defined in the data format DATE_AND_LTIME (DTL or LDT).
The RET_VAL parameter (0 = no error) outputs the error information. In the event
of an error, ENO is set to signal state “0”.

If, during the changeover to standard time, the clock is set during the hour which
exists twice, the hour is specified at the parameter DST: with signal state “1”, the

Fig. 5.19 System blocks for the time functions

WR_SYS_T
Data type

WR_LOC_T
Data type

RD_SYS_T
Data type

RD_LOC_T
Data type

RET_VAL

RET_VAL

RET_VAL

RET_VAL

OUT

OUT

Time-of-day functions

IN

LOCTIME

DST

WR_SYS_T sets the module time to the value
at the IN parameter.

WR_LOC_T sets the local time to the value at
the LOCTIME parameter.

Data type: DT, DTL, LDT

Data type: DTL, LDT

Data type: DT, DTL, LDT

Data type: DT, DTL, LDT

RD_SYS_T outputs the module time at the
OUT parameter.

RD_LOC_T outputs the module time at the
OUT parameter.

Read
module time

Read
local time

Set
module time

Set
local time

5.6 Main program

189

first hour (still daylight saving time) and with signal state = “0” the second hour
(already standard time).

RD_LOC_T Read local time

RD_LOC_T (Read Local Time) reads the CPU's current local time and outputs it at the
OUT parameter with the DATE_AND_TIME (DT) or DATE_AND_LTIME (DTL or LTD)
data type (Fig. 5.19). The local time is calculated based on the setting to the local
time in the properties of the CPU.

The RET_VAL parameter (0 = no error) outputs the error information. In the event
of an error, ENO is set to signal state “0”.

Calculating with date and time

You can link the date and time together using further system functions, for exam-
ple to generate the difference between two times of day or to add a duration to a
specific point in time. The available system functions are described in Chapter
13.4.2 “Arithmetic functions for date and time” on page 576.

Fig. 5.20 Parameterization of local time and daylight saving/standard time changeover

5 Program execution

190

Setting the time via the CPU display

In the main menu of the CPU display, select the Settings icon and then the
Date & time submenu. You can enter the date and time as local time.

Setting the time on the CPU online

You can read and set the system time (module time) on the CPU using the program-
ming device online. To do this, open the project and start the Online & diagnostics
editor in the project tree under the PLC station. To establish the online operation,
click on the Go online icon in the toolbar of the project view or on the Go online but-
ton in the Online access section of the dialog window.

In the Functions section of the diagnostics window, select the Set time command.
The current time of the programming device and the module time of the CPU are
displayed. You can import the programming device time as the module time or you
can set the module time itself.

Time synchronization via PROFINET

The time of the CPU can be synchronized via Ethernet. A time server is required,
which is synchronized with the time of other stations in the network using the
NTP procedure.

Activate the time synchronization in the properties of the PROFINET interface using
the hardware configuration. To do this, select the PROFINET interface in the device
configuration and select the command Time synchronization in the properties of
the inspector window. Check the checkbox Enable time synchronization via NTP
server, specify the IP addresses of the participating servers, and select the updating
interval.

Time synchronization via PROFIBUS

The clocks of all CPUs whose stations are connected to each other in a PROFIBUS
segment can be synchronized. Parameterize one of the clocks as the master clock
and parameterize the others as slave clocks.

Activate the time synchronization in the properties of the DP interface using the
hardware configuration. Under Time synchronization, specify the Synchronization
type (Master, Slave) and parameterize the Update cycle. The time synchronization
takes place after each setting of the master clock in the parameterized interval.

You can synchronize the clocks of all time slaves in the bus segment, independently
of the set interval, by calling the system function SNC_RTCB in the user program of
the time master.

SNC_RTCB Synchronize time-of-day

You can synchronize the clocks of all time slaves in the bus segment, independently
of the set interval, by calling the system function SNC_RTCB in the user program of
the time master. Fig. 5.21 shows the graphic representation of the system function.

5.6 Main program

191

5.6.7 Read system time

The system time is updated at an interval of one millisecond for a CPU 1500.
The system time starts when the CPU is switched on. The system time runs for as
long as the CPU is in the STARTUP or RUN operating state. The current value of the
system time is “frozen” when at STOP. A warm restart resets the system time.

The system time is present in the data format TIME, where only positive values are
possible: TIME#0ms to TIME#24d20h31m23s647ms. In the event of an overflow,
the system time restarts at TIME#0.

You can use the system time, for example to determine the current runtime of the
CPU or to calculate the duration between two TIME_TCK calls by generating the dif-
ference.

TIME_TCK Read system time

TIME_TCK reads the current system time. The RET_VAL parameter contains the read
system time in the TIME data format. Fig. 5.22 shows the graphic representation of
the system function.

5.6.8 Runtime meter

An runtime meter counts the hours while running. You can use the runtime meter,
for example, to record the CPU runtime or to determine the operating hours of con-
nected devices. A runtime meter has a value range of 32 bits (231–1 hours). If the
maximum duration has been reached, the runtime meter remains stationary and
signals an overflow with the value W#16#8082 at the parameter RET_VAL.

A runtime meter also stops when the CPU is at STOP; if the CPU restarts, the run-
time meter must be restarted if required. The count value of a runtime meter is
retained on restart and after a memory reset. Resetting to the factory settings also
resets a runtime meter to zero.

Fig. 5.21 System block for synchronizing the time

Fig. 5.22 System function for reading the system time

Each call of SNC_RTCB in the time-of-day
master synchronizes the time-of-day slaves
in the PROFIBUS segment.

Synchronize time-of-day

SNC_RTCB

RET_VAL

Time-of-day
synchronization

TIME_TCK reads the system time in
milliseconds.

Read system time

Read system time TIME_TCK

RET_VAL

5 Program execution

192

RTM Control runtime meter

RTM controls a runtime meter. Fig. 5.23 shows the graphic representation of the
system function.

RTM controls the runtime meter whose number is specified at the NR parameter.
The MODE parameter defines the function to be executed. The value to which the
runtime meter is to be set (default value or start value in hours) is present in the
PV parameter. The CQ parameter signals with signal state “1” if the runtime meter
is running. The current value in hours is present in the CV parameter. CQ and CV
are updated by the job ID MODE = B#16#00.

RTM can write the values of all runtime meters of the CPU to the memory card so
that they are retained even if the backup voltage fails or a module is swapped. Note
that the number of write accesses to the memory card is physically limited.

5.7 Interrupt processing

5.7.1 Introduction to interrupt processing

Events

The response of the operating system is based on events. Events can be, for exam-
ple, the one-time start of the startup, the cyclically recurring start of main program
execution, a hardware interrupt, or a programming error.

If an organization block is assigned to the event, the operating system calls this
organization block when the event occurs. If no organization block is assigned to
an event, the operating system executes the preset system response when the event

Fig. 5.23 System block for controlling the runtime meter

RTM

Control runtime meter

Control
runtime
meter NR

MODE

PV

RET_VAL

CV

CQ

B#16#00 Read actual values CQ and CV
B#16#01 Start with the last value
B#16#02 Stop
B#16#04 Set to default value PV
B#16#05 Set to default value PV and start
B#16#06 Set to default value PV and stop
B#16#07 Save the values of all runtime meters on the

memory card

RTM: Job identification MODE

RTM controls a runtime meter.

5.7 Interrupt processing

193

occurs: The operating system ignores the event or it changes to the STOP operating
state or it carries out block-local error processing.

Execution order

A priority scheduler controls the execution order if events occur virtually simulta-
neously. Events with the same priority are processed in the order in which they
occurred.

An event of higher priority interrupts execution of the program in an organization
block to which an event with lower priority has been assigned. Such an interruption
can take place after every operation (statement). Once this program with higher
priority has been executed, the operating system resumes execution of the lower-
priority program at the point of interruption.

Example: If a hardware interrupt occurs while the main program is executing, the
operating system will interrupt the execution of the main program and call the
organization block that is assigned to the hardware interrupt. When the interrupt
routine has been executed, the execution of the main program will continue at the
point where it was interrupted.

You can influence the interruption of a program by events of higher priority using
system blocks (Chapter 5.8.6 “Disable, delay, and enable interrupts and asynchro-
nous errors” on page 223).

Available organization blocks

Table 5.7 shows the organization blocks present with CPU 1500 with their execution
priority.

The organization blocks for time-of-day, time-delay, cyclic and hardware interrupts
are described in this chapter. The other organization blocks are described in the fol-
lowing chapters:

b Chapter 5.5.1 “Startup organization blocks” on page 169,

b Chapter 5.6.1 “Main program organization blocks” on page 177,

b Chapter 5.8.3 “Global error handling (synchronous error)” on page 215,

b Chapter 5.8.5 “Asynchronous errors” on page 220,

b Chapter 5.9.1 “Diagnostics interrupt” on page 226,

b Chapter 16.6 “DPV1 interrupts” on page 737 and

b Chapter 16.7.4 “Isochronous mode interrupt” on page 745.

Execution priorities

The main program has the fixed priority 1 and can be interrupted by all interrupt
and error events. The startup program belongs to the same priority class as the
main program: The operating system prevents both of them from being called at
the same time. Interrupt events that occur during the startup phase are saved in a
queue and are processed before the main program after the transition to the RUN
operating state.

5 Program execution

194

The communication with the programming device or the exchange of data with other
PLC stations takes place in the “time slice mode” for a CPU 1500. While the user pro-
gram is executing, the operating system carries out the communication
“slice by slice” in a grid, which can be influenced using the CPU parameter Communi-
cation load. This communication has priority 15 and can thus interrupt the program
execution in an organization block that has the same or lower priority.

How to influence a program interruption during runtime by means of higher-pri-
ority events with system functions is described in Chapter 5.8.6 “Disable, delay, and
enable interrupts and asynchronous errors” on page 223.

Overload behavior

If several such events follow each other at such short intervals that execution
“cannot keep up”, the events are saved in a queue and are processed in succession.
Each event type (each priority class) has its own queue. If the queue is full, the next
equivalent event is counted and discarded.

Table 5.7 Organization blocks of a CPU 1500

OB No. Priority
(default)

Start event Event class Number
of OBs

1, ≥123 1 Start of main program Program cycle 0 to 100

10 to 17, ≥123 2 to 24 (2) Time-of-day interrupt Time of day 0 to 20

20 to 23, ≥123 2 to 24 (2) Time-delay interrupt Time delay interrupt 0 to 20

30 to 38, ≥123 2 to 24
(8 to 17) *)

Cyclic interrupt Cyclic interrupt 0 to 20

40 to 47, ≥123 2 to 26 (18) Hardware interrupt Hardware interrupt 0 to 50

55
56
57

2 to 24 (4)
2 to 24 (4)
2 to 24 (4)

Status interrupt
Update interrupt
Manufacturer-spec.
interrupt

Status
Update
Profile

0 or 1
0 or 1
0 or 1

61 to 64, ≥123 16 to 26 (25) Isochronous mode
interrupt

Synchronous cycle 0 to 2

80
82
83

86

22
2 to 26 (5)
2 to 26 (6)

2 to 26 (6)

Time error
Diagnostics interrupt
Insert/remove module
interrupt
Rack failure

Time error interrupt
Diagnostic error interrupt
Pull or plug of modules

Rack or station failure

0 or 1
0 or 1
0 or 1

0 or 1

91
92

17 to 26 (25)
16 to 26 (24)

MC servo interrupt
MC interpolator interrupt

MC-Servo
MC-Interpolator

0 or 1
0 or 1

100, ≥123 1 Warm restart Startup 0 to 100

121 **)
122 **)

2 to 26 (7)
2 to 26 (7)

Programming error
I/O access error

Programming error
IO access error

0 or 1
0 or 1

*) depending on the call interval
**) only for global error handling

5.7 Interrupt processing

195

In the properties of an organization block in which an overload can occur, you can
set the response to an overload response under Attributes and Event queuing (Fig.
5.24).

In the Events to be queued field, you can define how many events of the operating
system will list in the associated queue and process in succession. The default value
is 1, i.e. exactly one event is buffered. If the selected value is too large, an overload
situation can be made worse if organization blocks with the same or lower priority
cannot be processed in a timely manner. Under some circumstances, it may be bet-
ter to discard the corresponding events and respond to it in the program of the
organization block.

If the queue is full when an event occurs, it is counted and then discarded. If the
attribute Optimized block access is activated, the number of discarded events is
located in the Event_Count tag in the start information of the organization block.

If the checkbox Report event overflow into diagnostics buffer in the block properties
is checked, the event ID DW#16#0002_3507 will be entered in the diagnostics buffer
when an event occurs that leads to an overflow of the queue. Another diagnostics
buffer entry with this event ID will only be made if all of the events in the queue
have been processed and then a new overflow occurs.

If you activate the Enable time error checkbox, the operating system calls organiza-
tion block OB 80 Time error if the number of the events pending in the queue

Fig. 5.24 Setting the overload behavior in the block properties

5 Program execution

196

reaches the number entered in the Event threshold for time error field. At the same
time, the event ID DW#16#0002_ 3502 is entered in the diagnostics buffer. In the
program of the time error organization block, you now have the capability of
responding to an impending overflow of the queue.

Current start and interrupt information

Every organization block with standard access – the Optimized block access attri-
bute is deactivated – contains information concerning the start event in the first 20
bytes of the temporary local data. You default structure of this start information can
be found in Chapter 4.11.4 “Start information” on page 142. Organization blocks
with the attribute Optimized block access activated can have start information,
which is provided by the operating system in the Input declaration section. The spe-
cific start information of an organization block is described in the description of the
organization block.

In many cases the interrupt-triggering component provides additional information
which you can read in the interrupt organization block with the system function
block RALRM (see Chapter 5.7.7 “Reading additional interrupt information” on
page 210).

Current signal states

In an interrupt routine it is sometimes necessary to work with the current signal
states of the I/O modules and not with the signal states of the inputs that were
updated at the start of the main program. The fetched signal states are then written
directly to the I/O without waiting until the process image output has been updated
at the end of the main program.

The operand area I/O permits direct access to the signal states on the module termi-
nals. To this end, you can insert, for example, system blocks for process image par-
titions, which update the inputs before the program execution begins and transfer
the outputs to the modules after the program execution ends (see section “Process
image partitions” on page 180).

Note that the signal states on the module terminals change asynchronous to the
cyclic program execution. It is therefore recommendable to maintain a strict sepa-
ration between the main program and the interrupt routine.

5.7.2 Time-of-day interrupts

A time-of-day interrupt is executed at a configured time, either one-time or period-
ically (e.g. daily). A CPU 1500 provides 20 organization blocks with the numbers
OB 10 to OB 17 and after OB 123 for processing a time-of-day interrupt.

A time-of-day interrupt organization block is assigned to the event class Time of
day. It is of hardware data type OB_Time of day. The constant names and the values
are listed in the System constants tab of the default tag table. The name of the con-
stant can be changed in the block properties under General.

5.7 Interrupt processing

197

Start information

A time-of-day interrupt organization block with the attribute Optimized block
access activated provides the start information shown in Table 5.8 in the Input dec-
laration section. A time-of-day interrupt organization block with the attribute Opti-
mized block access deactivated (OB with standard access) provides 20-byte long
start information in the Temp declaration section, the standard structure of which
is described in 4.11.4 “Start information” on page 142. This contains the tag speci-
fied in Table 5.8 with the processing interval. This is the interval with which the
organization block is processed (see PERIOD parameter of the system function
SET_TINTL further below).

Using a time-of-day interrupt

To start a time-of-day interrupt, you must first set the start time and then activate
the time-of-day interrupt. You can carry out both activities separately in the block
properties or also with system functions. Note that activation in the block proper-
ties means that the time-of-day interrupt is automatically started.

You can start a time-of-day interrupt once or periodically. The time-of-day interrupt
is canceled following a single call of the time-of-day interrupt OB. You can also can-
cel an active time-of-day interrupt using CAN_TINT. If you wish to reuse a canceled
time-of-day interrupt, you must set the start time again and activate the time-of-
day interrupt. You can query the status of a time-of-day interrupt with QRY_TINT.

Execution of the time-of-day interrupt is disabled with DIS_IRT and EN_IRT and
delayed with DIS_AIRT and EN_AIRT. You can set the behavior for time-of-day inter-
rupts that follow each other too closely (overload behavior).

Configuring a time-of-day interrupt

To configure a time-of-day interrupt, add an organization block with the event class
Time of day and enter the name, programming language, and number. In addition
to the general information and the attributes, you can set the following block prop-
erties in the properties of the organization block, under Time of day interrupt:

Table 5.8 Start information for a time-of-day interrupt organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input Caughtup BOOL = “1” for caught up call because clock was set forward

Input SecondTime BOOL = “1” for repeated call because clock was set back

The Optimized block access attribute is deactivated (standard access):

Temp PERIOD_EXE WORD Execution interval

5 Program execution

198

b Interval of execution: Never, Once, Every minute, Hourly, Daily, Weekly, Monthly,
Yearly, and at the End of the month,

b Start date and Time of day,

b Time basis: System time or Local time.

You set the execution priority in the block attributes under Priority. You can change
the default priority 2 from 2 to 24.

System functions for processing a time-of-day interrupt

You can use system functions to set, cancel, and activate a time-of-day interrupt and
also to query the status. You can find the functions for the time-of-day interrupt in
the program elements catalog under Extended instructions > Interrupts. Fig. 5.25
shows the graphic representation of the system functions.

SET_TINTL determines the start time for a time-of-day interrupt. The parameter
ACTIVATE specifies whether the start of the time-of-day interrupt OB should be car-
ried out immediately (TRUE) or only when the function ACT_TINT is called (FALSE).

Fig. 5.25 System blocks for controlling the time-of-day interrupt

SET_TINTL

SET_TINT

CAN_TINT

ACT_TINT

QRY_TINT

Time-of-day
setting

activation
interrupt
and

Time-of-day
settinginterrupt

Time-of-day
interrupt cancellation

Time-of-day
interrupt activation

Time-of-day
interrupt scan

Controlling the time-of-day interrupt

OB_NR

OB_NR

OB_NR

OB_NR

OB_NR

SDT

SDT

PERIOD

LOCAL

PERIOD

ACTIVATE

RET_VAL

RET_VAL

RET_VAL

RET_VAL

RET_VAL

STATUS

16#0000 Once
16#0201 Every minute
16#0401 Hourly
16#1001 Daily
16#1201 Weekly
16#1401 Monthly
16#1801 Yearly
16#2001 End of month

Assignment of PERIOD parameter

SET_TINTL and SET_TINT set the
parameters for a time-of-day interrupt.
SET_TINTL can also use the local time and
activate the interrupt immediately.

CAN_TINT cancels a time-of-day interrupt,
the organization block of which you
specify at the parameter OB_NR.

ACT_TINT activates a time-of-day
interrupt, the organization block of which
you specify at the parameter OB_NR.

QRY_TINT reads the status of a time-of-
day interrupt, the organization block of
which you specify at the parameter
OB_NR.

5.7 Interrupt processing

199

The start time is present in the SDT parameter in the format DATE_AND_LTIME,
e.g. DTL#2011-01-01-08:30:00. The operating system ignores any specified seconds
and milliseconds and sets these values to zero. For a monthly interval, only days 1
through 28 are possible start dates. When setting the start time, any old value of
the start time is overwritten. A current time-of-day interrupt is canceled, i.e. the
time-of-day interrupt must be activated again.

SET_TINT determines the start time for the time-of-day interrupt. SET_TINT only
sets the start time; the time-of-day interrupt must be activated by ACT_TINT in
order to start the time-of-day interrupt OB. The start time is present in the
SDT parameter in the format DATE_AND_TIME, e.g. DT#2011-01-01-08:30:00. The
operating system ignores any specified seconds and milliseconds and sets these
values to zero. For a monthly interval, only days 1 through 28 are possible start
dates. When setting the start time, any old value of the start time is overwritten.
A current time-of-day interrupt is canceled, i.e. the time-of-day interrupt must be
activated again.

CAN_TINT deletes a set start time and thus deactivates a time-of-day interrupt. The
time-of-day interrupt OB is no longer called. If you wish to reuse this time-of-day
interrupt, you must first set the start time again and then activate the time-of-day
interrupt.

ACT_TINT activates a time-of-day interrupt. Activation is only possible if a time has
been set for the time-of-day interrupt. ACT_TINT signals an error if the start time
for a single start is in the past. In the case of a periodic start, the operating system
calls the time-of-day interrupt OB at the next due time. A single time-of-day inter-
rupt is quasi deleted following processing; you can set and activate it again (at a dif-
ferent start time).

QRY_TINT provides information on the status of a time-of-day interrupt. The
STATUS parameter contains the desired information and the individual bits have
the significance shown in Table 5.9.

Table 5.9 STATUS parameter of system function QRY_TINT

Bit Meaning with signal state “0” Meaning with signal state “1”

0 The CPU is in RUN. The CPU is in STARTUP.

1 The interrupt is enabled. The interrupt has been disabled by DIS_IRT.

2 The interrupt is not active or has expired. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. An OB with the number OB_NR is loaded.

5 Always “0”

6 The start time is based on the system time. The start time is based on the local time.

Other Always “0”

5 Program execution

200

Behavior during startup

During a warm restart, the operating system deletes all settings you have made
using a system function. The settings parameterized in the block properties are
retained.

You can obtain information in the startup program on the status of a time-of-day
interrupt using QRY_TINT and cancel or reset and activate the time-of-day interrupt
as required. Processing of a time-of-day interrupt organization block only takes
place in the RUN operating state.

Error response

If the start time lies in the past for a one-time execution, the time-of-day interrupt
will not be started.

If the start time for periodic processing lies in the past, the time-of-day interrupt
will be started the next time it is due after the current time.

If the date for the monthly interval does not exist (e.g. February 30), the time-of-day
interrupt will not be started.

If the clock is set forward by less than 20 s, any skipped time-of-day interrupt will
be caught up. The CaughtUp tag is set in the start information during the caught up
processing.

If the clock is set forward by 20 s or more and one or more time-of-day interrupts
have been skipped, the time error organization block OB 80 is called for each prior-
ity class. The Fault_ID tag in the start information then has the value B#16#05
“Time-of-day interrupt expired due to time skip”. If the time-of-day interrupt is not
deleted in the time error OB, the first skipped time-of-day interrupt will be caught
up and the CaughtUp tag will be set in the start information.

If the clock is set back by less than 20 s, a previously executed or still active time-of-
day interrupt will not be repeated.

If the clock is set back by 20 s or more, all of the skipped time-of-day interrupts will
be repeated. The start time of the first time-of-day interrupt to be repeated is recal-
culated if the time correction is longer than the period of this time-of-day interrupt.
The SecondTime tag is set in the start information for a repeated time-of-day inter-
rupt.

5.7.3 Time-delay interrupts

A time-delay interrupt implements a delay time independent of the timer functions
and asynchronous to cyclic program execution. A CPU 1500 provides 20 organiza-
tion blocks with the numbers OB 20 to OB 23 and after OB 123 for processing a time-
delay interrupt.

A time-delay interrupt organization block is assigned to the event class Time delay
interrupt. It is of hardware data type OB_Delay. The constant names and the values
are listed in the System constants tab of the default tag table. The name of the con-
stant can be changed in the block properties under General.

5.7 Interrupt processing

201

Start information

A time-delay interrupt organization block with the attribute Optimized block access
activated provides the start information shown in Table 5.10 in the Input declara-
tion section. A time-delay interrupt organization block with the attribute Optimized
block access deactivated (OB with standard access) provides 20-byte long start infor-
mation in the Temp declaration section, the standard structure of which is
described in 4.11.4 “Start information” on page 142. This contains the tags speci-
fied in Table 5.10.

Using a time-delay interrupt

You start a time-delay interrupt by calling the system function SRT_DINT; this sys-
tem function also passes on the delay interval and the delay organization block.
When the time delay has expired, the organization block is called.

The time between the call of the SRT_DINT function and the start of the organiza-
tion block is a maximum of one millisecond less than the parameterized delay time
if no interrupt events delay the call.

You can also use the CAN_DINT function to cancel execution of a time-delay inter-
rupt that has not yet started. The associated organization block is then no longer
called. You can query the status of a time-delay interrupt with QRY_DINT.

Execution of the time-delay interrupt is disabled with DIS_IRT and EN_IRT and
delayed with DIS_AIRT and EN_AIRT.

Configuring a time-delay interrupt

Configuration of the time-delay interrupts is carried out in two steps:

b You create an organization block for a time-delay interrupt.

b Then program the SRT_DINT function and possibly the CAN_DINT and QRY_DINT
functions and assign the number of the time-delay interrupt OB to the OB_NR pa-
rameter.

To configure a time-delay interrupt, add an organization block with the event class
Time delay interrupt and enter the name, programming language, and number. Set

Table 5.10 Start information for a time-delay interrupt organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input Sign WORD Job ID (parameter SIGN from SRT_DINT)

The Optimized block access attribute is deactivated (standard access):

Temp SIGN WORD Job ID (parameter SIGN from SRT_DINT)

Temp DTIME TIME Parameterized delay time (ms)

5 Program execution

202

the priority in the properties of the organization block under Attributes. You can
change the default priority 3 from 3 to 24.

Enter the function SRT_DINT into your program. Then click on the selection symbol
in the input box of the OB_NR parameter and then select the time-delay interrupt
OB from the list. You program the CAN_DINT and QRY_DINT functions in the same
manner.

System functions for processing a time-delay interrupt

You can use system functions to activate and cancel a time-delay interrupt and also
to query the status. You can find the functions for the time-delay interrupts in the
program elements catalog under Extended instructions > Interrupts. Fig. 5.26 shows
the graphic representation of the system functions.

SRT_DINT activates a time-delay interrupt. The call is simultaneously the start time
for the parameterized period. Once the delay time has expired, the CPU calls the
parameterized OB and transfers the job ID (configured in the SIGN parameter) in
the start information for this OB. You can set the delay time in intervals of 1 ms.
The accuracy of the delay time is also 1 ms.

Note that processing of the time-delay interrupt OB may be delayed if organization
blocks of higher priority are being processed when the OB is called. You can over-
write a current delay time by a new value by calling SRT_DINT again. The new delay
time then commences when called.

CAN_DINT cancels an activated time-delay interrupt. The parameterized organiza-
tion block is not called in this case.

Fig. 5.26 Start, cancel, and query a time-delay interrupt

SRT_DINT

CAN_DINT

QRY_DINT

Time-delay interrupt
activation

Time-delay interrupt
cancellation

Time-delay interrupt
scan

Controlling a time-delay interrupt

OB_NR

DTIME

SIGN

OB_NR

OB_NR

RET_VAL

RET_VAL

RET_VAL

STATUS

SRT_DINT activates the time-delay
interrupt, the organization block of which
you specify at the parameter OB_NR.

CAN_DINT cancels the time-delay
interrupt, the organization block of which
you specify at the parameter OB_NR.

QRY_DINT reads the status of the time-
delay interrupt, the organization block
of which you specify at the parameter
OB_NR.

5.7 Interrupt processing

203

QRY_DINT provides information on the status of the time-delay interrupt. You
select the time-delay interrupt using the OB number. The STATUS parameter con-
tains the desired information and the individual bits have the significance shown
in Table 5.11.

Behavior during startup

During a warm restart, the operating system deletes all settings you have pro-
grammed for time-delay interrupts.

You can start a time-delay interrupt in the startup program by calling SRT_DINT.
Following expiry of the delay time, the CPU must be in the RUN operating state in
order to process the corresponding organization block. If this is not the case, the
CPU waits with the OB call until the startup has been completed and then calls the
time-delay interrupt OB before the first statement in the main program.

Error response

If the time-delay interrupt OB is missing in the user program when called, the oper-
ating system ignores the event.

If the delay time has expired and the associated OB is still being processed, the oper-
ating system calls the organization block OB 80 Time error or ignores the event if
OB 80 is not present.

5.7.4 Cyclic interrupts

A cyclic interrupt is an interrupt triggered at periodic intervals which initiates exe-
cution of a cyclic interrupt organization block. A cyclic interrupt allows you to peri-
odically execute a particular routine independent of the processing time of the
cyclic program. A CPU 1500 provides 20 organization blocks with the numbers
OB 30 to OB 38 and after OB 123 for processing a cyclic interrupt.

A cyclic interrupt organization block is assigned to the Cyclic interrupt event class.
It is of hardware data type OB_Cyclic. The constant names and the values are listed
in the System constants tab of the default tag table. The name of the constant can be
changed in the block properties under General.

Table 5.11 STATUS parameter of system function QRY_DINT

Bit Meaning with signal state “0” Meaning with signal state “1”

0 The CPU is in RUN. The CPU is in STARTUP.

1 The interrupt is enabled. The interrupt has been disabled by DIS_IRT.

2 The interrupt is not active or has expired. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. An OB with the number OB_NR is loaded.

Other Always “0”

5 Program execution

204

Start information

A cyclic interrupt organization block with the attribute Optimized block access acti-
vated provides the start information shown in Table 5.10 in the Input declaration
section. A cyclic interrupt organization block with the attribute Optimized block
access deactivated (OB with standard access) provides 20-byte long start informa-
tion in the Temp declaration section, the standard structure of which is described
in 4.11.4 “Start information” on page 142. This contains the tags specified in Table
5.10.

Using a cyclic interrupt

For a cyclic interrupt that is configured with the hardware configuration, the start
time for the call interval is the transition into the RUN operating state.

With the system function SET_CINT, the call interval (the cycle clock) and the phase
offset can be changed per user program. You query the status of the cyclic interrupt
with QRY_CINT.

Execution of the cyclic interrupt is disabled with DIS_IRT and EN_IRT and delayed
with DIS_AIRT and EN_AIRT. You can set the behavior for cyclic interrupts that fol-
low each other too closely (overload behavior).

Configuring a cyclic interrupt

To configure a cyclic interrupt, add an organization block with the event class Cyclic
interrupt and enter the name, the programming language, the number, and the
cycle clock (the call interval) in microseconds. In addition to the general informa-
tion and the attributes, you can set the phase offset in the properties of the organi-
zation block, under Cyclic interrupt. You can also change the cycle clock here.

You set the execution priority in the block attributes under Priority. The default pri-
ority is 8 to 17, depending on the time interval, and can be changed in the range of
2 to 24.

Table 5.12 Start information for a cyclic interrupt organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input Initial_Call BOOL = “1” for the first call of the organization block in the RUN
operating state and after reloading

Input Event_Count INT Number of discarded start events since the last start of this
organization block

The Optimized block access attribute is deactivated (standard access):

Temp PHS_OFFSET INT Phase offset *)

Temp EXC_FREQ INT Parameterized time interval *)

*) for a cyclic interrupt cycle < 1 ms in microseconds (µs), otherwise milliseconds (ms)

5.7 Interrupt processing

205

Cycle clock

The cycle clock can be set in the range from 500 µs to 60,000,000 µs in intervals
of 1 µs. When a cyclic interrupt organization block is added, the processing priority
is preset depending on the cycle clock (Table 5.13). You can change the default pri-
ority in the block properties.

Phase offset

You can use the phase offset to process cyclic interrupt programs in a precise time
frame even if they have the same time interval or a common multiple thereof. This

Table 5.13 Default setting of the priority depending on the cycle clock

Cycle
clock (ms)

≤ 2 > 2 …
≤ 5

> 5 …
≤ 10

> 10 …
≤ 100

> 100 …
≤ 200

> 200 …
≤ 500

> 500 …
≤ 1000

> 1000
…

≤ 2000

> 2000

Priority 17 16 14 13 12 11 10 9 8

Fig. 5.27 Processing of cyclic interrupts with and without phase offset

t

tt t t

t

t

t

t

t

t

t

tt t t

Phase offset

The start time of the organization block with lower priority is offset by the processing time of the
organization block with higher priority.

If the phase offset is sufficiently large, the organization block with lower priority starts exactly in
the time interval.

RUN

RUN

Without phase offset

With phase offset

Processing of the cyclic
interrupt organization block
with higher priority

Processing of the cyclic
interrupt organization block
with higher priority

Processing of the cyclic
interrupt organization block
with lower priority

Processing of the cyclic
interrupt organization block
with lower priority

Effect of phase offset with cyclic interrupts

5 Program execution

206

results in higher accuracy of the processing intervals. The phase offset can be set in
the range from 0 µs to 15,000 µs in intervals of 1 µs.

The start time of the cycle clocks and the phase offset is the transition from the
STARTUP operating state to RUN. The call instant for a cyclic interrupt OB is thus the
cycle clock plus the phase offset. An example is shown in Fig. 5.27. No phase offset
is set in the upper section, and consequently start of processing of the lower prior-
ity organization block is delayed by the current processing time of the higher pri-
ority organization block in each case.

If, on the other hand, a phase shift is configured and it is greater than the maximum
processing time of the higher-priority organization block, the lower-priority orga-
nization block is processed in the precise time frame.

System functions for processing a cyclic interrupt

You can set and query the parameters for processing a cyclic interrupt with system
functions. You can find the functions for the cyclic interrupt in the program ele-
ments catalog under Extended instructions > Interrupts. Fig. 5.28 shows the graphic
representation of the functions.

SET_CINT sets the parameters for a cyclic interrupt. This is the cycle clock with
which the cyclic interrupt is triggered, and the phase offset. Enter the cycle clock in
microseconds at the CYCLE parameter. If the time interval is zero, the cyclic inter-
rupt organization block specified in parameter OB_NR is not called. The phase off-
set at parameter PHASE is also specified in microseconds.

QRY_CINT reads the parameters of the cyclic interrupt organization block specified
at parameter OB_NR and outputs them to the parameters CYCLE (time interval) and
PHASE (phase offset). The operating state of the selected cyclic interrupt organiza-
tion block is output at parameter STATUS (Table 5.14).

Fig. 5.28 System blocks for setting and querying the cyclic interrupt parameters

Setting and scanning cyclic interrupt parameters

SET_CINT

RET_VALOB_NR

CYCLE

PHASE

QRY_CINT

Set cyclic interrupt
parameters

Scan cyclic interrupt
parameters

OB_NR RET_VAL

CYCLE

PHASE

STATUS

SET_CINT sets the parameters for the
cyclic interrupt, the organization block
of which you specify at the parameter
OB_NR.

QRY_CINT reads the status of the cyclic
interrupt, the organization block of
which you specify at the parameter
OB_NR.

5.7 Interrupt processing

207

Behavior during startup

Processing of cyclic interrupts is not possible in the startup program. The cycle
clocks only commence upon transition to the RUN state.

Error response

If the cyclic interrupt OB is missing in the user program when called, the operating
system ignores the event.

The processing time of a cyclic interrupt organization block must be significantly
shorter than its time frame. If the associated cyclic interrupt is repeated during an
ongoing cyclic interrupt OB, the operating system calls OB 80 Time error. The error
is ignored if OB 80 is not present.

5.7.5 Hardware interrupts

With a hardware interrupt, there can be an immediate response with a correspond-
ing program to events in the controlled process or on a module. A CPU 1500 pro-
vides 50 organization blocks with the numbers OB 40 to OB 47 and after OB 123 for
processing a hardware interrupt.

A hardware interrupt organization block is assigned to the Hardware interrupt
event class. It is of hardware data type OB_HWINT. The constant names and the val-
ues are listed in the System constants tab of the default tag table. The name of the
constant can be changed in the block properties under General.

Start information

A hardware interrupt organization block with the attribute Optimized block access
activated provides the start information shown in Table 5.15 in the Input declara-
tion section. A hardware interrupt organization block with the attribute Optimized
block access deactivated (OB with standard access) provides 20-byte long start infor-
mation in the Temp declaration section, the standard structure of which is
described in 4.11.4 “Start information” on page 142. This contains the tags speci-
fied in Table 5.15.

Table 5.14 STATUS parameter of system function QRY_CINT

Bit Meaning with signal state “0” Meaning with signal state “1”

0 The CPU must be in the RUN mode. The CPU must be in the STARTUP mode.

1 The interrupt is enabled. The interrupt has been delayed by DIS_AIRT.

2 The interrupt expired or is not active. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. An OB with the number OB_NR is loaded.

Other Always “0”

5 Program execution

208

Using a hardware interrupt

A hardware interrupt is triggered on a module designed for this. This can be, for
example, a digital or analog input module or a technology module. Triggering of a
hardware interrupt is initially disabled by default. When you parameterize the
module that triggers the interrupt using the hardware configuration, you enable
the hardware interrupt event.

Only one hardware interrupt organization block can be assigned to a hardware
interrupt event, but several events can be assigned to one hardware interrupt orga-
nization block.

At runtime, the assignment between a hardware interrupt event and an organiza-
tion block can be made or removed in the user program using ATTACH and DETACH.

Execution of the hardware interrupt is disabled with DIS_IRT and EN_IRT and
delayed with DIS_AIRT and EN_AIRT.

Configuring a hardware interrupt

To configure a hardware interrupt, enable the hardware interrupt event on the
module that triggers the interrupt. Assign a hardware interrupt organization block
to this event – either one that you have already created or one that you are creating
now.

When parameterizing the module that triggers the interrupt with the hardware
configuration, activate the hardware interrupt event, for example at the input of a
correspondingly configured digital input module. Specify when a hardware inter-
rupt is to be triggered, during a rising edge for example. The event is given a name,
which you can change and which is entered in the System constants tab of the
default tag table. You can use this name to address the hardware interrupt event in
the user program, for example when using ATTACH to make an assignment to an

Table 5.15 Start information for a time-of-day interrupt organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input LADDR HW_IO Hardware identifier of the module triggering the interrupt

Input USI WORD (ID for future expansions)

Input ICHANNEL USINT Number of the channel triggering the interrupt

Input EventType BYTE Event type (see module description)

The Optimized block access attribute is deactivated (standard access):

Temp I/O_FLAG BYTE I/O identification (16#54 = input, 16#55 = output)

Temp MDL_ADDR WORD Module start address

Temp POINT_ADDR DWORD Interrupt information

5.7 Interrupt processing

209

organization block. In addition, you can change the default processing priority
16 from 2 to 24 in the module properties.

When assigning the organization block, choose an existing block or create a new
one using the Add object button. When adding, give the organization block a name
and set the programming language and number. In the properties of the organiza-
tion block, under Triggers, you will find a table with the hardware interrupt events
that were assigned during the hardware configuration.

Behavior during startup

During a warm restart, the operating system deletes all of the assignments made
between an interrupt event and an organization block using a system function.
The assignments configured with the hardware configuration are retained.

Interrupt handling commences with the transition to the RUN operating state.
Hardware interrupts present during the transition are lost. Hardware interrupt
organization blocks are only called in the RUN operating state.

Error response

If, during processing of a hardware interrupt OB, an event occurs on the same chan-
nel of the same module which would again trigger the freshly processed hardware
interrupt, this hardware interrupt is lost. A new hardware interrupt is only acquired
when processing of the old hardware interrupt has finished. If the event to which
the same hardware interrupt OB is assigned occurs on a different channel of the
same module or on a different module, the operating system starts the organiza-
tion block once again after processing the hardware interrupt OB.

If the hardware interrupt OB is missing in the user program when called, the oper-
ating system ignores the event.

5.7.6 Assigning interrupts during runtime

With the following system functions you can assign an organization block to an
interrupt event during runtime and cancel the assignment again:

b ATTACH Assign organization block to the interrupt event

b DETACH Remove organization block from the interrupt event

You find the system functions in the program elements catalog under Extended
instructions > Interrupts. Calling of these functions is shown in Fig. 5.29.

At the parameter OB_NR you specify the number of the organization block, the
hardware identifier (data type OB_HWINT) from the System constants tab in the
default tag table, or an INT tag. At the parameter EVENT you specify the number or
the name of the interrupt event (Data type Event_HwInt) from the System constants
tab in the default tag table or a DWORD tag.

5 Program execution

210

ATTACH Assign organization block to the interrupt event

ATTACH assigns an interrupt organization block to an interrupt event. The event
must be activated and defined using the device configuration editor. The interrupt
organization block with the event class suitable to the event must be present in the
user program.

After the assignment has been made, the organization block is called and executed
when the event occurs. The parameter ADD defines whether the previous assign-
ments to other events will be retained (with “1” or TRUE) or whether they will be
deleted (with “0” or FALSE).

The enable output ENO has signal state “0” for the following errors: OB does not
exist (RET_VAL = 8090), OB is of the wrong type (RET_VAL = 8091), and event does
not exist (RET_VAL = 8093).

DETACH Remove organization block from the interrupt event

DETACH removes the assignment of an interrupt event to an interrupt organization
block.

If an event is specified at the parameter EVENT, the assignment of this event is
removed. If zero is assigned to the parameter EVENT, all of the assignments to the
OB located at parameter OB_NR are deleted.

If the requested assignment does not exist, the enable output ENO has signal state
“0” and the value 1 is output at the parameter RET_VAL. Further errors: OB does not
exist (RET_VAL = 8090), OB is of the wrong type (RET_VAL = 8091), and event does
not exist (RET_VAL = 8093).

5.7.7 Reading additional interrupt information

The system block RALRM reads additional interrupt information from the inter-
rupt-triggering components (modules or submodules). It is called in an interrupt

Fig. 5.29 System blocks for the assigning hardware interrupts and canceling hardware
interrupt assignments

Creating and removing an assignment between an organization block and interrupt event

Assign organization
block to interrupt event

Remove assignment
organization block and
interrupt event

between

ATTACH

DETACH

RET_VAL

RET_VAL

OB_NR

OB_NR

EVENT

EVENT

ADD

ATTACH assigns an organization
block (parameter OB_NR) to an
interrupt event (parameter EVENT).

DETACH removes the assignment
between an organization block
(parameter OB_NR) and an interrupt
event (parameter EVENT).

5.7 Interrupt processing

211

organization block or in a block called within this. Processing of RALRM is synchro-
nous, i.e. the requested data is available at the output parameters immediately fol-
lowing the call. You find RALRM in the program elements catalog under Extended
instructions > Distributed I/O. Fig. 5.30 shows the graphic representation of RALRM.

RALRM can always be called in all organization blocks or execution levels for all
events. If you call it in an organization block whose start event is not an interrupt
from the I/O, correspondingly less information is available. Different information
is entered in the destination areas specified by the TINFO and AINFO parameters
depending on the respective organization block and the interrupt-triggering com-
ponent.

In bytes 0 to 19, the destination area TINFO contains the complete (default) start
information of the organization block in which RALRM was called, independent of
the nesting depth in which it was called. The system block RALRM thus partially
replaces the system function RD_SINFO. Address and management information is
present in bytes 20 to 31, e.g. which component has triggered the interrupt.

In bytes 0 to 3 (bytes 0 to 25 with PROFINET), the destination area AINFO contains
the header information, e.g. the number of received bytes of the additional inter-
rupt information or interrupt type. Bytes 4 to 199 (bytes 26 to 1431 with PROFINET)
contain the component-specific additional interrupt information itself.

The assignment of the MODE parameter determines the mode of the system block
RALRM. With Mode = 0, the system block shows you the interrupt-triggering com-
ponent in the ID parameter; NEW is assigned TRUE. With Mode = 1 all output param-

Fig. 5.30 System blocks for reading additional interrupt information

RALRM

Instance dataRead additional
interrupt
information

Reading additional interrupt information

MODE

F_ID

MLEN

TINFO

AINFO

NEW

STATUS

ID

LEN

0 Indicates the interrupt-triggering component in the ID
parameter and sets NEW to signal state "1".

1 Writes all output parameters of RALRM.

2 Checks whether the component specified in the F_ID
parameter has triggered the interrupt; if not, NEW is set to
signal state "0", otherwise to signal state "1" and all output
parameters are written.

RALRM: Assignment of MODE parameter

RALRM reads additional information on an
interrupt event.

5 Program execution

212

eters are written. With Mode = 2, check whether the component specified by the
F_ID parameter was the interrupt-triggering one. If this applies, the NEW parame-
ter has the value TRUE, and all other output parameters are written.

In order to work correctly, RALRM requires separate instance data for each call in
the various organization blocks, e.g. a separate instance data block in each case.

5.8 Error handling

5.8.1 Causes of errors and error responses

The CPU can detect and signal errors in the program execution and from the mod-
ules. The response of the operating system depends on the type of error and on the
configurable settings: The error is ignored, an error organization block is called, or
it is left up to the user program to respond to the error. In the event of serious
errors, e.g. the cycle monitoring time has elapsed twice in one program cycle, the
CPU immediately goes into the STOP operating state.

Errors during runtime which are module-based are signaled by the diagnostics
function. This can be carried out via the ERROR LED on the front of the CPU, a diag-
nostics alarm on the CPU display, an entry in the diagnostics buffer, or by starting
the diagnostics interrupt (see Chapter 15.4 “Hardware diagnostics” on page 672).
Using system blocks, you can respond to status and error messages of modules in
the user program (see Chapter 5.9.3 “Diagnostic functions in the user program” on
page 228).

System blocks that are prone to errors when executed report this error via the
return value (function value), which is generally called the RET_VAL or STATUS.
This feedback message can be evaluated in the user program and the error can be
responded to. System blocks with an ENO output report a faulty execution in the
block with signal state “0” or FALSE at this output. The ENO output can also be used
for error reporting for self-written function blocks (FBs) and functions (FCs). Fur-
ther details can be found in Chapters 7.6.4 “EN/ENO mechanism in the ladder logic”
on page 320, 8.6.4 “EN/ENO mechanism in the function block diagram” on page 356,
9.6.2 “EN/ENO mechanism with SCL” on page 381, and 10.7.2 “EN/ENO mechanism
in the statement list” on page 447.

Program execution errors can be programming errors, e.g. calling a non-existent
block, and access errors, e.g. querying a non-existent peripheral input. The
response to one of these so-called synchronous errors can be the system-internal
error response (see Chapter 5.8.3 “Global error handling (synchronous error)” on
page 215) or a user-specific error response (see Chapter 5.8.2 “Local error han-
dling”). The operating system responds to errors are not related to the program
execution (“asynchronous errors”) by calling an organization block (see
Chapter 5.8.5 “Asynchronous errors” on page 220).

5.8 Error handling

213

5.8.2 Local error handling

You can program local error handling in organization blocks (OB), function
blocks (FB), and functions (FC). It only applies to the corresponding block. Local
error handling is not taken from the calling block nor is it passed on to the called
block. If the local error handling is not programmed, the system settings will apply
if an error occurs (ignore error or STOP).

If local error handling is activated, the default responses are:

b For a write error: The error is ignored and program execution is continued.

b For a read error: The substitute value “0” or zero is read and program execution
is continued.

b For an execution error: The execution of the faulty statement (function) is abort-
ed and program execution is continued with the next statement.

Local error handling is automatically activated by inserting the statement GET_ER-
ROR or GET_ERROR_ID in the block and displayed in the block properties with the
attribute Handle errors within block (cannot be edited).

Evaluating program errors

Two functions are available in the block for the error evaluation for local error han-
dling (Fig. 5.31):

b GET_ERR_ID (read program error number) provides the error number (ID) in the
event of a program execution error.

b GET_ERROR (read program error information) provides the corresponding in-
formation in a predefined data structure in the event of a program execution er-
ror.

In the event of a program execution error, the CPU enters the error into the diag-
nostics buffer by default and switches to STOP. If the function GET_ERROR or
GET_ERR_ID is programmed in the block, there is no entry into the diagnostics
buffer and no switch to STOP. Instead, the error is reported via GET_ERROR or
GET_ERR_ID.

Fig. 5.31 System blocks for local error handling

Local error handling

GetErrorID

GetError

ID

ERROR

Read program error
number

Read program error
information

If a programming error occurred in the
block program before calling GetErrorID,
GetErrorID reads its number.

If a programming error occurred in the
block program before calling GetError,
GetError reads its information.

5 Program execution

214

The error may have occurred at any position between starting of the block and
calling of GET_ERROR or GET_ERR_ID. Therefore, in the case of a single call of
GET_ERROR or GET_ERR_ID, the call is preferably positioned in the last network or
at the end of the program in the monitored block.

GET_ERROR and GET_ERR_ID can also be called multiple times. A call of GET_ERROR
or GET_ERR_ID re-initiates the error detection. The next call of GET_ERROR
or GET_ERR_ID outputs the first error after the previous call of GET_ERROR or
GET_ERR_ID. The progress of the error is not saved.

GET_ERR_ID Read program error number

In the event of a program execution error, the GER_ERR_ID function provides the
error identification in the ID parameter (Table 5.16). The function is executed if EN
has the signal state “1”. No error has been detected if ENO has the signal state “0”
(FALSE), an error ID is present if the signal state at ENO is “1” (TRUE).

GET_ERROR Read program error information

In the event of a program execution error, the GER_ERROR function provides the
error information in the ERROR parameter in data type ErrorStruct. The data type
ErrorStruct has the structure shown in Section 4.11.3 “Data type ERROR_STRUCT” on
page 141. The function is executed if EN has the signal state “1”. No error has been

Table 5.16 Error numbers with program execution errors

ERROR_ID Error ERROR_ID Error

hex dec hex dec

16#2503 9475 Invalid pointer 16#253C 9532 Incorrect version, or function (FC)
does not exist

16#2522 9506 Range violation when
reading

16#253D 9533 System function (SFC) does not
exist

16#2523 9507 Range violation when
writing

16#253E 9534 Incorrect version, or function
block (FB) does not exist

16#2524 9508 Invalid operand when
reading

16#253F 9535 System function block (SFB) does
not exist

16#2525 9509 Invalid operand when
writing

16#2575 9589 Program nesting depth exceeded

16#2528 9512 Incorrect bit orientation
when reading

16#2576 9590 Error in assignment of
temporary local data

16#2529 9513 Incorrect bit orientation
when writing

16#2942 10562 Read error during direct access
(input channel does not exist)

16#2530 9520 Data block write error
(DB write-protected)

16#2943 10563 Write error during direct access
(output channel does not exist)

16#253A 9530 Global DB does not exist

5.8 Error handling

215

detected if ENO has the signal state “0” (FALSE), error information is present if the
signal state at ENO is “1” (TRUE).

Error priority

The first detected error is output when calling GET_ERROR or GET_ERR_ID. If sev-
eral errors occur simultaneously when processing a statement (function) they are
output according to their priority (Table 5.17). Priority 1 is the highest priority,
12 is the lowest.

Evaluating program error information

The data type ErrorStruct can be inserted into data blocks or into a block interface
from a drop-down list. You can also insert the data type more than once if you
assign a different name to the data structure each time. The data structure and the
name of individual structure components cannot be changed.

If the error information is saved in a data block, it can also be read by other blocks.
For example, another block can be called in the event of an error which then takes
over evaluation of the error information.

5.8.3 Global error handling (synchronous error)

The CPU's operating system generates a synchronous error event if an error occurs
in direct relationship with the program execution. Two types of error are distin-
guished: programming error and I/O access error. If local error handling is not acti-
vated, the CPU operating system responds to a programming error with the call of
the organization block OB 121 and to an I/O access error with the call of the organi-
zation block OB 122.

Programming error organization block OB 121

The organization block OB 121 is called if a programming error occurs (also in the
STARTUP operating state). This includes, for example, BCD conversion errors,
errors with indirect addressing, and addressing of missing SIMATIC timer/counter

Table 5.17 Priorities during error output

Priority Type of error Priority Type of error

1 Error in program code 7 Time or counter function does not exist

2 Reference missing 8 No write access to a DB

3 Invalid range 9 I/O error

4 DB does not exist 10 Statement does not exist

5 Operand is not compatible 11 Block does not exist

6 Width of specified range is insufficient 12 Invalid nesting depth

5 Program execution

216

functions or blocks. If the organization block OB 121 is not present when a pro-
gramming error occurs, the CPU switches to STOP.

The programming error organization block is assigned to the Programming error
event class. It is of hardware data type OB_ANY. The constant names and the values
are listed in the System constants tab of the default tag table. The name of the con-
stant can be changed in the block properties under General.

Start information OB 121

The programming error organization block with the attribute Optimized block
access activated provides the start information shown in Table 5.18 in the Input dec-
laration section. With the attribute Optimized block access deactivated (OB with
standard access), it provides 20-byte long start information in the Temp declaration
section, the standard structure of which is described in 4.11.4 “Start information”
on page 142. This contains the tags specified in Table 5.18, which give information
on the cause and location of the error. Example: If the SW-FLT tag is occupied by
B#16#32 (= access to a non-existent global data block), the FLT_REG tag contains the
number of the missing data block.

I/O access error organization block OB 122

The organization block OB 122 is called if an I/O access error occurs (also in the
STARTUP operating state). This is the case, for example, if a faulty module, a non-
existent module, or an I/O address unknown on the CPU is accessed. If the organi-
zation block OB 122 is not present when an I/O access error occurs, the operating
system ignores the error event.

The I/O access error organization block is assigned to the IO access error event class.
It is of hardware data type OB_ANY. The constant names and the values are listed
in the System constants tab of the default tag table. The name of the constant can be
changed in the block properties under General.

Start information OB 122

The programming error organization block with the attribute Optimized block
access activated provides the start information shown in the Table 5.18 on page 217
in the Input declaration section. With the attribute Optimized block access deacti-
vated (OB with standard access), it provides 20-byte long start information in the
Temp declaration section, the standard structure of which is described in 4.11.4
“Start information” on page 142. This contains the tags specified in Table 5.18,
which give information on the cause and location of the error. In the SW_FLT tag,
the value B#16#42 stands for a read operation and B#16#43 for a write operation.
The type of access in the MEM_AREA tag can be bit access (with value 0), byte
access (1), word access (2), and doubleword access (3). The memory area can be the
I/O area I:P or Q:P (with value 0), the process image input, (1) or the process image
output (2). The error-causing memory address is then in the MEM_ADDR tag.

5.8 Error handling

217

Table 5.18 Start information for OB 121 and OB 122

Decl. Tag name Data type Description 121 122

The Optimized block access attribute is activated:

Input BlockNo UINT Number of block in which the programming or
I/O access error occurred

× ×

Reaction USINT Reaction to error
0: Ignore error
1: Replace faulty value
2: Skip statement
3: Programmed error handling

×
×
×
×

×
×
×
–

Fault_ID BYTE Error code × ×

BlockType USINT Block type (OB: 16#88, FB: 16#8C, FC: 16#8E) × ×

Area USINT Operand area in which the erroneous access was
located

Process image input: 16#01
Process image output: 16#02
Technology DB: 16#03
Inputs: 16#81
Outputs: 16#82
Bit memory: 16#83
Data (block): 16#84, 85, 8A, 8B
Local data: 16#40 to 4E, 86, 87,

16#8E, 8F, C0 to CE

×
×
×
×
×
×
×
×

–
–
–
×
×
–
–
–

DBNo DB_ANY DB number if AREA = 16#84, 85, 8A, 8B × –

Csg_OBNo OB_ANY OB number (121 or 122) × ×

Csg_Prio USINT OB priority × ×

Width USINT Width of the access
Bit: 16#00
Byte: 16#01
Word: 16#02
Doubleword: 16#03
Long word: 16#04

× ×

The Optimized block access attribute is deactivated (standard access):

Temp SW_FLT BYTE Start request for the organization block
(error code)

× ×

BLK_TYPE BYTE Type of block in which the error occurred × ×

FLT_REG WORD Error source depending on the error code × –

MEM_AREA BYTE Memory area (bits 0 to 3) and
type of access (bits 4 to 7)

– ×

MEM_ADDR WORD Memory address at which the error occurred – ×

BLK_NUM WORD Number of block in which the error occurred × ×

PRG_ADDR WORD Relative address of the machine code causing the error × ×

5 Program execution

218

5.8.4 Enabling and disabling synchronous error processing

The processing of a synchronous error event can be disabled (“masked”), so that the
error organization block is not called when the event occurs. An error mask defines
which synchronous error events will be disabled. If an event occurs during the dis-
abled state, it is recorded in the event status register. The processing of disabled
synchronous error events can also be enabled again (“unmasked”). Fig. 5.32 shows
the graphic representation of the system functions provided for this purpose.

Error masks

The synchronous error processing is influenced via two error masks. A bit is pres-
ent in the programming error mask for each detected programming error, and in
the access error mask for each detected access error. When specifying the error
mask, you set the bit which corresponds to the synchronous error you wish to
mask, unmask, or query. The error masks returned by the system functions indi-
cate the synchronous errors which are still masked or present by signal state “1”.
Table 5.19 shows the assignment of the synchronous error masks.

Fig. 5.32 System blocks for handling of synchronous error events

MSK_FLT

DMSK_FLT

READ_ERR

Mask
synchronous error
events

Unmask
synchronous error
events

Read
status

register
event

Handling of synchronous error events

PRGFLT_
SET_MASK

PRGFLT_
RESET_MASK

PRGFLT_
QUERY

ACCFLT_
SET_MASK

ACCFLT_
RESET_MASK

ACCFLT_
QUERY

RET_VAL

RET_VAL

RET_VAL

PRGFLT_
MASKED

PRGFLT_
MASKED

PRGFLT_
CLR

ACCFLT_
MASKED

ACCFLT_
MASKED

ACCFLT_
CLR

MSK_FLT suppresses the processing of
individual error events.

DMSK_FLT re-enables the processing of
individual error events.

READ_ERR reads the event status register.

5.8 Error handling

219

MSK_FLT Mask synchronous error events

By means of the error masks, the MSK_FLT disables calling of the synchronous
error organization blocks. By means of signal state “1” you identify in the error
masks for which synchronous errors the organization blocks are not to be called
(the synchronous error events are “masked”). The specified masking is used in
addition to the masking saved in the operating system. MSK_FLT signals in the
function value whether a (saved) masking was already present (16#0001) for at
least one bit for the masking specified in the input parameters.

MSK_FLT returns all currently masked events with signal state “1” in the output
parameters.

If a masked synchronous error event occurs, the corresponding organization block
is not called and the event is not entered in the event status register. Masking
applies to the current priority class. If you mask the call of a synchronous error
organization block in the main program, for example, the synchronous error orga-
nization block is nevertheless called if the error occurs in an interrupt routine.

DMSK_FLT Unmask synchronous error events

By means of the error masks, the DMSK_FLT enables calling of the synchronous
error organization blocks. By means of signal state “1” you identify in the error
masks the synchronous errors for which the organization blocks are to be called

Table 5.19 Assignment of the synchronous error masks

Programming error mask

Bit Meaning Bit Meaning

0
1
2
3

–
BCD conversion error
Area length error when reading
Area length error when writing

16
17
18
19

Write error global data block
Write error instance data block
Faulty number in DB register
Faulty number in DI register

4
5
6
7

Area error when reading
Area error when writing
Faulty number of a timer function
Faulty number of a counter function

20
21
22
23

Faulty number of an FC block
Faulty number of a function block
–
–

8
9
10
11

Address error when reading indirectly
Address error when writing indirectly
–
–

24
25
26
27

–
–
Data block does not exist
–

12
13
14
15

–
–
–
–

28
39
30
31

Called FC block does not exist
–
Called function block does not exist
–

Access error mask

Bit Meaning Bit Meaning

1 I/O access error when reading 2 I/O access error when writing

5 Program execution

220

again (the synchronous error events are “unmasked”). The entries in the event sta-
tus register corresponding to the specified unmasking are deleted. DMSK_FLT sig-
nals with W#16#0001 in the function value if no (saved) masking was present for at
least one bit for the unmasking specified in the input parameters.

DMSK_FLT returns all currently masked events with signal state “1” in the output
parameters.

If an unmasked synchronous error event occurs, the corresponding organization
block is called and the event is entered in the event status register. Enabling applies
to the current priority class.

READ_ERR Read event status register

READ_ERR reads the event status register. With signal state “1” you identify in the
error masks the synchronous errors for which you wish to read the entries.
READ_ERR signals with W#16#0001 in the function value if no (saved) masking was
present for at least one bit for the selection specified in the input parameters.

READ_ERR returns the selected events with signal state “1” in the output parame-
ters when they have occurred and deletes these events in the event status register
when scanned. Synchronous errors which have occurred in the current priority
class are signaled.

5.8.5 Asynchronous errors

Asynchronous errors are errors which can occur asynchronously to program exe-
cution. If an asynchronous error occurs, the operating system calls one of the
following organization blocks:

OB 80 Time error

OB 82 Diagnostics interrupt

OB 83 Insert/remove module interrupt

OB 86 Rack error

The organization block OB 82 (diagnostics interrupt) is described in Chapter 5.9.1
“Diagnostics interrupt” on page 226.

Calling these asynchronous error organization blocks can be disabled and enabled
using the system functions DIS_IRT and EN_IRT and delayed and enabled using
DIS_AIRT and EN_AIRT.

Time error OB 80

The operating system calls the organization block OB 80 if one of the following
errors occurs:

b The first instance of exceeding the cycle monitoring time in a program cycle

b OB request error (the called organization block is still being processed, or an
organization block is called too frequently within a priority class)

5.8 Error handling

221

b Time-of-day error interrupt (expired time-of-day interrupt through setting the
time forward by more than 20 s or after transitioning to the RUN operating state)

If OB 80 is not present, the CPU switches to STOP in the event that the cycle moni-
toring time is exceeded. A different error event is ignored if the time error organi-
zation block is not present. The CPU switches to STOP even if the time error organi-
zation block is present if the cycle time is exceeded a second time in the same pro-
gram cycle.

To program the error program, add the organization block with the event class Time
error interrupt and enter the name, programming language, and number. The
default priority 22 cannot be changed. The time error organization block is of the
hardware data type OB_TIMEERROR. The constant name and the value are listed in
the System constants tab of the default tag table. The name of the constant can be
changed in the block properties under General.

The Start information of the time error organization block with the attribute
Optimized block access activated contains the tags shown in Table 5.20 in the Input
declaration section. The time error organization block with the attribute Optimized
block access deactivated (OB with standard access) provides 20-byte long start infor-
mation in the Temp declaration section, the standard structure of which is
described in Chapter 4.11.4 “Start information” on page 142. This contains the tags
specified in Table 5.20.

Insert/remove module interrupt OB 83

If a configured and activated module of the distribute I/O is inserted or removed,
the operating system triggers an insert/remove module event and calls organiza-
tion block OB 83 (also in the STARTUP operating state). The insert/remove module
event is ignored if OB 83 is not present.

Table 5.20 Start information for the time error organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input Fault_ID BYTE Error code

Csg_OBNo OB_ANY Number of the organization block causing the error

Csg_Prio UINT Priority of the organization block causing the error

The Optimized block access attribute is deactivated (standard access):

Temp FLT_ID BYTE Error code

ERR_EV_CLASS BYTE Error-triggering event class

ERR_EV_NUM BYTE Error-triggering event number

OB_PRIORITY BYTE Error information depending on the error code

OB_NUM BYTE Error information depending on the error code

5 Program execution

222

Inserting or removing a centrally arranged module always leads to a STOP of the
CPU.

To program the error program, add the organization block with the event class Pull
or plug of modules and enter the name, programming language, and number. Set
the priority in the properties of the organization block under Attributes. You can
change the default priority 6 in the range from 2 to 26. The insert/remove module
organization block is of the hardware data type OB_ANY. The constant name and
the value are listed in the System constants tab of the default tag table. The name of
the constant can be changed in the block properties under General.

The Start information of the insert/remove module organization block with the
attribute Optimized block access activated contains the tags shown in Table 5.21 in
the Input declaration section. The insert/remove module organization block with
the attribute Optimized block access deactivated (OB with standard access) provides
20-byte long start information in the Temp declaration section, the standard struc-
ture of which is described in Chapter 4.11.4 “Start information” on page 142.
This contains the tags specified in Table 5.21.

Rack error OB 86

The operating system calls the organization block OB 86 if

b a DP master system or a PROFINET IO system fails or becomes available again,

b a distributed station (DP slave or IO device) fails or returns, and

b a distributed station (DP slave or IO device) is activated with the system function
D_ACT_DP with MODE = 3 or deactivated with MODE = 4.

Table 5.21 Start information for an insert/remove module organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input LADDR HW_IO Hardware identifier of the module

Event_Class BYTE Event:
B#16#38 : Module was inserted
B#16#39 : Module was removed

Fault_ID BYTE Error ID

The Optimized block access attribute is deactivated (standard access):

Temp FLT_ID BYTE Error code

MDL_ID BYTE Interrupt-triggering I/O area
B#16#54 : Peripheral inputs
B#16#55 : Peripheral outputs

MDL_ADDR WORD Start address of interrupt-triggering module

RACK_NUM INT Number of the distributed station

MDL_TYPE WORD Type of the interrupt-triggering module

5.8 Error handling

223

OB 86 is also called if one of the above-mentioned events occurs in the STARTUP
operating state. The CPU ignores these events if OB 86 is not present.

To program the error program, add the organization block with the event class Rack
or station failure and enter the name, programming language, and number. Set the
priority in the properties of the organization block under Attributes. You can
change the default priority 6 in the range from 2 to 26. The OB 86 is of the hardware
data type OB_ANY. The constant name and the value are listed in the System
constants tab of the default tag table. The name of the constant can be changed in
the block properties under General.

The Start information of OB 86 with the attribute Optimized block access activated
contains the tags shown in Table 5.22 in the Input declaration section. OB 86 with the
attribute Optimized block access deactivated (OB with standard access) provides
20-byte long start information in the Temp declaration section, the standard struc-
ture of which is described in Chapter 4.11.4 “Start information” on page 142.
This contains the tags specified in Table 5.22.

5.8.6 Disable, delay, and enable interrupts and asynchronous errors

The processing of an interrupt or an asynchronous error organization block can be
disabled so that no response occurs to the interrupt or asynchronous error. After
enabling they are processed again. The processing can also be delayed so that it is
processed after the enable. Fig. 5.33 shows the graphic representation of the sys-
tem functions.

DIS_IRT Disable interrupt events

DIS_IRT disables the processing of new interrupt events and asynchronous error
events. All new interrupts and asynchronous errors are rejected. If an interrupt or

Table 5.22 Start information for the rack error organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input LADDR HW_IO Hardware identifier

Event_Class BYTE Event:
B#16#38 : Module was inserted
B#16#39 : Module was removed

Fault_ID BYTE Error ID

The Optimized block access attribute is deactivated (standard access):

Temp FLT_ID BYTE Error code

MDL_ADDR WORD Depending on the error code

RACKS_FLTD ARRAY[0..31] of BOOL Depending on the error code

5 Program execution

224

asynchronous error occurs following disabling, the associated organization block
is no longer processed; if the organization block does not exist, the CPU ignores the
event.

Disabling of processing applies to all priority classes until canceled again by
EN_IRT. The processing of all interrupts and asynchronous errors is enabled again
following a warm restart.

You can use the MODE and OB_NR parameters to specify which interrupts and asyn-
chronous errors are to be disabled (Table 5.23). Depending on the assignment of
the MODE parameter, the disabled interrupt events are also entered into the diag-
nostics buffer (MODE = B#16#0x) or not (MODE = B#16#8x) when they occur.

EN_IRT Enable disabled interrupt events

EN_IRT enables processing of the interrupt events and asynchronous error events
which had been disabled by DIS_IRT. Following enabling, the associated organiza-
tion block is processed if an interrupt or asynchronous error occurs; if the OB does
not exist, the preset system response takes place.

You can use the MODE and OB_NR parameters to specify which interrupts and asyn-
chronous errors are to be enabled (Table 5.23).

DIS_AIRT Delay interrupt events

Following calling of DIS_AIRT, the program in the current organization block (in
the current priority class) is not interrupted by an interrupt event of higher prior-
ity. The interrupts are processed with a delay, i.e. the operating system saves the

Fig. 5.33 System blocks for handling interrupt events

DIS_IRT

DIS_AIRT

EN_IRT

EN_AIRT

Disable
eventsinterrupt

Delay
eventsinterrupt

Enable
disabled interrupt
events

Enable
delayed interrupt
events

Disable, delay, and enable interrupt events

MODE

MODE

OB_NR

OB_NR

RET_VAL

RET_VAL

RET_VAL

RET_VAL

DIS_IRT disables the processing of
interrupt events.

DIS_AIRT delays the processing of
interrupt events.

EN_IRT re-enables the processing of
disabled interrupt events.

EN_AIRT re-enables the processing of
delayed interrupt events.

5.9 Diagnostics in the user program

225

interrupt events occurring during the delay and only processes them when the
delay has been canceled. No interrupts are lost.

The delay in processing is retained until the end of processing of the current orga-
nization block or until the EN_AIRT function is called.

You can call several DIS_AIRT functions in succession. The RET_VAL parameter indi-
cates the (new) number of calls. You must then call EN_AIRT exactly as often as
DIS_AIRT so that the processing of all interrupts is enabled again.

EN_AIRT Enable delayed interrupt events

EN_AIRT enables processing of the interrupts again which have been delayed with
DIS_AIRT. You must call EN_AIRT exactly as often as you previously called DIS_AIRT
in the current organization block or in the blocks called within this organization
block.

The RET_VAL parameter indicates the (still remaining) number of effective delays.
If RET_VAL is equal to 0, processing of all interrupts has been enabled again.

5.9 Diagnostics in the user program

System diagnostics is the detection, evaluation, and reporting of errors that occur
within the programmable controller. Some examples of such errors are errors on
modules or a wire break for input signals.

This chapter describes how a program can respond to a diagnostic event. Further
possibilities offered by the programming device in online mode are described in
Chapter 15.4 “Hardware diagnostics” on page 672.

Table 5.23 Assignment of MODE parameter with DIS_IRT and EN_IRT

MODE Meaning with DIS_IRT Meaning with EN_IRT

B#16#00 All newly occurring interrupt events are
disabled.

All newly occurring interrupt events are
enabled.

B#16#01 The newly occurring interrupt events of an inter-
rupt class are disabled.

The newly occurring interrupt events of an inter-
rupt class are enabled.

B#16#02 The newly occurring interrupt events of an inter-
rupt are disabled.

The newly occurring interrupt events of an inter-
rupt are enabled.

B#16#80 All newly occurring interrupt events are disabled
without entry into the diagnostics buffer.

–

B#16#81 The newly occurring interrupt events of an inter-
rupt class are disabled without entry into the
diagnostics buffer.

–

B#16#82 The newly occurring interrupt events of an inter-
rupt are disabled without entry into the diag-
nostics buffer.

–

5 Program execution

226

5.9.1 Diagnostics interrupt

A diagnostics interrupt is triggered if the diagnostics status of a correspondingly
configured module changes, such as a missing power supply for signal modules or
overflow and underflow for analog input modules. A CPU 1500 provides the orga-
nization block OB 82 for processing a diagnostics interrupt.

OB 82 is also called if the diagnosis event occurs in the STARTUP operating state.
If OB 82 is not present when a diagnosis event occurs, the CPU ignores the diagnosis
event. The occurrence of a diagnosis event is entered in the diagnostics buffer.

Start information

The diagnostics interrupt organization block with the attribute Optimized block
access activated provides the start information shown in Table 5.24 in the Input dec-
laration section. With the attribute Optimized block access deactivated (standard
access), the diagnostics interrupt OB provides 20-byte long start information in the
Temp declaration section, the standard structure of which is described in 4.11.4
“Start information” on page 142. This contains the tags specified in Table 5.24.

Table 5.24 Start information for the diagnostics interrupt organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input IO_State WORD Diagnostics status of the hardware object

LADDR HW_ANY Hardware identifier of the object triggering the interrupt

Channel UINT Channel number

MultiError BOOL With signal state “1”, more than one diagnosis event is
present

The Optimized block access attribute is deactivated (standard access):

Temp IO_FLAG BYTE I/O identifier
(B#16#54 = input, B#16#55 = output)

MDL_ADDR WORD Start address of interrupt-triggering module

<Byte 8 … 11> BOOL Error messages

Bit Meaning for “1” Bit Meaning for “1”

0 Good 4 Error

1 Deactivated 5 Not accessible

2 Need for maintenance 6 Qualified

3 Maintenance request 7 Not available

5.9 Diagnostics in the user program

227

Configuring a diagnostics interrupt

Diagnostics interrupts are deactivated by default. You activate the diagnostics inter-
rupt during the parameterization of a diagnostics-capable module with the hard-
ware configuration.

To program the diagnostics program, add the organization block with the event
class Diagnostic error interrupt and enter the name and the programming language.
Set the priority in the properties of the organization block under Attributes. You can
change the default priority 5 in the range from 2 to 26.

The diagnostics interrupt organization block is of the hardware data type OB_DIAG.
The constant name and the value are listed in the System constants tab of the default
tag table. The name of the constant can be changed in the block properties under
General.

5.9.2 Read start information

RD_SINFO Read start information

RD_SINFO provides the start information of the current organization block – this is
the organization block at the top of the call tree – and also that of the last executed
startup organization block on a lower call level (Fig. 5.34).

Calling of RD_SINFO is not only permissible at any position within the main pro-
gram but also in each priority class, including the program of an error organization
block or in the startup. For example, if RD_SINFO is called in an interrupt organiza-
tion block, TOP_SI contains the start information of the interrupt OB. TOP_SI and
START_UP_SI have identical contents when calling in the startup.

For the information transfer to the parameters TOP_SI and START_UP_SI, there are
the data structures listed in Table 5.24. Table 5.7 on page 194 shows the organiza-
tion blocks that belong to the event class. The components of the individual struc-
tures are described in the online help for RD_SINFO. SI_classic corresponds to the
start information as it is provided by an organization block with the attribute
Optimized block access deactivated (byte 0 to 11).

Fig. 5.34 Read start information RD_SINFO

RD_SINFO
Read start
information

Read start information

RET_VAL

TOP_SI

START_UP_SI

RD_SINFO reads the start information of an
organization block. The parameter TOP_SI
contains the start information of the
current organization block and parameter
START_UP_SI contains the start
information of the startup organization

5 Program execution

228

For the application, create a tag in the local data of the code block or in a global data
block and specify the name of the data structure as data type. Create this tag at the
parameter TOP_SI or START_UP_SI as an actual parameter.

5.9.3 Diagnostic functions in the user program

The following functions are available to evaluate diagnostic data in the user pro-
gram:

b LED Read status of an LED

b GET_DIAG Read diagnostic information

b GEN_DIAG Generate diagnostic information

b GET_NAME Read name of an IO device

b GetStationInfo Read out information of an IO device

b DeviceStates Read status of distributed I/O stations

b ModuleStates Read status of distributed I/O modules

b Get_IM_Data Read I&M data

Common LADDR parameter

The parameter LADDR specifies the hardware object to be addressed via the hard-
ware identifier (hardware identifier, see Chapter 4.4 “Addressing of hardware
objects” on page 107). You obtain the name and the value of the hardware identifier
either from the System constants tab in the default tag table or, for a selected object,
the object properties in the inspector window under General > Project information >
Name or under [Object type] > Hardware identifier. You specify this name or value at
the LADDR parameter.

Table 5.25 System data types for RD_SINFO (parameter TOP_SI)

The system data type provides information for
the event class

The system data type provides information for
the event class

SI_classic *) All SI_SynchCycle Synchronous cycle

SI_none *) – SI_TimeError Time error interrupt

SI_ProgramCycle Program cycle SI_DiagnosticInterrupt Diagnostic error interrupt

SI_TimeOfDay Time of day SI_PlugPullModule Pull or plug of modules

SI_Delay Time delay interrupt SI_StationFailure Rack or station failure

SI_Cyclic Cyclic interrupt SI_Servo MC-Servo

SI_HWInterrupt Hardware interrupt SI_Ipo MC-Interpolator

SI_Submodule Status
Update
Profile

SI_Startup *) Startup

SI_ProgIOAccessError Programming error
IO access error

*) Also permitted for the START_UP_SI parameter

5.9 Diagnostics in the user program

229

Common DONE, BUSY, ERROR and STATUS parameters

Asynchronously working system blocks cannot immediately end the task at the first
call. The parameters DONE, BUSY, ERROR and STATUS provide information about
the progress of the job processing: The job is being processed if BUSY = “1”. With
DONE = “1” and ERROR = “0”, the job has been completed without errors; with
DONE = “1” and ERROR = “1”, the job has been completed with one error. The error
is then specified at the STATUS parameter.

LED Read status of an LED

LED reads the status of a module LED. The parameter LADDR specifies the CPU or
the interface and the parameter LED specifies the light-emitting diode. RET_VAL
indicates the current status of the specified LED. Fig. 5.35 shows the function call.

GET_DIAG Read diagnostic information

GET_DIAG reads the diagnostic information of a hardware object. You specify the
hardware identifier at the LADDR parameter. With the MODE parameter, you select
the type of diagnostic information that is output at the DIAG parameter. Fig.
5.36 shows the function call.

Via the MODE parameter you select the type of information to be output at the
DIAG parameter. With MODE = 0 you query what diagnostic information the hard-
ware object supports. Each bit set to signal state “1” at the DIAG parameter corre-
sponds to an assignment of the MODE parameter: If the bit 1 is set, MODE = 1 is sup-

Fig. 5.35 Read status of an LED

LED

Parameter LED Parameter RET_VAL

LADDR

LED

RET_VAL

Read status of an LED

Value Light-emitting
diode

1 STOP/RUN
2 ERROR
3 MAINT
4 Redundant
5 Link (green)
6 Rx/Tx (yellow)

Value Status of light-emitting diode

LED does not exist
1 Permanently switched off
2 Color 1 permanently switched on (e.g. green for STOP/RUN LED)
3 Color 2 permanently switched on (e.g. orange for STOP/RUN LED)
4 Color 1 flashes at 2 Hz
5 Color 2 flashes at 2 Hz
6 Colors 1 and 2 flash alternately at 2 Hz
7 LED is active, color 1
8 LED is active, color 2
9 LED exists, but no status information is available

0

If the RET_VAL parameter displays the value 16#80xx, there is a
parameterization error.

Read status
light-emitting diode

of a LED reads the status of a light-emitting
diode.

5 Program execution

230

ported. If the bit 2 is set, MODE = 2 is supported, etc. CNT_DIAG is set to value 0;
DETAIL is not changed.

If MODE = 1, the diagnostic information of the selected hardware object is output at
parameter DIAG. CNT_DIAG is set to value 0, DETAIL is not changed.

If MODE = 2, the diagnostic status of all the modules in the hardware object is out-
put at parameter DIAG. CNT_DIAG is set to value 1, DETAIL contains module state
information.

If MODE = 3, the state of the inputs and outputs of the selected hardware object is
output at parameter DIAG. CNT_DIAG is set to the number of module channels
whose status data is output at the parameter DETAIL.

GEN_DIAG Generate diagnostic information

GEN_DIAG generates a diagnostic event for a hardware object from a different man-
ufacturer, which has been integrated beforehand with a GSD/GSDL/GSDXL file in the
hardware catalog. The object, e.g. a module, is specified with the hardware identi-
fier at the parameter LADDR. Fig. 5.37 shows the function call.

With the MODE parameter, you specify whether the diagnostic event is to be gener-
ated as an incoming or outgoing event. The diagnostic event is specified at the
parameter DiagEvent, the structure of which can be found in the online help for
GEN_DIAG. The type of information that can be generated depends on the hardware
object that is addressed (see operating instructions).

Fig. 5.36 Read diagnostic information

Read diagnostic information

GET_DIAG

MODE

DIAG

LADDR

DETAIL

RET_VAL

CNT_DIAG

Parameter MODE

Value Meaning

Output of the diagnostic information supported by the hardware object to DIAG
1 Output of own diagnostics status to DIAG
2 Output of the diagnostics status of all subordinate modules to DIAG and output of the

module status information to DETAIL
3 Output of the I/O status to DIAG, output of the number of additionally output details to

CNT_DIAG, and output of the channel statuses to DETAIL

0

The diagnostic information output at the DIAG and DETAIL parameters depends on the selected
hardware object (see operating instructions).

Read
diagnostic information

GET_DIAG reads the diagnostic
information of the hardware object (e.g.
of a module), the identifier of which is
specified at the LADDR parameter.

5.9 Diagnostics in the user program

231

GET_NAME Read out name of an IO device

GET_NAME reads out the name of the interface module of a station in PROFINET IO.
The PROFINET IO system is specified with the hardware identifier at the parameter
LADDR and the interface module is specified with the device number at the param-
eter STATION_NR.

The name of the IO device is output at the DATA parameter. The length of the name
(number of characters) is output at the LEN parameter. If the name is longer than
the space provided at the DATA parameter, the name is limited to the maximum pos-
sible length (Fig. 5.38).

GetStationInfo Read out information of an IO device

GetStationInfo reads information from an IO device (currently the IPv4 address of
the interface). Specify the hardware identifier of the station at the LADDR parame-
ter (not the ID of the interface module). MODE is assigned the value 1, DETAIL is
assigned the value 0. The address information is output at the DATA parameter with
the structure shown in Fig. 5.39.

Fig. 5.37 Generating diagnostic information

Fig. 5.38 Read name of an IO device

Generating diagnostic information

GEN_DIAG

LADDR

DiagEvent

MODE

RET_VAL

Parameter MODE

Value Meaning

1 Incoming diagnosis event specified at the DiagEvent parameter
2 Outgoing diagnosis event specified at the DiagEvent parameter
3 All diagnosis events of the hardware object are gone

For MODE = 3, the assignment of the DiagEvent parameter is irrelevant.

Generate
diagnostic
information

GEN_DIAG generates the diagnosis event
that is specified at the DiagEvent
parameter for the hardware object (e.g.
of a module), the identifier of which is
specified at the LADDR parameter.

Read name of an IO device

GET_Name

LADDR

DATA

STATION_NR

DONE

BUSY

ERROR

LEN

STATUS

Read device
name

GET_Name reads the name of an interface
module on PROFINET IO. The PROFINET
IO system is specified at the LADDR
parameter and the device number of the
station at the STATION_NR parameter.
The name is output at the DATA
parameter, the length of the name at the
LEN parameter.

5 Program execution

232

DeviceStates Read status of distributed I/O stations

DeviceStates reads the status of the I/O stations in a PROFINET IO system or
PROFIBUS DP master system. At the LADDR parameter you specify the hardware
identifier of the PROFINET/PROFIBUS system. With the MODE parameter you select
the type of status information that is displayed at the STATE parameter for all
I/O stations. Fig. 5.40 shows the function call.

Via the MODE parameter you select the type of status information to be output at
the STATE parameter. With a bit set to signal state “1”, the bit array at the STATE
parameter shows that the selected status information applies to the affected sta-
tion. Example: If you want to determine

which stations are disrupted, assign the value 2 to the MODE parameter. Bit 0 at the
STATE parameter has signal state “1” if at least one of the stations is disrupted.
If bit 4 is set to signal state “1”, the station with device number 4 is disrupted.

The parameter STATE outputs the station status in a bit array, which is specified via
the MODE parameter. For PROFINET, the length of the bit array is 1024 bits.
For PROFIBUS, it is 128 bits. The STATE parameter can be assigned to any tag or an
operand area, for example, with P#DB10.DBX0.0 BYTE 128, i.e. 1024 bits in data
block %DB10 from data byte %DBB0. If the tag or the area is too small, the status
information is entered in the available length and error number 16#8452 is output
at parameter RET_VAL.

Fig. 5.39 Read information of an IO device

Read information of an IO device

GetStationInfo

Instance data

LADDR

REQ

DATA

MODE

DETAIL

DONE

BUSY

ERROR

LEN

STATUS

Read IO device
information

GetStationInfo reads the address
information of an interface module in a
PROFINET IO station, the hardware
identifier of which is specified at the
LADDR parameter. 1 is assigned to MODE.
The information is output at the DATA
parameter.

Structure IF_CONF_v4 of the parameter DATA (MODE = 1)

NameByte

0..1

2..3

4..5

6..9

10..13

14..17

ID

Length

Mode

InterfaceAddress

SubnetMask

DefaultRouter

UINT

UINT

UNIT

ARRAY [1..4] OF BYTE

ARRAY [1..4] OF BYTE

ARRAY [1..4] OF BYTE

ID of the structure IF_CONF_v4 (ID = 30)

Length of the structure in bytes (length = 18)

Mode = 0

IP address of the IO device

Subnet mask

IP address of the router

DescriptionData type

5.9 Diagnostics in the user program

233

ModuleStates Read status of the modules in a station

ModuleStates reads the status of the modules in an IO device or in a DP slave.
At the LADDR parameter you specify the hardware identifier of the station. With
the MODE parameter you select the type of status information that is displayed at
the STATE parameter for all modules. Fig. 5.41 shows the function call.

Via the MODE parameter you select the type of status information to be output at
the STATE parameter. With a bit set to signal state “1”, the bit array at the STATE
parameter shows that the selected status information applies to a module. Exam-

Fig. 5.40 Read status of distributed stations

Fig. 5.41 Read status of a central module

LADDR

MODE

STATE

RET_VAL

Read status of distributed stations

Parameter MODE Parameter STATE

Value Meaning

1 Configuration not completed
2 Station faulty
3 Station deactivated
4 Station present
5 Station has a problem

The STATE parameter represents every station with a
bit (1024 for PROFINET, 128 for PROFIBUS). The
number of the bit corresponds to the station or device
number. If the respective bit has signal state "1", the
status indicated at the MODE parameter applies to the
stations. The status is valid across all stations in bit 0:
If bit 0 has signal state "1", the scanned status applies
to at least one station.

Read status of
stationsdistributed

DeviceStates reads the status of
distributed stations in a PROFINET IO
system or PROFIBUS DP master system.

DeviceStates

ModuleStates

LADDR

MODE

STATE

RET_VAL

Read status of the modules of a distributed station

Parameter MODE Parameter STATE

Value Meaning

1 Configuration not completed
2 Module faulty
3 Module deactivated
4 Module present
5 Module has a problem

The STATE parameter represents every module of a
distributed station with a bit (maximum 128). The
number of the bit corresponds to the slot of the
module. If the respective bit has signal state "1", the
status specified at the MODE parameter applies to the
module. The status is valid across all modules in bit 0:
If bit 0 has signal state "1", the scanned status applies
to at least one module.

Read status of
the modules of a
distributed station

ModuleStates reads the status of the
modules in an IO device or in a DP slave.

5 Program execution

234

ple: If you want to determine which modules are disrupted, assign the value 2 to the
MODE parameter. Bit 0 of the STATE parameter has signal state “1” if at least one
module is disrupted. If bit 2 is set to signal state “1”, the module at slot 2 is dis-
rupted.

The parameter STATE outputs the module status in a bit array, which is specified via
the MODE parameter. The bit array has a maximum length of 128 bits. The STATE
parameter can be assigned to any tag or an operand area, for example, with
P#M512.0 BYTE 16, i.e. 128 bits from memory byte %MB512. If the tag or the area is
too small, the status information is entered in the available length and error num-
ber 16#8452 is output at parameter RET_VAL.

Get_IM_Data Read I&M data

Get_IM_Data reads the I&M data (Identification & Maintenance) of the hardware
object (e.g. a module), the hardware identifier of which is specified at the LADDR
parameter. At the parameter IM_TYPE, specify which information is to be read.

Fig. 5.42 shows the graphic representation of GET_IM_Data.

Currently the I&M0 data is read with IM_TYPE = 0. This information is also dis-
played in online mode in the Online & diagnostics window.

The read information is stored in the data area, which is specified by the DATA
parameter. You can create tags wit the data types STRING, STRUCT, ARRAY OF CHAR,
or ARRAY OF BYTE at the DATA parameter. If the actual parameter is too small for
the read data, the read data is entered up to the length of the actual parameter and
an error message is output at the STATUS parameter. If the actual parameter is lon-
ger than the read data, the remainder is filled with zeroes. For a STRING tag, the
actual length is adapted.

Fig. 5.42 Read I&M data

Read I&M data

Get_IM_Data

Instance data

LADDR

DATA

IM_TYPE

DONE

BUSY

ERROR

STATUS

Read I&M data Get_IM_Data reads the I&M data of the
hardware object specified at the LADDR
parameter and saves it in the data area
that is specified by the DATA parameter.
Currently, with IM_TYPE = 0 the I&M0
data (catalog information) is read out.

5.10 Configuring alarms

235

5.10 Configuring alarms

5.10.1 Introduction

Alarms, to put it plainly, indicate events. An event can be the signal state change of
an input or of a bit memory, for example, or a specific status during the processing
of the user program. An alarm is normally displayed on a display device (on an
HMI station). An event-dependent alarm can be configured with a specific alarm
text and alarm attributes and thus point to warnings or faults in the controlled pro-
cess and their origin.

SIMATIC S7 distinguishes between the following types of alarm:

b System diagnostics alarms
System alarms report events on modules. They are activated or deactivated in
the hardware configuration. They can be viewed, but not edited, in the alarm ed-
itor.

b Program alarms
Program alarms report events which occur synchronously with the processing of
the user program. They are assigned to a respective block. They are created using
the program editor and edited in the alarm editor.

b User diagnostics alarms
A user diagnostics alarm writes an entry in the diagnostics buffer and sends a
corresponding alarm to a display unit. User diagnostics alarms cannot be pro-
grammed in STEP 7 V12 SP1 for a CPU 1500.

Alarm procedure

The alarm procedure defines the way in which alarms are configured, initiated, and
displayed. The alarm procedure used must be available both in the PLC station and
in the HMI station.

Bit messaging uses a bit in the PLC as alarm signal. If the signal state of the alarm
signal changes, an alarm which has been configured in the HMI station is displayed
on the HMI station.

Analog messaging monitors a digital value which, for example, is derived from an
analog input module to detect exceeding or undershooting a limit value and gener-
ates the alarm signal from the limit violation. The alarms are configured in the
HMI station.

During the Message numbering an alarm is initiated in the PLC station by calling an
alarm block. The alarm number and associated alarm texts are configured in the
PLC station, compiled, and then transferred to the HMI station. During runtime, the
PLC station sends an alarm number and the time stamp to the HMI station. The dis-
play of the alarms is configured in the HMI station.

The configuration for the message numbering with block-related alarms in a
PLC station is described in the following.

5 Program execution

236

Components of an alarm

The displaying of an alarm depends on the alarm procedure, the alarm block, and
display device. The possible components of an alarm are:

b The time stamp shows when the event occurred in the programmable controller.

b The alarm number is unique CPU-wide. It is assigned by the alarm editor and
identifies an alarm.

b The alarm status shown the status of an alarm: incoming, outgoing, outgoing
without acknowledgment, outgoing with acknowledgment.

b For PLC alarms, the alarm text is configured by the user.

b Associated values, which contain values from the controlled process, can be sent
along with an alarm.

Alarm block

An alarm is generated by the Program_Alarm alarm block. For a positive and nega-
tive edge of the alarm signal, it sends an alarm with a time stamp for each. Up to ten
associated values can be sent along with the alarm. Mandatory acknowledgement
can be configured for the alarm.

The principle of programming for the alarm number procedure

An alarm block, e.g. Program_Alarm, generates an alarm if the binary alarm signal
changes its status at the SIG parameter. The time stamp (TIMESTAMP parameter)
and the associated values (SD_x parameter) are then added to the alarm.

The alarm block is called in a function block (any) as a local instance (Fig. 5.43). This
“Alarm function block” contains the instance data of the alarm block in its local
data. This is the alarm type. It serves as a template for the “actual” alarm, the alarm
instance.

When the alarm function block is called, the instance data of the alarm types, the
alarm instances, are located in its instance data – either in the instance data block
or in the local data of the calling function block. An alarm instance is the “actual”
alarm and contains the alarm number that applies CPU-wide. The name of the
alarm instance is the alarm name.

The properties of the alarm type, such as the alarm group or the display class, are
passed on to the alarm instance. If the properties in the alarm type are locked, they
can no longer be changed in the alarm instance. To change locked properties, you
must unlock them beforehand in the alarm type.

If, for example, there are only a few alarms and you call an alarm block in the alarm
function block for each alarm and call the alarm function block only once, you can
create the alarm signal directly on parameter SIG of the respective alarm block.
Each alarm type then only has one alarm instance.

If you call the alarm function block multiple times, however, it makes sense to cre-
ate an input parameter of the alarm function block at parameter SIG of the alarm

5.10 Configuring alarms

237

Fig. 5.43 Principle of alarm programming

SIG

TIMESTAMP

SD_x

Time stamp

Associated value

Alarm block

Alarm type

Alarm instance

Alarm function block

“Alarm function block”

Alarm
type

Alarm
instances

...

Instance data
1 call

st

Instance data
2 call

nd

Instance data
n-th call

Block with alarms

Alarm types and alarm instances

Locking of alarm properties

Programming an alarm

Alarm signal

Principle of alarm programming

The alarms are programmed in a function block (the “alarm function block”). For an alarm you insert
the alarm block as local instance (multi-instance) in the program of the alarm function block. You
can insert several alarm blocks in the alarm function block and you can program several alarm
function blocks.

The instance data of the alarm block in the alarm function block are the alarm type. The name of the
local instance is the name of the alarm type. If you insert further alarm blocks, the alarm types are
distinguished based on their names.

The alarm function block can be called either as single instance with own instance data block or as
local instance with a different function block. The instance data of the alarm type is saved as alarm
instance in the instance data of this call. This is then the "actual" alarm which contains the alarm
number that applies CPU-wide. The name of the alarm instance is the alarm name.

You can call an alarm function block several times with different instance data in each case. Different
alarm instances with different alarm numbers in each case are then generated from the alarm types.

"Locking" is used to define which
properties of the alarm type are adopted
as unchangeable properties from the
alarm instance.

All properties of an alarm type are passed on to the alarm instances. If the properties are “locked”,
they can no longer be changed in the alarm instance (in the “actual” alarm).

No.

No. x No. y No. z

Instance data of the
alarm block

Call of the alarm
function block

Instance data of the
alarm function block

Call of the
alarm block

5 Program execution

238

block. With each call of the alarm function block you then supply the input param-
eters with the alarm signals. Thus each alarm instance is given its “own” alarm sig-
nal. Each alarm type then has the same number of alarm instances as the number
of times the alarm function block is called.

Properties of alarms

An alarm can be provided with several properties which (also) depend on the dis-
play device used. Not all of the display devices support the properties listed in the
following.

The alarm text should describe the reason for the alarm or its trigger event.
Associated values, which contain the process values that were current at the time
the alarm was initiated, can be inserted into the alarm text at any position. Certain
display devices also accept an info text for an alarm, which can contain handling
instructions for the machine operator, for example, and one or more additional
texts.

If acknowledgement is mandatory, the alarm is displayed until it is acknowledged.
This ensures that the alarm regarding a critical or hazardous process status has
actually been registered by the operator. The Priority can be used to set the urgency
with which the alarm must be acknowledged. Alarms that are acknowledged with
an operator action can be grouped together into an alarm group. For example, this
can be alarms which are all caused by the same fault or which all come from one
machine unit or from one subprocess.

In an alarm class, alarms with the same level of importance can be grouped
together, such as “warnings” or “errors”. An alarm class defines the representation
on the display device and the mandatory acknowledgement.

A display class controls the assignment to the display unit. If, for example, several
HMI stations are assigned to a PLC station, the display class can be activated in an
HMI station, along with its alarms which are to be displayed at the station.

5.10.2 Configuring alarms according to the alarm number procedure

Programming alarm blocks

Open any function block and drag it from the program elements catalog under
Extended instructions > Alarms into the program of the function block. The instance
data of the alarm block is found in the instance data of the calling “alarm function
block”. The parameters SIG and SD_x of the alarm block should be connected to the
input/output parameters of the “alarm function block” in order to be able to indi-
vidually supply them for multiple calls.

Repeat the inserting of the alarm block for each alarm. Several alarms can be pro-
grammed in the “alarm function block”. Supplement the program with your sys-
tem-specific statements. You can also create more than one “alarm function block”.

5.10 Configuring alarms

239

Defining alarm properties in the alarm type

In the “alarm function block”, select the instance data of an alarm block call and set
the alarm properties in the inspection window in the Properties > Alarm tab:
Under Basic settings, you can enter the Alarm class, the Priority and the Alarm text,
and you can activate the mandatory acknowledgement (depending on the acknowl-
edging property of the alarm class). For alarms that are used for information, check
the checkbox labeled Information only. Under Additional alarm texts, enter the info
text and any additional texts as needed. Under Advanced settings, enter the display
class and the group ID for the alarm group (Fig. 5.44).

Clicking on the chain symbol for an alarm property allows you to lock (closed chain
link) or unlock the property (open chain link). All of the alarm properties of the
alarm type are passed on to the alarm instance. The locked properties can no longer
be changed in the alarm instance. Unlocked ones can be changed.

In the “alarm function block” (at the alarm type), preferably set the alarm proper-
ties which are relevant to all of the alarm instances.

Setting alarm properties in the alarm instance

If you call up the “alarm function block” in the program of another block, specify
the storage location of the instance data belonging to the call, either in its own
instance data block or in the instance data block of the calling function block. You
can also call up the “alarm function block” several times with different instance
data in each case. The program editor generates an alarm instance for each call
from the alarm type in the function block with its own CPU-wide unique alarm
number. This is the “actual” alarm.

To set or change the properties of this “actual” alarm, open the instance data of the
alarm type. If you have called the “alarm function block” as a single instance, it is
the instance data block. If you have called the “alarm function block” as a local
instance in a multi-instance, open the instance data block of the multi-instance and

Fig. 5.44 Example of alarm properties in the inspector window

5 Program execution

240

“open” the instance data of the local instance. You will find the programmed alarms
in the instance data of the alarm type under Static. If you select an alarm, you can
change the alarm properties which were unlocked in the alarm type in the Proper-
ties > Alarm tab in the inspector window.

After an alarm property is changed, a symbol (“type symbol”) shows that the alarm
property has changed compared to the alarm type. If you click on the type symbol,
the original value is adopted again from the alarm type.

Setting alarm properties in the alarm editor

After you have programmed the alarm types (in the “alarm function block”) and the
alarm instances (when the “alarm function block” is called), you can also set the
alarm properties using the alarm editor.

To start the alarm editor, double-click on PLC alarms in the project tree under the
PLC station. In the Program alarms tab in the upper section of the working window
in the Alarm types table, the alarm editor shows the programmed alarm types and
it shows the alarm instances of the selected alarm type in the bottom section in the
Alarm instances table. The alarm properties are displayed in both tables.

The example in Fig. 5.45 shows two alarm types in the upper Alarm types table.
These are called Alarm_type_1 and Alarm_type_2. The associated alarm blocks are
programmed in the alarm function block, which is called Alarm_types in the exam-
ple. Two alarm instances of the type Alarm_type_1 exist. These are displayed in the
lower Alarm instances table. For the first alarm instance (alarm number 55), the
alarm function block is called as a single instance with the instance data block
Alarm types_DB. For the second alarm instance (alarm number 51), the alarm func-
tion block has been called in the function block Alarms_1 as a local instance with the
name Temperature_alarms.

You can change the alarm properties directly in the tables of the alarm editor or in
the properties tab of the inspector window. Individual columns can be hidden and
shown: Right-click in a column title and then select the Show/Hide > … command
from the shortcut menu.

Fig. 5.45 Example of program alarms in the alarm editor

5.10 Configuring alarms

241

Inserting associated values

In an alarm text, you can insert one or more associated values at any point.
You define an associated value at the SD_n parameter of the alarm block. You then
insert the following expression into the alarm text for each associated value:
@<Associated value number><Format>@. A format entry is preceded by the per-
cent character (%). Table 5.26 shows the permissible formats.

Example: The expression @2%6.2f@ means that the associated value at parameter
SD_2 (“2”) with a total of 6 places including 2 decimal places (“%6.2”) is to be dis-
played as a fixed-point number (“f”).

If too few places are specified in the format specification, the associated value is
nevertheless displayed in its full length. If the number of places is too great, leading
spaces are inserted.

You can also insert text from a text list into an alarm as an associated value. The for-
mat for this is: @<Associated value number>%t#name@; name is the name of the
text list.

Example: In the Temperatures text list, the text is selected based on decimal value
ranges (Fig. 5.46). The configured alarm text

The temperature in the boiler is @1%t#Temperatures@.

is output as alarm text

The temperature in the boiler is increased.

is output if the first associated value has the value 63.

Configuring text lists for alarm texts

Texts which are assigned to an individual value or a value range are managed in a
text list. A text from a text list can thus be searched for (referenced) based on a
value. Each text list has a unique name. A text list can be assigned to a station or to
a project.

To create a new text list, double-click on Text lists in the project tree under the
PLC station (station-assigned) or under the project and Common data (cross-sta-

Table 5.26 Formats for associated values

Format Display of the associated value as

%nX
%nu
%nd
%nb
%n.mf

%ns
%t#<Text list>

Hexadecimal number with n places
Decimal number without sign with n places
Decimal number with sign and n places
Binary number with n places
Fixed-point number with sign and n total places, including m places after the
decimal point; “.m” can also be omitted
Character string with n places (display up to the character value B#16#00)
Access to a text list

5 Program execution

242

tion). In the Text lists table in the upper section of the working window, add a new
text list and give it a unique name (Fig. 5.46). In the Selection column, define the
value range with which the texts of the text list will be referenced:

b “Decimal” if a decimal number or a range of decimal numbers
(values 0 to 216–1) is the reference

b “Binary” if a bit or a bit range in a doubleword (bits 0 to 31) is the reference

b “Bit” if a bit (“0” or “1”) is the reference

Select the text list. You define reference ranges in the Text list entries of <list name>
table in the bottom section of the working window and the associated texts in the
Entry column.

Configuring alarm classes

To configure an alarm class, double-click on Alarm classes in the project tree under
the project and Common data. Two alarm classes have already been created in the
Alarm classes table: Acknowledgement (for alarms with acknowledgement) and
No Acknowledgement (for alarms without acknowledgement). To add a new alarm
class, enter the name of the alarm class and the display name and activate or deac-
tivate the mandatory acknowledgement for the alarm class. Now you can assign an
alarm to the new alarm class when configuring the alarm properties.

5.10.3 Blocks for programming alarms

The following system blocks are available for programming alarms:

b Program_Alarm Create a program alarm with associated values

b Get_AlarmState Output an alarm state

You find these system blocks in the program elements catalog under Extended
instructions > Alarming.

Fig. 5.46 Example of a text list

5.10 Configuring alarms

243

Program_Alarm

The alarm block Program_Alarm is called in a function block as a local instance. Pro-
gram_Alarm generates an alarm with or without mandatory acknowledgement with
up to ten associated values from a signal change. Fig. 5.47 shows the graphic rep-
resentation of the alarm block.

A rising signal edge at parameter SIG generates an incoming alarm. A falling signal
edge generates an outgoing alarm. The time stamp is created at the parameter
TIMESTAMP. This is used to output the alarm. If the parameter is provided with the
default value LDT#1970-01-01-00:00:00, the module time at which the signal state
change was detected is used as the time stamp. Otherwise, the alarm is given the
time stamp at the parameter TIMESTAMP.

Up to 10 associated values, which are detected for an edge at parameter SIG and
assigned to the alarm, can be sent along with the alarm.

Get_AlarmState Output an alarm state

Get_AlarmState outputs the state of a program alarm. The instance data of the
alarm block Program_Alarm (the alarm type) is created at the Alarm parameter.
The status of the program alarm is output in one byte at the parameter AlarmState
(Fig. 5.48).

If the Error parameter has signal state “1”, an error has occurred during execution
of Get_AlarmState. This error is specified in more detail in the STATUS parameter.

Fig. 5.47 Program_Alarm alarm block

Program_Alarm alarm block

Program_Alarm

Instance data

SIG

SD_1

TIMESTAMP

SD_2

SD_3

SD_4

SD_5

SD_6

SD_7

SD_8

SD_9

SD_10

ERROR

STATUS

Generate alarm Program_Alarm generates an alarm with
associated values.
A rising edge at parameter SIG generates
an incoming alarm. A falling edge
generates an outgoing alarm. The alarm
is supplemented with the time stamp at
the parameter TIMESTAMP. If the default
value LDT#1970-01-01-00:00:000 is
present, the current module time (base
time) is used as time stamp.
The associated values of the alarm can be
specified at SD_x.
If ERROR has signal state "1", an error has
occurred which is specified in the STATUS
parameter.

5 Program execution

244

5.10.4 CPU alarm display

The CPU alarm display outputs the alarms saved in the CPU in online mode on a
programming device. The alarm archive comprises system diagnostics alarms and
program alarms. The alarm is displayed in the inspector window in the
Diagnostics > Alarm display tab.

Setting the alarm archive

To set the alarm archive, select the command Options > Settings in the main menu.
In the Online & diagnostics group, you can

b activate or deactivate the multi-line display in the inspector window

b activate or deactivate the automatic display of the current alarms

b select the size of the alarm archive from a drop-down list in increments in the
range from 200 to 3000 alarms

If the alarm archive is full, the oldest alarm will be overwritten by the newly incom-
ing alarm.

Receiving alarms

To display the alarms, activate the function Receive alarms. To do this, switch the
programming device to online mode and,

Fig. 5.48 Outputting an alarm state with Get_AlarmState

Bit No. Alarm state

"0" = Incoming, "1" = Outgoing

1 "1" = Incoming with acknowledgement

2 "1" = Outgoing with acknowledgment

3 "1" = Overflow for incoming alarms

4 "1" = Overflow for outgoing alarms

5 Reserved

6

7 Alarm information ("0" = invalid, "1" = valid)

Reserved

0

AlarmState alarm state

Get_AlarmState outputs the state of
a program alarm.
The name of the instance data (the
alarm type) is created at the Alarm
parameter. The alarm state is then
output at the AlarmState parameter.
Error and STATUS indicate the
processing status.

Get_AlarmState
Output
alarm state

Output an alarm state

Alarm AlarmState

Error

STATUS

5.10 Configuring alarms

245

b with the PLC station selected, select the command Online > Receive alarms from
the main menu or Receive alarms from the shortcut menu, or

b double-click in the project tree under the PLC station on Online & diagnostics and
activate the checkbox Receive alarms in the working window under Online access
and Alarms.

Displaying alarms

The alarms are listed in the inspector window in the Diagnostics and Alarm display
tabs (Fig. 5.49).

The table shows the alarms in the chronological order of their occurrence. To select
the columns to be displayed, right-click in a column title and then select the
Show/hide columns command from the shortcut menu. The order and width of the
columns can be changed using the mouse.

You control the display with the symbols in the Alarm display tab. From left to right,
the symbols are:

b Archive view: displays the alarms in the alarm archive in chronological order of
occurrence.

b Active alarms: displays the currently pending alarms; alarms requiring acknowl-
edgement are displayed in blue.

b Ignore: the displaying and archiving of the subsequent alarms are deactivated or
activated; the activation or deactivation is displayed as an alarm.

b Acknowledge: acknowledges the selected alarm(s). Alarms requiring acknowl-
edgement are displayed in blue.

b Empty archive: deletes all of the alarms in the alarm archive.

b Export archive: exports the alarm archive to a file in .xml format.

Fig. 5.49 Example of the alarm display of the CPU alarms

5 Program execution

246

Acknowledge alarms

You can acknowledge the alarms requiring acknowledgement that were generated
by the alarm blocks by selecting the relevant alarm(s) and clicking on the
Acknowledge symbol or by pressing [Ctrl] + Q.

Status of the alarms

An alarm can have the following status in the archive view: Alarm came (I), Alarm
came and was acknowledged (A), Alarm has gone (O), and Alarm was deleted (D).
Alarms that are generated by the programming device such as a mode transition
are displayed without a status.

In the “Active alarms” view, the alarm status is displayed as follows: I (Alarm came),
IA (Alarm came and was acknowledged), and IO (Alarm has gone).

An “O” (Overflow) in red is displayed in the status column if more alarm events come
in than the number of alarms that can be sent and displayed.

6.1 Introduction

247

6 Program editor

6.1 Introduction

This chapter describes how you work with the program editor, with which the user
program is written in the programming languages LAD, FBD, STL, SCL, and GRAPH.
The special features of programming in the respective programming languages are
described in Chapters 7 “Ladder logic LAD” on page 287, 8 “Function block diagram
FBD” on page 323, 10 “Statement list STL” on page 395, 9 “Structured Control
Language SCL” on page 359, and 11 “S7-GRAPH sequential control” on page 472.

The user program consists of blocks which are saved in the project tree under a
PLC station in the Program blocks folder. Code blocks contain the program code and
data blocks contain the control data. When programming, a block is initially cre-
ated and subsequently filled with data or a program. Ladder logic (LAD), function
block diagram (FBD), structured control language (SCL), statement list (STL), and
sequential control (GRAPH) are available as languages for programming the con-
trol function. You can define the programming language individually for each
block. Blocks with the text-based programming languages SCL and STL can also be
created as external source files as described in Chapter 18.1 “Working with source
files” on page 780.

The user program works with operands and tags. Block-local tags are declared
during programming of the blocks, global operands and tags are present in the
PLC tags folder. The PLC data types folder contains user-defined data structures for
tags and data blocks.

Programming is appropriately commenced by definition of PLC tags and PLC data
types. This is followed by the global data blocks with the already known data. In the
case of the code blocks, you start with those which are at the lowest position in the
call hierarchy. The blocks in the next higher level in the hierarchy then call the
blocks positioned below them. The organization blocks in the highest hierarchy
level are created last.

When you create the user program, you are supported by the cross-reference list,
the assignment list, and the display of the call and dependency structure.

Following completion, the user program is compiled, i.e. the program editor con-
verts the data entered into a program which can be executed on the CPU.

6 Program editor

248

6.2 PLC tag table

The user program works with operands, e.g. inputs or outputs. These operands can
be addressed in absolute mode (e.g. %I1.0) or symbolic mode (e.g. “Start signal”).
Symbolic addressing uses names (identifiers) instead of the absolute address.
As well as the name, you define the data type of the operand. The combination of
operand (absolute address, memory location), name, and data type is referred to as
a “tag”.

When writing the user program, a distinction is made between local and global tags.
A local tag is only known in the block in which it has been defined. You can use local
tags with the same name in different blocks for different purposes. A global tag is
known throughout the entire user program and has the same meaning in all blocks.
You define global tags in the PLC tag table.

Refer to Chapter 6.6.1 “Cross-reference list” on page 279 for how to create a cross-
reference list of the PLC tags. Monitoring of tags using the PLC tag table is described
in Chapter 15.5.3 “Monitoring of PLC tags” on page 682.

6.2.1 Creating and editing a PLC tag table

When creating a PLC station, a PLC tags folder with the PLC tag table is also created.
You can open the PLC tag table by double-clicking on Default tag table in the PLC
tags folder. The default tag table consists of the Tags, User constants, and System
constants tabs.

You can create additional tag tables containing PLC tags and user constants with the
Add new tag table function. These self-created tables can be renamed and organized
in groups. A tag or a constant can only be defined in a table. To obtain an overview
of all tags and constants, double-click on Show all tags in the PLC tags folder. Fig.
6.1 shows an example of a PLC tag table.

You can save an incomplete or faulty PLC tag table at any time and process it again
later. However, the tag table must be error-free to enable compilation of the user
program.

You can compare a PLC tag table with one from another project if you mark the tag
table and select the command Tools > Compare > Offline/offline.

6.2.2 Defining and processing PLC tags

In the Tags tab, enter the name, data type, and address (operand, memory location)
of the tags used. The name can contain letters, digits, and special characters
(no quotation marks). It must not already have been assigned to another PLC tag, a
block, a symbolically addressed constant, or a PLC data type. No distinction is made
between upper and lower case when checking the name. You can add an explana-
tory comment to each defined tag.

Table 6.1 contains the operands permissible as PLC tags. For a word or doubleword
operand, specify the lowest respective byte number. For a long word operand, spec-

6.2 PLC tag table

249

ify the lowest byte number and – separated by a period – the bit number zero after
the operand ID.

The peripheral operand area is addressed in the program by the extension “:P” on
the tag name or on the operand. Therefore, it is sufficient to specify the correspond-
ing input or output tags in the PLC tag table. A SIMATIC timer function and a
SIMATIC counter function are addressed with a number.

The definition of a tag also includes the data type. This defines certain properties of
the data identified by the name, basically the representation of the data content. An
overview of the data types used with a CPU 1500 and the detailed description can be
found in Chapter 4 “Tags, addressing, and data types” on page 86.

You can also assign a PLC data type to inputs and outputs. This PLC data type can
contain all other types of data, except for STRING. Specify the operand ID, the lowest
byte number, and the bit number zero as the operand.

One part of the operand areas bit memory and SIMATIC timer/counter functions can
be set to retentive, i.e. this part retains the signal states and values when the power
supply is restored. To set the retentive area, click on the icon for retentivity in the
toolbar of the PLC tag table. In the dialog window that appears, enter the number
of the retentive memory bytes and the number of SIMATIC timer/counter functions.
A checkmark in the Retain column then identifies which bit memories and SIMATIC
timer/counter functions are set to retentive.

Fig. 6.1 Example of a PLC tag table

6 Program editor

250

The properties of a PLC tag include the Accessible from HMI attributes (when acti-
vated, an HMI station can access this tag during runtime) and the Visible in HMI
attribute (when activated, this tag is visible by default in the selection list of an HMI
station).

Editing PLC tags

You can use Insert row from the shortcut menu to insert an empty line above the
selected line. The Delete command deletes the selected line. You can copy selected
lines and add them to the end of the list. You can sort the lines according to the col-
umn contents by clicking the header of the appropriate column. Sorting is in
ascending order following the first click, in descending order following the second
click, and the original state is reestablished following the third click.

To fill out the table automatically, select the name of the tag to be transferred, posi-
tion the cursor at the bottom right corner of the cell, and drag downward over the
lines with the left mouse button pressed.

If you enter the same name a second time, for example by copying lines, a consec-
utive number in parentheses is appended to the name. When filling out automati-
cally, this is an underscore character with a consecutive number. Double assign-
ment of an address is indicated by a colored background.

You can also set or change the properties of a tag in the inspector window: Select
the tag and choose the Properties tab in the inspector window.

Table 6.1 Approved data types and operands for PLC tags

Data types Operand Address

BOOL Input bit
Output bit
Memory bit

%Iy.x
%Qy.x
%My.x

BYTE, SINT, USINT, CHAR Input byte
Output byte
Memory byte

%IBy
%QBy
%MBy

WORD, INT, UINT, DATE, S5TIME Input word
Output word
Memory word

%IWy
%QWy
%MWy

DWORD, DINT, UDINT, REAL, TIME, TOD Input doubleword
Output doubleword
Memory doubleword

%IDy
%QDy
%MDy

LWORD, LINT, ULINT, LREAL, LTIME, LTOD, LDT Input long word
Output long word
Memory long word

%Iy.0
%Qy.0
%My.0

TIMER
COUNTER

SIMATIC timer function
SIMATIC counter function

%Tn
%Zn

PLC data type Inputs
Outputs

%Iy.0
%Qy.0

y = byte address, x = bit address, n = number

6.2 PLC tag table

251

You can also supplement, change, or delete the PLC tags when entering the user
program (Chapter 6.3.7 “Editing tags” on page 267).

6.2.3 Comparing PLC tag tables

The PLC tags of a PLC station can be compared to the PLC tags of another station
from the same project, from a reference project, or from a library. To perform the
comparison, select the PLC station in the project tree and choose the command
Compare > Offline/offline from the shortcut menu or alternatively the command
Tools > Compare > Offline/offline from the main menu.

Compare editor

This starts the compare editor, which shows the PLC station with the contained
objects on the left side. Using the mouse, drag the PLC station that is to be com-
pared from a reference project, for example, into the title bar on the right side
(labeled “Insert here to add a new object or replace an existing one…”). The “Status
and action area” is located between the two tables. Above this is the switchover but-
ton with the scale.

In the automatic comparison (the switchover button with the scale is white), the tag
tables are assigned on the left and right side based on their names and the compar-
ison symbols are displayed in the center.

Activate the manual comparison by clicking on the switchover button. The switcho-
ver button is now gray. Manually assign the tag tables to be compared by selecting
them using the mouse. The result of the comparison is displayed in the bottom area
of the comparison window in the “Property comparison”. The lower area can be
opened and closed using the arrow buttons.

Detailed comparison

Select a tag table and click on the Start detailed comparison icon. The PLC tags of
both tag tables are individually listed and compared. The columns Status and Action
are located between the lists. You can select the desired action from a drop-down
list.

Comparison symbols and actions

A filled green circle means that the objects are identical. A blue-gray semicircle
means that the objects differ. If one half of the circle is not filled, the corresponding
object is missing. An exclamation mark in a gray circle indicates an object with dif-
ferences in the identified folder.

In the Action column, you can select an action from a drop-down list for different
objects, for example copying with an arrow in the direction in which you are copy-
ing. Clicking on the Execute actions icon starts the set actions. Note that you can nei-
ther add, delete, nor overwrite objects in reference projects.

6 Program editor

252

6.2.4 Exporting and importing a PLC tag table

A PLC tag table can also be created or edited using an external editor. The external
file is present in .xlsx format.

To export, open the PLC tag table and select the Export icon in the toolbar. Set the
file name and path in the dialog, and select the data to be exported (tags or con-
stants). The contents of the opened PLC tag table are exported. To export all
PLC tags, open the complete table by double-clicking on Show all tags and then
select the Export icon.

The external file contains the PLC Tags worksheet for the PLC tags and the Constants
worksheet for the symbolically addressed user constants (Table 6.2).

To import, double-click on Show all tags under the PLC station in the PLC tags folder
in the project tree. Select the Import icon in the toolbar. Set the file name and path
in the dialog and select the data to be imported (tags or constants). The contents of
the external file are imported into the tag table specified in the Path column. Exist-
ing entries are identified by a consecutive number in parentheses appended to the
name and/or by an address highlighted in color.

6.2.5 Constants tables

A tag table in the User constants tab contains symbolically addressed constant val-
ues which are valid throughout the CPU. You define a constant in the table in that
you assign a name, data type, and fixed value to it and you can then use this con-
stant in the user program with the symbolic name.

The constant name must not already have been assigned to a PLC tag, a PLC data
type, or a block. The name can contain letters, digits, and special characters (but not
quotation marks). No distinction is made between upper and lower case when check-
ing the name.

Table 6.2 Columns in the external file for the PLC tag table

PLC Tags worksheet

Name Path Data Type Logical Address Comment Hmi Visible Hmi Accessible

Name of
PLC tag

Group and
name of PLC tag
table

Data type of
tag

Absolute
address
(e.g. %I0.0)

Comment TRUE or
FALSE

TRUE or FALSE

Constants worksheet

Name Path Data Type Value Comment

Name of
constant

Group and
name of PLC tag
table

Data type of
constant

Default value Comment

6.3 Programming a code block

253

System constants

In the System constants tab, the default tag table contains the object IDs created by
the device configuration and the program editor. The data type of a constant indi-
cates the application and the value of a constant specifies the object. The data type
and the value are fixed, but you can change the name of the constant in the respec-
tive object properties.

Example: The hardware identifier for a PROFINET IO system has the data type
Hw_IoSystem and a value of, for example, 268. The name of the constant is defined
in the properties of the PROFINET IO system using the hardware configuration.

The constants are used in the user program if a hardware or software object is to be
addressed, for example if the status of I/O stations in a PROFINET IO system is to be
read with DeviceStates. At the LADDR parameter, DeviceStates expects the hardware
identifier for the PROFINET IO system, either as a constant or as a tag with the value
of the constant or as a name.

The data types of the system constants are combined under the term “Hardware
data types”. Chapter 4.12 “Hardware data types” on page 143 includes an example
of a constants table.

6.3 Programming a code block

6.3.1 Creating a new code block

It is only possible to create a new block if a project with a PLC station has been
opened. You can create a new block in either the Portal view or the Project view.

In the Portal view, click PLC programming. An overview window appears in which
you can see the existing blocks. For a newly created project, this is the organization
block OB 1 with the name Main (main program). Click on Add new block to open the
window for creating a new block.

In the Project view, the Program blocks folder is present in the project tree under the
PLC station. This folder is created together with the PLC station. The Program blocks
folder contains the Add new block editor. Double-click to open the window for creat-
ing a new block.

Then select the block type by clicking on the button with the corresponding
symbol (Fig. 6.2). Assign a meaningful name to the new block. The name must not
already have been assigned to a different block, a PLC tag, a symbolically addressed
constant, or a PLC data type. The name can contain letters, digits, and special char-
acters (but not quotation marks). No distinction is made between upper and lower
case when checking the name.

Then select the programming language for the block. With automatic assignment
of the block numbers, the lowest free number for the type of block is displayed in
each case. If you select the manual option, you can enter a different number.

6 Program editor

254

You must assign an event class to an organization block, i.e. you define the type of
organization block. Select the event class from the displayed list. Depending on the
event class, the block number is either fixed or freely selectable. You can create mul-
tiple organization blocks with different numbers for some event classes (see
Chapter 5.7.1 “Introduction to interrupt processing” on page 192).

You set the default settings when creating a new block in the main menu in the
Project view using the Options > Settings command in the PLC programming section.
Under General and Default settings for new blocks, you can set the preselection for
IEC check.

If the Add new and open checkbox is activated, the program editor is started by click-
ing on the OK button and programming of the newly created block can begin.

6.3.2 Working area of the program editor for code blocks

The program editor is automatically started when a block is opened. Open a block by
double-clicking on its icon: in the Portal view in the overview window of the PLC pro-
gramming, or in the Project view in the Program blocks folder under the PLC station
in the project tree.

Fig. 6.2 Add new block window with organization block selected

6.3 Programming a code block

255

You can adapt the properties of the program editor according to your requirements
using the Options > Settings command in the main menu in the PLC programming
section.

The program editor displays the opened block with interface and program in the
working window (Fig. 6.3). Prior to programming, the block properties are present
in the inspector window; during programming, the properties of the selected or
edited object are present here. The task window contains the program elements
catalog in the Instructions task card.

Fig. 6.3 Example of the program editor's working window in ladder logic

6 Program editor

256

The program editor's working window shows the following details:

b The toolbar
contains the icons for the menu commands for programming, e.g. Add network,
Delete network, Go to next error, etc. The significance of the icons is displayed if
you hold the mouse pointer over the icon. Currently non-selectable icons are
grayed out.

b The interface
shows the block interface with the block parameters and the block-local tags.

b The favorites bar
provides the favorite program elements (instructions), which can also be found
in the Favorites section of the program elements catalog. You can activate and de-
activate the display in the editor: Click with the right mouse button in the favor-
ites catalog or favorites bar and select or deselect Display favorites in the editor.
To add an instruction to the favorites, select the instruction in the program ele-
ments catalog and drag it with the mouse into the favorites catalog or favorites
bar. To remove an instruction from the favorites, click with the right mouse but-
ton and then select Remove instruction.

b The block window
contains the block program. Enter the control function of the block here.

The working area is maximized by clicking on the Maximize icon in the title bar.
Click on the Embed icon to embed it again. Display as a separate window is also pos-
sible: Click in the title bar on the icon for Float. Using the Window > Split editor space
vertically and Window > Split editor space horizontally commands in the main menu,
various opened objects can be displayed and edited in parallel, e.g. the PLC tag
table and a block.

6.3.3 Specifying code block properties

To set the block properties, select the block in the Program blocks folder, followed
by the Edit > Properties command in the main menu or the Properties command in
the shortcut menu.

Block properties which affect the block program when activated such as the test
mode for data types (defined with the block attribute IEC check) should be set
before the program is created. Some block properties can only be set when the
block is created, for example the definition of the programming language SCL. To
change these properties, you must create a new block.

Fig. 6.4 shows as example for the block properties the sections General and
Information of a function block.

Block properties in the General section

The General section contains the Name of the block. The block name must be unique
within the program and must not already have been assigned to another block,
a PLC tag, a constant, or a PLC data type. The name can contain letters, digits, and
special characters (but not quotation marks). No distinction is made between upper

6.3 Programming a code block

257

and lower case when checking the name. The Type of the block is defined when the
block is created. The Number specifies the block number within the block type. For
blocks with a program, the Language is: LAD, FBD, STL, SCL, or GRAPH. In the case
of a function block with sequence control (GRAPH), you set the programming lan-
guage in the networks (LAD or FBD) in the block properties.

When creating an organization block, you also define the Event class to which the
organization block belongs. The program editor creates a hardware identifier for
the organization block in the System constants tab of the default tag table. You use
the hardware identifier to address the organization block in the program, e.g. for
assignment to an event. The name of the hardware identifier can be changed in the
Constant name field in the block properties under General. The value of the
hardware identifier corresponds to the number of the organization block.

Block properties in the Information section

The Information section contains the Title and the Comment; these are identical to the
block title and the block comment which you can enter when programming the block
upstream of the first network. The Version is entered using two two-digit numbers
from 0 to 15: from 0.0 to 0.15, 1.0 to 15.15. Under Author you can enter the creator of
the block. Under Family you can assign a common feature to a group of blocks, as is
also the case with User-defined ID. The author, family, and block ID can each comprise
up to 8 characters (without spaces).

Block properties in the sections Time stamps, Compilation, and Protection

The time data in the Time stamps section contain the date of creation of the block
and the date of the last modification to the block, interface, and program.

Fig. 6.4 Block properties: General and Information tabs

6 Program editor

258

The Compilation section provides information on the processing status of the block,
and – following compilation – on the memory requirements of the block in the load
and work memories.

In the section Protection you can set up know-how protection and copy protection
for the block. Further details are described in Chapter 6.3.4 “Protecting blocks” on
page 259.

Block properties in the Download without reinitialization section

Function blocks with the attribute Optimized block access activated can be down-
loaded into the CPU after a change of the interface in the RUN operating state with-
out resetting the actual values to the start values (see Chapter 15.3.3 “Download
without reinitialization” on page 665). The changes are entered in a special mem-
ory area in the block, the “memory reserve”. In this section of the block attributes,
you set the size of the memory reserve and the size of the memory area reserved for
this for retentive tag values.

Block attributes for code blocks

Table 5.1 on page 158 shows an overview of the block attributes for all blocks. Addi-
tional attributes for compilation of SCL blocks are described in Chapter 6.5.2 “Com-
piling SCL blocks” on page 277. The attributes for compilation as well as the
sequence properties for the GRAPH function block are described in Chapter 11.3.6
“Attributes of the GRAPH function block” on page 494. The special block attributes
for interrupt and error organization blocks are described for the blocks concerned.

The IEC check attribute defines how strict the data type test should be in the code
block for the implicit data type conversion (see Chapter 4.5.2 “Implicit data type
conversion” on page 108). With the attribute not activated, it is usually sufficient if
the tags used have the data width required for execution of the function or state-
ment; with the attribute activated, the data types of the tags must correspond to the
required data types. It is recommendable to set the IEC check attribute prior to
block programming.

The attribute Handle errors within block is activated once one of the functions Get-
Error or GetErrorID is inserted when the program is created in the block. Then the
system response to a programming error or access error is omitted in favor of a self-
programmed error routine.

The attribute Block can be used as a know-how protected library element shows that
the block can be used in a library with know-how protection.

The Optimized block access attribute defines the data storage in the block and access
to block tags. If the attribute is activated, the tags are not saved in the order of the
declaration but in a way that is memory-optimized. This has effects on the address-
ing and the retentivity of the tags. If the attribute is activated, only symbolic
addressing of the interface tags or the data tags in the block is possible. With
instance data blocks, the Optimized block access attribute is “inherited” from the
associated function block; in this case the data tags are addressed by the associated

6.3 Programming a code block

259

function block. Furthermore, with the attribute activated, individual tags can be set
as retentive (in the associated function block for instance data blocks); only the
complete block can be set if the attribute is not activated.

The attribute Set ENO automatically only concerns code blocks with SCL program.
If the attribute is activated, the block-local tag ENO is set to the value FALSE in the
event of an error and the value is passed on to the enable output ENO.

The attribute Parameter passing via registers only concerns code blocks with STL
program. If the attribute is activated, block parameters can be transferred via tabs
to a block that is called with UC or CC.

6.3.4 Protecting blocks

A block can be protected

b from unauthorized access with a password (know-how protection) and

b from unintended execution by binding to a specific memory card or CPU (copy
protection).

Configuring know-how protection

With the know-how protection for a block you can prevent a program or its data
from being read out or modified. A protected block is identified in the project tree
by a padlock icon. It is still possible to read the following from a block provided with
know-how protection:

b Block properties

b Parameters of the block interface

b Program structure

b Global tags (listed in the cross-reference list without specification of the point
of use)

The following actions are also possible:

b Modify name and number in the block properties (necessary for copying and
pasting the block)

b Copy and paste block (the know-how protection is also copied)

b Delete, compile, and download block

b Call block (FB or FC) in the program of another block

b Compare online and offline versions of the block (comparison only of
non-protected data)

To edit the know-how protection, select the block in the project tree under Program
blocks, and then select Edit > Know-how protection in the main menu. To configure
the know-how protection, click the Define button, enter a password, confirm the
password, and close the dialog with OK. To change the password, click the Change
button, enter the old and new passwords, confirm the new password, and close the

6 Program editor

260

dialog with OK. To cancel the know-how protection, deactivate the Hide code (know-
how protection) checkbox, enter the password, and close the dialog with OK.

You can also apply the know-how protection to several blocks simultaneously if
these have the same password. If a function block is protected, the protection is
“inherited” by the instance data block when calling as a single instance.

Note: If the password is lost, no further access to the block is possible. You can only
cancel the know-how protection of a block in its offline version. If you download a
compiled block to the CPU, the recovery information is lost. A protected block which
you have uploaded from the CPU cannot be opened, not even with the correct pass-
word.

Know-how protection with source files

In the case of STL and SCL blocks for a CPU 300/400, in a source file it is possible to
protect a block against undesired access by using the keyword KNOW_HOW_PRO-
TECT. This protection no longer exists for blocks for a CPU 1500. The keyword
KNOW_HOW_PROTECT has no effect here (see Chapter 18.1 “Working with source
files” on page 780).

Configuring copy protection

If a block has copy protection, processing of the block is dependent on a specific
CPU or memory card. The block must then be provided with the know-how protec-
tion so that the copy protection cannot be removed.

When configuring the copy protection, the know-how protection for the block must
be switched off. To set up the copy protection, select the block in the project tree,
select Properties from the shortcut menu and then Protection. In the Copy protect
area, you can choose:

b No binding
No copy protection is set or a set copy protection is canceled.

b Bind to serial number of the memory card
The block can only be executed if the memory card has the specified serial
number.

b Bind to serial number of the CPU
The block can only be executed if the CPU has the specified serial number.

6.3.5 Programming a block interface

The block interfaces of the code blocks contain the declaration of the block-local
tags. The interface structure depends on the type of block. Table 6.3 shows the indi-
vidual declaration sections of the blocks. The meaning of the declaration sections
is described in detail in Chapter 5.3.3 “Block interface” on page 157.

You can increase or decrease the size of the block interface window by dragging on
the bottom edge with the mouse. Two arrows at the bottom can be used to open or
close the window. Fig. 6.5 shows an example of a function block interface.

6.3 Programming a code block

261

You can click on the triangle to the left of the declaration mode to open the declara-
tion section or to close it. If you select a line with the right mouse button, in the
shortcut menu you can delete the line, insert an empty line above it, or add an
empty line after it.

The name can contain letters, digits, and special characters (but not quotation
marks). No distinction is made between upper and lower case when checking the
name. A drop-down list shows the currently permissible data types. You can use the
comment to describe the purpose of the respective tag.

Table 6.3 Declaration sections for code blocks

Declaration section Meaning Permissible with block type

Input Input parameters OB (see text) FC FB

Output Output parameters – FC FB

InOut In/out parameters – FC FB

Static Static local data – – FB

Temp Temporary local data OB FC FB

Return Function value – FC –

Fig. 6.5 Example of function block interface

6 Program editor

262

The Default value column is displayed for a function block (FB). You can enter a
default value here which is saved in the instance data block. In the Static declaration
section, tags can be identified as Setpoints. For a tag identified in this way, the value
in the work memory can be overwritten in the operating state RUN and the current
value from the work memory can be imported as a start value into the offline data
management. Further details are described in Chapter 15.3.5 “Working with set-
points” on page 668.

In the case of a function (FC), the function value with the name of the block and data
type VOID is displayed in the declaration section Return. The data type VOID pre-
vents the display in the call box or call statement. If you specify a different data type
here, the function value for LAD, FBD, and STL is displayed as the first output
parameter. In the SCL programming language you can integrate a function in an
expression instead of a tag with the data type of the function value (see section
“Using a function value of a function (FC)” on page 167).

An organization block (OB) can provide start information, which contains informa-
tion about the call event, for example. If the Optimized block access attribute is acti-
vate, depending on the event class some organization blocks save start information
in the declaration section Input. If Optimized block access is deactivated, each orga-
nization block provides start information (20 bytes long) in the Temp declaration
section.

For code blocks with deactivated Optimized block access attribute, tags in the block
interface can be superimposed with other data types as described in Chapter 4.5.3
“Overlaying tags (data type views)” on page 111.

6.3.6 Programming a control function

Working with networks

A network is part of a code block which, in the case of the LAD and FBD program-
ming languages, contains a complete current path or a complete logic operation.
The use of networks is optional for STL; it is recommendable to use networks for
improved clarity. SCL and GRAPH do not use networks.

For a CPU 1500, it is possible to insert networks with STL program in a block with
LAD or FBD program. Chapter 10.1.5 “STL networks in LAD and FBD blocks” on page
400 shows which special features must be observed here.

The program editor automatically numbers the networks starting from 1. You can
assign a title and a comment to each network. When editing, you can directly select
any network from the main menu using the Edit > Go to > Network/line command.

The networks can be opened or closed. To do this, select Network with the right
mouse button and then select the Collapse or Expand command from the shortcut
menu, or click in the toolbar of the working window on the Close all networks or
Open all networks icon.

When programming the last network in each case, an empty network is automati-
cally appended. To program a new network, select the Insert > Network command

6.3 Programming a code block

263

from the shortcut menu. The editor then adds an empty network after the currently
selected network.

You can show or hide the network comments using the Network comments on/off
icon in the toolbar or the View > Display with > Network comments command in the
main menu.

Program elements catalog

All program elements permissible for the respective programming language
(contacts, coils, boxes, statements, etc.) can be found for an open block in the pro-
gram elements catalog in the task window. The program elements catalog is divided
into the following groups

b Favorites (frequently required program elements)

b Basic instructions (basic functions)

b Extended instructions (functions implemented by system blocks)

b Technology (technological functions, e.g. for PID controllers or for technology
modules)

b Communication (communication functions for data transmission and functions
for communication modules)

You can combine a selection of frequently used program elements in the Favorites
catalog and display them in the favorites bar of the program editor to allow rapid
selection.

General procedure when programming

To enter the program code, position the program elements in the desired arrange-
ment and subsequently supply them with tags or enter the statement lines. The
program editor immediately checks your inputs and indicates faulty entries.

You can interrupt block programming at any time – even if the program is still
incomplete or faulty – and continue later. You can store a block by saving the com-
plete project using the Project > Save command from the main menu.

You can save the structure of the windows and tables using the Save window settings
icon in the top right corner of the working window. This structure is reestablished
the next time the working window is opened.

Programming a control function with ladder logic (LAD)

To program the control function in LAD, select a program element in the catalog
and drag it with the mouse into the open network under the network comment.
The first program element is positioned automatically. With the next program ele-
ment, small gray boxes indicate where the new program element may be positioned
and – in green – where it is positioned when you “let go”.

In the ladder logic, the binary logic operations are implemented by series and par-
allel connections (Fig. 6.6). For the representation of the boxes, the Q or ENO output

6 Program editor

264

is positioned in the ladder logic representation at the top edge of the box in order
to be able to “hang” the box into the current path. For many boxes, you have the
choice to use the ENO output or to omit it. The structure of an LAD current path is
described in Chapter 7 “Ladder logic LAD” on page 287.

Programming a control function with function block diagram (FBD)

To program the control function in FBD, select a program element in the catalog
and drag it with the mouse into the open network under the network comment. The
first program element is positioned automatically. With the next program element,
small gray boxes indicate where the new program element may be positioned and –
in green – where it is positioned when you “let go”. You can also position program
elements freely in the network and subsequently connect the corresponding inputs
and outputs.

Binary logic operations are represented in the function block diagram by AND, OR,
and exclusive OR boxes (Fig. 6.7). The Q and ENO outputs are positioned at the bot-
tom edge where they can be connected to the input of the following program ele-

Fig. 6.6 Example of ladder logic representation with contacts, coils, and boxes

Fig. 6.7 Example of function block diagram with boxes

6.3 Programming a code block

265

ment. For many boxes, you have the choice to use the ENO output or to omit it.
The structure of an FBD logic operation is described in Chapter 8 “Function block
diagram FBD” on page 323.

Selection of function and data types using drop-down lists (LAD, FBD)

Many program elements have a variable design with regard to both function and
data types. For example, if you select the ADD box from the math functions, three
question marks are shown underneath the function designation ADD instead of the
data type. If you click on the ADD box, a small yellow triangle is displayed on the top
right-hand corner as an indication that a drop-down list is present behind it (Fig.
6.8). In this case, the drop-down list shows the data types permissible at this point,
from which you can select the desired data type.

If a small yellow triangle is displayed in the top right
corner of the program element (contact, coil, box),
you can select a different function here for the pro-
gram element from a drop-down list.

The empty box – which can be found in the favorites
or in the program elements catalog under General –
is particularly flexible here. Here you can select
almost all program elements from the (function)
drop-down list.

Programming a control function with structured control language (SCL)

The control function is entered in SCL as “structured text”. You can drag all state-
ments from the program elements catalog into the working area. With simple state-
ments, for example a binary or digital operation, it is simpler to enter the state-
ments as text via the keyboard.

Binary and digital logic operations are implemented in the SCL representation by
expressions (Fig. 6.9). An expression is terminated by a semicolon. In the case of
block calls and complex functions implemented as blocks, the block parameters are
listed in parentheses following the function name. The structure of an SCL expres-
sion is described in Chapter 9 “Structured Control Language SCL” on page 359.

Fig. 6.9 Example of representation as structured control language (SCL)

Fig. 6.8 Selection of data type
using drop-down list

6 Program editor

266

Programming a control function with statement list (STL)

The control function is entered in STL line by line. Each line contains one statement.
You can drag all statements from the program elements catalog into the working
area. With simple statements, for example an AND logic operation, it is simpler to
enter the statements line by line as text via the keyboard.

Binary logic operations are implemented in the representation as statement list by
AND, OR, and exclusive OR logic operations (Fig. 6.10). The statements (operations
and possibly operands) are written line by line. In the case of block calls and com-
plex functions implemented as blocks, the block parameters are positioned under-
neath the call statement. The structure of an STL statement as well as processing of
the statements are described in Chapter 10 “Statement list STL” on page 395.

Programming of a control function with sequential control (GRAPH)

You program a sequence control with the GRAPH programming language as a
sequence of steps, transitions, and possibly branches and jumps. You create the

Fig. 6.10 Example of representation as statement list STL

Fig. 6.11 Example of representation as sequence control GRAPH

6.3 Programming a code block

267

structure of the sequencer by “dragging” the corresponding element (step, transi-
tion, jump, etc.) from the programming elements catalog into the working area.
To program the actions in a step or the links in a transition, select the desired item
in the sequence tree on the left and program its contents in the working area (Fig.
6.11).

You can set or reset tags, program timer functions, create simple arithmetic logic
operations, or call blocks in one step. The programming languages LAD and FBD
are available for programming the logic operations, e.g. for transitions. The struc-
ture of a GRAPH sequence control is described in Chapter 11 “S7-GRAPH sequential
control” on page 472.

6.3.7 Editing tags

Almost all program elements require tags in order to execute their function. Follow-
ing insertion in the working area, a program element must be supplied with tags.
Fig. 6.12 shows the insertion of an up/down counter as local instance
(#IEC_Counter_0_Instance) in a function block. The example shows the representa-
tion in LAD, FBD, SCL, and STL.

LAD and FBD indicate with three red question marks that you must enter a tag here.
If three dots are displayed, supplying a tag is optional.

With SCL, the missing tags are occupied by dummy values which have to be
replaced by “real” tags.

If you set the cursor to a block parameter or function parameter in STL, the decla-
ration mode and the data type of the parameter are shown.

The program editor displays the global tags enclosed by quotation marks. Local
tags are preceded by a number character (#); if they possess special characters,
these are additionally enclosed by quotation marks. Operands (absolute addresses)
are preceded by a percentage sign (%).

You can display the tags with absolute address, symbolic address, or both. The set-
ting is carried out using the View > Display with > Address information command
from the main menu, or with the Absolute/symbolic operands icon in the toolbar of
the program editor.

The data type of the tag must be compatible with the data type of the supply posi-
tion. Use the block attribute IEC check to set how strict the program editor is when
performing the check. Further details can be found in Chapter 4.5.2 “Implicit data
type conversion” on page 108.

If you enter an operand with the appropriate data width which is not present in the
PLC tag table, the editor creates a new “Tag_x” in the PLC tag table, with x as a con-
secutive number. By clicking with the right mouse button on a tag and selecting
Rename tag from the shortcut menu you can assign a different name to the tag.
With Rewire tag you can assign a different absolute address to the tag.

When programming the control function you can also enter the name of a tag which
does not yet exist. The name of the tag is then underlined in red. By clicking with

6 Program editor

268

Supply of an IEC counter function with tags

Call in LAD Call in FBD

Call in SCL

Call in STL

Fig. 6.12 Supply with tags

Fig. 6.13 Defining tags during program input

6.3 Programming a code block

269

the right mouse button on the undefined tag and selecting Define tag from the
shortcut menu you are provided with a new window in which you can define the tag
(Fig. 6.13).

You can, for example, select the memory area in which the tag is to be positioned:
Input, output or in/out parameter, static or temporary local data, bit memories,
inputs, outputs, as well as peripheral inputs and peripheral outputs. You can also
set the (existing) PLC tag table in which the tag is to be saved.

Showing and hiding tag information

In LAD and FBD, you can display the name, address, and comments of the tags used
in the network under the current path or the link. The general settings for all blocks
are made in the main menu with the command Options > Settings in the group
PLC programming > General. Here you can enable or disable the view with tag infor-
mation. For the open block – and with the cursor in the program section – select
View > Display with > Tag information or click in the toolbar of the working window
on the Tag information on/off icon.

6.3.8 Working with program comments

With LAD and FBD as the programming languages, you can enter a “free-form com-
ment” for each coil or box (LAD) and for each non-binary box (FBD). Right-click on
the program element and select Insert comment from the shortcut menu. The pro-
gram editor displays a comment box with an arrow pointing to the selected pro-
gram element. You can then enter a comment in the box. You can shift the box
within the network or increase its size using the triangle at the bottom right
corner (Fig. 6.14).

The programming language SCL provides line and block comments. Line com-
ments are commenced by two slashes and extend up to the end of the line. A block
comment starts with left parenthesis and asterisk and ends with an asterisk and
right parenthesis; example: (* This is a block comment *). It can extend over several
lines. You can “comment out” code lines by positioning the cursor in the code line
or by selecting several lines and clicking the Disable code icon in the toolbar of the
working window. A line comment is then generated with the code line as content.
You can undo the procedure using the Enable code icon.

With STL as the programming language you enter the comment following a dou-
ble slash up to the end of the line. You can write the comment on its own in a line
or position it after the STL statement. You can “comment out” code lines by posi-
tioning the cursor in the code line or by selecting several lines and clicking the
Disable code icon in the toolbar of the working window. A line comment is then
generated with the code line as content. You can undo the procedure using the
Enable code icon.

6 Program editor

270

6.4 Programming a data block

6.4.1 Creating a new data block

It is only possible to create a new data block if a project with a PLC station has been
opened. You can create a new data block in either the Portal view or the Project view.

In the Portal view, click PLC programming and subsequently Add new block. In the
Project view, double-click on Add new block in the Program blocks folder. In the win-
dow for creating a new block, select the icon for Data block.

Data blocks must be assigned a type:

b A global data block contains the tags which you specify when programming the
data block. You can design the contents and structure of the data block as
desired.

b An instance data block contains the block parameters and static local data of a
function block (FB) or system block. The data structure is defined during pro-

Comments

Free-form comment in LAD Free-form comment in FBD

Block comments and line comments in SCL

Line comments in STL

Fig. 6.14 Comments in the various programming languages

6.4 Programming a data block

271

gramming of the block interface (for a function block) or is predefined (for a sys-
tem block).

b An ARRAY data block has the structure of the ARRAY data type: It is a data field
with components that all have the same data type. You define the data type and
the upper array limit when you add the ARRAY data block.

b A data block with assigned data type (“type data block”) contains the tags with the
structure of a PLC data type or a system data type. The data structure is defined
during programming of the PLC data type or is specified by the system data type.

The Type drop-down list shows the blocks and data types which have already been
programmed and are thus currently available for use. Select the entry from the list
with which you wish to structure the data block to be created. Select the Global DB
entry for a data block whose content you wish to structure as desired.

Assign a meaningful name to the new block. The name must not already have been
assigned to a different block, a PLC tag, a symbolically addressed constant, or a
PLC data type. The name can contain letters, digits, and special characters (but not
quotation marks). No distinction is made between upper and lower case when check-
ing the name.

The language for data blocks is always DB. With the automatic assignment of the
block numbers, the lowest free number for the type of block is displayed in each
case; if you select Manual, you can enter a different number.

If the Add new and open checkbox is activated, the program editor is started by click-
ing on the OK button, and programming of the newly created block can begin.

6.4.2 Working area of program editor for data blocks

The program editor is automatically started when a data block is opened. Open a
block by double-clicking on its icon: in the Portal view in the overview window of
the PLC programming, or in the Project view in the Program blocks folder under the
PLC station in the project tree. The program editor's working window shows the fol-
lowing details for a data block (Fig. 6.15):

b The toolbar
contains the icons (from left to right) for Insert row, Add row, Reset start values,
Update interface, Snapshot of the monitoring values, Copy all values from the
“Snapshot” column to the “Start value” column, Copy all setpoints from the “Snap-
shot” column to the “Start value” column, Initialize setpoints, Expanded mode,
Download without reinitialization and Monitor all. The meaning of the icons is dis-
played if you hold the mouse pointer over the icon. Currently non-selectable
icons are grayed out.

b The tag declaration
shows the contents of the data block.

The working area can be maximized by clicking on the Maximize icon in the title bar,
and embedded again using the icon for Embed. Display as a separate window is also
possible: Click in the title bar on the icon for Float.

6 Program editor

272

You can save the structure of the windows and tables using the Save window settings
icon in the top right corner of the working window. This structure is reestablished
the next time the working window is opened.

6.4.3 Defining properties for data blocks

To set the block properties, select the block in the Program blocks folder, followed
by the Edit > Properties command in the main menu or the Properties command in
the shortcut menu.

Block properties in the General section

The General section contains the Name of the block. The block name must be unique
within the program and must not already have been assigned to another block, a
PLC tag, a constant, or a PLC data type. The name can contain letters, digits, and spe-
cial characters (but not quotation marks). No distinction is made between upper and
lower case when checking the name.

With data blocks, the designation DB together with the type of data block is present
in the Type field: Global DB for a global data block, Instance DB of <FB_name> for an
instance data block of the function block <FB_name>, Array DB for an ARRAY data
block, and Data block derived from <Type_name> if the structure of the data block is
based on the data type <Type_name>.

The block number of the data block is present in the Number field. The language for
data blocks is always “DB”. For an ARRAY data block, the data type of the array com-

Fig. 6.15 Example of the program editor's working window for data blocks

6.4 Programming a data block

273

ponent and the upper array limit (can be changed) are also displayed. The lower
array limit is always zero.

Block properties in the Information section

The Information section contains the Title and the Comment. The Version is entered
using two two-digit numbers from 0 to 15: from 0.0 to 0.15, 1.0 to 15.15. Under
Author you can enter the creator of the block. Under Family you can assign a common
feature to a group of blocks, as is also the case with User-defined ID. The author, fam-
ily, and block ID can each comprise up to 8 characters (without spaces).

Block properties in the sections Time stamps, Compilation, and Protection

The time data in the Time stamps section contain the date of creation of the block
and the date of the last modification to the block, interface, and program.

The Compilation section provides information on the processing status of the block,
and – following compilation – on the memory requirements of the block in the load
and work memories.

In the Protection section you can set up know-how protection for the data block.
Further details are described in Chapter 6.3.4 “Protecting blocks” on page 259.

Block attributes for data blocks

Table 5.1 on page 158 shows an overview of the block attributes for all blocks.

The Optimized block access attribute defines the data storage in the block. If the
attribute is activated, the tags are not saved in the order of the declaration but in a
way that is memory-optimized. This has effects on the addressing and the retentiv-
ity of the tags. If the attribute is activated, only symbolic addressing of the data tags
is possible in the block. With instance data blocks, the Optimized block access attri-
bute is “inherited” from the associated function block; in this case the data tags are
addressed by the associated function block. Furthermore, with the attribute acti-
vated, individual tags can be set as retentive (in the associated function block for
instance data blocks); only the complete block can be set if the attribute is not acti-
vated.

Global and type data blocks can be assigned the Only store in load memory attribute.
Such types of data block are only present in the load memory on the memory card,
they are “not relevant to execution”. Since their data is not in the work memory,
direct access is not possible. Data in the load memory can be read and also written
using system functions. Data blocks with the Only store in load memory attribute
activated are suitable for data which is only accessed rarely, e.g. recipes or data
archives.

Data block write-protected in the device is an attribute for global and type data
blocks. It means that you can only read from this data block by means of a program.
Overwriting of the data is prevented and an error message is generated. The write
protection applies to the data relevant to execution (actual values) in the work
memory; the data in the load memory (start values) can be overwritten even if the

6 Program editor

274

data block is provided with write protection. Write protection must not be confused
with block protection: A data block with block protection can be read and written by
the program; however, its data can no longer be viewed using a programming or
monitoring device.

The attribute Set data in the standard area to retentive concerns instance data
blocks. When the attribute is activated, the retentivity of all of the tags with the
default setting Set in IDB is switched on.

Block properties in the Download without reinitialization section

Global and instance data blocks with the attribute Optimized block access activated
can be downloaded into the CPU after a change of the interface in the RUN operating
state without resetting the actual values to the start values (see Chapter 15.3.3
“Download without reinitialization” on page 665). The changes are entered in a spe-
cial memory area in the block, the “memory reserve”. In this section of the block
attributes, you set the size of the memory reserve and the size of the memory area
reserved for this for retentive tag values.

6.4.4 Declaring data tags

The declaration table shows the following columns depending on the block proper-
ties and the editing environment:

b Name: The name can contain letters, digits, and special characters (but not quo-
tation marks). No distinction is made between upper and lower case when check-
ing the name. The name is block-local, and therefore the name can also be used
in other blocks for different tags. In association with the data block whose name
applies throughout the CPU (globally), a data tag becomes a “global” tag appli-
cable throughout the CPU.

b Data type: Select the data type of the tag from a drop-down list or enter it directly.

b Offset: The offset indicates the relative address of the tag with respect to the start
of the data block or the start of a data structure. The column is only shown if the
Optimized block access attribute is not activated in the data block. The offset is
shown after the data block has been compiled.

b Default value: The default value is the value which is automatically assigned to a
new tag depending on the data type. Example: With the data type DATE, the de-
fault value is DATE#1990-01-01. If the data block is based on a data type (type
data block) or a function block (instance data block), the tag value defined in the
data type or in the function block is present in the Default value column.

b Start value: The Start value column lists the individual default values of the tags
for this data block. The default value is used if a start value is not entered.
The start value is the value with which the data block is loaded into the CPU's
work memory. With an instance data block it is then possible, for example, to
commence each call of the underlying function block (each instance) with differ-
ent start values.

6.4 Programming a data block

275

b Snapshot: The Snapshot column shows the “frozen” monitoring values from the
work memory at the time of the snapshot.

b Monitor value: The monitor value indicates the actual value of the tags in online
mode. This is the value that is present in the work memory during scanning.
This column is only displayed in Monitoring mode.

b Retain: A checkmark in this column indicates that the tag is retentive. If the
Optimized block access attribute is activated for the global data block, individual
tags can be set as retentive, otherwise only the complete data block. For an in-
stance data block, configure the retentivity of the individual tags in the assigned
function block. For a type data block, only the complete data block can be set to
retentive or non-retentive.

b Visible in HMI: A checkmark in this column means that the tag is visible in the
drop-down list of HMI stations by default.

b Accessible from HMI: A checkmark here indicates that an HMI device can access
this tag.

b Setpoint: A checkmark in this column indicates that this value will be probably
be set during commissioning. With tags marked in this way, the actual values can
be imported into the offline data management system as start values. Further
details are described in Chapter 15.3.5 “Working with setpoints” on page 668.

b Comment: The comment allows input of an explanation of the purpose of the
tag.

You can determine the columns to be displayed yourself: Right-click in the line with
the column headers and then select the Show/Hide columns > ... command from the
shortcut menu. You can then select or deselect the columns to be displayed.

Expanded mode

The expanded mode is activated using the Expanded mode icon in the toolbar of the
working window. In expanded mode, the tags with structured data types (except for
STRING) are “opened” so that the individual components can be displayed and – if
permissible – assigned default values.

6.4.5 Entering data tags in global data blocks

With a global data block, you enter the data tags directly in the block. In the Name
column you specify the name of the tag. Following input of the name, select the
data type from a drop-down list, enter a start value if applicable, and use a com-
ment to explain the purpose of the tag.

With the STRING data type, enter the maximum length of the string in square
brackets. If this data is missing, the standard length of 254 characters is used.

With the ARRAY data type, you must enter the range limits and the data type of a
component. For example, the information in the drop-down list Array [lo .. hi]
of type could then result in Array [1 .. 12] of Real. If you click on the triangle to the

6 Program editor

276

left of the tag name, the components are displayed and you can assign individual
start values to them as default values.

Select the STRUCT data type from the drop-down list and, in the line under the tag
name, enter the name of the first component, its data type, possibly a default set-
ting, and a comment. The next line contains the second component, etc.

The drop-down list also shows the previously programmed PLC data types which
you can also assign to a data tag. System data types are displayed if the correspond-
ing statements (functions) have been programmed. When programming a tag with
the system data type, for example ErrorStruct or IEC_TIMER, you cannot change the
structure and you can only set defaults for individual components if it is permitted.

6.5 Compiling blocks

Compilation generates a program code which can execute in the CPU. A compila-
tion process is always triggered prior to downloading the user program to the PLC
station. Only blocks which have been compiled without errors can be downloaded.

It is recommendable to also trigger compilations while generating the user pro-
gram to enable a quick response to any programming errors.

6.5.1 Starting the compilation

You start the compilation using a command from the shortcut menu.

b To compile a block opened in the program editor, click with the right mouse but-
ton on the white background of the working area and select the Compile com-
mand from the shortcut menu.

b To compile a block listed in the call structure or in the dependency structure,
click with the right mouse button on the block and select the Compile command
from the shortcut menu.

b To start the compilation process for the selected block, right-click a block in the
Program blocks folder in the project tree followed by the Compile > Software
(only changes) command from the shortcut menu.

b You can also select several blocks in a group in the Program blocks folder in the
project tree and compile them together using the Compile > Software (only
changes) command from the shortcut menu.

b By right-clicking on a group in the Program blocks folder, you can choose
between Compile > Software (only changes) or Compile > Software (reset memory
reserve) in the shortcut menu.

b You can compile the entire user program by selecting the Program blocks folder
followed by Compile > … from the shortcut menu. You then have the choice
between … Software (only changes), … Software (rebuild all blocks), and
… Software (reset memory reserve).

6.5 Compiling blocks

277

b If you select the PLC station folder and then Compile > … from the shortcut menu,
you can select between

– … Hardware and Software (only changes)
Complete compilation of all project information relevant to execution

– … Hardware (only changes)
Compilation of the device and network configuration

– … Software (only changes)
Compilation of program changes since last compilation only

– … Software (rebuild all blocks)
Compilation of entire user program

– … Software (reset memory reserve)
Compile with resolution of the memory reserve (see Chapter 15.3.3 “Down-
load without reinitialization” on page 665).

The result of the compilation is displayed in the inspector window in the Info tab
under Compile (Fig. 6.16). Any warnings which have been detected do not prevent
continuation of the compilation. Any errors which have been detected are displayed
in the result of the compilation and end the compilation.

6.5.2 Compiling SCL blocks

If you activate the attribute Automatically set ENO in the properties of an SCL block,
an additional program code is generated during the compilation which sets the
enable output ENO to signal state “0” in the event of a program error during
runtime.

Fig. 6.16 Example of compilation information in the inspector window

6 Program editor

278

You can also make additional settings in the main menu under Options > Settings
and PLC programming > SCL > Compile:

b Create extended status information
Permits monitoring of all tags in a block.

b Check ARRAY limits
Checks the limits of ARRAY tags during runtime.

Activation of one of the attributes increases the memory requirements and pro-
cessing time of the block.

6.5.3 Eliminating errors following compilation

An error is indicated by a white cross on a red circle in the line of the faulty block.
Click on the triangle to the left of the block name to open the list with the compila-
tion messages.

Click on the blue question mark in an error message to display more information
about the error. Double-clicking on an error message or clicking on the green arrow
displays the program environment of the selected error in the working window so
that you can correct the error directly.

Correcting a faulty block call

During the compilation, the program editor checks whether the supply of block
parameters present in the calling block agrees with the interface of the called block.

If you double-click on the error message, the program editor opens the network
with the faulty call. You can then correct the call, for example by entering miss-
ing actual parameters or by using actual parameters with the correct data type.
If the block call is displayed with a red border, select the Update command from
the shortcut menu. The program editor suggests a modified block call in the
Interface update window which you can import unchanged or following modifi-
cation (Fig. 6.17).

Fig. 6.17 Interface update in the case of faulty block calls

6.6 Program information

279

Under Options > Settings and PLC programming > General > Compilation you can
select the Delete actual parameters on interface update option. The result is that an
actual parameter is deleted when compiling or updating the interface if the asso-
ciated block parameter has been deleted.

6.6 Program information

The following tools support you during programming and program testing:

b Cross-references

b Assignment list for inputs, outputs, bit memories, SIMATIC timer and SIMATIC
counter functions

b Call and dependency structures

b Resources

You can start the individual tools at any time during programming, either in the
main menu using the Tools > … command or in the project tree by double-clicking
Program info under a PLC station.

6.6.1 Cross-reference list

The cross-reference list indicates the use of tags and blocks in the user program.
It provides an overview of

b Which objects have been used

b At which position in the program they have been used

b In what association they have been used, e.g. with which function a tag has been
used

You can create cross-references from any data object of a station: Select the station,
a folder under the station, or one or more objects in a folder, e.g. one or more
blocks or PLC tags, and then select the Cross-references command from the shortcut
menu or the Tools > Cross-references command from the main menu. The cross-ref-
erence list is available in two views: Used by and Uses.

Cross-reference list Used by

The Used by view is based on the referenced object. It shows the positions at which
the object present in the first column is used (Fig. 6.18). For example, all the posi-
tions of where a block is called are shown, or all the program positions at which a
tag is used. If the list entries are opened, a link in the Point of use column leads
directly to the program position where the object is used. You can select the view
options using the spanner icon in the toolbar of the cross-reference list: Show used
and/or Show unused.

6 Program editor

280

Cross-reference list Uses

The Uses view displays the objects used by the referenced object. It shows which
objects are used (Fig. 6.19). With a block, for example, it shows which blocks are
called within it and which tags are used within it. If the list entries are expanded, a

Fig. 6.18 Example of a cross-reference list in the Used by view

Fig. 6.19 Example of a cross-reference list in the Uses view

6.6 Program information

281

link in the Point of use column leads directly to the program position at which the
associated object is used. You can select the view options using the spanner icon in
the toolbar of the cross-reference list: Show defined and/or Show undefined.

Display of cross-references in the inspector window

Select an object, e.g. a block in the project tree or a tag in the working window, and
then select the Cross-reference information command in the shortcut menu. The
inspector window – under Cross-references in the Info tab – shows the program posi-
tions at which the selected object has been used. If the cross-reference list is open
in the inspector window, the use of the selected object is displayed directly.

6.6.2 Assignment list

The assignment list shows the assignment of the operand areas: inputs (I),
outputs (Q), bit memories (M), SIMATIC timer functions (T), and SIMATIC counter
functions (C). The use of operands as bit, byte, word or doubleword operands or
tags is displayed. Peripheral inputs are assigned to the inputs operand area, and
peripheral outputs to the outputs operand area.

You can display the assignment list for individual blocks or for the entire program:
Select the blocks, the Program blocks folder or the folder of the PLC station, and
then select Assignment list from the shortcut menu or Tools > Assignment list in the
main menu (Fig. 6.20).

Display of input/output assignment

A yellow background for inputs and outputs indicates that the address is not used
by the hardware or that no hardware has been configured for this address. If you
additionally address a bit in a byte, word or doubleword operand, the entry has a
gray background. You can use the View options icon in the toolbar of the assignment
list to select whether the used addresses and/or the free hardware addresses are to
be displayed.

Fig. 6.20 Example of an assignment list with I, Q, M, T, and C

6 Program editor

282

Display of bit memory assignment

The view option must be set to Used addresses in order to display the bit memory
assignment. For the bit memories, symbols at the operands indicate up to what
address the bit memories are retentive.

Display of timer and counter assignments

Use of the SIMATIC timer and counter functions is displayed in decades. All timer
and counter operations are considered, e.g. also the scanning of a duration or the
scanning of the counter status.

Filter

You can filter the display of the assignment list using the Filter icon in the toolbar.
You specify which addresses (operands) you want to view: To select the operand
area, activate the associated checkbox. You can select all addresses as the filter
range (with an asterisk: *), an address area using a hyphen (e.g. 0-100), an individ-
ual address (e.g. 101) or several areas, separated by a semicolon (e.g. 0-100;
120-124; 160).

If you wish to repeatedly use the particular settings of a filter, assign a name to the
settings in the drop-down list of the filter dialog. You can then use this name to
recall the filter settings from the drop-down list in the toolbar of the assignment
list. You can also delete filter names again.

6.6.3 Call structure

The call structure describes the call hierarchy of the blocks. To display the call struc-
ture, first select the PLC station or Program blocks folder for the entire program or
for individual blocks, and then select Call structure from the shortcut menu or
Tools > Call structure from the main menu.

The call structure shows the used blocks and the code blocks called from these
blocks or the data blocks used in them (Fig. 6.21). The blocks which are not called
in the user program are present in the first level (color highlighted) – in the fin-
ished program, these should only be the organization blocks.

Starting with the call structure, you can display the cross-reference information or
open a block for editing with the program editor. The consistency check for the
block calls is described in Chapter 6.6.5 “Consistency check” on page 283.

You can set the view options using the View options icon in the toolbar: Show con-
flicts only then displays the call paths in which conflicts have been detected,
e.g. interface conflicts, recursive calls, or calls of non-existent blocks. Group
multiple calls together displays several calls of a block or data block access opera-
tions in a single line and specifies the number of calls in a separate column.

For compiled blocks, the memory requirements for temporary local data of a block
and in the path are displayed.

6.6 Program information

283

6.6.4 Dependency structure

The dependency structure shows the dependencies of each block. To display the
dependency structure, first select the PLC station or Program blocks folder for the
entire program or for individual blocks, and then select Tools > Dependency
structure from the main menu.

For each code block the dependency structure shows the block from which it is
called, and for each data block the code block in which it is used (Fig. 6.22).

From the dependency structure, you can display the cross-reference information or
open a block for processing with the program editor. The consistency check for the
block calls is described in the next Chapter 6.6.5 “Consistency check” on page 283.

You can set the view options using the View options icon in the toolbar: Show
conflicts only then displays the call paths in which conflicts have been detected,
e.g. interface conflicts, recursive calls, or calls of non-existent blocks. Group
multiple calls together displays several calls of a block or data block access opera-
tions in a single line and specifies the number of calls in a separate column.

6.6.5 Consistency check

Clicking on the Consistency check icon in the toolbar of the call or dependency struc-
ture displays block calls with an “interface conflict”. These are calls of blocks whose
interface has been subsequently changed e.g. by assignment of a different data type
to a block parameter or by modification of the static local data for function blocks.

Fig. 6.21 Example of the call structure

6 Program editor

284

Blocks which have not yet been compiled following a modification are displayed
with a red border. In order to compile individual blocks in the call or dependency
structure, select Compile in the shortcut menu.

If interface conflicts cannot be eliminated by a repeated compilation, they must be
eliminated manually. The link in the Details column leads to the faulty block call.

Open the calling block, select the block call identified as faulty, and select the
Update command from the shortcut menu. When updating the call block, the pro-
gram editor shows what the updated call block will look like in the Interface update
window. You can then carry out corrections and supplements in this window, for
example if a new block parameter has been added.

6.6.6 Resources of the CPU

Under Resources you can see the utilization of the user memory and of the existing
input/output modules (Fig. 6.23). To display the resources, select the folder
PLC station, Program blocks or individual blocks and double-click on Program info
in the project tree under the PLC station or select Tools > Resources from the main
menu.

The resources function shows in four columns the maximum available and actu-
ally utilized storage space of the load memory, of the work memory for code and
data, and of the retentive memory. You can see the utilization for each type of
block, for individual blocks, for the PLC data types, and for the PLC tags. For

Fig. 6.22 Example of dependency structure

6.7 Language settings

285

blocks that have not yet been compiled, a question mark stands in place of the
block size.

If a value for the memory utilization is displayed in red, the available memory
space is overwritten. For the load memory, select the size of the memory card
used from the drop-down list in the Total cell.

The existing (configured) input/output modules are divided according to DI, DO, AI
and AQ, together with information on how many of them are used in the program.

Starting with the resources function, you can display the properties of a marked
block in the inspector window or open a block for processing with the program
editor.

6.7 Language settings

STEP 7 gives you several options for working with different languages:

b The language of the operating system (character set)

b The language of the user interface of the TIA Portal

b The language of the mnemonic for the operations and operands

b The editing language and the project languages for the user text

b The language of the HMI station (of the HMI device)

The settings of the different languages are independent of one another.

Language setting of the operating system

If you are working with a multilingual version of the operating system (MUI vari-
ant), set the desired character set using the Windows control panel.

Fig. 6.23 Example of display of resources

6 Program editor

286

Language of the user interface and mnemonic

STEP 7 is operated with the language of the user interface. This comprises, for
example, the menu names and the error messages of the TIA Portal. You can set this
language in the Project view in the main menu using Options > Settings in the Gen-
eral section. The languages installed with STEP 7 are offered for selection under
User interface language. You also set the programming mnemonics in this tab,
i.e. the language in which the program editor uses the operands and operations.
For example, with the German set “E” stands for “Eingang”, and with the Interna-
tional set, “I” stands for “Input”.

Editing language

The user texts are entered in the editing language. These are, for example, comments
on PLC tags or the program. The editing language is independent of the language of
the user interface. You select the editing language in the project tree under Lan-
guages & Resources > Project languages from the Editing language drop-down list.

Project languages

The text entered in the editing language can be translated into various project lan-
guages and displayed. You specify the available project languages in the project tree
under Languages & Resources > Project languages. All entered user texts can be
found in the project tree under Languages & Resources > Project texts in the User
texts tab. The entered texts in of the editing language and the selected project lan-
guages are shown. You can enter text directly or edit it here. The displayed texts are
oriented on a reference language that you specify under Languages & Resources >
Project languages in the Reference languages drop-down list. You can also export the
texts for translation and reimport the translated texts.

To display the translated user texts in configuration and programming, select the
desired project language as editing language.

The language of the HMI station (HMI project language)

The HMI station can be provided with a multilingual user interface. You set the lan-
guages available at runtime in the project tree under the HMI station and Runtime
settings. The project languages set under Languages & Resources > Project lan-
guages can be selected.

If during runtime you wish to switch over to another language available on the
HMI station, an operator-accessible object, e.g. a button, must have been linked to
the language switchover during configuration. Following selection, the new lan-
guage is applied immediately. When the HMI station is switched on, the language
that was active last is always set.

7.1 Introduction

287

7 Ladder logic LAD

7.1 Introduction

This chapter describes programming with ladder logic. It provides examples of how
the programming functions are represented in the ladder logic. You can find a
description of the individual functions, e.g. comparison functions, in Chapters 12
“Basic functions” on page 503, 13 “Digital functions” on page 558, and 14 “Program
control” on page 622.

Use of the program and symbol editor, which generally applies to all programming
languages, is described in Chapter 6 “Program editor” on page 247.

Ladder logic is used to program the contents of blocks (the user program). What
blocks are, and how they are created, is described in Chapters 5.3.1 “Block types” on
page 155 and 6.3 “Programming a code block” on page 253.

7.1.1 Programming with LAD in general

You use LAD to program the control function of the programmable controller – the
user program (control program). The user program is organized in different types
of blocks. A block is divided into sections referred to as “networks”. Each network
contains at least one current path which may also have an extremely complex struc-
ture. Each network is terminated by at least one coil or box.

Fig. 7.1 shows the program editor's working window. The icons in the toolbar a can
be used to set the display of the working area, e.g. the display of the network com-
ments and additional functions such as monitoring of the program status. The
interface of the block s in the upper part of the working window lists the block
parameters and local data. The favorites bar d can be expanded by additional pro-
gram elements. It can also be hidden. Each block has a heading, the block title, and
a block comment f, which can be used to explain the function of the block. These
are followed by the first network with its number, heading and comment g.

The control function, i.e. the interconnection of the program elements, is displayed
in the working area h. The tags can be displayed absolutely, symbolically, or with
both addressing types j. Each coil and each box can be assigned a “free-form”
comment k. The tag information l shows the tags used in the network with the
tag comments. Like the network comment and the free comments, it can be hidden.
With the zoom setting ; the display of the control function can be adapted to the
size of the working area.

7 Ladder logic LAD

288

Fig. 7.1 Working window of the program editor for LAD programming

7.1 Introduction

289

The program editor establishes an LAD network in accordance with the principle of
the “main current path”: This is the highest branch which commences directly at
the left-hand power rail and must be terminated by a coil or box. All LAD elements
can be positioned within it.

An LAD element must not be “short-circuited” by an “empty” parallel branch, and
“current” must not flow from right to left through a program element. A parallel
branch which does not end “open” must be closed for the branch on which it was
opened.

“Open” parallel branches can lead out from the main current path. If they do not
lead back to the main current path, they are called “T branches”. There are certain
limitations in the selection of the permissible program elements in the case of these
parallel branches which do not commence on the left-hand power rail.

Fig. 7.2 Overview of ladder logic program elements

The binary control function is implemented by the arrangement of
contacts. Basic contacts scan the signal state of a binary tag. There are also
contacts with special functions such as edge evaluation ("passing
contact") or the comparison of two digital tags which delivers a binary
result.

The coils process the binary result of the logic operation. They can be
positioned in the middle or at the end of a current path. Standard coils
save the result of the logic operation in binary tags. There are also coils
with special functions such as edge evaluation ("pulse flag") or the control
of SIMATIC timer and counter functions.

Processing of these boxes can be enabled by means of the enable input EN.
The enable output ENO signals whether processing has been completed
without errors. The boxes can have multiple inputs and outputs.
Examples of these boxes are the math functions or the functions for
conversion of the data type of tags.

The block calls represent the change in processing to a different block.
The box represents the called block with its input and output parameters.
The block called with the box is processed; processing is subsequently
continued with the next function following the block call.

Function

Binary tag

Binary tag

Function

Block

Q

ENO

ENO

OUT

OUT1

OUT2

IN1

EN

EN

IN2

IN2

IN2

IN1

IN1

Data

Contacts

Coils

Boxes with Q output

Boxes with EN input and ENO output

Block calls

"Simple" functions are shown as boxes with a Q output ("Q boxes"). These
can have multiple inputs, as well as extra outputs in addition to the Q
output. Examples of these boxes are the memory functions and the timer
and counter functions.

7 Ladder logic LAD

290

A block is not terminated by a special network or function, you simply finish the
program input. Where additional rules apply to the arrangement of special LAD ele-
ments, these are described in the corresponding sections.

7.1.2 Program elements of ladder logic

Fig. 7.2 shows which types of LAD elements exist: Contacts and coils for processing
binary signals, Q boxes for implementing memory, timer, and counter functions,
and EN/ENO boxes for “complex” functions which, for example, carry out calcula-
tions, manipulate strings, or convert numbers into text.

Most program elements must be provided with tags or operand addresses. With
contacts and coils, the tags are assigned by means of the program element. If fur-
ther tags are required for the function, these are present under the element. In the
case of the boxes, the tags are present at the box inputs and outputs.

It is best if you initially arrange all program elements in a current path and subse-
quently label them.

7.2 Programming binary logic operations with LAD

In the case of contacts you scan the binary tags, e.g. inputs, and link the scanned
signal states by arranging the contacts in series or parallel. You use an NO or
NC contact to define the influence of the scanned signal state on the logic opera-
tion. Further functions for contacts are negation of the signal flow, edge evaluation

Fig. 7.3 Overview of the contacts described in this chapter

Normally closed contactBinary tag Binary tag

NOT contact

Normally open contact

Scan for
“valid”

Comparison function

Scan for
“invalid”

NOT

Floating-point tag Floating-point tag
OK NOT_OK

Positive edge
of the binary tag

Negative edge
of the binary tagBinary tag Binary tag

P N
Edge trigger flag Edge trigger flag

FCT
Data type

Digital tag 1

Digital tag 2

Contacts

FCT: == Compare for equal
<> Compare for unequal
> Compare for greater than
>= Compare for greater than or equal
< Compare for less than
<= Compare for less than or equal

7.2 Programming binary logic operations with LAD

291

for a binary tag, validity checking of floating-point numbers, and the comparison
function (Fig. 7.3).

7.2.1 NO and NC contacts

An NO or NC contact is used to scan the signal state of a binary tag. An NO contact
passes on the scanned signal state directly to the logic operation, an NC contact first
negates the signal state.

To program a contact, drag it with the mouse from the program elements catalog
under Basic instructions > Bit logic operation to the working area. You can subse-
quently change the function (NO or NC contact) using a drop-down list which you
can open using the small yellow triangle when the contact is selected.

You write the binary tag to be scanned above the contact. This can be an input, out-
put, bit memory or data bit, or also a SIMATIC timer or SIMATIC counter function.
Assignment with a constant (TRUE or FALSE) is not permissible.

The example in Fig. 7.4 shows the two “Start” and “Stop” pushbuttons. When
pressed, they output the signal state “1” in the case of an input module with sinking
input. The SR function is set or reset with this signal state.

The “/Fault” signal is not active in the normal case. Signal state “1” is then present
and is negated by scanning with an NC contact, and the SR function therefore
remains uninfluenced. If “/Fault” becomes active, the SR function is to be reset.
The active signal “/Fault” delivers signal state “0”, which resets the SR function by
means of the scan with an NC contact as signal state “1”.

Fig. 7.4 Principle of operation of NO and NC contacts

"Fan"

When pressed, the "Start" and
"Stop" pushbuttons switch the fan
on and off. They are "1-active"
signals.
If "/Fault" becomes active, the fan is
to be switched off and remain off.
"/Fault" is a "0-active" signal. In
order to reset the SR function with
signal state "1", this input is
scanned with an NC contact
(scan for signal state "0").
In the example, the 0-active signal
is identified by a slash in front of
the name.

%I1.3%I1.2%I1.1

%Q4.1

"Start"L+

M

"Stop" "/Fault"

Example of application of NO and NC contacts

SR

S

R1 Q

7 Ladder logic LAD

292

7.2.2 Series and parallel connection of contacts

With a series connection, two or more contacts are positioned one behind the
other. Current flows through a series connection when all contacts are closed
(“AND function”, see Chapter 12.1.3 “AND function, series connection” on page
507).

A parallel connection means that two or more contacts are positioned underneath
each other. Current flows through a parallel connection when one of the contacts is
closed (“OR function”, see Chapter 12.1.4 “OR function, parallel connection” on
page 507).

Series and parallel connections can be combined. If contacts arranged in parallel
are connected in series to other contacts arranged in parallel (series connection of
parallel connections), this corresponds to an AND logic operation on OR functions.
An OR logic operation on AND functions is the parallel connection of series connec-
tions.

To program a branch, use the mouse to drag the symbol for Open branch or Close
branch from the program elements catalog under Basic instructions > General into
the current path. Gray boxes indicate the permissible positioning, a green box iden-
tifies the position at which the branch will be opened or closed if you release the
mouse button. You close a branch if you drag the end of the branch to the position
at which it is to be closed.

Fig. 7.5 shows a simple example of the interconnection of contacts. Two fans signal
with signal state “1” that they are running. A coil is to be activated for display is only
one fan is running. In the upper current path, the logic operation is as follows:
(#Fan1.works AND not #Fan2.works) OR (not #Fan1.works AND #Fan2.works).
The lower current path solves the task with the logic operation (#Fan1.works
OR #Fan2.works) AND (not #Fan1.works OR not #Fan2.works).

Fig. 7.5 Example of series and parallel connection of contacts

7.2 Programming binary logic operations with LAD

293

7.2.3 T branch, open parallel branch

You can “divide” a current path so that it has two different terminations. If this is
not simply a parallel connection of coils or boxes, but a case of both branches hav-
ing different logic operations, this is referred to as a “T branch” or an “open” paral-
lel branch.

To program a T branch, use the mouse to drag the symbol for Open branch from the
program elements catalog under Basic instructions > General to the position in the
current path at which the T branch is to commence.

Fig. 7.6 shows a T branch. The parallel connection of #Fan1.works and #Fan2.works
is followed by the branch in which a series connection of a NOT contact and an
NO contact leads to a further coil.

Series and parallel contact connections can be programmed following a T branch.
A further T branch can also be opened within a T branch. However, you cannot enter
logic operations which lead from the left-hand power rail to a T branch.

7.2.4 Negate result of logic operation in the ladder logic

The NOT contact negates the result of the logic operation (the “current flow”).

To program a NOT contact, drag it with the mouse from the program elements cat-
alog under Basic instructions > Bit logic operation to the working area.

You can position the NOT contact like a standard contact in a branch which com-
mences on the left-hand power rail. Positioning following a T branch is also permis-
sible. Positioning of the NOT contact is not permissible in a parallel branch which
commences in the middle of the current path. The NOT contact can also be used to
negate the result of the logic operation (the “current flow”) at box inputs and out-
puts.

In Fig. 7.6 the parallel connection of #Fan1.works and #Fan2.works is negated.
The resulting logic operation is: Not #Fan1.works AND not #Fan2.works. If no fan is
working, the #Display.nofan tag flashes at 2 Hz.

Fig. 7.6 Example of a T branch (open parallel branch) and the NOT contact

7 Ladder logic LAD

294

7.2.5 Edge evaluation of a binary tag in the ladder logic

An edge evaluation detects the change in a binary signal.

To program an edge evaluation, drag the P or N contact with the mouse from the
program elements catalog under Basic instructions > Bit logic operation to the work-
ing area.

The edge contact has the signal state “1” for one processing cycle if the signal state
of the binary tags positioned above it changes from “0” to “1” (P contact, rising
edge) or from “1” to “0” (N contact, falling edge). It responds like a “passing con-
tact”. This “pulse” is linked to the result of the logic operation present prior to the
contact.

The edge trigger flag is present underneath the edge contact. This is a memory or
data bit which saves the signal state of the binary tag. The signal edge is recognized
by comparing the signal states of binary tags and edge trigger flags (see also
Chapter 12.3 “Edge evaluation” on page 515).

The example in Fig. 7.7 shows an application of edge evaluation. Let us assume that
an alarm has “arrived”, i.e. the alarm signal's state changes from “0” to “1”. Signal
state “1” is then present after the P contact for one program cycle. The
#Alarm_memory tag is set by this, and the #Indicator_light tag flashes at 0.5 Hz. The
alarm memory can be reset using an #Acknowledge button. The alarm memory
remains reset if #Acknowledge has signal state “0” again and #Alarm_bit is still pres-
ent. #Alarm_memory is only set again by a further positive edge of #Alarm_bit (if
#Acknowledge then no longer has signal state “1”).

7.2.6 Validity check of a floating-point tag in the ladder logic

The OK contact checks a floating-point tag for validity, i.e. whether the range limits
for the data type REAL or LREAL are adhered to. The contacts exists in two versions:

b The OK contact is closed if the tag is valid

b The NOT_OK contact is closed if the tag is outside the permissible value range

Fig. 7.7 Example of an edge evaluation of a binary tag

7.3 Programming memory functions with LAD

295

The OK/NOT_OK contact is programmed like a standard contact. You can find the
OK/NOT_OK contact in the program elements catalog under Basic instructions >
Comparer.

If in Fig. 7.8 the #Measurement_from_sensor tag is within the permissible value
range for the data type REAL or LREAL and the #Measurement.Registered tag has sig-
nal state “1”, then #Measured_value_ok is set.

7.2.7 Comparison contacts

A comparison contact compares two digital values and outputs a binary signal.
A comparison which is correct is equivalent to a closed contact (“current” is flowing
through the comparison contact). The contact is open if the comparison is incor-
rect. The comparison function is described in Chapter 13.3 “Comparison functions”
on page 570.

To program a comparison function, drag it
with the mouse from the program elements
catalog under Basic instructions > Compara-
tor operations to the working area. You posi-
tion the comparison contact like a standard
contact in the current path. You can then use
drop-down lists to define the comparison
(Fig. 7.9): If you select the comparison con-
tact, you can set the comparison relation on
the triangle in the upper right corner and
the data type on the triangle in the lower
right corner.

Fig. 7.10 shows two comparison contacts con-
nected in series. If the #Measurement_temperature tag is above a lower limit and
below an upper limit, the coil is activated and the #Measurement_in_range tag is set.

7.3 Programming memory functions with LAD

Coils control binary tags such as outputs or bit memories. A simple coil sets the
binary tag when current flows into the coil and resets it when current no longer
flows. The reverse is true with the negating coil.

Fig. 7.8 Example of the validity check of a floating-point tag

Fig. 7.9 Drop-down lists for setting the
comparison mode and data type

7 Ladder logic LAD

296

There are coils with additional names and special functionalities such as the set and
reset coils or the coil for pulse generation during evaluation of a signal edge. Coils
can be used to set and reset bit arrays, start and reset timer functions, execute
jumps in the program, and terminate blocks (Fig. 7.11). The jump functions and the
block end function are described in Chapter 14 “Program control” on page 622.

7.3.1 Simple and negating coils

A simple coil directly assigns the current flow to the tag present on the coil: The tag
is set to signal state “1” when current flows into the coil and is reset to signal state
“0” when current no longer flows. The negating coil negates the current flow
beforehand: The tag is set if no current flows into the coil and is reset if current
flows.

For programming, drag the coil with the mouse from the program elements catalog
under Basic instructions > Bit logic operation to the working area. Gray boxes indi-
cate the permissible positioning, a green box identifies the position at which the
coil will be inserted if you release the mouse button.

The simple and the negating coil require a preceding logic operation; they cannot
be connected directly to the left-hand power rail. A coil can be positioned at the end
of a current path, or in the middle. This also applies to a T branch. Positioning in a
“closed” parallel branch is not permissible.

Simple and negating coils can be connected in series or – at the end of a current
path – in parallel. Simple and negating coils do not change the result of logic oper-
ation (the “current flow”).

Fig. 7.12 shows the possible arrangements for a simple coil. In the current path, the
#Display.nofan, #Display.onefan and #Display.twofans tags are controlled by simple
coils. Two coils are connected in parallel at the end of the current path and respond
in identical manners.

7.3.2 Set and reset coils

A set or reset coil is used to assign signal state “1” or “0” to a binary tag in the case
of a result of logic operation “1”. A result of logic operation “0” has no effect.

Fig. 7.10 Example of comparison contacts

7.3 Programming memory functions with LAD

297

For programming, drag the coil with the mouse from the program elements cat-
alog under Basic instructions > Bit logic operation to the working area. Gray boxes
indicate the permissible positioning, a green box identifies the position at which
the coil will be inserted if you release the mouse button.

Fig. 7.11 Overview of the coils described in this chapter

Counter operand

Counter operand

Count value

SIMATIC
counter function
setting

Count
FCT: CU Count up

CD Count down

SZ

FCT

Negating coil

Reset coil

Binary tag

Binary tag

Binary tag

Binary tag

Simple coil

Set coil

Multiple
setting

IEC timer function
start

SIMATIC
timer function
start

IEC timer function
reset

SIMATIC
timer function
reset

Multiple
resetting

Duration
setting

FCT: TP Pulse time
TON ON delay
TOF OFF delay
TONR Accumulate time

DT: TIME, LTIME

FCT: SP Pulse generation
SE Stretched pulse
SD ON delay
SS Retentive ON delay
SF OFF delay

SET_BF

FCT
DT

FCT

R

RT

RESET_BF

PT

Pulse on
positive edge

Pulse on
negative edge

Binary tag Binary tag

S

P

R

N
Edge trigger flag Edge trigger flag

Binary tag

Timer function

Timer operand

Timer operand

Timer function

Binary tag

Timer function

Quantity

Duration

Duration

Quantity

Duration

Coils

7 Ladder logic LAD

298

Set and reset coils require a preceding logic operation and terminate a current
path. The reset coil can also be used to reset a SIMATIC timer/counter function.

In Fig. 7.13, #Fan1.start with signal state “1” sets the #Fan1.drive tag. With signal
state “1” at #Fan1.stop, #Fan1.drive is reset. As a result of positioning of the reset
coil after the set coil, the memory response is “reset dominant”: If both contacts
have signal state “1”, #Fan1.drive is reset or remains reset.

7.3.3 Retentive response due to latching

The memory function in a circuit diagram is usually realized through latching of
the output to be triggered. This realization can also be integrated into the ladder
logic. However, compared to the memory box, it has the disadvantage that the
memory function is not recognized immediately. The latching principle is simple:
The binary tag triggered by the coil is scanned, and this scan (the “coil contact”) is
connected in parallel to the set condition.

Fig. 7.14 shows both types of memory function through latching, namely set dom-
inant and reset dominant. Upper current path: If #Fan2.start closes, #Fan2.drive has
signal state “1” and closes the contact parallel to #Fan2.start. If #Fan2.start then
opens again, #Fan2.drive remains switched on. #Fan2.drive is switched off if
#Fan2.stop opens. If signal state “1” is present at both #Fan2.start and #Fan2.stop,

Fig. 7.12 Example of arrangement for a simple coil

Fig. 7.13 Example of set and reset coils

7.3 Programming memory functions with LAD

299

no current flows into the coil (reset dominant). This situation looks different in the
bottom current path: If signal state “1” is present at both #Fan3.start and
#Fan3.stop, current flows into the coil (set dominant).

7.3.4 Edge evaluation with pulse output in the ladder logic

The P coil and N coil are available for edge evaluation with coils. The binary tag
located above the P coil is set for the duration of one program cycle if the signal
state changes from “0” to “1” before the P coil (rising edge). For the N coil, the
binary tag located above the coil is set for the duration of one program cycle for a
falling edge.

The binary tag present above the coil is referred to as a “pulse flag”. Suitable for
pulse flags are, for example, tags from the bit memory or data area. The edge trig-
ger flag is present under the coil and must be a different tag for each edge evalua-
tion (see Chapter 12.3 “Edge evaluation” on page 515).

Edge coils can be arranged inside a current path or they can terminate a current
path. Edge coils can also be programmed following a T branch. A direct connection
to the left-hand power rail does not make sense.

If additional program elements follow an edge coil, for example if the edge coil has
been placed inside a current path, then the signal state at the input of the edge coil
is passed on directly to the output of the coil.

In Fig. 7.15, if “current” is flowing through the series connection of #Enable and
#Measurement.Registered, the #Measurement.Load tag has signal state “1” for the
duration of one program cycle. The #Measurement.Load_EM tag is the edge trigger
flag for edge evaluation.

7.3.5 Multiple setting and resetting (filling the bit array) in the ladder logic

If the result of logic operation is “1”, the SET_BF coil sets the bits of a bit array to
signal state “1”. The bit array is defined by the start tag above the coil and the num-

Fig. 7.14 Retentive response due to latching

7 Ladder logic LAD

300

ber of bits indicated below the coil. If the result of logic operation is “1”, the
RESET_BF coil resets the bits in the bit array. With result of logic operation “0”, there
is no response in both cases.

SET_BF and RESET_BF terminate the current path. If the coils are positioned directly
on the left-hand power rail, the function is always executed.

In Fig. 7.16, with a rising edge from #Acknowledge, 16 bits from “Data.LAD”.
Alarm_bit[0] are set to signal state “1” and 8 bits from “Output 1” are reset to signal
state “0”. “Data.LAD”.Alarm_bit is a tag with the data type ARRAY OF BOOL, “Output
1” is a bit in the outputs operand area.

7.3.6 Coils with time response

Starting a SIMATIC timer function

A coil with a time response starts a SIMATIC timer function with a response as
described in Chapter 12.4 “SIMATIC timer functions” on page 524. Available are
starting as pulse (SP), as extended pulse (SE), as ON delay (SD), as retentive ON
delay (SS), and as OFF delay (SF).

For programming, drag the corresponding with the mouse from the program ele-
ments catalog under Basic instructions > Timer operations to the working area.

Fig. 7.15 Edge evaluation with coils (“pulse flag”)

Fig. 7.16 Filling a bit array with SET_BF and RESET_BF

7.3 Programming memory functions with LAD

301

A coil with time response requires a preceding logic operation. It can be placed in
the middle or at the end of a current path and in a T branch. The timer operand
from the SIMATIC timer functions (T) area is located above the coil. The time value
is specified in the data format S5TIME underneath the coil.

A reset coil (R) can be used to reset a SIMATIC timer function. You can find the coil
in the program elements catalog under Basic instructions > Bit logic operation.
The reset coil can be positioned on the left-hand power rail, in the middle or at the
end of a current path, and in a T branch.

In Fig. 7.17, the SIMATIC timer function “Fan1.on-delay” is started by the positive
edge of #Fan1.start in the upper current path. Following expiry of the duration
(3 s in the example), the fan #Fan1.drive is switched on. If #Fan1.start has signal
state “0” prior to expiry of the duration, the fan is not switched on.

Controlling an IEC timer function

A coil with a time response controls an IEC timer function with a response as
described in Chapter 12.4 “SIMATIC timer functions” on page 524. Starting as pulse
(TP), as ON delay (TON), as OFF delay (TOF), as accumulating ON delay (TONR), and
loading a time function with a duration (PT) and resetting a time function (RT) are
available.

For programming, drag the corresponding with the mouse from the program ele-
ments catalog under Basic instructions > Timer operations to the working area.

A coil with time response requires a preceding logic operation. It can be placed in
the middle or at the end of a current path and in a T branch. The name of the timer
function, either the data block for a single instance or the instance name for a local
instance, is located above the coil. The function for the time response and the data
type of the duration, which is specified under the coil, are located in the coil.

With the PT coil, an IEC timer function is loaded with the duration that is indicated
under the coil. The RT coil resets an IEC timer function. The RT coil and the PT coil

Fig. 7.17 Example of coils with time response

7 Ladder logic LAD

302

can be positioned on the left-hand power rail, in the middle or at the end of a cur-
rent path, and in a T branch.

In Fig. 7.17, the timer function “Fan2.OffDelay” is started as OFF delay by a positive
edge at #Fan2.start in the bottom current path. The coil #Fan2.drive has signal state
“1” if #Fan2.start is switched on and 10 seconds after the switch-off.

7.3.7 Coils with counter response

Controlling a SIMATIC counter function

A coil with a counter response controls a SIMATIC counter function with a response
as described in Chapter 12.6 “SIMATIC counter functions” on page 545. Setting a
counter (SC), counting up (CU), and counting down (CD) are available.

For programming, drag the corresponding coil with the mouse from the program
elements catalog under Basic instructions > Counter operations to the working area.

A coil with counter response requires a preceding logic operation. It can be placed
in the middle or at the end of a current path and in a T branch. The counter operand
from the SIMATIC counter (C) area is located above the coil. The count value in data
format WORD is specified underneath the SC coil, where the numerical range
extends from W#16#0000 to W#16#0999 or from C#000 to C#999.

The reset coil (R) can be used to reset a SIMATIC counter function. You can find the
reset coil in the program elements catalog under Basic instructions > Bit logic
operation. The reset coil can be positioned on the left-hand power rail, in the middle
or at the end of a current path, and in a T branch.

Fig. 7.18 counts the switch-on processes of #Fan1.start with the SIMATIC counter
function “Fan1.quantity”. The #Acknowledge signal resets the counter to 0.

Fig. 7.18 Example of coils with counter response

7.4 Programming Q boxes with LAD

303

7.4 Programming Q boxes with LAD

Q boxes have a binary output named “Q”, which can be linked further. Q boxes are
used to represent memory functions, edge evaluations, and timer and counter
functions (Fig. 7.19).

With Q boxes, the first binary input (and in certain cases the associated parameter)
must be connected; connection of the other inputs and outputs is optional. The
binary inputs of Q boxes cannot be directly connected to the left-hand power rail.

When using Q boxes as program elements, you can:

b Program one single box per network, either within the current path or as its ter-
mination

Fig. 7.19 Overview of Q boxes available with LAD

RS memory boxSR memory box

Evaluation for
falling edge

Evaluation for
rising edge

S_PULSE,
S_PEXT,
S_ODT,
S_ODTS,
S_OFFDT

S_CUD,
S_CU,
S_CD

SIMATIC timer functions

SIMATIC counter functions

IEC timer functions
TP, TON, and TOF

IEC counter functions
CTUD, CTU, and CTD

Binary tag Binary tag

SIMATIC timer

SIMATIC counter

SR RS

S_PULSE

S_CUD

S R

S

CU

TV

CD

R1 S1

R

S

PV

R

Q Q

Q

Q

BI

CV

BCD

CV_BCD

Edge trigger flag Edge trigger flag

P_TRIG N_TRIG

CLK CLKQ Q

TON

CTUD

TON

CTUD

IN

CU

R

IN

CU

R

PT

CD

LOAD

PV

PT

CD

LOAD

PV

Q

QU

CV

Q

QU

CV

ET

QD

ET

QD

"Single instance"

"Single instance"

#Local instance

#Local instance

Boxes with Q output

TimeTime

Int Int

7 Ladder logic LAD

304

b Arrange boxes in series by connecting the Q output of one box to a binary input
of the following box

b Position boxes following T branches and in branches which commence on the
left-hand power rail

7.4.1 Memory boxes in the ladder logic

There are two versions of the memory function as box: as SR box (reset dominant)
and as RS box (set dominant). With reset dominant, the memory function is reset
or remains reset if both inputs have signal state “1”. With set dominant, the mem-
ory function is set or remains set in such a case. The response of the memory box
is described in Chapter 12.2 “Memory functions” on page 510.

For programming, drag the SR or RS symbol with the mouse from the program ele-
ments catalog under Basic instructions > Bit logic operation to the working area.

Fig. 7.20 shows a binary scaler: Each positive edge of the #Bin_input tag changes the
signal state of #Bin_output. Thus half the input frequency is present at the output.

7.4.2 Edge evaluation of current flow

The edge evaluation with Q boxes registers a change in the current flow prior to the
box. If the signal state changes from “0” to “1” (rising edge) at the CLK input of the
P_TRIG box, signal state “1” is present at the Q output for the duration of one pro-
gram cycle. If the result of the logic operation changes from “1” to “0” (falling edge)
at the CLK input of the N_TRIG box, the Q output is activated for the duration of one
program cycle. The response of the boxes for edge evaluation is described in
Chapter 12.2 “Memory functions” on page 510.

Fig. 7.20 Example of binary scaler

7.4 Programming Q boxes with LAD

305

For programming, drag the P_TRIG or N_TRIG symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Bit logic operation to the working
area.

The edge boxes require a preceding logic operation and may only be positioned
within a current path.

In Fig. 7.21, #Measurement.Memory is set if #Measurement_temperature reaches or
exceeds an upper limit. In turn, the #Measurement.Memory tag sets the
#Measurement.Message memory. Setting is carried out in both cases by a pulse with
positive edge so that acknowledgment is also possible with a set signal present.
Acknowledgment is also carried out by a pulse so that, with an acknowledgment
signal present, the measured value memory and the alarm memory are set if the
upper limit is exceeded again.

7.4.3 SIMATIC timer functions in the ladder logic

A SIMATIC timer function can be started as pulse (S_PULSE), as extended pulse
(S_PEXT), as ON delay (S_ODT), as retentive ON delay (S_ODTS), or as OFF delay
(S_OFFDT). A detailed description of the timer response is provided in Chapter 12.4
“SIMATIC timer functions” on page 524.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Timer operations to the working
area. You can subsequently change the function using a drop-down list which you
can open using the small yellow triangle when the box is selected.

The start input S and the time value TV must be connected; connection of the other
box inputs and outputs is optional.

Fig. 7.21 Example of edge evaluations of current flow

7 Ladder logic LAD

306

Fig. 7.22 shows a switch-on and switch-off delay. The timer function “Fan3.on-
delay” is started by #Fan3.start. The output Q has signal state “1” after 3 s, which
starts the timer function “Fan3.off-delay”. At the same time, the #Fan3.drive tag is
set by the Q output of the box. The Q output continues to have signal state “1” for
10 s after #Fan3.start has signal state “0”.

7.4.4 SIMATIC counter functions in the ladder logic

A SIMATIC counter function is available as up counter (S_CU), as down counter
(S_CD), or as up/down counter (S_CUD). A detailed description of the counter
response is provided in Chapter 12.6 “SIMATIC counter functions” on page 545.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Counter operations to the working
area. You can subsequently change the function using a drop-down list which you
can open using the small yellow triangle when the box is selected.

At least one of the counter inputs (CU or CD) must be connected; connection of the
other box inputs and outputs is optional.

Fig. 7.23 shows a down counter. The name of the SIMATIC counter used is posi-
tioned above the counter box. #Quantity_set sets the counter to the count value
W#16#0120. The count value is reduced by 1 with each pulse from #Workpart_iden-
tified. Once zero has been reached, #Quantity_reached is set.

Fig. 7.22 Example of SIMATIC timer functions in the ladder logic

Fig. 7.23 Example of SIMATIC counter functions in the ladder logic

7.4 Programming Q boxes with LAD

307

7.4.5 IEC timer functions in the ladder logic

An IEC timer function is available as pulse generation (TP), as ON delay (TON), as
OFF delay (TOF), or as accumulating ON delay (TONR). A detailed description of the
timer response is provided in Chapter 12.5 “IEC timer functions” on page 539.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Timer operations to the working
area. When positioning, you select either as single instance or – possible in a func-
tion block – as local instance (multi-instance). The instance data block generated
automatically when selecting as a single instance is saved in the project tree under
Program blocks > System blocks > Program resources.

You can subsequently change the timer function using a drop-down list which you
can open using the small yellow triangle when the box is selected (not with TONR).

With the IEC timer functions, the IN input must have a preceding logic operation
and a duration must be connected to the PT input. The Q output can be supplied
with a coil, but cannot be linked further. You can also directly access the output
parameters using the instance data, for example with “<DB_name>”.Q or
“<DB_name>”.ET for a single instance.

Fig. 7.24 shows the IEC timer function #MessageDelay, which saves its data as local
instance in the instance data block of the calling function block. If the #Measure-
ment_too_high tag has signal state “1” for longer than 10 s, #Message_too_high is
set.

7.4.6 IEC counter functions in the ladder logic

An IEC counter function is available as up counter (CTU), as down counter (CTD), or
as up/down counter (CTUD). A detailed description of the counter response is pro-
vided in Chapter 12.7 “IEC counter functions” on page 553.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Counter operations to the working
area. When positioning, you select either as single instance or – possible in a func-
tion block – as local instance (multi-instance). The instance data block generated
automatically when selecting as a single instance is saved in the project tree under
Program blocks > System blocks > Program resources.

Fig. 7.24 Example of an IEC timer function

7 Ladder logic LAD

308

You can subsequently change the timer function using a drop-down list which you
can open using the small yellow triangle when the box is selected.

With the IEC counter functions, at least one counter input (CU or CD) must have a
preceding logic operation. Connection of the other box inputs and outputs is
optional. A coil can be positioned at the top output QU, but not a further logic oper-
ation. The QD output cannot be supplied, but can be scanned indirectly via the cor-
responding component QD of the counter structure. For the QU output, this would
be the component QU.

You can also directly access the output parameters using the instance data, for
example with “<DB_name>”.QD.

Fig. 7.25 shows the IEC counter function #LockCounter, which is called as a local
instance. It has saved its data in the instance data block of the calling function block.
A component of the counter can be addressed globally with the name of the
instance and the component name, for example #LockCounter.CV. The example
shows the passages through a lock, either forward or backward.

7.5 Programming EN/ENO boxes with LAD

EN/ENO boxes have an enable input EN and an enable output ENO. The enable input can
be used to control processing of the box. If an error occurs while the box is being pro-
cessed, this is displayed at the enable output. Fig. 7.26 provides an overview of the
“basic” functions implemented with EN/ENO boxes.

Fig. 7.25 Example of IEC counter functions

7.5 Programming EN/ENO boxes with LAD

309

The parameters of the EN/ENO boxes must all be connected. The enable input EN
and the enable output ENO are not parameters of the box function. They are used
for processing boxes and are added to the box function by the program editor.

Fig. 7.26 Overview of boxes with enable input EN and enable output ENO

MOVE

R_TRIG

Data type
SHR

DT to DT
CONV T_CONV

Real
EXP

Data type
ADD

DT to DT

Data type

S_CONV

XOR CONCAT
Data type

EN

EN

EN

EN EN

ENEN

EN

EN EN

IN

CLK

IN

N

IN IN

ININ1

IN

IN1 IN1

IN2

IN2 IN2

ENO

ENO

ENO

ENO ENO

ENOENO

ENO

ENO ENO

OUT1

Q

OUT

OUT OUT

OUTOUT

OUT

OUT OUT

Transfer functions

Edge evaluations

Shift functions

Conversion functions
for numerical values

Conversion functions
for time values

Arithmetic functions

Conversion functions
for strings

Logic functions String functions

Math functions

MOVE, BLKMOV, UBLKMOV,
MOVE_BLK, UMOVE_BLK,
FILL, FILL_BLK, UFILL_BLK,
SWAP

R_TRIG, F_TRIG

SHL, SHR, ROL, ROR

CONVERT, ROUND, CEIL,
FLOOR, TRUNC

T_CONV

ADD, SUB, MUL, DIV, MOD,
INC, DEC, T_ADD, T_SUB,
T_DIFF, T_COMBINE

S_CONV

AND, OR, XOR, INV, DECO,
ENCO, SEL, MUX, DEMUX,
MIN, MAX, LIMIT

LEN, CONCAT, DELETE,
LEFT, RIGHT, MID, FIND,
INSERT, REPLACE

SIN, COS, TAN, ASIN, ACOS, ATAN,
SQR, SQRT, LN, EXP, EXPT, FRAC,
NEG, ABS

Boxes with EN input and ENO output

By default the ENO output is not displayed when an EN/ENO box is placed on the working area. The
display of the ENO output can be selected via the shortcut menu, and the program editor then also
generates the required statement sequence.

DT to DT

7 Ladder logic LAD

310

By default, the majority of EN/ENO boxes are displayed without an ENO output when
they are moved from the program elements catalog to the working area. Only when
you select the command Generate ENO from the shortcut menu when the box is
selected will the ENO output be displayed and the required statements will be gen-
erated during compilation. You can deselect an ENO output using the command
Do not generate ENO from the shortcut menu.

A detailed description of EN and ENO and how the EN/ENO mechanism can be used
with self-created blocks can be found in Chapter 7.6.4 “EN/ENO mechanism in the
ladder logic” on page 320. The block calls in the ladder logic, which are also shown
as EN/ENO boxes, are described in Chapter 14.2 “Calling of code blocks” on page
631.

7.5.1 Edge evaluation with an EN/ENO box

The R_TRIG box and the F_TRIG box are available for edge evaluation with an
EN/ENO box. A detailed description of the edge evaluation is provided in
Chapters 12.3 “Edge evaluation” on page 515 and 12.3.5 “Edge evaluation with an
EN/ENO box (LAD, FBD)” on page 520.

For programming, drag one of the edge evaluations with the mouse from the pro-
gram elements catalog under Basic instructions > Bit logic operations to the working
area. When you release the mouse button, you will be prompted to specify a data
area for the instance data. This can be a data block or, if the edge evaluation is pro-
grammed in a function block, a local instance (multi-instance) in the instance data
block of the function block.

In Fig. 7.27, the Start tag is monitored for a rising edge. The instance data is located
in the local data of the function block. It consists of the input CLK (in the example:
“Start” tag), the output Q, and the edge trigger flag. The output Q can also be
addressed directly: For a single instance, specify the data block (example:
“DB_name”.Q). For a local instance, specify the instance name (example:
#Instance_name.Q, in the figure: #Edge_Start.Q).

7.5.2 Transfer functions in the ladder logic

A detailed description of the transfer functions is provided in Chapter 13.2 “Trans-
fer functions” on page 559.

Fig. 7.27 Example of edge evaluation with EN/ENO box in the ladder logic

7.5 Programming EN/ENO boxes with LAD

311

The transfer function MOVE transfers the value of one tag to one or more other tags.
MOVE_BLK and UMOVE_BLK transfer individual components from one ARRAY tag
to another. BLKMOV and UBLKMOV transfer individual tags or absolutely addressed
data areas. FILL_BLK and UFILL_BLK fill components of an ARRAY tag with a value.
FILL fills a tag or an absolutely addressed data area with a value. SWAP swaps the
order of the bytes in a tag.

For programming, drag the symbol of the transfer function with the mouse from
the program elements catalog under Basic instructions > Move operations to the
working area.

In Fig. 7.28, the Messages tag is transferred from the data block “Data.LAD” to the
“Alarm bits” tag in the bit memory address area.

7.5.3 Arithmetic functions in the ladder logic

A CPU 1500 provides arithmetic functions for numerical values and for time values.

Arithmetic functions for numerical values

An arithmetic function for numerical values implements the basic arithmetical
operations with the data formats USINT, UINT, UDINT, ULINT, SINT, INT, DINT, LINT,
REAL, and LREAL in the user program. A detailed description of these arithmetic
functions is provided in Chapter 13.4 “Arithmetic functions” on page 574.

For programming, drag one of the arithmetic functions (ADD, SUB, MUL, DIV,
or MOD) with the mouse from the program elements catalog under Basic
instructions > Math functions to the working area. You can set the function and data
types using drop-down lists which you can open using the small yellow triangle
when the box is selected. The data type is also automatically set when the first
actual value is created.

In Fig. 7.29, the upper limit of a measured value is monitored. A hysteresis is intro-
duced to ensure that the #Measurement_too_high alarm does not “pulsate” when
the measured value changes slightly in the upper limit range. The alarm #Measure-
ment_too_high is only canceled when the measured value has dropped again below
the upper limit by the magnitude of the hysteresis.

Fig. 7.28 Example of a transfer function in the ladder logic

7 Ladder logic LAD

312

Arithmetic functions for time values

An arithmetic function for time values adds two durations or one duration to a time
(T_ADD), subtracts two durations or one duration from a time (T_SUB), formulates
the difference of two times (T_DIFF), or combines a date and a time-of-day into a
time (T_COMBINE). A detailed description of these arithmetic functions is provided
in Chapter 13.4 “Arithmetic functions” on page 574.

For programming, drag one of the functions (T_ADD, T_SUB, T_DIFF, or T_COM-
BINE) with the mouse from the program elements catalog under Extended instruc-
tions > Date and time-of-day to the working area. You can set the data types using
drop-down lists which you can open using the small yellow triangle when the box
is selected.

7.5.4 Math functions in the ladder logic

The math functions comprise, for example, trigonometric functions, exponential
functions, and logarithmic functions with tags in the data formats REAL and LREAL.
A detailed description of these math functions is provided in Chapter 13.5 “Math
functions” on page 578.

For programming, drag one of the math functions (SIN, COS, TAN, ASIN, ACOS,
ATAN, SQR, SQRT, LN, EXP, EXPT, FRAC, NEG, ABS) with the mouse from the program
elements catalog under Basic instructions > Math functions to the working area. You
can set the function and data types using drop-down lists which you can open using
the small yellow triangle when the box is selected.

Fig. 7.30 shows the calculation of the reactive power according to the equation
#Reactive_power = #Voltage × #Current × sin(#phi).

Fig. 7.29 Example of an arithmetic function in the ladder logic

7.5 Programming EN/ENO boxes with LAD

313

7.5.5 Conversion functions in the ladder logic

The conversion functions convert the data formats of tags. A detailed description of
the conversion functions is provided in Chapter 13.6 “Conversion functions” on
page 586.

For programming, drag one of the conversion functions (CONVERT, ROUND, CEIL,
FLOOR, TRUNC, SCALE_X, or NORM_X) with the mouse from the program elements
catalog under Basic instructions > Conversion operations to the working area. You
can set the function and data types using drop-down lists which you can open using
the small yellow triangle when the box is selected. If the first actual value created
has a permissible data type, the data type is also set automatically.

The conversion function T_CONV for data type conversion of date/time can be found
in the program elements catalog under Extended instructions > Date and time-of-day.
The conversion function for data type conversions of character strings (S_CONV,
STRG_VAL, VAL_STRG, CHARS_TO_STRG, STRG_TO_CHARS, ATH, HTA) can be found
in the program elements catalog under Extended instructions > String + Char.

Fig. 7.31 shows an example of the conversion functions. A measured value present
in data format REAL is first converted into data format DINT and then converted
into the BCD32 format.

Fig. 7.30 Example of math functions in the ladder logic

Fig. 7.31 Example of the conversion functions in the ladder logic

7 Ladder logic LAD

314

7.5.6 Shift functions in the ladder logic

The shift functions shift the content of tags bit-by-bit to the left or right. A detailed
description of the shift functions is provided in Chapter 13.7 “Shift functions” on
page 603.

For programming, drag one of the shift functions (SHL, SHR, ROL, or ROR) with the
mouse from the program elements catalog under Basic instructions > Shift and
rotate to the working area. You can set the function and data types using drop-down
lists which you can open using the small yellow triangle when the box is selected.
The data type is also automatically set when the first actual value is created.

In Fig. 7.32, the respective three decades of two numbers present in BCD16 format
of a SIMATIC counter are joined without gaps. Using the shift function SHL – set to
data type DWORD! – the #Quantity_high tag is shifted to the left by 12 bits, corre-
sponding to three decades. A small square on the input parameter IN indicates that
the data type of the applied tag (WORD in the example) does not agree with the data
type of the function (DWORD in the example) and will be converted implicitly.

The bottom three decades (the #Quantity_low tag) are subsequently added by a dou-
bleword logic operation according to OR and output to the #Quantity_display tag.

7.5.7 Logic functions in the ladder logic

The logic functions include the word logic operations AND, OR and XOR, the inver-
sion INVERT, the coding functions DECO and ENCO, the selection functions SEL,
MUX, DEMUX, MIN, MAX, and the limiting function LIMIT. A detailed description of
the logic functions is provided in Chapter 13.8 “Logic functions” on page 607. In the
program elements catalog, the logic functions are located under Basic instructions >
Word logic operations (AND, OR, XOR, INVERT, DECO, ENCO, SEL, MUX, and DEMUX)
and under Basic instructions > Math functions (MIN, MAX, and LIMIT).

Word logic operations

The word logic operations link each bit of two tags according to an AND, OR, or
exclusive OR function. For programming, drag one of the word logic operations
(AND, OR, XOR, INV) with the mouse from the program elements catalog under
Basic instructions > Word logic operations to the working area. You can set the func-

Fig. 7.32 Example of the shift functions in the ladder logic

7.5 Programming EN/ENO boxes with LAD

315

tion (AND, OR and XOR with AND, OR and XOR, INV is fixed) and the data type
(WORD and DWORD with AND, OR and XOR, INT and DINT with INV) via drop-down
lists which you can open using the small yellow triangle when the box is selected.
The data type is also automatically set when the first actual value is created.

Fig. 7.33 shows how you can program 32 edge evaluations simultaneously for ris-
ing and falling edges. The alarm bits are collected in a doubleword Messages, which
is present in data block “Data.LAD”. The edge trigger flags Messages_EM are also
present in this data block. If the two doublewords are linked by an XOR logic oper-
ation, the result is a doubleword in which each set bit represents a different assign-
ment of Messages and Messages_EM, in other words: the associated alarm bit has
changed. In order to obtain the positive signal edges, the changes are linked to the
alarms by an AND logic operation. The bit is set for a rising signal edge wherever
the alarm and the change each have a “1”. This corresponds to the pulse flag of the
edge evaluation. If you do the same with the negated alarm bits – the alarm bits
with signal state “0” are now “1” – you obtain the pulse flags for a falling edge. At
the end it is only necessary for the edge trigger flags to track the alarms.

7.5.8 Functions for strings in the ladder logic

Character strings are tags with the data type STRING. With the functions for charac-
ter strings, parts of a character string can be extracted (LEFT, RIGHT, MID), inserted
(INSERT), replaced (REPLACE) or deleted (DELETE), two character strings can be
combined (CONCAT), and the length of a character string (LEN) or the position of a
character in a character string (FIND) can be determined.

Fig. 7.33 Example of word logic operations in the ladder logic

7 Ladder logic LAD

316

A detailed description of these functions is provided in Chapter 13.9 “Processing of
strings (data type STRING)” on page 615.

Fig. 7.34 shows the connection of the STRING tags #Station.Name and #Sta-
tion.Number to form the tag #Station.Identification. In the program elements cata-
log, the string functions are located under Extended instructions > String + Char.

7.6 Program control with LAD

You can influence execution of the user program by means of the program control
functions. You use jump functions to exit linear program execution and continue at
a different point in the block. Block call functions cause the continuation of program
execution in a different block. A block end function terminates the execution in the
block. The functions that are available in the ladder logic are shown in Fig. 7.35.

7.6.1 Jump functions in the ladder logic

A detailed description of the jump functions is provided in Chapter 14.1 “Jump
functions” on page 623.

Jump functions JMP and JMPN

To program a jump function JMP or JMPN, drag a jump coil with the mouse from the
program elements catalog under Basic instructions > Program control operations to
the working area. You define the jump label (the jump destination) using the jump
coil. To program the jump destination, use the mouse to drag the Label function to
the start of the network with which processing of the program is to be continued
from the program elements catalog under Basic instructions > Program control
operations and write the designation of the label into the box.

You can subsequently set the jump function (JMP or JMPN) via a drop-down list
which you can open using the small yellow triangle when the coil is selected.
You can also directly connect the coil with the jump function JMP to the left-hand
power rail. The jump is always carried out in this case (absolute jump). The jump
function JMPN always requires a preceding logic operation.

Fig. 7.34 Example of string functions in the ladder logic

7.6 Program control with LAD

317

It is only possible to jump within a block. A jump function cannot be programmed
in association with a T branch. Only one jump function or block end function is per-
missible per network.

Fig. 7.35 Overview of functions for program control in the ladder logic

Jump functions

Block calls Calling a function (FC)

Via EN the call can be controlled
depending on the RLO. The block can
return a group error message via ENO.
All parameters param_x must be supplied
with values.

Calling a function block (FB)

Via EN the call can be controlled
depending on the RLO. Via ENO the block
can return a group error message.

The parameters param_x are supplied
with values as required

Conditional block end if RLO = "1" or
absolute block end if connected to the left-
hand power rail.
The value of the return tag is transferred
to the ENO enable output.

Block end function

Functions for program control

FC_name

EN

param_1

...

param_2

...

param_3

...

ENO

Instance name

FB_name

EN

param_1

...

param_2

...

param_3

...

ENO

JMPN

JMP

RET

Destination

Destination

Return tag

Jump list

Jump distributor

JMP_LIST

SWITCH
Data type

EN

EN

K

K

==

==

DEST1

DEST1

ELSE

DEST0

DEST0

*

*

Conditional jump if RLO = "1" or absolute
jump if connected to the left-hand power
rail.

Conditional jump if RLO = "0".

Program branch:
Jump marks are specified at the DESTx
parameters to which a branch is made
depending on the value at parameter K.

Program branch:
Jump marks are specified at the DESTx
parameters to which a branch is made
depending on a comparison with the
value at parameter K.

7 Ladder logic LAD

318

Example of loop jump

Fig. 7.36 shows a jump function using a program loop as an example. In a #Quantity
array with 16 components from #Quantity[0] to #Quantity[15], the maximum value
is searched for. The tags #Index and #MaxValue are initialized with the value 0.
A comparison function in the program loop compares the value of #MaxValue with
the value of #Quantity[#Index]. If #MaxValue is less than #Quantity[#Index], it is
overwritten with the larger value of #Quantity[#Index]. #Index is then increased
by +1. As long as #Index is less than or equal to 15, it is jumped to the beginning of
the program loop (to the jump destination MaxSearch) and the program section is
executed again.

Jump list JMP_LIST

The jump list is represented as a box. The box is only processed if the EN input sig-
nal state is “1”. The value of parameter K (0 to 99) determined the box output whose
jump destination is jumped to. To program the jump list, drag the JMP_LIST func-
tion from the program elements catalog under Basic instructions > Program control
operations to the working area.

Jump distributor SWITCH

The jump distributor is represented as a box. The box is only processed if the
EN input signal state is “1”. The value of parameter K is compared with a value of

Fig. 7.36 Example of a conditional jump

7.6 Program control with LAD

319

one of the other input parameters. If the comparison is fulfilled, program execution
continues at the assigned jump destination. The comparison operations can be
selected from a drop-down list. To program a jump distributor, drag the SWITCH
function from the program elements catalog under Basic instructions > Program
control operations to the working area.

7.6.2 Block call functions in the ladder logic

Calling of a block is represented by an EN/ENO box. With a function (FC), the block
name is present quasi as a function name in the box; with a function block, the
instance name (the name of the instance data block or the name of the local
instance) is additionally present above the box. A detailed description of the block
calls is provided in Chapter 14.2 “Calling of code blocks” on page 631.

To call a code block, use the mouse to drag the block which has already been pro-
grammed from the project tree under Program blocks into the working area. With a
logic operation preceding the EN input you can structure the block call depending
on conditions.

The top network in Fig. 7.37 shows the call of a function (FC). The function name is

present as title in the call box. In the event of an error in the block (ENO is then “0”),
#Adder_error is set to “1” and a jump is made to the network with the Error label.

Fig. 7.37 Examples of functions for program control in the ladder logic

7 Ladder logic LAD

320

In the next network, the call of a function block is present as a single instance.
The name of the function block is present as the title in the call box, the instance
name – in this case the name of the instance data block – is present above the box.
If the block reports an error with ENO = “0”, the block is exited with the RET coil and
the value FALSE.

7.6.3 Block end function in the ladder logic

To program the block end function, drag the RET coil with the mouse from the pro-
gram elements catalog under Basic instructions > Program control operations to the
working area. Now define which value the ENO output of the exited block should
have. You select the RET coil and use the small yellow triangle to select the drop-
down menu item

b Ret, then it is the current result of logic operation RLO (the “current flow”,
i.e. signal state “1”),

b Ret True, then it is the signal state “1” (TRUE),

b Ret False, then it is the signal state “0” (FALSE),

b Ret Value, then it is the signal state that the return tag above the RET coil has.

A detailed description of the RET coil is provided in Chapter 14.3.1 “Block end func-
tion RET (LAD and FBD)” on page 636.

In the second network in Fig. 7.37, the block with the RET coil is left if the
“Totalizer.LAD” block signals an error. The ENO output of the exited block is set then
to signal state “0” (FALSE).

7.6.4 EN/ENO mechanism in the ladder logic

The EN/ENO mechanism allows the execution of program functions (statements)
and blocks that are dependent upon the logic operation (“current flow”). The
enable input EN enables the execution of a program function or a block. The enable
output (ENO) reports an error in program execution that occurred during runtime.
The enable input EN and the enable output ENO are both of data type BOOL.

EN and ENO are not function or block parameters; they are not declared in the block
interface. They are statement sequences which the program editor generates
before and after a function or block call.

EN/ENO mechanism with program functions (instructions)

The program editor in LAD displays program functions with the EN/ENO mecha-
nism using EN/ENO boxes. These are the functions described in Chapter 7.5 “Pro-
gramming EN/ENO boxes with LAD” on page 308, which can be found in the pro-
gram elements catalog in the Basic instructions tab.

If the enable input EN is connected to the left-hand power rail or to a preceding logic
operation which provides signal state “1” during runtime (if “current” is flowing),
then the function is carried out. If the signal state is “0” at the EN input, the function

7.6 Program control with LAD

321

is not carried out and program execution is continued with the next program ele-
ment.

The enable output ENO provides signal state “1” if the function has been executed
without any errors. If an error occurred during execution of the function or if signal
state “0” was present at the EN input, resulting in the function not being executed,
then the ENO output has signal state “0”.

The enable output ENO is not displayed by default in most functions, when you drag
them from the program elements catalog to the working area. Then no additional
program code is generated for error detection. Using the Generate ENO command
from the shortcut menu, you can switch on error detection for the selected func-
tion, then the ENO output will be displayed and an additional program code will be
generated during compilation. The ENO output is “deselected” using the command
Do not generate ENO.

Controlling a processing sequence

You can use the properties of EN and ENO to connect several boxes into a sequence,
where the enable output ENO leads to the enable input EN of the next box. In this
manner it is possible, for example, to “switch off” the complete sequence, or the
rest of the sequence is no longer processed if a box signals an error.

In the example in Fig. 7.38, neither of the boxes is processed if the #Enabling tag has
signal state “0”. If an error occurs during processing of the ADD box, for example a
numerical range is exceeded, the subsequent SQRT box is no longer processed.

EN/ENO mechanism with blocks

When calling blocks (FC functions and FB function blocks), the program editor
always displays the input EN and the output ENO, regardless of which program-
ming language the blocks are programmed in. In this context, blocks also include
all of the functions in the program elements catalog that are not listed in the
Basic instructions tab (called “system blocks” in the following).

If the enable input EN is connected to the left-hand power rail or to a preceding logic
operation which provides signal state “1” during runtime (if “current” is flowing),

Fig. 7.38 Example of series connection of ENO and EN with LAD

7 Ladder logic LAD

322

then the block is called. If the signal state is “0” at the EN input, a block call is not
carried out and the program execution is continued after the block call.

For “system blocks”, the enable output ENO provides signal state “1” if the function
has been executed without any errors. If an error occurred during execution of the
“system block” or if signal state “0” was present at the EN input, resulting in the
“system block” not being executed, then the ENO output has signal state “0”.

For self-written blocks (FC functions and FB function blocks), it is the responsibility
of the user to determine which signal state the enable output ENO provides.
By default – without user action – the ENO output signal state is “1”. In the event of
an error, if you would like to evaluate an error in the calling block, you must set the
ENO output to signal state “0”.

Controlling the ENO output for self-written blocks

The signal state of the ENO output is controlled in the ladder logic with the RET coil
(see Chapter 7.6.2 “Block call functions in the ladder logic” on page 319). In princi-
ple, you can end the execution in the block in the event of any detected error by
using the RET coil and the return value FALSE and then no longer execute the
remainder of the block program.

You can also keep a detected error in “error tags” and then, at the end of the block,
terminate the block with FALSE in the event of an error.

An example is shown in Fig. 7.39. In the event of an error, the tag #Measurement_ok
has signal state “0” and the tags #Adder_error and #Calculation_error have signal
state “1”. In the event of an error, the tag #temp_bool is set to signal state “0”. Upon
exiting the block with the RET coil, the signal state of the tag #temp_bool is assigned
to the ENO output.

Fig. 7.39 Control of the ENO output

8.1 Introduction

323

8 Function block diagram FBD

8.1 Introduction

This chapter describes programming with function block diagram. It provides
examples of how the program functions are represented in the function block dia-
gram. You can find a description of the individual functions, e.g. comparison func-
tions, in Chapters 12 “Basic functions” on page 503, 13 “Digital functions” on page
558, and 14 “Program control” on page 622.

Use of the program and symbol editor, which generally applies to all programming
languages, is described in Chapter 6 “Program editor” on page 247.

Function block diagram is used to program the contents of blocks (the user pro-
gram). What blocks are, and how they are created, is described in Chapters 5.3.1
“Block types” on page 155 and 6.3 “Programming a code block” on page 253.

8.1.1 Programming with FBD in general

You use FBD to program the control function of the programmable controller – the
user program (control program). The user program is organized in different types
of blocks. A block is divided into sections referred to as “networks”. Each network
contains at least one logic operation which can also have an extremely complex
structure. Each network is terminated by at least one box.

Fig. 8.1 shows the program editor's working window. The icons in the toolbar a can
be used to set the display of the working area, e.g. the display of the network com-
ments and additional functions such as monitoring of the program status. The
interface of the block s in the upper part of the working window lists the block
parameters and local data. The favorites bar d can be expanded by additional pro-
gram elements. It can also be hidden. Each block has a heading, the block title, and
a block comment f, which can be used to explain the function of the block. These
are followed by the first network with its number, heading and comment g.

The control function, i.e. the interconnection of the program elements, is displayed
in the working area h. The tags can be displayed absolutely, symbolically, or with
both addressing types j. Each box can be assigned a “free-form” comment k. The
tag information l shows the tags used in the network with the tag comments. Like
the network comment and the free comments, it can be hidden. With the zoom
setting ; the display of the control function can be adapted to the size of the work-
ing area.

8 Function block diagram FBD

324

Fig. 8.1 Working window of the program editor for FBD programming

8.2 Programming binary logic operations with FBD

325

The program editor constructs an FBD network from left to right: Position the first
program element underneath the network comment and insert further program
elements at the inputs and outputs. The boxes with binary logic operations can be
extended by additional inputs. Box outputs cannot be directly connected to each
other.

A logic operation must always be terminated, for example by an assignment.
The assignment controls a binary tag using the result of the logic operation.

“Open” parallel branches can lead out from the top logic operation and not be
“wired back” to the top logic operation; these are known as “T branches”. In these
T branches, there are certain limitations with regard to which permissible program
elements can be selected.

A block is not terminated by a special network or function, you simply finish the
program input. If additional rules apply to the arrangement of special FBD ele-
ments, these are described in the corresponding sections.

8.1.2 Program elements of the function block diagram

Fig. 8.2 shows which types of FBD elements exist: Boxes with binary logic operations
and standard boxes for processing binary signals, Q boxes for implementing mem-
ory, timer, and counter functions, and EN/ENO boxes for “complex” functions such
as arithmetic functions.

Most program elements must be provided with tags or operand addresses at the
box inputs and outputs. It is best if you initially position all program elements in a
logic operation and subsequently label them.

8.2 Programming binary logic operations with FBD

The binary logic operations are carried out in the function block diagram using the
AND, OR, and exclusive OR boxes. The binary tags, e.g. the inputs, can be scanned
for signal state “1” or signal state “0” before the result of the scan is linked further.
The binary results of other boxes can also be included, e.g. the evaluation of a signal
edge or the comparison of two digital tags (Fig. 8.3).

8.2.1 Scanning for signal states “1” and “0”

The binary functions scan the binary tags at the function inputs before they link the
signal states together. The scan can be made for signal state “1” or “0”. When scan-
ning for signal state “1”, the function input leads directly to the box. You can recog-
nize the scanning for signal state “0” by means of the negation circle at the input of
the function.

The example in Fig. 8.4 shows the two “Start” and “Stop” pushbuttons. When
pressed, they output the signal state “1” in the case of an input module with sinking
input. The SR function is set or reset with this signal state.

8 Function block diagram FBD

326

The “/Fault” signal is not active in the normal case. Signal state “1” is then present
and is negated by scanning for signal state “0”, and the SR function therefore
remains uninfluenced. If “/Fault” becomes active, the SR function is to be reset.
The active signal “/Fault” delivers signal state “0”, which by scanning for signal
state “0” resets the SR function as signal state “1”.

8.2.2 Programming a binary logic operation in the function block diagram

To program a binary logic operation, drag the corresponding symbol (&, >=1, X)
with the mouse from the program elements catalog under Basic instructions >
Bit logic operations to the working area. If a logic operation is already present in the
working area, the program editor indicates with small gray boxes where the logic

Fig. 8.2 Overview of program elements of the function block diagram

The binary control function is implemented by AND, OR and exclusive OR
boxes. The box inputs scan the signal state of the binary tag. There are also
scans with special functions such as edge evaluation ("passing contact") or
the comparison of two digital tags which delivers a binary result.

The standard boxes save the binary result of logic operation. They can be
positioned in the middle or at the end of a logic operation. Assignments
save the result of logic operation in binary tags. There are also boxes with
special functions such as edge evaluation of the result of logic operation.

Boxes with a Q output are referred to as "Q boxes". These can have multiple
inputs, as well as extra outputs in addition to the Q output. Examples of
these boxes are the memory functions and the timer and counter
functions.

Processing of these boxes can be enabled by means of the enable input EN.
The enable output ENO signals whether processing has been completed
without errors. The boxes can have multiple inputs and outputs. Examples
of these boxes are the math functions or the functions for conversion of the
data type of tags.

The block calls represent the change in processing to a different block. The
box represents the called block with its input and output parameters. The
block called with the box is processed; processing is subsequently
continued with the next function following the block call.

Function

Function

Function

Function

Block

Q

OUT

OUT1

ENO

OUT2

ENO

IN1

EN

EN

IN2

IN2

IN2

IN1

IN1

Data

Binary functions

Standard boxes

Boxes with Q output

Boxes with EN input and ENO output

Block calls

*

8.2 Programming binary logic operations with FBD

327

Fig. 8.3 Overview of binary logic operations in the function block diagram

Fig. 8.4 Scanning for signal states “1” and “0”

Binary
tag

Binary tag

Floating-point tag

Binary tag

Floating-point tag

Binary
tag

AND function OR function

Negation

Exclusive OR function

Comparison function

Positive edge
of a binary tag

Scan for "floating-
point value valid"

Negative edge
of a binary tag

Scan for "floating-
point value invalid"

Scan for
signal state "1"

Scan for
signal state "0"

Edge trigger flag Edge trigger flag

Digital
tag 1

Digital
tag 2

Binary logic operation functions

& >=1 X

Data type
Function

P

OK

N

NOT_OK

"Fan"

When pressed, the "Start" and
"Stop" pushbuttons switch the
fan on and off. They are "1-
active" signals.
If "/Fault" becomes active, the
fan is to be switched off and
remain off. "/Fault" is a "0-
active" signal. In order to reset
the SR function with signal
state "1", this input is scanned
for signal state "0".
In the example, the 0-active
signal is identified by a slash
in front of the name.

%I1.3 %I1.2 %I1.1

%Q4.1

"Start" L+

M

"Stop""/Fault"

Example of scans for signal state "1" and signal state "0"

SR

>=1

S

R1 Q*

The asterisk at the bottom input of a
function box indicates the expansion
option for further inputs.

8 Function block diagram FBD

328

operation may be positioned and with a green box where it is positioned when you
“let go”.

A binary logic function has two inputs as standard. If you select the function box
when programming and then select the Insert input command in the shortcut menu
with the right mouse button, or more simply: click on the asterisk with the left
mouse button, then the program editor expands the function block by a further
input.

To program a scan for signal state “0”, drag the negation symbol (invert RLO) with
the mouse from the program elements catalog under Basic instructions > General to
a box input. In the same manner you can convert a scan for signal state “0” into a
scan for signal state “1” or negate the result of logic operation between the boxes.

You connect a binary tag to the input of a binary logic operation. This can be an
input, output, bit memory or data bit, a SIMATIC timer/counter function, or the
binary output of another function box. Assignment with a constant (TRUE or FALSE)
is not permissible.

You can connect further binary function boxes to the output of a binary logic oper-
ation. To assign the result of logic operation of a function box to a binary tag, posi-
tion an assign box at the output which you fetch in the program elements catalog
under Basic instructions > Bit logic operations.

8.2.3 AND function in the function block diagram

An AND function is fulfilled if all inputs have the scan result “1”. A description of the
AND function is provided in Chapter 12.1.3 “AND function, series connection” on
page 507.

Fig. 8.5 shows an example of AND functions. The first AND function scans the
#Fan1.works tag for signal state “1” and the #Fan2.works tag for signal state “0”.
The two results of the scans are linked according to an AND logic operation. The
AND function is fulfilled (delivers signal state “1”) if only fan 1 is running. The sec-
ond AND function is fulfilled if only fan 2 is running.

Fig. 8.5 Example of AND-before-OR logic operation

8.2 Programming binary logic operations with FBD

329

8.2.4 OR function in the function block diagram

An OR function is fulfilled if one or more inputs have the scan result “1”. A descrip-
tion of the OR function is provided in Chapter 12.1.4 “OR function, parallel connec-
tion” on page 507.

Fig. 8.6 shows an example of OR functions. The first OR function scans the
#Fan1.works and #Fan2.works tags for signal state “1”. The two results of the scans
are linked according to an OR logic operation. The OR function is fulfilled (delivers
signal state “1”) if one of the fans is running or if both fans are running. The second
OR function is fulfilled if neither of the fans is running.

8.2.5 Exclusive OR function in the function block diagram

An exclusive OR function (antivalence function) is fulfilled if an odd number of
inputs has the scan result “1”. A description of the exclusive OR function is provided
in Chapter 12.1.5 “Exclusive OR function, non-equivalence function” on page 508.

Fig. 8.7 shows an example of an exclusive OR function. The #Fan1.works and
#Fan2.works tags are scanned at the inputs of the function box for signal state “1”.
The exclusive OR function is fulfilled (delivers signal state “1”) if only one of the
fans is running.

8.2.6 Combined binary logic operations, negating result of logic operation

The function boxes of the AND, OR, and exclusive OR functions can be freely com-
bined with one another. Examples are shown in figures 8.5 and 8.6. Together with
Fig. 8.7, the examples – even if the logic operation is different in each case – show
the same response: The logic operation is fulfilled if only one of the fans is running.

Fig. 8.6 Example of OR-before-AND logic operation

Fig. 8.7 Example of an exclusive OR function

8 Function block diagram FBD

330

Negating result of logic operation

The output of a function box can be negated, i.e. the result is signal state “1” if the
logic operation is not fulfilled. It is then possible in a simple manner to generate

b a NAND function (negated AND function which is fulfilled if at least one input has
the result of scan “0”),

b a NOR function (negated OR function which is fulfilled if all inputs have the re-
sult of scan “0”), and

b an inclusive OR function (equivalence function, negated exclusive OR function
which is fulfilled if an even number of inputs has the result of scan “1”).

Fig. 8.8 shows a NOR function. The OR function is not fulfilled if none of the fans is
running, and then delivers the signal state “0”. This is negated and assigned to the
#Display.nofan tag.

8.2.7 T branch in the function block diagram

You can “divide” a logic operation so that it has two different terminations, the
result being a “T branch”. To program a T branch, use the mouse to drag the Branch
symbol from the program elements catalog under Basic instructions > General to the
position at which the T branch is to commence.

Fig. 8.9 shows a T branch following the lower OR logic operation. The result of logic
operation at this position is therefore only “0” if no fan is running. This result of
logic operation is negated, linked according to an AND logic operation to
“Clock_2Hz” and controls the #Display.nofan tag.

Fig. 8.8 Example of a negated function output

Fig. 8.9 Example of a T branch in the function block diagram

8.2 Programming binary logic operations with FBD

331

8.2.8 Edge evaluation of binary tags in the function block diagram

An edge evaluation detects the change in a binary signal.

For programming an edge evaluation, drag the symbol for the P or N box with the
mouse from the program elements catalog under Basic instructions > Bit logic
operations to the working area.

The edge evaluation of a binary tag has the signal state “1” for one processing cycle
if the signal state of the binary tag named above it changes from “0” to “1” (P box,
rising edge) or from “1” to “0” (N box, falling edge). This “pulse” can be linked further.

The edge trigger flag is named underneath the edge box. This is a memory or data
bit which saves the signal state of the binary tag. The signal edge is recognized by
comparing the signal states of binary tags and edge trigger flags (see also
Chapter 12.3 “Edge evaluation” on page 515).

Fig. 8.10 shows an application of edge evaluation. Let us assume that an alarm
“arrives”, i.e. the #Alarm_bit signal changes from signal state “0” to signal state “1”.
The #Alarm_memory tag is then set and the #Alarm_lamp tag flashes at 0.5 Hz. The
alarm memory can be reset using an #Acknowledge button. The alarm memory
remains reset if #Acknowledge has signal state “0” again and #Alarm_bit is still pres-
ent. #Alarm_memory is only set again by a further positive edge of #Alarm_bit (if
#Acknowledge then no longer has signal state “1”).

8.2.9 Validity checking of floating-point numbers in the function block
diagram

The OK box checks a floating-point tag for validity, i.e. whether the range limits for
the data type REAL or LREAL are adhered to. The OK box delivers signal state “1” if
the floating-point tag is valid. The NOT_OK box is the opposite, it delivers signal
state “1” if the floating-point tag is not valid. The OK box and the NOT_OK box are
located at the beginning of a logic operation. You can find the OK/NOT_OK box in
the program elements catalog under Basic instructions > Comparator operations.

If in Fig. 8.11 the #Measurement_from_sensor tag is within the permissible value
range for the data type REAL or LREAL and the #Measurement.Registered tag has sig-
nal state “1”, then #Measured_value_ok is set.

Fig. 8.10 Example of an edge evaluation of a binary tag

8 Function block diagram FBD

332

8.2.10 Comparison functions in the function block diagram

A comparison function compares two digital values and delivers a binary signal as
the comparison result. The comparison result has signal state “1” if the comparison
is fulfilled, otherwise “0”. The comparison function is described in Chapter 13.3
“Comparison functions” on page 570.

To program a comparison function,
drag it with the mouse from the
program elements catalog under
Basic instructions > Comparator
operations to the working area. You
can then use drop-down lists to
define the comparison (Fig. 8.12):
If you select the comparison func-
tion, you can set the comparison
type on the triangle in the upper
right corner and the data type on
the triangle under the comparison
type.

Fig. 8.13 displays two comparison boxes whose comparison result is linked accord-
ing to an AND logic operation. If the #Measurement_temperature tag is above a
lower limit and below an upper limit, the #Measured_value_in_range tag has signal
state “1”.

Fig. 8.11 Example of the validity check of floating-point numbers

Fig. 8.13 Example of comparison functions

Fig. 8.12 Drop-down lists for setting the
comparison mode and data type

8.3 Programming standard boxes with FBD

333

8.3 Programming standard boxes with FBD

Standard boxes control binary tags such as outputs or bit memories. An assign box
sets the binary tag if signal state “1” is present at the function input, and resets it
again with signal state “0”. The reverse is true with the negating assign box. There

Fig. 8.14 Overview of the standard boxes described in this chapter

SIMATIC
timer function
start

SIMATIC
counter function
setting

Count

Timer operand

Counter operand

Counter operand

FCT

ZW

TW

SZ

FCT

FCT: SP Pulse generation
SE Stretched pulse
SD ON delay
SS Retentive ON delay
SF OFF delay

FCT: CU Count up
CD Count down

Negating assignment Reset box

Binary tag Binary tagBinary tag Binary tag

Assignment Set box

Multiple
setting

Multiple
resetting

Pulse on
positive edge

IEC timer function
start

IEC timer function
reset

SIMATIC
timer function
reset

Duration
setting

Pulse on
negative edge

Binary tag

Timer function

Binary tag

Timer function

Timer operand

Timer function

Edge trigger flag Edge trigger flag

Binary tag Binary tag

Standard boxes

= S

P=

—(FCT)—
DT

/= R

N=

RT

R

PT

SET_BF RESET_BF

EN EN

N

VALUE

PT

N

FCT: TP Pulse time
TON ON delay
TOF OFF delay
TONR Accumulate time

DT: TIME, LTIME

8 Function block diagram FBD

334

are standard boxes for setting and resetting a binary tag, for pulse generation when
evaluating signal edges, for controlling a SIMATIC timer/counter function, or for
setting and resetting bit arrays (Fig. 8.14).

Standard boxes can be used within a logic operation, following a T branch, or as the
termination of an operation. They can be positioned in series or parallel.

8.3.1 Assignment and negating assignment

The result of logic operation is directly assigned to the tag above the assign box:
With result of logic operation “1”, the tag is set. With result of logic operation “0”,
it is reset. With the negating assignment, the tag above the box is set if the result of
logic operation is “0”; it is reset if the result of logic operation is “1”.

For programming, drag the symbol for the assignment with the mouse from the
program elements catalog under Basic instructions > Bit logic operations to the
working area. Gray boxes indicate the permissible positioning, a green box identi-
fies the position at which the box will be inserted if you release the mouse button.

The assignment and the negating assignment can be used within a logic operation,
following a T branch, or as the termination of a logic operation. It can be positioned
in series or parallel. The assign box requires a preceding logic operation.

Fig. 8.15 shows the possible arrangements for the assign box. In the logic opera-
tion, the assign box is used to control the #Display.nofan, #Display.onefan, and
#Display.twofans tags. Two boxes are connected in parallel at the end of the logic
operation. They respond identically.

Fig. 8.15 Example of arrangement of the assign box

8.3 Programming standard boxes with FBD

335

8.3.2 Set and reset boxes

A set or reset box is used to assign signal state “1” or “0” to a binary tag in the case
of a result of logic operation “1”. A result of logic operation “0” has no effect.

For programming, drag the symbol for the set or reset box with the mouse from the
program elements catalog under Basic instructions > Bit logic operations to
the working area. Gray boxes indicate the permissible positioning, a green box
identifies the position at which the coil will be inserted if you release the mouse
button.

Set and reset boxes require a preceding logic operation and terminate a logic oper-
ation. The reset box can also be used to reset a SIMATIC timer/counter function.

In Fig. 8.16, #Fan1.start with signal state “1” sets the #Fan1.drive tag. Signal
state “0” at #Fan1.start has no effect. With signal state “1” at #Fan1.stop, #Fan1.drive
is reset. Signal state “0” at #Fan1.stop has no effect. Because the reset box is
arranged after the set box, the memory response is “reset dominant”: If both tags
have signal state “1”, #Fan1.drive is reset or remains reset.

8.3.3 Edge evaluation with pulse output in the function block diagram

The P= box and N= box are available for edge evaluation with pulse output.
The binary tag located above the P= box is set for the duration of one program cycle
if the result of the preceding logic operation changes from signal state “0” to “1”
(rising edge).

With the N= box, the binary tag above the box is set for the duration of one program
cycle with a falling edge of the preceding logic operation (change in result of logic
operation from “1” to “0”).

The binary tag located above the box is referred to as a “pulse flag”. Suitable for
pulse flags are, for example, tags from the bit memory or data area. The edge trig-
ger flag is named under the box and must be a different tag for each edge evaluation
(see Chapter 12.3 “Edge evaluation” on page 515).

The edge boxes can be arranged within a logic operation or they can terminate a
logic operation. Edge boxes can also be programmed following a T branch.

Fig. 8.16 Example of set and reset boxes

8 Function block diagram FBD

336

If additional program elements follow an edge box, for example if the edge box has
been placed inside a logic operation, then the signal state at the input of the edge
box is passed on directly to the output of the box.

In Fig. 8.17, if the AND logic operation of the tags #Enable and #Measurement.Reg-
istered is fulfilled, the #Measurement.Load tag has signal state “1” for the duration
of one program cycle. The #Measurement.Load_EM tag is the edge trigger flag for
edge evaluation.

8.3.4 Multiple setting and resetting (filling the bit array) in
the function block diagram

With the result of logic operation “1” at the EN input, the SET_BF box sets the bits
of a bit array to signal state “1”. The bit array is defined by the start tag named above
the box and the number of bits at the function input N. With result of logic opera-
tion “1”, the RESET_BF box resets the bits in the bit array. With result of logic oper-
ation “0”, there is no response in both cases.

SET_BF and RESET_BF terminate a logic operation. If the boxes do not have a pre-
ceding logic operation, they are always executed.

In Fig. 8.18, with a rising edge from #Acknowledge, 16 bits from “Data.FBD”.
Alarm_bit[0] are set to signal state “1” and 8 bits from “Output 1” are reset to signal
state “0”. “Data.FBD”.Alarm_bit is a tag with the data type ARRAY OF BOOL, “Output
1” is a bit in the operand area Outputs.

Fig. 8.17 Edge evaluation of result of logic operation (with “pulse flag”)

Fig. 8.18 Filling a bit array with SET_BF and RESET_BF

8.3 Programming standard boxes with FBD

337

8.3.5 Standard boxes with time response

Starting a SIMATIC timer function

A standard box with a time response starts a SIMATIC timer function with a
response as described in Chapter 12.4 “SIMATIC timer functions” on page 524.
Available are starting as pulse (SP), as extended pulse (SE), as ON delay (SD), as
retentive ON delay (SS), and as OFF delay (SF).

For programming, drag the symbol for the corresponding standard box with the
mouse from the program elements catalog under Basic instructions > Timer
operations to the working area.

A standard box with time response requires a preceding logic operation. It can be
placed in the middle or at the end of a logic operation and in a T branch. The time
operand from the SIMATIC timer functions (T) area is located above the box.
The time value is specified in the data format S5TIME at the TV input.

The reset box (R) can be used to reset a SIMATIC timer function. You can find the box
in the program elements catalog under Basic instructions > Bit logic operations. The
reset box does not need a preceding logic operation and can be positioned in the mid-
dle or at the end of a logic operation and in a T branch.

In Fig. 8.19, the time “Fan1.on-delay” is started as an ON delay in the upper current
path with the positive edge of #Fan1.start. Following expiry of the duration (3 s in
the example), the fan is switched on by #Fan1.drive. If #Fan1.start has signal state
“0” prior to expiry of the duration, the fan is not switched on.

Controlling an IEC timer function

A standard box with time response controls an IEC timer function with a response
as described in Chapter 12.4 “SIMATIC timer functions” on page 524. Starting as
pulse (TP), as ON delay (TON), as OFF delay (TOF), as accumulating ON delay
(TONR), and loading a time function with a duration (PT) and resetting a time func-
tion (RT) are available.

Fig. 8.19 Example of standard boxes with time response

8 Function block diagram FBD

338

For programming, drag the symbol for the corresponding standard box with the
mouse from the program elements catalog under Basic instructions > Timer opera-
tions to the working area.

A standard box with time response requires a preceding logic operation. It can be
placed in the middle or at the end of a logic operation and in a T branch. The name
of the timer function, either the data block for a single instance or the instance
name for a local instance, is located above the box. The function for the time
response and the data type of the duration, which is specified at the parameter
VALUE, are located in the box.

With the PT box, an IEC timer function is loaded with the duration that is indicated
at the parameter PT. The RT box resets an IEC timer function. The PT box and the
RT box do not need a preceding logic operation and can be positioned in the middle
or at the end of a logic operation, and in a T branch.

In Fig. 8.19, the timer function “Fan2.OffDelay” is started as an OFF delay in the bot-
tom logic operation with a positive edge of #Fan2.start. The box #Fan2.drive has sig-
nal state “1” if #Fan2.start is switched on and for 10 seconds after the switch-off.

8.3.6 Standard boxes with counter response

Controlling a SIMATIC counter function

A standard box with a counter response controls a SIMATIC counter function with a
response as described in Chapter 12.6 “SIMATIC counter functions” on page 545.
Setting a counter (SC), counting up (CU), and counting down (CD) are available.

For programming, drag the symbol for the corresponding box with the mouse from
the program elements catalog under Basic instructions > Counter operations to the
working area.

A standard box with counter response requires a preceding logic operation. It can
be placed in the middle or at the end of a logic operation and in a T branch. The
counter operand from the SIMATIC counter (C) area is located above the box. The
count value in data format WORD is specified at the CV input, where the numerical
range extends from W#16#0000 to W#16#0999 or from C#000 to C#999.

Fig. 8.20 Example of standard boxes with counter response

8.4 Programming Q boxes with FBD

339

The reset box (R) can be used to reset a SIMATIC counter function. You can find the
box in the program elements catalog under Basic instructions > Bit logic operations.
The reset box does not need a preceding logic operation and can be positioned in
the middle or at the end of a logic operation and in a T branch.

In Fig. 8.20, the switch-on processes of #Fan1.start are counted with the SIMATIC
counter “Fan1.quantity”. The #Acknowledge signal resets the counter to 0.

8.4 Programming Q boxes with FBD

Q boxes have a binary output named “Q”, which can be linked further. With
Q boxes, the memory functions SR and RS, the edge evaluations P_TRIG and
N_TRIG, and the timer and counter functions are displayed (Fig. 8.21).

With Q boxes, the first binary input (and in certain cases the associated parameter)
must be connected, connection of the other inputs and outputs is optional.

Fig. 8.21 Overview of Q boxes available with FBD

RS memory boxSR memory box

Evaluation for
falling edge

Evaluation for
rising edge

Binary tag Binary tag

SR RS

S R

R1 S1Q

Edge trigger flag Edge trigger flag

P_TRIG N_TRIG

CLK CLKQ

Q

Q

Boxes with Q output

S_PULSE,
S_PEXT,
S_ODT,
S_ODTS,
S_OFFDT

S_CUD,
S_CU,
S_CD

SIMATIC timer functions

SIMATIC counter functions

IEC timer functions
TP, TON, and TOF

IEC counter functions
CTUD, CTU, and CTD

SIMATIC timer

SIMATIC counter

S_PULSE

S_CUD

S

CU

TV

CD

R

S

PV

R

Q

Q

BI

CV

BCD

CV_BCD

TON

CTUD

TON

CTUD

IN

CU

R

IN

CU

R

PT

CD

LD

PV

PT

CD

LD

PV

Q

QU

CV

Q

QU

CV

ET

QD

ET

QD

"Single instance"

"Single instance"

#Local instance

#Local instance

TimeTime

Int Int

8 Function block diagram FBD

340

When using Q boxes as program elements, you can:

b Program one single box per network, either within the logic operation or as its
termination

b Arrange boxes in series by connecting the Q output of one box to a binary input
of the following box

b Position boxes following T branches

8.4.1 Memory boxes in the function block diagram

There are two versions of the memory function: as SR box (reset dominant) and as
RS box (set dominant). With reset dominant, the memory function is reset or
remains reset if both inputs have signal state “1”. With set dominant, the memory
function is set or remains set in such a case. The response of the memory box is
described in Chapter 12.2 “Memory functions” on page 510.

For programming, drag the SR or RS symbol with the mouse from the program ele-
ments catalog under Basic instructions > Bit logic operation to the working area.

Fig. 8.22 shows a binary scaler: Each positive edge of the #Bin_input tag changes the
signal state of #Bin_output. Thus half the input frequency is present at the output.

8.4.2 Edge evaluation of the result of logic operation in the function block
diagram

The edge evaluation with Q boxes registers a change in the result of the logic oper-
ation prior to the box. If the result of the logic operation changes from “0” to “1”
(rising edge) at the CLK input of the P_TRIG box, signal state “1” is present at the
Q output for the duration of one program cycle. If the result of the logic operation
changes from “1” to “0” (falling edge) at the CLK input of the N_TRIG box, the Q out-
put is activated for the duration of one program cycle.

Fig. 8.22 Example of binary scaler

8.4 Programming Q boxes with FBD

341

For programming, drag the P_TRIG or N_TRIG symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Bit logic operation to the working
area.

The P_TRIG and N_TRIG boxes require a preceding logic operation and may only be
positioned within a logic operation.

In Fig. 8.23, #Measurement.Memory is set if #Measurement_temperature exceeds an
upper limit. In turn, the #Measurement.Memory tag sets the #Measurement.Message
memory. Setting is carried out in both cases by a pulse with positive edge so that
acknowledgment is also possible with a set signal present. Acknowledgment is also
carried out by a pulse so that, with an acknowledgment signal present, the measured
value memory and the alarm memory are set if the upper limit is exceeded again.

8.4.3 SIMATIC timer functions in the function block diagram

A SIMATIC timer function can be started as pulse (S_PULSE), as extended pulse
(S_PEXT), as ON delay (S_ODT), as retentive ON delay (S_ODTS), or as OFF delay
(S_OFFDT). A detailed description of the timer response is provided in Chapter 12.4
“SIMATIC timer functions” on page 524.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Timer operations to the working
area. You can subsequently change the function using a drop-down list which you
can open using the small yellow triangle when the box is selected.

Fig. 8.23 Example of edge evaluation of the result of the logic operation

8 Function block diagram FBD

342

The start input S and the time value TV must be connected; connection of the other
box inputs and outputs is optional.

Fig. 8.24 shows a switch-on and switch-off delay. The timer function “Fan3.on-
delay” is started by #Fan3.start. The output Q has signal state “1” after 3 s, which
starts the timer function “Fan3.off-delay”. At the same time, the #Fan3.drive tag is
set by the Q output of the box. The Q output continues to have signal state “1” for
10 s after #Fan3.start has signal state “0”.

8.4.4 SIMATIC counter functions in the function block diagram

A SIMATIC counter function is available as up counter (S_CU), as down counter
(S_CD), or as up/down counter (S_CUD). A detailed description of the counter
response is provided in Chapter 12.6 “SIMATIC counter functions” on page 545.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Counter operations to the working
area. You can subsequently change the function using a drop-down list which you
can open using the small yellow triangle when the box is selected.

At least one of the counter inputs (CU or CD) must be connected; connection of the
other box inputs and outputs is optional.

Fig. 8.25 shows a down counter. The name of the SIMATIC counter used is posi-
tioned above the counter box. #Quantity_set sets the counter to the count value
W#16#0120. The count value is reduced by 1 with each pulse from #Workpart_iden-
tified. Once zero has been reached, #Quantity_reached is set.

Fig. 8.24 Example of SIMATIC timer functions in the function block diagram

Fig. 8.25 Example of an SIMATIC counter function in the function block diagram

8.4 Programming Q boxes with FBD

343

8.4.5 IEC timer functions in the function block diagram

An IEC timer function is available as pulse generation (TP), as ON delay (TON), as
OFF delay (TOF), or as accumulating ON delay (TONR). A detailed description of the
timer response is provided in Chapter 12.5 “IEC timer functions” on page 539.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Timer operations to the working
area. When positioning, you select either as single instance or – possible in a func-
tion block – as local instance (multi-instance). The instance data block generated
automatically when selecting as a single instance is saved in the project tree under
Program blocks > System blocks > Program resources.

You can subsequently change the timer function using a drop-down list which you
can open using the small yellow triangle when the box is selected (not with TONR).

With the IEC timer functions, the IN input must have a preceding logic operation
and a duration must be connected to the PT input. The Q output can be supplied
with an assignment, but cannot be linked further. You can also directly access the
output parameters using the instance data, for example with “<DB_name>”.Q or
“<DB_name>”.ET for a single instance.

Fig. 8.26 shows the IEC timer function #MessageDelay, which saves its data as local
instance in the instance data block of the calling function block. If the #Measure-
ment_too_high tag has signal state “1” for longer than 10 s, #Message_too_high is set.

8.4.6 IEC counter functions in the function block diagram

An IEC counter function is available as up counter (CTU), as down counter (CTD), or
as up/down counter (CTUD). A detailed description of the counter response is pro-
vided in Chapter 12.7 “IEC counter functions” on page 553.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Counter operations to the working
area. When positioning, you select either as single instance or – possible in a func-
tion block – as local instance (multi-instance). The instance data block generated
automatically when selecting as a single instance is saved in the project tree under
Program blocks > System blocks > Program resources.

You can subsequently change the timer function using a drop-down list which you
can open using the small yellow triangle when the box is selected.

Fig. 8.26 Example of IEC timer functions in the function block diagram

8 Function block diagram FBD

344

With the IEC counter functions, at least one counter input (CU or CD) must have a
preceding logic operation. Connection of the other box inputs and outputs is
optional. A standard box can be positioned at the bottom output QU, but not a fur-
ther logic operation. The QD output cannot be supplied, but can be scanned indi-
rectly via the corresponding component QD of the counter structure. For the
QU output, this would be the component QU.

One can also directly access the output parameters using the instance data, for
example with “<DB_name>”.QD for a single instance.

Fig. 8.27 shows the IEC counter function #LockCounter, which is called as a local
instance. It has saved its data in the instance data block of the calling function block.
A component of the counter can be addressed globally with the name of the
instance and the component name, for example #LockCounter.CV. The example
shows the passages through a lock, either forward or backward.

8.5 Programming EN/ENO boxes with FBD

EN/ENO boxes have an enable input EN and an enable output ENO. The enable input can
be used to control processing of the box. If an error occurs while the box is being pro-
cessed, this is displayed at the enable output. Fig. 8.28 provides an overview of the
“basic” functions implemented with EN/ENO boxes.

The parameters of the EN/ENO boxes must all be connected. The enable input EN
and the enable output ENO are not parameters of the box function. They are used
for processing boxes and are added to the box function by the program editor.

Fig. 8.27 Example of IEC counter functions in the function block diagram

8.5 Programming EN/ENO boxes with FBD

345

By default, the majority of EN/ENO boxes are displayed without an ENO output when
they are moved from the program elements catalog to the working area. Only when
you select the command Generate ENO from the shortcut menu when the box is
selected will the ENO output be displayed and the required statements will be gen-
erated during compilation. You can deselect an ENO output using the command
Do not generate ENO from the shortcut menu.

Fig. 8.28 Overview of boxes with enable input EN and enable output ENO

MOVE

Data type
SHR

DT to DT DT to DT DT to DT
CONV T_CONV

Real
EXP

Data type
ADD

Data type

S_CONV

XOR CONCAT
Data type

EN

EN

EN EN

ENEN

EN

EN EN

IN

IN

N

IN IN

ININ1

IN

IN1 IN1

IN2

IN2 IN2

ENO

ENO

ENO ENO

ENO

ENO

ENO

ENO ENO

OUT1

OUT

OUT OUT

OUT

OUT

OUT

OUT OUT

Transfer functions

Shift functions

Conversion functions
for numerical values

Conversion functions
for time values

Arithmetic functions

Conversion functions
for strings

Logic functions String functions

Math functions

MOVE, BLKMOV, UBLKMOV,
MOVE_BLK, UMOVE_BLK,
FILL, FILL_BLK, UFILL_BLK,
SWAP

SHL, SHR, ROL, ROR

CONVERT, ROUND, CEIL,
FLOOR, TRUNC

T_CONV

ADD, SUB, MUL, DIV, MOD,
INC, DEC, T_ADD, T_SUB,
T_DIFF, T_COMBINE

S_CONV

AND, OR, XOR, INV, DECO,
ENCO, SEL, MUX, DEMUX,
MIN, MAX, LIMIT

LEN, CONCAT, DELETE,
LEFT, RIGHT, MID, FIND,
INSERT, REPLACE

SIN, COS, TAN, ASIN, ACOS, ATAN,
SQR, SQRT, LN, EXP, EXPT, FRAC,
NEG, ABS

Boxes with EN input and ENO output

By default the ENO output is not displayed when an EN/ENO box is placed on the working area. The
display of the ENO output can be selected via the shortcut menu, and the program editor then also
generates the required statement sequence.

R_TRIG

EN

CLK

Q

ENO

Edge evaluations
R_TRIG, F_TRIG

8 Function block diagram FBD

346

A detailed description of EN and ENO and how one can use the EN/ENO mechanism
with self-created blocks can be found in Chapter 8.6.4 “EN/ENO mechanism in the
function block diagram” on page 356. The block calls in the function block diagram
which are also shown as EN/ENO boxes are described in Chapter 14.2 “Calling of
code blocks” on page 631.

8.5.1 Edge evaluation with an EN/ENO box

The R_TRIG box and the F_TRIG box are available for edge evaluation with an
EN/ENO box. A detailed description of the edge evaluation is provided in
Chapters 12.3 “Edge evaluation” on page 515 and 12.3.5 “Edge evaluation with an
EN/ENO box (LAD, FBD)” on page 520.

For programming, drag one of the edge evaluations with the mouse from the pro-
gram elements catalog under Basic instructions > Bit logic operations to the working
area. When you release the mouse button, you will be prompted to specify a data
area for the instance data. This can be a data block or, if the edge evaluation is pro-
grammed in a function block, a local instance (multi-instance) in the instance data
block of the function block.

In Fig. 8.29, the Start tag is monitored for a rising edge. The instance data is located
in the local data of the function block. It consists of the input CLK (in the example:
“Start” tag), the output Q, and the edge trigger flag. The output Q can also be
addressed directly: For a single instance, specify the data block (example:
“DB_name”.Q). For a local instance, specify the instance name (example:
#Instance_name.Q, in the figure: #Edge_Start.Q).

8.5.2 Transfer functions in the function block diagram

A detailed description of the transfer functions is provided in Chapter 13.2 “Trans-
fer functions” on page 559.

The transfer function MOVE transfers the value of one tag to one or more other tags.
MOVE_BLK and UMOVE_BLK transfer individual components from one ARRAY tag
to another. BLKMOV and UBLKMOV transfer individual tags or absolutely addressed
data areas. FILL_BLK and UFILL_BLK fill components of an ARRAY tag with a value.
FILL fills a tag or an absolutely addressed data area with a value. SWAP swaps the
order of the bytes in a tag.

Fig. 8.29 Example of edge evaluation with EN/ENO box in the function block diagram

8.5 Programming EN/ENO boxes with FBD

347

For programming, drag the symbol of the transfer function with the mouse from
the program elements catalog under Basic instructions > Move operations to the
working area.

In Fig. 8.30, the #Messages tag is transferred from the data block “Data.FBD” to the
“Alarm bits” tag in the memory area.

8.5.3 Arithmetic functions in the function block diagram

A CPU 1500 provides arithmetic functions for numerical values and for time values.

Arithmetic functions for numerical values

An arithmetic function for numerical values implements the basic arithmetical
operations with the data formats USINT, UINT, UDINT, ULINT, SINT, INT, DINT, LINT,
REAL, and LREAL in the user program. A detailed description of these arithmetic
functions is provided in Chapter 13.4 “Arithmetic functions” on page 574.

For programming, drag one of the arithmetic functions (ADD, SUB, MUL, DIV,
or MOD) with the mouse from the program elements catalog under Basic
instructions > Math functions to the working area. You can set the function and data
types using drop-down lists which you can open using the small yellow triangle
when the box is selected. The data type is also automatically set when the first
actual value is created.

In Fig. 8.31, the upper limit of a measured value is monitored. A hysteresis is intro-
duced to ensure that the #Measurement_too_high alarm does not “pulsate” when
the measured value changes slightly in the upper limit range. The alarm #Measure-
ment_too_high is only canceled when the measured value has dropped again below
the upper limit by the magnitude of the hysteresis.

Arithmetic functions for time values

An arithmetic function for time values adds two durations or one duration to a time
(T_ADD), subtracts two durations or one duration from a time (T_SUB), formulates
the difference of two times (T_DIFF), or combines a date and a time-of-day into a
time (T_COMBINE). A detailed description of these arithmetic functions is provided
in Chapter 13.4 “Arithmetic functions” on page 574.

For programming, drag one of the functions (T_ADD, T_SUB, T_DIFF, or T_COM-
BINE) with the mouse from the program elements catalog under Extended instruc-

Fig. 8.30 Example of a transfer function in the function block diagram

8 Function block diagram FBD

348

tions > Date and time-of-day to the working area. You can set the function and data
types using drop-down lists which you can open using the small yellow triangle
when the box is selected.

8.5.4 Math functions in the function block diagram

The math functions comprise, for example, trigonometric functions, exponential
functions, and logarithmic functions with tags in the data formats REAL and LREAL.
A detailed description of these math functions is provided in Chapter 13.5 “Math
functions” on page 578.

For programming, drag one of the math functions (SIN, COS, TAN, ASIN, ACOS,
ATAN, SQR, SQRT, LN, EXP, EXPT, FRAC, NEG, ABS) with the mouse from the program
elements catalog under Basic instructions > Math functions to the working area. You
can set the function and data types using drop-down lists which you can open using
the small yellow triangle when the box is selected.

Fig. 8.32 shows the calculation of the reactive power according to the equation
#Reactive_power = #Voltage × #Current × sin(#phi).

Fig. 8.31 Example of an arithmetic function in the function block diagram

Fig. 8.32 Example of math functions in the function block diagram

8.5 Programming EN/ENO boxes with FBD

349

8.5.5 Conversion functions in the function block diagram

The conversion functions convert the data formats of tags. A detailed description of
the conversion functions is provided in Chapter 13.6 “Conversion functions” on
page 586.

For programming, drag one of the conversion functions (CONVERT, ROUND, CEIL,
FLOOR, TRUNC, SCALE_X, or NORM_X) with the mouse from the program elements
catalog under Basic instructions > Conversion operations to the working area. You
can set the function and data types using drop-down lists which you can open using
the small yellow triangle when the box is selected. If the first actual value created
has a permissible data type, the data type is also set automatically.

The conversion function T_CONV for data type conversion of date/time can be found
in the program elements catalog under Extended instructions > Date and time-of-day.
The conversion function for data type conversions of character strings (S_CONV,
STRG_VAL, VAL_STRG, CHARS_TO_STRG, STRG_TO_CHARS, ATH, HTA) can be found
in the program elements catalog under Extended instructions > String + Char.

Fig. 8.33 shows an example of the conversion functions. A measured value present
in data format REAL is first converted into data format DINT and then converted
into the BCD32 format.

8.5.6 Shift functions in the function block diagram

The shift functions shift the content of tags bit-by-bit to the left or right. A detailed
description of the shift functions is provided in Chapter 13.7 “Shift functions” on
page 603.

For programming, drag one of the shift functions (SHL, SHR, ROL, or ROR) with the
mouse from the program elements catalog under Basic instructions > Shift and
rotate to the working area. You can set the function and data types using drop-down
lists which you can open using the small yellow triangle when the box is selected.
The data type is also automatically set when the first actual value is created.

In Fig. 8.34, the respective three decades of two numbers present in BCD16 format
of a SIMATIC counter are joined without gaps. Using the shift function SHL – set to
data type DWORD! – the #Quantity_high tag is shifted to the left by 12 bits, corre-

Fig. 8.33 Example of conversion functions in the function block diagram

8 Function block diagram FBD

350

sponding to three decades. A small square on the input parameter IN indicates that
the data type of the applied tag (WORD in the example) does not agree with the data
type of the function (DWORD in the example) and will be converted implicitly.

The bottom three decades (the #Quantity_low tag) are subsequently added by a dou-
bleword logic operation according to OR and output to the #Quantity_display tag.

8.5.7 Logic functions in the function block diagram

The logic functions include the word logic operations AND, OR, XOR, the inversion
INVERT, the coding functions DECO and ENCO, the selection functions SEL, MUX,
DEMUX, MIN, MAX, and the limiting function LIMIT. A detailed description of the
logic functions is provided in Chapter 13.8 “Logic functions” on page 607. In the
program elements catalog, the logic functions are located under Basic instructions
> Word logic operations (AND, OR, XOR, INVERT, DECO, ENCO, SEL, MUX, and
DEMUX) and under Basic instructions > Math functions (MIN, MAX, and LIMIT).

Word logic operations

The word logic operations link each bit of two tags according to an AND, OR, or
exclusive OR function. For programming, drag one of the word logic operations
(AND, OR, XOR, INV) with the mouse from the program elements catalog under
Basic instructions > Word logic operations to the working area. You can set the func-
tion and data types using drop-down lists which you can open using the small yel-
low triangle when the box is selected. The data type is also automatically set when
the first actual value is created.

Fig. 8.35 shows how you can program 32 edge evaluations simultaneously for ris-
ing and falling edges. The alarm bits are collected in a doubleword Messages, which
is present in data block “Data.FBD”. The edge trigger flags Messages_EM are also
present in this data block. If the two doublewords are linked by an XOR logic oper-
ation, the result is a doubleword in which each set bit represents a different assign-
ment of Messages and Messages_EM, in other words: The associated alarm bit has
changed. In order to obtain the positive signal edges, the changes are linked to the
alarms by an AND logic operation. The bit is set for a rising signal edge wherever
the alarm and the change each have a “1”. This corresponds to the pulse flag of the
edge evaluation. If you do the same with the negated alarm bits – the alarm bits
with signal state “0” are now “1” – you obtain the pulse flags for a falling edge. At
the end it is only necessary for the edge trigger flags to track the alarms.

Fig. 8.34 Example of shift functions in the function block diagram

8.5 Programming EN/ENO boxes with FBD

351

8.5.8 Functions for character strings in the function block diagram

Character strings are tags with the data type STRING. With the functions for charac-
ter strings, parts of a character string can be extracted (LEFT, RIGHT, MID), inserted
(INSERT), replaced (REPLACE) or deleted (DELETE), two character strings can be
combined (CONCAT), and the length of a character string (LEN) or the position of a
character in a character string (FIND) can be determined.

A detailed description of these functions is provided in Chapter 13.9 “Processing of
strings (data type STRING)” on page 615.

Fig. 8.36 shows the connection of the STRING tags #Station.Name and #Sta-
tion.Number to form the tag #Station.Identification. In the program elements cata-
log, the string functions are located under Extended instructions > String + Char.

Fig. 8.35 Example of word logic operations in the function block diagram

Fig. 8.36 Example of character string functions in the function block diagram

8 Function block diagram FBD

352

8.6 Program control with FBD

You can influence execution of the user program by means of the program control
functions. You use jump functions to exit linear program execution and continue at
a different point in the block. Block call functions cause the continuation of pro-
gram execution in a different block. A block end function terminates the execution

Fig. 8.37 Overview of functions for program control in the function block diagram

Jump functions

Block calls

Block end
function

Functions for program control

FC_name

EN

param_1

...

param_2

...

param_3

...

ENO

Instance name

FB_name

EN

param_1

...

param_2

...

param_3

...

ENO

Destination

Destination

Return tag

JMP

JMPN

RET

Jump list

Jump distributor

JMP_LIST

SWITCH
Data type

EN

EN

K

K

==

==

DEST1

DEST1

ELSE

DEST0

DEST0

*

*
Calling a function (FC)

Via EN the call can be controlled
depending on the RLO. Via ENO the block
can return a group error message.

All parameters param_x must be supplied
with values.

Calling a function block (FB)

Via EN the call can be controlled
depending on the RLO. Via ENO the block
can return a group error message.

The parameters param_x are supplied
with values as required.

Conditional block end if RLO = "1" or
absolute block end if input is not
assigned. The value of the return tag is
transferred to the ENO enable output.

Conditional jump if RLO = "1" or absolute
jump if input is not assigned.

Conditional jump if RLO = "0".

Program branch:
Jump marks are specified at the DESTx
parameters to which a branch is made
depending on the value at parameter K.

Program branch:
Jump marks are specified at the DESTx
parameters to which a branch is made
depending on a comparison with the
value at parameter K.

8.6 Program control with FBD

353

in the block. The functions that are available in the function block diagram are
shown in Fig. 8.37.

8.6.1 Jump functions in the function block diagram

A detailed description of the jump functions is provided in Chapter 14.1 “Jump
functions” on page 623.

Jump functions JMP and JMPN

For programming a jump function, drag the symbol of a jump function with the
mouse from the program elements catalog under Basic instructions > Program
control operations to the working area. You define the jump label (the jump destina-
tion) using the jump box. To program the jump destination, use the mouse to drag
the Label function to the start of the network with which processing of the program
is to be continued from the program elements catalog under Basic instructions >
Program control operations and write the label into the box.

You can subsequently set the jump function (JMP or JMPN) via a drop-down list
which you can open using the small yellow triangle when the box is selected. If the
box with the jump function JMP does not have a preceding logic operation, the jump
is always carried out (absolute jump). The jump function JMPN always requires a
preceding logic operation.

It is only possible to jump within a block. A jump function cannot be programmed
in association with a T branch. Only one jump function or block end function is per-
missible per network.

Example of loop jump

Fig. 8.38 shows a jump function using a program loop as an example. In a #Quantity
array with 16 components from #Quantity[0] to #Quantity[15], the maximum value
is searched for. The tags #Index and #MaxValue are initialized with the value 0.
A comparison function in the program loop compares the value of #MaxValue with
the value of #Quantity[#Index]. If #MaxValue is less than #Quantity[#Index], it is
overwritten with the larger value of #Quantity[#Index]. #Index is then increased
by +1. As long as #Index is less than or equal to 15, it is jumped to the beginning of
the program loop (to the jump destination MaxSearch) and the program section is
executed again.

Jump list JMP_LIST

The jump list is represented as a box. The box is only processed if the EN input sig-
nal state is “1”. The value of parameter K (0 to 99) determined the box output whose
jump destination is jumped to. To program the jump list, drag the JMP_LIST func-
tion from the program elements catalog under Basic instructions > Program control
operations to the working area.

8 Function block diagram FBD

354

Jump distributor SWITCH

The jump distributor is represented as a box. The box is only processed if the
EN input signal state is “1”. The value of parameter K is compared with a value of
one of the other input parameters. If the comparison is fulfilled, program execution
continues at the assigned jump destination. The comparison operations can be
selected from a drop-down list. To program a jump distributor, drag the SWITCH
function from the program elements catalog under Basic instructions > Program
control operations to the working area.

8.6.2 Block call functions in the function block diagram

Calling of blocks is represented by EN/ENO boxes. With functions (FC), the block
name is present quasi as a function name in the box; with function blocks, the
instance name (the name of the instance data block or the name of the local
instance) is additionally present above the box. A detailed description of the block
calls is provided in Chapter 14.2 “Calling of code blocks” on page 631.

To call a code block, use the mouse to drag the block which has already been pro-
grammed from the project tree under Program blocks into the working area. With a
logic operation preceding the EN input you can structure the block call depending
on conditions.

The top network in Fig. 8.39 shows the call of a function (FC). The function name is
present as title in the call box. In the event of an error in the block (ENO is then “0”),

Fig. 8.38 Example of a program loop with conditional jump

8.6 Program control with FBD

355

#Adder_error is set to “1” and a jump is made to the network with the Error label.
In the bottom network, the call of a function block is present as a single instance.
The name of the function block is present as the title in the call box, the instance
name – in this case the name of the instance data block – is present above the box.
If the block reports an error with ENO = “0”, the block is exited with the RET box and
the value FALSE.

8.6.3 Block end function in the function block diagram

To program the block end function, drag the RET box with the mouse from the pro-
gram elements catalog under Basic instructions > Program control operations to the
working area. Now define which value the ENO output of the exited block should
have. You select the RET box and use the small yellow triangle to select the
drop-down menu item

b Ret, then it is the current result of logic operation RLO (i.e. signal state “1”),

b Ret True, then it is the signal state “1” (TRUE),

b Ret False, then it is the signal state “0” (FALSE),

b Ret Value, then it is the signal state of the return tag above the RET box.

A detailed description of the RET box is provided in Chapter 14.3 “Block end func-
tions” on page 636.

In the second network in Fig. 8.39, the block with the RET box is left if the
“Totalizer.FBD” block signals an error. The ENO output of the exited block is set then
to signal state “0” (FALSE).

Fig. 8.39 Examples of functions for program control in the function block diagram

8 Function block diagram FBD

356

8.6.4 EN/ENO mechanism in the function block diagram

The EN/ENO mechanism allows the execution of program functions (statements)
and blocks depending on the result of logic operation. The enable input EN enables
the execution of a program function or a block. The enable output (ENO) reports an
error in program execution that occurred during runtime. The enable input EN and
the enable output ENO are both of data type BOOL.

EN and ENO are not function or block parameters; they are not declared in the block
interface. They are statement sequences which the program editor generates
before and after a function or block call.

EN/ENO mechanism with program functions (instructions)

The program editor in FBD displays program functions with the EN/ENO mecha-
nism using EN/ENO boxes. These are the functions described in Chapter 8.5 “Pro-
gramming EN/ENO boxes with FBD” on page 344, which can be found in the pro-
gram elements catalog in the Basic instructions tab.

If the enable input EN is not occupied or if it has a preceding logic operation which
delivers signal state “1” during runtime, then the function is carried out. If the sig-
nal state is “0” at the EN input, the function is not carried out and program execu-
tion is continued with the next program element.

The enable output ENO provides signal state “1” if the function has been executed
without any errors. If an error occurred during execution of the function or if signal
state “0” was present at the EN input, resulting in the function not being executed,
then the ENO output has signal state “0”.

The enable output ENO is not displayed by default in most functions, when you drag
them from the program elements catalog to the working area. Then no additional
program code is generated for error detection. Using the Generate ENO command
from the shortcut menu, you can switch on error detection for the selected func-
tion, then the ENO output will be displayed and an additional program code will be
generated during compilation. The ENO output is “deselected” using the command
Do not generate ENO.

Controlling a processing sequence

You can use the properties of EN and ENO to connect several boxes into a sequence,
where the enable output ENO leads to the enable input EN of the next box. In this
manner it is possible, for example, to “switch off” the complete sequence, or the
rest of the sequence is no longer processed if a box signals an error.

In the example in Fig. 8.40, neither of the boxes is processed if the #Enabling tag has
signal state “0”. If an error occurs during processing of the ADD box, for example a
numerical range is exceeded, the subsequent SQRT box is no longer processed.

8.6 Program control with FBD

357

EN/ENO mechanism with blocks

When calling blocks (FC functions and FB function blocks), the program editor
always displays the input EN and the output ENO, regardless of which program-
ming language the blocks are programmed in. In this context, blocks also include
all of the functions in the program elements catalog that are not listed in the Basic
instructions tab (called “system blocks” in the following).

If the enable input EN is not occupied or if it has a preceding logic operation which
delivers signal state “1” during runtime, then the block is called. If the signal state
is “0” at the EN input, a block call is not carried out and the program execution is
continued after the block call.

For “system blocks”, the enable output ENO provides signal state “1” if the function
has been executed without any errors. If an error occurred during execution of the
“system block” or if signal state “0” was present at the EN input, resulting in the
“system block” not being executed, then the ENO output has signal state “0”.

For self-written blocks (FC functions and FB function blocks), it is the responsibility
of the user to determine which signal state the enable output ENO provides.
By default – without user action – the ENO output signal state is “1”. In the event of
an error, if you would like to evaluate an error in the calling block, you must set the
ENO output to signal state “0”.

Controlling the ENO output for self-written blocks

The signal state of the ENO output is controlled in the function block diagram with
the RET box (see Chapter 8.6.2 “Block call functions in the function block diagram”
on page 354). In principle, you can end the execution in the block in the event of any
detected error by using the RET box and the return value FALSE and then no longer
execute the remainder of the block program. You can also keep a detected error in
“error tags”, allow the remaining part of the block program to be executed and
then, at the end of the block, terminate the block with FALSE in the event of an
error.

An example is shown in Fig. 8.41. In the event of an error, the tag #Measured_val-
ue_ok has signal state “0” and the tags #Adder_error and #Calculation_error have
signal state “1”. In the event of an error, the tag #temp_bool is set to signal state “0”.

Fig. 8.40 Example of series connection of ENO and EN with FBD

8 Function block diagram FBD

358

Upon exiting the block with the RET box, the signal state of the tag #temp_bool is
assigned to the ENO output.

Fig. 8.41 Control of the ENO output

9.1 Introduction

359

9 Structured Control Language SCL

9.1 Introduction

This chapter describes programming with Structured Control Language (SCL);
it uses examples to show how the program functions are represented in SCL. You
can find a description of the individual functions, e.g. comparison functions, in
Chapters 12 “Basic functions” on page 503, 13 “Digital functions” on page 558, and
14 “Program control” on page 622.

Use of the program and symbol editor, which generally applies to all programming
languages, is described in Chapter 6 “Program editor” on page 247.

SCL is used to program the contents of blocks (the user program). What blocks
are, and how they are created, is described in Chapters 5.3.1 “Block types” on page
155 and 6.3 “Programming a code block” on page 253.

9.1.1 Programming with SCL in general

You use SCL to program the control function of the programmable controller – the
user program (control program). The user program is organized in different types
of blocks.

Fig. 9.1 shows the program editor's working window. The icons in the toolbar a can
be used to set the display of the working area, e.g. the opening and closing of the
parameter list of blocks, and additional functions such as monitoring of the pro-
gram status. The interface of the block s in the upper part of the working window
lists the block parameters and local data. The favorites bar d can be expanded by
additional program elements. It can also be hidden. The control function, i.e. the
list of SCL statements, is displayed in the working area f.

You can make the SCL program clearer and easier to read by using comments and
empty lines g. Comments and empty lines have no influence on the function and
length of the compiled SCL program. Line comments commence with two slashes
and terminate at the end of the line. Block comments commence with left parenthe-
sis and asterisk, can extend over several lines, and terminate with asterisk and right
parenthesis. If it is activated, the absolute addressing of the tags is displayed on the
right edge of the line h. The size of the font can be adjusted using the zoom
setting j.

The program editor constructs an SCL program line by line. You commence with the
first statement in the first line. Each SCL statement is concluded by a semicolon.
You can write several statements in one line or one statement can occupy several
lines.

9 Structured Control Language SCL

360

In order to program an SCL statement, use the keyboard to enter the statements in
a line of the input field. The program elements catalog provides you with an over-
view of the existing functions. Dragging a function with the mouse from the pro-
gram elements catalog is of advantage with SCL if you import functions with a
parameter list into your program. To call self-created blocks, drag them from the
Program blocks folder into a line.

Fig. 9.1 Example of a block with SCL program

9.2 Programming binary logic operations with SCL

361

9.1.2 SCL statements and operators

The SCL program consists of a sequence of individual statements. Fig. 9.2 shows
which types of SCL statements exist.

The simplest case with a value assignment is that the content of a tag is transferred
to another tag. Control statements control program execution, for example with pro-
gram loops. Block calls are used to continue program execution in the called block.

Operators

An expression represents a value. It can comprise a single operand (a single tag) or
several operands (tags) which are linked by operators.

Example: “a + b” is an expression; “a” and “b” are operands, “+” is the operator.

The sequence of logic operations is defined by the priority of the operators and can
be controlled by parentheses. Mixing of expressions is permissible providing the
data types generated during calculation of the expression permit this.

SCL provides the operators specified in Table 9.1. Operators of equal priority are
processed from left to right.

Expressions

An expression is a formula for calculating a value and consists of operands (tags)
and operators. In the simplest case, an expression is an operand, a tag, or a con-
stant. A sign or a negation can also be included.

An expression can consist of operands which are linked together by operators.
Expressions can also be linked by operators. Expression can therefore have a very
complex structure. Parentheses can be used to control the processing sequence in
an expression.

The result of an expression can be assigned to a tag or a block parameter or used as
a condition in a control statement.

Expressions are distinguished according to the type of logic operation into arithme-
tic expressions, comparison expressions, and logic expressions.

9.2 Programming binary logic operations with SCL

The binary logic operations in SCL are logic expressions in conjunction with binary
tags or expressions which deliver a binary result. The binary operations can be
“nested” using parentheses and thus influence the processing sequence (Table 9.2).

9.2.1 Scanning for signal states “1” and “0”

The scanning of a binary operand in SCL is always the direct scanning of the status
of the binary operand. This corresponds to scanning for signal state “1”. If scanning
for signal state “0” is required for the program function, one uses the NOT operator

9 Structured Control Language SCL

362

Fig. 9.2 Types of SCL statements

Label

Label

Label

Label

SCL statement

Tag

xxx

IF

CASE

FOR

WHILE

REPEAT

#Result

#Result

#Result

Statement sequence

Block name (parameter list)

Statement sequence

Tag := block name (parameter list)

Statement sequence

Statement sequence

Statement sequence

Statement sequence

Expression

END_xxx

END_IF

END_CASE

END_FOR

END_WHILE

END_REPEAT

#Tag #TagAND

#Tag #Tag>=

#Tag #Tag+

:=

:=

:=

:=

;

;

;

;

;

;

;

;

;

;

;

;

;

//

//

//

//

:

:

:

:

General SCL statement

Value assignment with assignment operator

Control statement

Block call

Logical expression

IF branch

CASE branch

FOR loop

WHILE loop

REPEAT loop

Comparison expression

Arithmetic expression

Comment

Comment

Comment

Comment

SCL statement

Value assignment

Control statement

Block call

SCL statements

An SCL statement consists of a jump label with subsequent colon and the actual statement, which is
terminated by a semicolon. The statement can extend over several lines. The statement can be
followed by a (line) comment, which is commenced by two slashes and extends up to the end of the
line. The jump label (including colon) and the line comment can be omitted.

A value assignment transfers the value of an expression to a tag. An expression can be a single tag or a
formula for calculating a value. A formula links the tags by means of operators. Depending on the
type of logic operation, a distinction is made between arithmetic expressions, comparison
expressions, and logical expressions.

A control statement controls the processing sequence in the program by means of branching and
program loops which are processed repeatedly. A control statement commences with a keyword (xxx)
and is terminated by END_xxx.

The call of a block without return value consists of the block name and the following parameter list in
parentheses. If the block has a return value, the block call following an assignment operator is present
in a value assignment or an expression.

Most extended instructions in the program elements catalog are calls of system blocks with return
value.

9.2 Programming binary logic operations with SCL

363

in order to negate the result of scan. NOT can also be used to negate the result of
binary expressions.

The example in Fig. 9.3 shows the two “Start” and “Stop” pushbuttons. When
pressed, they output the signal state “1” in the case of an input module with sinking
input. This signal state is used in the logic operation.

The “/Fault” signal is not active in the normal case. Signal state “1” is then present
and is negated by means of the NOT operator, and therefore it does not result in
resetting of the “Fan” tag. If “/Fault” becomes active, the “Fan” tag is to be reset.
The active “/Fault” signal delivers signal state “0” and results in resetting of “Fan”.

Table 9.1 Operators with SCL

Logic operation Name Operator Priority

Parentheses Left parenthesis, right parenthesis (,) 1

Arithmetic Power ** 2

Unary plus, unary minus (sign) +, – 3

Multiplication, division *, /, MOD 4

Addition, subtraction +, – 5

Comparison Less than, less than-equal to, greater than,
greater than-equal to

<, <=, >, >= 6

Equal to, not equal to =, <> 7

Binary logic
operation

Negation (unary) NOT 3

AND logic operation AND, & 8

Exclusive OR XOR 9

OR logic operation OR 10

Assignment Assignment := 11

“Unary” means that this operator has a fixed assignment to an operand

Table 9.2 Binary logic operations with SCL

Operation Operand Function

&

AND

OR

XOR

Binary operand or
binary expression
Binary operand or
binary expression
Binary operand or
binary expression
Binary operand or
binary expression

Scan for signal state “1” and link according to AND logic
operation
Scan for signal state “1” and link according to AND logic
operation
Scan for signal state “1” and link according to OR logic
operation
Scan for signal state “1” and link according to
exclusive OR logic operation

NOT – Negation of result of logic operation

9 Structured Control Language SCL

364

The logic expression in the example uses NOT both for negation of the result of scan
of “/Fault” and for negation of the result of the second OR function. You can also for-
mulate the logic operation differently:

"Fan":=("Start" OR "Fan") AND NOT "Stop" AND "/Fault";

9.2.2 AND function in SCL

An AND function is fulfilled if all function inputs have the result of scan “1”.
A description of the AND function is provided in Chapter 12.1.3 “AND function,
series connection” on page 507.

SCL implements the AND logic operation using a logic expression with the opera-
tors & or AND, which link binary tags or binary expressions.

Fig. 9.4 shows an example of an AND logic operation. The #Fan1.works and
#Fan2.works tags are scanned for signal state “1” and the two scan results are linked
according to an AND logic operation. The AND function is fulfilled (delivers signal
state “1”) if both fans are running.

Fig. 9.3 Scanning for signal states “1” and “0”

//AND function

#Display.twoFans := #Fan1.works AND #Fan2.works;

//OR function

#Display.Min_oneFan := #Fan1.works OR #Fan2.works;

//Exclusive OR function

#Display.oneFan := #Fan1.works XOR #Fan2.works;

Fig. 9.4 Examples of binary logic operations with SCL

"Fan"

When pressed, the "Start" and "Stop" pushbuttons switch the fan on and off.
They are "1-active" signals. If "/Fault" becomes active, the fan is to be switched
off and remain off. "/Fault" is a "0-active" signal. In order to reset "Fan", the
result of the scan is negated with NOT.

In the example, the 0-active signal is identified by a slash in front of the
name.

%I1.3%I1.2%I1.1

%Q4.1

"Start"L+

M

"Stop" "/Fault"

Example of scans for signal state "1" and signal state "0"

"Fan":=("Start" OR "Fan") AND NOT ("Stop" OR NOT "/Fault");

9.2 Programming binary logic operations with SCL

365

9.2.3 OR function in SCL

An OR function is fulfilled if one or more function inputs have the result of scan “1”.
A description of the OR function is provided in Chapter 12.1.4 “OR function, parallel
connection” on page 507.

SCL implements the OR logic operation using a logic expression with the operator
OR, which links binary tags or binary expressions.

Fig. 9.4 shows an example of an OR logic operation. The #Fan1.works and
#Fan2.works tags are scanned for signal state “1” and the two scan results are linked
according to an OR logic operation. The OR function is fulfilled (delivers signal state
“1”) if one of the fans is running or if both fans are running.

9.2.4 Exclusive OR function in SCL

An exclusive OR function (antivalence function) is fulfilled if an odd number of
function inputs has the result of scan “1”. A description of the exclusive OR function
is provided in Chapter 12.1.5 “Exclusive OR function, non-equivalence function” on
page 508.

SCL implements the exclusive OR logic operation using a logic expression with the
operator XOR, which links binary tags or binary expressions.

Fig. 9.4 shows an example of an exclusive OR logic operation. The #Fan1.works and
#Fan2.works tags are scanned for signal state “1” and the two scan results are linked
by an exclusive OR logic operation. The exclusive OR function is fulfilled (delivers
signal state “1”) if only one of the fans is running.

9.2.5 Combined binary logic operations in SCL

The AND, OR, and exclusive OR functions can be freely combined with one another.
With SCL the operators have the following priority regarding execution: AND or &
are executed before XOR, followed by OR. NOT is executed before the logic opera-
tion operators.

Logic operations such as the ORing of AND functions do not require parentheses, as
shown in the top example in Fig. 9.5. The first AND function is fulfilled if fan 1 is
running and fan 2 is not running, the second function if fan 1 is not running and
fan 2 is running. The #Display.oneFan_1 tag is set if the first AND function is fulfilled

//ORing of AND functions – does not require parentheses

#Display.oneFan_1 := #Fan1.works AND NOT #Fan2.works

OR NOT #Fan1.works AND #Fan2.works;

//ANDing of OR functions – parentheses required

#Display.oneFan_2 := (#Fan1.works OR #Fan2.works)

AND (NOT #Fan1.works OR NOT #Fan2.works);

Fig. 9.5 Examples of combined binary logic operations with SCL

9 Structured Control Language SCL

366

or if the second AND function is fulfilled (or if both are fulfilled, but this is not the
case in this example).

This logic operation does not require parentheses since the AND function is pro-
cessed “before” the OR function because of its higher priority. This also applies to
ORing of exclusive OR functions or the exclusive ORing of AND functions.

The processing priority can be influenced using parentheses. The expressions in
the parentheses are processed first as it were. Parentheses can be nested.

Logic operations such as the ANDing of OR functions require parentheses, as shown
in the bottom example in Fig. 9.5. The first OR function is fulfilled if at least one fan
is running or if both fans are running, the second if at least one fan is not running
or if neither fan is running. The two OR functions are present in parentheses and
the results of the logic operation are linked according to an AND logic operation.
The #Display.oneFan_2 tag is set if only one of the fans is running.

9.2.6 Negate result of logic operation in SCL

The NOT operator negates the result of logic operation at any position in an logic
operation. Using the NOT operator it is possible in a simple manner to obtain:

b a NAND function (negated AND function, is fulfilled if at least one input has the
result of scan “0”),

b a NOR function (negated OR function, is fulfilled if all inputs have the result of
scan “0”), and

b an inclusive OR function (equivalence function, negated exclusive OR function,
is fulfilled if an even number of inputs has the result of scan “1”).

Fig. 9.6 shows the negation of binary functions. The functions are present in paren-
theses since they have a lower processing priority than NOT. The result of the
binary function is generated first and subsequently negated.

//NAND function – at least one fan is not running

#Display.nand := NOT (#Fan1.works AND #Fan2.works);

//NOR function – no fan is running

#Display.nor := NOT (#Fan1.works OR #Fan2.works);

//Inclusive OR function – neither of the fans or both fans are running

#Display.nxor := NOT (#Fan1.works XOR #Fan2.works);

Fig. 9.6 Examples of the negation of binary functions

9.3 Programming memory functions with SCL

367

9.3 Programming memory functions with SCL

The memory functions control binary tags such as outputs or bit memories.
SCL has the value assignment as memory function. Retentive setting and resetting
statements and edge evaluations can be emulated.

9.3.1 Value assignment of a binary tag

The value assignment directly assigns the current result of logic operation to the
binary tag named in front of the operator. The response of the assignment is
described in Chapter 12.2.2 “Simple and negating coil, assignment” on page 511.

An example of a (binary) value assignment is shown in Fig. 9.7. a Here the
#Fan1.drive tag is set to signal state “1” if the logic operation is fulfilled or to signal
state “0” if the logic operation is not fulfilled.

9.3.2 Setting and resetting in SCL

The retentive setting and resetting of a binary tag (see Chapter 12.2 “Memory func-
tions” on page 510) can be emulated, for example, with a simple IF branch.

In Fig. 9.7 s, the #Fan2.drive tag is set to signal state “1” if the #Fan2.start tag has
signal state “1”. If #Fan2.start has signal state “0”, #Fan2.drive is not influenced.
d Resetting of #Fan2.drive is carried out in a similar manner: If the #Fan2.stop OR
NOT #Fan2.fault expression is fulfilled, #Fan2.drive is set to signal state “0”.
An expression which is not fulfilled does not influence #Fan2.drive. Resetting is
programmed following setting and is therefore “dominant”. If both conditions are
fulfilled, #Fan2.drive is reset or remains reset.

9.3.3 Edge evaluation in SCL

Edge evaluation detects a change in a binary signal state.

With SCL, a change in signal state can be detected by comparing the current signal
state with the previous one. The previous signal state is saved in a so-called edge
trigger flag. This is, for example, a bit from the bit memories or data operand area.

//Assignment of value to a binary tag a

#Fan1.drive := (#Fan1.start OR #Fan1.drive)

AND NOT #Fan1.stop AND #Fan1.fault;

//Set tag with RLO = "1" s

IF #Fan2.start THEN #Fan2.drive := TRUE; END_IF;

//Reset tag with RLO = "1" d

IF #Fan2.stop OR NOT #Fan2.fault

THEN #Fan2.drive := FALSE; END_IF;

Fig. 9.7 Assigning, setting, and resetting with SCL

9 Structured Control Language SCL

368

Fig. 9.8 shows one example each with a rising (positive) edge and a falling (nega-
tive) edge.

a With the first edge evaluation, a pulse flag (#Alarm.pulse_pos) is generated
which, with a positive edge, has signal state “1” for the duration of one program
cycle. This pulse flag can be used in the user program to carry out actions; in the
example the #Alarm.memory tag is set to TRUE. Following pulse generation, the
edge trigger flag must be updated.

s The second edge evaluation is implemented using an IF statement. If a negative
edge is detected, #Alarm.memory is reset to FALSE. This is followed by updating of
the edge trigger flag.

9.4 Programming timer and counter functions with SCL

9.4.1 SIMATIC timer functions in SCL

The SIMATIC timer functions are an operand area in the CPU's system memory and
their number is limited. SCL handles a SIMATIC timer function like a function with
function value. Table 9.3 shows the parameters possible in association with a func-
tion call of a SIMATIC timer. The time response of a SIMATIC timer function is
described in detail in Chapter 12.4 “SIMATIC timer functions” on page 524.

For programming, enter the tag for the function value and the assignment operator
in a line. Drag the function call with the mouse from the program elements catalog
under Basic instructions > Timer operations into the input line. Then replace the
dummy values by the actual parameters in the function call. Delete non-required
parameters including their name.

In Fig. 9.9, the time “Fan3.on_delay” is started as an ON delay by the positive edge of
#Fan3.start. Following expiry of the duration, the timer function “Fan3.off_delay” is
started with the duration present as a value in the #Follow-up_time tag. The status of
the timer function “Fan.off_delay” simultaneously has signal state “1” so that fan 3 is
switched on following the ON delay. Once the start signal #Fan3.start has signal state
“0”, fan 3 continues to run for the follow-up time and is then switched off.

//Set alarm memory with positive signal edge a

#Alarm.pulse_pos := #Alarm.bit AND NOT #Alarm.edge_pos;

#Alarm.edge_pos := #Alarm.bit;

IF #Alarm.pulse_pos THEN #Alarm.memory := TRUE; END_IF;

//Reset alarm memory with negative signal edge s

IF NOT #Alarm.ack AND #Alarm.edge_neg

THEN #Alarm.memory := FALSE; END_IF;

#Alarm.edge_neg := #Alarm.ack;

Fig. 9.8 Examples of edge evaluation with SCL

9.4 Programming timer and counter functions with SCL

369

9.4.2 SIMATIC counter functions in SCL

The SIMATIC counter functions are an operand area in the CPU's system memory
and their number is limited. SCL handles a SIMATIC counter function like a func-
tion with function value. Table 9.4 shows the parameters possible in association
with a function call of a SIMATIC counter. The counter response is described in
detail in Chapter 12.6 “SIMATIC counter functions” on page 545.

For programming, enter the tag for the function value and the assignment operator
in a line. Drag the function call with the mouse from the program elements catalog
under Basic instructions > Counter operations into the input line. Then replace the
dummy values by the actual parameters in the function call. Delete non-required
parameters including their name.

Fig. 9.10 shows the counting of workpieces up to a specific quantity. The counter
#Parts_counter is set by the #Quantity_set tag to a start value of 120. Each positive
edge at the #Workpiece_identified tag decrements the count value by one unit. If a
value of zero is reached – the counter status is then “0” – #Quantity_reached is set.

Table 9.3 Call of SIMATIC timer functions with SCL

Timer
function

Parameter Data type Description

Function value S5TIME Current time value

S_PULSE
S_PEXT
S_ODT
S_ODTS
S_OFFDT

Start timer as pulse
Start timer as extended pulse
Start timer as ON delay
Start timer as retentive ON delay
Start timer as OFF delay

T_NO
S
TV
R
BI
Q

TIMER
BOOL
S5TIME
BOOL
WORD
BOOL

Time operand (T)
Start input
Default time value
Reset input
Current integer-coded time value
Binary status of timer function

//Switch fan on and off with delay

#temp_S5Time := S_ODT(T_NO := "Lüfter3.on_delay",

S := #Fan3.start,

TV := S5T#3s,

Q => #temp_bool);

#temp_S5Time := S_OFFDT(T_NO := "Fan3.off_delay",

S := #temp_bool,

TV := #Follow-up_time,

Q => #Fan3.drive);

Fig. 9.9 Example of application of SIMATIC timer functions

9 Structured Control Language SCL

370

9.4.3 IEC timer functions in SCL

An IEC timer function is available as pulse time (TP), as ON delay (TON), as
OFF delay (TOF), and as accumulating ON delay (TONR). A detailed description of
the timer response is provided in Chapter 12.5 “IEC timer functions” on page 539.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Timer operations into a line on the
working area. When positioning, you select either as single instance or as local
instance (multi-instance). The instance data block generated automatically when
selecting as a single instance is saved in the project tree under Program blocks >
System blocks > Program resources.

With the IEC timer functions, a binary tag must be connected to the IN input, and a
duration to the PT input. You can also directly access the output parameters using
the instance data, for example with “DB_name”.Q for a single instance or
#Instance_name.Q for a local instance.

PRESET_TIMER loads an IEC timer function with a duration. RESET_TIMER resets an
IEC timer function.

Fig. 9.11 shows the IEC timer function #Alarm_delay, which saves its data as local
instance in the instance data block of the calling function block. If the #Measure-
ment_too_high tag has signal state “1” for longer than 10 s, #Alarm_too_high is set.

Table 9.4 Call of SIMATIC counter functions with SCL

Counter
function

Parameter Data type Description

Function value WORD Current count value

S_CU
S_CD
S_CUD

Up counter
Down counter
Up/down counter

C_NO
S
PV
R
BI
Q

COUNTER
BOOL
WORD
BOOL
WORD
BOOL

Counter operand (C)
Set input
Default count value
Reset input
Current integer-coded count value
Binary status of counter function

//Simple parts counter

#temp_word := S_CD(C_NO := "Parts_counter",

CD := #Workpiece_identified,

S := #Quantity_set,

PV := 16#0120,

Q => #temp_bool);

#Quantity_reached := NOT #temp_bool;

Fig. 9.10 Example of application of a SIMATIC counter function in SCL

9.4 Programming timer and counter functions with SCL

371

9.4.4 IEC counter functions in SCL

An IEC counter function is available as up counter (CTU), down counter (CTD), or
up/down counter (CTUD). A detailed description of the counter response is provided
in Chapter 12.7 “IEC counter functions” on page 553.

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Counter operations into a line on
the working area. When positioning, you select either as single instance or as local
instance (multi-instance). The instance data block generated automatically when
selecting as a single instance is saved in the project tree under Program blocks >
System blocks > Program resources.

With the IEC counter functions, a binary tag must be connected to at least one
counter input (CU or CD). Connection of the other function inputs and outputs is
optional. You can also directly access the output parameters using the instance
data, for example with “DB_name”.QD for a single instance or #Instance_name.QD
for a local instance.

Fig. 9.12 shows the IEC counter function #Lock_counter, which is called as a local
instance. It has saved its data in the instance data block of the calling function block.
A component of the counter can be addressed with the name of the instance and the
component name, for example #Lock_counter.CV. The example shows the passages
through a lock, either forward or backward.

//Alarm delay

#Alarm_delay(IN := #Measurement_too_high,

PT := T#10s,

Q => #Alarm_too_high);

...

PRESET_TIMER(PT := T#5s,

TIMER := #Alarm_delay);

...

RESET_TIMER(#Alarm_delay);

Fig. 9.11 Example of IEC timer function with SCL

//Simple lock counter

#temp_bool1 := #Light_barrier1 AND NOT #"Light_barrier1.edge";

#"Light_barrier1.edge" := #Light_barrier1;

#temp_bool2 := #Light_barrier2 AND NOT #"Light_barrier2.edge";

#"Light_barrier2.edge" := #Light_barrier2;

#Lock_counter(CU := #Light_barrier2 AND #temp_bool1,
CD := #Light_barrier1 AND #temp_bool2,
R := #Acknowledge, LD := FALSE, PV := 0);

Fig. 9.12 Example of IEC counter function with SCL

9 Structured Control Language SCL

372

9.5 Programming digital functions with SCL

The “simple” digital functions are implemented with SCL through the value assign-
ment of an expression. When linking two values, the type of digital function
depends on the operator used: comparison expression (comparison functions),
arithmetic expression (arithmetic and mathematical functions), or logic expres-
sion (word logic operations). The functions for data type conversion (conversion
functions) and for shifting and rotating are available for manipulating just one
value.

9.5.1 Transfer function, value assignment of a digital tag

A detailed description of the transfer functions is provided in Chapter 13.2 “Trans-
fer functions” on page 559.

The “simple” transfer function corresponds with SCL to the value assignment.
MOVE_BLK and UMOVE_BLK transfer individual components from one ARRAY tag
to another. BLKMOV and UBLKMOV transfer individual tags or absolutely addressed
data areas. FILL_BLK and UFILL_BLK fill components of an ARRAY tag with a value.
FILL fills a tag or an absolutely addressed data area with a value. SWAP swaps the
order of the bytes in a tag.

You can find the transfer functions in the program elements catalog under
Basic instructions > Move operations.

Example of a value assignment: The value of the #Alarms tag in data block
“Data.SCL” is assigned to the “Alarm_bits” tag in the memory area.

"Alarm_bits" := "Data.SCL".Alarms;

9.5.2 Comparison functions in SCL

A comparison function compares the values of two digital tags and delivers a binary
comparison result. SCL implements the comparison function using a comparison
operator. The comparison result can be linked further like a Boolean tag. The com-
parison result has signal state TRUE if the comparison is fulfilled, otherwise FALSE.
The comparison function is described in Chapter 13.3 “Comparison functions” on
page 570. Table 9.5 shows the comparison operators available with SCL.

Table 9.5 Comparison functions with SCL

Operator Description Approved tags

=
<>
<
<=
>
>=

Compare for equal
Compare for unequal
Compare for greater than
Compare for greater than-equal
Compare for less than
Compare for less than-equal

Comparison of fixed-point and floating-point numbers,
of durations, of date and time, and of strings

=
<>

Compare for equal
Compare for unequal

Comparison of bit sequences

9.5 Programming digital functions with SCL

373

Two comparison functions are programmed in Fig. 9.13. In the first comparison,
the #Measurement_temperature tag is compared with “Lower_limit”, in the second
comparison with “Upper_limit”. The result of the two comparisons is linked accord-
ing to AND and saved in the #Measurement_in_range tag. “Lower_limit” and
“Upper_limit” are created as symbolically addressed user constants.

9.5.3 Arithmetic functions in SCL

The arithmetic functions for numerical values implement the basic arithmetical
operations addition, subtraction, multiplication, and division. SCL uses an arith-
metic operator for this. A detailed description of these arithmetic functions is pro-
vided in Chapter 13.4 “Arithmetic functions” on page 574. Table 9.6 shows the
arithmetic operators available with SCL and the allowed data types.

If an arithmetic function is used for numbers with different data types, the data
type of the result is determined as follows:

b If there are two fixed-point numbers with sign, the result receives the larger data
type (example: INT + DINT = DINT).

b If there are two fixed-point numbers without sign, the result receives the larger
data type (example: USINT + UDINT = UDINT).

b If one fixed-point number has a sign and the other does not, the result receives
the next larger data type with a sign, which covers the fixed-point number
without sign (example: SINT + USINT = INT).

b If there is a fixed-point number and a floating-point number, the result receives
the data type of the floating-point number (example: INT + REAL = REAL).

b When there are two floating-point numbers of different lengths, the result
receives the larger data type (example: REAL + LREAL = LREAL).

The permitted data types depend on the block attribute IEC check. Wherever possi-
ble, implicit data type conversion is used (see also Chapter 4.5.2 “Implicit data type
conversion” on page 108).

In Fig. 9.14, the upper limit of a measured value is monitored. A hysteresis is intro-
duced to ensure that the #Measurement_too_high and #Measurement_too_low
alarms do not “pulsate” when the measurement changes rapidly around the upper
or lower limit. The alarms are only canceled when the measured value has dropped
again below the upper limit or risen again above the upper limit by the magnitude
of the hysteresis.

#Measured_value_in_range :=

(#Measurement_temperature >= "Lower_limit") AND

(#Measurement_temperature <= "Upper_limit");

Fig. 9.13 Example of comparison expressions with SCL

9 Structured Control Language SCL

374

Table 9.6 Arithmetic operators with SCL

Data type

Operator Description 1st operand 2nd operand Result

** Power Fixed point, floating
point

Fixed point, floating
point

Fixed point, floating
point

* Multiplication Fixed point, floating
point

TIME, LTIME

Fixed point, floating
point

Fixed point

Fixed point, floating
point

TIME, LTIME

/ Division Fixed point, floating
point

TIME, LTIME

Fixed point, floating
point

Fixed point

Fixed point, floating
point

TIME, LTIME

MOD Division with
remainder as
result

Fixed point Fixed point Fixed point

+ Addition Fixed point, floating
point

TIME

LTIME

TOD

LTOD

DATE

DT

LDT

DTL

Fixed point, floating
point

TIME, DINT

TIME, LTIME, LINT

TIME, DINT

TIME, LTIME, LINT

TOD, LTOD

TIME

TIME, LTIME

TIME, LTME

Fixed point, floating
point

TIME

LTIME

TOD

LTOD

DTL

DT

LDT

DTL

– Subtraction Fixed point, floating
point

TIME

LTIME

TOD

LTOD

DATE

DT

LDT

DTL

DTL

Fixed point, floating
point

TIME, DINT

TIME, LTIME, LINT

TIME, DINT

TIME, LTIME, LINT

DATE

TIME

TIME, LTIME

TIME, LTME

DTL

Fixed point, floating
point

TIME

LTIME

TOD

LTOD

LTIME

DT

LDT

DTL

LTIME

IF #Measurement_temperature >= "Upper_limit"

THEN #Measurement_too_high := TRUE; END_IF;

IF #Measurement_temperature <= "Upper_limit" - "Hysteresis"

THEN #Measurement_too_high := FALSE; END_IF;

IF #Measurement_temperature <= "Lower_limit"

THEN #Measurement_too_low:= TRUE; END_IF;

IF #Measurement_temperature >= "Lower_limit" + "Hysteresis"

THEN #Measurement_too_low:= FALSE; END_IF;

Fig. 9.14 Example of arithmetic expressions with SCL

9.5 Programming digital functions with SCL

375

9.5.4 Math functions in SCL

The math functions comprise trigonometric functions, exponential functions, and
logarithmic functions. The math functions process floating-point numbers. If the
input tag has a different data type, it is converted during the implicit data type con-
version (see also Chapter 4.5.2 “Implicit data type conversion” on page 108). The
program elements catalog contains the math functions under Basic instructions >
Math functions. A detailed description of these math functions is provided in
Chapter 13.5 “Math functions” on page 578. Table 9.7 shows the math functions
available with SCL.

Fig. 9.15 shows the calculation of reactive power using the SIN function, calculation
of the volume of a sphere, the solution of a quadratic equation, and calculation of
an arithmetic mean value.

9.5.5 Conversion functions in SCL

The conversion functions convert the data formats of tags and expressions. A
detailed description of the conversion functions is provided in Chapter 13.6 “Conver-
sion functions” on page 586. The program elements catalog contains CONVERT,
ROUND, CEIL, FLOOR, TRUNC under Basic instructions > Conversion operations. The
conversion function T_CONV can be found under Extended instructions > Date and
time-of-day, the conversion functions S_CONV, CHARS_TO_STRG, STRG_TO_CHARS,
ATH, and HTA under Extended instructions > String + Char.

When inserting the CONVERT, T_CONV, or S_CONV functions, you select the data
types involved in the conversion in a dialog box (Fig. 9.16). As a result of the dialog,

Table 9.7 Math functions with SCL

Operation Function Operation Function

SIN
COS
TAN

Calculate sine
Calculate cosine
Calculate tangent

ASIN
ACOS
ATAN

Calculate arcsine
Calculate arccosine
Calculate arctangent

SQR
SQRT

Generate square
Extract square root

EXP
LN

Generate exponential function to base e
Generate natural logarithm
(to base e)

#Reactive_power := #Voltage * #Current * SIN(#phi);

#Volume := 4/3 * "pi" * #Radius**3;

#Solution_1 := -#p/2 + SQRT(SQR(#p/2) - #q);

#Mean_value := (#Motor[1].power + #Motor[2].power)/2;

Fig. 9.15 Example of math functions with SCL

9 Structured Control Language SCL

376

the program editor inserts the explicit conversion function <target tag> := <conver-
sion function> (<source tag>), e.g.

#var_target := INT_TO_REAL(#var_source);

ROUND, CEIL, FLOOR, and TRUNC convert a fractional number in floating-point for-
mat into an integer in fixed-point or floating-point format. ROUND converts the
fractional number to the next integer. If the result lies between an even number and
an uneven number, the even number is output (example: ROUND(0.5) = 0,
ROUND(1.5) = 2). CEIL rounds to the next highest integer. FLOOR rounds to the next
lowest integer. TRUNC “cuts off” the decimal places and only displays the integer
portion.

The function value of ROUND, CEIL, FLOOR and TRUNC has the default data type
DINT. If a different data type is to be assigned to the function value, attach the data
type to the function with an underscore. Example:

#var_sint := TRUNC_SINT(#var_real);

Table 9.8 Conversion functions with SCL

Function Description, remark

CONVERT
T_CONV
S_CONV

Dialog boxes for data type conversion with explicit conversion functions

ROUND
CEIL
FLOOR
TRUNC

Data type conversion of a floating-point number into a fixed-point number or
floating-point number

With rounding to the next integer
With rounding to the next highest integer
With rounding to the next lowest integer
Without rounding

CHARS_TO_STRG
STRG_TO_CHARS

ATH
HTA

Conversion of an ARRAY tag with CHAR or BYTE components into a string and vice versa.

Conversion of a BYTE sequence with hexadecimal coding into a CHAR sequence with
ASCII coding and vice versa.

Fig. 9.16 Selection of data types with the CONVERT function

9.5 Programming digital functions with SCL

377

If the permissible numerical range is left during a conversion, the ENO tag is set to
FALSE and the result of the conversion is invalid.

Fig. 9.17 shows an example of nested conversion functions a. A value present in
data format REAL is first mapped to the data format DINT and then converted into
the 7-decade BCD format.

Conversion of a data block number to UINT

A tag with the data type DB_ANY has the number of the data block as its content.
This data type can be converted to the data type UINT, which allows you to continue
working with the DB number, for example for indirect addressing.

b DB_ANY_TO_UINT provides the DB number as UINT tag.

b UINT_TO_DB_ANY converts a UINT tag into a DB number.

Fig. 9.17 shows an example s. The #Data_block tag is typically a block parameter
with the data type DB_ANY, which as input parameter allows the transfer of a data
block to the called block. In the example, if the number of this data block is greater
than 10, the tag #Program1 is set to “1”; otherwise it is reset.

Conversion of a data block number to VARIANT

A tag with the data type DB_ANY has the number of the data block as its content.
This data type can be converted to data type VARIANT. Conversely, a VARIANT
pointer to a data block can be converted to data type DB_ANY.

b DB_ANY_TO_VARIANT converts the DB number into a VARIANT pointer.

b VARIANT_TO_DB_ANY converts a VARIANT pointer into a DB number.

The syntax is as follows:

#var_DB_ANY := VARIANT_TO_DB_ANY(IN := #var_VARIANT, ERR => #var_INT);

#var_VARIANT := DB_ANY_TO_VARIANT(IN := #var_DB_ANY, ERR => #var_INT);

The conversion using DB_ANY_TO_VARIANT or VARIANT_TO_DB_ANY can only be
carried out with type data blocks or ARRAY data blocks.

If an error occurs while the conversion is being carried out, the error is specified on
the parameter ERR. In the event of an error, the data block number zero or a zero
pointer is returned.

#Measurement_display := a
DINT_TO_BCD32(REAL_TO_DINT(#Reactive_power));

#Program1 := DB_ANY_TO_UINT(#Data_block) > 10; s

Fig. 9.17 Example of conversion functions with SCL

9 Structured Control Language SCL

378

9.5.6 Shift functions in SCL

A shift function shifts the content of a tag bit-by-bit to the left or right. A detailed
description of the shift functions is provided in Chapter 13.7 “Shift functions” on
page 603. The program elements catalog contains the shift functions under Basic
instructions > Shift and rotate. Table 9.9 shows the shift functions available with SCL.

By default the function value of a shift function has the data type that the input tag
has. If a different data type is to be assigned to the function value, attach the data
type to the function with an underscore.

Example: #var_dword := ROL_DWORD(IN1 := #var_word, N := #var_uint);

In Fig. 9.18, the three decades of two numbers present in BCD format of a SIMATIC
counter are joined. The more significant component #Quantity_high is shifted to the
left by three decades (12 bits) and linked to the less significant component #Quan-
tity_low according to an OR logic operation. In the result #Quantity_display, the two
times three decades are then present as a 6-decade BCD number.

9.5.7 Word logic operations, logic expression in SCL

The word logic operations apply the binary operations AND, OR, and XOR to each
bit of a digital tag. A word logic operation is implemented with a logic expression in
SCL. A detailed description is provided in Chapter 13.8.1 “Word logic operations”
on page 607. Table 9.10 shows the word logic operations available with SCL.

Table 9.9 Shift functions with SCL

Function Description Data types IN Data type N

SHR (IN, N)
SHL (IN, N)

Shift to right
Shift to left

Bit sequences, fixed point Fixed point

ROR (IN, N)
ROL (IN, N)

Rotate to right
Rotate to left

Bit sequences, fixed point Fixed point

#Quantity_display :=

SHL(IN := #Quantity_high, N := 12) OR #Quantity_low;

Fig. 9.18 Example of shift functions with SCL

Table 9.10 Word logic operations with SCL

Operator Function Data types of the tags

AND, &
OR
XOR

AND logic operation
OR logic operation
Exclusive OR logic operation

Bit sequences, fixed point

NOT Negation Bit sequences, fixed point

9.5 Programming digital functions with SCL

379

Fig. 9.19 shows how you can program 32 edge evaluations simultaneously for ris-
ing and falling edges. The alarm bits are collected in a doubleword Alarms, which is
present in data block “Data.SCL”. The edge trigger flags Alarms_EM are also present
in this data block. If the two doublewords are linked by an XOR logic operation, the
result is a doubleword in which each set bit represents a different assignment of
Alarms and Alarms_EM, in other words: The associated alarm bit has changed. In
order to obtain the positive signal edges, the changes are linked to the alarms by an
AND logic operation. The bit for a rising signal edge is set wherever the alarm has
a “1” and the change has a “1”. This corresponds to the pulse flag of the edge eval-
uation. If you do the same with the negated alarm bits – the alarm bits with signal
state “0” are now “1” – you obtain the pulse flags for a falling edge. At the end it is
only necessary for the edge trigger flags to track the alarms.

9.5.8 Functions for strings in SCL

Strings are tags with the data type STRING. With the functions for strings, parts of
a string can be extracted, inserted, replaced or deleted, two strings can be com-
bined, and the length of a string or the position of a character in a string can be
determined.

A detailed description of these functions is provided in Chapter 13.9 “Processing of
strings (data type STRING)” on page 615. You can find the functions for the process-
ing of strings in the program elements catalog under Extended instructions >
String + Char. Table 9.11 shows an overview of the available functions.

#Alarm_changes :=
"Data.SCL".Alarms XOR "Data.SCL".Alarms_EM;

"Data.SCL".Alarms_pos :=
#Alarm_changes AND "Data.SCL".Alarms;

"Data.SCL".Alarms_neg :=
#Alarm_changes AND NOT "Data.SCL".Alarms;

"Data.SCL".Alarms_EM := "Data.SCL".Alarms;

Fig. 9.19 Example of word logic operations with SCL

Table 9.11 Functions for the processing of strings

Function Meaning, remark Function Meaning, remark

LEN Outputs the length of a string. DELETE Deletes part of a string.

FIND Finds characters in a string. INSERT Inserts characters into a string.

LEFT Outputs the left part of the string. REPLACE Replaces characters in a string.

RIGHT Outputs the right part of the string. CONCAT Combines two strings together.

MID Outputs the middle part of the string.

9 Structured Control Language SCL

380

The example in Fig. 9.20 shows the replacement of one part of a string by another.
In the input tag IN1, REPLACE replaces from position P the number of characters L
with the string to be inserted IN2 and outputs the new string as function value.

9.6 Program control with SCL

You can influence execution of the user program by means of the program control
functions. You can recognize errors in program execution by using the ENO tag, the
control statements permit you to implement program branches, and the block
functions allow you to call and terminate blocks.

9.6.1 Working with the ENO tag

The programming language SCL offers a pre-defined tag named ENO with data type
BOOL, i.e. ENO is not declared by the user but is always present. This block-local tag
shows FALSE to indicate an error in process execution in an SCL block.

In order to use automatic error detection with the ENO tag, the block attribute
Set ENO automatically must be activated. When compiling the block, additional
code is generated for controlling ENO. You activate the block attribute Set ENO auto-
matically in the properties of the SCL block under Attributes.

Error analysis with ENO

At the block start, the ENO tag is always TRUE. ENO is set to FALSE if a called block
signals an error or following faulty execution of an arithmetic expression or con-
version function. Every error in the further block program also sets ENO to FALSE:
ENO is used as a group error message for program execution in a block.

You can scan the ENO tag at any time:

#Total := #Total + #New_value;

IF NOT ENO //Scan ENO

THEN (* faulty addition or previous error *);

END_IF;

In this program, the THEN branch is even executed if faulty program execution took
place prior to the addition which ENO also set to FALSE.

var3_string := REPLACE(IN1 := #var1_string,

IN2 := #var2_string,

L := #var1_int,

P := #var2_int);

Fig. 9.20 Example of string processing with SCL

9.6 Program control with SCL

381

You can assign a value to the ENO tag at any time. If you only wish to check the
correct execution of the addition (always assuming that the block attribute
Set ENO automatically is activated), you can also program:

ENO := TRUE; //Set ENO

#Total := #Total + #New_value;

IF ENO //Scan ENO

THEN (* no error occurred *);

ELSE (* faulty addition *);

END_IF;

You can also use the ENO tag independent of the block attribute Set ENO
automatically, for example as a group error message:

IF (* error detected *)

THEN ENO := FALSE; RETURN; //Reset ENO and exit block

END_IF;

When exiting the block, the value of the ENO tag is automatically assigned to the
enable output ENO of the block.

Error evaluation following a block call

A block call can control the ENO tag via the enable output ENO. If the enable output
is FALSE (this is the case if an error has occurred in the called block or if the ENO tag
has been set to FALSE in the called block by the user), the “block-local” ENO tag is
also set to FALSE in the current block.

"Block" (In1 := ..., In2 := ...);

IF NOT ENO THEN (* an error has occurred up to here *);

END_IF;

An error signaled by the called block – as well as previous errors – sets the
“block-local” ENO tag to FALSE. If you wish to scan an error signal by the called
block independent of a previous error, use the enable output ENO:

"Block" (In1 := ..., In2 := ..., ENO => #OK);

IF NOT #OK THEN (* error in block *); END_IF;

The “block-local” ENO tag is not set to FALSE if the called block has not been pro-
cessed via the enable input EN (with EN equal to FALSE).

9.6.2 EN/ENO mechanism with SCL

The EN/ENO mechanism is based on the enable input EN and enable output ENO. EN
and ENO are implicitly defined parameters with a block call. EN is permissible for
function blocks (FB), ENO is permissible for function blocks (FB) and functions
(FC). EN and ENO are not displayed by the program editor in the offered template.

EN is the first parameter in the parameter list, ENO the last. Use of these parameters
is optional. If you do not require these parameters, simply omit them.

The EN/ENO mechanism is only supported in SCL if the block attribute Set ENO
automatically is activated.

9 Structured Control Language SCL

382

Enable input EN

You can control the calling of a function block using the enable input EN. If EN is
TRUE or not used, the called block is processed. If EN is FALSE, the called block is not
processed. You use the enable input EN in the parameter list like an input parame-
ter:

"Block"(EN := #Enable, In1 := ..., In2 := ...);

(* "Block" is only processed if #Enable = TRUE *)

You can use the enable input to implement a conditional block call, which depends
on the value of a binary tag or binary expression.

Enable output ENO

You can scan the error status of the block using the enable output ENO. If ENO is
TRUE, processing has been carried out correctly. If FALSE, the ENO output signals
that an error is present in the block. You can scan the state of the ENO output in the
parameter list using a tag:

"Block" (In1 := ..., In2 := ..., ENO => #OK);

(* With error-free processing, #OK has the value TRUE *)

If the called block signals an error, this is transferred to the “block-local” ENO tag:

"Block" (In1 := ..., In2 := ..., ENO => #OK);

#No_error := ENO;

IF NOT #OK THEN (* error in block *); END_IF;

IF NOT #No_error THEN (* group error message *); END_IF;

The #OK tag is FALSE if block processing was faulty. The #No_error tag is FALSE if
block processing was faulty or if an error was already present prior to the block call.

If a function block with EN = FALSE is not processed, this has no influence on the
“block-local” ENO tag. However, the ENO output is set to FALSE.

"Block"(EN := #Enable, ... , ENO => #OK);

#No_error := ENO;

If the #Enable tag is FALSE, the #OK tag is FALSE and the #No_error tag remains
uninfluenced at its “old” value.

If you wish to use the EN/ENO mechanism as with LAD or FBD, in other words the
“series connection” of block calls, you can program as follows:

"Block1"(EN := #Enable, ... , ENO => #OK);

"Block2"(EN := #OK, ...);

“Block2” is not processed if #Enable is FALSE or if an error has occurred in “Block1”.

Fig. 9.21 provides a summary of how the enable output ENO and the ENO tag are
controlled with a block call.

9.6 Program control with SCL

383

9.6.3 Control statements

The control statements control program branches and loops depending on a condi-
tion. The following control statements are used with SCL:

b IF Program branch depending on BOOL value

b CASE Program branch depending on INT value

b FOR Program loop with a loop-control tag

b WHILE Program loop with a feasibility condition

b REPEAT Program loop with an abort condition

b CONTINUE Abort current loop

b EXIT Leave the program loop

Note: Make sure when using program loops that the cycle monitoring time is not
exceeded.

IF statement

The IF statement processes a statement block depending on a Boolean value (Fig.
9.22).

Example in Fig. 9.23: If the #Actual_value tag is greater than the #Setpoint tag, the
statements following THEN are processed. Otherwise the comparison for #Actu-
al_value less than #Setpoint is carried out and, if fulfilled, processing of the state-
ments following ELSIF is carried out. If neither of the two comparisons is fulfilled,
the statements following ELSE are processed.

Fig. 9.21 Schematic for setting of enable output ENO and the ENO tag

Is EN used?

YES NO

Is EN = TRUE? Block/function being processed

YES NO

Block/function being processed Block/function not
being processed

Has an error occurred? Has an error occurred?

YES NO YES NO

Tag at the ENO out-
put is set to FALSE

Tag at the ENO out-
put is set to TRUE

Tag at the ENO out-
put is set to FALSE

Tag at the ENO out-
put is set to FALSE

Tag at the ENO out-
put is set to TRUE

“Block-local” ENO
tag is set to FALSE

“Block-local” ENO
tag remains
unchanged

“Block-local” ENO
tag remains
unchanged

“Block-local” ENO
tag is set to FALSE

“Block-local” ENO
tag remains
unchanged

9 Structured Control Language SCL

384

Fig. 9.22 Principle of operation of the IF branch

Simple IF branch

IF branch with ELSE

Nested IF branch

Control statement IF

The control statement IF processes a program section <Statements> depending on a Boolean value
<Condition>. <Condition> can be a binary tag or an expression with a Boolean result.

If <Condition> has the value TRUE, the statement
block following THEN is processed.
If <Condition> has the value FALSE, processing of
the program is continued following END_IF.

If <Condition> has the value TRUE, the statement
block following THEN is processed.
If <Condition> has the value FALSE, the statement
block following ELSE is then processed.

A further condition is scanned by ELSIF … THEN if
the preceding condition is not fulfilled.
The ELSIF … THEN statement can be inserted
cascaded: An ELSIF scan can again follow ELSIF …
THEN.
ELSE and the subsequent statements can also be
omitted.

IF <Condition>
THEN <Statements>;

END_IF;

IF <Condition>
THEN <Statements1>;
ELSE <Statements2>;

END_IF;

IF <Condition1>
THEN <Statements1>;
ELSIF <Condition2>

THEN <Statements2>;
ELSE <Statements3>;

END_IF;

IF

IF

IF

ELSIF

END_IF

END_IF

END_IF

Statements

Statements1

Statements1Statements2

Statements2

Statements3

<Condition>

<Condition>

<Condition1>

<Condition2>

THEN

THEN

THENTHEN

ELSE

ELSE

9.6 Program control with SCL

385

CASE statement

You can use the CASE statement to process one or more sequences of statements
depending on an INT value (Fig. 9.24).

Selection is an operand or expression with data type INT. If Selection has the value
of Range1, the Statements1 are processed and then processing of the program is
continued following END_CASE. If Selection has the value of Range2, the State-
ments2 are processed, etc.

If no value corresponding to the selection is present in the list of values, the State-
ments0 following ELSE are processed. The ELSE branch can also be omitted.

The list of values with Range1, Range2, etc. consists of INT constants.

#greater_than := FALSE; #less_than := FALSE; #equal_to := FALSE;

IF #Actual_value > #Setpoint

THEN #greater_than := TRUE;

ELSIF #Actual_value < #Setpoint

THEN #less_than := TRUE;

ELSE #equal_to := TRUE;

END_IF;

Fig. 9.23 Example of the IF statement

Fig. 9.24 Principle of operation of the CASE branch

Control statement CASE

The control statement CASE processes a program section <Statements> depending on whether an
integer value <Selection > is within a <Range>. <Range> can be a constant, a fixed range, or a list of
constants and fixed ranges.

CASE <Selection> OF
<Range1> : <Statements1>;
<Range2> : <Statements2>;
...
ELSE : <Statements0>;

END_CASE;

CASE

END_CASE

Statements1Statements0 Statements2 ...

<Selection>

<Range1>ELSE <Range2> ...

9 Structured Control Language SCL

386

Various expressions are possible for a component in the list of values:

b A single INT number

b A range of INT numbers (e.g. 15..20)

b A list of INT numbers and INT numerical ranges (e.g. 21,25,30..33)

Each value must only be present once in the list of values.

CASE statements can be nested. A CASE statement can be present instead of a state-
ment block in the selection table of a CASE statement.

Example in Fig. 9.25: A value is assigned to the #Error_number tag depending on the
assignment of the #ID tag.

FOR statement

Using the FOR statement, a program loop is repeatedly processed as long as a
control tag is within a defined range of values (Fig. 9.26).

CASE #ID OF

0 : #Error_number := 0;

1,3,5 : #Error_number := #ID + 128;

6..10 : #Error_number := #ID;

ELSE #Error_number := 16#7F;

END_CASE;

Fig. 9.25 Example of the CASE statement

Fig. 9.26 Principle of operation of the FOR loop

Control statement FOR

The control statement FOR processes a program section <Statements> for as long as a #Control tag is
within a range of values. The range of values is defined by a <Start_value>, an <Increment>, and an
<End_value>.

FOR := <Start_value> TO <End_value> BY <Increment>
DO <Statements>;

END_FOR;

#Control_tag

FOR

END_FOR

Statements

Control_tag
Start_value

:=

Control_tag
End_value ?

>=
Control_tag
Control_tag

Increment

:=
+DO

9.6 Program control with SCL

387

A <Start_value> is assigned to the #Control_tag in the start assignment. You define
the control tag yourself; it must be a tag with data type INT or DINT. <Start_value>
is any INT or DINT expression, as are <End_value> and <Increment>.

Control_tag if set to the start value at the beginning of loop processing. The end
value and increment are calculated at the same time and “frozen” (a change in these
values during loop processing has no effect on the processing of the loop). The
abort condition is subsequently scanned and – if it is not fulfilled – the program
loop is processed.

Each time the loop is executed, #Control_tag is increased by one increment (with
positive increment) or decreased by one increment (with negative increment).
Specification of BY Increment can be omitted; +1 is then used as the increment. If
#Control_tag is outside the range of start value and end value, program execution
is continued following END_FOR.

The last execution of the loop is carried out with the end value or with the value
<End_value> minus <Increment> if the end value is not reached exactly. Following
a completely executed program loop, the loop-control tag has the value of the last
loop plus <Increment>.

FOR loops can be nested: Further FOR loops with other loop-control tags can be pro-
grammed within the FOR loop. The current program execution can be aborted in
the FOR loop using CONTINUE; EXIT terminates the complete FOR loop processing.

Example in Fig. 9.27: In a #Current data field with 16 components, the maximum
value is searched for. In the FOR loop, the index tag #Index runs through the values 1
to 16. On each cycle, a field component #Current[#Index] is compared with the
already saved value #MaxValue. If #MaxValue is smaller, the value of the component
#Current[#Index] is adopted.

WHILE statement

The WHILE statement is used to repeatedly process a program loop for as long as a
feasibility condition is fulfilled (Fig. 9.28).

<Condition> is an operand or expression with data type BOOL. The statements fol-
lowing DO are repeatedly processed for as long as <Condition> is TRUE.

<Condition> is scanned prior to each loop processing. If the value is FALSE, pro-
gram execution is continued following END_WHILE. This can also already be the

#MaxValue := 0;

FOR #Index := 1 TO 16 DO

IF #MaxValue < #Current[#Index]

THEN #MaxValue := #Current[#Index];

END_IF;

END_FOR;

Fig. 9.27 Example of the FOR statement

9 Structured Control Language SCL

388

case prior to the first loop (the statements in the program loop are not processed in
this case).

WHILE loops can be nested: Further WHILE loops can be programmed within a
WHILE loop.

The current program execution can be aborted in the WHILE loop using CONTINUE;
EXIT terminates the complete WHILE loop processing.

Example in Fig. 9.29: The data block %DB300 is searched word-by-word from the
data word DBW16 for the bit pattern 16#FFFF. For every loop cycle, the tag #Offset
is increased by 2 (bytes). Loop processing ends when the bit pattern is found.
The #Quantity tag specifies the word in which the bit pattern is found.

REPEAT statement

The REPEAT statement is used to repeatedly process a program loop for as long as
an abort condition is not fulfilled (Fig. 9.30).

<Condition> is an operand or expression with data type BOOL. The statements fol-
lowing REPEAT are repeatedly processed for as long as <Condition> is FALSE.

Fig. 9.28 Principle of operation of the WHILE loop

#Offset := 0;

WHILE PEEK_WORD(area := 16#84,

dbNumber := 300,

byteOffset := 16 + #Offset) <> 16#FFFF DO

#Offset := #Offset + 2;

END_WHILE;

#Quantity := #Offset/2 + 1;

Fig. 9.29 Example of the WHILE statement

Control statement WHILE

The control statement WHILE processes a program section <Statements> for as long as a <Condition>
is fulfilled. <Condition> is a binary tag or an expression with binary result.

WHILE <Condition>
DO <Statements>;

END_WHILE;

WHILE

DO

END_WHILE

Statements<Condition>

9.6 Program control with SCL

389

<Condition> is scanned after each loop processing. If the value is TRUE, program
execution is continued following END_REPEAT. The program loop is executed at
least once, even if the abort condition is fulfilled right from the start.

REPEAT loops can be nested: Further REPEAT loops can be programmed within a
REPEAT loop.

The current program execution can be aborted in the REPEAT loop using
CONTINUE; EXIT terminates the complete REPEAT loop processing.

Example in Fig. 9.31: In the data block “Data.SCL”, the #Measurement array with
INT components is searched. The search ends as soon as a component has a value
less than 0. The index of the found array component is then in the control tag #k.

CONTINUE statement

CONTINUE finishes the current program execution in a FOR, WHILE or REPEAT loop
(Fig. 9.32).

Fig. 9.30 Principle of operation of the REPEAT control statement

#k := 0;

REPEAT

#k := #k + 1;

UNTIL "Data.SCL".Measurement[#k] < 0

END_REPEAT;

Fig. 9.31 Example of the REPEAT statement

Control statement REPEAT

The control statement REPEAT processes a program section <Statements> for as long as a
<Condition> is not fulfilled. <Condition> is a binary tag or an expression with binary result.

REPEAT
<Statements>;
UNTIL <Condition>

END_REPEAT;

REPEAT

No

END_REPEAT

UNTIL

Statements

<Condition>

9 Structured Control Language SCL

390

Fig. 9.32 Principle of operation of the CONTINUE control statement

Control statement CONTINUE

The control statement CONTINUE finishes the current execution of a FOR, WHILE or REPEAT program
loop. CONTINUE can be positioned anywhere in the statement part of the loop.

CONTINUE usually depends on a
condition. This condition has the data
type BOOL and can be a tag or an
expression.

IF <Condition>
THEN CONTINUE;

END_IF;

REPEAT

No

END_REPEAT

UNTIL

Statements

IF CONTINUE

IF CONTINUE

IF CONTINUE

IF CONTINUE

Statements

<Condition>

Finish execution of a REPEAT loop

Finish execution of a FOR loop

Finish execution of a WHILE loop

WHILE

END_WHILE

FOR

END_FOR

Statements

Statements

Statements

Statements

Control_tag >=
End_value ?

<Condition>

DO

DO

For the statement sequence:

the following is present in
the representations:

9.6 Program control with SCL

391

Fig. 9.33 Principle of operation of the EXIT control statement

Control statement EXIT

The control statement EXIT finishes a FOR, WHILE or REPEAT program loop.
EXIT can be positioned anywhere in the statement part of the loop.

REPEAT

No

END_REPEAT

UNTIL

Statements

IF EXIT

IF EXIT

IF EXIT

Statements

Cancel a REPEAT loop

Cancel a FOR loop

Cancel a WHILE loop

WHILE

END_WHILE

FOR

END_FOR

Statements

Statements

Statements

Statements

DO

DO

EXIT usually depends on a condition.
This condition has the data type BOOL
and can be a tag or an expression.

IF <Condition>
THEN EXIT;

END_IF;

IF EXIT

For the statement sequence:

the following is present in
the representations:

<Condition>

Control_tag >=
End_value ?

<Condition>

9 Structured Control Language SCL

392

Following execution of CONTINUE, the conditions for continuation of the program
loop are scanned (with WHILE and REPEAT) or the loop-control tag is changed by the
increment and checked whether it is still in the control range. If the conditions are
fulfilled, execution of the next loop starts following CONTINUE.

CONTINUE results in abortion of execution of the loop which directly surrounds the
CONTINUE statement.

Example in Fig. 9.34: Memory bits are reset by two nested FOR loops. The first reset
memory bit has #ByteBegin as byte address and #BitBegin as bit address. The last
reset memory bit has #ByteBegin + #Quantity as byte address and #BitEnd as bit
address. If in the first byte the control tag #k is less than #BitBegin, the program
loop begins again with #k increased by +1. If in the last byte (in the last cycle of the
external FOR loop), the control tag #k is greater than #BitEnd, the execution of the
internal FOR loop ends.

EXIT statement

EXIT leaves a FOR, WHILE, or REPEAT loop at any position independent of condi-
tions. Loop processing is aborted immediately and the program following
END_FOR, END_WHILE, or END_REPEAT is processed (Fig. 9.33).

EXIT results in leaving of the loop which directly surrounds the EXIT statement.
An example is shown in Fig. 9.34.

9.6.4 Block functions

The block functions call and terminate blocks. A detailed description of the block
functions is provided in Chapter 14.2 “Calling of code blocks” on page 631. Fig. 9.35
shows an example of the block functions with SCL.

Terminate block with RETURN

The RETURN statement terminates processing in the current block.

FOR #i := 0 TO #Quantity - 1 DO

FOR #k := 0 TO 7 DO

IF (#i = 0) AND (#k < #BitBegin) THEN CONTINUE; END_IF;

IF (#i = #Quantity - 1) AND (#k > #BitEnd) THEN EXIT; END_IF;

POKE_BOOL (area := 16#83,

dbNumber := 0,

byteOffset := #ByteBegin + #i,

bitOffset := #k,

value := FALSE);

END_FOR;

END_FOR;

Fig. 9.34 Example of the CONTINUE and the EXIT statement

9.6 Program control with SCL

393

The program elements catalog contains RETURN under Basic instructions > Program
control operations.

Example: The block is left if the ENO tag signals an error (is then FALSE).

IF NOT ENO THEN RETURN;

END_IF;

Call FC block without function value

When calling an FC function, the name of the function is followed by the parameter
list in parentheses. All parameters must be supplied with values (example a in Fig.
9.35).

Call FC block with function value

An FC function with function value can be used like a tag with the data type of the
function value, for example in an expression. The parameters of the function fol-
low the function name in parentheses and must all be supplied with values. In the
example s in Fig. 9.35, the function value of the “Adder2.SCL” function is assigned
to the #Results[1] tag.

//Block call FC without function value a

"Adder.SCL"(Number_1 := #Measurements[1],

Number_2 := #Measurements[2],

Number_3 := #Measurements[3],

Total => #Results[1]);

//Block call FC with function value s

#Results[2] := "Adder2.SCL"(Number_1 := #Measurements[1],

Number_2 := #Measurements[2],

Number_3 := #Measurements[3]);

//Block call FB as single instance d

"DB_Adder"(Value1 := #Interval[1],

Value2 := #Interval[2],

Value3 := #Interval[3],

Result => #Position[1]);

//Block call FB as local instance f

#Result(Value1 := #Interval[1],

Value2 := #Interval[2],

Value3 := #Interval[3],

Result => #Position[1]);

//Example of supplying parameters with values g

#Results[4] := Results[3] +

LIMIT(MN := #Lower_limit + #Hysteresis,

IN := REAL_TO_INT(#Result.Result),

MX := #Upper_limit);

Fig. 9.35 Examples of block functions with SCL

9 Structured Control Language SCL

394

Call FB function block as single instance

When calling a function block as a single instance, the name of the instance data
block is specified. This is followed by the parameter list in parentheses. Not all
parameters have to be supplied with values for a function block. You simply omit
the parameters which are not supplied from the list.

In the example d in Fig. 9.35, the “Adder” function block is called. The data of the
call is present in the instance data block “DB_Adder”.

Call FB function block as local instance

When calling a function block as local instance, the instance name of the function
block call is followed by the parameter list in parentheses. Not all parameters have
to be supplied with values for a function block. You simply omit the parameters
which are not supplied from the list.

In the example f in Fig. 9.35, the “Adder” function block is called. The data of the
call is present in the instance data block of the calling function block and has the
name #Result.

Supplying the block parameters

The input parameters on blocks and functions can be constants, tags, and expres-
sions.

In the example g in Fig. 9.35, the #Results[4] tag is assigned a total made up of the
#Results[3] tag and the function value (return value) of the standard function
LIMIT. In this case a function with a function value is used within an arithmetic
expression.

The value to be limited by LIMIT is the output parameter of the local instance
#Result from the example above this one. It is addressed by #Result.Result and has
the data type REAL. A conversion from REAL to INT must therefore still take place at
the IN parameter which expects the data type INT.

The total of #Lower_limit and #Hysteresis is output as the minimum at the
MN parameter.

10.1 Introduction

395

10 Statement list STL

10.1 Introduction

This chapter describes programming with a statement list. It provides examples of
how the program functions are represented in a statement list. You can find a
description of the individual functions, e.g. comparison functions, in Chapters 12
“Basic functions” on page 503, 13 “Digital functions” on page 558, and 14 “Program
control” on page 622. Chapter 10.7 “Further STL functions” on page 441 describes
functions which only exist in the statement list because they are based on a specific
model of the control processor (accumulators, data block registers, address regis-
ters, status bits).

Use of the program and symbol editor, which generally applies to all programming
languages, is described in Chapter 6 “Program editor” on page 247.

The statement list is used to program the contents of blocks (the user program).
What blocks are, and how they are created, is described in Chapters 5.3.1 “Block
types” on page 155 and 6.3 “Programming a code block” on page 253.

10.1.1 Programming with STL in general

You use STL to program the control function of the programmable controller – the
user program (control program). The user program is organized in different types
of blocks. A block can be divided into sections referred to as “networks”. Networks
are not required for functioning of the user program, but they do increase the clar-
ity.

Fig. 10.1 shows the program editor's working window. The icons in the toolbar a
can be used to set the display of the working area, e.g. the display of the network
comments and additional functions such as monitoring of the program status. The
interface of the block s in the upper part of the working window lists the block
parameters and local data. The favorites bar d can be expanded by additional pro-
gram elements. It can also be hidden. Each block has a heading, the block title, and
a block comment f, which can be used to explain the function of the block. These
are followed by the first network with its number, heading and comment g.

The control function, i.e. the list of statements, is displayed in the working area h.
The program editor constructs an STL program line by line. You write the first state-
ment in the network working area, the second statement underneath this, and so
on. The tags can be displayed absolutely, symbolically, or with both addressing
types j. A comment k can be added to each program line. It commences with two
slashes, either as line comment or as statement comment. You can insert empty
lines to structure

10 Statement list STL

396

Fig. 10.1 Structure of a block with STL program

10.1 Introduction

397

the sequence of statements. These and the comments have no effect on the control
function or on the length of the compiled program. The tag information l adds the
tag comment to each tag. Like the network comment, it can be hidden. The size of
the font can be adjusted using the zoom setting ;.

In order to program, use the keyboard to enter the STL statement in a line of the
input field. The program elements catalog provides you with an overview of the
existing operations and functions. Dragging a statement with the mouse from the
program elements catalog is of advantage with STL if you import functions with a
parameter list into your program. To call self-created blocks, drag them from the
Program blocks folder into a line.

10.1.2 Structure of an STL statement

The STL program consists of a sequence of individual STL statements. A statement
is the smallest independent unit of the user program. It represents a procedural
specification for the CPU. Fig. 10.2 shows the structure of an STL statement.

Fig. 10.2 Components of an STL statement

Label

M001:

Operation

L

Operand / tag

%IW

“Analog_value_1”

Symbolic address

STL statement

Identifier

12

Address

Comment

//Scan temperature

Structure of an STL statement

M002: CALL

Additional details

Parameter1

Parameter2

Parameter...

Name

:= Tag_1

:= Tag_2

:= Tag...

Parameters Actual operands

//Block call

//First parameter

//Second parameter

//...

An STL statement mainly comprises an operation, which defines the function to be executed, and –
depending on the operation – an operand or tag with which the function is to be executed. A jump
label at the beginning of the line and a comment at the end of the line are added if required.

A block or a (program) function that is based on a block is called with the operation CALL, which is
followed by the name of the block or function. The parameters are listed in the following lines.
A jump label and comments are optional.

10 Statement list STL

398

An STL statement consists of

b A jump label (optional), which must end with a colon.

b An operation, which describes what the CPU has to do (e.g. load, scan and link
according to AND logic operation, compare, etc.).

b An operand, which contains the information necessary for executing the opera-
tion (e.g. an absolutely addressed operand %IW12, a symbolically addressed tag
“Analog_Value_1”, a constant W#16#F001, a jump label, etc.). The operand can
also be omitted depending on the operation.

b A comment (optional), commenced by two slashes and up to the end of the
line.

With a block call, the call operation is followed by the parameter list in round brack-
ets.

10.1.3 Entering an STL statement

The program editor creates a two-line input field in an empty network into which
you can enter the STL statements.

Following input of the operation in a line, enter a space and then – if necessary –
the operand; in the case of a binary logic operation, for example, enter a binary tag
from one of the operand areas inputs, outputs, bit memories, and data.

In the same line you can enter a comment, separated by two slashes, up to the end
of the line. You can also begin a new line with two slashes and enter a comment – as
a sort of caption above the following statements.

Other options for making the statement list manageable are blank lines and net-
works.

Calling a block or a function with parameters

The operation CALL, followed by the parameter list, calls a block or (program) func-
tion with parameters. First the input parameters, then the output parameters, and
finally the in/out parameters are listed in the parameter list, in the order of their
declaration in each case. A comment can be added to each line. The entry label at
the beginning of the statement and the comments are optional. If you use the
mouse to drag a block from the Program blocks or a function from the program ele-
ments catalog into an STL line, the program editor displays the call statement and
the parameter list.

Many functions can be provided with additional details, such as the data type or,
when comparing time tags, the comparison operation. The additional details are
located directly under the call operation. Fig. 10.3 shows two examples: The first
function call expects actual parameters with the data type INT, the second function
call compares tags with the data type DATE according to the relation “greater”.

10.1 Introduction

399

The additional details can be selected from a drop-down list when programming
the function.

10.1.4 Addressing of 64-bit tags

The statement list is based on a processor model with 32-bit-wide accumulators.
A 64-bit tag, for example with the data type LINT, thus cannot be loaded into an
accumulator and linked further. For the “simple” statements, there are functions
that can handle 64-bit tags. These functions are supplied with STEP 7 in the global
Long Functions library. The description is provided at the respective digital func-
tions. In the upper part, Fig. 10.4 shows an example of adding tags with the data
type LINT.

The majority of STL statements, which are based on a system or standard block,
have been adapted to the tags with “long” data types and can be directly supplied
with these tags. An example is shown in the lower part of Fig. 10.4.

CALL MIN

Int

IN1 := #Value1

IN2 := #Value2

IN3 := #Value3

OUT := #Result

//Call of the function "Determine minimum"

// [Data type]

//First parameter

//Output parameter

CALL T_COMP

Date GT

IN1 := #Date1

IN2 := D#2013-01-01

OUT := #var_greater

//Call "Compare time tags"

// [Data type, comparison relationship]

//First parameter

//Output parameter

Fig. 10.3 Examples of function calls with STL

CALL "ADD_LINT"

IN1 := #var1_lint

IN2 := #var2_lint

OUT := #var3_lint

//Add tags with the data type LINT

//Input tag 1

//Input tag 2

//Total

CALL T_CONV
LTime_Of_Day TO LTime

IN := #var_Date

OUT := #var_Time

//Call "Convert time tags"

//From data type LTIME_OF_DAY

//To data type LTIME

Fig. 10.4 Examples for addressing 64-bit tags with STL

10 Statement list STL

400

10.1.5 STL networks in LAD and FBD blocks

Networks with STL program can also be used in a block with LAD or FBD program.
To insert, select the network behind which the STL network is to be inserted, and
select the command Insert STL network from the shortcut menu.

The processor of a CPU 1500 does not have the accumulators, address registers,
data block registers, and status bits (status word) familiar from the CPU 300/400.
These registers are emulated and are only available in the STL programming lan-
guage.

If STL networks are used in a block with LAD or FBD program, no data can therefore
be transferred between an STL network and an LAD/FBD network via these regis-
ters. In an LAD/FBD network which follows an STL network, the contents of these
register are no longer available. If an STL network follows this, the register contents
from a preceding STL network (in the same block) are available again.

One exception to this is the status bit RLO (result of logic operation): It is set to
“undefined” during a language change and is no longer available in a subsequent
network with changed programming language.

10.2 Programming binary logic operations with STL

The binary logic operations are carried out in the statement list using the AND, OR,
and exclusive OR statements. The binary tags for the logic operation can be scanned
for signal state “1” or “0”. The binary operations can be “nested” using parenthe-
sized expressions and thus influence the processing sequence (Table 10.1).

Table 10.1 Binary logic operations with STL

Operation Operand Function

A
AN
O
ON
X
XN

Binary operand
Binary operand
Binary operand
Binary operand
Binary operand
Binary operand

Scan for signal state “1” and link according to AND logic operation
Scan for signal state “0” and link according to AND logic operation
Scan for signal state “1” and link according to OR logic operation
Scan for signal state “0” and link according to OR logic operation
Scan for signal state “1” and link according to exclusive OR logic operation
Scan for signal state “0” and link according to exclusive OR logic operation

A(
AN(
O(
ON(
X(
XN(
)

– Left parenthesis with AND logic operation
Left parenthesis with negation and AND logic operation
Left parenthesis with OR logic operation
Left parenthesis with negation and OR logic operation
Left parenthesis with exclusive OR logic operation
Left parenthesis with negation and exclusive OR logic operation
Right parenthesis

O – ORing of AND functions

NOT
SET
CLR

– Negation of result of logic operation
Set result of logic operation to “1”
Set result of logic operation to “0”

10.2 Programming binary logic operations with STL

401

10.2.1 Processing of a binary logic operation, operation step

A binary logic operation consists of scan operations and conditional operations.
The sequence of scan operations and subsequent conditional operations is referred
to as an operation step (Fig. 10.5).

The first scan operation processed following a conditional operation is the first
input bit scan. This is of special significance because the control processor directly
imports the scan result of this statement as the result of logic operation. The “old”
result of logic operation is thus lost. The first input bit scan always represents the
beginning of a logic operation. The logic operation (AND, OR, Exclusive OR) speci-
fied in the first input bit scan does not play any role here. To make the programming
understandable, however, it should correspond to the logic operation to be exe-
cuted. For example, an OR function should begin with a scan for OR. For an individ-
ual scan statement without a link to other scans, the AND function is used.

The result of logic operation is generated by the scan operations. You scan the sig-
nal state of a binary operand for “1” or “0” and link it according to AND, OR or exclu-
sive OR. The result of this logic operation is saved by the control processor as the
new result of logic operation.

Conditional operations are operations whose execution depends on the result of
logic operation. These are operations for assigning, setting and resetting binary
operands, for starting timers and counters, etc. The conditional operations (apart
from a few exceptions) are executed if the result of logic operation (RLO) is “1” and
not executed if RLO is “0”. They do not change the RLO (apart from a few excep-
tions), and therefore the RLO is the same for several successive conditional opera-
tions.

Fig. 10.5 Binary logic operation with STL, definition of operation step

The result of a logic operation is
generated and evaluated in an

.
The operation step commences with the

which is the first scan operation
following a conditional operation.

The process the
result of the logic operation.

operation
step

first scan

conditional operations

����������		�
����
����
�����������������	���������	���������������

�������	
������

A new operation step commences with the
subsequent scan operation which is again
a first scan.

Operation step

= "Fan1"

...

A "Auto_on"

A "Manual_on"

= "Display"

O

...

A "Fan1"

A "Manual mode"

S "Fan2"

...

AN "Manual mode"

A "Enable"

...

Conditional operation

First scan

Scan operation

...

...

...

Scan operation

Conditional operation

...

Conditional operation

First scan

Scan operation

O
p

e
ra

ti
o

n
 s

te
p

10 Statement list STL

402

10.2.2 Scanning for signal states “1” and “0”

Before the scan operations link the signal states together, they scan the status of the
associated binary tags.

The status of a binary tag is identical to the signal state of the binary tag. This can
be “0” or “1”. The physical variable at the module terminal for which an input has
signal state “1” or “0” depends on the type of input module (see Chapter 12.1.2
“Working with binary signals” on page 504).

Strictly speaking, the control processor does not link the signal state of the binary
tag scanned, it initially generates a scan result. When scanning for signal state “1”,
the scan result is identical to the signal state of the binary tag scanned. When scan-
ning for signal state “0”, the scan result is the negated signal state of the binary tag
scanned. Scans for signal state “0” have an “N” following the specified logic opera-
tion (AN, ON, XN). The control processor generates the result of logic operation
from the logic operation of the scan results.

The result of logic operation (RLO) is the signal state used by the control processor
for further binary signal processing. The RLO contains the state of the binary logic
operation: “1” means that the operation is fulfilled; “0” means that the operation is
not fulfilled. The result of logic operation is used to set or reset binary tags.

The example in Fig. 10.6 shows the two “Start” and “Stop” pushbuttons. When
pressed, they output the signal state “1” in the case of an input module with sinking
input. The SR function is set or reset with this signal state.

The “/Fault” signal is not active in the normal case. Signal state “1” is then present
and is negated by scanning for signal state “0”, and the reset operation therefore
remains uninfluenced. If “/Fault” becomes active, the “Fan” tag is to be reset. The
active signal “/Fault” delivers signal state “0”, which by scanning for signal state “0”
activates the reset operation as signal state “1”.

Fig. 10.6 Scanning for signal states “1” and “0”

"Fan"

When pressed, the "Start" and
"Stop" pushbuttons switch the
fan on and off. They are
"1-active" signals.
If "/Fault" becomes active, the fan
is to be switched off and remain
off. "/Fault" is a "0-active" signal.%I1.3 %I1.2 %I1.1

%Q4.1

"Start" L+

M

"Stop""/Fault"

Example of scans for signal state "1" and signal state "0"

A "Start"

O "Stop"

ON "/Fault"

S "Fan"

R "Fan"

In order to activate the R operation
with signal state "1", this input
is scanned for signal state "0".
In the example, the 0-active
signal is identified by a slash in
front of the name.

10.2 Programming binary logic operations with STL

403

10.2.3 AND function in the statement list

An AND function is fulfilled if all binary tags have the scan result “1”. A description
of the AND function is provided in Chapter 12.1.3 “AND function, series connection”
on page 507.

Fig. 10.7 shows an example of an AND function. The #Fan1.works and #Fan2.works
tags are scanned for signal state “1” and the two scan results are linked according
to an AND logic operation. The AND function is fulfilled (delivers signal state “1”)
if both fans are running.

10.2.4 OR function in the statement list

An OR function is fulfilled if one or more inputs have the scan result “1”. A descrip-
tion of the OR function is provided in Chapter 12.1.4 “OR function, parallel connec-
tion” on page 507.

Fig. 10.7 shows an example of an OR function. The #Fan1.works and #Fan2.works
tags are scanned for signal state “1” and the two scan results are linked according
to an OR logic operation. The OR function is fulfilled (delivers signal state “1”) if one
of the fans is running or if both fans are running.

10.2.5 Exclusive OR function in the statement list

An exclusive OR function (antivalence function) is fulfilled if an odd number of
inputs has the scan result “1”. A description of the exclusive OR function is provided
in Chapter 12.1.5 “Exclusive OR function, non-equivalence function” on page 508.

Fig. 10.7 shows an example of an exclusive OR function. The #Fan1.works and
#Fan2.works tags are scanned for signal state “1” and the two scan results are linked

//AND function

A #Fan1.works

A #Fan2.works

= #Display.twoFans //Two fans are running

//OR function

O #Fan1.works

O #Fan2.works

= #Display.MinOneFan //At least one fan is running

//Exclusive OR function

X #Fan1.works

X #Fan2.works

= #Display.oneFan //Only one fan is running

Fig. 10.7 Example of binary logic operations with STL

10 Statement list STL

404

by an exclusive OR logic operation. The exclusive OR function is fulfilled (delivers
signal state “1”) if only one of the fans is running.

10.2.6 Combined binary logic operations in the statement list

The AND, OR, and exclusive OR functions can be freely combined with one another.
The control processor processes an AND function with higher priority than an
OR function (ANDing before ORing, like in the notation of Boolean algebra).
The exclusive OR function has the same priority as an OR function.

The parentheses operations and the individual OR logic operation are available to
bypass this processing priority.

ORing of AND functions

The individual OR logic operation O links the results of two AND functions.

Fig. 10.8 shows two AND functions with two inputs each, and the results of the logic
operation are linked according to an OR logic operation. The first AND function is
fulfilled if fan 1 is running and fan 2 is not running, the second function if fan 1 is
not running and fan 2 is running. The #Display.oneFan_1 tag is set if the first AND
function is fulfilled or if the second AND function is fulfilled (or if both are fulfilled,
but this is not the case in this example).

ANDing of OR functions

A parenthesized expression is required for the ANDing of OR functions. The OR
functions are written in parentheses, and their results of the logic operation are
linked to the operation present next to the parentheses (the AND function in this
case).

Fig. 10.9 shows two OR functions: The first one is fulfilled if at least one fan is run-
ning or if both fans are running, the second one if at least one fan is not running or
if neither fan is running. Each OR function itself stands in a parenthesized expres-
sion. The logic operation results of the OR functions are – due to the operation

//Combined logic operation

//Without parentheses

A #Fan1.works

AN #Fan2.works

O

AN #Fan1.works

A #Fan2.works

= #Display.oneFan_1

//ORing of AND functions

//Only one fan is running

Fig. 10.8 Example of ORing of AND functions

10.2 Programming binary logic operations with STL

405

“A(” – connected according to AND. The #Display.oneFan_2 tag is set if only one of
the fans is running.

Parenthesized expressions in binary logic operations

The example in Fig. 10.9 clearly indicates the generally applicable schema for
binary parenthesized expressions. The function to be processed “first” is present in
a parenthesis. How the result of the logic operation of the parenthesis is to be pro-
cessed further is shown by the logic operation specified in front of the left paren-
thesis operation. Fig. 10.10 is a general representation of this schema.

A parenthesized expression can be linked by the operation “A(” according to AND,
by the operation “O(” according to OR, and by the operation “X(” according to
exclusive OR. Just like with scanning for signal state “0”, implicit negation of the

//Combined logic operation

//With parentheses

A(

O #Fan1.works

O #Fan2.works

)

A(

ON #Fan1.works

ON #Fan2.works

)

= #Display.oneFan_2

//ANDing of OR functions

//Only one fan is running

Fig. 10.9 Example of ANDing of OR functions

Fig. 10.10 Generally applicable schema for the processing of binary parenthesized
expressions

The logic operation prior to the
parenthesized expression delivers a result
of logic operation RLO 1, which is saved
during processing of the left-parenthesized
operation.
The logic operation in the parenthesized
expression delivers a result RLO 2. This
result is gated with the saved RLO 1 in
accordance with the specification present in
the left-parenthesized operation.
The result of the logic operation following
the parenthesis is therefore:
RLO 3 = RLO 1 (Parenthesis function) RLO 2

Processing a binary parenthesized expression

Logic operation 2

Logic operation 1

...

...

Parenthesis function (

Further logic operation

...

...

)

...

...

Delivers RLO 1

Delivers RLO 2

Following the
parenthesis: RLO 3

10 Statement list STL

406

signal state is also possible here: The operation “AN(” negates the signal state of
the parenthesized expression prior to linking, as do the operations “ON(” and
“XN(”.

Any logic operations can be present within the parenthesized expression, including
operations with parenthesized expressions. The nesting depth has a value of seven,
i.e. a parenthesized expression can be commenced up to seven times without it
being necessary to first terminate a parenthesized expression. Any number of
parenthesized expressions can be programmed “in succession” (on one level).

Conditional operations in parenthesized expressions

All STL operations can be programmed within a parenthesized expression. The use
of conditional operations such as assignment or setting/resetting is of interest in
association with binary logic operations. Note that only the result of logic operation
may be linked further which is valid with the right parenthesis operation.

In Fig. 10.11, a memory function is programmed with set and reset operations
within a parenthesized expression. The signal state of the memory function must
be scanned in order to link it further; this is carried out using the scan operation in
front of the right parenthesis operation. The resulting AND function has three
inputs: the OR function in front of the parenthesis, the signal state of the memory
function in the parenthesis, and the last scan operation with the flashing frequency.

//Parenthesized

//expressions with

//conditional operations

A(

O #Enable_manual

O #Enable_auto

)

//OR function is first AND input

A(

A #Fan1.start

S #Fan1.drive

O #Fan1.stop

ON #Fan1.fault

R #Fan1.drive

A #Fan1.drive

)

//Set memory

//Reset memory

//Scan memory!

//Memory state is second AND input

A "Clock 0.5 Hz"

= #Fan1.display1

//Flashing pulse is third AND input

Fig. 10.11 Example with conditional operations in a parenthesized expression

10.2 Programming binary logic operations with STL

407

10.2.7 Control of result of logic operation

Negate RLO

The NOT operation negates the result of logic operation at any position in an oper-
ation. An operation step is not ended by NOT. Using the NOT operation it is possible
in a simple manner to obtain:

b a NAND function, i.e. a negated AND function, which is fulfilled if at least one in-
put has the scan result “0”,

b a NOR function, i.e. a negated OR function, which is fulfilled if all inputs have the
scan result “0”, and

b an inclusive OR function (equivalence function), i.e. a negated exclusive OR func-
tion which is fulfilled if an even number of inputs has the scan result “1”.

Fig. 10.12 shows a NOR function in the top example. The OR function is not fulfilled
if none of the fans is running, and then delivers the signal state “0”. This is negated
and assigned to the #Display.noFan tag.

Set and reset RLO

The SET operation sets the result of logic operation to “1”. The CLR operation sets
the result of logic operation to “0”. SET and CLR terminate an operation step (Fig.
10.12).

//Negate result of

//logic operation

O #Fan1.works

O #Fan2.works

NOT

= #Display.noFan

//Negate RLO

//No fan is running

//Set RLO

SET

S #Fan1.drive

R #Fan2.drive

//Set RLO to "1"

//Fan 1 is switched on

//Fan 2 is switched off

//Reset RLO

CLR

CD "Parts_counter"

//Set RLO to "0"

//The internal edge trigger flag for
//counting down is reset

Fig. 10.12 Example of controlling the result of logic operation

10 Statement list STL

408

10.3 Programming memory functions with STL

The memory functions control binary tags such as outputs or bit memories. Mem-
ory functions exist for assigning, setting, and resetting a binary tag or for evaluat-
ing a change in signal state (Table 10.2).

10.3.1 Assignment in the statement list

The assignment directly assigns the result of logic operation to the binary tag
named with the operation. The response of the assignment is described in
Chapter 12.2.2 “Simple and negating coil, assignment” on page 511.

In Fig. 10.13, the #Display.MinOneFan tag is set to signal state “1” if the operation is
fulfilled and to signal state “0” if it is not fulfilled a. The result of logic operation is
negated by NOT and, together with a further statement, controls the #Display.noFan
tag.

Table 10.2 Memory functions with STL

Operation Operand Function

= Binary tag Assignment of result of logic operation

S
R

Binary tag
Binary tag

Set to signal state “1” with result of logic operation “1”
Reset to signal state “0” with result of logic operation “1”

FP
FN

Edge trigger flag
Edge trigger flag

Evaluation of a positive edge of result of logic operation
Evaluation of a negative edge of result of logic operation

//Assignment
O #Fan1.works

O #Fan2.works

= #Display.MinOneFan

NOT

= #Display.noFan

a

//At least one fan is running

//Negate RLO

//No fan is running

//Set

A #Fan1.enable

A #Fan1.start

S #Fan1.drive

s

//Switch on fan 1

//Reset

A #Fan1.enable

A #Fan1.stop

ON #Fan1.fault

R #Fan1.drive

d

//Switch off fan 1

Fig. 10.13 Example of assignment, setting and resetting with STL

10.3 Programming memory functions with STL

409

10.3.2 Setting and resetting in the statement list

The set or reset operation is used to assign signal state “1” or “0” to a binary tag in
the case of a result of logic operation “1”. A result of logic operation “0” has no
effect.

The response of these operations is described in Chapter 12.2.3 “Single setting and
resetting” on page 511.

In Fig. 10.13, an AND function comprising #Fan1.enable and #Fan1.start controls
the set operation s. #Fan1.drive is set to signal state “1” if the AND function is ful-
filled, or there is no reaction if the AND function is not fulfilled. The reset operation
is controlled by an OR function where an AND function with two inputs is connected
to its first input d. #Fan1.drive is reset to signal state “0” if the operation is fulfilled,
or there is no reaction if the operation is not fulfilled. As a result of positioning of
the reset operation after the set operation, the memory response is “reset domi-
nant”: If the logic operations in front of the two operations have signal state “1”,
#Fan1.drive is reset or remains reset.

10.3.3 Edge evaluation in the statement list

Edge evaluation detects a change in the result of logic operation.

The edge evaluation has the result of logic operation “1” for one processing cycle if
the result of logic operation prior to the operation changes from “0” to “1” (FP oper-
ation, rising edge) or from “1” to “0” (FN operation, falling edge). This “pulse” can
be linked further or control a conditional operation.

The edge trigger flag is present next to the edge operation. This is a flag or data bit
which saves the “old” signal state of the result of logic operation. The change in sig-
nal is recognized by comparing the signal states of the “new” (current) result of
logic operation and the edge trigger flag (see also Chapter 12.3 “Edge evaluation”
on page 515).

//Edge evaluation

A #Alarm_bit

FP #Alarm_bit_Edge_flag

S #Alarm_memory

//Evaluation for positive edge

//#Set alarm memory

A #Acknowledge

R #Alarm_memory //#Reset alarm memory

A #Alarm_memory

A "Clock 0.5 Hz"

= #Indicator_light //Display alarm

Fig. 10.14 Example of edge evaluation with STL

10 Statement list STL

410

Fig. 10.14 shows an application of edge evaluation. Let us assume that a alarm has
“arrived”, i.e. the #Alarm_bit signal changes to “1”. The #Alarm_memory tag is then
set. The alarm memory can be reset using an #Acknowledge button. The alarm
memory remains reset if #Acknowledge has signal state “0” again and #Alarm_bit is
still present. #Alarm_memory is only set again by a further positive edge of
#Alarm_bit (if #Acknowledge then no longer has signal state “1”).

10.4 Programming timer and counter functions with STL

10.4.1 SIMATIC timer functions in the statement list

The SIMATIC timer functions are an operand area in the CPU's system memory and
their number is limited. Table 10.3 shows the operations possible in conjunction
with a timer operand. The time response of the SIMATIC timer functions is
described in detail in Chapter 12.4 “SIMATIC timer functions” on page 524.

For programming, enter the timer operation in a line or drag the corresponding
symbol with the mouse from the program elements catalog under Basic
instructions > Basic instructions > Timer operations to the working area. The opera-
tion is followed by a space and then the timer operand (T) to which you can assign
a symbolic name in the PLC tag table.

When programming a SIMATIC timer function you must make sure that the opera-
tions are in the correct order: first enable, then start and reset, and finally load time
value and scan status. In so doing, you only program the operations required for
the function to be executed.

When starting a SIMATIC timer function, the control processor obtains the defined
duration from accumulator 1. When and how this value enters the accumulator is

Table 10.3 Operations for SIMATIC timer operands

Operation Operand Function

SP
SE
SD
SS
SF

Timer operand Start a SIMATIC timer function as pulse
Start a SIMATIC timer function as extended pulse
Start a SIMATIC timer function as ON delay
Start a SIMATIC timer function as retentive ON delay
Start a SIMATIC timer function as OFF delay

FR
R

Timer operand Enabling a SIMATIC timer function
Resetting a SIMATIC timer function

L
LC

Timer operand Direct loading of a time value
Coded loading of a time value

A, AN
O, ON
X, XN

Timer operand Status scan of a SIMATIC timer function and linking according to AND
Status scan of a SIMATIC timer function and linking according to OR
Status scan of a SIMATIC timer function and linking according to exclusive OR

10.4 Programming timer and counter functions with STL

411

unimportant. In order to make your program easier to read, you should preferably
load the duration into the accumulator directly prior to the start operation, either
as a constant with direct specification of the duration in data format S5TIME or as
a tag with the duration as content. Loading of a value into the accumulator is
described in Chapter 13.2.5 “Loading and transferring with STL” on page 562.

Note that a valid duration must also be present in accumulator 1 even if the timer
function is not started when processing the start operation.

In Fig. 10.15, the time “Fan3.on_delay” is started as an ON delay by the positive edge
of #Fan3.start. The duration of 3 seconds was previously loaded into the accumula-
tor as the constant S5T#3S. Following expiry of the duration, the timer function
“Fan3.off_delay” is started with the duration present as a value in the
#Follow-up_time tag. The status of the timer function “Fan.off_delay” simultane-
ously has signal state “1” so that fan 3 is switched on following the ON delay. Once
the start signal #Fan3.start has signal state “0”, fan 3 continues to run for the follow-
up time and is then switched off.

Example of clock generator

The somewhat more complex example in Fig. 10.16 shows a clock generator with a
different pulse-to-pause ratio implemented by means of a single timer function.
The JC statement Conditional jump is executed if the result of logic operation is “1”.

10.4.2 SIMATIC counter functions in the statement list

The SIMATIC counter functions are an operand area in the CPU's system memory
and their number is limited. Table 10.4 shows the counter operations possible in
conjunction with a counter operand. The counter response is described in detail in
Chapter 12.6 “SIMATIC counter functions” on page 545.

For programming, enter the counter operation in a line or drag the corresponding
symbol with the mouse from the program elements catalog under Basic
instructions > Basic instructions > Counter operations in a line. The operation is fol-
lowed by a space and then the counter operand (C) to which you can assign a sym-
bolic name in the PLC tag table.

//SIMATIC timer function

A #Fan3.start

L S5T#3S

SD "Fan3.on_delay" //Start as ON delay

A "Fan3.on_delay"

L #Follow-up_time

SF "Fan3.off_delay" //Start as OFF delay

U "Fan3.off_delay"

= #Fan3.drive

//Scan status

Fig. 10.15 Example of application of SIMATIC timer functions with STL

10 Statement list STL

412

When programming a SIMATIC counter function you must make sure that the oper-
ations are in the correct order: first enable, then count, set and reset, and finally
load count value and scan status. In so doing, you only program the operations
required for the function to be executed.

When setting a SIMATIC counter function, the control processor obtains the initial
count value from accumulator 1. When and how this value enters the accumulator
is unimportant. In order to make your program easier to read, you should prefera-
bly load the initial count value into the accumulator directly prior to the set opera-
tion, either as a constant with direct specification of the count value in data format
W#16# or C# or as a tag with the count value as content. Loading of a value into the
accumulator is described in Chapter 13.2.5 “Loading and transferring with STL” on
page 562.

AN #Start_input

R "Timer function"

R #Output

JC M1

A "Timer function"

JC M2

AN #Output

= #Output

L #Pulse_duration

JC M2

L #Pause_duration

M2: AN "Timer function"

SE "Timer function"

M1: NOP 0 //Further program

#Start_input starts the clock generator.

If the time “Timer function” is not running
or has expired, it is started as an extended
pulse.

The binary scaler #Output changes its sig-
nal state with each (new) start of the time
and thus also determines the duration –
#Pulse_duration or #Pause_duration – with
which the time is started.

Fig. 10.16 Example of clock generator with different pulse-to-pause ratio

Table 10.4 Operations for SIMATIC counter operands

Operation Operand Function

CU
CD
S

Counter
operand

Increment a SIMATIC counter function by one unit
Decrement a SIMATIC counter function by one unit
Set a SIMATIC counter function to a start value

FR
R

Counter
operand

Enabling a SIMATIC counter function
Resetting a SIMATIC counter function

L
LC

Counter
operand

Direct loading of a count value
Coded loading of a count value

A, AN
O, ON
X, XN

Counter
operand

Status scan of a SIMATIC counter function and linking according to an AND
logic operation
Status scan of a SIMATIC counter function and linking according to an OR
logic operation
Status scan of a SIMATIC counter function and linking according to an exclusive
OR logic operation

10.4 Programming timer and counter functions with STL

413

Note that a valid count value must also be present in accumulator 1 even if the
counter function is not set when processing the set operation.

Fig. 10.17 shows the counting of workpieces up to a specific quantity. The counter
#Parts_counter is set by the #Quantity_set tag to a start value of 120. Each positive
edge at the #Workpiece_identified tag decrements the count value by one unit. If a
value of zero is reached – the counter status is then “0” – #Quantity_reached is set.

10.4.3 IEC timer functions in the statement list

An IEC timer function is available as pulse time (TP), as ON delay (TON), as
OFF delay (TOF), and as accumulating ON delay (TONR). A detailed description of
the timer response is provided in Chapter 12.5 “IEC timer functions” on page
539.

A #Workpiece_identified

CD "Parts_counter" //Count down

A #Quantity_set

L C#120

S "Parts_counter"

//Load default value

//Set counter to default value

AN "Parts_counter"

= #Quantity_reached

//Scan status of counter

Fig. 10.17 Example of application of a SIMATIC counter function with STL

//IEC timer function

CALL #AlarmDelay

Time

IN := #Measurement_too_high

PT := T#10S

Q := #Alarm_too_high

ET :=

//Start as ON delay

//Data type of time value

//10 s duration

//ET is not required

//Load IEC timer function

CALL PRESET_TIMER

Time IEC_Timer

PT := T#2s

TIMER := #AlarmDelay

//Data types

//Time value

//Timer function

//Reset IEC timer function

CALL RESET_TIMER

IEC_Timer

TIMER := #AlarmDelay

//Data type of timer function

//Timer function

Fig. 10.18 Example of IEC timer function with STL

10 Statement list STL

414

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Timer operations into a line on the
working area. When positioning, you select either as single instance or as local
instance (multi-instance). The instance data block generated automatically when
selecting as a single instance is saved in the project tree under Program blocks >
System blocks > Program resources.

With the IEC timer functions, a binary tag must be connected to the IN input, and a
duration to the PT input. You can also directly access the output parameters using
the instance data, for example with “DB_name”.Q or “DB_name”.ET for a single
instance.

PRESET_TIMER loads an IEC timer function with a time value. RESET_TIMER resets
an IEC timer function.

Fig. 10.18 shows the IEC timer function #AlarmDelay. It has been inserted as an
ON delay TON which saves its data as a local instance (multi-instance) in the
instance data block of the function block. If the #Measurement_too_high tag has sig-
nal state “1” for longer than 10 s, #Alarm_too_high is set.

10.4.4 IEC counter functions in the statement list

An IEC counter function is available as up counter (CTU), as down counter (CTD), or
as up/down counter (CTUD). A detailed description of the counter response is pro-
vided in Chapter 12.7 “IEC counter functions” on page 553.

A "Light_barrier2"

FP "Light_barrier2_Edge_flag"

A "Light_barrier1"

= #temp_bool1 //Count up

A "Light_barrier1"

FP "Light_barrier1_Edge_flag"

A "Light_barrier2"

= #temp_bool2 //Count down

CALL #Lock_counter

Int

CU := #temp_bool1

CD := #temp_bool2

R := #Acknowledge

LOAD :=

PV := 0

QU :=

QD :=

CV :=

//Start as up/down counter

//Data type

Fig. 10.19 Example of IEC counter function with STL

10.5 Programming digital functions with STL

415

For programming, drag the corresponding symbol with the mouse from the pro-
gram elements catalog under Basic instructions > Counter operations into a line on
the working area. When positioning, you select either as single instance or as local
instance (multi-instance). The instance data block generated automatically when
selecting as a single instance is saved in the project tree under Program blocks >
System blocks > Program resources.

With the IEC counter functions, a binary tag must be connected to at least one
counter input (CU or CD). Connection of the other function inputs and -outputs is
optional. You can also directly access the output parameters using the instance
data, for example with “DB_name”.QD or “DB_name”.CV for a single instance.

Fig. 10.19 shows the IEC counter function #Lock_counter, which is called as a local
instance. It has saved its data in the instance data block of the calling function block.
A component of the counter can be addressed with the name of the instance and the
component name, for example #Lock_counter.CV. The example shows the passages
through a lock, either forward or backward.

10.5 Programming digital functions with STL

The digital functions process digital values up to length of 32 bits in the accumula-
tors 1 and 2. For tags that are 64 bits long, there are the functions in the global
library Long Functions of STEP 7.

The processor of a CPU 1500 does not have the accumulators, address registers,
data block registers, and status bits that are typical for a CPU 300/400. If STL state-
ments are used in connection with these registers and status bits, they are emu-
lated. This additional machine code not only requires more memory space, but also
more processing time.

Accumulators 1 and 2 are sufficient to execute a digital function. They are supplied
with numerical values with the load function (L); the digital function manipulates
these values and the transfer function (T) transmits the result back to the user or
system memory. Fig. 10.20 shows the allocation of the accumulators for the execu-
tion of digital functions.

10.5.1 Transfer functions in the statement list

A transfer functions copies the value of a tag. A detailed description of the transfer
functions is provided in Chapter 13.2.5 “Loading and transferring with STL” on
page 562. Table 10.5 shows the transfer functions available with STL.

Transfer with loading and transferring

The Load operation transfers a digital value from the CPU's memory area into accu-
mulator 1. The Transfer operation transfers a digital value from accumulator 1 to
the memory area. The program elements catalog contains the transfer functions
under Basic instructions > Basic instructions > Load and transfer.

10 Statement list STL

416

Fig. 10.20 Accumulator assignment with digital operations

Accumulator assignment with digital functions

Input_value_1

Input_value_1

Input_value

Input_value_2

Input_value_2

Input_value_3

Result

Intermediate_result

End_result

Result

Result

End_result

Result

<Accumulator 1>

<Accumulator 1>

<Accumulator 1>

<Accumulator 1>

<Accumulator 1>

Input_value_1

Input_value_1

Intermediate_result

Input_value_1

Input_value_1

Intermediate_result

Input_value_1

Intermediate_result

Digital function with one input value
The input value is loaded and occupies accumulator 1. The result of the manipulation is again present
in accumulator 1, from where it can be transferred to a tag. The contents of accumulator 2 are not
changed.

Digital function with two input values
The input values are loaded in succession. The first value loaded initially occupies accumulator 1,
and this is shifted into accumulator 2 when the second input value is loaded. Accumulator 1 is then
occupied by the second input value loaded. The logic operation is carried out according to the
following scheme:
Result = <Accu 2> Function <Accu 1> = <Input_value 1> Function <Input_value 2>
The result of the logic operation is present in accumulator 1, from where it can be transferred to a tag.
The first input value loaded is present in accumulator 2.

Digital function with several input values
The input values are loaded in succession. The first value loaded initially occupies accumulator 1,
and this is shifted into accumulator 2 when the second input value is loaded. Accumulator 1 is then
occupied by the second input value loaded. Following the logic operation, the next input value is
loaded and gated with the previous result, etc. Intermediate results can be saved using the transfer
function without changing the accumulator contents.

Accumulator 1

Accumulator 1

Accumulator 1

L #Input_value_1

L #Input_value_1

L #Input_value

L #Input_value_2

L #Input_value_2

L #Input_value_3

Function

Function

Function

Function

T #Result

T #End_result

T #Result

Accumulator 2

Accumulator 2

Accumulator 2

Program

Program

Program

Accumulator assignment execution of instructionfollowing

Accumulator assignment execution of instructionfollowing

Accumulator assignment execution of instructionfollowing

10.5 Programming digital functions with STL

417

For SIMATIC timer/counter functions, the coded loading (LC) transfers the current
time value or the current counter value (BCD-coded) to accumulator 1. Observe that
a BCD-coded time value does not contain the time scale.

Transfer of tags with “long” data types

The transfer functions MOVE_LWORD, MOVE_LINT, MOVE_ULINT, and MOVE_LREAL
copy tags with the data types LWORD, LINT, ULINT, and LREAL. Conversion functions
handle the transfer between tags with “short” and “long” data types.

The transfer functions for tags with “long” data types are available in the global
Long Functions library.

Transfer of components of an ARRAY tag

The transfer functions MOVE_BLK and UMOVE_BLK transfer components of an
ARRAY tag to a different ARRAY tag with the same structure and the same data type
of the components. The transfer functions FILL_BLK and UFILL_BLK fill compo-

Table 10.5 Transfer functions with STL

Operation Operand Meaning, remark

L Digital tag from the operand areas:
peripheral inputs, peripheral outputs, inputs, out-
puts, bit memories, data, and temporary local data

Transfer from an operand area to
accumulator 1

L
LC

SIMATIC timer function, SIMATIC counter function Direct loading into accumulator 1
Coded loading into accumulator 1

T Digital tag from the operand areas: peripheral inputs,
peripheral outputs, inputs, outputs, bit memories,
data, and temporary local data

Transfer from accumulator 1 to an
operand area

Function Parameter Meaning, remark

MOVE_LWORD
MOVE_LINT
MOVE_ULINT
MOVE_LREAL

Tags with the data types LWORD, LINT, ULINT, and
LREAL

Transfer between tags with “long”
data types

MOVE_BLK_
VARIANT

Tags with any data types (except BOOL) or compo-
nents of an ARRAY tag

Transfer of values to tags of any length
or transfer of ARRAY components

MOVE_BLK
UMOVE_BLK

Components of an ARRAY tag Transfer between two ARRAY tags

FILL_BLK
UFILL_BLK

Components of an ARRAY tag Filling in the area of an ARRAY tag

BLKMOV
UBLKMOV

Tags and constants with any data types (except
BOOL) and data areas addressed with a pointer

Transfer of tags and data areas of any
length

FILL Tags and constants with any data types (except
BOOL) and data areas addressed with a pointer

Transfer of values (bit patterns) to tags
and data areas of any length

SWAP Tags with the data types WORD, DWORD, and LWORD Change the byte sequence

10 Statement list STL

418

nents of an ARRAY tag. These transfer functions can be found in the program ele-
ments catalog under Basic instructions > Move operations.

Transfer of tags with any data types

The transfer functions MOVE_BLK_VARIANT, BLKMOV and UBLKMOV transfer tags
with any data types (except for BOOL) and data areas addressed with an ANY
pointer. The transfer function FILL fills a tag or a data area with a value. These trans-
fer functions can be found in the program elements catalog under Basic
instructions > Move operations.

Fig. 10.21 shows examples of the transfer functions in STL: The #Alarms tag is
transferred from the data block “Data.STL” to the “Alarm_bits” tag in the bit memory
address area. The tag #var_ulint with data type ULINT is loaded with the value 123.
BLKMOV transfers the value of the #var_ulint tag into the bit memory address area
beginning at memory byte %MB 32.

10.5.2 Comparison functions in the statement list

A comparison function compares two digital values and delivers a binary result
TRUE (signal state “1”) for a fulfilled comparison or FALSE (signal state “0”) for an
unfulfilled comparison. The comparison functions are described in Chapter 13.3
“Comparison functions” on page 570. Table 10.6 shows the comparison functions
available with STL.

The “simple” comparison functions make comparisons according to the data types
INT, DINT, and REAL. Tags with the data types USINT or UINT can be compared after
loading according to INT or DINT. If a tag is extended with the data type SINT and
the correct sign, it can be compared according to INT. For two tags with the data
type UDINT to be compared, they must be converted to the data type ULINT before
the comparison according to ULINT.

L "Data.STL".Alarms

T "Alarm_bits"

//Load value into accumulator 1

//Fetch value from accumulator 1

CALL "MOVE_ULINT"

IN := 123

OUT := #var_ulint

//Transfer of "long" tags

CALL "BLKMOV"

VARIANT

SRCBLK := #var_ulint

RET_VAL := #var_int

DSTBLK := P#M32.0 BYTE 8

//Transfer with BLKMOV

//Transfer of tags and data areas

//of any length

Fig. 10.21 Example of transfer functions in STL

10.5 Programming digital functions with STL

419

Comparison of tags with data types INT, DINT, and REAL

The comparison functions compare the contents of accumulators 1 and 2, and the
result of the comparison is assigned to the result of logic operation. The result of
logic operation has signal state “1” if the comparison is fulfilled, otherwise “0”.
The program elements catalog contains the comparison functions under Basic
instructions > Basic instructions > Comparator operations.

Fig. 10.22 shows the general scheme which is used to carry out a comparison func-
tion a. A comparison function does not change the accumulator contents. It is
always carried out independent of conditions. A comparison function sets the sta-
tus bits.

The comparison function delivers a binary result of logic operation and can there-
fore be used together with other binary functions. An operation step commences
with the comparison function. Fig. 10.22 shows some examples of how you can inte-
grate a comparison function into a binary logic operation.

s At the beginning of a logic operation, a comparison function is always a first
input bit scan. The RLO delivered by the comparison function can be directly fur-
ther linked with binary scans.

Table 10.6 Comparison functions with STL

Operation Operand Meaning, remark

==
<>
>
>=
<
<=

Compare for equal
Compare for unequal
Compare for greater than
Compare for greater than-equal
Compare for less than
Compare for less than-equal

I
D
R

–
–
–

according to INT characteristic
according to DINT characteristic
according to REAL characteristic

Function Parameter Meaning, remark

EQ_LWORD
NE_LWORD

LWORD tags Compare for equal
Compare for unequal

EQ_
NE_
GT_
GE_
LT_
LE_

Compare for equal
Compare for unequal
Compare for greater than
Compare for greater than-equal
Compare for less than
Compare for less than-equal

LINT
ULINT
LREAL

LINT tags
ULINT tags
LREAL tags

Function Parameter Meaning, remark

T_COMP
S_COMP

Date and time values
Strings

Comparison of tags with time data types
Comparison of tags with string data types

10 Statement list STL

420

d A comparison function within a binary logic operation must be set within paren-
theses since a new operation step is started with the comparison function (first
input bit scan).

f Since a comparison function does not change the accumulator contents, it is pos-
sible in STL to repeatedly carry out successive comparisons.

L Tag1

L Tag2

Comparison function

= Result of comparison

a The tags are compared according to
the schema Tag1 (compare) Tag2.

L #var1

L #var2

<Comparison function>

A "Input1"

= "Output1"

s The tag “Output1” is set if the com-
parison is fulfilled and “Input1” has sig-
nal state “1”.

O "Input2"

O(

L #var1

L #var2

<Comparison function>

)

O "Input3"

= "Output2"

d The tag “Output2” is set if “Input2”
or “Input3” has signal state “1” or if the
comparison is fulfilled.

L #var1

L #var2

>I

JC Greater than

==I

JC Equal to

f In the example, two comparison
functions are applied to the same accu-
mulator contents. The first comparison
generates RLO = “1” if #var1 is greater
than #var2 so that the jump to the
Greater than label is carried out. The
second comparison for equal to is then
carried out without reloading the accu-
mulators and generates a new RLO.

L #var1

L #var2

>I

JP Greater than

JZ Equal to

g In this example, evaluation of the
comparison is carried out using the sta-
tus bits CC0 and CC1. The comparison
relationship – “Greater than” in this
case – is of no importance when setting
the status bits, one could also have used
a different relationship, e.g. “Less
than”. JP scans whether the first com-
parison value is greater than the second
one, JZ scans whether they are equal.

Fig. 10.22 Examples for the comparison function in binary logic operations

10.5 Programming digital functions with STL

421

g The comparison function sets the status bits depending on the relationship
between the compared values, i.e. independent of the comparison operation spec-
ified. You can utilize this fact by scanning the status bits with the corresponding
jump functions (see also Chapter 10.6.1 “Jump functions in the statement list” on
page 436).

In Fig. 10.23, two comparison functions are programmed in the upper part a. For
the first comparison, the #Measurement_temperature and #Lower_limit tags are
loaded into the accumulators. The comparison function then compares the first
value #Measurement_temperature (in accumulator 2) with the second value #Low-
er_limit (in accumulator 1) for “greater than or equal to” in data format INT. The
result of the comparison is saved during processing of the operation “A(”. The sec-
ond comparison is carried out with the #Measurement_temperature and
#Upper_limit tags. Its comparison result is linked with the saved comparison result
according to an AND logic operation. If both comparisons are fulfilled, i.e. if the
#Measurement_temperature tag is between #Lower_limit and #Upper_limit, then
#Measurement_in_range is set.

L #Measurement_temperature

L #Lower_limit

>=I

A(

L #Measurement_temperature

L #Upper_limit

<=I

)

= #Measurement_in_range

//"Simple" comparison function a

//Comparison with lower limit

//Save comparison result 1

//Comparison with upper limit

//Comparison results 1 and 2

//Link according to AND logic operation

CALL "EQ_LINT"

IN1 := #var_lint1

IN2 := #var_lint2

OUT := #var_bool

//Comparison of "long" tags s

//Result of comparison

CALL T_COMP

LTime GT

IN1 := #var_ltime1

IN2 := #var_ltime2

OUT := #var_bool

//Comparison of time tags d

Result of comparison

CALL S_COMP

String NE

IN1 := #var_string1

IN2 := #var_string2

OUT := #var_bool

//Comparison of strings f

//Result of comparison

Fig. 10.23 Examples of comparison function with STL

10 Statement list STL

422

Comparison of tags with “long” data types

The comparison functions EQ_xxx, NE_xxx, GT_xxx, GE_xxx, LE_xxx and LT_xxx
compare tags with the data types LINT, ULINT and LREAL for equal to, not equal to,
greater than, greater than-equal to, less than, and less than-equal to. EQ_LWORD
and NE_LWORD compare two tags with the data type LWORD for equal to and not
equal to. The comparison functions for tags with “long” data types are available in
the global Long Functions library. Fig. 10.23 shows in the second part s the com-
parison of two tags with the data type LINT for greater than.

Comparison of tags with a time data type

T_COMP compares tags with the data types DATE, TIME, DATE_AND_TIME,
TIME_OF_DAY, LTIME, LTIME_OF_DAY, LDT, DTL and S5TIME for the relations equal
to (EQ), not equal to (NE), greater than (GT), greater than-equal to (GE), less than
(LT), and less than-equal to (LE). T_COMP can be found in the program elements
catalog under Extended instructions > Date and time-of-day. The data types and the
comparison relations are selected from the drop-down lists after being dragged to
the working area. Fig. 10.23 shows in the third section d the comparison of two
tags with the data type LTIME for greater than.

Comparison of tags with a string data type

S_COMP compares tags with the data type STRING for the relations equal to (EQ),
not equal to (NE), greater than (GT), greater than-equal to (GE), less than (LT), and
less than-equal to (LE). T_COMP can be found in the program elements catalog
under Extended instructions > String + Char. The comparison relations are selected
from a drop-down list after being dragged to the working area. Fig. 10.23 shows the
comparison of two strings for unequal in the fourth section f.

10.5.3 Arithmetic functions in the statement list

The arithmetic functions for numerical values realize the basic arithmetical opera-
tions addition, subtraction, multiplication, and division. A detailed description is
provided in Chapter 13.4 “Arithmetic functions” on page 574. Table 10.7 shows the
arithmetic functions available with STL.

“Simple” arithmetic functions

With the “simple” arithmetic functions, the contents of the accumulators 1 and 2
are added, subtracted, multiplied, and divided according to the data formats INT,
DINT and REAL. The result is stored in accumulator 1. The program elements cata-
log contains the arithmetic functions under Basic instructions > Basic instructions >
Math functions. Fig. 10.24 shows in the top part a the general scheme that is used
to program a “simple” arithmetic function. The first operand to be linked is initially
loaded into accumulator 1. When loading the second operand, the content of
accumulator 1 is shifted into accumulator 2. The contents of the accumulators 2
and 1 can then be linked using the arithmetic function. The result is stored in accu-
mulator 1.

10.5 Programming digital functions with STL

423

Table 10.7 Arithmetic functions with STL

Operation Operand Meaning, remark

+
–
*
/

Addition
Subtraction
Multiplication
Division

I
D
R

–
–
–

according to INT characteristic
according to DINT characteristic
according to REAL characteristic

MOD – Division with remainder as result

DEC
INC

Decrement
Increment

Decremental reduction of the accumulator contents
Incremental increase of the accumulator contents

Function Parameter Meaning, remark

ADD_
SUB_
MUL_
DIV_

Addition
Subtraction
Multiplication
Division

LINT
ULINT
LREAL

LINT tags
ULINT tags
LREAL tags

of LINT tags
of ULINT tags
of LREAL tags

Function Parameter Meaning, remark

T_ADD
T_SUB
T_DIFF
T_COMBINE

Tags with date and
time data types

Addition of two tags
Subtraction of two tags
Calculation of difference between two points in time
Combination of time and duration

L #Tag1

L #Tag2

<Arithmetic function>

T #Result_of_calculation

a General representation of a
“simple” arithmetic function

L #Value1

L #Value2

+I

L #Value3

–I

T #Result1

s #Result1 := #Value1 + #Value2 – #Value3

L #Value6

L #Value5

+R

+R

T #Result2

d #Result2 := #Value5 + 2 × #Value6

L #Value8

L #Value7

*D

*D

T #Result3

f #Result3 := #Value7 × (#Value8)2

Fig. 10.24 Examples of “simple” arithmetic functions

10 Statement list STL

424

An arithmetic function carries out the calculation according to the specified char-
acteristic independent of the contents of the accumulators and independent of con-
ditions.

You can permit an arithmetic function to directly follow a previous arithmetic func-
tion (chain calculation, Fig. 10.24). s: The result of the first function is then linked
further by means of the next function and the accumulators serve as intermediate
memories. d and f: The first loaded value remains unchanged in accumulator 2
during execution of the arithmetic function. You can reuse it without having to load
it again.

In Fig. 10.26 on page 426, the upper limit of a measured value is monitored a.
A hysteresis is introduced to ensure that the #Measurement_too_high alarm does
not “pulsate” when the measured value changes rapidly around the upper limit.
The alarm #Measurement_too_high is only canceled when the measured value has
dropped again below the upper limit by the magnitude of the hysteresis.

Special features when calculating with data type INT

The left words of the accumulators are not taken into consideration when adding
and subtracting. The result leaves the last word of accumulator 1 unchanged.

The left words of the accumulators are not taken into consideration when
multiplying (*I). Following execution of the *I function, the product is present as a
DINT number in accumulator 1.

The /I function interprets the values present in the right words of accumulators
1 and 2 as numbers with data type INT. It divides the value in accumulator 2 (div-
idend) by the value in accumulator 1 (divisor) and delivers two results: the quo-
tient and the remainder, both numbers with data type INT (Fig. 10.25).

Fig. 10.25 Result of arithmetic function /I

The contents of the right word in accumulator 2 (Value1) are divided by the contents of the right word
in accumulator 1 (Value2). The integer result of the division is stored in the right word of accumulator
1, the remainder of the division is present in the left word of accumulator 1. The contents of
accumulator 2 remain unchanged.

Arithmetic functions, integer division

0

0

0

Remainder 0

Remainder 0

Value1 (dividend)

Value2 (divisor) Value1 (dividend)

Quotient

Quotient Dividend

Dividend

<Accumulator 1>

Accumulator 1

31 ... 31 ...15 ... 15 0 ... 0... 16 ... 16

L Value1

L Value2

/I

T Result

Accumulator 2

Program Accumulator assignment execution of instructionfollowing

10.5 Programming digital functions with STL

425

Following execution of the function, the quotient is present in the right word of
accumulator 1. It is the integer result of the division. The quotient is zero if the div-
idend is equal to zero and the divisor not equal to zero, or if the magnitude of the
dividend is smaller than the magnitude of the divisor. The quotient is negative if
the divisor was negative. Following /I, the leftover remainder of the division (not the
decimal places!) is present in the left word. With a negative dividend, the remainder
is also negative.

Following execution of the calculation, the status bits CC0 and CC1 indicate
whether the quotient is negative, zero, or positive. The status bits OV and OS signal
that the permissible numerical range has been left. A division by zero delivers a
value of zero in each case as quotient and remainder and sets the status bits CC0,
CC1, OV, and OS to “1”.

Division DIV with fixed-point numbers

DIV divides the input tag IN1 (dividend) by the input tag IN2 (divisor) and delivers
the quotient in the result OUT. The quotient is the integer result of the division.
The quotient is zero if the dividend is equal to zero and the divisor not equal to zero,
or if the magnitude of the dividend is smaller than the magnitude of the divisor.
The quotient is negative if the divisor is negative. A division by zero delivers a value
of zero as quotient and sets the status bits CC0, CC1, OV, and OS to “1”.

Division DIV with floating-point numbers

DIV divides the input tag IN1 (dividend) by the input tag IN2 (divisor) and delivers
the quotient in the result OUT. An error occurs if one of the input tags is an invalid
floating-point number or if an attempt is made to divide the floating-point num-
bers ∞ by ∞ or 0 by 0.

Division MOD with remainder as result

MOD divides the input tag IN1 (dividend) by the input tag IN2 (divisor) and delivers
the remainder of the division in the result OUT. The remainder is the leftover part of
the division; this is not the decimal places. With a negative dividend, the remainder is
also negative. A division by zero delivers a value of zero as remainder and sets the
status bits CC0, CC1, OV, and OS to “1”.

Arithmetic functions with “long” data types

The functions for the addition, subtraction, multiplication, and division of tags with
the “long” data types LINT, ULINT, and LREAL are located in the global library Long
Functions. Fig. 10.26 shows an example of the multiplication of two tags with the
data type ULINT s.

Arithmetic functions for time tags

T_ADD, T_SUB and T_DIFF link points in time (date values or time of day) and dura-
tions. T_ADD can add two durations in the formats TIME and LTIME or add a dura-
tion (TIME, LTIME) to a point in time (TIME_OF_DAY, LTIME_OF_DAY, DATE_AND_
TIME, DTL, LDT). T_SUB can subtract two durations in the formats TIME and LTIME
or subtract a duration (TIME, LTIME) from a point in time (TIME_OF_DAY,

10 Statement list STL

426

LTIME_OF_DAY, DATE_AND_TIME, DTL, LDT). T_DIFF calculates the difference
between two points in time (TIME_OF_DAY, LTIME_OF_DAY, DATE_AND_TIME,
DATE, DTL, LDT) and outputs it as duration (TIME, LTIME, INT). These arithmetic
functions can be found in the program elements catalog under Extended instruc-
tions > Date and time-of-day. You can select the data types from the drop-down lists
after dragging them to the working area. Fig. 10.26 shows the calculation of the dif-
ference of two points in time in the DATE_AND_TIME format and the output as dura-
tion in the TIME format d.

10.5.4 Math functions in the statement list

The math functions comprise, for example, trigonometric functions, exponential
functions, and logarithmic functions. A detailed description is provided in
Chapter 13.5 “Math functions” on page 578. Table 10.8 shows the math functions
available with STL.

“Simple” math functions with the data type REAL

A math function calculates a result from the value present in accumulator 1 and
saves it in accumulator 1. The program elements catalog contains the arithmetic
functions under Basic instructions > Basic instructions > Math functions.

You program a math function in accordance with the scheme a shown in Fig.
10.27. A math function is carried out independently of conditions and influences
the status bits.

L #Measurement_temperature

L #Upper_limit

>=I

S #Measurement_too_high

a //Comparison of INT values

L #Upper_limit

L #Hysteresis

-I

L #Measurement_temperature

>I

R #Measurement_too_high

//Subtraction according to INT

//Comparison according to INT

CALL "MUL_ULINT"

IN1 := #var1_ulint

IN2 := #var2_ulint

OUT := #var3_ulint

s //Multiplication according to ULINT

//Result

CALL T_DIFF

Date_And_Time TO Time

IN1 := #var1_dt

IN2 := #var2_dt

OUT := #var_time

d //Calculation of difference

//Data type DATE_AND_TIME

//Result in data type TIME

Fig. 10.26 Example of arithmetic function with STL

10.5 Programming digital functions with STL

427

Table 10.8 Math functions with STL

Operation *) Operand Meaning, remark

SIN
COS
TAN

– Calculate sine
Calculate cosine
Calculate tangent

ASIN
ACOS
ATAN

– Calculate arcsine
Calculate arccosine
Calculate arctangent

EXP
LN

– Generate exponential function to base e
Generate natural logarithm (to base e)

SQR
SQRT

– Generate square
Extract square root

Function Parameter Meaning, remark

SIN_LREAL
COS_LREAL
TAN_LREAL

Tags with the data type LREAL Calculate sine
Calculate cosine
Calculate tangent

ASIN_LREAL
ACOS_LREAL
ATAN_LREAL

Tags with the data type LREAL Calculate arcsine
Calculate arccosine
Calculate arctangent

EXP_LREAL
LN_LREAL

Tags with the data type LREAL Generate exponential function to base e
Generate natural logarithm (to base e)

SQR_LREAL
SQRT_LREAL

Tags with the data type LREAL Generate square
Extract square root

*) If these operations are called via CALL, they can process REAL and LREAL tags.

L Input tag

Math function

T Result

a
//General schema

L #Voltage

L #Current

*R

L #phi

SIN

*R

T #Reactive power

s

//Multiplication according to REAL

//Calculate sine
//Multiplication according to REAL
//Save result

CALL SQRT

LREAL

IN := #var1_lreal

OUT := #var2_lreal

d
//Square root with data type LREAL

CALL SIN

LREAL

IN := #var1_lreal

OUT := #var2_lreal

f
//Sine with data type LREAL

Fig. 10.27 Example of math functions with STL

10 Statement list STL

428

Fig. 10.27 shows the calculation of the reactive power s according to the equation
#Reactive power = #Voltage × #Current × sin(#phi). The #Voltage and #Current tags
are initially loaded and multiplied according to REAL. The #phi value is then loaded;
the product of #Voltage and #Current is now present in accumulator 2. The sine of
generated from the value #phi. The product of #Voltage and #Current present in
accumulator 2 is multiplied by the sine of #phi present in accumulator 1 by means
of the subsequent operation *R, the result saved in accumulator 1, and then trans-
ferred to the #Reactive power tag.

Math functions with the data type LREAL

The math functions for tags with the data type LREAL are available in the global
Long Functions library. Fig. 10.27 shows the calculation of the square root from the
tag #var1_lreal d.

The “simple” math functions can also be called in STL as a function with the CALL
operation. Then the data types REAL or LREAL can be selected from a drop-down
list. Fig. 10.27 shows an example of a sine calculation of an LREAL tag under f.

10.5.5 Conversion functions in the statement list

The conversion functions convert the data formats of tags. The “simple” conversion
functions for STL convert the contents of accumulator 1. The data types of tags can
be converted using “extended” conversion functions. A detailed description of the
conversion functions is provided in Chapter 13.6 “Conversion functions” on page
586.

The program elements catalog contains the “simple” conversion functions under
Basic instructions > Basic instructions > Conversion operations and the “extended”
conversion functions under Extended instructions > Date and time-of-day (T_CONV)
and Extended instructions > String + Char. Table 10.9 shows the conversion functions
available with STL.

“Simple” conversion functions

A “simple” conversion function converts the value present in accumulator 1 and
saves the result in accumulator 1. The conversion function is only effective on accu-
mulator 1. Depending on the function, either only the right word (bits 0 to 15) or
the complete contents are affected by this. Conversion functions do not change the
contents of the remaining accumulators.

You program a conversion function in accordance with the general schema a

shown in Fig. 10.28. A conversion function is carried out according to the defined
characteristic even if no data types have been declared when using absolutely
addressed operands. A conversion function is carried out independent of condi-
tions.

You can subject the content of accumulator 1 to several successive conversions and
thus carry out conversions in several steps without having to save the converted
values in intermediate memory.

10.5 Programming digital functions with STL

429

Table 10.9 Conversion functions with STL

Operation Operand Function

ITD
ITB
DTB
DTR

– Data type conversion from INT to DINT
Data type conversion from INT to BCD
Data type conversion from DINT to BCD
Data type conversion from DINT to REAL

BTI
BTD

– Data type conversion from BCD to INT
Data type conversion from BCD to DINT

RND+
RND–
RND
TRUNC

–
Data type conversion from REAL to DINT

With rounding to the next higher number
With rounding to the next lower number
With rounding to the next integer
Without rounding

INVI
INVD
NEGI
NEGD
NEGR
ABS

– One's complement for INT
One's complement for DINT
Two's complement (negation) of an INT number
Two's complement (negation) of a DINT number
Negation of a REAL number
Generation of magnitude of a REAL number

Function Parameter Meaning, remark

CONVERT Tags with elementary data type Conversion of elementary data types (except time data
types)

T_CONV
S_CONV

Tags with time data type
Tags with STRING data type

Conversion of time data types
Conversion of string data types

VAL_STRG
STRG_VAL

Tags with number and string data
type

Conversion of a fixed-point or floating-point number
into a STRING tag and vice versa

Chars_TO_Strg
Strg_TO_Chars

Tags with CHAR/BYTE and string
data type

Conversion of an ARRAY tag with CHAR or BYTE ele-
ments into a STRING tag and vice versa

ATH
HTA

Tags with CHAR/BYTE and string
data type

Conversion of an ARRAY tag with BYTE elements in
hexadecimal representation into a STRING tag and
vice versa

L Input tag
Conversion function
T Result

a
//General schema

L #Measurement_temperature
ITD
DTB
T #Measurement_display

//Successive conversions s
//Conversion INT to DINT
//Conversion DINT to BCD32

CALL CONVERT
LINT TO REAL
IN : := #var_lint
RET_VAL := #var_real

//Conversion with CONVERT d

CALL S_CONV
LREAL TO STRING
IN := #var_lreal
OUT := #var_string

//Conversion with S_CONV f

Fig. 10.28 Example of conversion functions with STL

10 Statement list STL

430

Fig. 10.28 shows an example of the “simple” conversion functions under s. A mea-
sured value that is present in data format INT is loaded into accumulator 1, then it
is first expanded to the data format DINT and then converted into the BCD format.

“Extended” conversion functions

The “extended” conversion functions are based on system blocks. You convert the
data types of tags with elementary data types, time and string data types.

Fig. 10.28 shows two examples of the “extended” conversion functions. d A tag that
is present in the LINT data format is converted via CONVERT into a tag with the data
type REAL. f A tag that is present in the LREAL data format is converted via S_CONV
into a string.

10.5.6 Shift functions in the statement list

A shift function shifts a tag value bit by bit to the right or left. The “simple” shift
functions for STL shift the contents of accumulator 1. The values of tags can be
shifted using “extended” shift functions. A detailed description of the shift func-
tions is provided in Chapter 13.7 “Shift functions” on page 603.

Table 10.10 Shift functions with STL

Operation Operand Function

SLW
SRW
SSI

n
–

Shift word-by-word
to left
to right
with sign to right

with the shift number as parameter
with the shift number in accumulator 2

SLD
SRD
SSD

n
–

Shift doubleword-by-doubleword
to left
to right
with sign to right

with the shift number as parameter
with the shift number in accumulator 2

RLD
RRD

n
–

Doubleword rotation
to left
to right

with the shift number as parameter
with the shift number in accumulator 2

RLDA
RRDA

–
–

Doubleword rotation by one position
to left by the condition code bit CC1
to right by the condition code bit CC1

Function Parameter Meaning, remark

SHR
SHL

Tags with bit-serial and
fixed-point data type

Shift to right
Shift to left

ROR
ROL

Tags with bit-serial and
fixed-point data type

Rotate to right
Rotate to left

10.5 Programming digital functions with STL

431

The program elements catalog contains the “simple” shift functions under Basic

instructions > Basic instructions > Shift and rotate. Table 10.10 shows the shift func-

tions available with STL.

“Simple” shift functions

A “simple” shift function shifts the value present in accumulator 1 by so many bit

positions to the left or right as specified in accumulator 2 or as a parameter.

The shift functions are carried out independent of conditions. They only change the

content of accumulator 1. The result of logic operation (RLO) is not influenced. The

shift functions set status bit CC0 to “0” and status bit CC1 to the signal state of the

last bit shifted out.

L #Shift number

L #Input tag

<Shift function>

T #Result

a General schema for the representa-

tion of a "simple" shift function

b With the shift number in accumulator 2

L #Input tag

<Shift function + shift number>

T #Result

b With the shift number as parameter

L #Value

SSD 4

SLD 2

T #Result

s Successive shift functions

L 16

L #Quantity_high

SLD

L #Quantity_low

SLW 4

OD

SRD 4

T #Quantity_display

d

//Shift with shift number in accumulator 2

//Shift word-by-word to left

//Shift doubleword-by-doubleword

L #Quantity_high

SLD 12

L #Quantity_low

OD

T #Quantity_display

//Shorter program

//Shift doubleword-by-doubleword to left

CALL SHL

LWORD USINT

IN := #var_lword

N := #var_usint

RET_VAL := #var_lword

f

//Tag with data type LWORD

//Shift to left

Fig. 10.29 Examples of shift functions with STL

10 Statement list STL

432

You can program a shift function in two different ways: with the shift number in
accumulator 2 or with the shift number as parameter (Fig. 10.29, example a).
Shift functions can be applied as often as desired to the content of the accumulator.
In the example s in Fig. 10.29, shifting is carried out with the correct sign by
(in the end) 2 positions to the right, where the two right bit positions are reset to
signal state “0”.

In the example d in Fig. 10.29, the decades of two numbers present in BCD format
of a SIMATIC counter are joined. In the top program the shift number 16 is loaded
first and then with #Quantity_high the tag to be shifted. SLD shifts the content of the
complete accumulator 1 by 16 (the shift number in accumulator 2). The subse-
quently loaded #Quantity_low tag is shifted by 4 bits to the left and linked according
to an OR logic operation to the result of the previous shift. The six decades which
are now present without gaps are shifted by a further 4 bits to the right and saved.
The solution in the bottom program is somewhat shorter: The #Quantity_high tag
is shifted to the left by three decades. The space which becomes vacant is occupied
by the #Quantity_low tag.

“Extended” shift functions

The “extended” shift functions are based on system blocks. You shift the contents of
tags with elementary data types. In Fig. 10.29, in the example f, the value of a tag
with the data type LWORD is shifted as many places to the left as specified by the
value of the shift number with the data type USINT.

10.5.7 Word logic operations in the statement list

A word logic operation links the individual bits of two tags according to AND, OR,
or exclusive OR. The “simple” word logic operations link the contents of accumula-
tor 1 to a parameter or to the contents of accumulator 2. Tags with the data type
LWORD can be processed using “extended” word logic operations. A detailed
description of the word logic operations is provided in Chapter 13.8.1 “Word logic
operations” on page 607.

The program elements catalog contains the “simple” word logic operations under
Basic instructions > Basic instructions > Word logic operations. The “extended” word
logic operations can be found in the global library Long Functions. Table 10.11
shows the word logic operations available with STL.

“Simple” word logic operation

A “simple” word logic operation links the contents of accumulator 1 either with the
contents of accumulator 2 or with the parameter (Fig. 10.31, example a). The word
logic operations are carried out independent of conditions. The result of logic oper-
ation (RLO) is not affected.

The 16-bit word logic operations only act on the right word (bits 0 to 15) of the accu-
mulators. The left word (bits 16 to 31) remains unaffected (Fig. 10.30).

10.5 Programming digital functions with STL

433

Following execution of a word logic operation you can directly connect the next
word logic operation (load operand and execute word logic operation or execute
word logic operation with constant) without having to save the intermediate result
in an operand (e.g. local data). The accumulators serve here as intermediate mem-
ories. Examples are shown in Fig. 10.31 under s.

Table 10.11 Word logic operations with STL

Operation Operand Function

AW
AW
AD
AD

W#16#xxxx
–
DW#16#xxxx_xxxx
–

Word-by-word AND logic operation with the parameter
Word-by-word AND logic operation with the content of accumulator 2
Doubleword-by-doubleword AND logic operation with the parameter
Doubleword-by-doubleword AND logic operation with the content
of accumulator 2

OW
OW
OD
OD

W#16#xxxx
–
DW#16#xxxx_xxxx
–

Word-by-word OR logic operation with the parameter
Word-by-word OR logic operation with the content of accumulator 2
Doubleword-by-doubleword OR logic operation with the parameter
Doubleword-by-doubleword OR logic operation with the content of
accumulator 2

XOW
XOW

XOD

XOD

W#16#xxxx
–

DW#16#xxxx_xxxx

–

Word-by-word exclusive OR logic operation with the parameter
Word-by-word exclusive OR logic operation with the content
of accumulator 2
Doubleword-by-doubleword exclusive OR logic operation with the
parameter
Doubleword-by-doubleword exclusive OR logic operation with
the content of accumulator 2

Function Parameter Meaning, remark

AND_LWORD
OR_LWORD
XOR_LWORD

LWORD tags Bit-by-bit link according to AND logic operation
Bit-by-bit link according to OR logic operation
Bit-by-bit link according to exclusive OR logic operation

Fig. 10.30 Execution of a 16-bit word logic operation

16-bit word logic operation

A 16-bit logical operation (UW, OW, XOW) only uses the right word. In the example, the value of the
memory word %MW164 is present in the left word of the result (%MW170) and the ANDing of %MW162
and %MW166 in the right word (%MW172).
A 16-bit logical operation with a constant only gates the right word of accumulator 1 with the constant,
and writes the result in the right word of accumulator 1.

%MW160

%MW164 %MW160

%MW164 %MW160

(%MW170) %MW160

%MW162

%MW166 %MW162

%MW162 & %MW166

(%MW172) %MW162

%MW162

<Accumulator 2>

Accumulator 1

31 ... 31 ...15 ... 15 0 ... 0... 16 ... 16

L %MD160

L %MD164

UW

T %MD170

Accumulator 2

Program Accumulator assignment following execution of instruction

10 Statement list STL

434

Fig. 10.31 shows in the example d how you can program 32 edge evaluations
simultaneously for rising and falling edges. The alarm bits are collected in a dou-
bleword Alarms, which is present in the data block “Data.STL”. The edge trigger
flags Alarms_EM are also present in this data block. If the two doublewords are

L #Tag1

L #Tag2

<Word logic operation>

T #Result

a General schema of a "simple" word

logic operation

b Linking with a value in
accumulator 2

L #Tag

<Word logic operation + constant>

T #Result

b Linking with the parameter
(constant)

L #Value1

L #Value2

AW

L #Value3

OW

T #Result1

s Successive word logic operations:

The result of the AW operation is
present in accumulator 1 and is
shifted into accumulator 2 upon load-
ing of #Value3. The two values can
then be linked according to OW.

L #Value4

L #Value5

XOW

AW 16#FFF0

T #Result2

The result of the XOW operation is
present in accumulator 1. Its bits 0
to 3 are set to "0" by the AW state-
ment.

L "Data.STL".Alarms

L "Data.STL".Alarms_EM

XOD

T #Alarms_change

d

//Edge evaluation example

//What bits have changed?

L #Alarms_change

L "Data.STL".Alarms

AD

T "Data.STL".Alarms_pos

//What change was a positive edge?

L #Alarms_change

L "Data.STL".Alarms

INVD

AD

T "Data.STL".Alarms_neg

//Invert alarm bits

//What change was a negative edge?

L "Data.STL".Alarms

T "Data.STL".Alarms_EM //Update edge trigger flag

CALL "AND_LWORD"

IN1 := #var1_lword

IN2 := #var2_lword

OUT := #var3_lword

f “Extended" word logic operation

Fig. 10.31 Example of word logic operations with STL

10.5 Programming digital functions with STL

435

linked by an XOR logic operation, the result is a doubleword in which each set bit
represents a different assignment of Alarms and Alarms_EM, in other words:
the associated alarm bit has changed.

In order to obtain the positive signal edges, the changes are linked to the alarms by
an AND logic operation. The bit is set for a rising signal edge wherever the alarm
and the change each have a “1”. This corresponds to the pulse flag of the edge eval-
uation. If you do the same with the negated alarm bits – the alarm bits with signal
state “0” are now “1” – you obtain the pulse flags for a falling edge.

At the end it is only necessary for the edge trigger flags to track the alarms.

“Extended” word logic operations

The “extended” word logic operations are based on system blocks. They link two
tags with the data type LWORD according to AND, OR, or exclusive OR. An example
is shown in Fig. 10.31 under f.

10.5.8 Functions for strings in the statement list

Strings are tags with the data type STRING. With the functions for strings, parts of
a string can be extracted, inserted, replaced or deleted, two strings can be com-
bined, and the length of a string or the position of a character in a string can be
determined.

A detailed description of these functions is provided in Chapter 13.9 “Processing of
strings (data type STRING)” on page 615. You can find the functions for the process-
ing of strings in the program elements catalog under Extended instructions >
String + Char. Table 10.12 shows an overview of the available functions.

The example in Fig. 10.32 shows the replacement of one part of a string by another.
In the input tag IN1, starting at position P, REPLACE replaces the number of charac-
ters L with the string to be inserted IN2 and outputs the new string at the parameter
OUT.

Table 10.12 Functions for the processing of strings

Function Meaning, remark Function Meaning, remark

LEN Outputs the current length of a string. FIND Finds characters in a string.

MAX_LEN Outputs the configured maximum length
of a string.

DELETE Deletes part of a string.

LEFT Outputs the left part of the string. INSERT Inserts characters into a string.

RIGHT Outputs the right part of the string. REPLACE Replaces characters in a string.

MID Outputs the middle part of the string. CONCAT Combines two strings together.

10 Statement list STL

436

10.6 Program control with STL

You can influence execution of the user program by means of the program control
functions. These are essentially:

b the jump functions (absolute jump, jumps depending on the result of logic op-
eration or the condition code bits, jump list, loop jump),

b the block call functions (calling of FC and FB blocks and calling of functions
which are based on blocks) and

b the block end functions (ending the block processing).

The familiar EN/ENO mechanism used with LAD, FBD and STL can be emulated in an
STL program. If blocks written with STL are called in a block written with LAD, FBD
or SCL, the ENO output must be specifically controlled.

10.6.1 Jump functions in the statement list

With jump functions you can exit linear program execution and continue at a dif-
ferent point in the block.

Table 10.13 shows the jump functions available with STL. The program elements
catalog contains the jump functions under Basic instructions > Basic instructions >
Program control operations. The absolute jump functions, jump functions depend-
ing on the result of logic operation, jump list, and the loop jump are described in
detail in Chapter 14.1 “Jump functions” on page 623. A description of the jump
functions that depend on the status bits is provided in Chapter 10.7.1 “Working
with status bits” on page 442.

You can set the jump label prior to each statement in the block. A jump statement
must always be followed by an operation; it can also be a nil operation. It is possible
to jump within the block beyond network limits.

The example in Fig. 10.33 shows a program branch in part a, which processes its
own program section depending on the size of the tag #Number. After this, the exe-
cution of the shared program is continued.

CALL REPLACE

STRING

IN1 := #var1_string

IN2 := #var2_string

L := #var1_int

P := #var2_int

OUT := #var3_string

//Replace characters

//Input tag

//String to be inserted

//Number of characters replaced

//Character position

//Output tag

Fig. 10.32 Example of string processing with STL

10.6 Program control with STL

437

Table 10.13 Jump functions with STL

Operation Operand Function

JU
JC
JCN
JCB
JNB

Label
Label
Label
Label
Label

Jump absolute
Jump if RLO = “1”
Jump if RLO = “0”
Jump if RLO = “1” and save RLO in BR
Jump if RLO = “0” and save RLO in BR

JBI
JNBI

Label
Label

Jump if BR = “1” 1)
Jump if BR = “0”

JZ
JN
JP
JPZ
JM
JMZ

Label
Label
Label
Label
Label
Label

Jump if result equal to zero 1)
Jump if result not equal to zero
Jump if result greater than zero
Jump if result greater than or equal to zero
Jump if result less than zero
Jump if result less than or equal to zero

JUO
JO
JOS

Label
Label
Label

Jump if result invalid 1)
Jump if overflow
Jump if stored overflow

JL
LOOP

Label
Label

Jump distributor
Loop jump

1) A description of these jump functions is provided in Chapter 10.7.1 “Working with status bits” on page 442

L #Number
L 10_000
>I
JC Greater
==I
JC Equal

//Comparison of a numerical valuea

//Jump if greater than 10_000

//Jump if equal to 10_000

...

...
JU next

//Program section for "less than"

Greater :...
...
JU next

//Program section for "greater than"

Equal :...
...

//Program section for "equal to"

next :... //Further program

L #Input_value
T #temp_dword
L 32

next: T #BitNumber
L #temp_dword
SLD 1
T #temp_dword
L #BitNumber
JN ok
LOOP next
L 256

ok: DEC 1
T #BitNumber

//Example of loop jump s

//#BitNumber is loop counter

//Shift to left by one position
//CC0 = 0 and CC1 = 1 if bit = "1"

//Jump if CC0 <> CC1
//Back if bit was = "0"
//If no bit was = "1"

Fig. 10.33 Examples of jump functions

10 Statement list STL

438

The lower part s shows an example of the loop jump LOOP. The position of the
highest set bit in the #BitNumber tag (data type USINT) is saved in the #Input_value
tag (data type DWORD). If no bit is set, 16#FF is located in #BitNumber.

10.6.2 Block call function in the statement list

A block call function continues program execution in the called code block. A detailed
description is provided in Chapter 14.2 “Calling of code blocks” on page 631. The pro-
gram elements catalog contains the block call functions under Basic instructions > Basic
instructions > Program control operations. Table 10.14 shows the available block call
functions.

Calling a block with CALL

CALL calls a block independently of the conditions. The called block can receive or
return data via block parameters. CALL is also used to call (program) functions
which are located in the program elements catalog under Extended instructions.

Directly after a block call, the signal state of the enable output ENO is saved in the
binary result BR and it can be evaluated (see also Chapter 10.7.2 “EN/ENO mecha-
nism in the statement list” on page 447).

Fig. 10.34 shows examples for calling a function (FC) and a function block (FB) with
the operation CALL. a Directly after the function call (FC), the binary result is
scanned and the #Adder_Error tag is set to “1” in the event of an error. After this, a
jump is made to an Error program section. s The binary result is scanned directly
after the call of the function block. If there is an error (BR is then “0”), the result of
logic operation is negated and the block is left. BR remains “0” and transfers the sig-
nal state to the ENO output of the exited block.

With CALL, no data can be transferred to the called block via the accumulators, data
block registers, and address registers.

Change to a block with UC or CC

With the operations UC (absolute block change) and CC (conditional block change),
program execution is continued in the block which is present as an operand for UC
or CC. Execution of CC depends on the result of logic operation: If the RLO = “1”,
a switch is made to the specified block; if it is “0”, the statement that follows CC is
processed.

Table 10.14 Block call functions

Operation Operand Function

CALL
CALL
CALL

Code block
#Instance
Code block, data block

Calling a function (FC)
Calling a function block (FB) as local instance
Calling a function block (FB) as single instance

UC
CC

Code block
Code block

Absolute change to a block without parameter
Conditional change to a block without parameter

10.6 Program control with STL

439

The block to which the switch is made can be a function (FC) or a function
block (FB). The block must not have any block parameters and, in the case of a func-
tion block, it must not have any instance data blocks. In the called block, the block
attribute Parameter passing via register must be activated and the block attribute
Optimized block access must be deactivated. Then the program editor generates an
additional code, which enables a data transfer via the accumulators, the data block
registers, and the address registers. UC and CC reset the status bit OS (Exception Bit
Overflow Stored). The status bit RLO (result of logic operation) is set to “undefined”
and is no longer available in the called block. The remaining status bits remain
unchanged.

The block to which the switch is made can be programmed as usual in the STL pro-
gramming language, but without access to block parameters and, for a function
block, without access to static local data.

You can also change to a block present as block parameter of type BLOCK_FC or
BLOCK_FB. Memory-indirect addressing of the block is possible when changing
using the UC and CC operations.

Fig. 10.35 shows examples of the switch to a different block with the operations UC
and CC. “Block” is a function (FC) or a function block (FB) without block parameters.

Example a: The change is carried out independent of conditions.

//FC call and jump in event of error

CALL "Adder.STL"

Number1 := "Data.STL".Number[1]

Number2 := "Data.STL".Number[2]

Number3 := "Data.STL".Number[3]

Total := "Data.STL".Result[1]

A BR

NOT

= #Adder_error

JC Error

a

//BR = "0" means error

//Negate RLO

//Set error tag

//and jump to "Error"

//FB call as single instance

CALL "Adder.STL", "DB_Adder.STL"

Value1 := "Data.STL".Number[4]

Value2 := "Data.STL".Number[5]

Value3 := "Data.STL".Number[6]

Result := "Data.STL".Result[2]

A BR

NOT

BEC

s

//BR = "0" means error

//Negate RLO

//and block end

Fig. 10.34 Examples of block calls in STL

10 Statement list STL

440

Example s: The switch is carried out if the tag #var_change has signal state “1”.

Example d shows a data transfer via the data block register: The data block regis-
ters are written before the switch. In the block to which the switch is made, a data
word of one data block is then transferred to a data word of the other data block.
The executed program is as follows:

L "DataBlock2".%DBW4

T "DataBlock1".%DBW12

In the same way, data can be transferred via the accumulators and via the address
registers.

10.6.3 Block end functions in the statement list

A block end function terminates program execution in a code block. A detailed
description is provided in Chapter 14.3 “Block end functions” on page 636. The pro-
gram elements catalog contains the block end functions under Basic instructions >
Basic instructions > Program control operations. Table 10.15 shows the available
block end functions.

//Unconditional change to a block

UC "Block"

a

//Conditional change to a block

U #var_change

CC "Block"

s

//Example: Data transfer via register

//Program in calling block

OPN "DataBlock1"

OPNDI "DataBlock2"

UC "Block"

//Program in "Block"

//Register contents were retained

L %DIW4

T %DBW12

d

Fig. 10.35 Examples of block changes with UC and CC

Table 10.15 Block end functions

Operation Operand Function

BEC
BEU
BE

– Conditional block end
Unconditional block end
Block end

10.7 Further STL functions

441

The program execution in a code block can be ended with the statements BEC (con-
ditional block end), BEU (unconditional block end), and BE (block end). Program
execution is then continued in the calling block after the block call. BEC is only car-
ried out if the result of logic operation = “1”. BEU and BE are carried out inde-
pendently of conditions. BEU can be repeatedly programmed in the block, whereas
BE can only be programmed once at the end of the block. BE can also be omitted.

The example s in Fig. 10.34 shows the exiting of the block processing in the event
of an error with BEC. In the example in Fig. 10.36, the block is exited in the event of
an error with BR = “0”.

10.7 Further STL functions

This chapter describes the operations that are specific to STL. These are operations
which directly influence the contents of the status word, the accumulators, the
address registers and the data block registers, as well as the nil operations.

The processor of a CPU 1500 does not have the accumulators, address registers,
data block registers, and status bits (status word) familiar from the CPU 300/400.
These registers are emulated and are only available in the STL programming lan-
guage. This emulation increases the extent of the machine code that is generated
during the compilation for STL, and thus increases the program execution time as
well. The increased demand for code affects blocks and networks with the STL pro-
gram which use the operations in connection with these tabs.

The following functions are described in this chapter:

b The status bits CC0, CC1, OV and OS are set during the processing of digital val-
ues. With the aid of the status bit BR, the EN/ENO mechanism can be emulated as
it is used for LAD, FBD and SCL. The status bits can be scanned with binary logic
operations and with jump functions.

b The accumulator functions manipulate the contents of the accumulators.

b The direct access to data block registers allows the indirect addressing of data
blocks and a partial addressing of data operands.

...

SET

SAVE

BEU

//Report error via RLO

Error: CLR

SAVE

BE

//RLO = "1"

//Set BR

//Block with BR = "1" exited

//Set RLO = "0" for error

//Save RLO in BR

//and block with BR = "0" exited

Fig. 10.36 Example of block end functions

10 Statement list STL

442

b The use of address registers allows indirect addressing, i.e. the address of oper-
ands is only calculated during runtime and can be changed during runtime.

b The null instructions cause no response and are used as placeholders or for de-
compilation.

10.7.1 Working with status bits

Description of the status bits

The status bits are emulated in a CPU 1500 with additional program code. They are
compiled in a 16-bit word, the status word. Table 10.16 shows the status bits avail-
able for a CPU 1500.

Status word STW

The status word contains the status bits. You can load it into accumulator 1 or write
it with a value from accumulator 1.

L STW //Load status word

T #var //and store in the tag #var

...

L #var //Load value of tag #var

T STW //and transfer to status word

Table 10.16 Status bits, assignment of the status word

Bit No. Status bit Description

0 to 3 – Insignificant, filled with “0”. –

4 OS Exception Bit Overflow Stored
The status bit OS saves a setting of status bit OV: When-
ever the CPU sets the status bit OV, it also sets the status
bit OS. However, whereas OV is reset by the next cor-
rectly executed operation, OS remains set.

You can evaluate OS with
scan statements and with
the jump statement JOS.
JOS, UC and CC reset the sta-
tus bit OS.

5 OV Overflow
The status bit OV indicates a numerical range overflow
or the use of invalid floating-point numbers (REAL).

You can evaluate OV with
scan statements and with
the jump statement JO.

6
7

CC0
CC1

Condition code bit 0
Condition code bit 1
The status bits CC0 and CC1 provide information on the
result of a comparison function, an arithmetic or math
function, a word logic operation, or the shifted-out bit
of a shift function.

You can evaluate all combi-
nations of the status bits CC0
and CC1 using scan state-
ments and jump functions.

8 BR Binary result
The binary result BR is an additional, block-independent
memory for the result of logic operation. You can use
BR also for the EN/ENO mechanism.

You can evaluate BR with
scan statements and with
jump functions.

9 to 15 – Insignificant, filled with “0”. –

10.7 Further STL functions

443

You can use the status word to scan the status bits or to set them as required. You
can thus save a current status word or commence a program section with a specific
assignment of the status bits.

Setting the status bits by means of digital functions

Table 10.17 shows how the status bits CC0, CC1, OV and OS are set by the “simple”
digital functions.

For arithmetic functions with the data formats INT, DINT and REAL, note the differ-
ent meaning of CC0 and CC1 for an overflow.

Setting the displays for the comparison functions is independent of the comparison
function that is carried out; it only depends on the relation of the two values being
used in the comparison function. A REAL comparison checks for valid REAL num-
bers. The comparison functions also control the result of logic operation RLO: if the
comparison is fulfilled, the RLO is set to signal state “1”; if the comparison is not ful-
filled, it is set to “0”.

Save binary result

The SAVE statement saves the result of logic operation in the binary result. The pro-
gram elements catalog contains SAVE under Basic instructions > Basic instructions >
Bit logic operations. Saving with SAVE does not affect the sequence of a logic opera-
tion.

A block change does not change BR, which means that you can pass on a binary
state, e.g. a group error message, to the calling block.

Example:

A #var_error //In the event of an error, #var_error = "0"

SAVE //In the event of an error, reset BR to "0"

NOT //Negate RLO

BEC //In the event of an error, exit the block

In the event of an error, the tag #var_error is set to signal state “0”. With the scan of
#var_error, the signal state is mapped in the result of logic operation and trans-
ferred into the binary result with SAVE. NOT negates the result of logic operation,
which means that in the event of an error the block is exited with BR = “0”. When the
block is exited, the signal state of BR is transferred to the ENO output.

The jump functions JCB and JNB also influence the binary result BR (see
Chapter 14.1.3 “Conditional jump functions” on page 625).

Evaluating status bits with scan statements

The status of the status bits can be mapped on the result of logic operation using
scan statements and thus be integrated into a binary logic operation. Table 10.18
shows the available scan statements.

10 Statement list STL

444

Table 10.17 Setting the status bits CC0, CC1, OS, and OV by means of digital functions

INT calculation DINT calculation

The result is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

< –32 768 (+I, –I) 0 1 1 1 < –2 147 483 648
(+D, –D)

0 1 1 1

< –32 768 (*I) 1 0 1 1 < -2 147 483 648 (*D) 1 0 1 1

–32 768 to –1 1 0 0 – –2 147 483 648 to –1 1 0 0 –

0 0 0 0 – 0 0 0 0 –

+1 to +32 767 0 1 0 – +1 to +2 147 483 647 0 1 0 –

> +32 767 (+I, –I) 1 0 1 1 > +2 147 483 647
(+D, –D)

1 0 1 1

> +32 767 (*I) 0 1 1 1 > +2 147 483 647 (*D) 0 1 1 1

32 768 (/I) 0 1 1 1 2 147 483 648 (/D) 0 1 1 1

(–) 65 536 0 0 1 1 (–) 4 294 967 296 0 0 1 1

Division by zero 1 1 1 1 Division by zero
(/D, MOD)

1 1 1 1

REAL calculation Comparison

The result is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

+ normalized 0 1 0 – equal to 0 0 0 –

± denormalized 0 0 1 1 greater than 0 1 0 –

± zero 0 0 0 – less than 1 0 0 –

– normalized 1 0 0 – Invalid REAL number 1 1 1 1

+ infinite
(division by zero)

0 1 1 1

– infinite
(division by zero)

1 0 1 1

± invalid REAL number 1 1 1 1

Conversion NEG_I Conversion NEG_D

The result is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

+1 to +32 767 0 1 0 – +1 to +2 147 483 647 0 1 0 –

0 0 0 0 – 0 0 0 0 –

–1 to –32 767 1 0 0 – –1 to –2 147 483 647 1 0 0 –

(–) 32 768 1 0 1 1 (–) 2 147 483 648 1 0 1 1

Conversion ITB, DTB Conversion RND, RND+, RND–, TRUNC

The result is: CC0 CC1 OV OS Conversion of an invalid
REAL number

CC0 CC1 OV OS

Numerical range over- – – 1 1 – – 1 1

Shift function Word logic operation

The shifted-out bit is: CC0 CC1 OV OS The result is: CC0 CC1 OV OS

“0” 0 0 0 – zero 0 0 0 –

“1” 0 1 0 – not zero 0 1 0 –

with shift number 0 – – – –

10.7 Further STL functions

445

The program elements catalog contains the scan operations under Basic
instructions > Basic instructions > Bit logic operations.

Example: A floating-point number is checked for validity. To do this, the tag is com-
pared with any floating-point constant. The type of comparison does not play a role
here.

L #var_real //Floating-point number to be checked

L 1.0 //Any constant

==R //Any REAL comparison

A UO //Scan for "Result invalid"

= #var_invalid //Set error bit

The status bits can also be scanned with the loading of the status word.

Evaluating status bits with jump functions

If you evaluate the status bits with jump functions, you can jump directly to a dif-
ferent program section within the block depending on the status of the status bits.
Table 10.19 shows the available jump functions.

The jump functions that depend on the status bits CC0, CC1, OV and OS do not
change the result of logic operation and have no influence on a binary logic opera-
tion. After the jump function or at the jump destination, a binary logic operation
can be continued.

The jump function JO is carried out if the result of an arithmetic operation is no lon-
ger located in the valid numerical range. In the case of a chain calculation with sev-

Table 10.18 Scan statements for status bits

Operation Operand Function

A
O
X

–
–
–

Scan for fulfilled condition and link according to AND logic operation
Scan for fulfilled condition and link according to OR logic operation
Scan for fulfilled condition and link according to OR logic operation

AN
ON
XN

–
–
–

Scan for non-fulfilled condition and link according to AND logic operation
Scan for non-fulfilled condition and link according to OR logic operation
Scan for non-fulfilled condition and link according to OR logic operation

>0
>=0

<0
<=0

<>0
==0

Condition:

Result greater than zero [CC0 = 0] & [CC1 = 1]
Result greater than or
equal to zero [CC0 = 0]
Result less than zero [CC0 = 1] & [CC1 = 0]
Result less than or
equal to zero [CC1 = 0]
Result not equal to zero [CC0 = 0] & [CC1 = 1] v [CC0 = 1] & [CC1 = 0]
Result equal to zero [CC0 = 0] & [CC1 = 0]

UO
OV
OS

Result is invalid (unordered) [CC0 = 1] & [CC1 = 1] & [OV = 1] & [OS = 1]
Overflow [OV = 1]
Exception Bit Overflow Stored [OS = 1]

BR Binary result [BR = 1]

10 Statement list STL

446

eral operations executed in succession, the status bit OV must be executed follow-
ing each calculation function since the next calculation whose result is in the per-
missible numerical range resets OV again. Scan the status bit OS with the jump
function JOS in order to evaluate a possible numerical range overflow at the end of
the chain calculation. The jump function JOS resets the status bit OS. The example
in Fig. 10.37 shows how a numerical range overflow in a chain calculation can be
evaluated using scan statements or jump functions.

The jump functions JBI and JNBI terminate a binary logic operation; a new logic
operation starts following the jump function or at the jump destination. The result
of logic operation is retained and can be assigned to a binary tag, for example, after
the jump function or at the jump destination.

Table 10.19 Evaluating the status bits with jump functions

Operation Operand Description

JP
JPZ

JM
JMZ

JN
JZ

Label
Label

Label
Label

Label
Label

Jump if: Condition:

Result greater than zero [CC0 = 0] & [CC1 = 1]
Result greater than or
equal to zero [CC0 = 0]
Result less than zero [CC0 = 1] & [CC1 = 0]
Result less than or
equal to zero [CC1 = 0]
Result not equal to zero [CC0 = 0] & [CC1 = 1] v [CC0 = 1] & [CC1 = 0]
Result equal to zero [CC0 = 0] & [CC1 = 0]

JUO
JO
JOS

Label
Label
Label

Result is invalid (unordered) [CC0 = 1] & [CC1 = 1] & [OV = 1] & [OS = 1]
Overflow [OV = 1]
Exception Bit Overflow Stored [OS = 1]

JBI
JBIN

Label
Label

Binary result = “1” [BR = “1”]
Binary result = “0” [BR = “0”]

//Scan statements

L #Value1

L #Value2

+I

A OV

= #Status1

L #Value3

+I

A OV

= #Status2

L Value4

+I

A OS

= #Group_status

T #Result

//Jump functions

L #Value1

L #Value2

+I

JO Label_ST1

L #Value3

+I

JO Label_ST2

L Value4

+I

JOS Label_ST

T #Result

Following the first and sec-
ond additions, an evalua-
tion is carried out for over-
flow. This evaluation of the
overflow status bit only
comprises the immedi-
ately preceding arithmetic
function.

The overflow status bit OS
saves a numerical range
overflow for the complete
calculation.

Fig. 10.37 Example of overflow evaluation

10.7 Further STL functions

447

10.7.2 EN/ENO mechanism in the statement list

The EN/ENO mechanism with LAD, FBD, and SCL uses the enable input EN and
enable output ENO. A conditional block call is implemented using EN. The called
block signals an error to the program in the calling block via ENO. EN and ENO are
statement sequences which the program editor adds to a block call or a function

//Conditional call of block
...

U #var_call
JCN M1
CALL "Block name"
<Parameter list>

M1: ...

a

//Call block with RLO = "1"
/if RLO = "0", then jump to M1

//Further program

//BR as group error
SET
SAVE

...
L #Number1
L #Number2
+I
T #Total
AN OV
A BR
SAVE

...
//Block left

BE

s

//Set BR to "1" (= no error)

//in the event of error: Scan = "0"
//include BR
//and save in BR again

//BR = "1": No error
//BR = "0": Error

//in the event of error,
//processing aborted
...

L #Number1
L #Number2
+I
T #Total
A OV
JC Error

...
//Block end

SET
SAVE
BEU

Error: CLR
SAVE
BE

d

//If error occurred
//then jump to Error

//No error: BR = "1"
//Block left

//Error occurred: BR = "0"
//Block left

//Evaluate ENO output
CALL "Block name"
<Parameter list>

A BR
= #var_error

...

f

//Scan ENO output

//Alternative: Scan with
//Jump function JNB

Fig. 10.38 Emulating the EN/ENO mechanism in STL

10 Statement list STL

448

and represents as block parameters. These statement sequences are not available
for STL. If you also want to use the EN/ENO mechanism with STL, you must emulate
it using corresponding statement sequences.

If you program a block using STL and you want to call it in LAD, FBD or SCL, you
should ensure the “correct” supply of the status bit BR (binary result) because the
enable output ENO assumes the signal state which the status bit BR had when the
block was exited. If no error occurred, the block should be exited with BR = “1” and
if the processing was erroneous, with BR = “0”. Some examples for this are shown
in Fig. 10.38.

You can emulate the enable input EN in its function as conditional block call using
a jump function. If the condition is not fulfilled, a jump is carried out beyond the
block call and the block is not processed (see example a in Fig. 10.38).

In the example s, the status bit BR is used as a group error message. BR is set at the
start of the block to “1”. If an error now occurs during block processing, e.g. if a
numerical range overflow occurs (in the event of an error, the condition must
deliver signal state “0” here), set the binary result to “0”. The error condition is
linked to BR and the result is saved again in BR. This ensures that BR remains at sig-
nal state “0” if it has been set to “0” once. This error evaluation can be programmed
multiple times in the block. When the block is exited, BR then has the value “0”
when an error occurs and “1” if no error has occurred.

In the example d, the program is aborted when an error is detected and a jump is
made to the end of the block, to the jump destination Error in the example. BR is
then set to “0” and the block is exited. This error evaluation can be programmed
multiple times in the block. If no error occurs, the block program is processed to the
end, BR is set to “1”, and then the block is exited.

Example f shows the evaluation of the ENO output after a block call. The signal
state of the ENO output is saved in the status bit BR. It can be evaluated with a scan
statement or with a jump statement. In the example, BR is scanned with an AND op-
eration and the result is saved in the tag #var_error. Alternatively, the BR bit can also
be evaluated using a jump function JCB or JNB. If you have used BR as a group error
message in the calling block, observe that it can be overwritten in the called block.

10.7.3 Accumulator functions

When a block or network is programmed in the STL programming language, a
CPU 1500 emulates two 32-bit arithmetic registers, the so-called accumulators. The
accumulator functions transfer values between the two accumulators, swap bytes
in accumulator 1, or change the content of accumulator 1. Execution of the accumu-
lator functions is independent of the result of logic operation and of the status bits.
Neither the result of logic operation nor the status bits are influenced. Table 10.20
shows the available accumulator functions of a CPU 1500.

In the program elements catalog, the accumulator functions can be found under
Basic instructions > Basic instructions > Additional instructions (POP, PUSH, TAK),
under Basic instructions > Basic instructions > Math functions (+), and under Basic
instructions > Basic instructions > Conversion operations (CAW, CAD).

10.7 Further STL functions

449

Adding a constant to accumulator 1

The addition of constants changes the contents of accumulator 1. You program the
addition of constants according to the following general scheme:

L Tag

+ Data_type#±k //Adding a constant

T Result

Example:

L #index //The value of the tag #index

+ INT#-256 //is reduced by -256

T #index

The addition of constants is preferably used for calculating addresses since – unlike
an arithmetic function with the load statement – it influences neither the contents
of accumulator 2 nor the status bits.

The “Add constant” statement adds the constant present in the operation to the con-
tent of accumulator 1. The data type of the constant (SINT, INT, DINT, USINT, UINT,
UDINT) comes before the constant. The constant can then be located within the
numerical range of the data type.

With SINT, INT, USINT, UINT only the right word of accumulator 1 is influenced; no
transfer to the left word takes place. A SINT constant is extended to 16 bits with the
correct sign.

The addition of constants is independent of conditions.

Direct transfer between the accumulators

The statements TAK, PUSH and POP transfer the contents of accumulators 1 and 2.
The operating principle of these statements is shown in Fig. 10.39.

The TAK statement swaps the contents of accumulators 1 and 2.

The PUSH statement shifts the content of accumulator 1 into accumulator 2. The
content of accumulator 1 is not changed in the process. The previous content of
accumulator 2 is lost.

Table 10.20 Accumulator functions

Operation Operand Function

+ Constant Add a constant value to the content of accumulator 1

PUSH
POP
TAK

– Shift the content of accumulator 1 to accumulator 2
Shift the content of accumulator 2 to accumulator 1
Swap the contents of accumulators 1 and 2

CAW
CAD

– Swap the bytes in the right word of accumulator 1
Swap the bytes in accumulator 1

10 Statement list STL

450

The POP statement shifts the content of accumulator 2 into accumulator 1. The con-
tent of accumulator 2 is not changed in the process. The previous content of accu-
mulator 1 is lost.

Swap bytes in accumulator 1

The CAW statement swaps the two right bytes in accumulator 1 (Fig. 10.40). The left
bytes remained unchanged.

The CAD statement swaps all bytes in accumulator 1. The byte present on the far
left is present on the far right following CAD; the two bytes in the middle swap loca-
tions.

The SWAP function is available for swapping bytes in a tag. Example:

CALL SWAP

LWORD

IN := #var1_lword

RET_VAL := #var2_lword

SWAP is described in Chapter 13.2.10 “Swap bytes (SWAP)” on page 570.

Fig. 10.39 Direct transfer between the accumulators

Fig. 10.40 Swapping bytes with CAW and CAD

Accumulator functions TAK, PUSH, and POP

TAK POPPUSH

Accumulator 2 Accumulator 1 Accumulator 1 Accumulator 2

Accumulator 1 Accumulator 2 Accumulator 1 Accumulator 2

before afterafterafter

Swapping bytes with CAW and CAD

CADCAW

Byte cByte cByte a

Byte bByte dByte a

Byte b

Byte c

Byte a

Byte d

Byte dByte dByte b

Byte aByte cByte b

Content of
accumulator 1

before

after

10.7 Further STL functions

451

10.7.4 Working with the data block registers

The data operands are saved in the data blocks. For the “complete addressing”,
specify the data block in which the data operand can be found in the address. If you
use the “partial addressing” option, you must open (select) the data block before
you can address a data operand (see Chapter 10.7.5 “Partial addressing of data
operands” on page 453).

A CPU 1500 emulates two data block registers. These registers contain the numbers
of the current data blocks. These registers are called “global data block registers”
(abbreviated to: DB registers) and “Instance data block registers” (abbreviated to:
DI registers). Table 10.21 shows the operations for data block registers available
for STL.

Handling of the registers by the CPU is absolutely equivalent. Each data block can
be opened by one of the two registers (also by both simultaneously). The opened
data block must be present in the work memory. An opened data block remains
“valid” until another data block is opened. Observe that a “complete addressing”
sets the DB register to zero.

Open data block (OPN and OPNDI)

The OPN statement opens the specified data block via the DB register, the OPNDI
statement via the DI register. The number of the data block is written to the respec-
tive data block register. The data block can be addressed absolutely or symbolically
or be a tag with parameter type DB_ANY. Examples:

OPN "Motor1_DB" //Symbolic addressing

OPNDI "Motor2_DB"

OPN %DB101 //Absolute addressing

OPNDI %DB102

OPN #Motor1 //Addressing via a block parameter

OPNDI #Motor2

Opening a data block via a block parameter with the parameter type DB_ANY allows
the transfer of a data block to the called block. You can use this for indirect address-
ing of a data block (see Chapter 4.3.4 “Indirect addressing of a data block” on page
102).

Table 10.21 Functions for data block registers in the statement list

Operation Operand Function

OPN
OPNDI
CDB

Data block
Data block
–

Opening a data block using the DB register
Opening a data block using the DI register
Swapping data block registers

L
L
L
L

DBNO
DBLG
DINO
DILG

Loading the number of the data block opened via the DB register
Loading the length of the data block opened via the DB register
Loading the number of the data block opened via the DI register
Loading the length of the data block opened via the DI register

10 Statement list STL

452

Absolute or symbolic complete addressing of data operands sets the DB register to
zero. The writing of the DI register in a function block has no influence on the sym-
bolic addressing of block parameters and static local data and vice versa.

Opening of a data block is carried out independent of any conditions. It does not
influence the result of logic operation and the accumulator contents.

Swapping data block registers (CDB)

The CDB statement exchanges the contents of the data block registers. It is executed
independent of conditions and influences neither the status bits nor the other reg-
isters.

CDB //Exchange contents of data block registers

Loading data block length (L DBLG and L DILG)

The L DBLG statement loads the length of the data block which has been opened via
the DB register into accumulator 1. The L DILG statement loads the length of the
data block which has been opened via the DI register into accumulator 1. The length
is equivalent to the number of data bytes.

L DBLG //Load length of data block in DB register

L DILG //Load length of data block in DI register

These load statements transfer the previous contents of accumulator 1 into accu-
mulator 2 in accordance with a “normal” load function. If a data block has not been
opened via the associated register, zero is loaded as the length.

Loading data block number (L DBNO and L DINO)

The L DBNO statement loads the number of the data block which has been opened
via the DB register into accumulator 1. The L DINO statement loads the number of
the data block which has been opened via the DI register into accumulator 1.

L DBNO //Load number of data block in DB register

L DINO //Load number of data block in DI register

These load statements transfer the previous contents of accumulator 1 into accu-
mulator 2 in accordance with a “normal” load function. If a data block has not been
opened via the associated register, zero is loaded as the number. Example:

L DBNO //Load data block number

L 10 //and compare,

==I //if comparison is fulfilled,

JC Data10 //then jump to the label Data10

Direct writing back of the number into a data block register is not possible; you can
only influence the data block register using OPN or OPNDI (open data block) and
CDB (exchange data block register).

10.7 Further STL functions

453

10.7.5 Partial addressing of data operands

Partial addressing of data operands is only possible in the programming language
STL. Data operands can only be addressed in absolute mode if the Optimized block
access block attribute is deactivated in the data block.

“Partial addressing” means that only the data operand is specified in the statement.
To do this, it is important that the “correct” data block has been opened in advance.
A data block is opened using a data block register, of which there are two types:
The global data block register (abbreviated to DB register) and the instance data
block register (DI register). Accordingly, there are also two statements: Opening via
the DB register and opening via the DI register (see Chapter 10.7.4 “Working with
the data block registers” on page 451).

Therefore two data blocks may be open simultaneously. The addressed data block
is defined by various data operands: A data operand with the operand ID “DB” is
present in a data block opened via the DB register, a data operand with the
operand ID “DI” in a data block opened via the DI register (Table 10.22).

Example: Adding two partially addressed data operands from different data blocks.

OPN %DB12 //Assign default values to DB register

OPNDI "Data13" //Assign default values to DI register

...

L %DBW14 //Load data word DW 14 from %DB12

L %DIW18 //Load data word DW 18 from "Data13"

+I //add

T %DBW16 //Store in data word DW 16 in data block %DB12

The absolute address of a data operand is shown in the Offset column of the block
interface once the data block has been compiled.

DB and DI registers cannot be zero for the partial addressing! Observe that the com-
plete addressing of a data operand, for example %DB20.%DBW20 or “Data”.tag, sets
the DB register to zero. A subsequent partial addressing, for example L %DBW10,
leads to an error.

It is not possible to specify a partially addressed data operand as an actual parame-
ter at a block parameter.

Table 10.22 Operand IDs with partially addressed data operands

Operand area Identifier Bit
(1 bit)

Byte
(8 bits)

Word
(16 bits)

Doubleword
(32 bits)

Data partially addressed
via DB register

DB DBXy.x DBBy DBWy DBDy

Data partially addressed
via DI register

DI DIXy.x DIBy DIWy DIDy

x = bit address, y = byte address

10 Statement list STL

454

10.7.6 Absolute addressing of temporary local data

The temporary local data are local tags in a code block. Local tags are usually
addressed symbolically.

With the programming language STL, absolute addressing is possible for blocks in
which the Optimized block access attribute is deactivated. The operand ID is “L”
(Table 10.23). Example:

L #var_int

L %LW10 //Temporary local data

+I

T %LW12

If you wish to access local data in absolute mode or if it is essential to do so, you can
declare an array at the first position of the temporary local data declaration which
reserves the required number of bytes. You can then access this array area in abso-
lute mode. With organization blocks, you define the array following the 20 bytes for
the start information.

The absolute address of a temporary local data operand is shown in the Offset col-
umn of the block interface once the code block has been compiled. After the compi-
lation of the block, the memory requirement for the temporary local data is also
displayed in the call structure (double-click on Program information in the project
tree and select the Call structure tab).

10.7.7 Working with the address registers

For the indirect addressing of operands, a CPU 1500 emulates two address regis-
ters. The address registers are 32-bit wide and are called AR1 and AR2. Table 10.24
shows the statements that are connected to an address register. A graphic represen-
tation of the data flow between the operand areas, the address registers AR1
and AR2, and the accumulator 1 is shown in Fig. 10.41. All statements are executed
independent of conditions, and do not influence the status bits.

An area pointer is used for the indirect addressing via address registers.
Chapter 4.9.2 “Area pointer” on page 135 shows how it is structured.

Note: The writing of the address register AR2 in a function block has no influence
on the symbolic addressing of block parameters and static local data and vice versa.

Table 10.23 Absolute addressing of temporary local data

Operand
area

Operand ID Bit
(1 bit)

Byte
(8 bits)

Word
(16 bits)

Doubleword
(32 bits)

Temporary
local data

L %Ly.x %LBy %LWy %LDy

y = byte address; x = bit address

10.7 Further STL functions

455

Table 10.24 Overview of address register functions

Operation Operand Function

LAR1
LAR1
LAR1
LAR1

Operand
Pointer
AR2

Load address register AR1 with the content of accumulator 1
Load address register AR1 with the content of the operand
Load address register AR1 with the pointer
Load address register AR1 with the content of address register AR2

LAR2
LAR2
LAR2

Operand
Pointer

Load address register AR2 with the content of accumulator 1
Load address register AR2 with the content of the operand
Load address register AR2 with the pointer

TAR1
TAR1
TAR1

Operand
AR2

Transfer the content of address register AR1 to accumulator 1
Transfer the content of address register AR1 to the operand
Transfer the content of address register AR1 to address register AR2

TAR2
TAR2 Operand

Transfer the content of address register AR2 to accumulator 1
Transfer the content of address register AR2 to the operand

CAR Swap the contents of the address registers

+AR1
+AR1 Pointer

Add the content of accumulator 1 to address register AR1
Add the pointer to address register AR1

+AR2
+AR2 Pointer

Add the content of accumulator 1 to address register AR2
Add the pointer to address register AR2

Fig. 10.41 Statements for working with address registers

xx in the statements stands for the absolute address or the
symbolic address of a doubleword from the operand areas Bit
memories (M), Temporary local data (L), and Data (DB and DI).

Accumulator 1

+AR1 +AR2

TAR1 TAR2

TAR1 xx TAR2 xx

LAR1 LAR2

LAR1 xx LAR2 xx

Address register
AR1

Address register
AR2

LAR1 P#Zy.x LAR2 P#Zy.xTAR1 AR2

LAR1 AR2

CAR

LAR1 P#y.x LAR2 P#y.x

+AR1 P#y.x +AR2 P#y.x

Statements in association with the address registers

x = bit address
y = byte address
Z = area

10 Statement list STL

456

Loading into an address register

The statement LAR1 loads an area pointer into the address register AR1. The state-
ment LAR2 loads an area pointer into the address register AR2. You can select an
area-internal or cross-area pointer or a tag of doubleword width from the operand
areas “Bit memories” (M), “Temporary local data” (LD) or “Data” (DB and DI) as the
source. The content of the tags must correspond to the format of an area pointer.

If you do not specify an operand, LAR1 or LAR2 loads the content of accumulator 1
into address register AR1 or AR2.

Using the LAR1 AR2 statement, you copy the content of address register AR2 into
address register AR1.

Transferring from an address register

The statement TAR1 transfers the complete area pointer from the address register
AR1, the statement TAR2 transfers the complete area pointer from the address reg-
ister AR2. You can select a tag of doubleword width from the operand areas
“Bit memories” (M), “Temporary local data” (LD) or “Data” (DB and DI) as the target.

If you do not specify a tag, TAR1 or TAR2 transfers the content of address register
AR1 or AR2 into accumulator 1. The previous content of accumulator 1 is shifted
into accumulator 2 during this procedure; the previous content of accumulator 2 is
lost.

Using the TAR1 AR2 statement, you copy the content of address register AR1 into
address register AR2.

Swap address register contents

The CAR statement swaps the contents of address registers AR1 and AR2. Fig. 10.42
(top) shows an example of application of the statement.

Addition to address register

A value can be added to the address registers, e.g. to increment the address of an
operand in program loops each time the loop is executed. You can either enter the
value as a constant (as area-internal pointer) for the statement, or it is located in the
right word of accumulator 1. The type of pointer present in the address register
(area-internal or cross-area) and the operand area are retained.

The +AR1 P#y.x and +AR2 P#y.x statements add a pointer to the specified address
register. Note that the maximum size of the area pointer is P#4095.7 with these
statements. If a value larger than P#4095.7 is present in the accumulator, the num-
ber is interpreted as a fixed-point number in two's complement and subtracted. Fig.
10.42 (middle) shows an example of application of the statements.

The +AR1 and +AR2 statements interpret the value present in accumulator 1 as a
number in integer format, expand it with the correct sign to 24 bits, and add it to
the content of the address register. A pointer can also be reduced in this manner.

10.7 Further STL functions

457

Example of swapping address register contents

LAR1 P#M100.0

LAR2 P#DBX200.0

OPN %DB20

A "Swap"

JC TAU

CAR

TAU: L D[AR1,P#0.0]

T D[AR2,P#0.0]

L D[AR1,P#4.0]

T D[AR2,P#4.0]

8 bytes of data are transferred between the
memory area starting at %MB100 and the
data area starting at %DB20.DBB200.
The transfer direction defines the tag “Swap”.
If “Swap” has signal state “0”, the contents of
the address register are swapped.

If you wish to transfer data between two data
blocks in this manner, also load the two data
block registers together with the address
registers (using OPN and OPNDI) and swap
the contents where appropriate using the
TDB statement.

Example of adding a pointer to the address register

OPN "Data14"

LAR1 P#DBX20.0

LAR2 P#M10.0

L #Number_data

Loop: T #Loop_counter

L #Reference_value

L W[AR1,P#0.0]

>I

= [AR2,P#0.0]

+AR1 P#2.0

+AR2 P#0.1

L #Loop_counter

LOOP Loop

A data area of length #Number_ data in data
block “Data14” is compared with the #Refer-
ence_value tag word-by-word starting at data
word %DBW20. If the reference value is
larger than the value in the array, a memory
bit is to be set to “1” starting at bit memory
%M10.0, otherwise to “0”.

Example of adding the accumulator content to the address register

OPN %DB14

LAR1 %MD220

L %MB18

SLW 3

+AR1

L 0

T DBD[AR1,P#0.0]

T DBD[AR1,P#4.0]

T DBD[AR1,P#8.0]

T DBD[AR1,P#12.0]

In data block %DB14, the 16 bytes are to be
deleted whose addresses are calculated from
the pointer in bit memory doubleword
%MD220 and a (byte) offset in memory byte
%MB18. Prior to addition to AR1, the content
of %MB18 must be aligned (SLW 3).

Fig. 10.42 Examples of register-indirect addressing with STL

10 Statement list STL

458

Upward or downward violation of the maximum range of the byte address
(0 to 65 535) has no further effects: The highest bits are “truncated” (Fig. 10.43).

Note that the bit address is present in bits 0 to 2. If you wish to already increment
the byte address in accumulator 1, you must add starting with bit 3 (shift the value
to the left by 3 digits). Fig. 10.42 (bottom) shows an example of application of the
statement.

10.7.8 Memory-indirect addressing

“Address register” for memory-indirect addressing

Indirect memory addressing uses an operand from the operand areas “Bit memo-
ries” (M), “Temporary local data” (LD) or “Data” (DB and DI) as “address registers”.
For a function block, block parameters and static local data can also be used as
“address registers”. If the “address register” is located in a data block – this is the
case for data blocks, function block parameters, and static local data – the attribute
Optimized block access must be deactivated. A word or doubleword is required
depending on the operands to be addressed (see below).

A bit memory word or a bit memory doubleword can be used generously as an
“address register” in the user program since the bit memories are global tags.

You can use a word or doubleword from the temporary local data if the content of
the word or doubleword is not used beyond execution in the block.

Use of a data operand as address register is partial addressing. The data operand is
only “valid” for as long as the associated (“correct”) data block is open. Refer to
Chapter 10.7.5 “Partial addressing of data operands” on page 453 for information
on what you must observe.

Fig. 10.43 Addition to address register

Addition to address register

Accumulator 1

(expansion to a 24-bit number)

Sign is padded

Address register

x = bit address
y = byte address
Z = area
V = Sign

Byte n

Byte n

Byte n+1

Byte n+1

Byte n+2

Byte n+2

Byte n+3

Byte n+3

Bit addressOperand area Byte address

1 0 0 0 0 Z Z Z 0 0 0 0 0 y y y

V V V V V V V V

y y y y y y y y

V y y y y y y y

V y y y y y y y

y y y y y x x x

y y y y y x x x

y y y y y x x x

Is not considered

10.7 Further STL functions

459

Indirectly addressable operands

The memory-indirect addressable operands can be divided into two categories:
Operands which can have a bit address, and operands which never have a bit
address.

Operands which can have a bit address are located in the following operand areas:
inputs (I), outputs (Q), peripheral inputs and outputs (I:P and Q:P), data (DB and
DI), and temporary local data (L). These operands require an area pointer as
address which contains the bit and byte address – even if the operand to be
addressed is of word width, for example, and has no bit address. The structure of
this area-internal pointer is described in Chapter 4.9.2 “Area pointer” on page 135.
Refer to Chapter 10.7.5 “Partial addressing of data operands” on page 453 for infor-
mation on what you must observe when addressing data operands.

Memory-indirect addressable operands which never have a bit address are SIMATIC
timer functions (T), SIMATIC counter functions (C), data blocks (DB), functions
(FC), and function blocks (FB). With indirect addressing of these operands, an oper-
and of word width containing a number as the address is sufficient as the “address
register”.

A data tag can only be indirectly accessed if the Optimized block access attribute is
deactivated in the data block. Data in the block interface of function blocks with the
Optimized block access attribute activated can only be accessed if the retentivity of
the tag is set to Set in IDB. It is not possible to access the temporary local data of a
block in which the Optimized block access attribute is activated.

Memory-indirect addressing with an area pointer

The area pointer required for memory-indirect addressing is always an area-inter-
nal pointer, i.e. it always consists of byte and bit address. You must specify 0 as the
bit address when addressing a digital operand.

You can use the memory-indirect addressing with area pointer for all binary oper-
ands in conjunction with the binary logic operations and memory functions, and
for all digital operands in conjunction with the load and transfer functions. The
upper example in Fig. 10.44 uses the “Pointer” tag as address register. The tag could
be, for example, the bit memory doubleword %MD200 with the data type DINT.

Memory-indirect addressing with a number

The number required for memory-indirect addressing is an unsigned 16-bit fixed-
point number. Memory-indirect addressing with a number can be applied in con-
junction with SIMATIC timer and counter functions and with the block types DB, FC,
and FB.

You can open a data block via the DB register (OPN [..]) or via the DI register
(OPNDI [..]). If there is zero in the address word, the CPU performs an NOP opera-
tion and the current data block is no longer opened. A subsequent partially
addressed access – e.g. with L %DBB0 – generates an addressing error.

10 Statement list STL

460

Examples of memory-indirect addressing with an area pointer

L P#128.0

T "Pointer"

The address register “Pointer” is loaded with byte
address 128. The bit address is 0.

L IW["Pointer"] The statement L %IW128 is executed.

L "Pointer"

L 2

SLD 3

+D

T "Pointer"

The byte address is incremented by 2 in the address
register. Since the bit address is in the bottom 3 bits,
the value is shifted by 3 to the left. One can also
immediately add a value multiplied by 8 – in this
case 16 – to the address register.

T QW["Pointer"] The statement T %QW130 is executed.

L P#54.2

T "Pointer"

The address register “Pointer” is loaded with byte
address 54 and bit address 2.

A I["Pointer"] The statement A %I54.2 is executed.

L "Pointer"

L 1

+D

T "Pointer"

The bit address is incremented by 1 in the address
register.

= M["Pointer"] The statement = %M54.3 is executed.

Examples of memory-indirect addressing with a number

L 108

T "Number"

The address register “Number” is loaded with the
value 108.

CU C["Number"] The statement CU %C108 is executed.

L "Number"

L 10

+D

T "Number"

The value is incremented by 10 in the address
register.

R T["Number"] The statement R %T118 is executed.

OPN DB["Number"]

OPN DI["Number"]

The statements OPN %DB118 and OPN %DI118 are
executed.

UC FC["Number"]

CC FB["Number"]

The statements UC %FC118 and CC %FB118 are exe-
cuted.

Fig. 10.44 Examples of memory-indirect addressing with STL

10.7 Further STL functions

461

You can indirectly address the call of code blocks with UC FC [..] and CC FC [..] or
UC FB [..] and CC FB [..]. The call with UC or CC is simply a change to another block;
a transfer of block parameters or the opening of an instance data block does not
take place.

The lower example in Fig. 10.44 uses the “Number” tag as address register. The tag
could be, for example, the bit memory word %MW204 with the data type INT.

10.7.9 Register-indirect addressing

Register-indirect addressing uses one of the address registers AR1 or AR2 in order
to determine the address of the operand.

Register-indirect addressing is possible in two versions: With area-internal register-
indirect addressing, the address in the address register varies within an operand
area. With cross-area register-indirect addressing, the variable address also com-
prises the operand area.

With register-indirect addressing, an offset is specified in addition to the address
register, and is added to the content of the address register during execution of the
operation without changing the content of the register. This offset has the format
of an area-internal pointer. You must always specify it, and only as a constant. With
indirectly addressed digital operands, this offset must have bit address 0. The max-
imum value is P#8191.7.

Refer to Chapter 4.9.2 “Area pointer” on page 135 for information on the structure
of the area pointers used for register-indirect addressing. The statements required
for working with the address registers are described in Chapter 10.7.7 “Working
with the address registers” on page 454.

Indirectly addressable operands

With register-indirect addressing, operands located in the following operand areas
can be accessed: Inputs (I), Outputs (Q), Peripheral inputs and outputs (I:P and Q:P),
Bit memories (M), Temporary local data (L), and Data (DB and DI, function block
parameters and static local data).

A data tag can only be indirectly accessed if the Optimized block access attribute is
deactivated in the data block. Data in the block interface of function blocks with the
Optimized block access attribute activated can only be accessed if the retentivity of
the tag is set to Set in IDB. It is not possible to access the temporary local data of a
block in which the Optimized block access attribute is activated.

Refer to Chapter 10.7.5 “Partial addressing of data operands” on page 453 for infor-
mation on what you must observe when addressing data operands.

Area-internal, register-indirect addressing

With area-internal, register-indirect addressing, the operand area is assigned when
addressing and cannot be changed. The pointers located in address registers AR1
and AR2 can be area-internal or cross-area. The operand area which is present in the
address specification is always used.

10 Statement list STL

462

The examples in Fig. 10.45 (top) show area-internal, register-indirect addressing.

Examples of area-internal register-indirect addressing

LAR1 P#10.0 The address register AR1 is loaded with byte
address 10. The bit address is 0.

L MW[AR1,P#0.0]

L MW[AR1,P#2.0]

The statement L %MW10 is executed.
The statement L %MW12 is executed.

+AR1 P#20.0 The byte address is incremented by 20 in address
register AR1.

L MW[AR1,P#0.0]

L MW[AR1,P#4.0]

The statement L %MW30 is executed.
The statement L %MW34 is executed.

LAR2 P#A16.3 The address register AR2 is loaded with the pointer
to output bit %Q16.3.

A I[AR2,P#0.0] The statement A %I16.3 is executed.

+AR2 P#0.1 The bit address is incremented by 1 in address
register AR2.

= M[AR2,P#4.0] The statement = %M20.4 is executed.

Examples of cross-area register-indirect addressing

LAR1 P#M64.0 The address register AR1 is loaded with the pointer
to memory bit %M64.0.

L W[AR1,P#0.0]

L W[AR1,P#2.0]

The statement L %MW64 is executed.
The statement L %MW66 is executed.

+AR1 P#12.0 The byte address is incremented by 12 in address
register AR1.

L B[AR1,P#0.0]

L B[AR1,P#4.0]

The statement L %MB76 is executed.
The statement L %MB80 is executed.

LAR2 P#DB32.0 The address register AR2 is loaded with the pointer
to data bit %DB32.0.

T D[AR2,P#0.0]

A [AR2,P#0.1]

L MW[AR2,P#4.0]

The statement T %DBD32 is executed.
The statement A %DBX32.1 is executed.
The statement L %MW36 is executed.

Fig. 10.45 Examples of register-indirect addressing with STL

10.7 Further STL functions

463

Cross-area register-indirect addressing

With cross-area register-indirect addressing, the operand area is located together
with the byte and bit address in the address register. Only the operand width is
present in the addressing statement, no information for a bit, “B” for a byte, “W” for
a word, and “D” for a doubleword. The pointer present in address register AR1 or
AR2 must be cross-area.

The examples in Fig. 10.45 (bottom) show cross-area, register-indirect addressing.

10.7.10 Direct access to complex local tags

You can access local tags with elementary data types using “normal” STL state-
ments. Local tags with structured data types or block parameters of type POINTER
or ANY cannot be handled as an entity. To process such tags, one initially deter-
mines the start address at which the tag is saved, and then processes parts of the
tag using indirect addressing. In this way you can also process block parameters
with structured data types.

For the blocks that are involved in the direct access, the attribute Optimized block
access must be deactivated.

Loading of the start address of tags is not possible for tags from the following oper-
and areas: Inputs (I), Outputs (Q), Peripheral inputs and outputs (I:P and Q:P),
Bit memories (M), Data operands (DB and DI) as well as of block parameters with the
parameter type VARIANT.

Loading tag address

You obtain the start address of a local tag using the statements

L P##name

LAR1 P##name

LAR2 P##name

where #name is the name of the local tag. These statements load a cross-area
pointer into accumulator 1 or into address register AR1 or AR2. The area pointer
contains the address of the first byte of the tag. Depending on the code block used,
the tag areas specified in Table 10.25 are approved for #name.

In the case of functions (FC), the address of a block parameter cannot be directly
loaded into an address register. In this case you can use the path via accumulator 1,
for example with L P##name and LAR1.

In the case of function blocks without multi-instance capability, the absolute
address of the local tag is loaded. Function blocks without multi-instance capability
can only be called as a single instance with its own data block. They can only be cre-
ated via a source file with the keyword CODE_VERSION1.

In the case of function blocks with multi-instance capability, the absolute address
for the static local data and the block parameters is loaded relative to the start of
the local instance data. If you wish to determine the absolute address of the tag in

10 Statement list STL

464

the data block with multi-instance capability, you must add the area-internal
pointer of address register AR2 to the loaded tag address.

You can also apply the loading of a tag address to block parameters.
Chapters 10.7.11 “Data storage of the block parameters of a function (FC)” on page
465 and 10.7.12 “Data storage of the block parameters of a function block (FB)” on
page 467 describes how the block parameters are saved in the memory and their
respective contents.

Table 10.25 Permissible operands for loading the tag start address

Operation #name is a OB FC FB
with

multi-instance
capability

FB
without

multi-instance
capability 2)

L P##name Temporary local data x x x x

Static local data – – x 1) x

Block parameter – x x 1) x

LARn P##name Temporary local data x x x x

Static local data – – x 1) x

Block parameter – – x 1) x

1) Tag address relative to address register AR2
2) Only possible when generating from a source file

TAR2
LAR1 P##name
+AR1

Load the start address of the #name tag
into address register AR1.

TAR2
AD 16#00FF_FFFF
L P##name
+D

Load the start address of the #name tag
into accumulator 1.

Static
First_name : 'Elisabeth'

...

LAR1 P##First_name
TAR2
+AR1
L ’Mari’
T D[AR1,P#2.0]
L ’on’
T W[AR1,P#6.0]
L 6
T B[AR1,P#1.0]

Processing of a tag with structured data
type:
Load the start address of #First_name tag
into address register AR1, fetch the offset
address from AR2 into accumulator 1, and
add to the content of address register AR1.
The start address of #First_name is now
present in address register AR1.
Write ’Marion’ into the #First_name tag
starting at byte 2 and update the current
length of the STRING tag in byte 1 to a
value of 6.

Fig. 10.46 Examples of loading a tag address

10.7 Further STL functions

465

The two examples at the top in Fig. 10.46 show the program in a function block with
multi-instance capability for loading the tag start address into address register AR1
or accumulator 1. Digital operation AD is only required if the operand area is to be
hidden in the address. In the bottom example, the tag #First_name is occupied by a
different value.

10.7.11 Data storage of the block parameters of a function (FC)

The program editor stores a block parameter of a function as a cross-area pointer in
the block code following the actual call statement and therefore every block param-
eter requires a doubleword in the memory. The pointer points to the actual param-
eter itself depending on the type of data and declaration, to a copy of the actual
parameter in the temporary local data of the calling block (the program editor cre-
ates this), or to a pointer in the temporary local data of the calling block which in
turn points to the actual parameter (Table 10.26). Exception: With the parameter
types TIMER, COUNTER, BLOCK_FC, BLOCK_FB and DB_ANY, the pointer is a 16-bit
number located in the left word of the block parameter.

With elementary data types, the block parameter points directly to the actual oper-
and (Fig. 10.47). With the area pointer as block parameter, however, it is not possi-
ble to access any constants or operands located in data blocks. Therefore, when
compiling the block, the program editor copies the value of a constant or an actual
operand present in a data block (and completely addressed) into the temporary
local data of the calling block and points the area pointer to this. This operand area
is named V (temporary local data of preceding block, V area).

Copying into the V area is carried out prior to the actual FC call in the case of input
and in/out parameters, but following the call in the case of in/out and output param-
eters and thus also with the function value. The principle therefore also applies that
you can only scan input parameters and only write output parameters. For exam-
ple, if you transfer a value to an input parameter with a completely addressed data
operand, the value is stored in the temporary local data of the preceding block and
forgotten, since copying into the “actual” tag in the data block no longer takes
place.

Table 10.26 Parameter storage for functions

Data type INPUT IN_OUT OUTPUT

The parameter is an area pointer to a

Elementary Value Value Value

Structured DB pointer DB pointer DB pointer

TIMER, COUNTER, BLOCK_FC,
BLOCK_FB, DB_ANY

Number – –

POINTER DB pointer DB pointer DB pointer

ANY ANY pointer ANY pointer ANY pointer

10 Statement list STL

466

Fig. 10.47 Parameter transfer for functions (FC)

pointer

pointer

pointer

pointer

pointer

pointer tured

Anypointer

pointer

(48 bit)

(80 bit)

(80 bit)

Area

Area

Area

Area

Area

DB Struc-

ANY

ANY

Elementary

Elementary

Elementary

Block
parameter

Block
parameter

ANY

ANY

Function FC

Function FC

Local data V

Local data V

The actual operand is a
simple tag

Pointer to the
copy in the
local data

Pointer to a
pointer in the
local data

Pointer to a
pointer in the
local data

Pointer to the
ANY pointer in
the local data

Copy in the
local data

Pointer directly
to the actual
operand

Pointer to the
actual operand

Pointer to the
actual operand

The actual
operand is a
complex tag.

Tag with data type ANY in
the temporary local data
(of the calling block)

The actual
operand is a
constant or a tag
from a data
block.

The actual
operand is any
tag except with
data type ANY in
the temporary
local data.

Pointer to the actual operand or its value

Pointer to a further pointer

Parameter transfer for functions (FC)

A block parameter of a function (FC) is a 32-bit area pointer. If the block parameter has an elementary
data type and if the actual operand is a simple operand, then the pointer points directly to the actual
operand. A constant as an actual operand or a completely addressed operand cannot be accessed with a
32-bit pointer. In such cases the program editor copies the value of the constant or data operand into the
temporary local data of the preceding block, and positions the pointer of the block parameter to this
value.

If the block parameter has a structured data type or the parameter type POINTER, the program editor
creates a 48-bit pointer to the actual parameter in the temporary local data of the preceding block.
The block parameter of the FC then points to this DB pointer.
If the block parameter has the parameter type ANY, the program editor creates an 80-bit pointer to the
actual parameter in the temporary local data of the preceding block.
Exception: The actual parameter already has the data type ANY and is in the temporary local data of the
preceding block. A further pointer is not created in this case.

10.7 Further STL functions

467

The same applies to loading a corresponding output parameter: Since copying
from the “actual” tag from the data block into the V area does not take place, you
load an (indefinite) value from the V area in this case.

As a result of the copying process, you must write an output parameter with a value
and thus also a function value defined with an elementary data type in the block if
a completely addressed data operand is envisaged or could be used as the actual
parameter. If you do not assign a value to the output parameter, e.g. because you
leave the block beforehand or jump beyond the program position, the local data is
not supplied either. It then has the value which it had “by chance” prior to the block
call. The output parameter is then written with this “undefined” value. Note in this
context that certain operations, for example retentive setting, do not write a value
to the operand if they are processed with the result of logic operation “0”.

With structured data types, the actual parameters are located either in a data
block or in the V area. Since an area pointer cannot access an actual operand in a
data block, the program editor creates a DB pointer in the V area when compiling
which then points to the actual operand in the data block (DB No. <> 0) or to the
V area (DB No. = 0). The DB pointers for all declaration types in the V area are cre-
ated before the “actual” FC call.

With the parameter types TIMER, COUNTER, BLOCK_FC, BLOCK_FB and DB_ANY, a
number is present instead of the area pointer in the block parameter (16 bits left-
justified in the 32-bit parameter).

The parameter type POINTER is handled just like a structured data type.

With the parameter type ANY, the program editor creates a 10-byte long ANY
pointer in the V area which can then point to any tag. The principle is the same as
with the structured data types.

An exception is made by the program editor if you apply an actual parameter to a
block parameter of type ANY where the actual parameter is in the temporary local
data and is of type ANY. In this case the program editor does not create any further
ANY pointers but applies the area pointer (the block parameter) directly to the
actual parameter. In this case, the ANY pointer can be changed during runtime, see
Chapter 4.3.5 “Indirect addressing with an ANY pointer” on page 103.

10.7.12 Data storage of the block parameters of a function block (FB)

The program editor stores the block parameters of a function block in the instance
data of the call. With a function block call, the program editor generates statement
sequences which copy the values of the actual parameters prior to the actual call
into the instance data and back again from the instance data to the actual parame-
ters following the call. You do not see these statement sequences when viewing the
compiled block, you only notice this indirectly because memory space is occupied.

The block parameters are present in the instance data either as a value, a
16-bit number, or a pointer to the actual parameter (Table 10.27). When storing as
a value, the memory space required depends on the data type of the block parame-

10 Statement list STL

468

ter; the number occupies 2 bytes, a DB pointer occupies 6 bytes, and an ANY pointer
occupies 10 bytes.

The relationships between block parameters, instance data assignment, and actual
parameters are shown in Fig. 10.48.

Copying of block parameters saved as values in the instance data is carried out
prior to the “actual” FB call by means of statement sequences for input and in/out
parameters, but following the call in the case of in/out and output parameters. The
principle therefore also applies that you can only scan input parameters and only
write output parameters. For example, if you transfer a (new) value to an input
parameter, the current value of the actual parameter is lost. If you load an output
parameter, you load the (old) value in the instance data block and not that of the
actual parameter.

Because the block parameters are saved in the instance data, they need not be sup-
plied each time the function block is called. If no values are supplied, the program
uses the “old” value of the input or in/out parameter, or you fetch the value of the
output parameter at a different position later in the program. You can address the
tags in the instance data outside the function block just like the tags in a global data
block (with an instance data block) or like a STRUCT tag (with a local instance).

If you apply a temporary local tag with data type ANY to an ANY parameter, the pro-
gram editor copies the content of this tag into the ANY pointer (into the block
parameter) in the instance data.

10.7.13 Data storage of a local instance in a multi-instance

Function blocks require a data block – the instance data block – in order to save the
block parameters and the static local data. This can be a separate data block or – if
the call of the function block is within a function block – the instance data block of
the calling function block. You define the data block in which the instance data is
saved when calling the function block:

b If you select Single instance, a separate data block is generated for the call of the
function block.

b If you select Multi instance, the data of the called function block is inserted as a
“local instance” in the instance data block of the calling function block.

Table 10.27 Parameter storage for function blocks

Data type INPUT IN_OUT OUTPUT

Elementary Value Value Value

Structured Value DB pointer Value

TIMER, COUNTER, BLOCK_FC,
BLOCK_FB, DB_ANY

Number – –

POINTER DB pointer DB pointer –

ANY ANY pointer ANY pointer –

10.7 Further STL functions

469

Fig. 10.48 Parameter transfer with function blocks (FB)

pointer

Value

Anypointer

pointer pointer

(48 bits)

(80 bits)

(80 bits) (80 bits)

DB

ANY

ANY ANY

ElementaryValue

Block
parameter

Block
parameter

Instance data

A block parameter of a function block is located in the instance data of the call. If the block parameter has
an elementary data type, the value of the actual parameter is copied into the instance data or from the
instance data to the actual parameter. The same applies to an input or output parameter with structured
data type.
If the block parameter has a data type TIMER, COUNTER, BLOCK_xx or DB_ANY, the number of the timer
or counter function or of the block is present in the instance data.

If an in/out parameter has a structured data type, a 48-bit pointer to the actual parameter is created
in the instance data.
If a block parameter has the data type ANY, an ANY pointer to the actual parameter is created in the
instance data. Exception: if the actual parameter also has the data type ANY and is located in the
temporary local data, it is copied into the instance data.

Instance data

The actual parameter is a simple operand,
a constant, or a completely addressed data
operand.

The actual parameter is a complex tag.

The actual parameter is a complex tag.

The actual parameter is a tag with data type
ANY in the temporary local data.

The actual parameter is any tag except data
type ANY in the temporary local data.

Value in the instance data

Pointer in the instance data

INPUT
OUTPUT
IN_OUT

IN_OUT

INPUT
IN_OUT

INPUT
IN_OUT

INPUT
OUTPUT

Pointer to the
actual operand

Pointer to the
actual operand

Call of the
ANY pointer

Copy

Copy

Parameter transfer with function blocks

tured

Struc-

tured

Struc-

10 Statement list STL

470

The data of a local instance is a subset of the static local data of the calling function
block (Fig. 10.49). The local instance has a name which you define during program-
ming of the statement. In a function block you can program several local instances
of the same function block by defining different instance names for each of them.

The individual components of a local instance are shown in the instance data
block in Expanded mode. You can address the components of a local instance from
the calling function block as a static local tag using #Instance_name.Compo-
nent_name or from any block as a global data tag using “Data_block_name”.
Instance_name.Component_name.

Function blocks with local instances can again be a local instance. In this manner
you can “nest” up to eight instances.

Fig. 10.49 Data storage of a local instance in a multi-instance

Call of local instance

Function block
called as
local instance

Instance data block
of the calling
function block
(multi-instance)

Calling,

function block
“higher-level”

(multi-instance)

Program execution
in the calling
function block

Program execution
in the called
function block

Block
parameter

Block
parameter

Block
parameter

Static
local data

Static
local data

Static
local data

Declaration of the
local instance

A function block called as a local
instance is declared in the static
local data of the calling "higher-
level" function block.

The instance data of the called
function block (block parameters
and static local data) is then stored
in the instance data block of the
calling function block.

In
te

rf
a

ce

In
te

rf
a

ce

Data storage of a local instance in a multi-instance

Block
parameter

Data of the
local instance

Static
local data

10.7 Further STL functions

471

10.7.14 Null instructions

Null instructions result in no response whatsoever by the control processor during
execution. Table 10.28 shows the null instructions available with STL.

The program elements catalog contains the null instructions under Basic
instructions > Basic instructions > Further instructions.

NOP instructions

You can use the NOP 0 (bit pattern 16-times “0”) and NOP 1 (bit pattern 16-times
“1”) statements to enter a statement which has no effect. Note that the nil opera-
tions occupy memory space (2 bytes) and have a command runtime.

Example: A statement must always be present for a jump label. Use NOP 0 if you
wish to have nothing executed at an entry in your program.

 A %I 1.0

 JC MXX1

 ...

MXX1: NOP 0

 ...

An empty line for clearer commenting of programs can be entered more effectively
using an (empty) line comment (no memory requirements in user memory and no
runtime losses since no code is sent).

Program display (BLD instruction)

The program editor uses BLD nnn display construction statements to integrate
information for decompilation into the program.

Table 10.28 Null instructions with STL

Operation Operand Function

BLD Number Controls the construction of an LAD or FBD representation

NOP
NOP

0
1

Statement with memory content W#16#0000
Statement with memory content W#16#FFFF

11 S7-GRAPH sequential control

472

11 S7-GRAPH sequential control

11.1 Introduction

11.1.1 What is a sequential control?

Static assignment of the input signals to the outputs (as with logic controls) does
not dominate in the case of sequential controls, but their time sequence. The con-
trol procedures executed in succession are divided into sequence steps, or steps for
short. A step contains one or more actions such as switch motor on or off. Only the
actions of an active (processed) step are carried out. Progression to the next step is
carried out by means of transitions (step enabling conditions). The transition can
be process-dependent, e.g. as a result of signals from the controlled machine or
plant, or time-dependent, e.g. following expiry of a delay time.

Fig. 11.1 Example of representation of a step in a sequencer

11.1 Introduction

473

A sequential control is started at an initialization step; several can be present in a
sequential control. These are followed by alternate transitions and steps in a linear
sequencer. Branches are also possible in addition to the linear progression where a
step is followed by a single step: With alternative branching (OR branch), only one
of the following partial sequences is processed, with simultaneous branching (AND
branch), all following partial sequences are processed.

A sequential control can contain several independent sequencers.

Fig. 11.1 shows an example of the working window of the GRAPH editor. The
sequencer is shown in the GRAPH navigation on the left side and the working area
shows the step S2 with the transition T2 as selected in the navigation.

11.1.2 Properties of a sequential control

A sequential control consists of a function block GRAPH and a data block
GRAPH_DB. The function block controls the sequencer; the data block is the
instance data block of the sequencer FB and contains the structure of the sequencer
and the associated data (Fig. 11.2).

The function block first processes the permanent instructions which precede the
sequencers and are processed in each cycle. The active sequence steps (of which

Fig. 11.2 Components and properties of a sequential control

Sequence control in user program

Call in cyclic
processing

Processing of the
permanent
instructions and
the active step or
valid transition

Permanent
pre-instructions

Interface of
function block

Sequencer

Permanent
post-instructions

S1

S2

S3

T1

T2

T3

S10

T10

T11

Function block GRAPH Data block GRAPH_DB

Adjustable:

Maximum parameter set

Standard parameter set

•

•

11 S7-GRAPH sequential control

474

there can be several) and the following transitions are subsequently processed. The
series-connected permanent instructions are processed following the sequencers.

The instance data block contains the interface of the function block and the status
data for the sequential control. In the main menu you can select between two
parameter sets under Options > Settings and PLC programming > GRAPH: If the
Maximum interface parameters checkbox is activated, all parameters are displayed;
if the option is deactivated, only the standard parameter set is displayed. You can
manually add individual input or output parameters to the interface at any time.

11.1.3 Program for a sequential control, quantity framework

The GRAPH function block contains the program for a sequential control. You can
program any function block using GRAPH, and also several ones – each with their
own sequential control – in a user program.

The instance data block of a GRAPH function block contains the structure data of the
sequential control.

b It can accommodate up to 250 steps and transitions. (One step and one transition
are only handled as a pair here.)

b Up to 249 simultaneous branches are possible.

b Up to 125 alternative branches are possible.

The structure of a sequential control is defined during configuration. A sequential
control can contain several sequencers within the scope of the quantity framework
specified above. Limitation of the quantity framework, especially for the simultane-
ous branches, may be meaningful for runtime reasons.

11.1.4 Operating modes

The GRAPH sequential control allows the following operating modes:

b In automatic mode, a switch is made from one sequence step to the next when
the transition between them is fulfilled.

b In semiautomatic mode (“jogging”), a switch is only made to the next step if the
transition is fulfilled and a manual transition signal is present.

b In automatic or semiautomatic mode (“step enabling”), a switch is made to
the next step if either the transition is fulfilled (as in automatic mode) or a man-
ual transition signal is present.

b In manual mode, the steps are selected by means of the step number and acti-
vated and deactivated individually.

The operating modes are set in the parameters of the GRAPH function block.

11.2 Elements of a sequential control

475

11.1.5 Procedure for configuration

Define control sequences within your user program which can be solved using a
sequential control. Itemize the task until you have gained an overview of the num-
ber and sequence of steps and the required signals.

First enter the signals which are already specified into the PLC tag table. If the
sequential control is a complete block within the user program, it is appropriate to
create a separate PLC tag table for the sequential control. Signals which are added
later can be entered in the PLC tag table at any time.

Create a new function block in the GRAPH language. Enter the structure of the
sequencer in the opened block with the steps, transitions, branches, and jumps.
At least one initialization step must be present at which the sequential control
starts, and also a sequence end at which processing of the sequence ends.

If necessary, program the permanent instructions which have to be executed prior
to and after processing of the sequential control.

Then enter the actions for each step and the step enabling conditions for each tran-
sition. You can configure interlocks and supervision times for each step. The
actions are programmed per step in a list. Each action contains the triggering event,
the operation, and the tag.

Ladder logic (LAD) and function block diagram (FBD) can be used as languages for
programming of interlock, supervision, and transition. The conditions contain the
binary logic operations in the form of series and parallel connection of
contacts (LAD) or are in the form of linked boxes with the AND and OR functions
(FBD). Comparison functions can be used in addition.

Following programming of the sequential control, it is recommendable to compile
the function block and to eliminate any errors. You then insert it at the desired posi-
tion in the user program, for example in the main program, and create the instance
data block for the call.

11.2 Elements of a sequential control

11.2.1 Steps and transitions

A sequence step contains the actions (instructions, commands) to be executed
when activating a step, e.g. switch on a drive or call a block. You program the
actions as a table. A step is identified by a number and/or name (Fig. 11.3).

You can configure an interlock condition for each sequence step with which the
actions in the step are controlled. If the step is activated and the interlock condition
fulfilled, the envisaged action is executed. The action is not executed if the interlock
condition is not fulfilled. The transition to the next step is independent of the inter-
lock function.

11 S7-GRAPH sequential control

476

The actions in a step can be monitored. If the step supervision is fulfilled, i.e. the
supervision function is triggered, a fault is present which prevents transition to the
next step and which can be output as an alarm.

A transition contains the conditions required for progression of the sequencer,
e.g. the expiry of a timer function or the linking of sensor scans. Ladder logic (LAD)
or function block diagram (FBD) can be used as the programming languages for the
step enabling conditions. A transition is identified by a number or name.

Processing of a sequencer

You start the processing of a sequential control by calling the GRAPH function
block. The first step processed when starting a sequential control is the initial step.
You identify this step when configuring. It need not be the first step in a sequencer.
It can also be in the middle of a sequencer.

If the sequential control consists of several independent sequencers, you can define
initial steps in each sequencer which are activated when starting the sequential
control.

The actions in a sequence step are carried out if the step is “active”. The following
transition is then also “valid” and is processed. If a valid transition is fulfilled,

Fig. 11.3 Steps and transitions

Elements of the programming language GRAPH – Steps and transitions

A contains one or more sequencers. A
consists of steps (instructions) and transitions (conditions).

A () contains the actions to be executed in the form of instructions.
The actions of a step are only executed if the step is “activated”. A
deactivated step does not execute any actions. A step is activated if
> the previous transition is fulfilled or
> when starting the sequencer if it is an initialization step.

A () contains the step enabling conditions in the form of scans
and logic operations. The conditions of a transition are only scanned if the
transition is “valid”, i.e. if the previous step is activated. If a valid transition
is fulfilled, the previous step is deactivated and the following program
element is activated.

A terminates a sequencer. A sequence end always follows a
transition. If the transition is fulfilled, processing of this sequencer is
terminated.

A is the transfer from a transition to any step in a sequencer which is
present in the same sequential control as the jump.

A jump is always positioned after a transition. If this is fulfilled, the jump is
made to the specified step, which is then activated.

The entry point is always in front of a step.

sequential control sequencer

step

transition

sequence end

jump

Sn

Tn

Step 2

S2

Step m

Sm

Step 1

S1

T1

Tn

Sm

T2

Tn

Transition 1

Transition 2

Transition n

11.2 Elements of a sequential control

477

i.e. the step enabling condition has signal state “1”, the previous step is deactivated
and the step following the transition is activated.

If the last transition is followed by a sequence end, processing of the sequencer is
terminated. To restart a sequential control, for example if all sequencers have been
finished, apply a rising signal edge to the input parameter INIT_SQ of the GRAPH
function block.

11.2.2 Jumps in a sequential control

You can leave linear processing of the steps within a sequencer or between sequenc-
ers in a sequential control. For example, you can repeatedly process the sequencer
in a program loop by jumping to a previous step shortly before the end of the
sequencer.

You configure a jump following a transition and the associated jump destination
prior to a step. The jump is executed if the transition is fulfilled and the step which
is jumped to is activated.

A jump is defined by the number of the transition after which it is configured. The
jump destination is defined by the number of the step which follows the jump des-
tination. It is permissible to jump to a destination from more than one position.

11.2.3 Branching of a sequencer

A sequencer can contain simultaneous and alternative branches (Fig. 11.4). Simul-
taneous and alternative branches can be used together in a sequencer.

With simultaneous branching, all branches are processed in parallel (quasi at the
same time). A simultaneous branch commences following a transition. Each simul-
taneous branch commences with a step. If the transition is fulfilled, the first steps
of each simultaneous branch are processed simultaneously.

The simultaneous branches are combined following their respective last step. The
subsequent transition is valid, i.e. it will be processed if the last steps of all com-
bined simultaneous branches are active (AND condition).

If a simultaneous branch is finished by a sequence end, this has no influence on the
rest of the sequencer.

The division into simultaneous branches and their combination are not mutually
dependent. You can insert a simultaneous branch at any position and also combine
a simultaneous branch with the branch on its left at any position.

With alternative branching, only one of the branches is processed. An alternative
branch commences following a step. Each alternative branch commences with a
transition. If the transition is fulfilled, the first step of the respective branch
becomes active and the transitions of the other branches become invalid.

If two or more transitions are fulfilled simultaneously, the step becomes active
which follows the transition which is on the furthest left.

11 S7-GRAPH sequential control

478

The alternative branches are combined following their respective last step. If the
transition of the processed branch is fulfilled, the next (common) step is processed.
The combination of alternative branches corresponds to an OR condition.

An alternative branch can be finished by a sequence end or a jump.

11.2.4 GRAPH-specific tags

A data structure is created in the static local data for each configured step, for each
configured transition, and for the sequential control. You can use the components
of the data structure in the user program. You can read these values at any time. To

Fig. 11.4 Simultaneous and alternative branching

Elements of the programming language GRAPH – branching

A can include branching; it is then divided
into two or more branches. The branches can merge
again or finish separately.

With , the further branches
are processed simultaneously. An simultaneous branch
starts and finishes with a step.

If the previous transition is fulfilled, the first steps of all
simultaneous branches are activated simultaneously.

If the simultaneous branches are merged following
their respective last step, the last steps of all
simultaneous branches must have been activated so
that the further transition becomes valid (AND
condition).

A simultaneous branch can also be finished by a
sequence end. The processing in the other
simultaneous branches is not influenced by this.

sequencer

simultaneous branching

With , only one of the further
branches (alternative) is processed. An alternative
branch starts and finishes with a transition.

If the previous step is activated, the first transitions of
the alternative branches are valid in each case. Only the
alternative branch whose start transition is fulfilled
first is processed. If two or more start transitions are
fulfilled, only the branch which is on the furthest left of
the associated branches is processed.

If alternative branches are combined following their
respective last transition, the following program
element is activated if the transition of the processed
branch is fulfilled (OR condition).

An alternative branch can also be finished by a sequence
end or a jump.

alternative branching

Step 2

S2

Step 2

S2

Step 4

S4

Step 3

S3

Step 1

S1

Step 1

S1

T1

T1 T3

T4

T2 T4

Transition 1

Transition 1 Transition 3

Transition 4

Transition 2 Transition 4

Step 3

S3

Step 5

S5

T2 T3
Transition 2 Transition 3

11.2 Elements of a sequential control

479

guarantee trouble-free control of the sequencer, a write operation is not advisable.
Some of these components are described below as examples.

Step activation time

The step activation time is started when activating a step. This delivers two values.
The value #Step_name.T corresponds to the total duration which has passed since
activation of the step. The value #Step_name.U contains the uninterrupted dura-
tion, in other words the duration from the start of step activation minus the dura-
tion for a fault triggered by the supervision function. Step_name is the symbolic
name of the respective step. For example, if the step is named Lower_drill, the step
activation time is scanned within the GRAPH function block by #Lower_drill.T (total
step activation time) or #Lower_drill.U (uninterrupted step activation time). The
values exist in the data type TIME.

The limits for the step activation time – the step supervision times – are set when
configuring the sequential control under Options > Settings and PLC
programming > GRAPH. They apply to all steps.

GRAPH provides two functions for comparing the step activation time with the step
supervision times: The CMP>T function has signal state “1” if the current activation
duration is greater than the configured supervision time. The CMP>U function has
signal state “1” if the current, uninterrupted activation duration is greater than the
configured uninterrupted supervision time. The two functions are represented as
comparison functions.

Step status

The binary tag #Step_name.S1 has signal state “1” for one processing cycle if the
step named Step_name is activated. The #Step_name.X tag indicates with signal
state “1” that the step is activated. The #Step_name.S0 tag has signal state “1” for
one processing cycle if the step is deactivated.

Transition status

The binary tag #Transition_name.TV indicates with signal state “1” that the transi-
tion named Transition_name is valid, i.e. it is being processed. The #Transi-
tion_name.TT tag indicates with signal state “1” that the transition is fulfilled. The
#Transition_name.TS tag indicates with signal state “1” that the transition is
switched.

11.2.5 Permanent instructions

Permanent instructions are program components which are processed in every
cycle independent of the status of the sequential control. Permanent pre-instruc-
tions are processed prior to the sequential control, post-instructions after the
sequential control.

Permanent instructions can be programmed in LAD or FBD. Any number of perma-
nent instructions can be used.

11 S7-GRAPH sequential control

480

For programming, double-click on the permanent instructions in the GRAPH navi-
gation or click on the Permanent pre-instructions or Permanent post-instructions
symbol in the toolbar of the working window.

11.2.6 Step and transition functions

You program a step together with the subsequent transition. These are always han-
dled in pairs. The step can remain empty if no actions are envisaged at the current
position in the sequencer. The subsequent transition is then valid immediately. It is
also possible to program an “empty transition” without step enabling conditions.
This is then fulfilled immediately when processing.

Fig. 11.5 shows the components of a step/transition pair. With an alternative
branch, the first transitions of the branches are counted to the previous step. When
combining a simultaneous branch, the common transition is displayed in each case
with the last step of a branch.

Fig. 11.5 Components of a sequence step/transition pair

Functions in a step/transition pair

Interlocking of the step can be programmed in each step.
This interlocking determines whether interlock-
dependent instructions are prevented or enabled.
Incoming or outgoing interlocks are events which can be
scanned.

Supervision of the step can be programmed in each step.
This supervision can prevent continuation to the next
step and output a message.
Incoming or outgoing supervisions are events which can
be scanned.

The control instructions are present in the actions.
They are executed if the step is active. An instruction
consists of an operation which is programmed by
an identifier, and an operand. The execution of an
instruction may depend on an event and/or the
interlocking.

If a step is active, the following transition is valid and is
processed. The transition contains the step enabling
conditions to the next step.
If the conditions are fulfilled, the previous step is
deactivated and the following step is activated.

Interlock (step interlocking)

Supervision (step monitoring)

Actions

Step enabling conditions

Sequence step

Transition

()C

()V

E-(C)-

E-(C)-

ID

ID

Operand

Operand

EventInterlock Instruction

Step

11.2 Elements of a sequential control

481

Interlock

An interlock condition is specific to a step. If the interlock condition is fulfilled
(this is the “good case”), the actions depending on the interlock are carried out for
the active step. If the interlock condition is not fulfilled, the actions depending on
the interlock are not carried out. The change in status of the interlock condition can
be scanned with events.

The event L1 means that the interlock condition changes from the “fulfilled” state
to the “not fulfilled” state (fault coming). Actions dependent on the interlock condi-
tion are then no longer executed.

The event L0 means that the interlock condition changes from the “not fulfilled”
state to the “fulfilled” state (fault going). Actions dependent on the interlock condi-
tion are then executed again.

The transition to the next step is independent of the state of the interlock condition.
When deactivating a step, a fulfilled interlock condition is automatically canceled.

You program an interlock condition as a logic operation in LAD or FBD. You can use
a maximum of 32 program elements per interlock condition.

An interlock error is signaled if a non-fulfilled interlock condition occurs. You can
activate or deactivate the acknowledgment requirement for signaling of the inter-
lock error. If the acknowledgment requirement is activated, processing of the
sequencer is only continued following acknowledgment.

Supervision

A monitoring condition specific to a step is referred to as supervision. If the super-
vision condition is fulfilled, a fault is present which results in a fault signal. A non-
fulfilled supervision condition is the “good case”. The change in status of the super-
vision condition can be scanned with events.

The event V1 means that the supervision condition changes from the “not fulfilled”
state to the “fulfilled” state. A fault is then present.

The event V0 means that the supervision condition changes from the “fulfilled”
state to the “not fulfilled” state. The fault then goes again.

In the case of a fulfilled supervision condition, the transition to the next step is
omitted even if the following transition is fulfilled. The uninterrupted step activa-
tion time #Step_name.U is stopped and the complete step activation time
#Step_name.T continues.

A fulfilled supervision condition is automatically reset when a step is deactivated
(a deactivated step cannot be faulty, only activated steps are monitored). Therefore,
monitoring can only be carried out for actions which are programmed in the asso-
ciated step.

You program a supervision condition as a logic operation in LAD or FBD. You can
use a maximum of 32 program elements per supervision condition.

A supervision error is signaled when a non-fulfilled supervision condition occurs.
You can activate or deactivate the acknowledgment requirement for signaling of

11 S7-GRAPH sequential control

482

the supervision error. If the acknowledgment requirement is activated, processing
of the sequencer is only continued following acknowledgment.

Actions in general

An active step uses actions to control operands or tags, to call blocks, or to carry out
arithmetic operations. An action can consist of the interlock condition, an event,
and an instruction.

An instruction is, for example, the setting of a tag using the S operation. The
instruction is S “Start drive” and means: As long as the step is active, the tag “Start
drive” is set to signal state “1” in each processing cycle.

An instruction can be linked to an interlock condition. For this purpose, the instruc-
tion is preceded by the symbol -(C)- (condition). The action is then -(C)- S “Start
drive” and means: As long as the step is active and as long as the condition is ful-
filled, the tag “Start drive” is set to signal state “1” in each processing cycle.

An instruction can be linked to an event. An event is a change in status, for example
the activation of the sequence step with the start information S1. The event is spec-
ified in front of the instruction. The action is then S1 S “Start drive” and means: If
the step is active and if the event – in this case the step activation – occurs, the tag
“Start drive” is set once to signal state “1”.

Events, interlock conditions, and instructions can be combined together. For the
example, the action is then -(C)- S1 S “Start drive” and means: The tag “Start drive”
is set once to signal state “1” if the step is activated and the interlock condition is
fulfilled at the same time.

If the step does not contain any actions, it is an “empty step” which reacts like an
active step. The following transition is then processed immediately.

Events

An event controls an action. The change in status of a step, a supervision or an inter-
lock condition is used to execute an instruction once (Table 11.1).

Table 11.1 Events for actions

Identifier Event The action is carried out once if ...

S1
S0

Step is activated
Step is deactivated

the step is processed for the first time
the step is processed for the last time

V1
V0

Supervision comes
Supervision goes

the supervision error (fault) occurs
the supervision error is removed

L1
L0

Interlock goes
Interlock comes

the interlock condition changes to “not fulfilled” (fault)
the interlock condition changes to “fulfilled”

A1 Message is acknowledged a message is acknowledged

R1 Registration comes a registration comes
(rising edge at parameter REG_EF or REG_S)

11.2 Elements of a sequential control

483

The instructions provided by the GRAPH programming language in actions, and
how they can be combined with events, are described in the next Chapter 11.2.7
“Processing of actions”.

Transitions

A transition contains the step enabling conditions to the next step. A transition is
processed (the transition is “valid”) if the previous step is processed (the step is
“active”). The transition is “fulfilled” if the step enabling condition has signal
state “1”. The previous active step is then processed for a last time with the event S0
(the step is “deactivated”) and the following step is processed. The first processing
takes place with the event S1 (the step is “activated”).

In the case of simultaneous branching, a transition is followed by two or more steps
which are all activated in the case of a fulfilled transition. During the combination
of the simultaneous branching, all last steps of the branches must be active before
the common transition becomes valid.

In the case of alternative branching, the first transitions are all valid if the step prior
to the branch is active. If one of the transitions is fulfilled, the following step is acti-
vated. The transitions of the other branches are then no longer valid and therefore
only one branch is processed. If two or more transitions are fulfilled simultane-
ously, the branch which is on the furthest left is processed. During the combination
of alternative branching, all last transitions must be fulfilled before the following
common step is activated.

A jump following a transition leads to a step which does not directly follow the tran-
sition in the graphic representation. This step is activated if the transition is ful-
filled.

If a transition is followed by a sequence end, processing of the sequencer is termi-
nated if the transition is fulfilled.

If a transition does not contain a step enabling condition, it is an “empty transition”.
A valid empty transition is fulfilled immediately and activates the following step.

11.2.7 Processing of actions

Controlling binary tags

Tags from the operand areas Inputs I, Outputs Q, Bit memories M, and Data DB.DBX
can be controlled in a step. The tags have the data type BOOL and can be addressed
absolutely or symbolically. If no symbolic address is available for absolute address-
ing, the GRAPH editor will generate a symbolic address according to the “Tag_n”
pattern.

Table 11.2 shows the possible operations and the permissible combinations with
interlock condition and events. The first column (ID) contains the qualifier of the
operation. In the case of an instruction identified by “-(C)-”, the interlock condition
is optional and can also be omitted.

11 S7-GRAPH sequential control

484

The N operation is used to set a binary tag to signal state “1” for as long as the step
is active and an optional interlock condition is fulfilled. The binary tag is reset to
signal state “0” when the step is deactivated or with a non-fulfilled interlock condi-
tion. In association with an event, the operation is executed once in the program
cycle which follows the event.

The S operation is used to set a binary tag (latching) to signal state “1” for as long
as the step is active and an optional interlock condition is fulfilled. In association
with an event, the operation is executed once in the program cycle which follows the
event.

The R operation is used to reset a binary tag (latching) to signal state “0” for as long
as the step is active and an optional interlock condition is fulfilled. In association
with an event, the operation is executed once in the program cycle which follows the
event.

The D operation is used to set a binary tag to signal state “1” delayed by a specific
duration. The duration of the delay is specified in seconds as a constant or PLC tag
with data type TIME or DWORD. The duration starts when the step is activated and
the optional interlock condition fulfilled. The binary tag is reset to signal state “0”
when the step is deactivated or when the optional interlock condition is no longer
fulfilled. Combination of the D operation with an event is not permissible.
The binary tag shows the response of an ON delay.

The L operation is used to set a binary tag to signal state “1” for a specific duration.
The duration is specified in seconds as a constant or PLC tag with data type TIME or
DWORD. The duration starts when the step is activated and the optional interlock
condition fulfilled. The binary tag is reset to signal state “0” when the duration has

Table 11.2 Actions for binary tags

ID Interlock Events Execution

N

-(C)-

-(C)-

–

–

S1, V1, A1, R1

S0, V0, L1, L0

Set a tag to signal state “1” for as long as the step is active (non-retentive
assign function)

In each program cycle

Single execution in the next program cycle

Single execution in the next program cycle

S

-(C)-

-(C)-

–

–

S1, V1, A1, R1

S0, V0, L1, L0

Set a tag to signal state “1” (set function)

In each program cycle

Single execution in the next program cycle

Single execution in the next program cycle

R

-(C)-

-(C)-

–

–

S1, V1, A1, R1

S0, V0, L1, L0

Set a tag to signal state “0” (reset function)

In each program cycle

Single execution in the next program cycle

Single execution in the next program cycle

D -(C)- – Set a tag with delay (ON delay)

L -(C)- – Set a tag to signal state “1” for a specific period (pulse)

11.2 Elements of a sequential control

485

expired, when the step is deactivated, or when the optional interlock condition is no
longer fulfilled. Combination of the L operation with an event is not permissible.
The binary tag exhibits a pulse response.

Controlling timer functions

Tags from the operand area SIMATIC timer functions T can be controlled in a step.
The tags have the data type TIMER and can be addressed absolutely or symbolically.

Table 11.3 shows the possible operations and the permissible combinations with
interlock condition and events. The first column (ID) contains the qualifier of the
operation. In the case of an instruction identified by “-(C)-”, the interlock condition
is optional and can also be omitted.

The TL operation starts a SIMATIC timer function as extended pulse. The duration
is specified as a constant or PLC tag with data type S5TIME or WORD. The operation
always depends on an event. The timer function is started if the step is activated and
the event occurs and when – depending on the type of event – the optional interlock
condition is fulfilled simultaneously. The timer has signal state “1” once the timer
function has been started and signal state “0” again when the timer function has
expired. The response of the timer function, which is independent of the further
response of the interlock condition and the step activation, is described in
Chapter 12.4.4 “Timer response as extended pulse” on page 531.

The TD operation starts a SIMATIC timer function as retentive ON delay. The dura-
tion is specified as a constant or PLC tag with data type S5TIME or WORD. The oper-
ation always depends on an event. The timer function is started if the step is acti-
vated and the event occurs and when – depending on the type of event – the
optional interlock condition is fulfilled simultaneously. The timer status has signal
state “1” once the timer function has expired and signal state “0” again when the
step is deactivated or the interlock condition is no longer fulfilled. The response of
the timer function is described in Chapter 12.4.6 “Timer response as retentive ON
delay” on page 535.

Table 11.3 Actions for SIMATIC timer functions

ID Interlock Events Execution

TL -(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Start a timer function once as extended pulse

TD -(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Start a timer function once as retentive ON delay

TF – – Start a timer function as OFF delay

TR -(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Stop and reset a timer function once

11 S7-GRAPH sequential control

486

The TF operation starts a SIMATIC timer function as OFF delay. The duration is spec-
ified as a constant or PLC tag with data type S5TIME or WORD. The operation is not
linked to an event or the interlock condition. The timer function is started when the
step is deactivated, i.e. left. The timer status is set to signal state “1” by activation
of the step and reset to signal state “0” when the timer function has expired.
The response of the timer function is described in Chapter 12.4.7 “Timer response
as OFF delay” on page 537.

The TR operation resets a SIMATIC timer function. The operation always depends
on an event. The timer function is reset if the step is activated and the event
occurs and when – depending on the type of event – the optional interlock condi-
tion is fulfilled simultaneously. The further response of the timer function (the
timer status) depends on the operating mode in which the timer was started. The
response is described in Chapters 12.4.4 “Timer response as extended pulse” on
page 531, 12.4.6 “Timer response as retentive ON delay” on page 535, and 12.4.7
“Timer response as OFF delay” on page 537.

Controlling counter functions

Tags from the operand area “SIMATIC counter functions C” can be controlled in a
step. The tags have the data type COUNTER and can be addressed absolutely or sym-
bolically.

Table 11.4 shows the possible operations and the permissible combinations with
interlock condition and events. The first column (ID) contains the qualifier of the
operation. In the case of an instruction identified by “-(C)-”, the interlock condition
is optional and can also be omitted.

The principle of operation of the SIMATIC counter functions used by GRAPH is
described in detail in Chapter 12.6 “SIMATIC counter functions” on page 545.

The CU operation increments the count value of a SIMATIC counter function by one
unit. The operation always depends on an event. The counter function counts up if

Table 11.4 Actions for SIMATIC counter functions

ID Interlock Events Execution

CU -(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Increment a counter function once by one unit

CD -(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Decrement a counter function once by one unit

CR -(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Reset a counter function once

CS -(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Set a counter function once with a count value

11.2 Elements of a sequential control

487

the step is activated and the event occurs and when – depending on the type of
event – the optional interlock condition is fulfilled simultaneously.

The CD operation decrements the count value of a SIMATIC counter function by one
unit. The operation always depends on an event. The counter function counts down
if the step is activated and the event occurs and when – depending on the type of
event – the optional interlock condition is fulfilled simultaneously.

The CS operation sets a SIMATIC counter function to a specified count value. The
count value is specified as a constant or PLC tag with data type WORD. The opera-
tion always depends on an event. The counter function is set if the step is activated
and the event occurs and when – depending on the type of event – the optional
interlock condition is fulfilled simultaneously.

The CR operation resets a SIMATIC counter function to zero. The operation always
depends on an event. The counter function is reset if the step is activated and the
event occurs and when – depending on the type of event – the optional interlock
condition is fulfilled simultaneously.

Executing program instructions

Program instructions, for example block calls, math functions, or conversion func-
tions, can be executed in a step.

Table 11.5 shows the permissible combinations of a program instruction with inter-
lock condition and events. The first column (ID) contains the qualifier of the opera-
tion. In the case of an instruction identified by “-(C)-”, the interlock condition is
optional and can also be omitted.

The N operation executes a program instruction for as long as the step is active and
an optional interlock condition is fulfilled. In association with an event, the pro-
gram instruction is executed once in the program cycle which follows the event.

All instructions which are listed in the task window in the Instructions pallet (with
the exception of the logic operations and comparators in the LAD or FBD folder
under Basic instructions) are permissible as program instructions. Assignments
and simple arithmetic operations on digital values are permissible in addition.
Examples of program instructions in an action:

Table 11.5 Actions for a program instruction

ID Interlock Events Execution

N

-(C)-

-(C)-

–

–

S1, V1, A1, R1

S0, V0, L1, L0

Execute program instruction

In each program cycle

Single call in the next program cycle

Single call in the next program cycle

11 S7-GRAPH sequential control

488

You can also call self-created blocks: The syntax of a function call is CALL “FC_name”
(parameter list) and the syntax of a function block call is CALL “FB_name”,
“DB_name” (parameter list).

Activating and deactivating steps

Further steps can be activated or deactivated in a step. Individual steps are
addressed symbolically. If all steps are addressed, the operand is named S_ALL.

Table 11.6 shows the permissible combinations of step activation or -deactivation
with interlock condition and events. The first column (ID) contains the qualifier of
the operation. In the case of an instruction identified by “-(C)-”, the interlock con-
dition is optional and can also be omitted.

The ON operation in conjunction with a single step activates a step which is not the
current step. The operation always depends on an event. The other step is activated
if the current step is activated and the event occurs and – depending on the type of
event – the optional interlock condition is fulfilled at the same time.

var1 := var2

var1 := var2 + var3

var1 := SIN(var2)

var1 := SHL_WORD(var2,var3)

CALL WAIT
(WT := var1
)

CALL TP TIME, "DB_name"
(IN := var1
PT := var2
Q => var3
ET => var4

)

Assignment

Simple arithmetic function

Math function

Shift function

Block call, here: system function

Block call, here: IEC timer function

Table 11.6 Actions for block calls

ID Interlock Events Execution

ON

-(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Activate a different step

Single activation on the occurrence of event

Single activation on the occurrence of event

OFF

-(C)-

–

S1, V1, A1, R1

S0, V0, L1, L0

Deactivate a different step

Single deactivation on the occurrence of event

Single deactivation on the occurrence of event

OFF

-(C)-

–

S1, V1

L1

Deactivate all other steps (with S_ALL operand)

Single deactivation on the occurrence of event

Single deactivation on the occurrence of event

11.3 Configuring a sequential control

489

The OFF operation in conjunction with a single step deactivates a step which is not
the current step. The operation always depends on an event. The other step is deac-
tivated if the current step is activated and the event occurs and – depending on the
type of event – the optional interlock condition is fulfilled at the same time.

The OFF operation in conjunction with the S_ALL operand deactivates all other
steps. The operation always depends on an event. The other steps are deactivated if
the current step is activated and the event occurs and – depending on the type of
event – the optional interlock condition is fulfilled at the same time.

If a step is both activated and deactivated in a processing cycle, deactivation has pri-
ority.

11.3 Configuring a sequential control

You program a sequential control in the following steps:

b Insert a function block which is to accommodate the sequential control into your
program.

b Configure the sequencer(s) in the function block.

b Program the actions in the steps and the step enabling conditions in the transi-
tions.

b Supplement the sequencer by permanent instructions if applicable.

b Compile the function block and generate the associated instance data block.

b Call the function block in the program and test the sequential control.

The user program can contain several function blocks with different sequential
controls.

Basic settings for the sequential control

Select the Options > Settings command in the main menu and click on GRAPH in the
PLC programming group. You can then adapt the properties of the sequential con-
trol. For example, you can set the time monitoring functions for the sequence steps
here and the properties which are assigned to a new GRAPH function block when
added, such as selecting the LAD or FBD programming language for the conditions,
using maximum or standard interface parameters.

11.3.1 Programming the GRAPH function block

A prerequisite for programming a sequential control is that a project has been cre-
ated with a PLC station. In the project tree, open the Program blocks folder under
the PLC station and double-click on Add new block.

In the Add new block window, select Function block as block type and GRAPH as lan-
guage. You can select the block number as desired if you activate the Manual option.
Select a meaningful name for the block which has not already been assigned to

11 S7-GRAPH sequential control

490

another block, a PLC tag, a symbolically addressed constant, or a PLC data type.
If the Add new and open checkbox is activated, the new block is incorporated into
data management by clicking on the OK button and opened for processing with the
GRAPH editor (Fig. 11.6).

The working window of the GRAPH editor is divided in two. The left side contains
the GRAPH navigation with which you can navigate within the sequential control
(not to be confused with the project tree with which you navigate within the proj-
ect). The right side contains the working area in which you program the sequential
control with steps, transitions, and branches. Use of the working window is
described in Chapter 6 “Program editor” on page 247.

11.3.2 Configuring the sequencer structure

You configure the structure of a sequencer in the sequence view. The sequencer
structure is displayed when you click on the Sequence view symbol in the toolbar of
the working window. You can save an incompletely entered sequencer with the proj-
ect at any time and continue processing later by opening the function block. An
incomplete sequencer is identified in the navigation by a white cross on a red circle.

You create a further sequencer within the sequential control using the Insert
sequence symbol from the toolbar of the working window. In addition to permanent
instructions, you can also select one of the previously entered sequencers in the
navigation for processing.

Fig. 11.6 Working window of the GRAPH editor

11.3 Configuring a sequential control

491

Creating a sequencer

With a newly created sequencer, a step and a transition are already positioned in the
working area. The double arrow underneath the transition indicates that the
sequencer is still “open” and has to be completed. Then use the mouse to drag fur-
ther program elements into the working area from the favorites bar or the program
elements catalog under Basic instructions and the GRAPH structure folder in order to
extend the sequencer. Small gray squares in the working area indicate where the
selected program element can be positioned and a green square indicates where it
is positioned when you “let go”.

You can remove a selected program element from the working area using the Delete
command from the shortcut menu. With the mouse you can drag a program ele-
ment in the sequencer to another (approved) position in the sequencer. All missing
program elements which are required for the sequencer structure – for example a
transition between two steps – are indicated by the GRAPH editor in red lettering.

In a linear sequencer, these are followed by alternate transitions and steps. You can
extend the sequencer using the Step and transition command until the desired num-
ber of steps has been reached. Then insert a sequence end after the last transition.

You can program a jump in that you position the Jump to step instruction following
a transition. The GRAPH editor then displays a table with the already programmed
steps. Then select a step and the jump destination will be automatically inserted
into the sequencer.

You program an OR branch using the Alternative branch instruction. You can posi-
tion this instruction following each step and an alternative branch is then inserted
with the first transition. Several alternative branches can be opened in parallel. You
can terminate an alternative branch with a Sequence end or with another alternative
branch or with the “main branch” on the far left. To do this, use the mouse to drag
the double arrow at the end of the alternative branch to another partial sequencer
after a transition or use the instruction Close branch.

You program an AND branch using the Simultaneous branch instruction. You can
position this instruction following each transition and a simultaneous branch is
then inserted with the first step. Several simultaneous branches can be opened in
parallel. The Step and transition instruction first inserts the transition in a simulta-
neous branch (sequentially) and then the next step. You can terminate a simultane-
ous branch with a sequence end (first insert a single transition following the last
step) or with another simultaneous branch or with the “main branch” on the far left.
To do this, use the mouse to drag the double arrow at the end of the simultaneous
branch to another partial sequencer following a step or use the instruction Close
branch.

Processing of the sequencer commences with an initial step. You define a step as the
initial step if you select it in the working window and activate the Initial step option
in the shortcut menu. This can be any step. Several steps are permissible as initial
steps within a sequence controller.

11 S7-GRAPH sequential control

492

Naming of sequencer, steps, and transitions

The title of a sequencer is present in the title bar above the working area behind the
sequencer number. In the case of a newly created sequencer, <new sequence> is
present here. You can change this name by clicking in the title bar.

The number of a step (e.g. S1) or of a transition (e.g. T1) can be changed by select-
ing the number and choosing the Rename command from the shortcut menu. You
can change the designation of a step (e.g. Step1) or of a transition (e.g. Trans1) in
the single step view by clicking in the title bar of the step or of the transition and
entering a different designation.

The GRAPH editor provides support in renumbering steps and transitions. Select a
step or a transition and select the command Renumber... from the shortcut menu.
In the displayed window you can select whether you wish to renumber steps and/or
transitions, the number starting at which this is to be carried out, and whether the
renumbering is to take place in the complete sequential control (the complete
block), in the current sequencer, or in the current branch.

11.3.3 Programming steps and transitions

In order to program the actions and step enabling conditions, select a step or a tran-
sition and then Single step view in the toolbar of the working window, or double-
click on a step or transition. The step and the associated, following transition are
displayed (Fig. 11.7). In the case of alternative branching, all following transitions
of the alternative branches are displayed for the step prior to the branch.

The single step display consists of four “networks” which you can open and close
using the Open all networks and Close all networks symbols. Clicking on the small
triangle on the left of the “Network title” results in the same response. You can
change the programming language in the networks (with the exception of the
Actions networks) in the block properties: Select the function block with the
sequential control in the project tree and then the Properties command in the short-
cut menu. Set the language in the networks (LAD, FBD) under Block in the General
tab. You can provide each network with a heading.

You program the step interlocks in the Interlock network. Open the network and
program the logic operation as usual with LAD or FBD. You can find the permissible
instructions (mainly bit logic operations and comparators) in the favorites or in the
program elements catalog under LAD or FBD.

You program the step supervision in the Supervision network and the step enabling
conditions in the Transition network in the same manner as you program the step
interlocks in the Interlock network.

The Actions network consists of a table in which you enter the instructions to be exe-
cuted. You enter the instructions in the Qualifier column. Click on <Add new> and
then select the desired instruction from the drop-down list. Specify the associated
tag or operand in the Action column. You can control the display using the Abso-

11.3 Configuring a sequential control

493

lute/symbolic operands symbol. In the Event column, select the event from a drop-
down list for which the instruction is to be executed. There is a mandatory entry for
an edge-controlled instruction; this is indicated by the <???> string highlighted in
red. You specify in the Interlock column whether the instruction specified in the
Qualifier column depends on the step interlock.

Some instructions in actions, for example block calls with parameter list, require
several lines. You add further lines to an action by positioning the cursor in the line
and activating the Allow multi-line mode option in the shortcut menu. A further line
is added each time you press the RETURN button in the Action column.

In addition to the code letter, you can also display the significance of the events and
qualifiers in the table. Click with the mouse in the table, and activate the Show event
descriptions and/or Show qualifier descriptions commands in the shortcut menu.

11.3.4 Programming permanent instructions

To program permanent instructions, select the Permanent pre-instructions or
Permanent post-instructions section in the GRAPH navigation. In the navigation,
click on a network in these instructions and the logic operations of the permanent
instructions will be displayed in the working area. You set the programming lan-

Fig. 11.7 Example of single step view

11 S7-GRAPH sequential control

494

guage (LAD, FBD) as with single-step programming in the properties of the func-
tion block.

You can use the complete LAD/FBD set of instructions in the program elements cat-
alog for the permanent instructions. You add an additional network by selecting the
previous network and then the Insert network command from the shortcut menu.
Each network can be provided with a heading.

11.3.5 Configuring block-independent alarms

In order to configure block-independent alarms, open the Alarms section in the
GRAPH navigation, for example using the Alarm view symbol in the toolbar of the
working window (Fig. 11.8).

You can activate or deactivate the alarms. With the interlock and supervision
alarms, you can activate or deactivate the acknowledgment requirement. You make
the default settings for this in the main menu using the Options > Settings com-
mand under PLC programming > GRAPH in the Alarm properties section. You can
change the standard text “GRAPH7_INTERLOCK_ERROR” or “GRAPH7_SUPERVI-
SION_ FAULT”.

11.3.6 Attributes of the GRAPH function block

You set the block attributes in the block properties. Select the GRAPH function
block in the project tree and then the Properties command from the shortcut menu
(Fig. 11.9).

The IEC check attribute indicates how strict the data type test is to be in the code
block. Further details are described in Chapter 4.5.2 “Implicit data type conversion”
on page 108.

The attribute Handle errors within block is activated if one of the functions GET_ER-
ROR or GET_ERROR_ID is programmed in the GRAPH function block, for example in
the downstream permanent instructions (see Chapter 5.8.2 “Local error handling”
on page 213).

The attribute Block can be used as know-how protected library element indicates
whether the GRAPH function block with know-how protection can be used in a
library.

The Optimized block access attribute is always activated and means that a memory-
optimized instance data block is created when the GRAPH function block is called.

Using the Skip steps attribute, you allow steps in a sequencer to remain deactivated
if both transitions before and after the step are fulfilled. The step between these
transitions is not processed. A switch is made immediately to the next step.

If the Acknowledgment required for supervision errors attribute is activated, process-
ing of the sequencer is only continued in the event of a supervision error when an
acknowledgment has been made.

11.3 Configuring a sequential control

495

If the Permanent processing of all interlocks in manual mode attribute is activated,
the interlock conditions of all steps, including the non-activated ones, are pro-
cessed in manual mode.

The activated Lock operating mode selection attribute prevents a manual change-
over of the operating mode via the Testing task card.

11.3.7 Using the GRAPH function block

You define the number of block parameters prior to calling. You make the default
setting in the main menu using the Options > Settings under PLC programming >
GRAPH in the Interface section. If the Maximum interface parameters option is acti-
vated, the maximum parameter set is shown, otherwise the standard parameter

Fig. 11.8 Configuration of GRAPH alarms

11 S7-GRAPH sequential control

496

set. The standard parameter set allows operation of the sequential control in the

various operating modes with the possibility for acknowledging messages. The

maximum parameter set contains additional parameters for diagnostics. You can

manually add or remove individual parameters in both parameter sets.

For the currently opened block, you define the parameter set using the Edit >

Maximum interface parameters or Edit > Default interface parameters command.

Calling the GRAPH function block

The function block for the sequential control is always called as a single instance.

Open the called block, drag the GRAPH function block from the project tree into the

working area, and define the instance data block.

When the instance data block is generated, the GRAPH editor creates write-pro-

tected PLC data types (G7_…), including data types for a step (G7_StepPlus) and for

a transition (G7_TransitionPlus). G7_StepPlus and G7_TransitionPlus contain the

GRAPH-specific tags for each step or transition (see Chapter 11.2.4 “GRAPH-specific

tags” on page 478). You can address these tags in the GRAPH function block using

#Step_name.var or #Transition_name.var, or outside the function block using

“DB_name”.Step_name.var or “DB_name”.Transition_name.var.

Fig. 11.9 Block attributes for the sequential control

11.4 Testing the sequential control

497

Example: If a step is named Drives_on, you can scan the step activation using
#Drives_on.S1 and the uninterrupted step activation time using #Drives_on.U in the
GRAPH function block.

Operating modes

The operating modes of the sequential control are controlled using positive signal
edges at the input parameters:

b SW_AUTO Switch on Automatic mode
The sequential control automatically switches to the next step if the transition is
fulfilled.

b SW_TAP Switch on Semiautomatic mode (“jogging”)
The sequential control switches to the next step if the transition is fulfilled and
if a positive edge occurs at the T_PUSH parameter.

b SW_TOP Switch on Automatic mode or Semiautomatic mode (“stepping”)
The sequential control switches to the next step if the transition is fulfilled or if
a positive edge occurs at the T_PUSH parameter.

b SW_MAN Switch on Manual mode
The sequential control activates the step displayed at the S_NO output parameter
if a positive edge occurs at the S_ON parameter. The step displayed at the
S_NO parameter is deactivated by a positive edge at the S_OFF parameter. You
can define a special step using the S_SEL parameter. You can switch to the previ-
ous step (in the direction of smaller step numbers) using the S_PREV parameter
and to the subsequent step using S_NEXT.

The parameters described are available with both the maximized and standard
parameter sets.

Compiling the GRAPH function block

You compile a GRAPH function block just like any other function block (see
Chapter 6.5 “Compiling blocks” on page 276).

For optimal operation, the GRAPH function block requires additional system blocks
(G7_RT_Plus_…), which are saved during the compilation in the project tree under
Program blocks > System blocks > Program resources.

11.4 Testing the sequential control

A prerequisite for testing the user program is an online connection between the
programming device and the machine or plant to be controlled. The user program
has been compiled without errors and downloaded to the CPU. The general proce-
dure is described in Chapter 15.5 “Testing the user program” on page 677.

Additional information must be observed when loading the GRAPH function block.
To enable testing of a GRAPH sequential control, you can use the following test func-

11 S7-GRAPH sequential control

498

tions: program status for sequencers and individual steps, control sequencer, and
synchronize sequencer.

11.4.1 Loading the GRAPH function block

If you change the program in the GRAPH function block, you must create the
instance data block again so that the changes – for example new steps and transi-
tions – are imported into the data block.

Reloading of a (modified) GRAPH function block with the associated instance data
block in RUN mode can lead to problems in execution of the sequential control.
Therefore you must deactivate the sequential control prior to reloading. You can
always do this in the general settings or when loading.

Standard deactivation of the sequential control when loading can be set in the main
menu using the Options > Settings under PLC programming > GRAPH in the Load sec-
tion: Activate the Turn off sequence before downloading DB option. If the option is
deactivated, you can set the Turn off sequence before downloading DB action when
downloading the GRAPH function block with the instance data block in the
Download preview window.

11.4.2 Settings for program testing

The settings for program testing are made in the task window on the Testing task
card (see Fig. 11.10 on the right). Open the GRAPH function block online and click
on the Test settings pallet in the Testing task card. The attributes referred to below
are described in Chapter 11.3.6 “Attributes of the GRAPH function block” on page
494.

When activated, the settings have the following meaning:

b Track active step
The respective current step is displayed in the single step view or sequence view.

b Skip steps
A step whose preceding and following transitions are active is skipped, i.e. not
activated (only available with non-activated attribute Generate minimized DB).

b Mandatory acknowledgement at supervision errors
Only available if the Acknowledge supervision alarms attribute is activated.
This setting is then switched on by default.

b Stop sequence
If the following transition is fulfilled, processing of the sequencer is stopped.

b Stop timers
All step activation timers are stopped. If the setting is canceled, the step activa-
tion timers continue to run.

b Process all interlocks
Only available if the Permanent processing of all interlocks in manual mode attri-
bute is activated and Manual mode is switched on. When using the setting,
the sequencer must be synchronized.

11.4 Testing the sequential control

499

b Process all transitions
All transitions are processed. It is indicated whether the respective transition is
fulfilled.

b Activate actions
This setting is switched on by default. If it is switched off, no further actions are
executed in the active step.

b Activate supervisions
This setting is switched on by default. If it is switched off, the supervision is
ignored in the active step.

b Activate interlocks
This setting is switched on by default. If it is switched off, the interlock condition
is ignored in the active step.

Which test settings are selectable depends on the operating mode of the sequential
controller.

11.4.3 Using operating modes

When testing, you can set the operating modes of the sequential control in the
Sequence control pallet on the Testing task card (Fig. 11.10 on the left).

Select the operating mode prior to actual program testing:

b Automatic
The next step is activated as soon as the transition is fulfilled.

b Semiautomatic mode
The next step is activated as soon as

• the valid transition is fulfilled or

• a rising edge occurs at the block parameter T_PUSH or

• the Ignore transition button is clicked.

b Manual mode
The step to be activated is selected manually.

You commence testing of the sequential control by clicking on the Initialize button.
You can deactivate all steps using the Deactivate all button. The Acknowledge -(V)-
button is used to acknowledge a supervision error.

In manual mode you switch to the next step by clicking on the Next button when the
transition is fulfilled.

In manual mode you can activate any step by entering its number in the Select step
manually box and clicking on the Enable button. Proceed accordingly to deactivate
a step. As an alternative to entering the step number, you can also select the step to
be activated or deactivated in the sequencer which is displayed in the GRAPH navi-
gation or in the working window.

11 S7-GRAPH sequential control

500

11.4.4 Synchronization a sequencer

A sequential control only works correctly if the statuses of the sequencer and the
process to be controlled are matched to each other. If individual steps are activated
and deactivated when testing in manual mode, it is possible that the sequential
control and the controlled process are no longer synchronous. You should synchro-
nize the sequencer before leaving manual mode and switching to automatic or
semiautomatic mode.

To synchronize the sequencer, activate the Enable synchronization checkbox in the
Sequence control pallet on the Testing task card. There are two manners in which
the synchronization point – the step to be activated – can be found:

b If you select the Preceding transition satisfied option, all steps are selected whose
previous transition is fulfilled and whose following transition is not fulfilled.

b If you select the Interlock condition satisfied option, all steps are selected whose
interlock condition is fulfilled and whose following transition is not fulfilled.

To carry out synchronization, select the desired step in the GRAPH navigation or in
the sequencer view in the working window and click on the Enable button.

Fig. 11.10 Test aids for GRAPH in the Testing task card

11.4 Testing the sequential control

501

11.4.5 Testing with program status

The general procedure for testing with program status is described in
Chapter 15.5.2 “Testing with program status” on page 679.

For testing with program status, open the GRAPH function block and switch the pro-
gram status on using the Monitoring on/off symbol in the toolbar of the working
window. If an online connection to the CPU does not yet exist, the connection dialog
is opened. After the online connection is added, the program status is displayed.

Program status in the sequencer view

You switch on the sequencer view using the Sequence view symbol in the toolbar of
the working window. The program status in the sequencer view indicates the status
of a step or transition using different colors:

b Step shown in green: No fault present.

b Step shown in red: A supervision error is present.

b Step shown in yellow: An interlock error is present.

b Transition shown in green: The transition is fulfilled.

b Transition shown in black: The transition is not fulfilled.

On the Testing task card, you can define on the Test settings pallet that supervision
errors must be acknowledged during testing in order to continue program execu-
tion. You can acknowledge the supervision error by clicking on the Acknowledge
-(V)- button on the Sequence control pallet.

Program status in the single step view

In the GRAPH navigation, select the step to be monitored and switch on monitoring.
The action list is extended by the monitored value (Fig. 11.11). Depending on the
representation in LAD or FBD, the logic operations are displayed with a green con-
tinuous line (for signal state “1”) or a blue dashed line (for signal state “0”) in the
conditions for interlock, supervision, and transition.

To select the display format, click in the action list on a monitored value and select
the Display format for network > … or Display format > … command from the short-
cut menu. You can then select between automatic, decimal, hexadecimal, and float-
ing-point.

To control a tag in the action list or in one of the conditions, click on the tag and
select the Modify > … command from the shortcut menu. You can then select
between Modify to 0, Modify to 1, and Modify operand in order to define a digital
value.

In order to reduce the cycle processing time when testing, you can switch on the
program status in a condition (e.g. a transition) starting at a particular point in the
program or only monitor a specific tag. Click on the tag starting at which the pro-
gram status is to be displayed or which is to be monitored and select the Modify >
Monitor from here or Modify > Monitor selection command from the shortcut menu.

11 S7-GRAPH sequential control

502

Fig. 11.11 Example of the program status in the single step view in LAD

12.1 Binary logic operations

503

12 Basic functions

This chapter describes the basic functions largely independent of the program lan-
guage selected. Binary logic operations are an exception, for the differences
between the programming languages are greatest with these functions.

The Chapters 7 “Ladder logic LAD” on page 287, 8 “Function block diagram FBD” on
page 323, 9 “Structured Control Language SCL” on page 359 and 10 “Statement list
STL” on page 395 describe how you can program the functions using the individual
programming languages and what special features exist.

12.1 Binary logic operations

12.1.1 Introduction

Binary logic operations process the signal states of binary tags in accordance with
AND, OR, and exclusive OR. The implementation of binary logic operations varies
significantly in the various programming languages:

b Ladder logic (LAD) uses NO and NC symbols in series and parallel connections,
with a coil as termination.

b In the function block diagram (FBD), function boxes handle the linking of binary
signals.

b With the Structured Control Language (SCL), expressions with binary tags form
the binary logic operations.

b In the statement list (STL), the binary logic operations are scans positioned un-
derneath each other.

Binary logic operations can be used together with all binary tags. The result of
a binary logic operation can be processed further as follows:

b Control of a binary tag with a binary memory function, e.g. with a simple
coil (LAD) or an assignment (FBD, SCL, STL).

b Control of program execution using a conditional jump or a conditional block
call (EN input).

b Supply of a binary function input or a binary block parameter.

Binary logic operations can be combined together so that, for example, the output
of one logic operation can lead to the input of the next one, or series connections
can be connected in parallel. Possible combinations are described for LAD in
Chapter 7.2.2 “Series and parallel connection of contacts” on page 292, for FBD in

12 Basic functions

504

Chapter 8.2.6 “Combined binary logic operations, negating result of logic opera-
tion” on page 329, for SCL in Chapter 9.2.5 “Combined binary logic operations in
SCL” on page 365, and for STL in Chapter 10.2.6 “Combined binary logic operations
in the statement list” on page 404.

12.1.2 Working with binary signals

Signal states “1” and “0”

The term “signal state” refers to a logic status in a binary logic operation, without
considering the physical implementation. Two (contrary) statuses are simply iden-
tified as signal state “1” and signal state “0”. It could be understood, for example,
that signal state “1” can always be equated to a higher electrical potential than sig-
nal state “0”, but this is incorrect. The same applies to the graphic metaphor in the
ladder logic, i.e. a “current” flows with signal state “1” and does not with signal
state “0”.

Signal state “1” and signal state “0” are two terms which allow the description of
logic operations in a user program. It is insignificant how these statuses are imple-
mented physically within the CPU. These terms have a physical correlation at the
interface to the controlled machine or process. The type of digital module defines
how the logic term “Signal state” is converted into a physical variable and vice
versa, and how a physical variable is converted into a signal state “1” or “0”.

The terms “TRUE” and “FALSE” are also commonly used for signal states “1” and “0”.
As a side note: In this book, the signal states “1” and “0” are set in quotation marks
to distinguish them from the digits 1 and 0.

Types of digital modules

The type of digital input module determines how a physical variable is converted
into a signal state (Fig. 12.1):

b If the module is designed for connection of an AC voltage transmitter, “Voltage
present” at the module terminal means signal state “1” and “No voltage present”
or an open connection means signal state “0”.

b If a module has the property “Sinking input”, a positive (DC) voltage at the mod-
ule terminal is converted into signal state “1”. Zero voltage (ground) or an open
connection means signal state “0”.

b If a module has the property “Sourcing input”, zero voltage (ground) at the mod-
ule terminal means signal state “1” and a positive voltage or an open connection
means signal state “0”.

The type of digital output module determines how a signal state is converted into a
physical variable in an assignment to an output:

12.1 Binary logic operations

505

b If the module is designed for connection of an AC voltage load, signal state “1”
means that voltage is present at the module terminal. The terminal is deener-
gized if the signal state is “0”.

b If the module possesses output relays, the relay contact is closed with signal
state “1” and open with signal state “0”.

b A module with the property “Sourcing output” delivers a positive (DC) voltage in
the case of signal state “1” at the module terminal and no voltage in the case of
signal state “0” (high-impedance to power supply with electronic output ampli-
fiers).

b If a module has the property “Sinking output”, it delivers zero volt (ground) at
the terminal in the case of signal state “1” and no voltage in the case of signal
state “0” (high-impedance to ground with electronic output amplifiers).

Types of sensors, NO contacts, and NC contacts

The CPU obtains control signals and feedbacks from the machine or process via
sensors (signal transmitters, limit switches, pushbuttons, etc.). There are two types
of binary sensors: normally open contacts and normally closed contacts. A normally
open (NO) contact is a sensor which closes a circuit when activated. A normally
closed (NC) contact interrupts a circuit when activated. It is used, for example, in
closed circuit connections in order to switch off a control function when activated
or to control the machine to a safe state in the case of an open-circuit.

To allow better understanding of the control function, it is usually defined in the
user program that an action is triggered by signal state “1”. In addition, certain con-

Fig. 12.1 Connection of binary signals to a programmable controller

CPU

Ground

L+
a

s

d

f

Sinking input modules deliver signal
state "1" if a positive voltage is present
at the input terminal.

With signal state "1", sourcing output
modules switch on a load which is
connected to zero Volt (ground).

Sourcing input deliver signal
state "1" if zero Volt (ground) is present
at the input terminal.

With signal state "1", sinking output
modules switch on a load which is
connected to the positive load voltage.

�

�

Connection to a programmable controller

In
p

u
t

m
o

d
u

le
S

in
k

in
g

in
p

u
t

In
p

u
t

m
o

d
u

le
S

in
k

in
g

in
p

u
t

O
u

tp
u

t
m

o
d

u
le

S
o

u
rc

in
g

o
u

tp
u

t

O
u

tp
u

t
m

o
d

u
le

S
in

k
in

g
o

u
tp

u
t

a s d f

12 Basic functions

506

trol functions only result in actions with signal state “1”. Therefore it may be neces-
sary to convert an zero-active signal to signal state “1” (i.e. negate it) before it is
used in the user program. LAD has the NC contact for this purpose, FBD and STL
have the scan for signal state “0”, and SCL has the negation NOT (Fig. 12.2).

Result of logic operation, assignment

The user program contains the statements for the control processor on how the sig-
nal states are to be linked together. The signal state resulting from the linked signal
states is referred to as Result of logic operation. The result of logic operation
assumes the value “0” or “1” just like a signal state. The result of logic operation can
be linked to further binary functions.

The result of logic operation is output in order to control an actuator (relay, contac-
tor, lamp, etc.). The memory functions, primarily the assignment, are available for
this purpose. An assignment takes over the original signal state of the result of logic
operation. If it is necessary to output the negated signal state (the opposite result
of logic operation), a negation is programmed prior to the assignment or you use
the negating assignment (LAD, FBD).

Fig. 12.2 Direct and negated scanning of a binary operand

Ladder logic LADDirect scan Negated scan

Function block diagram FBD

Statement list STL

Structured Control Language SCL

The signal state of a binary tag, for example an input, has to be scanned before it can be gated with other
signal states. In association with a scan, the signal state can be negated if this is necessary for the logic
operation. Different symbols are used in the various programming languages for scanning of the signal
state.

LAD uses an NO symbol for the direct scan (scan
for signal state "1") and an NC symbol for the
negated scan (scan for signal state "0").

In FBD, the scan for signal state "1" is represented
as a direct input of a function box, and the
negated scan (scan for signal state "0") by the
negation symbol (the negation circle) on the
function box.

STL uses the binary functions A, O, and X to scan
for signal state "1". With the negated scan (scan
for signal state "0"), an "N" is appended to the
binary function (AN, ON, XN).

In association with a logical operator AND, OR
and XOR, a direct scan is always present with SCL
(scan for signal state "1"). The negated scan (scan
for signal state "0") is emulated by the NOT
function.

Scan signal state of binary tags

Tag Tag

Tag Tag

A
O
X

tag

tag

tag

A
O
X

N
N
N

tag

tag

tag

AND
OR
XOR

tag

tag

tag

AND
OR
XOR

NOT
NOT
NOT

tag

tag

tag

12.1 Binary logic operations

507

12.1.3 AND function, series connection

The AND function links two or more binary states together and delivers a result of
logic operation “1” if all states (all results of the scans) are simultaneously “1”.
In all other cases, the result of logic operation is “0” (Fig. 12.3).

LAD implements the AND function using a series connection of contacts. FBD uses
the AND box with two or more inputs. SCL uses the logic operator AND or &. In STL,
the AND function is represented by the AND (A) operation.

12.1.4 OR function, parallel connection

The OR function links two or more binary states together and delivers a result of
logic operation “0” if all states (all results of the scans) are simultaneously “0”.
In all other cases, the result of logic operation is “1” (Fig. 12.4).

LAD implements the OR function using a parallel connection of contacts. FBD uses
the OR box with two or more inputs. In STL, the OR function is represented by the
OR (O) operation. SCL uses the logic operator OR.

Fig. 12.3 Representation and principle of operation of the AND function

The AND function is fulfilled if all function inputs
have the signal state "1". The AND function then
delivers a result of logic operation "1" at its
function output, shown in the examples by the
assignment (coil).

Each AND function in the examples is shown with two inputs; the number of inputs of an AND
function is theoretically unlimited.

Note: In the examples, the binary tags are scanned directly (for signal state "1"). With a negated scan
(for signal state "0") it is necessary to consider the negated signal state of the binary operands for the
AND operation.

Binary tag 2Binary tag 1 Binary tag 3

LAD
Series connection of contacts

AND function, series connection

=

"0"

"0"

"0"

"0" "0" "0"

"0"

"1"

"1" "1"

"1"

"1"Binary tag 1

Tags

Binary tag 2

Binary tag 1

Binary tag 2

Binary tag 3

Binary tag 3

&
FBD
AND box

Signal state

A
A
=

Binary tag 1
Binary tag 2
Binary tag 3

STL
AND function

Binary tag 3 := Binary tag 1 Binary tag 2;
Binary tag 3 := Binary tag 1 Binary tag 2;

&
AND

SCL
AND function

12 Basic functions

508

12.1.5 Exclusive OR function, non-equivalence function

The exclusive OR function links two or more binary states together and delivers a
result of logic operation “1” if an odd number of states (of the scan results) are
simultaneously “1”. In all other cases, the result of logic operation is “0”. In the spe-
cial case where the exclusive OR function has two inputs, it delivers the result of
logic operation “1” if the two inputs have different signal states (Fig. 12.5).

The exclusive OR function does not exist with LAD. The function can be emulated
using series and parallel connections. FBD uses the exclusive OR box with two or
more inputs. In STL, the exclusive OR function is represented by the exclusive
OR (X) operation. SCL uses the logic operator XOR.

12.1.6 Negate result of logic operation, NOT contact

The result of logic operation can be negated at any position within a logic opera-
tion. Signal state “1” then becomes “0” and vice versa (Fig. 12.6).

Fig. 12.4 Representation and principle of operation of the OR function

Binary tag 3 := Binary tag 1 Binary tag 2;ORSCL
OR function

The OR function is fulfilled if at least one of the
function inputs has the signal state "1".
The OR function then delivers a result of logic
operation "1" at its function output, shown in the
examples by the assignment (coil).

Each OR function in the examples is shown with two inputs; the number of inputs of an OR function is
theoretically unlimited.

Note: In the examples, the binary tags are scanned directly (for signal state "1"). With a negated scan
(for signal state "0") it is necessary to consider the negated signal state of the binary operands for the
OR operation.

LAD
Parallel connection of contacts

OR function, parallel connection

=

"0"

"0"

"0"

"0" "1" "1"

"0"

"1"

"1" "1"

"1"

"1"Binary tag 1

Tags

Binary tag 2

Binary tag 1

Binary tag 2

Binary tag 3

Binary tag 3

>=1

FBD
OR box

Signal state

Binary tag 1

Binary tag 2

Binary tag 3

O
O
=

Binary tag 1
Binary tag 2
Binary tag 3

STL
OR function

12.1 Binary logic operations

509

Fig. 12.5 Representation and principle of operation of the exclusive OR function

Fig. 12.6 Representation and principle of operation of the negation

Binary tag 3 := Binary tag 1 Binary tag 2;XORSCL
XOR function

The exclusive OR function is fulfilled if an odd
number of the function inputs has the signal
state "1". The exclusive OR function then delivers a
result of logic operation "1" at its function output,
shown in the examples by the assignment.

Each exclusive OR function in the examples is shown with two inputs; the number of inputs of an
exclusive OR function is theoretically unlimited.

Note: In the examples, the binary tags are scanned directly (for signal state "1"). With a negated scan
(for signal state "0") it is necessary to consider the negated signal state of the binary operands for the
exclusive OR operation.

LAD
The exclusive OR function must be emulated by a combination of series and parallel
connections.

Exclusive OR function, non-equivalence function

=

"0"

"0"

"0"

"0" "1" "1"

"0"

"1"

"1" "1"

"0"

"1"Binary tag 1

Tags

Binary tag 2

Binary tag 1

Binary tag 2

Binary tag 3

Binary tag 3

X

FBD
Exclusive OR box

Signal state

X
X
=

Binary tag 1
Binary tag 2
Binary tag 3

STL
Exclusive OR function

NOT

(RLO1) (RLO2)NOT
SCL
NOT operator

The negation reverses the result of logic operation (RLO):
Signal state "1" become signal state "0", and "0" becomes "1".

LAD
NOT contact

Negation of result of logic operation

"0"

"1" "0"

"1"RLO1

Tags

(RLO1)

(RLO1)

(RLO1)(RLO2) (RLO2)

(RLO2)

RLO2

FBD
Negation symbol

Signal state

(RLO1)

(RLO2)
NOT

STL
NOT statement

12 Basic functions

510

Ladder logic

The NOT contact negates the “current flow”. If the current path has “current”
prior to the NOT contact, no more “current” flows following the NOT contact and
vice versa.

Function block diagram

The negation circle at the input or output of a function symbol negates the result of
logic operation. You can

b apply the negation to the scan of a binary operand; this then corresponds to
scanning for signal state “0”,

b set the negation between two binary functions (this corresponds to negation of
the result of logic operation), or

b position the negation at the output of a binary function (e.g. if you wish to set or
reset a binary operand and the logic operation is not fulfilled, i.e. RLO = “0”).

Structured Control Language

The NOT operator negates the result of logic operation. You can use NOT at any
position within an expression. If NOT is positioned directly before a tag, the signal
state of the tag is negated (corresponds to scanning for signal state “0”). NOT posi-
tioned before an expression negates the result of logic operation of the expression.

Statement list

The NOT operation negates the result of logic operation. You can use NOT at any
position, also within a logic operation. You can use this operation, for example, to
apply a negated AND function to an output.

12.2 Memory functions

12.2.1 Introduction

The memory functions are used together with the binary logic operations in order
to influence the signal states of binary tags using the result of logic operation gen-
erated by the control processor.

The following memory functions are available:

b Assignment of the result of logic operation

b Single setting and resetting

b Multiple setting and resetting

b Dominant setting and resetting

The memory functions can be used together with all binary tags. A result of logic
operation can be used to influence several memory functions simultaneously. The
result of logic operation does not change during execution of a memory function.

12.2 Memory functions

511

12.2.2 Simple and negating coil, assignment

The assignment is used to transfer the result of logic operation to a binary tag. If the
result of logic operation is “1”, the binary tag is set to signal state “1”; if it is “0”, the
binary tag is set to signal state “0”. The assignment is represented in LAD by the
simple coil, and in FBD by the assign box. With SCL, the “:=” assignment operator
stands for the assignment, and with STL the operation “=” (Fig. 12.7).

The negating assignment negates the result of logic operation before it transfers it
to a binary tag. If the result of logic operation is “1”, the binary tag is reset to signal
state “0”; if it is “0”, the binary tag is set to signal state “1”. The negating assignment
is represented in LAD by the negating coil, and in FBD by the negating assign box.
SCL and STL use the negation NOT to negate a result of logic operation.

The simple and negating coil or the simple and negating assignment do not influ-
ence the result of logic operation.

12.2.3 Single setting and resetting

Single setting sets a binary tag to signal state “1” if the result of logic operation
is “1”. The binary tag is not influenced if the result of logic operation is “0”;
it remains set if it was set, and remains reset if it was reset.

Fig. 12.7 Simple and negating coil, simple and negating assignment

LAD
Standard coil

"0"

"1"

"0" "1"

"1"

"0"

Binary tag 1

Binary tag 2

RLO, tags

Binary tag 1 Binary tag 2

Binary tag 1 Binary tag 2

Result of logic operation

RLO RLO(RLO) (RLO)

RLO RLO(RLO) (RLO)
= /=

FBD
Assign box

SCL
Assignment

Signal state

Standard coil, assignment

The simple coil or the assignment transfers the
result of logic operation to the binary tag.
The negating coil or the negating assignment
transfers the negated result of logic operation to
the binary tag.
The result of logic operation is not changed by the
assignment.

Binary tag 1 (... RLO ...);:=

Binary tag 2 NOT (... RLO ...);:=

STL
Assignment

... //(RLO)
= Binary tag 1

... //(RLO)
NOT
= Binary tag 2

12 Basic functions

512

Single resetting sets a binary tag to signal state “0” if the result of logic operation
is “1”. The binary tag is not influenced if the result of logic operation is “0”;
it remains set if it was set, and remains reset if it was reset (Fig. 12.8).

Single setting and resetting do not influence the result of logic operation.

With LAD, single setting is represented by the set coil, and single resetting by the
reset coil. With FBD, single setting is represented by the set box, and single reset-
ting by the reset box. SCL only has the assignment operator for controlling a binary
operand. Setting or resetting a binary operand with RLO = “1” can be emulated
together with other SCL statements, for example by the IF statement. With STL,
an “S” stands for setting a binary operand, and an “R” for resetting.

To make the programming clearer, you should always use the single set and reset
statements in pairs for a specific binary tag, and only once each. You should also
avoid controlling this binary tag in addition by an assignment.

When using the individual memory functions on the same binary tag, the position-
ing sequence is important since with simultaneous activation of the set and reset
statements, the statement processed last is dominant. For example, if the reset
statement is processed following the set statement, resetting is dominant.

Note that the binary tag used for a single memory function may be reset during
startup by the CPU's operating system. In certain cases, the signal state is retained:

Fig. 12.8 Representation and principle of operation of the set and reset functions

SCL
Emulation with
the IF statement

Unchanged

"0"

"0" "1"

Unchanged

"1"Binary tag 1 (S)

RLO, tags

Binary tag 2 (R)

S

Result of logic operation

LAD
S coil, R coil

FBD
S box, R box

Signal state

Single setting and resetting

If the result of the logic operation is "1", the tag for
the set statement is set to signal state "1", and the
tag for the reset statement is reset to signal
state "0".
A result of logic operation "0" has no effect.
The result of logic operation is not changed by
setting or resetting.

Binary tag 1

Binary tag 1 Binary tag 2

Binary tag 2

S

IF (RLO) THEN
:= TRUE;

END_IF;
Binary tag 1

IF (RLO) THEN
:= FALSE;

END_IF;
Binary tag 2

STL
Set operation,
reset operation

... //(RLO)
S Binary tag 1

... //(RLO)
R Binary tag 2

(RLO) RLO (RLO)RLO

RLO RLO

R

R

12.2 Memory functions

513

This depends on the operand area used (e.g. static local data) and on the settings
in the CPU (e.g. retentive behavior).

12.2.4 Multiple setting and resetting

With multiple setting and resetting, the bits are set in the specified destination area
to signal state “1” (SET_BF) or to signal state “0” (RESET_BF).

Multiple setting and resetting is represented in the ladder logic as a coil. The binary
tag present above the coil indicates the first bit in the destination area. Underneath
the coil is the number of bits to be controlled as a constant in the range from 0
to 65 535. Multiple setting and resetting is performed if the coil is triggered with
result of logic operation “1”. If the result of logic operation is “0”, there is no influ-
ence on the binary tags in the destination area; then they retain their current signal
state (Fig. 12.9).

Multiple setting and resetting is represented in the function block diagram as a
box. The binary tag present above the box indicates the first bit in the destination
area. At parameter N is the number of bits to be controlled as a constant in the range
from 0 to 65 535. Multiple setting and resetting is performed if the enable input EN
of the box is triggered with RLO “1”. If the result of logic operation is “0”, there is
no influence on the binary tags in the destination area; then they retain their cur-
rent signal state.

Fig. 12.9 Multiple setting and resetting

LAD
SET_BF-Coil
RESET_BF-Coil

Quantity Quantity

Quantity

SET_BF RESET_BF

Binary tag 1 Binary tag 2

RLO

Quantity

RLO

Multiple setting and resetting

With result of logic operation "1",
the SET_BF-Coil or SET_BF-Box sets bits
to "1" beginning with the binary tag

located above the coil or box.

With result of logic operation "1",
the RESET_BF-Coil or RESET_BF-Box sets
bits to "0" beginning with the binary tag

located above the coil or box.

RLO “0” has no effect.

Quantity

Quantity

FBD
SET_BF-Box
RESET_BF-Box

STL

SCL

(Functions not available)

(Functions not available)

Binary tag 1

SET_BF

EN

NN

Binary tag 1 and the following

RLO, tags

Binary tag 2 and the following

Result of logic operation

Unchanged

"0"

"0" "1"

Unchanged
"1"

Signal state

Binary tag 2

RESET_BF

EN

RLORLO

12 Basic functions

514

The functions SET_BF and RESET_BF are not present in SCL and STL. In SCL, SET_BF
and RESET_BF can be emulated, for example, using the FOR statement. An example
is given in the description of the control statements in section “CONTINUE state-
ment” on page 389. In STL they can be emulated with a program loop. An example
is shown in Chapter 10.6.1 “Jump functions in the statement list” on page 436.

12.2.5 Dominant setting and resetting, memory function

The functions of single setting and resetting are combined in a memory box.
The common binary tag is named above the box. The S or S1 input corresponds to
single setting, the R or R1 input to single resetting. The signal state possessed by
the binary tag named above the memory function is present at the Q output of the
memory function.

Fig. 12.10 Dominant setting and resetting, memory boxes

SCL
Emulation with
the IF statement

IF (RLO2)
THEN := FALSE; //Reset dominant
ELSIF (RLO1)

THEN := TRUE;
END_IF;

Binary tag 1

Binary tag 1

IF (RLO1)
THEN := TRUE; //Set dominant
ELSIF (RLO2)

THEN := FALSE;
END_IF;

Binary tag 2

Binary tag 2

LAD
SR box, RS box

FBD
SR box, RS box

- "0"

"1" "1"

"0" "0"

"0" "1"

"1" "1"

"0" "1"

- "0"

"1" "0"Binary tag 1 (SR box)

RLO, tags

Binary tag 2 (RS box)

Binary tag 1

Binary tag 1

Binary tag 2

Binary tag 2

RLO 1 (set)

RLO 2 (reset)

RLO1

RLO2

Signal state

SR

SR

RS

RS

S

S

R

R

R1

R1

S1

S1

Q

Q

Q

Q

Dominant setting and resetting

Result of logic operation "1" at the set
input sets the binary tag, result of
logic operation "1" at the reset input
resets it.
If both inputs are "1" simultaneously,
the binary tag at the SR box is reset
and the binary tag at the RS box is set.

STL
Emulation by the
sequence of set
reset statements

and

... //(RLO1)

... //(RLO2)

S

R

Binary tag 1

Binary tag 1

... //(RLO2)

... //(RLO1)
S

R Binary tag 2

Binary tag 2

RLO2

RLO1

RLO1

RLO2

RLO2

RLO1

12.3 Edge evaluation

515

There are two versions of the memory function: as SR box (reset dominant) and as
RS box (set dominant). In addition to the difference in the label, the two boxes also
differ in the positioning of the set input and reset input (Fig. 12.10).

A memory function is set (or more precisely: the binary tag named above the mem-
ory box) when the set input has signal state “1” and the reset input has signal
state “0”. A memory function is reset when “1” is present at the reset input and “0”
at the set input. Signal state “0” at both inputs has no influence on memory func-
tions. If signal state “1” is present simultaneously at both inputs, the two memory
functions respond differently: the SR memory function is reset, the RS memory
function is set.

With SCL, the memory function can be emulated, for example, by an assignment
together with an IF statement. With STL, the memory function is implemented by
single setting and resetting. The sequence of statements defines whether setting
or resetting is dominant.

Note that the binary tag used for a memory function may be reset during startup by
the CPU's operating system. In certain cases, the signal state of a memory box is
retained: This depends on the operand area used (e.g. static local data) and on the
settings in the CPU (e.g. retentive behavior).

12.3 Edge evaluation

12.3.1 Principle of operation of an edge evaluation

Edge evaluation detects the change in a signal state, a signal edge. A positive (ris-
ing) edge is present if the signal changes from state “0” to state “1”. In the reverse
case one speaks of a negative (falling) edge.

In the circuit diagram, the equivalent of an edge evaluation is a passing contact.
If this passing contact outputs a pulse when the relay is switched on, this corre-
sponds to the rising edge. A pulse of the passing contact when switching off corre-
sponds to a falling edge.

The detection of a signal edge – the change in a signal state – is implemented in the
program. When processing an edge evaluation, the processor compares the current
result of logic operation, e.g. the result of scan of an input, with a saved result of
logic operation. If the two signal states are different, a signal edge is present (Fig.
12.11).

The saved result of logic operation (RLO) is present in a so-called “edge trigger
flag” (this need not necessarily be a bit memory). It must be a binary operand
whose signal state must be available again during the next processing of the edge
evaluation (in the next program cycle) and which you do not otherwise use in the
program. Memory bits, data bits in global data blocks, and static local data bits in
function blocks are suitable as operands.

This edge trigger flag saves the “old” RLO, namely the result of logic operation with
which the processor processed the edge evaluation last. If a signal edge is now pres-

12 Basic functions

516

ent, i.e. if the current RLO is different from the signal state of the edge trigger flag,
the processor updates the signal state of the edge trigger flag in that it assigns the
current RLO to it. The signal state of the edge trigger flag is equal to the current RLO
(if this has not changed again in the meantime) during the next processing of the
edge evaluation (usually in the next program cycle), and the processor does not
detect an edge any more.

A detected edge is indicated by the RLO following edge evaluation. If the processor
detects a signal edge, it sets the RLO following edge evaluation to “1”. The RLO is
equal to “0” if a signal edge is not present.

Signal state “1” following an edge evaluation therefore means “Edge detected”. Sig-
nal state “1” is only present for a brief time, usually only for one processing cycle.
Since the processor does not detect an edge during the next processing of the edge
evaluation (if the “input RLO” of the edge evaluation does not change), it resets the
RLO to “0” again following edge evaluation.

You can directly process the RLO following edge evaluation, e.g. link it further to
binary logic operations, save it in a memory function, or assign it to a binary tag
(a so-called “pulse flag”). A pulse flag is used if the RLO of the edge evaluation is
also to be processed at another position in the program; it is quasi the intermediate
memory for a detected edge (the passing contact in the circuit diagram). Memory

Fig. 12.11 Principle of operation of an edge evaluation in successive cycles

Input
signal

Input
signal

Edge
trigger
flag

Edge
trigger
flag

Pulse
flag

Pulse
flag

Positive edge evaluation, evaluation with rising edge

Negative edge evaluation, evaluation with falling edge

Description

Description Successive processing cycles

Successive processing cycles

a

s

d

f

g

Initial state

The rising edge is detected, the edge
trigger flag is tracked, and the pulse flag
is set

No edge any longer, the pulse flag is reset

No change

The edge trigger flag is tracked, the initial
state is subsequently present again

a

s

d

f

g

Initial state

The edge trigger flag is tracked

No change

The falling edge is detected, the edge
trigger flag is tracked, and the pulse flag
is set

No edge any longer, the pulse flag is
reset, the initial state is subsequently
present again

a

a

s

s

d

d

f

f

g

g

12.3 Edge evaluation

517

bits, data bits in global data blocks, and temporary and static local data bits are suit-
able as pulse flags.

Also take note of the response of edge evaluation when switching on the CPU. If an
edge should not be detected, the RLO prior to edge evaluation and the signal state
of the edge trigger flag must be the same when switching on. It may be necessary –
depending on the desired response and the operand area used – to appropriately
set or reset the edge trigger flag during the startup.

Principle of operation of positive edge: a In the initial state, the signal being mon-
itored for an edge, the edge trigger flag, and the pulse flag have signal state “0”.
s The input signal then changes its state from “0” to “1”. The signal state of the
edge trigger flag is initially still “0” so that a rising edge is detected and the pulse
flag is set to “1”. The edge trigger flag is updated to signal state “1”. d The next pro-
cessing cycle does not show a change in the signal state or edge signal (comparison
with signal state of edge trigger flag). The pulse flag is reset to “0”. f No changes
take place in the next processing cycles. g If the input signal is reset to state “0”
again, the edge trigger flag is also updated and the initial state is reached. The pulse
flag was set to “1” for one processing cycle only.

Principle of operation of negative edge: a In the initial state, the input signal, the
edge trigger flag, and the pulse flag have signal state “0”. s The input signal then
changes its state from “0” to “1”. This change is saved in the edge trigger flag, which
is also set to “1”. The pulse flag remains “0” since a falling edge is not present.
d No changes take place in the next processing cycles. f The input signal then
changes from “1” to “0”. The edge trigger flag still has signal state “1” initially and
a falling edge is therefore detected. The pulse flag is set to “1” and the edge trigger
flag updated to “0”. g The pulse flag is reset to “0” again. The pulse flag was set to
“1” for one processing cycle only.

12.3.2 Edge evaluation of a binary tag (LAD, FBD)

This edge evaluation monitors the signal state of a binary tag for a change. Fig.
12.12 shows the display and the signal states of the edge evaluation. The principle
of operation of edge evaluation is described in detail in Fig. 12.11.

The edge evaluation of a binary tag is represented in the ladder logic as a contact,
above which the scanned binary tag and below which the edge trigger flag are
named. The pulse of the edge evaluation (quasi the signal state of the pulse flag) is
connected in series with the result of logic operation of the preceding logic opera-
tion. A positive, rising edge is detected by the P contact and a negative, falling edge
by the N contact.

In the function block diagram, the binary tag is named above the edge evaluation
box and the edge trigger flag underneath. The Q output corresponds to the pulse
flag. A positive, rising edge is detected by the P box and a negative, falling edge is
detected by the N box.

12 Basic functions

518

12.3.3 Edge evaluation with pulse output (LAD, FBD)

This edge evaluation generates a pulse on a binary tag from the change of the result
of logic operation (of the “current flow”). The function of the edge evaluation is
shown in Fig. 12.13; the description corresponds to that in Fig. 12.11. Here, the
input signal corresponds to the result of preceding logic operation (the “current
flow”).

The edge evaluation with pulse output with a P coil (positive, rising edge) or an
N coil (negative, falling edge) is represented in the ladder logic. The pulse flag,
which has signal state “1” for the duration of one processing cycle when an edge is
detected, is located above the coil. The edge trigger flag is underneath the coil.
The result of logic operation after the coil corresponds to the result of logic opera-
tion before the coil; it is simply “passed on”.

The edge evaluation with pulse output with a P= box (positive, rising edge) or an N=
box (negative, falling edge) is represented in the ladder logic. The pulse flag, which
has signal state “1” for the duration of one processing cycle when an edge is
detected, is located above the box. The edge trigger flag is underneath the box. The
result of logic operation after the box corresponds to the result of logic operation
before the box; it is simply “passed on”.

Fig. 12.12 Edge evaluation of a binary tag (LAD, FBD)

LAD
P contact,
N contact

FBD
P box,
N box

Positive (rising) edge

Negative (falling) edge

"0"

"0"

"1"

"1"

"1"

"1"

"0"

"0"

a

a

"1"

"0"

s

s

"0"

"0"

d

d

"0"

"0"

"1"

"1"

"1"

"1"

"1"

"0"

"0"

"0"

"0"

"1"

"0"

"0"

f

f

g

g

"1"

"0"

"0"

"0"

Binary tag 1

Binary tag 2

Processing cycles

Processing cycles

Edge trigger flag 1

Edge trigger flag 2

RLO1

RLO2

Edge evaluation of a binary tag (LAD, FBD)

The or the detects a positive edge
of the binary tag above it and then sets the RLO to
signal state "1" for the duration of one cycle
(in processing cycle in the table).

LAD: The P contact links the RLO in front of it to
the pulse flag according to AND (series
connection).

P contact P box

s

The or the detects a negative
edge of the binary tag above it and then sets the
RLO to signal state "1" for the duration of one
cycle (in processing cycle in the table).

LAD: The N contact links the RLO in front of it to
the pulse flag according to AND (series
connection).

N contact N box

f

Binary tag 1

Binary tag 1

Binary tag 2

Binary tag 2

P

Edge trigger flag 1 Edge trigger flag 2

RLO1 RLO2

Edge trigger flag 1 Edge trigger flag 2

RLO1 RLO2

P

N

N

12.3 Edge evaluation

519

12.3.4 Edge evaluation with a Q box (LAD, FBD)

This edge evaluation generates a pulse when the result of logic operation changes
(change in “current flow”). Fig. 12.14 shows the representation and signal states of
edge evaluation. The principle of operation of edge evaluation is described in detail
in Fig. 12.11; here, the input signal corresponds to the result of logic operation.

The edge evaluation with a Q box is displayed in the ladder logic with a P_TRIG box
(positive, rising edge) or an N_TRIG box (negative, falling edge). The result of the
preceding logic operation is monitored at the input CLK for a change. For an edge,
the output Q is set to signal state “1” for the duration of one processing cycle.
The edge trigger flag is underneath the box.

The edge evaluation with a Q box is displayed in the function block diagram with a
P_TRIG box (positive, rising edge) or an N_TRIG box (negative, falling edge).
The result of the preceding logic operation is monitored at the input CLK for a
change. For an edge, the output Q is set to signal state “1” for the duration of one
processing cycle. The edge trigger flag is underneath the box.

Fig. 12.13 Edge evaluation with pulse output (LAD, FBD)

Edge trigger flag 1 Edge trigger flag 2

RLO1 RLO2

Pulse flag 1 Pulse flag 2

P N

LAD
P coil
N coil

FBD
P= box
N= box

Positive (rising) edge

Negative (falling) edge

Edge trigger flag 1 Edge trigger flag 2

Pulse flag 1 Pulse flag 2

RLO1 RLO2(RLO1) (RLO2)

(RLO1) (RLO2)

P= N=

"0"

"0"

"1"

"1"

"1"

"0"

"0"

"0"

a

a

"1"

"0"

s

s

"0"

"1"

d

d

"0"

"0"

"1"

"1"

"1"

"0"

"0"

"0"

"0"

"0"

"0"

"0"

"0"

"0"

f

f

g

g

"0"

"0"

"0"

"0"

RLO1

RLO2

Processing cycles

Processing cycles

Edge trigger flag 1

Edge trigger flag 2

Pulse flag 1

Pulse flag 2

Edge evaluation with pulse output

N coil, N= box: If there is a signal
edge before the N coil or at the input of the
N= box (RLO2), pulse flag 1 has signal state "1" for
the duration of one cycle (in processing cycle d in
the table).

negative

After the N coil or N= box, there is the same RLO as
before the coil or box (RLO2).

P coil, P= box: If there is a signal
edge before the P coil or at the input of the
P= box (RLO1), pulse flag 1 has signal state "1" for
the duration of one cycle (in processing cycle in
the table).

After the P coil or P= box, there is the same RLO as
before the coil or box (RLO1).

positive

s

12 Basic functions

520

12.3.5 Edge evaluation with an EN/ENO box (LAD, FBD)

The edge evaluation with an EN/ENO box can be called as a single instance with its
own data block or, in a function block, as a local instance (multi-instance). The
instance data contains the edge trigger flag needed for edge detection, the input
signal CLK and the output signal Q.

This edge evaluation generates a pulse when the result of logic operation changes
(change in “current flow”). Fig. 12.15 shows the representation and signal states of
edge evaluation. The principle of operation of edge evaluation is described in detail
in Fig. 12.11; here, the input signal corresponds to the result of logic operation. The
input signal, edge trigger flag, and output signal are located in the instance data.

The edge evaluation with an EN/ENO box is displayed in the ladder logic with an
R_TRIG box (positive, rising edge) or an F_TRIG box (negative, falling edge). The
result of the preceding logic operation at the input CLK is monitored for a change.
For an edge, the output Q is set to signal state “1” for the duration of one processing
cycle. The edge trigger flag is underneath the box.

Fig. 12.14 Edge evaluation with a Q box (LAD, FBD)

LAD
P_TRIG box,
N_TRIG box

FBD
P_TRIG box,
N_TRIG box

Positive (rising) edge

Negative (falling) edge

Edge trigger flag 1

Edge trigger flag 1

Edge trigger flag 2

Edge trigger flag 2

RLO1

RLO1

RLO3

RLO3

RLO2

RLO2

RLO4

RLO4

P_TRIG

P_TRIG

N_TRIG

N_TRIG

CLK

CLK

CLK

CLK

Q

Q

Q

Q

"0"

"0"

"1"

"1"

"1"

"1"

"0"

"0"

a

"1"

"0"

s

"0"

"0"

d

"0"

"0"

"1"

"1"

"1"

"1"

"1"

"0"

"0"

"0"

"0"

"1"

"0"

"0"

f g

"1"

"0"

"0"

"0"

RLO1

RLO3

Processing cycles

Processing cycles

Edge trigger flag 1

Edge trigger flag 2

RLO2

RLO4

Edge evaluation with a Q box (LAD, FBD)

The detects a positive edge at the
CLK input and then sets the Q output to signal
state "1" for the duration of one processing cycle
(in processing cycle in the table).

P_TRIG box

s

The detects a negative edge at the
CLK input and then sets the Q output to signal
state "1" for the duration of one processing cycle
(in processing cycle in the table).

N_TRIG box

f

a s d f g

12.3 Edge evaluation

521

The edge evaluation with an EN/ENO box is displayed in the function block diagram
with an R_TRIG box (positive, rising edge) or an F_TRIG box (negative, falling edge).
The result of the preceding logic operation at the input CLK is monitored for a
change. For an edge, the output Q is set to signal state “1” for the duration of one
processing cycle. The edge trigger flag is underneath the box.

12.3.6 Edge evaluation with SCL

An edge evaluation can be implemented for SCL, for example, with a pulse flag or
with an IF branch. Fig. 12.16 shows the display and the signal states of the edge
evaluation. The principle of operation of edge evaluation is described in detail in
Fig. 12.11 on Page 516. The Input signal tag in Fig. 12.16 can also be replaced with
a binary expression.

Edge evaluation with a pulse flag is suitable if the result of the edge evaluation is
to be processed in a different program section. For this edge evaluation, the pulse
flag is set to signal state “1” if the signal states of the input signal and the edge
trigger flag are different. The edge trigger flag is then updated so that a signal
edge is no longer detected during the next processing and the pulse flag is reset to
signal state “0”.

Fig. 12.15 Edge evaluation with an EN/ENO box (LAD, FBD)

LAD
R_TRIG box,
F_TRIG box

FBD
R_TRIG box,
F_TRIG box

Positive (rising) edge

Negative (falling) edge

Instance data

Instance data

Instance data

Instance data

RLO1

RLO1

RLO3

RLO3

RLO2

RLO2

RLO4

RLO4

R_TRIG

R_TRIG

F_TRIG

F_TRIG

CLK

CLK

CLK

CLK

Q

Q

Q

Q

"0"

"0"

"1"

"1"

"1"

"1"

"0"

"0"

a

"1"

"0"

s

"0"

"0"

d

"0"

"0"

"1"

"1"

"1"

"1"

"1"

"0"

"0"

"0"

"0"

"1"

"0"

"0"

f g

"1"

"0"

"0"

"0"

RLO1

RLO3

Processing cycles

Processing cycles

Edge trigger flag

Edge trigger flag

RLO2

RLO4

Edge evaluation with an EN/ENO box (LAD, FBD)

The detects a positive edge at the
CLK input and then sets the Q output to signal
state "1" for the duration of one processing cycle
(in processing cycle in the table).

The edge trigger flag is located in the instance
data.

R_TRIG box

s

The detects a negative edge at the
CLK input and then sets the Q output to signal
state "1" for the duration of one processing cycle
(in processing cycle in the table).

The edge trigger flag is located in the instance
data.

F_TRIG box

f

a s d f g

12 Basic functions

522

Fig. 12.16 Edge evaluation with SCL

SCL

Edge evaluation
with a pulse flag

with a positive (rising) edge with a negative (falling) edge

"0" "0"

"1" "1"

"1" "1"

"0" "0"

a a

"1" "0"

s s

"0" "0"

d d

"0" "0"

"1" "1"

"1" "1""1" "0""0" "0"

"0" "1""0" "0"

f fg g

"1" "0""0" "0"Input signal 1 Input signal 2

Processing cycles Processing cycles

Edge trigger flag 1 Edge trigger flag 2

Pulse flag 1 Pulse flag 2

Edge evaluation with SCL

In SCL, the evaluation of a signal state change can be implemented, for example, by means of a pulse
flag or IF branch.

A positive, rising edge is present if the input signal has signal state "1" and the edge trigger flag has
signal state "0". In the table this corresponds to processing cycle , after the edge trigger flag has
been updated.
A negative, falling edge is present if the input signal has signal state "0" and the edge trigger flag has
signal state "1". ,

For an edge, the pulse flag is set to signal state "1" for the duration of one cycle or – in the case of an
IF branch – the statements are processed once after THEN.

s

In the table this corresponds to processing cycle after the edge trigger flag has
been updated.

f

//Evaluation for positive edge

//Modify pulse flag
:= AND NOT ;

//Update edge trigger flag
:= ;

Pulse flag 1 input signal 1 edge trigger flag 1

Edge trigger flag 1 Input signal 1

//Evaluation for negative edge

//Modify pulse flag
:= NOT AND ;

//Update edge trigger flag
:= ;

Pulse flag 2 input signal 2 edge trigger flag 2

Edge trigger flag 2 Input signal 2

SCL

Edge evaluation
with an
IF statement

//Evaluation for positive edge

IF AND NOT
THEN (* statements *);

// Program section is executed if there is a pos. edge
// corresponds to 1 = "1"

END_IF;

//Update of edge trigger flag
:= ;

input signal 1 edge trigger flag 1

pulse flag

Edge trigger flag 1 Input signal 1

//Evaluation for negative edge

IF NOT input signal 2 AND
THEN (* statements *);

// Program section is executed if there is a neg. edge
// corresponds to 2 = "1"

END_IF;

//Update of edge trigger flag
:= ;

edge trigger flag 2

pulse flag

Edge trigger flag 2 Input signal 2

Signal states in successive processing cycles

12.3 Edge evaluation

523

Edge evaluation with an IF branch is suitable if a program section which, for exam-
ple, encompasses several statements is to be processed in the event of an edge. An
edge is present if the signal states of the input signal and of the edge trigger flag
are different. Then the statements after THEN are processed. After this, the edge
trigger flag is updated so that no signal edge will be detected during the next pro-
cessing and the statements after THEN will no longer be processed.

12.3.7 Edge evaluation with STL

For an edge evaluation with STL, the operations FP and FN are available (Fig. 12.17).
Chapter 12.3.1 “Principle of operation of an edge evaluation” on page 515 describes
in detail how an edge evaluation functions. The result of logic operation before the
edge evaluation corresponds to the input signal. The result of logic operation after
the edge evaluation corresponds to the pulse flag.

FP detects a positive, rising edge of the result of logic operation which is present
during the processing of the operation. FN detects a negative, falling edge.
The operand for the operation FP or FN is the edge trigger flag in which the “old”
result of logic operation is saved.

Fig. 12.17 Edge evaluation with STL

Positive (rising) edge

Negative (falling) edge

"0"

"0"

"1"

"1"

"1"

"1"

"0"

"0"

a

a

"1"

"0"

s

s

"0"

"0"

d

d

"0"

"0"

"1"

"1"

"1"

"1"

"1"

"0"

"0"

"0"

"0"

"1"

"0"

"0"

f

f

g

g

"1"

"0"

"0"

"0"

RLO1

RLO3

Processing cycles

Processing cycles

Edge trigger flag 1

Edge trigger flag 2

RLO2

RLO4

Edge evaluation with STL

The detects a positive edge of
the result of the logic operation prior to the
statement and then sets the result of the logic
operation following the statement to the
signal state "1" for the duration of one cycle
(in processing cycle in the table).
The operand at operation FP is the edge
trigger flag.

FP statement

s

The detects a negative edge of
the result of the logic operation prior to the
statement and then sets the result of the logic
operation following the statement to the
signal state "1" for the duration of one cycle
(in processing cycle in the table).
The operand at operation FN is the edge
trigger flag.

FN statement

f

STL
FP operation,
FN operation

... //RLO1

... //RLO2
FP Edge trigger flag 1

... //RLO3

... //RLO4
FN Edge trigger flag 2

12 Basic functions

524

12.4 SIMATIC timer functions

12.4.1 Overview

The SIMATIC timer functions implement timing processes in the program such as
waiting and monitoring times, measurement of a time interval, or the generation
of pulses. The progress of the output signal of a started SIMATIC timer function
depends on the selected response. The following are available:

b Pulse generation
The output signal is at least as long as the start signal, but its maximum length
is equal to the set duration.

b Extended pulse
Independent of the duration of the start signal, the output signal is as long as the
set duration.

b ON delay
If the start signal is longer than the set duration, the output signal begins after
the set duration and lasts until the end of the start signal.

b Retentive ON delay
Independent of the duration of the start signal, the output signal begins after the
set duration and ends when the timer function is reset.

b OFF delay
The output signal begins with the start signal and ends after the set duration has
elapsed after the end of the start signal.

A data record which is present in the system data is permanently assigned to each
SIMATIC timer function; this limits the number of SIMATIC timer functions.
SIMATIC timer functions are global tags; the symbols are declared in the PLC tag
table.

The SIMATIC timer functions run in STARTUP and RUN modes.

SIMATIC timers as overall function

The overall function is represented in the programming languages LAD and FBD as
a box (Fig. 12.18). The box of a timer function contains the related representation
of all individual timer operations in the form of function inputs and outputs. The
address of the timer function is named above the box in absolute or symbolic form.
The timer response is quasi the heading in the box. Assignment of the S and
TV inputs is mandatory, assignment of the other inputs and outputs is optional.
With SCL, the complete function call corresponds to the overall function. With STL,
the individual statements must be programmed in the indicated sequence.

SIMATIC timers as single elements

In the representation as single elements, attention must be paid to the program-
ming sequence so that the timer function responds as described further below:
First program the start statement, then the reset statement, and finally scan the

12.4 SIMATIC timer functions

525

Fig. 12.18 SIMATIC timer functions as overall function

Function

TV

S

TV

S

R

R

BI

Q

BCD

BI

BCD

Q

Timer operand

SIMATIC timer functions, representation as total function

LAD

STL

SCL

FBD

Parameters for LAD and FBD:

Function

Timer operand
Name Declaration Data type Description

S INPUT BOOL Start input

TV INPUT TIME Defined duration

R INPUT BOOL Reset input

Q OUTPUT BOOL Timer status

BI OUTPUT TIME Time value integer

BCD OUTPUT S5TIME Time value BCD

A Enable input

FR

A Start input
L Duration

A Reset input
R

L
T Time value integer

LC
T Time value BCD

A
= Timer status

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

FCT

Time value BCD :=
T_NO
S := Start input,
TV := Duration,
R := Reset input,
Q := Timer status,
BI := Time value integer);

Function
Timer operand,:=

Function identifier

Pulse diagram

Start signalStart of timer function as

Pulse

Extended pulse

t = set duration

On delay

Retentive on delay

Off delay

t

t

t

t

t

Start of With LAD and FBD as With SCL With STL
timer function as Box Single element with with

Pulse S_PULSE SP S_PULSE SP

Extended pulse S_PEXT SE S_PEXT SE

On delay S_ODT SD S_ODT SD

Retentive on delay S_ODTS SS S_ODTS SS

Off delay S_OFFDT SF S_OFFDT SF

12 Basic functions

526

Fig. 12.19 SIMATIC timer functions, representation as single elements

Function

R

TV

Representation of a SIMATIC timer function with single elements

Start timer function

Start timer function

Reset timer function

Reset timer function

Scan timer status for "1"

Scan timer status for "0"

Scan timer status for "1"

Scan timer status for "0"

Load time value integer-coded

Load time value integer-coded

SCL
Time value BCD := (

T_NO
S := Start input,
TV := Duration,
R := Reset input,
BI => Time value integer,
Q => Timer status);

Function
Timer operand,:=

Timer operand

Duration

Duration

Time value integer

Time value integer

Start input

Reset input

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

Function

R

MOVE

MOVE

EN

EN

IN

IN

ENO

OUT

OUT

ENO

LAD

FBD

Individual parameters of the timer function
can be omitted. You only program the
parameters which you require.

You must always specify the timer
operand (T_NO).

Start input (S) and duration (TV) must always
be handled in pairs.

STL The operations of the timer function can be
programmed individually.

A duration is always required to start the timer
function.

A Enable input
FR

A Start input
L Duration

A Reset input
R

L
T Time value integer

LC
T Time value BCD

A
= Timer status

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

Timer operand

FCT

12.4 SIMATIC timer functions

527

timer function. If the enabling statement is used with STL, it must be programmed
prior to the start statement (Fig. 12.19).

When programming a timer function, you need not use all statements available
for the timer function. It is sufficient to use the statements required for the
desired function. In the normal case these are the starting of the timer function
with specification of the duration and the binary scanning of the timer function.

12.4.2 Programming a timer function

Starting a timer function

A timer function is started, for example, using a binary tag. In the figures this tag is
named Start input.

A timer function starts (the time starts running) when the signal state of the start
input changes. Such a change in signal state is always required to start a timer func-
tion. In the case of an OFF delay, the signal state must change from “1” to “0”, in all
other cases the time starts when changing from “0” to “1”.

You can start every timer function using one of five possible responses. However, it
is not meaningful to assign several responses to one timer function.

Specification of duration

When starting, the timer function is loaded with a default value of data type
S5TIME. In the figures this default value is named Duration. The duration can be
specified as a constant or as a tag.

The duration is calculated internally from the time value and time scale:
Duration = Time value × Time scale. The duration is the time during which a timer
function is active (“time running”). The time value represents the number of time
periods for which the timer function runs. The time scale specifies the interval at
which the CPU's operating system changes the time value (Fig. 12.20).

Fig. 12.20 Bit assignment of the duration with a SIMATIC timer function

15 11 7 312 8 4 0

10

Time scale specified in BCD:

Time value specified in BCD

010 110 2

0 = 0.01 s
1 = 0.1 s
2 = 1 s
3 = 10 s

Bit

SIMATIC timer function, bit assignments of the duration

12 Basic functions

528

You can also directly establish the duration in a word operand. The smaller you
select the time scale, the more exact is the actually processed duration.
For example, if you wish to implement a duration of one second, three possibilities
exist:

Duration = W#16#2001 Time scale 1 s
Duration = W#16#1010 Time scale 100 ms
Duration = W#16#0100 Time scale 10 ms

The last possibility should be preferred in this example.

When starting the timer function, the CPU applies the programmed time value.
The operating system updates the timer functions at a fixed interval and indepen-
dent of processing of the user program, i.e. with active timers it counts down the
count value at the interval of the time scale. The time is considered to be expired
when a value of zero is reached. The CPU then sets the timer status (signal state “0”
or “1” depending on time response) and omits all further activities until the timer
function is started again. If you enter a value of zero (0 ms or W#16#0000) for the
duration when starting a timer function, the timer function remains active until the
CPU has processed the timer function and established that the time has expired.

The timer functions are updated asynchronous to program execution. It may there-
fore occur that the timer status at the beginning of the cycle has a different value
from that at the end. If you only use the timer operations at one position in the pro-
gram, no malfunctions can occur due to asynchronous time updating.

Resetting a timer function

A timer function is reset, for example, using a binary tag. In the figures, this tag is
named Reset input.

A timer function is reset as long as the reset input has signal state “1”. Resetting of
the timer function sets the time value and the time scale to zero and the timer status
to “0”. Starting of the timer function is not possible for as long as the reset is pres-
ent.

Note with STL: Resetting a timer function does not reset the internal edge trigger
flag for starting. To start again, the start operation must first be processed with
RLO “0” before the timer function can be started with a signal edge. You can also use
enabling of the timer function for this.

Scanning the timer status

The timer status is as it were the “result” of the timer function. Its time response is
based on the response of the timer function. For example, the timer status can be
assigned to a binary tag. In the figures this tag is named Timer status.

The time response of the timer status is shown in general in Fig. 12.18 and
described in detail further below in the descriptions of the responses of a timer
function.

12.4 SIMATIC timer functions

529

Scanning the current time value BCD-coded

The time value is the current value of the “remaining time” at the time of scanning.
With a timer function running, the time value is counted down from the defined
duration to zero. In the BCD-coded form, the remaining time contains the time
scale and duration in data type WORD or S5TIME. In the figures, this tag is named
Time value BCD.

Scanning the current time value integer-coded

The time value is the current value of the “remaining time” at the time of scan-
ning. With a timer function running, the time value is counted down from the
defined duration to zero. In the integer-coded form, the remaining time only
delivers the current magnitude of the time value, the time scale is not included.
In the figures, this tag is named Time value integer with data type INT.

Enabling a timer function

A running time is “re-triggered” by enabling, i.e. a restart is triggered. Enabling is
only available in the programming language STL; it is not required to start or reset
a timer function, i.e. for normal execution.

Enabling is triggered by a positive edge at the enabling operation, for example by a
binary tag. In the figures, this tag is named Enable input.

Enabling resets the internal edge trigger flag for starting the timer function. If the
result of logic operation is “1” during the next processing of the start operation, the
timer function is started again.

Example: A timer function is started as a pulse time by a positive edge at the start
input. The start input remains permanently at signal state “1”. The time can then
be restarted by a positive edge at the enable input without resulting in a change in
the signal state at the start input. It is irrelevant whether the time is still running
or has already expired.

12.4.3 Timer response as pulse

Starting a pulse time

The diagram in Fig. 12.21 describes the response of the timer function following
starting as pulse and when resetting.

a The timer function starts if the signal state at its start input changes from “0”
to “1” (positive edge). It runs for the programmed duration as long as the signal
state at the start input remains “1”. The scans for signal state “1” (the timer status)
deliver the result of scan “1” for as long as the time is running. The time value is
counted down from the start value according to the set scale.

s The timer function stops if the signal state at its start input changes to “0”
before the time has expired. The scan of the timer function for signal state “1”
(the timer status) then delivers the result of scan “0”. The time value indicates the
remaining duration by which the time was interrupted too early.

12 Basic functions

530

Resetting a pulse time

Resetting a pulse time has a static effect and has priority over starting of the timer
function (Fig. 12.21).

d Signal state “1” at the reset input of the timer function with the time running
resets the timer function. A scan for signal state “1” (the timer status) then delivers
the result of scan “0”. The time value and the time scale are also set to zero. If the
signal state at the reset input changes from “1” to “0” while signal state “1” is still
present at the start input, the timer function remains unaffected.

f If the time is not running, signal state “1” at the reset input has no effect.

g If a reset signal is present and the signal state at the start input changes from
“0” to “1” (positive edge), the timer function is started but the subsequent reset
immediately resets it again (indicated by a line in the diagram). If the scan of the
timer status is programmed following the reset, the brief starting does not influ-
ence the scan of the timer function.

Enabling a pulse time

Enabling is only possible in the programming language STL. The diagram in Fig.
12.22 shows enabling of a timer function started as a pulse.

a If the signal state at the enable input changes from “0” to “1” (positive edge)
while the time is running, the time for processing of the start operation restarts as
long as signal state “1” is still present at the start input. With this restart, the pro-
grammed duration is applied as the current time value. A change in the signal state
at the enable input from “1” to “0” has no effect.

Fig. 12.21 Timer response with starting and resetting as pulse

Timer response with starting as pulse

t = specified duration

Timer status

Elapsed
time

Start
input

t t t tt

a s d f g

Reset
input

t

12.4 SIMATIC timer functions

531

s If the signal state at the enable input changes from “0” to “1” (positive edge)
while the time is not running and signal state “1” is still present at the start input,
the timer function also starts with the programmed duration as pulse.

d With signal state “0” at the start input, a positive signal edge at the enable input
has no effect.

12.4.4 Timer response as extended pulse

Starting as extended pulse

The diagram in Fig. 12.23 describes the response of the timer function following
starting as extended pulse and when resetting.

as The timer function starts if the signal state at its start input changes from “0”
to “1” (positive edge). It runs for the programmed duration even if the signal state
at the start input returns to “0”. The scans for signal state “1” (the timer status)
deliver the result of scan “1” for as long as the time is running. The time value is
counted down from the start value according to the set scale.

d The timer function starts again with the programmed time value (the timer
function is “retriggered”) if the signal state at the start input changes from “0”
to “1” (positive edge) while the time is running. It can be restarted any number of
times without expiring.

Resetting with extended pulse

Resetting a time started as a extended pulse has a static effect and has priority over
starting of the timer function (Fig. 12.23).

fg Signal state “1” at the reset input of the timer function with the time running
resets the timer function. A scan for signal state “1” (timer status) delivers the
result of scan “0” if the timer function is reset. The time value and the time scale are
also set to zero.

Fig. 12.22 Enabling with a pulse time

Enable with starting as pulse

t = specified duration

Timer status

Elapsed
time

Start
input

t t

a s d

Enable
input

t

12 Basic functions

532

h Processing of the reset input with signal state “1” has no effect when the time
is not running.

j If a reset signal is present and the signal state at the start input changes
from “0” to “1” (positive edge), the timer function is started but the subsequent
reset immediately resets it again (indicated by a line in the diagram). If the scan of
the timer status is programmed following the reset, the brief starting does not
influence the scan of the timer function.

Enabling with extended pulse

Enabling is only possible in the programming language STL. The diagram in Fig.
12.24 shows enabling of a timer function started as a extended pulse.

Fig. 12.23 Timer response as extended pulse

Fig. 12.24 Enabling with extended pulse

Timer response with starting as extended pulse

t = specified duration

Timer status

Elapsed
time

Start
input

t t t tt t

a s d f g

Reset
input

t

h j

Enable with starting as extended pulse

t = specified duration

Timer status

Elapsed
time

Start
input

t t t

a s d f

Enable
input

t

12.4 SIMATIC timer functions

533

a If the signal state at the enable input changes from “0” to “1” (positive edge)
while the time is running, the time for processing of the start operation restarts as
long as signal state “1” is still present at the start input. With this restart, the pro-
grammed duration is applied as the current time value. A change in the signal state
at the enable input from “1” to “0” has no effect.

s If the signal state at the enable input changes from “0” to “1” (positive edge)
while the time is not running and signal state “1” is still present at the start input,
the timer function also starts with the programmed duration as extended pulse.

df With signal state “0” at the start input, a positive signal edge at the enable
input has no effect.

12.4.5 Timer response as ON delay

Starting as ON delay

The diagram in Fig. 12.25 describes the response of the timer function following
starting as ON delay and when resetting.

a The timer function starts if the signal state at its start input changes from “0”
to “1” (positive edge). It expires with the programmed duration. The scans for sig-
nal state “1” (timer status) deliver the result of scan “1” if the time has expired cor-
rectly and the start input is still controlled by signal state “1” (delayed switch-on).
The time value is counted down from the start value according to the set scale.

s The timer function stops if the signal state at the start input changes from “1”
to “0” while the time is running. A scan of the timer function for signal state “1”
(timer status) always delivers the result of scan “0” in such cases. The time value
indicates the remaining duration by which the time was interrupted too early.

Fig. 12.25 Timer response as ON delay

Timer response with starting as ON delay

t = specified duration

Timer status

Elapsed
time

Start
input

t t t tt

a s d f g

Reset
input

t

12 Basic functions

534

Resetting as ON delay

Resetting an ON delay has a static effect and has priority over starting of the timer
function (Fig. 12.25).

df Signal state “1” at the reset input resets the timer function irrespective of
whether the time is running or not. A scan for signal state “1” (timer status) then
delivers the result of scan “0” even if the time is not running and the signal state “1”
is still present at the start input. The time value and the time scale are also set to
zero. If the signal state at the reset input changes from “1” to “0” while signal
state “1” is still present at the start input, the timer function remains unaffected.

g If a reset signal is present and the signal state at the start input changes from
“0” to “1” (positive edge), the timer function is started but the subsequent reset
immediately resets it again (indicated by a line in the diagram). If the scan of the
timer status is programmed following the reset, the brief starting does not influ-
ence the scan of the timer function.

Enabling as ON delay

Enabling is only possible in the programming language STL. The diagram in Fig.
12.26 shows enabling of a timer function as ON delay.

a If the signal state at the enable input changes from “0” to “1” (positive edge)
while the time is running, the time for processing of the start operation restarts as
long as signal state “1” is still present at the start input. With this restart, the pro-
grammed duration is applied as the current time value. A change in the signal state
at the enable input from “1” to “0” has no effect.

Fig. 12.26 Enabling with ON delay

Enable with starting as ON delay

t = specified duration

Timer status

Elapsed
time

Start
input

t t t t

a s d f

Enable
input

Reset
input

t

12.4 SIMATIC timer functions

535

s If the signal state at the enable input changes from “0” to “1” (positive edge)
when the time has expired correctly, the timer function remains uninfluenced
when the start operation is processed.

df With the timer function reset, a positive signal edge at the enable input
restarts the timer function if signal state “1” is still present at the start input. This
restart takes over the programmed duration as current time value.

With signal state “0” at the start input, a positive edge at the enable input has no
effect.

12.4.6 Timer response as retentive ON delay

Starting as retentive ON delay

The diagram in Fig. 12.27 describes the response of the timer function following
starting and when resetting.

as The timer function starts if the signal state at its start input changes from “0”
to “1” (positive edge). It runs for the programmed duration even if the signal state
at the start input returns to “0”. If the time has expired, a scan of the timer function
for signal state “1” (timer status) delivers the result of scan “1” independent of the
signal state at the start input. The result of scan only becomes “0” again if the timer
function has been reset, independent of the signal state at the start input. The time
value is counted down from the start value according to the set scale.

d The timer function starts again with the programmed time value (the timer
function is “retriggered”) if the signal state at the start input changes from “0”
to “1” (positive edge) while the time is running. It can be restarted any number of
times without expiring.

Fig. 12.27 Timer response as retentive ON delay

Timer response with starting as retentive ON delay

t = specified duration

Timer status

Elapsed
time

Start
input

t t t tt t
a s d f g

Reset
input

t

h

12 Basic functions

536

Resetting as retentive ON delay

Resetting a retentive ON delay has a static effect and has priority over starting of
the timer function (Fig. 12.27).

fg Signal state “1” at the reset input resets the timer function independent of
the signal state at the start input. The scans of the timer function for signal state “1”
(timer status) then deliver the result of scan “0”. The time value and the time scale
are set to zero.

h If a reset signal is present and the signal state at the start input changes from
“0” to “1” (positive edge), the timer function is started but the subsequent reset
immediately resets it again (indicated by a line in the diagram). If the scan of the
timer status is programmed following the reset, the brief starting does not influ-
ence the scan of the timer function.

Enabling as retentive ON delay

Enabling is only possible in the programming language STL. The diagram in Fig.
12.28 shows enabling of a timer function started as a retentive ON delay.

a If the signal state at the enable input changes from “0” to “1” (positive edge)
while the time is running, the timer function for processing of the start operation
restarts as long as signal state “1” is still present at the start input. With this restart,
the timer function takes over the programmed duration as the current time value.
A change in the signal state at the enable input from “1” to “0” has no effect.

s If the signal state at the enable input changes from “0” to “1” (positive edge)
when the time has expired correctly, the timer function remains uninfluenced
when the start operation is processed.

Fig. 12.28 Enabling with retentive ON delay

Enable with starting as retentive ON delay

t = specified duration

Timer status

Elapsed
time

Start
input

t t t tt
a s d f g

Enable
input

Reset
input

t

12.4 SIMATIC timer functions

537

d With signal state “0” at the start input, a positive signal edge at the enable input
has no effect.

fg With the timer function reset and signal state “1” at the start input, a positive
edge at the enable input restarts the timer function. This restart takes over the pro-
grammed duration as current time value.

12.4.7 Timer response as OFF delay

Starting as OFF delay

The diagram in Fig. 12.29 describes the response of the timer function following
starting as OFF delay and when resetting.

ad The timer function starts if the signal state at its start input changes from “1”
to “0” (negative edge). It expires with the programmed duration. The scans of the
timer function for signal state “1” (timer status) deliver the result of scan “1” if the
signal state at the start input is “1” or if the time is running (delayed switch-off).
The time value is counted down from the start value according to the set scale.

s The timer function is reset if the signal state at its start input changes from “0”
to “1” (positive edge) while the time is running. Only a negative edge at the start
input restarts the time.

Resetting as OFF delay

Resetting an OFF delay has a static effect and has priority over starting of the timer
function (Fig. 12.29).

f Signal state “1” at the reset input of the timer function with the time running
resets the timer function. The result of scans for signal state “1” (timer status) is
then “0”. The time value and the time scale are also set to zero.

Fig. 12.29 Timer response as OFF delay

Timer response with starting as OFF delay

t = specified duration

Timer status

Elapsed
time

Start
input

t t tt

a s d f g

Reset
input

t

h j

12 Basic functions

538

gh Signal state “1” at the start input and at the reset input resets the binary out-
put of the timer function (a scan of the timer function for signal state “1”, the timer
status, then delivers the result of scan “0”). If the signal state at the reset input then
changes to “0” again, the output of the timer function has signal state “1” again.

j If a reset signal is present and the signal state at the start input changes from
“1” to “0” (negative edge), the timer function is started but the subsequent reset
immediately resets it again (indicated by a line in the diagram). The scan for signal
state “1” (the timer status) then immediately delivers the result of scan “0”.

Enabling as OFF delay

Enabling is only possible in the programming language STL. The diagram in Fig.
12.30 shows enabling of a timer function started as an OFF delay.

a If the signal state at the enable input changes from “0” to “1” (positive edge)
when the time is not running, the timer function remains uninfluenced when the
start operation is processed. A change in the signal state at the enable input from
“1” to “0” has no effect either.

s If the signal state at the enable input changes from “0” to “1” (positive edge)
when the time is running, the timer function restarts when the start operation is
processed. This restart takes over the programmed duration as current time value.

d A change in the signal state at the enable input from “0” to “1” (positive edge)
or a change in the signal state from “1” to “0” (negative edge) with the time not run-
ning has no effect.

Fig. 12.30 Enabling with OFF delay

Enable with starting as OFF delay

t = specified duration

Timer status

Elapsed
time

Start
input

t

a s d

Enable
input

t

12.5 IEC timer functions

539

12.5 IEC timer functions

12.5.1 Introduction

You can use the timer functions to implement timing processes in the program
such as waiting and monitoring times, measurement of a time interval, or the gen-
eration of pulses. The following IEC timer functions are available:

b TP Pulse generation

b TON ON delay

b TOF OFF delay

b TONR Accumulating ON delay

An IEC timer function is a statement with its own data. When programming a timer
function, you specify the data block in which the data is to be saved. If you select the
Single instance button, it must be a different data block each time. If you program a
timer function in a function block, you can also select Multi-instance. In this case the
data of the timer function is saved as local instance in the instance data block of the
function block.

The duration of an IEC timer function can have the data type TIME or LTIME. Accord-
ingly, the data structure of an IEC timer function is mapped in the system data type
(SDT) IEC_TIMER or IEC_LTIMER. The individual components of the data structure
are shown in Chapter 4.11.1 “System data types for IEC timer functions” on page
139.

The data of several timer functions can be stored in an instance data block under
different names. This reduces the number of required data blocks. With LAD and
FBD, you can also take advantage of this when calling timer functions in FC and
OB blocks: In a global data block, you create a tag with the data type IEC_TIMER for
each call of a timer function and cancel the Call options dialog when programming
the timer function. Instead, you specify the tag name for the storage location of the
instance data. Example: If in the data block “Timer_Data” you create a Pulse tag with
data type IEC_TIMER, you can specify the instance name “Timer_Data”.Pulse when
calling the timer function.

When calling an IEC timer function you must supply the start input IN and the
defined duration PT (preset time) with tags. Supplying of the timer status Q and the
elapsed time ET is optional. You can scan the time status like a binary tag at any
point in the user program with Instance_Name.Q.

The timer functions run in STARTUP and RUN modes.

Note that the instance data of a timer function is only updated if you call one of the
statements TP, TON, TOF, and TONR or on direct access to the structure components
Q (time status) and ET (current time value). Thus it may happen that the scans of
the time status or the current time value deliver different values at two different
points in the program. You can avoid different values in a program cycle if you
assign the time status and/or the current time value to a tag and then scan only the
tag.

12 Basic functions

540

12.5.2 Pulse generation TP

The pulse generation shortens or extends an input signal to the programmed dura-
tion (Fig. 12.31).

The timer function starts if the signal state at its start input IN changes from “0”
to “1”. It runs for the duration programmed at the PT input, independent of the fur-
ther response of the signal state at the start input. The Q output delivers signal
state “1” for as long as the time is running a s d f.

The ET output delivers the expired time. This duration commences at T#0s and
ends at the preset time PT. If the time has expired, ET remains at the expired value
until the signal state at the IN input changes again to “0” a f. If the IN input has
signal state “0” prior to expiry of the preset time PT, the ET output immediately
changes to T#0s following expiry of PT s d.

Fig. 12.31 Pulse generation TP, representation and function

TP
Data type

IN IN

PT PT

Q ET

ET Q

Instance data

Pulse generation TP

t = specified duration PT

Timer status

Elapsed
time

Start
input

LAD

SCL

FBD

t t t t
a s d f

TP
Data type

Instance data Name Declaration Data type Description

IN INPUT BOOL Start input

PT INPUT *) Defined duration

Q OUTPUT BOOL Timer status

ET OUTPUT *) Elapsed time

*) TIME, LTIME

t

"Instance DB". (
IN := Start input,
PT := Duration,
Q => Timer status,
ET => Time value);

TP

Call as a single instance: STL

CALL ,"Instance DB"

IN := Start input
PT := Duration
Q := Timer status
ET := Time value

TP
Data type

Call as a single instance:

12.5 IEC timer functions

541

12.5.3 ON delay TON

The ON delay delays an input signal by the programmed duration (Fig. 12.32).

a f The timer function starts if the signal state at its start input IN changes from
“0” to “1”. It expires with the duration programmed at the PT input. The Q output
delivers signal state “1” if the time has expired and for as long as the start input is
still “1”.

s d The time is reset if the signal state at the start input IN changes from “1” to “0”
before the time has expired. It starts again with the next positive edge at the
IN input.

The ET output delivers the expired time. This duration commences at T#0s and
ends at the preset time PT. If PT has expired, ET remains at the expired value until
the IN input changes again to “0” a f. If the IN input has signal state “0” prior to
expiry of PT, the ET output immediately changes to T#0s s d f.

Fig. 12.32 ON delay TON, representation and function

TON
Data type

TON
Data type

IN IN

PT PT

Q ET

ET Q

Instance data Instance data

ON delay TON

LAD FBD

Name Declaration Data type Description

IN INPUT BOOL Start input

PT INPUT *) Defined duration

Q OUTPUT BOOL Timer status

ET OUTPUT *) Elapsed time

*) TIME, LTIME

SCL

"Instance DB". (
IN := Start input,
PT := Duration,
Q => Timer status,
ET => Time value);

TON

Call as a single instance:

Timer status

Elapsed
time

Start
input

t t
a s

t

t
f

t
d

t = specified duration PT

STL

CALL ,"Instance DB"

IN := Start input
PT := Duration
Q := Timer status
ET := Time value

TON
Data type

Call as a single instance:

12 Basic functions

542

12.5.4 OFF delay TOF

The OFF delay delays the switching off of an input signal by the programmed dura-
tion (Fig. 12.33).

a d The Q output has signal state “1” if the signal state at the start input IN of the
timer function changes from “0” to “1”. If the signal state at the start input returns
to “0”, the time starts with the duration programmed at the PT input. The Q output
remains at signal state “1” for as long as the time is running. The Q output is reset
if the time has expired.

s The duration is reset and the Q output remains “1” if the signal state at the start
input changes to “1” again before the time has expired.

The ET output delivers the expired time. This duration commences at T#0s and
ends at the preset time PT. If PT has expired, ET remains at the expired value until
the IN input has signal state “1” f. If the IN input has signal state “1” prior to expiry
of PT, the ET output immediately changes to T#0s s.

Fig. 12.33 OFF delay TOF, representation and function

TOF
Data type

TOF
Data type

IN IN

PT PT

Q ET

ET Q

Instance data Instance data

OFF delay TOF

Timer status

Start
input

LAD FBD

t tt
a s d f

t = specified duration PT

Elapsed
time

Name Declaration Data type Description

IN INPUT BOOL Start input

PT INPUT *) Defined duration

Q OUTPUT BOOL Timer status

ET OUTPUT *) Elapsed time

*) TIME, LTIME

t

SCL

"Instance DB". (
IN := Start input,
PT := Duration,
Q => Timer status,
ET => Time value);

TOF

Call as a single instance: STL

CALL ,"Instance DB"

IN := Start input
PT := Duration
Q := Timer status
ET := Time value

TOF
Data type

Call as a single instance:

12.5 IEC timer functions

543

12.5.5 Accumulating ON delay TONR

The accumulating ON delay delays an input signal by the programmed duration,
where an interruption of the input signal prolongs the expiry of the duration (Fig.
12.34).

a The timer function starts if the signal state at its start input IN changes from “0”
to “1”. It expires with the duration programmed at the PT input. Output Q delivers
signal state “1” if the time has expired, regardless of the further course of the signal
state at the start input. s If the signal state at start input IN changes from “1” to “0”
while the time is running, the timer function is stopped, but not reset. d If the sig-
nal state at the start input switches again to “1”, the timer function continues to run
from the interrupted time.

a s d With signal state “1”, the reset input R resets output Q to signal state “0”
and clears the time duration ET. The resetting of Q and deletion of ET take place

Fig. 12.34 Accumulating ON delay TONR, representation and function

TONR
Data type

TONR
Data type

IN IN

R

PT

R

PT

Q

ETET

Q

Instance data Instance data

Accumulating ON delay TONR

LAD FBD
Name Declaration Data type Description

IN INPUT BOOL Start input

R INPUT BOOL Reset input

PT INPUT *) Defined duration

Q OUTPUT BOOL Timer status

ET OUTPUT *) Elapsed time

*) TIME, LTIME

SCL

"Instance DB". (
IN := Start input,
R := Reset input,
PT := Duration,
Q => Timer status,
ET => Time value);

TONR

Call as a single instance:

Reset
input

Timer status

Start
input

t t t2

t1 + t2 = t

t1 t
a gs d f

t = specified duration PT

Elapsed
time

t

+

STL

CALL ,"Instance DB"

IN := Start input
R := Reset input
PT := Duration
Q := Timer status
ET := Time value

TONR
Data type

Call as a single instance:

12 Basic functions

544

regardless of the signal state at the start input. f If the reset input R is again “0”
while the start input IN is still “1”, the time starts again. g If the signal state at the
start input changes from “0” to “1” while the reset input R has signal state “1”, the
timer function is not started.

The RT function has the same effect as the reset input R. Resetting the timer func-
tion when processing with signal state “1” stops the current time running, sets the
time status to signal state “0”, and deletes the current time value.

12.5.6 Loading an IEC timer function with a duration

The program elements shown in Fig. 12.35 are available for loading an IEC timer
function with a duration. For a single instance, the data block is specified as the
timer function. For a local instance, the instance name is specified.

LAD: The PT coil is only executed if the signal state before the coil is “1”. Signal state
“0” has no effect.

FBD: The PT box is only executed if the signal state at the start input is “1”. Signal
state “0” has no effect.

SCL: The PRESET_TIMER function is always executed during processing.

STL: PRESET_TIMER is called together with the CALL operation. After the call comes
the data type of the duration, which is specified at the parameter PT, and the data
type of the timer function, which is specified at the parameter TIMER.

Fig. 12.35 Loading a duration into an IEC timer function

PT

PT

Loading a duration into an IEC timer function

Load duration

Load duration

Load duration

Load duration

SCL PRESET_TIMER (PT :=
TIMER :=);

Duration,
Timer function

Duration

Duration

Start input

Timer function

Timer function

PT

LAD

FBD

STL DT1 = Data type of duration
DT2 = Data type of timer function

CALL

PT :=
TIMER :=

PRESET_TIMER
DT1 DT2

Duration
Timer function

12.6 SIMATIC counter functions

545

12.5.7 Resetting an IEC timer function

The program elements shown in Fig. 12.36 are available for resetting an IEC timer
function. For a single instance, the data block is specified as the timer function.
For a local instance, the instance name is specified.

LAD: The RT coil is only executed if the signal state before the coil is “1”. Signal state
“0” has no effect.

FBD: The RT box is only executed if the signal state at the start input is “1”. Signal
state “0” has no effect.

SCL: The RESET_TIMER function is always executed during processing.

STL: RESET_TIMER is called together with the CALL operation. After the call comes
the data type of the timer function, which is specified at the parameter TIMER.

12.6 SIMATIC counter functions

12.6.1 Overview

You can use the SIMATIC counter functions to execute counting tasks directly using
the CPU. The counter functions can count up and down; the numerical range
extends over three decades (000 to 999).

The counting frequency of these counter functions depends on the execution time
of your program. In order to count, the CPU must recognize a change in the signal
state of the input pulse, i.e. an input pulse (or a pause) must be present for at least

Fig. 12.36 Resetting a timer function

RT

Resetting an IEC timer function

Timer function
reset

Timer function
reset

Timer function
reset

Timer function
reset

SCL RESET_TIMER (TIMER :=);Timer function

Start input

Timer function

Timer function

RT

LAD

FBD

STL DT = Data type of timer functionCALL

TIMER :=

RESET_TIMER
DT

Timer function

12 Basic functions

546

one program cycle. The longer the program execution time, the lower the counting
frequency.

The following responses are available for a SIMATIC counter function:

b Up counter
Each pulse at the counter input increments the count value by one unit.

b Down counter
Each pulse at the counter input decrements the count value by one unit.

b Up/down counter
A pulse at the up counter increments the count value by one unit; a pulse at the
down counter decrements the count value by one unit.

A data record which is present in the system data is permanently assigned to each
SIMATIC counter function; this limits the number of SIMATIC counter functions.
SIMATIC counter functions are global tags; the symbols are declared in the PLC tag
table.

The SIMATIC counter functions run in STARTUP and RUN modes.

SIMATIC counters as overall function

The overall function is represented in the programming languages LAD and FBD as
a box (Fig. 12.37). The box of a counter function contains the related representation
of all individual counter operations in the form of function inputs and outputs. The
address of the counter function is named above the box in absolute or symbolic
form. The counter response is quasi the heading in the box. Assignment of the first
box input is mandatory, assignment of the other inputs and outputs is optional.
With SCL, the complete function call corresponds to the overall function. With STL,
the individual statements must be programmed in the indicated sequence.

SIMATIC counters as single elements

In the representation as single elements, attention must be paid to the program-
ming sequence so that the counter function responds as described later in this
book: First program the count up and count down statement, then the set state-
ment, followed by the reset statement, and finally scan the counter function. If the
enabling statement is used with STL, it must be programmed prior to the counter
statement (Fig. 12.38).

When programming a counter function, you need not use all statements available
for the counter function. It is sufficient to use the statements required for the
desired function. In the normal case these are the count up or count down function,
setting of the counter function with specification of the count value, and the binary
scanning of the counter status.

12.6 SIMATIC counter functions

547

Fig. 12.37 SIMATIC counter functions as overall function

With LAD and FBD as With SCL With STL

Box Single element with with

Up counter S_CU CU S_CU CU

Down counter S_CD CD S_CD CD

Up/down counter S_CUD CU + CD S_CUD CU + CD

Name Declaration Data type Description

CU INPUT BOOL Count up input

CD INPUT BOOL Count down input

S INPUT BOOL Set input

PV INPUT WORD Specified count value

R INPUT BOOL Reset input

Q OUTPUT BOOL Counter status

CV OUTPUT WORD Count value integer

CV_BCD OUTPUT WORD Count value BCD
Function

CD

PV

CU

CD

PV

CU

S

R

S

R

CV

Q

CV_BCD

CV_BCD

CV

Q

Counter operand

SIMATIC counter functions, representation as total function

LAD

SCL

FBD

Function

Counter operand

Count value BCD:= (
C_NO
CU := Count up,
CD := Count down,
S := Set input,
PV := Count value,
R := Reset input,
Q => Counter status,
CV => Count value integer);

Function
Counter operand,:=

Function identifier:

LAD: The representation shows an up/down counter S_CUD. The
CD parameter is omitted with the up counter S_CU, and the CU
parameter with the down counter S_CD.

FBD: The representation shows an up/down counter S_CUD. The
CD parameter is omitted with the up counter S_CU, and the CU
parameter with the down counter S_CD.

SCL: The representation shows an
up/down counter S_CUD. The CD
parameter is omitted with the up
counter S_CU, and the CU parameter
with the down counter S_CD.

Parameters for LAD and FBD:

STL A Enable input;
FR ;
A Count up;
CU ;
A Count down;
CD ;
A Set input;
L Count value;
S ;
A Reset input;
R ;
L ;
T Count value integer;
LC ;
T Count value BCD;
A ;
= Counter status;

Counter operand

Counter operand

Counter operand

Counter operand

Counter operand
Counter operand

Counter operand

Counter operand

STL: The representation shows an up/down counter. With
the up counter you omit the counting down, with the down
counter you omit the counting up.

12 Basic functions

548

Fig. 12.38 SIMATIC counter functions, representation as single elements

CU CD S R

PV

Representation of a SIMATIC counter function with single elements

Count up Set counter function

Set counter function

Count down Reset counter function

Reset counter function

Count up Count down

Scan counter status for "1" and "0"

Scan counter
status for "1"

Scan counter
status for "0"

Load count value integer-coded

Load count value integer-coded

SCL

Counter operand Counter operand

Count value

Count value

Set input Reset input

Count up Count down

Counter operand Counter operand

Counter operand Counter operand

Counter operand Counter operand

Counter
operand

Counter operand

Counter operand Counter operand

S R

CU CD

MOVE

MOVE

EN

EN

IN

IN

ENO

OUT

OUT

ENO

LAD

FBD

Individual parameters of the counter function
can be omitted. You only program the
parameters that you require.
You must always specify the counter operand
(C_NO).
Set input (S) and count value (PV) must always
be handled in pairs.

Count value BCD := S_CUD(
C_NO
CU := Count up,
CD := Count down,
S := Set input,
PV := Count value,
R := Reset input,
Q => Counter status,
CV => Count value integer);

Counter operand,:=

STL
The operations of the counter function can be
programmed individually.
A count value is always required to set the
counter function.

A Enable input;
FR ;
A Count up;
CU ;
A Count down;
CD ;
A Set input;
L Count value;
S ;
A Reset input;
R ;
L ;
T Count value integer;
LC ;
T Count value BCD;
A ;
= Counter status;

Counter operand

Counter operand

Counter operand

Counter operand

Counter operand
Counter operand

Counter operand

Counter operand

Count value integer

Counter operand
Counter operand

Count value integer

12.6 SIMATIC counter functions

549

12.6.2 Programming a counter function

Count up

A counter function is counted up, for example, using a binary tag. In the figures,
this tag is named Count up.

Each positive edge when counting up increments the count value by one unit until
the upper limit of 999 is reached. Any further positive edges for counting up then
have no effect. Carrying forward does not take place.

Count down

A counter function is counted down, for example, using a binary tag. In the figures,
this tag is named Count down.

Each positive edge when counting down decrements the count value by one unit
until the lower limit of 0 is reached. Any further positive edges for counting down
then have no effect. Counting with a negative count value does not take place.

Set counter function

A counter function is set to a default value, for example, using a binary tag. In the
figures, this tag is named Set input.

With a positive edge at the set input, the default value is transferred to the counter.

Specification of count value

When setting, the counter function is loaded with a default value of data type WORD
(BCD16 in the range from W#16#0000 to W#16#0999). In the figures, this tag is
named Count value.

Fig. 12.39 shows the bit assignment of the count value.

Reset counter function

A counter function is reset, for example, using a binary tag. In the figures, this tag
is named Reset input.

A counter function is reset as long as the reset input has signal state “1”. Resetting
of the counter function sets the count value to zero and the counter status to “0”.

Fig. 12.39 Bit assignment of the count value of a SIMATIC counter

15 11 7 312 8 4 0

100

Count value specified in BCD

010 110 2

Bit

SIMATIC counter function, bit assignments of the count value

12 Basic functions

550

Setting, counting up, and counting down of the counter function is not possible for
as long as the reset is present.

Note with STL: Resetting a counter function does not reset the internal edge trigger
flags for setting, counting up, and counting down. To set, count up or count down
again, the corresponding operation must first be processed with RLO “0” before the
counter function detects a signal edge. You can also use enabling of the counter
function for this.

Scan counter status

The counter status indicates with signal state “1” that the current count value is
greater than zero. With a count value of zero, the counter status has signal state “0”.
For example, the counter status can be assigned to a binary tag. In the figures, this
tag is named Counter status.

Scanning the current count value BCD-coded

The count value is the current counter value at the time of scanning. It can be
assigned, for example, to a tag with data type WORD. In the figures, this tag is
named Count value BCD. The range of values is from W#16#0000 to W#16#0999.

Scanning the current count value integer-coded

The count value is the current counter value at the time of scanning. It can be
assigned, for example, to a tag with data type INT. In the figures, this tag is named
Count value integer. The range of values is from 0 to +999.

12.6.3 Principle of operation of a counter function

Fig. 12.40 shows the principle of operation of the SIMATIC counter function.

a The counter is at a count value of zero. The counter status has signal state “0”.

s A positive edge at the count up input increments the count value by one unit
to 1.

d A positive edge at the count up input increments the count value by one unit
to 2.

f The positive edge at the set input sets the counter to the specified count value
of 4.

g A positive edge at the count up input increments the count value by one unit
to 5.

h One positive edge each at the count up and count down inputs result in the end
that the count value does not change.

j The positive edge at the count down input decrements the count value by one
unit to 4.

k The positive edge at the count down input decrements the count value by one
unit to 3.

12.6 SIMATIC counter functions

551

l Signal state “1” at the reset input resets the counter function. The count value
is set to 0 and the counter status has signal state “0”.

; Counting down with a count value of 0 has no effect.

A With a positive edge at the set input, the count value is set to 4. The counter sta-
tus has signal state “1”.

S The positive edge at the count up input increments the count value by one unit
to 5.

The sequence of counter statements upon which the example is based can be
obtained from Fig. 12.38 on Page 548.

12.6.4 Enabling a counter function with STL

As a result of enabling, setting as well as counting up and down are executed even
without a positive signal edge at the corresponding inputs. This is only possible if
the corresponding operation continues to be processed with RLO “1”. Enabling is
only present in the programming language STL; it is not required for setting, reset-
ting or counting, i.e. for normal execution.

Enabling is triggered by a positive edge at the enabling operation, for example by a
binary tag. In the figure, this tag is named Enable input.

Enabling resets the internal edge trigger flags for setting and counting. If the result
of logic operation is “1” with the next processing at the set, count up or count down
input, the corresponding function is executed again.

Fig. 12.40 Principle of operation of a SIMATIC counter function

Functional principle of a SIMATIC counter

Count
up CU

Count
down CD

Set
input S

Reset
input R

Actual
count value

Specified
count value CV

Counter
status Q

0

1

2

5

4

5 5

4

3

0 0

4

a s d f g h j k l ; A S

12 Basic functions

552

Note: Enabling has a quasi-simultaneous effect on setting, counting up, and count-
ing down! Attention must therefore be paid to the sequence of set and count oper-
ations.

The following example explains the principle of operation of enabling at the inputs
of the counter function (Fig. 12.41):

a The positive edge at the set input sets the counter to the start value 20.

s A positive edge at the count up input increments the count value by one unit.

d Since the signal state at the count up input is “1”, the count value is incremented
by one unit when enabled.

f The positive edge at the count down input decrements the count value by one
unit.

g Counting up and down are executed as a result of enabling since signal state “1”
is present at both inputs.

h The positive edge at the set input sets the counter function to the start value 20.

j Signal state “1” at the reset input resets the counter function. The scan of the
counter function for signal state “1” delivers the result of scan “0”.

k Since signal state “1” is still present at the set input, enabling results in the
counter function being set to 20 again. The scan for signal state “1” now delivers
the result of scan “1”.

The sequence of counter statements upon which the example is based can be
obtained from Fig. 12.38 on Page 548.

Fig. 12.41 Enabling a SIMATIC counter function

Enabling a SIMATIC counter function

Count
up

Set
input

Counter status
Counter value

Enable
input

Count
down

Reset
input

a gs hd jf k

20 21 22 21 21 20 0 20

12.7 IEC counter functions

553

12.7 IEC counter functions

12.7.1 Introduction

You can use the counter functions to execute counting tasks directly using the CPU.
The counter functions can count up and down; the numerical range corresponds to
the set data type. The counting frequency of the counter functions depends on the
execution time of your program. In order to count, the CPU must recognize a
change in the signal state of the input pulse, i.e. the input pulse and the pause must
be present for at least one program cycle. The longer the program execution time,
the lower the counting frequency.

The following counter functions are available:

b CTU Up counter

b CTD Down counter

b CTUD Up/down counter

An IEC counter function is a statement with its own data. When programming a
counter function, you specify the data block in which the data is to be saved. If you
select the Single instance button, it must be a different data block each time. If you
program a counter function in a function block, you can also select Multi-instance.
In this case the data of the counter function is saved as local instance in the instance
data block of the function block.

The count value of a counter function can be set when programming for the data
types SINT, INT, DINT, LINT, USINT, UINT, UDINT, and ULINT. The data structure of
a counter function is dependent on this setting. The setup of the data structure is
shown in Section 4.8.4 “Parameter types for IEC counter functions” on page 132.

The data from several counter functions can be stored in an instance data block
under different names. This reduces the number of required data blocks. You can
also take advantage of this when calling counter functions in FC and OB blocks:
In a global data block, you create a tag with the data type IEC_xCOUNTER for each
call of a counter function and cancel the Call options dialog when programming the
counter function. Instead, when calling the counter function you then specify the
tag name for the storage location of the instance data. Example: If in the data block
“Counter_Data” you create a Number tag with the data type IEC_COUNTER, you can
specify the instance name “Counter_Data”.Number when programming the counter
function.

When calling a counter function CTU, CTD, or CTUD, you must supply a start
input and the defined count value PV (preset value) with tags. Supplying of the
counter status Q (QU, QD) and the current count value CV is optional. You can
scan the counter status like a binary tag at any point in the user program with
Instance_Name.Q.

The counter functions run in STARTUP and RUN modes.

12 Basic functions

554

12.7.2 Up counter CTU

If the signal state at the count up input CU changes from “0” to “1” (positive edge),
the current count value is incremented by 1 and is indicated at the CV output. If the
current count value reaches the upper limit of the set data type, it is no longer
incremented. A positive edge at CU then has no effect (Fig. 12.42).

The count value is reset to zero if the reset input R has signal state “1”. A positive
edge at the CU input has no effect for as long as the R input has signal state “1”.

The Q output has signal state “1” if the current count value is greater than or equal
to the specified count value (CV ≥ PV).

Fig. 12.42 Up counter CTU, representation and function

DeclarationName

CU

R

PV

Q

CV

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

INT

BOOL

INT

Count up input

Reset input

Specified count value

Counter status

Actual count value

DescriptionData type
CTU
INT

CTU
INT

CU CU

R R

PV PV

Q

QCV

CV

Instance name Instance name

Up counter CTU

LAD FBD

Count up
input CU

Reset
input R

Actual
count value CV

Specified
count value PV

Counter
status Q

0

1

2

3

4

5

6

0

1

2

3

4

SCL

"Instance DB". (
CU := Count up,
R := Reset input,
PV := Default value,
Q => Counter status,
CV => Count value);

CTU

Call as a single instance: STL

CALL ,"Instance DB"
Int
CU := Count up
R := Reset input
PV := Default value
Q := Counter status
CV := Count value

CTU

Call as a single instance:

12.7 IEC counter functions

555

12.7.3 Down counter CTD

If the signal state at the count down input CD changes from “0” to “1” (positive
edge), the current count value is decremented by 1 and is present at the CV output.
If the current count value reaches the lower limit of the selected data type, it is no
longer decremented. A positive edge at CD then has no effect (Fig. 12.43).

The count value CV is set to the specified count value PV if the LD input has signal
state “1”. A positive edge at the CD input has no effect for as long as the LD input has
signal state “1”.

The Q output has signal state “1” if the current count value is less than or equal to
zero (CV ≤ 0).

Fig. 12.43 Down counter CTD, representation and function

DeclarationName

CD

LD

PV

Q

CV

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

INT

BOOL

INT

Count down input

Load input

Specified count value

Counter status

Actual count value

DescriptionData type

CTD
INT

CTD
INT

CD CD

LD LD

PV PV

Q

QCV

CV

Instance name Instance name

Down counter CTD

LAD FBD

Count down
input CD

Load
input LD

Actual
count value CV

Specified
count value PV

Counter
status Q

0

1

2

3

4

5

0

5

2

3

4

SCL

"Instance DB". (
CD := Count down,
LD := Load input,
PV := Default value,
Q => Counter status,
CV => Count value);

CTD

Call as a single instance: STL

CALL ,"Instance DB"
Int
CD := Count down
LD := Load input
PV := Default value
Q := Counter status
CV := Count value

CTD

Call as a single instance:

12 Basic functions

556

12.7.4 Up/down counter CTUD

If the signal state at the count up input CU changes from “0” to “1” (positive edge),
the count value is incremented by 1 and is indicated at the CV output. If the signal
state at the count down input CD changes from “0” to “1” (positive edge), the count
value is decremented by 1 and is present at the CV output. If both count inputs have
a positive edge, the current count value is not changed (Fig. 12.44).

Fig. 12.44 Up/down counter CTUD, representation and function

DeclarationName

CU

CD

R

LD

PV

QU

QD

CV

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

INT

BOOL

BOOL

INT

Count up input

Count down input

Reset input

Load input

Specified count value

Count up status

Count down status

Actual count value

DescriptionData type

CTUD
INT

CTUD
INT

CU CU

R R

PV PV

CD CD

LD LD

QU

QDCV

QU

QD

CV

Instance name Instance name

Up/down counter CTUD

LAD FBD

Count up
input CU

Count down
input CD

Reset
input R

Load
input LD

Actual
count value CV

Specified
count value PV

Counter
status QU

Counter
status QD

0

1

2

3

4

5

4

3

2

3

4

0

SCL

"Instance DB". (
CU := Count up,
CD := Count down,
R := Reset input,
LD := Load input,
PV := Default value,
QU => Status_up,
QD => Status_down,
CV => Count value);

CTUD

Call as a single instance: STL

CALL ,"Instance DB"
Int
CU := Count up
CD := Count down
R := Reset input
LD := Load input
PV := Default value
QU := Status_up
QD := Status_down
CV := Count value

CTUD

Call as a single instance:

12.7 IEC counter functions

557

If the current count value reaches the upper limit of the selected data type, it is no
longer incremented. A positive edge at the count up input CU then has no effect. If
the current count value reaches the lower limit of the selected data type, it is no lon-
ger decremented. A positive edge at the count down input CD then has no effect.

The current count value CV is set to the specified count value PV if the LD input has
signal state “1”. Positive signal edges at the CU and CD counter inputs have no effect
for as long as the LD input has signal state “1”.

The count value is reset to zero if the reset input R has signal state “1”. Positive sig-
nal edges at the CU and CD counter inputs and signal state “1” at the LD input have
no effect for as long as the R input has signal state “1”.

The QU output has signal state “1” if the current count value is greater than or equal
to the specified count value (CV ≥ PV).

The QD output has signal state “1” if the current count value is less than or equal to
zero (CV ≤ 0).

13 Digital functions

558

13 Digital functions

13.1 General information

This chapter describes the digital functions which mainly link digital tags together,
for example the basic arithmetic operations for the arithmetic functions. As far as
possible, the description is independent of the programming language.

The digital functions are implemented internally – not visible to you as the user –
either by means of simple statement sequences or by calling a system or standard
block. Therefore you can find the digital functions in the statements catalog under
Basic instructions and Extended instructions.

The Chapters 7 “Ladder logic LAD” on page 287, 8 “Function block diagram FBD” on
page 323, 9 “Structured Control Language SCL” on page 359, and 10 “Statement list
STL” on page 395 describe how you can program the functions using the individual
programming languages and what special features exist.

A CPU 1500 provides the following digital functions:

b The transfer functions transfer the value of a (digital) tag or memory area.

b The comparison functions generate a binary result by comparing two tags.

b The arithmetic functions link two tags with fixed-point and floating-point data
types in accordance with the basic arithmetic operations.

b The arithmetic functions for time values link two tags with a duration data type
or time data type, for example the calculation of the difference of two times of
day.

b The math functions convert the value of a tag with a floating-point data type in
accordance with the specified function, for example calculation with a trigono-
metric function.

b The conversion functions convert the data type of a tag.

b The shift functions shift the content of a tag bit by bit to the right or left.

b The logic functions comprise, for example, the word logic operations, which link
two tags bit by bit, and the selection and limiting functions.

b The functions for strings process tags with data type STRING. Two strings can be
combined, for example.

b In LAD and FBD, the CALCULATE box allows a complex, user-defined logical op-
eration with logical, arithmetic and mathematical functions.

13.2 Transfer functions

559

The “simple” digital functions are boxes in the case of LAD and FBD (with LAD, the
comparison is a contact), arithmetic, logic and comparison expressions in the case
of SCL, and operations for linking the contents of accumulators in the case of STL.

13.2 Transfer functions

The following are available for transfer of tag contents between memory areas:

b “Simple” statements for copying a digital tag to another tag – with the MOVE and
S_MOVE box in the case of LAD and FBD, with the value assignment function in
the case of SCL, and with load and transfer functions in the case of STL.

b Transfer from and to tags with PEEK and POKE (SCL),

b system blocks for the transfer or filling of a memory area in the work memory
(MOVE_BLK_VARIANT, MOVE_BLK, UMOVE_BLK, FILL_BLK, UFILL_BLK, BLKMOV,
UBLKMOV, FILL) and

b swapping bytes with SWAP (LAD, FBD) or CAW and CAD (STL).

The FieldRead and FieldWrite functions (not described in the book) emulate the
indirect addressing of field components for LAD and FBD. Indirect addressing
with a variable index is more user-friendly and is described in Chapter 4.3.2 “Indi-
rect addressing of ARRAY components” on page 100.

13.2.1 General information on the “simple” transfer function

The transfer function executed using “simple” statements copies the content of a
digital tag to another tag or transfers a fixed value to a digital tag.

As a result of the different language elements, the transfer function is represented
differently in the various programming languages: by the MOVE box in the case of
LAD and FBD, by the value assignment function in the case of SCL, and by load and
transfer functions in the case of STL.

13.2.2 Copy tag, MOVE box for LAD and FBD

The MOVE box transfers the content of the tag at the IN parameter to the tag at the
OUT1 parameter (Fig. 13.1). If there is a tag with elementary data type at parameter
IN, the MOVE box can be expanded with additional outputs OUT2, OUT3, etc. using
the command Insert output from the shortcut menu. The content of the input tag is
then transferred to all box outputs. A tag with elementary data type can also be a
component of a structured data type.

A tag at the IN parameter can have all of the data types, except for STRING.
The S_MOVE function is available for the transfer of STRING tags. The data type of
the tags at the parameters OUT1, OUT2, etc. must be compatible with the data type
of the tags at the parameter IN and is influenced by the block attribute IEC check
(see Chapter 4.5.2 “Implicit data type conversion” on page 108).

13 Digital functions

560

The MOVE box can also transfer a tag with structured data type, with hardware data
type, with PLC data type, with system data type, or entire data blocks that are
derived from a data type (type data blocks). In these cases, the data types at IN and
OUT1 must coincide. An extension of the box outputs (with OUT2, OUT3, etc.) is
then not possible.

You can use EN to control execution of the MOVE box depending on the result of
logic operation. If EN = “1” or not connected, the transfer function is executed and
ENO has signal state “1”. If EN = “0”, ENO is also = “0”. The MOVE box does not report
any errors.

13.2.3 Copy string, S_MOVE box for LAD and FBD

The S_MOVE box transfers the content of the tag at the IN parameter to the tag at the
OUT parameter (Fig. 13.2). The tags are of data type STRING.

If the target tag is greater than the source tag, the source tag is transferred com-
pletely to the target tag and the current length is updated.

Fig. 13.1 Representation and function of the MOVE box with LAD and FBD

Fig. 13.2 S_MOVE box, representation and function

DeclarationName

EN

ENO

IN

OUT1

–

–

INPUT

OUTPUT

*) See text

BOOL

BOOL

*)

*)

Enable input

Enable output

Source tag

First destination tag

DescriptionData typeMOVE MOVE

EN EN

IN IN

ENO OUT1

OUT1 ENO

MOVE box

LAD FBD

Function:
The value present at the IN parameter is transferred to the OUT1 parameter. If the tag at the IN
parameter has an elementary data type, the number of output parameters can be increased.

*
*

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

STRING

BOOL

STRING

Enable input

Enable output

Source tag

Destination tag

S_MOVE S_MOVE

EN EN

IN IN

ENO OUT

OUT ENO

S_MOVE box

LAD FBD

Function:
The value present at the IN parameter is transferred to the OUT parameter.

DeclarationName DescriptionData type

13.2 Transfer functions

561

If the target tag is smaller than the source tag, only as many characters are trans-
ferred as will fit in the target tag. The current length is given the value of the max-
imum length and the ENO output is set to signal state “0”.

13.2.4 Value assignments with SCL

A value assignment transfers the value of an expression to a tag. On the left of the
assignment operator is the output tag, which accepts the value of the expression
positioned on the right. The expression can be a constant, a single tag, a combina-
tion of tag values, or a function whose function value is assigned to the output
parameter.

#Output_tag := #Input_tag; //Assignment of tag value

The data type of the value assignment is determined by the output tag. The data
types on both sides of the assignment operator must be compatible and depend on
the block attribute IEC check (see Chapter 4.5.2 “Implicit data type conversion” on
page 108).

Assignment for elementary data types

A constant value, a different tag, or an expression can be assigned to a tag or oper-
and.

Absolutely addressed operands (e.g. %MW10) have one of the data types BOOL,
BYTE, WORD, or DWORD. If you wish to assign a value with a different data type to
an absolutely addressed operand, you can use the data type conversion or assign a
name and the desired data type to the operand in the PLC tag table.

Assignment of LDT and DTL tags

Every DTL tag can be assigned another DTL tag or a DTL constant. A single compo-
nent can be used like a tag with the data type of the component. Example: In the
#Delivery_date tag with the DTL data type, the hour should be set:

#Delivery_date.HOUR := #Hour; //Data type USINT

Every LDT tag can be assigned another LDT tag or a LDT constant.

Assignment of STRING tags

Every STRING tag can be assigned another STRING tag or a STRING constant. If the
source tag is smaller than the target tag to the left of the assignment operator, all
characters are transferred and the current length is updated. If the source tag is
longer, only as many characters are transmitted as will fit in the target tag and the
current length is set to the maximum length.

A STRING tag can be assigned a tag with data type CHAR. Example:

#String := #Single_character;

13 Digital functions

562

Assignment of STRUCT tags or PLC data types

A STRUCT tag or PLC data type can only be assigned to another STRUCT tag or PLC
data type if

b the data structures agree,

b the data types of the structure components agree, and

b the names of the structure components agree.

Individual structure components can be handled like tags of the corresponding
data type, for example a structure component #Motor1.Setpoint with data type INT
can be assigned to another INT tag, or an INT value can be assigned to this structure
component.

Assignment of ARRAY tags

An ARRAY tag can only be assigned to another ARRAY tag if the data types of the
array components as well as the array limits with smallest and largest array index
agree with each other.

Individual array components can be handled like tags of the corresponding data
type. With multi-dimensional arrays, you can handle the partial arrays like corre-
spondingly dimensioned tags.

Example: #Array1 : ARRAY [1..8,1..16] OF INT represents a two-dimensional array;
you can now address the complete array using #Array1, a partial array using
#Array1[#i] (corresponds to the lines of the matrix), and an array component using
#Array1[#i,#k]. The partial array #Array1[#i] can be assigned to a correspondingly
dimensioned array, e.g. #Array2 := #Array1[i], where i = 1 to 8, and #Array2 :
ARRAY [1..16] OF INT.

13.2.5 Loading and transferring with STL

The loading and transferring is applied for tags that are up to 32 bits wide.
The transferring of tags with 64 bits is described in Chapter 10.5.1 “Transfer func-
tions in the statement list” on page 415.

There are two statements with STL for the transfer of tag values that identify the
transfer direction: The load statement is used to load a tag value from a memory
area into accumulator 1. The transfer statement is used to transfer the value of
accumulator 1 to a tag in a memory area:

Array1 ARRAY [1..8, 1..16] OF INT

Array2 ARRAY [1..16] OF INT

var_int INT

i INT

k INT

Declaration

#var_int := #Array1[#i,#k];

#Array2 := #Array1[#i];

Assignment of a component

Assignment of a partial array

13.2 Transfer functions

563

L #Input_tag //Load into accumulator 1

T #Output_tag //Transfer from accumulator 1

The data types of the input and output tags are unimportant. The load statement
can contain a constant or a digital tag with a width of up to 32 bits. The input tag is
loaded right-justified into accumulator 1 and vacant bit positions are set to zero
(Fig. 13.3).

The output tag for the transfer statement can be 8, 16, or 32 bits wide. The tag value
is obtained right-justified from accumulator 1. The contents of accumulator 1 are
not changed by this.

The load and transfer statements are executed independent of the result of logic
operation and the status bits. Neither the result of logic operation nor the status
bits are influenced.

Influencing of accumulator 2 when loading

The load function additionally changes the contents of accumulator 2. While the
value of the input tag is being loaded into accumulator 1, accumulator 2 is simulta-
neously assigned the old value of accumulator 1. The load function transfers the
complete contents – independent of the size of the input tag – from accumulator 1
to accumulator 2. The previous contents of accumulator 2 are lost in the process.

Fig. 13.3 Transfer of tags with a width of 8, 16, or 32 bits

7

7

31

7

7

15

7

7

7

7

23

7

7

7

7

7

7

7

(n)

(n)

(n+2)

(n+2)

(n)

(n)

(n+1)

(n+1)

(n+3)

(n+3)

(n+1)

(n+1)

(n)

(n)

0

0

24

0

0

8

0

0

0

0

16

0

0

0

0

0

0

0

Doubleword n

Doubleword n

Accumulator 1

Word n

Word n

Byte n

Byte n

Input tag for the load function

Output tag for the transfer function

Loading and transferring

13 Digital functions

564

Transferring only from accumulator 1

You can use the transfer function just for accumulator 1. If you wish to transfer a
value from accumulator 2, use the corresponding accumulator functions (TAK or
POP) to transfer the contents of accumulator 2 into accumulator 1 and then transfer
the value (see also Chapter 10.7.3 “Accumulator functions” on page 448).

13.2.6 Copy data area (MOVE_BLK_VARIANT)

MOVE_BLK_VARIANT copies

b a tag, an operand area or a type data block, or

b transfers array components from one array (ARRAY tag) to another array or the
same array.

Transfer of a tag or an operand area

The actual parameter at the input parameters SRC (source) and DEST (destination)
can be an absolutely or symbolically addressed tag, an absolutely addressed oper-
and area, or a type data block. The parameter COUNT is assigned the value one and
the parameters SRC_INDEX and DEST_INDEX are assigned the value zero (Fig.
13.4).

The specified area is copied in the case of inputs and outputs independent of the
actual assignment with input and output modules. The SIMATIC timer/counter
operand areas cannot be accessed.

You can use the ANY pointer for specifying an absolutely addressed operand area;
its structure is described in Chapter 4.9.4 “ANY pointer” on page 135. With an ANY
pointer of type BOOL, e.g. for an array with binary components, the number (the
repetition factor) must be divisible by 8. With an ANY pointer of type STRING, the
number must be 1. How to use an ANY pointer during runtime is described in
Chapter 4.3.5 “Indirect addressing with an ANY pointer” on page 103.

Transfer of ARRAY components

MOVE_BLK_VARIANT transfers one or more array components from one array
(ARRAY data type) to another array or the same array. The source and destination
components must be of the same data type.

Specify the first array components at the parameter SRC as the data source and the
index of these array components at the parameter SRC_INDEX. The value of SRC_IN-
DEX is relative to the lower array limit (the value zero corresponds to the lower
array limit of the source array). This allows you to address components of an array
which did not exist at the time of programming.

Specify the first array components at the parameter DEST as the data destination
and the index of these array components at the parameter DEST_INDEX. The value
of DEST_INDEX is relative to the lower array limit (the value zero corresponds to the
lower array limit of the destination array). The parameter COUNT is assigned the
number of components to be transferred.

13.2 Transfer functions

565

Fig. 13.4 Transfer function MOVE_BLK_VARIANT

DeclarationName

EN

ENO

SRC

COUNT

SRC_INDEX

DEST

DEST_INDEX

RET_VAL

–

–

INPUT

INPUT

INPUT

OUTPUT

INPUT

RETURN

BOOL

BOOL

VARIANT

UDINT

DINT

VARIANT

DINT

INT

Enable input

Enable output

Tag or ARRAY component (source)

One or number of ARRAY components

Zero or relative index of the ARRAY component (source)

Tag or ARRAY component (destination)

Zero or relative index of the ARRAY component (destination)

Error information

DescriptionData type

EN EN

SRC SRC

SRC_INDEX SRC_INDEX

ENO

ENO

RET_VAL

RET_VALDEST

DEST

MOVE_BLK_VARIANT

LAD

SCL STL

Transfer of a tag or an operand area:
MOVE_BLK_VARIANT transfers an operand, a tag, an operand area, or a type data block from the
parameter SRC (source) to the parameter DEST (destination). COUNT is assigned 1, SRC_INDEX and
DEST_INDEX are assigned 0. RET_VAL contains the error information.

Transfer of ARRAY components:
MOVE_BLK_VARIANT transfers components between arrays of the data type ARRAY. The first array
component of the source array is present at the SRC parameter; the first component of the destination
array is present at the DEST parameter. COUNT specifies the number of components to be transferred.

The index of the source component is present at SRC_INDEX and the index of the destination
component is present at DEST_INDEX. Both specifications are relative to the lower array limit
(0 = lower array limit).

RET_VAL contains the error information.

FBD

COUNT COUNT

DEST_INDEX DEST_INDEX

Parameter SRC Parameter DEST

Source tag
ARRAY [s1 .. sn] OF data type

Destination tag
ARRAY [d1 .. dn] OF data type

var_int := (
SRC := var_variant ,
COUNT := var_udint ,
SRC_INDEX := var_dint ,
DEST_INDEX := var_dint ,
DEST => var_variant);

MOVE_BLK_VARIANT CALL
SRC := var_variant
COUNT := var_udint
SRC_INDEX := var_dint
DEST_INDEX := var_dint
RET_VAL := var_int
DEST := var_variant

MOVE_BLK_VARIANT

DEST_INDEXSRC_INDEX COUNT

s1

s2

s3

...

...

d1

d2

d3

...

...

0

1

2

...

...

0

1

2

...

...

Index relative Index relative

MOVE_BLK_VARIANT MOVE_BLK_VARIANT

13 Digital functions

566

The programmed source and destination areas must be located in the source and
destination tags in their entirety. In the event of an error, e.g. when the range limits
are exceeded, an error notification is displayed at the parameter RET_VAL.

13.2.7 Copy data area (MOVE_BLK, UMOVE_BLK)

MOVE_BLK and UMOVE_BLK transfer the contents of sequential components of an
ARRAY tag to components of another ARRAY tag. The source area is defined by the

Fig. 13.5 Transfer functions MOVE_BLK, UMOVE_BLK, FILL_BLK and UFILL_BLK

EN

ENO

IN

IN

COUNT

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

A component of an ARRAY tag

Elementary data type

USINT, UINT, UDINT, ULINT

A component of an ARRAY tag

Enable input

Enable output

Source tag (MOVE_BLK, UMOVE_BLK)

Source tag (FILL_BLK, UFILL_BLK)

Quantity

Destination tag

Function

Function

EN

EN

IN

IN

ENO

ENO

OUT

OUT

MOVE_BLK, UMOVE_BLK, FILL_BLK, UFILL_BLK

LAD SCL

STL

Function:

MOVE_BLK Transfer data area
UMOVE_BLK Fill data area

uninterruptible

From the ARRAY tags at the IN parameter, the
number of components specified at the
COUNT parameter are transferred to the
ARRAY tag at the OUT parameter. The
components specified at the parameters IN
and OUT are the respective start components
for source and destination.

FBD

COUNT

COUNT

IN parameter OUT parameter

COUNT

ARRAY tag (source) ARRAY tag (destination)

Function (IN :=
COUNT :=
OUT =>);

...

...

...

,
,

CALL

IN :=
COUNT :=
OUT :=

Function
DT1 DT2

...

...

...

Function:

FILL_BLK Fill data area
UFILL_BLK Fill data area

uninterruptible

The contents of the source tags are
transferred to the ARRAY tags at the OUT
parameter into the number of components
that is specified at the COUNT parameter.
The component specified at the OUT
parameter is the start component for the
destination.

IN parameter OUT parameter

COUNT

Source tag

ARRAY tag (destination)

DT1: Data type
for COUNT

DT2: Data type
for IN and OUT

DeclarationName DescriptionData type

13.2 Transfer functions

567

start tag at parameter IN, and the target area by the start tag at parameter OUT. As
many values are copied as the number specified at the COUNT parameter (Fig. 13.5).

MOVE_BLK copies the values so that the process can be interrupted by a higher-pri-
ority program (advantage: quick response time to alarms). UMOVE_BLK copies
without interruption (advantage: transfer of consistent data areas). During transfer
by UMOVE_BLK, alarm events that occur are stored and processed after the transfer
ends. A maximum of 16 KB can be transferred using UMOVE_BLK.

MOVE_BLK and UMOVE_BLK report an error (ENO = “0”) if a range limit is exceeded
during runtime. No values are copied if an error occurs.

13.2.8 Fill data area (FILL, FILL_BLK, UFILL_BLK)

FILL_BLK and UFILL_BLK transfer the content of a tag or a constant value to
sequential components of an ARRAY tag. The data source is defined by parameter
IN and the target area by the start tag at parameter OUT. As many values are cop-
ied as the number specified at the COUNT parameter (Fig. 13.5).

FILL_BLK copies the values so that the process can be interrupted by a higher-pri-
ority program (advantage: quick response time to alarms). UFILL_BLK copies with-
out interruption (advantage: transfer of consistent data). During transfer by
UFILL_BLK, alarm events that occur are stored and processed after the transfer
ends. UFILL-BLK copies a maximum of 16 KB.

FILL_BLK and UFILL_BLK report an error (ENO = “0”) if a range limit is exceeded
during runtime. No values are copied if an error occurs.

13.2.9 Copy and fill data area (BLKMOV, UBLKMOV, FILL)

BLKMOV and UBLKMOV transfer the contents of one memory area to another mem-
ory area. The source area is defined by parameter SRCBLK and the destination area
by parameter DSTBLK. BLKMOV copies the values so that the process can be inter-
rupted by a higher-priority program (advantage: quick response time to alarms).
UBLKMOV copies without interruption (advantage: transfer of consistent data
areas). During transfer by UBLKMOV, alarm events that occur are stored and pro-
cessed after the transfer ends.

FILL transfers the contents of a tag to a memory area multiple times. The data
source is defined by parameter BVAL and the destination area by parameter BLK
(Fig. 13.6).

Block parameters with data type VARIANT

The system blocks BLKMOV, UBLKMOV, and FILL each have two parameters with
data type VARIANT. You can create an operand, a tag, or an absolutely addressed
area from the operand areas Inputs, Outputs, Bit memories, and Data blocks at
these parameters. The data block that is used must be present in the work memory;
the attribute Optimized block access is deactivated.

13 Digital functions

568

The specified area is copied in the case of inputs and outputs independent of the
actual assignment with input and output modules. The SIMATIC timer/counter
operand areas cannot be accessed.

You can use the ANY pointer for specifying an absolutely addressed operand area;
its structure is described in Chapter 4.9 “Pointer” on page 134. With an ANY pointer
of type BOOL, e.g. for an array with binary components, the number (the repetition
factor) must be divisible by 8. With an ANY pointer of type STRING, the number
must be 1. How to use an ANY pointer during runtime is described in Chapter 4.3.5
“Indirect addressing with an ANY pointer” on page 103.

Fig. 13.6 Transfer functions BLKMOV, UBLKMOV, and FILL

BLKMOV

BLKMOV

UBLKMOV

UBLKMOV

FILL

FILL

Variant

Variant

Variant

Variant

Variant

Variant

BLKMOV, UBLKMOV, FILL

SRCBLK

SRCBLK

SRCBLK

SRCBLK

BVAL

BVAL

EN

EN

EN

EN

EN

EN

RET_VAL

RET_VAL

RET_VAL

RET_VAL

RET_VAL

RET_VAL

ENO

ENO

ENO

ENO

ENO

ENO

DSTBLK

DSTBLK

DSTBLK

DSTBLK

BLK

BLK

DeclarationName

EN

ENO

SRCBLK

BVAL

RET_VAL

DSTBLK

BLK

–

–

INPUT

INPUT

RETURN

OUTPUT

OUTPUT

BOOL

BOOL

VARIANT

VARIANT

INT

VARIANT

VARIANT

Enable input

Enable output

Source tag (BLKMOV, UBLKMOV)

Source tag (FILL)

Error information

Destination tag (BLKMOV, UBLKMOV)

Destination tag (FILL)

DescriptionData type

LAD

FBD

SCL

STL

<Error info> :=
(

SRCBLK := ... ,
DSTBLK => ...);

BLKMOV
<Error info> :=
UBLKMOV (
SRCBLK := ... ,
DSTBLK => ...);

<Error info> :=
FILL (
BVAL := ... ,
BLK => ...);

CALL BLKMOV
Variant
SRCBLK := ...
RET_VAL := ...
DSTBLK := ...

CALL
Variant
SRCBLK := ...
RET_VAL := ...
DSTBLK := ...

UBLKMOV CALL
Variant
BVAL := ...
RET_VAL := ...
BLK := ...

FILL

13.2 Transfer functions

569

Transfer in general

The transfer is carried out in the direction of increasing addresses (incrementing).
The source and destination areas must not overlap. No data transfer takes place if
the limits of operand areas are violated and an error message is output.

BLKMOV, UBLKMOV: If the source and destination areas are of different length,
transfer is only performed up to the length of the smaller area.

FILL: The destination area is always written completely, even if the source area is
larger than the destination area or if the length of the destination area is not an
integral multiple of the length of the source area.

Transfer of a STRING tag

If a STRING tag is only present at the SRCBLK/BVAL parameter, the current charac-
ters of the tag are copied. The two bytes with the length data are not written into the
destination area.

If tags with data type STRING are present at both the SRCBLK/BVAL and DSTBLK/BLK
parameters, the two length bytes are also transferred to the destination tag.

If a STRING tag is only present at the parameter DSTBLK/BLK, then each byte of the
source area is transferred to a current character. The current length is updated.

Fig. 13.7 Swap bytes with SWAP

EN
ENO

IN
OUT

–
–

INPUT
OUTPUT

BOOL
BOOL

WORD, DWORD, LWORD
WORD, DWORD, LWORD

Enable input
Enable output

Input
Output

SWAP

SWAP

EN

EN

Data type

Data type

IN

IN

ENO

OUT

OUT

ENO

SWAP

LAD

FBD

DWORD LWORDWORD

Byte c Byte aByte a

Byte b Byte hByte b

Byte b

Byte c

Byte a

Byte d

Byte d Byte hByte b

Byte a Byte aByte a

Function:
The bytes of the tags at
parameter IN are output in
reverse order at parameter
OUT.

SCL

STL

#var_out := (#var_in);SWAP

CALL SWAP

IN :=
RET_VAL := ...

Data type
...

IN

OUT

...

...

DeclarationName DescriptionData type

13 Digital functions

570

13.2.10 Swap bytes (SWAP)

SWAP reads the tag at the IN parameter, exchanges the sequence of the bytes, and
makes the result available at the OUT parameter (Fig. 13.7). WORD, DWORD, and
LWORD can be set as data types.

For word and doubleword-wide operands, the statements CAW and CAD are avail-
able for STL (see section “Swap bytes in accumulator 1” on page 450).

13.3 Comparison functions

A comparison function compares the values of two tags to one another or it checks
whether a tag value is within or outside of a value range. A comparison function
provides a binary comparison result. Depending on the data type, the “simple”
comparison functions or special system blocks are available for a comparison.

The “simple” comparison functions are the comparison contact in the case of LAD,
the comparison box in the case of FBD, the comparison expression in the case of
SCL, and the comparison operation in the case of STL. For tags with “long” data
types there are system blocks for STL in the Long Functions global library.

13.3.1 Execution of “simple” comparison function

The “simple” comparison function compares the contents of two input tags and
sets the binary comparison result to “1” (TRUE) if the comparison is fulfilled or to
“0” (FALSE) if the comparison is not fulfilled. Fig. 13.8 shows the available compar-
ison functions and the permissible data types in the various programming lan-
guages.

The data types of the tag to be compared must be compatible. The block attribute
IEC check controls the degree of compatibility (see Chapter 4.5.2 “Implicit data type
conversion” on page 108).

A prerequisite for a fulfilled comparison with floating-point numbers is that they
are valid. If an invalid floating-point number is compared, the comparison is never
fulfilled.

The comparison of character values CHAR or STRING is done within the scope of the
ASCII coding. Two strings are the same if the relevant (occupied) characters are the
same and the current length is the same. A string is considered as “greater than” if
it is longer when the first characters are identical. The maximum lengths of the
strings are not included in the comparison.

The comparison of time values TIME or DTL is done within the scope of the specified
data type. A time (date, time of day) is regarded as smaller if the numerical value is
smaller, i.e. if the time is older.

13.3 Comparison functions

571

Fig. 13.8 Function and representation of “simple” comparison functions

DeclarationName

IN1

IN2

–

INPUT

INPUT

OUTPUT

Data type

Data type

BOOL

Input tag 1

Input tag 2

Comparison result

DescriptionData typeFunction
Data type

IN1

"Simple" comparison function

LAD FBD

IN2

Function
Data type

IN1

IN2

Function: Data types:

== equal to Elementary data types (except BOOL), DT, DTL and STRING
<> not equal to

> greater than Elementary data types (except bit-serial data types),
< less than DT, DTL and STRING
>= greater than or equal to
<= less than or equal to

Comparison function: Data types:

= equal to Elementary data types, DT, DTL and STRING
<> not equal to

> greater than Elementary data types (except BOOL),
< less than DT, DTL and STRING
>= greater than or equal to
<= less than or equal to

Comparison function: Data types:

EQ_… equal to LWORD, LINT,
NE_… not equal to

GT_… greater than LINT, ULINT,
LT_… less than
GE_… greater than or equal to
LE_… less than or equal to

ULINT, LREAL

LREAL

SCL #Comparison_result := #var_IN1 IN2;Comparison function #var_

The comparison function compares the contents of two tags IN1 and IN2 according to the
following scheme: Result := IN1 <Comparison> IN2.

Comparison operation:
==I, ==D, ==R equal to
<>I, <>D, <>R not equal to
>I, >D, > R greater than
<I, <D, <R less than
>=I, >=D, >=R greater than or equal to
<=I, <=D, <=R less than or equal to

The comparison operation interprets the
contents of the accumulators in
accordance with the data type during the
operation:
I = INT, D = DINT, R = REAL.

STL
L #var_IN1
L #var_IN2

= #Comparison_result
Comparison operation

CALL ” ”
IN1 := #var_IN1
IN2 := #var_IN2
OUT := #var_result

EQ_LINT

The contents of accumulator 2 (IN1) are compared with the
contents of accumulator 1 (IN2) and the result of the
comparison assigned to the RLO:

= IN1 IN2

The comparison operation does not change the contents of
the accumulators.
The comparison operation sets the status bits.

Result of comparison Comparison operation

Comparison of tags with "long" data types

13 Digital functions

572

Simple comparison function with LAD and FBD

For LAD and FBD, the “simple” comparison is done using the comparison contact or
the comparison box. You select the comparison relationship and the data type from
a drop-down list. If the data types are different, select the data type with the greater
data width.

Simple comparison function with SCL

With SCL, the comparison is implemented by a comparison expression.

Simple comparison function with STL

With STL, the comparison is carried out according to the data type defined by the
comparison operation. The user must make sure that the “correct” data type is
present in the accumulators. Comparisons according to INT only compare the right
word of the accumulators, comparisons according to DINT and REAL compare the
complete contents.

A comparison function is executed independent of conditions and influences the
status bits.

System blocks from the global Long Functions library are available for the compar-
ison of tags with “long” data types.

13.3.2 Comparison function T_COMP

T_COMP compares two tags with a time data type (Fig. 13.9). For LAD and FBD, the
comparison function is displayed with an EN/ENO box. For STL, it is a block call.
To compare time data types for SCL tags, use the comparison expression (see
Chapter 13.3.1 “Execution of “simple” comparison function” on page 570). The tags
to be compared are present at parameters IN1 and IN2. The parameter OUT pro-
vides the comparison result: Signal state “1” (TRUE) if the comparison is fulfilled
and signal state “0” (FALSE) if it is not fulfilled.

A time is considered as “greater than” if it is later, in other words closer to the pres-
ent time or further in the future than the comparison value. T_COMP does not sig-
nal an error.

13.3.3 Comparison function S_COMP

S_COMP compares two tags with a string data type (Fig. 13.9). For LAD and FBD, the
comparison function is displayed with an EN/ENO box. For STL, it is a block call.
To compare tags with character data types for SCL, use the comparison expression
(see Chapter 13.3.1 “Execution of “simple” comparison function” on page 570).
The tags to be compared are present at parameters IN1 and IN2. The parameter
OUT provides the comparison result: Signal state “1” (TRUE) if the comparison is
fulfilled and signal state “0” (FALSE) if it is not fulfilled.

13.3 Comparison functions

573

Starting from the left, the characters of the tags are compared by their ASCII code
(for example, 'a' is greater than 'A'). The first character to be different decides the
result of the comparison. Two strings are the same if the relevant (occupied) char-
acters are the same and the current length is the same. A string is considered as
“greater than” if it is longer when the first characters are identical. The maximum
lengths of the strings are not included in the comparison. S_COMP does not signal
an error.

13.3.4 Range comparison

The range comparison checks whether the value of a digital tag is within or outside
of a value range marked by limit values (Fig. 13.10). The range comparison is avail-
able for LAD and FBD.

The comparison is fulfilled (comparison result = “1” or TRUE) if the input value for
the function IN_RANGE is within the range or if the input value for OUT_RANGE is
outside the range. The limits (MIN, MAX) and the input tag to be compared (IN) are
at the inputs of the box. The binary comparison result is available at the unlabeled
output of the box.

Fig. 13.9 Comparison of tags with time and string data type

Function Function
Data type Data type

Comparison relationship Comparison relationship

Comparison functions T_COMP and S_COMP

IN1 IN1

EN EN

IN2 IN2

OUT OUT

ENO

ENO

Comparison relationship:
EQ = equal to LT > greater than LT < less than
NE <> not equal to GE >= greater than or equal to LE <= less than or equal to

LAD FBD

STL CALL

IN1 := ...
IN2 := ...
OUT := ...

Function
Data type Function

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

BOOL

Enable input

Enable output

Input tag

Input tag

Comparison result

DescriptionData type

Function: Data type:Comparison of two tags
T_COMP with time data types DATE, TIME, LTIME, TOD, LTOD, DT, DTL, LDT
S_COMP with string data types STRING

With SCL, the comparison of tags with time or string types is implemented with a comparison
expression.

13 Digital functions

574

All fixed-point and floating-point numbers are permitted as data types of the input
parameters. If the attribute IEC check is activated, the data types to be compared
must be the same. If the attribute is deactivated, the data types are converted within
the scope of the implicit data type conversion. You then select the data type in the
box with the greatest data width. The lower limit and upper limit may also be
assigned constants. If invalid floating-point numbers are specified, the comparison
is not fulfilled.

13.4 Arithmetic functions

An arithmetic function adds, subtracts, multiplies and divides two numerical val-
ues. In addition to the basic arithmetic operations for numbers, there are also arith-
metic functions for date and time.

13.4.1 Arithmetic functions for numerical values

For LAD and FBD, the basic arithmetic operations are implemented by means of
EN/ENO boxes. For SCL, they are implemented by means of arithmetic expressions
and for STL by means of linking the accumulator contents or, for the “long” data
types, by means of system blocks. Fig. 13.11 shows the general representation of an
arithmetic function in the various programming languages.

A division (DIV) with fixed-point numbers provides the result in the form of the
integer portion of the quotient IN1/IN2. An MOD division provides the remainder of
the division as result. The remainder is the leftover part of the division; this is not
the decimal places.

Fixed-point and floating-point numbers are permitted as data types for the basic
arithmetic operations. A floating-point number can be in a range with full accuracy
(“normalized” floating-point number) or in a range with limited accuracy (“denor-
malized” floating-point number), see also Chapter 4.6.6 “Floating-point data types

Fig. 13.10 Range comparison with IN_RANGE and OUT_RANGE

DeclarationName

MIN

MAX

IN

–

INPUT

INPUT

INPUT

OUTPUT

Data type

Data type

Data type

BOOL

Lower limit

Upper limit

Input tag

Comparison result

DescriptionData type

MIN

MIN

Range comparison

LAD FBD

IN

IN MAX

MAX

Function:
IN_RANGE within the range
OUT_RANGE outside of the range

:=
:= MIN > IN > MAX

Data type:
all fixed-point and
floating-point data types

MIN ≤ IN ≤ MAX

Function
Data type

Function
Data type

13.4 Arithmetic functions

575

Fig. 13.11 Description of arithmetic functions for numerical values

EN EN

OUT OUT

ENO

ENO

Arithmetic functions (basic arithmetic operations)

LAD FBD

IN1 IN1

IN2 IN2

Function:
ADD Addition
SUB Subtraction
MUL Multiplication
DIV Division
MOD Division with remainder

as result

Data types:
Fixed-point numbers
Floating-point numbers (not with MOD)

Data types:
Fixed-point numbers
Floating-point numbers (not with MOD)

DeclarationName

EN

ENO

IN1

IN2

OUT

-

-

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

Enable input

Enable output

Input tag 1

Input tag 2

Result

DescriptionData type

Function:
+ Addition

Subtraction
* Multiplication
/ Division
MOD Division with remainder

as result

-

SCL
OUT := IN1 IN2;Function

An arithmetic function links the contents of two tags IN1 and IN2 according to the following
scheme: Result := IN1 <Link> IN2.
The ADD and the MUL box can be expanded with further input parameters.

Arithmetic operation:
+I, +D, +R Addition

-D, -R Subtraction
*I, *D, *R Multiplication
/I, /D, /R Division
MOD Division with

mainder as result

-I,

re

STL
L IN1
L IN2

T OUT
Arithmetic operation

The contents of accumulator 2 (IN1) are linked with
the contents of accumulator 1 (IN2) and the result is
stored in accumulator 1.

With a calculation with data type INT, only the right words of the accumulators are influenced;
the contents of the left words remain unchanged.
An arithmetic function influences the status bits.

The arithmetic operation interprets the contents of
the accumulators in accordance with the data type
during the operation:
I = INT, D = DINT, R = REAL.

Arithmetic function: Data types:

ADD_… Add LINT, ULINT, LREAL
SUB_… Subtract
MUL_… Multiply
DIV_… Divide

CALL ” ”
IN1 := #var_LINT1
IN2 := #var_LINT2
OUT := #var_result

ADD_LINT

Arithmetic functions with "long" data types

Function
Data type

Function
Data type

For the basic arithmetic operations
with "long" data types, there are
the system blocks in the
Long Functions global library.

13 Digital functions

576

REAL and LREAL” on page 118). If the result of a calculation with a CPU 1500 falls in
the range with limited accuracy, zero is output as result and a downward violation
of the numerical range is signaled.

The arithmetic function reports an error if the permitted numerical range is left or
if an invalid floating-point number is specified. In the event of an error, the
ENO output is set to signal state “0” in the case of LAD and FBD, the ENO tag and
ENO output are set to FALSE in the case of SCL, and the overflow bits OV and OS are
set to “1” in the case of STL.

13.4.2 Arithmetic functions for date and time

The arithmetic functions for date and time link tags with time data types. The
functions are displayed in LAD and FBD as EN/ENO boxes. They are displayed as
functions with function value in SCL and as block calls in STL (Fig. 13.12).

If the result of the arithmetic function is not within the permissible range, the
result is limited to the corresponding value. In the event of an error, the ENO output
is set to “0” in the case of LAD and FBD, the ENO tag and ENO output are set to FALSE
in the case of SCL, and the overflow bits OV and OS are set to “1” in the case of STL.

13.4.3 Decrementing and incrementing

The function DEC (decrement) reduces the value at the IN/OUT parameter by 1 as in
a subtraction. The function INC (increment) increases the value at the IN/OUT
parameter by 1 as in an addition (Fig. 13.13).

LAD, FBD: You can find the functions in the program elements catalog under Basic
instructions > Math functions. When reaching the lowest and highest numerical
value for the respective data type, the enable output ENO is set to signal state “0”.

SCL: Decrementing and incrementing can be emulated with subtraction and addi-
tion.

STL: The decrement (DEC) and increment (INC) statements change the value pres-
ent in accumulator 1. It is reduced (decremented) or increased (incremented) by the
number of units specified in the parameter of this statement. The parameter can
have values from 0 to 255. The change is only effective on the right byte in accumu-
lator 1. The calculation is executed “modulo”, i.e. if the value is reduced below 0 or
increased above 255, counting commences again at 255 or 0. Decrementing and
incrementing are preferably used for calculating addresses since – unlike an arith-
metic function – they influence neither the contents of accumulator 2 nor the status
bits.

13.4 Arithmetic functions

577

Fig. 13.12 Arithmetic functions for tags with time data types

Function: Data types:

T_ADD Addition

Duration + Duration = Duration Duration: TIME, LTIME
Time + Duration = Time Time: TOD, LTOD, DT, LDT, DTL

T_SUB Subtraction

Duration - Duration = Duration
Time - Duration = Time

T_DIFF Differentiation

Time - Time = Duration

T_COMBINE Combination

Date + Time of day = Time Date: DATE, WORD, UINT, INT
Time of day: TOD, LTOD
Time: DT, DTL, LDT

EN

EN

EN

EN

EN

EN

EN

EN

ENO

ENO

ENO

ENO

ENO

ENO

ENO

ENO

OUT

OUT

OUT

OUT

OUT

OUT

OUT

OUT

Arithmetic functions for date/time and duration

LAD

FBD

IN1

IN1

IN1

IN1

IN1

IN1

IN1

IN1

IN2

IN2

IN2

IN2

IN2

IN2

IN2

IN2

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type (see below)

Data type (see below)

Data type (see below)

Enable input

Enable output

Input tag with time data type

Input tag with time data type

Result

DescriptionData type

T_ADD
DT DTPLUS

T_ADD
DT DTPLUS

T_DIFF
DT DTTO

T_DIFF
DT DTTO

T_SUB
DT DTMINUS

T_SUB
DT DTMINUS

T_COMBINE
DT DTTO

T_COMBINE
DT DTTO

SCL STL

#var_OUT :=

(

IN1 := ... ,

IN2 := ...);

#var_OUT :=

(

IN1 := ... ,

IN2 := ...);

T_ADD

T_SUB

#var_OUT :=

(

IN1 := ...,

IN2 := ...);

#var_OUT :=

(

IN1 := ... ,

IN2 := ...);

T_DIFF

T_COMBINE

CALL
PLUS

IN1 := ...
IN2 := ...
OUT := ...

CALL
TO

IN1 := ...
IN2 := ...
OUT := ...

T_ADD

T_DIFF

DT DT

DT DT

CALL
MINUS

IN1 := ...
IN2 := ...
OUT := ...

CALL
TO

IN1 := ...
IN2 := ...
OUT := ...

T_SUB

T_COMBINE

DT DT

DT DT

DT = data type

DT = data type

13 Digital functions

578

13.5 Math functions

13.5.1 General function description

A math function converts the value of a tag present at the input in accordance with
the function, and writes it into the tag present at the output. Fig. 13.14 shows the
math functions in the various programming languages.

“Math functions” include the following:

b Sine (SIN), cosine (COS), tangent (TAN)

b Arcsine (ASIN), arccosine (ACOS), arctangent (ATAN)

b Generate square (SQR), extract square root (SQRT)

b Natural logarithm (LN) and exponential function to base e (EXP)

Further math functions are:

b Exponential function to any base (EXPT)

b Extract decimal points (FRAC)

b Generate absolute value (ABS) and generate two's complement (NEG)

The math functions process the numbers in the data formats REAL and LREAL. Tags
with a fixed-point data type can also be created at the input and output parameters
within the scope of implicit data type conversion (not for STL).

Fig. 13.13 Decrementing and incrementing

EN ENENO
ENO

Decrementing, incrementing

LAD FBD

IN/OUT IN/OUT

Function:
DEC Decrement by —
INC Decrement by +1

DEC reduces the value in accumulator 1 by
the parameter of the operation.
INC increases the value in accumulator 1
by the parameter of the operation.

For SCL, decrementing and incrementing
can be emulated by a subtraction or an
addition.

Data type:
Fixed-point data type

DeclarationName

EN
ENO

IN/OUT

–
–

INOUT

BOOL
BOOL

Data type

Enable input
Enable output

Digital tag

DescriptionData typeFunction
Data type

Function
Data type

SCL

STL

#var_fixed-point #var_fixed-point

#var_fixed-point #var_fixed-point

:= 1;

:= 1;

+

-

L
//Decrement

T

L
//Increment

T

#var_fixed-point
n
#var_fixed-point

#var_fixed-point
n
#var_fixed-point

DEC

INC

13.5 Math functions

579

The functions are displayed in LAD and FBD as EN/ENO boxes. They are displayed as
functions with a function value in SCL. STL provides the corresponding statements
for the data type REAL. With block calls, tags with the data type LREAL can also be
processed in STL.

An error occurs if the permissible numerical range is left or if the input tag is an
invalid floating-point number. The ENO output is then set to “0” in the case of LAD
and FBD, the ENO tag and ENO output are set to FALSE in the case of SCL, and the
overflow bits OV and OS are set to “1” in the case of STL.

Mathematical operations with STL

STL provides mathematical operations, which require the contents of
accumulator 1 as tag with the data type REAL and then calculate the corresponding
function. In addition, a mathematical function can be called with CALL and its data
type REAL or LREAL can then be set via a drop-down list. In the Long Functions
global library, there are system blocks which process tags with the data type LREAL
(see also Chapter 10.5.4 “Math functions in the statement list” on page 426).

13.5.2 Trigonometric functions SIN, COS, TAN

The trigonometric functions generate the sine (SIN), cosine (COS), or tangent (TAN)
of the input tag IN and deliver this in the result OUT. An angle in radians is expected
at the input tag IN (Fig. 13.14).

Fig. 13.14 Overview of math functions

EN EN

OUT

OUTENO

ENO

Math functions

LAD FBD

IN IN

Function:
SIN Sine
COS Cosine
TAN Tangent

ASIN Arc sine
ACOS Arc cosine
ATAN Arc tangent

SQR Generate square
SQRT Extract square root

LN Natural logarithm
EXP Exponential function to base e

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

REAL, LREAL

REAL, LREAL

Enable input

Enable output

Input tag

Result

DescriptionData type

SCL

STL

OUT := (IN);Function

//with the data type REAL
L #var_real

T #Result

//with REAL and LREAL
CALL

IN := #var_real
RET_VAL := #Result

//with the data type LREAL
CALL _LREAL

IN := #var_lreal
OUT := #Result

Function

Function

Function

Data type

Function
Data type

Function
Data type

13 Digital functions

580

Two units are commonly used for the magnitude of an angle, degrees from 0°
to 360° (360th part of the circumference of a circle) and radians from 0 to 2Π (with
Π = +3.141593e+00). Both units can be converted proportionately. For example, the
value in radians for a 90° angle is Π/2, in other words +1.570796e+00. With values
larger than 2Π (+6.283185e+00), 2Π or a multiple thereof is subtracted until the
input value for the trigonometric function is less than 2Π.

An error occurs if the input tag IN is an invalid floating-point number, +∞ or –∞.
The value of IN is then output in the result OUT.

13.5.3 Arc functions ASIN, ACOS, ATAN

The arc functions (inverse trigonometric functions) generate the arcsine (ASIN),
arccosine (ACOS), or arctangent (ATAN) of the input tag IN and output this in the
result OUT (Fig. 13.14). The arc functions are the inverse functions of the respective
trigonometric function. They expect a number within a specific value range at the
input tag IN and output an angle in radians (Table 13.1).

An error occurs if the input tag IN is not in the range ±1 (with ASIN or ACOS) or is
an invalid floating-point number. An invalid floating-point number is then output
in the result OUT.

13.5.4 Generate square and extract square root

The functions SQR (generate square) and SQRT (extract square root) are repre-
sented in Fig. 13.14 on page 579.

Generate square SQR

SQR generates the square of the input tag IN and outputs it in the result OUT.

An error occurs if the input tag IN or the result is an invalid floating-point number.
An invalid floating-point number is output in the result OUT in the first case and
+∞ in the second case.

Table 13.1 Range of values of the arc functions

Function Permissible range of values Returned value

Arcsine ASIN –1 to +1 –Π/2 to +Π/2

Arccosine ACOS –1 to +1 0 to Π

Arctangent ATAN Complete range –Π/2 to +Π/2

OUT IN
2=

13.5 Math functions

581

Extract square root SQRT

SQRT generates the square root of the input tag IN and outputs it in the result OUT.

An error occurs if the input tag IN is negative, an invalid floating-point number,
or ±∞. An invalid floating-point number or ±∞ is then output in the result OUT.

13.5.5 Logarithm and power

The functions LN (natural logarithm) and EXP (exponentiation to base e) are shown
in Fig. 13.14 on page 579. The power for any base can be calculated using EXPT (not
for STL, Fig. 13.15 on page 582).

Calculate natural logarithm LN

LN calculates the natural logarithm to base e (= 2.718282e+00) from the input tag
IN and outputs it in the result OUT.

An error occurs if:

b The input tag IN1 is zero, negative, –∞, or a negative invalid floating-point num-
ber. ∞ is then output in the result OUT.

b The input tag IN1 is +∞ or a positive invalid floating-point number. The value of
IN1 is then output in the result OUT.

The natural logarithm is the inverse function of the exponential function: if y = ex,
then x = ln y.

If you wish to calculate any logarithm, use the equation

where b or n is any base. If you set n = e, you can use the natural logarithm to
calculate a logarithm to any base:

In the special case for base 10, the equation is

lg a = = 0.4342945 · ln a

Exponentiation to base e EXP

EXP generates the exponential from base e (= 2.718282e+00) and the input tag IN
and outputs it in the result OUT.

An error occurs if the input tag IN or the result is an invalid floating-point number.
An invalid floating-point number is output in the result OUT in the first case and
+∞ in the second case.

OUT IN=

OUT IN()ln=

balog nalog
nblog

-------------=

balog aln
bln

--------=

aln
10ln

OUT e
IN=

13 Digital functions

582

Exponentiation to any base EXPT

EXPT calculates the power from the base at parameter IN1 and the exponent at
parameter IN2 and stores the result at parameter OUT (Fig. 13.15).

The enable output ENO or the tag ENO is set to signal state “0”

b if the value at parameter IN1 is +∞ and at parameter IN2 is not –∞. Then +∞ is out-
put at the OUT parameter.

b if the value at parameter IN1 is –∞ or negative. Then an invalid floating-point
number is output at the OUT parameter (if IN2 is a floating-point number),
otherwise –∞.

b if the value at parameter IN1 or IN2 is an invalid floating-point number. Then an
invalid floating-point number is output at OUT.

b if the value at parameter IN1 is 0 (zero) and there is a floating-point number at
parameter IN2. Then an invalid floating-point number is output at OUT.

13.5.6 Extract decimal points, generate absolute value and negation

Further math functions are:

b FRAC Extract decimal points

b ABS Generate absolute value

b NEG Generate negation (two's complement)

You can find the math functions in the program elements catalog under Basic
instructions > Math functions (LAD, FBD, SCL) or under Basic instructions > Basic
instructions > Math functions (STL).

Fig. 13.15 Math function EXPT

OUT IN1IN2=

EXPT
DT1 ** DT2

EXPT
DT1 ** DT2

EN EN

OUT

ENO

OUT

ENO

Exponential function to any base

LAD FBD

IN1

IN2

IN1

IN2

Data type 1: REAL, LREAL
Data type 2: Fixed point, floating point

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

REAL, LREAL

Enable input

Enable output

Basis

Exponent

Result

DescriptionData type

SCL
OUT := IN1 IN2;**

13.5 Math functions

583

Extract decimal points FRAC

FRAC extracts the decimal places from the number present at parameter IN and out-
puts them at parameter OUT (Fig. 13.16).

The enable output ENO is set to signal state “0” if the value at parameter IN is an
invalid floating-point number or ±∞. Then a positive invalid floating-point number
is output at parameter OUT.

Generate absolute value ABS

ABS generates the amount from the number at parameter IN and outputs the result
at parameter OUT. For a floating-point number, the sign of the mantissa is set to “0”
(Fig. 13.17).

If the allowed number range is exceeded, for example ABS(–128) for data type SINT,
or for a valid floating-point number, the ENO output has signal state “0”.

Generate negation, two's complement NEG

NEG changes the sign of the number at parameter IN and outputs the result at
parameter OUT. The negation is equivalent to multiplying by –1. For a floating-
point number, the sign of the mantissa is changed, even for an invalid floating-
point number (Fig. 13.17).

If the result is outside of the valid number range, e.g. NEG(–128) for the data type
SINT, the output ENO is set to signal state “0”.

For STL, the operations NEGI, NEGD, and NEGR form the two's complement of the
number in accumulator 1, which must have the “suitable” data type.

13.5.7 Calculating with the CALCULATE box in LAD and FBD

The CALCULATE box can link digital tags with arithmetic, mathematical, and logi-
cal functions in a complex expression with each other. You define the tags to be

Fig. 13.16 Extracting decimal points

EN EN
OUT

OUTENO
ENO

Extract decimal points FRAC

LAD FBD

IN IN

DeclarationName

EN

ENO

IN

OUT

-

-

INPUT

OUTPUT

BOOL

BOOL

REAL, LREAL

REAL, LREAL

Enable input

Enable output

Input tag

Result

DescriptionData typeFRAC
Data type

FRAC
Data type

SCL #var_OUT :=
_Data_type (#var_IN);FRAC

STL
CALL

IN := ...
RET_VAL := ...

FRAC
Data type

13 Digital functions

584

linked as input parameters of the box and specify the data type of the expression
(the output parameter). The logic operation function is specified in a dialog (Fig.
13.18).

In the basic state, the box contains two inputs. The number of inputs can be
increased. The inputs are numbered without gaps. Not all inputs must be used in
the expression. If, when defining the expression, a (new) input with the next avail-
able number is used, the input is automatically added. In the expression, only the
tags defined as input parameters may be used.

After inserting the CALCULATE box, select the data type of the expression (the out-
put parameter OUT) from a drop-down list. The input parameters will automati-
cally be given the same data type. The actual operands must also be of the same
data type or a data type that can be converted using implicit conversion to the data
type of the input parameter. Example: If you select data type LREAL for the expres-
sion, an actual operand with the data type REAL or LREAL can be created at an input.

In the expression, the input tags can be linked with each other according to their
data type. The order of the linking can be controlled using brackets.

Fig. 13.17 Generate absolute value and negation

EN EN
OUT

OUTENO
ENO

Generation of absolute value, negation

LAD FBD

IN IN

Function:
ABS Generation of absolute value
NEG Negation

Data type:
Fixed-point numbers with sign,
floating-point numbers

Data type:
Fixed-point numbers with sign,
floating-point numbers

Data type:
Fixed-point numbers with sign,
floating-point numbers

DeclarationName

EN

ENO

IN

OUT

-

-

INPUT

OUTPUT

BOOL

BOOL

Data type *)

Data type *)

Enable input

Enable output

Input tag

Result

DescriptionData type

SCL OUT := (IN); //Absolute value

OUT := IN; //Negation

ABS

-

Operation: Data type:
ABS Generation of absolute value REAL
NEGI Negation INT
NEGD Negation DINT
NEGR Negation REAL

STL
CALL

IN := ...
RET_VAL := ...

L IN

T OUT

ABS
Data type

Operation

Function
Data type

Function
Data type

13.5 Math functions

585

Linking of bit sequences

Input parameters with the data types BYTE, WORD, DWORD, and LWORD can be used
in connection with the word logic operations AND (digital AND logic operation),
OR (digital OR logic operation), and XOR (digital exclusive OR logic operation). A bit
sequence can be inverted with the NOT operator (one's complement formation
INV). With SWAP the bytes of a bit sequence can be replaced (not with data type
BYTE).

Linking of fixed-point numbers

Input parameters with data types USINT, UINT, UDINT, ULINT, SINT, INT, DINT, and
LINT can be used as a result (MOD) in conjunction with the arithmetic functions
add (+), subtract (-), multiply (*), division (/), and division with the rest. From fixed-
point numbers, the one's complement INV (operator: NOT), the two's complement
(operator: – , multiplication by –1) and the absolute value (ABS) are formed.

Fig. 13.18 CALCULATE box, representation and function

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

Enable input

Enable output

Input tag 1

Input tag 2

Result

DescriptionData type

CALCULATE
Data type

CALCULATE
Data type

EN EN

IN1 IN1

IN2 IN2

ENO

ENO

OUT OUT

CALCULATE box

LAD FBD

Data types: Usable functions:

BYTE, WORD, DWORD, LWORD AND, OR, XOR, NOT

WORD, DWORD, LWORD AND, OR, XOR, NOT, SWAP()

USINT, UINT, UDINT, ULINT,
SINT, INT, DINT, LINT

REAL, LREAL
SQR(), SQRT(), LN(), EXP(),
SIN(), COS(), TAN(), ASIN(), ACOS(), ATAN(),
TRUNC(), ROUND(), CEIL(), FLOOR(), FRAC()

Function:
The input tags are linked to each other
according to a freely definable expression
and the result is output at the parameter
OUT.
The number of input parameters is
expandable.

* *

OUT := ... (expression) ... OUT := ... (expression) ...

+, –, *, /, MOD, NOT, –(), ABS()

+, –, *, /, MOD, NOT, –(), ABS(), **,

13 Digital functions

586

Linking of floating-point numbers

Input parameters with the data types REAL and LREAL can, in addition to the arith-
metic functions Add (+), Subtract (–), Multiply (*) and Divide (/), also be used in
connection with exponentiation (**), the mathematical functions SQR (generate
square), SQRT (generate square root), LN (generate natural logarithm) and
EXP (generate exponential value), with the trigonometric functions SIN (sine),
COS (cosine), TAN (tangent), ASIN (arcsine), ACOS (arccosine) and ATAN (arctan-
gent), with the conversion functions ROUND (round), TRUNC (“truncate” decimal
places), FRAC (determine decimal places), CEIL (generate next highest fixed-point
number) and FLOOR (generate next lowest fixed-point number) as well as in con-
nection with the two's complement (–, multiplication by –1) and absolute-value
generation ABS.

13.6 Conversion functions

If you link tags together, they must have a compatible data type. This also applies if
you assign values or supply function and block parameters. If a tag is not available
in the required data type and no implicit data type conversion is possible, the data
type must be converted. The conversion functions are available for this.

The following conversion functions are available:

b Conversion with CONVERT

b Conversion with ROUND, CEIL, FLOOR, TRUNC

b Conversion of time data types (T_CONV)

b Conversion of string data types (S_CONV, STRG_TO_CHARS, CHARS_TO_STRG,
STRG_VAL, VAL_STRG)

b Conversion of hexadecimal numbers (ATH, HTA)

b Scaling and normalizing (SCALE_X, NORM_X, SCALE, UNSCALE).

These conversion functions are “explicit” conversion functions where the bit
assignments of the tags change or where conversion errors can occur, for example
a conversion from DINT to REAL. These conversions must be programmed. Then
there are also the “implicit” conversion functions, which “automatically” convert a
data type into a compatible data type. Further details can be found in Chapter 4.5.2
“Implicit data type conversion” on page 108.

13.6.1 Data type conversion with the conversion function CONVERT

Fig. 13.19 shows the conversion function CONVERT for the various programming
languages. You can find CONVERT in the program elements catalog under Basic
instructions > Conversion operations.

For LAD and FBD, CONVERT is displayed as an EN/ENO box. For SCL, there are func-
tions with the notation Source data type_TO_destination data type, and for STL, you
enter the statement CALL CONVERT. In addition to CONVERT, STL provides opera-

13.6 Conversion functions

587

tions which directly convert the contents of accumulator 1. Table 13.2 shows the
data type conversions possible with CONVERT.

In the event of a conversion error, the ENO output is then set to “0” in the case of
LAD and FBD, the ENO tag and ENO output are set to FALSE in the case of SCL, and
the overflow bits OV and OS are set to “1” in the case of STL.

Data type conversion of bit-serial data types with CONVERT

If the source tag has the data type BOOL, then its value is transferred into bit 0 of
the destination tag. If the destination tag has the data type BOOL, then the value of
bit 0 from the source tag is transferred to the destination tag. If this bit has the
value “1” and there are still more bits with the value “1” in the source tag, the
ENO output is also set to “0” (FALSE).

The bit pattern of a source tag with the data type BYTE, WORD, DWORD or LWORD is
transferred to the destination tag starting from the right (from bit 0). If the source
tag has less bits than the destination tag, the unassigned bits are filled with “0”.
If the source tag has more bits than the destination tag, the remaining bits are
ignored.

Data type conversion of fixed-point numbers with CONVERT

If the destination tag has the data type BOOL, then the value of bit 0 from the
source tag is transferred to the destination tag. If this bit has the value “1” and
there are still more bits with the value “1” in the source tag, the ENO output is also
set to “0” (FALSE).

If the destination tag has the data type CHAR, BYTE, WORD, DWORD or LWORD, the
bit pattern of the source tag is entered in the destination tag starting from the right
(from bit 0). If the source tag has a negative sign or if bits are lost, the ENO output
is set to “0” (FALSE).

Fig. 13.19 Conversion function CONVERT

CONV
DT1 to DT2

CONV
DT1 to DT2

EN EN

OUT

OUTENO

ENO

Conversion function CONVERT

LAD FBD

IN IN

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

Enable input

Enable output

Input tag

Output tag

DescriptionData type

SCL

STL

OUT := (IN);DT1 DT2_TO_

CALL
TO

IN := ...
RET_VAL := ...

CONVERT
DT1 DT2

CONVERT transfers the value of the tag with data
type DT1 at parameter IN to the tag with data type
DT2 at parameter OUT. The permissible data types
and the transfer method are described in the text.

13 Digital functions

588

Table 13.2 Explicit data type conversion with CONVERT

to

from B
O

O
L

B
Y

TE

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
SI

N
T

U
IN

T

U
D

IN
T

U
LI

N
T

SI
N

T

IN
T

D
IN

T

LI
N

T

R
EA

L

LR
EA

L

S5
TI

M
E

TI
M

E

LT
IM

E

D
A

TE

TO
D

LT
O

D

D
T

LD
T

D
TL

C
H

A
R

ST
R

IN
G

BOOL X X X X X X X X X X X X

BYTE X

WORD X

DWORD X

LWORD X

USINT X

UINT X

UDINT X

ULINT X

SINT X

INT X

DINT X

LINT X

REAL X X X X X X X X X X X X X X

LREAL X X X X X X X X X X X X X X

S5TIME X X X

TIME X X X X X X X X X X X X X X X

LTIME X X X X X X X X X X X X X X X X

DATE X X X X X X X X X X X X X X X

TOD X X X X X X X X X X X X X X X X X

LTOD X X X X X X X X X X X X X X X X X

DT X X X X X

LDT X X X X X X X X X X X X X X X X X X

DTL X X X X X

CHAR X X X X X X X X X X X X X

STRING X X X X X X X X X X X

Additionally: BCD16 > INT BCD32 > DINT
INT > BCD16 DINT > BCD32

13.6 Conversion functions

589

If the destination tag has a fixed-point data type, the value of the source tags is
expanded with the correct sign and transferred into the destination tag. If the value
of the source tags is negative and the destination data type is an unsigned fixed-
point data type or if bits are lost, the ENO output is set to “0” (FALSE).

If the destination tag has a floating-point data type, the value of the source tag is
converted to a floating-point number in the proper format.

If the destination tag has a time data type, the bit pattern of the source tag is trans-
ferred into the destination tag with no changes.

If the destination tag has the STRING data type, the value of the source tag is con-
verted to a string in the proper format. The destination tag must be at least 21 char-
acters long. If it is shorter, the ENO output is set to “0” (FALSE).

Data type conversion of BCD numbers with CONVERT

A source tag with the data type BCD16 (3 decades + sign) can be converted to a des-
tination tag with the data type INT in the proper format. A source tag with the data
type BCD32 (7 decades + sign) can be converted to a destination tag with the data
type DINT in the proper format. If the bit pattern contains an invalid tetrad, no con-
version takes place and the ENO output is set to “0” (FALSE).

A source tag with the data type INT can be converted to a destination tag with the
data type BCD16 (3 decades + sign). A source tag with the data type DINT can be con-
verted to a destination tag with the data type BCD32 (7 decades + sign). If the result
of the conversion is outside of the BCDS numerical range, no conversion takes place
and the ENO output is set to “0” (FALSE).

Data type conversion of floating-point numbers with CONVERT

If the destination tag has the data type BYTE, WORD, DWORD or LWORD, the bit pat-
tern of the source tag is entered in the destination tag starting from the right (from
bit 0). If the source tag has less bits than the destination tag, the unassigned bits are
filled with “0”. If the source tag has more bits than the destination tag, the remain-
ing bits are ignored.

If the destination tag has a fixed-point data type, the value of the source tag is
converted and transferred into the destination tag in the proper format. If the
source tag is an invalid floating-point number or the value of the source tag
departs from the numerical range of the destination data type, the ENO output is
set to “0” (FALSE).

If the destination tag has the STRING data type, the value of the source tag is con-
verted to a string in the proper format. The destination tag must be at least 14 char-
acters long. If it is shorter or if the source tag is an invalid floating-point number,
the ENO output is set to “0” (FALSE).

13 Digital functions

590

Data type conversion of date and time with CONVERT

If the destination tag has the data type BYTE, WORD, DWORD or LWORD, the bit pat-
tern of the source tag is entered in the destination tag starting from the right (from
bit 0). If the source tag has less bits than the destination tag, the unassigned bits are
filled with “0”. If the source tag has more bits than the destination tag, the remain-
ing bits are ignored.

If the destination tag has a fixed-point data type, the value of the source tag is con-
verted and transferred into the destination tag in the proper format. If signs are
switched, the ENO output is set to “0” (FALSE).

The value of a source tag with data type S5TIME is transferred in the proper format
to a destination tag with the data type TIME or LTIME. The value of a source tag with
data type TIME is transferred in the proper format to a destination tag with the data
type S5TIME, LTIME or TOD. If the value range of the destination tag is exceeded, no
conversion takes place. The value of a source tag with the data type LTIME is trans-
ferred in the proper format to a destination tag with the data type S5TIME, TIME,
TOD or LDT. If the value range of the destination tag is exceeded, no conversion
takes place.

The value of a source tag with the data type DATE is transferred in the proper format
to a destination tag with the data type DT, LDT or DTL.

The value of a source tag with the data type TOD is transferred in the proper format
to a destination tag with the data type TIME (time since midnight), LTOD, DT, DTL
or LDT. For DT, DTL and LDT, the time of day is replaced.

The value of a source tag with the data type LTOD is transferred in the proper for-
mat to a destination tag with the data type LTIME (time since midnight), TOD, DT,
DTL or LDT. For DT, DTL and LDT, the time of day is replaced.

The value of a source tag with the data type DT is transferred in the proper format
to a destination tag with the data type TOD, LTOD, LDT or DTL. If the destination tag
has the data type DATE, the bit pattern is transferred right-aligned and unchanged.

The value of a source tag with the data type LDT is transferred in the proper format
to a destination tag with the data type TOD, LTOD, DT or DTL. If the destination tag
has the data type LTIME or DATE, the bit pattern is transferred right-aligned and
unchanged.

The value of a source tag with the data type DTL is transferred in the proper format
to a destination tag with the data type DT or LDT. If the destination tag has the data
type TOD or LTOD, the time of day is transferred from the source tag to the destina-
tion tag in the proper format.

If the destination tag has the data type DATE, the date is transferred in the proper
format from the source tag to the destination tag. If there is an area overflow, the
ENO output is set to “0” (FALSE).

13.6 Conversion functions

591

Data type conversion of string formats with CONVERT

The bit pattern of a source tag with the data type CHAR is transferred, starting from
the right (bit 0), to the destination tag with a bit serial or fixed-point data type.
If the source tag has less bits than the destination tag, the unassigned bits are filled
with “0”. If the destination tag has the STRING data type, the source tag is entered
in the first character. If the length of the destination tag is undefined, “1” is entered
for the length.

If the source tag has the data type STRING and the destination tag has a fixed-
point or floating-point data type, the sign and/or digits are permitted as charac-
ters in the character string. Leading spaces are ignored. The period serves as the
decimal point. The comma is permitted as the thousands separator. The conver-
sion takes place to the first invalid character or to the end of the string. If the
structure of the string is invalid or if the numerical range is exceeded, the ENO
output is set to “0” (FALSE).

If the source tag has the data type STRING and the destination tag has the data type
CHAR, the first character of the string is transferred to the destination tag. If the
string is empty, 16#00 is entered.

13.6.2 Data type conversion with ROUND, CEIL, FLOOR, and TRUNC

The conversion functions ROUND, CEIL, FLOOR and TRUNC convert floating-point
numbers into fixed-point numbers or into whole floating-point numbers (without
decimal places). You can find these conversion functions in the program elements
catalog under Basic instructions > Conversion operations. Fig. 13.20 shows the con-
version functions in the various programming languages. For LAD and FBD, these
are represented as EN/ENO box. For SCL, they are functions with an input value and
for STL, they are block calls.

In addition, STL provides operations, which directly convert the contents of accu-
mulator 1 (see Chapter 10.5.5 “Conversion functions in the statement list” on page
428).

For SCL, the data type of the output tag is set to DINT by default and can be omitted
in the notation. If you want to set a different data type, specify it after the conver-
sion function.

In the event of a conversion error or an invalid floating-point number as input tag,
the ENO output is set to “0” in the case of LAD and FBD, the ENO tag and ENO output
are set to FALSE in the case of SCL, and the overflow bits OV and OS are set to “1” in
the case of STL.

ROUND converts a fractional number into an integer and returns the nearest inte-
ger. If the result is exactly between even and odd numbers, the even number is
selected: ROUND(0.5) = 0, ROUND(1.5) = 2.

CEIL converts a fractional number into an integer and returns an integer which is
greater than or equal to the input value.

13 Digital functions

592

FLOOR converts a fractional number into an integer and returns an integer which

is less than or equal to the input value.

TRUNC converts a fractional number to an integer and returns the integer portion of

the input value; the fractional part is “truncated”.

Table 13.3 shows the different effects of the conversion functions. The range

between –1 and +1 has been selected as an example.

13.6.3 Data type conversion with T_CONV

The conversion function T_CONV transfers a value from a tag with a time data type

to another tag and vice versa. Fig. 13.21 shows the conversion function in the vari-

ous programming languages. You find T_CONV in the program elements catalog

under Extended instructions > Date and time-of-day.

The conversion is carried out in the same way as with the conversion function

CONVERT and the data types S5TIME, TIME, LTIME, DATE, TOD, LTOD, DT, LDT,

and DTL. The description is provided in Chapter 13.6.1 “Data type conversion with

the conversion function CONVERT” on page 586.

In the event of a conversion error, the ENO output is set to “0” in the case of LAD and

FBD, the ENO tag and ENO output are set to FALSE in the case of SCL, and the over-

flow bits OV and OS are set to “1” in the case of STL.

Fig. 13.20 Conversion functions ROUND, CEIL, FLOOR, and TRUNC

EN EN

OUT

OUTENO

ENO

Conversion functions ROUND, CEIL, FLOOR, and TRUNC

LAD FBD

IN IN

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

Enable input

Enable output

Input tag

Output tag

DescriptionData type

SCL STLOUT := (IN);Function_DT2 CALL

IN := ...
RET_VAL := ...

Function
DT1 DT2

Data types:
Data type 1: Floating-point

data type
Data type 2: Fixed-point or

floating-point
data type

Function:
Conversion of a floating-point number into a fixed-point number

ROUND With rounding to the next integer
CEIL With rounding to the next higher integer
FLOOR With rounding to the next lower integer
TRUNC Without rounding

Function
DT1 to DT2

Function
DT1 to DT2

13.6 Conversion functions

593

Table 13.3 Rounding modes when converting fractional numbers

Input value Result

REAL DW#16# ROUND CEIL FLOOR TRUNC

1.0000001 3F80 0001 1 2 1 1

1.00000000 3F80 0000 1 1 1 1

0.99999995 3F7F FFFF 1 1 0 0

0.50000005 3F00 0001 1 1 0 0

0.50000000 3F00 0000 0 1 0 0

0.49999996 3EFF FFFF 0 1 0 0

5.877476E–39 0080 0000 0 1 0 0

0.0 0000 0000 0 0 0 0

–5.877476E–39 8080 0000 0 0 –1 0

–0.49999996 BEFF FFFF 0 0 –1 0

–0.50000000 BF00 0000 0 0 –1 0

–0.50000005 BF00 0001 –1 0 –1 0

–0.99999995 BF7F FFFF –1 0 –1 0

–1.00000000 BF80 0000 –1 –1 –1 –1

–1.0000001 BF80 0001 –1 –1 –2 –1

Fig. 13.21 Conversion functions T_CONV and S_CONV

Conversion functions T_CONV and S_CONV

SCL STLOUT := (IN);DT1 DT2_TO_ CALL
TO

IN := ...
OUT := ...

Function
DT1 DT2

Function:
T_CONV Conversion of time data types
S_CONV Conversion of string data types

The function transfers the value of the tag
with data type DT1 at parameter IN to the tag
with data type DT2 at parameter OUT. The
permissible data types and the transfer
method are described in the text.

EN EN

OUT

OUTENO

ENO

LAD FBD

IN IN

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 2

Enable input

Enable output

Input tag

Output tag

DescriptionData typeFunction
DT1 to DT2

Function
DT1 to DT2

13 Digital functions

594

13.6.4 Data type conversion with S_CONV

The conversion function S_CONV transfers a value from a tag with a string data type
to another tag and vice versa. Fig. 13.21 shows the conversion function in the vari-
ous programming languages. S_CONV can be found in the program elements cata-
log under Extended instructions > String + Char.

In the event of a conversion error, the ENO output is set to “0” in the case of LAD and
FBD, the ENO tag and ENO output are set to FALSE in the case of SCL, and the over-
flow bits OV and OS are set to “1” in the case of STL.

The conversion is carried out in the same way as with the conversion function
CONVERT and the data types STRING and CHAR. The description is provided in
Chapter 13.6.1 “Data type conversion with the conversion function CONVERT” on
page 586.

13.6.5 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG

The function STRG_TO_CHARS converts a string with data type STRING into an
array with data type ARRAY OF CHAR or ARRAY OF BYTE. The function
CHARS_TO_STRG converts an array with data type ARRAY OF CHAR or ARRAY OF
BYTE into a string with data type STRING. For LAD and FBD, the conversion func-
tions are EN/ENO boxes. For SCL, they are function calls with a function value and
for STL, they are block calls. You can find the conversion functions in the program
elements catalog under Extended instructions > String + Char. Fig. 13.22 shows the
conversion functions in the various programming languages.

STRG_TO_CHARS converts the string at the parameter STRG with data type STRING
into a character sequence. The character sequence is inserted into the array at the
parameter CHARS. The array comprises components with data type CHAR or BYTE.
The position where the character sequence is inserted is specified by the parameter
PCHARS. The parameter CNT indicates the number of inserted characters.

CHARS_TO_STRG converts a character sequence into a string with data type STRING
and outputs it at the parameter STRG. The character sequence is taken from the
array at the parameter CHARS. The parameter PCHARS specifies the position of the
first character, while parameter CNT specifies the number of removed characters.
If the value is zero at parameter CNT, all characters are copied. The array has the
data type ARRAY OF CHAR or ARRAY OF BYTE. Only characters with ASCII coding are
accepted.

If an error occurs during the conversion, e.g. if the destination area is too small to
accommodate the copied characters, the ENO output is set to signal state “0” for
LAD and FBD and the ENO tag and the ENO output are set to FALSE for SCL.

13.6 Conversion functions

595

Fig. 13.22 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG

Conversion function STRG_TO_CHARS

Conversion function CHARS_TO_STRG

Strg_TO_Chars Strg_TO_Chars

Chars_TO_Strg Chars_TO_Strg

EN EN

EN EN

pChars pChars

pChars pChars

Chars Chars

Cnt Cnt

Cnt

ENO

Ctrl

ENO

ENO

Cnt

ENO

Ctrl

LAD

LAD

FBD

FBD

Ctrl Ctrl

Chars Chars

Declaration

Declaration

Name

Name

EN

EN

Ctrl

Chars

ENO

ENO

pChars

pChars

Chars

Cnt

Cnt

Ctrl

–

–

INPUT

INPUT

–

–

INPUT

INPUT

INOUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

DINT

DINT

STRING

VARIANT

VARIANT

UINT

UINT

STRING

Enable input

Enable input

Character string

Character array

Enable output

Enable output

Position

Position

Character array

Quantity

Quantity

Character string

Description

Description

Data type

Data type

Function:
The string at the STRG parameter is inserted
beginning at the position PCHARS in the
character array at the CHARS parameter with
the data type ARRAY OF CHAR or ARRAY OF
BYTE. The parameter CNT indicates the
number of inserted characters.

Function:
From the character array at the parameter
CHARS with the data type ARRAY OF CHAR or
ARRAY OF BYTE, CNT characters beginning
at the position PCHARS are taken, converted
to a string, and output at the STRG
parameter.

SCL

SCL

STL

STL

Strg_TO_Chars(
Strg := ... ,
pChars := ... ,
Cnt => ... ,
Chars := ...);

Chars_TO_Strg(
Chars := ... ,
pChars := ... ,
Cnt => ... ,
Strg := ...);

CALL
Strg := ...
pChars := ...
Cnt := ...
Chars := ...

Strg_TO_Chars

CALL
Chars := ...
pChars := ...
Cnt := ...
Strg := ...

Chars_TO_Strg

Valid characters:
all characters with ASCII coding

Current length

Current length

Maximum length

Maximum length

Parameter pChars

Parameter pChars

Cnt

Cnt

Parameter Strg

Parameter Strg

Parameter Chars

Parameter Chars

13 Digital functions

596

13.6.6 Conversion functions STRG_VAL and VAL_STRG

The function STRG_VAL converts a string into a numerical value. The function
VAL_STRG converts a numerical value into a string. For LAD and FBD, the conver-
sion functions are EN/ENO boxes and for STL, they are block calls. These conversion
functions are not available in SCL. You can find the conversion functions in the pro-
gram elements catalog under Extended instructions > String + Char.

Conversion of a string into a number (STRG_VAL)

The string to be converted is at the IN parameter. The first character to be
converted is specified at the parameter P, the format to be converted at the param-
eter FORMAT. The conversion stops when the end of the string is reached or at the
first character that is not a digit (0 to 9), a sign (+, -), a point, a comma, or an “e” or
“E”. After successful conversion, the position of the last converted character is in P
and the result is in OUT. OUT must be filled in with a valid string prior to conversion
(Fig. 13.23).

The first character to be converted must be a number, a sign, or a space. Leading
spaces are ignored. If the decimal point is a period (bit 0 in FORMAT is “0”), then the
comma is allowed as thousands separator to the left of the decimal point and it is
ignored. If the comma is used as the decimal point, then the period is allowed as the
thousands separator and it is ignored.

In the event of an error, zero is output at the parameter OUT and the ENO output is
set to “0”.

Fig. 13.23 Conversion function STRG_VAL

EN

FORMAT

EN

FORMAT

OUT

OUT

ENO

ENO

LAD FBD

IN

P

IN

P

Conversion function STRG_VAL

DeclarationName

EN

IN

ENO

P

FORMAT

OUT

–

INPUT

–

IN_OUT

INPUT

OUTPUT

BOOL

STRING

BOOL

UINT

WORD

Data type

Enable input

String

Enable output

Character position

Format specifications

Result

DescriptionData type

Structure of the FORMAT parameter

Function:

Data type:

The STRING tag present at the IN parameter is
converted into a numerical value and output at the
OUT parameter.
The conversion format is defined by the FORMAT
parameter.

Fixed-point and floating-point data types

D = Decimal "0" = Point
separator "1" = Comma

N = Notation "0" = Decimal fraction
"1" = Exponential

0

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

N

1

D

0

SCL

STL
CALL

String TO data type
IN := ...
FORMAT := ...
P := ...
OUT := ...

STRG_VAL

(not available)

STRG_VAL
String to DT

STRG_VAL
String to DT

13.6 Conversion functions

597

Conversion of a number into a string (VAL_STRG)

The conversion function VAL_STRG converts a numerical value present at parame-
ter IN into a string and outputs it at parameter OUT. OUT must be assigned a valid
STRING tag which is long enough to accommodate the converted value (Fig. 13.24).

The first converted character is written in the STRING tag at the position specified
by parameter P. If P is longer than the current length of the string, spaces are
appended up to position P. After the conversion, the position of the next, unre-
placed character in the string is present in P.

The SIZE parameter specifies the number of integer places. If the converted value
occupies fewer spaces, leading spaces are inserted.

The PREC parameter specifies the decimal places, even with a whole number.
Example: The number 123 is converted on PREC = 1 into the string “12.3”. The max-
imum value for PREC is 7. If PREC = 0, the decimal separator and the decimal places
can be omitted.

The floating point notation places an “E” before the exponent, followed by the sign
of the exponent and the exponent without leading zeroes. The digits before the “E”
are assigned as in fixed-point notation.

If an error occurs when processing the conversion function, the ENO output is set
to “0”. The OUT parameter then contains a value with leading spaces and a “C” as
the last character.

13.6.7 Data type conversion of hexadecimal numbers

The ATH function converts a string of ASCII-coded characters into a string of hexa-
decimal numbers. The HTA function converts a string of hexadecimal numbers into
a string of ASCII-coded characters. For LAD and FBD, the conversion functions are
EN/ENO boxes. For SCL, they are function calls with a function value and for STL,
they are block calls. You can find the conversion functions in the program elements
catalog under Extended instructions > String + Char. Fig. 13.25 shows the conversion
functions in the various programming languages.

The number of characters to be converted is specified at parameter N. Up to 32 767
characters are permissible.

ATH Conversion from ASCII to hexadecimal

ATH converts a string present in ASCII code into a string in hexadecimal code. Only
the digits 0 to 9, the uppercase letters A to F, and the lowercase letters a to f are per-
missible. An illegal character is converted into zeroes and an error message is out-
put at the RET_VAL parameter.

At parameter IN, a tag with a data type STRING, ARRAY_OF_CHAR or ARRAY_OF_BYTE
can be specified. At the parameter OUT, a tag with a data type bit sequence, fixed-
point number, ARRAY_OF_CHAR or ARRAY_OF_BYTE can be specified.

13 Digital functions

598

Fig. 13.24 Conversion function VAL_STRG

EN

SIZE

FORMAT

EN

SIZE

FORMAT

OUT

OUT

ENO

ENO

Conversion function VAL_STRG

LAD FBD

IN

PREC

P

IN

PREC

P

DeclarationName

EN

IN

ENO

SIZE

PREC

P

FORMAT

OUT

–

INPUT

–

INPUT

INPUT

IN_OUT

INPUT

OUTPUT

BOOL

Data type

BOOL

USINT

USINT

UINT

WORD

STRING

Enable input

Numerical values

Enable output

Number of characters

Decimal places

Character position

Format specifications

Result

DescriptionData type

Structure of the FORMAT parameter

Function:

Data type:

The numerical value at the IN parameter is
converted into a STRING tag and output at the
OUT parameter.
The conversion format is defined by the
FORMAT parameter.

Fixed-point and floating-point data types

D = Decimal separator "0" = Point
"1" = Comma

N = Notation "0" = Decimal fraction
"1" = Exponential

V = Sign "0" = with “+” and “–”
"1" = only with “–”

0

15

0

14

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

V

2

N

1

D

0

E VV

V

D

D

Space

Space

Integral places

Integral places

Decimal places

Decimal places

Exponent

Output format for exponential representation (FORMAT bit 1 = “1”)

Output format for decimal fraction representation (FORMAT bit 1 = “0”)

Parameter SIZE

Parameter SIZE

Parameter P

Parameter P

Parameter PREC

Parameter PREC

V = Sign (FORMAT bit 2)
D = Decimal separator (FORMAT bit 0)
E = Exponential identifier “E”

V = Sign (FORMAT bit 2)
D = Decimal separator (FORMAT bit 0)

SCL

STL CALL
TO String

IN := ...
SIZE := ...
PREC := ...
FORMAT := ...
P := ...
OUT := ...

VAL_STRG
Data type

(not available)

VAL_STRG
DT to String

VAL_STRG
DT to String

13.6 Conversion functions

599

HTA Conversion from hexadecimal to ASCII

HTA converts a string present in hexadecimal code into an ASCII-coded string.
The result is output with the digits 0 to 9 and with the uppercase letters A to F.

At parameter IN, a tag with a data type bit sequence, fixed-point number,
ARRAY_OF_CHAR or ARRAY_OF_BYTE can be specified. At the parameter OUT, a tag
with a data type STRING, ARRAY_OF_CHAR or ARRAY_OF_BYTE can be specified.

13.6.8 Scaling and normalizing

For converting a value from one value range to another, you have the following
functions at your disposal:

b SCALE_X
A value in the numerical range from 0 to 1 is converted (scaled) to a value range
that is defined by a lower and upper limit value.

b NORM_X
A value in a value range which is defined by a lower and upper limit value is con-
verted (standardized) to the numerical range from 0 to 1.

Fig. 13.25 Conversion functions ATH and HTA

Conversion functions ATH and HTA

H1

H1

H2

H2

H3

H3

H4

H4

H5

H5

0

xA1

A1

A2

A2

A3

A3

A4

A4

A5

A5

N parameter

IN parameter

OUT parameter

Valid characters:
Digits 0 to 9
Uppercase letters A to F
Lowercase letters a to f

In the case of an odd quantity, a
zero is written into the last half-
byte.

ATH HTA

Function Function

IN

N

IN

N

EN EN

RET_VAL

OUT

RET_VALENO

OUT

ENO

LAD FBD

SCL

STL

#var_RET_VAL := (
IN := ...
N := ...
OUT => ...);

Function

CALL
IN := ...
N := ...
RET_VAL := ...
OUT := ...

Function

Function:
ATH Conversion of a string

into a hexadecimal number
HTA Conversion of a hexadecimal

into a stringnumber

DeclarationName

EN

ENO

IN

N

RET_VAL

OUT

–

–

INPUT

INPUT

RETURN

OUTPUT

BOOL

BOOL

Data type 1

INT

WORD

Data type 2

Enable input

Enable output

Input tag

Quantity

Error information

Output tag

DescriptionData type

13 Digital functions

600

b SCALE
A value in the range from 0 to 27 648 (unipolar) or from –27 468 and 27 648 (bi-
polar) is converted to a value range which is defined by a lower and upper limit
value. Application: Conversion of an analog value read from a module into a val-
ue with physical units.

b UNSCALE
A value in a range which is defined by a lower and upper limit value is converted
to a value range from 0 to 27 648 (unipolar) or from –27 468 and 27 648 (bipo-
lar). Application: Conversion of a value with physical units into an analog value
written to a module.

For LAD and FBD, these functions are EN/ENO boxes. For SCL, they are function calls
with a function value and for STL, they are block calls. You can find these functions
in the program elements catalog under Basic instructions > Conversion operations.

Conversion with SCALE_X

SCALE_X maps the floating-point number at the VALUE parameter in the value
range of 0.0 to 1.0 to a range of values defined by the range limits at the parameters
MIN and MAX. The result is output at the OUT parameter (Fig. 13.26).

Please note: The value created at the parameter VALUE must be within the limits
of 0 and 1 (inclusive)! If this is not the case, the value at the output parameter OUT
can be less than MIN or greater than MAX. If it is still within the permissible value
range for the data type, SCALE_X does not report an error (ENO = “1”).

The function SCALE_X reports an error (ENO = “0”) if there is an invalid floating-
point number at the VALUE parameter (VALUE is then written to the OUT parame-
ter), if the result is outside the range of validity of the data type at the OUT param-
eter and the value at the MAX parameter is less than or equal to that at the MIN
parameter (in both cases, OUT is assigned without definition).

Conversion with NORM_X

NORM_X function normalizes the number at the VALUE parameter to the range 0
to 1, based on a value range specified with the MIN and MAX parameters, and
returns it as a REAL number at the OUT parameter (Fig. 13.26).

Please note: The value created at the parameter VALUE must be within the limits of
MIN and MAX (inclusive)! If this is not the case, the value at the output parameter
OUT can be less than 0 and greater than 1. NORM_X does not report any errors
(ENO = “1”).

The function NORM_X reports an error (ENO = “0”) if there is an invalid floating-
point number at the VALUE parameter (VALUE is then written to the OUT parame-
ter), if the result is outside the range of validity of the OUT data type and the value
at the MAX parameter is less than or equal to that at the MIN parameter (in both
cases, OUT is assigned without definition).

13.6 Conversion functions

601

Conversion with SCALE

SCALE converts a fixed-point number between the limits 0 and +27 648 (unipolar)
or between the limits –27 648 and +27 648 (bipolar) into a floating-point number
and scales it between a lower limit and upper limit specified by you (Fig. 13.27).
Example of the application: Conversion of an analog value from an analog input
module into a value with physical units.

Fig. 13.26 Conversion functions SCALE_X and NORM_X

EN

VALUE

EN

VALUE

OUT

OUT

ENO

ENO

Scaling SCALE_X

LAD FBD

MIN

MAX

MIN

MAX

Data type:
Data type 1: Floating-point number
Data type 2: Fixed-point and floating-point number

Data type:
Data type 1: Floating-point number
Data type 2: Fixed-point and floating-point number

DeclarationName

EN

ENO

MIN

VALUE

MAX

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type 2

Data type 1

Data type 2

Data type 2

Enable input

Enable output

Lower limit

Input tag

Upper limit

Result

DescriptionData type

Function:
The tag value created at the parameter VALUE is
converted linearly between the limits MIN and MAX
and output at the parameter OUT.

EN

VALUE

EN

VALUE

OUT

OUT

ENO

ENO

Normalizing NORM_X

LAD FBD

MIN

MAX

MIN

MAX

EN

ENO

MIN

VALUE

MAX

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type 1

Data type 1

Data type 1

Data type 2

Enable input

Enable output

Lower limit

Input tag

Upper limit

Result

Function:
The tag value created at the parameter VALUE is
converted linearly between the limits MIN and MAX
and output at the parameter OUT.

SCL

STL

#var_OUT := (
MIN := ... ,
VALUE := ... ,
MAX := ...);

SCALE_X_DT2

CALL

MIN := ...
VALUE := ...
MAX := ...
RET_VAL := ...

SCALE_X
DT1 DT2

SCL

STL

#var_OUT := (
MIN := ... ,
VALUE := ... ,
MAX := ...);

NORM_X_DT2

CALL

MIN := ...
VALUE := ...
MAX := ...
RET_VAL := ...

SCALE_X
DT1 DT2

SCALE_X
DT1 to DT2

NORM_X
DT1 to DT2

NORM_X
DT1 to DT2

DeclarationName DescriptionData type

0 < VALUE ≤ 1

OUT := VALUE × (MAX – MIN) + MIN

0 < OUT ≤ 1

OUT := (VALUE – MIN) / (MAX – MIN)

13 Digital functions

602

If the value at IN is greater than 27 648, the upper limit is output and an error sig-
naled. If the value at IN is less than K1 (see Fig. 13.27), the lower limit is output and
an error signaled. If the lower limit is greater than the upper limit, the result is
scaled inversely proportional to the input value.

Fig. 13.27 Conversion functions with SCALE and UNSCALE

Function Function

Conversion functions for scaling and unscaling

HI_LIM

BIPOLAR

HI_LIM

BIPOLAR

IN

EN

LO_LIM

IN

EN

LO_LIM

OUT

ENO

RET_VAL

ENO

OUT

RET_VAL

There are two different cases:

1) The value of IN is unipolar in the range from 0 to +27 468; in this case the BIPOLAR parameter is
assigned "0" and the constants have the values K1 = 0 and K2 = +27 468.

2) The value of IN is bipolar in the range from -468 to +27 468; in this case the BIPOLAR parameter is
assigned "1" and the constants have the values K1 = -468 and K2 = +27 468.

There are two different cases:

1) The value of OUT is unipolar in the range from 0 to +27 468; in this case the BIPOLAR parameter is
assigned "0" and the constants have the values K1 = 0 and K2 = +27 468.

2) The value of OUT is bipolar in the range from -468 to +27 468; in this case the BIPOLAR parameter
is assigned "1" and the constants have the values K1 = -468 and K2 = +27 468.

K1 < IN < K2

K1 < OUT < K2

IN —K1

K2 —K1
× (HI_LIM – LO_LIM)] + LO_LIMOUT = [

IN – LO_LIM

HI_LIM – LO_LIM
× (K2 – K1) + K1OUT = [

Conversion formula:

Conversion formula:

SCALE

UNSCALE

SCLLAD FBD

STL

#var_RET_VAL := (
IN := ... ,
HI_LIM := ... ,
LO_LIM := ... ,
BIPOLAR := ... ,
OUT => ...);

Function

CALL
IN := ...
HI_LIM := ...
LO_LIM := ...
BIPOLAR := ...
RET_VAL := ...
OUT := ...

Function

Function:
SCALE Scale
UNSCALE Unscale

Decla-
ration

Name

EN

ENO

IN

HI_LIM

LO_LIM

BIPOLAR

RET_VAL

OUT

–

–

INPUT

INPUT

INPUT

INPUT

RETURN

OUTPUT

BOOL BOOL

BOOL BOOL

INT REAL

REAL REAL

REAL REAL

BOOL BOOL

WORD WORD

REAL INT

Enable input

Enable output

Lower limit

Input tag

Input tag

Upper limit

Error information

Result

DescriptionData type

SCALE UNSCALE

13.7 Shift functions

603

Conversion with UNSCALE

UNSCALE unscales a floating-point number between lower and upper limits and
converts it into a fixed-point number between 0 and +27 648 (unipolar) or between
–27 648 and +27 648 (Fig. 13.27). Example of the application: Conversion of a value
with physical units into an analog value for an analog output module.

If the value at IN is greater than the value of the upper limit HI_LIM, the value of the
constant K2 is output and an error signaled. If the value at IN is less than the lower
limit LO_LIM, the value K1 is output and an error signaled.

13.7 Shift functions

13.7.1 General function description

A shift function shifts the content of a tag bit by bit to the left or right. The shifted
out bits are lost in the case of shifting, or are applied again at the other side of the
tag in the case of rotating. Fig. 13.28 shows the general representation of a shift
function in the various programming languages.

The shift functions for 64-bit wide tags for STL are described in Chapter 10.5.6
“Shift functions in the statement list” on page 430.

13.7.2 Shift to right

Shift to right with LAD and FBD

The SHR shift function shifts the contents of the input tags present at the IN param-
eter to the right by the number of bit positions specified by the shift number at the
N input. If the shift number has the value zero, the input value is copied to the out-
put value. If the shift number is greater than the number of available bit positions,
the input value is shifted by the number of the available bit positions.

If the input tag has a data type with sign, the bit positions that become free during
the shifting are filled with the sign. In all other cases, the bit positions that become
free when shifting are padded with zeroes.

Shift to right with SCL

The SHR shift function shifts the contents of the tag present at the IN input bit by
bit to the right by the number of positions specified by the shift number at the N
input. If the shift number has the value zero, the input value is copied to the output
value. If the shift number is greater than the number of available bit positions, the
input value is shifted by the number of the available bit positions.

The bit positions that become free when shifting are padded with zeroes.

13 Digital functions

604

Fig. 13.28 Shift functions, representation, and principle of operation

EN EN

OUT OUT

ENO

ENO

Shift functions

LAD FBD

IN

N N

IN

Function: SHR Shift to right
SHL Shift to left

Function: ROR Rotate to right
ROL Rotate to left

Data type: BYTE, WORD, DWORD, LWORD,
SINT, INT, DINT, LINT,
USINT, UINT, UDINT, ULINT

Data type: BYTE, WORD, DWORD, LWORD

DeclarationName

EN

ENO

IN

N

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

UINT

Data type

Enable input

Enable output

Input tag

Quantity

Result

DescriptionData type

"0"

S

"0"

SHL

ROL

SHR

SHR

ROR

For SINT, INT, DINT und LINT:

For BYTE, WORD, DWORD, LWORD,
USINT, UINT, UDINT and ULINT:

SCL

STL

OUT := (IN := ... , N := ...);Function_Data type

L IN

T OUT
Operation with N parameter

L N
L IN

T OUT
Operation without parameter

A shift function changes the contents of accumulator 1: depending on the operation, the bits
0 to 15 (word by word) or 0 to 31 (doubleword by doubleword). The parameter for the operation
specifies by how many bit positions shifting is carried out. If the operation has no parameters,
the number of bit positions to be shifted is taken as a positive fixed-point number from
accumulator 2.

Function: Doubleword by doubleword (bits 0 to 31): Word by word (bits 0 to 15):

Shift to right SRD SRW
Shift with sign SSD SSI
Shift to left SLD SLW

Rotate to right RRD —
Rotate to left RLD —

Rotate to right through A1 RRDA —
Rotate to left through A1 RLDA —

Function
Data type

Function
Data type

13.7 Shift functions

605

Shift to right with STL

The shift number is either specified as a parameter in the shift function or is present
as a positive fixed-point number in accumulator 2.

The SRW shift function shifts the contents of bits 0 to 15 of accumulator 1 bit by bit
to the right. The bit positions that become free when shifting are padded with
zeroes. The left word of accumulator 1 remains unaffected.

The SSI shift function shifts the contents of bits 0 to 15 of accumulator 1 bit by bit
to the right. The bit positions that become free when shifting are filled with the sign
of the fixed-point number. The left word of accumulator 1 remains unaffected.

The SRD shift function shifts the entire contents of accumulator 1 bit by bit to the
right. The bit positions that become free when shifting are padded with zeroes.

The SSD shift function shifts the entire contents of accumulator 1 bit by bit to the
right. The bit positions that become free when shifting are filled with the sign of the
fixed-point number.

13.7.3 Shift to left

Shift to left with LAD, FBD, and SCL

The SHL shift function shifts the contents of the tag present at the IN input bit by bit
to the left by the number of positions specified by the shift number at the N input.
If the shift number has the value zero, the input value is copied to the output value.
If the shift number is greater than the number of available bit positions, the input
value is shifted by the number of the available bit positions.

The bit positions that become free when shifting are padded with zeroes.

Shift to left with STL

The shift number is either specified as a parameter in the shift function or is present
as a positive fixed-point number in accumulator 2.

The SLW shift function shifts the contents of bits 0 to 15 of accumulator 1 bit by bit
to the left. The bit positions that become free when shifting are padded with zeroes.
The left word of accumulator 1 remains unaffected; carrying-over to bit 16 is not
carried out.

The SLD shift function shifts the entire contents of accumulator 1 bit by bit to the
left. The bit positions that become free when shifting are padded with zeroes.

13.7.4 Rotate to right

Rotate to right with LAD, FBD, and SCL

The ROR function shifts the contents of the tag present at the IN input bit by bit to
the right by the number of positions specified by the shift number at the N input.
If the shift number has the value zero, the input value is copied to the output value.

13 Digital functions

606

The bit positions that become free when shifting are filled with the signal state of
the shifted-out positions.

Rotate to right with STL

The shift number is either specified as a parameter in the shift function or is present
as a positive fixed-point number in accumulator 2.

The RRD function shifts the entire contents of accumulator 1 bit by bit to the right.
The bit positions that become free when shifting are filled by the shifted-out bit
positions.

If the shift number = 0, the operation is not executed (nil operation NOP); if it is 32,
the content of accumulator 1 is retained and status bit CC1 has the signal state of
the last shifted-out bit (bit 0). If the shift number = 33, shifting is carried out by one
position; with 34, shifting is by two positions, etc.

The RLDA shift function shifts the entire contents of accumulator 1 by one bit to the
left. The bit position that becomes free when shifting (bit 0) is filled with the signal
state of status bit CC1. Status bit CC1 contains the signal state of the shifted-out
bit (bit 31); status bit CC0 is set to “0”.

13.7.5 Rotate to left

Rotate to left with LAD, FBD, and SCL

The ROL function shifts the contents of the tag present at the IN input bit by bit to
the left by the number of positions specified by the shift number at the N input.
If the shift number has the value zero, the input value is copied to the output value.

The bit positions that become free when shifting are filled with the signal state of
the shifted-out positions.

Rotate to left with STL

The shift number is either specified as a parameter in the shift function or is present
as a positive fixed-point number in accumulator 2.

The RLD function shifts the entire contents of accumulator 1 bit by bit to the left.
The bit positions that become free when shifting are filled by the shifted-out bit
positions.

If the shift number = 0, the operation is not executed (nil operation NOP); if it is 32,
the content of accumulator 1 is retained and status bit CC1 has the signal state of
the last shifted-out bit (bit 0). If the shift number = 33, shifting is carried out by one
position; with 34, shifting is by two positions, etc.

The RRDA shift function shifts the entire contents of accumulator 1 by one bit to the
right. The bit position that becomes free when shifting (bit 31) is filled with the sig-
nal state of status bit CC1. Status bit CC1 contains the signal state of the shifted-out
bit (bit 0); status bit CC0 is set to “0”.

13.8 Logic functions

607

13.8 Logic functions

The (digital) logic functions comprise the following functions:

b Word logic operations according to AND, OR, and exclusive OR

b Invert

b Code bit and set bit number (DECO, ENCO)

b Selection and limiting functions (SEL, MUX, DEMUX, MIN, MAX, LIMIT).

You can find the logic functions in the program elements catalog under Basic
instructions > Word logic operations and Basic instructions > Math functions (MIN,
MAX and LIMIT) if they are not implemented by a logical expression (SCL) or basic
instructions (STL).

13.8.1 Word logic operations

General processing of a word logic operation

A word logic operation links the values of two digital tags bit by bit according to
AND, OR, or exclusive OR. FBD and LAD use boxes with EN/ENO for the word logic
operation. With SCL, the word logic operation is a logic expression. STL links the
contents of accumulators 1 and 2 or the content of accumulator 1 to a constant.
There are functions in the Long Functions global library for the data type LWORD.
Fig. 13.29 shows the general representation of a digital logic operation in the vari-
ous programming languages.

AND logic operation

The AND logic operation links the individual bits of the input tags according to an
AND logic operation. The individual bits only have signal state “1” in the result if
the corresponding bits of the two values to be linked have signal state “1”.

A word by word AND logic operation with STL (AW) only uses the right words (bits 0
to 15) of the accumulators. The contents in the left words are not changed.

Since the bits with signal state “0” in the second input tag (“mask”) also set these
bits in the result to “0” independent of the assignment of these bits in the first input
tag, one also says that these bits are “masked”. This masking is the main application
of the (digital) AND logic operation.

OR logic operation

The OR logic operation links the individual bits of the input tags according to an
OR logic operation. The individual bits only have signal state “0” in the result if the
corresponding bits of the two values to be linked have signal state “0”.

A word by word OR logic operation with STL (OW) only uses the right words (bits 0
to 15) of the accumulators. The contents in the left words are not changed.

13 Digital functions

608

Since the bits with signal state “1” in the second input tag (“mask”) also set these
bits in the result to “1” independent of the assignment of these bits in the first input
tag, one also says that these bits are “unmasked”. This unmasking is the main appli-
cation of the (digital) OR logic operation.

Exclusive OR logic operation

The exclusive OR logic operation links the individual bits of the input tags accord-
ing to an exclusive OR logic operation. The individual bits only have signal state “1”
in the result if only one of the corresponding bits of the two values to be linked has
signal state “1”. If a bit in the second input tag has signal state “1”, the inverted sig-
nal state of the bit of the first input tag is present at this position in the result.

Fig. 13.29 Representation and function of word logic operations

EN EN

OUT OUT

ENO

ENO

Word logic operations AND, OR, and XOR

LAD FBD

IN1

IN2 IN2

IN1

Function:
AND Bit by bit AND operation
OR Bit by bit OR operation
XOR Bit by bit exclusive OR operation

Function:
AND Bit by bit AND operation
OR Bit by bit OR operation
XOR Bit by bit exclusive OR operation

Data type:
BYTE, WORD, DWORD, LWORD

DeclarationName

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

Enable input

Enable output

Input tag 1

Input tag 2

Result

DescriptionData type

Linking of the individual bits:

Bit of the IN1 parameter "0" "0"
Bit of the IN2 parameter "0" "0"

Result with AND "0" "0" "0"
Result with OR "0"
Result with XOR "0" "0"

"1" "1"
"1" "1"

"1" "1"
"1"
"1"

"1" "1"

SCL
#var_OUT := #var_IN1 #var_IN2;Function

* *

CALL _LWORD
IN1 := ...
IN2 := ...
OUT := ...

Function

A word logic operation changes the contents of accumulator 1: depending on the operation, the
bits 0 to 15 (word by word) or 0 to 31 (doubleword by doubleword). The parameter for the
operation specifies the mask used for linking the contents of accumulator 1. If the operation has
no parameters, the mask is taken from accumulator 2.

Function: Doublewordbydoubleword(bits 0to 31): Word by word (bits 0 to 15):

AND logic operation AD AW
OR logic operation OD OW
Exclusive OR logic operation XOD XOW

STL
L #var_IN

T #var_OUT
Operation with mask

L #var_Mask
L #var_IN

T #var_OUT
Operation without parameter

Function
Data type

Function
Data type

13.8 Logic functions

609

A word by word exclusive OR logic operation with STL (XOW) only uses the right
words (bits 0 to 15) of the accumulators. The contents in the left words are not
changed.

Only those bits have signal state “1” in the result which have different signal states
in both tags prior to the digital exclusive OR logic operation. Detection of the bits
with different signal states or the “negating” of the signal states of individual bits
are the main applications of the (digital) exclusive OR logic operation.

13.8.2 Invert, generate one's complement

Inverting negates the value of a tag bit by bit; signal state “1” becomes signal
state “0” and vice versa. Fig. 13.30 shows the representation of the function in the
various programming languages.

For SCL, the one's complement is formed with the operator NOT (Boolean nega-
tion), which inverts the bits of the following operands or the result of the following
expression.

For STL, the INVI operation inverts the content of the right word in accumulator 1
(bits 0 to 15). The left word is not affected. The INVD operation inverts the content
of the complete accumulator 1 (bits 0 to 31).

Fig. 13.30 Invert, generate one's complement

INV INV
Data type Data type

EN EN

OUT

OUTENO

ENO

Invert

LAD FBD

IN IN

Function:
The inverted value of the tag at parameter IN is
output at parameter OUT.

Data type:
For LAD, FBD: Bit-serial data types, fixed-point data types
For SCL: Bit-serial data types
For STL: Data types of word width (INVI), data types of doubleword width (INVD)

DeclarationName

EN

ENO

IN

OUT

–

–

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Enable input

Enable output

Input tag

Result

DescriptionData type

Linking of the individual bits:
Bit of the IN parameter "0"
Bit of the OUT parameter "0"

"1"
"1"

SCL

STL

#var_OUT := #var_IN;NOT

L #var_IN
//INVI, INVD

T #var_OUT
Operation

13 Digital functions

610

13.8.3 Coding functions DECO and ENCO

DECO converts a binary number to a bit pattern. ENCO converts a bit pattern to a
binary number. For LAD and FBD, these functions are represented as EN/ENO box.
For SCL, they are functions with a function value and for STL, they are block calls.
Fig. 13.31 shows the representation of the function in the various programming
languages.

DECO Code bit

DECO sets the bit whose number is at the IN parameter in the bit sequence tag at
the OUT parameter. All other bits are set to signal state “0”. Depending on the data

Fig. 13.31 Representation and description of the DECO and ENCO functions

DECO

ENCO

EN

EN

EN

EN

OUT

OUT

OUT

OUT

ENO

ENO

ENO

ENO

Set a coded bit

Determine the bit number

LAD

LAD

FBD

FBD

IN

IN

IN

IN

DeclarationName

EN

EN

ENO

ENO

IN

IN

OUT

OUT

–

–

–

–

INPUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

BOOL

BOOL

USINT, UINT

Data type *)

Data type *)

INT

Enable input

Enable input

Enable output

Enable output

Number

Bit sequence

Bit sequence

Number

DescriptionData type

DeclarationName DescriptionData type

UINT TO DT
DECO

UINT TO DT

Data type
ENCO

Data type

*) Data type (DT) = BYTE, WORD, DWORD, LWORD

*) Data type = BYTE, WORD, DWORD, LWORD

OUT parameter

IN parameter

IN parameter

OUT parameter

The bit in the OUT parameter is set to "1", the
number of which is specified by the IN parameter.
The other bits are reset to "0".

The number of the least significant bit with signal
state "1" in the IN parameter is output at the OUT
parameter.

Function:

Function:

0

0

n

n

0

0

...

...

0

0

...

...

0

1

...

...

0

0

...

...

0

1

...

...

0

0

...

...

0

0

...

...

0

0

...

...

1

1

...

...

0

0

...

...

0

0

...

...

0

0

3

3

0

0

2

2

0

0

1

1

0

0

0

0

SCL

SCL

STL

STL

#var_OUT :=
_ (#var_IN);DECO Data type

#var_OUT :=
(#var_IN);ENCO

CALL
UINT
IN := ...
OUT := ...

DECO
Data type

CALL

IN := ...
OUT := ...

ENCO
Data type

13.8 Logic functions

611

type at parameter OUT, only a subset of the bits is selected in parameter IN: 3 bits
(range 0 to 7) for BYTE, 4 bits (range 0 to 15) for WORD, and 5 bits (range 0 to 31)
for DWORD. The function DECO does not report any errors.

SCL: DECO returns the output parameter as function value. Its data type is DWORD
by default. If the function value has a different data type, the data type is “attached”
to the function name with an underscore. Example:

#var_byte := DECO_BYTE(#var_usint);

ENCO Set bit number

ENCO searches for the first bit set to signal state “1” in the bit sequence tag at the
IN parameter starting from the right (starting with bit number 0) and outputs its
number at the OUT parameter. If no bit is set, the number 0 is output at the
OUT parameter and signal state “0” at the ENO output.

SCL: ENCO returns the output parameter as function value.

13.8.4 Selection functions SEL, MUX, and DEMUX

Depending on a switch (parameter G), SEL selects one of two tag values (parameters
IN0 and IN1) and outputs it at parameter OUT. If the signal state is “0” at
parameter G, the tag at parameter IN0 is selected; if it is “1”, the tag at parameter IN1
is selected. The SEL function does not report any errors (Fig. 13.32).

Fig. 13.32 Binary selection SEL, representation and function

EN EN

OUT

OUT

ENO

ENO

Binary selection SEL

LAD FBD

G

IN0

IN1

G

IN0

IN1

Data type:
elementary data types

EN

ENO

G

IN0

IN1

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

BOOL

Data type

Data type

Data type

Enable input

Enable output

Switch

Input tag 0

Input tag 1

Result

SEL
Data type

SEL
Data type

Function:
With signal state "0" at parameter G, the value at
parameter IN0 is transferred to the parameter OUT,
otherwise the value at parameter IN1.

SCL STL#var_OUT := (
G := ... ,
IN0 := ... ,
IN1 := ...);

SEL CALL

G := ...
IN0 := ...
IN1 := ...
OUT := ...

SEL
Data type

DeclarationName DescriptionData type

13 Digital functions

612

Dependent on the value of the K parameter, MUX outputs a tags at the box inputs
(parameters IN0 to INn and ELSE) at the OUT parameter. The MUX box is initially
offered by the program editor with a choice of two input values (IN0, IN1) and can
then be expanded to multiple values. MUX selects from these tag values (IN0 to INn)
the one whose number is specified at parameter K. If K = 0, the tag at IN0 is selected;
if K = 1, the tag at IN1, etc.

If the value of K is outside the range of input parameters IN0 to INn, the alternative
value is output by parameter ELSE; if ELSE is not supplied, OUT remains
unchanged. ENO is set to signal state “0” in both cases (Fig. 13.33).

Dependent on the value of the parameter K, DEMUX issues the tag at the input
(parameter IN) to a parameter OUT0 to OUTn, or ELSE or OUTELSE. DEMUX is ini-
tially offered by the program editor with a choice of two output values (OUT0,
OUT1) and can then be extended to multiple values. DEMUX selects from these tag
values (OUT0 to OUTn) the one whose number is specified at parameter K. If K = 0,
the tag at OUT0 is selected; if K = 1, the tag at OUT1, etc.

If the value of K is outside the range of output parameters OUT0 to OUTn, the value
is output alternatively at parameter ELSE or OUTELSE; if ELSE or OUTELSE is not
supplied, ENO is set to signal state “0” (Fig. 13.33).

13.8.5 Minimum selection MIN, maximum selection MAX

The minimum selection MIN transfers the smallest of the values present at the
parameters to parameter OUT. For LAD and FBD, up to 100 inputs can be config-
ured. For SCL, up to 32 inputs can be configured. STL provides 3 inputs. If there is
an invalid REAL number at the input parameters, the function is not executed and
the enable output ENO is set to signal state “0” (Fig. 13.34).

The maximum selection MAX transfers the largest of the values present at the
parameters to parameter OUT. For LAD and FBD, up to 100 inputs can be config-
ured. For SCL, up to 32 inputs can be configured. STL provides 3 inputs. If there is
an invalid REAL number at the input parameters, the function is not executed and
the enable output ENO is set to signal state “0”.

13.8.6 Limiter LIMIT

The limiter LIMIT compares the value at parameter IN with the values of the param-
eters MIN and MAX. If the value at IN is between the limits, it is output at parameter
OUT; it is less than MIN, the value is output at OUT; if it is above MAX, the value goes
to MAX. The upper and lower limits can also be assigned constant values (Fig.
13.35).

If there is an invalid REAL number at the parameters MIN, IN, or MAX, an invalid
REAL number is output and the enable output ENO is set to signal state “0”. The
enable output is also set to “0” if the value at parameter MIN is greater than the
value at parameter MAX; the value is then output at parameter IN.

13.8 Logic functions

613

Fig. 13.33 Multiplexing MUX, representation and function

EN EN

OUT

OUT

ENO

ENO

Multiplexing MUX

LAD FBD

K

IN0

IN1

ELSE ELSE

K

IN0

IN1

Data type:
Data type 1 (DT1): elementary data types
Data type 2 (DT2): fixed-point data types

EN

ENO

K

IN1

IN0

ELSE

OUT

–

–

INPUT

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

UINT

Data type 1

Data type 1

Data type 1

Data type 1

Enable input

Enable output

Selection

Input tag 1

Input tag 0

Substitute value

Result

MUX
Data type 1

MUX
Data type 1

Function:
Depending on the assignment of parameter K, MUX
transfers the value of an input parameter IN to the
output parameter OUT. If the value at K is greater
than the number of inputs, the value at the ELSE or
INELSE parameter is transferred to the output.

n

SCL STL#var_OUT := (
K := ... ,
IN1 := ... ,
IN2 := ... ,
...
INELSE := ...);

MUX_Data type1 CALL

K := ...
IN1 := ...
IN2 := ...
...
INELSE := ...
RET_VAL := ...

MUX
DT1 DT2

* *

EN EN

OUT0

OUT1

ELSE

ELSE

OUT1

OUT0ENO

ENO

Demultiplexing DEMUX

LAD FBD

K

IN

K

IN

Data type:
Data type 1 (DT1): elementary data types
Data type 2 (DT2): fixed-point data types

EN

ENO

K

OUT0

IN

OUT1

ELSE

–

–

INPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

BOOL

BOOL

UINT

Data type 1

Data type 1

Data type 1

Data type 1

Enable input

Enable output

Selection

Output tag 0

Input tag

Output tag 1

Substitute output

DEMUX
Data type 1

DEMUX
Data type 1

Function:

SCL STLDEMUX(K := ... ,
IN := ... ,
OUT0 => ... ,
OUT1 => ... ,
...
OUTELSE => ...);

CALL

K := ...
IN := ...
OUT0 := ...
OUT1 := ...
...
OUTELSE := ...

DEMUX
DT1 DT2

*
*

DeclarationName DescriptionData type

DeclarationName DescriptionData type

Depending on the assignment of parameter K,
DEMUX transfers the value of the input parameter
IN to an output parameter OUTn. If the value at K is
greater than the number of outputs, the value at
the IN parameter is transferred to the ELSE or
OUTELSE output.

13 Digital functions

614

Fig. 13.34 Minimum and maximum selection, representation and function

Fig. 13.35 Limiter LIMIT, representation and function

EN EN

OUT

ENO

OUT

ENO

Minimum selection MIN, maximum selection MAX

LAD FBD

IN1

IN2

IN1

IN2

Function:
MIN Select minimum

The lowest input value is copied to the OUT output.
MAX Select maximum

The highest input value is copied to the OUT output.

Data type:
Fixed-point and
floating-point
data types

EN

ENO

IN1

IN2

OUT

–

–

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

Enable input

Enable output

Input tag 1

Input tag 2

Result

F

SCL STL#var_OUT := (
IN1 := ... ,
IN2 := ... ,
...);

Function_Data type CALL

IN1 := ...
IN2 := ...
IN3 := ...
OUT := ...

Function
Data type

* *

Function
Data type

Function
Data type

DeclarationName DescriptionData type

EN EN

OUT

ENO

OUT

ENO

Limiter LIMIT

LAD FBD

MN

IN

MX

MN

IN

MX

Data type:
Fixed-point and floating-point data
types

Function:
The value of the tag present at the IN
parameter is restricted to the limits MN and MX
and output at the OUT parameter.

EN

ENO

MN

IN

MX

OUT

–

–

INPUT

INPUT

INPUT

OUTPUT

BOOL

BOOL

Data type

Data type

Data type

Data type

Enable input

Enable output

Lower limit

Input tag

Upper limit

Result

LIMIT
Data type

LIMIT
Data type

SCL STL#var_OUT := _Data type(
MN := ... ,
IN := ... ,
MX := ...);

LIMIT CALL

MN := ...
IN := ...
MX := ...
OUT := ...

LIMIT
Data type

DeclarationName DescriptionData type

13.9 Processing of strings (data type STRING)

615

13.9 Processing of strings (data type STRING)

A string can be processed with the following functions:

b LEN Outputs the current length of a string

b MAX_LEN Outputs the set maximum length of a string

b CONCAT Combines two strings together

b LEFT Outputs the left part of a string

b RIGHT Outputs the right part of a string

b MID Outputs the middle part of a string

b DELETE Deletes part of a string

b INSERT Inserts characters into a string

b REPLACE Replaces characters in a string

b FIND Outputs the position of a searched character

All functions for processing strings expect a valid string with plausible values in the
length bytes (maximum length ≤ 254, current length ≤ maximum length) at the
parameters with data type STRING. If you do not assign default values to strings
when declaring, they are automatically assigned as empty strings (current length =
0) with the maximum length (= 254).

Please note that strings which you declare in the temporary local data cannot be
assigned default values. For blocks with standard access (the attribute Optimized
block access is deactivated), the individual bytes of a string have a quasi-random
value. In this case you must assign a defined value (can also be an empty string) to
a STRING tag in the program before you use the STRING tag together with a function
or block. For blocks with the attribute Optimized block access activated, for STRING
tags which are declared in the temporary local data, the lengths are assigned plau-
sible values and the characters are assigned '$00'.

13.9.1 Output current length of a string LEN

The LEN function outputs the current length of a string (set in the first byte) pres-
ent at the IN parameter at the OUT parameter. For an “empty” string, the current
length is zero. The maximum value of the current length is the maximum length
set in the second byte. LEN returns an error on incorrect parameter assignment
(Fig. 13.36).

13.9.2 Output maximum length of a string MAX_LEN

The MAX_LEN function outputs the maximum length of a string (set in the second
byte) present at the IN parameter at the OUT parameter. The maximum value of the
maximum length of a string is 254 characters. MAX_LEN returns an error on incor-
rect parameter assignment (Fig. 13.36).

13 Digital functions

616

13.9.3 Combine strings CONCAT

The CONCAT function combines the STRING tags at parameters IN1 and IN2 into
a single tag and outputs it at parameter OUT. The string of IN2 is appended to the
string of IN1. If the length of both source strings exceeds the maximum length of
the target string, they are truncated to the maximum length and ENO is set to “0”
(Fig. 13.37).

Fig. 13.36 Output length of a string, function and representation

Fig. 13.37 Combining two strings CONCAT, function and representation

EN EN

OUT

ENO OUT

ENO

Output length of a string LEN, MAX_LEN

LAD FBD

IN IN IN

OUT

INPUT

OUTPUT

STRING

INT

String

Length

Function
String

Function
String

Function:
LEN outputs the current length (number of characters) of the string present at the

IN parameter at the OUT parameter.

MAX_LEN outputs the maximum length (number of characters) of the string present at the
IN parameter at the OUT parameter.

SCL #var_OUT := (
IN := ...);

Function
STL CALL

String
IN := ...
OUT := ...

Function

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData type

CONCAT

EN EN

OUT

ENO

OUT

ENO

Combination of two strings CONCAT

LAD FBD

IN1

IN2

IN1

IN2

String
CONCAT

String

Function:
CONCAT adds the string at parameter IN2 to the string at parameter IN1 and outputs the result
at the OUT parameter.

IN1

IN2

OUT

INPUT

INPUT

OUTPUT

STRING

STRING

STRING

String 1

String 2

Result

SCL var_OUT := (
IN1 := ... ,
IN2 := ...);

CONCAT STL CALL
String
IN1 := ...
IN2 := ...
OUT := ...

CONCAT

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData type

13.9 Processing of strings (data type STRING)

617

13.9.4 Output left part of string LEFT

The function LEFT returns the first characters of the string, whose number is spec-
ified at parameter L, at the IN parameter and writes it as a STRING tag to the OUT
parameter. If L is greater than the current length of the input tags, the input value
is output. With an empty string as the input value, an empty string is output. If L is
equal to zero or negative, an empty string is output and ENO is set to “0” (Fig.
13.38).

13.9.5 Output right part of string RIGHT

The function RIGHT returns the last characters of the string, whose number is spec-
ified at parameter L, at the IN parameter and writes it as a STRING tag to the
OUT parameter. If L is greater than the current length of the input tags, the input
value is output. With an empty string as the input value, an empty string is output.
If L is equal to zero or negative, an empty string is output and ENO is set to “0” (Fig.
13.38).

13.9.6 Output middle part of string MID

The MID function takes the middle part of the string present at the parameter IN
and outputs it at the parameter OUT. The middle part begins at the position speci-
fied by parameter P and is as many characters long as the parameter L specifies (Fig.
13.39).

Fig. 13.38 Output left or right part of a string LEFT and RIGHT

IN

L

OUT

INPUT

INPUT

OUTPUT

STRING

INT

STRING

String

Numberofcharacters

Result

EN EN

OUT

ENO

OUT

ENO

Output left or right part of a string LEFT, RIGHT

LAD FBD

IN

L

IN

L

Function:
Beginning at position 1, LEFT takes from the string at parameter IN1 the number of characters
specified by parameter L and outputs the result at parameter OUT.

Beginning at the last position, RIGHT takes from the string at parameter IN1 the number of
characters specified by parameter L and outputs the result at parameter OUT.

SCL #var_OUT := (
IN := ... ,
L := ...);

Function STL CALL
String
IN := ...
L := ...
OUT := ...

Function

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData typeFunction
String

Function
String

13 Digital functions

618

If the sum of P and L exceeds the current length of the input tags, a string beginning
at position P and reaching to the end is output. If P is outside the current length
of IN, a blank string is output and ENO is set to “0”. If P or L is zero or negative, a
blank string is output and ENO is set to “0”.

13.9.7 Delete part of a string DELETE

The DELETE function removes part of the string at the IN parameter and outputs the
“collapsed” remainder at the OUT parameter. The removed part begins at the char-
acter position specified by parameter P and has as many characters as specified in
parameter L (Fig. 13.40).

If L is equal to zero, the input string is output. If P is greater than the current length
of the input tag, the input tag is output and ENO is set to “0”. If the sum of P and L
is greater than the current length of the input tag, the string is deleted up to the
end. If L is negative or P is zero or negative, a blank string is output and ENO is set
to “0”.

13.9.8 Insert string INSERT

The INSERT function inserts the string at parameter IN2 into the string at parame-
ter IN1 and outputs the result at the OUT parameter. Parameter P specifies the posi-
tion from which the insertion is to take place (Fig. 13.41).

If P is equal to zero or negative, an empty string is output and ENO is set to “0”. If P
is greater than the current length of IN1, IN2 is appended to IN1 and ENO is set to

Fig. 13.39 Output the middle part of a string MID, function and representation

IN

L

P

OUT

INPUT

INPUT

INPUT

OUTPUT

STRING

INT

INT

STRING

Input tag

Numberofcharacters

Character position

Output tag

EN EN

OUT

ENO

OUT

ENO

Output the middle part of a string MID

LAD FBD

IN

L

P

IN

L

P

MID
String

MID
String

Function:
Beginning at position P, MID takes from the string at parameter IN1 the number of
characters specified by parameter L and outputs the result at parameter OUT.

SCL #var_OUT := (
IN := ... ,
L := ... ,
P := ...);

MID STL CALL
String
IN := ...
L := ...
P := ...
OUT := ...

MID

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData type

13.9 Processing of strings (data type STRING)

619

“0”. If the new string is longer than permitted by the maximum length of the output
string, the characters are entered up to the permitted length and ENO is set to “0”.

Fig. 13.40 Delete part of string DELETE, function and representation

Fig. 13.41 Insert string INSERT, function and representation

IN

L

P

OUT

INPUT

INPUT

INPUT

OUTPUT

STRING

INT

INT

STRING

Input tag

Number ofcharacters

Character position

Output tag

EN EN

OUT

ENO

OUT

ENO

Delete part of a string DELETE

LAD FBD

IN

L

P

IN

L

P

DELETE
String

DELETE
String

Function:
Beginning at position P, DELETE deletes from the string at parameter IN the number of
characters specified by parameter L and outputs the result at parameter OUT.

SCL #var_OUT := (
IN := ... ,
L := ... ,
P := ...);

DELETE STL CALL
String
IN := ...
L := ...
P := ...
OUT := ...

DELETE

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData type

IN1

IN2

P

OUT

INPUT

INPUT

INPUT

OUTPUT

STRING

STRING

INT

STRING

Input tag

String to be
inserted

Character position

Output tag

EN EN

OUT

ENO

OUT

ENO

Inserting a string into another string INSERT

LAD FBD

IN1

IN2

P

IN1

IN2

P

INSERT
String

INSERT
String

Function:
INSERT inserts the string IN2 in the string at parameter IN1 beginning at position P and
outputs the result at the OUT parameter.

SCL #var_OUT := (
IN1 := ... ,
IN2 := ... ,
P := ...);

INSERT STL CALL
String
IN1 := ...
IN2 := ...
P := ...
OUT := ...

INSERT

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData type

13 Digital functions

620

13.9.9 Replace part of string REPLACE

The REPLACE function replaces characters present in the string at parameter IN1 by
the string at parameter IN2 and outputs the result at the OUT parameter. Beginning
with the position specified by parameter P, the characters are replaced for a length
given at parameter L (Fig. 13.42).

If L = 0, then the string IN2 is inserted into the string IN1 from position P, without
deleting characters in IN1. If P = 1, the first L characters of IN1 are replaced by IN2.
If P is greater than the current length of IN1, IN2 is appended to IN1 and ENO is set
to “0”. If L is negative or P is zero or negative, a blank string is output and ENO is
set to “0”. If the new string is longer than the maximum length of the output string,
only the maximum length is output and ENO is set to “0”.

13.9.10 Find part of string FIND

The FIND function determines the position of the string at parameter IN2 in the
string at parameter IN1 and outputs it at the OUT parameter. The position of the
first character is output if a match has been found. If IN2 is not contained in IN1,
zero is returned (Fig. 13.43).

Fig. 13.42 Replace part of string REPLACE, function and representation

IN1

IN2

L

P

OUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

STRING

STRING

INT

INT

STRING

Input tag

String to be
inserted

Numberofcharacters

Character position

Output tag

EN EN

OUT

ENO

OUT

ENO

Replacing a string in another string REPLACE

LAD FBD

IN1

L

IN2

P

IN1

L

IN2

P

REPLACE
String

REPLACE
String

Function:
Beginning at position P in the string at parameter IN1, REPLACE replaces the number of
characters specified by parameter L with the string IN2 and outputs the result at parameter
OUT.

SCL #var_OUT := (
IN1 := ... ,
IN2 := ... ,
L := ... ,
P := ...);

REPLACE STL CALL
String
IN1 := ...
IN2 := ...
L := ...
P := ...
OUT := ...

REPLACE

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData type

13.9 Processing of strings (data type STRING)

621

Fig. 13.43 Find part of string FIND, function and representation

EN EN

OUT

ENO

OUT

ENO

Finding a string in another string FIND

LAD FBD

IN1

IN2

IN1

IN2

IN1

IN2

OUT

INPUT

INPUT

OUTPUT

STRING

STRING

INT

Input tag

String to be
found

Output tag

FIND
String

FIND
String

Function:
FIND searches for the string IN2 in the string at parameter IN1 and outputs its position at the
OUT parameter.

SCL STL#var_OUT := (
IN1 := ... ,
IN2 := ...);

FIND CALL
String
IN1 := ...
IN2 := ...
OUT := ...

FIND

EN

ENO

–

–

BOOL

BOOL

Enable input

Enable output

DeclarationName DescriptionData type

14 Program control

622

14 Program control

This chapter describes the functions for controlling program execution, indepen-
dent of the programming language as far as possible. The Chapters 7 “Ladder logic
LAD” on page 287, 8 “Function block diagram FBD” on page 323, 10 “Statement list
STL” on page 395, and 9 “Structured Control Language SCL” on page 359 describe
how you can program the functions using the individual programming languages
and what special features exist.

You can use jump functions to exit linear user program execution and continue at
a different point in the block. Jump functions can be executed absolutely or
dependent upon the result of logic operation. The control statements which are
only present with SCL for controlling program execution are described in
Chapter 9.6.3 “Control statements” on page 383. Chapter 10.7.1 “Working with
status bits” on page 442 describes how to scan the status bits using jump func-
tions in the STL programming language.

If a function block (FB) or a function (FC) is to be processed, the block must be
“called”. Depending on the program in the block, a list of block parameters can also
be provided when the block is called. The program in the block will then work with
this list. The graphical programming languages LAD and FBD represent the call
function as a box with inputs and outputs. In the text-based programming lan-
guages, the call function mostly consists of the block name or instance name, fol-
lowed by the list of block parameters.

The program in the block does not have to be concluded with a specific statement.
Depending on the result of the logic operation, however, it is possible to prema-
turely terminate program execution in the block. The block end function can also
receive an error message, which can be evaluated in the calling block at the enable
output ENO. A block call that is dependent on the result of logic operation can be
formed using an enable input EN.

This chapter also describes the access to data blocks which is possible in addition to
“normal” addressing of data tags in the work memory: How the attributes of a data
block are read and how data blocks in the load memory can be accessed. ARRAY data
blocks have the structure of the ARRAY data type. Data tags in these data blocks are
addressed with special statements. This chapter also describes what CPU data
blocks are and how they are created and deleted during runtime.

14.1 Jump functions

623

14.1 Jump functions

14.1.1 Introduction

Jump functions can interrupt linear execution of the program and continue at a dif-
ferent position in the block. You identify this position by means of a jump label
which you specify in the jump statement as the jump destination. For a CPU 1500,
you can use up to 256 jump labels in one block.

The jump function and jump destination must be in the same block. The jump des-
tination or jump label must be unique within a block. It is permissible to jump to a
jump destination from more than one position. Both forward and backward jumps
are possible with regard to the direction of program execution.

Table 14.1 shows an overview of the types of jump functions.

14.1.2 Absolute jump

An absolute jump is carried out independent of conditions. When processing the
jump function, program execution is continued at the specified jump label. Fig.
14.1 shows the implementation of the jump function in the various programming
languages.

Absolute jump function JMP (LAD and FBD)

The jump functions consist of the jump statement (coil or box) and a jump label.
The jump label identifies the entry point in the block at which program execution
is continued when the jump function has been processed.

The jump function JMP is connected to the left-hand power rail or does not have a
preceding logic operation. The entry point can only be positioned at the start of a
network.

Table 14.1 Types of jump functions

Jump function Present with

LAD FBD SCL STL

Absolute jump X X X X

Jump depending on RLO X X – X

Jump depending on status bits – – – 1)

Jump list X X 2) X

Jump distributor X X 2) –

Loop jump – – 2) X

1) See Chapter 10.7.1 “Working with status bits” on page 442
2) See Chapter 9.6.3 “Control statements” on page 383

14 Program control

624

Absolute jump GOTO (SCL)

The jump function GOTO exits linear program execution and continues it at a dif-
ferent position in the block. If statements form a defined block, e.g. a program call
within a program loop,

b the jump destination must be within this statement block if the GOTO statement
is also within the statement block,

b one cannot jump to this statement block “from the outside”.

A jump label must always be followed by a statement. A “dummy statement” is also
permissible:

Label: ; //Entry with "dummy statement"

Absolute jump JU (STL)

The jump function JU is always carried out, i.e. independent of any conditions.
JU interrupts linear execution of the program and continues it at the position iden-
tified by the jump label. The jump function JU does not influence the status bits.

Fig. 14.1 Absolute jump independent of conditions

GOTO Destination;
... ;
... ;
Destination: ... ;

JU Destination
...
...
Destination: ...

Absolute jump

JMP

Destination

Destination

JMP

LAD

FBD

SCL

STL

The absolute jump is executed independent of conditions during processing.

If the JMP coil (jump with RLO = "1") is connected to the left
busbar, the jump function is always executed during
processing.

The jump destination (the jump label) is located at the
beginning of the network in which program execution is to
be continued.

The jump destination (the jump label) is located at the
beginning of the network in which program execution is to
be continued.

If the input is not connected on the JMP box (jump with
RLO = "1"), the jump function is always executed during
processing.

The GOTO statement is always executed during
processing.

The JU statement is always executed during processing.

The jump destination (the jump label) is located at the
beginning of the program line in which processing is to be
continued.

The jump destination (the jump label) is located at the
beginning of the program line in which processing is to be
continued.

Destination

Destination

14.1 Jump functions

625

If scan statements are present directly in front of the jump function and also at the
jump destination, these are handled like a single logic operation.

A jump label must always be followed by a statement. This can also be a null oper-
ation, e.g. NOP 0:

Label: NOP 0 //Entry with null operation

14.1.3 Conditional jump functions

A conditional jump is executed depending on the result of logic operation. Depend-
ing on the jump function, program execution is continued at the specified jump
label with RLO = “1” or with RLO = “0”. Fig. 14.2 shows the implementation of the
conditional jump function in the various programming languages.

With SCL, the dependency of the jump statement GOTO on the RLO can be emu-
lated, for example, by an IF statement:

IF (* Condition *) THEN GOTO Destination; END_IF;

Conditional jump functions JMP and JMPN (LAD and FBD)

The jump functions consist of the jump statement (coil or box) and a jump label.
The jump label identifies the entry point in the block at which program execution
is continued when the jump function has been processed.

JMP branches to the entry point if the preceding logic operation is fulfilled;
JMPN branches to the entry point if the preceding logic operation is not fulfilled.

The jump functions terminate a current path or a logic operation. The entry point
can only be positioned at the start of a network.

Conditional jump functions JC and JCN (STL)

The jump function JC is only executed if the result of logic operation is “1” when this
function is processed. The jump is not performed if it is “0” and execution of the
program is continued with the following statement.

The jump function JCN is only executed if the result of logic operation is “0” when
this function is processed. The jump is not performed if it is “1” and execution of
the program is continued with the following statement.

JC and JCN always set the result of logic operation to “1” – even if the condition is
not fulfilled. If the statements directly following these jump functions contain oper-
ations dependent on the result of logic operation, they are executed if the jump is
not carried out. If this jump function is directly followed by scan statements, these
scans are handled as first input bit scans, i.e. a new logic operation then starts.

Conditional jump functions JCB and JNB (STL)

The jump function JCB is only executed if the result of logic operation is “1” when
this function is processed. The jump is not performed if it is “0” and execution of
the program is continued with the following statement.

14 Program control

626

The jump function JNB is only executed if the result of logic operation is “0” when
this function is processed. The jump is not performed if it is “1” and execution of
the program is continued with the following statement.

Fig. 14.2 Conditional jump depending on result of logic operation

Jump depending on result of logic operation

JMP

JMPN

Destination

Destination

Destination

Destination

JMP

JMPN

LAD

FBD

SCL

STL

The conditional jump is executed depending on the result of logic operation (RLO).

The JMP jump function is executed if RLO = "1" during
processing. RLO = "0" has no effect.

The JMP jump function is executed if RLO = "1" during
processing. RLO = "0" has no effect.

The JMPN jump function is executed if RLO = "0" during
processing. RLO = "1" has no effect.

The JMPN jump function is executed if RLO = "0" during
processing. RLO = "1" has no effect.

(RLO)

(RLO)

(RLO)

(RLO)

The jump destination (the jump label) is located at the
beginning of the network in which program execution is to
be continued.

The jump destination (the jump label) is located at the
beginning of the network in which program execution is to
be continued.

Destination

Destination

IF (*RLO*) THEN GOTO destination; END_IF;
... ;
IF NOT (*RLO*) THEN GOTO destination; END_IF;
... ;
Destination: ... ;

...

...

...

...

JC

JCN

JCB

JNB

Dest //Jump if RLO = ”1”

...
Dest //Jump if RLO = ”0”

...
Dest //Control BR and

//jump if RLO = ”1”

Dest //Control BR and
//jump if RLO = ”0”

Destination: ...

A jump that depends on the result of logic
operation can be with the IF
statement.

programmed

The JC jump statement is executed if the
result of logic operation is "1". The JCN
jump statement is executed if the result of
logic operation is "0".

The jump statement JCB copies the result
of logic operation into the binary result
and executes the jump if the result of logic
operation is "1". The jump statement JNB
copies the result of logic operation into the
binary result and executes the jump if the
result of logic operation is "0".

The jump destination (the jump label) is
located at the beginning of the program
line in which processing is to be

The jump destination (the jump label) is
located at the beginning of the program
line in which processing is to be

14.1 Jump functions

627

At the same time, JCB and JNB transfer the result of logic operation to the binary
result – even if the condition is not fulfilled. JCB and JNB then always set the result
of logic operation to “1” – even if the condition is not fulfilled. If the statements
directly following this jump function contain operations dependent on the result of
logic operation, they are executed if the jump is not carried out. If this jump func-
tion is directly followed by scan statements, these scans are handled as first input
bit scans, i.e. a new logic operation then starts.

14.1.4 Jump list

The jump list JMP_LIST (LAD and FBD) or JL (STL) allows jumping to a program sec-
tion in the block depending on a numerical value (Fig. 14.3). In SCL, the CASE state-
ment can be used for this functionality. For more information on the CASE state-
ment, refer to Chapter 9.6.3 “Control statements” on page 383.

Jump list with LAD and FBD

With the JMP_LIST box you define a list of jump labels. The two output parameters
DEST0 and DEST1, where you specify one jump label each, are displayed when the
box is inserted. The list can be expanded up to 99 jump labels. The jump destina-
tions are in the same block at the beginning of a network.

JMP_LIST executes a jump dependent upon the value at parameter K. If K has a
value of zero, execution of the program continues at the point defined by the jump
label at parameter DEST0. If K has a value of one, the jump label at parameter
DEST1 is selected, etc. If the value of K is greater than the number of defined jump
labels, program execution continues in the next network.

The enable input EN can be used to control processing of the JMP_LIST box. The box
is present alone in a network.

Jump list with STL

The JL operation works together with a list of JU jump functions. This list directly
follows JL and can have a maximum of 255 entries. With JL there is a jump label
which points to the end of the list (to the first statement following the list). You pro-
gram a jump list in accordance with the general schema shown in Fig. 14.3.

The number of the jump to be executed is present in the right byte of
accumulator 1. If 0 is present in accumulator 1, the first jump statement is exe-
cuted; if 1 is present, the second jump statement is executed, etc. If the number is
greater than the length of the list, JL branches to the end of the list (to the statement
located after the last jump).

JL is independent of conditions and does not change the status bits.

Only JU statements may be present in the list without gaps. You can assign any
names to the jump labels within the context of the general specifications.

14 Program control

628

14.1.5 Jump distributor

In LAD and FBD, the jump distributor SWITCH allows jumping to a program section
in the block depending on a comparison with a numerical value (Fig. 14.4). In SCL,
the IF statement can be used for this functionality. For more information on the
IF statement, refer to Chapter 9.6.3 “Control statements” on page 383. STL can
map these jump distributors with comparison and jump functions.

Fig. 14.3 Jump depending on a numerical value

Jump depending on a numerical value

LAD

FBD

SCL

STL

The jump list is used to define jump functions which are executed depending on a numerical value.

The jump destinations (jump labels) are located in
each case at the beginning of the network in which
the processing of the program is to be continued.

Only jump labels can be present at the output
parameters.

Dest1

Dest0

Dest0

Dest0

Dest1

Dest1

CASE K OF
0 : GOTO Dest0;
1 : GOTO Dest1;
... ;
ELSE : GOTO ... ;
END_CASE;
... ;
Dest0: ... ;
... ;
Dest1: ... ;

L #Jump_number
End

JU Dest0
JU Dest1
JU ...
...
End: ... //Further program
...
Dest0: ...
...
Dest1: ...
...

JL

A jump that depends on a numerical value can be
programmed with the CASE statement.

The value in the tag #Jump_number determines the
JU statement to be performed.

Only absolute jump functions JU may be present in
the jump list according to JL.

The jump destinations (the jump labels) are located
at the beginning of the program line in which
processing is to be continued.

The jump destinations (the jump labels) are located
at the beginning of the program line in which
processing is to be continued.

EN

EN

DEST0

DEST0

DEST1

DEST1

K

K

DeclarationName

EN

K

DEST1

DEST0

–

INPUT

–

–

BOOL

UINT

–

–

Enable input

Selection

Jump label 1

Jump label 0

DescriptionData typeJMP_LIST

JMP_LIST

*

*

14.1 Jump functions

629

Fig. 14.4 Jump depending on a comparison result

A jump that depends on a comparison with a numerical value

LAD

FBD

SCL

STL

The jump distributor is used to define jump functions which are executed depending on a comparison
with a numerical value.

The jump destinations (jump labels) are located at
the beginning of the network in which the processing
of the program is to be continued.

Data type:
BYTE, WORD, DWORD, LWORD,
USINT, UINT, UDINT, ULINT,
SINT, INT, DINT, LINT,
REAL, LREAL, TIME, LTIME, DATE, LDT
TIME_OF_DAY, LTIME_OF_DAY

IF K <Comparison> Value0 THEN GOTO Dest0; END_IF;
IF K <Comparison> Value1 THEN GOTO Dest1; END_IF;
... ;
GOTO ... ; //ELSE branch
... ;
... ;
Dest0: ... ;
... ;
Dest1: ... ;

L K
L #Value0
<Comparison>
JC Dest0
TAK //Statement sequence
L #Value1 //for each
<Comparison> //additional
JC Dest1 //Comparison
...
JU ... //ELSE branch
...
Dest0: ...
...
Dest1: ...

A jump that depends on a
comparison with a numerical value
can be programmed with IF
statements.

A jump that depends on a
comparison with a numerical value
can be programmed with
comparison functions.

The jump destinations (the jump
labels) are located at the beginning
of the program line in which
processing is to be continued.

The jump destinations (the jump
labels) are located at the beginning
of the program line in which
processing is to be continued.

EN

EN

DEST0

DEST0

DEST1

DEST1

ELSE

ELSE

K

K

==

==

==

==

DeclarationName

EN

K

== *)

DEST1

== *)

DEST0

ELSE

*) Selection of the type of comparison from a drop-down list

–

INPUT

INPUT

–

INPUT

–

–

BOOL

Data type

Data type

–

Data type

–

–

Enable input

Selection

Comparison value 1

Jump label 1

Comparison value 0

Jump label 0

Jump label x

DescriptionData typeSWITCH
Data type

SWITCH
Data type

*

*

Dest0

Dest0

Dest1

Dest1

Only jump labels can be present at the output
parameters.

Dest1

Dest0

14 Program control

630

Jump distributor with LAD and FBD

With the SWITCH box you define a list of jump labels. The two output parameters
DEST0 and DEST1, where you specify one jump label each, are displayed when the
box is inserted. The list can be expanded up to 99 jump labels. The jump destina-
tions are in the same block at the beginning of a network.

SWITCH executes a jump dependent upon a comparison with the parameter K.
The value to which K is to be compared is specified by you at a (comparison) input
parameter. You can select the comparison function from a drop-down list at this
input parameter. An additional (comparison) input parameter is provided for each
newly inserted jump label.

You can set the data type of parameter K and of the (comparison-) inputs at the
SWITCH box. Tags with the data types BYTE, WORD, and DWORD can only be com-
pared to determine “equal to” or “not equal to”.

If the first comparison is fulfilled, execution of the program continues at the point
defined by the jump label at parameter DEST0. If the second comparison is fulfilled,
the jump label at parameter DEST1 is selected, etc. If none of the comparisons is ful-
filled, processing of the program continues at the jump label specified at parameter
ELSE. If ELSE is not assigned, the next network is processed in this case.

The enable input EN can be used to control processing of the SWITCH box.

14.1.6 Loop jump

The loop jump LOOP in the programming language STL permits simplified pro-
gramming of loops (Fig. 14.5). In LAD and FBD, this functionality can be pro-
grammed with simple statements (see example in Chapter 7.6.1 “Jump functions in
the ladder logic” on page 316 and 8.6.1 “Jump functions in the function block dia-
gram” on page 353). For program loops, SCL uses the statements FOR, WHILE and
REPEAT, which are described in Chapter 9.6.3 “Control statements” on page 383.

Fig. 14.5 Loop jump LOOP

Loop jump LOOP

STL

The loop jump LOOP simplifies the programming of program loops with STL.

L #Number
Next: T #Counter
... //Statement sequence
... //in the
... //program loop

L #Counter
Next

... //Further program
LOOP

The #Number tag contains the total
number of executed loops. The #Number
tag contains the number of loops still to
be executed.

LOOP reduces the content of accumulator
1 by one unit and carries out the jump if
a value of zero has not yet been reached.

14.2 Calling of code blocks

631

Loop jump LOOP with STL

LOOP interprets the right word of accumulator 1 as an unsigned 16-bit fixed-point
number in the range of 0 to 65535. During processing, LOOP initially decrements
the contents of accumulator 1 by 1. If the value is then not zero, the jump to the
specified jump label is executed.

If the value is equal to zero following decrementing, no jump is carried out, and the
directly following statement is processed.

The value in accumulator 1 thus corresponds to the number of program loops to be
executed. You must save this number in a loop counter. You can use any digital tag
as a loop counter.

The loop jump does not change the status bits.

14.2 Calling of code blocks

14.2.1 General information on block calls

If a function block (FB) or a function (FC) is to be processed, it must be “called”. You
can give data to the called block for processing and import data from the called
block. This data transfer is done using block parameters. The call function contains
the block name (the name of the call instance for function blocks) and the list with
the block parameters.

You call a block by using the mouse to “drag” it from the project tree under the
Program blocks folder to the working area, i.e. the block that is to be called must
already exist. The programming language in which the block is written plays no
role in this case. For LAD and FBD, the program editor also adds the enable input EN
and the enable output ENO to the call box. With SCL, you can add the enable input
EN to a function block as the first entry of the parameter list. You can add the enable
output ENO as the last entry of the parameter list for a function block and for a func-
tion. With STL, you must map the functionality of the enable input and the enable
output as needed. Further details can be found in Chapters 7.6.4 “EN/ENO mecha-
nism in the ladder logic” on page 320, 8.6.4 “EN/ENO mechanism in the function
block diagram” on page 356, 9.6.2 “EN/ENO mechanism with SCL” on page 381,
and 10.7.2 “EN/ENO mechanism in the statement list” on page 447.

Following processing of the call function, program execution is continued in the
called block. The block is processed up to a block end function or up to its end. Pro-
gram execution then returns to the calling block and continues processing of this
block after the call function.

An organization block (OB) cannot be called; it is started by the operating system
depending on events. If an organization block is terminated, the CPU continues to
work in the operating system.

Chapter 5.2 “Creating a user program” on page 149 describes the available blocks
and block parameters, what has to be observed with a call (for example the nesting
depth), and how the blocks and block parameters are programmed.

14 Program control

632

14.2.2 Calling a function FC

A function FC is a block which does not save any of its own data. All block parame-
ters must be supplied with actual parameters when called. Fig. 14.6 shows the block
call for a function.

Fig. 14.6 Call functions for a function FC

FC_name

FC _name

EN

EN

In1

In1

In2

In2

InOut1

InOut1

InOut2

InOut2

RET_VAL

Out1

RET_VAL

Out1

Out2

Out2

ENO

ENO

Calling a function FC

LAD

FBD

A function FC is called in LAD by an EN/ENO box. The input
and in/out parameters are present on the left-hand side of
the call box in the order of their declaration, and the output
parameters on the right-hand side. If the function value is
"activated", it is represented as the first output parameter.

A function FC is called in FBD by an EN/ENO box. The input
and in/out parameters are present on the left-hand side of
the call box in the order of their declaration, and the output
parameters on the right-hand side. If the function value is
"activated", it is represented as the first output parameter.

A function FC is called in STL by the CALL operation and by
its name. The next lines contain the parameter list. The
parameters are specified in the order of their declaration.
If the function value is "activated", it is represented as the
first output parameter.

A function FC is called in SCL by its name. This is followed by
the parameter list in parentheses. The parameters are
specified in the order of their declaration, each separated
by a comma.

If the function value is "activated", the block call responds
like a tag with the value and the data type of the function
value. It can then be assigned to a tag, for example, or used
in an expression.

A is a block which does not save any of its own data. It can have block parameters, all of
which must be supplied with actual parameters when called.

A function FC has a function value (return value) with the preset name RET_VAL. This name can be
changed, however. This function value can be "deactivated" for the interface declaration if it is occupied
with the data type VOID. Any other data type "activates" the function value.

function FC

STL Call "FC_name"
:= …
:= …
:= …
:= …
:= …
:= …

In1
In2
RET_VAL
Out1
Out2
InOut1
InOut2 := …

SCL "FC_name"(
In1 := … ,
In2 := … ,
Out1 => … ,
Out2 => … ,
InOut1
InOut2

:= … ,
:= …)

#Tag :=
In1 := … ,
In2 := … ,
Out1 => … ,
Out2 => … ,
InOut1 := … ,
InOut2 := …);

"FC_name"(

14.2 Calling of code blocks

633

FC call with LAD and FBD

You use the call box with LAD and FBD to call a function FC.

You can use the enable input EN to structure the block call depending on the result
of logic operation. If the EN input leads directly to the left-hand power rail or if it is
not connected, the call is an absolute call and is always executed. If the EN input has
a preceding logic operation, the block call is only executed if the latter is fulfilled.

With the enable output ENO, you can transfer a group error message to the pro-
gram of the calling block. You can influence the signal state of the enable output for
LAD and FBD using the block end function.

FC call with SCL

SCL distinguishes between functions FC with and without a function value.

You call a function FC without a function value with its name. This is followed by the
parameter list in round brackets. You must assign values to all existing parameters;
the parameter sequence is defined by the declaration.

The call of a function FC with function value must be handled in the SCL program
like a tag which has the data type of the function value. The call function is then
present in the assignment or expression instead of the function value. The call func-
tion is comprised of the block name, followed by the parameter

list in parentheses. The parameter sequence is defined by the declaration.
All parameters must be supplied with values.

You cannot use the implicitly defined enable input EN for a function. Instead, use
the IF statement for a conditional call.

With the enable output ENO, you can transfer a group error message to the pro-
gram of the calling block. You can influence the signal state of the enable output in
SCL using the block-internal ENO tag. If you wish to use the implicitly defined
enable output ENO, add it to the parameter list as the last entry.

FC call with STL

With STL, you call a function FC using the operation CALL and the name of the func-
tion. CALL is an absolute call, i.e. the specified block is always called and processed
independent of conditions.

If you want to call a function FC conditionally, you can, for example, set a condi-
tional jump function before the function call, which skips the call statement if the
block is not to be called.

With the enable output ENO, you can transfer a group error message to the pro-
gram of the calling block. You can influence the signal state of the enable output for
STL using the binary result BR. The group error message (the quasi enable output
ENO) is scanned directly after the call statement via the binary result BR.

14 Program control

634

14.2.3 Calling a function block FB

A function block FB is a block which can save its own data for each call. The data is
saved in an instance data block. When called as a single instance, this is a separate
data block for each call; for a call in a function block, the called function block can
also save its data as local instance in the instance data block of the calling function
block (“multi-instance”). Fig. 14.7 shows the call of a function block in the various
programming languages.

The block parameters of a function block are saved in the instance data. Block
parameters whose values are saved do not have to be provided with actual parame-
ters when called. In this case, they retain the value of the last call. Block parameters
which are saved as pointers must be supplied when called. These are in/out param-
eters with a structured data type and all block parameters with a parameter type.

FB call with LAD and FBD

You use the call box with LAD and FBD to call a function block. You can use the
enable input EN to structure the block call depending on the result of logic opera-
tion. If the EN input leads directly to the left-hand power rail or if it is not connected,
the call is an absolute call and is always executed. If the EN input has a preceding
logic operation, the block call is only executed if the latter is fulfilled.

With the enable output ENO, you can transfer a group error message to the pro-
gram of the calling block. You can influence the signal state of the enable output for
LAD and FBD using the block end function.

FB call with SCL

With SCL, you call a function block with the name of the instance data, i.e. the name
of the data block for a single instance or the tag name for a local instance.
The parameter list contains all parameters in the declared order.

If you wish to use the implicitly defined enable input EN, add it to the parameter list
as the first entry.

With the enable output ENO, you can transfer a group error message to the pro-
gram of the calling block. You can influence the signal state of the enable output in
SCL using the block-internal ENO tag. If you wish to use the implicitly defined
enable output ENO, add it to the parameter list as the last entry.

FB call with STL

With STL, you call a function block FB with the operation CALL and the name of the
instance data, i.e. the name of the data block for a single instance or the tag name
for a local instance. CALL is an absolute call, i.e. the specified block is always called
and processed independent of conditions. The parameter list contains all parame-
ters in the declared order.

14.2 Calling of code blocks

635

Fig. 14.7 Call functions for a function block FB

Call of a function block (FB) and a system function block (SFB)

Instance data

FB_name

EN

EN

In1

In1

In2

In2

InOut1

InOut1

InOut2

InOut2

Out1

Out2

Out1

Out2

ENO

ENO

A function block FB is called in LAD by the EN/ENO box. The
input and in/out parameters are present on the left side of the
call box and the output parameters on the right side, in the
order of their declaration in each case.

The name of the call instance is shown above the call box. In
the case of a single instance, this is the instance data block. In
the case of a local instance, this is the instance name in the
static local data of the calling function block.

A function block FB is called in FBD by the EN/ENO box. The
input and in/out parameters are present on the left side of the
call box and the output parameters on the right side, in the
order of their declaration in each case.

The name of the call instance is shown above the call box. In
the case of a single instance, this is the instance data block. In
the case of a local instance, this is the instance name in the
static local data of the calling function block.

The block name is specified when calling as a single instance,
followed by a comma and the name of the instance data block.
When called as a local instance, the instance name is specified.

The next lines contain the list of block parameters, in each case
in the order of their declaration. Only the block parameters
need be listed which are supplied.

When called as a single instance, the name of the instance data
block is specified. When called as a local instance, the instance
name is specified.

This is followed by the list of block parameters in parentheses,
in each case in the order of their declaration and separated by
a comma. Only the block parameters need be listed which are
supplied.

function block FB If the

In1 := …
In2 := …
Out1 := …
Out2 := …
InOut1 := …
InOut2 := …

In1 := …
In2 := …
Out1 := …
Out2 := …
InOut1 := …
InOut2 := …

STL

LAD

FBD

SCL

In1 := … ,
In2 := … ,
Out1 => … ,
Out2 => … ,
InOut1 := … ,
InOut2 := …);

In1 := … ,
In2 := … ,
Out1 => … ,
Out2 => … ,
InOut1 := … ,
InOut2 := …);

instance data is in a separate data block, one refers to a "single instance". If the instance data is in
the instance data block of the calling function block (if this is a "multi-instance"), one refers to a
"local instance". In/out parameters with complex data type and block parameters with parameter type
must always be supplied. Supplying of the other block parameters is optional.

Instance data

FB_name

"DB_name"(

#Instance_name(

CALL "FB_name", "DB_name"

CALL #Instance_name

14 Program control

636

If you want to call a function block FB conditionally, you can, for example, set a con-
ditional jump function before the function block call, which skips the call statement
if the block is not to be called.

With the enable output ENO, you can transfer a group error message to the pro-
gram of the calling block. You can influence the signal state of the enable output for
STL using the binary result BR. The group error message (the quasi enable output
ENO) is scanned directly after the call statement via the binary result BR.

14.3 Block end functions

A block end function prematurely terminates the processing in a block. A return is
made to the previously processed block in which the call of the block just termi-
nated is present. After an organization block is terminated, processing is continued
in the CPU's operating system. Programming of a block end function at the end of
the block program is optional. Fig. 14.8 shows the representation of the block end
functions in the various programming languages.

14.3.1 Block end function RET (LAD and FBD)

The block end function is programmed as RET coil or RET box at the end of a net-
work. If the preceding logic operation is fulfilled, the block is exited (conditional
block end). If the preceding logic operation is not fulfilled, the next network in the
block is processed.

If the RET coil is connected to the left power rail, or RLO = “1” is fixed at the box input
or it is not allocated, the block will always be exited (absolute block end). Any net-
work that follows this can then only be processed if it has a jump label and is
jumped to using a jump function.

A signal state can be saved in the return value and is mapped to the enable
output ENO. To set the return value, double-click on the RET function and select Ret
(RLO, corresponds to the result of logic operation), Ret True or Ret False for a con-
stant value, or Ret Value for a binary tag from the drop-down list. If an organization
block is ended with the block end function, the signal state of the return tags has
no meaning.

In a network with a jump function JMP or JMPN, there can be no block end function
RET. The block end function can be programmed multiple times in a block.

14.3.2 RETURN statement (SCL)

With RETURN the currently processed block is exited without conditions. A condi-
tional block end can be programmed using the IF statement. RETURN transfers the
signal state of the block-internal ENO tag to the enable output of the exited block.

14.3 Block end functions

637

If an organization block is ended via RETURN, the signal state of the ENO tag has no
meaning. RETURN can be programmed multiple times in a block. Programming of
RETURN at the end of a block is optional.

14.3.3 Block end functions BEC, BEU, and BE (STL)

Execution of BEC depends on the result of logic operation (RLO). If the RLO is “1”
upon execution of BEC, the statement is executed and the block is terminated.
A return is made to the previously executed block in which the block call was pres-

Fig. 14.8 Block end functions

LAD

FBD

STL

SCL

Processing in the current block is terminated by the block end functions, and continued in the calling
block. If an organization block is terminated, processing is continued in the CPU's operating system.

The RET coil is present alone in a network as termination of
a preceding logic operation. The block is exited if the
preceding logic operation is fulfilled.

When the block is exited, the signal state of the return value
is mapped in the ENO enable output of the call box.

The RET box is present alone in a network as termination of
a preceding logic operation. The block is exited if the
preceding logic operation is fulfilled.

When the block is exited, the signal state of the return value
is mapped in the ENO enable output of the call box.

BEC terminates block processing if RLO = "1".

BEU and BE terminate block processing independent of
conditions.

BE is the last statement in a block and can also be omitted.

The status bit BR is controlled with SAVE. The signal state of
BR is assigned to the enable output ENO of the block.

RETURN terminates block processing independent of
conditions. The value of the block-internal tag ENO is
transferred to the enable output ENO when the block is
exited.

Exiting the block dependent upon the result of logic
operation can be programmed with an IF statement.

Block end functions

//Conditional block end
A #Return_value
SAVE
A #Exit_block

//Absolute block end
A #Return_value
SAVE

//Block end
A #Return_value
SAVE

BEC

BEU

BE

ENO := #Return_value;
; //Block end

IF <Condition> THEN
ENO := #Return_value;

;
END_IF;
...

RETURN

RETURN

...

...

RET

#Return_value

#Return_value

RET

14 Program control

638

ent. If the RLO is “0” upon execution of the BEC statement, the statement is not exe-
cuted. The RLO is set to “1” and the statement that follows BEC is processed.
A subsequently programmed scan statement is always a first input bit scan.

The block is exited upon processing of BEU. A return is made to the previously exe-
cuted block in which the block call was present. In contrast to the BE statement, you
can program BEU repeatedly within a block. The program section following BEU is
only processed if it is jumped to by means of a jump function.

The block is terminated upon processing of BE. A return is made to the previously
executed block in which the block call was present. BE is the last statement of a
block. Programming of BE is optional.

When a block is ended, the signal state of the status bit BR (binary result) is
assigned to the enable output ENO. Chapters 10.7.1 “Working with status bits” on
page 442 and 10.7.2 “EN/ENO mechanism in the statement list” on page 447
describe how BR can be controlled and evaluated.

14.4 Data block functions

The data tags are saved in the data blocks. Data blocks can be located at two loca-
tions in the user memory: in the work memory and/or in the load memory.
“Normally” a data block is first saved in the load memory when it is loaded into the
CPU and is later transferred to the work memory. This is because the data tags in
the work memory are accessed in a time-optimized way and this can be carried out
as often as required.

It is additionally possible to save data blocks only in the load memory, which can be
designed much larger than the work memory. This is preferentially carried out for
data which is used very infrequently in the program, for example for recipes or
archives, since access operations to the load memory require a very long time and the
number of write operations is physically limited. In the case of data blocks that are
only located in the load memory, the Only store in load memory attribute is activated.

Chapter 6.4 “Programming a data block” on page 270 describes how to add a data
block to the user program.

The program elements catalog also contains functions which write the contents of
data blocks to the memory cards in CSV format so that data protocols and recipes,
for example, can be further processed with a spreadsheet routine. Recipes in
CSV format can also be imported from the memory card into a data block in the
user memory. These functions are described in the Chapter 18.5 “Data logging and
transferring recipes” on page 813.

14.4.1 Read data block attributes

ATTR_DB provides information about a data block in the user memory. You find
ATTR_DB in the program elements catalog under Extended instructions > Data block
control (Fig. 14.9).

14.4 Data block functions

639

The data block is specified on the parameter DB_NUMBER, either with its name, its
number (constant), or with a UINT tag with the number of the data block as value.

The attributes are output at the ATTRIB parameter with signal state “1” on the REQ
parameter. Section “Block attributes for data blocks” on page 273 describes the
attributes used.

The parameter DB_LENGTH contains the number of existing bytes. For data blocks
with the attribute Optimized block access activated, the length cannot be read out.
The length zero is then present at the parameter DB_LENGTH.

If an error occurs while the job is being processed, the parameter RET_VAL gives out
error information.

14.4.2 Reading and writing the load memory

A data block is normally present twice in the user memory: The data block with
declaration of the data tags and start values is present in the load memory and
with the actual values with which the user program is working in the work mem-
ory. Using the “normal” addressing, data tags are addressed in the work memory.
READ_DBL and WRITE_DBL access data blocks in the load memory. You find the
system blocks in the program elements catalog under Extended instructions >
Data block control Fig. 14.10 shows the graphic representation of the system
blocks.

Fig. 14.9 Reading data block attributes with ATTR_DB

Bit Meaning

"0" Data block is only in the work memory
"1" Data block is only in the load memory

1 "0" Data block is not write-protected
"1" Data block is write-protected

2 "0" Data block is retentive
"1" Data block is not retentive

3 "0" Data block is either in the
load memory or in the work memory

"1" Data block is in both the
load memory and in the work memory

4–7 "0" = unassigned =

0

Bit 0 Bit 3 The data block is located

"0" "0" only in the work memory
"1" "0" only in the load memory

"0" "1" in the load and work memory
"1" "1" in the load and work memory

Read data block attributes

ATTR_DB reads the attributes
of a data blocks in the user
memory.

The bits 0 and 3 of the parameter ATTRIB
indicate in the memory that contains the
data block:

DB_NUMBER

RET_VAL

ATTRIB

DB_LENGTH

REQ

ATTR_DBATTR_DB

Assignment of the ATTRIB parameter

14 Program control

640

READ_DBL

READ_DBL transfers a data block or a data area – for example, recipe data – from the
load memory to the work memory. Both the source data block and the target data
block must have the same access type: The block attribute Optimized block access
must be either enabled or disabled in both data blocks.

The read job is started with a signal state “1” at the REQ parameter. READ_DBL is an
asynchronously working system block which needs several processing cycles to
execute the job. As long as the parameter BUSY has signal state “1”, the read proce-
dure is not completed. If an error occurs while the job is being processed, the
parameter RET_VAL gives out error information.

The data area (source) which is located in the load memory is specified on the
parameter SRCBLK and the data area (target) which is located in the work memory
is specified on the parameter DSTBLK. The actual parameters for these block
parameters are described below.

WRIT_DBL

WRIT_DBL transfers a data block or a data area – for example, archive data – from
the work memory to the load memory. Both the source data block and the target
data block must have the same access type: The block attribute Optimized block
access must be either enabled or disabled in both data blocks.

The write job is started with a signal state at the REQ parameter. WRIT_DBL is an
asynchronously working system block which needs several processing cycles to
execute the job. As long as the parameter BUSY has signal state “1”, the write pro-
cedure is not completed. If an error occurs while the job is being processed, the
parameter RET_VAL gives out error information.

Fig. 14.10 Transfer data areas from and to the load memory

REQ

REQ

SRCBLK

SRCBLK

RET_VAL

RET_VAL

BUSY

BUSY

DSTBLK

DSTBLK

READ_DBL

WRITE_DBL

READ_DBL reads a value from a
data block in the load memory.

WRITE_DBL writes a value to a
data block in the load memory.

Reading and writing the load memory

READ_DBL

WRITE_DBL

Variant

Variant

14.4 Data block functions

641

The data area (source) which is located in the work memory is specified on the
parameter SRCBLK and the data area (target) which is located in the load memory
is specified on the parameter DSTBLK.

Note that the load memory only permits a limited number of write operations as a
result of the physical design. Too frequent writing, e.g. writing in every program
cycle, reduces the service life of the load memory.

Parameters SRCBLK and DSTBLK

Complete data blocks or parts of data blocks are permissible as actual parameters
at the SRCBLK and DSTBLK block parameters. They can be supplied with:

b entire data blocks that are derived from a PLC data type or system data type,

b tags from the data blocks, and

b – for data blocks with a disabled Optimized block access attribute – with pointers
to an absolutely addressed data area, e.g. P#DB100.DBX16.0 BYTE 64 (see
Chapter 4.9.4 “ANY pointer” on page 135 for description).

If the source area is smaller than the destination area, the source area is written
completely into the destination area. The remaining bytes of the destination area
are not changed. If the source area is larger than the destination area, the destina-
tion area is written completely; the remaining bytes of the source area are ignored.

14.4.3 ARRAY data blocks

An ARRAY data block has the structure of the ARRAY data type: The data tags are the
components of an array which all have the same data type. The array has an index
which starts with zero and ends at an adjustable upper limit.

You can create a new ARRAY data block in either the Portal view or the Project view.
In the Portal view, click PLC programming and subsequently Add new block. In the
Project view, double-click on Add new block in the Program blocks folder. In the win-
dow for creating a new block, select the icon for Data block and the entry Array DB
from the drop-down list as the type. Give the data block a meaningful name and, if
desired, a different number using the manual option.

Then select the data type of the data tag from a drop-down list in the Array data type
field. If the components of the ARRAY data block are to have a PLC data type, you
must have previously created the PLC data type. Then define the upper limit for the
index. The lower limit is always zero and cannot be changed. The new data block is
created by clicking on the OK button.

An ARRAY data block has the attributes Only store in load memory, Data block
write-protected in the device, and Optimized block access. These attributes are
described in Chapter 5.3.2 “Block properties” on page 157. Chapter 4.3.3 “Indirect
addressing of a tag in an ARRAY DB” on page 102 shows how to address the data tags
in an ARRAY data block. System blocks provide another access option. These also
permit indirect addressing of the data block and they can access the load memory
(see next chapter).

14 Program control

642

14.4.4 System blocks for access to ARRAY data blocks

For reading and writing components of an ARRAY data block, there are the follow-
ing system blocks:

b ReadFromArrayDB
Read from an ARRAY data block in the work memory

b WriteToArrayDB
Write to an ARRAY data block in the work memory

b ReadFromArrayDBL
Read from an ARRAY data block in the load memory

b WriteToArrayDBL
Write to an ARRAY data block in the load memory

You can find these system blocks in the program elements catalog under Basic
instructions > Move operations. Fig. 14.11 shows the graphic representation of the
system blocks.

Fig. 14.11 Reading and writing array data blocks

Reading and writing array data blocks

ReadFromArrayDB reads a
component from an array data block
that is in the work memory.

ReadFromArrayDBL reads a
component from an array data block
that is in the load memory.

WriteToArrayDB writes a component
to an array data block that is in the
work memory.

WriteToArrayDBL writes a component
to an array data block that is in the
load memory.

INDEX

DB

INDEX

INDEX

INDEX

VALUE

VALUE

VALUE

RET_VAL

VALUE

BUSY

DONE

ERROR

RET_VAL

BUSY

DONE

ERROR

ReadFromArrayDB

ReadFromArrayDBL

WriteToArrayDB

WriteToArrayDBL

DB

REQ

DB

DB

REQ

ReadFromArrayDB

ReadFromArrayDBL

Instance data

Instance data

WriteToArrayDB

WriteToArrayDBL

14.4 Data block functions

643

ReadFromArrayDB

ReadFromArrayDB reads a component from an ARRAY data block which is located
in the main memory (the block attribute Only store in load memory is deactivated).
Read access takes place synchronously, i.e. the read value is immediately available
after the function call.

The ARRAY data block is specified on the parameter DB, either with its name, its
number (constant), or with a tag with the data type UINT and the number of the
data block as value. The component that has its index present at the parameter
INDEX, either as a constant or as a tag, is output at the parameter VALUE.

WriteToArrayDB

WriteToArrayDB writes a component to an ARRAY data block which is located in the
main memory (the block attribute Only store in load memory is deactivated). Read
access takes place synchronously, i.e. the value is immediately available in the
ARRAY data block after the function call.

The ARRAY data block is specified on the parameter DB, either with its name, its
number (constant), or with a tag with the data type UINT and the number of the
data block as value. The component that is to be written and has its index present
at the parameter INDEX, either as a constant or as a tag, is specified at the
parameter VALUE.

ReadFromArrayDBL

ReadFromArrayDBL reads a component from an ARRAY data block which is located
in the load memory (the block attribute Only store in load memory is activated).
Read access takes place asynchronously, i.e. several processing cycles can elapse
before the read value is available.

The ARRAY data block is specified on the parameter DB, either with its name, its
number (constant), or with a tag with the data type UINT and the number of the
data block as value. The index of the component to be read is located at the param-
eter INDEX, either as a constant or as a tag.

Processing of the job is initiated with a rising edge on the parameter REQ. As long
as the job is being executed, the BUSY parameter has signal state “1”. When the
DONE parameter has signal state “1”, the job has been processed without errors.
Otherwise, error information is present at the ERROR parameter.

The read value is output at the VALUE parameter.

WriteToArrayDBL

WriteToArrayDBL writes a component to an ARRAY data block which is located in the
load memory (the block attribute Only store in load memory is activated). Write
access takes place asynchronously, i.e. several processing cycles can elapse before
the value is available in the ARRAY data block.

14 Program control

644

The ARRAY data block is specified on the parameter DB, either with its name, its
number (constant), or with a tag with the data type UINT and the number of the
data block as value. The index of the component to be written is located at the
parameter INDEX, either as a constant or as a tag. The value to be written is present
at the parameter VALUE.

Processing of the job is initiated with a rising edge on the parameter REQ. As long as
the job is being executed, the BUSY parameter has signal state “1”. When the DONE
parameter has signal state “1”, the job has been processed without errors. Otherwise,
error information is present at the ERROR parameter.

Note that the load memory only permits a limited number of write operations as a
result of the physical design. Too frequent writing, e.g. writing in every program
cycle, reduces the service life of the load memory.

14.4.5 CPU data blocks

A data block that is created during runtime using CREATE_DB is called a “CPU data
block”. In the user program, you can treat a CPU data block like a data block that
was created by the programming device. You can write data to this block and read
data.

A CPU data block is initially only present in the user memory of the CPU. In online
mode, a CPU data block is marked with a small CPU symbol in the user memory.
Its tag values can be monitored using a watch table.

You can load a CPU data block with a complete loading procedure (Online > Load
from device) from the user memory into the offline project. In the offline project,
a CPU data block is marked with a small CPU symbol. A CPU data block cannot be
loaded back from the offline project into the CPU.

In the offline project, you can open a CPU data block and view its contents or com-
pare it to the online version, but you cannot synchronize it. You also cannot change
a CPU data block, provide it with know-how protection, compile it, or convert it into
a different type of data block. You can delete a CPU data block using the program-
ming device, both in the user memory and in the offline project.

The following system blocks exist for creating and deleting a CPU data block:

b CREATE_DB Create a CPU data block in the user memory

b DELETE_DB Delete a CPU data block in the user memory

You find these system blocks in the program elements catalog under Extended
instructions > Data block control. Fig. 14.12 shows the graphic representation of the
system blocks.

CREATE_DB

CREATE_DB generates a data block in the user memory. For the number of the data
block, the system block uses the lowest free number in the number range which is
specified by the input parameters LOW_LIMIT and UP_LIMIT. The numbers speci-

14.4 Data block functions

645

fied at these parameters are included in the number range. If the two values are the
same, the data block is created with exactly this number. The number of a data
block already included in the user program cannot be assigned again.

The output parameter DB_NUM delivers the number of the actually created data
block. The input parameter COUNT is used to specify the length of the data block to
be created. The length corresponds to the number of data bytes and must be an
even number.

At the ATTRIB parameter, define additional properties of the data block to be cre-
ated. Using the bits 0 and 3, you specify the part of the user memory in which the
data block is to be created: only in the work memory, only in the load memory, or
in both. Using bit 1, you set the write protection of the data block. If the data block
is created in the load memory, you can activate the retentivity with bit 2.

Fig. 14.12 Creating and deleting a CPU data block

Creating and deleting a CPU data block

CREATE_DB generates a CPU
data block in the user
memory.

LOW_LIMIT

COUNT

RET_VAL

DB_NUM

BUSY

REQ

UP_LIMIT

ATTRIB

SRCBLK

CREATE_DB
CREATE_DB

DELETE_DB DELETE_DB deletes a CPU
data block in the user
memory

DB_NUMBER

RET_VAL

BUSY

REQ

DELETE_DB

Bit Meaning

0 "0" Data block is only in the work memory
"1" Data block is only in the load memory

1 "0" Data block is not write-protected
"1" Data block is write-protected

2 "0" Data block is retentive *)
"1" Data block is not retentive

3 "0" Data block is either in the
load memory or in the work memory

"1" Data block is in both the
load memory and in the work memory

4 "0" Create data block without start values
"1" Create data block with start values

5–7 "0" = unassigned =

*) Only for data blocks that are created in the load memory

Bit 0 Bit 3 The data block is located

"0" "0" only in the work memory
"1" "0" only in the load memory

"0" "1" in the load and work memory
"1" "1" in the load and work memory

Assignment of the ATTRIB parameter

The bits 0 and 3 of the parameter ATTRIB
indicate in the memory that contains the
data block:

14 Program control

646

Using bit 4, you can set whether the data block is to be created with or without start
values. The start values are taken from the data block or the data area which is spec-
ified at the parameter SRCBLK. The Optimized block access attribute must be deac-
tivated for the data block addressed with SRCBLK. The following are permitted as
actual parameters:

b an entire data block that is derived from a PLC data type or system data type,

b a tag from a data block, and

b a pointer to an absolutely addressed data area, e.g. P#DB100.DBX16.0 BYTE 64
(see Chapter 4.9.4 “ANY pointer” on page 135 for description).

If the area specified at SRCBLK is larger than the created data block, the start values
are entered up to the length of the data block. If the area at SRCBLK is smaller, the
remaining bytes in the data block are filled with 16#00.

Job processing is started with signal state “1” at the REQ parameter. As long as the
job is being executed, the BUSY parameter has signal state “1”. Then the start val-
ues in the source area must not be changed. A data block is not created in the event
of an error. The DB_NUM parameter is then occupied by zero and an error number
is output via RET_VAL.

DELETE_DB

DELETE_DB deletes a data block that was created with CREATE_DB in the user mem-
ory. The number of the data block to be deleted can be specified by you at the
parameter DB_NUMBER.

The deletion process is started with signal state “1” at the REQ parameter. As long
as the job is being executed, the BUSY parameter has signal state “1”. If an error
occurred, the parameter RET_VAL gives out error information.

If the data block is currently called or if it is still called in the call hierarchy further
“up” (in the calling blocks), the organization block OB 121 is called during an
attempted deletion. If this is not present, the CPU switches to the STOP operating
state.

15 Online mode and program test

647

15 Online mode and program test

One refers to online operation or online mode if a programming device is con-
nected to a PLC or HMI station and an online connection has been established.
An online connection is required in order to upload the user program to the CPU,
to test it in the CPU during runtime, or to find hardware faults using diagnostic
functions.

The connection between a programming device and a PLC station is established via
Industrial Ethernet. The mechanical connection (networking) and the logical con-
nection (the definition of the transmission protocols) are not configured. Only the
network addresses – the addresses of the PROFINET interface of the two devices –
must be harmonized with one another.

In online mode, STEP 7 changes the representation of the user interface: The title
bars of the windows are displayed in orange. In the project tree, the objects of the
station which is switched online are assigned symbols which indicate their operat-
ing or diagnostics state.

You can use the online and diagnostics tools, for example, to control the operating
state of the CPU, to set the time on the CPU, and to fetch the diagnostic information,
e.g. read the diagnostics buffer. The online and diagnostics tools support you in
troubleshooting during commissioning.

The user program which you have created offline can be transferred to the CPU in
online mode. When carried out for the first time, all configuration data and the
complete user program are transferred, subsequently only the modified configura-
tion data and program blocks. The transfer is always possible in the STOP operating
state of the CPU. If certain prerequisites are met, it can also take place in the RUN
operating state.

You can compare the online versions and the offline version of a block. Changes to
a block are always made in the offline version, which is then transferred to the CPU.

Two functions are available for testing the user program: the program status and
the watch tables. You use the program status to monitor the program execution
directly on the control functions. The watch tables contain tags whose values you
can read and modify (control) during runtime or also set permanently (force).

The program editor also allows you to display the CPU user program without a cor-
responding offline project being present. If you then wish to edit the blocks, you
must first upload the online project into the offline data management.

15 Online mode and program test

648

15.1 Connection of a programming device to
the PLC station

The programming device can only exchange data with a PLC station if it is
addressed in the same subnet and has a node address which is different from that
of the PLC station. The IP addresses of the programming device and PLC station
must therefore be identical in the part whose bits are occupied by “1” in the subnet
mask, and different in the remaining part. You can find information on the struc-
ture of the IP address and the subnet mask in Section “IP address and subnet mask”
on page 82.

If the programming device already has an address other than the PLC station,
STEP 7 sets up a “temporary” IP address on the programming device. This tempo-
rary IP address is deleted when Windows is shut down.

15.1.1 IP addresses of the programming device

Determining and setting network addresses with Windows tools

You can edit the network addresses of the programming device using the Network
connections tool (Windows XP) or Network and enable center (Windows 7) in the
Windows Control Panel. Open the Control Panel – for example from the Windows
desktop via Start > Control Panel – and start the tool. Then double-click to select the
LAN or WLAN connection that is used.

In the displayed status window Status of …, click on the Details button located in the
General or Network support tab. The currently active IP address and the subnet
mask are displayed, for example. SIMATIC S7 supports the Internet protocol Version
4 with the 4-byte long IPv4 address.

The connection status is displayed in the General tab. Click here on the Properties
button. In the Properties of … window, select the entry Internet Protocol (TCP/IP) or
Internet Protocol Version 4 (TCP/IPv4) in the This connection uses the following items
field, and then click on the Properties button (Fig. 15.1).

The dialog window Internet Protocol Properties… offers in the General tab the
options Obtain an IP address automatically (via a DHCP server) and Use the following
IP address (manual settings). If you want to enter an additional IP address, for
example for the SIMATIC project, select the option User defined in the Alternate
Configuration tab and enter the IP address and the subnet mask.

Set access point

When installing STEP 7, the Set PG/PC interface tool is created in the Windows
Control Panel. This allows the user to check the access point to the Ethernet net-
work and to reset it if necessary.

Open the Set PG/PC interface tool, for example from the Windows desktop using
Start > Control Panel. The Access Path tab should show S7ONLINE (STEP 7) in the

15.1 Connection of a programming device to the PLC station

649

Access Point of the Application box. Select the LAN or WLAN interface module used
under Interface Parameter Assignment Used and close the tool.

Interface (adapter) in the programming device

STEP 7 lists all active interface adapters of the programming device in the project
tree under Online access. In order to check and set the interface properties, click
with the right mouse button on the interface used and select the Properties com-
mand from the shortcut menu. In the properties window, select the previously con-
figured subnet with which the programming device is to be connected under
General from the Assignment drop-down list. The current settings, such as the
IP address, can be found under Configuration > Industrial Ethernet.

15.1.2 Connecting the programming device to the PLC station

Connect the terminal of the programming device to the PROFINET interface of
the CPU. You can use a standard or “cross-over” cable for this. The CPU can handle
both cable types. Ensure that a memory card is inserted in the CPU and switch on
the power supply for the CPU.

After the startup, the CPU is in the STOP state (if the memory card is blank).
The RUN/STOP LED illuminates yellow and the mode is indicated in the display with
a yellow background.

Fig. 15.1 Setting IP addresses with the Windows Control Panel

15 Online mode and program test

650

If you set the mode switch to RUN, the CPU ramps up and the RUN LED flashes. If the
CPU does not detect any errors during ramping up, it changes to RUN mode – even
without user program. The RUN operating state is indicated with a green
RUN/STOP LED and has a green background in the display.

The CPU is ready for communication in both the RUN and STOP modes.

Search for accessible devices

Start STEP 7, select the Online & diagnostics portal in the Portal view, and then select
Accessible devices. If necessary, set the type of PG/PC interface in the Accessible
devices window and the adapter used under PG/PC interface.

A station which has been found is listed in the table with its IP address or – if it does
not have an IP address – with its MAC address. At the same time, the graphic is pro-
vided with an orange background (Fig. 15.2).

Select the line with the station. You can then click the Flash LED checkbox in order
to briefly flash the LEDs on the front panel of the CPU. To further edit the selected
station in the project view, deactivate the Flash LED checkbox and click on the Show
button.

Fig. 15.2 Dialog window Accessible devices

15.1 Connection of a programming device to the PLC station

651

Configuring a temporary IP address on the programming device

If the network settings of the programming device do not agree with those of the
CPU, STEP 7 suggests the setting of a matching project-specific IP address on the
programming device. This IP address is present temporarily until the program-
ming device is switched off or until you delete the address. Answer the correspond-
ing dialogs for assigning an IP address with Yes or OK. The assigned IP address is
displayed in the confirmation dialog.

STEP 7 then shows the found CPU in the project view. The CPU is located with its IP
or MAC address in the Online access group under the used interface module as a
new group in the project tree.

15.1.3 Assigning an IP address to the CPU

If a CPU does not have an IP address, you can assign an IP address to the CPU:
Highlight the PLC station and select the Online & diagnostics command from the
shortcut menu. Select the entry Assign IP address in the Functions section of the
diagnostics window. Enter the desired IP address and subnet mask and click Assign
IP address. The result of the action is reported in the inspector window in the Info
tab.

15.1.4 Switching on online mode

Under Online access, select the PLC station and then Online & diagnostics from the
shortcut menu. If the CPU does not yet have an IP address, enter the IP address and
subnet mask in the diagnostics window under Functions > Assign IP address and
click on Assign IP address. Then repeat the command Online & diagnostics.

The diagnostics window displays the diagnostic data read from the PLC station and
the Online tools task card with the CPU control panel. Further details can be found
in Chapter 15.4 “Hardware diagnostics” on page 672.

If a project matching the online PLC station is present, open the project and select
the PLC station in the project tree. Select Go online from the shortcut menu or acti-
vate the Go online icon in the main menu. If necessary, add the access data in the
Go online window and click on Go online.

Further procedure

b Chapter 15.4 “Hardware diagnostics” on page 672 describes how you can use the
diagnostics and online tools, for example to start and stop the CPU or to reset to
the default settings.

b The following Chapter 15.2 “Transferring project data” describes how you can
upload a user program to the PLC station and edit the user program online.

b Chapter 15.5 “Testing the user program” on page 677 describes how you can test
a user program.

b Chapter 15.2.4 “Working with online project data” on page 660 describes how
you can access the online project data of the CPU without the user program.

15 Online mode and program test

652

15.1.5 Resetting the CPU memory

A memory reset returns the CPU to its “initial state”. It can only be carried out in
the STOP state. The complete user program present in the work memory and all
operands are deleted independent of the retentivity setting. The hardware config-
uration with the IP address, the diagnostics buffer, the real-time clock, the runtime
meter, and the running force jobs are retained during the memory reset.

If a memory card is inserted, the execution-relevant parts of the user program are
copied from the load memory into the work memory.

There are three options for a memory reset of the CPU: using a connected program-
ming device (see Chapter 15.4.5 “Online tools” on page 676), by means of the mode
switch on the CPU, or via the CPU display.

Memory reset using the mode switch

Note: If a memory card is inserted, a memory reset is carried out using the follow-
ing switch operation. If no memory card is inserted, the CPU is reset to the factory
settings.

To perform a memory reset using the mode switch, move the switch to the STOP
position. The STOP LED lights up. Then hold the switch in the MRES position for at
least three seconds. During this procedure, the STOP LED goes out for a second,
then illuminates for a second, goes out again for a second, and then illuminates
continuously. Now move the switch to the STOP position, then to the MRES position
within three seconds, and then back to the STOP position again. While the memory
reset is being performed, the STOP LED will flash for at least three seconds at 2 Hz
and then remain lit.

If the CPU requests a memory reset by slowly flashing the STOP LED, move the
mode switch to the MRES position and then to the STOP position. While the memory
reset is being performed, the STOP LED will flash for at least three seconds at 2 Hz
and then remain lit.

Memory reset via the CPU display

Using the Left or Right keys, select the menu Settings and confirm with OK. Now use
the Down key to select the line Reset and confirm with OK. In the Reset submenu,
select the line Memory reset and confirm with OK. Confirm the Memory reset sub-
menu with OK. The memory reset is then executed.

15.1.6 Reset to the factory settings

“Reset to factory settings” restores the factory default settings in the CPU. The CPU
must be in the STOP operating state. When resetting to the factory settings, the
complete user program present in the work memory and all operands are deleted
independent of the retentivity setting. All of the parameters, the I&M data (with the
exception of the I&M0 data) and the runtime meters are deleted and the real-time
clock is reset to the value DTL#1990-01-01-0:0:0.000.

15.2 Transferring project data

653

There are three options for resetting the CPU to the factory settings: using a con-
nected programming device (see Chapter 15.4.4 “Diagnostic functions” on page
675), by means of the mode switch on the CPU, or via the CPU display.

When the reset is carried out using the mode switch or the CPU display, the
IP address is deleted; when the reset is carried out using the programming device,
the IP address can be retained or deleted.

Resetting to the factory settings using the mode switch

Note: If a memory card is inserted, a memory reset is carried out using the follow-
ing switch operation. If no memory card is inserted, the CPU is reset to the factory
settings.

To reset to the factory settings, switch the CPU to the STOP operating state and
remove the memory card. Then perform a memory reset:

Switch the mode switch to STOP. The STOP LED lights up. Then hold the switch in
the MRES position for at least three seconds. During this procedure, the STOP LED
goes out for a second, then illuminates for a second, goes out again for a second,
and then illuminates continuously. Now move the switch to the STOP position, then
to the MRES position within three seconds, and then back to the STOP position
again. While the memory reset is being performed, the STOP LED will flash for at
least three seconds at 2 Hz and then remain lit.

Finally, the CPU enters the “Reset to factory settings” event into the diagnostics buf-
fer, and goes to the STOP operating state.

Reset to factory settings via the CPU display

Using the Left or Right keys, select the menu Settings and confirm with OK. Now use
the Down key to select the line Reset and confirm with OK. In the Reset submenu,
select the line Factory defaults and confirm with OK. Confirm the Factory defaults
submenu with OK. The rest is then executed.

Finally, the CPU enters the “Reset to factory settings” event into the diagnostics buf-
fer, and goes to the STOP operating state.

15.2 Transferring project data

You have configured the hardware and completed and compiled the user program.
You can now carry out the transfer to the PLC station via an online connection or
using a memory card as data medium.

If you transfer the user program to the CPU via an online connection, it is written
into the load memory. In the case of a CPU 1500, the load memory is on the memory
card.

You can also write to a memory card in the programming device and use it as data
medium. Transfer the project data from the offline data management system to the

15 Online mode and program test

654

memory card that is inserted in the programming adapter. Then insert the memory
card into the CPU when the system is de-energized or in the STOP operating state.
When switching on, the modules are initialized and the execution-relevant data is
imported from the load memory into the work memory of the CPU.

15.2.1 Loading project data for the first time

To load the project data, connect the programming device to the CPU, switch the
CPU on, and open the project on the programming device.

Select the PLC station in the project tree and then the Download to the device >
Hardware and software (only changes) command from the shortcut menu. When
loading for the first time, the dialog window Extended download to device shows the
address of the configured PLC station in the Configured access nodes of … table.
If applicable, select the subnet and adapter to which the PLC station is connected
from the drop-down lists Type of the PG/PC interface and PG/PC interface. The Online
status information table signals the status and the end of scanning for stations.

Select the desired station in the Compatible devices in target subnet table and click
on the Load button.

The PLC station does not have the configured address

If the configured address does not agree with the address set in the CPU, STEP 7 can-
not find the device matching the configuration. Activate the Show all compatible
devices checkbox in this case. The search then starts again.

The devices that have been found are displayed together with their addresses in the
table Compatible devices in target subnet. Select the required PLC station in this
table and click on the Load button.

If the network settings of the programming device do not match the configured
IP address when connecting via the PN interface, the dialog window Assign
IP address is displayed. Following confirmation, STEP 7 then adds a further tempo-
rary, project-specific IP address.

The project data is compiled prior to loading

If necessary, the project data is compiled prior to loading. Only consistent project
data which has been compiled without errors can be loaded. After the compilation,
check the messages in the Load preview dialog window and change the suggested
actions, if applicable. You can continue with loading by clicking on the Load button
(Fig. 15.3).

The complete project data can only be loaded when the CPU is at STOP. If the RUN
operating state is activated, you will be prompted to activate the stop action in the
Action column. As long as no loading is possible, the Load button is grayed out.

15.2 Transferring project data

655

Start CPU following loading

The results of loading are displayed in the dialog window Load results. After the
loading is completed you can control the operating state of the CPU after the load-
ing is completed using the Start all checkbox in the Action column.

Caution: Make sure when starting the CPU – possibly with a faulty program – that the
controlled machine cannot cause damage to property or injury to persons and that no
dangerous states can occur!

To finish loading, click on the Finish button. If the Start all checkbox has been acti-
vated and no error occurs when the CPU is started up, the CPU is then in the RUN
operating state. The RUN/STOP LED lights up green.

The result of loading is also shown in the inspector window under Info in the
General tab.

Activating online mode

In order to activate online mode, select the PLC station or the Program blocks folder
and then select the Go online command from the shortcut menu or activate the Go
online icon in the main menu.

The title bar of the active window has an orange background. The project tree uses
icons to indicate the agreement and existence of offline and online versions for
each block. You can now

b open the diagnostics window
It shows such things as the module status, the diagnostics buffer, the memory
utilization and the current cycle times. It also allows the execution of online

Fig. 15.3 Dialog window Load preview

15 Online mode and program test

656

functions such as setting the CPU clock or assigning an IP address, see
Chapter 15.4.2 “Diagnostic information” on page 673.

b use the online tools
These show the modes, the current cycle times, and the memory utilization.
They also allow the CPU modes to be controlled using the programming device,
see Chapter 15.4.5 “Online tools” on page 676.

b edit and compare the online version and offline version of a block
(see Chapter 15.3 “Working with blocks in online mode” on page 662)

b test the user program
(see Chapter 15.5 “Testing the user program” on page 677)

You can use the Go offline icon to switch online mode off again.

Loading an incorrectly compiled, inconsistent program

An error which occurs when compiling prior to loading is indicated by a white cross
on a red background in the dialog window Load preview. The Target column indi-
cates under Software the component where the error has occurred (click triangle on
the left). Continuation or restart of loading is only possible when the error has been
eliminated.

Error message following loading

If the CPU does not start following loading – the RUN/STOP LED lights up yellow –
or if the red ERROR LED lights up or flashes, the diagnostics buffer can provide
information on the cause. Remaining in the STOP state or returning to it could be
the result of, for example, a faulty I/O access in the user program. Chapter 15.4.3
“Diagnostics buffer” on page 674 describes how the diagnostics buffer supports you
during troubleshooting.

15.2.2 Reloading the project data

The project data can only be changed in the offline version. For example, if you want
to change the CPU properties or the online version of a block, switch to offline
mode, make the changes offline, and then start a load process.

When reloading project data, only the changes compared to the online project data
are loaded. Select the object to be loaded in the project tree and then the Download
to device >… command from the shortcut menu. You can

b with the PLC station selected, choose the commands Hardware and Software (on-
ly changes), Hardware configuration or Software (only changes) or

b with the Program blocks folder selected or with one or more blocks selected,
choose the command Software (only changes).

The project data is compiled and the result is displayed in the Load preview dialog
window. Set the actions if applicable and start the loading process by clicking on the
Load button. You can set additional actions at the conclusion of the loading process
in the Load results window. Clicking on the Finish button finishes the load process.

15.2 Transferring project data

657

The result of loading is shown in the inspector window under Info > General. Fur-
ther information on downloading individual blocks is provided in Chapter 15.3
“Working with blocks in online mode” on page 662.

15.2.3 Protecting the user program

The user program can be protected against unauthorized access by means of the
following measures:

b Access protection restricts access to the CPU

b Know-how protection protects a block against unauthorized access

b Copy protection prevents a copied block from being executed by tying it to a spe-
cific memory card or CPU

Access protection restricts the access rights to online project data in the CPU. Blocks
in the offline data management system and on the memory card are not protected
by this. The method for protecting a block with know-how protection and/or copy
protection is described in Chapter 6.3.4 “Protecting blocks” on page 259.

You configure access protection in the properties of the CPU with hardware config-
uration. The configured access rights can be limited via entries on the CPU display
and, at the same time, via the ENDIS_PW function in the user program. The CPU
saves the respective last setting.

Additional measures for protecting the user program can include deactivating the
Web server, deactivating time synchronization via an NTP server, and deactivating
PUT/GET communication. The latter is described in Chapter 17.3 “S7 communica-
tion” on page 761. Data exchange between CPUs via communication functions, for
example with open user communication, is not limited by access protection (excep-
tion: the PUT/GET communication with complete protection).

Access protection of the user program with protection levels

With access protection for a CPU 1500, you can protect the access to specific func-
tions using passwords. You set the access protection under General > Protection with
the hardware configuration when parameterizing the CPU properties (Fig. 15.4).

Full access (no protection) does not provide any protection. Any person can read and
modify the configuration data and the user program.

If Read access is allowed, anyone can read the configuration data, the user pro-
gram, and the diagnostic data (and load it into the programming device, for exam-
ple). Without entering the password, the user cannot change the configuration
data and the user program (cannot load it into the CPU, for example). The user also
cannot perform a writing test function, cannot change the operating state from the
programming device, and cannot perform a firmware update via an online connec-
tion.

If HMI access is permitted, it is possible to access diagnostic data and to access data
from an HMI device. Without entering the password, the user cannot read or change
the configuration data and the user program (cannot load it into the programming

15 Online mode and program test

658

device or CPU, for example). The user also cannot perform a writing test function,
cannot change the operating state from the programming device, and cannot per-
form a firmware update via an online connection.

If No access (complete protection) is set, neither read access nor write access to the
configuration data and the user program is possible without knowing the corre-
sponding password. HMI access is also not possible. In addition, the server function
for the PUT/GET communication is deactivated (cannot be changed).

You can perform accesses that are marked with a green checkmark in the configu-
ration input screen without knowing the password. For all other actions, you need
the password that corresponds to the access type. To set the passwords, select the
option No access (complete protection) and then enter the password in the line with
the access type.

The protection is effective once the settings have been loaded to the CPU. For the
first access that is password-protected, you will be prompted to enter the password.
Access protection by the password applies to the duration of the online connection
or until the access privilege has been canceled again using Online > Delete access
rights. The password-protected access can only be carried out at a specific point in
time from a single programming device.

Blocking access with the CPU display

You can block the access to a password-protected CPU on the display of a CPU 1500.
The block only functions if the mode switch is set to RUN. The configured access
protection takes effect in the STOP position.

To block the access rights, select the menu Settings > Protection on the CPU display.
Now you can set the access for each protection level separately (full access, read
access, HMI access):

Fig. 15.4 Setting the protection levels

15.2 Transferring project data

659

b Allow means that access is allowed for this level of protection if the correct pass-
word is known.

b Disallow means that no access is possible with the programing device while the
mode switch is in the RUN position, even if the correct password is known.

You can also password-protect the operation of the CPU display in the CPU proper-
ties: Under General > Display > Display protection, select the checkbox Enable display
protection and enter a password.

The blocks that are activated with the CPU display are in effect even after power is
restored (Power ON) and with a change in the operating state. The access block via
the CPU display competes with the access block via the user program with
ENDIS_PW. The most recent setting is the effective one.

Blocking access with the user program

The ENDIS_PW function blocks access to a password-protected CPU during runtime.
The block can be activated and deactivated separately for each level of protection
(full access with and without Failsafe, read access, HMI access). Currently existing,
password-protected access cannot be blocked using ENDIS_PW.

The blocks that are activated using ENDIS_PW remain in effect even after power is
restored (Power ON) and when the operating state is changed. The blocks are deac-
tivated if the mode switch is at STOP, or if they have been deactivated using the
CPU display (the most recent setting is the effective one).

You can find ENDIS_PW in the program elements catalog under Basic instructions >
Program control operations. Fig. 15.5 shows the graphical representation.

Fig. 15.5 Locking access with ENDIS_PW

ENDIS_PW

REQ

F_PWD

FULL_PWD

R_PWD

HMI_PWD

RET_VAL

F_PWD_ON

FULL_PWD_ON

R_PWF_ON

HMI_PWD_ON

Lock password-protected access

Lock access

Access rights:
F_PWD Full access including Failsafe
FULL_PWD Full access
R_PWD Read access
HMI_PWD HMI access

ENDIS_PW locks access to a
password-protected CPU.

A password-protected access will be or is locked with signal state "0".
The locked access will be or is unlocked with signal state "1".

15 Online mode and program test

660

Signal state “1” at parameter REQ blocks a password-protected access to the CPU if
the corresponding input parameter has signal state “0”. With signal state “1” at the
corresponding input parameter, a block that was set using ENDIS_PW or the
CPU display is canceled. The output parameters have signal state “0” when a block
is set. Signal state “1” at an output parameter shows that a corresponding pass-
word-protected access is possible. Error information is output at parameter
RET_VAL.

15.2.4 Working with online project data

Working without the offline project in online mode

You can also open the program in a CPU without the associated project.

Select the Online & diagnostics portal in the Portal view and then select Accessible
devices. Set the LAN adapter (the PG/PC interface module) if applicable. Select the
PLC station in the Accessible devices table and click on the Show button. If the pro-
gramming device does not possess the matching network parameters, STEP 7
opens a dialog window to allow you to set these temporarily.

In the project view, the PLC station is displayed in the project tree under Online
access and the used interface (module). Alternatively you can double-click under
the used interface on Update accessible devices. The accessible PLC stations are then
displayed as folders under the interface.

Select the PLC station and then the Online & diagnostics editor from the shortcut
menu. In online mode, you can select the mode using the CPU control panel, for
example, or read out the diagnostics buffer in the diagnostic functions.

The Program blocks folder contains the online blocks. If you open it, STEP 7 loads
the blocks into the folder. A block is opened by double-clicking it and the program
in the block is displayed.

If you wish to edit, delete, or test an online block, you must create an offline project
and transfer the online blocks to the project. New blocks can only be created, mod-
ified, deleted, or tested in the offline project data.

Uploading the online project data from the CPU

Uploading of online project data requires an offline project in the programming
device. If the offline project matching the online project is not available, create an
“empty” offline project and then copy the online project data into the project.

Use the Project > New command in the main menu to create a new project. Use the
command Add new device to add a PLC station with a suitable CPU to the project. Set
the right access data and activate the online mode.

To upload the online project data, select the PLC station in the project tree and then
select the Online > Upload from device command from the main menu. In the Pre-
view for loading from device dialog window, activate the checkbox Continue and start
the upload by clicking on the Upload from device button. The Program blocks, PLC

15.2 Transferring project data

661

tags, and PLC data types folders present in the offline data management are deleted
and replaced by the objects existing online.

15.2.5 Working with the memory card

A SIMATIC Memory Card for a CPU 1500 is an SD memory card (secure digital mem-
ory card) preformatted by Siemens.

The memory card is essential for operation of a CPU.

The memory card can be inserted or pulled at any time in the de-energized state.
In STOP mode, the memory card can only be removed if no data traffic is taking
place. Therefore end the communication between the programming device and the
CPU first.

If you insert or remove a memory card while the CPU is activated, the CPU executes
a memory reset and then goes into STOP mode.

Please make sure that the write protection – the small slide switch on the side of the
card – is switched off if it is used in the CPU.

Formatting a memory card

You format a memory card in the CPU. Establish an online connection and double-
click on Online & diagnostics in the project tree. In the dialog window, select
Functions > Format memory card and then the Format button. All project data except
for the IP address are deleted.

Formatting using Windows Explorer makes the memory card unusable in a
CPU 1500. With the exception of the files “__LOG__” and “crdinfo.bin”, deleting files
and folders from the memory card is allowed.

Accessing a memory card in the card reader

Insert a memory card in the card reader on the programming device. Open the proj-
ect tree and select the command Project > Card Reader/USB memory in the main
menu. The Card reader/USB memory folder is opened in the project tree.

Setting the card type

You can use a memory card as a program card or as an update card. The load mem-
ory is located on the program card; using it, you can also transfer a project to the
CPU, as a replacement for the online connection. You can transfer a firmware
update to the CPU using the update card.

To set the type of card, insert the memory card into the programming device's card
reader. In the project tree, open the Card Reader/USB memory folder and the subor-
dinate folders down to the SD card (to the drive letter). Select the SD card and click
on the Properties command in the shortcut menu. In the dialog window that
appears, select Program or Update firmware from the drop-down list in the PLC card
mode field.

15 Online mode and program test

662

Transferring project data to the memory card

After the memory card has been set as the program card, copy the project data of
the PLC station to the memory card, e.g. from the shortcut menu using Copy when
a PLC station is selected and then Paste with the SD card that is then selected or by
“dragging” the PLC station to the memory card by pressing and holding the mouse
button. The project is compiled. After an error-free compilation, the Load preview
window is displayed; continue the loading process with the checkbox Continue
activated by clicking on the Load button. Clicking on the Finish button finishes the
load process.

You can also load individual blocks or block groups to the memory card. Select the
objects in the Program blocks folder of the PLC station and drag them to the
Program blocks folder of the memory card. The prerequisites for loading to the
memory card are checked and displayed in the Load preview window. If all of the
prerequisites are fulfilled, continue loading by clicking on the Load button.

Blocks that only exist on the memory card are deleted during this.

Transferring project data from the memory card

It is only possible to transfer all of the blocks from a memory card to the project.
Open the memory card in the project tree, select the Program blocks folder of the
memory card and use the mouse to drag it to the PLC station. The prerequisites for
loading from the memory card are checked and displayed in the Preview for upload-
ing from device window. If all of the prerequisites are fulfilled, continue loading by
clicking on the Upload from device button.

15.3 Working with blocks in online mode

15.3.1 Introduction

Once the project data has been transferred to the CPU, there are two versions of a
block: the offline version in the project on the programming device and the online
version in the user memory of the CPU. The online version of a code block is saved
in two locations: in the load memory and in the work memory. The online version
of a data block can either be located only in the load memory, only in the work mem-
ory, or in both.

The offline and online versions of a data block can have different contents, i.e. dif-
ferent values for the data tags, for these can be modified by the user program
during runtime. If you program a data block, the data tags are assigned a start value
depending on their type. As standard, the default value is the start value. With data
type INT, for example, it is the value zero, with data type DATE it is the value
D#1990-01-01. You can modify the start value according to your requirements.

The start values are present in the offline version of a data block. If the data block is
transferred to the CPU, it is present with the start values in the load memory. The first
time the data block is loaded, it is transferred with the start values to the work mem-

15.3 Working with blocks in online mode

663

ory. The start values can be changed there via the user program. The values of the
data tags in the work memory are referred to as actual values.

In the online mode, the project tree uses symbols on the blocks to show whether the
offline and online versions differ: A green, filled circle indicates that both versions
are the same, two blue/orange semicircles indicate that the two versions are differ-
ent, and if one semicircle is not filled, the corresponding block version is missing
(blue stands for offline, orange for online). The offline and online versions of a data
block are the same if the data tags are the same. The start values in the offline ver-
sion and the actual values in the online version may differ in this situation.

You can now change the offline version of a block and load the modified block into
the CPU, where it replaces the online version of the original block. For a data block,
you have various options for influencing the values of the data tags in the offline
and online versions. When a block is deleted, the offline version is deleted. During
the next loading process, the associated online version is deleted. Finally, the
offline version of a block can be compared with the online version in the CPU or
offline version from a different PLC station.

Caution! Reloading or deleting blocks during operation of the plant can cause serious
damage to property or injury to persons if there are functional disturbances or
program errors! Make sure that no dangerous situations can arise before you start the
actions!

15.3.2 Changing and loading a block

Editing the online version of a block

The program of a block can only be changed in the offline version. If you wish to
modify the online version, you must carry out the change in the offline version and
subsequently transfer the block to the CPU.

If you change the block program in online mode, for example by adding a new scan
to the logic operation during program testing, the program editor automatically
switches to the offline version. After the change, transfer the changed offline ver-
sion to the CPU.

Adding the online version of a block

Using the Add new block tool in the project tree, you can generate the offline version
of a new block, even if online mode is switched on. Program the offline version of
the block and the associated block call – if the new block is not an organization
block – and then transfer the calling and called blocks to the CPU.

Deleting the online version of a block

If you select a block in the project tree and select the command Delete from the
shortcut menu, the offline version of the block is deleted. The online version of the
block is first retained in the user memory. The online version is then also deleted

15 Online mode and program test

664

during the next loading process: During a loading process, all of the blocks in the
user memory which are only available online are deleted.

In connection with the deleting of a code block, you should also delete its call,
i.e. delete the call of the deleted block in the calling block, because otherwise an
error will be reported during compilation. When deleting an organization block,
you must also delete any assigned events.

Downloading a block into the user memory

To download into the CPU, select one or more blocks in the project tree in the
Program blocks folder and then the command Download to the device > Software
(only changes) from the shortcut menu. Alternatively, you can select Online > Down-
load to device from the main menu. With the command Online > Extended download
to device…, you can select the PLC station before downloading.

You can also download the code block you are processing at the moment from the
program editor into the CPU. In the working window, click on a free spot in the
workspace and select the command Download to device from the shortcut menu.

The block(s) are compiled. Downloading is aborted if errors occur during compila-
tion. Only blocks which have been compiled without errors can be downloaded.

The envisaged actions are listed in the Load preview dialog. Consistent download
means that all blocks affected by the change are downloaded. Set the desired
actions in the Action column and click on the Load button.

Downloading in the STOP operating state

Any download process can be implemented if the CPU is in the STOP operating
state. The blocks are then written to the load memory and the execution-relevant
parts are transferred to the work memory. The configuration data, the entire user
program, or more than the (CPU-specific) maximum number of blocks can only be
loaded in the STOP operating state.

If the mode switch is in the RUN position, the checkbox Start all is provided in the
Load results dialog window after loading. If the checkbox is activated, the RUN oper-
ating state is activated when the loading process is finished.

Only the changed blocks are written to the load memory using the command
Download to device > Software (only changes) and the parts of the execution-relevant
code blocks are transferred to the work memory.

If the block interface for a data block has not been changed or falls under memory
reserve, the actual values of non-retentive data tags are overwritten with the start
values from the load memory during the transition to the RUN operating state.
The actual values of the retentive tags are retained, even if the start values have
been changed.

If the change of the block interface of a data block exceeds the memory reserve, the
actual values of all of the tags are overwritten (“re-initialized”) with the start values
from the load memory.

15.3 Working with blocks in online mode

665

Downloading in the RUN operating state

Individual blocks can be reloaded in the RUN operating state without having to put
the CPU in the STOP operating state.

The Download to device > Software (only changes) command writes the changed
blocks to the load memory. The execution-relevant parts of the code block are then
transferred to the work memory and processed.

If the block interface for a data block has not been changed or falls under memory
reserve, the actual values of data tags are not changed in the work memory.

If the change of the block interface of a data block exceeds the memory reserve, the
actual values of all of the tags are overwritten (“re-initialized”) with the start values
from the load memory.

Overwriting actual values of data tags in the work memory

In the work memory of the CPU, either the actual values of non-retentive data tags,
the actual values of all of the data tags, or the data tags marked as set values can be
overwritten with the start values. The transferring of set values is described in
Chapter 15.3.5 “Working with setpoints” on page 668.

To overwrite the actual values of non-retentive data tags, load the relevant data
blocks (after a change to the start values, for example) using the command
Download to device > Software (only changes). During a transition from the STOP to
the RUN operating state, the actual values of non-retentive data tags in the work
memory are overwritten with the start values from the load memory. The actual
values of retentive data tags are retained during this.

If the actual values of all of the data tags in the work memory are to be overwritten
with the start values from the load memory, you must load the program using the
command Online > Download and reset PLC program. Loading takes place in the
STOP operating state. During the transition to the RUN operating state, the actual
values of all of the data tags are overwritten.

15.3.3 Download without reinitialization

If the interface was changed on function blocks and data blocks, these blocks are
“re-initialized” when they are loaded into the CPU, i.e. provided with the original
data (the start values). This response can be disruptive, especially for data blocks
with actual values which were collected during operation.

A CPU 1500 gives you the capability of expanding the interface of function blocks
and data blocks and “reloading” the changed blocks in the RUN operating state
without influencing existing data. You can apply “Download without reinitializa-
tion” for blocks with the Optimized block access attribute activated.

A CPU 1500 provides a so-called “memory reserve” for each function block and data
block in which the later interface expansions are entered. By default, this memory
reserve is 100 bytes in size and is not used at first. You can change the default set-
ting in the main menu under Options > Settings and PLC programming > General.

15 Online mode and program test

666

You change the memory reserve of a block in its properties: In the Download without
reinitialization section, enter the number of bytes. You can also define whether and
how much memory reserve is to be provided in the retentive memory area (Fig.
15.6).

If you have compiled and loaded a block and then want to expand the interface with-
out changing the loaded values, activate the memory reserve. To do this, open the
block and select the Download without reinitialization icon in the toolbar of the
working window. From this point on, each interface expansion is placed in the
memory reserve and you can use the download without reinitialization.

The retentivity setting Set in IDB is not available for expanding the interface. You
cannot expand an existing interface tag with a structured data type by adding com-
ponents.

At a later point in time, for example, if the system is not operating, you can revise
the user program and dissolve the memory reserve so that it will be available again
with full capacity for future interface expansions.

You can enable the memory reserve for an individual block if you click again on the
Download without reinitialization icon in the working window. After a confirmation
prompt, the tags are moved from the memory reserve to the regular area. The block
must be re-compiled and reloaded, this time with reinitialization again.

You enable the memory reserve for all of the blocks if you select the Program blocks
folder in the project tree and select the command Compile > Software (reset memory
reserve) from the shortcut menu. The tags from the memory reserve are moved to
the regular area and the blocks are compiled. The interface tags are reinitialized
during a subsequent loading action. The set memory reserve of the blocks is
retained and continues to be active.

Fig. 15.6 Setting the memory reserve for the download without reinitialization

15.3 Working with blocks in online mode

667

15.3.4 Uploading a block from the CPU

You can upload an individual block or all of the blocks from the user memory of the
CPU into the offline project. As a prerequisite, open the project that belongs to the
user program and start online mode.

To upload all of the blocks, select the Program blocks folder in the project tree. To
upload an individual block, select the block in the Program blocks folder. A block is
only uploaded if the online version differs from the offline version or if only the
online version exists.

Then select the command Upload from device in the shortcut menu or the command
Online > Upload from device in the main menu. In the Upload preview dialog window,
messages are displayed, which you can answer with actions, for example by speci-
fying overwriting existing objects or inserting them under other names (but with
the same number). As soon as uploading is possible, the Upload from device button
is activated. Click the Upload from device button to start uploading.

When a data block is uploaded, the start values that are in the load memory are
transferred into the offline version as start values.

Uploading actual values

You can overwrite the start values of data tags in the offline version of a data block
with the actual values from the work memory. To do so, you must establish an
online connection and open the data block. Switch to monitoring mode by clicking
on the Monitor all icon. The Monitor value column appears, showing the actual val-
ues of the data tags. Clicking on the Snapshot of the monitored values icon imports
the current monitor values into the Snapshot column. Note that the monitor values
can come from different program cycles.

To import the “frozen” actual values from the snapshot into the offline version of
the data block as start values, you have the option of importing all of the values,
only the set values, or only the retentivity values.

b To import an individual value, select the value in the Snapshot column and select
the command Copy from the shortcut menu. Select the start value and choose the
command Insert. The “frozen” actual value is imported as a start value. Repeat
the procedure for other values as needed. In this way, you can also transfer suc-
cessive values in one copy process.

b To import all of the values, click on the Copy all values from the “Snapshot” col-
umn to the “Start value” column icon. All of the “frozen” actual values are import-
ed from the Snapshot column as start values.

b To import the setpoint values, click on the Copy all setpoints from the “Snapshot”
Column to the “Start value” Column icon. The actual values marked as set values
from the Snapshot column are imported as start values (see Chapter 15.3.5
“Working with setpoints” on page 668).

b To import the actual values of retentive data tags as start values, select the data
block in the project tree and select the commands Snapshot of the monitor values

15 Online mode and program test

668

and Apply snapshot values as start values > Only retain values in the shortcut
menu.

Start values in a write-protected data block are not changed.

Uploading actual values for several data blocks

To import the actual values of several data blocks as start values, select the data
blocks in the project tree and select the command Snapshot of the monitor values in
the shortcut menu. Then, select Apply snapshot values as start values > Only set-
points values or Apply snapshot values as start values > Only retain values in the
shortcut menu.

15.3.5 Working with setpoints

Individual data tags can be marked as “setpoints”. For tags marked in this way, the
actual values can be overwritten with the start values while the program is running
and the actual values can be imported from the user program into the offline ver-
sion of the data block as start values.

Marking setpoints

To mark a tag as a setpoint, activate the checkbox in the setpoint column. Marking
is possible

b in a PLC data type, if it is used

– as a data type of a tag in the static local data of a function block,
– as a data type of a tag in a global data block or

– as a template for a type data block,

b in the static local data of a function block and

b in a global data block.

For a PLC data type, you can mark individual components as set values. The derived
tag or the derived type data block adopt the marking.

For a tag with the data type STRUCT, you can only mark components as set values,
not the entire tag. For a tag with the data type ARRAY, you can only mark the entire
tag as a set value. If an array tag is comprised of structures (data type ARRAY OF
STRUCT), you can mark the individual components of the first structure as set val-
ues, the components of the other structures adopt this marking.

Initializing setpoints

For data tags that are marked as setpoints, the actual values in the user memory can
be overwritten with the start values from the offline block in the RUN operating
state without influencing the actual values of the other data tags.

Establish an online connection and open the data block to initialize the setpoints.
Change individual start values as required. Click on the Initialize setpoint icon. The

15.3 Working with blocks in online mode

669

start values in the offline version of the data block are transferred once to the work
memory. This applies to both the retentive tags and the non-retentive tags.

Caution! Changing the data values during operation of the plant can cause serious
damage to property or injury to persons if there are functional disturbances or
program errors! Make sure that no dangerous situations can arise before you start the
actions!

Importing setpoints as start values

For data tags that are marked as setpoints, the start values in the offline block can
be overwritten with the actual values from the user memory

Establish an online connection and open the data block to overwrite the start val-
ues. Switch to monitoring mode by clicking on the Monitor all icon. The Monitor
value column appears, showing the actual values of the data tags. Clicking on the
Snapshot of the monitored values icon imports the current monitor values into the
Snapshot column. Note that the monitor values can come from different program
cycles.

To import the setpoints, click on the Copy all setpoints from the “Snapshot” Column
to the “Start value” Column icon. The actual values marked as set values from the
Snapshot column are imported as start values into the offline version of the data
block.

To overwrite the start values for several data blocks, select the data block(s) in the
project tree, select the command Snapshot of the monitor values from the shortcut
menu, and then the command Apply snapshot values as start values > Only setpoints.

15.3.6 Comparing blocks

Compare editor and detailed comparison

The compare editor compares blocks, PLC tag tables, and PLC data types of a
PLC station

b with the corresponding objects in the CPU (offline/online comparison), or

b with the corresponding objects in another PLC station (offline/offline compari-
son). The stations to be compared can come from the same project, from differ-
ent projects or from a library.

If the time stamps of the two blocks agree, the compare editor assumes that the
blocks are the same. Comments and block attributes are not considered in the
offline/online comparison. Know-how protected blocks cannot be compared.

The compare editor gives you an overview of the compared objects. The detailed
comparison shows the differences of an object.

15 Online mode and program test

670

Offline/online comparison of blocks

An online connection to the CPU is required for the offline/online comparison.
The comparison can be carried out in the STOP state or RUN mode.

To start the compare editor, select the PLC station in the project tree or select the
Compare > Offline/online command from the shortcut menu or the Tools >
Compare > Offline/online command in the main menu.

With an offline/online comparison, the blocks are assigned by means of the abso-
lute address (block type and number). The compare editor displays all blocks and
the comparison status in the working window.

As standard, blocks which have different offline and online versions are displayed
(Fig. 15.7). You can control the display using the Show only objects with differences
and Show identical and different objects icons. The icons Display in hierarchical view
and Display in flat view switch between a display with the call structure and a list
display.

A green, filled circle indicates that the offline and online versions are identical.
Blue-orange semicircles indicate that the object's offline and online versions differ.
If one semicircle is not filled, the corresponding version is missing (left side or blue
stands for offline, right side or orange for online). An exclamation mark in an
orange circle indicates an object with differences in the identified folder.

Fig. 15.7 Example of offline/online comparison of blocks

15.3 Working with blocks in online mode

671

In the Action column, you can select an action from a drop-down list for different
objects, for example Download to device or Upload from device. Clicking on the
Execute actions icon in the toolbar starts the set actions. The comparison is carried
out again by using the Refresh the view icon. You can only carry out one
offline/online comparison at a time.

Offline/offline comparison of blocks

For an offline/offline comparison, the user can compare PLC stations which are
located in the same project, in different projects, or in a library. Edit the opened
project in the project tree. Open additional projects as reference projects (see
Chapter 1.3.4 “Working with reference projects” on page 45). Note that objects in
reference projects cannot be added, changed or deleted.

To start the compare editor, select a PLC station in the project tree and select the
Compare > Offline/offline command from the shortcut menu or the Tools >
Compare > Offline/offline command in the main menu. The objects of the selected
PLC station are displayed in the left half of the working window. Using the mouse,
drag the PLC station that is to be compared into the title bar on the right side
(labeled “Insert here to add a new object or replace an existing one”). You can move
other PLC stations into the title bar on one of the two sides at any time in order to
carry out further comparisons.

For the automatic offline/offline comparison, the blocks are assigned based on the
symbolic address. For the manual offline/offline comparison, select the blocks to be
compared. To switch between automatic and manual comparisons, click on the but-
ton with the scales in the title bar. For the automatic comparison (the “scales” but-
ton is white), all of the blocks are compared. For the manual comparison (the
“scales” button is gray), only the two blocks that are selected are compared.

The further procedure is as with the offline/online comparison. The comparison
icons are now blue for objects of the current project and gray for objects of the
selected project. You can only carry out one offline/offline comparison at a time.

Detailed comparison

You can start a detailed comparison for a block. The compared versions of the block
are then displayed next to each other and the differences highlighted.

To start the detailed comparison, select a block in the compare editor and activate
the Start detailed comparison icon or select the Start detailed comparison command
from the shortcut menu.

For code blocks, you can use icons in the compare editor's toolbar to navigate to the
first, preceding, subsequent, or last difference. If the Synchronize scrolling between
editors icon is activated, the corresponding networks remain visible in parallel
when scrolling vertically. If networks are missing or if the sequence is inter-
changed, the compare editor inserts “pseudo networks” with the heading No corre-
sponding network found. These networks cannot be edited.

You can modify the offline version of the open block in the current project. A new
comparison is carried out using the Update comparison results icon.

15 Online mode and program test

672

15.4 Hardware diagnostics

The hardware diagnostics detects and signals module faults, e.g. failure of the load
voltage or an open-circuit on signal modules.

The modules with diagnostic capability distinguish between parameterizable and
non-parameterizable diagnosis events. In the case of the parameterizable diagno-
sis events, the message is only output if you have enabled the diagnostic function
in the parameter settings. The non-parameterizable diagnosis events are always
signaled irrespective of a diagnostics enable.

This chapter describes the diagnostics options offered by the programming
device in online mode. Chapter 5.9 “Diagnostics in the user program” on page 225
describes how you can react to a diagnosis event in the program.

When a diagnosis event occurs:

b An error LED lights up on the CPU

b The diagnosis event is passed on to the CPU's operating system

b A diagnostic interrupt is triggered if you have enabled this in the parameter set-
tings (the diagnostic interrupts are disabled by default)

All diagnostic events signaled to the CPU's operating system are entered into a diag-
nostics buffer in the sequence of their occurrence with date and time. In addition to
the diagnostics buffer, which saves the events in chronological order, the program-
ming device offers comprehensive information functions which display the current
module states.

15.4.1 Status displays on the modules

The status displays on the modules signal the operating state and can help to local-
ize a fault. For this purpose, each module has LEDs with colors that correspond to
their functions.

Status displays on the CPU

The CPU has three status LEDs on the upper edge of the front panel, which signal
the operating state with various light configurations (Table 15.1).

The CPU display shows the operating state in the main menu. The Diagnostics menu
signals when there are new diagnostics alarms and entries in the diagnostics buf-
fer. The Modules menu contains such things as order data and the module status.

Status displays on the signal modules

Every input/output channel of a digital and analog module has a green channel LED
CHx to indicate whether voltage is present on the input or output channel. It is thus
possible to check the wiring from the sensor to the digital input channel or from the
digital output channel to the actuator. A green RUN LED indicates the module is

15.4 Hardware diagnostics

673

operationally ready. A red ERROR LED flashes to indicate an error on the module.
A green PWR LED indicates the load voltage is present on the module.

Status displays on power supply modules, technology modules and
communication modules

The PS, TM and CM modules indicate the operating state of the module, an error or
a maintenance requirement by means of a green RUN LED, a red ERROR LED and a
yellow MAINT LED. Depending on the function of the module, there are additional
LEDs at the inputs and outputs for status displays.

15.4.2 Diagnostic information

The diagnostic information is displayed in the working window when the program-
ming device is switched to online mode using the Online & diagnostics command.
The following diagnostic information is then available:

b General: Module designations, module and vendor information.

b Diagnostics status: Status information of selected module, e.g. Module exists
and OK, differences between configured and existing modules.

Table 15.1 Light configurations of the status LEDs of a CPU 1500

RUN/STOP LED
green/yellow

ERROR LED
red

MAINT LED
yellow

Meaning

off off off No or insufficient power supply.

off flashes red off An error occurred.

illuminates
green

off off RUN operating state.

illuminates
green

flashes red off A diagnosis event occurred.

illuminates
green

off illuminates
yellow

A maintenance request is present.

illuminates
green

off flashes yellow Maintenance is required or
a firmware update has been successfully completed.

illuminates
yellow

off off STOP operating state.

illuminates
yellow

flashes red flashes yellow The program on the memory card causes an error – or –
the CPU is defective.

flashes yellow off off The CPU carries out internal activities in STOP or the
user program is being loaded.

flashes
yellow/green

off off STARTUP operating state.

flashes
yellow/green

flashes red flashes yellow The CPU is booting or LED and flash test.

15 Online mode and program test

674

b Cycle time: Display of preset or configured minimum cycle time and cycle (mon-
itoring) time and – in RUN mode – the cycle time diagram and the shortest,
current, and longest cycle (processing) times.

b Memory: Display of the memory utilization for the load memory, the work mem-
ory separated by program code and data, and the retentivity memory.

b Diagnostics buffer: Display of diagnostics buffer content.

b Display: Display of order number and manufacturer data.

b Interface: Properties of the corresponding interface.

Cycle times and resources are displayed in parallel in the online tools. Under Online
access, the online connection can be confirmed with the flash test, the online con-
nection can be activated or disconnected, and the receipt of diagnostics alarms in
the programming device can be enabled or blocked. The diagnostic functions are
located in the same window (see Chapter 15.4.4 “Diagnostic functions” on page
675).

15.4.3 Diagnostics buffer

The diagnostics buffer contains the faults detected by the CPU and the modules
with diagnostic capability, the triggered hardware and diagnostic interrupts, and
the changes in CPU modes in the sequence of occurrence. The diagnostics buffer is
designed as a ring buffer: when it is full, the oldest entries are overwritten. The
entries can only be erased by resetting the CPU to its factory settings (Fig. 15.8).

The most recent event is present in the first line in the diagnostics buffer. A
diagnostics buffer entry consists of the time stamp (date and time at which the
event was detected) and the event text. The time stamp is only meaningful if the
CPU's time is up-to-date. An event ID can be called up for every event. This is an
identification which exactly specifies the event. Select a line and the event ID will be
displayed on the right underneath the table.

The Freeze display button stops the display of entries; you can then call up informa-
tion on a specific event or study the sequence of displayed events at your own rate.
Clicking on the button again (now labeled: Cancel freeze) changes to the updated
display. You can use the Save as … button to save the contents of the diagnostics buf-
fer as a text file.

Using the Help on event button, you can obtain additional information on the
selected event. If the entry refers to a block, e.g. with an access error to the I/O, it is
possible to switch to the position of the fault in the user program by using the
Open in editor button.

In the Settings area (not shown in the figure), you can set a filter for the events to be
displayed and import this filter as standard for future display of the diagnostics buf-
fer.

15.4 Hardware diagnostics

675

15.4.4 Diagnostic functions

The diagnostic functions are displayed in the working window when the program-
ming device is switched to online mode using the Online & diagnostics command.
The following functions are then available:

b Set time: Display of programming device and module time, setting of real-time
clock on CPU, time synchronization.

b Assign IP address: Setting of the IP address, subnet mask, router address.

b Reset to factory settings: The user memory, operand areas, diagnostics buffer
and– upon request– IP address are deleted. All parameters including the time
are reset to the default settings.

b Format memory card: Formats the memory card for use in a CPU 1500.

Fig. 15.8 Example of display of diagnostics buffer

15 Online mode and program test

676

b Assign name: Enter or change the PROFINET device name.

b Firmware update: Display of current firmware of the CPU and CPU display and
preparations for updating the firmware.

15.4.5 Online tools

You can use the Online & diagnostics command from the project tree in the task win-
dow to start the task card with the online tools.

CPU operator panel

The CPU operator panel shows the current status of the LED on the front side of the
CPU. The RUN and STOP buttons can be used to set the CPU – following confirma-
tion – to the corresponding state. A pressed (bright) button symbolizes the cur-
rently set state. The CPU can only be switched to RUN mode using the operator
panel if the mode switch on the CPU is at RUN and if no faults which prevent starting
are present.

The MRES button is used to trigger a memory reset. A memory reset can only be car-
ried out in the STOP state. During the memory reset, the contents of the work mem-
ory and all operand areas are deleted. The contents of the load memory are
retained. The contents of the load memory relevant to execution are copied into the
work memory, just like when transferring the user program to the CPU. The diag-
nostics buffer, time, force jobs, and the IP address remain uninfluenced.

The existing (logic) connections to the CPU are cleared. Following a CPU memory
reset, the programming device must switch to online mode again using the
Online & diagnostics or Go online command.

Cycle time

Cycle time shows the shortest, current, and longest cycle (processing) times in mil-
liseconds and presents these graphically.

Memory

Memory displays the utilization of the load, work and retain memories in percent
as bars.

15.4.6 Further diagnostic information via the programming device

Diagnostics icons in the device and network views

In online mode, the device configuration editor shows the device status of every
PLC station connected online by means of diagnostics icons in the device or net-
work view. For example, a green tick indicates that the station does not signal any
faults. The operating state is indicated by a colored square: green for RUN and yel-
low for STOP.

15.5 Testing the user program

677

Diagnostics icons in the project tree

In online mode, diagnostics icons are also shown in the project tree. If everything
is OK in the PLC station, the name is followed by a white tick on a green background.

The project tree also shows the result of the comparison between offline and online
project data. If an orange circle with exclamation mark is shown, the folder contains
objects which differ in the online and offline versions. The following identifications
apply to individual objects:

b Green, filled circle: no difference between online version and offline version

b Blue/orange semicircle: the online version and offline versions of the object
are different

b Blue/orange semicircle, right half (orange) filled: only the online object is
present

b Blue/orange semicircle, left half (blue) filled: only the offline object is present

Device information in the inspector window

The status of the devices signaled as faulty is displayed in the inspector window in
the Diagnostics > Device information tab. A device is considered to be faulty if it is
inaccessible when establishing the online connection, if it signals a fault or if it is
not in RUN mode (Fig. 15.9). Via the link in the Details column you can access the
Go online dialog or the online and diagnostics view of the faulty device.

15.5 Testing the user program

Following the establishment of a connection to a CPU and loading of the user pro-
gram, you can test the entire program or parts of it, such as individual blocks. You
supply the tags with signals and values and evaluate the information returned by
the program. If the CPU switches to STOP as the result of a fault, the diagnostics buf-
fer provides support toward locating the cause.

Comprehensive programs are tested in sections. If you only wish to test one block,
for example, load the block into the CPU and then call it in OB 1. If OB 1 is structured

Fig. 15.9 Diagnostics tab in the inspector window

15 Online mode and program test

678

such that the program can be tested in sections “from front to rear”, you can select
the blocks or program sections to be tested in that you bypass the calls or program
sections which are not to be processed, e.g. using a jump function.

The following testing functions are available:

b Test in program status
Monitor program execution directly in the program of the block and control tags

b Monitor PLC tags
Monitor the values in a PLC tag table

b Monitor data tags
Monitor the tag values in a data block

b Test with watch tables
Monitor and control the tag values in watch tables

b Test with force table
Monitor the tags in the force table and set to a fixed value (force)

A general prerequisite for testing the user program is an existing online connec-
tion. When testing with program status, the offline and online versions of the block
must be identical. The CPU is in RUN mode.

You can use the S7-PLCSIM option software to simulate a CPU in the programming
device and thus test your program without additional hardware (see Chapter 18.6
“Simulation with PLCSIM” on page 819).

15.5.1 Defining the call environment

If you wish to test the user program at a specific position in the program status, you
open that position of the program in the working window and switch on the test
function. If the program position to be tested is in a block which is called repeatedly
in the user program, you must define the block call you wish to test.

You set the call environment in the tasks window on the Testing task card in the
Call environment pallet. If the condition applies, the program status that is located
in the specified call of the block is recorded. You can make the following settings
when you click the Change button:

b No trigger applied
Default option; for several block calls, the program status of any call is displayed.

b Instance data block
The condition is fulfilled if the function block is called with the specified instance
data block.

b Call environment
The condition is satisfied if the call of the code block is made from the specified
block or from a specific path.

15.5 Testing the user program

679

15.5.2 Testing with program status

The program status shows the program execution during runtime. You can monitor
the current signal state of the binary tags and the current values of digital tags.

Caution! Functional disturbances may occur as a result of program modifications
when testing the user program during ongoing operation on the process. Make sure
with each testing step that no serious damage to property or injury to persons can
occur!

Please note that the program status requires considerable resources, which means
that, under certain circumstances, the test function will only be carried out to a lim-
ited extent.

Switching the program status on and off

To switch on the program status, open the block to be monitored, move on to the
program position you wish to test, and click on the Monitoring on/off icon in the tool-
bar of the working window.

If an online connection to the CPU has not yet been established, STEP 7 searches for
accessible devices. If necessary, set the LAN adapter used in the programming
device in the dialog window Go online, select the PLC station found, and click on the
Go online button.

To switch off the program status, click again on the Monitoring on/off icon in the
toolbar. You will be asked whether the online connection which was created when
switching on the program status is to be canceled. If you click on the No button, the
program status will be exited but the online connection remains established.

Display format with digital tags

The display format of digital tags is set as standard to Automatic, but you can
change it by selecting the digital tag and then Modify > Display format > … from the
shortcut menu. … > Automatic, … > Decimal, … > Hexadecimal and … > Floating-point
are available.

In the case of LAD and FBD you set the display format for the complete network if
you click with the right mouse button on a free space in the network and then select
Modify > Display format for network > … from the shortcut menu.

Controlling operands in the program status

In the program status you can use the programming device to define the signal
states of binary tags and the values of digital tags. This is usually only meaningful
if these tags cannot be controlled from another position, for example as is the case
with inputs which receive their signal state from the peripheral input channel
during the automatic updating of the process image.

15 Online mode and program test

680

Select the tag and then the command Modify > Modify to 0 from the shortcut menu
if the binary tag is to be set to signal state “0” or Modify > Modify to 1 if the binary
tag is to be set to signal state “1”. In the case of digital tags, select the command
Modify > Modify operand… from the shortcut menu and specify the desired value.

Block calls in the program status (LAD, FBD)

If the tested network contains a block call, the call box is represented by green con-
tinuous lines if the EN input is “1”. The box has blue dashed lines if the EN input
is “0”.

You can move on to the called block and continue the program status there: Select
the block call and then the Open and monitor command from the shortcut menu.
The program status then changes to the called block.

Program status in LAD representation

In the LAD program status, green continuous lines are used to identify contacts,
coils, and the connections between the program elements which have signal
state “1”. Program elements with signal state “0” are identified by blue dashed lines
(Fig. 15.10).

Program elements with unknown status or those which are not processed are iden-
tified by continuous gray lines. Tags shown in black mean that the displayed value
is from the current monitoring cycle, those in gray display a value from a previ-
ously processed cycle.

You can determine at which position the program status is to be executed: Select
the program element or tag and then the Modify > Monitor from here command
from the shortcut menu. The Modify > Monitor selection command from the short-
cut menu means that only the selected program element is monitored.

Fig. 15.10 Program status in LAD representation

15.5 Testing the user program

681

Program status in FBD representation

In the FBD program status, green continuous lines are used to identify the boxes of
the binary program elements and the connections if they have signal state “1” and
blue dashed lines if they have signal state “0” (Fig. 15.11). In addition to the colored
identification, the signal state (TRUE or FALSE) is displayed for the binary inputs.

Program elements with unknown status or those which are not processed are iden-
tified by continuous gray lines. Tags shown in black mean that the displayed value
is from the current monitoring cycle, those in gray display a value from a previ-
ously processed cycle.

You can determine at which position the program status is to be executed: Select
the program element or tag and then the Modify > Monitor from here command
from the shortcut menu. The Modify > Monitor selection command from the short-
cut menu means that only the selected program element is monitored.

Program status in SCL representation

The program status is shown in tabular form next to the statements. The line in the
table contains the name and value of the (first) tag in the statement line. If the state-
ment line contains several tags, a table with all tags is displayed when you position
the cursor in the statement line.

If the line contains one of the IF, WHILE, or REPEAT statements, the result of the con-
dition (TRUE, FALSE) is shown in the line.

You can use the Absolute/symbolic operands icon to select the displayed type of
addressing. If the tag name is shown in gray, the corresponding program is not pro-
cessed.

If no value can be shown for a tag or event, the table contains three question marks
on a yellow background in the Value column. In this case, activate the Create ex-

Fig. 15.11 Program status in FBD representation

15 Online mode and program test

682

panded status information Checkbox under Options > Settings and PLC programming
> SCL, compile the block, and load the block again into the CPU (Fig. 15.12).

Program status in STL representation

The program status is shown in tabular form next to the statements so that the tag
value can be read for each statement line. The RLO column shows the result of logic
operation: “0” has a purple background and “1” has a green background. The Value
column shows the current status or the current value of the operand. The Extra col-
umn shows additional information, if applicable (Fig. 15.13).

You can use the Absolute/symbolic operands icon to select the displayed type of
addressing.

15.5.3 Monitoring of PLC tags

To monitor using the tag table, double-click on the PLC tag table in the project tree.
Click on the Monitor all icon in the toolbar. The PLC tag table changes to online mode
and the Monitor value column is displayed. You can now monitor the tag values.

Fig. 15.12 Program status in SCL representation

Fig. 15.13 Program status in STL representation

15.5 Testing the user program

683

The current time and count values are displayed with the SIMATIC timer functions
(data type TIMER) and the SIMATIC counter functions (data type COUNTER).

Fig. 15.14 shows an online PLC tag table where monitoring is activated. The Retain,
Accessible from HMI, and Visible in HMI columns which are not required are hidden.

15.5.4 Monitoring of data tags

To monitor the data tags, you open the data block, for example with a double-click
in the project tree, and click on the Monitor all icon in the toolbar of the working
window. The Monitor value column with the current values of the data tags is dis-
played. A further click on the Monitor all icon exits monitoring mode.

You can “freeze” the monitor values. With monitoring mode switched on, click on
the Snapshot of the monitored values icon in the toolbar of the working window.
A new column Snapshot with the currently present monitor values is displayed.
Chapter “Uploading actual values” on page 667 describes how the actual values dis-
played in this way can be imported as start values.

Fig. 15.15 shows the monitoring function for a data block in expanded mode.
The combined tags are “opened” so that the individual values can be monitored.
Columns which are not required, for example Default value, Retain, and Visible in
HMI, can be hidden. The Snapshot column is not shown in the figure.

Please note that tag values displayed in monitoring mode can originate from differ-
ent program cycles.

Fig. 15.14 Monitoring with the PLC tag table

15 Online mode and program test

684

15.5.5 Testing with watch tables

The watch tables contain tags whose values can be monitored and controlled
during runtime. The tags can be combined in any manner so that a specially tai-
lored watch table can be created for each test case. You can call the test functions in
the shortcut menu or using the icons in the toolbar of the working window shown
in Fig. 15.17 on page 686.

Tags from data blocks can be used in watch tables as well as tags from the areas:
peripheral inputs/outputs, inputs, outputs, and bit memories. The current time and
count values are displayed with the SIMATIC timer functions (data type TIMER) and
the SIMATIC counter functions (data type COUNTER).

Creating a watch table

Underneath a PLC station in the project tree there is the Watch and force tables
folder with the watch tables. Further subfolders can be created within this folder in
order to structure the watch tables: Select the Watch and force tables folder and then
the Add group command from the shortcut menu. You can assign separate names
to the new subfolders and the watch tables by using the Rename command from the
shortcut menu.

In order to create a new watch table, double-click on the Add new watch table com-
mand. In the empty table, enter the names of the tags line by line and the display
format from a drop-down list. You can enter a short explanatory text for each tag in
the comment column.

Fig. 15.15 Example of monitoring of data tags

15.5 Testing the user program

685

The tags entered with names must previously have been defined in the PLC tag table
or in a data block. You can also enter the memory location (absolute address) in the
Address column.

Fig. 15.16 shows monitoring in expanded mode. In the Monitor with trigger column,
the possible settings are “opened”.

Monitoring and modifying with triggers

The watch tables permit specification of the monitoring and control time. The fol-
lowing can be selected:

b Permanent
In each program cycle, the inputs are monitored and controlled at the start of the
cycle prior to processing of the main program and the outputs at the end of the
cycle following processing of the main program.

b Permanently, at start of scan cycle
In each program cycle, the tags are monitored and controlled prior to processing
of the main program (meaningful for inputs or tags which control functions).

b Once only, at start of scan cycle
The tags are monitored and controlled once prior to processing of the main pro-
gram (meaningful for inputs or tags which control functions).

b Permanently, at end of scan cycle
In each program cycle, the tags are monitored and controlled following process-
ing of the main program (meaningful for outputs or tags which are controlled by
functions).

Fig. 15.16 Example of monitoring of tags in expanded mode

15 Online mode and program test

686

b Once only, at end of scan cycle
The tags are monitored and controlled once following processing of the main
program (meaningful for outputs or tags which are controlled by functions).

b Permanently, at transition to STOP
The tags are monitored and controlled permanently at the transition to the STOP
state.

b Once only, at transition to STOP
The tags are monitored and controlled once at the transition to the STOP state.

It is also possible to control tags using the Online > Modify > Modify now command
in the main menu or the Modify > Modify now command in the shortcut menu. The
selected tags are then updated as rapidly as possible. Tags can even be controlled
using the listed commands if the CPU is in the STOP state.

Monitoring of tags with watch table

You can call the test functions of a watch table in the shortcut menu or using the
icons in the toolbar of the working window shown in Fig. 15.17.

Double-click to open the watch table and select Monitor all or Monitor now. An online
connection to the CPU will be established.

If neither the control mode nor the expanded mode are activated, the Name,
Address, Display format, Monitor value, and Comment columns are displayed.
The Monitor value column shows the tag value in the display format which has been
set in the Display format column. If Monitor now was selected, Monitor value shows
a snapshot; if Monitor all was selected, the values in the Monitor value column are
updated continuously.

The time of monitoring corresponds to the trigger mode Permanent (see “Monitor-
ing and modifying with triggers” on page 685). You can stop the current monitor-
ing by clicking again on the Monitor all icon.

Please note that peripheral outputs can never be monitored. Monitoring the
peripheral inputs is very time-intensive and can lead to the cycle time being
exceeded under certain circumstances.

The icons from left to right:

Name in text Tooltip text

Control mode
Expanded mode
Modify now
Modify with trigger
–
Monitor all
Monitor now

Show/hide all modify columns
Show/hide advanced setting columns
Modify all selected values once and now
All active values will be modified by “modify with trigger”
Disables the command output disable (OD) (on/off)
Monitor all
Monitor all values once and now

Fig. 15.17 Icons in the toolbar of the watch table

15.5 Testing the user program

687

Monitor with trigger

In expanded mode, you can select the trigger time at which the tag values are read
out of the CPU. If you switch on the Expanded mode function, the Monitor with
trigger column is displayed. You can then define the read time for each tag from a
drop-down list.

Tag values which are read out once only or which are not read out (yet) are shown
in the Monitor value column with a gray background; permanently read values have
an orange background.

Controlling of tags with watch tables

Double-click to open the watch table and switch the Control mode function on.
In addition to the Name, Address, Display format, Monitor value, and Comment col-
umns, the Modify value and Tag selection (represented by a lightning icon) columns
are now displayed.

In the Modify value column, enter the value to which the tag is to be set; in the
Tag selection column, activate the checkbox if the associated tag is to be modified.
A yellow triangle with exclamation mark indicates that the selected tag has not yet
been modified.

It is recommendable to switch on permanent monitoring prior to the modification.
An online connection to the CPU is then already established and the success of the
modification can be monitored.

Caution! Make sure that no dangerous states can occur when modifying tags!

To modify the activated tags, click on Modify now. The tags activated in the Tag
selection column are immediately set (as fast as possible) to the control value. If a
tag is immediately overwritten after the modification by a value from the
program – for example if a switched-on input has been controlled to “0” and the
process image updating overwrites the control value again – the yellow triangle
appears again in the Tag selection column.

In Fig. 15.18, the tags “Belt motor_1”, “Quantity_parts”, “Monitoring” (the time value
of the SIMATIC timer function) and “Belt_1”.Quantity have been selected for modifi-
cation.

Alternatively, modification can be triggered by means of the Online > Modify >
Modify now command from the main menu or the Modify > Modify now command
from the shortcut menu. The Modify > Modify to 0 and Modify > Modify to 1 com-
mands from the shortcut menu immediately control the tag selected in the watch
table.

Please note that peripheral inputs can never be modified. Controlling the periph-
eral outputs is very time-intensive and can lead to the cycle time being exceeded
under certain circumstances.

Only the tags visible in the table are modified. Multiple modification (multiple
input) of a tag in the watch table is not permissible.

15 Online mode and program test

688

Modify with trigger

In expanded mode, you can select the trigger time at which the tag values are mod-
ified in the CPU. If you switch on the Expanded mode function, the Monitor with
trigger and Modify with trigger columns are displayed. You can then define the con-
trol time for each tag from a drop-down list.

If you click Modify with trigger, all activated tags are updated (following confirma-
tion) with the control value in accordance with the trigger conditions. Clicking on
the icon again exits permanent control.

Alternatively, modification can be triggered or exited by means of the Online >
Modify > Modify with trigger command from the main menu or the Modify > Modify
with trigger command from the shortcut menu.

Modify now

You can use the Modify now function to assign values once to tags independent of
the monitoring and control modes. This job is executed as rapidly as possible.
With the CPU at STOP, this command can be used to assign default values to tags.

Enter the modify values in the watch table and activate the checkbox after the mod-
ify value in the column in which the tag to be controlled is present. A yellow triangle
indicates that this tag has been selected for modification but has not yet been con-
trolled.

To carry out the modification, select the Online > Modify > Modify now command in
the main menu or shortcut menu.

Fig. 15.18 Example of controlling tags

15.5 Testing the user program

689

15.5.6 Testing with the force table

Tags can be preassigned fixed values. This action is referred to as “forcing”. A
CPU 1500 can force tags from the peripheral inputs and peripheral outputs area.
The tags to be forced are entered in the force table. The force table is present once
for a CPU and cannot be copied or renamed.

Please note: Forcing is sent to the CPU by means of a force job. The force job remains
active even if online mode is terminated and the online connection to the program-
ming device canceled! The force job also remains active after switching the CPU off and
on! Forcing can only be exited using the Force > Stop forcing command; this com-
mand deletes the force job in the CPU.

Filling a force table

Open the force table by double-clicking in the project tree in the Watch and force
tables folder.

In the empty table, enter the names of the tags line by line and the display format
from a drop-down list. The display format may differ from the data type of the tag.
You can enter a short explanatory text for each tag in the comment column.

The tags entered with names must previously have been defined in a PLC tag table
or in a data block. The tags from the PLC table and from data blocks with the
Optimized block access attribute deactivated can also be entered with their memory
address (absolute address) in the Address column. Inputs and outputs can only be
entered with the I/O address (I:P or Q:P).

Monitoring tags in the force table

The entered tags can be monitored. The Expanded mode icon in the toolbar of the
working window opens the Monitor with trigger column. You can set the monitoring
conditions here. You start monitoring by clicking on the Monitor all symbol (refer
to Chapter 15.5.5 “Testing with watch tables” on page 684 for details).

Forcing with the force table

You can call the test functions when forcing from the shortcut menu or using the
icons in the toolbar of the working window shown in Fig. 15.19.

The icons from left to right:

Name in text Tooltip text

Expanded mode
Start forcing
Stop forcing
Monitor all
Monitor now

Show/hide advanced setting columns
Starts or replaces forcing of the visible addresses in the Force table
Stop forcing of the selected addresses
Monitor all
Monitor all values once and now

Fig. 15.19 Icons in the toolbar of the force table

15 Online mode and program test

690

To carry out forcing, enter a value in the Force value column and activate the check-
box in the Force column (tag selection depicted by a red “F”). A yellow triangle with
exclamation mark indicates that the selected tag has not yet been forced. Multiple
forcing of an address is not possible if, for example, an I/O byte is forced and you
want to force an individual bit of this byte again.

It is recommendable to switch on monitoring mode prior to forcing. An online con-
nection to the CPU is then already established and the success of forcing can be
monitored.

Caution: Make sure that no dangerous states can occur when forcing tags!

The Start forcing icon sends a force job to the CPU which contains the tags selected
for forcing. Forcing is effective immediately (Fig. 15.20). A forced tag is marked
with a red “F” in the first column of the force table. A CPU indicates an active force
job with a continuous yellow MAINT LED.

To exit forcing for individual tags, deactivate the checkbox in the tag selection and
click on the Start forcing icon again. A new force job is sent to the CPU which termi-
nates forcing for the tags which are no longer selected.

You exit forcing for all tags using the Stop forcing icon. A new force job is then sent
to the CPU, which terminates forcing for all forced tags.

Note that termination of forcing leave the tags in their last state! Only the force job is
deleted. For example, an output of a digital module remains in signal state “1” after
termination of forcing if it is not controlled otherwise by the program.

As an alternative to forcing using the icons, you can select one or more tags in the
force table and then the Force > Force to 0, Force > Force to 1, Force > Force all and
Force > Stop forcing commands from the shortcut menu or the commands from the
main menu under menu item Online > Force > ….

The MAINT LED on the CPU turns off when no more force jobs are present in
the CPU.

Fig. 15.20 Example of forcing of peripheral inputs and outputs

15.6 Measured value recording with the trace function

691

15.6 Measured value recording with the trace function

15.6.1 Introduction

Using the trace functions, a CPU 1500 records tag values in chronological order.
The recordings are read out by the programming device and displayed in a curve
graph if necessary. Because the CPU makes the recordings directly, the trace func-
tion is suitable for analyzing highly dynamic processes.

A CPU 1500 can handle up to 4 trace jobs simultaneously, each with up to 16 tags.
The recordings are stored in the system memory of the CPU.

The trace configuration is retained when the power is off. The recording begins
again when the system is started up. Previously recorded data is discarded.

Overview of the activities

You create a trace configuration using the trace editor. It contains the trace job with
the tags used, the trigger condition, the time point at which recording is to begin,
and information on the duration of the measurement.

You load the trace configuration into the CPU and activate the recording. If the trig-
ger condition occurs, the CPU begins recording. You can monitor the recorded val-
ues with a programming device.

To store the recording, load it into the programming device. You can graphically
display the data series as a curve graph using the logic analyzer function.

The measurements saved in the project (trace configuration + data series) are saved
when the project is saved. You can also export and import the measurements.

15.6.2 Creating the trace configuration

The prerequisite is a project with a station, which supports the trace function. In the
project view, double-click on the Traces editor under the station in the project tree.

To create a new trace configuration, click in the working window in the Trace
handling table on <Add new> and enter the name of the trace job. In the inspector
window, define the tags whose values are to be recorded under Configuration > Sig-
nals. The tags have an elementary data type and can be absolutely or symbolically
addressed; the tags with “long” data types can only be symbolically addressed.
Define a color for the curve graph for each tag.

Now define the recording conditions. The recording is tied to an execution level (an
organization block). The organization blocks of the main program, of a time-of-day
interrupt, of a time-delay interrupt, of a cyclic interrupt, and of the isochronous
mode interrupt are available. The organization block must be present in the pro-
gram and be processed. The values are recorded at the end of the respective orga-
nization block.

Under Configuration > Recording conditions > Sampling, enter the organization
block (selected from a drop-down list) in the Sample with field. Specify the grid in

15 Online mode and program test

692

which the recording is to take place (how many cycles) and define the end of the
recording (number of samples or maximum recording duration).

You define the beginning of recording under Configuration > Recording conditions >
Trigger. If you select the entry Record immediately under Trigger mode, recording
begins after downloading the configuration into the CPU. If you select Trigger on
tag, you must define the tag. It can be located in the operand areas Inputs, Outputs,
Bit memories, or Data. The trigger event depends on the data type of the tag.
They can select:

b For the data type BOOL: TRUE, FALSE, rising or falling edge

b For a bit-serial or fixed-point data type: Equal or not equal to a value or a bit pat-
tern

b For a fixed-point or floating-point data type: Value within a range or outside of a
range, increasing or decreasing value (“rising” or “falling” signal)

Fig. 15.21 shows an example of the configuration of the trigger conditions for a tag
with a fixed-point data type. With the pre-trigger you specify how many measuring
points before the actual trigger signal the recorded values are to be saved. You save
the trace configuration together with the project.

15.6.3 Loading a trace and recording

You use the trace handling function to transfer the trace configuration to the sta-
tion and activate recording. The trace handling function is present in the bottom
part of the working window. Fig. 15.22 shows the user interface of trace handling.
The configured traces which are already set in the project are listed in the Config-
ured traces table on the left. In the center table, Installed traces, you have the config-
ured traces which have been loaded into the station. The table on the right,

Fig. 15.21 Example of trigger condition in a trace configuration

15.6 Measured value recording with the trace function

693

Recorded traces, shows the combination of a configured trace and the associated
recording.

The prerequisite for transferring the configured traces is the online mode. Select
the trace configuration in the left table and click the icon Transfer trace configura-
tion to device. You have the capability of uploading trace configurations that are in
the station back into the project.

If you activate the trace in the Active column in the Installed traces table, recording
will begin as soon as the trigger condition is fulfilled. In the column with the eye
icon, you can display the recording data so that it is displayed in the curve chart or
in the signal display.

You delete an installed trace by selecting the trace in the Installed traces table and
choosing the Delete command from the shortcut menu.

15.6.4 Saving and evaluating recorded traces

Using the Add to measurements icon, save the trace configuration selected in the
Installed traces table and the associated recording data in the project. The Recorded
traces table shows the trace configurations present in the project with the associ-
ated recording data. You save the recorded traces together with the project.

You export a recorded trace when you select the recorded trace in the Recorded
traces table and select the Export measurement command from the shortcut menu.
You are prompted to name the memory location (the file) in the file system. A

Fig. 15.22 Trace handling

15 Online mode and program test

694

recorded trace is saved with the file extension *.ttrc. You can also import a recorded
trace back into the trace handling system.

Settings in the signal display

The signal display provides setting options of the signals used in the trace. Click on
the eye icon in order to show or hide the associated measured value curve in the
curve graph. You can select the color of each measured value curve from a drop-
down list. The minimum and maximum value for the range of the Y scale can be
specified for each measured value curve.

Settings in the curve chart

The curve graph graphically displays the recorded values of a trace. You can adapt
the display of the measured values using the icons in the toolbar of the working
window (Fig. 15.23).

Using the Zoom selection, you can select any area by pressing and holding the
mouse button. It will then be enlarged and displayed in the working area. With Ver-
tical zoom selection and Horizontal zoom selection, you can scale the height and
width of the curve graph. Zoom in and Zoom out enlarge or reduce the display.
Display all scales the display in such a way that the entire recording range and all of
the values are displayed. With Scale automatically you display all of the measured
values for the selected recording range.

Fig. 15.23 Display of the recorded values

15.6 Measured value recording with the trace function

695

You can arrange the measured value series in lanes so that they do not overlap and
you can display all of the measured points in the curve. The recording time or the
measuring points can be selected for the units of the horizontal time axis.

The Display vertical measurement cursors icon displays two vertical guide lines in
the curve graph, which can be moved using the mouse. The position of the guide
lines (in units of the corresponding measured values) and their interval are dis-
played in the signal display. With Display horizontal measurement cursors, two hor-
izontal guide lines are displayed, which can be moved using the mouse.

You can display a legend of the measurement series and define whether the display
is to be displayed on the left or right upper edge of the curve graph. You can switch
between various background colors for the curve graph.

You can copy the curve graph into the Windows clipboard and save it as a bitmap or
print it.

16 Distributed I/O

696

16 Distributed I/O

16.1 Introduction, overview

Distributed I/O is the term used for input/output modules connected to the central
PLC station over a bus system. The bus systems PROFINET IO and PROFIBUS DP are
used in combination with an S7-1500 station.

The distributed I/O is handled like the central I/O. The distributed inputs/outputs
are in the same address volume as the central inputs/outputs, and therefore the
addresses of the distributed I/O must not overlap with those of the central I/O.
The distributed input/output modules can be addressed via the operand areas
Inputs (I), Peripheral inputs (I:P), Outputs (Q), and Peripheral outputs (Q:P).

Transfer of the user data between the distributed modules and the central CPU is
carried out “automatically” and you need not take this into account when address-
ing.

Data transfer to and from the distributed I/O is controlled from a central point: this
is the IO controller for PROFINET IO and the DP master for PROFIBUS DP. The dis-
tributed stations – these are the IO devices with PROFINET IO and the DP slaves with
PROFIBUS DP – are the passive partners in the data transfer.

S7 stations and ET200 stations with a CPU can also be used as distributed I/O sta-
tions and these are then “intelligent” IO devices (I-devices) or DP slaves (I-slaves).
While these stations are controlling their own modules (considered from their
viewpoint as central modules), they also satisfy – when working at the same time as
IO devices or DP slaves – the data requirements of the respective IO controller or
DP master.

The distributed I/O is configured using the hardware configuration. PROFINET IO
and PROFIBUS DP are represented as subnet. The connections required for data
transfer are then present “automatically”.

Network transitions between the subnets can be produced using link and coupler
modules which allow data exchange between the stations connected to the various
networks.

The programming device is able to handle programming and servicing functions
over PROFINET IO and PROFIBUS DP. It can reach all (“intelligent”) stations con-
nected to the subnets if the subnet gateways are present in stations with routing
capability.

16.2 ET 200 distributed I/O system

697

16.2 ET 200 distributed I/O system

ET 200 is the device family for the distributed I/Os on PROFINET IO and
PROFIBUS DP. Depending on their use locally on the machine or in the process, the
mechanical properties can be highly different, especially the degrees of protection:
IP 20 for installation in a control cabinet and IP 65/67 for mounting directly on the
machine.

The range of ET 200 stations extends from a simple compact station practically cor-
responding to an I/O module, to a station with modular design and several mod-
ules, up to the “intelligent” station which can execute a user program with its own
CPU.

16.2.1 ET 200MP

ET 200MP is a modu-
lar, distributed I/O
system with degree
of protection IP 20
for connection to
PROFINET IO. Up to
30 I/O modules from
the S7-1500 device
range can be used
on a mounting rail in a station. The internal bus signals are passed on from module
to module via U-type connectors.

An ET 200MP station is comprised of an interface module and up to 30 modules,
which are arranged to the right of the interface module. These can be input/output
modules and technology or communication modules and, depending on the power
balance, one or two power supply modules. Optionally, a power supply module can
be inserted to the left of the interface module. The layout of an ET 200MP station
corresponds to the layout of an S7-1500 station, as described in Chapter 2.1
“S7-1500 station components” on page 47.

With the interface module IM 155-5 PN ST, an ET 200MP station is operated as an
IO device. The interface module has a PROFINET interface with two ports, which are
connected to an integrated switch so that a linear topology can be set up without
additional devices. The data transfer rate is 100 Mbit/s. The operating state of the
interface module is indicated using LEDs (RUN, ERROR, MAINT).

In addition to the “normal” transfer of process data, isochronous mode with a min-
imum cycle of 250 µs and a maximum cycle of 4 ms is also possible. Other functions
include device replacement without a programming device, media redundancy,
IRT communication (isochronous real time), a firmware update and resetting to
factory settings via PROFINET IO.

A prioritized startup in 500 ms is possible if the following prerequisites are met:
A maximum of 12 modules, which all support the prioritized startup in 500 ms, and

Fig. 16.1 ET 200MP

698

no power supply module may be plugged-in. The prioritized startup is not available
when using IRT communication and media redundancy.

16.2.2 ET 200M

ET 200M is a modular distributed I/O
system with degree of protection IP 20
and is particularly suitable for individ-
ual and complex automation tasks.
Depending on the interface module,
up to 8 or 12 modules from the S7-300
range can be used (the High-Feature
version also allows the use of function
and communication modules).

The internal bus signals are passed on
from module to module over a bus connector. If active bus modules are used onto
which the modules are snapped, the latter can be replaced during ongoing opera-
tion.

The maximum data transfer rate on the PROFIBUS DP is 12 Mbit/s and 100 Mbit/s on
the PROFINET IO. With the integral 2-port switch, a linear topology can be imple-
mented without additional devices.

The ET 200M is also available in a hardened SIPLUS version and can be used with
S7-300 modules with the same properties in environments with increased
demands.

ET 200M can also be used in fault-tolerant systems for redundant operation. The
fail-safe S7-300 modules can be used in the ET 200M – also mixed with standard
modules. Together with Ex digital and analog modules, intrinsically-safe sensors
and actuators can be connected from zones 1 and 2 of hazardous plants.

16.2.3 ET 200SP

ET 200SP is a modular, distributed I/O system
with degree of protection IP 20 for connection
to PROFINET IO. Up to 32 or 64 I/O modules
can be used in one station. The internal bus
signals are passed on from module to module
over bus connectors (BaseUnits). It is possible
to operate with equipment gaps and to replace
I/Os during operation (“single hot swap”).

An ET 200SP station is comprised of an inter-
face module with a bus adapter and I/O mod-
ules in a quantity dependent upon the power
needs. The length of the backplane bus must
not exceed 1 m. The I/O modules can be con-
nected to potential groups with individual rooting of the power supply.

Fig. 16.2 ET 200M with IM 153-4 PN

Fig. 16.3 ET 200SP

16.2 ET 200 distributed I/O system

699

The IM 155-6 PN ST interface module control an ET 200SP station as IO device with
up to 32 I/O modules. The IM 155-6 PN HF interface module control an ET 200SP sta-
tion as IO device with up to 64 I/O modules. The interface modules have a PROFINET
interface with two ports, which are connected to an integrated switch so that a lin-
ear topology can be set up without additional devices. The data transfer rate for
PROFINET IO is 10/100 Mbit/s. The operating state of the interface modules is indi-
cated using LEDs (RUN, ERROR, MAINT, PWR).

In addition to the “normal” transfer of the process data via PROFINET IO, a device
replacement without a programming device, prioritized startup, shared device,
media redundancy, IRT communication (isochronous real time) with send clocks of
250 µs to 4 ms, a firmware update and resetting to the factory settings via
PROFINET IO are also possible.

16.2.4 ET 200S

ET 200S is a versatile I/O system
with degree of protection IP 20
whose bit modular design allows
exact adaptation to the automation
task. Digital input/output modules,
analog input/output modules, tech-
nology modules, motor starters,
and frequency converters are avail-
able. Up to 63 I/O modules can be
connected to the ET 200S interface
module. The I/O modules can be
replaced during ongoing operation;
they are snapped onto terminal
modules which contain the wiring.
ET 200S is available with a PROFIBUS DP interface and a maximum data transfer
rate of 12 Mbit/s or with PROFINET IO interface and a maximum data transfer rate
of 100 Mbit/s.

Together with the IM 151-7 CPU interface module, ET 200S can be used as a
mini PLC. In association with the DP master module, the IM 151-7 CPU also has
DP master functionality. The PLC functionality corresponds to that of a CPU S7-314.
ET 200S with the IM 151-8 PN/DP CPU interface module can additionally be operated
as an IO controller on PROFINET IO.

ET 200S is available with integral safety technology, where standard modules and
fail-safe modules can be used together. A fail-safe mini PLC can be implemented
using the IM 151-7 F-CPU interface module and the S7 Distributed Safety option
package.

The ET 200S is also available as a PROFIBUS DP slave with digital inputs and outputs
in a hardened SIPLUS version.

ET 200S COMPACT is a range of interface modules with onboard I/O, either with
32 digital inputs or with 16 digital inputs and outputs. Up to 12 ET 200S I/O modules

Fig. 16.4 ET 200S with IM 151 CPU

16 Distributed I/O

700

(except F modules) can be connected to these interface modules so that a station
can have up to 128 channels (mixed digital and analog).

ET 200S can also be used in fault-tolerant systems downstream of a Y-link (bus cou-
pler for transition from a redundant to a single-channel PROFIBUS DP).

16.2.5 ET 200pro

ET 200pro is a modular I/O system
with degree of protection IP 65/67 for
use without a control cabinet. It con-
sists of a module support and connec-
tion modules which accommodate
the interface module for the bus con-
nection and the electronic modules.
Power modules for the load power
supply combine the electronic modules into potential groups.

The electronic modules are digital inputs/outputs and analog inputs/outputs. They
can be replaced during ongoing operation. A frequency converter and motor starter
(direct-on-line and reversing starter) as well as a pneumatic interface module with
16 outputs for the FESTO CPV 10 valve terminal are also available in this design.

Interface modules are available for ET 200pro with a PROFIBUS DP interface (maxi-
mum data transfer rate 12 Mbit/s) or a PROFINET IO interface (data transfer rate
100 Mbit/s) with the facility for wireless connection to a PROFINET IO controller.
The PROFINET interface module has a 2-port switch for setting up a linear topology
without additional devices.

Together with the IM 154-8 PN/DP CPU interface module, ET 200pro can be used as
a mini PLC on site. Operation as a DP master or DP slave is possible on the PROFIBUS
DP and as an IO controller on the PROFINET IO. The PLC functionality of the inter-
face module corresponds to that of a CPU 315-2 PN/DP.

16.2.6 ET 200eco and ET200eco PN

ET 200eco with degree of protection IP 65/67 is
the low-cost solution for processing digital and
analog signals at machine level. ET 200eco is
operated on PROFIBUS DP and ET 200eco PN
on PROFINET IO.

ET 200eco

ET 200eco comprises a basic module and a con-
nection block of different designs. Modules are
available with 8 or 16 digital inputs, 8 or 16
digital outputs, 8 digital inputs and outputs
each, and in fail-safe versions with 4 or 8 digi-
tal inputs.

Fig. 16.5 ET 200pro with digital modules

Fig. 16.6
ET 200eco PN (left) and ET 200eco
with ECOFAST connection

16.3 PROFINET IO

701

The maximum data transfer rate on PROFIBUS is 12 Mbit/s. During commissioning
and servicing, the modules can be disconnected interruption-free from the
PROFIBUS and reconnected.

ET200eco PN

ET 200eco PN is the compact block I/O for processing digital, analog and IO-Link sig-
nals for connection to the PROFINET IO bus system. The design of the digital input
and output modules is as with the PROFIBUS version of ET 200eco. Additionally
available are an analog input module with 8 channels (4 × U/I, 4 × TC/RTD), an ana-
log output module with 4 channels (U/I), and an IO-Link master with 4 IO-Link sig-
nals, 8 digital inputs, and 4 digital outputs.

ET 200eco PN is equipped with a 2-port switch so that a linear topology can be set
up without additional devices. The data transfer rate is 100 Mbit/s.

16.3 PROFINET IO

16.3.1 PROFINET IO components

PROFINET IO offers a standardized interface in accordance with IEC 61158 for
industrial automation over Industrial Ethernet. An IO controller in the central pro-
grammable controller controls the data exchange with the distributed stations
which are referred to as IO devices (Fig. 16.7).

Fig. 16.7 Components of a PROFINET IO system

PROFINET IO

PROFINET IO

Hardware components with PROFINET IO

PROFIBUS DP
AS-Interface

IE/PB
link

Transmission of process signals

Connection between IO subnets Connection to other subnets

S7 station
with IO controller,
e.g. CPU 1516-3 PN/DP

ET 200 station
as modular
IO device,
e.g. ET 200SP

ET 200 station as
compact
IO device,
e.g. ET 200eco PN

S7 station
as intelligent
IO device,
e.g. CPU 1511-1 PN

IE/AS-i
link

PN/PN
coupler

S

ESC OK

S

ESC OK

16 Distributed I/O

702

Industrial Ethernet can be designed physically as an electrical, optical, or wireless
network. FastConnect Twisted Pairs (FC TP) with RJ45 connections, or Industrial
Twisted Pairs (ITP) with sub-D connections are available for implementing the elec-
trical cabling.

Fiber-optic (FO) cabling can consist of glass fiber, PCF, or POF. It offers galvanic iso-
lation, is impervious to electromagnetic influences, and is suitable for long dis-
tances. Wireless transmission uses the frequencies 2.4 GHz and 5 GHz with data
transfer rates up to 54 Mbit/s (depending on the national approvals).

IO controller

The IO controller is the active participant on the PROFINET. It exchanges data cycli-
cally with “its” IO devices. Every CPU 1500 has an integrated IO controller.

IO devices

IO devices are the passive stations on the PROFINET IO. These can be stations with
process inputs and outputs, routers, or link modules. Examples of IO devices from
the ET 200 distributed I/O system are the ET 200MP and ET 200SP.

More precisely, the PROFINET interface modules are the IO devices that communi-
cate with the IO controller. For the sake of simplicity, the entire station is desig-
nated as an IO device in the following. Whenever this difference plays a role, it will
be explicitly referred to.

IO devices with user data are distinguished as follows:

b Compact IO devices which are addressed like a single module

b Modular IO devices which can contain several modules or submodules which are
addressed individually

b Intelligent IO devices with a configured transfer area as user data interface to the
IO controller

Intelligent IO devices contain a CPU with a user program which controls the subor-
dinate (own) modules. The user data interface to the IO controller is a transfer area
which can be divided into different address areas. Examples of intelligent
IO devices are S7 stations with CPUs with integral IO device functionality, as well as
the ET 200S distributed I/O station with the IM 151-8 PN/DP CPU interface and the
ET 200pro distributed I/O station with the IM 154-8 PN/DP CPU interface.

An intelligent IO device can simultaneously be the IO controller for a subordinate
PROFINET IO system.

Coupling modules

Bus couplers and link modules connect subnets and permit data exchange between
stations connected on different subnets. The following are available for the
Ethernet subnet:

16.3 PROFINET IO

703

b PN/PN coupler for connecting two Ethernet subnets

b IE/PB Link PN IO for connecting an Ethernet subnet to a PROFIBUS subnet

b IE/AS-i Link for connecting an Ethernet subnet to an AS-i subnet

The coupling modules are described in more detail in Chapter 16.3.4 “Coupling
modules for PROFINET IO” on page 708.

PROFINET IO system

The IO controller and all IO devices controlled by it constitute a PROFINET IO system
(Fig. 16.8). An IO device is supplied with data by its IO controller within an update
time which is calculated by the configuration editor in specific intervals and in turn
sends its data to the IO controller.

Several PROFINET IO systems can be operated in a PN/IE subnet.

Fig. 16.8 Schematic representation of a PROFINET IO system

Compact
IO device

IO controller

Modular IO device

Intelligent
IO device

User data interface
in the intelligent IO device

PROFINET IO

PROFINET IO system

PROFINET IO system

A PROFINET IO system consists of
an IO controller and one or more IO
devices. All modules, whether
central or distributed, are in the
same address volume.

In the case of an intelligent IO device, which has its own modules
(arranged centrally from its own point of view), transfer areas
form the user data interface to the PROFINET IO system. The
transfer areas are distributed modules for the IO controller, and
central modules for the intelligent IO device.

S

ESC OK

S

ESC OK

16 Distributed I/O

704

16.3.2 Addresses with PROFINET IO

Station addresses on the Ethernet subnet

The stations on an Ethernet subnet which use the TCP/IP protocol are addressed via
the IP address. This consists – in address format IPv4 – of four decimal numbers,
each in the range from 0 to 255, and is represented by four bytes separated by dots,
for example 192.168.1.3. This address consists of the subnet number and the actual
station address, which one can extract with the subnet mask from the IP address.
Example: If the subnet mask has the value 255.255.255.0, the subnet address for
the above-mentioned IP address is 192.168.1 and the station address 3. Each station
on the PROFINET is additionally assigned a device name and device number. Fur-
ther information on the station addresses in an Ethernet subnet can be found in
Chapter 3.4.6 “Configuring a PROFINET subnet” on page 80.

Geographic addresses with PROFINET IO

The geographic address identifies the slot of a module. With an IO device, the geo-
graphic address comprises the ID of the PROFINET IO system, the device number,
the number of the slot, and possibly also a submodule number.

The PROFINET IO system ID is assigned by the configuration editor. It ranges from
100 to 115 and can be changed – not to be confused with the hardware identifier of
the PROFINET I/O system in the system constants.

Hardware identifier

The configuration editor assigns an ID to each addressable hardware object, the
hardware identifier or HW ID for short. The hardware identifier is used in the user
program to address, for example, modules or interfaces if diagnostic information
is to be read. All hardware identifiers of the automation station are listed in the
default tag table in the System constants tab. You can also find the hardware identi-
fiers in the properties of the hardware object. Further details can be found in
Chapter 4.4 “Addressing of hardware objects” on page 107.

Logical addresses with PROFINET IO

You use the logical address to address the user data, in other words the signal states
of the digital input/output channels or the values at the analog input/output chan-
nels. Each byte of user data is unequivocally defined by the logical address. The log-
ical address corresponds to the absolute address. A symbol (name) can be assigned
to it so that it is easier to read (symbolic addressing). Further details can be found
in Chapter 4.2 “Addressing of operands and tags” on page 94.

The user data of the IO devices shares the range of logical addresses with the user
data of the central modules in the PLC station with the IO controller. This means
that the addresses of the centrally arranged modules must not overlap with the
user data addresses of the compact and modular IO devices and the addresses of the
transfer areas of I-devices.

16.3 PROFINET IO

705

Consistent user data transfer to and from IO devices

Data consistency means that a block of user data is handled together.

With direct access, for example when loading and transferring, you can consistently
transfer an area of one byte, one word, or one doubleword. With a user data area of
three bytes or more than four bytes, you use the system blocks DPRD_DAT (read)
and DPWR_DAT (write) for consistent data transfer. These and other system blocks
for the consistent transfer of data between the CPU and an IO device are described
in Chapter 16.5.1 “Read and write user data” on page 730.

The handling of consistent user data areas in the user memory is described in
Chapter 4.1.2 “Operand areas: inputs and outputs” in section “Consistent user data
transfer” on page 89.

User data interface with intelligent IO devices

With the compact and modular IO devices, the addresses of the inputs and outputs
are together with the addresses of the central modules in the address volume of the
IO controller. With intelligent IO devices (abbreviated to: I-devices), the input/out-
put modules of the IO device are assigned to the device CPU. Every intelligent
IO device therefore has a user data interface as common memory area with the
IO controller whose size depends on the device CPU used.

The user data interface can be divided into several areas of different length.
The individual areas then respond like modules whose lowest address is the mod-
ule start address. From the viewpoint of the IO controller, the intelligent IO device
then appears like a compact or modular IO device depending on the division.

A transfer area which is represented as an input module from the viewpoint of the
IO controller is an output module from the viewpoint of the IO device and vice
versa. The logical addresses on the controller side are in the address volume of the
IO controller and the logical addresses on the device side in the address volume of
the IO device. The addresses on the controller side can be different from those on
the device side.

16.3.3 Configuring PROFINET IO

General procedure

A prerequisite for configuration of the distributed I/O with PROFINET IO is a created
project with a PLC station. To select the stations involved, start the hardware con-
figuration in the Network view.

b The starting point of the configuration is the IO controller integrated in a
CPU 1500. IO controller mode is preset.

b Assign a PROFINET IO system to the PN interface of the IO controller. The Ether-
net subnet required is created automatically in the process.

b Select an IO device from the hardware catalog and drag it with the mouse into
the working window.

16 Distributed I/O

706

b Link the IO device to the PROFINET IO system by dragging the PN interface of the
IO device with the mouse to the PN interface of the IO controller.

b Repeat the last two steps for every further IO device.

b To parameterize a PN interface, select it in the working window and set the
desired properties in the inspector window.

b To configure an intelligent IO device, drag it as a PLC station into the working
window, set IO device mode in the properties of the PN interface, assign the
IO controller, and configure the transfer areas of the user data interface.

The result is networking of the IO controller with the assigned IO devices to a
PROFINET IO system (Fig. 16.9).

You then make the parameter settings for the stations and the fitting with
input/output modules in the Device view.

Configuring the IO controller in the Network view

Prerequisite: You have created a project and a PLC station, for example a CPU 1500
with PN interface. Start the device configuration and select the Network view tab in
the working window.

Select the PN interface shown in green in the graphic of the CPU and then the
Ethernet addresses group in the Properties tab in the inspector window. Activate the
Set IP address in the project option and change the preset IP address and subnet
mask if necessary. Information on the IP address can be found in Chapter 3.4.6

Fig. 16.9 Example of representation of a PROFINET IO system

16.3 PROFINET IO

707

“Configuring a PROFINET subnet” on page 80. Activate the Set IP address using a
different method option if you wish, for example, to set the IP address per user pro-
gram.

Set the mode: Select the Operating mode group in the interface properties and acti-
vate the IO controller checkbox if this is not already preset.

Connect the PN interface to a PROFINET subnet. You can do this in the properties of
the PN interface: Select an existing subnet under Ethernet addresses in the Subnet
drop-down list or create a new subnet using the Add new subnet button. You can
also click on the PN interface with the right mouse button and select the Add subnet
command from the shortcut menu. A green subnet is shown with the name PN/IE_x.
You can change the name in the subnet properties.

Configure a PROFINET IO system. To do this, click with the right mouse button on
the PN interface and select the Add IO system command from the shortcut menu. A
green/white marking is shown with the name <Station name>.PROFINET IO system
(xxx). xxx is the number of the IO system. You can change the name and number in
the properties of the PROFINET IO system.

Adding an IO device to the IO system

With the left mouse button pressed, drag the desired IO device from the hardware
catalog to the IO system on the working area. Fig. 16.9 shows two stations of the dis-
tributed I/O: An ET200eco station from the object tree Distributed I/O > ET 200eco PN
> PROFINET > DI/DO > 8DI/8DO x 24VDC > … and an ET 200SP station from the object
tree Distributed I/O > ET 200SP > Interface modules > PROFINET > IM 155-6 PN ST > ...

The interfaces of the IO devices are connected in the graphic with the green/white
marking and are thus part of the PROFINET IO system.

The automatically assigned station name is applied as the PROFINET device name.
You can change the name in the station properties and also the device number and
IP address.

Configuring an IO device

With the IO device selected, you can set its properties in the inspector window in the
Device view. You fit a modular IO device with the desired modules or submodules
from the hardware catalog and then set their parameters.

You set the Ethernet addresses in the properties of the PROFINET interface. In the
Advanced options group you can additionally set – depending on the application –
for example the prioritized startup, the device replacement without removable
medium, or participation in media redundancy.

Coupling an intelligent IO device to the PROFINET IO system

You initially create an intelligent IO device (“I-device”) as a stand-alone PLC station
and then connect the PN interface of the I-device to the PROFINET IO system.
You can find the I-devices in the hardware catalog in the Controllers folder.

16 Distributed I/O

708

For example, if you want to create an S7-1500 station as an I-device, press and hold
the left mouse button and drag the CPU from the Controllers > SIMATIC S7-1500 >
CPU > CPU 1511-1 PN > … object tree to the working area.

You establish a connection to the existing subnet if you drag the PN interface of the
I-device to a PN interface of another device on the subnet with the left mouse button
pressed, for example to the PN interface of the IO controller.

In the properties of the PN interface of the I-device, activate the IO device checkbox
under the Operating mode entry and select the assigned IO controller from the
drop-down list. The station is then added as an IO device to the PROFINET IO sys-
tem.

Configuring the user data interface

You configure the user data interface to the IO controller in the module properties
of the I-device. Select the CPU or ET station in the working window and then the
Operating mode > I-device communication group in the inspector window in the
Properties tab under the PROFINET interface group.

Double-click on <Add new> in the Transfer areas table. A new transfer area is cre-
ated. You can change the name in the Transfer area column. In the Data direction
column (↔), click on the arrow to set the type of transfer area (arrow to the right →
means input area, arrow to the left ← means output area from the viewpoint of the
I-device).

Now set the start address in the Address in I-device column and the length of the
transfer area in the Length column. In the Address in IO controller column, set the
start address which the transfer area has from the viewpoint of the IO controller.

In this manner you can configure further transfer areas. The configured transfer
areas are displayed in the I-device communication properties group. If you click a
transfer area here, you obtain its details (Fig. 16.10). In this display, you can select
the association to a process image: Automatic update, if the process image update
is to take place during execution of the main program, or PIPn for a process image
partition.

16.3.4 Coupling modules for PROFINET IO

PN/PN coupler: connection of two Ethernet subnets

A PN/PN coupler connects two Ethernet subnets in order to exchange data between
the IO controllers of the two subnets. There is galvanic isolation between the sub-
nets.

The two sides of the PN/PN coupler each represent an IO device when configuring.
One side (one IO device) is coupled to one of the PROFINET IO systems, the other
side to the other system.

You can find the PN/PN coupler in the hardware catalog under Other field devices >
PROFINET IO > Gateway > Siemens AG > PN/PN couplers > PN/PN coupler Vx.0 > ….

16.3 PROFINET IO

709

The modules underneath this represent the two sides of the PN/PN coupler (X1 for
the left side and X2 for the right side of the module).

In order to connect the PN/PN coupler, drag the symbol for one side of the
PN/PN coupler with the left mouse button pressed to the PROFINET IO system. You
can set the properties of the PN/PN coupler, for example IP address, device name
and device number, in the inspector window with the module selected. You config-
ure the second side (X2) of the PN/PN coupler on the other PROFINET IO system in
the same manner.

IE/PB Link PN IO: Connection of PROFINET IO to PROFIBUS DP

An IE/PB Link PN IO connects the Industrial Ethernet and PROFIBUS subnets.
In standard mode, the link permits cross-subnet PG/OP communication and com-
munication via S7 connections, parameterization of field devices via data record
routing, and the network transition to a DP master system with constant bus cycle
time.

When operating as PROFINET IO proxy, the IE/PB Link PN IO takes over the role of a
proxy for the DP slaves on the PROFIBUS. The IO controller on the PROFINET can
then address the DP slaves on the PROFIBUS like IO devices in its PROFINET IO sys-
tem.

The IE/PB Link PN IO is a double-width module of S7-300 design. You connect the
IE/PB Link to Industrial Ethernet using an 8-pole RJ45 socket and to PROFIBUS using
a 9-pole SUB-D socket.

Fig. 16.10 Example of configuration of a transfer area

16 Distributed I/O

710

The IE/PB Link PN IO is configured as an IO device to which a DP master system is
connected. You can find the link in the hardware catalog under Network components
> Gateways > IE/PB Link > … . In order to add it to the PROFINET IO system, drag it
with the left mouse button pressed to the PROFINET IO system in the working win-
dow.

You set the operating mode – standard mode or PROFINET IO proxy – in the
IE/PB link properties under Network gateway. You configure the Ethernet addresses
and the real-time settings in the PROFINET interface group.

You can also set the PROFINET device number and the assignment to the PROFIBUS
station number in the properties of the IE/PB link. The table shown under PROFINET
device number contains the PROFIBUS station number in the PB address column and
the device number assigned by the configuration editor in the PROFINET device
number column. To change the device number, click in the cell with the device num-
ber and select an unused device number from the drop-down list. If you activate the
checkbox in the Device number = PB address column, the PB address and the device
number are set the same.

The IE/PB Link PN IO is the DP master of the subordinate PROFIBUS DP master sys-
tem. How to configure a DP master system with the assigned DP slaves is described
in Chapter 16.4.3 “Configuring PROFIBUS DP” on page 721.

IE/AS-i Link PN IO: Connecting PROFINET IO to the AS-Interface

An IE/AS-i Link PN IO connects PROFINET IO with AS-Interface. On PROFINET IO, the
link is an IO device. On the AS-Interface, it is an AS-i single or double master in
accordance with the AS-i specification V3.0. You can find the link in the hardware
catalog under Other field devices > PROFINET IO > Gateway > Siemens AG >
IE/AS-i Link PN IO > … . In order to add it to the PROFINET IO system, drag it with the
left mouse button pressed to the PROFINET IO system in the working window.

Connection to the IO controller is via a user data interface with 62 bytes digital
inputs and 62 bytes digital outputs. A programming device can be connected via the
integral Ethernet port for commissioning, testing, and diagnostics via a web inter-
face with a standard browser. The link allows uploading of the AS-i configuration to
the programming device.

16.3.5 Real-time communication in PROFINET

PROFINET offers several types of data transfer:

b Non-time-critical data such as configuration and diagnostic information is
transferred acyclically with the TCP/IP communication standard.

b User data (input/output information) is exchanged cyclically between the
IO controller and the IO device (real-time RT) within a defined time period – the
update time.

b Time-critical user data, e.g. for motion control applications, is transferred
isochronously with hardware support (isochronous real-time IRT). The stations

16.3 PROFINET IO

711

participating in the IRT communication (synchronized stations), are grouped
together in a sync domain.

A permanent communication channel is reserved on the Ethernet subnet for IRT
communication. RT communication – cyclic data exchange between the
IO controller and IO devices – and non-real-time TCP/IP communication take place
parallel to the update time. In this way, all three communication types can exist in
parallel on the same subnet.

Send clock

Cyclic data exchange is handled within a specific time frame, the send clock. The
configuration editor calculates the send clock from the configuration information
on the PROFINET IO system. The send clock is the shortest possible update time.

You can configure the send clock for an unsynchronized IO controller in its inter-
face properties. With the PN interface selected, select a value in the properties tab
under Advanced options > Real-time settings > IO communication from the drop-
down list Send clock. If the IO controller is the sync master in a sync domain, set the
send clock using the Domain settings button in the properties of the sync domain.

Update time and watchdog timer for IO devices

The update time is the period within which each IO device in the IO system has
exchanged its user data with the IO controller. The update time corresponds to the
send clock or a multiple thereof. You can increase the update time manually, for
example to reduce the bus load. Under certain circumstances, you can reduce the
update time for individual IO devices if you in return increase the update time for
other IO devices whose user data can be exchanged non-time-critically.

If the IO device is not supplied by the IO controller with input or output data within
the watchdog timer, it switches to a safe state. The watchdog timer is calculated as
the product of update time and “Accepted updating cycles without IO data”.

If the IO device is assigned to an unsynchronized IO controller, configure the times
in the interface properties of the IO device. To do this, select the IO device and then
the PROFINET interface > Advanced options > Real-time settings > IO cycle group in
the properties tab. Under Update time, select the Can be set option and then the
update time from the drop-down list. To achieve automatic adaptation to the send
clock, activate the Adapt update time when send clock changes checkbox. You select
the watchdog timer in the Accepted update cycles without IO data drop-down list. If
the IO device is assigned to a sync domain, the update time corresponds to the send
clock in the properties of the sync domain.

Real-time

Real-time (RT) means that a system processes external events within a defined time.
If it responds predictably, it is called deterministic. In RT communication, transfer
takes place at a specific time (send clock) within a defined interval (update time).
PROFINET IO allows the use of standard network components for RT communica-
tion.

16 Distributed I/O

712

If not all data to be exchanged is transferred within the planned time frame, for
example due to the addition of new network components, some data is distributed
to other send clocks. This can result in an increase in the update time for individual
IO devices.

Isochronous real-time

Isochronous real time (IRT) is hardware-supported real-time communication
designed, for example, for motion control applications. IRT message frames are
deterministically transmitted via planned communication paths in a specified
order. IRT communication therefore requires network components that support
this planned data transmission.

To be able to configure IRT communication, set up a sync domain (see next section)
and determine a sync master, which will take over the synchronized distribution of
the IRT message frames to the sync slaves. IRT requires a topology configuration
(see section “Topology editor”) and thus a defined structure that takes account of
the transmission properties of the cables and the switches used.

SYNC domain

A sync domain is a group of PROFINET I/O stations which exchange synchronized
data with each other. A station, which can be an IO controller or an IO device,
assumes the role of the sync master. The others are the sync slaves.

A sync domain can contain several I/O systems, where a complete I/O system is
always assigned to a single sync domain. Several sync domains can exist on an
Ethernet subnet.

A default domain is automatically created with the name Sync-Domain_1 when an
I/O system is configured. All of the configured IO systems, IO controllers and
IO devices are initially located in this sync domain, but they are unsynchronized.
You can now use the default domain for IRT communication or you can create a new
sync domain.

Configuration of a new SYNC domain

Prerequisite: You have configured the Ethernet subnet with one or several
PROFINET IO systems. The stations involved in IRT communication must also sup-
port this function.

To create a new sync domain, select the Ethernet subnet in the network view and
select Properties from the shortcut menu. In the inspector window of the General
tab, open the Domain management group. The Sync domains table contains the
already configured sync domains. You set up a new sync domain when you over-
write the entry <New sync domain> with the name of the new sync domain.

You can set the send clock in the properties of the sync domain (Fig. 16.11). To add
the station, select the entry Device under the sync domain. The IO system table
shows the configured IO systems and PLC stations. If you select an IO system, the

16.3 PROFINET IO

713

IO devices table shows the configured devices. In the Synchronization role column,
set the sync master. For the IO devices that you want to synchronize, set the entry
IRT in the RT class column.

Topology editor

The topology editor allows the configuring of wiring for devices on the Industrial
Ethernet subnet. In the network view, the logical connections between the
PROFINET devices are configured; with the topology editor the physical connections
with the properties length and cable type for determining the signal runtimes. Use
of the topology editor is a prerequisite for using IRT communication.

The physical connections between devices on the Ethernet subnet are point-to-
point connections. The connections on a PN interface are called ports. The Ethernet
cable connects a device port with a port on the partner device. To enable several
nodes to communicate with each other, they are connected to a switch that has sev-
eral connections (ports) and that distributes signals. If a PN interface has two ports
connected by an integrated switch, you can implement a linear topology without
external switches.

Fig. 16.11 Configuration of a SYNC domain

16 Distributed I/O

714

You can also configure the connection of two ports in the device view beforehand.
In the graphic, select the PN interface and select in the properties Advanced
options > Port [X...] > Port interconnection. In the Partner port field, select the desired
connection in the drop-down list. Here, you can also set the cable properties that
are relevant for determining the send clock. You set the connection properties and
the boundaries (limits) under Port options:

b End of the detection of accessible stations
The stations located behind this port are no longer displayed in STEP 7 under
Accessible devices.

b End of the topology discovery
The detection of the topology ends at this port.

b End of the sync domain
The sync domain ends at this port.

In the Topology view tab of the hardware configuration, you can graphically config-
ure the port interconnection (with graphs or tables) (Fig. 16.12).

The ports of the configured stations are displayed in the working area. To intercon-
nect two ports, press and hold the right mouse button and drag one port to the
other. You can delete the interconnection by highlighting the line and pressing the
[Del] key. The Topology overview table shows the port interconnection in tabular

Fig. 16.12 Graphical and tabular view of the PROFINET topology

16.3 PROFINET IO

715

form. You can compare the configured connection with the actual connection in
online mode using the Compare offline/online button.

If you select a port in the graphic or in the table, the inspector window will show the
interconnection and the configured options of this port in the Properties tab.

16.3.6 Special PROFINET configurations

In the properties of the PROFINET interface, you can activate the PROFINET func-
tions described below when configuring an IO controller or IO device (depending
on the device configuration).

Device replacement without removable medium or programming device

When replacing an IO device, a device name must be assigned to the new IO device
in order to make it known (again) to the IO controller. This can be carried out –
depending on the IO device – using a removable medium (e.g. a memory card) or
the programming device.

Under certain conditions, the new IO device can be identified by means of neighbor
relationships between the other IO devices and the IO controller and assigned a
new device name by the IO controller. One of the requirements is that a port con-
nection is configured and the Support device replacement without exchangeable
medium checkbox is activated when configuring the interface properties under
Advanced options > Interface options. Only new IO devices or IO devices which have
been reset to the factory settings should be used as replacement devices.

Prioritized startup, docking systems

With a prioritized startup, the startup of IO devices in a PROFINET IO system with
RT and IRT communication is carried out faster. Special cabling conditions must be
observed. The maximum possible number of IO devices controlled with prioritized
startup depends on the IO controller used.

The prioritized startup minimizes the time until the cyclic exchange of user data
can be started after restoration of power, after the return of a station, or after acti-
vation of an IO device. One possible application is the swapping of machine parts
or tools that are controlled with IO devices.

You configure the prioritized startup in the properties of the PROFINET interface of
an IO device using the Prioritized startup checkbox. You can find the checkbox under
Advanced options > Interface options or – with an intelligent IO device – under
Operating mode (with IO device mode switched on and assigned IO controller).
In the properties of the port, you set the data transfer rate under Port options to
TP 100 Mbps full duplex and deactivate the checkbox Enable autonegotiation.

For a docking system, under Port interconnection, activate the checkbox Alternative
partner in the properties of the (unconnected) port, which is operated with alternat-
ing partners during runtime. In the table under this, double-click on
<Add alternative partner> to select the desired partner ports. The alternative con-
nections are displayed with dashed lines in the technology view.

16 Distributed I/O

716

Media redundancy

The media redundancy is used to increase the network availability by means of a
special topology. The ends of a linear topology are connected into a ring topology
in a station at the two connections of the PN interface. This station is the redun-
dancy manager and the connections are the ring ports. If a station in the ring net-
work fails, an alternative communication path can be made available.

Up to 50 stations can participate per ring by means of the Media Redundancy
Protocol (MRP) used with SIMATIC S7. The stations are grouped in an MRP domain.
All partner ports must have identical settings. IRT communication and prioritized
startup cannot be used if media redundancy is configured.

To configure the media redundancy, interconnect all of the stations to a ring in the
topology view. The network editor automatically creates a default MRP domain with
the name mrpdomain_1, in which no stations yet exist. To set the MRP manager,
select the desired station and select the media redundancy role Manager or
Manager (Auto) in the properties of the PROFINET interface under Expanded
options > Media redundancy from a drop-down list. For the other stations in the
media redundancy, select Client.

You are given an overview of the participating stations if you highlight the
PROFINET IO system in the network view and select the group Domain
management > MRP domains in its properties. The available MRP domains are dis-
played. The list under <MRP domain name> > Device, shows you all configured
devices of the selected IO system.

16.4 PROFIBUS DP

16.4.1 PROFIBUS DP components

PROFIBUS DP offers an interface in accordance with the international standard
IEC 61158/61784 for transmission of process data between an “interface module” in
the central programmable controller and the field devices. This “interface module”
is referred to as DP master and the field devices as DP slaves (Fig. 16.13).

The PROFIBUS network can be designed physically as an electrical network, optical
network, or wireless coupling with different data transfer rates. The length of a seg-
ment depends on the transfer rate and is adjustable in steps for an electrical or opti-
cal network from 9.6 Kbit/s to 12 Mbit/s. The electrical network can be configured as
a bus or tree structure. It uses a shielded, twisted two-wire cable (RS485 interface).

The optical network uses either plastic, PCF or glass fiber-optic cables. It is suitable
for long distances, offers galvanic isolation, and is impervious to electromagnetic
influences. Using optical link modules (OLMs) it is possible to construct a linear,
ring, or star topology. An OLM also provides the connection between electrical and
optical networks with a mixed design. A cost-optimized version is the design as a
linear topology with integral interface and optical bus terminal (OBT).

16.4 PROFIBUS DP

717

Using the PROFIBUS Infrared Link Module (ILM), a wireless connection can be pro-
vided for one or more PROFIBUS slaves or segments with PROFIBUS slaves.
The maximum data transfer rate of 1.5 Mbit/s and the maximum range of 15 m
mean that communication is possible with moving system components.

DP master

The DP master is the active station on the PROFIBUS. It exchanges data cyclically
with “its” DP slaves. A DP master can be:

b A CPU with integral PROFIBUS interface (with the letters “DP” in the short desig-
nation, e.g. CPU 1516-3 PN/DP)

b A communication module in the PLC station (e.g. CM 1542-5)

b The IE/PB Link PN IO

Fig. 16.13 Hardware components with PROFIBUS DP

S7 station with DP master,
e.g. CPU 1516-3 PN/DP

Modular DP slave,
e.g. ET 200S

Compact
DP slave,
e.g. ET 200eco

Intelligent DP slave,
e.g. CPU 1511-1 PN
with CM 1542-5

PROFIBUS DP

Hardware components with PROFIBUS DP

Repeater DP/DP
coupler

Diagnostics
repeater

DP/AS-i
link

PROFIBUS DP

PROFINET IO
AS-Interface

DP bus segment with
line diagnostics

DP bus segment with
renewed signal level

Connection between
two DP subnets

IE/PB
link

Transmission of process signals

Connection
between
DP subnets

Connection
to other
subnets

S

ESC OK

S

S

ESC OK

S

16 Distributed I/O

718

DP slaves

The DP slaves are the passive stations on the PROFIBUS DP. These can be stations
with process inputs and outputs, repeaters, couplers, or link modules. Examples of
DP slaves from the ET200 distributed I/O system are the ET 200eco, ET 200M,
ET 200S, and ET 200pro.

DP slaves with user data are distinguished as follows:

b Compact DP slaves which are addressed like a single module

b Modular DP slaves which can contain several modules or submodules which are
addressed individually

b Intelligent DP slaves with a configured transfer area as user data interface to the
DP master

Intelligent DP slaves contain a user program which controls the subordinate (own)
modules. The user data interface to the DP master is a transfer area which can be
divided into different address areas. Some examples of intelligent DP slaves are
S7-1500 stations with the CM 1542-5 communication module, the distributed
I/O stations ET 200S with the IM 151-7 CPU interface module, and ET 200pro with
the IM 154-8 PN/DP CPU interface module.

A CPU which is configured as an intelligent DP slave cannot be a DP master at the
same time. However, a communication module can be operated as DP master in the
station with an intelligent DP slave.

Coupling modules

Bus couplers and link modules connect subnets and permit data exchange between
stations connected on different subnets. The following are available for the
PROFIBUS subnet:

b RS 232 repeater for regeneration of the bus signals

b Diagnostics repeater for diagnostics of bus faults

b DP/DP coupler for connecting two PROFIBUS subnets

b DP/AS-i Link for connecting a PROFIBUS subnet to an AS-i subnet

b IE/PB Link PN IO for connecting an Ethernet subnet to a PROFIBUS subnet

The repeater modules, the DP/DP coupler, and the DP/AS-i link are described in
more detail in Chapter 16.4.4 “Coupling modules for PROFIBUS DP” on page 724,
the IE/PB Link PN IO in Chapter 16.3.4 “Coupling modules for PROFINET IO” on page
708.

PROFIBUS DP master system

The DP master and all DP slaves controlled by it form a PROFIBUS DP master system
(Fig. 16.14). The update time within which a DP slave receives data from its
DP master and in turn sends data to the DP master depends on the number of
DP slaves in the master system.

16.4 PROFIBUS DP

719

PROFIBUS DP is usually operated as a “mono-master system”, i.e. a single DP master
in a bus segment controls several DP slaves. Except for a temporary programming
device for diagnostics and servicing, the DP master is the only master on the bus.

You can also install several DP master systems in a PROFIBUS subnet (“multi-master
system”). However, this increases the response time in individual cases since, once
a DP master has supplied “its” DP slaves, the access privileges are assigned to the
next DP master which in turn supplies “its” DP slaves, etc.

DPV0, DPV1, and S7-compatible operating modes

DP slaves and DP masters are available with different scopes of PROFIBUS functions.

DP slaves with a range of functions in accordance with EN 50170 (abbreviated to:
“DPV0 slaves”) can handle the cyclic exchange of process data. DP slaves with a
range of functions in accordance with IEC 61158/EN 50170 Volume 2 (abbreviated
to: “DPV1 slaves”) have an extended functionality in addition to the cyclic data
exchange, e.g. an increased diagnostics and parameterization capability through
the use of data records transferred acyclically or the use of additional types of inter-
rupt. PROFIBUS devices from Siemens (“DP S7 slaves”), which can handle further

Fig. 16.14 Schematic representation of a PROFIBUS DP master system

Compact
DP slave

DP master

Modular DP slave

Intelligent
DP slave

User data interface
in the intelligent DP slave

PROFIBUS DP

DP master system

PROFIBUS DP master system

A DP master system consists of a DP
master and one or more DP slaves.
All modules, whether central or
distributed, are in the same address
volume.

In the case of an intelligent DP slave, which has its own modules
(arranged centrally from its own point of view), transfer areas
form the user data interface to the DP master system. The
transfer areas are distributed modules for the DP master, and
central modules for the intelligent DP slave.

S

ESC OK

S

S

ESC OK

16 Distributed I/O

720

functions in addition to the cyclic data exchange, e.g. diagnostic interrupts, have
the operating mode “S7-compatible”.

The operating modes of DP master and DP slaves must be matched to each other.
DP masters in operating mode “DPV0” control DPV0 slaves, those in operating
mode “S7-compatible” control DPV0 and DP S7 slaves. DPV1 masters from Siemens
can control DP slaves with all operating modes.

16.4.2 Addresses with PROFIBUS DP

Station addresses on PROFIBUS DP

Each station on the PROFIBUS subnet has a unique address within the subnet – the
station address (station number) – which distinguishes it from all other stations on
the subnet. The station (the DP master or a DP slave) is addressed on the PROFIBUS
by means of this station address.

The configuration editor assigns the station addresses automatically and you can
change the addresses within the specified range. You set the highest station
address in the properties of the subnet or DP master system under Network settings.

Geographic address with PROFIBUS DP

The geographic address identifies the slot of a module. With a DP slave, the geo-
graphic address comprises the ID of the DP master system, the station number, and
the slot number.

The DP master system ID is assigned by the configuration editor and ranges from
1 to 32 – not to be confused with the hardware identifier of the DP master system in
the system constants. The name and the ID can be changed in the properties of the
DP master system under General.

Slot numbering of a DP slave depends on its type. If it is integrated using a GSD file,
the entries in the GSD file determine the slot at which the I/O modules start. With DP
standard slaves, the slots for I/O modules start at 1. The slot numbering of a
DP S7 slave depends on the slots of an S7-300 station. Slots 1 (power supply)
and 3 (expansion unit interface module) remain vacant. Slot 2 (CPU) corresponds
to the interface module (header module) of the modular DP slave. The signal mod-
ules (SM) are positioned starting at slot 4. There is also the “virtual” slot 0 (not phys-
ically present); this represents the complete station.

Logical addresses with PROFIBUS DP

The user data of the DP slaves share the range of logical addresses with the user
data of the central modules in the DP master station. The logical addresses of all
modules are within the range of peripheral inputs or outputs. This means that the
addresses of the central modules must not overlap with those of the DP slaves.

You use the logical address to address the user data, in other words the signal states
of the digital input/output channels or the values at the analog input/output chan-

16.4 PROFIBUS DP

721

nels. Each byte of user data is unequivocally defined by the logical address. The log-
ical address corresponds to the absolute address; a symbol (name) can be assigned
to it so that it is easier to read (symbolic addressing). Further details can be found
in Chapter 4.2 “Addressing of operands and tags” on page 94.

Consistent user data transfer to and from DP slaves

Data consistency means that a block of user data is handled together without inter-
ruption.

With direct access, for example when loading and transferring, you can consistently
transfer an area of one byte, one word, or one doubleword. With a user data area of
three bytes or more than four bytes, you use the system blocks DPRD_DAT (read)
and DPWR_DAT (write) for consistent data transfer. These and other system blocks
for the consistent transfer of data between the CPU and a DP standard slave are
described in Chapter 16.5.1 “Read and write user data” on page 730.

The handling of consistent user data areas in the user memory is described in
Chapter 4.1.2 “Operand areas: inputs and outputs” in section “Consistent user data
transfer” on page 89.

User data interface with intelligent DP slaves

With the compact and modular DP slaves, the addresses of the inputs and outputs
are together with the addresses of the central modules in the address volume of the
DP master. With intelligent DP slaves (abbreviated to: I-Slaves), the input/output
modules of the DP slaves are assigned to the slave CPU. Every intelligent DP slave
therefore has a user data interface as common memory area with the DP master
whose size depends on the slave CPU used.

The user data interface can be divided into several areas of different length and data
consistency. The individual areas then respond like modules whose lowest address
is the module start address. From the viewpoint of the DP master, the I-slave then
appears like a compact or modular DP slave depending on the division.

A transfer area which is represented as an input module from the viewpoint of the
DP master is an output module from the viewpoint of the DP slave and vice versa.
The logical addresses on the master side are in the address volume of the DP master
and the logical addresses on the slave side in the address volume of the DP slave.
The addresses on the master side can be different from those on the slave side.

16.4.3 Configuring PROFIBUS DP

General procedure

A prerequisite for configuration of the distributed I/O with PROFIBUS DP is a created
project with a PLC station. To select the stations involved, start the hardware con-
figuration in the Network view.

16 Distributed I/O

722

b The starting point for configuring is the DP master – either integrated in a
CPU 1500 with DP interface or as the CM 1542-5 communication module.

b Activate the DP master mode of the DP interface if it is not the default setting.

b Assign a PROFIBUS DP master system to the DP interface of the DP master.
The PROFIBUS subnet required is created automatically in the process.

b Set the bus parameters if necessary (highest PROFIBUS address, data transfer
rate, profile).

b Select a DP slave from the hardware catalog and drag with the mouse into the
working window.

b Link the DP slave to the DP master system by dragging the DP interface of the
DP slave with the mouse to the DP interface of the DP master.

b Repeat the last two steps for every further DP slave.

b To parameterize the DP interface, select it in the working window and set the
desired properties in the inspector window.

b Drag an intelligent DP slave as an independent PLC station into the working win-
dow, set the DP slave mode in the properties of the DP interface, assign the
DP master, and configure the transfer areas of the user data interface.

The result is networking of the DP master with the assigned DP slaves to a
PROFIBUS DP master system (Fig. 16.15).

You then make the parameter settings for the stations and the fitting with
input/output modules in the Device view.

Fig. 16.15 Example of representation of a PROFIBUS DP master system

16.4 PROFIBUS DP

723

Configuring the DP master in the Network view

Prerequisite: You have created a project and a PLC station, for example a
CPU 1516-3 PN/DP with DP interface. Start the device configuration and select
the Network view tab in the working window.

In order to assign a DP master system to the interface, click with the right mouse
button on the DP interface in the working window and select the Add master system
command from the shortcut menu. A PROFIBUS subnet and a magenta-white DP
master system is created with the name <Station name>.DP master system (<Master
system ID>). You can change the name and the master system ID in the properties
of the DP master system under General.

You can change the highest PROFIBUS address, the data transfer rate, and the bus
profile in the properties of the DP master system or in the properties of the
PROFIBUS subnet under Network settings.

Adding a DP slave to the DP master system

With the left mouse button kept pressed, drag the desired DP slave from the hard-
ware catalog to the DP master system in the working window. Fig. 16.15 shows two
stations of the distributed I/O: An ET200eco station from the object tree
Distributed I/O > ET 200eco > PROFIBUS > DI/DO > 8DI/8DO > … and an ET 200S station
from the object tree Distributed I/O > ET 200S > Interface modules > PROFIBUS > IM
151-1 HF > ….

The interfaces of the DP slaves are connected in the graphic with the magenta-white
marking and are thus part of the PROFIBUS DP master system.

Configuring a DP slave

With the DP slave selected, you can set its properties in the Device view. You fit a
modular DP slave with the desired modules or submodules from the hardware cat-
alog and then set their parameters.

You set the PROFIBUS address in the properties of the PROFIBUS interface and,
depending on the DP slave and application, in the Module parameters group, for
example, the startup property Operation if preset configuration does not match
actual configuration, the DP interrupt mode, or the handling of options.

Coupling an intelligent DP slave to the PROFIBUS DP master system

You initially create an intelligent DP slave (“I-slave”) as a stand-alone PLC station
and then connect the DP interface of the I-slave to the DP master system. You can
find the I-slaves in the hardware catalog in the Controllers folder.

For example, if you want to create an S7-1511 station as an I-slave, press and hold
the left mouse button and drag the CPU 1511-1 PN into the working window and
equip it with the CM 1542-5 communication module from the object tree Control-
lers > SIMATIC S7-1500 > Communication modules > PROFIBUS > CM 1542-5 > ….

16 Distributed I/O

724

You establish a connection to the existing subnet if you drag the DP interface of the
DP slave to the DP interface of another device on the subnet with the left mouse but-
ton pressed, for example to the DP interface of the DP master. With an S7 or ET 200
station with combined MPI/DP interface as I-slave, you must first set PROFIBUS as
the interface type in the interface properties.

In the properties of the DP interface of the I-slave, activate the DP slave option under
the Operating mode entry and select the assigned DP master from the drop-down
list. The station is then added as DP slave to the PROFIBUS DP master system.

Configuring the user data interface

You configure the user data interface to the DP master in the module properties of
the I-slave. Select the CPU or the ET station in the working window and then the
Operating mode > I-slave communication entry in the inspector window in the
Properties tab in the DP interface group.

Click on <Add new> in the Transfer areas table. A new transfer area is created.
You can change the name in the Transfer area column. In the Data direction column
(↔), click on the arrow to set the type of transfer area (arrow to the right → means
input area, arrow to the left ← means output area from the viewpoint of the I-slave).

Now set the start address in the Slave address column and the length of the transfer
area in the Length column. The transfer area has a maximum length of 32 bytes. In
the Master address column, set the start address which the transfer area has from
the viewpoint of the DP master. In the Consistency column you can select between
Unit and Total length (Fig. 16.16).

In this manner you can configure further transfer areas. The configured transfer
areas are displayed in the I-slave communication properties group. If you select a
transfer area here, you obtain its details. In this display, you can select the associa-
tion with a process image: Automatic update, if the process image update is to take
place during execution of the main program, or PIPn for a process image partition.
You can assign a hardware interrupt to each transfer area, which is triggered when
the lowest bit has a signal state change.

16.4.4 Coupling modules for PROFIBUS DP

RS485 repeater for PROFIBUS DP

The RS485 repeater connects two bus segments together in a PROFIBUS subnet.
The number of stations and the size of the subnet can then be increased.
The repeater provides signal regeneration and galvanic isolation. It can be used at
data transfer rates up to 12 Mbit/s – including 45.45 Kbit/s for PROFIBUS PA.

It is not necessary to configure the RS 485 repeater; it need only be considered when
calculating the bus parameters.

16.4 PROFIBUS DP

725

Diagnostics repeater for PROFIBUS DP

The diagnostics repeater can determine the topology in a PROFIBUS segment
(RS 485 copper cable) during ongoing operation and carry out line diagnostics.
It provides signal regeneration and galvanic isolation for the connected segments.
The maximum segment length is 100 m in each case; the data transfer rate can be
between 9.6 Kbit/s and 12 Mbit/s.

The diagnostics repeater has connections for 3 bus segments. The cable from the
DP master is connected to the supply terminals of the DP1 bus segment. The two
other connections DP2 and DP3 contain the measuring circuits for determination of
the topology and for cable diagnostics on the bus segments connected to them.
Up to nine further diagnostics repeaters can be connected in series.

The diagnostics repeater is handled like a DP slave in the master system. In the
event of a fault, it sends the determined diagnostic data to the DP master. This
includes the topology of the bus segment (stations and cable lengths), the contents
of the segment diagnostic buffers (last ten events with fault information, location,
and cause), and the statistics data (information on the quality of the bus system).
In addition, the diagnostics repeater provides monitoring functions for isochro-
nous mode.

The diagnostic data is displayed in the navigation window of the online and diag-
nostics view of the diagnostics repeater in the Segment diagnostics folder. System
blocks in the user program permit line diagnostics. The system function DP_TOPOL
triggers diagnostics on the repeater and RD_REC or RDREC is used to read the diag-

Fig. 16.16 Example of configuration of the transfer areas of an I-slave

16 Distributed I/O

726

nostic data. READ_CLK reads the CPU time and WR_REC or WRREC transfers it to the
diagnostics repeater in order to set the time on the latter.

The diagnostics repeater is configured and parameterized with the configuration
editor. You can find it in the hardware catalog under Network components >
Diagnostics repeaters > ….

DP_TOPOL Determine bus topology

DP_TOPOL uses a diagnostics repeater to determine the bus topology of the
DP master system whose ID you specify in the DP_ID parameter. Fig. 16.17 shows
the graphic representation of the system block. You find it in the program elements
catalog under Extended instructions > Distributed I/O > Others.

The determination is triggered by REQ = “1” and is finished when BUSY signals “0”.
You can use R = “1” to cancel determination of the topology.

If an error is signaled by a diagnostics repeater, determination of the bus topology
is prevented and this is shown in the DPR and DPRI parameters. If several diagnos-
tics repeaters signal errors, the error message of the first one is displayed and the
complete diagnostic information can be read with DPNRM_DG or the programming
device.

A distinction is made between temporary and permanent faults in the error infor-
mation in the DPRI parameter. In certain circumstances it may not be possible to
conclusively identify temporary faults such as a loose contact and these may disap-
pear on their own. You must eliminate permanent faults before you call DP_TOPOL
again to determine the topology.

Following processing of DP_TOPOL, the determined data is available on the diag-
nostics repeater and can be read using RDREC. The data comprises the topology of
the bus segment (stations and cable lengths), the contents of the segment diagnos-

Fig. 16.17 Determine the topology of a DP master system

System block for determining the PROFIBUS topology

DP_TOPOL determines the bus topology
on a diagnostics repeater.

REQ Job initiation
R Cancel determination
DP_IP Hardware identifier

of the DP master system

RET_VAL Error information
BUSY Job finished
DPR Station number of the diagnostics repeater
DPRI Error messages

DP_TOPOL
Determine
bus topology

Parameter assignment:

REQ

R

DP_ID

RET_VAL

DPR

BUSY

DPRI

16.4 PROFIBUS DP

727

tic buffers (last ten events with fault information, location, and cause), and the sta-
tistics data (information on the quality of the bus system).

DP/DP coupler

The DP/DP coupler (Version 2) connects two PROFIBUS subnets to each other and
can exchange data between the DP masters. The two subnets are electrically iso-
lated and can be operated at different data transfer rates up to a maximum of 12
Mbit/s. In both subnets, the DP/DP coupler is assigned to the relevant DP master as
a DP slave with a freely selectable station address in each case.

The maximum size of the transfer memory is 244 bytes of input data and 244 bytes
of output data, divisible into a maximum of 16 areas. Input areas in one subnet
must correspond to output areas in the other. Up to 128 bytes can be transferred
consistently. If the side with the input data fails, the corresponding output data on
the other side is maintained at its last value.

The DP/DP coupler is configured with the configuration editor. You can find it in
the hardware catalog under Other field devices > PROFIBUS DP > Gateways >
Siemens AG > DP/DP Coupler, Release 2 > ….

You configure the transfer area in the device view. This shows the graphics of the
DP/DP coupler in the top part of the working window and the configuration table of
the interface in the bottom part. Now drag an I/O module present under the
DP/DP coupler from the hardware catalog into the table (the modules are displayed
directly if the Filter checkbox is activated in the hardware catalog). The user data
addresses that you specify in the module properties are in the address volume of
the DP master.

Configure the second part of the DP/DP coupler in the same way. Add a DP/DP cou-
pler to the second DP master system and configure the transfer area. Make sure that
the structure of the transfer area matches that of the first part. Inputs on one side
correspond to outputs on the other side and vice versa. The addresses in both parts
of the DP/DP coupler are oriented to the address assignments of the relevant master
CPU and can differ from each other.

DP/AS-i link: Connection between PROFIBUS DP and AS-Interface

The DP/AS-i Link 20E connects PROFIBUS DP with AS-Interface. On the
PROFIBUS DP, the link is a modular DP slave in accordance with EN 50170. On the
AS-Interface, it is an AS-i master in accordance with the AS-i specification V2.1.

Connection to the DP master is via a user data interface with 32 bytes digital inputs
and 32 bytes digital outputs. The link allows uploading of the AS-i configuration to
the programming device.

The DP/AS-i Link Advanced connects PROFIBUS DP with AS-Interface. On the
PROFIBUS DP, the link is a modular DP slave in accordance with EN 50170. On the
AS-Interface, it is an AS-i single or double master in accordance with the AS-i spec-
ification V3.0.

16 Distributed I/O

728

The DP/AS-i link is configured with the configuration editor. You can find it in
the hardware catalog under Other field devices > PROFIBUS DP > Gateways >
Siemens AG > AS-I > ….

Connection to the DP master is via a user data interface with 62 bytes digital inputs
and 62 bytes digital outputs. A programming device can be connected via the inte-
gral Ethernet port for commissioning, testing, and diagnostics via a web interface
with a standard browser. The link allows uploading of the AS-i configuration to the
programming device.

16.4.5 Special PROFIBUS configurations

You can configure the following special functions in a PROFIBUS DP master system
if the devices are designed accordingly:

b SYNC/FREEZE groups for synchronous output of output signals and synchronous
reading in of input signals

b Direct data exchange between stations on the PROFIBUS

Operation with equidistant bus cycles and isochronous mode for deterministic
response times is described in Chapter 16.7.3 “Isochronous mode with PROFIBUS”
on page 742.

Configuring SYNC/FREEZE groups

The SYNC control command requests the DP slaves combined into a group to simul-
taneously (synchronously) output the output states. The FREEZE control command
requests the DP slaves combined into a group to simultaneously (synchronously)
freeze the current input signal states to allow them to then be cyclically fetched by
the DP master. The UNSYNC and UNFREEZE control commands respectively cancel
the effects of SYNC and FREEZE.

You can generate up to eight SYNC/FREEZE groups per DP master system which are
to execute either the SYNC command, the FREEZE command, or both. Each DP slave
can only be assigned to one group.

Using the system block DPSYC_FR in the user program, you can trigger the output
of a command to a group. The DP master then sends the corresponding command
simultaneously to all DP slaves in the specified group.

To assign a DP slave to a SYNC/FREEZE group, open its interface properties and
assign the DP slave to a group under SYNC/FREEZE. You can find the list with the
groups in the interface properties of the DP master under SYNC/FREEZE and can set
the properties (SYNC, FREEZE, or both) there for each group.

DPSYC_FR Send SYNC/FREEZE commands

DPSYC_FR sends the SYNC, UNSYNC, FREEZE, and UNFREEZE commands to a
SYNC/FREEZE group which you have configured with the hardware configuration.
Fig. 16.18 shows the graphic representation of the system block. You find it in the
program elements catalog under Extended instructions > Distributed I/O > Others.

16.4 PROFIBUS DP

729

The send procedure is triggered by REQ = “1” and is finished when BUSY signals “0”.
In the GROUP parameter, each group occupies one bit (from bit 0 = group 1 to bit 7
= group 8). At least one bit must always be set. The commands are specified at the
MODE parameter. SYNC and UNSYNC commands or FREEZE and UNFREEZE com-
mands must not be triggered simultaneously in a call.

Following a startup, SYNC mode and FREEZE mode on the DP slaves are initially
switched off. The inputs of the DP slaves are scanned in sequence by the DP master
and the outputs of the DP slaves are controlled; the DP slaves immediately output
the received output signals at the output terminals.

If you wish to “freeze” the input signals of several DP slaves at a certain time, output
the FREEZE command to the associated group. The input signals read by the DP
master in succession have the signal states which they had when “freezing”. These
input signals retain their values until you use a further FREEZE command to
request the DP slaves to read in and freeze updated input signals, or until you
switch the DP slaves back to “normal” mode using the UNFREEZE command.

If you wish to output the output signals of several DP slaves synchronously at a cer-
tain time, first output the SYNC command to the associated group. The addressed
DP slaves then retain the current signals at the output terminals. You can then
transfer the desired signal states to the DP slaves. Output the SYNC command again
following completion of transfer; in this manner you request the DP slaves to con-
nect the received output signals simultaneously to the output terminals. The DP
slaves retain the signals at the output terminals until you connect the new output
signals using a further SYNC command, or until you switch the DP slaves back to
“normal” mode using the UNSYNC command.

Note that the SYNC and FREEZE commands are still valid following a start.

Fig. 16.18 Synchronous reading and writing from and to DP slaves

DPSYN_FR
Send
SYNC/FREEZE
command

Parameter assignment:

System block for synchronizing DP slaves

REQ

LADDR

GROUP

MODE

RET_VAL

BUSY

DPSYN_FR sends SYNC/FREEZE
commands to DP slaves.

REQ Job initiation

LADDR Hardware identifier of

DP master interface

GROUP SYNC/FREEZE group

MODE Command at "1"

Bit 2 UNFREEZE

Bit 3 FREEZE

Bit 4 UNSYNC

Bit 5 SYNC

RET_VAL Error information

BUSY Job is being processed

the

The following commands are possible on the MODE parameter:

B#16#04 UNFREEZE B#16#14 UNSYNC + UNFREEZE

B#16#08 FREEZE B#16#18 UNSYNC + FREEZE

B#16#10 UNSYNC B#16#24 SYNC + UNFREEZE

B#16#20 SYNC B#16#28 SYNC + FREEZE

16 Distributed I/O

730

Configuring direct data exchange

In a DP master system, the DP master only controls the slaves assigned to it. With
correspondingly designed stations, only a different station (master or intelligent
slave, referred to as receiver or subscriber) on the PROFIBUS subnet can “listen in”
to find out what input data a DP slave (the sender or publisher) is sending to “its”
master. This direct data exchange is also referred to as direct communication.

You can also use direct data exchange between two DP master systems on the same
PROFIBUS subnet. For example, the master in master system 1 can “listen in” in this
manner to the data of a slave in master system 2.

A prerequisite for configuration of direct data exchange is configuration of the
sender station with input modules. First define the partner stations. Select a part-
ner in the Network view – with two I-slaves as partners, this must be the sender –
and open the I/O communication tab in the configuration table in the bottom part of
the working window. The DP slaves which have already been configured are listed
here. The Drop the device here or select cell is present in the Partner 2 column. Click
in this cell and select the partner station for direct data exchange from the drop-
down list or drag the partner station from the graphic into this cell using the
mouse. The partner station is entered in a new line in the configuration table with
the operating mode Direct data exchange.

Select the line with the partner station and enter the desired transfer areas in the
inspector window under Direct data exchange in the Transfer areas table. Select the
desired module in the Partner module column from the drop-down list and define
the input address in the receiver station, the length of the transfer area, and the
data consistency.

16.5 System blocks for distributed I/O

16.5.1 Read and write user data

The following system blocks can be used for PROFIBUS DP and PROFINET IO for
reading and writing user data:

b GETIO Read all inputs of an input area

b SETIO Write all outputs of an output area

b GETIO_PART Read some inputs of an input area

b SETIO_PART Write some outputs of an output area

b DPRD_DAT Read user data consistently

b DPWR_DAT Write user data consistently

Fig. 16.19 shows the graphic representation of these system blocks. The program
elements catalog contains the system blocks under Extended instructions >
Distributed I/O.

16.5 System blocks for distributed I/O

731

Fig. 16.19 Reading and writing user data with distributed I/Os

GETIO

Instance data

Instance data

Instance data

Instance data

GETIO_PART

SETIO

SETIO_PART

DPRD_DAT

DPWR_DAT

Read all inputs of
an input
area

Read some inputs of
an input
area

Write all outputs of
an output
area

Write some outputs of
an output
area

Read user data
consistently

Write user data
consistently

System blocks for reading and writing of user data

ID

ID

ID

OUTPUTS

ID

LEN

LADDR

LADDR

OFFSET

OUTPUTS

RECORD

INPUTS

OFFSET

LEN

INPUTS

STATUS

STATUS

STATUS

STATUS

RET_VAL

RET_VAL

LEN

ERROR

ERROR

RECORD

GETIO reads all inputs of an input area
that is located in a distributed station.

GETIO_PART reads some inputs of an
input area that is located in a
distributed station.

SETIO writes all outputs of an output
area that is located in a distributed
station.

SETIO_PART writes some outputs of an
output area that is located in a distributed
station.

DPRD_DAT reads the user data from a
distributed station consistently.

DPWR_DAT writes the user data to a
distributed station consistently.

ID Hardware identifier of the object STATUS Error information

INPUTS Destination area for the read data LEN Number of bytes

OUTPUTS Source area for the data to be written

OFFSET Number of the first byte ERROR With "1": completion with error

LADDR Hardware identifier of the object RET_VAL Error information

RECORD Destination area for the read data or

source area for the data to be written

Parameter assignment:

16 Distributed I/O

732

Common parameters

The parameters ID and LADDR use the hardware identifier to specify the compo-
nents from which the data is to be read or to which the data is to be written. For a
compact station, it is the hardware identifier of the user data. For a modular station,
it is the hardware identifier of a module in the station and, for an intelligent station,
it is the hardware identifier of a transfer area.

The parameters INPUTS, OUTPUTS and RECORD have the data type VARIANT.
The following are permitted as actual parameters:

b an absolutely or symbolically addressed tag,

b an area that is absolutely addressed with an ANY pointer, or

b a type data block.

The prerequisite for an error-free transfer is that the user data that is to be written
or read be addressed in the process image and belong to a single component.
No boundaries to adjacent user data areas must not be violated with the parameters
OFFSET and LEN.

GETIO Read all inputs of an input area

Using DPRD_DAT, GETIO consistently reads all of the inputs from the component of
a DP standard slave or IO device addressed with the parameter ID.

The destination area specified with the INPUTS parameter must be exactly the same
length as the configured length of the input area read that is also output with the
LEN parameter.

Error information is output at the STATUS parameter.

SETIO Write all outputs of an output area

Using DPWR_DAT, SETIO consistently writes all of the outputs of the component of
a DP standard slave or IO device addressed at the parameter ID.

The source area specified with the OUTPUTS parameter must be exactly the same
length as the configured length of the output area to be written to.

Error information is output at the STATUS parameter.

GETIO_PART Read some inputs of an input area

Using DPRD_DAT, GETIO_PART consistently reads a part of the inputs of the compo-
nent of a DP standard slave or IO device addressed at the parameter ID. The number
of the first byte to be read is present at the OFFSET parameter and the amount of
bytes to be read is present at the LEN parameter.

The destination area specified with the INPUTS parameter must be exactly as long
as or longer than the number of bytes to be read. If the destination area is larger,
only the first LEN bytes of the area are written to and ERROR has signal state “1”.
If an error occurs during the data transfer, ERROR likewise has signal state “1”.

16.5 System blocks for distributed I/O

733

SETIO_PART Write some outputs of an output area

Using DPWR_DAT, SETIO_PART consistently reads a part of the outputs to the com-
ponent of a DP standard slave or IO device addressed at the parameter ID. The num-
ber of the first byte to be written is present at the OFFSET parameter and their
quantity is present at the LEN parameter.

The source area specified with the OUTPUTS parameter must be exactly as long as
or longer than the number of bytes to be written. If the source area is larger, only
the first LEN bytes are transferred and ERROR has signal state “1”. If an error occurs
during the data transfer, ERROR likewise has signal state “1”.

DPRD_DAT Read user data consistently

DPRD_DAT reads consistent user data from a DP standard slave or an IO device.

The hardware identifier of the component from which the user data is to be read is
present at the LADDR parameter. The RECORD parameter specifies the destination
area in which the read data is saved. The destination area must be at least as large
as the user data area that is read.

DPWR_DAT Write user data consistently

DPWR_DAT writes consistent user data to a DP standard slave or an IO device.

The hardware identifier of the component to which the user data is to be written is
present at the LADDR parameter. The RECORD parameter specifies the source area
from which the written data is retrieved. The source area must be at least as large
as the user data area that is to be written.

16.5.2 Read diagnostic data from a DP standard slave

DPNRM_DG Read diagnostic data

DPNRM_DG reads the diagnostic data of a DP standard slave. Fig. 16.20 shows the
graphic representation of the system block. You find it in the program elements
catalog under Extended instructions > Distributed I/O > Others.

The read procedure is triggered by REQ = “1” and is finished when BUSY signals “0”.
The number of read bytes is then present in the function value RET_VAL. Depending
on the slave, the diagnostic data is at least 6 bytes and a maximum of 240 bytes
long. The first 240 bytes are transferred if the diagnostic data is longer and then the
corresponding overflow bit is set in the data.

The RECORD parameter describes the area in which the read data is saved.
The actual parameter can be an absolutely or symbolically addressed tag, an area
that is absolutely addressed with an ANY pointer, or a type data block.

Note that DPMRM_DG is a system function which operates asynchronously. It must
be processed until the BUSY parameter has signal state “0”. RALRM is a system
block which makes the data available synchronously, i.e. immediately following the
call.

16 Distributed I/O

734

16.5.3 Receive and provide a data record

An intelligent IO device can receive a data record from the IO controller and provide
a data record for the IO controller. The system blocks required for this are graphi-
cally displayed in Fig. 16.21. The program elements catalog contains the system
blocks under Extended instructions > Distributed I/O > Others.

RCVREC Receive data record from an IO controller

RCVREC receives a data record from the IO controller in the program of an intelli-
gent IO device. The MODE parameter defines the operating mode:

b MODE = 0: Check whether a request for receiving a data record is present.
If NEW = “1”, a new data record is present.

b MODE = 1: Receive a data record for any transfer area in the user data interface.
The MLEN parameter specifies the maximum number of bytes to be received.
If NEW = “1”, the data record has been written into the data area defined by the
RECORD parameter.

b MODE = 2: Receive a data record for a specific transfer area in the user data inter-
face defined by the F_ID parameter. The MLEN parameter specifies the maximum
number of bytes to be received. If NEW = “1”, the data record has been written
into the data area defined by the RECORD parameter.

b MODE = 3: Accept the received data record and send a positive reply to the
IO controller. The CODE1 and CODE2 parameters must be occupied by zero.

b MODE = 4: Reject the received data record and send a negative reply to the
IO controller. You transfer the error code at the CODE1 and CODE2 parameters.

RCVREC must first be called with MODE = 1 or MODE = 2 and subsequently with
MODE = 3 or MODE = 4 within certain periods which depend on the CPU.

Fig. 16.20 Read diagnostic data from a DP standard slave

System block for reading diagnostic data

DPNRM_DGRead diagnostic
data

Parameter assignment:

REQ

LADDR

RET_VAL

BUSY

RECORD

DPNRM_DG reads diagnostic data from a
DP standard slave.

REQ Job initiation RET_VAL Error information

LADDR Hardware identifier of the DP slave RECORD Receive mailbox for the diagnostic data

BUSY Job is being processed

16.5 System blocks for distributed I/O

735

The number of the received data record is output at the INDEX parameter and its
length at the LEN parameter. The STATUS parameter contains the error informa-
tion. SLOT and SUBSLOT are occupied identical to F_ID.

PRVREC Provide data record for an IO controller

RCVREC provides a data record in the program of the intelligent IO device upon
request by the IO controller. The MODE parameter defines the operating mode:

b MODE = 0: Check whether a request for providing a data record is present.
If NEW = “1”, a new request is present. The SLOT parameter then identifies the
transfer area in the user data interface, the data record number is at the
INDEX parameter, and the number of bytes to be sent at the RLEN parameter.

b MODE = 1: Receive a request for a data record for any transfer area in the user
data interface. The data record number is at the INDEX parameter and the num-
ber of bytes to be sent at the RLEN parameter.

b MODE = 2: Receive a request for a data record for a specific transfer area in the
user data interface defined by the SLOT parameter. The data record number is at
the INDEX parameter and the number of bytes to be sent at the RLEN parameter.

b MODE = 3: Provide the requested data record at the RECORD parameter and send
a positive reply to the IO controller. The CODE1 and CODE2 parameters must be
occupied by zero.

Bild 16.21 Datensatz empfangen und bereitstellen

RCVREC

Instance data Instance data

PRVREC

Receive data record from an
IO controller

Provide data record for an
IO controller

System blocks for receiving and providing data records

MODE MODE

F_ID

CODE1

CODE2

LEN

RECORD

F_ID

MLEN

CODE1

CODE2

RECORD

NEW NEW

STATUS

SLOT

SUBSLOT

INDEX

RLEN

STATUS

SLOT

SUBSLOT

INDEX

LEN

Parameter assignment:

MODE Job ID NEW New data record

F_ID Hardware identifier for the transfer area STATUS Error information

MLEN Maximum number of bytes SLOT (like F_ID)

CODE1 Error code SUBSLOT (like F_ID)

CODE2 Error code INDEX Number of the data record

RECORD Receive mailbox for the data record LEN Length of the data record

RLEN Length of the send data record

16 Distributed I/O

736

b MODE = 4: Reject the requested data record and send a negative reply to the
IO controller. You transfer the error code at the CODE1 and CODE2 parameters.

PRVREC must first be called with MODE = 1 or MODE = 2 and subsequently with
MODE = 3 or MODE = 4 within certain periods which depend on the CPU. The
STATUS parameter contains the error information. SLOT and SUBSLOT are occu-
pied identical to F_ID.

16.5.4 Activate/deactivate distributed station

D_ACT_DP Activate/deactivate distributed station

D_ACT_DP deactivates and activates a DP slave or an IO device and allows scan-
ning of the deactivated or activated status. The system block is graphically dis-
played in Fig. 16.22. You find it in the program elements catalog under Extended
instructions > Distributed I/O.

D_ACT_DP is called in the cyclic program; calling in the startup program is not sup-
ported. D_ACT_DP works asynchronously, i.e. processing of a job can extend over
several program cycles. An activation or deactivation job is started by “1” in the
REQ parameter. The REQ parameter must remain “1” for as long as the BUSY param-
eter has signal state “1”. The job has been completed if BUSY = “0”.

After deactivation, a configured (and existing) station is no longer addressed by the
DP master or the IO controller. The output terminals of deactivated output modules

Fig. 16.22 Activate and deactivate distributed station

System block for activating and deactivating distributed stations

D_ACT_DP deactivates and activates a
distributed station.

REQ Job initiation RET_VAL Error information

MODE Job ID BUSY Job is being processed

LADDR Hardware identifier of the distributed station

The following specifications are possible at the MODE parameter (job ID):

Read the activation/deactivation status

1 Activate distributed station

2 Deactivate distributed station

3 Activate distributed station and then call OB 86

4 Deactivate distributed station and then call OB 86

0

D_ACT_DP
Activate and
deactivate
distributed station

Parameter assignment:

REQ

MODE

LADDR

RET_VAL

BUSY

16.6 DPV1 interrupts

737

carry zero or a substitute value. The process image input of deactivated input mod-
ules is set to “0”.

A deactivated station can be removed from the bus without generating an error
message; it is not signaled as faulty or missing. The call of the organization block
OB 86 is omitted (station failure/restoration). You must not address the station
from the program once it has been deactivated, since otherwise the organization
block OB 122 (I/O access error) will be called with direct access operations, or the
station will be signaled as not present when reading a data record with RDREC.

D_ACT_DP also activates a deactivated station again. The station is configured and
parameterized by the DP master or IO controller as with a return of station. Upon
activation, the organization block OB 86 is not started (Station failure/-restoration).
If the BUSY parameter has signal state “0” following activation, the station can be
addressed from the user program.

If you try to activate a station that is physically separated from the bus, an error
message is output after the configured parameterization time elapses.

16.6 DPV1 interrupts

PROFIBUS DPV1 slaves (PROFIBUS) and correspondingly designed IO devices
(PROFINET IO) can trigger the following interrupts:

b A status interrupt, if the station changes its operating state, for example.

b An update interrupt, if the station has been re-parameterized via the bus system
or directly, for example.

b A manufacturer interrupt, if an event envisaged for this by the manufacturer
occurs in the station.

Table 16.1 shows the number of the organization blocks and the event classes of the
DPV1 interrupts. The constant names and the values are listed in the System
constants tab of the default tag table. The name of the constant can be changed in
the block properties.

Start information

A DPV1 interrupt organization block with the attribute Optimized block access acti-
vated provides the status information shown in Table 16.2 in the Input declaration
section. A DPV1 interrupt organization block with the attribute Optimized block

Table 16.1 Organization blocks and event classes of the DPV1 interrupts

Interrupt Status interrupt Update interrupt Manufacturer interrupt

OB number 55 56 57

Event class Status Update Profile

16 Distributed I/O

738

access deactivated (OB with standard access) provides 20-byte long start informa-
tion in the Temp declaration section, the standard structure of which is described
in 4.11.4 “Start information” on page 142. This contains additional tags, ranging
from byte 5 to byte 11, which identify the component that triggers the interrupt.
The assignment and occupation of the tags depends on the bus system used
(PROFIBUS or PROFINET) (see operating instructions).

The additional interrupt information can be read using the system function block
RALRM (see Chapter 5.7.7 “Reading additional interrupt information” on page 210).

Applying a DPV1 interrupt

A DPV1 interrupt can be triggered from a correspondingly configured distributed
station. Under certain circumstances, alarm triggering must be enabled when the
station is being configured or, if the DP slave can also handle the DPV0 mode, the
DPV1 mode must be activated. Example: For an ET 200S station with the PROFIBUS
interface IM 151-1 HF, DPV1 must be entered in the station properties under Module
parameters > Module parameters in the Interrupt mode field.

Configuring a DPV1 interrupt

To configure a DPV1 interrupt in a CPU 1500, add an organization block with the
event class Status, Update or Profile and enter the name, the programming lan-
guage, and the number. In the properties of the organization block, you can also set
the execution priority in addition to the general information under Attributes.

The interrupt information can be read in the DPV1 interrupt organization block
with the system block RALRM Read additional interrupt info.

16.7 Isochronous mode

16.7.1 Introduction

Reference is made to isochronous mode if a program is executed synchronous to a
PROFIBUS DP cycle or PROFINET IO cycle. In connection with equidistant (equally
long) bus cycles, you thus obtain reproducible response times. The user program
executed in isochronous mode is present in organization block OB 61 Synchronous
Cycle. The system functions SYNC_PI and SYNC_PO are available for isochronous
updating of the process image.

Table 16.2 Start information for a DPV1 interrupt organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input LADDR
Slot
Specifier

HW_IO
UINT
WORD

Hardware identifier
Slot address of interrupt-triggering module
Event identifier

16.7 Isochronous mode

739

Isochronous mode interrupts are only processed in the RUN operating state. An iso-
chronous mode interrupt in the STARTUP and STOP operating states is rejected.

16.7.2 Isochronous mode with PROFINET IO

The prerequisite for isochronous operation for PROFINET is IRT communication
(Isochronous Real-Time). The send clock defined in the sync domain forms the
basis for the time scale (data cycle) with which the I/O signals are read, processed
and output (Fig. 16.23).

The data cycle is the interval at which the IRT transmission takes place on the sub-
net. The application cycle is the interval at which the isochronous mode OB is called.

Ti is the time required for reading the I/O signals. It includes the times for prepara-
tion of the I/O signals in the input modules or electronic modules, and for process-
ing in the IO device.

Ti is followed by the data cycle. This begins with transmission of the I/O signals over
the subnet. Transmission takes place in both directions; the input signals are trans-
mitted to the controller station, and the output signals (from the previous applica-
tion cycle) are transmitted to the IO devices.

The isochronous mode organization block assigned to the PROFINET IO system is
called following a delay time during which the IRT transmission takes place. The

Fig. 16.23 Isochronous mode in the PROFINET IO system (1)

IRT IRTIRTRT + acyclic RT + acyclic

Isochronous mode OB Isochronous mode OB

Processing Processing

Change of the encoder signal
at the module terminal

Delay

Output at
module terminal

Input Output

Ti To

Data cycle

Application cycle = 1 data cycle× Application cycle

Data cycle

Execution time

1 data cycle×

AEE A

Mode 1: The execution time of the isochronous mode program is shorter than a data cycle.

Isochronous mode processing with PROFINET (1)

16 Distributed I/O

740

system block SYNC_PI must be called in the organization block in order to read the
input signals in isochronous mode, and system block SYNC_PO in order to write the
output signals in isochronous mode. The processing time of the isochronous mode
OB must be (significantly) shorter than the application cycle time, for the main pro-
gram is further processed during the differential time.

To begins at the end of the data cycle. To is the time required to output the
I/O signals. It is made up of the transmission time on the subnet, the time for pro-
cessing in the IO device, and the times for preparation of the I/O signals in the out-
put modules or electronic modules.

With isochronous mode, a distinction is made between two types: The processing
time of the isochronous mode program is (significantly) shorter than the time for
one data cycle, or it is longer. In the first case, the isochronous mode OB can be
called in every data cycle (shown in Fig. 16.23); in the second case, the cycle in
which the isochronous mode OB is called – the application cycle – is a multiple of
the data cycle (shown with factor 2 in Fig. 16.24).

If the isochronous mode OB is called in every data cycle – the “Application cycle fac-
tor” is then 1 – SYNC_PI for isochronous updating of the input signals is called first
in the isochronous mode program. Then the signals are processed, followed by the
output with SYNC_PO.

Fig. 16.24 Isochronous mode in the PROFINET IO system (2)

IRT IRT IRT IRTIRTRT + acyclic RT + acyclic RT + acyclic RT + acyclic

Isochronous mode OB Isochronous mode OB

Processing Processing

Change of the encoder signal
at the module terminal

Delay

Output at
module terminal

Input Output

Ti To

Data cycle

Application cycle = n data cycle× Application cycle

Data cycle Data cycle Data cycle

Execution time

(n + 1) data cycle×

A EE A

Mode 2: The execution time of the isochronous mode program is longer than a data cycle

Isochronous mode processing with PROFINET (2)

16.7 Isochronous mode

741

With this mode, the shortest response time between an input signal and the corre-
sponding output signal is therefore the total of Ti, the data cycle time, and To. The
longest response time occurs if the input signal changes shortly after the time for
reading-in, and is the total of Ti, To, and twice the data cycle time.

With an application cycle which takes longer than the data cycle (Fig. 16.24), you
should select a different sequence for updating of the process image: Updating of
the output signals first, then of the input signals, and then the processing. In this
manner it is possible that the output signals are transmitted with the next possible
data cycle (in the next application cycle) even if the data cycle time is short com-
pared to the process image updating time.

With this mode, the shortest response time between an input signal and the corre-
sponding output signal is therefore the total of Ti, the application cycle time, the
data cycle time, and To. The longest response time occurs if the input signal
changes shortly after the time for reading-in, and is the total of Ti, To, the data cycle
time, and twice the application cycle time.

Configuring isochronous mode with PROFINET IO

A prerequisite for the configuration of isochronous mode is IRT communication
and the corresponding functionality of the participating PROFINET components.
Configure the PROFINET IO system with IRT communication as shown in
Chapters 16.3.3 “Configuring PROFINET IO” on page 705 and 16.3.5 “Real-time
communication in PROFINET” on page 710.

To activate the isochronous mode, open the IO device in the device view and acti-
vate the checkbox Isochronous mode in the properties of the input/output module
under I/O addresses. In addition, assign the organization block for the isochronous
mode interrupt (OB 61 Synchronous Cycle) and the relevant process image partition
(e.g. PIP 1) to (Fig. 16.25).

Fig. 16.25 Configuration of isochronous mode in an IO device

16 Distributed I/O

742

Repeat the procedures for each module participating in the isochronous mode, in
the other IO devices as well. In the properties of the IO device, set the method of
determining the Ti/To values under Isochronous mode:

b Automatic setting if the configuration editor is to determine the values

b From OB if the settings in the isochronous mode organization block are to be
imported

b Manual if you want to specify the values for Ti and To yourself

In the properties of the PROFINET subnet, you are given an overview of the set val-
ues and the list of the modules participating in the isochronous mode under
Overview isochronous mode.

16.7.3 Isochronous mode with PROFIBUS

Constant bus cycle time

In the normal case, of the DP master controls the DP slaves assigned to it cyclically
and without pauses. The time intervals may vary as a result of S7 communication,
for example if the programming device carries out control functions over the
PROFIBUS subnet. By using constant bus cycle times it is possible to achieve, for
example, that outputs are always controlled via DP slaves at equal intervals.
The DP master then always starts the bus cycles at equal intervals.

The use of constant bus cycle times is possible with the bus profiles “DP” and
“User-defined”; SYNC/FREEZE groups must not be configured.

Isochronous mode

Reference is made to isochronous mode if a program is executed synchronous to
the PROFIBUS DP cycle. In association with constant bus cycle times it is thus possi-
ble to achieve reproducible, response times of equal duration to the process I/O,
which include the distributed recording of signals, signal transfer over PROFIBUS,
and program execution including process image updating. The user program exe-
cuted in isochronous mode is present in one of the organization blocks OB 61 to
OB 64. The system functions SYNC_PI and SYNC_PO are available for isochronous
updating of the process image.

The application of constant bus cycles is a prerequisite for isochronous mode. Iso-
chronous mode is only possible with a DP master integrated in the CPU as the only
active station on the PROFIBUS.

Fig. 16.26 shows the times involved in the isochronous mode. Ti is the time
required for reading in the process values. It contains the execution time in the
input modules or electronic modules and, in the case of modular DP slaves, the
transfer time on the backplane bus. At the end of Ti, the input information for
transfer using the global control command (GC) is available. The equidistant bus

16.7 Isochronous mode

743

cycle then commences. This is the time between two global control commands and
encompasses the transfer to the subnet as well as the execution of the isochronous
interrupt OB. Between completion of the execution of this OB to the next global con-
trol command there must be time for execution of the main program.

To is the time required to output the process values. It begins with the global con-
trol command and comprises the transfer time on the subnet as well as the process-
ing time in the output modules or electronic modules. In the case of modular
DP slaves, the transfer time on the backplane bus is also added.

The minimum response time in the case of isochronous mode is the total of Ti, the
bus cycle, and To. The maximum response time (Ti + To + 2 × bus cycle) occurs if a
change in the input signal takes place shortly after the global control command.

Correspondingly designed DP slaves allow a reduction in the response time thanks
to “overlapping isochronous mode”. This involves overlapped updating of the input
and output signals (overlapping of Ti and To). In this case, the DP slave must not
obtain the Ti/To values from the subnet. If isochronous modules have both inputs
and outputs, overlapping of Ti and To is not possible.

Configuring isochronous mode with PROFIBUS DP

A prerequisite for configuration of isochronous mode of the bus system is the con-
stant bus cycle time and the corresponding functionality of the participating
DP components. Configure the DP master system as shown in Chapter 16.4.3 “Con-
figuring PROFIBUS DP” on page 721.

Fig. 16.26 Response time with constant bus cycle time and isochronous mode

Acyclic

Cyclic
data transfer

Acyclic
services

Reserve for
constant bus

cycle time

Slave 1Slave 1 Slave nSlave n

Main programMain program OB

Change of the encoder signal
at the module terminal

Output at
module terminal

GCGC

Output

Ti ToConstant bus cycle time

Response time in isochronous mode

Input

Isochronous mode with PROFIBUS

.

Isochronous
mode OB

16 Distributed I/O

744

To switch on the constant bus cycle time and isochronous mode, activate the Enable
constant bus cycle time checkbox in the properties of the PROFIBUS subnet or
DP master system under Constant bus cycle time. Activate isochronous mode for the
participating DP slaves in the Detailed overview section and, if you “open” a line with
a DP slave, the isochronous mode of the individual I/O modules in the DP slave.
In the Ti/To values column you can select the mode from a drop-down list for calcu-
lation of the Ti/To values:

b From subnet: The currently configured DP slave obtains the Ti/To values from
the subnet and thus has the same values as the other DP slaves which also obtain
their values from the subnet.

b Automatic minimum: If you manually change the Ti/To values of another DP
slave when in this setting, any adaptations which may be necessary on the cur-
rently configured DP slave are carried out automatically.

b Manual: With this setting, you manually enter the Ti/To values for the currently
configured DP slave.

You can also make these settings in the interface properties of the DP slave under
Isochronous mode. Each module or submodule involved in isochronous mode must
be addressed in a process image partition. You set the process image partition for
the module in the Device view in the module properties under I/O addresses (Fig.
16.27).

Fig. 16.27 Activation of isochronous mode in a DP slave

16.7 Isochronous mode

745

16.7.4 Isochronous mode interrupt

The “Isochronous mode” function permits synchronous reading, processing and
output of I/O signals in a fixed (equidistant) cycle. The user program executed in
isochronous mode is present in organization block OB 61 Synchronous Cycle.
The system blocks SYNC_PI and SYNC_PO are available for isochronous updating of
the process image.

Start information

A synchronous interrupt organization block with the attribute Optimized block
access activated provides the start information shown in Table 16.3 in the Input dec-
laration section. A synchronous interrupt organization block with the attribute
Optimized block access deactivated (OB with standard access) provides 20-byte long
start information in the Temp declaration section, the standard structure of which
is described in 4.11.4 “Start information” on page 142. The GC_VIOL and
MISSED_EXEC tags allow you to recognize faulty isochronous processing. Default
settings can be programmed in the first cycle identified by the FIRST tag. The DP_ID
tag indicates the master system from which the isochronous mode interrupt OB
was called.

Configuring an isochronous mode interrupt

To configure an isochronous mode interrupt, add an organization block with the
event class Synchronous Cycle and enter the name, programming language and
number. In addition to the general information and the block attributes, you can
set the execution priority and the overload behavior in the properties of the orga-
nization block. You can change the preset priority 21 from 16 to 26 under Priority.
Under Event queuing, you define the response in the event of an overload (see sec-
tion “Overload behavior” on page 194).

Table 16.3 Start information for an isochronous mode interrupt organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input Initial_Call
PIP_Input

PIP_Output

IO_System
Event_Count
SyncCycleTime

BOOL
BOOL

BOOL

USINT
INT
LTIME

With “1”: First call of the organization block
With “1”: The process image partition of the inputs is up
to date
With “1”: The process image partition of the outputs is up
to date
Number of the interrupt-triggering I/O system
Number of cycles lost
Calculated cycle time

The Optimized block access attribute is deactivated (standard access):

Temp GC_VIOL
FIRST
MISSED_EXEC
DP_ID

BOOL
BOOL
BYTE
BYTE

GC violation
First execution of the organization block
Number of discarded OB calls
Number of the interrupt-triggering I/O system

16 Distributed I/O

746

The application cycle and the delay time are set under Isochronous mode. The appli-
cation time for PROFINET is an integral multiple of the send clock (possible values
1 to 14) and for PROFIBUS it is the global control command. If the Automatic setting
checkbox is activated, the delay time is automatically calculated. If it is deactivated,
you can manually specify the delay time between the send clock or global control
command and the start of the organization block.

In the isochronous mode OB, call the system blocks SYNC_PI prior to the interrupt
routine and SYNC_PO after the interrupt routine. These functions update the pro-
cess image partition of those inputs and outputs you are using in the interrupt rou-
tine. When configuring these modules, you must apply their addresses to the pro-
cess image partition assigned to the isochronous mode interrupt OB.

Caution: In the interrupt routine itself you may only work with the inputs and outputs
of the process image partition. Direct access to the I/O addresses assigned to the
process image partition is not permissible!

Behavior in the STOP and STARTUP operating states

An isochronous mode interrupt is only processed in the RUN operating state.
A isochronous mode interrupt in the STOP or STARTUP operating states is rejected.
The number of OB calls which have not been executed is indicated in the start infor-
mation of the isochronous mode interrupt OB called for the first time in RUN.

Error handling

If the isochronous mode interrupt organization block is not present when an iso-
chronous mode interrupt arrives, the operating system ignores the event with
global error handling.

If an isochronous mode interrupt arrives before the associated isochronous mode
interrupt OB has been terminated, the overload behavior configured in the block
properties is activated (see also section “Overload behavior” on page 194).

16.7.5 Isochronous process image updating

For the isochronous and data-consistent update of the process image partitions, the
system blocks SYNC_PI Update inputs in isochronous mode and SYNC_PO Update
outputs in isochronous mode are available. You can find the system blocks in the pro-
gram elements catalog under Extended instructions > Process image. Fig. 16.28
shows the graphic representation of the system functions.

The system function SYNC_PI updates a process image partition of the inputs.
The system function SYNC_PO updates a process image partition of the outputs.
Updating is carried out isochronously and data-consistent. The two system func-
tions may only be called in an isochronous mode interrupt OB. At the PART param-
eter you define the process image partition to be updated and that is assigned to
this organization block.

16.7 Isochronous mode

747

A process image partition which is updated with the system blocks SYNC_PI and
SYNC_PO cannot be automatically updated or updated with the system blocks
UPDAT_PI and UPDAT_PO and it cannot be accessed by means of direct accessing.

Fig. 16.28 System blocks for isochronous updating of process image partitions

SYNC_PI

SYNC_PO

Update process image
partition of the
inputs

Update process image
partition of the
outputs

Isochronous updating of process image partitions

PART

PART

RET_VAL

FLADDR

RET_VAL

FLADDR

SYNC_PI transfers a process image
partition of the inputs in isochronous
mode.

SYNC_PO transfers a process image
partition of the outputs in isochronous
mode.

PART Number of the process image partition RET_VAL Error information

FLADDR Address of the first byte causing
the error

Parameter assignment:

17 Communication

748

17 Communication

17.1 Overview

Communication is understood to be the data exchange between networked sta-
tions. A station is a device containing a module with communication capability, for
example a programmable controller or an HMI device. The stations are connected
either to a bus system or to a point-to-point connection. In the case of a bus system,
all stations are connected together over one single line; in the case of a point-to-
point connection, the connection is limited to two stations.

The physical connection on its own – the networking – is not sufficient for commu-
nication. A specifically defined sequence, referred to as the protocol, is required to
exchange the data. The communication partners and the protocol are defined when
establishing a connection.

A PLC station with a CPU 1500 can exchange data with other stations using various
methods. The connection is made

b With Industrial Ethernet via the PROFINET interface on the CPU or via the
CP 1543-1 communication module

b With PROFIBUS via the PROFINET interface on the CPU 1516 or via the CM 1542-5
communication module

b Point-to-point communication is implemented via the communication
modules CM PtP RS232 BA, CM PtP RS232 HF, CM PtP RS422/485 BA, and
CM PtP RS422/485 HF

The connection to a subnet is made via the interfaces integrated on the CPU or via
communication modules. Communication is controlled by the operating system of
the CPU or CM module, possibly supported by communication functions. These are
either system blocks which are called in the control program, or loadable function
blocks.

Note that a CPU 1500 has a limited number of “connection resources”. Table 2.1 on
page 50 shows the possible number of simultaneously established connections.

Data exchange with the distributed I/O (PROFIBUS DP and PROFINET IO) is
described in Chapter 16 “Distributed I/O” on page 696.

A prerequisite for configuration of communication is a created project with the
PLC stations involved in the communication. Chapter 3 “Device configuration” on
page 61 describes how to create a project and configure the PLC stations.

17.1 Overview

749

The communication between a PLC station and a programming device does not
require any connection configuration or communication functions in the user pro-
gram.

Data transmission via Industrial Ethernet

When configuring the networking and connections, Industrial Ethernet is handled
like a bus system. Strictly speaking, however, the Ethernet network consists only of
single point-to-point connections. If only two stations exchange data with each
other, they can be directly connected with a cable. If there are more than two sta-
tions, a connection multiplier (switch) is needed, which provides, for example, an
interface with four ports. If a station has two ports connected with a switch, the bus
cable can be guided to the next station via the second port. Data can be transferred
via Industrial Ethernet, for example, with open user communication, S7 communi-
cation, or Modbus TCP.

Data transmission with open user communication

Open user communication transfers data between two PLC stations that are con-
nected together via an Ethernet network. Data transfer can be implemented using
the TCP, UDP and ISO-on-TCP protocols. The communication function TSEND_C is
available in the sending station and TRCV_C is available in the receiving station for
setting up a connection and transferring data.

Data transmission with S7 communication

S7 communication allows data to be transferred between two PLC stations con-
nected via an Ethernet network or PROFIBUS. Data transmission requires a config-
ured connection (“S7 connection”). For one-way data exchange, the communication
functions in the user program are GET to read data and PUT to write data. In the
remote station, the CPU operating system controls the data traffic without a com-
munication function in the user program. For two-way data exchange, the commu-
nication functions USEND and BSEND are called in the transmitting station and
URCV and BRCV are called in the receiving station.

Data transmission with a point-to-point connection

A serial, character-based point-to-point connection allows for a very free definition
of the protocol. For example, a printer, barcode reader or modem on a CPU 1500 can
be operated with the transmission standards RS232 or RS485 via a CM PTP RS 232
or CM PTP RS422/485 communication module. The ASCII protocol and the commu-
nication functions for Modbus RTU and USS drives are available for point-to-point
communication.

17 Communication

750

Configuration of communication with STEP 7

The networking and the connections are configured with the hardware configura-
tion in the network view. The connection of a programming device is not configured
except for the parameterization of the PROFINET interface (IP address). Networking
with a programming device and a connection multiplier as well as a point-to-point
connection are not displayed in the network configuration.

In Fig. 17.1 you can see the networking (wiring) between the stations necessary for
data exchange. The lower part shows the configuration with the hardware configu-
ration: In the networking view, the networking is represented by the Ethernet sub-
net PN/IE_1 and in the connection view the configured connections between sta-
tions are highlighted; in the example an HMI_Connection.

Before connecting to Ethernet, the PROFINET interface of the CPU must be param-
eterized (see Section “IP address and subnet mask” on page 82). The connection of
a programming device is described in Chapter 15.1 “Connection of a programming
device to the PLC station” on page 648.

The PLC and HMI stations to be networked must be located together in one project.

Fig. 17.1 Comparison of the wiring and configuration

Physical wiring of the stations

Representation with STEP 7 in the network view

Representation of networking

Representation of connection

CPU 1516 with CM PtP CPU 1511Programming device Barcode readerKTP 600
S

PtP connection

S

ESC OK

S

ESC OK

17.2 Open user communication

751

17.2 Open user communication

17.2.1 Basics

Open user communication is a procedure for transmitting data between two sta-
tions connected to the Ethernet subnet. Data exchange can be implemented using
the protocols TCP in accordance with RFC 793, ISO-on-TCP in accordance with
RFC 1006, and UDP in accordance with RFC 768.

Prerequisite for open user communication is the networking of the participating
stations via an Ethernet network, either using the integrated CPU interface and a
communication module. The communication connection can be configured either
during the network configuration or be programmed with the communication
functions in a data block. If the TCP and UDP protocols are used, this data block has
the structure of the system data type TCON_IP_v4; for the ISO-on-TCP protocol,
it has the structure of the system data type TCON_IP_RFC.

For open user communication, you use the communication functions TSEND_C and
TRCV_C in the user program. These functions establish a programmed connection,
control the data traffic, and terminate a programmed connection or reset a config-
ured connection.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is described in RFC 793. TCP is suitable for
medium to large amounts of data (up to 8192 bytes) with static (fixed) data lengths.
It is capable of routing. Performance features include, for example, recovery in case
of failure, flow control, and reliability. TCP is connection-oriented. The applications
are addressed via port numbers. TCP is used if the communication partner does not
support a connection via ISO-on-TCP. For such communication partners, enter
“unspecified” as the partner end point in the connection parameterization.

User Datagram Protocol (UDP)

Data transmission with UDP is described in RFC 768. The protocol is suitable for
transmitting small to medium amounts of data (up to 2048 bytes) quickly, because
it is close to the hardware. It is capable of routing. The delivery of the data is unse-
cured and there is no feedback about its receipt. The communication partner is
addressed without connection via the IP address and a port.

ISO Transport over TCP (RFC 1006)

With the RF 1006 (ISO-on-TCP) protocol, ISO applications can be adopted into the
TCP/IP network. It is suitable for medium to large volumes of data (up to 8192 bytes)
with a dynamic length. It is routing-capable and can be used in a wireless network.
Multiple connections can be established to a single IP address. The unambiguous
assignment of a connection (communication endpoint) to an IP address is provided
by a Transport Service Access Point (TSAP).

17 Communication

752

17.2.2 Data structure of open user communication

Fig. 17.2 shows the data structure of open user communication.

In the transmitting station, the communication function TSEND_C is called in the
user program. At the parameter CONNECT there is a pointer to a data block that has
the structure of the system data types TCON_IP_v4 (for the protocols TCP and UDP)
or TCON_IP_RFC (for the protocol ISO-on-TCP) and contains the connection data.
The parameter DATA points to the data to be sent. In the receiving station, the com-
munication function TRCV_C is called in the user program. The parameter
CONNECT is supplied with a data block that contains the connection data.
The parameter DATA contains a pointer to the receive mailbox in which the received
data is stored.

At runtime, the communication functions TSEND_C and TRCV_C establish a con-
nection in both stations, transfer the data, and then – depending on the
programming – end the connection. For these actions, TSEND_C and TRCV_C inter-
nally use, for example, the communication functions TCON, TDISCON, TSEND and
TRCV or TUSEND and TURCV. These communication functions can also be used
individually; however, they are not described in this book.

The communication functions TSEND_C and TRCV_C can be found in the program
elements catalog under Communication > Open user communication. Fig. 17.3
shows the calls of the functions in ladder logic representation.

Fig. 17.2 Communication functions TSEND_C and TRCV_C

Subnet

Industrial Ethernet

CPU 1500 CPU 1500

CONNECT CONNECT

DATA DATA

Connection
data for

TCP and UDP

Connection
data for

TCP and UDP

Connection
data for

ISO-on-TCP

For a con-
figured

connection

For a con-
figured

connection

Connection
data for

ISO-on-TCP

Transmission
data

Transmission
data

TCON_IP_v4 TCON_IP_v4

TCON_IP_RFC

TCON_Configured TCON_Configured

TCON_IP_RFC

TSEND_C TRCV_C

Data structure for open user communication

C
on

n
ec

ti
on

 r
es

ou
rc

es

C
on

n
ec

ti
on

 r
es

ou
rc

es

17.2 Open user communication

753

17.2.3 Establish connection and send data with TSEND_C

The communication function TSEND_C establishes a connection, sends data with
the TCP, UDP or ISO-on-TCP protocols, and also terminates the connection.

Control data transmission

TSEND_C works asynchronously, i.e. processing of a job may extend over several
program cycles. You can control the establishing of the connection and the data
transfer using the parameters CONT, REQ and COM_RST. The data transmission sta-
tus is indicated in the parameters BUSY, NDR, DONE, ERROR, and STATUS. You must
evaluate these parameters immediately after each execution of the communication
function since they only remain valid until the next call.

In the initial state, the parameters CONT, REQ and COM_RST are assigned signal
state “0” and no data is sent. If the signal state at CONT switches from “0” to “1”, a
configured connection is checked or a programmed connection is established. After
the job is successfully completed, the parameter DONE is set to “1” for the duration
of one program cycle. Data is sent via an established connection if a rising edge
occurs at the parameter REQ. After the transfer is successfully completed, DONE is
set to “1” for the duration of one program cycle.

If the signal state at CONT switches from “1” to “0”, a configured connection is reset
or a programmed connection is terminated. After the job is successfully completed,
the parameter DONE is set to “1” for the duration of one program cycle. If the signal
state at COM_RST switches from “0” to “1”, any running data transfer is aborted and
the connection is reset. After this, COM_RST is reset to signal state “0”.

The parameter BUSY has signal state “1”, indicating that the send job has not yet
been ended and a new job cannot be initiated. The ERROR parameter signals with
signal state “1” that the started job has been completed with errors. It is only set for
the duration of one program cycle. The STATUS parameter contains intermediate
states or error information.

Fig. 17.3 Calls of the communication functions for open user communication (LAD)

Calls of the communication functions for open user communication

Establish connection and
send data

Establish connection and
receive data

17 Communication

754

Specifying send data

The parameter DATA points to the send mailbox for the transmission data. An abso-
lutely or symbolically addressed tag or a type data block can be used as actual
parameter. If the send mailbox is located in a data block with standard access
(the attribute Optimized block access is deactivated), then a data area that is abso-
lutely addressed with an ANY pointer can also be addressed.

The parameter LEN specifies the maximum number of bytes sent. If the send mail-
box is located in a data block with optimized access, the value zero must be used
at LEN.

Specifying a connection

The CONNECT parameter points to a data block or a tag with the description of the
connection parameters. The structure depends on the type of connection and the
protocol used and is defined by system data types:

b For a programmed connection and the TCP and UDP protocols, it is the system
data type TCON_IP_v4.

b For a programmed connection and the ISO-on-TCP protocol, it is the system data
type TCON_IP_RFC.

b For a configured connection, it is the system data type TCON_Configured.

The ADDR parameter is used for a UDP connection and contains the IP address and
the port number of the partner station with the data structure of the system data
type TADDR_Param.

17.2.4 Establish connection and receive data with TRCV_C

The communication function TRCV_C establishes a connection, receives data with the
TCP, UDP or ISO-on-TCP protocols, and also terminates the connection.

Control data transmission

TRCV_C works asynchronously, i.e. processing of a job may extend over several pro-
gram cycles. You can control the establishing of the connection and the data trans-
fer using the parameters EN_R, CONT, ADHOC and COM_RST. The data transmis-
sion status is indicated in the parameters BUSY, DONE, ERROR and STATUS.
You must evaluate these parameters immediately after each execution of the com-
munication function since they only remain valid until the next call.

In the initial state, the parameters CONT, EN_R, ADHOC and COM_RST are assigned
signal state “0” and no data is received. If the signal state at CONT switches from “0”
to “1”, a configured connection is checked or a programmed connection is estab-
lished. After the job is successfully completed, the parameter DONE is set to
signal state “1” for the duration of one cycle. Data is only received via an established
connection if the parameter EN_R is assigned “1”. After the transfer is successfully
completed, DONE is set to signal state “1” for the duration of one cycle.

17.2 Open user communication

755

If the signal state at CONT switches from “1” to “0”, a configured connection is reset
or a programmed connection is terminated. After the job is successfully completed,
the parameter DONE is set to “1” for the duration of one program cycle. If the signal
state at COM_RST switches from “0” to “1”, any running data transfer is aborted and
the connection is reset. After this, COM_RST is reset to signal state “0”.

The parameter BUSY has signal state “1”, indicating that the receive job has not yet
been ended and a new job cannot be initiated. The ERROR parameter signals with
signal state “1” that the started job has been completed with errors. It is only set for
the duration of one program cycle. The STATUS parameter contains intermediate
states or error information.

Specifying receive data

The parameter DATA points to the receive mailbox for the transmission data.
An absolutely or symbolically addressed tag or a type data block can be used as
actual parameter. If the send mailbox is located in a data block with standard access
(the attribute Optimized block access is deactivated), then a data area that is abso-
lutely addressed with an ANY pointer can also be addressed.

The LEN parameter specifies the maximum number of bytes to be received.
When transferring data with the TCP protocol and ADHOC = “0” or with the
ISO-on-TCP protocol, the data is received with the length specified at
parameter LEN. The actual number of bytes received at the RCVD_LEN parameter
corresponds to the number of bytes at the LEN parameter.

With the TCP protocol, the data is received with a dynamic length if the parameter
ADHOC has signal state “1”. The actual number of bytes received is output at the
parameter RCVD_LEN.

Specifying a connection

The CONNECT parameter points to a data block or a tag with the description of the
connection parameters. The structure depends on the type of connection and the
protocol used and is defined by system data types:

b For a programmed connection and the TCP and UDP protocols, it is the system
data type TCON_IP_v4.

b For a programmed connection and the ISO-on-TCP protocol, it is the system data
type TCON_IP_RFC.

b For a configured connection, it is the system data type TCON_Configured.

The ADDR parameter is used for a UDP connection and contains the IP address and
the port number of the partner station with the data structure of the system data
type TADDR_Param.

17.2.5 Configuring open user communication

Prerequisite for open user communication is the networking of the PLC stations par-
ticipating in the data exchange via Industrial Ethernet. The required procedure is

17 Communication

756

described in Chapter 3.4 “Configuring a network” on page 73. Open user communi-
cation requires either a connection that is configured with the network configura-
tion or a connection that is programmed using the program editor.

Configuring a communication connection

In the network view, click on the Connections button and select the desired connec-
tion from the drop-down list: ISO-on-TCP, TCP or UDP connection. The stations that
support the selected connection are highlighted. You can create a connection
between two stations by left-clicking on one station and “dragging” the connecting
line to the other station (see Chapter 3.4.5 “Configuring a connection” on page 78).
The connection is displayed in the graphic and in the connection table in the lower
part of the working window. If the connection is selected, the inspector window
shows the connection properties in the Properties tab.

Programming the communication functions

The communication functions for open user communication are called in the main
program, for example in a function block that is called in the organization block
OB 1 or another organization block with the event class Program cycle.

The communication functions can be found in the program elements catalog in the
folder Communication > Open user communication. Drag the desired communica-
tion function into the opened block. When you release the mouse button, you will
be prompted to specify the call option. Select the Single instance option; a separate
data block is then assigned to the call. Under Properties in the Configuration tab in
the inspector window, the program editor shows the block parameters and the con-
nection parameters (Fig. 17.4).

If you want to use a configured connection for open user communication, select
Use configured connection from the Configuration mode drop-down list. Then click
on the button with the three dots under Connection name. The Select connection dia-
log is displayed with the already configured connections. Select one of the displayed
connections and confirm the selection by clicking on OK. After this, the data of the
configured connection is imported into the connection parameters. Fields high-
lighted in red in the connection parameters must be filled in. You must now supply
the remaining parameters at the block call in the working window of the program
editor.

If you want to use a programmed connection for open user communication, select
Use program blocks from the Configuration mode drop-down list. Then select the
connection partner from the Partner drop-down list. If you select the entry <new>
from the Connection data drop-down list for both stations, a new data block with the
connection data is created. Then select the type of connection from the Connection
type drop-down list. You must now supply the remaining parameters at the block
call in the working window of the program editor.

17.2 Open user communication

757

Further entries in the connection parameters

The Connection ID identifies the connection and must be the same in both stations.
(Multiple connections between the partners can be created.)

For the connection data, you can also create a type data block or a tag in a global
data block with the system data type TCON_IP_v4 or TCON_IP_RFC and preset it
with the corresponding connection properties. Specify this data block or this tag as
the actual parameter at the CONNECT parameter and enter the type or global data
block in the Connection data field. At the ADDR parameter (for a UDP connection),
you can create a type data block or a tag with the system data type TADDR_Param.

Use the Active connection establishment option to specify which of the stations is to
initiate the connection.

For the TCP and UDP connection types, enter the port number of the partner under
Address details. The number 2000 (dec) is specified by default. If you create multiple
connections, assign each connection its own port number (in the range of 2000 to
5000 decimal).

For the connection type ISO-on-TCP, enter the access points (TSAP). The TSAP_ID
must be unique in a station. If you create multiple connections, assign each connec-
tion its own TSAP ID. A TSAP has a length of 2 to 16 bytes.

By default, when configuring the connection editor, the TSAP
“E0.01.49.53.4F.6F.6E.54.43.50.2D.31” is assigned. The first byte “E0” stands for

Fig. 17.4 Configuring the connection parameters for open user communication

17 Communication

758

open user communication. “01” specifies the module (rack = 0, slot = 1). The next
bytes are the ASCII characters “ISOonTCP-1”.

If you enter a new TSAP, first enter the character sequence in the field TSAP (ASCII).
You then add the characters “E0.01.” before it in the TSAP ID field. In the TSAP
(ASCII) field, the TSAP is no longer displayed because the first character (E0) is not
an ASCII character.

17.2.6 Further functions of open user communication

Send e-mail

TMAIL_C sends an e-mail via an Ethernet interface in an S7-1500 station. The sta-
tion must have a connection to the dial-up server of the Internet Service Provider
via the network. You can find TMAIL_C in the program elements catalog under
Communication > Open user communication. Fig. 17.5 shows the call of TMAIL_C in
LAD representation.

TMAIL_C works asynchronously, i.e. processing of a job extends over several pro-
gram cycles. You initiate an e-mail transfer with a rising edge at parameter REQ.
As long as the parameter BUSY has signal state “1”, the job is still in progress.
If DONE = “1”, the job has been completed. If an error occurred while the job was
processing, ERROR = “1” and STATUS has the associated error information.

Fig. 17.5 Sending an e-mail with TMAIL_C

ATTACHMENT

MAIL_ADDR_PARAM

TO_S

SUBJECT

TEXT

ATTACHMENT_NAME

CC

Addresses of
recipients

Subject heading

E-mail text

Name of attachment

TMAIL_C

E-mail attachment

Connection

Send e-mail

Send e-mail

The parameters TO_S, CC, SUBJECT, TEXT and
ATTACHMENT_NAME expect a STRING tag as
actual parameter. The characters are only
transmitted if the string contains characters.
ATTACHMENT expects an ARRAY tag with BYTE,
WORD or DWORD components.
MAIL_ADDR_PARAM expects a tag with the
system data type Tmail_v4 for the connection
parameters.

17.2 Open user communication

759

Write the addresses of the receivers at parameters TO_S and CC in a STRING tag
with a maximum length of 180 characters. The e-mail address is in angle brackets,
preceded by a space (blank). You can separate several addresses with a comma.
The assignment of CC is optional.

The subject and the text of the e-mail at parameters SUBJECT and TEXT are each
contained in a STRING tag with a maximum length of 180 characters. The assign-
ment of TEXT is optional.

If a tag is specified at parameter ATTACHMENT, its contents are sent as an attach-
ment with the e-mail. The tag must have the data type ARRAY with BYTE, WORD or
DWORD components and can have a maximum length of 64 KB. The filename of the
attachment is located at ATTACHMENT NAME in a STRING tag with a maximum
length of 50 characters. Specifying this information is optional. For a blank string,
the attachment is given the filename “attachment.bin”.

MAIL_ADDR_PARAM expects a tag with the system data type Tmail_v4 if the inte-
grated PN interface of the CPU is used (addressing via the IP address according to
IPv4). If the e-mail is sent via a CP module, there are also tags with the system data
types Tmail-v6 (addressing via the IP address according to IPv6) or Tmail_FQDN
(addressing via fully qualified domain names).

Configuring a PN interface with T_CONFIG

T_CONFIG configures the integral PROFINET interface of the CPU. A prerequisite is
that the Set IP address using a different method option was set during parameteriza-
tion of the PROFINET interface with the hardware configuration when assigning the
IP parameters. You can find T_CONFIG in the program elements catalog under
Communication > Open user communication > Others. Fig. 17.6 shows the call of the
function in LAD representation.

The adjustable parameters are the IP address, subnet mask, and router address.
If the station is an IO device, the PROFINET device name can also be changed.

IP_CONF works asynchronously, i.e. processing of a job can extend over several
program cycles. The job is initiated with a rising edge on the parameter REQ. The
job has been completed if BUSY = “0”. The DONE parameter indicates with signal
state “1” that the job has been completed without errors. In the event of an error,
ERROR has signal state “1”. The STATUS parameter provides information on errors
which have occurred and the ERR_LOC parameter identifies the source.

You specify the hardware identifier of the PN interface at the INTERFACE parameter.
STEP 7 specifies the hardware identifier during configuration and lists it in the
System constants tab of the default tag table. The CONF_DB parameter is a pointer
to the configuration data.

Checking the connection with T_DIAG

T_DIAG checks the status of the connection which has its connection ID specified at
Parameter ID. You can find T_DIAG in the program elements catalog under

17 Communication

760

Communication > Open user communication > Others. Fig. 17.6 shows the call of the
function in LAD representation.

TDIAG works asynchronously, i.e. processing of a job extends over several program
cycles. You initiate the check with a rising edge at parameter REQ. As long as the
parameter BUSY has signal state “1”, the job is still in progress. If DONE = “1”, the
job has been completed. If an error occurred while the job was processing, ERROR
= “1” and STATUS has the associated error information.

The read information is saved in the data area to which the parameter RESULT is
pointing.

Resetting a connection with T_RESET

T_RESET resets the connection which has its connection ID specified at Parameter
ID. You can find T_RESET in the program elements catalog under Communication >
Open user communication > Others. Fig. 17.6 shows the call of the function in
LAD representation

T_RESET works asynchronously, i.e. processing of a job extends over several pro-
gram cycles. You initiate the check with a rising edge at parameter REQ. As long as
the parameter BUSY has signal state “1”, the job is still in progress. If DONE = “1”,
the job has been completed. If an error occurred while the job was processing,
ERROR = “1” and STATUS has the associated error information.

T_RESET interrupts any data transfer that might be running, empties the buffer for
sending and receiving data, if applicable, and terminates the connection. For a con-
figured or programmed connection, the end points of the connection are retained.
The active connection partner then establishes the connection again.

Fig. 17.6 Setting a PN interface with T_CONFIG

Configure interface, check and reset connection

Configure PN
interface

Check connection

Reset
connection

T_CONFIG overwrites the properties of the
integrated PN interface. The values are
saved in a data block, to which the
parameter CONF_DATA is pointing.

T_DIAG checks the status of a connection
and stores the information in a data area,
to which the RESULT parameter is pointing.

T_RESET aborts any ongoing data
transmission, deletes the data buffers if
applicable, and cancels the connection.

17.3 S7 communication

761

17.3 S7 communication

17.3.1 Basics

S7 communication transfers large data quantities between PLC stations. The sta-
tions are connected to one another over an Ethernet or PROFIBUS subnet.
Chapters 3.4.6 “Configuring a PROFINET subnet” on page 80 and 3.4.7 “Configur-
ing a PROFIBUS subnet” on page 84 describe how to create such a subnet. The com-
munication connections are static and are configured in the connection table.

For a one-way data exchange, only one PLC station requires a communication func-
tion. In the other (remote) PLC station, the operating system takes over the data
transfer. For a two-way data exchange, the data transfer takes place between one
communication function in one PLC station and a second communication function
in the other (remote) PLC station.

17.3.2 One-way data exchange

In the case of one-way data exchange, the call of the communication function is
only present in one CPU. In the partner CPU, the operating system controls the
required data exchange (Fig. 17.7).

Fig. 17.7 Data structure for one-way data exchange

Subnet

Industrial Ethernet or PROFIBUS

CPU 1500 CPU 1500

ADDR_x

ADDR_x

ID

ID

RD_x

SD_x

Area
address1

Area
address2

Area
address2

Area
address1

Transmission
data1

Transmission
data2

Transmission
data2

Transmission
data1

GET

PUT

Operating
system

One-way data exchange with S7 communication

C
on

n
ec

ti
on

 r
es

ou
rc

es

C
on

n
ec

ti
on

 r
es

ou
rc

es

Connection

Connection

17 Communication

762

The following communication functions are available for one-way data exchange:

b GET Read data from a partner CPU

b PUT Write data to a partner CPU

The graphic representation of the block calls is shown in Fig. 17.8.

The data read using GET is combined in the partner CPU by the operating system;
the data written using PUT is distributed by the operating system in the partner
CPU. A send or receive (user) program is not required in the partner CPU. The part-
ner CPU can perform the required communication services both in RUN and STOP.
The size of the consistently transferred data blocks depends on the partner CPU
used and the number of parameters used (SD_n or RD_n).

In the partner CPU, access with GET or PUT must be permitted. You can find the set-
ting in the CPU properties under Protection and Connection mechanisms: Activate
the checkbox Permit access with PUT/GET communication from remote partner. GET
and PUT can only address data areas in blocks with standard access; the attribute
Optimized block access must be deactivated.

Common parameters

A positive edge at the REQ parameter starts the data exchange. You supply the
ID parameter with the connection ID defined by STEP 7 in the connection table.

The block signals with “1” at the DONE or NDR parameter that the job has been com-
pleted without errors. Any errors are signaled by “1” at the ERROR parameter.
The STATUS parameter shows with an assignment which is not zero either a warn-
ing (ERROR = “0”) or an error (ERROR = “1”). You must evaluate the DONE, NDR,
ERROR, and STATUS parameters after every block call.

Fig. 17.8 Communication functions for one-way data exchange

Calls of the communication functions for S7 communication

GET: Read data
for one-way data exchange

PUT: Write data
for one-way data exchange

17.3 S7 communication

763

GET Read data from a partner CPU

At the ADDR_n parameter you specify the memory area in the partner device from
which you want to fetch data. You address the area using an ANY pointer as
described in Chapter 4.9.4 “ANY pointer” on page 135. The read data is entered into
the tag or the area which is specified at parameter RD_n (receive mailbox). If the
read data area is larger than the receive mailbox, an error is displayed via ERROR
and STATUS. Use the parameters ADDR_n and RD_n without gaps, beginning with 1.
You do not supply parameters which are not required.

PUT Write data to a partner CPU

At the ADDR_n parameter you specify the memory area in the partner device to
which you want to send data. You address the area using an ANY pointer as
described in Chapter 4.9.4 “ANY pointer” on page 135. The data that is to be written
is entered into the tag or the area which is specified at parameter SD_n (send mail-
box). If the send mailbox is larger than the memory area addressed with ADDR_n,
an error is displayed via ERROR and STATUS. Use the parameters without gaps,
beginning with 1. You do not supply parameters which are not required.

17.3.3 Two-way data exchange

For two-way data exchange you require a send block and a receive block at each end
of a connection. Both blocks have the connection IDs which are present in the same
line in the connection table. You can also use several “pairs of blocks” for a connec-
tion which are then distinguished by the job ID (Fig. 17.9).

Fig. 17.9 Data structure for two-way data exchange

Subnet

Industrial Ethernet or PROFIBUS

CPU 1500 CPU 1500

R_ID R_ID

R_ID R_ID

ID ID

ID ID

SD_x RD_x

SD_1 RD_1

Connection1 Connection1

Connection1Connection1

Job1 Job1

Job2Job2

Transmission
data1

Transmission
data2

Transmission
data2

Transmission
data1

USEND URCV

BSEND BRCV

Two-way data exchange with S7 communication

C
on

n
ec

ti
on

 r
es

ou
rc

es

C
on

n
ec

ti
on

 r
es

ou
rc

es

17 Communication

764

The following blocks are available for two-way data exchange:

b USEND Send data uncoordinated

b URCV Receive data uncoordinated

b BSEND Send a data block with a length of up to 64 KB

b BRCV Receive a data block with a length of up to 64 KB

The size of the consistently transferred data blocks for uncoordinated sending and
receiving depends on the partner CPU used and the number of parameters used
(SD_n or RD_n). The blocks can be found in the program elements catalog under
Communication > S7 communication. The graphic representation of the block calls
is shown in Fig. 17.10.

Common parameters

A positive edge at the REQ parameter starts the data exchange, a positive edge at the
R parameter aborts it. A “1” at the EN_R parameter signals the readiness to receive
and a current job can be aborted by “0”.

You supply the ID parameter with the connection ID defined by STEP 7 in the con-
nection table for both the local and partner devices. Use R_ID to define a freely-
selectable yet unique job ID which must be the same for the send and receive
blocks. In this manner, several pairs of send and receive blocks can use a single con-
nection (specified by means of ID).

Fig. 17.10 Communication functions for two-way data exchange

Calls of the communication functions for S7 communication

USEND: Send uncoordinated
data with two-way
data exchange

BSEND: Send data block
by block with two-way
data exchange

URCV: Receive uncoordinated
data with two-way
data exchange

BRCV: Receive data block
by block with two-way
data exchange

17.3 S7 communication

765

The block signals with “1” at the DONE or NDR parameter that the job has been com-
pleted without errors. Any errors are signaled by “1” at the ERROR parameter.
The STATUS parameter shows with an assignment which is not zero either a warn-
ing (ERROR = “0”) or an error (ERROR = “1”). You must evaluate the DONE, NDR,
ERROR, and STATUS parameters after every block call.

USEND Send data uncoordinated

USEND sends data without coordination to a remote communication function
URCV, i.e. without acknowledging the data transfer.

At the parameter SD_n (send mailbox), you enter the tag or the memory area from
which the data to be transferred is to be taken. You address a memory area using an
ANY pointer as described in Chapter 4.9.4 “ANY pointer” on page 135. Use the
parameters SD_n without gaps, beginning with 1. You do not supply parameters
which are not required.

At the start of the job, if USEND detects a positive signal edge at parameter REQ, the
data is copied from the send mailboxes and the transfer begins. You can write new
data to the send mailboxes immediately following the start of the job.

URCV Receive data uncoordinated

URCV receives data without coordination from a remote communication function
USEND, i.e. the data receipt is not acknowledged.

At the parameter RD_n (receive mailbox), enter the tag or the memory area into
which the received data is to be written. You address a memory area using an
ANY pointer as described in Chapter 4.9.4 “ANY pointer” on page 135. The receive
mailbox RD_n must correspond to the respective send mailbox SD_n. If the receive
mailbox is smaller than the volume of the received data, an error is output via
ERROR and STATUS.

After the data transfer is completed, the parameter NDR adopts signal state “1”.
If you want to prevent new data from being written to the receive mailboxes during
the data evaluation, call URCV again, this time with EN_R = “0”. After the evaluation
of the received data, enable the data transfer again with EN_R = “1”.

BSEND Send data block by block

BSEND sends a data packet (segmented) to a remote communication function BRCV.
The data packet can be up to 65 534 bytes in size.

At the parameter SD_1 (send mailbox), enter the tag or the start of the memory area
from which the data to be transferred is to be taken. You address a memory area
using an ANY pointer as described in Chapter 4.9.4 “ANY pointer” on page 135.
Specify the number of the bytes to be sent at parameter LEN.

BSEND must be called until the transfer is ended with DONE = “1”. During this time,
the data to be sent must not be changed.

17 Communication

766

BRCV Receive data block by block

BRCV receives a data packet (segmented) from a remote communication function
BSEND. The data packet can be up to 65 534 bytes in size.

At the parameter RD_1 (receive mailbox), enter the tag or the start of the memory
area into which the received data is to be written. You address a memory area using
an ANY pointer as described in Chapter 4.9.4 “ANY pointer” on page 135. The size
of the receive mailbox determines the maximum length of the received data block.
The number of the currently received bytes is displayed at parameter LEN.

BRCV must be called until the end of the transfer of all segments is indicated with
NDR = “1”.

17.3.4 Configuring S7 communication

Prerequisite for S7 communication is the networking of the PLC stations participat-
ing in the data exchange via Industrial Ethernet or PROFIBUS. The required proce-
dure is described in Chapter 3.4 “Configuring a network” on page 73. For S7 com-
munication, an S7 connection must be configured in the connection table.

The communication functions for S7 communication are called in the main pro-
gram, for example in a function block that is called in the organization block OB 1
or another organization block with the event class Program cycle.

The communication functions can be found in the program elements catalog in the
folder Communication > S7 communication. Drag the desired communication function
into the opened block. When you release the mouse button, you will be prompted to
specify the call option. If you select the Single instance option, a separate data block is
assigned to the call.

Configuring a connection

You configure the properties of an S7 connection in the inspector window. For one-
way data exchange, the connection properties are displayed under Properties >
Configuration when a communication function GET or PUT is inserted. You can also
select the connection in the connection table in the lower part of the working win-
dow and configure the connection properties in the inspector window under
Properties > General (Fig. 17.11).

Fill out the fields highlighted in red that are still empty. If entries remain open,
for example because the partner station still has to be created, you will later be
shown the connection dialog again if the connection is selected.

In the connection dialog, select the S7 connection for data transmission or create a
new connection by clicking Select connection (the button with three dots). The con-
nection ID identifies the connection and must be the same in both stations for a two-
way data exchange. Multiple connections between the partners can be created.

Use the Active connection establishment option to specify which of the stations is to
initiate the connection.

17.4 Point-to-point communication

767

17.4 Point-to-point communication

17.4.1 Introduction to point-to-point communication

With point-to-point communication (PtP communication), data can be exchanged
via a serial interface with external devices such as printers or barcode readers.
A CPU 1500 with a corresponding communication module supports the Freeport
protocol for character-based, serial communication so that the data transmission
protocol can be completely configured via the user program. Communication func-
tions for the 3964(R) protocol, for the control of USS drives, and for Modbus RTU
are also available.

The point-to-point communication is implemented with a CM PtP communication
module, either via an RS232 interface or an RS422/RS485 interface. On the module
are the indicators

b Diagnostics LED
Flashes red after switching on until the module has been addressed (detected)
by the CPU. After this, it flashes green until the module has been parameterized.
In the operationally ready state, the LED illuminates with a steady green light.

b Send LED
Illuminates if data is sent to the connected device.

b Receive LED
Illuminates if data is received from the connected device.

Fig. 17.11 Configuring the connection parameters for S7 communication

17 Communication

768

For an RS232 interface, the communication can be coordinated by means of addi-
tional accompanying signals. An RS422/RS485 interface allows longer cable lengths
through the use of differential voltages. During full duplex operation (RS422,
simultaneous transfer in both directions), communication takes place via a four-
wire cable. During half duplex operation (RS485, transfer in only one direction at a
time), it takes place via a two-wire cable. The multipoint-capable coupling in full
duplex mode allows master/slave operation with several stations.

The CM modules are available in the BA (Basic) and HF (High Feature) versions.
Basically, the versions differ in terms of the maximum possible transmission speed,
the maximum possible message frame length, and the capability of using the
Modus protocol.

17.4.2 Configuring the CM PtP communication module

A prerequisite for configuring a communication module is a project with a PLC sta-
tion. Start the device configuration editor in the project tree under the PLC station.
In the device view, select the module on the Hardware Catalog task card – with
active filter function – under Communication modules > Point-to-point > CM PtP …
and drag it to the slot in the rack. Now set the configuration data in the inspector
window.

Depending on the module, one of the following protocols can be used:

b Freeport (ASCII protocol) for transferring ASCII strings without a defined
protocol format

b 3964(R), for example for data transmission between two PLC stations

b Modbus RTU, for example for data transmission between two PLC stations
(operation as master or as slave)

b USS (universal serial interface) for controlling drives in master mode

The data flow control coordinates the transmission of the message frames. The soft-
ware data flow control with XON/XOFF is possible with the Freeport protocol via the
RS232 and RS422 interfaces. During the configuration, you define the start charac-
ter (XON) and the end character (XOFF) of a message frame transmission. The hard-
ware data flow control with the RTS/CTS signal is possible with the Freeport proto-
col via the RS232 interface. You can also configure automatic control of the accom-
panying signals with the Freeport and Modbus RTU protocols via the RS232 inter-
face.

With PtP communication, the data transfer is character-based. A character can con-
sist of 7 or 8 bits. In addition to the character bits, a parity bit can be transferred and
used for error detection: When you have “even parity”, the signal state of the parity
bit is selected such that the sum of the bits that have signal state “1” is even. For
“odd parity”, the sum is odd. It is also possible to always set the parity bit to
signal state “1” (mark) or “0” (space). 1 or 2 stop bits form the end of the transferred
character.

You have the capability of controlling data traffic via the serial interface with a self-
defined communication protocol. To do this, set the transmission parameters

17.4 Point-to-point communication

769

under Configuration of message sending and define how the start and end of a mes-
sage frame can be detected under Configuration of message receipt.

17.4.3 Point-to-point communication functions

The following communication functions are available for PtP communication:

b Port_Config Set the port configuration

b Send_Config Set the send parameters

b Receive_Config Set the receive parameters

b P3964_Config Set the protocol parameters for 3964(R)

b Send_P2P Initiate data transmission

b Receive_P2P Enable data receipt

b Receive_Reset Empty the receive buffer

b Signal_Get Read RS232 signals

b Signal_Set Write RS232 signals

b Get_Features Read extended functions

b Set_Features Activate extended functions

Fig. 17.12 shows the calls of the communication functions in LAD representation
and Fig. 17.13 shows the data structure.

Programming communication functions

The communication functions for PtP communication are called in the main pro-
gram, for example in a function block that is called in the organization block OB 1
or in another organization block with the event class Program cycle.

To program a communication function, open the block, select the function in the
program elements catalog under Communication > Communication processor >
Point-to-point and drag it into the open block by pressing and holding the mouse
key. When you release the mouse button, you will be prompted to specify the call
option: Call as a single instance with its own data block or as multi-instance with
storage of instance data in the instance data block of the calling function block.

Description of common parameters

If a rising signal edge occurs at parameter REQ, the task is started. As long as the
signal state is “1”, no other task is accepted. Only when the communication func-
tion recognizes signal state “0” at REQ, can a new task be started with the change to
“1”.

The DONE parameter signals with signal state “1” that the started job has been com-
pleted without errors. The NDR parameter signals with signal state “1” that the
started job has been completed without errors and that new data has been received.
The ERROR parameter signals with signal state “1” that the started job has been

17 Communication

770

completed with errors. The STATUS parameter contains intermediate states or
error information. The parameters DONE, NDR and ERROR are only set for the dura-
tion of one program cycle each after the job has ended.

The parameter PORT specifies the interface on the CM module. It is assigned the
hardware identifier, which can be found in the interface properties and in the sys-

Fig. 17.12 Calls of the functions for PtP communication in LAD representation

Calls of the functions for PtP communication

Port_Config:
configure
PtP communication port

Send_Config:
configure
PtP sender

Receive_Config:
configure
PtP receiver

P3964_Config:
configure
protocol 3964(R)

Send_P2P:
send data

Receive_P2P:
receive data

Receive_Reset:
delete receive buffer

Signal_Get:
read status

Get_Features:
fetch extended functions

Signal_Set:
set secondary signals

Set_Features:
set extended functions

17.4 Point-to-point communication

771

Fig. 17.13 Communication functions for PtP communication

Port configuration

Read and set RS232 signals and extended functions

PORT

PORT

PORT

PORT

PORT

PORT

PORT

PORT

Send
buffer

Receive
buffer

Module
CM PtP

Module
CM PtP

Data transmission with point-to-point communication

With , and
you set the transmission parameters of the port
and the send and receive parameters. The
settings with these functions can be made
dynamically during runtime in the control
program and overwrite the configuration
settings of the hardware configuration.

With you change the protocol
parameters for 3964(R) during operation.

At the PORT parameter, you create the hardware
identifier that was defined by the configuration
editor and specifies the CM module.

Port_Config Send_Config Receive_Config

P3964_Config

With you scan the signals at the RS232
interface (DTR, DSR, RTS, CTS, DCD, and RING).

With you set the signals at the RS232
interface (RTS, DTR and DSR).

With Get_Features you can — if supported by the
module — fetch information for CRC support and
for generating .

With Set_Features you can — if supported by the
module — activate the CRC support and the
generating of diagnostics alarms.

Signal_Get

Signal_Set

diagnostics alarms

With you trigger the sending of data.
The data is taken from the send buffer and
transferred to the communication module. The
module performs the actual data transmission.

With you enable the receipt of a sent
message. Each message must be released
individually. The transmitted data is available in
the receive buffer once the receipt has been
acknowledged by the communication module.

With you delete the receive buffer in
the communication module.

Send_P2P

Receive_P2P,

Receive_Reset

Control data transmission

PORT

BUFFER

BUFFER

LENGTH

LENGTH

PORT

PORT

Module
CM PtP

Signal_Get

Signal_Set

Port_Config

Get_Features

Send_Config

Set_Features

Receive_Config

P3964_Config

Send_P2P

Receive_P2P

Receive_Reset

17 Communication

772

tem constants tab in the default tag table. The parameters BUFFER and LENGTH
contain the send or receive mailbox for the transferred data.

Changing configuration settings during runtime

The properties of a port are set when the CM module is configured. These proper-
ties are “static.” They are transferred from the load memory into the CM module
when the PLC station is switched on and they are valid for continued operation.
These properties can be modified during operation using communication func-
tions. The “dynamically” changed properties are not permanent; they are replaced
during the next startup of the “static” properties.

Port_Config changes the PORT properties such as baud rate, parity, number of data
bits and stop bits.

Send_Config controls the time intervals between the activation of the RTS signal up
to the start of data transfer and from the end of the transfer until the deactivation
of the RTS signal and the breaks at the start and end of the message.

Receive_Config influences the conditions for the start and end of a message that is
to be sent. Messages that meet these conditions can be received using the commu-
nication function Receive_P2P. The receive conditions are compiled in the
CONDITIONS data structure.

P3964_Config changes parameters of the 3964(R) protocol such as character delay
time, priority, and block check.

Sending and receiving data

Send_P2P transfers the send data from the send mailbox in the user memory to the
CM module and initiates the sending of data. The CM module handles the actual
transfer to the external device.

Receive_P2P enables the receipt of a sent message, where each message must be
individually enabled. The data is transferred from the CM module into the receive
mailbox in the user memory.

Receive_Reset empties the receive buffer of the CM module.

RS232 signals and expanded functions

If the CM module provides the corresponding support, the following functions can
be used:

Signal_Get reads the signal states of the signals DTR, DSR, RTS, CTS, DCD and RING
from the port of an RS232 interface.

Signal_Set writes the signal states of the signals RTS, DTR and DSR to the port of an
RS232 interface.

Get_Features determines whether the CM module supports the generation of a
checksum for Modbus (CRC) or the generation of diagnostics alarms.

17.5 Further communication functions

773

Set_Features activates the generation of a checksum for Modbus (CRC) or the gen-
eration of diagnostics alarms on the CM module.

17.5 Further communication functions

17.5.1 USS protocol for drives

A CM PtP communication module can control per RS485 port up to 16 Siemens
drives, which support the universal serial interface (USS), with the following func-
tions:

b USS_Port_Scan Communication via the USS network

b USS_Drive_Control Prepare data for a drive

b USS_Read_Param Read operating parameters from the drive

b USS_Write_Param Write operating parameters to the drive

You can find the communication functions in the program elements catalog under
Communication > Communication processor > USS Communication. Fig. 17.14 shows
the calls of the functions for the USS protocol in the ladder logic representation,
Fig. 17.15 shows the associated data structure.

USS_Drive_Control controls a drive. A separate call of the function block is required
for each drive. You specify the drive number at the DRIVE parameter. When calling
for the first drive, assign an instance data block to the function block. For all future
calls, select the same data block as instance data block, which you choose from a
drop-down list. A single data block is available for all controlled drives per commu-
nication module.

USS_Read_Param reads an operating parameter from the drive whose number you
specify at the DRIVE parameter. At the parameter USS_DB, the data block is speci-
fied that contains the data for all drives of a CM module.

USS_Write_Param writes an operating parameter to the drive whose number you
specify at the DRIVE parameter. At the parameter USS_DB, the data block is speci-
fied that contains the data for all drives of a CM module. If you want to write the
parameter to the EEPROM of the drive control, take note of the limited number of
write accesses for an EEPROM.

USS_Port_Scan transfers the drive data between the data block and the CM module.
It is called only once per CM module.

The blocks USS_Drive_Control, USS_Read_Param and USS_Write_Param must be
called in the main program; any organization block is possible for the block
USS_Port_Scan. The processing of USS_Port_Scan must not be interrupted. The
block must be called in a time interval that depends on the baud rate of the serial
connection and the time response of the drive.

17 Communication

774

Fig. 17.14 Calls of the USS functions in LAD representation

Fig. 17.15 Data structure for the USS protocol

Calls of the USS functions

USS_Drive_Control:
prepare and display
data for the drive

USS_Port_Scan:
communication
via a USS network

USS_Read_Param:
read data from the drive

USS_Write_Param:
change data in the drive

Data structure for the USS protocol

The USS protocol is used for the control of up to 16 drives per port with a module
CM PtP RS422/485.

A data block contains the data of a module for all drives of an RS 485 port.

USS_Drive_Control_DB

Common data

Data for drive 1

Data for drive 2

Data for drive 3

...

..
.

Data for drive 16

DRIVE

USS_DB

USS_DB

USS_DB

DRIVE

DRIVE

RS485

CM PtP

Drive 16

Drive 15

Drive 14

Drive 13

Drive 1

USS_Drive_Control_DB

USS_Drive_Control

USS_Read_Param

USS_Write_Param

USS_Port_Scan

17.5 Further communication functions

775

17.5.2 Modbus RTU

The standard protocol Modbus RTU (Remote Terminal Unit) uses the RS232 or
RS422/RS485 interface for the serial data transfer between a Modbus master and
one or more Modbus slaves. The communication via Modbus RTU is controlled
using the following functions:

b Modbus_Comm_Load Configure a CM module for the Modbus protocol

b Modbus_Master Control for the Modbus master

b Modbus_Slave Control for the Modbus slave

You can find the communication functions in the program elements catalog under
Communication > Communication processor > MODBUS (RTU). Fig. 17.16 shows the
calls of the functions for the Modbus RTU protocol in the ladder logic representa-
tion, Fig. 17.17 shows the associated data structure.

Configuring a port with Modbus_Comm_Load

Modbus_Comm_Load configures the port (the connection) at the CM module for
the Modbus RTU protocol. Executing Modbus_Comm_Load is a prerequisite for
using Modbus_Master and Modbus_Slave.

A rising edge at the REQ parameter starts a new job. A successfully executed job is
indicated with the signal state “1” at the DONE parameter. If an error occurs during
job processing, the ERROR parameter is set to signal state “1” and error information
is output at the STATUS parameter. The assigning of these status parameters is only
valid for one cycle until the next processing of Modbus_Comm_Load. Mod-
bus_Comm_Load is initialized with signal state “1” at the COM_RST parameter.
After this, COM_RST is reset to “0”.

Fig. 17.16 Calling the functions for Modbus RTU in LAD representation

Calls of the functions for Modbus RTU

Modbus_Comm_Load:
Configure the interface
for the Modbus
protocol

Modbus_Master:
control as Modbus master

Modbus_Slave:
control as Modbus slave

17 Communication

776

The parameter MB_DB is the reference to the data of the Modbus master or Modbus
slave. This parameter is supplied with the data tag MB_DB from the static local data
of the master or slave instance data block. Example for the actual parameter: “Mod-
bus_Master_DB”.MB_DB.

Controlling data traffic with Modbus_Master

Modbus_Master is called as single instance in the main program. A rising edge at
the REQ parameter starts a new job. While the job is running, the BUSY parameter
has signal state “1”. A successfully executed job is indicated with the signal state “1”
at the DONE parameter. If an error occurs during job processing, the ERROR param-
eter is set to signal state “1” and error information is output at the STATUS param-
eter. The assigning of these status parameters is only valid for one cycle until the
next processing of Modbus_Master. Modbus_Master is initialized with signal state
“1” at the COM_RST parameter. After this, COM_RST is reset to “0”.

The address of the slave station is at parameter MB_ADDR. The type of job at the
slave station is defined at the MODE parameter, e.g. read inputs or write outputs.
The DATA_ADDR and DATA_LEN parameters define the data area in the slave to be
read or written.

Modbus_Master uses the data buffer defined at the DATA_PTR parameter as a clip-
board for the data which is read from the Modbus slave or written to the Modbus
slave. The data buffer can be in the bit memory address area or in a data block.
The Optimized block access attribute must be deactivated for a data block.

Fig. 17.17 Data structure for the Modbus RTU protocol

Data structure for the Modbus RTU protocol

PORT PORT

MB_ADDR MB_ADDR

MB_DB MB_DB

DATA_ADDR

DATA_LEN

DATA_PTR MB_HOLD_REG

RS485

RS232
RS485

RS232

Data
in the slave

CM PtP CM PtP

Modbus master Modbus slave

Slave Slave

Data buffer
for the

slave data

Modbus
holding
register

Modbus_Master_DB Modbus_Slave_DB

Modbus_Comm_Load Modbus_Comm_Load

Modbus_Master Modbus_Slave

17.5 Further communication functions

777

Responding to master requests with Modbus_Slave

Modbus_Slave is called as single instance in the main program. The address of the
slave station is at parameter MB_ADDR. If the Modbus master has written data, the
NDR parameter has signal state “1”. If the Modbus master has read data, the param-
eter DR has signal state “1”. If an error occurs during job processing, the ERROR
parameter is set to signal state “1” and an error number is output at the STATUS
parameter. The assigning of these status parameters is only valid for one cycle until
the next processing of Modbus_Slave. Modbus_Slave is initialized with signal state
“1” at the COM_RST parameter. After this, COM_RST is reset to “0”.

The parameter MB_HOLD_REG points to the Modbus holding register, which is used
by the Modbus_Slave as a clipboard for the data that is read from the Modbus mas-
ter or is written to the Modbus master. The holding register can be in the bit mem-
ory address area or in a data block. The Optimized block access attribute must be
deactivated for a data block.

17.5.3 Modbus TCP

The standard protocol Modbus TCP (Transmission Control Protocol) uses a
PROFINET interface for the data transfer between a Modbus client and a Modbus
server. Communication via Modbus TCP uses the following functions:

b Modbus_Client Control for the Modbus client

b Modbus_Server Control for the Modbus server

You can find the communication functions in the program elements catalog under
Communication > Other > Modbus TCP. Fig. 17.18 shows the calls of the functions for
the Modbus TCP protocol in the ladder logic representation, Fig. 17.19 shows the
associated data structure.

Controlling data traffic with MB_CLIENT

MB_CLIENT is called in the main program. A rising edge at the REQ parameter
starts a new job. While the job is running, the BUSY parameter has signal state “1”.
A successfully executed job is indicated with the signal state “1” at the DONE
parameter. If an error occurs during job processing, the ERROR parameter is set to
signal state “1” and error information is output at the STATUS parameter.The

Fig. 17.18 Calling the functions for Modbus TCP in LAD representation

Calls of the functions for Modbus TCP

MB_CLIENT:
control as Modbus client

MB_SERVER:
control as Modbus server

17 Communication

778

assigning of these status parameters is only valid for one cycle until the next pro-
cessing of MB_CLIENT.

Modbus TCP communication requires a communication connection with the spec-
ification as per Open User Communication. Each connection requires its own func-
tion call (own instance data). The connection is established when the job is initiated
if the DISCONNECT parameter has signal state “0”. Signal state “1” at the
DISCONNECT parameter leads to the connection being canceled. Assigning the
parameter CONNECT specifies the connection. The actual parameter can be a tag or
a type data block with the structure of the system data type TCON_IP_v4 (then the
connection is established by MB_CLIENT) or TCON_Configured (if the connection
was configured with the network editor, see Chapter 17.2 “Open user communica-
tion” on page 751).

You can define the type of job at parameter MB_MODE, e.g. read inputs or write
outputs. The start address is at parameter MB_DATA_ADDR. The quantity of data to
be transferred is at parameter MB_DATA_LEN. MB_CLIENT uses the data buffer
defined at the MB_DATA_PTR parameter as a clipboard for the data which is read
from the Modbus server or written to the Modbus server. The data buffer can be in
the bit memory address area or in a data block. The Optimized block access attri-
bute must be deactivated for a data block.

Responding to client requests with MB_SERVER

MB_SERVER is called in the main program. It only responds to a connection request
from MB_CLIENT if the parameter DISCONNECT has the signal state “0”. The ready-
to-receive state of a job can be controlled via this parameter.

Assigning the parameter CONNECT specifies the connection. The actual parameter
can be a tag or a type data block with the structure of the system data type
TCON_IP_v4 (then the connection of MB_CLIENT is established) or TCON_Config-
ured (if the connection with the network editor has been configured, see Chapter

Fig. 17.19 Data structure for the Modbus TCP protocol

Data structure for the Modbus TCP protocol

CONNECT CONNECT

MB_DATA_ADDR

MB_DATA_LEN

MB_DATA_PTR

MB_HOLD_REG

Connection

Data
in the server

Modbus client Modbus server

Connection

Data buffer
for the

server data

Modbus
holding register

MB_CLIENT_DB MB_SERVER_DB

MB_CLIENT MB_SERVER

17.5 Further communication functions

779

17.2 “Open user communication” on page 751). Each connection needs its own
function call (own instance data) if, for example, the server station communicates
with several Modbus clients.

If the Modbus client has written data, the NDR parameter has signal state “1”. If the
Modbus client has read data, the parameter DR has signal state “1”. If an error
occurs during job processing, the ERROR parameter is set to signal state “1” and
error information is output at the STATUS parameter. The assigning of these status
parameters is only valid for one cycle until the next processing of MB_SERVER.

The parameter MB_HOLD_REG points to the Modbus holding register, which is used
by the MB_SERVER as a clipboard for the data that is read from the Modbus client or
is written to the Modbus client. The holding register can be in the bit memory
address area or in a data block. The Optimized block access attribute must be deac-
tivated for a data block.

18 Appendix

780

18 Appendix

18.1 Working with source files

Blocks with the programming languages STL or SCL can be programmed as a text
file outside the TIA Portal. Any text editor which generates ASCII-coded text can be
used for this, for example the Windows text editor. Blocks which can be edited fur-
ther with STEP 7 are generated from these text files – referred to as “source files” or
“program sources” – by importing into the TIA Portal and subsequent compilation.
Blocks programmed with SCL in the TIA Portal can also be saved as text files.

18.1.1 General procedure

A source file can be generated in the following ways:

b You write the source file completely using a text editor.

b You copy an STL or SCL block as text to the Windows clipboard and create a
source file from it.

b You take an SCL block as template and generate a source file by exporting the
block.

Following editing with the text editor, you import the external source file into the
TIA Portal and generate the blocks contained in the source file by compiling.
You can then edit these further using the program editor of STEP 7.

Generating a source file with a text editor

In order to program a block, you must use keywords in a specific sequence in the
source file, as described in the following chapters.

A source file can contain several blocks and these can be logic or data blocks as well
as PLC data types. You can also call blocks in the source file which are present in the
Program blocks folder or use system blocks from the program elements catalog.
You export and import PLC tags separate from the source file (see Chapter 6.2.4
“Exporting and importing a PLC tag table” on page 252).

When working with source files, you must handle blocks programmed using STL
separate from those programmed using SCL. A source file can contain either only
STL blocks or only SCL blocks. In both cases, the source file can contain data blocks
and PLC data types.

You save a source file with STL program with the file extension .stl and a source file
with SCL program with the file extension .scl. If you only program data blocks or
PLC data types, the file extension is irrelevant.

18.1 Working with source files

781

Generating source data by copying text

In the project tree, select the block(s) from which you wish to generate a source file
in the Program blocks folder and then select the Copy as text command from the
shortcut menu. The program is copied to the Windows clipboard. Paste the contents
of the clipboard into a text editor, change the program if necessary, and save the
program as a source file. If the program contains STL blocks, data blocks, and
PLC data types, select the file extension .stl. If the program contains SCL blocks,
data blocks, and PLC data types, select the file extension .scl.

For password-protected blocks, only the block header and the interface description
are copied.

Generating a source file by exporting

In the project tree, select the block(s) with SCL program from which you wish to
generate a source file in the Program blocks folder and select the Generate source
from blocks command from the shortcut menu. Then define the name and storage
location of the file with the file extension .scl in the dialog.

You generate the source file for one or more data blocks or PLC data types in the
same way.

Importing an external source file

To import an external source file, open the External source files folder in the project
tree and double-click on Add new external file. In the dialog window, navigate to the
storage location, select the source file, and import it by clicking the Open button.

The source file is saved in the External source files folder in the project tree.

Editing an external source file in the TIA Portal

As preparation for editing an external source file in the TIA Portal, you must link
the file extension .stl or .scl to a text editor. To do this, open the Windows Explorer,
navigate to the source file, and select the Properties dialog from the shortcut menu
of the source file. In the General tab, click on Change in the File type area. In the dia-
log, select the editor which you wish to link to the file extension .stl or .scl.

You can then edit the source file using the linked editor by double-clicking on it in
the External sources folder.

Generating the blocks of an external source file

To transfer the blocks from the source file to the Program blocks folder, select a
source file in the External source files folder and then the Generate blocks from
source command from the shortcut menu. Acknowledge the message which may
appear informing that existing blocks will be overwritten. The generated blocks are
imported into the Program blocks folder. The result of the generation is shown by
STEP 7 in the inspector window in the Info > Compile tab. Note that these messages
refer to the source file.

18 Appendix

782

It is recommendable to compile the blocks imported from the source file prior to
further processing in the TIA Portal.

Special features

If a block in the source file has been programmed with a block number (absolute
addressing), the block in the project is given the absolute address, without the per-
cent sign, for a name.

If a block in the source file has been programmed with a block number (absolute
addressing) and a block with the same number exists in the project, the block is
overwritten in the project.

If a block in the source file has been programmed with a name (symbolic address-
ing) and a block with the same name exists in the project, the block is overwritten
in the project.

The event class of an organization block is derived from its name. Example: If the
organization block has the name “Cyclic interrupt”, it is generated as a cyclic inter-
rupt organization block and is given the next permissible, free number (30 to 38
and from 123 on, see Table 5.7 on Page 194). If you want to program an additional
block of an event class, supplement the name with a number. Example: An organi-
zation block with the name “Cyclic interrupt 1234” is generated as a cyclic interrupt
organization block with the name Cyclic interrupt 1234 and the next permissible,
free number. The name and number can be changed in the project later. If no event
class can be derived from the name, the organization block with the absolute
address %OB0 is inserted into the project and cannot be edited.

If the access type in the source file is not explicitly defined, the attribute Optimized
block access is deactivated (standard access) for an organization bock and for every
other block, the attribute Optimized block access is activated.

If an operand is absolutely addressed in the external source file and no name is
assigned in the PLC tag table, it is given a symbolic address with the prefix “Tag_”
and a consecutive number.

There is no distinction between upper and lower case in the source file, exception:
The designation for jump labels is case sensitive.

18.1.2 Programming a code block in the source file

The program of each code block consists of the block header with specification of
the block type and block properties. This is followed by the declaration of the inter-
face and the actual program. Terminate the programming of the block using a key-
word for the block end.

Table 18.1 shows which keywords you require for block programming and the
sequence in which the keywords are used.

18.1 Working with source files

783

Table 18.1 Keywords for code blocks

Section Keyword Meaning

Block type ORGANIZATION_BLOCK “OB_name”
FUNCTION_BLOCK “FB_name”
FUNCTION “FC_name” : Data type

Start of an organization block
Start of a function block
Start of a function

Header TITLE = block title
//Block comment

Block property: Block title
Block property: Block comment

AUTHOR : Created by
FAMILY : Block family
NAME : Block name
VERSION : Version

Block property: Created by
Block property: Block family
Block property: User-defined ID
Block property: Block version

{ S7_Optimized_Access := xxx }

CODE_VERSION1

KNOW_HOW_PROTECT

Access type: xxx = ’TRUE’ : Optimized access
xxx = ’FALSE’ : Standard access

Only with FB (“not capable of multi-instance”),
only with STL
No effect

Declaration
Introduction

VAR_INPUT Retentivity
VAR_OUTPUT Retentivity
VAR_IN_OUT Retentivity
VAR Retentivity
VAR_TEMP

Input parameter (not with OB)
Output parameter (not with OB)
In/out parameter (not with OB)
Static local data (only with FB)
Temporary local data
Retentivity: RETAIN = retentive

DB_SPECIFIC = set in IDB
(No specification) = not retentive

Declaration
Tags

name {…; …} : Data type :=
Default setting;
{ S7_HMI_Accessible := xxx }
{ S7_HMI_Visible := xxx }
{ S7_SetPoint := xxx }

name_ueb {...; …} AT name : Data type;

Accessible from HMI
Visible in HMI
Setpoint
Value: xxx = ’TRUE’ : Property activated

xxx = ’FALSE’ : Property deactivated
Data type superimposition (only with standard
access)

Declaration
End

END_VAR At the end of each declaration section

Program BEGIN Start of block program,
can be omitted with SCL

NETWORK Network start, only with STL

TITLE = Network title Network title, only with STL

//Network comment Network comment; line comment with SCL

Program statement; Termination of each statement with semicolon

//Line comment Line comment up to end of line, also programmable
following statements

(* Block comment *) Block comment, can extend over several lines,
only with SCL

NETWORK Start of next network, only with STL

… … etc.

Block end END_ORGANIZATION_ BLOCK
END_FUNCTION_BLOCK
END_FUNCTION

End of an organization block
End of a function block
End of a function

18 Appendix

784

Block header and block properties

A code block commences with the keyword for the block type and with the specifi-
cation of the block name. With symbolic addressing (e.g. FUNCTION_ BLOCK
“FB_name”), the first vacant number of the block type is assigned when importing
for absolute addressing. When specifying an absolute address (e.g.
FUNCTION_BLOCK %FB102), the operand with the number is imported as the sym-
bolic address.

In the case of functions, you specify the data type of the function value following
the addressing; example: FUNCTION “FC_name” : INT. If the function does not have
a function value, the data type is called VOID.

The data for the block properties is optional. You simply omit the surplus data
together with the keywords. You can find the permitted assignment in Chapter
5.3.2 “Block properties” on page 157.

{ S7_Optimized_Access = … } sets the attribute Optimized block access with the value
’TRUE’. The ’FALSE’ value resets the Optimized block access attribute.

For a function block, the keyword CODE_VERSION1 deactivates the capability of
embedding in a multi-instance (only for STL). The block attribute Multiple instance
capability is deactivated and cannot be reactivated later.

The keyword KNOW_HOW_PROTECT, which is programmable for a CPU 300/400,
has no effect for blocks for a CPU 1500.

Block interface

The block interface contains the definition of the block parameters and block-local
tags. You cannot program every declaration section in every block (see Table 18.1).
If you do not use a declaration section, omit it including the keywords.

You begin a declaration section with the introductory keyword and the retentivity
settings, then you list the tags and end the declaration section with the keyword
END_VAR. The retentivity setting applies until the end of the declaration section.
With each change of the retentivity setting, you end the previous declaration sec-
tion and begin a new one. Example: The input parameters Par1 and Par2 have the
retentivity setting Set in IDB, Par3 is not retentive, and Par4 is retentive.

VAR_INPUT DB_SPECIFIC

Par1 {S7_HMI_Visible := ’FALSE’ } : INT := 500; //Comment

Par2 {S7_HMI_Accessible := ’TRUE’} : BOOL; //Comment

END_VAR

VAR_INPUT

Par3 {S7_HMI_Accessible := ’FALSE’; S7_HMI_Visible := ’FALSE’} : INT ;

END_VAR

VAR_INPUT RETAIN

Par4 {S7_SetPoint := ’TRUE’} : REAL := 1.0; //Comment

END_VAR

18.1 Working with source files

785

The declaration of a tag consists of the name, the tag property, the data type, the
default setting, and the tag comment. The tag property, default setting, and tag
comment are optional. By default, the tag properties S7_HMI_Accessible and
S7_HMI_Visible are predefined with the value “TRUE” and S7_SetPoint is predefined
with the value “FALSE”.

Not all tags can have default start values, e.g. default settings are not possible for
the temporary local data. Chapter 5.3.3 “Block interface” on page 157 describes the
data types permissible for block parameters.

The sequence of individual declaration sections is defined as shown in the table.
The sequence within a declaration section is optional. If you combine tags with data
type BOOL and also combine byte-wide tags with data types BYTE and CHAR, you
can minimize the memory requirements.

For a block with the property {S7_Optimized_Access = ’FALSE} (standard access), the
tags can be superimposed with a different data type in a declaration section
(Chapter 4.5.3 “Overlaying tags (data type views)” on page 111). You program the
superimposition directly after the declaration of the tag to be superimposed with
the keyword AT. The scheme is as follows: var_new AT var_old: new_data type. Exam-
ple: The input parameter DateTime is superimposed with a structure Date, com-
prised of the components Year, Month and Day.

VAR_INPUT

DateTime : DT;

Date AT DateTime : STRUCT

Year : WORD;

Month : WORD;

Day : WORD;

END_STRUCT;

END_VAR

Program section

The program section of a code block starts with the keyword BEGIN and ends with
the keyword for the block end.

No distinction is made between upper and lower case when compiling, except for
jump labels. Refer to Chapter 10.1.2 “Structure of an STL statement” on page 397
for the syntax of an STL statement and to Chapter 9.1.2 “SCL statements and oper-
ators” on page 361 for that of an SCL statement. You can enter one or more spaces
or tabulators between operation and operand. To achieve a clearer layout of the
source text, you can enter any spaces and/or tabulators between the words.

You must conclude every statement by a semicolon. Following the semicolon you
can specify a statement comment, separated by two slashes; this extends up to the
end of the line. You can also program several statements per line, each separated by
a semicolon.

18 Appendix

786

FUNCTION_BLOCK “FIFO_STL”
TITLE = Intermediate memory for 4 values
//Example of a function block in STL
AUTHOR : Berger
FAMILY : Book1500
NAME : Memory
VERSION : 01.00

VAR_INPUT
Import : BOOL := FALSE; //Transfer with positive edge
Input_value : REAL := 0.0; //In data format REAL

END_VAR
VAR_OUTPUT
Output_value : REAL := 0.0; //In data format REAL

END_VAR
VAR
Value1 : REAL := 0.0; //First saved REAL value
Value2 : REAL := 0.0; //Second value
Value3 : REAL := 0.0; //Third value
Value4 : REAL := 0.0; //Fourth value
Edge_memory_bit : BOOL := FALSE; //Edge memory bit for the transfer

END_VAR

BEGIN
NETWORK
TITLE = Program for transfer and output
//Transfer and output take place with a positive edge at Transfer

A Transfer; //If Transfer changes to “1"
FP Edge_memory_bit; //the RLO = “1” following FP
JCN end; //Jump if no positive edge is present

//Transfer of values starting with the last value
L Value4;
T Output_value; //Output of last value
L Value3;
T Value4;
L Value2;
T Value3;
L Value1;
T Value2;
L Input_value; //Transfer of input value
T Value1;

End: BE;
END_FUNCTION_BLOCK

DATA_BLOCK “DB_FIFO_STL"
TITLE = Instance data block for “FIFO_STL”
//Example of an instance data block
AUTHOR : Berger
FAMILY : Book1500
NAME : FIFO_Dat
VERSION : 01.00
FIFO_STL //Instance for the FB “FIFO_STL”
BEGIN
 Value1 := 1.0; //Individual default setting
 Value2 := 1.0; //selected value
END_DATA_BLOCK

Fig. 18.1 Example of an STL source file

18.1 Working with source files

787

FUNCTION_BLOCK “FIFO_SCL"
TITLE = Intermediate memory for 4 values
//Example of a function block with static local data in SCL

AUTHOR : Berger
FAMILY : Book1500
NAME : Memory
VERSION : 01.00

VAR_INPUT
Import : BOOL := FALSE; //Transfer with positive edge
Input_value : REAL := 0.0; //In data format REAL

END_VAR

VAR_OUTPUT
Output_value : REAL := 0.0; //In data format REAL

END_VAR

VAR
Value1 : REAL := 0.0; //First saved REAL value
Value2 : REAL := 0.0; //Second value
Value3 : REAL := 0.0; //Third value
Value4 : REAL := 0.0; //Fourth value
Edge_memory_bit : BOOL := FALSE; //Edge memory bit for the transfer

END_VAR

BEGIN
//Transfer and output take place with a positive edge at Transfer
IF Transfer = TRUE AND Edge_memory_bit = FALSE
THEN Output_value := Value4;

//Transfer of values starting with the last value
Value4 := Value3;
Value3 := Value2;
Value2 := Value1;
Value1 := Input_value;

END_IF;

Edge_memory_bit := Transfer; //Update edge memory bit

END_FUNCTION_BLOCK

DATA_BLOCK “DB_FIFO_SCL"
TITLE = Instance data block for “FIFO_SCL”
//Example of an instance data block

AUTHOR : Berger
FAMILY : Book1500
NAME : FIFO_Dat
VERSION : 01.00

FIFO_SCL //Instance for the FB “FIFO_SCL”

BEGIN
 Value1 := 1.0; //Individual default setting
 Value2 := 1.0; //selected value
END_DATA_BLOCK

Fig. 18.2 Example of an SCL source file

18 Appendix

788

A line comment commences with two slashes at the start of the line. A line comment
can have up to 160 characters, but no tabulators or non-printable characters.

A block comment with SCL is started by a round left parenthesis and asterisk and
finished by an asterisk and round right parenthesis. A block comment can extend
over several lines.

You can also program networks to structure the block program better in STL. Net-
works commence with the keyword NETWORK. You can assign a title to every net-
work using the keyword TITLE, which is present in the next line. The line comments
which directly follow the network title are the network comment.

The figures 18.1 and 18.2 show an example of an STL source file and of an SCL
source file for a function block with the associated instance data block.

When calling a block, you enter the block parameters in round parentheses, each
separated by a comma. Make sure that the transferred block parameters are listed
in the same order as they have been declared in the called block.

//Example of a block call in STL

CALL "FIFO_AWL","DB_FIFO_STL" (

Import := "Clock",

Input_value := "Measurement",

Output value := "Measurement_delayed");

//Example of a block call in SCL

"DB_FIFO_SCL" (

Import := "Clock",

Input_value := "Measurement",

Output value := "Measurement_delayed");

18.1.3 Programming a data block in the source file

The program of a data block begins with the keyword DATA_BLOCK and consists of
the block header with specification of the block type and block properties. Then
specify the data operands and terminate the program for the block with the key-
word END_DATA_BLOCK. Table 18.2 shows which keywords you require for block
programming and the sequence in which the keywords are used.

Block header and block properties

A data block commences with the keyword DATA_BLOCK and with specification of
the block name. With symbolic addressing (e.g. DATA_BLOCK “DB_name”), the first
vacant data block number is assigned when importing for absolute addressing.
When specifying an absolute address (e.g. DATA_BLOCK %DB102), the operand with
the number is imported as the symbolic address. The data for the block properties
is optional. You simply omit the surplus data together with the keywords.

{ S7_Optimized_Access = … } sets the attribute Optimized block access with the value
’TRUE’. The ’FALSE’ value resets the Optimized block access attribute.

18.1 Working with source files

789

The keyword UNLINKED activates the Only store in load memory block attribute.
The keyword READ_ONLY activates the Data block write-protected in the device block
attribute. Using the keyword NON_RETAIN you deactivate the retentivity for all of
the data operands in the data block. Using VAR RETAIN in the declaration, you can
activate the retentivity of the following data tags (see next section).

The keyword KNOW_HOW_PROTECT, which is programmable for a CPU 300/400,
has no effect for blocks for a CPU 1500.

Block interface for a global data block

The block interface contains the declaration of the data operands.

Using the keyword RETAIN after the introductory keyword of the declaration, you
activate the retentivity for the following declared data tags. The retentivity setting
applies until the end of the declaration section. If the keyword RETAIN is missing,
the following data tags are not retentive. Example: The tags Var1 and Var2 are reten-
tive, the tags Var3 and Var4 are not retentive.

Table 18.2 Keywords for data blocks

Section Keyword Meaning

Block type DATA_BLOCK “DB_name” Start of a data block

Header TITLE = block title
//Block comment

Block property: Block title
Block property: Block comment

AUTHOR : Created by
FAMILY : Block family
NAME : Block name
VERSION : Version

Block property: Created by
Block property: Block family
Block property: User-defined ID
Block property: Block version

{ S7_Optimized_Access := xxx }

UNLINKED
READ_ONLY
NON_RETAIN
KNOW_HOW_PROTECT

Access type: xxx = ’TRUE’ : Optimized access
xxx = ’FALSE’ : Standard access

Block attribute: not executable
Block attribute: read-only
Block attribute: non-retentive
No effect

Declaration VAR Retentivity
name {…; …} : Data type :=
Default setting;
{ S7_HMI_Accessible := xxx }
{ S7_HMI_Visible := xxx }
{ S7_SetPoint = xxx }

Declaration for a global data block

Accessible from HMI
Visible in HMI
Setpoint
Value: xxx = ’TRUE’ : Property activated

xxx = ’FALSE’ : Property deactivated

Data type_name Alternatively for a type data block

FB_name Alternatively for an instance data block

Initialization BEGIN
name := Default setting; Assignment with individual start values

Block end END_DATA_BLOCK End of a data block

18 Appendix

790

VAR RETAIN

Var1 {S7_HMI_Visible := ’FALSE’ } : INT := 500; //Comment

Var2 {S7_HMI_Accessible := ’TRUE’} : BOOL; //Comment

END_VAR

VAR

Var3 {S7_HMI_Accessible := ’FALSE’; S7_HMI_Visible := ’FALSE’} := INT;

Var4 := BOOL;

END_VAR

The declaration of a tag in a global data block consists of the name, the tag property,
the data type, the default setting, and the tag comment. The tag property, default
setting, and tag comment are optional. By default, the tag properties S7_HMI_Acces-
sible and S7_HMI_Visible are pre-defined with the value 'TRUE' and the tag property
S7_SetPoint is pre-defined with 'FALSE'.

The tag order can be random. If you combine tags with data type BOOL and also
combine byte-wide tags with data types BYTE and CHAR, you can minimize the
memory requirements.

Block interface for a type data block

The declaration in a type data block consists only of the specification of the
assigned PLC data type. Example: A data block based on the PLC data type User data
type_1 is generated.

DATA_BLOCK "DB_name"

User data type_1

BEGIN

Comp1 := 123;

END_DATA_BLOCK

After the keyword BEGIN, you can specify a start value for individual tags of the data
block. In the top example, the PLC data type has a component with the name Comp1
and the data type INT, which is preset with the value 123. By assigning default val-
ues to the start values, it is possible to assign individual values to each application
(each instance) in the case of type data blocks. BEGIN and the default setting are
optional. Tags that do not have a default start value retain the default value from
the PLC data type as the start value.

Block interface for an instance data block

The declaration in an instance data block consists only of the specification of the
assigned function block. Example: A data block based on the function block
FB_name is generated.

DATA_BLOCK "DB_name"

FB_name

BEGIN

Switch on :=TRUE;

END_DATA_BLOCK

18.1 Working with source files

791

After the keyword BEGIN, you can specify a start value for individual tags of the data
block. In the top example, the function block has a block parameter or a static local
tag with the name Switch on and the data type BOOL, which is preset with the value
TRUE. By assigning default values to the start values, it is possible to assign individ-
ual values to each application (each instance) in the case of instance data blocks.
BEGIN and the default setting are optional. Tags that do not have a default start
value retain the default value from the function block as the start value.

18.1.4 Programming a PLC data type in the source file

The program of a PLC data type begins with the keyword TYPE and consists of the
header with specification of the title and comment. Then specify the structure of
the data type and end the programming of the data type with the keyword END_-
TYPE.

Table 18.3 shows which keywords you require for data type programming and the
sequence in which the keywords are used.

Block header

A PLC data type (UDT, user data type) starts with the keyword TYPE and with the
data type name. With symbolic addressing (e.g. TYPE “Type_name”), the first
vacant data type number is assigned when importing for absolute addressing.
When specifying an absolute address (e.g. TYPE %UDT102), the operand with the
number is imported as the symbolic address.

The data for the header is optional. You simply omit the surplus data together with
the keywords.

Declaration of data type

The declaration part contains the definition of the data type components. The struc-
ture of a PLC data type corresponds to that of a data structure STRUCT.

Table 18.3 Keywords for PLC data types

Section Keyword Meaning

Block type TYPE “Type_name” Start of a PLC data type

Header TITLE = Data type title
//Data type comment

Data type title
Data type comment

Declaration STRUCT
name {…; …} : Data type :=
Default setting;
{ S7_HMI_Accessible := xxx }
{ S7_HMI_Visible := xxx }
{ S7_SetPoint = xxx }
END_STRUCT

Declaration of data type components

Accessible from HMI
Visible in HMI
Setpoint
Value: xxx = ’TRUE’ : Property activated

xxx = ’FALSE’ : Property deactivated

Block end END_TYPE End of the PLC data type

18 Appendix

792

The declaration of a tag in a PLC data type consists of the name, the tag property,
the data type, the default setting, and the tag comment. The tag property, default
setting, and tag comment are optional. By default, the tag properties S7_HMI_Acces-
sible and S7_HMI_Visible are pre-defined with the value 'TRUE' and the tag property
S7_SetPoint is pre-defined with 'FALSE'.

Example of a source file for a PLC data type:

TYPE "User data type_1"

TITLE = Header

//Comment on data type

VERSION : 0.9

STRUCT

Comp1 : INT := 100; //First data type component

Comp2 {S7_SetPoint := ’TRUE’} : BOOL; //Second data type component

END_STRUCT

END_TYPE

The tag order can be random. If you combine tags with data type BOOL and also
combine byte-wide tags with data types BYTE and CHAR, you can minimize the
memory requirements.

18.2 Migrating and upgrading projects

Automation projects which have been created using STEP 7 Version 5.4 SP5 or later
can be migrated into the TIA Portal. The target project resulting from the original
project can then be edited further in the TIA Portal using STEP 7.

Automation projects which have been created using STEP 7 Version 11 can be
upgraded to Version 12. Projects created with STEP 7 V12 are upgraded with
STEP 7 V12 SP1 upon request when opened and they can then be edited.

18.2.1 Migrating a project

Preparations and sequence of project migration

A prerequisite for migration is the installation of all applications with which the
original project was created. This also includes the option packages and the Hard-
ware Support Packages (HSP). If these applications are installed together with the
TIA Portal on the programming device, you can migrate the original project
directly. Otherwise you install the migration tool on the programming device
which contains the original project with the required applications, create an
intermediate project with the file extension .am12 from the original project,
transfer this intermediate project to a programming device with the TIA Portal,
and then migrate the project. You download the migration tool from the Service
& Support section of the Siemens website or you can install the migration tool
from the setup DVD of the TIA Portal.

18.2 Migrating and upgrading projects

793

A report with the result of the migration is displayed in the inspector window at the
end of migration. Here you can find references to project components which were
not migrated or were modified by the migration. Not all components of the original
project can be migrated unchanged. For example, a hardware configuration whose
components do not support the TIA Portal cannot be imported into the target proj-
ect. You can also exclude the hardware configuration from the migration. In this
case only the software is migrated into the target project and a non-specified device
is generated in the target project for each device present in the original project.

Associated with a successful migration is that you systematically process the infor-
mation in the migration report.

Prerequisites in the original project

The original project must not be a multi-project and must not be provided with
access protection. It must be possible to compile the original project and – if pres-
ent – the source files without error. The block folder must contain all called blocks
and must not contain any uncalled blocks. The message number assignment must
be set to CPU-wide.

Removing unsupported hardware components

If the original project contains hardware components that are no longer available
for the suitable application or for which the required option package is missing in
STEP 7 V12, delete the non-supported configuration manually from the project:
To open the original project, use an installation of STEP 7 V5.4 or V5.5 containing
only option packages and modules available in STEP 7 V12 and save the project
with the option With reorganization. Any unsupported configurations are
removed from the project.

If modules are used in the original project that are only available in STEP 7 V12 in
a newer version or with a newer firmware version, replace the older module with
migratable modules in the hardware configuration: With the SIMATIC station
selected in the SIMATIC Manager, double-click on the Hardware object, select the
module in the hardware configuration, and select Exchange Object from the short-
cut menu.

Migrating a project

Select the Project > Migrate project command in the main menu. Enter either the
intermediate project with the file extension .am12 or the original project in the
Source path box. Insert the name with the storage location for the target project,
and also the author and a comment if applicable. Clicking on the Migrate button
starts the migration.

The report generated during migration is displayed in the inspector window
directly following the end of migration. You can also obtain this report if you select
the project in the project tree, followed by the Properties command in the shortcut
menu, and then click on the Report file link in the Project progress group.

18 Appendix

794

Special characteristics for the migration of program blocks

Functions and statements are converted into the representation which is standard
for the TIA Portal and may therefore deviate from the previous representation.
Compatible system and standard blocks from a standard library are replaced with
statements, which can be found in the program elements catalog. Standard blocks
with an incompatible range of functions are created as know-how-protected user
blocks with the extension “_LF” in the Program blocks folder.

In the TIA Portal, an operand addressed in absolute mode is assigned a symbolic
address (a name). Together with the name, the operand is also assigned a data type.
This results in a type conflict if the operand addressed in absolute mode is used
together with functions which require different data types, for example if a memory
word addressed in absolute mode is used in both an integer addition and in a shift
function.

The name of an I/O operand is not imported. Instead of this, a “:P” is appended to
the name of the input or output operand. Undefined input and output operands are
assigned a (new) name in the process.

You migrate programs in libraries in that you copy the programs into a project and
migrate the latter.

Stricter rules for checking in accordance with IEC directives in the TIA Portal may
lead to errors during migration. For example, a check is now carried out for func-
tions (FC) that own input parameters may no longer be written and own output
parameters may no longer be read.

With jump labels, a distinction is no longer made between upper and lower case
during the check for uniqueness; if applicable, jump labels are assigned new
names.

A start value defined by the user in global data blocks is replaced by a default value.
A start value defined in a type data block (specified by the user-defined data
type UDT) is retained.

Migration of LAD and FBD blocks

Blocks with jumps to downstream networks that were created in LAD or FBD are
represented in STL following the migration, even though the programming lan-
guage remains set to LAD or FBD. To correct the representation, you set the pro-
gramming language in the block properties to STL and subsequently back to LAD
or FBD again.

Program sources are not migrated. This has effects on the know-how protection: A
block with know-how protection remains protected even following migration. How-
ever, the know-how protection can no longer be canceled since the program source
is no longer available. Therefore remove the know-how protection prior to migra-
tion and protect the block following the migration using the Edit > Know-how pro-
tection command.

18.2 Migrating and upgrading projects

795

Migration of SCL blocks

A prerequisite for the migration of SCL blocks is that an S7-SCL V5.3 SP5 (or later)
option package is installed.

If the program sources of SCL blocks are missing in the original project, these
blocks are migrated into blocks with know-how protection. If the program sources
are present, these blocks are migrated into non-protected blocks. If applicable, you
must then protect the associated blocks again using the Edit > Know-how protection
command.

The following are no longer present with SCL blocks in the TIA Portal:

b Jump labels in the declaration part (the jump labels are retained in the program)

b Symbolic constants in the declaration part (these are replaced by global
user-defined constants, with a different name in the event of conflicting names)

b Symbolic constants as limits for the ARRAY declaration (these are replaced by
fixed values)

b Nested ARRAY tags (they are replaced with multi-dimensional arrays)

b The DIV operator (this is replaced by the slash “/”)

b The EXPD function (this is replaced by the notation “10**”)

b The LOG function (this is replaced by the notation “LN(<Expression>)”.

A floating-point number is always specified as a fractional number (for example,
“12E2” becomes “12.0E2”). Absolute or indirect addressing of data operands is only
possible with an absolutely addressed data block (for example, “DB_name”.DW22
becomes %DB10.DW22).

Some of the standard functions from the IEC Function Blocks library are converted
during the migration into functions which are available in the TIA Portal:

b S_COMP (comparison of STRING tags)

b S_CONV (data type conversion) or into the notation
Source data type_TO_Destination data type

b T_COMP (comparison of time data types)

b T_CONV (data type conversion) or into the notation
Source data type_TO_Destination data type

b T_ADD, T_SUB, and T_COMBINE

A syntax error is output if unambiguous conversion is not possible.

The EN/ENO mechanism with SCL programs is adapted to that of the TIA Portal:
The OK tag is replaced by the ENO tag, which simultaneously controls the ENO out-
put. Following the migration, the previous positions of use of OK tags must also be
adapted to the new EN/ENO mechanism if applicable.

18 Appendix

796

Migration of GRAPH blocks

A prerequisite for the migration of GRAPH blocks is that an S7-GRAPH V5.3 SP6
(or later) option package is installed.

The GRAPH-specific block settings are significantly reduced in the TIA Portal and this
can result in changes in the interface. It may be necessary in this case to update the
block call and to regenerate the instance data block.

18.2.2 Upgrading a project

A project created with STEP 7 V11 can also be edited with STEP V12. Backwards com-
patibility is retained, which means that you can continue to edit the project using
STEP 7 V11. But this means that the range of functions will be limited to the STEP 7
V11 options. If you want to use the full range of functions of STEP 7 V12, you must
upgrade the project. The same applies for global libraries.

To upgrade, open the project that was created with STEP 7 V11 using the command
Project > Upgrade from the main menu. After confirming the prompt, the original
project is closed without changes and the new version of the project is opened.

18.3 Web server

CPUs with an Ethernet interface have a Web server that provides information from
the CPU. To read out the information you require a Web browser which displays the
information of the HTML pages.

18.3.1 Enable Web server

You enable the Web server with the hardware configuration using the Activate web
server on this module checkbox in the CPU properties under the Web server group.
For CPUs with several interfaces, you must also define the interface(s) in the
Overview of interfaces group, via which access is to be allowed.

By activating the Permit access only with HTTPS checkbox you limit access to the
secure hypertext transmission protocol. You additionally require a certificate for
this which you can download and install via a link on the start page of the Web
server. Furthermore, the time must be set on the CPU.

Further settings concern the time interval for automatic updating of the Web
pages, the user administration, and the project language used (in the CPU proper-
ties under the group User interface Languages).

User management

If no users are configured, anyone can read all Web pages without being logged on.
A user “Everybody” can access all Web pages enabled for the user “Everybody” with-
out being logged on and without a password. Access privileges to the Web pages can
be assigned individually to a configured user with password.

18.3 Web server

797

To create a new user, enter a user name in the next line and click in the Access level
cell. Select the required privileges from the list (Fig. 18.3).

18.3.2 Reading out Web information

In order to access the CPU's Web server, the PC or PG must establish an Ethernet
connection (TCP/IP) to the CPU. Start the Web browser and enter the CPU's
IP address as URL in the form http://aaa.bbb.ccc.ddd or – for a secure connection –
https://aaa.bbb.ccc.ddd.

To enable logging on, two input boxes are provided for the user name and password
on the start page at the top left.

Automatic updating is disabled in the basic setting and the Web pages therefore
deliver static information. You can switch the automatic updating on and off using
the function key F5 or the Enable/disable automatic refresh symbol at the top right
on the displayed page. If Web pages are printed, their contents are always
up-to-date.

18.3.3 Standard Web pages

The first page displayed by the Web server is the Welcome page. From here, click on
ENTER to reach the Start page. If you want to skip this intro page in the future, acti-
vate the Skip Intro option.

Start page

The Start page shows the station name, the module name, the module type of the
CPU, and the status at the time of scanning: operating mode, diagnostics state, and
position of the mode switch (Fig. 18.4).

Fig. 18.3 User administration of the Web server

18 Appendix

798

Identification

The Identification page contains the plant designation and location identifier, the
serial number, the order number, and the version information of the hardware,
firmware, and boot loader.

Diagnostic Buffer

The Diagnostic Buffer page shows the contents of this buffer. The maximum size of
the diagnostics buffer depends on the CPU used; the size used can be configured.
Select the group to be displayed from the drop-down list. Detailed information is
displayed on the selected event (Fig. 18.5).

You can select the display language in the window at the top right. If the selected
language is not configured, the information is displayed in hexadecimal code.

Module information

The Module information page shows the status of the S7-1500 station. The status
and the identification of individual modules and, if available, individual submod-
ules of the modules can be called from here. Use the link in the “Heading” to access
a higher object level, the link in the table column Name (under Details) to access a
lower object level.

Fig. 18.4 Start page of the Web server

18.3 Web server

799

The status of a component is indicated by various symbols: Component is OK, deac-
tivated DP slave or IO device, state cannot be determined, component failed or is not
reachable, maintenance required, maintenance demanded, error, and a module in a
lower module level not have the status “component OK”.

Messages

The Messages page displays the configured messages in chronological order,
including the date and time. You cannot acknowledge the messages via the
Web browser.

You can search for specific information with filter settings. With sort functions, you
can sort the messages, for example according to message number or status.
Detailed information about the selected message is displayed.

You can select the display language in the window at the top right. If the selected
language is not configured, the information is displayed in hexadecimal code.

Communication

The Communication page contains the Parameters and Resources tabs.

Information on the PROFINET interfaces can be found in the Parameters tab.
The MAC and the IP address are displayed, for example, as are physical interface

Fig. 18.5 Display of diagnostics buffer in the Web browser

18 Appendix

800

properties. The Resources tab shows the number of available, reserved and occu-
pied connections.

Topology

The Topology page shows the topological structure and the status of a
PROFINET IO system. The Graphic view tab shows the reference topology and the
actual topology in a graphic representation, the Table view tab shows only the
actual topology.

The Status overview tab shows the status of all PROFINET IO devices present in the
project without displaying the connection relationships and thus permits fast locat-
ing of the error location.

Customer pages

On the Customer pages page, the Web server shows the link to user-programmed
Web pages. When configuring the Web server, you can specify the Web pages in the
CPU properties which you wish to load together with the other settings of the
Web server into the CPU.

File browser

The file browser shows the directories and files that are located on the memory
card, with the exception of the system files. The files can be downloaded, deleted,
renamed, or uploaded. Directories can be created, deleted, and renamed.

18.3.4 Read out service data

You can read out service data from the CPU, e.g. the contents of the diagnostics buf-
fer, via the Web server. If a problem should occur with the CPU which cannot be
resolved otherwise, you can send this service data to the Siemens Service&Support.

To read out the service data, open a Web browser and enter
https://<IP address>/save_service_data.html as the address. On the page that appears
for the service data, click on Save ServiceData. The service data is then saved in the
file <Order number><Serial number><Time stamp>.dmp.

Fig. 18.6 Synchronize Web pages

WWW

Synchronize Web pages

System block for synchronization of Web pages and user programs

CTRL_DB RET_VAL

The "Start data block" is created at the CTRL_DB parameter and
contains user-defined Web pages and references to further
data blocks with user-defined Web pages.

18.4 Technology functions

801

18.3.5 Initialize Web server and synchronize Web pages (WWW)

The system function WWW initializes user-defined pages in the Web server of the
CPU and synchronizes access between the pages and the user data. The system
function is called cyclically in the user program. You can find the system function
in the program elements catalog in the section Communication under WEB server
(Fig. 18.6).

18.4 Technology functions

18.4.1 Technology modules TM Count 2×24V and TM PosInput 2

The technology modules TM Count 2×24V and TM PosInput 2 are suitable for count-
ing pulses, for measuring a frequency, a duration of a period or a speed, and for
position input for motion control.

The technology module TM Count 2×24V has two counter channels with a counting
range of 32 bits and a maximum signal frequency of 200 kHz, which results in a
maximum counter frequency of 800 kHz for a fourfold evaluation. 24 V incremental
encoders with and without signal N, 24 V pulse transmitters with and without a
direction signal, and 24 V pulse transmitters with separate signals for forwards and
backwards can be connected to the module. Each of the two counter channels has
three digital inputs and two digital outputs.

The technology module TM PosInput 2 has two counter channels with a counting
range of 32 bits and a maximum signal frequency of 1 MHz, which results in a max-
imum counter frequency of 4 MHz for a fourfold evaluation. SSI absolute value
encoders, RS422/TTL incremental encoders with and without signal N, RS422/TTL
pulse transmitters with and without a direction signal and RS422/TTL pulse trans-
mitters with separate signals for forwards and backwards can be connected to the
module. Each of the two counter channels has two digital inputs and two digital out-
puts.

Both technology modules are configured using the editor from the hardware con-
figuration. The user data interface is comprised of the control interface (32 bytes
inputs) and the feedback interface (24 bytes outputs or 8 bytes in the operating
mode Position input for Motion Control). You configure the counting and measuring
functions with the technology object High_Speed_Counter and control them in the
user program with the system block High_Speed_Counter. Alternatively, you can
also control the technology functions directly via the control and feedback inter-
face.

Depending on the parameterization, a digital input for starting, stopping, synchro-
nizing or saving the count value (capture function) can be used. The result of a com-
parison with the count value can be displayed at a digital output.

With corresponding parameterization, the technology modules generate a diag-
nostic interrupt and hardware interrupts, such as for a zero crossing of the count
value or if the counting direction has changed.

18 Appendix

802

In distributed mode, the technology modules support the isochronous mode func-
tion, which means that the count, measuring and position values can be synchro-
nously (simultaneously) recorded.

Encoder signals

An incremental encoder provides two rows of pulses, A and B, which are offset from
one another by 90°. The counting direction is detected by the sequence of the signal
edges. Any possibly existing signal N can be used to set the start value or to save the
count value (capture function). With RS422 incremental encoders, the signals are
present as differential signals A and /A, B and /B as well as N and /N.

A pulse transmitter provides a row of pulses A. Should the counting direction be
detected, a signal B is required, which will specify the counting direction with its sig-
nal state. The counting direction can also be specified via the user program.

An SSI absolute value encoder (SSI = Synchronous Serial Interface) provides the
absolute position value and a clock signal serially via the difference signals DAT and
/DAT and CLK and /CLK. The position value is present in dual code or in gray code
depending on the encoder used.

Counter function of the technology modules

The counter function can count within the range –231 to 231–1. Within these maxi-
mum count limits, the count limits used during operation can be parameterized or
specified via the user program. The response of the counter function upon reaching
a count limit can be parameterized.

Within the count limits, a start value can be parameterized, specified via the user
program, or set for specific events such as for a signal edge of a digital input (syn-
chronization).

Using a gate control, a time window in which the counting pulses are recorded can
be defined. The gate can be controlled using a digital input of the count channel or
via the user program.

For a signal edge of a digital input, the current count value can be saved (capture
function). Then, for incremental encoders and pulse transmitters, the counting can
be continued using the current count value or the start value.

Using the comparison function, two values can be defined which control the two
digital outputs of the count channel when the comparison condition is fulfilled.
The comparison values can be parameterized and they can be modified via the user
program. A parameterizable hysteresis for the comparison values prevents fre-
quent switching if the current count value fluctuates by the comparison value.

Measurement function of the technology modules

Within a measuring interval, the mean frequency, time period and speed can be
determined from the chronological progress of count pulses or position values.
A frequency can be measured in the range from 0.04 Hz to 800 kHz (4 MHz) and a

18.4 Technology functions

803

time period from 1.25 µs (0.25 µs) to 25 s. The values apply for the evaluation of all
four signal edges for 24 V incremental encoders or, in parentheses, for RS422 incre-
mental encoders.

A gate control defines the time window in which the measured value is determined.
The interval in which the measured value is updated can be parameterized as
update time.

Using the comparison function, two values can be defined which control the two
digital outputs of the count channel when the comparison condition is fulfilled.
The comparison values can be parameterized and they can be modified via the user
program.

Configuring technology modules

Using the hardware configuration, open the PLC station and position the technol-
ogy module in the rack by pressing and holding the mouse key and “dragging and
releasing” the module from the hardware catalog into the working window.
The inspector window shows the properties of the module in the Properties >
General tab. Under General you set the project information and I&M data. Under
Module parameters, select the startup response of the CPU from a drop-down list if
the plugged-in technology module differs from the configured module: From CPU,
Start up CPU only if compatible, or Startup CPU even if mismatch.

You can parameterize the technology functions in the group Count 2x24V > Basic
parameter or PosInput 2 > Basic parameters for each of the two channels. Under
Operating mode, you activate one of the following options:

b Operating with technology object
The parameterization and control are handled via a technology object.

b Position input for Motion Control
The technology module is used for position detection for a higher-level Motion
Control controller (applies to both channels).

b Manual operation
The parameterization is done using the hardware configuration, the control is
implemented in the user program via the control and feedback interface.

Depending on the operating mode, there are different templates for the parameter-
ization. In all of the modes, you define the response of the technology module for
the CPU STOP and you can release the diagnostic interrupt.

For Operating with technology object you can enable hardware interrupts, for exam-
ple for a zero crossing of the count value. With the enable action, you give the event
a name and assign a hardware interrupt organization block.

For the Position input for Motion Control you select, for example, the signal type
(e.g. incremental encoder), the signal evaluation (once, twice, or fourfold), the fil-
ter frequency, and the sensor type (P switch, M switch, push-pull) from drop-down
lists under Module parameters.

18 Appendix

804

For Manual operation, set the function Counting/Position input or Measuring. In
addition, you can enable hardware interrupts, for example for a gate stop. With the
enable action, you give the event a name and assign a hardware interrupt organiza-
tion block.

Under I/O addresses you can set (separately for inputs and outputs) the logical start
addresses, the process image in which the addresses are located, and the assigned
organization block.

18.4.2 Technology objects for counting and measuring

With the technology object High_Speed_Counter you parameterize and control the
counter and measurement functions of the technology modules TM Count 2×24V
and TM PosInput 2. As a prerequisite, the technology module must be configured
accordingly with the hardware configuration. To create the technology object, open
the Technology objects folder in the project tree under the PLC station and double-
click on Add new object. The High_Speed_Counter technology object is the instance
data block for the High_Speed_Counter system block. In the dialog window, select
the Counting and Measurement button and then click on High_Speed_Counter.
You can change the displayed name and the data block number if you activate the
manual option (Fig. 18.7).

Click the OK button to create the technology object and display the parameter
assignment in the working window. You open the same parameterization window
if you double-click on the Configuration editor in the project tree under the technol-
ogy object.

Under Basic parameters > Module, specify the technology module and the channel
for which the technology object is determined. The counter channel is parameter-
ized in the Extended parameters group.

Under Counter inputs, define the signal type of the connected encoder, the signal
evaluation (once, twice, or fourfold), the filter frequency, and the sensor type
(P switch, M switch, push-pull). For push-pull signals, you can activate the monitor-
ing for a wire break.

Under Counter behavior, you set the counter limits, the start value, and the response
when a count limit is exceeded and during a gate start.

Under Behavior of DI0/DI1/DI2, you set the response for each of the three digital
inputs of the counter channel. You define which function is to trigger the digital
input. Example: If the counter gate is only to be opened when the digital input has
signal state “1”, set the function to Gate start/stop (level-triggered) and the option
Active with high level.

Under Behavior of DQ0/DQ1, you set the response for each of the two digital outputs
of the counter channel. You define the function for which the digital output is to be
set, for example, when the current count value is between the comparison value 0
and the upper count limit. The selection depends on the set operating mode Count-
ing or Measurement. In addition, you specify the replacement value for the digital
output if the CPU switches to the STOP operating state.

18.4 Technology functions

805

Under Hysteresis you set the hysteresis value. Under Measured value you select the
measured value (Frequency, Period duration, Velocity) from a drop-down list and
set the refresh time. If you select Velocity as the measured value, you must define
the time basis for the speed measurement and the increments per unit.

High_Speed_Counter system block

Using a High_Speed_Counter technology object, the High_Speed_Counter system
block controls a counter channel on a TM Count 2×24V or TM PosInput 2 technology
module. As a prerequisite for the use of the system block, the technology module
and the technology object must be configured. To call the system block, drag it
from the program elements catalog under Technology > Counting and Measurement
to the open block. Enter the name of the technology block as instance data block
(Fig. 18.8).

The input parameter SwGate controls the counter gate. A rising edge opens the gate
and a falling edge closes the gate. For a rising edge, SetCountValue transfers the
static local tag NewCountValue as the new count value to the module. The capture
function is released if the signal state at CaptureEnable is “1”. It is carried out when
the signal state of the corresponding parameterized digital input changes. The syn-
chronization function is released if the signal state at SyncEnable is “1”. It is carried
out when the signal state of the corresponding parameterized digital input

Fig. 18.7 Add new object dialog window

18 Appendix

806

changes. The static local tags SyncUpDirection and SynDownDirection specify the
direction for the synchronization. A rising edge at ErrorACK acknowledges the sig-
naled error. A rising edge at EventACK resets the output parameters CompResult0,
CompResult1, ZeroStatus, PosOverflow, and NegOverflow.

The output parameter StatusHW indicates the operational readiness of the module
with signal state “1”. StatusGate shows the enabling of the internal gate. StatusUP
and StatusDown show that the last count pulse has increased or decreased the count
value. CompResult0 and CompResult1 show that the comparison event for DQ0 or
DQ1 has occurred. Both parameters are reset with a rising edge at EventACK.

SyncStatus has signal state “1” if a synchronization has occurred. With a falling edge
at the input parameter SyncEnable or at the static local tags SyncUpDirection or
SyncDownDirection, the parameter is reset. CaptureStatus has signal state “1” if the
capture function has been executed. It is reset with a falling edge at the
CaptureEnable parameter . ZeroStatus has signal state “1” if the current count value
CountValue has reached the value zero. A rising edge at EventACK resets ZeroStatus.

PosOverflow and NegOverflow are set to signal state “1” if the current count value
CountValue has overshot the upper count limit or undershot the lower count limit.
A rising edge at EventACK resets PosOverflow and NegOverflow. With signal state
“1”, the Error parameter shows that an error has occurred, the ID of which can be
read at the parameter ErrorID.

The current count value can be output at the CountValue parameter, the capture
value can be output at the CapturedValue parameter, and the measured value for
frequency, time period or speed can be output at the MeasuredValue parameter.

Call box of the High Speed Counter technology function

Fig. 18.8 Call box for a high-speed counter HSC

18.4 Technology functions

807

18.4.3 Technology objects for motion control

The technology function Motion Control in a CPU 1500 supports the closed-loop
positioning and traversing of axes. Depending on the design, the drives can be con-
trolled via a PROFIdrive message frame or an analog output. The encoder signals
can be connected via PROFINET IO, PROFIBUS DP, or a technology module in the
central controller. Motion control instructions control the technology objects in the
user program.

The technology object TO_SpeedAxis calculates the setpoint value for the speed and
outputs it via a PROFIdrive message frame or an analog channel. The technology
object TO_PositioningAxis calculates the position in a controlled way and outputs a
corresponding speed setpoint value via a PROFIdrive message frame or an analog
channel. The technology object TO_ExternalEncoder detects a position and makes it
available to the user program.

Adding a technology object

To create a technology object, open the Technology objects folder in the project tree
under the PLC station and double-click on Add new object. Select the button Motion
Control in the dialog window. Then click TO_SpeedAxis or TO_PositioningAxis in the
folder Motion Control > S7-1500 Motion Control > Axes or click TO_ExternalEncoder in
the folder Motion Control > S7-1500 Motion Control > Other technology objects.

The data for the technology objects is saved in data blocks. You can change the dis-
played name and the data block number if you activate the manual option. A tech-
nology object is stored in the project tree in the Technology objects folder.

Configuring the technology object TO_SpeedAxis

The TO_SpeedAxis technology object contains the editors Configuration, Commis-
sioning, and Diagnostics in the Technology objects folder in the project tree. Double-
click on Configuration to open the configuration window (Fig. 18.9). In the working

Fig. 18.9 Initial configuration screen for the TO_SpeedAxis technology object

18 Appendix

808

window, select the desired parameter range and enter the configuration data for
the axis.

To control a speed-controlled axis in the user program, the instructions referred to
in Section “Instructions for motion control” on page 809 (MC_Power, MC_MoveJog,
MC_MoveVelocity, MC_Hold, and MC_Reset) are available.

Configuring the technology object TO_PositioningAxis

The TO_PositioningAxis technology object contains the editors Configuration,
Commissioning, and Diagnostics in the Technology objects folder in the project tree.
Double-click on Configuration to open the configuration window (Fig. 18.10). In the

working window, select the desired parameter range and enter the configuration
data for the axis.

To control a positioning axis in the user program, the instructions referred to in
Section “Instructions for motion control” on page 809 (MC_Power, MC_Home,
MC_MoveJog, MC_MoveVelocity, MC_MoveRelative, MC_MoveAbsolute, MC_Hold, and
MC_Reset) are available.

Configuring the technology object TO_ExternalEncoder

The TO_ExternalEncoder technology object contains the editors Configuration,
Commissioning, and Diagnostics in the Technology objects folder in the project tree.
Double-click on Configuration to open the configuration window (Fig. 18.11). In the
working window, select the desired parameter range and enter the configuration
data for the axis.

Fig. 18.10 Representation of the hardware interface of a positioning axis

18.4 Technology functions

809

To control an external controller in the user program, the instructions referred
to in the next Section “Statements for motion control” (MC_Power, MC_Home, and
MC_Reset) are available.

Instructions for motion control

You control the Axis technology object and thus the drive with the user program
using the motion control instructions. The instructions are available in the pro-
gram elements catalog under Technology > Motion control. To call a instruction,
drag it with the mouse into the open block. Each call requires an instance data
record, which can be either in a separate block (single instance) or – if the call is
made in a function block – in the instance data block of the calling function block
(multi-instance). Fig. 18.12 shows the calls of the motion control instructions.

If a motion control instruction is still being executed, it must not be interrupted
by the start of the same motion control statement. You should therefore call a
motion control instruction only once in the user program.

By assigning the AXIS parameter, you define the axis to be controlled by the motion
control instructions. At AXIS you specify the data block which was generated when
configuring the technology object.

Fig. 18.11 Configuring the data exchange for TO_ExternalEncoder

18 Appendix

810

18.4.4 Technology objects for PID control

A PID controller continuously detects the measured actual value of the control vari-
able in a control loop and compares it to the desired setpoint value. From the differ-
ence (of the control deviation), the PID controller calculates a manipulated variable,
which conforms the control variable to the setpoint value.

For a PID controller, the control variable is made up of three parts: The P part is pro-
portional to the control deviation, the I part is calculated by means of integration,
it increases with the duration of the control deviation and finally leads to the offset-
ting of the control deviation, and the D part increases with the increasing speed of
change of the control deviation in order to minimize the control deviation as
quickly as possible.

Call boxes of the instructions for motion control

MC_Power activates and deactivates
an axis for motion control.

MC_Reset resets all errors and
acknowledges all acknowledgeable
errors.

MC_Home sets a reference point,
i.e. the (mechanical) positioning
system of the axis is synchronized
with the (logical) coordinate system
of the controller.

MC_Hold cancels all motion pro-
cesses and stops the axis.

MC_MoveAbsolute starts position-
ing of the axis to an absolute posi-
tion.

MC_MoveRelative starts a position-
ing movement of the axis relative to
the start position.

MC_MoveVelocity starts the axis
with the specified speed.

MC_MoveJog starts the axis in jog
mode during testing and commis-
sioning.

Fig. 18.12 Calling the motion control instructions in LAD representation

18.4 Technology functions

811

With the technology objects for PID control, you create control loops with PID
response and integrated optimization in manual and automatic mode. The instruc-
tions PID_Compact (universal PID controller) and PID_3STEP (PID controller with
3-point mode for valves) are available.

Configuring the PID_Compact technology object

The PID_Compact technology object is stored in the Technology objects folder in the
project tree. It contains the editors Configuration and Commissioning. Double-click
on Configuration to open the configuration window (Fig. 18.13). In the working
window, select the desired parameter range and enter the configuration data for
the PID controller.

The technology object PID_Compact requires an analog input channel for the actual
value and an analog output channel for the (analog) manipulated variable. If the
manipulated variable is to be output as pulse width modulated signal, a digital out-
put channel is required.

The PID_Compact technology object is the instance data block for the PID_Compact
instruction in the user program.

Configuring the PID_3Step technology object

The PID_3Step technology object is stored in the Technology objects folder in the
project tree. It contains the editors Configuration and Commissioning. Double-click
on Configuration to open the configuration window (Fig. 18.14). In the working

Fig. 18.13 Configuring the PID_Compact technology object

18 Appendix

812

window, select the desired parameter range and enter the configuration data for
the PID controller.

The technology object PID_3STEP requires an analog input channel for the actual
value and two digital outputs for “Control up” (e.g. open valve) and “Control down”
(e.g. close valve).

The PID_3Step technology object is the instance data block for the PID_3Step instruc-
tion in the user program.

Instructions PID_Compact and PID_3Step

A controller must record the actual value at defined intervals – the scanning time –
in order to be able to determine its time characteristics. Therefore the controller
instruction must be called in a cyclic interrupt organization block whose call inter-
val corresponds to the scanning time. The call can only be made as a single
instance. The required instance data block corresponds to the technology object
PID_Compact or PID_3Step.

Fig. 18.14 Configuring the PID_3Step technology object

18.5 Data logging and transferring recipes

813

To program the PID controller, create a cyclic interrupt OB with the desired scan
time (see Chapter 5.7.4 “Cyclic interrupts” on page 203) and program the PID con-
troller either directly in the cyclic interrupt organization block or in a block which
is called in the cyclic interrupt OB. Drag the required instruction from the Instruc-
tions task card under Technology and PID Control > Compact PID into the open block
and select the corresponding data block from the drop-down list – if you have
already configured the technology object – or specify a new data block which is then
created.

Fig. 18.15 shows the call of the controller instructions.

18.5 Data logging and transferring recipes

With data logging, data blocks from the user program are written to the memory
card in CSV format. With the recipe transfer, data blocks with recipes are trans-
ferred between the user program and the memory card.

18.5.1 Introduction to data logging

With data logging, selected process values from the user program are written to the
data log file. The data log file for a CPU 1500 is on the memory card.

A data log file stores the values in CSV (Comma-Separated Values) format. The
logged data can be read with a Web browser or with an SD card reader. A Web
browser can read the data via the Web server that is available in the CPU, even if the

Call boxes of the technology objects PID_Compact and PID_3Step

Fig. 18.15 Calls of the controller instructions PID_Compact or PID_3Step in
LAD representation

18 Appendix

814

CPU is in the STOP operating state. The data on the memory card can also be
directly accessed with an SD card reader on the programming device.

18.5.2 Using data logging

To use data logging, define a data buffer in a data area with the structure you
require, for example, with a PLC data type which you created. You can write the con-
tents of the data buffer as a data record into the data log file. This could be trig-
gered, for example, at the end of a batch depending on production or with a time-
controlled trigger in a specific timeframe.

The data log file is designed as a ring buffer with a configurable number of data
records. If the maximum number is reached, the oldest data record is overwritten
during the next write action. To prevent this, using DataLogNewFile, an additional
data log file can be created based on the current data log file.

18.5.3 Functions for data logging

Fig. 18.16 shows the structure of data logging. You find these functions in the pro-
gram elements catalog under Extended instructions > Recipe and data logging. Fig.
18.17 shows the call of functions for data logging in LAD representation.

DataLogCreate creates a new (empty) data log file in the load memory. The param-
eters REQ, DONE, BUSY, ERROR, and STATUS control the execution of the function.
At the NAME parameter, enter the name of the data log file, following the require-
ments for Windows file names. Further information on the data log file is located
at the parameters DATA (pointer to the data buffer with the data record), RECORDS
(maximum number of data records), and HEADER (header in the data log file).
A numerical value specifying the data log file is output at the ID parameter.
You specify this numerical value at the other functions that access this data log file.

DataLogOpen opens the log file whose identifier is in the ID parameter. If you
specify the name of the log file at the NAME parameter instead, the ID is output at
the ID parameter. The parameters REQ, DONE, BUSY, ERROR, and STATUS control
the execution of the function. Opening is the prerequisite for writing to the data log
file. DataLogCreate and DataLogNewFile also open the newly created data log file.
Up to 10 data log files can be opened simultaneously. Use the MODE parameter to
select whether the data records are deleted on opening (if MODE = 1).

DataLogWrite writes a data record to the data log file whose identifier is in the
ID parameter. The data record is taken from the data buffer specified at the
DATA parameter of DataLogCreate.

DataLogClose closes the data log file whose identifier is at the ID parameter.
The parameters REQ, DONE, BUSY, ERROR, and STATUS control the execution of the
function. A data log file is also closed in the operating states STARTUP and STOP.

DataLogClear deletes the data records in an open data log file. The HEADER is
retained.

18.5 Data logging and transferring recipes

815

Fig. 18.16 Data structure for data logging

Data structure for data logging

<Name>

<Name>

Data log file

Data log file

Data buffer (= data record)

NAME

ID

HEADER

NAME

RECORDS

DATA

RECORDS

ID

ID

ID

ID

ID

ID

DataLogCreate

DataLogNewFile

DataLogWrite

DataLogClose

DataLogClear

DataLogDelete

DataLogOpen

DataLogCreate
creates a new data
log file. DATA
specifies the data
area of a data
record. RECORD
specifies how many
data records the
data log file can
accommodate.

The data log file is located in the load memory on the memory card.

DataLogOpen
opens a data log
file for writing.

DataLogClose
closes a data log
file.

DataLogClear
clears a data log
file.

DataLogDelete
deletes a data log
file.

DataLogNewFile
creates a new data
log file with the
properties of an
existing one. The
name and the size
can vary.

DataLogWrite writes the contents of
the data buffer as a data record into
the data log file.

18 Appendix

816

DataLogDelete deletes a data log file on the memory card that was created using
DataLogCreate or DataLogNewFile.

DataLogNewFile creates a new (empty) data log file with the same properties as
the data log file whose identifier is specified at the ID parameter. With this, you can
“expand” a full data log file, the oldest data record of which would have been over-
written during the next write action, with a new data log file. At the NAME parame-
ter, specify the name for the new data log file and at the RECORDS parameter, spec-
ify the maximum number of data records. The parameters REQ, DONE, BUSY,
ERROR, and STATUS control the execution of the function. After execution, the iden-
tifier of the newly created data log file is at the ID parameter.

18.5.4 Introduction to recipe transfer

Recipes contain data that belongs together such as data for a specific batch in pro-
duction. A recipe is comprised of recipe data records, which differ in terms of val-
ues, but not in terms of their structure. A recipe data record is comprised of recipe
elements, which can have different data types. (Fig. 18.18).

Function calls for data logging

DataLogCreate creates a new
(empty) data log file in the load
memory.

DataLogOpen opens a data log file.

DataLogWrite writes data records
into an opened data log file.

DataLogClear deletes data records
in an open data log file.

DataLogClose closes a data log file.

DataLogDelete deletes a data log
file on the memory card.

DataLogNewFile creates a new data
log file on the basis of a previously
created one.

Fig. 18.17 Calls of the functions for data logging in LAD representation

18.5 Data logging and transferring recipes

817

A recipe file stores the values in CSV (Comma-Separated Values) format. The recipe
data can be read with a Web browser or with an SD card reader. A Web browser can
read the data via the Web server that is available in the CPU, even if the CPU is in the
STOP operating state. The data on the memory card can also be directly accessed
with an SD card reader on the programming device.

To create a recipe in a data block, map the recipe data record in a PLC data type.
The components of the PLC data type are the recipe elements. You then create a tag
with the data type ARRAY in a data block and assign the PLC data type to the ARRAY
components. Example: With the declaration <Recipe name>: ARRAY [1 .. 10] OF
<PLC data type>, 10 recipe data records with the structure of the PLC data type are
created in the <Recipe name> tag.

There is a recipe data record in each line of the CSV file. The first column contains
the index, i.e. the number of the data record. The next columns contains the recipe
elements, i.e. the components of the PLC data type. The header in the first line con-
tains the names of the recipe elements, i.e. the component names of the PLC data
type.

Fig. 18.18 Recipe components

Data record 1

Recipe

Recipe data record

CSV table

Data record 2

Data record n

PLC data type

Element 1

Element 1

Element 1

Element 2

Element 2

Element 2

Element n

Name 1

Data type 1

Value 1

Name 2

Data type 2

Value 2

Name n

Data type n

Value n

Element n

Element n

Structure of a recipe

…

…
…
…

…
…

…

A recipe is a compilation of data of any type. A recipe comprises data records. Each data record of a
recipe possesses the same elements. The data records differ based on the value (the contents) of the
elements.

A can be mapped in a
PLC data type. A component of the PLC
data type is then an element of the recipe
data record.

recipe data record

A comprises multiple recipe data
records. A recipe is a tag with the data type
ARRAY, where each array component has
the PLC data type.

Recipe element 1 has the name, data type,
and (start) value of the first component of
the PLC data type; recipe element 2
corresponds to the second component, etc.

recipe

The recipe data records are listed line by
line in the . The first line (the
header) contains the names of the recipe
elements, which are the component names
of the PLC data type. The first column
contains the index of the array tag, which is
the number of the recipe data record.

CSV tableIndex Name 1 Name 2 Name n

...

...

1 DS 1/Value 1 DS 1/Value 2 DS 1/Value n...

2 DS 2/Value 1 DS 2/Value 2 DS 2/Value n...

n DS n/Value 1 DS n/Value 2 DS n/Value n...

18 Appendix

818

18.5.5 Functions for the recipe transfer

You can find the functions for the recipe transfer in the program elements catalog
under Extended instructions > Recipes and data logging. Fig. 18.19 shows the calls of
the functions in ladder logic representation.

Exporting a recipe using RecipeExport

RecipeExport transfers a recipe from a data block in the user memory to a CSV file
on the memory card.

A rising edge at the REQ parameter starts a new job. While the job is running, the
BUSY parameter has signal state “1”. A successfully executed job is indicated with
the signal state “1” at the DONE parameter. If an error occurs during job process-
ing, the ERROR parameter is set to signal state “1” and error information is output
at the STATUS parameter. The assigning of these status parameters is only valid for
one cycle until the next processing of RecipeExport.

The parameter RECIPE_DB points to the recipe data block, the structure of which is
described in Chapter 18.5.4 “Introduction to recipe transfer”.

Importing a recipe using RecipeImport

RecipeImport transfers a recipe from a CSV file on the memory card to a data block
in the user memory.

A rising edge at the REQ parameter starts a new job. While the job is running, the
BUSY parameter has signal state “1”. A successfully executed job is indicated with
the signal state “1” at the DONE parameter. If an error occurs during job process-
ing, the ERROR parameter is set to signal state “1” and error information is output
at the STATUS parameter. The assigning of these status parameters is only valid for
one cycle until the next processing of RecipeImport.

The parameter RECIPE_DB points to the recipe data block, the structure of which is
described in Chapter 18.5.4 “Introduction to recipe transfer”.

Function calls for the recipe transfer

RecipeExport transfers a recipe from
a data block in the user memory to a
CSV file on the memory card.

RecipeImport transfers a recipe from
a CSV file on the memory card to a
data block in the user memory.

Fig. 18.19 Calls of the functions for the recipe transfer in LAD representation

18.6 Simulation with PLCSIM

819

18.6 Simulation with PLCSIM

The optional software S7-PLCSIM V12 simulates a PLC station in the main memory
of the programming device. As a result, you can use the programming device to test
the user program without additional hardware.

With STEP 7 you can configure and program the PLC station, then start the simula-
tion, create a “simulation project”, and load the station data into the simulated
PLC station. Now you can test the user program as described in Chapter 15.5 “Test-
ing the user program” on page 677. SIM tables (watch tables) and sequence tables
(tables with actions in a defined chronological order) are available as an interface
to the simulated PLC station.

No connections to “real” programmable controllers must exist when using the sim-
ulation. Any existing online connections are cleared when starting the simulation.

You can carry out several simulations simultaneously. Each simulation runs inde-
pendently, without being connected to any other simulation. All active simulations
need different IP addresses.

18.6.1 Differences from a real CPU

S7-PLCSIM V12 supports the simulation of all of the CPU 1500 modules with firm-
ware versions V1.0 and V1.1 and the associated signal modules (SM) with firmware
versions V1.0 and V1.1. It is not possible, however, to emulate a real programmable
controller 100%. Some differences from a “real” CPU 1500 are listed below.
The following are not supported:

b The functionality of function modules (FMs) and communication modules
(CPs and CMs)

b Network- and point-to-point communication

b An SD memory card and all of the associated functions such as data logging

b A Web server

b Blocks with know-how protection

Not all program functions which are based on system blocks are supported. Unsup-
ported program functions are provided with valid output signals and are otherwise
ignored. You can find a list of the supported program functions in the PLCSIM
online help under Simulations and STEP 7 > Instruction support.

Configuration changes are not possible while a simulation is running. To change
the hardware configuration, the simulated PLC station must be reloaded with the
configuration that was changed (with STEP 7 in the TIA Portal).

18.6.2 Installing PLCSIM

S7-PLCSIM V12 runs under the Windows XP (32-bit) and Windows 7 (32 and 64-bit)
operating systems. You must have administrator rights to install. If STEP 7 V12 or
several instances of PLCSIM are to be executed simultaneously, the minimum rec-

18 Appendix

820

ommended processor is a 2.2 GHz CORE 2 DUO (T7500) and 2 GB of main memory
for Windows XP or 4 GB for Windows 7.

Installation, repair, and uninstalling are carried out using the setup program
start.exe on the DVD. You can also uninstall PLCSIM normally in Windows using the
Software application (Windows XP) or the Programs and functions application
(Windows 7) in the Windows Control Panel.

No user authorization (license key) is required to install PLCSIM. However, PLCSIM
only runs in connection with a valid license for STEP 7 in the TIA Portal.

18.6.3 Starting and saving the simulation

You have created a user program and compiled it without errors and it could there-
fore be executed on a CPU. You can then test it using PLCSIM.

If you are testing the user program of a PLC station with PLCSIM for the first time,
you can start the simulation from STEP 7. Select the PLC station or the Program
blocks folder in the STEP 7 project tree and then select the Online > Simulation >
Start command from the main menu. PLCSIM is started and it creates a new
“simulation project” with the file extension .sim12. You define the project name
and path in the dialog window.

Alternatively, start the PLCSIM simultaneously with STEP 7 and create a new
“simulation project” using the Project > New command from the PLCSIM main
menu or open an existing one using the command Project > Open….

Loading station data

A newly opened simulation project still does not contain any station data. There-
fore, load the station data by selecting the PLC station in the project tree in STEP 7
and choosing the command Download to device > Hardware and Software (only
changes) from the shortcut menu.

If there is still no connection to the simulated PLC station, specify the type of the
PG/PC interface (PN/IE), the PG/PC interface (PLCSIM S7-1200/S7-1500) and, possibly,
the interface in the PLC station in the Extended download to device dialog window.
After the connection has been established, click on Load.

Before loading, STEP 7 compiles the station data and displays the result in the Load
preview window. Fields highlighted in red in the Action column prevent loading.
Clear the error messages, for example by selecting other actions, by eliminating
errors, or by confirming by checking the checkbox, and click on Load. If you check
the Start all checkbox when completing the loading process, the simulated
PLC station starts up after you click on the Finish button.

The PLCSIM user interface

Fig. 18.20 shows the PLCSIM user interface. a At the top you will find the main
menu and the toolbar with the icons for frequently used commands and the speci-
fied IP address of the simulated PLC station. s On the left side, the project tree win-

18.6 Simulation with PLCSIM

821

dow shows the structure of the simulation project. d The objects selected in the
project tree are displayed and edited in the working window. f The tabs of the
objects opened in the working window are arranged on the lower edge of the user
interface.

Use the Window > Compact view command or click on the corresponding icon to
have the simulation window only display the CPU operator panel and the IP
address. When you switch to the compact view, all of the information of the project
view is retained and any unsaved editing work is saved. A consecutive sequence
continues to execute.

Saving and restoring the simulation

The current state of a simulation is maintained in the SIM and sequence tables.
You can save it and then load the saved state again later for continued processing.

Select the command Project > Save from the PLCSIM main menu. In addition to the
SIM and sequence tables, the CPU type is also saved. The station data (configura-
tion, user program) must be reloaded before the next simulation session.

To continue a simulation, start STEP 7 and PLCSIM. Open the respective projects
and reload the station data from STEP 7 into the simulation project. Then you can
continue with the simulation. The SIM tables and the sequence tables have the last
displayed (saved) contents.

Fig. 18.20 Project window of the PLCSIM simulation software and compact view

a

s

d

f

18 Appendix

822

Change station data

In STEP 7 you can make changes to the station data such as supplementing the
hardware configuration or program changes in blocks. Then load the changed data
into the simulated PLC station using the command Download to device > ….

18.6.4 Testing with the SIM table

A SIM table contains tags whose values can be monitored and controlled in the sim-
ulation. The tags can be combined in any manner so that a specially tailored
SIM table can be created for each test case. Several SIM tables, which can also be
simultaneously opened, can be created for a simulated PLC station. Once a
SIM table is opened, the monitoring of the tag values begins. Monitoring in an
opened SIM table cannot be deactivated.

When the simulation project is created, an empty SIM table SIMtable_1 is also cre-
ated in the SIM tables folder. Open this SIM table with a double-click. You can create
an additional SIM table by double-clicking on Add new SIM table. You can change the
name of a SIM table with the command Rename from the shortcut menu. Fig.
18.21 shows an example of a SIM table.

Monitoring tags

Enter the tags to be controlled or monitored in the Address or Name column and
select a different display format if applicable. The Monitor value column displays
the current value of the tags.

If the tags are a bit or a byte, the Bits column displays a checkbox for each bit. If the
checkbox is blank, the relevant bit has signal state “0”. Signal state “1” is indicated
with a checkmark. For a byte, a triangle is displayed at the top of the Name column,
which can be used to “open” the byte tag so that each bit occupies a line.

Fig. 18.21 Example of a SIM table

18.6 Simulation with PLCSIM

823

Modify tags

By default, only tags from the inputs and peripheral inputs areas can be controlled.
If you would also like to assign a value to other tags, activate the icon Enable/disable
modification of non-inputs in the toolbar of the SIM table.

Note that you cannot change the value of a tag which is controlled with an active
force job.

Directly controlling tags

If you enter a value in the Immediate modify column, this value is immediately writ-
ten into the tag. You can also achieve this immediate modification for a bit tag or
byte tag by clicking on the checkbox that is assigned to the bit in the Bits column.

The Bits column always shows the current signal states. In contrast to this, the value
in the Immediate modify column is not updated. You can use this behavior to conve-
niently always assign the same value to a tag with a value that changes during the
simulation.

Consistently controlling tags

If you want to change the values of several tags at the same time, enter the values
into the Consistent modify column. In the column with the lightning symbol, you
define which values will be changed by checking the checkbox. The values will be
changed if you click on the Modify all selected values icon in the toolbar of the
SIM table.

18.6.5 Testing with the sequence table

In a sequence table, enter a chronological order of tag values (a “sequence”). When
the sequence is started, the simulated PLC station is controlled with the tag values
at the specified chronological interval. In this way, the chronological response of a
“real” machine or system can be emulated.

Fig. 18.22 Example of a sequence table

18 Appendix

824

You can create several sequence tables with one sequence each. Only one sequence
can be carried at a time, however.

When the simulation project is created, an empty sequence table Sequence_1 is cre-
ated in the Sequences folder. You open this sequence table with a double-click. You
can create an additional sequence table by double-clicking on Add new sequence.
You can change the name of a sequence table with the command Rename from the
shortcut menu. Fig. 18.22 shows an example of a sequence table.

Entering a sequence

The first step (initial step) and the last step (end of sequence) are defined for a
sequence. You define the steps in-between. You can delete, copy and insert steps,
and create new rows for additional steps using the Insert step and Add step icons in
the toolbar of the sequence table.

A step consists of

b The point in time at which the specified action is started. The point in time is
specified in the Time column in the format: Hours:Minutes:Seconds:Tenths of
seconds.

b The tags, which you define in either the Name or Address column. The tag can be
a peripheral input, an output, a bit memory, or a data tag. An entered input is
converted into an peripheral input. In the address column, you can specify bit,
byte, word or doubleword addresses.

b The action. Two actions are available: Set to value and Set to frequency. You specify
the value or the frequency in Hz in the Action parameter column and you specify
the format in the Display format column.

The action Set to value is carried out once at the specified time and can be applied
to all of the tags. The action Set to frequency can only be applied to peripheral input
bits. The peripheral input changes its signal state from the specified point in time
until it is controlled with a new action or the sequence has elapsed.

The input sequence of the steps plays no role in this. When the sequence is exe-
cuted, the steps are sorted in the specified chronological order (according to the
entry in the Time column). You can sort the steps before execution by clicking in the
header of the Time column.

Steps with different tags can be executed at the same point in time. The sequence
of these actions is undefined.

In the last (defined) step of the sequence, you can specify a point in time for the end
of the sequence. Prior to this, select the entry Stop sequence in the Action column.
With the Continuous sequence action, the sequence will run until it is manually
stopped. With Repeat sequence, the sequence continues to run from the beginning.

18.6 Simulation with PLCSIM

825

Executing a sequence

To start a sequence, open the corresponding sequence table and click on the
Start sequence icon in the toolbar or select the Start sequence command from the
shortcut menu.

After the sequence is started, PLCSIM removes all lines without a tag, sorts the lines
according to the time of execution, and displays the steps in chronological order
from top to bottom. In the information column on the far left of the table, the active
step is displayed with a green arrow so that you can track the progress of sequence
execution. In the upper right section of the table window, the execution time is run-
ning and the active sequence table is marked with a green triangle in the project
tree.

To stop the sequence, click on the Stop sequence icon in the toolbar of the sequence
table or select the command Stop sequence from the shortcut menu. A stopped
sequence cannot be executed further.

Observe the responses to a sequence execution

You can track the responses of the user program while a sequence is executing
using the test functions of STEP 7 (see next chapter) or in PLCSIM using a SIM table.

In PLCSIM, you can position a sequence table and a SIM table in parallel on the
screen, for example by separating the tables from the PLCSIM window and display-
ing them as independent windows. You can also split the PLCSIM window into
two sections with the sequence table and the SIM table using the Split editor space
horizontally and Split editor space vertically icons. In this way, you can simultane-
ously track the changes of the tag values that interest you in the SIM table while the
sequence is being executed.

18.6.6 Applying the test functions of STEP 7

The simulated PLC station almost behaves like a “real” PLC station, which you can
virtually test online using the test functions of STEP 7. If it has not already taken
place, start the PLCSIM, generate a new simulation project or open an existing one,
and load the station data from STEP 7. Start the CPU when finishing the load pro-
cess.

Connecting online

You can now establish an online connection from the (offline) project to the simu-
lated PLC station, for example using the Go online icon in the toolbar. Then the
offline and online version of the blocks are compared and the differences are dis-
played in the project tree of STEP 7, as described in section “Diagnostics icons in the
project tree” on page 677.

Double-clicking on the Online & diagnostics command in the project tree starts the
task card with the online tools. The CPU control panel, the cycle processing time,
and the resources are displayed (see Chapter 15.4.5 “Online tools” on page 676).

18 Appendix

826

Testing with program status

In the online mode, open the block to be tested and activate the program status,
using the Monitoring on/off icon in the toolbar of the working window, for example.
The signal states and tag values are displayed as described in Chapter 15.5.2 “Test-
ing with program status” on page 679.

Monitoring with PLC tag table

In the online mode, open a PLC tag table and activate the monitoring mode, using
the Monitoring on/off icon in the toolbar of the working window, for example. The
signal states and the tag values are then displayed in the Monitor value column
(see Chapter 15.5.3 “Monitoring of PLC tags” on page 682).

Monitoring of data tags

In the online mode, open the data block with the tags to be monitored and activate
the monitoring mode, using the Monitoring on/off icon in the toolbar of the working
window, for example. The signal states and the tag values are then displayed in the
Monitor value column (see Chapter 15.5.4 “Monitoring of data tags” on page 683).

Testing with watch tables

In the online mode, open a watch table and activate the monitoring mode, using the
Monitoring on/off icon in the toolbar of the working window, for example. You can
then monitor and control the signal states and tag values as described in Chapter
15.5.5 “Testing with watch tables” on page 684.

Controlling with the force table

In the online mode, open the force table, specify the force values, and activate forc-
ing as described in Chapter 15.5.6 “Testing with the force table” on page 689.
The force job is transferred to the simulated PLC station and takes effect there.
Forced I/O signals can now no longer be changed, for example with a watch or
SIM table.

Index

827

Index

A

ABS 583
Access protection 657
Accumulator functions

(STL) 448
ACOS 580
ACT_TINT 199
ADD 574
Addition of constants

(STL) 449
Addressing

a constant 99
absolute 95
indirect 100
of a tag area 99
symbolic 98

AND function
Description 507
With FBD 328
With LAD 292
With SCL 364
With STL 403

ANY (parameter type) 134
ANY pointer

Addressing 103
Structure 135

Area pointer 135
Arithmetic functions

Description 574
With FBD 347
With LAD 311
With SCL 373
With STL 422

ARRAY (data type) 126
ASIN 580
Assignment

Description 511
With FBD 334
With LAD 296
With SCL 367
With STL 408

Assignment list 281
Asynchronous errors (OB

80 to OB 87) 220
ATAN 580
ATH 597
ATTACH 210

ATTR_DB 638
Authorization 33

B

BCD16 (data type) 115
BCD32 (data type) 115
Binary logic operations

Description 503
With FBD 325
With LAD 290
With SCL 361
With STL 400

Binary result
Save with STL 443

Bit memory
addressing 95
Operand area 90

BLKMOV 567
Block

Calling 163
Comparing 669
Compiling 276
Copy protection 260
Editing

FBD elements 325
LAD elements 290
SCL statement 361
STL statement 397

Know-how
protection 259

Nesting depth 153
Programming

Code block 253
Data block 270
General 253

Properties 256
Block calls

With FBD 354
With LAD 319
With SCL 393
With STL 438

BLOCK_xx (parameter
type) 132

BOOL (data type) 113
BRCV 763
BSEND 763
BYTE (data type) 113

C

Call structure 282
CAN_DINT 202
CAN_TINT 199
CASE (SCL) 385
CEIL 591
CHAR (data type) 113
CHARS_TO_STRG 594
Clock memories 91
Communication

Open user
communication 751

Point-to-point
communication 767

S7 communication 761
with Modbus RTU 775
with Modbus TCP 777
with USS protocol 773

Comparison functions
Description 570
With FBD 332
With LAD 295
With SCL 372
With STL 418

CONCAT 616
Constants table 252
Contact

Comparison 295
Edge 294
NC contact 291
NO contact 291
OK contact 294

CONTINUE (SCL) 389
Control statements

(SCL) 383
Conversion functions

Description 586
With FBD 349
With LAD 313
With SCL 375
With STL 428

CONVERT 586
Copy protection 260
COS 579
COUNTER (parameter

type) 131
CPU data block 644

Index

828

CREATE_DB 644
Cross-reference list 279
CTD down counter 555
CTU up counter 554
CTUD up/down counter 556
Cycle statistics 184
Cycle time

Description 182
Online 676

Cyclic interrupts
(OB 30 to OB 38) 203

D

D_ACT_DP 736
Data

addressing 95
Operand area 92

Data block
Open

With STL 451
Programming 270

Data logging 813
Data type views 111
Data types

Elementary 113
Parameter types 129
Pointer 134
Structured 123

DATE (data type) 121
DATE_AND_LTIME (data

type DTL) 125
DATE_AND_LTIME (data

type LDT) 122
DATE_AND_TIME (data

type) 123
DB_ANY (parameter

type) 133
DEC 576
DECO 610
DELETE 618
DELETE_DB 646
DEMUX 611
Dependency structure 283
DETACH 210
Device name, device

number 82
DeviceStates 232
Diagnostics buffer 674
Diagnostics interrupt

(OB 82) 226
Digital functions

Description 558
With FBD 344
With LAD 308
With SCL 372

With STL 415
DINT (data type) 117
DIS_AIRT 224
DIS_IRT 223
Distributed I/O

ET 200 697
PROFIBUS DP 716
PROFINET IO 701

DIV 574
DMSK_FLT 219
DP_TOPOL 726
DPMRM_DG 733
DPRD_DAT 733
DPSYC_FR 728, 733
DPV1 interrupts

(OB 55 to OB 57) 737
DPWR_DAT 733
DT (data type) 123
DTL (data type) 125
DWORD (data type) 113

E

Edge evaluation
Description 515
With FBD 331, 340
With LAD 294, 304
With SCL 367
With STL 409

EN_AIRT 225
EN_IRT 224
EN/ENO mechanism

With FBD 356
With LAD 320
With SCL 381
With STL 447

ENCO 611
ENDIS_PW 659
ENO (tag, SCL) 380
Error handling 212
ErrorStruct (data type) 141
ET 200 697
Exclusive OR function

Description 508
With FBD 329
With SCL 365
With STL 403

EXIT (SCL) 392
EXP 581
Expressions (SCL) 361
EXPT 582

F

FILL 567
FILL_BLK 567

Filling the bit array
Description 513
With FBD 336
With LAD 299

FIND 620
FLOOR 591
FOR (SCL) 386
Force table 689
FRAC 583

G

GEN_DIAG 230
GEO2LOG 171
Geographic address

General 68
GET 761
Get_AlarmState 243
GET_DIAG 229
GET_ERROR 214
GET_ERROR_ID 214
Get_IM_Data 234
GET_NAME 231
GETIO 732
GETIO_PA 732
GetStationInfo 231

H

Hardware diagnostics 672
Hardware identifier 107
Hardware interrupts (OB 40

to OB 47) 207
High_Speed_Counter 805
HTA 599

I

I/O access error (OB
122) 216

IEC counter functions
Description 553
Parameter types 132
System data types 140
With FBD 343, 371, 414
With LAD 307
With SCL 371
With STL 414

IEC timer functions
Description 539
Parameter types 132
System data types 139
With FBD 343, 413
With LAD 307
With SCL 370
With STL 370, 413

IF (SCL) 383

Index

829

INC 576
INIT_RD 170
Inputs

addressing 95
Operand area 88

INSERT 618
Insert/remove module

interrupt
(OB 83) 221

INT (data type) 117
Interrupt processing

Cyclic interrupt 203
Delaying and

enabling 223
DPV1 interrupts 737
Hardware interrupts 207
Introduction 192
Isochronous mode

interrupt 745
Time-delay interrupt 200
Time-of-day

interrupts 196
INV 609
IO2LOG 173
IP address

assign to CPU 651
of the PG 648

Isochronous mode inter-
rupt

(OB 61) 745

J

Jump functions
Description 623
With FBD 353
With LAD 316
With STL 436

K

Know-how protection 259

L

Language settings 285
LDT (data type) 122
LED (function) 229
LEFT 617
LEN 615
Library

editing 46
LIMIT 612
LINT (data type) 117
LN 581
Local error handling 213
LOG2GEO 172

LOG2MOD 173
Logic functions

Description 607
With FBD 350
With LAD 314
With SCL 378
With STL 432

Logical address 68
LREAL (data type) 118
LTIME (data type) 121
LTIME_OF_DAY (data

type) 122
LTOD (data type) 122
LWORD (data type) 113

M

Main program
(OB 1) 177

Manufacturer interrupt
(OB 57) 737

Math functions
Description 578
With FBD 348
With LAD 312
With SCL 375
With STL 426

MAX 612
MAX_LEN 615
Memory card 661
Memory functions

Description 510
With FBD 333, 340
With LAD 295, 304
With SCL 367
With STL 408

Memory reset 676
MID 617
MIN 612
Minimum cycle time 183
MOD 574
Modules

addressing 68
parameterization 65
Status displays 672

ModuleStates 233
MOVE_BLK 566
MOVE_BLK_VARIANT 564
MSK_FLT 219
MUL 574
MUX 611

N

NEG 583
Negate RLO

With FBD 330
With LAD 293
With SCL 366
With STL 407

Nesting depth
Blocks 153

NORM_X 599
Normally closed contact

(LAD) 291
Normally open contact

(LAD) 291
Null instructions (STL) 471

O

OB 1 main program 177
OB 10 to OB 17 time-of-day

interrupts 196
OB 100 warm restart 169
OB 121 programming

error 215
OB 122 I/O access error 216
OB 20 to OB 23 time-delay

interrupts 200
OB 30 to OB 38 cyclic

interrupts 203
OB 40 to OB 47 hardware

interrupts 207
OB 55 status interrupt 737
OB 56 update interrupt 737
OB 57 manufacturer

interrupt 737
OB 61 isochronous mode

interrupt 745
OB 80 time error 220
OB 82 diagnostics

interrupt 226
OB 83 Insert/remove mod-

ule interrupt 221
OB 86 rack failure 222
OK check

With FBD 331
With LAD 294

Online tools 676
Open user

communication 751
Operands 86
Operating state

RUN 148
STARTUP 146
STOP 145

Operation step (STL) 401
Operators (SCL) 361
OR function

Description 507
With FBD 329

Index

830

With LAD 292
With SCL 365
With STL 403

Organization block
Overload behavior 194
Overview 193

Outputs
addressing 95
Operand area 88

P

Parallel connection
Description 507
With LAD 292

PARM_MOD 176
PEEK (SCL) 105
Peripheral inputs 88
Peripheral outputs 88
PLC station

adding 63
parameterization 65

PLC tag table 248
PLCSIM 819
POINTER (parameter

type) 134
Point-to-point

communication 767
POKE (SCL) 105
Priority classes 193
Process image

Process image
partitions 180

Update 179
Process image

partitions 180
PROFIBUS DP

addressing 720
Configuring 721
Direct data exchange 730
Isochronous mode 742
SYNC/FREEZE

groups 728
PROFINET IO

addressing 704
Configuring 705
Real-time

communication 710
SYNC domain 712
Topology editor 713

Program control
Description 622
With FBD 352
With LAD 316
With SCL 380
With STL 436

Program execution
types 153

Program status 679
Program_Alarm 243
Programming error

(OB 121) 215
Project

archiving 45
editing 43
Object hierarchy 40
Reference project 45

PRVREC 735
PUT 761

Q

QRY_CINT 206
QRY_DINT 203
QRY_TINT 199

R

Rack failure (OB 86) 222
RALRM 210
RCVREC 734
RD_ADDR 173
RD_LOC_T 189
RD_SINFO 227
RD_SYS_T 187
RDREC 177
RE_TRIGR 183
READ_DBL 640
READ_ERR 220
ReadFromArrayDB 643
ReadFromArrayDBL 643
REAL (data type) 118
Recipes 813
Reference project 45
REPEAT (SCL) 388
REPLACE 620
Resources

Offline 284
Online 673, 676

Retentive behavior 148
RIGHT 617
RLO

Reset (STL) 407
Set (STL) 407

ROUND 591
RTM 192
RUNTIME 184
Runtime meter 191

S

S_COMP 572

S5TIME (data type) 120
S7 communication 761

one-way 761
two-way 763

SCALE 599
SCALE_X 599
Scanning of signal state

Description 504
With FBD 325
With LAD 291
With SCL 361
With STL 402

SEL 611
Series connection

Description 507
With LAD 292

SET_CINT 206
SET_TINT 199
SET_TINTL 199
SETIO 732
SETIO_PA 733
Setting and resetting

Description 511
With FBD 335
With LAD 296
With SCL 367
With STL 409

Shift functions
Description 603
With FBD 349
With LAD 314
With SCL 378
With STL 430

SIMATIC counters
Description 545
With FBD 338, 342
With LAD 302, 306
With SCL 369
With STL 411

SIMATIC timers
Description 524
With FBD 337, 341
With LAD 300, 305
With SCL 368
With STL 410

SIN 579
SINT (data type) 117
Slice access 99
Slot address 68
SNC_RTCB 190
SQR 580
SQRT 581
SRT_DINT 202
Start information

Data type 142

Index

831

Read out with
RD_SINFO 227

Startup program 169
Status bits

Description 442
Status interrupt (OB

55) 737
Status word 442
STEP 7

Portal view 33
Project view 35

STP 186
STRG_TO_CHARS 594
STRG_VAL 596
STRING (data type) 125
String functions

Description 615
With FBD 351
With LAD 315
With SCL 379
With STL 435

STRUCT (data type) 129
SUB 574
SWAP 570
Symbol table

See PLC tag table
SYNC_PI 746
SYNC_PO 746
SYNC/FREEZE 728

T

T branch
With FBD 330
With LAD 293

T_ADD 576
T_COMBINE 576
T_COMP 572
T_CONFIG 759
T_CONV 592
T_DIAG 759
T_DIFF 576
T_RESET 760
T_SUB 576
Tag table

See watch table
Tags

Control 687
Declaring data tags 275
Forcing 689
Introduction 86
Monitoring with PLC tag

table 682
Monitoring with watch

table 686
overlay 111

PLC tag table 248
TAN 579
Technology objects

for counting and
measuring 804

for motion control 807
for PID control 810

Temporary local data
Absolute addressing

(STL) 454
Time

Configuring 187
Setting online 190

TIME (data type) 121
Time error (OB 80) 220
TIME_OF_DAY (data

type) 121
TIME_TCK 191
Time-delay interrupts

(OB 20 to OB 23) 200
Time-of-day interrupts

(OB 10 to OB 17) 196
TIMER (parameter

type) 131
TMAIL_C 758
TOD (data type) 121
TOF OFF delay 542
TON ON delay 541
TONR accumulating ON

delay 543
TP pulse generation 540
Trace 691
Transfer functions

Description 559
With FBD 346
With LAD 310
With SCL 372
With STL 415

TRCV_C 754
TRF_IM_Data 235
TRUNC 591
TSEND_C 753

U

UBLKMOV 567
UDINT (data type) 116
UFILL_BLK 567
UINT (data type) 116
ULINT (data type) 116
UMOVE_BLK 566
UNSCALE 599
UPDAT_PI 181
UPDAT_PO 181
Update interrupt (OB

56) 737

URCV 763
USEND 763
User data 88
User program

Error handling 212
Loading 654
Minimum cycle time 183
Process image 179
Programming

With FBD 323
With LAD 287
With SCL 359
With STL 395

Protecting
Access

protection 657
with CPU display 658
with ENDIS_PW 659

Response time 184
test with

PLCSIM 819
Program status 679
Trace 691
Watch tables 684

USINT (data type) 116

V

VAL_STRG 597
Value status 90
VARIANT (parameter

type) 134
VOID (parameter type) 133

W

WAIT 187
Warm restart 146
Watch table 684
Watch tables 684
WHILE (SCL) 387
WORD (data type) 113
Word logic operations

Description 607
With FBD 350
With LAD 314
With SCL 378
With STL 432

WR_DPARM 176
WR_LOC_T 188
WR_SYS_T 187
WRIT_DBL 640
WriteToArrayDB 643
WriteToArrayDBL 643
WRREC 177
WWW 801

	Cover
	Automating with SIMATIC S7-1500
	Imprint
	Preface
	The contents of the book at a glance
	Table of contents
	1 Introduction
	1.1 Overview of the S7-1500 automation system
	1.1.1 SIMATIC S7-1500 programmable controller
	1.1.2 Overview of STEP 7 Professional V12
	1.1.3 Various programming languages
	1.1.4 Execution of the user program
	1.1.5 Data management in the SIMATIC automation system

	1.2 Introduction to STEP 7 Professional V12
	1.2.1 Installing STEP 7
	1.2.2 Automation License Manager
	1.2.3 Starting STEP 7 Professional
	1.2.4 Portal view
	1.2.5 The windows of the Project view
	1.2.6 Help information system
	1.2.7 Adapting the user interface

	1.3 Editing a SIMATIC project
	1.3.1 Structured representation of project data
	1.3.2 Project data and editors for a PLC station
	1.3.3 Creating and editing a project
	1.3.4 Working with reference projects
	1.3.5 Creating and editing libraries

	2 SIMATIC S7-1500 automation system
	2.1 S7-1500 station components
	2.2 S7-1500 CPUs
	2.2.1 CPU versions
	2.2.2 Control and display elements
	2.2.3 SIMATIC Memory Card
	2.2.4 Memory areas in an S7-1500 station
	2.2.5 Bus interfaces

	2.3 Signal modules
	2.3.1 Digital input modules
	2.3.2 Digital output modules
	2.3.3 Analog input modules
	2.3.4 Analog output modules

	2.4 Technology modules
	2.5 Communication modules
	2.6 Other modules
	2.6.1 System power supply modules
	2.6.2 Load power supply modules

	3 Device configuration
	3.1 Introduction
	3.2 Configuring a station
	3.2.1 Adding a PLC station
	3.2.2 Adding a module

	3.3 Parameterization of modules
	3.3.1 Parameterization of CPU properties
	3.3.2 Addressing modules
	3.3.3 Assigning parameters to signal modules

	3.4 Configuring a network
	3.4.1 Introduction, overview
	3.4.2 Networking a station
	3.4.3 Node addresses in a subnet
	3.4.4 Communication services and types of connection
	3.4.5 Configuring a connection
	3.4.6 Configuring a PROFINET subnet
	3.4.7 Configuring a PROFIBUS subnet

	4 Tags, addressing, and data types
	4.1 Operands and tags
	4.1.1 Introduction, overview
	4.1.2 Operand areas: inputs and outputs
	4.1.3 Operand area: bit memory
	4.1.4 Operand area: data
	4.1.5 Operand area: temporary local data

	4.2 Addressing of operands and tags
	4.2.1 Signal path
	4.2.2 Absolute addressing
	4.2.3 Symbolic addressing
	4.2.4 Addressing of a tag area
	4.2.5 Addressing a constant

	4.3 Indirect addressing
	4.3.1 Overview
	4.3.2 Indirect addressing of ARRAY components
	4.3.3 Indirect addressing of a tag in an ARRAY DB
	4.3.4 Indirect addressing of a data block
	4.3.5 Indirect addressing with an ANY pointer
	4.3.6 Indirect addressing with PEEK and POKE (SCL)

	4.4 Addressing of hardware objects
	4.5 General information on data types
	4.5.1 Overview of data types
	4.5.2 Implicit data type conversion
	4.5.3 Overlaying tags (data type views)

	4.6 Elementary data types
	4.6.1 Bit-serial data types BOOL, BYTE, WORD, DWORD, and LWORD
	4.6.2 Data type CHAR
	4.6.3 BCD numbers BCD16 and BCD32
	4.6.4 Fixed-point data types without sign USINT, UINT, UDINT, ULINT
	4.6.5 Fixed-point data types with sign SINT, INT, DINT, and LINT
	4.6.6 Floating-point data types REAL and LREAL
	4.6.7 Data types for durations
	4.6.8 Data types for points in time

	4.7 Structured data types
	4.7.1 Date and time DATE_AND_TIME (DT)
	4.7.2 Date and time DATE_AND_LTIME (DTL)
	4.7.3 STRING data type
	4.7.4 Data type ARRAY
	4.7.5 Data type STRUCT

	4.8 Parameter types
	4.8.1 Overview
	4.8.2 TIMER and COUNTER parameter types
	4.8.3 Parameter types for IEC timer functions
	4.8.4 Parameter types for IEC counter functions
	4.8.5 Parameter types BLOCK_FC and BLOCK_FB (STL)
	4.8.6 Parameter type DB_ANY
	4.8.7 Parameter type VOID
	4.8.8 Parameter types POINTER, ANY, and VARIANT

	4.9 Pointer
	4.9.1 Introduction
	4.9.2 Area pointer
	4.9.3 DB pointer
	4.9.4 ANY pointer

	4.10 PLC data types
	4.10.1 Programming a PLC data type
	4.10.2 Using a PLC data type
	4.10.3 Comparing PLC data types

	4.11 System data types
	4.11.1 System data types for IEC timer functions
	4.11.2 System data types for IEC counter functions
	4.11.3 Data type ERROR_STRUCT
	4.11.4 Start information

	4.12 Hardware data types

	5 Program execution
	5.1 Operating states of the CPU
	5.1.1 STOP operating state
	5.1.2 STARTUP operating state
	5.1.3 RUN operating state
	5.1.4 Retentive behavior of operands

	5.2 Creating a user program
	5.2.1 Program draft
	5.2.2 Program execution

	5.3 Programming blocks
	5.3.1 Block types
	5.3.2 Block properties
	5.3.3 Block interface
	5.3.4 Programming block parameters

	5.4 Calling blocks
	5.4.1 General information on calling of code blocks
	5.4.2 Supplying the block parameters
	5.4.3 Calling a function (FC)
	5.4.4 Calling a function block (FB)
	5.4.5 “Passing on” of block parameters

	5.5 Startup program
	5.5.1 Startup organization blocks
	5.5.2 Resetting retentive data
	5.5.3 Determining a module address
	5.5.4 Parameterization of modules

	5.6 Main program
	5.6.1 Main program organization blocks
	5.6.2 Process image updating
	5.6.3 Cycle time
	5.6.4 Response time
	5.6.5 Stopping and delaying the program
	5.6.6 Time
	5.6.7 Read system time
	5.6.8 Runtime meter

	5.7 Interrupt processing
	5.7.1 Introduction to interrupt processing
	5.7.2 Time-of-day interrupts
	5.7.3 Time-delay interrupts
	5.7.4 Cyclic interrupts
	5.7.5 Hardware interrupts
	5.7.6 Assigning interrupts during runtime
	5.7.7 Reading additional interrupt information

	5.8 Error handling
	5.8.1 Causes of errors and error responses
	5.8.2 Local error handling
	5.8.3 Global error handling (synchronous error)
	5.8.4 Enabling and disabling synchronous error processing
	5.8.5 Asynchronous errors
	5.8.6 Disable, delay, and enable interrupts and asynchronous errors

	5.9 Diagnostics in the user program
	5.9.1 Diagnostics interrupt
	5.9.2 Read start information
	5.9.3 Diagnostic functions in the user program

	5.10 Configuring alarms
	5.10.1 Introduction
	5.10.2 Configuring alarms according to the alarm number procedure
	5.10.3 Blocks for programming alarms
	5.10.4 CPU alarm display

	6 Program editor
	6.1 Introduction
	6.2 PLC tag table
	6.2.1 Creating and editing a PLC tag table
	6.2.2 Defining and processing PLC tags
	6.2.3 Comparing PLC tag tables
	6.2.4 Exporting and importing a PLC tag table
	6.2.5 Constants tables

	6.3 Programming a code block
	6.3.1 Creating a new code block
	6.3.2 Working area of the program editor for code blocks
	6.3.3 Specifying code block properties
	6.3.4 Protecting blocks
	6.3.5 Programming a block interface
	6.3.6 Programming a control function
	6.3.7 Editing tags
	6.3.8 Working with program comments

	6.4 Programming a data block
	6.4.1 Creating a new data block
	6.4.2 Working area of program editor for data blocks
	6.4.3 Defining properties for data blocks
	6.4.4 Declaring data tags
	6.4.5 Entering data tags in global data blocks

	6.5 Compiling blocks
	6.5.1 Starting the compilation
	6.5.2 Compiling SCL blocks
	6.5.3 Eliminating errors following compilation

	6.6 Program information
	6.6.1 Cross-reference list
	6.6.2 Assignment list
	6.6.3 Call structure
	6.6.4 Dependency structure
	6.6.5 Consistency check
	6.6.6 Resources of the CPU

	6.7 Language settings

	7 Ladder logic LAD
	7.1 Introduction
	7.1.1 Programming with LAD in general
	7.1.2 Program elements of ladder logic

	7.2 Programming binary logic operations with LAD
	7.2.1 NO and NC contacts
	7.2.2 Series and parallel connection of contacts
	7.2.3 T branch, open parallel branch
	7.2.4 Negate result of logic operation in the ladder logic
	7.2.5 Edge evaluation of a binary tag in the ladder logic
	7.2.6 Validity check of a floating-point tag in the ladder logic
	7.2.7 Comparison contacts

	7.3 Programming memory functions with LAD
	7.3.1 Simple and negating coils
	7.3.2 Set and reset coils
	7.3.3 Retentive response due to latching
	7.3.4 Edge evaluation with pulse output in the ladder logic
	7.3.5 Multiple setting and resetting (filling the bit array) in the ladder logic
	7.3.6 Coils with time response
	7.3.7 Coils with counter response

	7.4 Programming Q boxes with LAD
	7.4.1 Memory boxes in the ladder logic
	7.4.2 Edge evaluation of current flow
	7.4.3 SIMATIC timer functions in the ladder logic
	7.4.4 SIMATIC counter functions in the ladder logic
	7.4.5 IEC timer functions in the ladder logic
	7.4.6 IEC counter functions in the ladder logic

	7.5 Programming EN/ENO boxes with LAD
	7.5.1 Edge evaluation with an EN/ENO box
	7.5.2 Transfer functions in the ladder logic
	7.5.3 Arithmetic functions in the ladder logic
	7.5.4 Math functions in the ladder logic
	7.5.5 Conversion functions in the ladder logic
	7.5.6 Shift functions in the ladder logic
	7.5.7 Logic functions in the ladder logic
	7.5.8 Functions for strings in the ladder logic

	7.6 Program control with LAD
	7.6.1 Jump functions in the ladder logic
	7.6.2 Block call functions in the ladder logic
	7.6.3 Block end function in the ladder logic
	7.6.4 EN/ENO mechanism in the ladder logic

	8 Function block diagram FBD
	8.1 Introduction
	8.1.1 Programming with FBD in general
	8.1.2 Program elements of the function block diagram

	8.2 Programming binary logic operations with FBD
	8.2.1 Scanning for signal states “1” and “0”
	8.2.2 Programming a binary logic operation in the function block diagram
	8.2.3 AND function in the function block diagram
	8.2.4 OR function in the function block diagram
	8.2.5 Exclusive OR function in the function block diagram
	8.2.6 Combined binary logic operations, negating result of logic operation
	8.2.7 T branch in the function block diagram
	8.2.8 Edge evaluation of binary tags in the function block diagram
	8.2.9 Validity checking of floating-point numbers in the function block diagram
	8.2.10 Comparison functions in the function block diagram

	8.3 Programming standard boxes with FBD
	8.3.1 Assignment and negating assignment
	8.3.2 Set and reset boxes
	8.3.3 Edge evaluation with pulse output in the function block diagram
	8.3.4 Multiple setting and resetting (filling the bit array) in the function block diagram
	8.3.5 Standard boxes with time response
	8.3.6 Standard boxes with counter response

	8.4 Programming Q boxes with FBD
	8.4.1 Memory boxes in the function block diagram
	8.4.2 Edge evaluation of the result of logic operation in the function block diagram
	8.4.3 SIMATIC timer functions in the function block diagram
	8.4.4 SIMATIC counter functions in the function block diagram
	8.4.5 IEC timer functions in the function block diagram
	8.4.6 IEC counter functions in the function block diagram

	8.5 Programming EN/ENO boxes with FBD
	8.5.1 Edge evaluation with an EN/ENO box
	8.5.2 Transfer functions in the function block diagram
	8.5.3 Arithmetic functions in the function block diagram
	8.5.4 Math functions in the function block diagram
	8.5.5 Conversion functions in the function block diagram
	8.5.6 Shift functions in the function block diagram
	8.5.7 Logic functions in the function block diagram
	8.5.8 Functions for character strings in the function block diagram

	8.6 Program control with FBD
	8.6.1 Jump functions in the function block diagram
	8.6.2 Block call functions in the function block diagram
	8.6.3 Block end function in the function block diagram
	8.6.4 EN/ENO mechanism in the function block diagram

	9 Structured Control Language SCL
	9.1 Introduction
	9.1.1 Programming with SCL in general
	9.1.2 SCL statements and operators

	9.2 Programming binary logic operations with SCL
	9.2.1 Scanning for signal states “1” and “0”
	9.2.2 AND function in SCL
	9.2.3 OR function in SCL
	9.2.4 Exclusive OR function in SCL
	9.2.5 Combined binary logic operations in SCL
	9.2.6 Negate result of logic operation in SCL

	9.3 Programming memory functions with SCL
	9.3.1 Value assignment of a binary tag
	9.3.2 Setting and resetting in SCL
	9.3.3 Edge evaluation in SCL

	9.4 Programming timer and counter functions with SCL
	9.4.1 SIMATIC timer functions in SCL
	9.4.2 SIMATIC counter functions in SCL
	9.4.3 IEC timer functions in SCL
	9.4.4 IEC counter functions in SCL

	9.5 Programming digital functions with SCL
	9.5.1 Transfer function, value assignment of a digital tag
	9.5.2 Comparison functions in SCL
	9.5.3 Arithmetic functions in SCL
	9.5.4 Math functions in SCL
	9.5.5 Conversion functions in SCL
	9.5.6 Shift functions in SCL
	9.5.7 Word logic operations, logic expression in SCL
	9.5.8 Functions for strings in SCL

	9.6 Program control with SCL
	9.6.1 Working with the ENO tag
	9.6.2 EN/ENO mechanism with SCL
	9.6.3 Control statements
	9.6.4 Block functions

	10 Statement list STL
	10.1 Introduction
	10.1.1 Programming with STL in general
	10.1.2 Structure of an STL statement
	10.1.3 Entering an STL statement
	10.1.4 Addressing of 64-bit tags
	10.1.5 STL networks in LAD and FBD blocks

	10.2 Programming binary logic operations with STL
	10.2.1 Processing of a binary logic operation, operation step
	10.2.2 Scanning for signal states “1” and “0”
	10.2.3 AND function in the statement list
	10.2.4 OR function in the statement list
	10.2.5 Exclusive OR function in the statement list
	10.2.6 Combined binary logic operations in the statement list
	10.2.7 Control of result of logic operation

	10.3 Programming memory functions with STL
	10.3.1 Assignment in the statement list
	10.3.2 Setting and resetting in the statement list
	10.3.3 Edge evaluation in the statement list

	10.4 Programming timer and counter functions with STL
	10.4.1 SIMATIC timer functions in the statement list
	10.4.2 SIMATIC counter functions in the statement list
	10.4.3 IEC timer functions in the statement list
	10.4.4 IEC counter functions in the statement list

	10.5 Programming digital functions with STL
	10.5.1 Transfer functions in the statement list
	10.5.2 Comparison functions in the statement list
	10.5.3 Arithmetic functions in the statement list
	10.5.4 Math functions in the statement list
	10.5.5 Conversion functions in the statement list
	10.5.6 Shift functions in the statement list
	10.5.7 Word logic operations in the statement list
	10.5.8 Functions for strings in the statement list

	10.6 Program control with STL
	10.6.1 Jump functions in the statement list
	10.6.2 Block call function in the statement list
	10.6.3 Block end functions in the statement list

	10.7 Further STL functions
	10.7.1 Working with status bits
	10.7.2 EN/ENO mechanism in the statement list
	10.7.3 Accumulator functions
	10.7.4 Working with the data block registers
	10.7.5 Partial addressing of data operands
	10.7.6 Absolute addressing of temporary local data
	10.7.7 Working with the address registers
	10.7.8 Memory-indirect addressing
	10.7.9 Register-indirect addressing
	10.7.10 Direct access to complex local tags
	10.7.11 Data storage of the block parameters of a function (FC)
	10.7.12 Data storage of the block parameters of a function block (FB)
	10.7.13 Data storage of a local instance in a multi-instance
	10.7.14 Null instructions

	11 S7-GRAPH sequential control
	11.1 Introduction
	11.1.1 What is a sequential control?
	11.1.2 Properties of a sequential control
	11.1.3 Program for a sequential control, quantity framework
	11.1.4 Operating modes
	11.1.5 Procedure for configuration

	11.2 Elements of a sequential control
	11.2.1 Steps and transitions
	11.2.2 Jumps in a sequential control
	11.2.3 Branching of a sequencer
	11.2.4 GRAPH-specific tags
	11.2.5 Permanent instructions
	11.2.6 Step and transition functions
	11.2.7 Processing of actions

	11.3 Configuring a sequential control
	11.3.1 Programming the GRAPH function block
	11.3.2 Configuring the sequencer structure
	11.3.3 Programming steps and transitions
	11.3.4 Programming permanent instructions
	11.3.5 Configuring block-independent alarms
	11.3.6 Attributes of the GRAPH function block
	11.3.7 Using the GRAPH function block

	11.4 Testing the sequential control
	11.4.1 Loading the GRAPH function block
	11.4.2 Settings for program testing
	11.4.3 Using operating modes
	11.4.4 Synchronization a sequencer
	11.4.5 Testing with program status

	12 Basic functions
	12.1 Binary logic operations
	12.1.1 Introduction
	12.1.2 Working with binary signals
	12.1.3 AND function, series connection
	12.1.4 OR function, parallel connection
	12.1.5 Exclusive OR function, non-equivalence function
	12.1.6 Negate result of logic operation, NOT contact

	12.2 Memory functions
	12.2.1 Introduction
	12.2.2 Simple and negating coil, assignment
	12.2.3 Single setting and resetting
	12.2.4 Multiple setting and resetting
	12.2.5 Dominant setting and resetting, memory function

	12.3 Edge evaluation
	12.3.1 Principle of operation of an edge evaluation
	12.3.2 Edge evaluation of a binary tag (LAD, FBD)
	12.3.3 Edge evaluation with pulse output (LAD, FBD)
	12.3.4 Edge evaluation with a Q box (LAD, FBD)
	12.3.5 Edge evaluation with an EN/ENO box (LAD, FBD)
	12.3.6 Edge evaluation with SCL
	12.3.7 Edge evaluation with STL

	12.4 SIMATIC timer functions
	12.4.1 Overview
	12.4.2 Programming a timer function
	12.4.3 Timer response as pulse
	12.4.4 Timer response as extended pulse
	12.4.5 Timer response as ON delay
	12.4.6 Timer response as retentive ON delay
	12.4.7 Timer response as OFF delay

	12.5 IEC timer functions
	12.5.1 Introduction
	12.5.2 Pulse generation TP
	12.5.3 ON delay TON
	12.5.4 OFF delay TOF
	12.5.5 Accumulating ON delay TONR
	12.5.6 Loading an IEC timer function with a duration
	12.5.7 Resetting an IEC timer function

	12.6 SIMATIC counter functions
	12.6.1 Overview
	12.6.2 Programming a counter function
	12.6.3 Principle of operation of a counter function
	12.6.4 Enabling a counter function with STL

	12.7 IEC counter functions
	12.7.1 Introduction
	12.7.2 Up counter CTU
	12.7.3 Down counter CTD
	12.7.4 Up/down counter CTUD

	13 Digital functions
	13.1 General information
	13.2 Transfer functions
	13.2.1 General information on the “simple” transfer function
	13.2.2 Copy tag, MOVE box for LAD and FBD
	13.2.3 Copy string, S_MOVE box for LAD and FBD
	13.2.4 Value assignments with SCL
	13.2.5 Loading and transferring with STL
	13.2.6 Copy data area (MOVE_BLK_VARIANT)
	13.2.7 Copy data area (MOVE_BLK, UMOVE_BLK)
	13.2.8 Fill data area (FILL, FILL_BLK, UFILL_BLK)
	13.2.9 Copy and fill data area (BLKMOV, UBLKMOV, FILL)
	13.2.10 Swap bytes (SWAP)

	13.3 Comparison functions
	13.3.1 Execution of “simple” comparison function
	13.3.2 Comparison function T_COMP
	13.3.3 Comparison function S_COMP
	13.3.4 Range comparison

	13.4 Arithmetic functions
	13.4.1 Arithmetic functions for numerical values
	13.4.2 Arithmetic functions for date and time
	13.4.3 Decrementing and incrementing

	13.5 Math functions
	13.5.1 General function description
	13.5.2 Trigonometric functions SIN, COS, TAN
	13.5.3 Arc functions ASIN, ACOS, ATAN
	13.5.4 Generate square and extract square root
	13.5.5 Logarithm and power
	13.5.6 Extract decimal points, generate absolute value and negation
	13.5.7 Calculating with the CALCULATE box in LAD and FBD

	13.6 Conversion functions
	13.6.1 Data type conversion with the conversion function CONVERT
	13.6.2 Data type conversion with ROUND, CEIL, FLOOR, and TRUNC
	13.6.3 Data type conversion with T_CONV
	13.6.4 Data type conversion with S_CONV
	13.6.5 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG
	13.6.6 Conversion functions STRG_VAL and VAL_STRG
	13.6.7 Data type conversion of hexadecimal numbers
	13.6.8 Scaling and normalizing

	13.7 Shift functions
	13.7.1 General function description
	13.7.2 Shift to right
	13.7.3 Shift to left
	13.7.4 Rotate to right
	13.7.5 Rotate to left

	13.8 Logic functions
	13.8.1 Word logic operations
	13.8.2 Invert, generate one's complement
	13.8.3 Coding functions DECO and ENCO
	13.8.4 Selection functions SEL, MUX, and DEMUX
	13.8.5 Minimum selection MIN, maximum selection MAX
	13.8.6 Limiter LIMIT

	13.9 Processing of strings (data type STRING)
	13.9.1 Output current length of a string LEN
	13.9.2 Output maximum length of a string MAX_LEN
	13.9.3 Combine strings CONCAT
	13.9.4 Output left part of string LEFT
	13.9.5 Output right part of string RIGHT
	13.9.6 Output middle part of string MID
	13.9.7 Delete part of a string DELETE
	13.9.8 Insert string INSERT
	13.9.9 Replace part of string REPLACE
	13.9.10 Find part of string FIND

	14 Program control
	14.1 Jump functions
	14.1.1 Introduction
	14.1.2 Absolute jump
	14.1.3 Conditional jump functions
	14.1.4 Jump list
	14.1.5 Jump distributor
	14.1.6 Loop jump

	14.2 Calling of code blocks
	14.2.1 General information on block calls
	14.2.2 Calling a function FC
	14.2.3 Calling a function block FB

	14.3 Block end functions
	14.3.1 Block end function RET (LAD and FBD)
	14.3.2 RETURN statement (SCL)
	14.3.3 Block end functions BEC, BEU, and BE (STL)

	14.4 Data block functions
	14.4.1 Read data block attributes
	14.4.2 Reading and writing the load memory
	14.4.3 ARRAY data blocks
	14.4.4 System blocks for access to ARRAY data blocks
	14.4.5 CPU data blocks

	15 Online mode and program test
	15.1 Connection of a programming device to the PLC station
	15.1.1 IP addresses of the programming device
	15.1.2 Connecting the programming device to the PLC station
	15.1.3 Assigning an IP address to the CPU
	15.1.4 Switching on online mode
	15.1.5 Resetting the CPU memory
	15.1.6 Reset to the factory settings

	15.2 Transferring project data
	15.2.1 Loading project data for the first time
	15.2.2 Reloading the project data
	15.2.3 Protecting the user program
	15.2.4 Working with online project data
	15.2.5 Working with the memory card

	15.3 Working with blocks in online mode
	15.3.1 Introduction
	15.3.2 Changing and loading a block
	15.3.3 Download without reinitialization
	15.3.4 Uploading a block from the CPU
	15.3.5 Working with setpoints
	15.3.6 Comparing blocks

	15.4 Hardware diagnostics
	15.4.1 Status displays on the modules
	15.4.2 Diagnostic information
	15.4.3 Diagnostics buffer
	15.4.4 Diagnostic functions
	15.4.5 Online tools
	15.4.6 Further diagnostic information via the programming device

	15.5 Testing the user program
	15.5.1 Defining the call environment
	15.5.2 Testing with program status
	15.5.3 Monitoring of PLC tags
	15.5.4 Monitoring of data tags
	15.5.5 Testing with watch tables
	15.5.6 Testing with the force table

	15.6 Measured value recording with the trace function
	15.6.1 Introduction
	15.6.2 Creating the trace configuration
	15.6.3 Loading a trace and recording
	15.6.4 Saving and evaluating recorded traces

	16 Distributed I/O
	16.1 Introduction, overview
	16.2 ET 200 distributed I/O system
	16.2.1 ET 200MP
	16.2.2 ET 200M
	16.2.3 ET 200SP
	16.2.4 ET 200S
	16.2.5 ET 200pro
	16.2.6 ET 200eco and ET200eco PN

	16.3 PROFINET IO
	16.3.1 PROFINET IO components
	16.3.2 Addresses with PROFINET IO
	16.3.3 Configuring PROFINET IO
	16.3.4 Coupling modules for PROFINET IO
	16.3.5 Real-time communication in PROFINET
	16.3.6 Special PROFINET configurations

	16.4 PROFIBUS DP
	16.4.1 PROFIBUS DP components
	16.4.2 Addresses with PROFIBUS DP
	16.4.3 Configuring PROFIBUS DP
	16.4.4 Coupling modules for PROFIBUS DP
	16.4.5 Special PROFIBUS configurations

	16.5 System blocks for distributed I/O
	16.5.1 Read and write user data
	16.5.2 Read diagnostic data from a DP standard slave
	16.5.3 Receive and provide a data record
	16.5.4 Activate/deactivate distributed station

	16.6 DPV1 interrupts
	16.7 Isochronous mode
	16.7.1 Introduction
	16.7.2 Isochronous mode with PROFINET IO
	16.7.3 Isochronous mode with PROFIBUS
	16.7.4 Isochronous mode interrupt
	16.7.5 Isochronous process image updating

	17 Communication
	17.1 Overview
	17.2 Open user communication
	17.2.1 Basics
	17.2.2 Data structure of open user communication
	17.2.3 Establish connection and send data with TSEND_C
	17.2.4 Establish connection and receive data with TRCV_C
	17.2.5 Configuring open user communication
	17.2.6 Further functions of open user communication

	17.3 S7 communication
	17.3.1 Basics
	17.3.2 One-way data exchange
	17.3.3 Two-way data exchange
	17.3.4 Configuring S7 communication

	17.4 Point-to-point communication
	17.4.1 Introduction to point-to-point communication
	17.4.2 Configuring the CM PtP communication module
	17.4.3 Point-to-point communication functions

	17.5 Further communication functions
	17.5.1 USS protocol for drives
	17.5.2 Modbus RTU
	17.5.3 Modbus TCP

	18 Appendix
	18.1 Working with source files
	18.1.1 General procedure
	18.1.2 Programming a code block in the source file
	18.1.3 Programming a data block in the source file
	18.1.4 Programming a PLC data type in the source file

	18.2 Migrating and upgrading projects
	18.2.1 Migrating a project
	18.2.2 Upgrading a project

	18.3 Web server
	18.3.1 Enable Web server
	18.3.2 Reading out Web information
	18.3.3 Standard Web pages
	18.3.4 Read out service data
	18.3.5 Initialize Web server and synchronize Web pages (WWW)

	18.4 Technology functions
	18.4.1 Technology modules TM Count 2´24V and TM PosInput 2
	18.4.2 Technology objects for counting and measuring
	18.4.3 Technology objects for motion control
	18.4.4 Technology objects for PID control

	18.5 Data logging and transferring recipes
	18.5.1 Introduction to data logging
	18.5.2 Using data logging
	18.5.3 Functions for data logging
	18.5.4 Introduction to recipe transfer
	18.5.5 Functions for the recipe transfer

	18.6 Simulation with PLCSIM
	18.6.1 Differences from a real CPU
	18.6.2 Installing PLCSIM
	18.6.3 Starting and saving the simulation
	18.6.4 Testing with the SIM table
	18.6.5 Testing with the sequence table
	18.6.6 Applying the test functions of STEP 7

	Index

