SIEMENS
I

Hans Berger

Automating with
SIMATIC S7-1500

Configuring, Programming and Testing
with STEP 7 Professional

Berger Automating with SIMATIC S7-1500

Automating with
SIMATIC S7-1500

Configuring, Programming and Testing
with STEP 7 Professional

by Hans Berger

Publicis Publishing

Bibliographic information from the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http:/dnb.d-nb.de.

The author, translators, and publisher have taken great care with all texts and
illustrations in this book. Nevertheless, errors can never be completely avoided.
The publisher, author, and translators accept no liability, for whatever legal reasons,
for any damage resulting from the use of the programming examples.

www.publicis-books.de

Print ISBN 978-3-89578-404-0
ePDF ISBN 978-3-89578-919-9

Editor: Siemens Aktiengesellschaft, Berlin and Munich
Publisher: Publicis Publishing, Erlangen
© 2014 by Publicis Erlangen, Zweigniederlassung der PWW GmbH

The publication and all parts thereof are protected by copyright.

Any use of it outside the strict provisions of the copyright law without
the consent of the publisher is forbidden and will incur penalties.

This applies particularly to reproduction, translation, microfilming

or other processing, and to storage or processing in electronic systems.
It also applies to the use of extracts from the text.

Printed in Germany

Preface

Preface

The SIMATIC automation system unites all of the subsystems of an automation
solution under a uniform system architecture to form a homogenous whole from
the field level right up to process control.

The Totally Integrated Automation (TTA) concept permits uniform handling of all au-
tomation components using a single system platform and tools with uniform oper-
ator interfaces. These requirements are fulfilled by the SIMATIC automation sys-
tem, which provides uniformity for configuration, programming, data manage-
ment, and communication.

This book describes the newly developed SIMATIC S7-1500 automation system.
S7-1500 controllers are compact in design and can be modularly expanded. The
CPUs feature integrated bus interfaces for communicating with other automation
systems via Industrial Ethernet and, depending on the type of module, via
PROFIBUS DP as well.

The STEP 7 Professional engineering software in the TIA Portal makes it possible to
use the complete functionality of the S7-1500 controllers. STEP 7 Professional is the
common tool for hardware configuration, generation of the user program, and for
program testing and diagnostics.

STEP 7 Professional provides five programming languages for generation of the us-
er program: Ladder logic (LAD) with a graphic representation similar to a circuit di-
agram, function block diagram (FBD) with a graphic representation based on elec-
tronic circuitry systems, a high-level Structured Control Language (SCL) similar to
Pascal, statement list (STL) with formulation of the control task as a list of
commands at machine level, and finally GRAPH as a sequencer with sequential pro-
cessing of the user program.

STEP 7 Professional supports testing of the user program by means of watch tables
for monitoring, control and forcing of tag values, by representation of the program
with the current tag values during ongoing operation, and by offline simulation of
the programmable controller.

This book describes the configuration, programming, and testing of the S7-1500
automation system using the engineering software STEP 7 V12 SP 1 in connection
with a CPU 1500 with firmware version V1.1 and the simulation software PLCSIM
version V12 SP 1.

Erlangen, May 2014 Hans Berger

The contents of the book at a glance

The contents of the book at a glance

Start

Overview of the SIMATIC S7-1500 automation system.
Introduction to the SIMATIC STEP 7 Professional V12 engineering software.

The basis of the automation solution: Creating and editing a project.

SIMATIC S7-1500 automation system

Overview of the SIMATIC S7-1500 modules: Design of an automation system, CPUs, signal,
technology and communication modules.

Device configuration

Configuration of a station, parameterization of modules, and networking of stations.

Tags, addressing, and data types

The properties of inputs, outputs, I/O, bit memories, data, and temporary local data as oper-
and areas, and how they are addressed: absolute, symbolic, and indirect.

Description of elementary and structured data types, data types for block parameters, point-
ers, user and system data types.

Program execution

How the CPU responds in the STARTUP, RUN, and STOP modes.

How the user program is structured with blocks, what the properties of these blocks are, and
how they are called.

How the user program is executed: startup characteristics, main program, interrupt process-
ing, troubleshooting, and diagnostics.

The program editor

Working with the PLC tag table, creating and editing code and data blocks, compiling blocks,
and evaluating program information.

The ladder logic programming language LAD

The characteristics of LAD programming; series and parallel connection of contacts, the use
of coils, standard boxes, Q boxes, and EN/ENO boxes.

The function block diagram programming language FBD

The characteristics of FBD programming; boxes for binary logic operations, the use of stan-
dard boxes, Q boxes, and EN/ENO boxes.

The structured control language SCL

The characteristics of SCL programming; operators and expressions, working with binary
and digital functions, control of program execution using control statements.

The contents of the book at a glance

The statement list programming language STL

The characteristics of STL programming; programming of binary logic operations, applica-
tion of digital functions, and control of program execution.

The sequential control programming language GRAPH

What a sequential control is, and what its elements are: sequencers, steps, transitions, and
branches. How a sequential control is configured using GRAPH.

Description of the control functions

Basic functions: Functions for binary signals: binary logic operations, memory functions,
edge evaluations, SIMATIC timer/counter functions, IEC timer/counter functions.

Digital functions: Functions for digital tags: transfer, comparison, arithmetic, math, con-
version, shift, and logic functions.

Program control: Branching in the program using jump functions, calling and ending func-
tions and function blocks, ARRAY and CPU data blocks.

Online operation and program test

Connecting a programming device to the PLC station, switching on online mode, transfer-
ring the project data, and protecting the user program.

Loading, modifying, deleting, and comparing the user blocks.

Working with the hardware diagnostics and testing the user program.

Distributed /O

Overview: The ET 200 distributed /O system.
How a PROFINET IO system is configured, and what properties it has.
How a PROFIBUS DP master system is configured, and what properties it has.

Communication

The communication functions used to implement open user communication.

The properties of S7 communication and with what communication functions it is pro-
grammed.

How PtP communication is implemented.

Appendix

How external source files are created and imported for STL and SCL blocks.

How a project created using STEP 7 V5.x is migrated to the TIA Portal.

How the Web server is configured in the CPU, and what features it offers.
Technology functions: counting, measuring, motion control, PID control

How the user program is tested offline using the S7-PLCSIM simulation software.

Table of contents

Table of contents

1 Introduction 23
1.1 Overview of the S7-1500 automationsystem 23
1.1.1 SIMATIC S7-1500 programmable controller 24
1.1.2 Overview of STEP 7 Professional V12 25
1.1.3 Various programming languages, 27
1.1.4 Execution of theuserprogramo .. 29
1.1.5 Data management in the SIMATIC automation system 31
1.2 Introduction to STEP 7 Professional V12 32
1.2.1 Installing STEP 7 32
1.2.2 Automation License Managerouuuninenenenennnenennn.. 33
1.2.3 Starting STEP 7 Professional 33
1.2.4 Portal VIEW . ..o e 33
1.2.5 The windows of the Projectview i .. 35
1.2.6 Help information systemo i inirennnannn .. 37
1.2.7 Adapting the userinterface i, 37
1.3 Editing a SIMATIC PTOjJectottt e e et 38
1.3.1 Structured representation of projectdata 39
1.3.2 Project data and editors foraPLCstation 39
1.3.3 Creating and editing a projectot enenen.. 43
1.3.4 Working with reference projects 45
1.3.5 Creating and editing libraries 46
2 SIMATIC S7-1500 automationsystemccouvunon.. 47
2.1 S7-1500 station COMPONENtSiiuniinniiinneinnannnenn... 47
2.2 S7T-1500 CPUSottt e e e e e e 49
2.2.1 CPUVEISIONS .« oottt et e e e e e e e e e e 49
2.2.2 Control and display elements oo, 49
2.2.3 SIMATIC Memory Cardouinii e 51
2.2.4 Memory areas in an S7-1500 station, .. 52
2.25 Businterfaces 54
2.3 Signal modules i 55
2.3.1 Digital inputmodules e 55
2.3.2 Digital outputmodules 56
2.3.3 Analoginputmodules 57
2.3.4 Analogoutputmodules 57
2.4 Technology modules i e 58
2.5 Communicationmodules i 59
2.6 Othermodules 60
2.6.1 System power supplymodules, 60
2.6.2 Load power supplymodules i 60

Table of contents

3 Device configuration 61
3.1 IntroducCtionot 61
3.2 Configuring a stationttt 63
3.2.1 Adding aPLCStationttt e 63
3.2.2 Addingamodule 63
3.3 Parameterizationof modules i 65
3.3.1 Parameterization of CPU propertiesc.ccviiiiininen.n. 65
3.3.2 Addressing modules 68
3.3.3 Assigning parameters to signal modules 70
3.4 Configuring anetwork it 73
3.4.1 Introduction, OVETVIEWttt i e 73
3.4.2 Networking a stationt 74
3.4.3 Node addressesinasubnet, 76
3.4.4 Communication services and types of connection 76
3.4.5 Configuringaconnectionuuiuirurirerenenanan... 78
3.4.6 Configuring a PROFINET subnet iuiun... 80
3.4.7 Configuring a PROFIBUS subnet 84
4 Tags, addressing, anddatatypes 86
4.1 Operands and tagsSo vttt e e 86
4.1.1 Introduction, OVeIVIEWt e 86
4.1.2 Operand areas: inputsand outputsouirirenann.. 87
4.1.3 Operand area: DIt MEMOTYttt 90
4.1.4 Operand area: datac.iuniuiininn i 92
4.1.5 Operand area: temporary localdata 93
4.2 Addressing of operands and tagsc.iiiiii i i 94
4.2.1 Signalpath ... 94
4.2.2 Absolute addressing 95
4.2.3 Symbolic addressingouiiniii it 98
4.2.4 Addressingofatagareaottt 99
4.2.5 Addressing a constantii i e 99
4.3 Indirect addreSSingc.iuiti it 100
4.3.1 OVEIVIEW . oottt e e e e e e e 100
4.3.2 Indirect addressing of ARRAY components 100
4.3.3 Indirect addressing of ataginan ARRAYDB 102
4.3.4 Indirect addressing of adatablock 102
4.3.5 Indirect addressing with an ANY pointer 103
4.3.6 Indirect addressing with PEEK and POKE (SCL) 105
4.4 Addressing of hardware objects i, 107
4.5 General informationondatatypesouiriinianan.. 107
4.5.1 Overview of data typesoviriiinr i 107
4.5.2 ITmplicit data type CONVersionuuiriininrnnnnnnnn. 108
4.5.3 Overlaying tags (data type Views)ciiniiiininenennnnn.. 111
4.6 Elementary data types . .. oo oo ittt 113
4.6.1 Bit-serial data types BOOL, BYTE, WORD, DWORD, and LWORD 113
4.6.2 Datatype CHAR i e 113
4.6.3 BCD numbers BCD16 and BCD32 iiiiininnen .. 115
4.6.4 Fixed-point data types without sign USINT, UINT, UDINT, ULINT 116
4.6.5 Fixed-point data types with sign SINT, INT, DINT, and LINT 117

Table of contents

4.6.6 Floating-point data types REAL and LREAL 118
4.6.7 Datatypesfordurationsc.iiuiiiiinininninn. 120
4.6.8 Datatypes for pointsintime 121
4.7 Structured data typest 123
4.7.1 Date and time DATE_AND TIME (DT)uuiiiiiinrnnnnn.. 123
4.7.2 Date and time DATE_AND LTIME (DTL)coouuiunurnn... 125
4.7.3 STRING data tyPe . ..ottt ettt e e e e e 125
4.7.4 Datatype ARRAY ... i e 126
4.7.5 Datatype STRUCTo e i 129
4.8 Parameter tyPeS . . oottt e 129
4.8.1 OVEIVIEBW .\ttt e e e 129
4.8.2 TIMER and COUNTER parameter typesc.oeueuenen .. 131
4.8.3 Parameter types for IEC timer functions 132
4.8.4 Parameter types for IEC counter functions 132
4.8.5 Parameter types BLOCK FC and BLOCK FB(STL) 132
4.8.6 Parameter type DB_ANY 133
4.8.7 Parameter type VOID 133
4.8.8 Parameter types POINTER, ANY, and VARIANT 134
4.9 POINTET . . .ot 134
4.9.1 IntroduCtionttt 134
4.9.2 Area POINTeTt e 135
4.9.3 DB POINTET . .ottt e e e 135
4.9.4 ANY POINTeT . . .ottt e 135
4.10 PLC data tyPes .« oottt et e e e 137
4.10.1 Programming aPLCdatatype, 137
4.10.2 UsingaPLCdatatypecouiininmiiiminn it 138
4.10.3 Comparing PLC datatypesouuiniiemeiiieaeen.. 138
4.11 System data tyPesS v vttt e 139
4.11.1 System data types for IEC timer functions 139
4.11.2 System data types for IEC counter functions 140
4.11.3 Datatype ERROR_STRUCT i, 141
4.11.4 Startinformation i 142
4.12 Hardware data tyPeso v it 143
5 Program executionottt 144
5.1 Operating statesof the CPU 144
5.1.1 STOP operating stateottt e e 145
5.1.2 STARTUP operating statec..iuiuininmniiinnennnnnn. 146
5.1.3 RUN operating statettt enenenen 148
5.1.4 Retentive behaviorofoperands 148
5.2 Creating @ USer PrOGTAIIltuttntn et ete et 149
5.2.1 Programdraft 149
5.2.2 Program eXeCUtiONut ittt ettt e e 153
5.3 Programmingblocks 155
5.3.1 Block types ... i e 155
5.3.2 Block properties e 157
5.3.3 Blockinterface 157
5.3.4 Programming block parameters 161

10

Table of contents

5.4 Calling blocks i e 163
5.4.1 General information on calling of code blocks 163
5.4.2 Supplying the block parameters 165
5.4.3 Calling a function (FC)ttt 166
5.4.4 Calling a functionblock (FB) i, 167
5.4.5 “Passing on” of block parameters 168

5.5 Startup Programc.iiit ittt 169
5.5.1 Startup organizationblocks il 169
5.5.2 Resetting retentivedatattt 170
5.5.3 Determining a module address 171
5.5.4 Parameterizationof modules, 174

5.6 MaiN PTOGTAIN . ..ottt ettt ettt e e e e e e et 177
5.6.1 Main program organization blocks 177
5.6.2 Process image updatingoouiiiiniiiiniiii 179
5.6.3 Cycle timet e 182
5.6.4 ReSponse timettt 184
5.6.5 Stopping and delaying the program 186
5.6.6 TIIMe . ..ot 187
5.6.7 Read system time i 191
5.6.8 Runtime meterttt 191

5.7 Interrupt ProCessSingo vttt e e e 192
5.7.1 Introduction to interrupt processingo.veueenen.. 192
5.7.2 Time-of-day interrupts, 196
5.7.3 Time-delay interruptsottt 200
5.7.4 Cyclicinterruptsttt e e 203
5.7.5 Hardware interruptsttt 207
5.7.6 Assigning interrupts duringruntime 209
5.7.7 Reading additional interrupt information 210

5.8 Errorhandling ... 212
5.8.1 Causes of errors and error reSPONSeSvuvrvuvennennnnn.. 212
5.8.2 Localerrorhandling i, 213
5.8.3 Global error handling (synchronouserror) 215
5.8.4 Enabling and disabling synchronous error processing 218
5.8.5 ASynchronous errorsoeiuitiiini 220
5.8.6 Disable, delay, and enable interrupts and asynchronous errors 223

5.9 Diagnosticsin theuserprogram 225
5.9.1 Diagnostics INterruptc.oouiunin it 226
5.9.2 Read startinformation 227
5.9.3 Diagnostic functions in the user program 228

5.10 Configuring alarmsoui it 235
5.10.1 IntroducCtion ittt e 235
5.10.2 Configuring alarms according to the alarm number procedure 238
5.10.3 Blocks for programming alarms 242
5.10.4 CPUalarm displayc.iuiriri it 244

6 Program editor 247

6.1 INtroduCtionttt e 247

6.2 PLCtagtableo o 248
6.2.1 Creating and editingaPLCtagtable 248

11

Table of contents

6.2.2 Defining and processing PLCtagsc.oovuiiineinenninenn.. 248
6.2.3 Comparing PLCtagtables 251
6.2.4 Exporting and importingaPLCtagtable 252
6.2.5 Constants tables 252
6.3 Programmingacodeblock........ 253
6.3.1 Creatinganewcodeblock 253
6.3.2 Working area of the program editor for code blocks 254
6.3.3 Specifying code block properties 256
6.3.4 Protecting blocks 259
6.3.5 Programming a block interface 260
6.3.6 Programming a control function 262
6.3.7 Editing tags . . . oottt e 267
6.3.8 Working with program comments 269
6.4 Programmingadatablock 270
6.4.1 Creatinganewdatablock 270
6.4.2 Working area of program editor for datablocks 271
6.4.3 Defining properties fordatablocks 272
6.4.4 Declaring data tagsouuiiiiiin i e 274
6.4.5 Entering data tags in global datablocks 275
6.5 Compiling blocks 276
6.5.1 Starting the compilation i 276
6.5.2 Compiling SCLblocks i 277
6.5.3 Eliminating errors following compilation 278
6.6 Program information 279
6.6.1 Cross-referencelist i 279
6.6.2 Assignment list 281
6.6.3 Call structure i 282
6.6.4 Dependency StruCtuUTrec..tintirimren e, 283
6.6.5 Consistencycheck 283
6.6.6 Resources of the CPU i i 284
6.7 Language Settings v ittt 285
7 Ladderlogic LAD i 287
7.1 Introductiono oo 287
7.1.1 Programming with LADingeneral 287
7.1.2 Program elements of ladder logic 290
7.2 Programming binary logic operations withLAD 290
721 NOand NCcontacts ...ttt 2901
7.2.2 Series and parallel connection of contacts 292
7.2.3 Tbranch, open parallelbranch 293
7.2.4 Negate result of logic operation in the ladder logic 293
7.2.5 Edge evaluation of a binary tag in the ladder logic 294
7.2.6 Validity check of a floating-point tag in the ladder logic 294
7.2.7 Comparison CONTACTS vttt et e 295
7.3 Programming memory functionswithLAD 295
7.3.1 Simple and negating coils i i 296
7.3.2 Setandreset Coils 296
7.3.3 Retentive response due to latching 298
7.3.4 Edge evaluation with pulse output in the ladder logic 299

12

Table of contents

7.3.5 Multiple setting and resetting (filling the bit array) in the ladder logic 299

7.3.6 Coils with time responsettt 300
7.3.7 Coils with counterresponsec..iuiiiiieiinnnnenen. 302
7.4 Programming Q boxeswithLAD i iiiiiiininnn.. 303
7.4.1 Memory boxes in the ladderlogic 304
7.4.2 Edge evaluation of currentflow il 304
7.4.3 SIMATIC timer functions in the ladderlogic....................... 305
7.4.4 SIMATIC counter functions in the ladder logic..................... 306
7.4.5 IEC timer functions in the ladderlogic 307
7.4.6 IEC counter functions in the ladderlogic 307
7.5 Programming EN/ENO boxes withLAD 308
7.5.1 Edge evaluation withan ENJENObox 310
7.5.2 Transfer functions in the ladderlogic 310
7.5.3 Arithmetic functions in the ladderlogic 311
7.5.4 Math functions in the ladderlogic......... 312
7.5.5 Conversion functions in the ladderlogic 313
7.5.6 Shift functions in the ladderlogic 314
7.5.7 Logic functions in the ladder logic 314
7.5.8 Functions for strings in the ladderlogic.......................... 315
7.6 Program control with LAD 316
7.6.1 Jump functions in the ladder logic 316
7.6.2 Block call functions in the ladderlogic 319
7.6.3 Block end function in the ladderlogic........... 320
7.6.4 EN/ENO mechanism in the ladderlogic............ 320
8 Function blockdiagramFBD 323
8.1 INtroducCtion« 323
8.1.1 Programming with FBD ingeneral 323
8.1.2 Program elements of the function block diagram 325
8.2 Programming binary logic operationswithFBD 325
8.2.1 Scanning for signal states “1”and “0” 325
8.2.2 Programming a binary logic operation in the function block diagram 326
8.2.3 AND function in the function block diagram 328
8.2.4 OR function in the function block diagram 329
8.2.5 Exclusive OR function in the function block diagram 329
8.2.6 Combined binary logic operations, negating result of logic operation 329
8.2.7 T branch in the function block diagram 330
8.2.8 Edge evaluation of binary tags in the function block diagram 331
8.2.9 Validity checking of floating-point numbers in the function
blockdiagram 331
8.2.10 Comparison functions in the function block diagram 332
8.3 Programming standard boxeswithFBD 333
8.3.1 Assignment and negating assignment 334
8.3.2 Setand reset boXesSottt 335
8.3.3 Edge evaluation with pulse output in the function block diagram 335
8.3.4 Multiple setting and resetting (filling the bit array) in the function
block diagram 336
8.3.5 Standard boxes with timeresponse 337
8.3.6 Standard boxes with counter response v, 338

13

Table of contents

8.4 Programming Q boxeswithFBD 339
8.4.1 Memory boxes in the function block diagram 340
8.4.2 Edge evaluation of the result of logic operation in the function

blockdiagram 340
8.4.3 SIMATIC timer functions in the function block diagram 341
8.4.4 SIMATIC counter functions in the function block diagram 342
8.4.5 IEC timer functions in the function block diagram 343
8.4.6 IEC counter functions in the function block diagram 343

8.5 Programming EN/ENO boxes withFBD 344
8.5.1 Edge evaluation withan ENJENObox 346
8.5.2 Transfer functions in the function block diagram 346
8.5.3 Arithmetic functions in the function block diagram 347
8.5.4 Math functions in the function block diagram 348
8.5.5 Conversion functions in the function block diagram 349
8.5.6 Shift functions in the function block diagram 349
8.5.7 Logic functions in the function block diagram 350
8.5.8 Functions for character strings in the function block diagram 351

8.6 Program control with FBD 352
8.6.1 Jump functions in the function block diagram 353
8.6.2 Block call functions in the function block diagram 354
8.6.3 Block end function in the function block diagram 355
8.6.4 EN/ENO mechanism in the function block diagram 356

9 Structured Control Language SCL v, 359

9.1 Introductiont e 359
9.1.1 Programming with SCLingeneral 359
9.1.2 SCL statements and Operatorsc.oeuuereenennenennnn. 361

9.2 Programming binary logic operationswith SCL 361
9.2.1 Scanning for signal states “1”7and “0” L. 361
9.2.2 AND function in SCLt 364
9.2.3 ORfunctionin SCLttt e e 365
9.2.4 Exclusive OR functionin SCL it 365
9.2.5 Combined binary logic operationsin SCL 365
9.2.6 Negate result of logic operationinSCL.............. 366

9.3 Programming memory functions with SCL 367
9.3.1 Value assignmentof abinarytag i ... 367
9.3.2 Settingand resettingin SCL i, 367
9.3.3 Edge evaluationin SCL i, 367

9.4 Programming timer and counter functions with SCL 368
9.4.1 SIMATIC timer functionsin SCL iririnanan .. 368
9.4.2 SIMATIC counter functionsin SCL 369
9.4.3 IEC timer functionsin SCL i 370
9.4.4 IEC counter functionsin SCLot .. 371

9.5 Programming digital functionswith SCL 372
9.5.1 Transfer function, value assignment of a digitaltag 372
9.5.2 Comparison functionsin SCL, 372
9.5.3 Arithmetic functionsin SCL i, 373
9.5.4 Math functionsin SCL i 375
9.5.5 Conversion functionsin SCLt .. 375

14

Table of contents

9.5.6 Shift functionsin SCL 378
9.5.7 Word logic operations, logic expressionin SCL 378
9.5.8 Functions for strings in SCL i 379
9.6 Program control with SCL i 380
9.6.1 Workingwiththe ENOtagcoiiuiiniinin i, 380
9.6.2 EN/JENO mechanismwithSCL 381
9.6.3 Control statementsooueniniitntnn .. 383
9.6.4 Block functions 392
10 Statement list STL i 395
10.1 IntrodUucCtionttt e e 395
10.1.1 Programming with STLingeneral 395
10.1.2 Structure of an STL statemento, 397
10.1.3 Entering an STL statementt innenn.. 398
10.1.4 Addressing of 64-bittags 399
10.1.5 STL networks in LAD and FBD blocks 400
10.2 Programming binary logic operations with STL. 400
10.2.1 Processing of a binary logic operation, operationstep 401
10.2.2 Scanning for signal states “1”and “0” 402
10.2.3 AND function in the statementlist 403
10.2.4 OR function in the statementlist 403
10.2.5 Exclusive OR function in the statementlist 403
10.2.6 Combined binary logic operations in the statementlist 404
10.2.7 Control of result of logicoperation 407
10.3 Programming memory functions with STL 408
10.3.1 Assignment in the statementlist 408
10.3.2 Setting and resetting in the statementlist 409
10.3.3 Edge evaluation in the statementlist 409
10.4 Programming timer and counter functions with STL 410
10.4.1 SIMATIC timer functions in the statementlist 410
10.4.2 SIMATIC counter functions in the statementlist 411
10.4.3 IEC timer functions in the statementlist 413
10.4.4 TEC counter functions in the statementlist 414
10.5 Programming digital functions with STL 415
10.5.1 Transfer functions in the statementlist 415
10.5.2 Comparison functions in the statementlist 418
10.5.3 Arithmetic functions in the statementlist 42?2
10.5.4 Math functions in the statementlist 426
10.5.5 Conversion functions in the statementlist 428
10.5.6 Shift functions in the statementlist 430
10.5.7 Word logic operations in the statementlist 432
10.5.8 Functions for strings in the statementlist 435
10.6 Program control with STL 436
10.6.1 Jump functions in the statementlist 436
10.6.2 Block call function in the statementlist 438
10.6.3 Block end functions in the statementlist 440
10.7 Further STLfunctionsoi i 441
10.7.1 Working with statusbits, 442
10.7.2 EN/ENO mechanism in the statementlist 447

15

Table of contents

10.7.3 Accumulator functions i 448
10.7.4 Working with the data blockregisters 451
10.7.5 Partial addressing of dataoperands 453
10.7.6 Absolute addressing of temporary localdata 454
10.7.7 Working with the addressregisters 454
10.7.8 Memory-indirect addressingot 458
10.7.9 Register-indirect addressing i 461
10.7.10 Direct access to complexlocaltags 463
10.7.11 Data storage of the block parameters of a function (FC) 465
10.7.12 Data storage of the block parameters of a function block (FB) 467
10.7.13 Data storage of a local instance in a multi-instance 468
10.7.14 NullinStructionsiiuiiin i 471
11 S7-GRAPH sequential control 472
11.1 IntroducCtiont e 472
11.1.1 Whatis asequential control? 472
11.1.2 Properties of a sequential control 473
11.1.3 Program for a sequential control, quantity framework 474
11.1.4 Operating modesttt 474
11.1.5 Procedure for configuration 475
11.2 Elements of a sequential control 475
11.2.1 Stepsand transitionsttt 475
11.2.2 Jumpsin asequentialcontrol 477
11.2.3 Branchingof asequencer, 477
11.2.4 GRAPH-specifictagsot 478
11.2.5 Permanent instructionso.iiuiiinnineeninnen.. 479
11.2.6 Step and transition functions 480
11.2.7 Processing of actionsu i, 483
11.3 Configuring a sequential control 489
11.3.1 Programming the GRAPH function block 489
11.3.2 Configuring the sequencer structure 490
11.3.3 Programming steps and transitions 492
11.3.4 Programming permanent instructions 493
11.3.5 Configuring block-independentalarms 494
11.3.6 Attributes of the GRAPH functionblock 494
11.3.7 Using the GRAPH functionblock 495
11.4 Testing the sequential control 497
11.4.1 Loading the GRAPH functionblock 498
11.4.2 Settings for program testingo, 498
11.4.3 Using operating modesc.ouuiuntnn it 499
11.4.4 Synchronization a SEqUENCErouiuirireenennnnnnnnn. 500
11.4.5 Testing with program status.................ouririrerennnnn.. 501
12 Basicfunctions 503
12.1 Binary logic operationsttt 503
12.1.1 INtrodUCtionottt e e e 503
12.1.2 Working with binary signals 504
12.1.3 AND function, series connectionuuiuirinan... 507
12.1.4 OR function, parallel connection 507

16

Table of contents

12.1.5 Exclusive OR function, non-equivalence function 508
12.1.6 Negate result of logic operation, NOT contact 508
12.2 Memory functions it e 510
12.2.1 IntroducCtionttt 510
12.2.2 Simple and negating coil, assignment 511
12.2.3 Single settingand resettingcovutiinineninnnnnnnn. 511
12.2.4 Multiple settingandresetting i, 513
12.2.5 Dominant setting and resetting, memory function 514
12.3 Edge evaluationttt 515
12.3.1 Principle of operation of an edge evaluation 515
12.3.2 Edge evaluation of a binary tag (LAD,FBD) 517
12.3.3 Edge evaluation with pulse output (LAD,FBD) 518
12.3.4 Edge evaluation witha Q box (LAD,FBD) 519
12.3.5 Edge evaluation with an EN/ENO box (LAD,FBD) 520
12.3.6 Edge evaluationwithSCL 521
12.3.7 Edge evaluation with STL 523
12.4 SIMATIC timer functions, 524
12.4.17 OVETVIEW . ..ttt e e e e 524
12.4.2 Programming a timer function 527
12.4.3 Timerresponse aspulseottt 529
12.4.4 Timerresponse as extended pulse 531
12.4.5 Timerresponseas ONdelayo, 533
12.4.6 Timer response as retentive ONdelay 535
12.4.7 Timerresponseas OFFdelay 537
12.5 IEC timer functionsttt et 539
12.5.1 IntroducCtiont 539
12.5.2 Pulsegeneration TPttt 540
12.5.3 ONdelay TON o e e e e 541
12.5.4 OFF delay TOF e 542
12.5.5 Accumulating ONdelay TONR i, 543
12.5.6 Loading an IEC timer function with a duration 544
12.5.7 Resetting an IEC timer function, 545
12.6 SIMATIC counter functionsc. it iinenennn.. 545
12.6.1 OVEIVIEW ...ttt e e e e 545
12.6.2 Programming a counter function 549
12.6.3 Principle of operation of a counter function 550
12.6.4 Enabling a counter function with STL 551
12.7 TEC counter functions it 553
12.7.1 Introduction i 553
12.7.2 Upcounter CTU e e 554
12.7.3 Downcounter CTD i 555
12.7.4 Upldown counter CTUDt 556
13 Digital functions 558
13.1 General informationt 558
13.2 Transfer functions i i 559
13.2.1 General information on the “simple” transfer function 559
13.2.2 Copy tag, MOVE boxfor LADand FBD 559
13.2.3 Copy string, S MOVE box for LADandFBD 560

17

Table of contents

13.2.4 Value assignmentswith SCL 561
13.2.5 Loading and transferring with STL 562
13.2.6 Copy data area (MOVE_BLK VARIANT)cccirininnn.. 564
13.2.7 Copy data area (MOVE_BLK, UMOVE BLK) 566
13.2.8 Fill data area (FILL, FILL, BLK, UFILL BLK) 567
13.2.9 Copy and fill data area (BLKMOV, UBLKMOV, FILL) 567
13.2.10 Swap bytes (SWAP)ot e 570
13.3 Comparison functionsiuiniiiiiniiiiiinan.. 570
13.3.1 Execution of “simple” comparison function 570
13.3.2 Comparison function T COMP 572
13.3.3 Comparison function S COMPc.itiiiiirnnnnnnn. 572
13.3.4 Range COmMPariSOMut ittt e 573
13.4 Arithmeticfunctions i 574
13.4.1 Arithmetic functions for numerical values 574
13.4.2 Arithmetic functions for dateand time 576
13.4.3 Decrementing and incrementing, 576
13.5 Math functions 578
13.5.1 General function description 578
13.5.2 Trigonometric functions SIN, COS, TANcovuvin.. 579
13.5.3 Arc functions ASIN, ACOS, ATANt 580
13.5.4 Generate square and extract SqQUAre root 580
13.5.5 Logarithm and power 581
13.5.6 Extract decimal points, generate absolute value and negation 582
13.5.7 Calculating with the CALCULATE boxin LADand FBD 583
13.6 Conversion functionsc.iiniuniniinnninunnnen.n. 586
13.6.1 Data type conversion with the conversion function CONVERT 586
13.6.2 Data type conversion with ROUND, CEIL, FLOOR, and TRUNC 591
13.6.3 Data type conversion withT CONV, 592
13.6.4 Data type conversion withS CONV it 594
13.6.5 Conversion functions STRG_TO_CHARS and CHARS_TO_STRG 594
13.6.6 Conversion functions STRG_VAL and VAL_STRG 596
13.6.7 Data type conversion of hexadecimal numbers 597
13.6.8 Scaling and normalizing i i i 599
13.7 Shift functions 603
13.7.1 General function description 603
13.7.2 Shifttoright 603
13.7.3 Shifttoleft 605
13.7.4 Rotatetoright 605
13.7.5 Rotatetoleft oo 606
13.8 Logic functionsoouiin i 607
13.8.1 Word logic operationso.iuiririnenenernanannnn 607
13.8.2 Invert, generate one's complement 609
13.8.3 Coding functions DECOand ENCO 610
13.8.4 Selection functions SEL, MUX, and DEMUX 611
13.8.5 Minimum selection MIN, maximum selection MAX 612
13.8.6 Limiter LIMIT e 612
13.9 Processing of strings (data type STRING)coooiinn.... 615
13.9.1 Output currentlength ofastring LEN 615
13.9.2 Output maximum length of a string MAX LEN 615

18

Table of contents

13.9.3 Combine strings CONCAT i 616
13.9.4 Outputleft partof string LEFT 617
13.9.5 Outputright part of string RIGHT, 617
13.9.6 Output middle partofstringMID i, 617
13.9.7 Delete partofastring DELETEot 618
13.9.8 Insertstring INSERTt 618
13.9.9 Replace partof string REPLACE 620
13.9.10 Find partof string FIND i 620
14 Program control 622
14.1 Jump fUNCHONSot 623
14.1.1 IntroducCtionttt e e e 623
14.1.2 Absolute jJump ... 623
14.1.3 Conditional jump functions, 625
14.1.4 Jump List ... 627
14.1.5 Jump distributor 628
T14.1.6 LOOP JUMID . . ottt et e e e et e e et ettt et 630
14.2 Callingof code blocks i 631
14.2.1 General information on blockcalls 631
14.2.2 Callingafunction FC i 632
14.2.3 Calling afunction block FB i 634
14.3 Block end functionst 636
14.3.1 Block end function RET (LADandFBD)ov .. 636
14.3.2 RETURN statement (SCL)ttt e 636
14.3.3 Block end functions BEC, BEU, and BE(STL) 637
14.4 Datablock functionsc.. i 638
14.4.1 Read data block attributes i 638
14.4.2 Reading and writing the load memory 639
14.4.3 ARRAY datablocks i 641
14.4.4 System blocks for access to ARRAY datablocks 642
14.4.5 CPUdatablocks 644
15 Online mode and programtest.................. 647
15.1 Connection of a programming device to the PLC station 648
15.1.1 TP addresses of the programming device 648
15.1.2 Connecting the programming device to the PLC station 649
15.1.3 Assigning an IP addresstothe CPU oo, 651
15.1.4 Switchingononlinemode 651
15.1.5 Resetting the CPUMEMOTYttt 652
15.1.6 Reset to the factorysettings, 652
15.2 Transferring projectdataot 653
15.2.1 Loading project data for the firsttime 654
15.2.2 Reloading the projectdata 656
15.2.3 Protecting the user programiuirininenann.. 657
15.2.4 Working with online projectdata 660
15.2.5 Working with the memorycard 661
15.3 Working with blocks inonlinemode 662
15.3.1 IntroducCtion ittt e 662
15.3.2 Changing and loadingablock 663

19

Table of contents

15.3.3 Download without reinitialization 665
15.3.4 Uploading ablock fromthe CPU 667
15.3.5 Working with setpoints 668
15.3.6 Comparing blocks 669
15.4 Hardware diagnostiCsttt i 672
15.4.1 Status displaysonthemodules 672
15.4.2 Diagnosticinformation i 673
15.4.3 Diagnosticsbuffer 674
15.4.4 Diagnostic functionsttt 675
15.4.5 Online tools 676
15.4.6 Further diagnostic information via the programming device 676
15.5 Testing theuserprogramo, 677
15.5.1 Defining the call environment 678
15.5.2 Testing with program statust . 679
15.5.3 Monitoring of PLCtagso.uriii e 682
15.5.4 Monitoringofdatatags.............oiuiii i 683
15.5.5 Testing withwatchtables 684
15.5.6 Testing with the forcetable 689
15.6 Measured value recording with the trace function 691
15.6.1 INtrodUuCtionttt e 691
15.6.2 Creating the trace configuration v o... 691
15.6.3 Loading a trace and recordingc.oouuiiuninenninnen.. 692
15.6.4 Saving and evaluating recorded traces 693
16 Distributed O 696
16.1 Introduction, OVEIVIEWttt 696
16.2 ET 200 distributed IO SyStemcouuiniiiiininnnnnnnn.. 697
16.2.1 ET200MP . ..o 697
16.2.2 ET200M . .o oottt e e 698
16.2.3 ET200SP ..ottt 698
16.2.4 ET 2008 ..ottt 699
16.2.5 ET 200PT0 . . ov ittt et e e e e e e e e 700
16.2.6 ET 200eco and ET200ecoPN i, 700
16.3 PROFINET IOottt e e e e 701
16.3.1 PROFINET IO cCOMPONENtS . . . o \v ittt et eeee s 701
16.3.2 Addresses with PROFINETIO 704
16.3.3 Configuring PROFINET IOttt 705
16.3.4 Coupling modules for PROFINETIOcuuiunn.. 708
16.3.5 Real-time communication in PROFINET 710
16.3.6 Special PROFINET configurations 715
16.4 PROFIBUS DP e e e 716
16.4.1 PROFIBUS DP cOMPONENtSo\ttt eeeeeeee 716
16.4.2 Addresses with PROFIBUSDP ...ttt 720
16.4.3 Configuring PROFIBUSDPot 721
16.4.4 Coupling modules for PROFIBUSDPccoiiinaun.. 724
16.4.5 Special PROFIBUS configurations, 728
16.5 System blocks for distributed /O 730
16.5.1 Read and writeuserdatacouiriiininenenenannnn. 730
16.5.2 Read diagnostic data from a DP standard slave 733

20

Table of contents

16.5.3 Receive and provide adatarecord, 734
16.5.4 Activateldeactivate distributed station 736
16.6 DPVI INTEITUPLS ...ttt e et e e e 737
16.7 Isochronous modettt e 738
16.7.1 Introduction ittt e 738
16.7.2 Isochronous mode with PROFINETIO 739
16.7.3 Isochronous mode with PROFIBUS 742
16.7.4 Isochronous mode interruptc..ouuirininenennnnn.. 745
16.7.5 Isochronous process image updatingc..oouven.. 746
17 Communication 748
171 OVETVIEW . o oottt e e e e e e e e e e 748
17.2 Open user COMMUNICAtIONottt e e e e 751
17.2.1 BasiCS .ottt 751
17.2.2 Data structure of open user communication 752
17.2.3 Establish connection and send data with TSEND C 753
17.2.4 Establish connection and receive datawithTRCV.C 754
17.2.5 Configuring open user communication 755
17.2.6 Further functions of open user communication 758
17.3 S7 commuUNIcationttt e 761
17.3.1 BasiCS .ot 761
17.3.2 One-way dataexchangeo .iiuiiiinninininnnn.. 761
17.3.3 Two-way dataexchangec.ciiiiiininininnnenen. 763
17.3.4 Configuring S7 communication 766
17.4 Point-to-point communicationc.couuinininenenenen.. 767
17.4.1 Introduction to point-to-point communication 767
17.4.2 Configuring the CM PtP communication module 768
17.4.3 Point-to-point communication functions 769
17.5 Further communication functions 773
17.5.1 USS protocol fordrives, 773
17.5.2 Modbus RTU e 775
17.5.3 Modbus TCP e 777
18 AppendixX 780
18.1 Working with sourcefiles 780
18.1.1 General procedurettt 780
18.1.2 Programming a code block in the sourcefile 782
18.1.3 Programming a data block in the sourcefile 788
18.1.4 Programming a PL.C data type in the sourcefile 791
18.2 Migrating and upgrading projectsc...oouiuininenenan.. 792
18.2.1 Migrating @ Projectttt 792
18.2.2 Upgrading @ Projectottt e 796
18.3 Web server e 796
18.3.1 Enable Web server 796
18.3.2 Reading out Web information 797
18.3.3 Standard Web pages i 797
18.3.4 Read outservicedatac.uririronenre s 800
18.3.5 Initialize Web server and synchronize Web pages (WWW) 801

21

Table of contents

18.4 Technology functions i, 801
18.4.1 Technology modules TM Count 2x24V and TM PosInput?2.......... 801
18.4.2 Technology objects for counting and measuring.................. 804
18.4.3 Technology objects for motion control 807
18.4.4 Technology objects for PID control 810

18.5 Data logging and transferring recipes, 813
18.5.1 Introduction to datalogging, 813
18.5.2 Usingdatalogging, 814
18.5.3 Functions fordatalogging 814
18.5.4 Introduction to recipe transfer 816
18.5.5 Functions for the recipe transfer 818

18.6 Simulation with PLCSIM i 819
18.6.1 Differencesfromareal CPU it 819
18.6.2 Installing PLCSIMt 819
18.6.3 Starting and saving the simulation 820
18.6.4 TestingwiththeSIMtable....... 822
18.6.5 Testing with the sequencetable 823
18.6.6 Applying the test functionsof STEP 7 825

Index 827

22

1.1 Overview of the §7-1500 automation system

1 Introduction

1.1 Overview of the S7-1500 automation system

SIMATIC S7-1500 is the modular automation system for the medium and upper per-
formance ranges. Different versions of the controllers allow the performance to be
matched to the respective application. Depending on the requirements, the pro-
grammable controller can be expanded by input/output modules for digital and
analog signals and technology and communication modules. The SIMATIC S7-1500
automation system is seamlessly integrated in the SIMATIC system architecture
(Fig. 1.1).

SIMATIC S7-1500 automation system

SIMATIC S7-1500 SIMATIC HMI

SIMATIC controllers control the machine Operator control and

or plant. Several versions of the monitoring for controlling
controllers expand the range of use. the plant during operation

SIMATIC NET Networking allows data exchange
between devices and online access
at any location.

SIMATIC ET200 T STEP 7 Professional
— S — (TIA Portal)
o 63
The distributed I/O expands STEP 7 is the engineering software
the interface to the machine for configuring and programming.
or plant.

Fig. 1.1 Components of the SIMATIC S7-1500 automation system

23

1 Introduction

The SIMATIC ET200 distributed I/O allows for additional expansion using input/output
modules which are connected to the central controller via PROFIBUS DP or
PROFINET IO. The distributed stations can be installed in a control cabinet or - if pro-
vided with special designs for increased mechanical requirements - directly on the
machine or system.

SIMATIC HMI (HMI = Human Machine Interface) is used to control and monitor a
machine or plant and its function. Depending on their version, the devices can pro-
vide control functions via process images, display system status and alarm mes-
sages, and manage the automation data in the form of recipes or measured value
archives.

SIMATIC NET handles the exchange of data via various bus systems between the
SIMATIC controllers, the distributed 1/0, the HMI devices, and the programming
device. The programming device can be a personal computer, an industrial PC, or a
notebook with a Microsoft Windows operating system.

The SIMATIC components are configured, parameterized, and programmed using
the STEP 7 Engineering Software. The TIA Portal (TIA = Totally Integrated Automa-
tion) is the central tool for managing automation data and the associated editors in
the form of a hierarchically structured project.

1.1.1 SIMATIC S7-1500 programmable controller

The most important components of an S7-1500 programmable controller are
shown in Fig. 1.2.

Components of an $7-1500 controller

Rack

Central controller

Power supply module
(PS)

CPU
(central processing unit)

Can be plugged onto the rack:

Signal modules The rack has 32 slots. An optional power

(SM) supply occupies slot 0 and the CPU
occupies slot 1. To the right of the CPU,

Technology modules there is room for up to 30 modules

(T™M) (including power supply modules).

Communication modules
(CM)

Fig. 1.2 Components of an S7-1500 controller

24

1.1 Overview of the S7-1500 automation system

The CPU contains the operating system and the user program. The user program
is saved powerfail-proof on the SIMATIC Memory Card, which is inserted in the
CPU. The user program is executed in the CPU's work memory. The bus interfaces
present on the CPU establish the connection to other programmable controllers.

Signal modules (SM) are responsible for the connection to the controlled machine
or plant. These input and output modules are available for digital and analog sig-
nals with different voltages and currents.

Technology modules (TM) are signal-preprocessing, “intelligent” /O modules
which prepare and process signals coming from the process independent of the
CPU and either return them directly to the process or make them available at the
CPU's internal interface. Technology modules are responsible for handling func-
tions which the CPU cannot usually execute quickly enough such as counting
pulses.

Communication modules (CM) allow data traffic in excess of the functionality
provided by the standard interfaces on the CPU with regard to protocols and com-
munication functions.

The (system) power supply modules provide the internal voltages required by the
programmable controller. Up to three system power supply modules can be used in
the programmable controller as needed. Load voltages or load currents are pro-
vided via external load current supplies (power modules, PM), which can also pro-
vide 24 V primary voltage for system power supply modules.

1.1.2 Overview of STEP 7 Professional V12

STEP 7 is the central automation tool for SIMATIC. STEP 7 requires authorization
(licensing) and is executed on the current Microsoft Windows operating systems.
Configuration of an S7-1500 controller is carried out in two views: the Portal view
and the Project view.

The Portal view is task-oriented. In the Start portal you can open an existing proj-
ect, create a new project, or migrate a project. A “project” is a data structure con-
taining all the programs and data required for your automation task. The most
important STEP 7 tools and functions can be accessed from here via further portals:
The Devices & networks portal for hardware configuration, the PLC programming
portal for processing the user program, the Motion & technology portal for generat-
ing technology objects, the Visualization portal for configuring HMI systems, and
the Online & Diagnostics portal for the online mode of the programming device (Fig.
1.3).

The Project view is an object-oriented view with several windows whose contents
change depending on the current activity (Fig. 1.4). In the Device configuration, the
focal point is the working area with the device to be configured. The Device view
includes the rack and the modules which have already been positioned. A further
window - the inspector window - displays the properties of the selected module,
and the task card provides support by means of the hardware catalog with the avail-
able modules. The Network view allows networking between PL.C and HMI stations.

25

1 Introduction

Totally Inling st A

Fig. 1.3 Tools in the Start portal of STEP 7 Professional V12

o Lo

§ YL &N
Dwws w1
8o

gmisa Opsam jBea gears e

x

| e .

P T —

B L @ [0

Ny P —— T ———

HohaTy Tl grated Ralomater.

FONTAL

[T,

3 g T

b | Durindin iy

Lanessm

Dramargtme ldmb

Wi -y

!
¥
o
? 1 1) [s o e
=i
i
P L e
T e e o assen e e
e s CremItEEmEER T ATe RS
" i © el irmitiem
= LR L] (] | i
G T s 3 L] (-]] s frran
@ i u hEeled v
W mheriam
Dutyat aeddreanen

p—

Vogreea minagia g |

| estaL o |

WL

T

e

Fig. 1.4 Example of a Project view: Working area of the device configuration

26

1.1 Overview of the S7-1500 automation system

When carrying out PLC programming, you edit the selected block in the working
area. You are again shown the properties of the selected object in the inspector win-
dow, where you can adjust them. In this case, the task card contains the program
elements catalog with the available program elements and statements. The same
applies to the processing of PLC tags or to online program testing using watch
tables.

And you always have a view of the project tree. This contains all objects of the STEP 7
project. You can therefore select an object at any time, for example a program block
or watch table, and edit this object using the corresponding editors which start
automatically when the object is opened.

1.1.3 Various programming languages

You can select between five programming languages for the user program: ladder
logic (LAD), function block diagram (FBD), structured control language (SCL),
statement list (STL), and sequential control (GRAPH).

Using the ladder logic, you program the control task based on the circuit diagram.
Operations on binary signal states are represented by serial or parallel arrange-
ment of contacts and coils (Fig. 1.5). Complex functions such as arithmetic func-
tions are represented by boxes which you arrange like contacts or coils in the ladder
logic.

#Fan1.works #Fan1.works #Display.cnefan
1}]
I | 7 { }
#Fan2.works #Fan2.works
1|]
11 l/‘
"Clock_2HZ #Display.nofan
I 1}
— nor| 11 { }

Fig. 1.5 Example of representation in ladder logic

Using the function block diagram, you program the control task based on electronic
circuitry systems. Binary operations are implemented by linking AND and OR func-
tions and are terminated by memory boxes (Fig. 1.6). Complex boxes are used to han-
dle the operations on digital tags, for example with arithmetic functions.

Structured control language is particularly suitable for programming complex
algorithms or for tasks in the area of data management. The program is made up of
SCL statements which, for example, can be value assignments, comparisons, or
control statements (Fig. 1.7).

Using the statement list, you program the control task using a sequence of state-
ments. Every STL statement contains the specification of what has to be done, and

27

1 Introduction

possibly an operand with which the operation is executed. STL is equally suitable
for binary and digital operations and for programming complex open-loop control

tasks (Fig. 1.8).

#Alarm_bit #Alarm_memaory
P SR
B
#Alarm_bit_
edge_memary

#Acknowledge — R1 Q= #Alarm_lamp

"Clock_05HZ — 3¢ —_ L

Fig. 1.6 Example of representation in function block diagram

-
(=Y -]

{**:
Write register:
CIIF #Level = #Register length - 1
THEN #Full := TRUE;
ELSE #Register[#Write pointer] := #Input_ value;
FLlevel := FLewel + 1;
IF #Write_pointer = #Register_length
THEN #Write pointer := 07
ELSE #Write pointer := #Write_pointer + 1;
END _IF:
$Empty := FALSE;
| END_IF; RETURN;
{**:

Ry

(]

wh

=1}

[ST o T T L R S S T S T S S O
: -
{1}
{i}

[=TanY =Rl

w

Fig. 1.7 Example of SCL statements

1 //Motor memory
2 2 $I0.1
3 oy §M40.0
4 0
5 oy £I1.0
[N §M40.0
7 3 #Motor_memory //5et memory
5
9 $I0.2
10 ol £I1.1
11 oN $02.0
12 =3 #Motor_memory //Reset memory
13
14 //Motor Start and motor display
15 B $Motor_memory //5can memory
16 A #Enabling
17 = $02.46
18 = Q2.7

Fig. 1.8 Example of STL statements

28

1.1 Overview of the S7-1500 automation system

l— T7 Interlock Event Qualifier Action
= HCh- S -Settol "Milling drive"
: 5 -Setto 1 "Tension valve"
shatting 5 -Setto 1 "Blower motor”
= <Add news
[T == Down
54
Lifting
T4 T6
|.u. —— Complete |-u. Next po..
55 = 56
Drives_off Position_new
L= 7
[T == itched.. [T . Reached
® 53

Fig. 1.9 Example of a GRAPH sequencer and step configuration

Using GRAPH, you program a control task as a sequential control in which a
sequence of actions prevails. The individual steps and branches are enabled by step
enabling conditions which can be programmed using LAD or FBD (Fig. 1.9).

1.1.4 Execution of the user program

After the power supply has been switched on, the control processor checks the exist-
ing hardware and parameterizes the modules. A startup program is then executed
once, if present. The startup program belongs to the user program which you pro-
duce. Modules can be initialized, for example, by the startup program.

The user program is usually divided into individual sections called “blocks”. Orga-
nization blocks (OB) represent the interface between operating system and user
program. The operating system calls an organization block for specific events and
the user program is then processed in it (Fig. 1.10).

Function blocks (FB) and functions (FC) are available for structuring the program.
Function blocks have a memory in which local tags are saved permanently. Func-
tions do not have this memory.

Program statements are available for calling function blocks and functions (start of
execution). Each block call can be assigned inputs and outputs, referred to as “block
parameters”. During calling, tags can be transferred with which the program in the
block is to work. In this manner, a block can be repeatedly called with a certain func-
tion (e.g. selection of tag values), but with different parameters sets (e.g. for differ-
ent calculations) (Fig. 1.11).

The data of the user program is saved in data blocks (DB). Instance data blocks have
a fixed assignment to a call of a function block and are the tag memory of the func-
tion block. Global data blocks contain data which is not assigned to any block.

29

1 Introduction

Execution of the user program

Operating system User program
o Operating state
Switching on 0B FB FB Startup STARTUP
FC FC program
Updating of Operating state
inputs and outputs OB FB FB Main RUN
FC FC program
\ \ Alarm and
error program
¥ 0B / FB FB
Interruption Interruption //‘ FC EC
(alarm or error) \,\
N A

Fig. 1.10 Execution of the user program

Following a startup, the control processor updates the input and output signals in
the process images and calls the organization block OB 1. The main program is
present here. Once the main program has been processed, the control processor
returns to the operating system, retains (for example) communication with the
programming device, updates the input and output signals, and then recom-
mences with execution of the main program.

Cyclic program execution is a feature of programmable logic controllers. The user
program is even executed if no actions are requested “from outside”, e.g. if the con-
trolled machine is not running. This provides advantages when programming: For
example, you program the ladder logic as if you were drawing a circuit diagram, or
program the function block diagram as if you were connecting electronic compo-
nents. Roughly speaking, a programmable controller has a characteristic like, for
example, a contactor or relay control: the many programmed operations are effec-
tive quasi simultaneously “in parallel”.

In addition to the cyclically executed main program, it is possible to carry out inter-
rupt-controlled program execution. You must enable the corresponding interrupt
event for this. This can be a hardware interrupt, such as a request from the con-
trolled machine for a fast response, or a cyclic interrupt, in other words an event
which takes place at defined intervals.

The control processor interrupts execution of the main program when an event
occurs, and calls the assigned interrupt program. Once the interrupt program has
been executed, the control processor continues execution of the main program
from the point of interruption.

30

1.1 Overview of the S7-1500 automation system

“Selection” block with the one-time written program

- Metwork 1: Program of selection logic in LAD
MAX SEL
Int Int
EN — EM ENO —
#Mumber_1 1M1 ouT #Maximum ouT #Result
#MNumber_2 N2 3¢
#5witch

{ | G

#Maximum IND

#Default_value 1M1

Two-time call of “Selection” with different parameter sets in each case

hd Network 1: First call of the selection

“Selection™
EN ENO
“Data.LAD". "Data.LAD".
Measurement[1] — yumber 1 Recult — Selection_result
"Data.LAD".
IMeazurement[2] Number 2
"Data.LAD".

Limit_value — pefault_value
"Data.LAD" Select — syitch

- Network 2: Second call ofthe selection

“Selection™
EN ENO
“Length 1" — Number_1 “Length
“Lenght 2° — Number_2 Resuly — selection”
“Length
alternative” — pefault value
"Manual mode” — Switch

Fig. 1.11 Multiple use of a block with different tags in each case

1.1.5 Data management in the SIMATIC automation system

The automation data is present in various memory locations in the automation sys-
tem. First of all, there is the programming device. All automation data of a STEP 7
project is saved on its hard disk. Configuration and programming of the project
data with STEP 7 are carried out in the main memory of the programming device
(Fig. 1.12).

The automation data on the hard disk is also referred to as offline project data. Once
STEP 7 has appropriately compiled the automation data, this can be downloaded to
a connected programmable controller. The data downloaded into the user memory
of the CPU is known as the online project data.

31

1 Introduction

Data management in the SIMATIC S7-1500 automation system

Programming device

Main memory

Transfer with online
connection or SIMATIC
Memory Card

All project data is
processed in the
programming device's
main memory.

Saving the
project data

W

<mmm——

CPU 1500

SIMATIC Memory Card

Load memory

The load memory contains the
project data transferred to the
CPU. Together with the current
values of the tags from the
work memory, they form the
online project data.

Transfer
when switching on

W

Hard disk

The offline project data The retentive memory
is saved on the hard contains the tags
disk. whose values are
retained even when
deenergized.

Retentive memory “

Work memory

The work memory
contains the executable part
of the user program (code and
data), which is executed
during runtime.

Fig. 1.12 Data management in the SIMATIC S7-1500 automation system

The user memory on the CPU is divided into two components: The load memory on
the SIMATIC Memory Card - an SD memory card - contains the complete user pro-
gram with the configured initial data, including the configuration data. The work
memory contains the executable user program with the current control data.

The project data can be transferred between the programming device and CPU
using the SIMATIC Memory Card. The normal case is an online connection for trans-

fer, testing, and diagnostics.

1.2 Introduction to STEP 7 Professional V12

1.2.1 Installing STEP 7

STEP 7 Professional V12 is executed on
the operating systems Windows XP Pro-
fessional SP3, Windows 7 (Professional,
Enterprise, Ultimate) SP1 (32-bit and 64-
bit), Windows 2003 Server R2 Standard
Edition SP2, and Windows 2008 Server
Standard Edition SP2. You require
administration rights in order to install
STEP 7, and to work with STEP 7 you must
at least be logged-on as a main user.

32

HEMENS

Irmegraied Automaion
PORTAL V13

1.2 Introduction to STEP 7 Professional V12

In order to be able to work with STEP 7, you need a programming device with at
least one Core i5, 2.4 GHz processor or a comparable processor. The main memory
should have a minimum size of 3 GB for a 32-bit operating system and 8 GB for a
64-bit operating system. On the hard disk, STEP 7 Professional requires approxi-
mately 2 GB of free space in the system drive.

For the online connection to the programmable controller, an interface module is
required on the programming device for the connection to Industrial Ethernet.
If you want to work on the programming device using an SD memory card, you
need a corresponding card reader.

Installation, repair, and uninstalling are carried out using the setup program
start.exe on the DVD. You can also uninstall STEP 7 Professional normally in
Windows using the Software application (Windows XP) or the Programs and
functions application (Windows 7) in the Windows Control Panel.

1.2.2 Automation License Manager

You require a license (user authorization) in order to use STEP 7. Licenses are man-
aged by the Automation License Manager, which is installed together with STEP 7
Professional. The license for STEP 7 Professional (license key) is provided on a
USB flash drive. You will be requested to provide authorization during installation
if alicense key is not yet present on the hard disk. You can also carry out the autho-
rization following installation of STEP 7.

The license key is stored on the hard disk in specially identified blocks. To avoid
unintentional destruction of the license key, you should observe the information
for handling license keys in the help text of the Automation License Manager. If you
lose the license key, e.g. due to a defective hard disk, you can revert to the trial
license delivered with STEP 7, which is valid for a limited duration.

The Automation License Manager also manages license keys of other SIMATIC prod-
ucts such as STEP 7 V5.5 or WinCC.

1.2.3 Starting STEP 7 Professional

You start STEP 7 Professional either using the Start button of

Windows and Programs > Siemens Automation > TIA Portal V12, or by
double-clicking on the icon on the Windows desktop. The Totally T, Portal V12
Integrated Automation Portal (TTA Portal) is the software framework

in which STEP 7 is embedded. TIA Portal may also contain other applications that
use the same database, such as WinCC Professional V12.

1.2.4 Portal view

Following initial starting-up, STEP 7 Professional displays the Start portal. A portal
provides all functions and tools required for the respective range of tasks in the
Portal view. The scope of the portals as well as the range of functions and tools
depends on the installed applications. The Start portal of STEP 7 Professional V12
permits selection of the following portals (Fig. 1.13):

33

1 Introduction

W = Propect] 500

Totally Integrated Automation

Find viegm

Project: “Profect S00° wai opsrsd succeiilully, Pease selec e ned s bapc

S

=] Cimlipars @ e
® v
& virst stam ‘_- Write FLC peograsn

Conligare
IBC ROy DOEECTS

Canligane &n MM wordsn

Fig. 1.13 Portal view: First steps after opening a project

> In the Devices & networks portal, you can configure the hardware of the program-
mable controller, i.e. you select the hardware components, position them, and
set their properties. If several devices are networked, you can define the connec-
tions here.

> The PLC programming portal contains all the tools required for generating the
user program for a PL.C station.

> In the Motion & technology portal, you create technology objects, such as a PID
temperature regulator or a high-speed counter.

> In the Visualization portal, you generate the operator control and monitoring
interface for HMI stations. Here you can configure, for example, the process
images, the control elements, and alarms.

> Using the Online & Diagnostics portal, you can connect the programming device
to a programmable controller, transfer and test programs, and search for (and
detect) faults in the automation system.

Additional functions included in the Start portal are: Create new project,
Open existing project, and Migrate project. The Welcome Tour and First steps provide
an introduction to STEP 7. Installed software provides an overview of further
SIMATIC applications that are currently available on the programming device.
You can call Help in every portal. The User interface language allows you to set the
language for working with STEP 7.

34

1.2 Introduction to STEP 7 Professional V12

1.2.5 The windows of the Project view

The Project view shows all elements of a project in structured form in various pro-
cessing windows. You can move from the Portal view to the Project view using the
Project view link at the bottom left of the screen, or STEP 7 automatically switches
to the Project view depending on the selected tool.

Fig. 1.14 shows the windows of the Project view in an example of block program-
ming. Different window contents are displayed depending on the currently used
editor.

Bk el Freia®y brteqeeied buicemgiion
"-'-:I:"lndn---.-'m PAE X FOATAL
Ty ams !
rh QE=HraaldGded et AT N] 'i
wbarlson [Ry) e, |
e e e N - it

A o T e
& Bk B S fn e b
= Motk 1 bard el ey e

Fig. 1.14 Components of Project view using example of block programming

() Main menu and toolbar, shortcut menu

Underneath the title bar is the main menu with all menu commands. The menu
commands available for selection depend on the currently marked object; menu
commands which cannot be selected are displayed in gray. The same functionality
is available — somewhat user-friendlier — with the shortcut menu: If you click on an
object with the right mouse button, a window is opened with the currently select-
able menu commands. Underneath the main menu is the toolbar with the graphi-
cally represented “main functions”. The main menu and the toolbar are always
present in all editors.

Using Options > Settings in the main menu, you can adapt the user interface.
For example, under General you can define the user interface language in which

35

1 Introduction

STEP 7 is used, and the mnemonics (the representation of the operands: “I” for
international input, or “E” in German).

(@ Working window

In the center of the screen is the working window. The contents of the working win-
dow depend on the editor currently being used. In the case of device configuration,
the working window is divided in two: the objects (stations and modules) are dis-
played in graphic form in the top part, and in tabular form in the bottom part. When
programming the PLC, the top part of the working window contains the interface
description of the block and the bottom part contains the program. You use the
working window to configure the hardware of the automation system, generate the
user program, or configure the process images for an HMI device.

® Inspector window

The inspector window underneath the working window shows the properties of the
object marked in the latter, records the sequence of actions, and provides an over-
view of the diagnostics status of the connected devices.

During configuration or programming you set the object properties in the inspec-
tor window, for example the addresses and symbol names of inputs and outputs,
the properties of the PROFINET interface, tag data types, or block attributes.

@ Project tree

The project tree window is displayed with the same content for all editors. Its hier-
archical structure contains all project data and the required editors. With the proj-
ect open, it shows the folders for the PL.C, HMI and PC stations included in the proj-
ect, and further subfolders within these folders, e.g. for program blocks, PLC tags,
and watch tables with a PL.C station or, for example, the process images and the HMI
tags in the case of an HMI station.

A double-click on an object with project data automatically starts the associated
editor. The project tree also includes editors such as Add new device, Device
configuration, or Online & diagnostics, which you can start directly by means of a
double-click.

The lower section of the project tree contains a details view of those objects which
are present in the hierarchy underneath the object marked in the project tree.

® Task window

To the right of the working window is the task window with the task cards. This con-
tains further objects for processing in the working window. The contents of the task
window depend on the currently active editor. In the case of the hardware
configuration, for example, the hardware catalog with the available components is
shown here, in the case of PLC programming the program elements catalog
appears, with Online & Diagnostics the online tools, and with the Visualization the
library for the process image control and display elements.

You can also call the libraries in this window: Global libraries supplied with STEP 7,
or the projectlibrary in which you can save reusable objects such as program blocks,
templates for process images, or control elements with special configurations.

36

1.2 Introduction to STEP 7 Professional V12

(® Reference projects

The Reference projects palette shows the reference projects that are open in addition
to the current project. Using the View > Reference projects command from the main
menu, you can switch the palette display on and off.

@ Editor and status bar

At the bottom left of the Project view you can change to the Portal view. In the middle
you can see the tabs of the open windows. Click on a tab to display its contents in the
top level of the working window. This makes it easy to change quickly between dif-
ferent window contents. The status bar on the far right indicates the current status
of project execution.

1.2.6 Help information system il Information System TEX

During programming, the help func- ©
tion of STEP 7 provides you with com-
prehensive support for solving your
automation task.

To call the help function, click on Help in HEELLE

the Portal view or select the Help > Show Getting Started
help command in the main menu in the

Project view. A window appears with the

help information system (Fig. 1.15). Editing projects

Introduction to the TIA Portal

The online help is roughly divided T S T
according to the project execution Iah
steps: Configuration, parameterization

g R K Programming a PLC
and networking of devices, structuring
apd programming of the user program, \isualizing P
visualization of processes, and utiliza- P
tion of the online and diagnostics func- : : : :
t Using online and diagnostics functions n
ions. :

Readme provides general information
on STEP 7 and further information
which could not be included in the
online help. A comprehensive descrip-
tion of all available basic and extended
statements can be found under
Programming a PLC > References.

Help on the Information System

Glossary

Fig. 1.15 Start page of the information
system

1.2.7 Adapting the user interface

The language of the user interface can be changed. In the main menu, select the
General section under Options > Settings. In the User interface language drop-down
list, you can select the desired language from the installed languages. The texts of
the user interface are then immediately displayed in the new language. You can also
define here how the TIA Portal is to be displayed following the next restart.

37

1 Introduction

You can show or hide the displayed windows using the menu command View. You
can always change the size of windows by dragging on its edge with the mouse.
Windows can be minimized into symbols which appear in one of the navigation
bars in the left, bottom or right margin of the screen.

You can separate the working window completely from the Project view so that it is
displayed as a separate window (symbol for Float in the title bar of the working win-
dow), and also insert it again (symbol for Embed). Using the symbol for Maximize,
all other windows are closed and the working window is displayed in maximum
size. The working window can be divided vertically or horizontally, permitting you
to view two working areas simultaneously.

You can change the width of table columns by dragging with the cursor in the table
header. In the case of columns that are too narrow, the entire content of the individ-
ual cells will appear as a tooltip when the cursor is briefly hovered over the relevant
field.

1.3 Editing a SIMATIC project

Fig. 1.16 shows all tools and data which can be of importance in an automation task.
Of prime importance is the project, which contains all the automation data required

All the data for an automation task is combined in a project.

Stations Common project data
A project includes at least one station. Contains cross-station data
PLC station Contains all the data for a Common data
controller

Contains text lists for system and user messages
HMI station Contains all the data for an HMI

device
. Documentation settings
PC station Contains all the data for a PC . .
system or PC application Contains the templates and settings for
documentation of project data
Project library
Contains data compiled by the user Languages and resources
. . Contains project texts, project languages, and
< Project library > graphics

Programming device design

Contains the programming device resources relevant to the project

Online access Card Reader/USB memory

Global libraries

Global libraries contain elements for use across projects.

System libraries User libraries
Libraries delivered with STEP 7 Libraries configured by users themselves
< Global library > < User library >

Fig. 1.16 Project components, libraries, and programming device design

38

1.3 Editing a SIMATIC project

for control and operation of the machine or plant. The project data is roughly
divided into the data for the individual stations and the common project data which
applies to all stations in the project.

A station can be a controller (PLC station), an HMI device (HMI station), or a PC sta-
tion. A project can include several stations, but at least one station must be present.
The data present in a PLC station is described later in this book. Common project
data includes, for example, centrally managed message texts or texts for multilin-
gual projects.

A project library can be created for each project. Objects which are used in several
projects are combined in global libraries. Also relevant to a project is the program-
ming device design with interface modules (e.g. LAN adapters) and memory card
readers.

1.3.1 Structured representation of project data

The project tree in the Project view displays the project data and the programming
device design in a tree structure (Fig. 1.17).

The structure also includes the editors (tools) required for generating and editing
the data. The project tree does not include the project library. This is represented in
a task card together with the global libraries in the task window under Libraries.

You can replace the names shown in angle brackets by names more appropriate to
your automation task.

1.3.2 Project data and editors for a PLC station

If you add a PLC station (an S7-1500 controller) to the project, STEP 7 creates the
corresponding structure in the project data (Fig. 1.18). A station is always required
for editing in a project so that STEP 7 can create the data structures required for
programming or configuration. If you wish to write a user program without previ-
ously selecting a specific CPU, you can select the “unspecified CPU 1500” from the
hardware catalog and replace it later with a “real” CPU 1500.

The user program which controls the machine or process is located in the Program
blocks folder. The program comprises blocks (separate program components)
which are either stored directly in the Program blocks folder or - if there is a large
number - in subfolders which you can create and configure yourself. The Main
block (“main program”, the name is the symbol for the block and can be changed)
is the organization block OB 1 and is created automatically. The processing
sequence of the blocks is defined in the user program by “block calls” and can be
made visible using the Program info editor (further down in the project tree) in a
call and dependency structure.

The Program blocks folder contains a System blocks subfolder with the system and
standard blocks used in the program. This is created automatically when a block of
this type is used.

39

1 Introduction

Project tree with opened project

‘ < Project > | Folder for all data of an automation system

— Add new device Adds a new station to the project
— Devices & networks Starts the device and network configuration
— ‘ < PLC station > | Folder for all data of a PL.C station
— ‘ < PLC station_1 > | Folder for the data of a further PLC station
— ‘ Common data | Folder for common data in the project

I_ Alarm classes, text lists for user and system alarms
— ‘ Documentation settings | Folder for documentation settings

|— Templates and settings for documentation
— ‘ Languages & resources | Folder for language-dependent objects

L

List with project texts in different languages
Selection of languages for display and alarm texts
Collection of language-dependent graphic symbols

‘ Online access | Folder for all interfaces of the programming device
— ‘ Interface x1 | Interface of programming device
Update accessible Searches for stations connected to this interface (module)
devices
‘ <PLC...> | Folder with the data of a found station
— ‘ Interface x2 | Further interfaces (interface modules) if applicable
‘ Card reader/USB memory | Folder for all card readers of the programming device
| — Add user-defined Adds a card reader
card reader
— Card reader Card reader in the programming device

Fig. 1.17 Project structure in the project tree

The Technology objects folder contains the configuration data for the objects of axis
controls, control loops (PID controllers), and high-speed counters. A new technol-
ogy object can be generated using the Add new object editor.

The External sources files folder contains the program sources for STL and
SCL blocks. The Add new external file editor is used to import a program source and
to save it in this folder. The External sources files folder can be configured using self-
created subfolders.

The PLC tags folder contains the assignment of the absolute address to the symbolic
address (name) of inputs, outputs, and bit memories, as well as SIMATIC timer func-

40

1.3 Editing a SIMATIC project

Data structure of a PL.C station

‘ < PLC xxx >

I Folder for all data of a PL.C station (name can be freely selected)

— Device configuration
— Online & diagnostics

Starts the editor for device configuration
Starts the editor for the online connection and diagnostics

— ‘ Program blocks

Folder for all blocks of the user program

— Add new block

Creates a new block and opens it

— ‘ < Group_1 >

Under Program blocks, further blocks can be created in addition

|— <Block_2 >

— Main [OB1]
— < Block_1>

to the permanently existing Main [OB1] block (main program).
The block collection can be structured using self-created groups
which contain further blocks.

Self-created block

—{ System blocks

Folder for the system blocks used

— ‘ Technology objects

Folder for all technology objects

— Add new object

Creates a new technology object and opens it

— ‘ < Technology object_1 >

Self-created technology object

— ‘ External sources

Folder for the program source files

— Add new external file...

— < External program source >

Imports a program source
Imported program source

— ‘ PLC tags

Folder for all PLC tags

— Show all tags

— Add new tag table
— Default tag table [n]
— < Tag table [n] >

Shows all PLC tags of all tables

Adds a new tag table

Automatically created tag table with n tags
Self-created tag table with n tags

— ‘ < Group_1>

Self-created groups with further tag (partial) tables can be used

l— <Tag table_1 [n]>

under PLC tags for structuring.

— ‘ PLC data types

Folder for all PLC data types

— Add new data type
— < PLC data type_1 >

Adds a new PLC data type
Self-created PLC data type

— ‘ Watch and force table

Folder for all watch and force tables

— Add new watch table
— < Watch table_1 >
— Force table

Creates a new watch table and opens it
Self-created watch table
Table with the force tags

— ‘ < Group_1 >

Self-created groups with further watch tables can be used under

I— < Watch table_2 >

— Traces

— Program info
— PLCalarms
— Text lists

Watch and force tables for structuring.

Editor for recording and displaying measured value series
Shows program structure, assignment list, CPU resources
PLC, user diagnostics and system alarms

Station-specific texts for user and system alarms

— | Local modules

Folder for the local modules of the PLC station

Fig. 1.18 Structure of the project data for a PLC station

41

1 Introduction

tions and SIMATIC counter functions. Example: The symbolic address “Switch on
motor” can be assigned to the input with the absolute address %I1.0. A PLC tag is
applicable throughout the CPU, it is a “global” tag. The PLC tags folder can be con-
figured using self-created subfolders. A subset of the PLC tagsis listed in a tag table.
The Show all tags editor lists all PLC tags used from all tag tables.

The PLC data types folder contains user-defined data types. A PLC data type com-
bines various data types in the form of a named data structure. A PLC data type can
be assigned to alocal tag in a block or serve as a template for the structure of a data
block. The PLC data types folder can be configured using self-created subfolders.

All created watch tables and the force table can be found in the Watch and force
tables folder. A watch table is used during testing of the user program. It contains
tags whose current value can be monitored and also changed during runtime. The
Force table can be used to assign a fixed value to peripheral inputs and outputs. The
Watch and force tables folder can be configured using self-created subfolders.

Using the Traces editor, the recording of measured value series is planned, the cor-
responding tasks are sent to the CPU, and the recordings are displayed and man-
aged in tables and graphs in the form of a curve chart.

Program info provides information about

> the call structure — which block calls which other block
> the dependency structure — which block is called by which other block

> the assignment list - which global operands are already used and which address-
es are still unused

> the resources - how much space is required by the program in the load and work
memory

Under PLC alarms you see an overview of which program alarms and system alarms
are currently present and edit them.

Message texts are stored under Text lists. In the case of the user-defined text list, you
can specify the value ranges which trigger the alarms and the associated texts; with
a system-defined text list, the contents are specified by STEP 7. Text lists created
under a PLC station contain station-specific texts, those created under a project
contain cross-station texts.

The Local modules folder contains all configured modules of the PLC station. Open-
ing amodule initiates device configuration. The module properties are displayed in
the inspector window.

You start configuration of a station using the Device configuration editor, which is
located in the first position in the project structure of the station. There is no cor-
responding folder for the data of the device configuration in the project tree. The
configuration data is located “behind” the Device configuration editor. When you
start the editor, the data is displayed in the form of a pictorial representation of the
programmable controller in the working window and in a register-oriented repre-
sentation of the module properties in the inspector window. The bottom section of

42

1.3 Editing a SIMATIC project

the working window additionally displays the configuration table with the modules
as a drop-down list.

Online & diagnostics starts the editor for the online connection and online func-
tions. For example, you can use a (software) control panel in online mode to control
the operating states of the CPU, to set the CPU's IP address and time, or read the
CPU's diagnostics buffer.

1.3.3 Creating and editing a project

Creating a new project

You can create a new project in the Portal view if you click on Create new project in
the Start portal. Assign a name to the project and set a path in which the project is
to be saved. After clicking the Create button, any project which is open is closed, the
new project is created, and the next steps are displayed in the Start portal for selec-
tion:

> Configure a device
STEP 7 changes to the Devices & networks portal in which you can insert a new
CPU 1500 (a PLC station) into the project and open it for editing.

> Write PLC program
STEP 7 changes to the PLC programming portal in which you can edit the Main
block (organization block OB 1) or add a new block and open it for editing.

> Configure an HMI screen (using the supplied WinCC Basic)
STEP 7 changes to the Visualization portal in which you can create a new
HMI station or configure an already existing one. From this portal you start con-
figuration of the process images, editing of HMI tags and alarms, and the
HMI simulator. If WinCC Comfort, Advanced or Professional is installed, it is
started under this portal.

> Open the project view
STEP 7 changes to the Project view in which you can perform the next steps such
as adding another PLC station, modifying the configuration of an existing
PLC station, adding and programming a block, or configuring the process
images for an HMI station.

In the Project view you can create a new project using the Project > New menu
command. Assign a name to the project in the dialog window, set the path in which
the project is to be saved, and click on the Create button.

Editing an existing project

You can open an existing project in either the Portal view or the Project view. In the
Start portal, either activate Open existing project in the Portal view or Project > Open
in the Project view. Select the desired project from the list of projects last used. Any
project which is open is closed and the selected project is opened.

During editing in the Project view, you can save the entered project data using the
Project > Save or Project > Save as menu command. You can close the project using

43

1 Introduction

Project > Close - following confirmation of whether changes are to be saved -
without exiting STEP 7.

You can delete a (closed) project from the hard disk - following confirmation -
using Project > Delete project.

Compiling and downloading project data

Before project data can be downloaded to a station, it must be made readable for the
respective processor: It must be “compiled”. The project data is compiled
station-by-station. The scope of the compilation can be varied depending on the
type of station. For example, the command from the Compile > Software (only
changes) shortcut menu only compiles those software components which have
been changed since the last compilation.

The same applies to downloading of the compiled data to a station. You can select
for a PLC station whether you wish to download only the hardware configuration,
or only the user program, or both.

Printing project data

The project data can be printed in the form of a circuit manual. You can use the doc-
umentation function to set the layout of the printout. The settings in the main
menu under Options > Settings and General > Print settings apply to all projects in
the TIA Portal. The templates for the project circuit manual are saved in the project
tree in the Documentation settings folder. You can add your own templates or
change existing ones.

In the global Documentation templates library under Master copies in the Document
information group, you can find the templates to design a circuit manual, in the
Frames group are the templates for the page frames, and in the Cover Pages group
are the cover page templates. To copy templates to the project, in the Libraries task
card, open the Documentation templates library and drag a template from the
Document information folder, for example Doculnfo ISO_A4 Portrait, to the
Document information folder under Documentation settings. Copy a cover page from
the Cover Pages folder to the Cover pages folder and a frame from the Frames folder
to the Frames folder.

Double-clicking on a template in the project tree opens the template for editing.
For example, you add a new text field or graphical symbol to the cover page. You are
supported by the Toolbox task card, which contains object templates for a text box,
a date/time field, a field for the page number, a field for free text, and a graphic
placeholder. In the frame template you complete the title block and in the docu-
ment information template you enter the data for the circuit manual.

You select the objects to be printed in the project tree or in a library. To display
the print preview, select Print preview... from the shortcut menu or Project > Print
preview... from the main menu. In the dialog window you can set the document
information to be used, select the printout of the cover page and table of contents,

44

1.3 Editing a SIMATIC project

and specify whether all project data or a compact selection should be displayed in
the print preview.

To print, select the objects to be printed and click on the Print icon in the toolbar or
select Project > Print... in the main menu or Print... in the shortcut menu. In the dialog
window, you then specify the printer, the document layout, and compact or full
printout.

Archiving and retrieving a project
You can reduce the size of the project on the hard disk in two ways:

> You create a minimized project. This reduces the opened project to its essential
components and saves it as a copy. You can open and continue to edit a mini-
mized project as usual.

> You create a project archive. This reduces the opened project to its essential com-
ponents and compresses it. The compressed project archive can only be edited
further after it is retrieved.

To archive a project, open it. If you make changes to the project, save it before you
archive it. Then select the command Project > Archive... from the main menu. In the
dialog window under File type, select either TIA Portal project minimized or TIA Por-
tal project archives from the drop-down menu. If you want to create a minimized
project copy, save the copy under a different name and/or a different directory.
A project archive is saved with the file extension .zap12. The project name and proj-
ect path can be retained.

To retrieve a project, close any open projects and select the command Project >
Retrieve from the main menu. In the dialog window, specify the name of the project
archive with the file extension .zap12 and, in the next dialog window, specify the
directory in which the retrieved project is to be saved. Then the retrieved project is
opened.

1.3.4 Working with reference projects

You have the capability of opening projects in addition to the current project. These
projects are write-protected, i.e. they cannot be modified. You can import individual
objects from these “reference projects” into the current project and you can com-
pare a PLC station of a reference project to a station of the current project or a dif-
ferent reference project.

You open areference project using the Open reference projecticon in the project tree
on the Reference projects palette. Select the desired project from the subsequent
dialog window and open it.

The read-only reference project is opened. You can open individual objects of this
project, but you cannot change them. You can copy individual objects of the refer-
ence project into the current project: Select the object in question, press and hold
the mouse button, and “drag” the object into the current project. You can process
the copied object further here.

45

1 Introduction

To compare two PLC stations, select the station and then select the command
Compare > Offline/offline from the shortcut menu. The station is displayed in the left
pane of the compare editor. Now press and hold the mouse button and “drag” the
PLC station to be compared into the header of the right pane. This can be a station
from a reference project or from a library. The compare editor marks different
objects with symbols (green circle: no differences, semi-circles in various colors:
differences exist, unfilled semi-circle: object does not exist). You can select individ-
ual objects and start a detailed comparison via the shortcut menu if the type of the
object allows it. Actions such as overwriting an object are not possible for a refer-
ence project. You can compare additional stations by “dragging” the corresponding
station into the header of one of the panes.

1.3.5 Creating and editing libraries

Libraries are used to save reusable program components. These could include sta-
tions, blocks, PLC tag tables, process images, or picture elements, for example.
A project library and global libraries are available.

The libraries are displayed in a task card of the task window. The library contents
can be listed with the symbol open or close the element view in the Elements pallet
in the Details mode, List mode, or Overview mode. The Info pallet shows further
information on the selected library element.

A project library which you can fill with objects is automatically created when you
create a project. You can structure the contents of the project library using folders.
A project library is always opened, saved, and closed together with the project.

Components which can be used in multiple projects are saved in global libraries.
There are global system libraries which are supplied with STEP 7, and global user
libraries which you create yourself. A global library is opened, saved, and closed
independent of the project. If you wish to use a global library simultaneously with
other users, the library must be opened in read-only mode.

To create a global library, open the Libraries task card in the task window and click
on the Create new global library icon in the Global libraries palette. In the dialog
window, specify the name and path of the library before you click on the Create but-
ton. Using the other symbols in the Global libraries palette, you can open a global
library, save the changes to the library, and close the library.

46

2.1 S7-1500 station components

2 SIMATIC S7-1500 automation system

2.1 S7-1500 station components

..
"
i
=
il
F
H
]
|

——
e
ey
|
— | —
| | E—
[——
— | —
—

|
|

T

e
(]
[
i
[|
]
(]
(]
(]

S e b

= saE EEW

Fig. 2.1 S7-1500 station with CPU 1516-3 PN/DP

A programmable controller including all /O modules is referred to as a “station”.
An S§7-1500 station can contain the following components:

Rack
Power supply (PS)

Input/output modules (signal modules, SM)

>
>
> Central processing unit (CPU)
>
> Technology modules (TM)

>

Communication modules (CM)
A station can also encompass distributed I/O which is connected to the CPU or a
communication module via a PROFINET IO or PROFIBUS DP bus system.
Design variants

An S7-1500 station comprises one rack with a maximum of 32 slots. It can be
divided into as many as three “power segments”. A power segment comprises a cur-
rent source (PS or CPU) and the modules to be supplied as current sinks. The num-

47

2 SIMATIC S7-1500 automation system

ber of modules a power segment encompasses depends on the electrical power that
is provided and consumed. An additional load current supply is needed for supply-
ing the sensors and actuators (Fig. 2.2).

Central configuration of an S7-1500 station

Configuration without system power supply, one power segment

Modules

r
The CPU is supplied with 24 V DC, and the
CPU in turn supplies the other modules via
the backplane bus.

Configuration with system power supply, one power segment

A system power supply (PS) supplies the CPU
and the remaining modules with power via the
backplane bus.

Modules

@@

Maximum configuration Additionally, two power segments with system
power supply and modules can be arranged to
the right of the CPU.

Modules Modules Modules
CPU | . PS | A N

IO O

Power segment4>~<— Power segment

< Maximum 30 modules

Power segment

_V__L

The rack can hold a total of 32 modules. This means that up to 30 additional modules (including
system power supplies) can be arranged to the right of the CPU.

Fig. 2.2 Design variants of an S7-1500 station

48

2.2 S7-1500 CPUs

If a power supply module is used for the first power segment, it is plugged into the
first slot on the far left (slot 0). The CPU is always plugged into slot 1 next to it. To the
right of the CPU, there is room for another 30 modules, including any additional
system power supply modules. Each module occupies one slot independent of its
width. The modules must be inserted without gaps.

The power supply for the module electronics and the data exchange between the
modules is accomplished via the backplane bus. The backplane bus is made up of
“U-connectors” between the modules. One U-type-connector is needed for each

module.

2.2 S7-1500 CPUs

2.2.1 CPU versions

CPUs for S7-1500 are available in several
versions for different applications. Com-
mon to all CPUs is the scope of control
functions (operands, tag types, data types,
binary logic operations, fixed-point and
floating-point arithmetic, etc.). Within the
versions, the CPUs differ in their memory
size, the range of operands, and the pro-
cessing speed (Table 2.1).

Standard controllers

Three versions of standard-design control-
lers are currently available: CPU 1511-1 PN,
CPU 1513-2 PN, and CPU 1516-3 PN/DP.

Itis possible to connect to Industrial Ether-
net using the PN interface. Each CPU can
be both an IO controller and an “intelli-
gent” I0 device on PROFINET 10. A CPU
with a DP interface can be the DP master on
PROFIBUS DP.

2.2.2 Control and display elements

The control panel with the display and sta-

Fig. 2.3 CPU 1516-3 PN/DP

tus LEDs above the control panel are located on the front side of the CPU. The mode
switch, slot for the SIMATIC Memory Card, and interface connections are located

behind the control panel.

49

2 SIMATIC S7-1500 automation system

Table 2.1 Selected data of a CPU 1500 with Firmware V1.1

CPU 1511-1 PN

CPU 1513-2 PN

CPU 1516-3 PN/DP

User memory
Work memory

for program 150 KB 300 KB 1MB

for data 1MB 1.5MB 5 MB
Retentive memory 128 KB 128 KB 128 KB
Load memory on the
memory card up to 2GB 2GB 2GB
Hardware
configuration
Racks 1 1 1
Modules per rack max. 32 max. 32 max. 32
Address ranges
in the process image 32 KB inputs, 32 KB inputs, 32 KB inputs,

32 KB outputs 32 KB outputs 32 KB outputs

per 10 subsystem 8 KB inputs, 8 KB inputs, 8 KB inputs,

8 KB outputs

8 KB outputs

8 KB outputs

Blocks

Number (total) 2000 2000 6000

OBIFBIFC size 150 KB 300 KB 512 KB

DB size 1 MB 1.5 MB 5 MB

Bit memory 16 KB 16 KB 16 KB

SIMATIC timers 2048 2048 2048

SIMATIC counters 2048 2048 2048

Temporary local data

per priority class 64 KB 64 KB 64 KB

per block 16 KB 16 KB 16 KB

Interfaces

PROFINET 1 (10 controller/device) 1 (10 controller/device) 1 (10 controller/device)
1 (Industrial Ethernet)

PROFIBUS - - 1 (DP master)

Interfaces via CM

4 (PROFINET + PROFIBUS)

6 (PROFINET + PROFIBUS)

8 (PROFINET + PROFIBUS)

Number of connections
maximum

reserved for PG, HMI, and
Web server

via integrated interfaces

96
10

64

128
10

88

256
10

128

Execution times

for binary operations

for word operations

for fixed-point arithmetic
for floating-point
arithmetic

60 ns/statement
72 ns/statement
96 ns/statement

384 ns/statement

40 ns/statement
48 ns/statement
64 ns/statement

256 ns/statement

10 ns/statement
12 ns/statement
16 ns/statement

64 ns/statement

50

2.2 S7-1500 CPUs

Status LEDs

The operating state of the CPU is indicated by LEDs on the front side above the con-
trol panel:

STOP/RUN Continuous yellow light in STOP operating state
Continuous green light in RUN operating state
Flashing light in STARTUP operating state

ERROR Flashing red light in the event of an error
Continuous red light if hardware is defective

MAINT Continuous yellow light indicates a maintenance request

Display and control keys on the control panel

The color display shows — structured in several menus - the status and properties
of the CPU, diagnostics alarms, the date/time, and information about the inserted
modules.

The control keys are designed as membrane keyboard. These can be used to select
the menus in the display and to set the date, time, access protection, language, and
IP address. The memory of the CPU can also be reset to the factory settings.

The control panel can be replaced during ongoing operation.

The control panel can be secured using a lead-wire seal or with a bracket lock in
order to prevent unauthorized operation of the mode switch or unauthorized
removal of the memory card.

Mode switch

The mode switch is designed as a toggle switch with the positions RUN, STOP, and
MRES. In the RUN position, the user program is executed and the programming
device has unlimited access to the CPU.

The user program is not executed in the STOP position, but the CPU retains its com-
munication capability. For example, a new user program can be downloaded using
the programming device or the diagnostics buffer can be read out with the CPU at
STOP.

In the MRES position (master reset), the CPU parameters are reset. MRES functions
like a pushbutton. A memory reset can be carried out for the CPU using a special
input sequence, or it can be reset to the delivered state.

2.2.3 SIMATIC Memory Card

The SIMATIC Memory Card is an SD memory card (secure digital memory card),
which is pre-formatted by Siemens.

The data is stored retentive on the memory card, but can be read, written, and
deleted like with a RAM. This feature permits data backup without a battery.

51

2 SIMATIC S7-1500 automation system

The complete load memory is present on the memory
card, meaning that a memory card is always required to
operate a CPU 1500.

The memory card can be used as a portable storage

medium for user programs or firmware updates. You can ! ;:ﬁ!?;gﬂg]
apply the user program to read or write data blocks on the
memory card by means of special system functions, for
example read recipes from the memory card or create a

measured value archive on the memory card and supply it PESTESS BLF01-50A0
with data.

The SIMATIC Memory Card is available for various mem- Fig. 2.4 SIMATIC
ory capacities up to 2 GB. Please note that formatting the Memory Card
memory card using Windows tools makes it unusable for

a CPU 1500.

The SIMATIC Memory Card has a serial number to which you can “tie” program
blocks. This means that the user program is only loaded into the CPU if the “cor-
rect” memory card is inserted (copy protection similar to a dongle).

2.2.4 Memory areas in an S7-1500 station

Fig. 2.5 shows the memory areas in the programming device, in the CPU, and in the
signal modules which are important for the user program.

The programming device contains the offline data. This consists of the user pro-
gram (program code and user data), the system data (e.g. hardware, network and
connection configuration), and further project-specific data such as the PLC tag
table.

The signal modules contain memories for the signal states of the input and output
signals.

The online data consists of the user program and the system data which is located
in three memory areas: in the load memory, in the work memory, and in the system
memory.

Load memory

The load memory contains the complete user program including configuration data
(system data). The load memory is located entirely on the SIMATIC Memory Card.
The user program is always initially transferred from the programming device to the
load memory, and then from there to the work memory. The program in the load
memory is not executed as the user program.

Data blocks that contain recipes, for example, can be identified as “not relevant to
execution”, and in this case they are not transferred to the work memory. These
data blocks can be accessed from the user program using system functions.

52

2.2 S7-1500 CPUs

Memory areas in an $7-1500 station

Central processing unit (CPU)
Programming device SIMATIC Memory Card
Project Load memory
Offline project data: Online project data: Further data such as
» Hardware configuration » Hardware configuration » Recorded data
> User program “ > User program sequences (DataLog)
> Project information > Project information > Recipes
Code work memory Retentive memory
» Execution-relevant » Retentive tags
parts of code blocks (bit memories, timers,
counters, data tags)
Data work memory » Data of technology
> Execution-relevant objects
parts of data blocks
and technology objects
Signal modules
System memo
110 v v
. » Process image » Bit memory
» Input signals .
E —) input > SIMATIC timer functions
» Process image i
G st _ o 9 » SIMATIC counter functions
» Temporary local data

Fig. 2.5 Memory areas for the user program

Work memory

The work memory is designed as a fast RAM completely integrated in the CPU. The
CPU's operating system copies the “execution-relevant” program code and the user
data into the work memory. “Execution-relevant” is a property of the existing
objects, and is not tantamount to the fact that a specific code block is actually called
and executed. The “actual” user program is executed in the work memory.

The work memory of a CPU 1500 consists of two parts: The code work memory con-
tains the program code. The data work memory contains the user data and the data
of the technology objects.

When uploading the complete user program to the programming device, the blocks
are fetched from the load memory, supplemented by the current values of the data
from the work memory.

System memory

The system memory contains the process images for the inputs and outputs. These
are copies of the input and output signals from the modules. The system memory
also contains the operand areas Bit memories, SIMATIC timer/counter functions,
and Temporary local data. The temporary local data are intermediate memories for
program execution in the blocks of the user program.

53

2 SIMATIC S7-1500 automation system

Retentive memory

The retentive memory contains the bit memories, SIMATIC timer-/counter func-
tions and data tags that are defined as retentive. The values in the retentive mem-
ory are retained after a power failure or if the power supply is switched off and on.
The values are deleted if the memory is reset or if the CPU is reset to the factory set-
tings.

2.2.5 Bus interfaces

Each CPU 1500 has an integrated PROFINET interface (PN interface) with two ports
for setting up a linear topology. The CPU 1516-3 PN/DP also has an additional
PROFINET interface with a port for connecting to Industrial Ethernet and a
PROFIBUS DP interface (Fig. 2.6).

The first PN interface connects the CPU to a
PROFINET IO system. The CPU can be operated
as 10 controller or as IO device. The PN inter-
face has two ports which are interconnected by
a switch. This permits simple configuration of
a quasi-linear topology. A programming
device or an operator control and display unit
can also be connected to the PN interface. Data
transfer to other devices is possible using open
user communication over Industrial Ethernet.

The second PN interface connects the CPU to
Industrial Ethernet. It has its own IP address,
which makes it possible to connect to a com-
pany network separately from the process
subnetwork. A programming device or an
operator control and display unit can also be
connected to the port of this PN interface.
Data transfer to other devices is possible
using open user communication over Indus-
trial Ethernet.

The DP interface connects the CPU to the Fig. 2.6
PROFIBUS DP bus system. The CPU is the DP The bus connections and
master. control elements under the

front flap of a CPU 1516-3PN/DP
Routing of data records is possible via the PN

and DP interfaces, i.e. data can be transmitted
beyond the limits of subnets. These interfaces also support time synchronization.

The bus interfaces are numbered: X1 for the first interface (PN) with ports P1 and
P2, with CPU 1516: X2 for the second interface (Ethernet) and X3 for the DP inter-
face.

54

2.3 Signal modules

2.3 Signal modules

Signal modules (SM) are peripheral input/output modules which establish the con-
nection between the CPU and the machine or process. The following types of mod-
ule are available for SIMATIC S7-1500:

> SM 521 Digital input modules
> SM 522 Digital output modules
> SM 531 Analog input modules
> SM 532 Analog output modules

A signal module can be inserted in the rack at one of the slots 2 to 31.

Common properties

A green RUN LED and ared error LED indicate the operating state of the module. On
most of the modules, a green power LED indicates the presence of the load voltage.

Correspondingly configured modules provide a statement about the validity of the
process signal along with the value status. If the value status is activated, the infor-
mation in the process image input is available. In the value status, one bit per pro-
cess channel indicates with signal state “0” that the assigned process signal or the
assigned analog value is invalid. For input modules, the value status lies in the con-
nection to the user data in the process image. For output modules, input bytes are
also occupied for the value status.

2.3.1 Digital input modules

The digital input modules are used by the CPU to record the operating states of the
controlled machine or plant. These modules are signal conditioners for binary pro-
cess input signals. Process signals present with a DC or AC voltage level from 24 V
to 230 V are converted into signals with an internal level.

If a module converts a positive (DC) voltage at the input into signal state “17, it is
called a “sinking input”. A “sourcing input” converts a positive voltage at the input
into signal state “0”. Further information can be found in Chapter 12.1.2 “Working
with binary signals” on page 504.

Depending on the module, the input channels are isolated either individually or in
groups. There are simple input modules and modules with diagnostic capability
with hardware and diagnostic interrupt triggering (Table 2.2).

The digital input modules have two or four bytes, corresponding to 16 or 32 input
signals. The presence of a process signal is indicated by an LED at the input channel.

55

2 SIMATIC S7-1500 automation system

Table 2.2 Overview of digital modules

Module type Short designation Description
SM521 digital input | DI 16 x 24 V DC HF Diagnosticinterrupt, hardware interrupts, isochronous
modules mode, value status, sinking input

DI 32 x 24V DCHF

DI 16 x 24 V DC SRC BA Sourcing input

DI 16 x 230 V ACBA -

SM522 digital out- DQ16x24VDC/0.5AST Transistor output, diagnostic interrupt, isochronous

put modules mode, value status
DQ32x24VDC/0.5AST

DQ8x24VDC/2AHF Transistor output, diagnostic interrupt, value status
DQ8x230VAC/2AST Triac output
DQ8x230VAC/5AST Relay output, diagnostic interrupt, value status

2.3.2 Digital output modules

The digital output modules are used by the CPU to con-
trol the connected machine or plant. These modules are
signal conditioners for binary process output signals
(Fig. 2.7). The internal signals are amplified and output
in the following current and voltage ranges (rated val-
ues):

> With electronic amplifiers from 24 V DC and a cur-
rentof 0.5Aand 2 A

> With electronic amplifiers from 120 V to 230 V AC and
acurrentof 2 A

> With relay contacts with a DC voltage of 24 V or an al-
ternating voltage of 230 V and a current of up to 5 A

Depending on the module, the output channels are iso-
lated either individually or in groups. The module types
include simple digital output modules, digital output
modules with diagnostic capability, and modules with
or without integral short-circuit protection (Table 2.2).

The digital output modules have two or four bytes, cor-
responding to 16 or 32 output signals. All modules indi-
cate a delivered process signal by means of an LED on
the output channel.

The digital output modules are disabled in the STOP

Fig. 2.7 SM 522 digital
output module,
DQ32x24VDC/0.5AST

and STARTUP operating states. In this case they deliver either a configured substi-

tute value or retain the last output value.

56

2.3 Signal modules

2.3.3 Analog input modules

The CPU can use analog input modules to process ana-
log measured variables after they have been converted
into digital values by the modules. These modules are
signal conditioners for analog process input signals
(Fig. 2.8).

Voltage and current transmitters, thermocouples,
resistors or thermoresistors can be connected to the
modules depending on the design. The measuring
range can be set as desired per channel or per channel
group. The resolution is 16 bits including sign. An ana-
log value (a channel) occupies 16 bits, in other words
two bytes. The analog input modules have 8 channels,
corresponding to an address range of 16 bytes (Table
2.3).

One status LED per channel indicates whether the
channel is deactivated, working properly, or an error
has occurred.

The input channels are not isolated from each other.
There is galvanic isolation between the channels and
the backplane bus and between the channels and the
internal power supply.

Fig. 2.8
SM 531 analog input mod-
ule, AI 8 x U/IIRTDITC ST

Table 2.3 Overview of analog modules

Module type Short designation | Description
SM531 analog Al 8 x 16 bit ST For the measurement types voltage, current, resistor, thermo-
input modules resistor, and thermocouple

Diagnostic interrupt, hardware interrupt

Al 8 x 16 bit HS For the measurement types voltage and current
Diagnostic interrupt, hardware interrupt, isochronous mode

SM532 analog AO 4 x 16 bit ST For the output types voltage and current
output module Diagnostics interrupt

AO 4 x 16 bit HS For the output types voltage and current
Diagnostic interrupt, isochronous mode

2.3.4 Analog output modules

The CPU can use analog output modules to continuously provide actuators with
analog setpoints. These modules are signal conditioners for analog process output
signals (Table 2.3).

The modules can output a voltage value in the ranges of 0 to 10V, 1 to 5V, or -10 to
+10 V or a current value in the ranges of 0 to 20 mA, -20 to +20 mA, or 4 to 20 mA.
The resolution is 16 bits including sign. The output channels are not isolated from

57

2 SIMATIC S7-1500 automation system

each other. There is galvanic isolation between the channels and the backplane bus
and between the channels and the load voltage L+.

An analog value (an analog channel) occupies 16 bits, in other words two bytes.
The analog output modules have 8 channels, corresponding to an address range of
16 bytes. One status LED per channel indicates whether the channel is deactivated,
working properly, or a diagnosis event has occurred.

The analog output modules are disabled in the STOP and STARTUP operating states.
In this case they deliver either a configured substitute value or retain the last out-
put value.

2.4 Technology modules

Technology modules (TM) are signal-preprocessing,
“intelligent” modules which prepare and process sig-
nals coming from the process independent of the CPU,
and either return them to the process or make them
available to the user program at the CPU's internal
interface. They are responsible for handling functions
which the CPU cannot usually execute quickly
enough, such as counting pulses (Fig. 2.9).

The following technology modules are available:
> TM Count 2 x 24 V (6ES7 550-1AA0-0ABO)

Technology module for counting pulses, for measuring
a frequency, time period or velocity, and for position
detection for motion control; with two 32-bit counter
channels and a maximum signal frequency of 200 kHz
(this corresponds to max. 800 kHz with fourfold evalu-
ation); for connection of 24 V incremental encoders
with and without N signal, 24 V incremental encoders
with and without direction signal, and 24 V incremental
encoders with separate signals for counting up and
counting down; three configurable digital inputs per
channel for starting, stopping, synchronizing or saving
the count value (capture function), and two configu-
rable digital outputs for outputting a comparison
result.

Fig. 2.9 TM Count2x24V
counter module

> TM PosInput 2 (6ES7 551-1AB00-0ABO)

Technology module for counting pulses, for measuring a frequency, time period or
velocity, and for position detection for motion control; with two 32-bit counter
channels and a maximum signal frequency of 1 MHz (this corresponds to
max. 4 MHz with fourfold evaluation); for connection of SSI absolute value encod-
ers, RS 422/TTL incremental encoders with and without N signal, RS 422/TTL incre-

58

2.5 Communication modules

mental encoders with and without direction signal, and RS 422/TTL incremental
encoders with separate signals for counting up and counting down; two configu-
rable digital inputs per channel for starting, stopping, synchronizing or saving the
count value (capture function), and two configurable digital outputs for outputting
a comparison result.

2.5 Communication modules

The communication modules (CM) relieve the CPU of
communication tasks. They establish the physical
connection to a communication partner, take over
establishment of the connection and data transport
on this, and provide the required communication ser-
vices for the CPU and the user program (Fig. 2.10).

The following communication modules are available:
> CM PTP RS232 BA (6ES7 540-1AD00-0AA0)

Communication module for point-to-point connec-
tion to an interface; physical transmission character-
istics RS 232 with up to 19.2 Kbit/s; maximum frame
length: 1 KB; supported protocols: Freeport and 3964
(R), USS protocol via system functions.

> CM PTP RS422/485 BA (6ES7 540-1AB00-0AA0)

Communication module for point-to-point connec-
tion to an interface; physical transmission character-
istics RS 422/485 with up to 19.2 Kbit/s; maximum
frame length: 1 KB; supported protocols: Freeport
and 3964 (R), USS protocol via system functions.

Fig. 2.10
> CM PTP RS232 HF (6ES7 541-1AD00-0ABO) CM PtP RS232 BA

L. . . communication module
Communication module for point-to-point connec-

tion to an interface; physical transmission character-

istics RS 232 with up to 115.2 Kbit/s; maximum frame length: 4 KB; supported pro-
tocols: Freeport, 3964 (R) as well as Modbus RTU Master and Modbus RTU Slave,
USS protocol via system functions.

> CM PTP RS422/485 HF (6ES7 541-1AB00-0ABO)

Communication module for point-to-point connection to an interface; physical
transmission characteristics RS 422/485 with up to 115.2 Kbit/s; maximum frame
length: 4 KB; supported protocols: Freeport, 3964 (R) as well as Modbus RTU Master
and Modbus RTU Slave, USS protocol via system functions.

59

2 SIMATIC S7-1500 automation system

> CM 1542-5, PROFIBUS (6GK7 542-5DX00-0XEO)

Communication module for PROFIBUS; physical transmission characteristics
RS 485 with up to 12 Mbit/s; operation as DPV1 master or DPV1 slave; PG/OP com-
munication, S7 communication; open user communication.

> CP 1543-1, Industrial Ethernet (6GK7 543-1AX00-0XEOQ)

Communication module for Industrial Ethernet up to 1000 Mbit/s; TCP/IP, ISO, UDP,
IP broadcast/imulticast, open user communication, among others; addressing with
IPv4/TPv6; can be used for safety applications.

2.6 Other modules

2.6.1 System power supply modules

The system power supply modules (PS) provide the
operating voltage for the modules in the rack.

Depending on the power supply module, the primary
voltage is either an alternating voltage of 120/230 V
(PS 507) with an output power of 60 W or a 24V
direct voltage (PS 505) with an output power of 25 W
and 60 W.

A green RUN LED and a red error LED indicate the
operating state of the module. A yellow MAINT LED
signals a maintenance request.

2.6.2 Load power supply modules

The load power supply modules (power modules,
PM) provide 24 V direct voltage, which can be used as
the supply voltage for sensors and actuators (load
power supply of the I/O modules), CPUs, and system
power supply modules. The modules are in the
S7-1500 design.

The primary voltage of the PM 1507 load power sup-
ply modules is 120/230 V AC with an output power of Fig. 2.11

70 Wand 190 W, PS 50524 VI25 W
. power supply

A green RUN LED and a red error LED indicate the
operating state of the module. A yellow MAINT LED
indicates the stand-by state.

60

3.1 Introduction

3 Device configuration

3.1 Introduction

Device configuration entails planning the hardware design of the automation sys-
tem. Configuration is carried out offline without a connection to the CPU. You can
use this tool to add PLC stations to a project and equip these with modules which
you then address and parameterize. You also use this tool to carry out the network-
ing of PLC stations or the creation of distributed I/O stations.

This chapter primarily describes the configuration of an individual PLC station
with a CPU 1500 standard controller and provides an overview of the networking
options. Configuration of the distributed I/O is described in Chapters 16.3
“PROFINET IO” on page 701 and 16.4 “PROFIBUS DP” on page 716.

Starting

You can start the device configuration in the Portal view when setting-up a new
project if the Open device view checkbox is activated following addition of a CPU.
When opening an existing project, start the device configuration by selecting
Configure a device.

In the Project view, you can start the device configuration in the project tree either
by double-clicking on the Devices & networks editor under the project or on the
Device configuration editor under the PLC station.

Working area of the device configuration

Fig. 3.1 shows the working area of the device configuration in the Project view
(without project tree).

Three views are available in the Working window:

> The Device view shows the current configuration of the PLC station. The config-
uration is shown as a graphic in the top part of the window, and as a table in the
bottom part.

> In the Network view you can see - if more than one station is present in the
project — the connections between the stations, also as a graphic in the top part
of the window and as a table with the existing stations and their interconnections
in the bottom part. Further information can be found in Chapter 3.4 “Configur-
ing a network” on page 73.

> You can use the Topology view to display and configure the port connections with
an Ethernet network as a graphic in the top part of the window and as a table in

61

3 Device configuration

Prgiui Dl Yew jued Qoiew Oyt Rk Bledes el .
ke - - - oladty infegaind Autemeiion
G h e g Mot Ty WM RS S ok nE x PORTAL
& topiereven [y neves vew [B evcn vaw || oo i
w i :
~ i
it]
oy o -
¥
8 ' L]
allp H
]
]
=
P ST B PTALA R T -
50 TR a LA 5T T
g -4
T - E s = L]
! . ¥ =
T by T L] L
Ihrwiie e rbem YL r— 3
v [e 11
W | e UL = TR ST PYTL [Formmmmt i
¥ Crranl Conersl o ORJ TSN PNEF APIT VISAANIDOMMD Y1) n .
0 =
¥ PR T R v X PR Ty
b PO Trmeton 2 B -4 el T earhen
iy © 5 o gy w | cmmation
Lok oo v i 9.3 BIRSAELIT R RV V8 Pawss "-"]
L eI e [p——
Tk o Tt
A
Ouignts r
s BEVF AT SBLBS AR
v Praswasl . 7
.....]
bl o] griouags lagiusa iy
i by taga L
Wraium o b prend

e T

Fig. 3.1 Example of working area of device configuration (Device view)

the bottom part. Further details on the Topology view are described in
Chapter 16.3.5 “Real-time communication in PROFINET” on page 710.

In all cases, you can “fold shut” the bottom part of the working window.

The Inspector window is positioned below the working window. In the Properties
tab, this shows the properties of the object selected in the working window. The Info
tab contains general information on the configuration session and the compilation,
and the cross-reference list. The Diagnostics tab shows the operating mode of the
stations and the alarm display.

The Hardware catalog is available on the right in the task window. It shows all
hardware components which can be configured with the current version of STEP 7.
If you select a component in the lowest level of the hardware catalog, a brief
description of the most important properties is shown in the information area of
the hardware catalog.

You can change the size of all windows. You can “fold shut” all windows except the
working window and thus provide more space for the latter. The working window
can also be maximized and displayed as a separate window.

62

3.2 Configuring a station

Save, compile, and download

You save the entered data on the hard disk by saving the complete project (using
the Project > Save command in the main menu). In order to download the configu-
ration data to a CPU, it must first be compiled in a form understandable to the CPU
(using Edit > Compile). Any errors occurring during compilation are indicated in
the inspector window under Info. Only error-free (consistent) compilations can be
downloaded to the CPU using Online > Download to device.

Upgrading and support

To subsequently install device master data files (GSD), select Options > Install
general station description file (GSD) in the main menu. Enter the source path in the
subsequent dialog and select the file to be installed.

To subsequently install support packages, for example hardware support packages
(HSP) for new modules, select Options > Support packages in the main menu. The
Detailed information window displays the installed products and components as
well as operating system information. Under Installation of Support Packages, you
can select whether you wish to download the update from the Internet or from the
file system.

3.2 Configuring a station

“Configuring” is understood to be the addition of a PL.C station to the project, the
arranging of the modules in a rack, and the fitting of modules with submodules.

3.2.1 Adding a PLC station

When creating a new project, you normally add a PLC station at the same time.
You can add further PLC stations in both the Portal view and the Project view. In the
Portal view, you can add a new station in the Devices & networks portal using the
Add new device command. In the Project view, double-click on Add new device in the
project tree.

Select the desired CPU in the selection window and assign it a meaningful name.
Before clicking on the OK button, make sure that the Open device view checkbox is
activated in the window at the bottom left (Fig. 3.2).

You have now configured a rack with a CPU inserted in slot 1. Slot 0 on the far left is
intended for a power supply module.

3.2.2 Adding a module

If you have not already done so, open the PLC station in the Device view. To insert a
module, select it in the hardware catalog (the symbol of the module in the lowest
catalog level). You are then provided with a description of the selected module in
the information window of the hardware catalog. The permissible slots in the rack

63

3 Device configuration

Add naw device

Device name:
|PLC_1
= [Conrrollers Device:
b L SIMATIC 57-1200
- snwnc 571500
Cantrollers g "_CFU
B T= R EARE NG

» [CPU 15131 PN
+ [CPU 15163 PHIDP
[s S1s 3mooored
v (il Uns pecified CFU 1500
+ [l S <7300 GhEahe FArc vl
» [ST 57500 i z
» [l 5IMATIC ET 200 CPU Deseriptinn

HME
| g CPU wnih dis play: wink memory 1 KB program

CPU 1516-2 PHIDF

Oudernn. (6857 5163A1000480

and 5 M8 data; 10 ns bt ins tructon tame.,
PROFIMET O, cuppom: RTIRT, 2 port, MAF,
trans po protocol TORIP, Web server constant
FC systems bus eyele time, rauting; additional IP address for
PROFINET basic senvices [irans pomt protocol
TCPAP, Weeb server, routing: PROTIBUS DF master,
constant bus E:.:Ie e, routing: deyel
protecton concept, integrated technalogy
functigns. metion, cseddewp contral,
countingbmeasuring, Sirmware V1.1

[Cpen device view oK 1] cancel _'

Fig. 3.2 Selection window Add new device

are highlighted. You position the new module by double-clicking on the module
symbol or by dragging it with the mouse to the rack.

If you activate the Filter checkbox in the hardware catalog, only modules from
the selected device family will be shown; in our case only the modules for
SIMATIC S7-1500.

The I/O modules can be arranged as desired during the configuration on slots 2
to 31, even with gaps. For the compilation, however, the modules must be inserted
without gaps.

The modules are supplied with power from the backplane bus of the CPU or a sys-
tem power supply (see Section “Design variants” on page 48). Observe the power
consumption in a power segment when arranging the modules. Any imbalance in
the power will be reported as an error during the compilation.

You can delete an inserted module again (remove it from the rack) or replace it by
a different, equivalent one.

64

3.3 Parameterization of modules

3.3 Parameterization of modules

“Parameterization” or “assigning parameters” is understood to be the setting of
module properties. These include, for example, setting addresses, enabling inter-
rupts, or defining communication properties.

Module parameterization is carried out for a selected module in the inspector win-
dow in the Properties tab. Select the properties group on the left side and set the val-
ues in interactive mode on the right. You can stop the setting of properties at any
time and continue later.

Only a portion of the total parameters described below can be assigned to individ-
ual modules.

3.3.1 Parameterization of CPU properties

The CPU's operation system operates with the default settings for program execu-
tion. You can change these default settings in the hardware configuration during
parameterization of the CPU and match them to your specific requirements. Subse-
quent modification is possible at any time.

When starting up, the CPU adopts the settings deviating from the default settings
in STARTUP mode. These settings then apply to further operation.

To parameterize the CPU properties, select the CPU in the working window of the
device configuration. If the project contains several stations, select the desired sta-
tion in the toolbar of the working window.

Set the name of the PLC station in the General section under Project information
and the module ID under Identification & Maintenance. Using the higher level des-
ignation, you can identify the CPU according to its function in the plant, for exam-
ple, and you can use the location designation — which can be part of the equipment
designation - to describe the arrangement of the PLC station on the machine or
within the plant.

In the PROFINET interface section you set the connection to an Ethernet subnet
and define the IP address, the subnet mask, and the PROFINET device name.
For more information on the format of the IP address, refer to Chapter 3.4.6 “Con-
figuring a PROFINET subnet” on page 80. Under Operating mode you can activate
the operation as an IO device. The 10 controller mode is a fixed default setting. Fur-
ther settings define, for example, the real-time properties of the PROFINET IO com-
munication, the interconnection of the ports, and the activation of the web server
via this interface.

In the DP interface section (for CPU 1516) you can define the connection to a
PROFIBUS subnet, the node address, and other properties such as the properties of
the SYNC/FREEZE groups. The DP master mode is a fixed default setting. You change
the network parameters in the Properties tab of the inspector window in the
Network view with the PROFIBUS subnet selected. For more information, refer to
Chapter 3.4.7 “Configuring a PROFIBUS subnet” on page 84.

65

3 Device configuration

You can set the startup characteristics of the CPU under Startup (Fig. 3.3).
As Startup after POWER ON you can select between No restart (remain in STOP mode),
Warm restart - RUN, and Warm restart - Operating mode before POWER OFF.

Startup

Startup after POWER OM: | Warm restart - Operating mode before POWER OF‘ v|

Comparison preset to actual
configuration: | Startup CPU even if mismatch ‘v|

Configuration time for central
and distributed 110 | 60000 ms |

Fig. 3.3 Startup parameters with a CPU 1500

During startup, the CPU compares the modules that are actually inserted to the con-
figuration. You can set the strictness of the check under Comparison preset to actual
configuration: Start up CPU only if compatible or Startup CPU even if mismatch.

The duration for distributed I/O parameterization is monitored during a startup;
you can set the parameterization time. A module is considered to be absent if the
monitoring time for it expires.

In the Cycle section, you define the cycle monitoring time under Maximum cycle
time. It is signaled if the cycle monitoring time is exceeded and this can lead to the
STOP operating state. You can also specify the Minimum cycle time, which indicates
the minimum duration of program cycle execution.

In the Communication load section, you set the time share for communication
under Cycle load due to communication. In addition to execution of the user pro-
gram, the CPU also carries out communication tasks, for example data transmis-
sion to another PLC station or downloading of blocks from a programming device.
This communication requires time, some of which has to be added to the execution
time of the main program. Specification of the communication load can be used to
control influencing of the cycle time to a certain extent. The time available for com-
munication is entered as a percentage with this parameter (communication load).
The cycle time is then extended by the factor 100/ (100 - communication load).

System and clock memory are operands controlled by the operating system which
can be scanned in the user program. For example, there is a bit memory which indi-
cates the occurrence of a diagnostic event, or a bit memory which changes its signal
state at a frequency of 2 Hz. During parameterization of the CPU, you activate the
system memories and/or the clock memories and assign an address to them. Fur-
ther information on bit memories in general and on system and clock memories
can be found in Chapter 4.1.3 “Operand area: bit memory” on page 90.

In the System diagnostics section, you activate the system diagnostics and define
the category of the alarms to be output and whether the alarms must be acknowl-
edged.

In the Web server section, you can activate the web server and set its properties.
Further details can be found in Chapter 18.3 “Web server” on page 796. The prop-

66

3.3 Parameterization of modules

erties of the display in the front flap of the CPU are set in the Display section. Such
properties are, for example, waiting times for standby and energy-saving mode and
password-protected display. The language in which the project texts are displayed
in the web server and on the display can be defined in the User interface
languages section.

In the Time of day section, you can set the time zone for the integral real-time clock
and activate the daylight saving time switchover (difference between daylight sav-
ing and standard time, beginning and end of the daylight saving time).

In the Protection section, you can protect the program in the CPU from unautho-
rized access. Here, you can assign a password for each type of access (read access,
full access, HMI access) or completely block access to the CPU (Fig. 3.4). Further
details can be found in Chapter 15.2.3 “Protecting the user program” on page 657.
In this properties group, you can also set the access permission for S7 communica-
tion with GET and PUT.

Protection

Protection

Selectthe access level for the PLC.

Access level Access Access permission
HII Read Write Password Confirmation
O Full access (no protection)
O Read access
O HMl access
(® No access (complete protection)

v
v

{44

No access (complete protection):
TA Portal users and HM applications will not have access to any functions.

Mandatory password:

For full access, TIA Portal users need to enter the “full access” password.
Optional password:

A”read access” password can be defined for read access to all functions.

For access by HMI applications, an "HMl access”™ password can be defined.

Some HMI devices do not support all possible characters. If you want to access the PLC from an HM device,
use onlythe standard characters. Flease refer to the documentation of the device.

Fig. 3.4 Settings for access protection

The System power supply section shows the power balance of the first power seg-
ment in the rack. If to the left of the CPU there is a system power supply module
which supplies the CPU, place a checkmark in the box Connection to supply
voltage L+.

The Connection resources section shows the number and distribution of the
reserved and available resources for the configured connections of the station and

67

3 Device configuration

the communication-capable modules in the station. Further details are described
in Chapter 3.4.5 “Configuring a connection” on page 78.

The assigned inputs and outputs are shown in the Overview of addresses. The
module addresses, the assigned process image partitions with any assigned organi-
zation blocks, and the slots are displayed. The display encompasses the modules
that are both centrally and decentrally configured via PROFINET and PROFIBUS.

3.3.2 Addressing modules

Slot address, geographic address

Every slot in a PLC station has a fixed address. A module is unequivocally defined
by the slot address (“geographic address”). The CPU in an S7-1500 station has,
for example, the slot address of Rack 0, Slot 1.

If interface submodules are present on the module, each submodule is assigned an
additional module address. In this manner, every binary signal, every analog sig-
nal, and every serial connection in the system can be addressed unequivocally.

In the same manner, modules of the distributed I/O also have a “geographic”
address. In this case, the number of the PROFINET IO system or DP master system
and the station number replace the rack number.

By positioning a module on arack in the hardware configuration, you automatically
define the slot address. The CPU's operating system requires the slot address in
order to explicitly address a specific module, e.g. during parameterization. The slot
address is not usually required in the user program, and is not used either.

Hardware identifier

The configuration editor assigns a hardware identifier for each object, including
modules. This is a constant value which cannot be changed by the user. With the
hardware identifier, you can address a module in the user program, for example
when querying the module status (see Chapter 4.4 “Addressing of hardware
objects” on page 107). All of the hardware identifiers used in the PLC station are
listed in the default tag table in the System constants tab (Chapter 4.12 “Hardware
data types” on page 143).

Logical address, user data address

Every peripheral byte is addressed by a number, the “logical” address. This logical
address defines the slot, and this corresponds to the absolute address. This is also
referred to as the user data address since you can use this address to access the user
data of the input/output modules in the user program, either via the process image
(inputs I and outputs Q) or directly on the modules (peripheral inputs I:P and
peripheral outputs Q:P). The range of the logical addresses starts with zero and
ends with 32 767, for inputs and outputs respectively.

68

3.3 Parameterization of modules

Module start address

The module start address is the smallest logical (user data) address of a module;
it identifies the relative byte zero of the module. The following module bytes are
then occupied consecutively with the logical addresses.

Using the hardware configuration you determine the position of the user data
addresses of a module in the address volume of the CPU by specifying the module
start address. The lowest logical address is the module start address, also for mod-
ules of the distributed I/O and even for the virtual slots in the user data interface of
an intelligent IO device or an intelligent DP slave.

The module start address is used in some cases to identify a module. It has no spe-
cial significance beyond that.

Configuring user data addresses

When configuring the modules, STEP 7 automatically assigns a module start
address starting with zero. You can see this address in the configuration table in the
bottom part of the working window or in the properties of the selected module in
the inspector window under I/O addresses. You can change the automatically
assigned start address (Fig. 3.5).

Properties L]

|§.Properties ||"_i.l|nfo "ﬂDiagnostics |

J General " 10 tags " Texts |

* General

IO addresses

Froject information

Catalog information Input addresses
Identification & Maintenance

« Module parameters Start address: |D |

General End address: [3 |

* Channel template

Organizmstion block |Hardware interrupt
Inputs

[+]
DI Configuration Process image |FIF 1 [+]
* DI32

General

b Inputs

Hardware identifier P I

i [»

Fig. 3.5 Example of parameterization of I/O addresses of a digital input module

The logical addresses of the individual modules - independent of whether they are
centrally located or belong to the distributed I/O - must not overlap. For the input
and output modules, the logical addresses are assigned separately so that an input
byte can have the same number as an output byte.

All of the inputs and outputs of a module have a process image in the system mem-
ory of the CPU. During addressing, you set the way in which the process image of
the module is to be updated in the I/O addresses properties group. The entry

69

3 Device configuration

Automatic update means that the process image of this module will be automati-
cally updated before calling organization block OB 1. You can set a process image
partition and link it to a specific organization block. This process image partition
will then be updated when this organization block is called. If you do not assign an
organization block, the process image update can be initiated in the user program
using system blocks. If you do not assign a process image (entry None), you must
address the user data of the module directly via the 1/0 operand area. Further
details are described in Chapter 5.6.2 “Process image updating” on page 179.

3.3.3 Assigning parameters to signal modules

To parameterize the module properties, select the module in the working window
of the Device view and set the properties in the inspector window on the General
tab.

Common properties

In the General section of the module properties, you can enter a name under Project
information of the module and enter the higher level designation and location des-
ignation under Identification & Maintenance.

The configuration of modules with many I/O channels is simplified by the Channel
template. By default, all of the channels have the properties that are set in the chan-
nel template. Deviations from the template can be individually configured for the
corresponding channel.

In the section Module parameters > General, you configure the behavior during a
startup in the Comparison preset to actual module drop-down list if the actual mod-
ule differs from the configured module: From CPU, Startup CPU only if compatible,
or Startup CPU even if mismatch.

For correspondingly configured modules, you can configure a value status, which
indicates the validity of an assigned 1/O signal with one bit each. For additional
details, see Section “Value status” on page 90. You activate the value status under
Module parameters > xx Configuration (xx = depending on the module type DI, DQ,
Al or AQ).

The start address of the module, the assignment to a process image and to an orga-
nization block can be set under xx > I/O addresses (xx = depending on the type of
module DIn, DQn, Aln, or AQn; n = number of 1/0 channels). An example is shown
in Fig. 3.5 on page 69.

Hardware identifier shows the hardware identifier of the module, which is assigned
and listed in the System constants tab of the default tag table by the configuration
editor.

Digital input modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section DIn > Inputs > Channel. To adjust the settings, select Manual
under Parameter settings.

70

3.3 Parameterization of modules

In the Diagnostics field, activate the events (No supply voltage L+, Wire break) which
cause a diagnostic alarm to be sent when they occur, e.g. to the diagnostics buffer.

The input delay can be set in the Input parameters field. The longer the input delay,
the more immune the input signal is to high-frequency interfering signals.
However, this also increases the period until a change in the input signal is recog-
nized by the module.

The Hardware interrupts field contains the assignment of a hardware interrupt to a
status change of the input signal. You can assign a hardware interrupt organization
block to each signal edge and specify its processing priority.

Digital output modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section DQn > Outputs > Channel (Fig. 3.6):

Properties L]

|QProperties ||"_i.‘.|nfo "ﬂDiagnostics |

J General " 10 tags " Texts ‘

Froject information
Catalog information |
Identification & Mainten...

Outputs

> Channel0-7

 Module parameters

General Channel group diagnostics
+ Channel template
Outputs [Mo supplyvaltage L+
DQ configuration [) shart circuit to ground
* DQ32 =
“
Geteral r| > > Channel0
* Outputs m
*
w Channel0-7 L
Channel 0 Parameter settings: | Manual |v|
Channel 1
Output parameter
Channel 2 |
Ch 13 .
anne Reaction to CPU STOPF: | Shutdown -
Chennel 4
Channel 5 Keep last value
Channel 6 5 b (el Output substitute value 1 !z'
(<] I | <] i [2]

Fig. 3.6 Example of parameterization of a digital output channel

In the Channel group diagnostics field or in the Diagnostics field, activate the events
(No supply voltage L+, Short circuit to ground) which cause a diagnostic alarm to
be sent when they occur, e.g. to the diagnostics buffer.

In the Output parameter field there is the entry from the channel template if the
Parameter settings are set to From template. If you set the parameter settings to
Manual, you can select the response of the output channel during the transition to
the STOP operating state from a drop-down list: Shutdown, Keep last value, or
Output substitute value 1.

71

3 Device configuration

Analog input modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section AIn > Inputs > Channel. To adjust the settings, select Manual
under Parameter settings.

In the Diagnostics field, activate the events (No supply voltage L+, Overflow,
Underflow, Common mode error, Reference junctions, Wire break) which cause a
diagnostic alarm to be sent when they occur, e.g. to the diagnostics buffer.

In the Measuring field, set the type of measurement (e.g. Voltage, Current, Resistor,
Thermocouple) and the associated parameters (Fig. 3.7).

Properties =
|§. Properties ||"_i.'.lnfo uﬂ Diagnostics |
| General | 10 tags || Texts |
» General I
* Module parameters o Wiznrell g
General
* Channel template Parameter settings: |I\u1anual |'|
Inputs))
Al configuration IEEETTS e
* AlB
S D Mo supplyvoltage L+
= Inputs [overflow
Channel 0 D Underflow
Ehagechl ["] common mode error
Channel 2 Reference junctions
P eference junctions
Channel 4 Wire break
Channel 5 H Current limit ft
Channel & H [~]
Channel 7 :
Channel reference temp... [Measuring
110 addresses
Hardware identifier Measurementfype: | Voltage [=]
Measuring range: |+MDV |v|
Temperature coefiicient: | [~]
Temperature unit: | [~]
| [-]
| |
Interference frequency
SuUppression: |SD Hz|V|
Smoothing: |Nnne |v| .
(<] il | <] i [2]

Fig. 3.7 Example of parameterization of an analog input channel
(diagnostics, measurement type)

The Hardware interrupts field contains the assignment of a hardware interrupt to a
limit violation of the input signal (the exceeding or undershooting of two configu-
rable limits). You can assign a hardware interrupt organization block to each limit
violation and specify its processing priority.

72

3.4 Configuring a network

Analog output modules

With correspondingly configured modules, you can parameterize additional prop-
erties in the section AQn > Outputs > Channel. To adjust the settings, select Manual
under Parameter settings.

In the Diagnostics field, activate the events (No supply voltage L+, Wire break,
Short circuit to ground, Overflow, Underflow) which cause a diagnostic alarm to be
sent when they occur, e.g. to the diagnostics buffer.

In the Output field, set the type of measurement (Deactivated, Voltage, Current) and
the associated parameters and the response of the output channel when transition-
ing to the STOP operating state (Shutdown, Keep last value, or Output substitute
value).

3.4 Configuring a network

3.4.1 Introduction, overview

The network configuration permits the graphic display (on screen) and graphic
documentation (on paper) of the configured networks and their stations. Configu-

8 Semena - Pregeet1501
EeEt LS e REed Oeles OpSods feol
GO et & M e T W Myp e T

By
M0 E G ¥ comiee J

Project1501 + Devices & networds I
\df Topology view. [Network view | Dinico view Optiorn ™
e T S— T - i F
sl v Catabog E
e LI
et mEY &
s R M oraa8e P]
I ! &
| »[@or
¥ [Pema TEhernet .
- [o i
» (g Cu RS =
v = gersaza -
L AL i PR TERE SR W
£
" T
A Ppeie [Ninfa |5 Dlegeetics N
Grvwral | W0 tags | Tuwn » (SR T 380 O L
Ganers af vl (<
Al L3
ik Etherrred sddresses » e i
v yechranizmnen imerace netwiked with ¥ Infoimatisn H
Opareting m
CpaTaing mode [-
L ST P fubnaE P -
B Leres aseeii
Harduase wprsiler
= WP predocol
i (@) $aveP addemns inthe pecject IF T
o BT Ceterra BT ST TDOEAED
Subeetmask | 73 7ss 238 o
- venan win
Une s
Deaeripien
T3 Seter asidmn: sting o difernt method LA s PRGNS, BN O s,
. DF dlave, 5 roubrg. Sagrarics -

Fig. 3.8 Example of working area of network configuration (network view)

73

3 Device configuration

ration of the networking is part of the device configuration. If a PL.C station is oper-
ated on its own, without HMI station and without data communication to other
PLC stations, the network configuration is not required. Connection of a program-
ming device for transfer of the user program and for program testing does not
require configuration either.

You can access network configuration with the project opened in the Portal view via
Devices & networks and Configure networks or in the Project view with the
Devices & networks editor which is positioned in the project tree underneath the
project. In the working window of the device configuration, change to the Network
view tab (Fig. 3.8).

In the top part of the working window, the Network view graphically displays all
PLC, PC, and HMI stations present in the project as well as the networking, provided
this has already been configured during device configuration. The lower part of the
working window (closed and not visible in the figure) contains the tabs Network
overview, Connections, I/O communication, and VPN. You can drag further stations
with the mouse from the hardware catalog into the working area and thus add them
to the project. Information on the selected object is displayed below the hardware
catalog. If you select an object in the working window, the inspector window dis-
plays the properties of the object.

3.4.2 Networking a station

“Networking” of stations corresponds to the wiring of modules with communica-
tion capability, i.e. a mechanical connection is established. A logical connection is
additionally required in order to transfer data via the cable. The logical connection
defines the transmission parameters between the modules.

The working window of the configuration editor shows the existing stations with
the modules with communication capability. The interfaces for the subnets are
highlighted.

Adding a station in the network configuration

In the hardware catalog under Controllers > SIMATIC S7-1500 > CPU > [folder:
CPU 15xx...] > [CPU], select the desired CPU and drag it with the mouse into the
working area. The graphic shows the CPU with the existing bus interfaces as a rep-
resentative for the complete PLC station.

If you drag the CPU to an existing subnet and if the CPU has an interface matching
the subnet, the interface is directly connected to the subnet when adding.

Adding a communication module in the network configuration

In the hardware catalog under Controllers > SIMATIC S7-1500 > Communication
modules > [folder: Subnet] > [folder: Modules] > [Module], select the desired commu-
nication module and drag it with the mouse into the station graphic on the working
area. The module is shown with the existing bus interfaces in the PLC station next
to the CPU.

74

3.4 Configuring a network

A CM module added in this manner is positioned by the configuration editor in the
lowest vacant slot in the rack.

If you drag the CM module to an existing subnet and if the CM module has an inter-
face matching the subnet, the interface is directly connected to the subnet when
adding and the CM module is displayed individually as a graphic. In the Device
view, the CM module is then positioned in a rack which is otherwise empty.

Adding a subnet

Select the desired bus interface in the station graphic and then select the Add sub-
net command from the shortcut menu. A subnet corresponding to the bus interface
is added.

Networking a station

Click on the Network button in the toolbar of the working window in order to net-
work stations.

If a subnet has not yet been created, select the bus interface in one of the stations
and drag it to a bus interface of the other station which matches the subnet.
The subnet is then added; the interfaces are connected by a colored line.

If the matching subnet is already present, select the bus interface in the station and
drag it to the subnet. The interface is connected to the subnet by a colored line.

Properties of the Ethernet network

The network configuration shows the Ethernet connections between several sta-
tions as a linear bus connection: all stations are hanging quasi on one line. Actually,
an Ethernet connection is a point-to-point connection between the stations: each
station is connected to exactly one partner station. The PROFINET interface of a
CPU 1500 has two ports which are interconnected by an integrated switch. A linear
network can thus quasi be set up.

The individual ports are shown in the topology view and you can then interconnect
them and set their properties.

Disconnecting a module from the subnet or assigning it to a different subnet

If you wish to disconnect a module from the subnet, select the bus interface and
then the Disconnect from subnet command in the shortcut menu. If all modules
have been disconnected from a subnet, it is shown as an isolated subnet at the top
left in the working area.

If you wish to assign a module to a new subnet, select the bus interface and then the
Assign to new subnet command in the shortcut menu. If several suitable subnets are
available, select the appropriate one from the displayed list.

75

3 Device configuration

3.4.3 Node addresses in a subnet

Each module - each “node” - connected to a subnet requires an unambiguous
address on the subnet (the “node address”) with which the module can be
addressed within the subnet. When assigning node addresses, attention must be
paid to the particular properties of the associated subnet.

Display of node addresses

To display the node addresses in the Network view, click in the toolbar of the work-
ing window on the Show address labels icon. The Network view shows the name of
the subnet and the node address. If the bus interface is not connected to a subnet,
only the node address is displayed (Fig. 3.9).

PLC_1 PLC_2 PLC_3
CPU 1516-3 PNL.. CPU 1511-1 PN CPU 1215C
192.168.0.1 [PMAE_1: 192.168.2.2] [PMAE_1: 192.168.2.1]
T =
[PROFIBUS_1: 2| T — PNAE_1
PROFIBUS_1

PMN/IE_1: 192.168.2.3

10 device_1
I 155-5 PN 5T

PLC_2

Slave_1
IM153-1

PLC_1

PM/IE_1: 192.168.2.4 PROFIBUS_1: 3

Fig. 3.9 Display of node addresses in the network view

Setting node addresses

When networking a module, the configuration editor automatically claims the next
unused node address for the bus interface. You can change this automatically
assigned address in the module properties in the inspector window with the bus
interface selected.

3.4.4 Communication services and types of connection

The connection type specifies the protocol for the data exchange. You select the con-
nection type during the configured setup of the connection, depending on the com-
munication service to be carried out. The connection type is determined by the
communication functions during the programmed setup (Table 3.1).

PG communication is used for connecting a programming device to a PLC station.
The necessary connection is automatically set up during the setup of the online
mode. Data can be transferred via a PROFINET or PROFIBUS subnet and via a subnet
gateway.

76

3.4 Configuring a network

Table 3.1 Communication services and types of connection (selection)

Communication service Connection type Connection setup Subnet
PG communication - automatic PN DP
HMI communication HMI connection configured automatic PN DP
Open user communication
via TCP/IP TCP connection configured programmed PN
via ISO-on-TCP I1SO-on-TCP connection | configured programmed PN
via UDP UDP connection configured programmed PN
via1sO " ISO connection configured PN
via FDL? FDL connection configured DP
E-mail - programmed PN
FTP " - programmed PN
S7 communication S7 connection configured PN DP
Point-to-point communication - programmed PtP
Vvia CP 1543-1

2 via CM 1542-5

HMI communication is used for connecting an HMI device to a PLC station. When
the online mode with the PLC station is initiated by the HMI device, the necessary
connection is automatically set up. A configured HMI connection is necessary in
order to be able to configure the data exchange between the PLC station and the
HMI station.

Open user communication is used for data exchange between PLC stations or with
external devices. It takes place via PROFINET (exception: open user communication
via FDL). A TCP, ISO-on-TCP and a UDP connection can be programmed with both
the configuration editor and with the communication functions. The communica-
tion functions are needed in both cases. Configured connections are set up stati-
cally and are permanently assigned to the connection resources. Programmed con-
nections can be set up dynamically and the connection resources can be released
after the data transfer. Programming open user communication via TCP,
ISO-on-TCP and UDP is described in Chapter 17.2 “Open user communication” on
page 751.

Open user communication via ISO is used for transferring data via Industrial
Ethernet. The CP 1543-1 communication module can exchange data with devices
that support the ISO transport connection. The communication service is suitable
for large volumes of data which are acknowledged upon receipt. The interfaces in
the user program of an S7 station are SEND/RECEIVE and FETCH/WRITE. For PC sta-
tions, there are C-functions for ISO transport services.

Open user communication via FDL (Fieldbus Data Link) is used for transferring
data via PROFIBUS FDL. The CM 1542-5 communication module can exchange data
with devices that support the sending or receiving of data according to the
SDA function (Send Data with Acknowledge). The receipt of data is confirmed by an
acknowledgement. The interface in the user program of an S7 station is
SEND/RECEIVE. For PC stations, there are C functions for the FDL services.

77

3 Device configuration

Using e-mail communication, process data can be sent as an e-mail via Industrial
Ethernet. The necessary connection is programmed with the communication func-
tion TMAIL_C (see Chapter 17.2.6 “Further functions of open user communication”
in Section “Send e-mail” on page 758).

S7 communication is used for the exchange of data between PLC stations via
PROFINET or PROFIBUS. An S7 connection is configured using the configuration
editor. The communication functions for a unilaterally configured connection are
PUT and GET. For a bilaterally configured connection, they are BSEND/BRCV and
USEND/URCV. Chapter 17.3 “S7 communication” on page 761 describes how you
can program S7 communication.

Point-to-point communication transfers data via a serial point-to-point connection.
The CM PtP communication modules handle the data traffic via an RS 232 or
RS 422/485 port. The PtP connection is programmed using communication func-
tions (see Chapter 17.4 “Point-to-point communication” on page 767).

3.4.5 Configuring a connection

In order to configure a connection, click on the Connections button in the toolbar of
the working window, and select the connection type in the adjacent list. The devices
suitable for this connection type are then displayed highlighted in the Network
view.

Click with the left mouse button on a station, drag the connection line with the
mouse button pressed to the other station, and release the button. A connection
with the connection name is displayed as a blue/white patterned line. If no network-
ing has been configured, a suitable subnet will be automatically created. Several
logical connections can be created using one cable. These connections are then also
present in the connection table in the Connections tab in the bottom part of the
working window (Fig. 3.10).

If you wish to determine which connections have been created in a subnet, click the
Connections button and move the cursor to the subnet in the graphic display. If you
click on one of the connections listed in the tooltip window, this connection is dis-
played highlighted in the Network view.

Connection properties

A connection is defined unequivocally by means of the “connection ID”. In the com-
munication functions program, this connection ID specifies the connection via
which the data is to be transmitted. The connection ID can have different values in
the two connection partners.

The connection partners, the connection path, and the node addresses are dis-
played in the inspector window in the Properties tab under General. Fig. 3.10 shows
the connection properties for an HMI connection. If a station has several suitable
interfaces, you can select the appropriate one from a drop-down list. In the lower
part of the property sheet, you can set additional connection properties depending
on the type of connection.

78

3.4 Configuring a network

Project] 501
Peject fdm ew juent Osbee Optiag Dosh Wedew pel Totally integrated Automation
SN e i A X Ot WSO E D S sk e R X EORTAL

Project 1501 » Devices B retmeric

& Topology veew | Networlview |[If Device view o

¥ Memork [] Cornecson: (s comnecnon = B &t o - a ;
B Highlighged: Connextion ™| 5

5

R PET ML a1 i
CRU 13D P o STI-N N ohUNZIN KTPR00 Busc ¢ =
1 - | I—I -

1 v B ke

H =t H

g IR e Lo 1 E e e E L ?

[» N E
- =
Hoteodk swwnview | Connections | U0 commamication | W
W tocsl connecoon rame Lol end porn ool IO P Partrar i foun) Parirves Connpcoon pe !_"
" . n’ g g

o Properthes |'&.In':.- | & Obagroatics L,_.

[— | 0 lags | Tasts P
- -

Cimratal E

Connection
Trng § g P 1o
Mama | R CoaerTon
Connection path
(el Parner
i I
o peinr | a1 LT3
rrrne A_NIE_CF N, PR Tinderince_| K1 [= " ROPHSET sir e -
WilaHnEe tjsk. | ESenet Bttt
Subner Prail b LI W] (]
Aaldowyy: 1914825 W I8LT

R T T

Fig. 3.10 Representation of an HMI connection in the network configuration

Connection resources

Every connection requires connection resources (memory areas in the operating
system of the module) for the end point of the connection and for the transition
point in a CM/CP module. For example, one connection is occupied in the CPU if
S7 functions are executed over a bus interface of the CPU; the same functions over
the bus interface of the CP module occupies one connection resource each in the
CP module and in the CPU.

Each CPU has a specific number of possible connections. Restrictions and rules
apply to use of the connection resources. For example, not every connection
resource can be used for every connection type. Connections are reserved for
PG communication, HMI communication, and communication with the web server.
These cannot be used for any other purpose.

The available connection resources depend on the CPU and the communication
modules used and must not exceed a defined upper limit for the PLC station.

79

3 Device configuration

The connection resources of an S7-1500 station are displayed in the properties of
the CPU. The display also contains the connection resources of the existing commu-
nication modules (Fig. 3.11).

Properties =
|§, Properties ”‘i-l Info ”] Diagnostics |
J General || 10 tags Texts |
b General il c i
onnection resources
P FROFINET interface [¥1]
¥ PROFIMETinterface [¥2]
¥ DPFinterface [X3] Station resources Module resources
Startup Reserved Dynamic PLC_1 [CPU 1516-3 PNIDP]
Cycle Maximurn number of resources: 10 118 128
Communication load Meximum Configured Configured Configured
Systern and clock memory || e e e 4 - - 2
¥ System diagnostics i HWI communication: 4 0 0 o
¥ Wieb server | 57 communication: [0 0
Display H Open user communication: o 0 0
Userinterface languages Web communication: 2 =
Time of day Other communication: - - 0 0
LizizEiem Total resources used: 0 0 o
b System powier supply Available resources: 10 118 128
Overview of addresses
<1 il o]l [eTm 2

Fig. 3.11 Connection resources of an S7-1500 station

3.4.6 Configuring a PROFINET subnet

The X1 interface of a CPU 1500 is a PROFINET interface, which can function in the
10 controller and 10 device modes in addition to transferring data via Industrial
Ethernet. The interface has two ports which are interconnected by a switch. The
CPU 1516 has a second PN interface X2 only for transferring data via Industrial
Ethernet. Therefore, this interface lacks the setting options for PROFINET IO. This
interface has only one port. In addition, CP 1543-1 communication modules can be
operated in an S7-1500 station for the transfer of data to Industrial Ethernet.

To configure a PROFINET subnet, drag the PN interface of one station to the
PN interface of the other station with the mouse. APROFINET subnet will be created
automatically. You can also drag a PN interface to an existing PROFINET subnet.

Setting the properties of a PROFINET subnet

To set the properties, select the PROFINET subnet and then the Properties tab in the
inspector window. Under General, you can assign a different name to the subnet
and also change the subnet ID if appropriate.

In the Domain management section, you compile the node groups for real-time
communication (Sync domains) and media redundancy (MRP domains). You can
find more details in Chapters 16.3.5 “Real-time communication in PROFINET” on
page 710 and “Media redundancy” on page 716. Under Overview isochronous mode
you can view an overview of all of the components involved in isochronous mode
and the relevant parameters. You can find the description for this in Chapter 16.7.2

80

3.4 Configuring a network

“Isochronous mode with PROFINET I10” on page 739.

Setting the properties of a PN interface

To set the properties, select the PN interface and then the Properties tab in the
inspector window. Under General you can set a different name for the interface.
Under Ethernet addresses you set the IP address and the subnet mask of the CPU
(Fig. 3.12).

Properties L]

‘QProperties ||"_i.l|nfo "ﬂDiagnostics |

J General " 10 tags Texts |
General [l Eth dd -~
thernet addresses 1
Time synchroniztion Interface networked with

Operating mode

w Advanced options Subnet: | PMAE_1 |'|
Interface options |

Media redundancy

* Real time settings IP protocol
10 communication
Synchronization @ SetIP address in the project
Real time options

+ Port [X1 P1 R] IPaddress: | 192 . 168 .2 .3

Subnetmask: | 255 . 255 . 255 . O

General

4
Port interconnection [D Use router
Fort options
¥ - = I Router address: | O 0 0 0
Hardware identifier) -
~ Port X1 P2 R] O SetIP address using a different method
General
Portinterconnection PROFINET
Fort options
Eomilrens Fleiies [set FROFINET device name using a different
method.
Web server access))
Hardware identifier B Generate PROFINET device name automatically
FROFINET device name |p\c_1.pmﬁnet\merlace_1 |
Converted name: |p\cxb1.pruﬁneuain(erfacexb1036c |
Device number:
(<] [2] v

Fig. 3.12 Example of the properties window of a PN interface for PROFINET IO

Ethernet address (MAC address)

The MAC (Media Access Control) address is an unambiguous address assigned to
the device and defined by the manufacturer. It consists of three bytes with the man-
ufacturer ID and three bytes with the device ID. The MAC address is usually printed
on the device and is assigned to the latter during the configuration - if this has not
already been carried out in the factory. The bytes are assigned in hexadecimal form
(symbols 0 to F), where the individual bytes are separated by colons; example:
01:23:45:67:89:AB.

81

3 Device configuration

IP address and subnet mask

Each station on the Industrial Ethernet subnet which uses the TCP/IP protocol
requires an IP (Internet Protocol) address. The IP address must be unique on the
subnet. The IP address consists of four bytes, each separated by a dot. Each byte is
represented as a decimal number from 0 to 255.

The IP address consists of the subnet address and the station address. The contri-
bution made by the network address to the IP address is determined by the subnet
mask. This consists — like the IP address - of four bytes which normally have a value
of 255 or 0. Those bytes with a value of 255 in the subnet mask determine the sub-
net address, those bytes with a value of 0 determine the node address (Fig. 3.13).

IP address and subnet mask

IP address 192 168 1 3 The subnet address is
left-justified in the
IP address and is
generated by the
Subnet mask 255 255 0 0 bit-by-bit ANDing of
the IP address with the
subnet mask.
The bit positions of the

Subnet address 192 168 0 0 subnet mask occupied
by "1" must be
positioned left-justified

Station address 0 0 1 3 without gaps.

Fig. 3.13 Example of the structure of an IP address

Values other than 0 and 255 can also be assigned in a subnet mask, thereby dividing
up the address volume even further. The bits with “1” must be occupied beginning
from the left without gaps.

The IP address is assigned one time for the IO controller when configuring with the
hardware configuration for the nodes of a PROFINET IO system. Starting from this,
the hardware configuration assigns the IP addresses to the IO devices in ascending
order.

Device name, device number

Every IO controller and every IO device has a device name. The device name is made
up as standard from the name of the CPU used, the interface number, and the name
of the PROFINET IO system: <CPU>.<Interface>.<IO system>. You can change the
name of the respective component in its properties.

The interface number is only used if the CPU has more than one PN interface.
The name of the 10 system can be automatically appended to the device name, sep-
arated by a dot. To do this, activate the Use name as extension for PROFINET device
name checkbox in the properties of the PROFINET IO system.

82

3.4 Configuring a network

If the names used do not correspond to the conventions of IEC 61158-6-10 (name
components basically consisting of lower-case letters, numbers, and hyphens sep-
arated by a dot), STEP 7 generates a so-called “converted” name which is then down-
loaded to the device.

As a supplement to the device name, the hardware configuration assigns a device
number to each IO device which is independent of the IP address and which you can
change. Using this device number (station number) you can address the IO device
from the user program, e.g. as an actual parameter on a system block.

IP address of the router

A router establishes the connection between two subnets. If the target of a device
connection is in a different subnet, the IP address of the corresponding router must
also be specified. The connections of the router belong to two different subnets, and
the IP addresses must also be selected accordingly.

Setting the interface parameters

If the parameters of the PROFINET interface have not already been set during the
hardware configuration, they can be defined during the network configuration.

Prerequisite: A project with two or more stations is open and the device configura-
tion shows the stations in the Network view.

> Select the PROFINET interface, e.g. by clicking with the mouse in the graphic dis-
play or on the corresponding line in the tabular device or network overview.

> In the Properties tab of the inspector window, select the Ethernet addresses
section under General.

> If the subnet has not yet been created, click on the Add new subnet button to
connect the interface to a subnet.

> Enter the IP address and the subnet mask.

> Enter whether an IP router is used, and then the router address if applicable.

For operating on PROFINET IO, you can set the operating mode to IO Device, the
assigned IO controller, and the structure of the transfer areas in addition to the per-
manently set I0 controller mode in the Operating mode section. Under Advanced
options you can set,among others, the options for real-time mode. Refer to
Chapter 16.3.3 “Configuring PROFINET I0” on page 705 for how to configure a
PROFINET IO system.

Release this PN interface for access under Web server access. You can configure the
activation of the web server in the properties of the CPU.

Hardware identifier shows the hardware identifier of the interface, which is
assigned and listed in the System constants tab of the default tag table by the con-
figuration editor.

83

3 Device configuration

3.4.7 Configuring a PROFIBUS subnet

The third bus interface X3 of a CPU 1516 is a DP interface for operating as a
DP master (firmware version 1.0). In each S7-1500 station, CM 1542-5 communica-
tion modules can be operated. They can be either a DP master or DP slave.

To configure a PROFIBUS subnet, drag the DP interface of one station to the
DP interface of the other station with the mouse. A PROFIBUS subnet will be created
automatically. You can also drag a DP interface to an existing PROFIBUS subnet.

Setting the properties of a PROFIBUS subnet

To set the properties, select the PROFIBUS subnet and then the Properties tab in the
inspector window. Under General, you can assign a different name to the subnet and
also change the subnetID if appropriate. Under Network settings, you set the highest
node address, the transmission speed, and the profile in this subnet. Observe the
technical specifications of the involved modules when doing this (Fig. 3.14).

Properties =

|§.Properties ||"_i.'.lnf0 ”ﬂDiagnostics ‘

JGeneraI || 10 tags ” Texts |

General

Network settings

Network settings
Cable configuration

Additional network devices | Highest PROFIBUS address: (126 [=|
4
L0 [6 il Transmission speed: | 1.5 Mbps n
Constant bus cycle time m
il Frofile: | DP -

DP
Standard
Universal (DRIFMS}
Userdefined

<l

Fig. 3.14 Example of network settings on the PROFIBUS

The selectable bus profiles have the following properties:

> The DP bus profile contains the optimized settings of the bus parameters for de-
vices which comply with the requirements of the EN 50170 Volume 2/3, Part 8-2
PROFIBUS standard, for example all SIMATIC S7 DP masters and DP slaves.

> Compared to the DP bus profile, the Standard bus profile additionally contains
the option for considering non-configured nodes during calculation of the bus
parameters, for example nodes from other projects.

> Select the Universal bus profile if the PROFIBUS FMS service is to be used in the
PROFIBUS subnet.

> When using the User-defined bus profile, you can set the parameters of the
PROFIBUS subnet yourself in the subnet properties. Correct functioning is only
guaranteed if the bus parameters are matched to one another. You should only
change the default values if you are familiar with how to configure the bus pro-
file for PROFIBUS.

84

3.4 Configuring a network

Setting the properties of a DP interface

To set the properties, select the DP interface and then the Properties tab in the
inspector window. Under General you can set a different name for the interface.
Under PROFIBUS address you set the node address of the CPU (Fig. 3.15).

Properties =

‘QProperties ||"_i.l|nfo "ﬂDiagnostics |

J General " 10 tags " Texts |

General

PROFIBUS address
Operating mode Interface networked with
Time synchronimtion

SYNCIFREEZE Subnet: | PROFIBUS_T [~]
Hardware identifier

Parameters

B E
Highest address:

Transmission speed:

<] i E

Fig. 3.15 Example of the properties window of a DP interface

Every station on the PROFIBUS DP has a node address (station number) with which
it can be addressed unequivocally on the bus. The addresses in a PROFIBUS subnet
can be freely assigned in the range from 1 to 126. The node address 0 is reserved as
standard for a programming device, which can be connected temporarily to the
PROFIBUS subnet for servicing purposes.

The configuration editor assigns node addresses from 2 upwards as standard. It is
recommendable to assign the addresses without gaps.

Under Operating mode you set whether the module is to be operated as a DP master
or DP slave. There is only one DP master in a DP master system.

Under Time synchronization you set the synchronization mode for the real-time
clock. As master, the real-time clock synchronizes the clocks in other devices; as
slave, the real-time clock is synchronized by a clock in another device. This setting
is independent of the mode as DP master or DP slave.

SYNC/FREEZE is a function for simultaneous output (SYNC) and/or reading-in
(FREEZE) of the signal states of the DP slaves involved. Here you set which SYNC or
FREEZE group the module is to belong to. Further details can be found in
Chapter 16.4.5 “Special PROFIBUS configurations” on page 728.

Hardware identifier shows the hardware identifier of the interface, which is
assigned and listed in the System constants tab of the default tag table by the con-
figuration editor.

85

4 Tags, addressing, and data types

4 Tags, addressing, and data types

4.1 Operands and tags

4.1.1 Introduction, overview

In order to control a machine or process, signal states and numerical values are
processed. Inputs are scanned and their signal states linked together in accordance
with the control task; the results then control the outputs. It is similar with the
numerical values; these are selected, calculated, compared, and saved. The PLC sta-
tion provides the following memory areas for these variable values (Fig. 4.1):

Operand areas in a CPU 1500

Input System memor Output
modules y y modules
Peripheral - Process Process Peripheral

inputs image input image output » outputs

Bit memory Slubtle

timer functions

Temporary SIMATIC
local data counter functions

User memory

Data blocks with the Data operand area

> Global data blocks with freely-configurable data structure

> Instance data blocks with the data structure of a block (static local data)
> ARRAY data blocks with the data structure of the ARRAY data type

> Type data blocks with the data structure of a PLC or system data type

> CPU data blocks created during runtime by means of the program

Fig. 4.1 Operand areas in a PLC station

> Peripheral inputs are the memory areas on the input modules. They constitute
the direct interface to the controlled machine or plant, e.g. in order to scan the
settings of control elements or sensors.

> Inputs are an image of the peripheral inputs in the CPU's work memory. These are
normally processed by the user program when signal states of the machine or

86

4.1 Operands and tags

plant are to be scanned and linked. The totality of the inputs is the process image
input.

> Peripheral outputs are the memory areas on the output modules. They constitute
the direct interface to the controlled machine, e.g. in order to control displays,
valves, or contactors.

> Outputs are an image of the peripheral outputs in the CPU's work memory. These
are normally processed by the user program if the results of the control func-
tions are to be output. The totality of the outputs is the process image output.

> Bit memories are a memory area in the CPU's system memory and are used as a
global intermediate memory for signal states and numerical values.

> The SIMATIC timer/counter functions save their data — contrary to the IEC tim-
er/counter functions - at a fixed position in the system memory. Therefore the
SIMATIC timer/counter functions have a fixed number range and their number
depends on the memory space provided by a CPU for this purpose. You can find
a description of these functions in Chapters 12.4 “SIMATIC timer functions” on
page 524 and 12.6 “SIMATIC counter functions” on page 545.

> Temporary local data refers to memory areas assigned by the CPU to a code block
during processing. The program can temporarily store signal states and numer-
ical values in the block; these lose their validity when processing of the block has
been completed.

> The term Data describes tags in the user memory which are compiled in data
blocks with various structures. A data block, which is assigned to a code block
(instance data block), contains the operand area static local data.

Access to the signal states and numerical values (the addressing) can be absolute or
symbolic. Absolute addressing uses operands such as %I2.5, for example, which
comprise the operand ID (Iin this case) and the memory address (byte 2 bit 5 in this
case). If a name and a data type are assigned to an operand (symbolic addressing),
this is known as a tag. For example, the operand %]I2.5 could have the name
“Switch on machine” and the data type BOOL.

The data type of an operand or tag defines which values the individual bits of the
operand or tag have. An individual bit has the data type BOOL and one refers to a
binary operand or binary tag. Operands and tags with a data width of one byte
(8 bits), one word (16 bits), one doubleword (32 bits), or one long word (64 bits) are
referred to as digital operands or digital tags. The data types for digital tags are
extremely diverse. For example, the data type INT (integer) refers to a 16-bit wide
fixed-point number, the data type CHAR to a character in ASCII code, and the data
type ARRAY to a combination of several tags with the same type of data under one
tag name.

4.1.2 Operand areas: inputs and outputs
The peripheral inputs are the operands on the input modules. They contain the sig-

nal states delivered by the machine or process to the programmable controller via

87

4 Tags, addressing, and data types

the wiring. These signal states are automatically copied by the CPU's system pro-
gram into the process image input prior to each processing cycle of the user pro-
gram (see Chapter 5.6.2 “Process image updating” on page 179).

The process image input is located in the CPU's system memory. It contains the
operand area Inputs. The inputs are used to scan binary signals in the user program
and to link their signal states. This means that the input modules are not directly
scanned in the normal case, it is the process image input which is scanned.

The peripheral inputs are read-only. Inputs can be read and written. Inputs not
occupied by peripheral inputs can be used as additional intermediate memories
like the bit memories.

The peripheral outputs are the operands on the output modules. They contain the
signal states with which the machine or process is controlled via the wiring.
The CPU's system program automatically transfers the signal states of the process
image output to the peripheral outputs prior to each processing cycle of the user
program (see Chapter 5.6.2 “Process image updating” on page 179).

The process image output is located in the CPU's system memory. It contains the
operand area Outputs. The outputs are used to save the results of the control func-
tions in the user program and to output these to the machine. This means that the
output modules are not directly written in the normal case, it is the process image
output which is written.

Outputs can be read and written. Outputs not occupied by peripheral outputs can
be used as additional intermediate memories like the bit memories.

Access to the peripheral outputs is write-only. Writing of the peripheral outputs is
automatically tracked by the process image output, and therefore there is no differ-
ence in the signal states of the outputs and the peripheral outputs with the same
address.

User data area

With SIMATIC S7, every module can have two address areas: a user data area which
can be directly addressed by loading and transferring, and a system data area for
the transfer of data records.

When the modules are addressed it is irrelevant whether they are located in central
racks or are used as distributed I/O. All modules are arranged equally in the (logi-
cal) address volume.

The user data properties of a module depend on the module type. These are digital
or analog I/O signals for signal modules or, for example, control and status infor-
mation for technology and communication modules. The amount of user data is
module-specific. There are modules which occupy one, two, four, or more bytes in
this area. Occupation always commences at the relative byte 0. The address of the
relative byte 0 is the module start address, which is defined by the hardware con-
figuration.

88

4.1 Operands and tags

The user data represents the I/O operand area, divided into peripheral inputs and
peripheral outputs depending on the transfer direction. The data transfer between
the I/O area and the process images can be controlled from the system program or
from the user program.

Consistent user data transfer

Data consistency means that data is handled together. Transfer of the data block
must not be interrupted and the data source and destination must not be changed
during the transfer either.

A CPU 1500 retains the data consistency for tags with all elementary data types and
system data types. This means a read or write operation for a tag with one of these
data types cannot be interrupted.

The following system functions are available for the consistent transfer of large vol-
umes of data: UBLKMOV, which performs an uninterruptable transfer of a tag or an
absolutely addressed data area, UMOVE_BLK, which performs an uninterruptable
transfer of elements of an ARRAY data field, and UFILL_BLK, which fills an area of
an ARRAY data field without interruption. Since the copy process using these sys-
tem functions cannot be interrupted by other actions of the operating system, the
response time to an interrupt that occurs during the transfer can be increased.

Interrupt events can be blocked and released using the system functions DIS_IRT
and EN_IRT. The system functions DIS_AIRT and EN_AIRT allow higher-priority
interrupt events to be delayed. During the blocking or delaying phase, the process-
ing of the program cannot be interrupted (this includes any data transfer that was
initiated by the user program during this time).

On the system side, communication with the programming device or with other
PLC stations can interrupt the execution of the program, because the communica-
tion takes place in “time slice mode” during program execution. Communication
has priority 15. A program in an organization block which has an execution priority
higher than 15 thus cannot be interrupted by communication functions of the oper-
ating system.

Data between the CPU and an IO device or a DP standard slave can be consistently
transferred using the system functions described in Chapter 16.5.1 “Read and write
user data” on page 730.

During data exchange between PLC stations, the volume of the consistently trans-
ferred data depends on the communication functions used. The coordination of
access to the transferred data in the user program can take place using the control
parameters of the communication functions. For the unilaterally configured data
transfer with GET and PUT, during which the operating system takes over the data
transfer in the server CPU, the maximum volume of consistently transferred data is
462 bytes for a CPU 1500.

Diagnostic and parameter data in data records is always transferred consistent, for
example diagnostic data with RALRM or parameter data transferred to and from
modules with RDREC and WRREC.

89

4 Tags, addressing, and data types

Value status

The value status (quality information, QI) indicates the validity of an I/O signal. The
value status occupies one bit per I/O channel in the process image input. If this bit
has signal state “0”, the value of the assigned I/O channel is invalid.

The value status is activated for correspondingly configured modules with the
hardware configuration. For digital input modules, the value status is then saved at
the user data address in the process image. Depending on the number of output
signals, additional input bytes are assigned for digital output modules. The process
is similar for analog modules: The value status of analog input modules is then
saved at the user data address in the process image input (one bit per analog chan-
nel). For analog output modules, an additional input byte is assigned for the value
status.

The value status is transferred along with the user data.

4.1.3 Operand area: bit memory

The bit memories are, as it were, the “auxiliary contactors” of the controller. They
mainly serve to save binary signal states. They can be treated like outputs, but are
not connected “to the outside”. The bit memories are located in the CPU's system
memory and are thus always available.

The bit memories are used if intermediate results are to be valid beyond block lim-
its and are to be processed in several blocks.

Bit memories can be read and written without limitation.

Retentive bit memories

Some of the bit memories can be “retentive”, i.e. this part retains its signal state
even when deenergized. Retentivity always starts at memory byte 0 and ends at the
set upper limit. You can set the retentivity in the PLC tag table or in the assignment
list. Further information can be found in Chapter 5.1.4 “Retentive behavior of oper-
ands” on page 148.

System memory

A CPU 1500 provides a memory byte whose signal states are controlled by the CPU's
operating system. Fig. 4.2 shows the structure of this system memory byte.
You define the number of the system memory byte when assigning the CPU param-
eters. The tags with defaultidentifiers are entered in the PLC tag table when the sys-
tem memory byte is activated. You can change the default identifiers. The individ-
ual bits have the following meanings:

> Bit 0: Is set to signal state “1” if the main program is executed for the first time
after the CPU is switched on. For all of the other execution cycles, it has signal
state “0”.

90

4.1 Operands and tags

Assignment of clock memory and system memory byte

System memory byte System_Byte
76543210

Initial run FirstScan
Diagnostics changed DiagStatusUpdate
Always "1" AlwaysTRUE
Always "0" AlwaysFALSE

The tags are entered in the PLC tag table
with default identifier when the
corresponding byte is activated.

Clock memory byte Clock_Byte
76543210

1‘0 Hz Clock_10Hz

5 Hz (flickering light) Clock_5Hz
2.5 Hz (fast flashing light) Clock 2.5Hz

2 Hz Clock 2Hz

1.25 Hz (flashing light) Clock_1.25Hz
1 Hz Clock _1Hz
0.625 Hz (slow flashing light) Clock_0.625Hz

0.5 Hz Clock 0.5Hz

Fig. 4.2 Assignment of the system and clock memory byte

> Bit 1: Is set to signal state “1” if the diagnostics state changes compared to the
previous program cycle; otherwise it has signal state “0”. During STARTUP and
in the first RUN cycle, bit 1 has signal state “0”.

> Bit 2: Is always set to signal state “1” (TRUE); can be used in the program as a
binary constant.

> Bit 3: Is always set to signal state “0” (FALSE); can be used in the program as a
binary constant.

Please note that the system memory byte must not be overwritten by the user pro-
gram since this could result in incorrect responses in the user program and oper-
ating system.

Clock memories

Many processes in the controller require a periodic signal. This can be implemented
using timer functions (clock generator), cyclic interrupts (time-based program exe-
cution), or in a particularly simple manner with clock memories.

91

4 Tags, addressing, and data types

Clock memories are memories whose signal state changes periodically with a
pulse-to-pause ratio of 1:1. The clock memories are combined in one byte whose
individual bits correspond to fixed frequencies (Fig. 4.2). You define the number of
the clock memory byte when assigning the CPU parameters. The tags with default
identifiers are entered in the PLC tag table when the clock memory byte is activated.
You can change the default identifiers.

Note that the clock memories are updated asynchronous to processing of the main
program. The clock memories are also updated in the startup program.

Please note that the clock memory byte must not be overwritten by the user pro-
gram since this could result in incorrect responses in the user program and oper-
ating system.

4.1.4 Operand area: data

The operand area Data is organized in data blocks which are present in the user
memory. Data blocks are available in several versions:

> Global data blocks have a data structure which is defined when configuring the
data block.

> Instance data blocks are derived from function blocks. The data structure of an
instance data block is defined in the function block. An instance data block con-
tains the values of the block parameters and static local data for calling the func-
tion block, for an “instance”. The instance data is local data for the program in
the function block. Certain system blocks also use instance data blocks.

> ARRAY data blocks have the structure of the ARRAY data type: They consist of tags
with similar data types. The index starts with zero and has a configurable upper
limit.

> Type data blocks are derived from data types. The data structure of a type data
block is based on a PL.C data type or system data type.

> CPU datablocks are data blocks that are created with CREATE_DB during runtime
by the user program.

Data blocks are global objects which are addressed in absolute mode using a num-
ber, or symbolically using a name. The name of the data block must be unique on
the CPU. The data tags (data operands) within a data block are local data; they are
declared when creating the data block (global data block, ARRAY data block), func-
tion block (instance data block), data type (type data block), or template (CPU data
block). The name of a data tag must be unique in the data block. In association with
the data block, a data tag has the characteristic of a global tag.

Data tags can basically be read and written without limitation; limitations may exist
with certain (system) data types. The data tags of a data block with the activated
attribute Data block write-protected in the device cannot be overwritten by the pro-
gram.

The data present in data blocks can be retentive, i.e. it retains its value even when
deenergized. Further information can be found in Chapter 5.1.4 “Retentive behav-

92

4.1 Operands and tags

ior of operands” on page 148.

4.1.5 Operand area: temporary local data

Temporary local data includes operands that are saved in the local data stack
(L stack) in the CPU's system memory. Temporary local data is available in each code
block. It serves as a buffer for results that are produced during block processing.
Its contents are lost at the end of block processing. The data cannot be accessed
from other blocks.

The operating system of a CPU 1500 provides 64 KB of temporary local data for each
priority class (e.g. in the main program or in the hardware interrupt program) and
a maximum of 16 KB for processing an individual block.

Organization blocks with standard access (the block attribute Optimized block
access is deactivated) provide 20-byte long start information in the temporary local
data. The general structure is described in Chapter 4.11.4 “Start information” on
page 142. A supplemental description on the contents of the start information can
be found at the corresponding organization block. In some cases, organization
blocks with the activated Optimized block access attribute provide start information
in the block interface as input parameters.

The amount of temporary local data required by a block which has already been
compiled can be seen in the call structure of the user program. With the project
open, select the Program blocks folder in the project tree and then select the
Call structure command from the shortcut menu. The occupied temporary local
data is displayed in the call path and per block in the table which is then output.

Use of temporary local data

The tags in the operand area Temporary local data are declared in the block inter-
face. They can accept all of the elementary, structured, PLC and most system data
types. All operations which also apply to the bit memories are permissible for the
temporary local data. Note, however, that the values of the temporary local data lose
their validity when block processing is finished. For example, a temporary local
data bitis not suitable as an edge memory bit since it does not retain its signal state
beyond block processing.

Within the block, the temporary local data can be read and written without limita-
tions. Temporary local data cannot be preallocated with a specific value. In order to
use temporary local data for meaningful purposes, it must be written before being
read.

For blocks with standard access, the temporary local data have a quasi-random
value before they are written for the first time. For blocks with the Optimized block
access attribute activated, tags with an elementary data type or components of
structured tags with an elementary data type have the default value preset. For tem-
porary local data with a PLC data type, the components are given the start value
from the declaration of the PLC data type (exception: STRING tags). STRING tags are

93

4 Tags, addressing, and data types

provided with the correct length specifications and the characters are preset
with '$00'".

Temporary local data is addressed symbolically. The exceptions for STL are
described in Chapter 10.7.6 “Absolute addressing of temporary local data” on page
454.

4.2 Addressing of operands and tags

4.2.1 Signal path

By wiring the machine or plant you define which signals are connected to the
PLC station, and where (Fig. 4.3).

An input signal, e.g. the signal from pushbutton +HP01-S10 with the significance
“Switch on motor”, is connected to a specific terminal on an input module. You con-
figure the slot in which the module is inserted in the hardware configuration using
STEP 7. You also use the hardware configuration to set the module start address
with which the signals are addressed by the module in the user program. This set-
ting is simultaneously the address in the process image.

Signal path from the sensor to the process image

Input module System memory
Input Peripheral Process
terminals inputs image input
+HPO1 o |0 |Relative 0 |Byte 4 Bit
-$10 e { |byte0 76543210
o Byte 4
e Byte 5
o |7 7
e Relative A
e |0 0 |(Byte 5
° byte 1 (Byte 5) |
o — 42— — — | L RN - - -
[]
[]
[©® |
[® |
Le |7 7
Slot Module Absolute
address start address addressing
The slot address identifies a The module start address The address in the process
specific module in the station. identifies the module in the image is derived from the
It contains the number of the "logical" address space of the module start address. In the
rack and the number of the station. It represents the examp_le, the _absoh}te address
slot. lowest byte of the module. of the input signal is: %I5.2.

Fig. 4.3 Signal path from sensor to process image

94

4.2 Addressing of operands and tags

The CPU copies the signal from the input module into the process image input by
default every time before program execution is started, where it is then addressed
as the operand “Input” (e.g. %I 5.2). The expression “%l 5.2” is the absolute address.

You can now give this input a name in that you assign a name corresponding to the
significance of this input signal (e.g. “Switch on motor”) to the absolute address in
the PLC tag table. The expression “Switch on motor” is the symbolic address.

The same applies analogously to the output signals. In the hardware configuration
you define the slot for the output module and also the module start address. This is
then also the address in the process image output. You can also assign a name to this
address in the PLC tag table.

4.2.2 Absolute addressing

During absolute addressing, a signal state or a numerical value is addressed
directly via the address in the operand area. The operand, for example %I2.5, con-
tains the operand ID, the byte address, and - with binary operands - the bit address
separated by a dot. The operand ID contains the operand area and specification of
the operand width. An absolute address is displayed with a preceding percent
sign (%).

The bits in a byte are counted from right to left, starting with zero. Counting is
started from the beginning for each byte. Each operand area is organized in bytes.
The bytes are counted commencing at the start of the area with zero. With an oper-
and of byte width, the number of the byte is specified as the byte address; with an
operand of word width, the number of the least significant byte; and with an oper-
and of doubleword width, the least significant byte number in the doubleword. Fig.
4.4 clarifies this using an example of memory bytes %MB24 to %MB27.

Absolute bit and byte addressing

%MD24
' A~ -~
%MW?24 %MW26
r A ~ — A -~
Bitnumber |7 6543210/|76543210//76543210/|76543210
Byte number 24 25 26 27
—_
%MB24 %M25.1 %MB26 %M27.7
\ J
%MW25

Fig. 4.4 Example of bit and byte assignments

The absolute addressing of a 64-bit wide tag (the absolute addressing of a long
word) is not possible.

95

4 Tags, addressing, and data types

Absolute addressing of inputs, outputs, and bit memories

The addresses of the peripheral inputs and outputs (the input and output channels
on the modules) are defined during configuration of the station design using the
hardware configuration. The assigned inputs and outputs in the process image
have the same addresses. To identify a peripheral address, “:P” is appended to the
input or output address (Table 4.1).

Table 4.1 Absolute addressing of inputs, outputs, and bit memories

Operand Operand ID Bit Byte Word Doubleword
area (1 bit) (8 bits) (16 bits) (32 bits)
Input | %ly.x %IBy %IWy %IDy
Peripheral The input operand is %ly.x:P %IBy:P %IWy:P %IDy:P

input expanded with :P

Output Q %Qy.x %QBy %QWy %QDy
Peripheral The output operand is %Qy.x:P %QBy:P %QWYy:P %QDy:P
output expanded with :P

Bit memory M %My.x %MBy %MWy %MDy

y = byte address; x = bit address

A peripheral address is only considered to be present if the correspondingly
addressed module is also present. Access to a non-existent peripheral address trig-
gers an error. The operand areas Inputs, Outputs, and Bit memories are present in
the complete, CPU-specific length. Therefore inputs and outputs which are not
assigned to a module can also be addressed. In this case they behave like bit mem-
ories.

Absolute addressing of data operands

Addressing of tags in an ARRAY data block is described in Chapter 4.3.3 “Indirect
addressing of a tag in an ARRAY DB” on page 102.

A data operand is a local tag within a data block. If addressing of the data operand
is carried out in conjunction with the data block, the data operand is unique on the
CPU, in other words it is a global tag. In the case of this “complete addressing”, the
data block precedes the data operand. For example, %DB10.DBW4 addresses data
word 4 in data block 10. The data operand itself can be addressed with a width of
bit, byte, word or doubleword (Table 4.2).

Table 4.2 Absolute complete addressing of data operands

Operand Operand ID Bit Byte Word Doubleword
area (1 bit) (8 bits) (16 bits) (32 bits)
Data DB %DBz.DBXy.x | %DBz.DBBy %DBz.DBWY %DBz.DBDy

z = data block number, y = byte address, x = bit address

96

4.2 Addressing of operands and tags

The numbering of the data blocks commences at 1 and ends at a CPU-specific upper
limit. Data block DB 0 does not exist. The number and size of the data blocks de-
pends on the CPU used. A data block for a CPU 1516 can be 5 MB in size, for example.

Data operands can only be addressed in absolute mode if the Optimized block access
block attribute is deactivated in the data block. The absolute address of a data oper-
and is shown in the Offset column of the block interface once the data block has
been compiled.

The STL programming language gives you the capability of opening the corre-
sponding data block beforehand and then only addressing the data operands them-
selves (“partial addressing”). This option is described in Chapter 10.7.5 “Partial
addressing of data operands” on page 453.

You can also address a data operand in a data block which was transferred via a
block parameter with the data type DB_ANY. Further details can be found in
Chapters 4.8.6 “Parameter type DB_ANY” on page 133 and 4.3.4 “Indirect address-
ing of a data block” on page 102.

Absolute addressing of static local data

The static local data - just like the block parameters - are local tags in a function
block which are addressed symbolically. The exceptions for STL are described in
Chapter 10.7.5 “Partial addressing of data operands” on page 453.

The values of the block parameters and the static local data of a function block are
present in a data block, and therefore these tags can be addressed by each code
block like “normal” data tags. For data blocks with the Optimized block access attri-
bute deactivated, absolute addressing can be used.

Absolute addressing of temporary local data

The temporary local data are local tags in a code block which are addressed symbol-
ically. The exceptions for STL are described in Chapter 10.7.6 “Absolute addressing
of temporary local data” on page 454.

Absolute addressing of SIMATIC timer/counter functions

The SIMATIC timer/counter functions present in the system memory are addressed
by anumber starting at 0. The upper limit of the numbering - according to the max-
imum number of timer and counter functions — is CPU-specific. The timer and
counter functions can be selected as desired within the quantity framework. Exam-
ple of absolute addressing: %T15 corresponding to the timer function number 15.
Table 4.3 shows the operand IDs of these functions.

Table 4.3 Absolute addressing of SIMATIC timer and counter functions

Operand area Operand ID Address
SIMATIC timer function T n
SIMATIC counter function C n

n = number

97

4 Tags, addressing, and data types

4.2.3 Symbolic addressing

During symbolic addressing, an operand is assigned an alphanumeric identifier
(name, symbol) and a data type. This is called a tag. For example, the operand %I2.5
could have the name “Switch on machine” and the data type BOOL. The tag “Switch
on machine” can then be used in the program instead of the operand %I2.5.

Tag names can be made up of letters, digits, and special characters (except double
quotes). No distinction is made between upper and lower case when checking the
name.

Symbolic addressing of global tags

Global tags can be addressed by any block in the entire program. They are declared
in the PLC tag table, and have a unique name within the user program. Global tags
are located in the operand areas Inputs, Outputs, Bit memories, SIMATIC timer
functions, and SIMATIC counter functions. The name of a peripheral input is
derived from the name of the input. The name of a peripheral output is derived
from the name of the output.

Global tags must not have a name which has already been assigned to a constant,
PLC data type or block. The program editor indicates the name of a global tag in
quotation marks.

Symbolic addressing of block-local tags

Block-local tags are declared within a block in its interface definition. They have a
unique name within the block. The same tag name can be used in another block
with another meaning. The operand areas of the block-local tags are

> the temporary local data in the system memory for code blocks,
> the block parameters for functions (FC) and function blocks (FB),
> the static local data in the instance data block for function blocks (FB), and

> the data operands for data blocks (DB).

The program editor indicates the name of a block-local tag with a preceding num-
ber character (#). If the name includes special characters, it is additionally indicated
in quotation marks.

Symbolic addressing of data tags

Symbolic addressing of data tags is carried out during complete addressing. Sym-
bolic partial addressing is not possible. With complete addressing, the data tag is
given the characteristic of a global tag. Example: The tag name Activate_motor can
be present in both data blocks “Motor_1” and “Motor_2”. The address “Motor_1".Acti-
vate_motor addresses a different tag than the address “Motor_2”.Activate_motor.
The general symbolic address of a data tag is: “Data block name”.Tag name. All data
tags can thus be addressed, even those in an instance data block.

98

4.2 Addressing of operands and tags

If the instance data of a function block must be addressed, i.e. the block parameters
and static local data, only the tag name, along with a preceding number character,
is specified: #Local data. For a function block, the instance data are local tags.

4.2.4 Addressing of a tag area

It is possible to address an area within a tag (“slice access”). This area can be a bit,
byte, word, or doubleword.

If the block attribute IEC check is activated, the tag must have a bit-serial data type.
If the block attribute IEC check is deactivated, it can also be a fixed-point data type.
You address the areas within the tags as follows:

> Abit: Tag_name.X<bit number>
> A byte: Tag _name.B<byte number>
> Aword: Tag_name.W<word number>

> A doubleword: Tag name.D<doubleword number>

The numbering begins with zero at the least significant subarea in each case and
must remain within the tag length.

Example: A tag with the name Temperature and data type INT is stored in the data
block Store. The most significant bit (the sign bit of data type INT) is addressed with
“Store”. Temperature.X15.

4.2.5 Addressing a constant

A constant is a fixed numerical value. The notation for a directly entered constant
and the value range depend on the required data type (see Table 4.6 on page 114).
Constants in floating-point format can be entered in exponential format
(e.g. +1.234567E+02) or in decimal format (e.g. -123.4567).

Globally valid constants can be assigned a name in a PLC tag table in the User
constants tab. Letters, digits, and special characters - except double quotes — are
permissible for the name. All elementary data types are permissible.

The name of a constant is unique on the CPU. A name with which another constant,
PLC tag, PLC data type, or block has already been identified cannot be assigned to a
constant. No distinction is made between upper and lower case when checking the
name. The program editor represents a symbolically addressed constant in quota-
tion marks.

The constants created by the configuration editor or the program editor are listed
in the default tag table in the System constants tab. They can be used with their
name or with the numeric value (see Chapter 4.12 “Hardware data types” on page
143).

99

4 Tags, addressing, and data types

4.3 Indirect addressing

4.3.1 Overview

Indirect addressing allows you to address operands whose addresses are only
defined during runtime. You can also use indirect addressing to repeatedly execute
program sections, e.g. in a loop, and address different operands in each cycle.

Since with indirect addressing the addresses are only calculated during runtime,
the danger exists that memory areas can be overwritten unintentionally.
The automation system could then react in an unexpected manner! Therefore be
extremely careful when using indirect addressing!

You have the following options for indirect addressing:

> Indirect addressing of ARRAY components.
The index of an ARRAY tag is variable and can be calculated during runtime.

> Indirect addressing of components in an ARRAY data block.
A data tag in an ARRAY data block can be addressed via an index with a variable
value.

> Indirect addressing of a data block.
The number of a data block that is transferred via a block interface can be
changed during runtime.

> Indirect addressing using the “variable” ANY pointer.
The value of a tag in the temporary local data with the data type ANY can be
changed during runtime and used as an address for any operand area.

> For SCL: with PEEK and POKE.
PEEK reads a value from an operand with an address than can be dynamically
preset. PEEK writes a value to an operand with an address than can be dynami-
cally preset.

> For STL: with address registers.
Addressing via an address register allows access to operands with an address
that is only calculated during runtime. The description can be found in
Chapters 10.7.8 “Memory-indirect addressing” on page 458 and 10.7.9 “Register-
indirect addressing” on page 461.

4.3.2 Indirect addressing of ARRAY components

A tag with the data type ARRAY comprises a fixed number of components with the
same data type. Each array component can be individually addressed via an index
with limits that are defined when the ARRAY tags are declared. Example: A tag with
the name #Measurement series and the data type ARRAY [1..12] OF INT consists of
12 components. The first component is addressed with #Measurement_series[1].

An array component can also be addressed with an index tag with a value that is
only calculated during runtime. Example: #Measurement_series[#index] addresses
the array component with an index that is the value of the #index tag.

100

4.3 Indirect addressing

The index tag can be an absolutely or symbolically addressed global or local tag
with a fixed-point data type (except for LINT and ULINT for LLAD, FBD and STL). This
indirect addressing is also possible with multi-dimensional arrays and with the
addressing of partial arrays. An example is shown in Fig. 4.5.

Examples of dynamic indexing of array components

Static local tags in the interface of a function block

Name Declaration Data type Description

Array_1dim | Static ARRAY [1..4] OF WORD One-dimensional array
Array_3dim | Static ARRAY [1..4,1..4,1..4] OF WORD | Three-dimensional array
index1 Static INT Index tag

index2 Static INT Index tag

index3 Static INT Index tag

var_int Static INT INT tag

var_word Static WORD WORD tag

Dynamic addressing of a component in a three-dimensional array
Assignment of a partial array

LAD, FBD
MOVE
#Array_3dim[#index1,#index2,#index3] — IN ouT — #var_word
MOVE
#Array_3dim[#index1,#index2] — IN OUT — #Array_1dim
SCL
#var_word := #Array 3dim[#indexl, #index2, #index3];
#Array 1dim := #Array 3dim[#indexl, #index2];
STL

L #Array 3dim[#indexl, #index2, #index3]
T #var_word

CALL BLKMOV

Variant

SRCBLK = #Array 3dim[#indexl, #index2]
RET_VAL := #var_int

DSTBLK = #Array 1ldim

Fig. 4.5 Examples of dynamic indexing of array components

Note: For an indirectly addressed ARRAY component which is created as an actual
parameter on an in/out parameter, a change to the index tags in the block program
has no effect. The value is written back into the same ARRAY component from which
it was read.

101

4 Tags, addressing, and data types

4.3.3 Indirect addressing of a tag in an ARRAY DB

An ARRAY data block consists of data tags which all have the same data type and are
addressed via an index. The general syntax for addressing a tag in an ARRAY data
block is as follows:

> For LAD, FBD, and STL: “<DB_name>".THIS[<Index>].<Component_name>

> For SCL: “<DB_name>".“THIS”[<Index>].<Component_name>.

<DB_name> is the name of the ARRAY data block. <Index> addresses a component
(adatatag) in the ARRAY data block. <Index> can be a constant or a tag with a fixed-
point data type. <Index> always begins with zero and ends at a configurable upper
limit. <Component_name> is the name of a component. If the component has a
structured data type, the individual elements of the data type — separated by a dot -
can be addressed directly.

The way in which an ARRAY data block is added is described in Chapter 14.4.3
“ARRAY data blocks” on page 641. Functions are available for accessing an ARRAY
data block in the load memory. These are described in Chapter 14.4.4 “System
blocks for access to ARRAY data blocks” on page 642. With these blocks, the data
block can also be indirectly addressed.

Fig. 4.6 shows an example of the structure of the data tags and their addressing in
an ARRAY data block. A PLC data type with the name Fan_data_type has been cre-
ated. Based on this PLC data type, an ARRAY data block with 6 components (num-
bered 0 to 5) has been added. All of the components have the PLC data type Fan_-
data_type. The tags for controlling the fan are addressed in the program (Start,
Start_EM, Stop, Drive). The fans to be controlled are selected using the #Number tag.

4.3.4 Indirect addressing of a data block

A data block is transferred to the called block via a block parameter with the data
type DB_ANY (see Chapter 4.8.6 “Parameter type DB_ANY” on page 133). In the pro-
gram of the called block, you can access a data operand of this transferred data
block, although the data block and thus its structure is not known at the time the
program is created.

LAD, FBD, SCL: A data operand in a transferred data block is addressed with the
absolute address. If, for example, the block parameter with the data type DB_ANY
has the name #Data, you can address a bit with #Data.%DBXy.x, a byte with
#Data.%DBBy, a word with #Data.%DBWy, and a doubleword with #Data.%DBDy
with y as byte number and x as bit number. Note that you can only determine the
absolute address of a data operand - after the compilation - in a data block with the
Optimized block access attribute deactivated.

STL: A data block that was transferred via a block parameter can be opened in the
statement list both via the DB register and via the DI register. Then the data oper-
ands of this data block can be completely or partially addressed. Further details can
be found in Chapters 10.7.4 “Working with the data block registers” on page 451
and 10.7.5 “Partial addressing of data operands” on page 453.

102

4.3 Indirect addressing

. [CPU 1516-3 PHIDF] » AL data types ® Fan_data_type =ERX §. i0f ¢ Fogram biscks ¢ Bxamples.LAD # Fan [DE125] —EEX
FE RE "ecaB B"™ G |(FEe g e and BT = |
Fan_data_type Fan
Hame (=0T Do waduw Harme Dta Bypee St vilis
L] EArny Baal + &) = Fan Feeay [0 _ 5] of “Fan_dema_mype”
i3 (nabl Boal e b Faan) "Fan_HitE st
AT swn Bl 3 lals = Fall)] *Fan_dta_type® 1
&g fwp Bzal ig - Fusning ool
* 4 Derg B i = Enablc fool
A0 Display [[o L S (=)
O S EA Bl o v kg Bsal
B 4 Rooinon_speed g B4 = Dive Bool
§ 1 Benning Es = W v Daply peal
T] 1 i@ + SweEu Bol
1 ® Rotsaa_gpasd g
128 & Bunsing fme Lt
344 » R3] “Fan_duss_sype"
40w » Fasfd] "Fan dite_ tpe"
15+ = F Fanfd) “Fan_dsm_gype”
Th e b Fasps) “Fan_dats_type”
i 5 ® u 5

[T | . s o O B T i

i z 3 100w [+ —i—

Fig. 4.6 Example of tag addressing in an ARRAY data block

4.3.5 Indirect addressing with an ANY pointer

An ANY pointer in the representation of a constant P#Operand Type Quantity points
to an operand area with fixed address. Even if you provide a tag for a block param-
eter with the data type ANY, the program editor will generate a constant ANY
pointer to this tag. In neither case is it possible to change the tag or data area during
runtime.

An exception is made by the program editor if the actual parameter itself is in the
temporary local data and is of the type ANY. No other ANY pointer is then produced;
in this case the program editor interprets this ANY tag as an ANY pointer to an actual
parameter. This means that the ANY tag must be formatted like an ANY pointer and
written with the required values in the user program prior to its use. The structure
of an ANY pointer is described in Chapter 4.9.4 “ANY pointer” on page 135.

103

4 Tags, addressing, and data types

You can use the “variable” ANY pointer in a block with the Optimized block access
attribute deactivated. To do this, first create a tag with the data type ANY in the tem-
porary local data of the block interface. Overlay this tag with a data structure, which
makes it possible to provide the individual components of the ANY pointer with val-
ues. You can now create the ANY pointer that is compiled in this way on a block
parameter with the data type ANY of a block or of a (program) function.

Fig. 4.7 shows an example of application of the “variable” ANY pointer in the SCL
programming language. It can also be formulated in LAD, FBD, or STL. The example
contains the program for a function (FC) with the name “Copy”, which transfers a

...ntral Control [CPU 1516-3 PN/DP] » Program blocks » Examples.SCL » Copy SCL [FC316]

D E =P EEE=" Fad &7 1 =
Interface
Name Data type Offset Comment
1 < + Input
2 40w SDBE Int Source DB
ERE T SST Int Source start address
4 |41 = NOE Int Number of Bytes
5 4@+~ DDBE Int Destination DB
6 |41 = DsT Int Destination start address
7 < = Output
8 = <Add news
9 < ~ InDut
10 = <Add news
11 <@ ~ Temp
12 | = SANY Any 0.0 ANY pointer to source
13 <@ ~ SPOINTER AT"SANY" Struct 00 Overlaying with elementary data types
14 <@ - type Word 0.0
15 <@ - quantity Int 20
16 <@ L DEno Int 4.0
17 |<a - area Dword 6.0
18 <@ = DANY Any 10.0 ANY pointer to destination
19 <@ « DFOINTER AT"DANY" Struct 10.0 Overlaying with elementary data types
20 <@ s type Word 0.0
21 <@ s quantity Int 20
22 |-« L DEno Int 4.0
25 4m L} area Dwiord 60
24 4l = Return
25 4m = Copy_SCL Int Function value
[<] i 3
el T
1 /f/Compile pointer to =source e
2 #5P ER.TVDE = wl16£1002; il
3 #5P ER.guantcitcy #MNOE;
4 #5P .DEno = #50EB:
5 #5P R.area = INT_TC DWORD (SHL(IN := #55T, N:= 3))OR dw#16#8400_0000;
&
7 le pointer to destination
8 ER.type = wil6#1002; 5
g ER.quantity := #NOE;
10 ER.DBno = #DDE:
11 ER.area = INT_TOC DWORD (SHL(IN := #DST, N:= 3))OR dw#16#%8400_0000:
i1z
13 //Copy with BLEMOV
14 #Copy SCL := BLEMOV (SRCBLK:= #SANY, DSTELK=> #DANY);]
15
<l i |[3] [i0% I

Fig. 4.7 Example of a “variable” ANY pointer in the SCL programming language

104

4.3 Indirect addressing

data area from one data block to another, where the addresses and the length of the
area can be changed during runtime. The values for the source area and destination
area that are individually specified via block parameters are compiled into two ANY
pointers. At the end, the copy process is started with the BLKMOV function. The
error information from BLKMOV is passed on to the function value (return value)
of the “Copy” function and can be evaluated in the program of the calling block.

4.3.6 Indirect addressing with PEEK and POKE (SCL)

PEEK and POKE address a value in an operand area whose address (memory location)
can be set during runtime. PEEK reads the value of an operand, POKE writes a value
to an operand. POKE_BLK transfers an indirectly addressed operand area (Fig. 4.8).

The operand areas addressed with PEEK and POKE are Inputs, Outputs, Memory
bits, and Data blocks. The parameter AREA with the data type BYTE defines the oper-
and area together with the parameter DBNUMBER. The byte address is provided at
the parameter BYTEOFFSET. For a binary operand, the bit number is added at the
parameter BITOFFSET. DBNUMBER, BYTEOFFSET, and BITOFFSET have data type
DINT. In the framework of the implicit data type conversion, these parameters can
also be supplied with tags that have other fixed-point data types.

PEEK reads the value of a digital operand and makes it available as a function value.
The default data type is BYTE,; it is used to read one byte. If two bytes should be read,
note the statement PEEK_WORD; for four bytes, PEEK_DWORD.

PEEK_BOOL reads the value of a binary operand and makes it available as a function
value.

POKE writes the value specified at the parameter VALUE with data type BYTE,
WORD, or DWORD (corresponding to one, two, or four bytes) to the specified oper-
and area.

POKE_BOOL writes the value (data type BOOL) specified at the parameter VALUE to
the specified binary operand.

POKE_BLK transfers a source operand area, defined with the parameters AREA_SRC,
DBNUMBER_SRC, and BYTEOFFSET SRC, to an operand area defined with the
parameters AREA_DEST, DBNUMBER_DEST, and BYTEOFFSET DEST. The number of
bytes transferred is specified in the COUNT parameter.

Example: The values in a bit memory address area should be deleted. The bit mem-
ory address area begins at the address #M_addr and is #M_dis bytes long. Both tags
are declared with the INT data type.

FOR #i := #M addr TO #M_addr + #M_dis - 1 DO The tag #i with data type INT is
POKE (area = 16#83, used as a control tag in the FOR

dbnumber := 0, statement and contains the

byteOffset := #i, ¢

value .= 16#00) ; addre?,s of the memory .byte
END_ FOR; that is currently overwritten

with 16#00.

105

4 Tags, addressing, and data types

Indirect addressing of an operand

PEEK and POKE address an operand whose address is only defined during runtime
(indirect addressing).

SCL .

#tag := PEEK_Data type(Function:

AREA = .., PEEK reads the value of an indirectly addressed

DBNUMBER e, digital operand and makes it available as a function

BYTEOFFSET := ...); value with the specified data type (BYTE, WORD,
DWORD).

#bit_tag := PEEK_BOOL(o
AREA - , PEEK_BOOL reads the value of an indirectly
DBNUMBER = , addressed binary operand and makes it available as
BYTEOFFSET := ... , a function value.

BITOFFSET := ...);

POKE (Function:

AREA = ..., POKE writes the value of the tag specified at the
DBNUMBER : , VALUE parameter to an indirectly addressed digital
BYTEOFFSET := ... , operand.

VALUE = ...)

POKE_BOOL (POKE_BOOL writes the value of the bit tag specified
AREA = ..., at the VALUE parameter to an indirectly addressed
DBNUMBER . , bit operand.

BYTEOFFSET : ,

BITOFFSET := ... ,

VALUE HE S
Data types:

The operand area is defined at the AREA parameter with the data type BYTE:

B#16#81 for inputs, B#16#82 for outputs, B#16#83 for bit memories, and B#16#84 for data.
The value zero is assigned to the DBNUMBER parameter at inputs, outputs and bit memories,
and at the data operand area with the data block number.

DBNUMBER, BYTEOFFSET, and BITOFFSET have a fixed-point data type, VALUE has a bit-serial
data type.

Indirect addressing of an operand area

POKE_BLK transfers an indirectly addressed operand area to another indirectly addressed
operand area.

SCL .
POKE_BLK (Function:
AREA_SRC = , POKE_BLK reads the number of bytes specified at
DBNUMBER SRC = , the COUNT parameter from the source operand
BYTEOFFSET SRC := , area (SRC) and writes them to the destination
AREA DEST - = , operand area (DEST).
DBNUMBER_DEST = ,
BYTEOFFSET DEST := ,
COUNT =):
Data types:

The operand area is defined at the AREA_xxx parameter with the data type BYTE:

B#16#81 for inputs, B#16#82 for outputs, B#16#83 for bit memories, and B#16#84 for data.
The value zero is assigned to the DBNUMBER_xxx parameter at inputs, outputs and bit
memories, and at the operand area data with the data block number.

DBNUMBER_xxx, BYTEOFFSET xxx, and COUNT have a fixed-point data type.

Fig. 4.8 Indirect operand addressing with PEEK and POKE

106

4.5 General information on data types

4.4 Addressing of hardware objects

The configuration editor assigns an unambiguous ID (the “hardware identifier”) for
each hardware object. Thus, for example, each station, each module, each interface,
or even each transfer area of an I-device can be addressed. The hardware identifier
is specified in the object properties. It is a constant and cannot be changed. For
example, the hardware identifier of a signal module does not change if the user
data addresses (the logical addresses) are changed. Exception: For organization
blocks, the value of the hardware identifier corresponds to the number of the orga-
nization block and can be changed later.

The data type of the hardware identifier follows that of the referenced object. Every
hardware identifier has a name which you can change in the object properties
(under General). The name, value, and data type of the current hardware identifiers
are listed in the System constants tab of the default tag table.

Fig. 4.9 shows an example of the addressing of a module. When the module is
“inserted” into the rack, the configuration editor assigns a name (displayed in the
object properties under General, can be changed) and a value (under Hardware
identifier, cannot be changed). The name and the value are listed in the System
constants tab. When the module is addressed (in the example with the system block
LOG2GEO), the parameter LADDR is provided with the value or the name from the
system constants table.

4.5 General information on data types

4.5.1 Overview of data types

Data types define the properties of tags, basically the representation of the contents
and the permissible value range. STEP 7 provides predefined data types. The data
types are globally available and can be used in any block. A distinction is made
between:

> Elementary data types, which are pre-defined and cannot be further subdivided

> Structured data types, which are predefined and comprise a combination of ele-
mentary data types

> Parameter types as predefined, additional data types for the transfer of tags to
block parameters of functions and function blocks

> PLC data types, which a user can compile from existing data types

> System data types, which are provided by the program editor in STEP 7 and have
a fixed structure

> Hardware data types, which are defined by the configuration editor in STEP 7

When linking tags, e.g. when comparing or adding, or when supplying block
parameters, the tags involved must have the same or a comparable data type. The
block attribute IEC check governs the test for a comparable data type: If it is acti-

107

4 Tags, addressing, and data types

| G Peperties [Minfo | B Disgrentics

Dapre=ral | I ta u'\ | Toxis |
- Genaral :
Fropect inkomaion T
Catadog imormation
iderolcnnoe L L meenasce
* Wodube parameters
i rame: | TEFEIERTE]
= Channg| bemplete i uther | Eeme
Fputy W
O CaAbguinssn

Propct imtamation

Gl
¥ inpes | G Popeties [Minfo | % Dagrostics
D pdre s

Hordware

Geraral |] uu;. | Toxis |
- Geneesl
Pechock Inkemsation Harwaes idensfier _
Cutslog imlrmation Hardhware identifior
eraizanse B L e ngsee
= bedule parametery

Geeeinl

* Charrelterplate

Inputs i

11500 # Cewtral Contral [CPU 15176-3 PRYDF)
Drofauli tag table
hamae Do e Wl Comirmpm
[or_mseriace_ 1 Fi_rherinca & -
&1 I3 recrwa T _iranrisce_1 i _itwrince [+
0 rer_ 1 p| i _ineerince [11
B rer_brmij Fim_inoeriace (2]
TET Feciwat T_imerlete_2 ity ¥z
5 5 eee1pwiL) FHs_ialerla i 75
sn B R s soavec_we_t[oe Fim_tublisduie 288
&5 L) DO_¥3a2avDC_h 44 ST 1 [B0] Fim_Sisblieduin %4
8 IE on_Emampies of_PFovcLE 00 .
s Z] os_sdarm oa_poveLs 0
Ia o8_wnt aa_roroat BOO
L [0 oo _wmn oa_roroLs 1)
£ | - ¥
LOG2GEO
EN ENO
258 RET_VAL — <177>
LADDR
GEOADDR

Fig. 4.9 Using the hardware identifier

vated, the test is stricter. The block attribute Optimized block access can also play a
role in the application of data types.

The data types of tags can be converted. This may happen automatically with the
implicit data type conversion or with functions for (explicit) data type conversion
(see Chapter 13.6 “Conversion functions” on page 586).

4.5.2 Implicit data type conversion

The implicit data type conversion occurs automatically when a function is executed
if the data types of the involved tags are compatible. If the IEC check attribute is acti-
vated, the bit length of the source data type must not exceed that of the destination
data type. For example, a tag with data format DWORD (source data type) cannot be
applied to an input or output parameter which expects the data type WORD (desti-

108

4.5 General information on data types

nation data type). Conversely, it is possible to apply a WORD tag to an input or out-
put parameter with the data type DWORD. The programmed bit length must agree
with the expected bit length for an in-out parameter. The block attribute IEC check
is used to set the strictness of the compatibility check (see Table 4.4).

For LAD and FBD, the implicit conversion is marked with a split rectangle symbol on
the function input or output. At a transition from dark gray to light gray, a data type

Table 4.4 Implicit data type conversion

to

DWORD
LWORD
S5TIME
TIME
LTIME
DATE
TOD
LTOD
DT

LDT
DTL
CHAR
STRING

IN

BOOL
BYTE
WORD
USINT
UINT
UDINT
ULINT
SINT
T
DINT
LINT
REAL
LREAL

from

BOOL

BYTE

x

WORD
DWORD

x
O O O ©
X|O O O O
X X/O O O O
X X X|O0O O O o
O O 0O 0ofl0o O o o
X|O O O X|O0 O O o
X X|O0O O X X|O0O O O o

LWORD

USINT
UINT

UDINT
ULINT

SINT
INT

X X X|O0O X X X|O0O O O o

O O X X|O O X X
X| O X X X| O X X X|O
o
o
o

DINT

©O 0O 0O 00 O O OO0 ©O O©
O O 0O 0O O O o|jo o
O|O0O O 0O 0|0 O O Oo|Oo
O O 0O 0JO0 O O o
O 0|0 O 0O 0|0 O O
O Of0 O O 0|0 O
O O(|0 O O ©o|o
O O|0 O O o
O O|O0 O ©
O OO0 ©
(o]
©O O O 00 O O 0|0 O O o©

LINT

REAL
LREAL o

S5TIME (o]
TIME (0] (o] (0] X (0]
LTIME (0] (0] (o] (0] (0] (o]

DATE (o] (0] (0] (0]
TOD o (0] o o X
LTOD o o (0] o (0]

DT X
LDT (0] (0] (o] (o] (0] X
DTL 0o X

CHAR O 0O 0O 0Of0O OO O|O O OO X
STRING X

Implicit data type conversion is possible: X Independent of attribute IEC check
O With deactivated attribute /EC check

109

4 Tags, addressing, and data types

conversion is possible without any loss of accuracy. At a transition from dark gray
to white, an error may occur during the conversion. The ENO output is then set
,to “0".

In Fig. 4.10, the display of the implicit data type ADD

conversion for LAD is displayed just as it is used Int

for FBD. The IEC check attribute is deactivated. —EN ENO —
#var_sint INT ouT #var_int

The addition is carried out according to the char-
acteristic of the INT data type. A conversion from
SINT to INT is possible w1thou‘F any loss of ac'cu- Fig. 4.10 Implicit data type
racy. Anerror can occur during a conversion .;nversion

from DINT to INT.

#var_dint IN2 3¢

For SCL, an implicit data type conversion is displayed with a yellow underscore if
loss of accuracy can occur. Awarning is then issued during compilation. To improve
clarity, implicit data type conversion can also be programmed with SCL. The state-
ment is Source data type_TO_Destination data type, for example

#var_word := BYTE TO_WORD (#var_byte) ;

Implicit data type conversion is not possible in the programming language STL.
STL interprets the contents of accumulators according to the executed operation
and independent of the significance of the bit assignments, i.e. independent of the
(actual) data type. For example, the +I operation (integer addition) interprets the
contents of the accumulators as numbers with data format INT and adds them
together according to the integer rules. The programmer is responsible for ensur-
ing that numbers with data format INT are actually present in the accumulators
during execution of the operation.

An error is reported if the permissible numerical range of the destination data type
is left or the sign is lost during implicit conversion.

Implicit conversion of bit-serial data types
Implicit conversion is not possible for the data type BOOL.

If the length of the source tag is equal to or shorter than the destination tag for the
data types BYTE, WORD, DWORD and LWORD, the bit pattern is entered right-justi-
fied in the destination tag and the free bit positions are filled with “0”. If the source
tag is longer than the destination tag, the bit pattern is entered in the destination
tag starting from the right and the “excess” bit positions are ignored.

During a conversion to a floating-point data type, the value of the source tag is con-
verted into the format of the destination data type. Example: DW#16#0000_000A is
converted into REAL#10.0 (DW#16#4120_0000).

Implicit conversion of fixed-point data types

During a conversion from a fixed-point data type to a floating-point data type, the
value of the source tag is converted into the format of the destination tag. During a
conversion from a fixed-point data type to a fixed-point data type, the value of the

110

4.5 General information on data types

source tag is transferred without changes and right-justified to the destination tag
and the sign is updated.

Implicit conversion of floating-point data types

During a conversion from a floating-point data type to a fixed-point data type, the
value of the source tag is rounded and converted into the format of the destination
tag. Example: LREAL#317.8 is converted to INT#318 and this value is then converted
to USINT#62.

Implicit conversion of duration data types

If the value of the source tag lies outside the value range of the destination type, the
value of the destination tags is not changed. In all other cases, the bit pattern of the
source tag is transferred unchanged to the destination tag.

Implicit conversion of date and time

For a conversion to a date/time data type, the value of the source tag is entered in
the destination tag in the proper format, with a possible loss of accuracy. For a con-
version to a different data type, the bit pattern of the source tag is transferred
unchanged to the destination tag.

4.5.3 Overlaying tags (data type views)

A tag can be “overlaid” by further data types. It is then possible to address the con-
tents of tags completely or partially using various data types. The memory require-
ments of the overlaying data type definition must not be greater than the “original”
tag (the new data type must “fit” into the tag). Table 4.5 shows which combinations
are permitted when overlaying.

You can program overlaying only in the interface of code blocks. In addition, the
attribute Optimized block access must be deactivated. Exception: If the retentivity
setting for a tag in a function block is Set in IDB, this tag can also be overlaid with
another data type. For an FC block, the overlaying tag must have the same width as
the “original” tag.

You initially declare the tag with the “original” data type and with any default set-
ting. In the next line you write the tag which is to “overlay” the one above it. You
then write the keyword AT in the Data type column to indicate that this is a “over-
laid” data type definition, and then complete the input using the RETURN key. You
subsequently assign this tag with the additional data type envisaged for it.

You can overlay a tag with several data type definitions which you differentiate by
different names. A default setting with fixed values (initialization) is not possible.

Example: You declare an input parameter in the block interface of a function block
with Station as the name and STRING[12] as the data type. You can overlay this input
parameter with an additional STRUCT data type with the name Length and the com-
ponents maximum and current, each with the data type USINT (Fig. 4.11). You can

111

4 Tags, addressing, and data types

now address the current length of the tag #Station with #Length.current in the block
program. You can address an individual character with #Station[<index>],
for example, #Station[1] for the first character.

Table 4.5 Permitted combinations when overlaying data types

Declaration “Original” data can be overlaid with data type
section (FB) type
Input Elementary Elementary Structured -
Structured Elementary Structured ANY, POINTER
ANY, POINTER - Structured -
DB_ANY Elementary Structured -
Output, Static Elementary Elementary Structured -
Structured Elementary Structured -
ANY, POINTER - - -
DB_ANY Elementary Structured -
InOut Elementary Elementary - -
Structured - Structured -
ANY, POINTER - - -
DB_ANY - - -
Temp Elementary Elementary Structured -
Structured Elementary Structured ANY, POINTER
ANY, POINTER - Structured -
DB_ANY - - -
Declaration “Original” data can be overlaid with data type
section (FC) type
Input, Output, Elementary elementary " - -
InOut Structured - structured " -
ANY, POINTER - - -
DB_ANY elementary " structured " -
Temp Elementary Elementary Structured -
Structured Elementary Structured ANY, POINTER
ANY, POINTER - Structured -
DB_ANY - - -
Declaration “Original” data can be overlaid with data type
section (OB) type
Temp Elementary Elementary Structured -
Structured Elementary - ANY, POINTER
ANY, POINTER - Structured -
DB_ANY - - -

" only with the same width

Interface
MName Data type Offset Comment

1 4 « Input
2 = Station String String with name #5tation
3 @ ~ Llength AT"Station” | Struct
4 @@ = maximumm USint Maximum length of string (#Length.maximum}
5 @ = current USint Current length of string (#Length.current}
6 L <Add new=

Fig. 4.11 Example of declaration of a “overlaid” data type

112

4.6 Elementary data types

You use a tag with an overlaying data type definition like any other tag, but only
locally in the block. In the example, the calling block writes a string into the input
parameter Station; the overlaying data type definition as a byte structure is not
accessible to it.

4.6 Elementary data types

Elementary data types are pre-defined data types which cannot be further subdi-
vided. You can find an overview of the elementary data types in Table 4.6. The data
types BCD16 and BCD32 are not data types in the closer sense — they cannot be
assigned to a tag; they are only relevant to data type conversion. The elementary
data types can be used together with tags from all operand areas.

4.6.1 Bit-serial data types BOOL, BYTE, WORD, DWORD, and LWORD
Fig. 4.14 shows the structure of the data types BYTE, WORD, DWORD, and LWORD.

A tag with data type BOOL represents a bit value (e.g. input %I1.0). The tag can have
the value “0” or “1”, or FALSE or TRUE.

A tag with data type BYTE occupies 8 bits. The individual bits have no significance.
The hexadecimal notation for constants is B#16#00 to B#16#FF.

A tag with data type WORD occupies 16 bits. The individual bits have no signifi-
cance. The hexadecimal notation for constants is W#16#0000 to W#16#FFFF.
A constant of word width can also be written as a 16-bit binary number
(2#0000_... 0000 to 2#1111 ... 1111).

A tag with data type DWORD occupies 32 bits. The individual bits have no signif-
icance. The hexadecimal notation for constants is DW#16#0000_0000 to
DW#16#FFFF_FFFF. A constant of doubleword width can also be written as a
32-bit binary number (2#0000_... 0000 to 2#1111_..._1111).

A tag with data type LWORD (long word) occupies 64 bits. The individual bits
have no significance. The hexadecimal notation for constants is
LW#16#0000_0000_0000_0000 to LW#16#FFFF_FFFF_FFFF_FFFF. A constant
oflong word width can also be written as a 64-bit binary number
(2#0000_..._0000 to 2#1111_..._1111).

4.6.2 Data type CHAR

A tag with data type CHAR (character) occupies one byte. The data type CHAR rep-
resents a single character which is saved in ASCII format. The character is entered
in single quotation marks. Example of the notation: '’A’ or CHAR#’A’. Special charac-
ters can be entered with a preceding dollar sign; Fig. 4.13 shows a selection.

A single character of a tag with the data type STRING has the data type CHAR and
can also be used accordingly. Example: If Author is the name of the string with the
content 'Berger', then the tag Author[1] has the value 'B' and the data type CHAR.

113

4 Tags

, addressing, and data types

Table 4.6 Overview of elementary data types

Bit-serial data types

BOOL 1 bit 1-bit binary value 0, 1, FALSE, TRUE

BYTE 8 bits 8-bit binary value B#16#00 to B#16#FF

WORD 16 bits 16-bit binary value W#16#0000 to W#16#FFFF

DWORD | 32 bits 32-bit binary value DW#16#0000 0000 to DW#16#FFFF FFFF

LWORD | 64 bits | 64-bit binary value LW#16#0000 0000 0000 0000 to
LW#16#FFFF FFFF FFFF FFFF

Characters

CHAR 8 bits ‘ A character in ASCII code al, AT,

BCD numbers "

BCD16 | 16 bits | 3 decades with sign —-999 to +999

BCD32 | 32 bits | 7 decades with sign —9999 999 to +9 999 999

Unsigned fixed-point numbers

USINT 8 bits Unsigned 8-bit fixed-point number 0to 255

UINT 16 bits | Unsigned 16-bit fixed-point number | O to 65535

UDINT 32 bits | Unsigned 32-bit fixed-point number | 0 to 4 294 967 296

ULINT 64 bits | Unsigned 64-bit fixed-point number | 0 to 18 446 744 073 709 551 615
Fixed-point numbers with sign

SINT 8 bits 8-bit fixed-point number -128to +127

INT 16 bits | 16-bit fixed-point number -32768to +32 767

DINT 32 bits | 32-bit fixed-point number -2 147 483 648 to +2 147 483 647
LINT 64 bits | 64-bit fixed-point number —9 223372 036 854 775 808 to

+9 223 372 036 854 775 807

Floating-point numbers

+1.18x10738 to +3.40x10%®

REAL 32 bits | 32-bit floating-point number approx.
LREAL | 64 bits | 64-bit floating-point number approx. #2.23x1073% to +1.80x103%8
Durations
S5TIME | 16 bits | Duration in SIMATIC format S5T#0h0OmOsOms to
(in intervals of 10 ms) S5T#2h46m30s0ms
TIME 32 bits | Duration in IEC format T#-24d20h31m23s648ms to
(number of milliseconds) T#+24d20h31m23s647ms
LTIME 64 bits | Duration in IEC format LT#-106751d23h47m165854ms775us808ns to
(number of nanoseconds) LT#+106751d23h47m16s854ms775us807ns
Points in time (date and time of day)
DATE 16 bits | Date D#1990-01-01 to
(number of days) D#2168-12-31
TOD 32 bits | Time of day TOD#00:00:00.000 to
(number of milliseconds) TOD#23:59.59.999
LTOD 64 bits Time of day LTOD#00:00:00.000000000 to
(number of nanoseconds) LTOD#23:59:59.999999999
LDT 128 bits | Date and time of day LDT#1970-01-01-0:0:0.000000000 to

(number of nanoseconds)

LDT#2262-04-11-23:47:16.854775807

" Not data types in a narrower sense; only relevant to data type conversion

114

4.6 Elementary data types

Data type BYTE Data type WORD
Byte m Bytem Byte m+1
7 6543210 Bitnumber 15 8 7 0
Data type DWORD
Byte m Byte m+1 Byte m+2 Byte m+3
31 24 23 16 15 8 7 0
Data type LWORD
Byte m Byte m+1 Byte m+7
63 56 55 48 eo e 7 0

Fig. 4.12 Assignment of bit-serial data types

Data type CHAR

Byte m Special characters for CHAR
r A \ CHAR HEX Meaning
Bit 76543210 $$ 16#24 Dollar symbol
N , $' 16#27 Single inverted comma
ASCIT code Lorl 1640A Line feed (LF)

$Ror $r 16#0D Carriage return (CR)
$P or $p 16#0C Form feed (FF)
$T or $t 16#09 Tabulator

Fig. 4.13 Structure of the CHAR data type

4.6.3 BCD numbers BCD16 and BCD32

BCD numbers do not have their own data type. For a BCD number, use the data type
WORD or DWORD and enter only the numbers 0 to 9 or 0 and F for the sign in the
hexadecimal form W#16#xxxx or DW#16#xxxx_xxxx. For a positive, three-decade
decimal number you can also use the notation C#0 to C#999.

BCD numbers are used, for example, in association with the conversion functions.
The sign of a BCD number is located in the left-justified (highest) decade. Thus one
decade is lost in the number range (Fig. 4.14).

The sign of a BCD number present in a 16-bit word is in the bits 12 to 15, where only
bit 15 is relevant. Signal state “0” means that the number is positive. Signal state
“1” represents a negative number. The sign does not influence the assignment of
the individual decades.

115

4 Tags, addressing, and data types

BCD number, 3 decades

Byte m Byte m+1
15 12 11 8 7 4 3 0
Sign: 000 0 = positive —
1111 =negative Sign 102 10" 10°

BCD number, 7 decades

Byte m Byte m+1 Byte m+2 Byte m+3

r N N N N

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

Sign 10° 10 10 103 102 10! 10

Fig. 4.14 Structure of BCD data types

The sign of a BCD number present in a 32-bit word is in the bits 28 to 31.

The numerical range available for 16-bit BCD numbers is 0 to *999, and for
32-bit BCD numbers 0 to +9 999 999.

4.6.4 Fixed-point data types without sign USINT, UINT, UDINT, ULINT

The data type USINT (unsigned short integer, unsigned short fixed-point number)
occupies one byte. The numerical range extends from 2° to 28-1, i.e. from 0 to 255,
or in hexadecimal notation from B#16#00 to B#16#FF (Fig. 4.15).

The data type UINT (unsigned integer, unsigned fixed-point number) occupies one
word. The numerical range extends from 2° to 2'°-1, i.e. from 0 to 65 535, or in
hexadecimal notation from W#16#0000 to W#16#FFFF.

Data type USINT Data type UINT

Data type UDINT

31.. .16 15, ..0

231 o 22 2 2 2 sl e e 2

Data type ULINT

6348 .0
Pl 2T o 2 27 2

Fig. 4.15 Bit assignment of data types USINT, UINT, UDINT, and ULINT

116

4.6 Elementary data types

The data type UDINT (unsigned double integer or unsigned, double-width fixed-point
number) occupies one doubleword. The numerical range extends from 2° to 23%-1,
i.e. from 0 to 4 294 967 295, or in hexadecimal notation from DW#16#0000 0000 to
DW#16#FFFF FFFF.

The data type ULINT (unsigned long integer, unsigned long fixed-point number)
occupies one long word. The numerical range extends from 20 to 2%-1, i.e. from 0
to 18 446 744 073 709 551 615, or in hexadecimal notation from

LW#16#0000 0000 0000 0000 to LW#16#FFFF FFFF FFFF FFFF.

4.6.5 Fixed-point data types with sign SINT, INT, DINT, and LINT

With the fixed-point data types with sign, the signal state of the highest bit rep-
resents the sign. Signal state “0” means that the number is positive. Signal state “1”
represents a negative number. The representation of a negative number is as a
two's complement.

The data type SINT (short integer, short fixed-point number) occupies one byte.
The numerical range extends from -27 to +27-1, i.e. from -256 to +255, or in hexa-
decimal notation from B#16#80 to B#16#7F (Fig. 4.16).

Data type SINT Data type INT
Vesi 15 140
= sign:
0 = positive v 2 28 27 .20

1 =negative

Data type DINT

31 30... .16 15... ..0
v 2% L2398 oL Pl .28 2 220
63 6248 .0
v 2% .. 2% 2% .28 ces 2. 220

Fig. 4.16 Bit assignment of data types SINT, INT, DINT, and LINT

The data type INT (integer, fixed-point number) occupies one word. The numerical
range extends from -2'° to +2'%-1, i.e. from -32 768 to +32 767, or in hexadecimal
notation from W#16#8000 to W#16#7FFF.

The data type DINT (double integer, double-width fixed-point number) occupies
one doubleword. The numerical range extends from -23! to +23!-1, i.e. from

-2 147 483 648 to +2 147 483 647, or in hexadecimal notation from

DW#16#8000 0000 to DW#16#7FFF FFFF.

117

4 Tags, addressing, and data types

The data type LINT (long integer, long fixed-point number) occupies one long word.
The numerical range extends from -2 to +2°°~1, i.e. from -9 223 372 036 854 775 808
to +9 223 372 036 854 775 807, or in hexadecimal notation from

LW#16#8000 0000 0000 0000 to LW#16#7FFF FFFF FFFF FFFF.

4.6.6 Floating-point data types REAL and LREAL

A tag with data type REAL or LREAL represents a fractional number which is saved
as a floating-point number. A fractional number is entered either as a decimal frac-
tion (e.g. 123.45 or 600.0) or in exponential form (e.g. 12.34e12 corresponding to
12.34-10'?). The representation comprises 7 or 17 relevant positions (digits) which
are positioned in exponential form in front of the “e” or “E”. The data following “e”
or “E” is the exponent to base 10. Conversion of the REAL or LREAL tags into the
internal representation of a floating-point number is carried out by the program
editor. Table 4.7 shows the internal range limits of a floating-point number.

Table 4.7 Internal range limits of a floating-point number

Sign Exponent Exponent Mantissa Meaning
for REAL for LREAL
0 255 2047 Not equal to 0 Not a valid floating-point number
(+NaN, Not a Number)
0 255 2047 0 +Inf, Infinity
0 1..254 1...2046 Any Positive, normalized floating-point number
0 0 0 Not equal to O Positive, denormalized floating-point number
0 0 0 0 + Zero
1 0 0 0 - Zero
1 0 0 Not equal to 0 Negative, denormalized floating-point number
1 1..254 1...2046 Any Negative, normalized floating-point number
1 255 2047 0 — Inf, Infinity
1 255 2047 Not equal to 0 Not a valid floating-point number
(—NaN, Not a Number)

For floating-point numbers, a distinction is made between “normalized” floating-
point numbers, which can be shown with complete accuracy, and “denormalized”
floating-point numbers with limited accuracy. A CPU 1500 cannot calculate with
denormalized floating-point numbers. A denormalized floating-point number is
interpreted like a zero. If a calculated result falls in this range, it is displayed as zero
and an downward violation of the numerical range is reported.

118

4.6 Elementary data types

Data type REAL

The valid range of values of a REAL tag (normalized 32-bit floating-point number)
is between the limits:

-3.402 823 x 10"8 t0 -1.175 495 x 10738
+0
+1.175495x 10738 to +3.402 823 x 10*3®

A tag with data type REAL consists internally of three components: the sign, the
8-bit exponent to base 2, and the 23-bit mantissa. The sign can have the values “0”
(positive) or “1” (negative). The exponent is saved increased by a constant
(bias, +127) so that it has a range of values from 0 to 255. The mantissa represents
the fractional part. The whole number part of the mantissa is not stored, because it
is always equal to 1 within the valid range of values (Fig. 4.17). A number in the
REAL format is displayed by STEP 7 rounded to seven decimal points.

Data type LREAL

The valid range of values of a LREAL tag (normalized 64-bit floating-point number)
is within the limits:

-1.797 693 134 862 3158 X 10™3% to -2.225 073 858 507 2014 x 1073%8
+0
+2.225 073 858 507 2014 x 1073°® to +1.797 693 134 862 3158 x 10*3%8

Data type REAL

31 3023 22 .. 0
v 2. 20 272 .2
Exponent Mantissa
Data type LREAL
63 6252 51.. ..0
v 2%, 20 27122 .27
— — J \ v J
Exponent Mantissa V = sign of mantissa

Fig. 4.17 Bit assignment of data types REAL and LREAL

A tag with data type LREAL consists internally of three components: the sign, the
11-bit exponent to base 2, and the 52-bit mantissa. The sign can have the values “0”
(positive) or “1” (negative).

The exponent is saved increased by a constant (bias, +1023) so that it has a range of
values from 0 to 2047. The mantissa represents the fractional part. The whole num-
ber part of the mantissa is not stored, because it is always equal to 1 within the valid
range of values. A number in the LREAL format is displayed by STEP 7 rounded
to 15 decimal points.

119

4 Tags, addressing, and data types

4.6.7 Data types for durations

Data type S5TIME

A tag with data type S5TIME is used for the duration of a SIMATIC timer function.
It occupies a 16-bit word with 1+3 decades (Fig. 4.18).

Data type SS5TIME

Duration = Time value x Time scale

15... ...0
Time scale: 0000 10 ms 0 2 1 0
0001 100ms 10 10 10 10
0010 1s
0011 10s —~—'" — !
Time scale Time value

Data type TIME

Number of milliseconds (duration)

31 30... .16 15.. ..0
v 2°% L2 0B L2100 218 228 2 .20
V =sign: 0 = positive

1 =negative

Data type LTIME

Number of nanoseconds (duration)

63 6248 ..0
v 2% L 2%0 2% .28 v 2" .20
V =sign: 0 = positive

1 =negative

Fig. 4.18 Bit assignment of data types S5TIME, TIME, and LTIME

The time duration is displayed in hours, minutes, seconds, and milliseconds. Con-
version into the internal representation is handled by STEP 7. The internal repre-
sentation is a BCD number from 000 to 999. The time frame can adopt the following
values: 10 ms (0000), 100 ms (0001), 1 s (0010), and 10 s (0011). The duration is the
product of the time frame and time value. Depending on the time scale, different
limits result for the time value:

Time scale 10 ms 100 ms 1s 10s
Time value S5T#10 ms to S5T#100ms to S5T#1s to S5T#10s to
S5T#95990ms S5T#1m39s900ms S5T#16m39s S5T#2h46m30s

Examples: S5TIME#500ms (= W#16#0050)
S5T#2h46m30s (= W#16#3999)

120

4.6 Elementary data types

Data type TIME

A tag with data type TIME (duration) occupies a doubleword. The representation
contains the data for days (d), hours (h), minutes (m), seconds (s) and milliseconds
(ms), whereby individual time units can be omitted. If only one time unit is speci-
fied, a decimal representation is possible. If more than one time unit is specified,
the values for the time units are limited: Days from 0 to 24, hours from 0 to 23,
minutes and seconds from 0 to 59, and milliseconds from 0 to 999 (Fig. 4.19).

The content of the tag is interpreted as milliseconds (ms) and saved as a
32-bit fixed-point number with sign. The range of values extends from
T#-24d20h31m?23s648ms to T#24d20h31m23s647ms.

Examples: TIME#2h30m (= DW#16#0089_5440)
T#2.25h (= DW#16#007B_98A0)

Data type LTIME

A tag with data type LTIME (duration) occupies a long word. The representation
contains the data for days (d), hours (h), minutes (m), seconds (s), milliseconds
(ms), microseconds (us), and nanoseconds. Individual time units can be omitted. If
only one time unit is specified, a decimal representation is possible. If more than
one time unit is specified, the values for the time units are limited: Days from
0to 106 751, hours from 0 to 23, minutes and seconds from 0 to 59, and millisec-
onds, microseconds and nanoseconds from 0 to 999 (Fig. 4.19).

The content of the tag is interpreted as nanoseconds (ns) and saved as a 64-bit fixed-
point number with sign. The range of values extends from
LT#-106751d23h47m16s854ms775us808ns to
LT#+106751d23h47m16s854ms775us807ns

Examples: LTIME#2h20s (=LW#16#0000_0691_0989 _0800)
LT#15.25h (= LW#16#0000_31EE_66FF_8800)

4.6.8 Data types for points in time

Data type DATE

A tag with data type DATE is saved in a word as an unsigned fixed-point number.
The content of the tag corresponds to the number of days since 01.01.1990.
The representation contains the year, month, and day, each separated by a dash
(Fig. 4.19). The range of values extends from D#1990-01-01 to D#2168-12-31.

Examples: DATE#1990-01-01 (= W#16#0000)
D#2168-12-31 (= W#16#FF62)

TIME_OF_DAY (TOD)

A tag with data type TIME_OF_DAY occupies a doubleword. It contains the number
of milliseconds since the beginning of the day (0:00 o'clock) as an unsigned fixed-
point number. The representation contains the data for hours, minutes, and sec-

121

4 Tags, addressing, and data types

Data type DATE

Number of days since 01.01.1990
150
215 28 27 20

Data type TIME_OF_DAY (TOD)

Number of milliseconds since the beginning of the day (0:00 o'clock)
3716 15..
2L 223 0% L2100 218 28 2 220

Data type LTIME_OF_DAY (LTOD)

Number of nanoseconds since the beginning of the day (0:00 o'clock)
63 48 ..0
e o 2% e 2. 20

Data type DATE_AND_LTIME (LDT)

Number of nanoseconds since 01.01.1970 (0:00 o'clock)

127... o112

2 oy bas L2t oo 2. DY

Fig. 4.19 Bit assignment of data types DATE, TOD, LTOD, and LDT

onds, each separated by a colon. The specification of milliseconds, which follows
the seconds and is separated by a dot, can be omitted (Fig. 4.19). The range of val-
ues extends from TOD#00:00:00.000 to TOD#23:59.59.999.

Examples: TIME_OF_DAY#00:00:00 (= DW#16#0000_0000)
TOD#23:59:59.999 (= DW#16#0526_5BFF)

LTIME_OF_DAY (LTOD)

A tag with data type LTIME_OF_DAY occupies a long word. It contains the number
of nanoseconds since the beginning of the day (0:00 o'clock) as an unsigned fixed-
point number. The representation contains the data for hours, minutes, and sec-
onds, each separated by a colon. The specification of milliseconds, microseconds
and nanoseconds, which follows the seconds and is separated by a dot, can be omit-
ted (Fig. 4.19). The range of values extends from

LTOD#00:00:00.000_000_000 to LTOD#23:59:59.999_999_999.

Examples: LTOD#12:05:00 (= LW#16#0000_2790_220C_3800)
LTOD#23:59:59.999 999 999 (= LW#16#0000_4E94 914E_FFFF)

DATE_AND_LTIME (LDT)

Atag with data type DATE_AND_LTIME occupies a long word. It contains the number
of nanoseconds since 01.01.1970 (0:00 o'clock) as an unsigned fixed-point number.

122

4.7 Structured data types

The representation contains the year, month and day, each separated by a hyphen.
After a colon come the hours, minutes and seconds, each separated by a colon.
The specification of milliseconds, microseconds and nanoseconds, which follows
the seconds and is separated by a dot, can be omitted (Fig. 4.19). The range of val-
ues extends from LDT#1970-01-01-0:0:0.000_000_000 to
LDT#2262-04-11-23:47:16.854_775_807.

Examples:
LDT#2012-07-23-11:55:00 (=LW#16#12A3_73DB_640A_C800)
LDT#2262-04-11-23:47:16.854_775 807 (= LW#16#7FFF_FFFF_FFFF_FFFF)

4.7 Structured data types

Structured data types consist of a combination of elementary data types under one
name (Table 4.8). These data types can only be used locally in the interface of code
blocks and in data blocks; they are not approved for the operand areas Inputs (I),
Outputs (Q), and Bit memories (M) in the PLC tag table.

Table 4.8 Overview of structured data types

Data type Length Meaning, remark

DATE_AND_TIME | 8 bytes Date and time (accuracy: milliseconds)
Example: DT#1990-01-01-00:00:00

DATE_AND_LTIME | 16 bytes Date and time (accuracy: nanoseconds)
Example: DTL#1970-01-01-00:00:00.000_000_000

STRING 2+n bytes A string with n characters.
Examples: 'Hans', 'Motor switched off'

ARRAY variable A combination of several equivalent data types.

Example: The tag Setpoint has the data type ARRAY[1..32] of INT
The individual components are then:
Setpoint[1]; Setpoint[2]; ... ; Setpoint[32]

STRUCT variable A combination of several different data types.

Example: The tag Valve has the data type STRUCT.
It can then contain the components:
Valve.Switch_on; Valve.Switch_off; Valve.Fault; etc.

4.7.1 Date and time DATE_AND_TIME (DT)

The data type DATE_AND_TIME (DT) represents a specific point in time consisting
of the date and time, with the accuracy of one millisecond. The representation
contains the year, month and day, each separated by a hyphen. After another
hyphen come the hours, minutes and seconds, each separated by a colon. The
specification of milliseconds, which follows the seconds and is separated by a dot,
can be omitted.

123

4 Tags, addressing, and data types

A tag with data type DATE_AND_TIME occupies 8 bytes. Saving in the memory com-
mences at a byte with even address. All values are present in BCD format (Fig. 4.20).
The range of values extends from DT#1990-01-01-00:00:00.000 to
DT#2089-12-31-23:59:59.999.

Data type DATE_AND_TIME (DT)

Address Assignment Range
7 43 0
Byten 10" 10° Year 0t099
Byte n+1 10" 10° Month 1to12
Byte n+2 10" 10° Day 1to31
Byte n+3 10" 10° Hours 0to23
Byte n+4 10" 10° Minutes 0to 59 All data
in BCD format
Byte n+5 10" 10° Seconds 0to 59 .
) n=even
Byte n+6 102 10" Milliseconds 010999
Byte n+7 10° 10° Day of the week 1 = Sunday to 7 = Saturday

Fig. 4.20 Structure of data type DATE_AND_TIME (DT)

Data type DTL

Address Assignment Component Data type Range

Byten Year YEAR UINT 1970 to 2554
Byte n+1

Byte n+2 Month MONTH USINT 1to12

Byte n+3 Day DAY USINT 1to 31

Byte n+4 Day of the week WEEKDAY USINT ; : 22&13};;0
Byte n+5 Hours HOUR USINT 0to 23

Byte n+6 Minutes MINUTE USINT 0to 59

Byte n+7 Seconds SECOND USINT 0to 59
Byten+8 Nanoseconds NANOSECOND ~ UDINT 0 to 999 999 999
Byte n+9

Byte n+10

Byte n+11 *) h = even

Fig. 4.21 Structure of data type DATE_AND_LTIME (DTL)

124

4.7 Structured data types

4.7.2 Date and time DATE_AND_LTIME (DTL)

The data type DATE_AND_LTIME (DTL) represents a specific point in time consist-
ing of the date and time, with the accuracy of one nanosecond. The representation
contains the year, month and day, each separated by a hyphen. After another
hyphen come the hours, minutes and seconds, each separated by a colon. The
specification of nanoseconds, which follows the seconds and is separated by a dot,
can be omitted.

A tag with data type DTL occupies 12 bytes. Saving in the memory commences
at a byte with even address. The values are available in the form of an
unsigned fixed-point number (Fig. 4.21). The range of values extends from
DTL#1970-01-01-00:00:00.000_000_000 to DTL#2554-12-31-23:59:59.999 999 999.

Each component of a tag in DTL format can also be addressed individually. If a
DTL tag has the name #Start_time, the hour can be addressed with #Start_time. HOUR
and the minutes can be addressed with #Start_time.MINUTE. Both components have
the data type USINT.

4.7.3 STRING data type

The data type STRING represents a string consisting of two bytes for the length data
and up to 254 bytes for the characters in ASCII code. Saving in the memory com-
mences at a byte with even address. The program editor reserves an even number
of bytes for a string.

If a STRING tag is saved as a value, the maximum length can be defined in square
brackets when the tag is declared. This corresponds to the maximum number of
characters in ASCII code. If the length specification is omitted, the standard length
of 254 characters is defined. When saved as a pointer (block parameter for an
FCblock, in/out parameter for a function block), only the standard length of
254 characters is accepted.

The current length is entered for the default setting or when processing the string
(the actually used length of the string = number of valid characters). The maximum
length is present in the first byte of the string, the second byte contains the actual
length; this is followed by the characters in ASCII format (Fig. 4.22).

Example: The tag Machine is to be defined with a maximum length of 12 characters
and should have Drill' as the default setting.

Machine : STRING [12] := 'Drill’

The first byte of the tag then has the value 12, the second byte the value 6, the third
byte the character 'B' etc.

A constant with data type STRING is written with single quotation marks, for exam-
ple Hans Berger'. Special characters are entered with a preceding dollar sign.
Fig. 4.13 on page 115 shows a selection.

A STRING tag cannot be assigned a default value when declared in the temporary
local data. In order to use STRING tags in the temporary local data for meaningful

125

4 Tags, addressing, and data types

Data type STRING

Byte No. Datatype Range
n” Maximum length USINT 0to254 (k)
n+1 Current length USINT 0 to 254 (m, m <k)
n+2 1st character CHAR]
n+3 2nd character CHAR Current
length (m)
CHAR | Maximum
n+m-+1 m-th character CHAR length (k)
CHAR
n+k+1 CHAR ") n = even

Fig. 4.22 Structure of STRING data type

purposes, they must be written before being read. For blocks with standard access,
the contents of the range lengths and characters are quasi-random before they are
written for the first time. For blocks with the Optimized block access attribute acti-
vated, the range lengths have plausible values and the characters have the
value "$00".

The characters in a STRING tag can also be addressed individually (not with SCL).
The first character (the third byte) is accessed using Tag_name[1], the n-th charac-
ter using Tag_name[n]. The individual components have the data type CHAR. In the
example above, the tag Machine[3] has the character 'h'. The index can also be a tag
in fixed-point format.

Special functions are available for processing STRING tags, for example to separate
a partial string or to combine two STRING tags into a single one (see Chapter 13.9
“Processing of strings (data type STRING)” on page 615).

4.7.4 Data type ARRAY

The data type ARRAY represents a data structure comprising a fixed number of com-
ponents with the same data type. For the components, all data types except ARRAY
are permissible.

A tag with data type ARRAY commences at a byte with even address. Components
with data type BOOL commence in the least significant bit; components with data
type BYTE and CHAR in the right byte. The individual components are listed consec-
utively. The program editor reserves an even number of bytes for an ARRAY tag (Fig.
4.23).

When creating an ARRAY tag, the number range of the components is specified in
square brackets, and the data type following the keyword OF. Example: A tag with

126

4.7 Structured data types

Date type ARRAY (one-dimensional)

The memory location of an ARRAY tag always commences at a byte with even address. The program
editor always reserves an even number of bytes for an ARRAY tag.

Bitnumber 7 6 5 4 3 2 1 0
Byten” 8 76543 21 Array of
components of bit width
Byte n+1 oo (V2] VT ©
Byte n’ Byte 1 Array of
components of byte width
Byte n+1 Byte 2
Byte n+2 Byte 3
Byte n+3 etc.
Byten) Array of components of word width
Word 1
Byte n+1 Arrays of components of
doubleword and long word width
Byte n+2 Word 2 are structured in the same way.
Byte n+3
Byte n+4
etc.
Byte n+5 “)n =even

Byten K
Byte n+1
Byte n+2
Byte n+3
Byte n+4
Byte n+5
Byte n+6
Byte n+7
Byte n+8
Byte n+9
Byte n+10

Byte n+11

Date type ARRAY (multi-dimensional)

#ArrayTag[1,1,1]
#ArrayTag[1,1,2]
#ArrayTag[1,2,1]
#ArrayTag[1,2,2]
#ArrayTag[1,3,1]
#ArrayTag[1,3,2]
#ArrayTag[2,1,1]
#ArrayTag[2,1,2]
#ArrayTag[2,2,1]
#ArrayTag[2,2,2]
#ArrayTag[2,3,1]
#ArrayTag[2,3,2]

N

2. Dimension

2. Dimension ¢ 1.Dimension

2. Dimension

Example of the byte assignment
of the tag #ArrayTag with the
data type ARRAY([1..2,1..3,1..2] OF BYTE

*
)Il = even

Fig. 4.23 Structure of data type ARRAY

127

4 Tags, addressing, and data types

the name Measured value is to have 16 components of data type INT, which are num-
bered commencing with 1.

Measured value : ARRAY[1..16] OF INT

The number range extends from -2 147 483 648 to 2 147 483 647. The lower range
value must be smaller than the upper value. The maximum number of components
depends on the data type of a component and on the memory space available in the
block in which the ARRAY tag is created.

The components of an ARRAY tag can be addressed individually and can be handled
like tags with the same data type. For example, the component Measured value[10]
on a block parameter can be created with the data type INT.

During addressing, the index can also be a tag with a fixed-point data type and thus
allow indirect addressing which is only defined during runtime. Further details are
described in Chapter 4.3.2 “Indirect addressing of ARRAY components” on page
100.

Multi-dimensional arrays

ARRAY tags can have up to 6 dimensions. The same applies as to one-dimensional
arrays. The dimension areas are written in the declaration in square brackets, each
separated by a comma. Fig. 4.24 shows an example of the declaration of a
three-dimensional array.

4 ~ Smric
<] &} Ay 1dim Arthy [1.4] of wWond
= b aray 3dim Array 1.4, 1.4, 1,.4] of Word il=]
anm index]
o ind s Data pype. | Word E
- - index3 Arraylicaites [1.4,1.4,1. 4
4] war_mng
Fa i var word Examples: 0.99 or 0990010

X i -

frtx|

Fig. 4.24 Example of the declaration of an array tag

In the multi-dimensional arrays, the components are saved starting with the first
dimension. With bit and byte components, a new dimension always commences in
the next byte, with components of other data types always in the next word (in the
next byte with even address, see Fig. 4.23).

When addressing an array component, you can specify a constant or a tag with a
fixed-point data type for the index. For SCL, it is also permissible to specify an
expression with a fixed-point data type. Example:

#var word := #Array 3dim[12, #index, 2*#index];

Addressing of partial arrays is also possible: With multi-dimensional arrays, you
can handle the partial arrays like correspondingly dimensioned tags: You omit

128

4.8 Parameter types

array indices starting from the right, and obtain a partial area of the original array
with a smaller dimension. An example is shown in Chapter 4.3.2 “Indirect address-
ing of ARRAY components” on page 100.

4.7.5 Data type STRUCT

The STRUCT data type represents a data structure comprising a fixed number of
components with different data types. All data types are permissible for the compo-
nents.

A tag with STRUCT data type commences at a byte with even address, followed by
the components in the declared sequence. Components with the BOOL data type
commence in the least significant bit of the next vacant byte, components with the
BYTE or CHAR data type in the next vacant byte. Components with other data types
commence at a byte with even address. The program editor reserves an even num-
ber of bytes for a STRUCT tag (Fig. 4.25).

When declaring a STRUCT tag, the tag name with the STRUCT data type is specified
first, followed underneath by the individual components with their own data type.

Example: A tag with the name Fan is to comprise four components: switch_on
(BOOL), switch_off (BOOL), speed (INT), and delay (TIME). Fig. 4.26 shows the dec-
laration of the tags.

A component of a STRUCT tag can also be addressed individually by positioning the
name of the structure, separated by a dot, in front of the component name.
A STRUCT component can be handled like a tag with the same data type. For exam-
ple, the component #Fan.speed can be created on a block parameter with the
INT data type.

Nested structures

A nested structure contains at least one further structure as component. A nesting
depth of up to 8 levels is possible. All components can be addressed individually.
The individual names are each separated by a dot.

Example: StructureTag.Structure_Level2.Component_Level2.

4.8 Parameter types

4.8.1 Overview

The parameter types are additional data types for block parameters. In addition to
the data types shown in Table 4.9, there are the PLC data types, the system data
types, and the hardware data types, which - with certain restrictions — can also be
used in the block interface.

129

4 Tags, addressing, and data types

Data type STRUCT

A tag of data type STRUCT commences at a byte with even address and always occupies an even
number of bytes.

76543210

Byten” 81716543 2]1 Bit components

Byte n+1 s | o [oo [oo | U2 T TOF ©

Byte n+2 Byte 1 Byte components

Byte n+3 Byte 2

Byte n+4 Byte 3

Byte n+5 (Filler byte)

Byte n+6 Word components
Word 1

Byte n+7 or

Byte n+8 Doubleword components
Word 2

Byte n+9

Byte n+10 oo | oo [oo [oo | 40| 33| 2] T Bit components

Byte n+11 Byte 1 Byte component

Byte n+12
etc. .

Byte ...)n =even

Data type STRUCT, nested structure

A tag of data type STRUCT commences at a byte

*) with even address and always occupies an even
Byte n Data type 1 number of bytes.
Data type 2
Bytem” | SRUCT Datatype3 i
i Data type 4 :
Bytep” : STRUCT : Data type 5
E : Data type 6
E : Data type 7
Byte q*) : Data type 8 :
E Data type 9 _;
Byte s Y Data type 10
Data type 11
Data type 12 *) Byte with even number

Fig. 4.25 Structure of STRUCT data type

130

4.8 Parameter types

Name Data type Start value Comment
4l ~ Static
<l = ~ Fan Struct
< L switch_on Bool false Component #Fan.switch_on
<0 = switch_off Bool alze Component &Fanswitch_off
< L speed Int 0 Compenent #Fan.speed
< - delay Tirme T#0ms Component #Fan.delay

] <Add ne
= <Add nev

Fig. 4.26 Example of the declaration of a tag with STRUCT data type

Table 4.9 Overview of parameter types

Parameter type

Description

Examples of actual parameters

TIMER

SIMATIC timer function

%T15 or name

COUNTER

SIMATIC counter function

%C16 or name

Function_xTIME

IEC timer function

With the function TP, TON, TOF,
or TONR and different time value
lengths

The actual parameter is a
> Local instance: #Instance name
> Single instance: “Data block name”

Function_xCOUNTER

IEC counter function

with the function CTU, CTD or
CTUD and different count value
lengths

The actual parameter is a
> Local instance: #Instance name
> Single instance: “Data block name”

BLOCK_FC Function %FC17 or name (FC without block parameter!)
BLOCK_FB Function block %FB18 or name (FB without block parameter!)
DB_ANY Data block %DB19 or name or UINT tag
VOID No function value Without actual parameter (only with
(without data type) functions FC)
POINTER DB pointer As pointer: P#M10.0 or P#DB20.DBX22.2
As operand: %MW20 or %I1.0 or #Name
ANY ANY pointer As area: P#DB10.DBX0.0 WORD 20
or any (complete) tag
VARIANT VARIANT pointer As area: P#DB10.DBX0.0 WORD 20

or any (complete) tag
or type data block

4.8.2 TIMER and COUNTER parameter types

The SIMATIC timer and counter functions transferred at the block interface are of
parameter types TIMER and COUNTER. These types of block parameter can only be
declared in the declaration section Input. The content of the block parameter is the
number of the transferred timer and counter operands.

TIMER and COUNTER are also used in the PLC tag table as data types for SIMATIC
timer and counter functions.

131

4 Tags, addressing, and data types

4.8.3 Parameter types for IEC timer functions

The data types in Table 4.10 are available for the transfer of IEC timer functions to
the block interface. The structure of the data types corresponds to the structure of
the system data type IEC_TIMER (see Chapter 4.11.1 “System data types for IEC
timer functions” on page 139).

Table 4.10 Parameter types for IEC timer functions

Timer function

Parameter type
with TIME duration

Parameter type
with LTIME duration

Pulse generation TP_TIME TP_LTIME
ON delay TON_TIME TON_LTIME
OFF delay TOF_TIME TOF_LTIME
Accumulating ON delay TONR_TIME TONR_LTIME

The data types can be used in the declaration sections Input (input parameters),
InOut (infout parameters), and Static (static local data). If an IEC timer function is
transferred as input parameter, its components can only be scanned. You supply a
block parameter with the data type of an IEC timer function with the name of the
instance data, either with the data block if the call is created as a single instance, or
with the instance name if the call is created as a local instance in a function block.

The data types for IEC timer functions can also be used in PLC data types.

4.8.4 Parameter types for IEC counter functions

Depending on the counter type and the data type of the count value, there are the
data types shown in the table for the transfer of IEC counter functions to the block
interface. The structure of the data types corresponds to the structure of the system
data type IEC_XCOUNTER (see Chapter 4.11.2 “System data types for IEC counter
functions” on page 140).

The data types can be used in the declaration sections Input (input parameters),
InOut (in/out parameters), and Static (static local data). If an IEC counter function is
transferred as input parameter, its components can only be scanned. You supply a
block parameter with the data type of an IEC counter function with the name of the
instance data, either with the data block if the call is created as a single instance, or
with the instance name if the call is created as a local instance in a function block.

The data types for IEC counter functions can also be used in PLC data types.

4.8.5 Parameter types BLOCK _FC and BL.OCK_FB (STL)

Code blocks FC and FB, which are programmed using STL, can be transferred to a
block with the STL program via block parameters. With the data type BLOCK_FB, a
function block can be transferred via a block parameter. With the data type

132

4.8 Parameter types

Table 4.11 Parameter types for IEC counter functions

Counter function Parameter type Data type of the | Parameter type Data type of the
count value count value

Up counter CTU_SINT SINT CTU_USINT USINT
CTU_INT INT CTU_UINT UINT
CTU_DINT DINT CTU_UDINT UDINT
CTU_LINT LINT CTU_ULINT ULINT

Down counter CTD_SINT SINT CTD_USINT USINT
CTD_INT INT CTD_UINT UINT
CTD_DINT DINT CTD_UDINT UDINT
CTD_LINT LINT CTD_ULINT ULINT

Up/down counter CTUD_SINT SINT CTUD_USINT USINT
CTUD_INT INT CTUD_UINT UINT
CTUD_DINT DINT CTUD_UDINT UDINT
CTUD_LINT LINT CTUD_ULINT ULINT

BLOCK _FC, a function (FC) can be transferred. An FC block that is transferred in this
way must not have any block parameters. A function block must not have any
instance data blocks and thus no block parameters and no static local data.
The operations UC and CC that are used for the call are described in Chapter 10.6.2
“Block call function in the statement list” on page 438.

A block parameter with the BLOCK _FB or BLOCK _FC parameter type can only be
declared in the declaration section Input. The content of the block parameter is the
number of the transferred block.

4.8.6 Parameter type DB_ANY

A data block can be transferred to the called block via a block parameter with the
data type ANY_DB. The actual parameter can be the absolute address of a data block
(e.g. %DB10), the symbolic address of a data block (e.g. “Station data”), or a tag with
the data type UINT.

Ablock parameter with the DB_ANY parameter type can only be declared in the dec-
laration section Input. The content of the block parameter is the number of the
transferred block.

A block parameter with the data type DB_ANY cannot be the instance data block of
a function block or of a system block.

A data tag in this data block can be addressed in the program of the called block
with #BlockParameterName.%DataOperand. In this way, a data block whose number
is only known during runtime can be addressed. Further details can be found in
Chapter 4.3.4 “Indirect addressing of a data block” on page 102.

4.8.7 Parameter type VOID

The VOID parameter type (= without type) is used for the value of functions FC if the
function value is not to be displayed. Additional information on the function value
can be found in section “Using a function value of a function (FC)” on page 167.

133

4 Tags, addressing, and data types

4.8.8 Parameter types POINTER, ANY, and VARIANT

POINTER parameter type

A tag with elementary data type is transferred at a block parameter of the type
POINTER. Such a block parameter can be declared in the declaration sections Input
and InOut, and with functions (FC) also in the subsection Output. The content of the
block parameter is a DB pointer which points to the actual parameter to be trans-
ferred (see Chapter 4.9 “Pointer” on page 134).

ANY parameter type

A tag with any data type or a data area is transferred at a block parameter of the type
ANY. Such a block parameter can be declared in the declaration sections Input and
InOut, and with functions (FC) also in the subsection Output. The content of the
block parameter is an ANY pointer which points to the actual parameter to be trans-
ferred (see Chapter 4.9 “Pointer” on page 134).

Parameter type VARIANT

Ablock parameter with data type VARIANT contains a pointer to a tag or a data area.
VARIANT can be used in the declaration sections Input, InOut, and Output. Actual
parameters of all data types are approved for a block parameter of type VARIANT.
The actual parameter can be an absolutely or symbolically addressed tag, an oper-
and area that is absolutely addressed with an ANY pointer, or a type data block.

You can “pass on” a block parameter with the parameter type VARIANT to a block
parameter of a called block that also has the parameter type VARIANT.

4.9 Pointer

4.9.1 Introduction

A pointer is a reference to a tag, an operand, or an operand area. It is structured in
such a way that it contains the bit address, the byte address, the operand ID if appli-
cable, the area length, and the data type. STEP 7 knows the following types of point-
ers:

> Area pointers; these have a length of 32 bits and contain an address and possibly
the operand ID.

> DB pointers; these have a length of 48 bits and contain the number of the data
block in addition to the area pointer.

> ANY pointers; these have a length of 80 bits and contain further data such as the
data type of the operand in addition to the DB pointer.

For STL, the area pointer is used for indirect addressing. The DB pointer is used as
actual parameter for a block parameter with the data type POINTER or VARIANT,
and the ANY pointer is used as actual parameter for a block parameter with the data
type ANY or VARIANT.

134

4.9 Pointer

4.9.2 Area pointer
An area pointer is used for the indirect addressing for STL.

The area pointer contains the operand address and possibly also the operand area.
Without an operand area, it is an area-internal pointer. If the pointer also contains
the operand area, one refers to a cross-area pointer. The two types of pointer are dis-
tinguished by the assignment of bit 31 (Fig. 4.27).

You can load an area pointer as a constant into accumulator 1 or into one of the
address registers. The notation for this is as follows:

P#yx for an area-internal pointer (e.g. P#22.0) and
P#Zy.x for a cross-area pointer (e.g. P#M22.0)

where x = bit address, y = byte address, and Z = area. Specify the operand ID as the
area (I, Q, M, DBX, DIX, L, and P). The operand area I/O cannot be reached using a
pointer.

The area pointer always has a bit address which also always has to be specified for
digital operands; the bit address is 0 (zero) for digital operands. You can use the
area pointer P#M22.0, for example, to address the memory bit M 22.0, but also the
memory byte MB 22, the memory word MW 22, or the memory doubleword MD 22.

4.9.3 DB pointer

A DB pointer is used for transferring a tag to a block parameter or function param-
eter.

A DB pointer also contains, supplementary to the area pointer, a data block number
as UINT number. It specifies the data block if the area pointer contains the operand
areas Global data (DBX) or Instance data (DIX). In all other cases, zero is present
instead of the data block number (Fig. 4.27).

You have already become acquainted with the pointer's notation in the complete
addressing of data operands. The data block and the data operand are also specified
here separated by a dot: P#Data_block.Data_operand.

Examples:
> P#DB10.DBX20.5 Data bit 20.5 in data block 10
> P#DB102.DBD250.0 Data doubleword 250 in data block 102

4.9.4 ANY pointer

The ANY pointer is used for transferring a tag or an operand area to a block param-
eter or function parameter.

Supplementary to the DB pointer, the ANY pointer also contains the data type and a
repetition factor. It is thus possible to additionally point to an (absolutely
addressed) operand area. The representation of a constant is:
P#[Data_block.]Operand Type Quantity.

135

4 Tags, addressing, and data types

Pointers for indirect addressing

An area pointer contains the reference to a tag or an operand. An area-internal pointer contains the
byte and bit address, a cross-area pointer additionally contains the operand area. A zero pointer
points to “nothing” and is used as placeholder.

Zero pointer

Byten Byte n+1 Byte n+2 Byte n+3
00000000 0OOOOODODOOD 0OOOODOOOOOODODODOOODO

Area-internal pointer

Byten Byte n+1 Byte n+2 Byte n+3

00000000 OOO0OO0OO0OYYY YYYYVYYYY YYVYVYVYXXX

\ ~ A —
Byte address Bit address
Cross-area pointer
Byten Byte n+1 Byte n+2 Byte n+3

2727272722727 00000yyy yYyyyyyyy yyyyyXxxx

%{—J \ ~ H_J
Operand area Byte address Bit address
Operand area in the area pointer: Data type in the ANY pointer:
B#16#81 Inputs (I) B#16#00 NIL B#16#08 REAL
B#16#82 Outputs (Q) B#16#02 BYTE B#16#09 DATE
B#16#83 Bit memories (M) B#16#03 CHAR B#16#0A TOD
B#16#84 Global data (DBX) B#16#04 WORD B#16#0B TIME
B#16#85 Instance data (DIX) B#16#05 INT B#16#0C S5TIME
B#16#86 Temporary local data (L) B#16#06 ~ DWORD B#16#0E DT
B#16#87 Temporary local data B#16#07 DINT B#16#13 STRING
of preceding block (V)

The area pointer is used for the ANY pointer
indirect addressing via address
registers for STL. Byten B#16#10
The DB pointer is used as block Byte n+1 Data type

parameter with the data type
POINTER. If the actual parameter is

not a data operand, the data block Byte n+2 Quantity
number is occupied with B#16#00. .
DB pointer Byte n+3
The ANY pointer is used as block
parameter with the data type ANY. Byten Data block Byte n+4 Data block
It is used to point to an individual
tag, to an operand, or to an Byte n+1 number Byte n+5 number
operand area.
Byte n+2 Byte n+6
Byte n+3 Area Byte n+7 Area
Byte n+4 pointer Byte n+8 pointer
Byte n+5 Byte n+9

Fig. 4.27 Structure of the pointers

136

4.10 PLC data types

Examples:

> P#DB11.DBX30.0 INT 12 Area with 12 words in the %DB11 starting at %DBB30
> P#M16.0 BYTE 8 Area with 8 bytes starting at %MB16

> P#I118.0 WORD 1 Input word %IW18

> P#I1.5BOOL 1 Input %I1.5

The program editor then applies an ANY pointer which agrees with the data in the
representation of the constant with regard to type and quantity. Note that the oper-
and address in the ANY pointer must always be a bit address.

If a data area is addressed in absolute mode, the Optimized block access block attri-
bute must not be activated in the data block (standard access). The use of an abso-
lutely addressed operand area makes sense if there is no tag defined for this area.

You can create a “zero pointer” with P#P0.0 VOID 0.

The ANY_pointer is a constant which permanently points to a tag or an operand
area. How to create a “variable” ANY pointer is described in Chapter 4.3.5 “Indirect
addressing with an ANY pointer” on page 103.

4.10 PLC data types

A PLC data type is one with its own name. It is structured like the STRUCT data type,
i.e. it consists of individual components which can have different data types. You
can use a PL.C data type if you wish to assign a name to a data structure, for example
because you frequently use the data structure in your program. A PLC data type is
valid throughout the CPU (global).

4.10.1 Programming a PLC data type

All PLC data types are combined in the project tree under a PLC station in the
PLC data types folder. To create a PL.C data type, double-click on Add new data type

Project1500 » Central Control [CPU 1516-3 PN/DP] » PLC data types » Fan_data_type -2l X
¥ e Nl B =
Fan_data_type
MName Default value Setpoint Comment
1 < Works false D Feedback: Fan works
2 < Enable false D Enable fan control
3 @ Start false = Switch on fan
4 @ Stop true = Switch off fan
5 <@ Drive] Control fan drive
6 <@ Display a D Display: Fan works
7 Start_EM fa D Edge mernary for start signal
8 < Rotation_speed 0 D speed ofthe fan
S < Running_time 0 D Running time
10 | <Add new> |
[il »

Fig. 4.28 Example of programming a PLC data type

137

4 Tags, addressing, and data types

in the PLC data types folder. Enter the individual components of the PLC data type
in sequence in the declaration table with name, data type, default value, and com-
ment (Fig. 4.28).

You can change the standard name User_data_type_n, where n is the consecutive
number: Select the PLC data type in the project tree with the right mouse button,
select the Properties command from the shortcut menu, and enter the new name
under General. The name must not already be assigned to a PL.C tag, a user constant,
or a block. The operand ID is UDT (user-defined data type), the number is assigned
by the program editor.

4.10.2 Using a PL.C data type

A PLC data type can be assigned to any tag which is present in a global data block
or in the interface of a code block. The default setting for the PL.C data type can be
changed. You then address the individual components of the tag using
#tag_name.comp_name.

You can also assign a PL.C data type to an input or an output in a PLC tag table. Then,
however, the PL.C data type cannot have any components with the data type STRING.
Specify the bit 0 in the lowest byte as the absolute address for the operand area.
Example: %I64.0.

You can nest PLC data types. A (different) PL.C data type can be used in a PLC data
type.

With a PLC data type as the basis, you can also generate a data block: In the project
tree, double-click on Add new block in the Program blocks folder. Click on the
Data block button in the Add new block window, and select the PLC data type from
the Type drop-down list. The data structure of this type data block is then defined
by the PLC data type and can no longer be changed. The default setting is imported
by the PLC data type and can be changed.

4.10.3 Comparing PL.C data types

The PLC data types of the opened PLC station can be compared to the PL.C data types
in the CPU (offline/online comparison) or to the PL.C data types in a different station
from the same project, from a reference project, or from a library (offline/offline
comparison). To perform the comparison, select the PLC station in the project tree
and choose the command Compare > Offline/online or Compare > Offline/offline.
An online connection to the CPU is required for the offline/online comparison.

This starts the compare editor, which shows the PLC station with the contained
objects on the left side, including the PLC data types. For the offline/online compar-
ison, the user program objects from the CPU are displayed on the right side. For an
offline/offline comparison, use the mouse to move a PLC station from the same
project, from a reference project, or from a library into the title bar on the right side
of the compare editor. You can move other PLC stations into the title bar on one of
the two sides at any time in order to carry out further comparisons.

138

4.11 System data types

The “Status and action area” is located between the two tables. Above this is the swi-
tchover button with the scale. In the automatic comparison (the switchover button
with the scale is white), the PLC data types are automatically assigned on the left
and right side based on their names and the comparison icons are displayed in the
center. Activate the manual comparison by clicking on the switchover button.
The switchover button is now gray. Manually assign the PLC data types to be com-
pared by selecting them using the mouse. The result of the comparison is displayed
in the bottom area of the comparison window in the “Property comparison”.
The lower area can be opened and closed using the arrow buttons.

For a detailed comparison, select a PL.C data type and click on the Start detailed
comparison icon. The compared PL.C data types are displayed next to each other. The
columns Status and Action are located between the lists. You can select the desired
action from a drop-down list.

A filled green circle means that the objects are identical. A blue-orange semicircle
(offline/online comparison) or a blue-gray semicircle (offline/offline comparison)
indicates that the objects differ. If one half of the circle is not filled, the correspond-
ing object is missing. An exclamation mark in a gray circle indicates an object with
differences in the identified folder.

In the Action column, you can select an action from a drop-down list for different
objects, for example copying with an arrow in the direction in which you are copy-
ing. Clicking on the Execute actions icon starts the set actions. Note that you can nei-
ther add, delete, nor overwrite objects in reference projects.

4.11 System data types

System data types (SDT) are pre-defined data types which, like the data type
STRUCT, consist of a fixed number of components which can have different elemen-
tary data types each. System data types are provided with STEP 7 and cannot be
changed. The system data types can only be used together with certain functions or
statements.

4.11.1 System data types for IEC timer functions

For the instance data of an IEC timer function, a CPU 1500 has two system data
types: IEC_TIMER for durations with the data type TIME, and IEC_LTIMER for dura-
tions with the data type LTIME.

If you use one of the statements TP, TON, TOF or TONR, the program editor -
depending on the specification Single instance or Multi-instance - creates a data
block or a local instance with the data type IEC_TIMER or IEC_LTIMER. You can
also create a type data block or a local instance with the data type IEC_TIMER or
IEC_LTIMER yourself. IEC_ TIMER or IEC_LTIMER consists of the components
shown in Table 4.12.

139

4 Tags, addressing, and data types

Table 4.12 Structure of the system data types [EC_TIMER and IEC_LTIMER

Name Designation Data type for IEC_TIMER Data type for IEC_LTIMER
ST (internal) TIME LTIME
PT Preset time TIME LTIME
ET Elapsed time TIME LTIME
RU (internal) BOOL BOOL
IN Start input BOOL BOOL
Q Timer status BOOL BOOL

You can address the individual components of the data type as usual as the data tag
“Data block”.component or as the local tag #Locallnstance.component.

Example: You create a local instance with the name #Duration and the data type
IEC_TIMER. You can then scan the time status with #Duration.Q.

4.11.2 System data types for IEC counter functions

For the instance data of an IEC counter function, a CPU 1500 has eight system data
types — depending on the data type of the count value (Table 4.13).

Table 4.13 System data types for IEC counter functions

IEC data type Data type of the IEC data type Data type of the
count value count value
IEC_SCOUNTER SINT IEC_USCOUNTER USINT
IEC_COUNTER INT IEC_UCOUNTER UINT
IEC_DCOUNTER DINT IEC_UDCOUNTER UDINT
IEC_LCOUNTER LINT IEC_ULCOUNTER ULINT

Table 4.14 Structure of the system data types IEC_xCounter

Name Designation Data type

cu Up counter input (count up) BOOL

cDh Down counter input (count down) BOOL

R Reset input BOOL

LD Load input BOOL

QU Status up BOOL

QD Status down BOOL

PV Preset value SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT *)
cv Count value SINT, INT, DINT, LINT, USINT, UINT, UDINT, ULINT *)

*) dependent on the system data type (IEC_SCOUNTER, IEC_COUNTER, IEC_DCOUNTER, etc.)

140

4.11 System data types

If you use one of the statements CTU, CTD or CTUD, the program editor - depending
on the specification Single instance or Multi-instance - creates a data block or alocal
instance with the data type IEC_xCOUNTER. You can also create a type data block or
a local instance with the data type IEC_xCOUNTER yourself. IEC_xCOUNTER con-
sists of the components shown in Table 4.14.

You can address the individual components of the data type as usual as the data tag
“Data block”.component or as the local tag #Locallnstance.component. Example: You
create a local instance with the name Number and the data type IEC_COUNTER.
You can then scan the count value with #Number.CV.

4.11.3 Data type ERROR_STRUCT

The data type ErrorStruct is a data structure with predefined assignment. The data
type is used by the functions for error evaluation GetError and GetErrorID. Infor-
mation concerning an error that occurred is output with this structure (Table 4.15).
A tag with data type ErrorStruct commences at a word limit (at a byte with even
address).

Additional information is output depending on the assignment of the structure
component MODE (Table 4.16). When declaring an ErrorStruct tag, the data type is
selected from the drop-down list. The components can also be addressed individu-
ally: Tag name.Component_name.

The assignment of the ERROR_ID and handling of the error evaluation is described
in Chapter 5.8.2 “Local error handling” on page 213.

Table 4.15 Structure of ErrorStruct data type

Name Data type | Note, assignment
ERROR_ID WORD Error ID (see text)
FLAGS BYTE 16#00
REACTION BYTE Reaction to error
16#00: none, no writing (write error)
16#01: replace, read a zero (read error)
16#02: skip statement (system error)
CODE_ADDRESS CREF
BLOCK_TYPE BYTE Type of block in which the error occurred
16#01: OB, 16#02: FC, 16#03: FB
CODE_BLOCK_NUMBER UINT Number of block in which the error occurred
OFFSET UDINT Internal memory address at which the error occurred
MODE BYTE Assignment for the significance of the supplied data (A) to (E)
(see text)
OPERAND_NUMBER UINT Internal operand number of operation
POINTER_NUMBER_LOCATION UINT Internal pointer address of operation (A) (see text)
SLOT_NUMBER_SCOPE UINT Internal address in memory (B) (see text)
DATA_ADDRESS NREF
AREA BYTE Addressed memory area on occurrence of error (C) (see text)
DB_NUMBER UINT Number of data block on occurrence of error, otherwise
zero (D) (see text)
OFFSET UDINT Bit offset on occurrence of error (E) (see text)

141

4 Tags, addressing, and data types

Table 4.16 Information output depending on access type MODE

MODE (A (B) (©) (D) (E)

16#00 - - - - -

16#01 - - - - OFFSET

16#02 - - AREA - _

16#03 LOCATION SCOPE - NUMBER -

16#04 - - AREA - OFFSET

16#05 - - AREA DB_NUMBER OFFSET

16#06 POINTER_NUMBER_ | SLOT_NUMBER_ AREA DB_NUMBER OFFSET
LOCATION SCOPE

16#07 POINTER_NUMBER_ | SLOT_NUMBER_ AREA DB_NUMBER OFFSET
LOCATION SCOPE

Memory area Assignment of AREA component

System memory (temporary 16#40...4E, 16#86, 16#87, 16#8E, 16#8F, 16#C0...CE

local data)

Process image input (1) 16#81

Process image output (Q) 16#82

Bit memories (M) 16483

Data operands (DB) 16#84, 16485, 16#8A, 16#8B

4.11.4 Startinformation

If the attribute Optimized block access is deactivated for an organization block, the
operating system of the CPU transfers start information in the temporary local data
when the organization block is called. The start information can only be directly
scanned in the program of the organization block. The system block RD_SINFO also
permits access to the start information from the blocks called in the organization
block.

The program editor automatically configures the start information when adding an
organization block to the user program. The tag names and comments in English
can be adapted according to your requirements.

This start information is 20 bytes long for every organization block and practically
identical. The “standard structure” of the start information shown in Table 4.17 can
be found as a basic framework in all organization blocks. Individual tags can have
different names and different data types for some organization blocks. If the addi-
tional information and the data ID contain relevant information, this is specified in
the description of the individual organization blocks.

For an organization block with the Optimized block access attribute activated, the
CPU operating system transfers any existing start information in the Input declara-
tion section. This startinformation is described for the corresponding organization
blocks.

142

4.12 Hardware data types

Table 4.17 Structure of the start information

Byte Data type Tags Meaning, remark

0 BYTE EV_CLASS Bits O to 3: Event identifier
Bits 4 to 7: Event class

1 BYTE EV_NUM Event number

STRT_INF
2 BYTE PRIORITY Priority class, number of execution level
3 BYTE NUM OB number

B#16#FF for an OB number >254

4 BYTE TYP2_3 Data ID 2_3: identifies the information entered in ZI2_3
5 BYTE TYP_1 Data ID 1: identifies the information entered in ZI1
6..7 WORD ANl Additional information 1

8...11 DWORD 712 3 Additional information 2_3

12...19 | DATE_AND_TIME | DATE_TIME Beginning of event

4.12 Hardware data types

Hardware data types refer to all data types which can accept the hardware identifi-
ers in the default tag table in the System constants tab. A hardware object is
addressed in the program with a hardware identifier. The data type and the value
are predefined, the name can be changed in the object properties (see also
Chapter 4.4 “Addressing of hardware objects” on page 107). Fig. 4.29 shows the Sys-
tem constants tab with a selection of hardware data types.

Profect1500 ¢ Contrad Cantrod [CPU 1516-3 PNDF] » PLC tags ¢ Doefault tag tabls (82]
-ﬂ T A | @ User constants I@ System conslants
.-
Default tag table
Mo Dt type Valur Commind

18 B Cenuml_Contiglac) Five_Tubbiodule §1 -
36 %8 Cencml_Concol[Commaon] Fiw_Subbicdule 50
37 [E] ceneml_Conerol{Driplay] Foe_Salbbdesiule 54
3 15 centml_Control[fes<] v Swbhicdule 52
38 & Ceneml Conool Fiw_Subbdodule ag
40 K oFoeiedace v Interdace (]

«1 TE reofd T incedace_1 Ma_interiace i
42 T Porilen) Hw_inseriace 85

43 a“] Peet_2[FN) e lnteriace 11

o [E reorEincerace_2 M nteriace 72

45 TE] Peer_1[PN[T) en_lnerince 73

46 T pa_3zcavnc HF o] v Sabhedule 258

IH po_phagvoc_psa ST 1[Da] M Sublicdule 188

12 [oB_Eramples DB_PCYCLE 200

2 [Z] OB Marms OB_PCYELE L]

g0 T op_tent Oll_rovcLl]

51 TE op_mein OB_PCYCLE 1

82 Bl o8 wmin online OB _FCYELE 600

1 [E ob_Henfwere inserrupt OO_HMNT a0

ta WE] Algsl | RTD_TC_ST.V[AK o Subblesdule 260 J

|] " ¥

Fig. 4.29 Examples of hardware data types

143

5 Program execution

5 Program execution

5.1 Operating states of the CPU

A CPU 1500 recognizes the following operating states in which it is ready for oper-
ation:

> STOP, when the user program is not being executed
> STARTUP, when the startup program is being executed

> RUN, when the main program and the interrupt routine are being executed

If the CPU is not ready to operate, there is either no power supply or the CPU is
defective.

Fig. 5.1 illustrates the operating state transitions:

@ After it is switched on, the CPU switches over to the STARTUP operating state if
Warm restart is set as the startup type and the online project data is consistent.

@ After a successful startup, the CPU switches to the RUN operating state.

® If No startup is set as the startup type, the CPU switches to the STOP operating
state after being switched on.

@ (® The CPU switches to the STOP operating state if a “serious” error occurs
during STARTUP or RUN, the system block STP is being executed, or the CPU is
stopped by the operator.

Operating states of a CPU 1500

POWER ON .
After it is switched on, the CPU - if the corresponding

conditions are fulfilled - switches to the STARTUP operating
¢ ¢ state) and then to RUN (2)..
The CPU switches to STOP if the startup conditions are not
@ fulfilled after switching on), or ifa “serious” error occurs
) STARTUR | e oo can i from the $70P oprating st i
e can switch from the operating state via
@ ® STARTUP (8) to RUN (2).

STOP
v

<«— (G RUN

Fig. 5.1 Operating states and operating state transitions of a CPU 1500

144

5.1 Operating states of the CPU

® The CPU switches from STOP to the STARTUP operating state if it is started by the
operator and the online project data is consistent.

Using the mode switch on the CPU, you can activate the operating states STOP and
RUN. The operating states are displayed on the CPU display and are indicated by the
RUN/STOP LED: In the STOP operating state, the LED displays a continuous yellow
light. In the RUN operating state, the LED is green.

On the programming device, you can control the operating states in online mode
using the online tools and you can display them in various ways, e.g. with the
online tools or in the inspector window in the tab Diagnostics > Device information.

5.1.1 STOP operating state

The STOP operating state is reached

> after the power supply is switched on at the CPU and No restart is configured as
the startup type,

> after changing the mode switch from RUN to STOP,
> if a “serious” error occurs during program execution,
> if the STP system block is executed in the user program, and

> following a stop request from the programming device.

The CPU enters the cause of the STOP operating state into the diagnostics buffer. In
this operating state you can also read out the CPU information using a program-
ming device in order to find the reason for the stop.

The user program is not executed in the STOP operating state. The CPU takes over
the device settings — either the values you have set with the hardware configuration
when parameterizing the CPU, or the standard settings — and sets the connected
modules to the parameterized initial state.

In the STOP operating state, the CPU can execute passive one-way communication
functions if, for example, data is requested or sent by another station via S7 com-
munication. The real-time clock continues to run in the STOP operating state.

You can parameterize the CPU in the STOP operating state, for example set the IP
address, transfer or modify the user program, and you can also carry out a memory
reset for the CPU.

Disabling of output modules

All output modules are disabled when in the STOP operating state (OD or BASP sig-
nal, output disable or command output disable). Disabled output modules output a
zero signal or - if configured accordingly — a parameterized substitute value.

145

5 Program execution

5.1.2 STARTUP operating state

The STARTUP is executed when the CPU changes from the STOP operating state to
the RUN operating state. In the STARTUP operating state, the CPU initializes itself
and the modules controlled by it.

In the STARTUP operating state, the CPU updates the SIMATIC timer functions, the
clock memories, the runtime meters and the real-time clock, and executes the user
program in a startup organization block.

No interrupt events — except errors — are processed during execution of the startup
program. Interrupts occurring during the startup are executed after the startup but
before the main program.

A CPU 1500 carries out a warm restart when started up (Fig. 5.2).

CPU 1500 activities in the STARTUP and RUN operating states
(' switchingon)

STARTUP ¥

Reset process image input
|

Disable peripheral outputs RUN
(switch off, retain last value,
or output substitute value) ¢
|
Reset non-retentive bit memories and Transfer process image output
SIMATIC timer/counter to the modules
functions

Update process image
input

Reset non-retentive data operands
to initial values
I |
Execute main program
(including all interrupt
| and error programs)

Execute startup program

Update process image input |

I Operating system activities
Enable peripheral outputs (e.g. communication with the PG)

I el)l I
-

Fig. 5.2 CPU activities in the STARTUP and RUN operating states

Warm restart startup type
A manual warm restart is triggered

> by the mode switch on the CPU on a transition from STOP to RUN, or

146

5.1 Operating states of the CPU

> by operator input on the programming device; the mode switch must be at RUN
for this.

A manual warm restart can always be triggered, except if the CPU requests a mem-
ory reset.

An automatic warm restart is triggered by switching on the power supply if

> the CPU was not at STOP when the voltage was switched off, the mode switch is
set to RUN, and the startup type Warm restart was parameterized in the
CPU properties under Startup after POWER ON, or

> the CPU was interrupted during a warm restart by a power failure.

With a warm restart, the CPU deletes the process image input and initializes the
process image output and the peripheral outputs, i.e. the outputs and the periph-
eral outputs are switched off, retain their last value, or output a parameterized sub-
stitute value depending on the parameterization. This is followed by disabling of
the peripheral outputs by the OD or BASP signal (output disable or command out-
put disable).

The CPU deletes the non-retentive bit memories, SIMATIC timers, and SIMATIC
counters, and sets the non-retentive data operands to the start values from the load
memory. The values of the operands set as retentive are retained. The current pro-
gram and the retentive data in the work memory are retained, as are the data blocks
generated per system block.

Hardware compatibility

The modules are parameterized as was defined by the hardware configuration. If a
module other than the configured module is plugged in, you can configure the
startup behavior of the CPU:

In the module properties of the CPU, under Startup and Comparison preset to actual
configuration, you can choose between Start up CPU only if compatible and Startup
CPU even if mismatch.

In the properties of a signal module, under Module parameters > General, you can
set the individual startup behavior in the Comparison preset to actual module field
depending on the module: From CPU, Start up CPU only if compatible, or Startup CPU
even if mismatch.

Startup program

If startup organization blocks are available, they are called one-time (see
Chapter 5.5 “Startup program” on page 169). The peripheral inputs can be accessed
directly during the startup program and the outputs and peripheral outputs can be
controlled. However, the signal states at the output terminals are not yet changed
because the peripheral outputs are still disabled.

The process image input is updated following execution of the startup program,
and the process image output is transferred to the I/O. Disabling of the peripheral

147

5 Program execution

outputs is then canceled. Following a warm restart, execution of the main program
always commences at the beginning.

5.1.3 RUN operating state

The RUN operating state is reached from STARTUP operating state. In the RUN oper-
ating state, the user program is executed and the PLC station controls the machine
or process.

The following activities are executed cyclically by the CPU (see also Fig. 5.2 on
page 146):

> Transmission of process image output to the output modules
> Updating of the process image input

> Execution of the main program, including interrupt and error programs

The main program is present in organization block OB 1 and in further organiza-
tion blocks of the Program cycle event class. If further organization blocks are pres-
ent for the main program, they are executed following the OB 1 in order of their
numbering.

In the RUN operating state, the CPU has unlimited communication capability.
All functions provided by the operating system, e.g.time-of-day and runtime
meter, are in operation.

Further information on execution of the user program in the RUN operating state
can be found in Chapter 5.6 “Main program” on page 177 (including process
images, cycle time, response time, time-of-day), in Chapter 5.7 “Interrupt process-
ing” on page 192 (time-of-day, time-delay, cyclic and hardware interrupts), and in
Chapter 5.8 “Error handling” on page 212 (including OB 82 diagnostics interrupt
and OB 80 time error).

5.1.4 Retentive behavior of operands

A memory area is retentive if its contents are retained even when the power supply
is switched off, as well as on a transition from STOP to RUN following power-up.
The values of the set retentive tags are stored in the retentivity memory, which has
a CPU-specific size. It can accommodate bit memories, SIMATIC timer functions,
SIMATIC counter functions, and tags from data blocks.

Retentivity settings for bit memories and SIMATIC timer/counter functions

You set the retentive memory area for the bit memories and the SIMATIC
timer/counter functions in the PLC tag table or in the assignment list. Click on the
symbol for retentivity in the toolbar of the working window and enter the number
of retentive memory bytes and the number of retentive timer and counter func-
tions. The retentivity area always begins with the address zero. A memory tag occu-
pying more than one byte must not exceed the limit between the retentive and
non-retentive areas.

148

5.2 Creating a user program

Aretentive operand is marked with a checkmark in the Retain column of the PLC tag
table. You can activate/deactivate the retentivity mark in the assignment list via an
icon in the toolbar of the working window.

Retentivity settings for global data tags

If the Optimized block access attribute is activated in a global or type data block,
individual tags can be defined as retentive. In the case of a tag with a structured
data type, only the complete tag can be set to retentive. If the attribute is not acti-
vated, the retentivity setting applies to the entire data block.

Retentivity settings for tags in function blocks

If the Optimized block access attribute is activated in a function block, the retentiv-
ity of individual tags can be set in the interface area. Select the settings for each tag
from a drop-down list:

> Non-retain
The tag in the instance data block is always non-retentive.

> Retain
The tag in the instance data block is always retentive.

> SetinIDB
The retentivity setting for the tag can be made in the instance data bock.

The standard setting is “Non-retain”. For a tag with a structured data type, the
retentivity setting applies for the whole tag.

If the attribute Optimized block access is not activated, the setting can be made in
the instance data block, but only for the complete data block. The Optimized block
access property of the function block is “bequeathed” to the associated instance
data blocks.

5.2 Creating a user program

5.2.1 Program draft

You define the structure of the user program during the draft phase by adaptation
to technological and functional conditions; this is important for program creation,
testing, and startup. In order to achieve effective programming, it is therefore nec-
essary to pay particular attention to the program structure.

Analysis of a complex automation task means division of it into smaller tasks or
functions based on the structure of the process to be controlled. You define the indi-
vidual tasks by determining the function and then defining the interface signals to
the process or to other individual tasks. You can adopt this structuring of individual
tasks in your program. This means that the structure of your program corresponds
to the structure of the automation task.

149

5 Program execution

A structured user program is easier to configure and program section by section,
and means that more than one person can carry out the work in the case of very
large user programs. Last but not least, program testing, servicing, and mainte-
nance are simplified by this division.

With a linear program structure, the entire user program is present in one single
block - a good solution for small programs. The individual control functions are
program parts within this block, and are executed in succession. A block can be
divided into so-called networks (not with SCL), each of which has part of the block
program. STEP 7 numbers all networks in succession. During editing and testing,
you can directly reference each network using its number.

The networks are executed in the order of their numbering, but can also be
bypassed depending on conditions. The program can be tested in sections using
jump instructions temporarily inserted during commissioning.

A modular program structure is used if the task is very extensive, if you wish to
repeatedly use program functions, or if complex tasks exist. Structuring means
dividing the program into sections — blocks — with self-contained functions or a
functional correlation, and exchanging as few signals as possible with other blocks.
If you assign a specific (technological) function to each program section, manage-
able blocks are achieved with simple interfaces to other blocks.

In Fig. 5.3, a simple example is used to compare linear program structures with
modular program structures. With the linear program structure, the individual
control functions are written in succession into a block. In the modular program
structure, each control function is present in a block which is called by a “higher”
block. Further blocks can be called in turn in the called block.

Blocks can also be used repeatedly. Let us assume in the example that the control
of motors 1 to 3 has the same function, only the input and output signals and the
control operations are different. A Motor block can then be called three times with
different signals (parameters) and control the motors independently of one
another.

Practice-oriented program organization

In the block at the highest position in the call hierarchy (in the main program), you
should call the blocks located “underneath” in such a manner that you achieve
rough structuring of your program. Program structuring is possible according to
technological or functional aspects.

The following explanations can only present a rough and very general view which
can provide a beginner with food for thought with regards to program structuring
and ideas for realization of his control task. Advanced programmers usually have
enough experience to allow them to find a program structure appropriate to the
specific control task.

Technological program structuring is strongly based on the structure of the
plant to be controlled. The individual parts of the plant or the process to be con-
trolled correspond to the individual program sections. Subordinate to this rough

150

5.2

Creating a user program

Linear and modular program structures

Linear

program structure

Main program

Operati d > 77 Operati d

erating modes | | —TTTTTTTToTTo erating modes

p : # ~—__ P [e]

Displ trol | | =mmmmmmmmmm-- -7 Disol -
isplay contro isplay control
play ~__ Display

-

Main program

Modular program structure

Control motor 1
—»
* ------------- > w Control motor 1
Control motor 2~ | | ============- s —»
* \ ------------- > .« Control motor 2
—»
Controlmotor3 | | | \ "Tttommmmo-o- - . Control motor 3
o s b / Valve control
ontrol valve
—»
* _____________ — > « Controlvalve 1
—
Control valve 2 l \ ------------- - . Control valve 2
E luati - luati
rror evaluation | | ==-m--m------ rror evaluation
¥ (.
Data transf > 77 Data transt
ata transfer | | === mmmmm---- ata transfer
~—_

¢ l __Blockeall___

Fig. 5.3 Comparison between linear and modular program structures

structuring is the scanning of limit switches and HMI devices and the control of
final controlling elements and display units (specific to each plant unit). Signal
exchange between the individual plant units (or better: program sections) takes
place by means of global tags.

Functional program structuring is based on the control function to be executed.
This type of program structuring does not initially take into account the structure
of the plant to be controlled. The division of the plant only becomes visible in the
subordinate blocks if the control function achieved using the rough structuring is
divided further.

In practice, mixed forms of the two structuring concepts are usually present. Fig.
5.4 shows an example: The operating mode program and the data processing pro-
gram reflect a plant-independent division of functions. The program sections Feed
1, Feed 2, Process, and Remove base their technological structuring on the plant
units to be controlled.

151

5 Program execution

Example of program organization

OB1 Main program

FB 10 DB10 Operating modes
[—— FB20 DB 20 Feed 1

FC10 Interlocks
FB101 Belt control 1
FB 101 Belt control 2

etc.

FB19 Data acquisition

FB 20 DB 21 Feed 2
FB 30 DB30 Process
FB 40 DB40 Remove

FB 50 DB50 Data processing

---------------------- DB59 Delivery data
EC 51 Data preparation

FB 51 DB 51 Communication

USEND

URCV

Fig. 5.4 Example of program organization

The example also shows the use of different types of block (further information on
the types of block can be found in Chapter 5.3.1 “Block types” on page 155).
The organization block OB 1 contains the main program; the blocks for the operat-
ing modes, for the individual plant units, and for data processing are called in it.
These blocks are function blocks (FB) with an instance data block (DB) as the data
memory. Feed 1 and Feed 2 have an identical structure; FB 20 is used to control a
feeder unit, in the case of Feed 1 with DB 20 as the instance data block, and in the
case of Feed 2 with DB 21.

In the Feed controller, the function FC 20 processes the interlocks; it scans inputs or
bit memories, and controls the local data of FB 20. Function block FB 101 contains
a conveyor belt control; it is called once per conveyor belt. The call is carried out as
a local instance so that its local data is present in the instance data block DB 20.
The same applies to the data acquisition FB 29.

Data processing FB 50 with DB 50 processes the data acquired with FB 29 (and other
blocks) which is present in the global data block DB 60. Function FC 51 prepares this
data for transmission. Transmission is controlled by FB 51 (with DB 51 as the
instance data block), in which the USEND and URCV are called for communication
with another station. The system blocks store their instance data in the
“higher-level” DB 51 in this case as well.

152

5.2 Creating a user program

Block nesting depth

A further block can be called within a block, and then another one in this, etc.
The number of such “horizontal” call levels, the nesting depth, is limited. In Fig.
5.4, for example, block FB 20 is called in block OB 1 (nesting depth 1), and then
block FC 20 in FB 20. This corresponds to a nesting depth of 3.

The maximum nesting depth is 24 per priority level for a CPU 1500. If more blocks
are called in a “horizontal” level, the CPU will generate a program execution error.

Blocks which are called in succession (linear, “vertical”) do not generate a new call
level and therefore do not affect the nesting depth.

5.2.2 Program execution

The complete program of a CPU comprises the operating system and the user pro-
gram (control program).

The operating system is the totality of all statements and declarations of internal
operating functions (e.g. saving of data in event of power failure, activation of pri-
ority classes etc.). The operating system is a fixed part of the CPU which you cannot
modify. However, you can reload the operating system from a FLASH memory card,
e.g. for a program update.

The user program is the totality of all statements and declarations programmed by
you for signal processing by means of which the plant (process) to be controlled is
influenced in accordance with the control task.

Program execution types

The user program consists of program sections which are executed by the CPU for
specific events. These events can be, for example, the starting up of the automation
system, an interrupt, or detection of a program error (Fig. 5.5). The programs
assigned to the events are divided into priority classes which define the sequence
of program execution if several events occur simultaneously and thus the interrupt
capability hierarchy.

The main program, which is executed cyclically by the CPU, has the lowest execu-
tion priority. All other events can interrupt the main program following each state-
ment; the CPU then executes the associated interrupt or error program and subse-
quently returns to execution of the main program.

A specific organization block (OB) is assigned to each event. The organization
blocks represent the event classes in the user program. If an event occurs, the CPU
calls the associated organization block. An organization block is part of the user
program which you can program yourself. There are organization blocks with per-
manently assigned number and organization blocks with a freely assignable num-
ber.

153

5 Program execution

Program execution modes of the user program

Operating system User program

o STARTUP operating state
Switching on

Startup program

(—>C - -) RUN operating state

Cycle start

Main program

<Interrupt> & L Interruption Interrupt program

<Error> - L Interruption

X —

Fig. 5.5 Program execution modes of a SIMATIC user program

Error program

f N

Startup program

Program execution commences in the CPU with the startup program in the
STARTUP operating state, after switching on the power supply, for example.
The startup program is optional. If you wish to create a startup program, use orga-
nization block OB 100 (Startup). You have the capability of assigning additional
organizational bocks to the startup program. These are then processed in the order
of their OB number after OB 100. Additional code blocks can be called up in a
startup organization block. Following execution of the startup program, the CPU
commences with execution of the main program.

Main program

The main program is present as standard in organization block OB 1 (Program
cycle), which is always executed by the CPU. The first statement in OB 1 is identical
to the program start of the main program. You have the capability of assigning
additional organizational bocks to the main program. These are then processed in
the order of their OB number after OB 1. Additional code blocks can be called up in
a main program organization block. The main program is the totality of all of the
cyclically processed organization blocks.

Following execution of the main program, the CPU branches to the operating sys-
tem and, following execution of various operating system functions (e.g. update

154

5.3 Programming blocks

process images), calls OB 1 and the organization blocks assigned to the main pro-
gram again.

Interrupt routine and error program

Events that can interrupt the main program are interrupts and errors. Interrupts
have their origin in the plant to be controlled (hardware interrupt), in the CPU
(time-of-day, time-delay and cyclic interrupts), or originate from the modules
(diagnostics interrupt).

A distinction is made between asynchronous and synchronous errors. An asynchro-
nous error is an error which is independent of program execution, for example a
power supply failure in a station of the distributed I/O. A synchronous error is
caused by the program execution, for example the addressing of a non-existent
operand or an error during conversion of a data type.

5.3 Programming blocks

5.3.1 Block types

You can divide your program into individual sections as required. These program
parts are called “blocks”. A block is a part of the user program that is defined by its
function, structure or application. Each block should feature a technological or
functional framework.

User blocks

You can select different types of block depending on the application:

> Organization blocks OB

The organization blocks represent the interface between operating system and
user program. The CPU's operating system calls the organization blocks when
specific events occur, e.g. in the event of a hardware interrupt or cyclic interrupt.
The main program is located in organization block OB 1 by default. There are
organization blocks with a fixed number and a fixed assignment to an event and
there are organization blocks with a freely selectable number and a freely select-
able assignment to an event. When calling, the organization blocks make start
information available that can be evaluated in the user program.

> Function blocks FB
A function block is part of the user program whose call can be programmed us-
ing block parameters. A function block has a tag memory which is located in a
data block - the instance data block. If a function block is called as a single in-
stance, a separate instance data block is assigned to the call. When called as a lo-
cal instance, the data is stored in the instance data block of the calling function
block.

155

5 Program execution

> Functions FC
The blocks referred to as “functions” are used to program frequently recurring
automation functions. The calls can be parameterized. Functions do not store in-
formation and have no assigned data block.

> Data blocks DB

Data blocks contain data of the user program. A data block can be generated as
global data block, instance data block, ARRAY data block, type data block, or CPU
data block. With a global data block, you program the data tags directly in the
data block. For an instance data block, the programming of the assigned func-
tion block defines which data tags the data block has. An ARRAY data block con-
sists of tags which all have the same data type. A type data block has the structure
of aPLC data type and a CPU data block is created during runtime in the user pro-
gram with CREATE_DB.

The number of organization blocks and their block numbers are defined in part by
the operating system. The block numbers of the other types of block can be
assigned as desired within the permissible range. Note that the number range is
larger than the number of permissible blocks. Blocks should preferably be symbol-
ically addressed using a name.

System blocks

System blocks are components of the operating system. They can contain programs
(system functions SFC or system function blocks SFB) or data (system data blocks
SDB). System blocks make a number of important system functions accessible to
you, for example manipulating the internal CPU clock or the communication func-
tions. Some of the functions offered under the extended statements in the program
elements catalog are system functions or system function blocks.

You can call system functions and system function blocks, but you cannot modify
them or program them yourself. The blocks themselves do not require space in the
user memory; only the block call and the instance data blocks of the system func-
tion blocks are in the user memory.

System data blocks contain configuration data, for example module parameters.
These blocks are created and managed by STEP 7 itself. As arule, system data blocks
are located in the load memory. You can only access the contents of system data
blocks in special cases, such as when parameterizing modules with the aid of sys-
tem blocks.

Standard blocks

In addition to the functions and function blocks you create yourself, off-the-shelf
blocks are also available from Siemens. These so-called standard blocks can be pro-
vided on a data medium or are delivered together with STEP 7, for example as
extended statements or in the global libraries. You cannot view or edit the range of
standard blocks. Standard blocks behave like user blocks: They require space in the
user memaory.

156

5.3 Programming blocks

Standard blocks also share the number range with the user blocks. If a standard
block is added to the user program by means of an extended statement, for exam-
ple, the number of the standard block can no longer be occupied by a user block.
If a user block is already present with the number of the standard block which you
add to the user program, the number of the standard block is initially retained. The
standard block is then assigned a different, unused number during the next com-
pilation.

5.3.2 Block properties

Table 5.1 shows the modifiable block properties. The block attributes that are spe-
cially intended for blocks with the GRAPH program or for blocks in connection with
the engineering tool Continuous Function Chart (CFC) are not included in the table.
Additional properties can be set for some organization blocks, e.g. the phase offset
for cyclic interrupt processing. These are described in the corresponding chapters.

Each block has other properties which cannot be set by the user and which provide
information about the status of the block, for example the time of creation and
compilation.

You configure the properties of a block using the program editor when the block is
created, as described in Chapters 6.3.3 “Specifying code block properties” on page
256 and 6.4.3 “Defining properties for data blocks” on page 272. These chapters
also contain a detailed description of the block attributes.

5.3.3 Block interface

The block interface contains the declarations of the local tags that are used solely
within the block. These are the block parameters and the temporary and static local
data. The block interface is shown as a table in the top part of the working window
and contains - depending on the block type - the sections shown in Table 5.2.

Input parameters

An input parameter transfers a value to the program in the block and may only be
read in the block program. Input parameters are shown in the block call in the
sequence of their declaration, with LAD and FBD on the left side of the call box and
with STL and SCL at the start of the parameter list.

An input parameter with data type STRING has an adjustable maximum length in a
function block, and a fixed maximum length of 254 characters in a function.
The data type TIMER can be used to transfer a SIMATIC timer function, and the data
type COUNTER to transfer a SIMATIC counter function. Some organization blocks
with the activated block attribute Optimized block access provide start information
in the block interface as input parameters.

A block parameter with the data type DB_ANY transfers a data block to the called
block. For blocks with the STL program, a block parameter with the data type
BLOCK_FB transfers a function block and a block parameter with the data type

157

5 Program execution

BLOCK FC transfers a function to the called block. The transferred code blocks must
not have any block parameters themselves.

Table 5.1 Configurable block properties

Property Block Description
Block type, number, OB, FB, FC, A block is unambiguously defined by the type and number
name DB (e.g. FB 10). A configurable ID (user-specific ID) can also be assigned
to each block under “Name”.
Constant name, OB An organization block is assigned to a specific event class and is
event class, priority addressed in the user program with its constant name. For some orga-
nization blocks, the execution priority can be set.
Processimage partition | OB Indicates the process image partition assigned to the organization
number block.
Language OB, FB, FC Setting of the programming language for the block program
(LAD, FBD, SCL, STL, GRAPH).
Block information OB, FB, FC, The block information includes the block title (the “header”), the block
DB comment, the author, the version, the block family, and the
user-defined ID.
Protection OB, FB, FC A code block can be provided with access protection (“know-how pro-
tection”) and copy protection.
DB A data block can be provided with access protection (“know-how pro-
tection”).
Download without FB, Allows specific changes to the block interface during operation,
reinitialization DB without resetting the current values.
Block attributes Block Description
IEC check OB, FB, FC Defines how strictly the data type test is carried out.
Handle errors within OB, FB, FC Defines how the operating system should treat a program execution
block error in the block.
Block can be used asa | OB, FB, FC Indicates whether the block can be used with know-how protection in
know-how protected alibrary.
library element
Optimized block access | OB, FB, FC, Defines the storage and access to the block-local tags. For organization
DB blocks, this defines the type of the start information.
Only store in load DB The data block is not transferred to the work memory (for global,
memory ARRAY and type data blocks) or is only generated in the load memory
(for CPU data blocks).
Data block write-pro- DB The data block cannot be written from the user program (for global,
tected in the device ARRAY, type and CPU data blocks).
Set data in the stan- Instance DB | Activates the retentivity setting for all tags which have the setting
dard area to retentive Set in IDB in the block interface (for instance data blocks).
Set ENO automatically | FB, FC (SCL) | Generates additional program code for error monitoring during the
compilation (only for SCL).
Parameter passing FB, FC (STL) | Allows a special type of parameter assignment (only for STL).

via registers

158

5.3 Programming blocks

Table 5.2 Declaration sections in the block interface

Section Type, function, and data types Included in
Input Input parameters FCand FB
may only be read in the program of the block
Elementary and structured data types,
PLC, system and hardware data types,
TIMER, COUNTER, DB_ANY, POINTER, ANY, VARIANT
FB: STRING of adjustable length
FC: STRING of standard length 254
Blocks with STL program: BLOCK_FC, BLOCK_FB
Output Output parameters FCand FB
may only be written in the program of the block
Elementary and structured data types, PLC data types, DB_ANY
FB: STRING of adjustable length
FC: STRING of standard length 254, POINTER, ANY, VARIANT
InOut Infout parameters FCand FB
may be read and written in the program of the block
Elementary and structured data types, PLC and system data types,
STRING of standard length 254, DB_ANY, POINTER, ANY, VARIANT
Temp Temporary local data FC, FB and OB
may be read and written in the program of the block,
are only valid during current block processing
Elementary and structured data types, PLC data types,
STRING of adjustable length, VARIANT
OB, FC: DB_ANY
Blocks with standard access: ANY
Static Static local data FB
may be read and written in the program of the block,
is saved in the instance data block and remains valid even following block pro-
cessing
Elementary and structured data types, PLC and system data types,
STRING of adjustable length, DB_ANY
Return Function value FC

may only be written in the program of the block,
is an output parameter with the return value of a function

Elementary data types, DTL, PLC data types,
STRING of adjustable length, DB_ANY, POINTER, ANY (not with SCL), VOID

Output parameters

An output parameter transfers a value to the calling block and may only be written
in the block program. Output parameters are shown in the block call in the
sequence of their declaration, with LAD and FBD on the right side of the call box and

with STL and SCL following the input parameters in the parameter list.

An output parameter with data type STRING has an adjustable maximum length in
a function block, and a fixed maximum length of 254 characters in a function.

Caution: Output parameters which cannot be assigned a default value must be writ-
ten in the block during each block processing. This applies, for example, to all out-

159

5 Program execution

put parameters in the case of a function (FC) and thus also to the function value.
Note: Set and reset statements do not execute an action if the result of the logic
operation = “0”, and therefore do not write to an output parameter!

In/out parameters

An in/out parameter transfers a value to the program in the block and can return it
to the calling block, usually with a changed content. An in/out parameter can be
read and written in the called block. In/out parameters are shown in the block call
in the sequence of their declaration, with LAD and FBD on the left side of the call
box under the input parameters and with STL and SCL at the end of the parameter
list.

An infout parameter with data type STRING has a fixed maximum length of
254 characters.

Function value

The function value of an FC block is an output parameter which is handled in a spe-
cial manner. It bears the name of the block with the default data type VOID (= no
type). The function value is used with the SCL programming language. It is possible
here to integrate FC blocks with function value in formulae (in expressions). The
function value then corresponds to the value used for calculation in the formula.
Any programming language can be used for the FC block in this case. An example
is shown in the section “Using a function value of a function (FC)” on page 167.

For LAD, FBD and STL, you can ignore the function value if the data type VOID is
set in the interface description. You can also assign a different data type to the
function value, and this is then displayed as the first output parameter with the
name Ret Val. In the program of the called block, you then treat the function value
in the same way as an output parameter.

Temporary local data

Temporary local data is stored in the system memory of the CPU. It is used as inter-
mediate memory for the block program and is only available during block process-
ing. It is not displayed on the call box or in the parameter list of the call statement.
Further information can be found in Chapter 4.1.5 “Operand area: temporary local
data” on page 93.

The temporary local data is addressed symbolically. The local data can also be abso-
lutely addressed only for STL (see Chapter 10.7.6 “Absolute addressing of tempo-
rary local data” on page 454).

Static local data

The static local data is stored in the instance data of the called function block -
when called as a single instance in the assigned instance data block and when called
as a local instance in the instance data of the calling function block. It can be read

160

5.3 Programming blocks

and written in the program of the called block. Static local data retains its value
until written again. It is not displayed on the call box or in the parameter list of the
call statement.

The static local data is addressed symbolically. The local data can also be absolutely
addressed only for STL (see Chapter 10.7.5 “Partial addressing of data operands” on
page 453).

The static local data is usually only processed in the function block itself. However,
since the static local data is saved in a data block, you can access it at any time like
tags in a global data block, e.g. using “Data_block_name”.tag_name.

5.3.4 Programming block parameters

By means of block parameters you enable parameterization of the processing spec-
ification (the block function) present in a block.

The example shows the programming of a block, which selects a value from three
digital values according to the following criteria: The maximum value of two digital
values Number_1 and Number_2 is searched for and, depending on the signal state
of the binary tag Switch, this maximum or a substitute value will be output.
The block is to be used multiple times in the user program with different tags. The
tags are therefore transferred as block parameters - in our example, four input
parameters and one output parameter. Since the selection logic need not perma-
nently save values internally, a function FC is suitable as the block type (Fig. 5.6).

The values to be transferred are declared as input parameters in the Input section
with name and data type, the selected value as an output parameter in the Output
section, also with name and data type. An additional tag is required as an interme-
diate memory for the maximum value. This is declared in the Temp section, since
its value is not required outside the block.

The program in the block can be written in the language with which the block func-
tion is best mapped, independent of the programming language with which the
block is subsequently called. The block parameters used in the block program are
called formal parameters. They are handled like tags which have the same data type.
They are the placeholders for the current tags used later at runtime.

After the “Selection” block is programmed, it can be called in the user program. Dif-
ferent values are transferred to “Selection” at the block parameters with each call.
These values can be constants, operands, or tags; they are referred to as actual
parameters. During runtime, the formal parameters are replaced with the actual
parameters. Section “Example of a block call” on page 163 shows how the selection
block programmed here is called and supplied with current tags.

161

5 Program execution

Programming block parameters

Block properties
Name: Selection
Selection M» Type: FC
INT name Number: 311
Number_1 ——
- Interface
Number 2 —— Declaration | Name Data type
Default value Input Number_1 | INT
Parameter Number_2 | INT
Switch —— — Result ———— Default value| INT
) - Switch BOOL
Input Output Output Result INT
parameter parameter Temp Maximum | INT
Program

In the block program, the block parameters are called formal parameters. They are used like tags
which have the same data type. The number symbol (#) in front of the name identifies the formal
parameters and the other tags of the block interface as (block-)local tags.

#Result := SEL(G:=#5witch, INO:=#Maximum, INl:=#Default_value);

Block program ~ Metwork1: Frogram cfzslection logic in LAD
in ladder logic - <L
Int Int
EN — EN ENO ——
#MNumber_1 INT ouT FMaximum out #Result
#Number_2 IN2 ¢
#5witch
1 &
#Maximum INO
#Default_value IN1
Block program w Network1: Frogram ofselection logic in F8D
in function block
. MAX
diagram nt
--==EN SEL
#Number_1 N1 —[OUT — #Maximum Int
#Number_2 IN2 ¢ -_—EN
#Switch —
#Maximum IND out #Result
#Default_value INT ENO —
Block program L
. 2 //Program of selection lo n SCL
in Structured Control 3 ren e s e
Language 4 #Maximum := MAX (IN1:=#Number 1, IN2:=#Number 2):
5

Block program
in statement list

-

Network 1: Program of selection logic in STL

CALL MAX
Int
IND :=#Number 1

OUT :=#Maximum
CALL SEL
Int
G H
11 IND
12 N1
13 ouT

Bomamo e ol e

:=#Default_value
i=gResult

Fig. 5.6 Example of programming with block parameters

162

5.4 Calling blocks

5.4 Calling blocks

5.4.1 General information on calling of code blocks

If blocks are to be processed, they must first be called in the program. The organi-
zation blocks which are started by the operating system when certain events occur
are an exception.

With LAD and FBD, the call functions are boxes with an enable input EN and an
enable output ENO. A conditional block call can be implemented using the enable
input EN. The enable output ENO can be used to signal a malfunction determined
in the block to the calling block. In SCL, the enable input EN and the enable output
ENO are implicitly available parameters that you can add to the first or last position
in the parameter list if needed. With STL, this “EN/ENO mechanism” can be mapped
using STL statements.

The call box or call function shows all block parameters which were declared when
the block was created. If you subsequently change the block interface of the called
block, you must update the changes in the block call otherwise the program editor
will signal an “Interface conflict”. Finding and eliminating an interface conflict is
described in Chapter 6.6.5 “Consistency check” on page 283.

A prerequisite for calling a block is that it exists; at least its interface must be pro-
grammed. You call a block by selecting it under Program blocks in the project tree
and dragging it into the program of an opened block using the mouse.

If you drag a block directly from a library into an opened block, it is copied into the
Program blocks folder. If it is a system or standard block, it is saved in the
Program blocks > System blocks > Program resources folder.

The call functions are described in detail in Chapter 14.2 “Calling of code blocks”
on page 631.

Example of a block call

Chapter 5.3.4 “Programming block parameters” on page 161 shows how a block
(an FC function) is programmed with a block parameter. You can now call the
“Selection” function in your program and transfer the values with which the block
should work to the block parameters. These values can be constants, operands or
tags; they are referred to as actual parameters (Fig. 5.7).

During runtime, the control processor replaces the formal parameters by the actual
parameters. When calling the “Selection” block in the example, the maximum value
of the “Measurement 1” and “Measurement 2” tags is selected and with signal state
“0” of the “Test mode” tag, it is transferred to the “Temperature” tag. If “Test mode”
has signal state “1”, the “Test value” tag is copied to the “Temperature” tag.

The “Selection” block can also be called multiple times in the user program, each
time with a different parameter assignment. The existing program is then pro-
cessed multiple times with various tags.

163

5 Program execution

Example of calling a block

During the block call, the block parameters are supplied with tags with which the program in the
block is to work. These tags are called actual parameters.

It can be called after programming the “Selection” block. To program the block call, open the block in
which the “Selection” is to be called and drag the “Selection” block from the project tree into the
working window. Then write the actual parameters to the block parameters.

During runtime, the actual parameters (the current tags) are used instead of the formal parameters
("placeholders") used in the block.

The “Selection” block can also be called multiple times with different actual parameters. The same
function is thus processed with different tags in each case.

Block call in LAD
"Selection”
EN ENO
“Measurement 17 Number_1 Result “Temperature”
“Measurement 2" Nurnber_2
“Testvalue” Default_value
“Test mode” = Switch
N J o\ J
Y Y
Actual Block Actual
parameter parameter parameter
Block call in FBD
“selection™
--——EN
“Measurement 1° Number_1
“Measurement 2° Nurnber_2
“Test value® Default_value Result “Ternperature”
“Testmode” — Switch END —
N J o\ J
Y Y Y
Actual Block Actual
parameter parameter parameter
Block call in SCL
33
34 El"Selection” (Humber_1:="Measurement 1",
35 Humber 2:="Measuremsnt 2",

Default_wvalue:="Test values",
Switch:="Test mode",

w

B3B3 R R ORI R D
L
&

8 Result=>"Temperature™);
39
L_w_/ %_J
Block Actual
parameter parameter
Block call in STL
1 CALL "Selection"
2 Number 1 :="Measurement 1"
3 Number 2 Measurement 2"
4 Default walue Test value"
5 Switch est mode”
& Result :="Temperature”
' R e —
Block Actual

parameter parameter

Fig. 5.7 Example of a block call with block parameters

164

5.4 Calling blocks

5.4.2 Supplying the block parameters

The data type of the actual parameter must compatible with the data type of the
block parameter. The data type test can be controlled in the calling block using the
IEC check attribute. If the attribute is activated, the test is conducted using stricter
criteria. If possible, the program editor uses implicit data type conversion.

Assigning elementary data types to block parameters

At block parameters with elementary data type, you can use tags from the
Inputs, Outputs, Bit memories, Data, Temporary local data and Static local data
operand areas. A data tag in a data block must be addressed completely with the
(“Data_block”.Data_tag) data block.

Constants and peripheral inputs are only permissible for input parameters, periph-
eral outputs only for output parameters.

Atablock parameter with an elementary data type, you can also create a component
of an array (ARRAY) or of a structure (STRUCT, DTL, PLC and system data type) if the
data type of the component is compatible with the block parameter.

Assigning structured data types to block parameters

At block parameters with structured data type, you can use tags from the operand
areas Data, Temporary local data and Static local data.

Input parameters with the data type DT, DTL or STRING can be provided with a con-
stant. When calling a function block for an input and output parameter with the
data type STRING, the maximum length of the actual parameter must match the
maximum length of the block parameter, because the value of the actual parameter
is saved in the instance data. In all of the other cases, the block parameter consists
of a pointer, which points to the actual parameter so that the maximum length of
the actual parameter is not defined (up to 254 characters).

Note that an actual parameter with data type STRING which has been declared in the
temporary local data cannot be assigned a default value and therefore has any con-
tent. It must be provided with plausible values before being used as an actual
parameter (at least the current and maximum length). This is handled by the pro-
gram editor for a block with the Optimized block access attribute activated.

For supplying a block parameter with the ARRAY data type, an actual parameter
with exactly the same structure is allowed - the number and data type of the com-
ponents must match. A partial array (part of a multidimensional array) can also be
used as actual parameter.

For supplying a block parameter with one of the data types STRUCT, PLC data type
or system data type, actual parameters with exactly the same structure are
allowed - the arrangement and the data type of the components must match.

165

5 Program execution

Assigning a parameter type to block parameters

On a block parameter with the data type TIMER, a SIMATIC timer function (T) is per-
mitted as the actual parameter. On a block parameter with the data type COUNTER,
a SIMATIC counter function (C) is permitted.

At a block parameter of the type IEC timer/counter function, an instance data block
of an IEC timer/counter function, a local instance of an IEC timer/counter function,
or an in/out parameter of the type IEC timer/counter function can be created.

At an (input) block parameter with the data type DB_ANY, a data block can be cre-
ated as an actual parameter. With LAD, FBD and SCL, data tags in this transferred
data block can be addressed in the program of the called block. With STL, this data
block can be opened with the statement OPN via the DB register and with the state-
ment OPNDI via the DI register, e.g. for the partial addressing of data operands.

At a block parameter with the data type BLOCK_FC or BLOCK_FB, a block (FC or FB)
which does not have its own block parameters can be created. This block can be
called with one of the STL statements UC or CC if the block attribute Parameter pass-
ing via register is activated.

On a block parameter with the parameter type POINTER, a tag with elementary data
type or a pointer (e.g. P#DB10.DBX20.5) is permitted. The tag can also be a com-
pletely addressed data tag or a component of an array or of a data structure and
must be located in a memory area with standard access. A zero pointer (a pointer to
“nothing”) is specified with P#0.0.

Tags of all data types are approved for a block parameter with the parameter type
ANY. The tags which must be connected to the block parameters or which are mean-
ingful are defined by the programming within the called block. You can also specify
a constant with the format of the ANY pointer “P#[Data block.]Operand Data_type
Quantity”, and thus define an absolutely addressed area. Supplying with temporary
local data of data type ANY is handled separately (see Chapter 4.3.5 “Indirect
addressing with an ANY pointer” on page 103).

Tags of all data types are allowed on a block parameter with the parameter type
VARIANT, including operand areas addressed with an ANY pointer. An entire data
block can only be an actual parameter if is derived from a PLC data type or a system
data type (type data block). The tags (operands or data types) which can be con-
nected to the block parameters or which are meaningful are defined by the program
within the called block.

5.4.3 Calling a function (FC)

For an FC block, the block parameters are pointers to the actual operands. There-
fore all of the block parameters must be supplied with actual operands when calling
a function.

For LAD and FBD, connect the enable input EN and the enable output ENO as
needed; for SCL only the use of ENO is allowed for an FC function.

166

5.4 Calling blocks

Using a function value of a function (FC)

The function value of a function has no effect when declared with data type VOID.
If the function value has a different data type, it is handled like an output parame-
ter.

When calling the block, the function value is represented as the first output param-
eter in LAD, FBD, and STL - provided it does not have data type VOID. SCL handles
a function with function value like a tag with the data type of the function value. Fig.
5.8 shows an example: The block “Call2” is programmed like the block “Call” in the
Fig. 5.6 on page 162, with the difference that the result of the selection is assigned
to the function value instead of to an output parameter. The function value has the
data type INT. It can be further processed directly in an expression in SCL. The
example shows an arithmetic expression.

Example of application of the function value

In the “Selection2” function, the function value is declared in the block interface in the Return section,
in the example with the data type INT.

Block interface

Declaration | Name Data type The block interface of the called block contains the four
input parameters and the function value as result of the

Input Number_1 INT selection of the three digital tags. The program in the
Number 2 INT “Selection2” block can be written in any programming
= INT language.
Default_value When called in LAD, FBD and STL, the function value is
Switch BOOL handled like an output parameter.
Temp Maximum INT
Return Selection2 INT
Block call in an expression
"Temperature" := "Selection2" (Number_ 1 := "Measurement_ 1",
Number_2 := "Measurement 2",
Default_value := "Test_value",
Switch := "Test_mode") + "Correction value";

The “Selection2” function can now be used in an expression in the programming language SCL. The
function is handled like a tag which has the data type of the function value.

Fig. 5.8 Use of the function value with SCL

5.4.4 Calling a function block (FB)

Call type of a function block

When calling a function block, you are requested to specify the storage location of
the instance data. This is the data with which the function block works internally:
the block parameters and the static local data.

Specify a data block if the call takes place in an organization block or a function.
The call then takes place as a “single instance”, and the data block is the instance

167

5 Program execution

data block for this call. If you call the function block as a single instance for a second
time, enter a different data block as the instance data block. This then contains the
data for the second call. Assign a separate data block to each call of a function block
as single instance.

When calling a function block in another function block, you have the following
options: You can call the function block as a “single instance” or as a “local
instance” (“multi-instance”). With a single instance, the call is assigned a separate
data block as instance data block. When calling a local instance, the called function
block stores its instance data in the instance data block of the calling function
block. You then specify the name with which the local instance can be addressed in
the static local data of the calling function block. You can also repeatedly call a
function block in another function block as a local instance using different names
in each case.

Chapter 10.7.13 “Data storage of a local instance in a multi-instance” on page 468
describes how the block parameters and the static local data are saved when calling
as a local instance in a multi-instance.

Supplying block parameters of an FB

The block parameters of a function block are located in the instance data.

Block parameters with saved values do not have to be supplied when the function
block is called. If the supply is omitted, the function block works with the “old” val-
ues from its last call or with the default settings.

Block parameters which are saved as pointer to the actual parameter must be sup-
plied with an actual parameter when called. These are block parameters with the
parameter type POINTER, ANY or VARIANT and in/out parameters with a structured
data type. During programming, the program editor uses three question marks to
indicate that a block parameter must be supplied or three periods to indicate that
a supply can be omitted.

You can supply the EN enable input and ENO enable output as required.

5.4.5 “Passing on” of block parameters

The “passing on” of block parameters is a special form of access and supply of block
parameters. The parameters of the calling block are “passed on” to the parameters
of the called block. In this case, the formal parameter of the calling block is then the
actual parameter of the called block.

It generally also applies here that the actual parameter must have a data type that
is compatible with the formal parameter, the testing of which is controlled by the
attribute IEC check. Note in this context that the maximum length may have to be
considered in the validity check for data type STRING.

It additionally applies that you can only connect an input parameter of the calling
block to an input parameter of the called block, and an output parameter only to an

168

5.5 Startup program

output parameter. You can connect an in/out parameter of the calling block to all
declaration types of the called block. Exception: An in/out parameter with the data
type POINTER or ANY cannot be created at an output parameter.

The “passing on” of block parameters also applies in the same manner to state-
ments (program functions) which are represented with inputs and outputs similar
to a block call. If these statements are supplied with block parameters, input (block)
parameters can only be connected to function inputs, output (block) parameters
only to function outputs. In/out parameters can be connected to function inputs and
outputs.

5.5 Startup program

A CPU 1500 carries out a warm restart when started up. The activities carried out
during the warm restart are described in Chapter 5.1.2 “STARTUP operating state”
on page 146.

5.5.1 Startup organization blocks

A CPU 1500 provides 100 organization blocks with the numbers OB 100 and from
OB 123 for the startup program. A startup organization block is assigned to the
Startup event class. It is of hardware data type OB_STARTUP. The constant names
and the values are listed in the System constants tab of the default tag table.
The name of the constant can be changed in the block properties under General.

Start information

A startup organization block with the attribute Optimized block access activated
provides the start information shown in Table 5.3 in the Input declaration section.
A startup organization block with the attribute Optimized block access deactivated
(OB with standard access) provides 20-byte long start information in the Temp dec-
laration section, the standard structure of which is described in Chapter 4.11.4

Table 5.3 Start information for a startup organization block

Declaration Tag name Data type | Description

The Optimized block access attribute is activated:

Input LostRetentive BOOL ="1"if retentive data areas have been lost

Input LostRTC BOOL ="1"if the time of the real-time clock has been lost

The Optimized block access attribute is deactivated (standard access):

Temp STOP WORD Number of the STOP event

Temp STRT_INFO DWORD Additional information for the current startup

169

5 Program execution

“Start information” on page 142. This contains the tags specified in Table 5.3. Using
these tags, you can determine which event triggered the last STOP and with which
event the CPU has been started, e.g. with a manual startup using the mode switch
(see reference of the startup organization blocks in the STEP 7 help). With this
information you can create an event-triggered startup program.

Using the startup program

The startup program is executed one time. The startup organization blocks are
called in the order of their numbering. A startup program is not essential. If no
startup program is required, simply omit the organization blocks with the Startup
event class.

The startup program can have any length. There is no time limit for executing the
startup program; the cycle time monitoring is not active. The process image input
is reset during execution of the startup program, i.e. scanning of an input delivers
the signal state “0”. However, you can scan the signal states or analog values
directly on the module terminals by means of the operand area “Peripheral inputs”.

No interrupt events — except errors — are processed during execution of the startup
program. Interrupts occurring during the startup are executed after the startup but
before the main program.

Configuring the startup program

To configure the startup program, add an organization block with the event class
Startup and enter the name, programming language, and number. The defined
execution priority 1 cannot be changed.

5.5.2 Resetting retentive data

INIT_RD resets the values of the retentive tags (bit memories, data tags, and
SIMATIC timer/counter function). Resetting is executed if the signal state at param-
eter REQ is “1”. The Ret_Val parameter outputs error information. INT_RD can only
be called in a startup organization block. Fig. 5.9 shows the graphic representation
of INT_RD.

Resetting retentive data

Reset all In the STARTUP operating state, INIT_RD
retentive data INIT_RD resets the values of the tags that are marked as

—REQ Ret Val — retentive tags.

Fig. 5.9 System block for resetting the retentive data

170

5.5 Startup program

5.5.3 Determining a module address

Signal modules, or more precisely the user data on input/output modules, are
addressed in two manners: You use the logical address in the user program to
address the inputs and outputs. This corresponds to the absolute address and can
be made easier to read by using symbols. The smallest logical address of a module
is the base address or module start address. The CPU addresses the modules using
the geographic address. You require the geographic address if you wish to learn the
module's slot. A module can also be addressed via its hardware identifier, which
can be found in the module properties and in the System constants tab in the
default tag table.

The following system blocks convert the various addressing options of a module
(logical address, geographic address, hardware identifier):

> GEO2LOG Determine the hardware identifier from the geographic address
> LOG2GEO Determine the geographic address from the hardware identifier
> LOG2MOD Determine the hardware identifier from the logical address

> I02MOD Determine the hardware identifier from an address list

> RD_ADDR Determine the address range of a module

Fig. 5.10 shows the graphic representation of the system blocks. These system
blocks can be called in all priority classes, i.e. in the program of all organization
blocks. You find them in the program elements catalog under Extended
instructions > Addressing.

The following blocks are also available for the migration of S7-300/400 programs:

> GEO_LOG Determine logical start address

> GADR_LGC Determine logical address of a module channel
> RD_LGADR Determine all logical addresses of a module

> LOG_GEO Determine geographic address

> LGC_GADR Determine slot address of a module

These system blocks are not intended for new applications and are therefore not
described in further detail in the following.

GEO2LOG Determine the hardware identifier from the geographic address

GEO2LOG provides the hardware identifier of an object, with a geographic address
that is specified as the parameter GEOADDR. Table 5.4 shows the structure of the
GEOADDR system data type.

The component HWTYPE of the parameter GEOADDR defines the object with the
hardware identifier that is output at the LADDR parameter. The components of
GEOADDR which are used to define the object are placed in parentheses:

> HWTYPE = 1: Hardware identifier of the PROFINET IO system (IOSYSTEM)
> HWTYPE = 2: Hardware identifier of the I0 device (IOSYSTEM, STATION)

171

5 Program execution

Determining a module address

Determine hardware GEO2LOG determines the hardware identifier
identifier GEO2LOG of a module (LADDR) from the geographic
— GEOADDR RET VAL — address (GEOADDR).
LADDR —
Determin? LOG2GEO LOG2GEO determines the geographic address
geographic address of a module (GEOADDR) from the hardware
—— LADDR RET VAL — identifier (LADDR).
— GEOADDR
Determine hardware LOG2MOD LOG2MOD determines the hardware identifier
identifier of the module (HWID) from any logical
— 10 RET VAL — address (I0 and ADDR).
— ADDR HWID —
Determine hardware 102MOD 102MOD determines the hardware identifier of
identifier the module (LADDR) from a list of logical
—— ADDR RET VAL — addresses (ADDR).
LADDR —
Determine address RD ADDR RD_ADDR determines the module start
range of a module = address (PIADDR, PQADDR) and the number of
— LADDR RET_VAL — allocated address bytes (PLICOUNT, PQCOUNT)
from the hardware identifier of the module
PIADDR — (LADDR).
PICOUNT —
PQADDR —
PQCOUNT —

Fig. 5.10 System blocks for determination of module addresses

> HWTYPE = 3: Hardware identifier of the rack (IOSYSTEM, STATION)
> HWTYPE = 4: Hardware identifier of the module (IOSYSTEM, STATION, SLOT)

> HWTYPE = 5: Hardware identifier of the submodule (I0OSYSTEM, STATION, SLOT,
SUBSLOT)

The AREA component is not evaluated. If the addressed object does not exist, error
information is output at the RET_VAL parameter.

LOG2GEO Determine the geographic address from the hardware identifier

At parameter GEOADDR, LOG2GEO provides the geographic address of an object
with a hardware identifier that is specified at the parameter LADDR. Table 5.4 shows
the structure of the GEOADDR parameter.

If the hardware type of LOG2GEO is not supported, the value 0 is output at the com-
ponent HWTYPE. If the addressed object does not exist, error information is output
at the RET_VAL parameter.

172

5.5 Startup program

Table 5.4 Structure of the GEOADDR parameter

Name of the Data type | Assignment, note
component
HWTYPE UINT Hardware type
1:10 system
2:10 device
3: Rack
4: Module
5: Sumodule
AREA UINT Area code

0: Central module

IOSYSTEM UINT PROFINET 10 system
0: Central controller

STATION UINT Station number
With AREA = 0: number of the rack

SLOT UINT Slot number of the rack

SUBSLOT UINT Slot number of the submodule

LOG2MOD Determine the hardware identifier from a logical address

LOG2MOD determines the hardware identifier from any logical address of the mod-
ule. You define the type of logical address at the IOID parameter:

> B#16#00 Input/outputis defined by bit 15 of ADDR
> B#16#54 Input address
> B#16#55 Output address

You specify any logical address of the module at the ADDR parameter. The parame-
ter HWID provides the hardware identifier of the module. Error information is out-
put at the RET VAL parameter if the specified address is invalid.

I02MOD Determine the hardware identifier from an address list

I02MOD determines the hardware identifier of a module from a logical address or
from a list of logical addresses at parameter ADDR (data type VARIANT). The hard-
ware identifier is output at the LADDR parameter. The hardware identifier is gener-
ated from the first list entry. If this is invalid, error information is output at the
RET_VAL parameter. The remaining list entries are ignored.

RD_ADDR Determine the address range of a module

RD_ADDR returns the module start address and the number of allocated address
bytes of a module with a hardware identifier that is located at parameter LADDR.
The start addresses are output at the parameters PIADDR (inputs) and
PQADDR (outputs), the number of bytes allocated by the module are output at
PICOUNT (input bytes) ad PQCOUNT (output bytes). If the hardware identifier is
invalid, error information is output at the RET_VAL parameter.

173

5 Program execution

5.5.4 Parameterization of modules

Most S7 modules can be parameterized, i.e. properties can be set on the module
which are different from the default settings. To assign parameters, open the mod-
ule in the hardware configuration and configure the module properties in the
inspector window. When started, the CPU automatically transfers the configured
module parameters to the modules and for the distributed /O following the
“return” of a station.

Specific module parameters can be changed during runtime with the aid of system
blocks. Note that with a renewed startup the parameters set on the modules by the
system blocks are overwritten by the parameters set (and saved on the CPU) using
the hardware configuration.

Asynchronously working system blocks

Asynchronous execution means that the result of the block function is not immedi-
ately available following calling of the block. Execution of the function extends over
several calls and is triggered by the block parameter REQ = “1”. The BUSY parameter
has signal state “1” during job execution, and the error information has the value
W#16#7001 (job being executed). The error information is located either in the
parameter RET VAL or in bytes 2 and 3 of the STATUS parameter.

A specific task is specified by the hardware identifier of the module and the data
record number. As long as BUSY = “1”, a renewed call for the same job with REQ =
“1” has no effect and the error information is set to W#16#7002.

BUSY has signal state “0” when the job has been completed. If completed without
errors, the error information has the value W#16#0000; with the system function
RD_REC, the number of transmitted bytes is present in RET_VAL. In the event of an
error, the error information contains the error code.

You can use a program loop in which the asynchronous system block is called in the
startup program to “wait” for the end of job processing. You are advised not to do
this in the main, interrupt or error program, since it can result in undesirable
delays in the cycle processing time and thus in the response time, and the cycle
monitoring time may then be triggered.

Please note that the maximum number of simultaneously running asynchronous
system blocks depends on the CPU used.

Module and data record addressing

Use the hardware identifier of the module (module ID) for addressing for the data
record transfer. The hardware identifier is located in the module properties under
Hardware identifier and in the System constants tab of the default tag table. During
runtime, you can determine the hardware identifier using the system block LOG2-
MOD from the logical module address.

Data records have a number from 0 to 240. You can consult the manual of the mod-
ule to learn whether a module can be parameterized during runtime and, if so,

174

5.5 Startup program

which number and which configuration the data records have. The Table 5.5 shows
a basic overview of the system data records for module parameterization and mod-
ule diagnostics.

Table 5.5 Overview of system data records for modules

Writing data records
Usable
Number Number Size per data record | system block
0 Parameter - WR_DPARM
1 Parameter - WR_DPARM
2to0 127 User data Up to 240 bytes WR_DPARM, WRREC
128 to 240 Parameter Up to 240 bytes WR_DPARM, WRREC
Reading data records
Usable
Number Content Size per data record | system block
0 Module-specific diagnostic data 4 bytes RDREC
1 Channel-specific diagnostic data 4 to 220 bytes RDREC
2to0 127 User data Up to 240 bytes RDREC
128 to 240 Diagnostic data Up to 240 bytes RDREC

System blocks for the transmission of data records

The following system blocks for transferring data records to and from modules are
available for a CPU 1500:

> WR_DPARM Write configured parameters to the module
> RDREC Read datarecord
> WRREC Write data record

You find WR_DPARM in the program elements catalog under Extended instructions >
Module parameter assignment. You find RDREC and WRREC in the program ele-
ments catalog under Extended instructions > Distributed I/O.

The following blocks are also available for the migration of S7-300/400 programs:
> RD_DPAR Read predefined parameters

> RD _DPARA Read predefined parameters

> RD_DPARM Read predefined parameters

> RD_REC Read datarecord

> WR_REC Write data record

These system blocks are not intended for new applications and are therefore not
described in further detail in the following. Fig. 5.11 shows the graphic represen-

175

5 Program execution

Parameterization of modules

Write predefined

parameters WR DPARM WR_DPARM transfers the data record with the
= number specified at the parameter RECNUM
— REQ RET VAL — from the system data in the load memory to
N the module to which the LADDR parameter is
— LADDR BUSY — pointing.
— RECNUM
Read dat d
cad data recor Instance data RDREC reads the data record with the number
RDREC INDEX from the module and saves it in the
. data area RECORD.
— REQ VALID —
— ID BUSY —
— INDEX ERROR —
— MLEN STATUS —
— RECORD LEN —

Write data record Instance data

WRREC writes the data record from the data

WRREC area RECORD with the number INDEX to the
Variant module.

— REQ DONE —

— ID BUSY —

— INDEX ERROR —

— STATUS —

— RECORD

Fig. 5.11 System blocks for module parameterization and transmission of data records

tation of the system blocks for module parameterization described in the follow-
ing.

Using the hardware identifier at the parameter LADDER or ID, you can specify the
module whose parameter data is to be read or written. You create the data record
number at the parameter RECNUM or INDEX. RECORD specifies the data area in
which the read data record is to be stored or from which the data record that is to
be written will be transferred. The actual parameter at RECORD can be any tag or an
operand area that is absolutely addressed with the ANY pointer.

WR_DPARM Write predefined parameters

WR_DPARM transfers a data record from the system data located in the load mem-
ory to the module. You specify the data record number at the RECNUM parameter.
You address the module with the hardware identifier at the LADDR parameter.

The datarecord is completely read for the task initiation with REQ = “1”; the transfer
can be distributed across several program cycles. The parameter BUSY has signal
state “1” during the transfer.

176

5.6 Main program

RDREC Read datarecord

RDREC reads a data record from the module whose hardware identifier is in the
ID parameter. You specify the data record number at the INDEX parameter. The
read data record is stored in the target area, which is specified by the RECORD
parameter. This can be a tag or an operand area that is absolutely addressed with
the ANY pointer. The target area must be large enough to accommodate the data
record. The MLEN parameter specifies how many bytes are to be read.

The job is triggered with “1” at the REQ parameter. The transfer can be divided
between several program cycles; the BUSY parameter has signal state “1” during
the transfer.

Signal state “1” in the VALID parameter signals that the data record has been read
without errors. The LEN parameter then indicates the number of transferred bytes.
In the event of an error, ERROR is set to “1”. Error information is then written to the
STATUS parameter.

WRREC Write data record

WRREC writes a data record to the module whose hardware identifier is in the
ID parameter. You specify the data record number at the INDEX parameter. The data
record that is to be read is taken from the source area, which is specified by the
RECORD parameter. This can be a tag or an operand area that is absolutely
addressed with the ANY pointer. The LEN parameter specifies how many bytes are
to be written.

The job is triggered with “1” at the REQ parameter. The transfer can be divided
between several program cycles; the BUSY parameter has signal state “1” during
the transfer.

Signal state “1” in the DONE parameter signals that the data record has been writ-
ten without errors. In the event of an error, ERROR is set to “1”. Error information
is then written to the STATUS parameter.

5.6 Main program

The main program is the cyclically processed user program; this is the “normal”
way in which programs are executed in PLCs. The large majority of control systems
only use this form of program execution. If event-driven program execution is
used, it is usually only an addition to the main program.

5.6.1 Main program organization blocks

A CPU 1500 provides 100 organization blocks with the numbers OB 1 and from
OB 123 for the main program. A main program organization block is assigned to
the Program cycle event class. It is of hardware data type OB_PCYCLE. The constant
names and the values are listed in the System constants tab of the default tag table.
The name of the constant can be changed in the block properties under General.

177

5 Program execution

Start information

A main organization block with the attribute Optimized block access activated pro-
vides the start information shown in Table 5.6 in the Input declaration section.
A main program organization block with the attribute Optimized block access deac-
tivated (OB with standard access) provides 20-byte long start information in the
Temp declaration section, the standard structure of which is described in
Chapter 4.11.4 “Start information” on page 142. This contains the tags specified in
Table 5.6. Using these tags you can determine the current cycle time and its fluctu-
ation per program.

Table 5.6 Start information for a main program organization block

Declaration Tag name

Data type | Description

The Optimized block access attribute is activated:

Input Initial_Call BOOL ="1"for the first call of the organization block

Input Remanence BOOL ="1"if retentive data is available

The Optimized block access attribute is deactivated (standard access):

Temp PREV_CYCLE INT Runtime of previous cycle (in ms)
Temp MIN_CYCLE INT Minimum cycle time since last startup (in ms)
Temp MAX_CYCLE INT Maximum cycle time since last startup (in ms)

Using the main program

The main program is cyclically executed, i.e. if the execution has reached the end of
the main program, a minimum cycle time is waited through (if configured) before
the execution of the main program is started again from the beginning. The main
program organization blocks are called in the order of their numbering.

The main program runs in the lowest priority class and can be interrupted by alarm
and error events. The corresponding organization blocks are then called and pro-
cessed. After processing an interrupt, the main program continues from the point
of interruption (see Chapters 5.7 “Interrupt processing” on page 192 and 5.8 “Error
handling” on page 212).

The execution of the main program with all interrupt events that occurred in the
current processing cycle is monitored by the cycle time monitoring (see
Chapter 5.6.3 “Cycle time” on page 182).

Configuring the main program

To configure the main program, add an organization block with the event class
Program cycle and enter the name, programming language, and number. The
defined execution priority 1 cannot be changed.

178

5.6 Main program

5.6.2 Process image updating

The process image is part of the CPU's internal system memory (see Chapter 4.1
“Operands and tags” on page 86). The process image consists of the process image
input (operand area “Inputs I”) and the process image output (operand area
“Outputs Q”). It has a size of 32 KB per area. The user data of all of the modules is
located in the address area of the process image.

The process image input and output can be comprised of several process image par-
titions, independent of one another. The updating of the process image (parti-
tions), i.e. the data transfer from and to the modules, can take place automatically
or be controlled by system functions via the user program.

Benefits of a process image

The use of a process image has many benefits:

> The scanning of an input or the controlling of an output is significantly faster
than the addressing of an input or output module, e.g. the setting times at the
I/O bus are omitted and the response times of the system memory are shorter
than the response times of the module. This means that the program is executed
faster.

> Inputs can also be set and reset since they are stored in a Random Access
Memory. Digital input modules can only be read. The setting of the inputs can
simulate encoder statuses during the program test or commissioning, thereby
simplifying the program test.

> Outputs can also be scanned since they are stored in a Random Access Memory.
Digital output modules can only be written. The scanning and linking of the out-
puts does away with the additional saving of output bits to be scanned by the
user.

> The signal state of an input is the same throughout the entire program cycle
(data consistency during a program cycle). If a bit on an input module changes,
the change of the signal state is transferred to the input at the start of the next
program cycle.

> A multiple signal state change of an output during a program cycle has no effect
on the bit on the output module. The signal state of the output at the end of the
program cycle is transferred to the module.

The downside of these benefits is an increased response time of the program; see
Chapter 5.6.3 “Cycle time” on page 182 for more details.

Activating the automatic process image update

If the value Automatic update is entered in the Process image field under
I/O addresses, the user data of this module is updated before the main program is
executed. Initially, the process image output is transferred to the output modules.
After this, the signal states of the input modules are imported into the process
image input. This is then followed by the execution of the main program (Fig.
5.12).

179

5 Program execution

Automatic update of the process images

Automatic update of the main program process image

The user data of all modules with the value Automatic update as process image is updated before the
main program is executed. First, the process image output is sent to the output modules. Then the
signal states of the input modules are transferred to the process image input. This is then followed by
the execution of the main program. The main program process image comprises the addresses of the
module, which are updated automatically and are not assigned to any (other) process image partition.

Automatic update of an assigned process image partition

If the user data of a module are located in a process image partition and the process image partition is
assigned to an organization block, the processing of the organization block is initiated with the
update of the process image partition input. The program of the organization block is executed
afterwards. Processing of the interrupt ends with the transmission of the process image output to the
output modules.

Beginning of End of
linterruption l interruption
Interrupt
PIPI program PIPQ
PIQ PIl Main Main PIQ PIl Main
program program program
Cycle (processing) time of main program T

Start of current
cyclic processing

Start of next
cyclic processing

PIQ = process image output of main program
PII = process image input of main program
PIPQ = process image partition output

PIPI = process image partition input

Fig. 5.12 Automatic process image update

Process image partitions

With a CPU 1500, you can divide the process image into as many as 31 process
image partitions. You can assign a module to a process image partition in the mod-
ule properties. Enter a value PIP1 to PIP31 from the drop-down list in the Process
image field under I/O addresses.

Carry out the assignment separately for the process image input and process image
output. Amodule can only be assigned to a single process image partition and only
with all of its addresses. All of the modules addressed in the process image which
you do not assign to a process image partition PIP1 to PIP31 are in the “residual pro-
cess image” (process image of main program).

Assigning a module to a process image partition makes sense if all of the user data
of the module is processed in an interrupt routine or if specific program sections

180

5.6 Main program

are to be provided with their own process image. If you use the isochronous mode
interrupt, you must assign the participating modules to a process image partition.

You can also simultaneously assign an organization block while assigning the pro-
cess image partition. Then the assigned process image partition is automatically
updated when the organization block is executed (Fig. 5.12). You can assign the
organization block in the module properties under I/O addresses in the Organiza-
tion block field. Choose an existing organization block from a drop-down list or cre-
ate a new one using the Add object button.

Deactivating the automatic process image update

If you choose the entry None in the Process image field under I/O addresses in the
module properties, the user data of this module will not be updated. The user data
of the module must then be accessed via the I/O operand area.

If you select a process image partition in the Process image field and do not select
an organization block in the Organization block field, the user data of this module
will not be automatically updated. You then have the option of initiating the updat-
ing of the process image partition with system blocks (or to access the user data of
the module via the I/O operand area).

Process image update with system blocks

The system functions UPDAT PI and UPDAT PO are available for updating the pro-
cess image partitions via the user program. In the isochronous interrupt organiza-
tion blocks, you can use the system functions SYNC_PI and SYNC_PO for updating
the process image partitions (see Chapter 16.7.4 “Isochronous mode interrupt” on
page 745).

UPDAT_PI Update process image partition of inputs
UPDAT_PO Update process image partition of outputs

UPDAT _PI updates a process image partition of the inputs, UPDAT PO a process
image partition of the outputs. You cannot update the process image of the main
program with these system blocks. You find the system blocks in the program ele-
ments catalog under Extended instructions > Process image (Fig. 5.13).

Process image UPDAT PI UPDAT_PI updates the process image partition
partition input = input whose number is specified at the PART
update 1 __ parameter. If an access error occurs, the first
P PART RETEVAL faulty address is located in the FLADDR
FLADDR — parameter.
PI'OCF§S image UPDAT PO UPDAT_PO updates the process image
partition output = partition output whose number is specified at
update 1 ___ the PART parameter. If an access error occurs,
PART R the first faulty address is located in the
FLADDR — FLADDR parameter.

Fig. 5.13 System blocks for a process image partition update

181

5 Program execution

You can call these system functions at any point in the user program. You enter the
number of the process image partition (1 to 31) at the PART parameter. The selected
process image partition may not be automatically updated (no assignment to an
organization block or deactivation of automatic updating of the main program pro-
cess image) and it may not be updated with the system blocks SYNC_PIor SYNC_PO.

The updating of a process image can be interrupted by an organization block with
a higher priority class. If an error occurs during the updating of the process image,
e.g. because a module can no longer be addressed, it is reported back via the func-
tion value RET_VAL of the system block. The first error-causing address is then
located in the FLADDR parameter.

5.6.3 Cycle time

Cycle monitoring time

Execution of the main program is monitored with regard to timing by means of the
cycle monitoring time. The default value for the monitoring time is 150 ms. You can
set this value within the range from 1 ms to 6000 ms by parameterizing the CPU
accordingly (Fig. 5.14).

Cycle processing time and minimum cycle time

Cycle processing time

The cycle monitoring time comprises the complete duration of main program execution, including all
interruptions.

Cycle monitoring time

The cycle monitoring time monitors the duration of main program execution.
If it expires, the CPU operating system signals an error.
The cycle monitoring time can be extended (“retriggered”).

Minimum cycle time

If a minimum cycle time is activated, cyclic execution of the main program begins only after the
minimum cycle time has expired. This must be greater than the cycle processing time.

Automatic Automatic
process image process image

update T l update

interruption

I Main program Main program I Main program

Cycle (processing) time of main program

Start of actual Start of next
cyclic processing cyclic processing

Minimum cycle time

Fig. 5.14 Cycle processing time and minimum cycle time

182

5.6 Main program

The cycle processing time comprises:

> The total processing time of the main program (processing times of all organiza-
tion blocks with the event class Program cycle),

> The processing times for higher priority classes which interrupt the main pro-
gram (in the current cycle),

> The time required to update the process images and

> The time for communication processes by the operating system, e.g. access op-
erations of programming devices to the CPU (the program status in particular
takes a long time!).

If processing of the main program takes longer than the set cycle monitoring time,
the CPU calls the organization block OB 80 Time error. If this is not present, a
CPU 1500 ignores the error message. If the cycle monitoring is triggered for a
second time during a program cycle, the CPU goes to STOP - even if an OB 80 is
present.

Minimum cycle time

In addition to the maximum cycle (monitoring) time, you can also set a minimum
cycle time in the CPU properties. The minimum cycle time must be longer than the
cycle (processing) time and shorter than the cycle (monitoring) time.

When the minimum cycle time is activated, the CPU waits at the end of the main
program execution until the minimum cycle time has elapsed and only then it
begins with a new program cycle. If execution of the main program takes longer
than the set minimum cycle time, this has no further effects.

With a minimum cycle time, you can reduce large fluctuations in the processing
time and thus large fluctuations in the response time. While the CPU waits for the
minimum cycle time to elapse, it can perform communication tasks.

RE_TRIGR Restart cycle monitoring time

RE_TRIGR restarts the cycle monitoring time. This then starts with the value set
during CPU parameterization. ENO has signal state “1”. RE_TRIGR does not have
any parameters (Fig. 5.15).

You can find RE_TRIGR in the program elements catalog under Basic instructions >
Program control operations. The RE_TRIGR function is only executed if it is called in
the main program. The cycle monitoring time is not restarted by a call in the startup
program or in an interrupt routine, and ENO has the signal state “0”.

Retrigger cycle monitoring time

REtI'i'gge_r cyc}e RE TRIGR The call retriggers the cycle monitoring time
monitoring time = with the configured duration.

Fig. 5.15 System block for retriggering the cycle monitoring time

183

5 Program execution

Communication load

The CPU's operating system requires a certain time for communication with the
programming device or with other stations. In the CPU properties, you can set the
maximum percentage of the cycle time which is to be available for communication
tasks. If you set a high percentage, it may be necessary to adapt the cycle monitor-
ing time. 50% is set by default.

If k represents the communication load in percent, the execution time of the main
program changes by a factor of 100/ (100 - k). This does not account for any inter-
ruptions due to alarm or error events.

The processing of organization blocks with a processing priority higher than 15 is
not interrupted by communication.

Cycle statistics

If you are connected online to the programming device with arunning CPU, you can
use the Online & diagnostics command from the project tree to start the task card
with the online tools. The Cycle time section shows the shortest, current, and lon-
gest cycle (processing) time in milliseconds and presents these graphically.

You can also obtain data on the current cycle time of the last cycle as well as the min-
imum and maximum cycle times since the last startup from the start information
of a main program organization block if the Optimized block access attribute is
deactivated.

RUNTIME Runtime measurement

RUNTIME measures the program runtime between two calls. The same actual
parameters that were applied to the parameters during the first call must be
applied during the second call. RUNTIME is available in the SCL and STL program-
ming languages. You can find RUNTIME in the program elements catalog under
Basic instructions > Program control operations (Fig. 5.16).

If RUNTIME is called once in a main program organization block, RUNTIME will out-
put the current runtime of the main program at the parameter RET_VAL after the
second program cycle and after each additional one.

5.6.4 Response time

If the user program in the main program works with the signal states of the process
images, this results in a response time which is dependent on the cycle execution
time (in short: cycle time). The response time lies between one and two cycle times,
as demonstrated in the following example (Fig. 5.17).

If a limit switch is activated, for example, it changes its signal state from “0” to “1”.
The PLC detects this change during subsequent updating of the process image and
sets the input allocated to the limit switch to “1”. The program evaluates this
change by resetting an output, for example in order to switch off the corresponding
drive. The new signal state of the output that was reset is transferred at the end of

184

5.6 Main program

Measure runtime with RUNTIME

Measure runtime

SCL .
#var retval := RUNTIME (#var mem) ; Data types:
- - MEM: LREAL
Ret_Val: LREAL
STL
CALL RUNTIME
Ret_Val := #var_retval
MEM 1= #var_mem

The first call starts the runtime measurement and saves the start time in the MEM array. The second
call determines the difference between the start time (saved in MEM) and the time of the call and
outputs the runtime in seconds at the parameter RET_VAL.

First call: Second call:
save start time

output runtime

User program I I

I Calculated runtime ‘T
il

Fig. 5.16 System block for measuring the runtime

Response times when using process images

Change of the sensor signal A
with immediate transfer Change of the
to process image output signal

Response time = one cycle time
>

PIQ Pl Main program PIQ Pl Main program PIQ Pl
Change of the sensor signal Transfer Change of the
without transfer to process image output signal

to process image
Response time = two cycle times

v

PII = process image input
PIQ = process image output

Fig. 5.17 Response times of the main program

program execution; only then is the corresponding bit reset on the digital output
module.

In a best-case situation, the process image is updated immediately following the

change in the limit switch's signal. It then only takes one cycle for the correspond-
ing output to respond. In a worst-case situation, updating of the process image has

185

5 Program execution

just been completed when the limit switch's signal changes. It is then necessary to
wait approximately one cycle for the PLC to detect this change and to set the input
in the process image. The response then takes place after one further cycle.

The response time to a change in the input signal can thus be between one and two
cycles. Added to the response time are the delays for the input and output modules,
the switching times of contactors, and so on.

In certain cases you can reduce the response times by addressing the 1/0 directly or
by calling program sections depending on events (hardware interrupt).

Uniform response times or equal time intervals in the process control can be
achieved if a program section is always executed at regular intervals, e.g. a cyclic
interrupt program. Program execution isochronous with the processing cycle of a
PROFINET IO system or PROFIBUS DP master system also results in calculable
response times.

5.6.5 Stopping and delaying the program

STP Stop program execution

The system function STP terminates program execution; the CPU then switches to
the STOP operating state. STP has no parameters (graphic representation is shown
in Fig. 5.18).

Stopping and delaying the program execution

Stop program STP STP terminates the execution of the user
execution program execution and switches the CPU

to the STOP operating state.

Delay program WAIT WAIT delays the execution of the user
execution program by the specified number of
—wT microseconds.

Fig. 5.18 System blocks for stopping or delaying program execution

The CPU terminates processing of the user program and updates the process image
output. In the module properties of correspondingly designed modules, you can
set the signal states of the digital and analog outputs which the CPU is to output in
the STOP operating state: Shutdown, Keep last value, or Output substitute value.
As standard, the signal state “0” is output at the digital outputs and a value of zero
at the analog outputs at STOP.

In the STOP operating state, the CPU continues communication with the program-
ming device and the diagnostics activities.

186

5.6 Main program

WAIT Delay program execution

The system function WAIT holds program execution for a defined duration (Fig.
5.18).

The system function WAIT has the input parameter WT with data type INT in which
you can specify the hold time in microseconds (us). The maximum hold time is
32 767 ps, the smallest possible hold time corresponds to the CPU-dependent exe-
cution time of the system function.

WAIT can be interrupted by events of higher priority.

5.6.6 Time

Each CPU 1500 has areal-time clock with a typical deviation of 2 s per day. The dura-
tion of the buffering is approx. 6 weeks at an ambient temperature of 40 °C. The
time is not affected by a memory reset. When it is reset to the factory settings, the
clock starts at DTL#2012-01-01-00:00:00 GMT.

The clock can be synchronized and can be set or queried in the user program using
the display of the CPU, a programming device, or system blocks.

Module time, local time, daylight saving/standard time

The time set in the CPU's real-time clock is the module time (basic time). This is
decisive for all timing processes controlled by the CPU, e.g. entry of time stamp in
the diagnostics buffer and in the block properties. WR_SYS_T sets the module time,
RD_SYS_T reads the module time. The module time can also be set using the display
of the CPU or online using the programming device. The time is converted to
UTC time.

The local time is set by addition of a correction factor which can also be negative.
Configuration is carried out when parameterizing the CPU with the device config-
uration. The local time can be used to visualize time zones. Itis read withRD_LOC_T
and set with WR_LOC_T.

WR_SYS T Set module time

WR_SYS T (Write System Time) sets the CPU's clock to the value specified at the
IN parameter (Fig. 5.19). The module time can be defined in the data format
DATE_AND TIME (DT) or DATE AND_LTIME (DTL or LDT). This value does not
include the local time and the daylight saving/standard time ID. The error informa-
tion is output in the RET_VAL parameter (0 = no error). In the event of an error,
ENO is set to signal state “0”.

RD_SYS T Read module time

RD_SYS_T (Read System Time) reads the CPU's current module time and outputs it
in the OUT parameter (Fig. 5.19). The module time can be outputin the data format
DATE_AND_TIME (DT) or DATE_AND_LTIME (DTL or LDT). This value does not

187

5 Program execution

Time-of-day functions

Set WR SYS T WR_SYS_T sets the module time to the value
module time Daty typ_e at the IN parameter.
— N RET VAL — Data type: DT, DTL, LDT
Read RD_SYS_T outputs the module time at the
. RD_SYS_T _>Y5_1 outp
module time Data tyEe OUT parameter.
RET VAL — Data type: DT, DTL, LDT
ouT —
Set . WR LOC T WR_LOC_T sets the local time to the value at
local time Data type the LOCTIME parameter.
— LOCTIME RET VAL — Data type: DTL, LDT
— DST
Read RD_LOC_T outputs the module time at the
local time %2?:;?;;)—: OUT parameter.
RET VAL =— Data type: DT, DTL, LDT
ouT —

Fig. 5.19 System blocks for the time functions

include the local time and the daylight saving/standard time ID. The error informa-
tion is output in the RET_VAL parameter (0 = no error). In the event of an error,
ENO is set to signal state “0”.

Configuring the local time

The time zone and the switching over between daylight saving and standard time is
set in the properties of the CPU: Select the CPU in the device configuration, and
open the Time of day section in the Properties tab in the inspector window. Set the
time zone (local time), check the Enable daylight savings time changeover box, spec-
ify the time difference between daylight saving and standard time and also the
dates and times of changeover (Fig. 5.20).

WR_LOC_T Setlocal time

WR_SYS_T (Write Local Time) sets the CPU's clock (Fig. 5.19). You specify the local
time at the LOCTIME parameter. WR_LOC_T then calculates the module time based
on the setting to local time in the properties of the CPU and uses it to set the clock.

The local time is defined in the data format DATE_AND_LTIME (DTL or LDT).
The RET_VAL parameter (0 = no error) outputs the error information. In the event
of an error, ENO is set to signal state “0”.

If, during the changeover to standard time, the clock is set during the hour which
exists twice, the hour is specified at the parameter DST: with signal state “1”, the

188

5.6 Main program

Properties L]

j|"_i.|.lnfo "ﬂ Diagnostics |

J General || 10 tags Texts |
General [l
PROFINET interface [X1]
FROFINET interface [X2] Local time
DF interface [X3]
Startup Time zone: | (UTC) Dublin, Edinburgh, Lisbon, Londaon |V|
Cycle
Communication load Daylight savings
System and clock memory

System diagnostics [Enable daylight savings time changeover
Web server

Time of day

[w [>]

- v v v

- v

: Difference between standard
Display and daylight savings time: |GD mins lzl
Userinterface languages

] Start of daylight saving time

Protection

|Last

-

Systemn power supply

Connection resources |Sunda)r

[-]
[-]
Overview of addresses of: |I\-1arch |'|
[-]

at: | 01:00 a.m.

Start of standard time

|Last

|Sunday

[+]
[+]
of: |Oct0ber |V|
[~]

at: | 02:00 a.m.

(<] i 2] v

Fig. 5.20 Parameterization of local time and daylight saving/standard time changeover

first hour (still daylight saving time) and with signal state = “0” the second hour
(already standard time).

RD_LOC_T Read local time

RD_LOC_T (Read Local Time) reads the CPU's current local time and outputs it at the
OUT parameter with the DATE_AND_TIME (DT) or DATE_AND_LTIME (DTL or LTD)
data type (Fig. 5.19). The local time is calculated based on the setting to the local
time in the properties of the CPU.

The RET_VAL parameter (0 = no error) outputs the error information. In the event
of an error, ENO is set to signal state “0”.

Calculating with date and time

You can link the date and time together using further system functions, for exam-
ple to generate the difference between two times of day or to add a duration to a
specific point in time. The available system functions are described in Chapter
13.4.2 “Arithmetic functions for date and time” on page 576.

189

5 Program execution

Setting the time via the CPU display

In the main menu of the CPU display, select the Settings icon and then the
Date & time submenu. You can enter the date and time as local time.

Setting the time on the CPU online

You can read and set the system time (module time) on the CPU using the program-
ming device online. To do this, open the project and start the Online & diagnostics
editor in the project tree under the PLC station. To establish the online operation,
click on the Go online icon in the toolbar of the project view or on the Go online but-
ton in the Online access section of the dialog window.

In the Functions section of the diagnostics window, select the Set time command.
The current time of the programming device and the module time of the CPU are
displayed. You can import the programming device time as the module time or you
can set the module time itself.

Time synchronization via PROFINET

The time of the CPU can be synchronized via Ethernet. A time server is required,
which is synchronized with the time of other stations in the network using the
NTP procedure.

Activate the time synchronization in the properties of the PROFINET interface using
the hardware configuration. To do this, select the PROFINET interface in the device
configuration and select the command Time synchronization in the properties of
the inspector window. Check the checkbox Enable time synchronization via NTP
server, specify the IP addresses of the participating servers, and select the updating
interval.

Time synchronization via PROFIBUS

The clocks of all CPUs whose stations are connected to each other in a PROFIBUS
segment can be synchronized. Parameterize one of the clocks as the master clock
and parameterize the others as slave clocks.

Activate the time synchronization in the properties of the DP interface using the
hardware configuration. Under Time synchronization, specify the Synchronization
type (Master, Slave) and parameterize the Update cycle. The time synchronization
takes place after each setting of the master clock in the parameterized interval.

You can synchronize the clocks of all time slaves in the bus segment, independently
of the setinterval, by calling the system function SNC_RTCB in the user program of
the time master.

SNC_RTCB Synchronize time-of-day

You can synchronize the clocks of all time slaves in the bus segment, independently
of the set interval, by calling the system function SNC_RTCB in the user program of
the time master. Fig. 5.21 shows the graphic representation of the system function.

190

5.6 Main program

Synchronize time-of-day

Time-of-day SNC RTCB Each call of SNC_RTCB in the time-of-day
synchronization = master synchronizes the time-of-day slaves
RET VAL — in the PROFIBUS segment.

Fig. 5.21 System block for synchronizing the time

5.6.7 Read system time

The system time is updated at an interval of one millisecond for a CPU 1500.
The system time starts when the CPU is switched on. The system time runs for as
long as the CPU is in the STARTUP or RUN operating state. The current value of the
system time is “frozen” when at STOP. A warm restart resets the system time.

The system time is present in the data format TIME, where only positive values are
possible: TIME#0ms to TIME#24d20h31m23s647ms. In the event of an overflow,
the system time restarts at TIME#O0.

You can use the system time, for example to determine the current runtime of the
CPU or to calculate the duration between two TIME_TCK calls by generating the dif-
ference.

TIME_TCK Read system time

TIME_TCK reads the current system time. The RET_VAL parameter contains the read
system time in the TIME data format. Fig. 5.22 shows the graphic representation of
the system function.

Read system time

Read system time TIME_TCK gi\ﬁ}lﬂs_e'l‘cglr(l éseads the system time in

RET VAL —

Fig. 5.22 System function for reading the system time

5.6.8 Runtime meter

An runtime meter counts the hours while running. You can use the runtime meter,
for example, to record the CPU runtime or to determine the operating hours of con-
nected devices. A runtime meter has a value range of 32 bits (23!-1 hours). If the
maximum duration has been reached, the runtime meter remains stationary and
signals an overflow with the value W#16#8082 at the parameter RET_VAL.

A runtime meter also stops when the CPU is at STOP; if the CPU restarts, the run-
time meter must be restarted if required. The count value of a runtime meter is
retained on restart and after a memory reset. Resetting to the factory settings also
resets a runtime meter to zero.

191

5 Program execution

RTM Control runtime meter

RTM controls a runtime meter. Fig. 5.23 shows the graphic representation of the
system function.

Control runtime meter

Cont}'ol RTM RTM controls a runtime meter.
runtime
meter — NR RET VAL —

— MODE c«Q—

— PV v —

RTM: Job identification MODE

B#16#00 Read actual values CQ and CV

B#16#01 Start with the last value

B#16#02 Stop

B#16#04 Set to default value PV

B#16#05 Set to default value PV and start

B#16#06 Set to default value PV and stop

B#16#07 Save the values of all runtime meters on the
memory card

Fig. 5.23 System block for controlling the runtime meter

RTM controls the runtime meter whose number is specified at the NR parameter.
The MODE parameter defines the function to be executed. The value to which the
runtime meter is to be set (default value or start value in hours) is present in the
PV parameter. The CQ parameter signals with signal state “1” if the runtime meter
is running. The current value in hours is present in the CV parameter. CQ and CV
are updated by the job ID MODE = B#16#00.

RTM can write the values of all runtime meters of the CPU to the memory card so
that they are retained even if the backup voltage fails or a module is swapped. Note
that the number of write accesses to the memory card is physically limited.

5.7 Interrupt processing

5.7.1 Introduction to interrupt processing

Events

The response of the operating system is based on events. Events can be, for exam-
ple, the one-time start of the startup, the cyclically recurring start of main program
execution, a hardware interrupt, or a programming error.

If an organization block is assigned to the event, the operating system calls this
organization block when the event occurs. If no organization block is assigned to
an event, the operating system executes the preset system response when the event

192

5.7 Interrupt processing

occurs: The operating system ignores the event or it changes to the STOP operating
state or it carries out block-local error processing.

Execution order

A priority scheduler controls the execution order if events occur virtually simulta-
neously. Events with the same priority are processed in the order in which they
occurred.

An event of higher priority interrupts execution of the program in an organization
block to which an event with lower priority has been assigned. Such an interruption
can take place after every operation (statement). Once this program with higher
priority has been executed, the operating system resumes execution of the lower-
priority program at the point of interruption.

Example: If a hardware interrupt occurs while the main program is executing, the
operating system will interrupt the execution of the main program and call the
organization block that is assigned to the hardware interrupt. When the interrupt
routine has been executed, the execution of the main program will continue at the
point where it was interrupted.

You can influence the interruption of a program by events of higher priority using
system blocks (Chapter 5.8.6 “Disable, delay, and enable interrupts and asynchro-
nous errors” on page 223).

Available organization blocks
Table 5.7 shows the organization blocks present with CPU 1500 with their execution
priority.

The organization blocks for time-of-day, time-delay, cyclic and hardware interrupts
are described in this chapter. The other organization blocks are described in the fol-
lowing chapters:

> Chapter 5.5.1 “Startup organization blocks” on page 169,

> Chapter 5.6.1 “Main program organization blocks” on page 177,

> Chapter 5.8.3 “Global error handling (synchronous error)” on page 215,
> Chapter 5.8.5 “Asynchronous errors” on page 220,

> Chapter 5.9.1 “Diagnostics interrupt” on page 226,

> Chapter 16.6 “DPV1 interrupts” on page 737 and

> Chapter 16.7.4 “Isochronous mode interrupt” on page 745.

Execution priorities

The main program has the fixed priority 1 and can be interrupted by all interrupt
and error events. The startup program belongs to the same priority class as the
main program: The operating system prevents both of them from being called at
the same time. Interrupt events that occur during the startup phase are saved in a
queue and are processed before the main program after the transition to the RUN
operating state.

193

5 Program execution

Table 5.7 Organization blocks of a CPU 1500

OB No. Priority Start event Event class Number
(default) of OBs

1,2123 1 Start of main program Program cycle 0to 100

10to 17,2123 2t0 24 (2) Time-of-day interrupt Time of day 0to 20

20to 23,2123 2t0 24 (2) Time-delay interrupt Time delay interrupt 0to 20

30to0 38,2123 2t024 Cyclic interrupt Cyclic interrupt 0to 20

(8t017) *)

40t0 47,2123 21026 (18) Hardware interrupt Hardware interrupt 0to 50

55 21024 (4) Status interrupt Status Oor1

56 2to 24 (4) Update interrupt Update Oor1

57 21024 (4) Manufacturer-spec. Profile Oor1
interrupt

61to 64,>123 16 to 26 (25) Isochronous mode Synchronous cycle Oto2
interrupt

80 22 Time error Time error interrupt Oor1

82 21026 (5) Diagnostics interrupt Diagnostic error interrupt Oor1

83 210 26 (6) Insert/remove module Pull or plug of modules Oor1
interrupt

86 210 26 (6) Rack failure Rack or station failure Oor1

91 17 to 26 (25) MC servo interrupt MC-Servo Oor1

92 16 to 26 (24) MC interpolator interrupt MC-Interpolator Oor1

100, 2123 1 Warm restart Startup 0to 100

121 **) 2t0 26 (7) Programming error Programming error Oor1

122 **) 21026 (7) 110 access error 10 access error Oor1

*) depending on the call interval
**) only for global error handling

The communication with the programming device or the exchange of data with other
PLC stations takes place in the “time slice mode” for a CPU 1500. While the user pro-
gram is executing, the operating system carries out the communication
“slice by slice” in a grid, which can be influenced using the CPU parameter Communi-
cation load. This communication has priority 15 and can thus interrupt the program
execution in an organization block that has the same or lower priority.

How to influence a program interruption during runtime by means of higher-pri-
ority events with system functions is described in Chapter 5.8.6 “Disable, delay, and
enable interrupts and asynchronous errors” on page 223.

Overload behavior

If several such events follow each other at such short intervals that execution
“cannot keep up”, the events are saved in a queue and are processed in succession.
Each event type (each priority class) has its own queue. If the queue is full, the next
equivalent event is counted and discarded.

194

5.7 Interrupt processing

In the properties of an organization block in which an overload can occur, you can
set the response to an overload response under Attributes and Event queuing (Fig.
5.24).

Properties L]

|§,Properties ||"_i.'.lnfo "ﬂDiagnostics |

General

General . ~
. Attributes

Information E

Time stamps

Compilation [J1EC check

Frotection |:| Handle errors within block

Attributes

. [Block can be used as know-how protected library element
Cyclic interrupt

[+ Optimized block access

Priority

proriy number:

Event queueing

Events to be queued |1

[} Report event overflow into diagnaostic buffer

D Enable time error

Event threshold for time error | 0

Fig. 5.24 Setting the overload behavior in the block properties

In the Events to be queued field, you can define how many events of the operating
system will list in the associated queue and process in succession. The default value
is 1, i.e. exactly one event is buffered. If the selected value is too large, an overload
situation can be made worse if organization blocks with the same or lower priority
cannot be processed in a timely manner. Under some circumstances, it may be bet-
ter to discard the corresponding events and respond to it in the program of the
organization block.

If the queue is full when an event occurs, it is counted and then discarded. If the
attribute Optimized block access is activated, the number of discarded events is
located in the Event_Count tag in the start information of the organization block.

If the checkbox Report event overflow into diagnostics buffer in the block properties
is checked, the event ID DW#16#0002_3507 will be entered in the diagnostics buffer
when an event occurs that leads to an overflow of the queue. Another diagnostics
buffer entry with this event ID will only be made if all of the events in the queue
have been processed and then a new overflow occurs.

If you activate the Enable time error checkbox, the operating system calls organiza-
tion block OB 80 Time error if the number of the events pending in the queue

195

5 Program execution

reaches the number entered in the Event threshold for time error field. At the same
time, the event ID DW#16#0002_ 3502 is entered in the diagnostics buffer. In the
program of the time error organization block, you now have the capability of
responding to an impending overflow of the queue.

Current start and interrupt information

Every organization block with standard access - the Optimized block access attri-
bute is deactivated — contains information concerning the start event in the first 20
bytes of the temporary local data. You default structure of this start information can
be found in Chapter 4.11.4 “Start information” on page 142. Organization blocks
with the attribute Optimized block access activated can have start information,
which is provided by the operating system in the Input declaration section. The spe-
cific start information of an organization block is described in the description of the
organization block.

In many cases the interrupt-triggering component provides additional information
which you can read in the interrupt organization block with the system function
block RALRM (see Chapter 5.7.7 “Reading additional interrupt information” on
page 210).

Current signal states

In an interrupt routine it is sometimes necessary to work with the current signal
states of the /O modules and not with the signal states of the inputs that were
updated at the start of the main program. The fetched signal states are then written
directly to the I/O without waiting until the process image output has been updated
at the end of the main program.

The operand area I/O permits direct access to the signal states on the module termi-
nals. To this end, you can insert, for example, system blocks for process image par-
titions, which update the inputs before the program execution begins and transfer
the outputs to the modules after the program execution ends (see section “Process
image partitions” on page 180).

Note that the signal states on the module terminals change asynchronous to the
cyclic program execution. It is therefore recommendable to maintain a strict sepa-
ration between the main program and the interrupt routine.

5.7.2 Time-of-day interrupts

A time-of-day interrupt is executed at a configured time, either one-time or period-
ically (e.g. daily). A CPU 1500 provides 20 organization blocks with the numbers
OB 10 to OB 17 and after OB 123 for processing a time-of-day interrupt.

A time-of-day interrupt organization block is assigned to the event class Time of
day. It is of hardware data type OB_Time of day. The constant names and the values
are listed in the System constants tab of the default tag table. The name of the con-
stant can be changed in the block properties under General.

196

5.7 Interrupt processing

Start information

A time-of-day interrupt organization block with the attribute Optimized block
access activated provides the start information shown in Table 5.8 in the Input dec-
laration section. A time-of-day interrupt organization block with the attribute Opti-
mized block access deactivated (OB with standard access) provides 20-byte long
start information in the Temp declaration section, the standard structure of which
is described in 4.11.4 “Start information” on page 142. This contains the tag speci-
fied in Table 5.8 with the processing interval. This is the interval with which the
organization block is processed (see PERIOD parameter of the system function
SET_TINTL further below).

Table 5.8 Start information for a time-of-day interrupt organization block

Declaration | Tag name Data type | Description

The Optimized block access attribute is activated:

Input Caughtup BOOL ="1"for caught up call because clock was set forward

Input SecondTime BOOL ="1"for repeated call because clock was set back

The Optimized block access attribute is deactivated (standard access):

Temp PERIOD_EXE WORD Execution interval

Using a time-of-day interrupt

To start a time-of-day interrupt, you must first set the start time and then activate
the time-of-day interrupt. You can carry out both activities separately in the block
properties or also with system functions. Note that activation in the block proper-
ties means that the time-of-day interrupt is automatically started.

You can start a time-of-day interrupt once or periodically. The time-of-day interrupt
is canceled following a single call of the time-of-day interrupt OB. You can also can-
cel an active time-of-day interrupt using CAN_TINT. If you wish to reuse a canceled
time-of-day interrupt, you must set the start time again and activate the time-of-
day interrupt. You can query the status of a time-of-day interrupt with QRY_TINT.

Execution of the time-of-day interrupt is disabled with DIS_IRT and EN_IRT and
delayed with DIS_AIRT and EN_AIRT. You can set the behavior for time-of-day inter-
rupts that follow each other too closely (overload behavior).

Configuring a time-of-day interrupt

To configure a time-of-day interrupt, add an organization block with the event class
Time of day and enter the name, programming language, and number. In addition
to the general information and the attributes, you can set the following block prop-
erties in the properties of the organization block, under Time of day interrupt:

197

5 Program execution

> Interval of execution: Never, Once, Every minute, Hourly, Daily, Weekly, Monthly,
Yearly, and at the End of the month,

> Start date and Time of day,

> Time basis: System time or Local time.

You set the execution priority in the block attributes under Priority. You can change
the default priority 2 from 2 to 24.

System functions for processing a time-of-day interrupt

You can use system functions to set, cancel, and activate a time-of-day interrupt and
also to query the status. You can find the functions for the time-of-day interrupt in
the program elements catalog under Extended instructions > Interrupts. Fig. 5.25
shows the graphic representation of the system functions.

Controlling the time-of-day interrupt

Time-of-day T SET_TINTL and SET_TINT set the
interrupt setting - parameters for a time-of-day interrupt.
and activation — OB NR RET VAL — SET_TINTL can also use the lo_cal time and
- - activate the interrupt immediately.

— SDT

— LOCAL

—— PERIOD Assignment of PERIOD parameter

— ACTIVATE 16#0000 Once

16#0201 Every minute
Time-of-day 16#0401 Hourly
interrupt setting SET_TINT 16#1001 Daily
16#1201 Weekly

— OB_NR RET_VAL — 16#1401 Monthly

— SDT 16#1801 Yearly

— ! PERIOD 16#2001 End of month
Time-of-day . CAN TINT CAN_TINT cancels a time-of-day interrupt,
interrupt cancellation = the organization block of which you

— OB_NR RET VAL — specify at the parameter OB_NR.
Time-of-day . .
. s ACT TINT ACT_TINT activates a time-of-day
interrupt activation - interrupt, the organization block of which

— OB_NR RET_VAL — you specify at the parameter OB_NR.
Time-of-day QRY_TINT QRY_TINT reads the status of a time-of-
interrupt scan = day interrupt, the organization block of

— OB NR RET VAL — which you specify at the parameter

- - OB_NR.
STATUS —

Fig. 5.25 System blocks for controlling the time-of-day interrupt

SET_TINTL determines the start time for a time-of-day interrupt. The parameter
ACTIVATE specifies whether the start of the time-of-day interrupt OB should be car-
ried out immediately (TRUE) or only when the function ACT_TINT is called (FALSE).

198

5.7 Interrupt processing

The start time is present in the SDT parameter in the format DATE_AND_LTIME,
e.g. DTL#2011-01-01-08:30:00. The operating system ignores any specified seconds
and milliseconds and sets these values to zero. For a monthly interval, only days 1
through 28 are possible start dates. When setting the start time, any old value of
the start time is overwritten. A current time-of-day interrupt is canceled, i.e. the
time-of-day interrupt must be activated again.

SET_TINT determines the start time for the time-of-day interrupt. SET_TINT only
sets the start time; the time-of-day interrupt must be activated by ACT _TINT in
order to start the time-of-day interrupt OB. The start time is present in the
SDT parameter in the format DATE_AND_TIME, e.g. DT#2011-01-01-08:30:00. The
operating system ignores any specified seconds and milliseconds and sets these
values to zero. For a monthly interval, only days 1 through 28 are possible start
dates. When setting the start time, any old value of the start time is overwritten.
A current time-of-day interrupt is canceled, i.e. the time-of-day interrupt must be
activated again.

CAN_TINT deletes a set start time and thus deactivates a time-of-day interrupt. The
time-of-day interrupt OB is no longer called. If you wish to reuse this time-of-day
interrupt, you must first set the start time again and then activate the time-of-day
interrupt.

ACT_TINT activates a time-of-day interrupt. Activation is only possible if a time has
been set for the time-of-day interrupt. ACT_TINT signals an error if the start time
for a single start is in the past. In the case of a periodic start, the operating system
calls the time-of-day interrupt OB at the next due time. A single time-of-day inter-
rupt is quasi deleted following processing; you can set and activate it again (at a dif-
ferent start time).

QRY_TINT provides information on the status of a time-of-day interrupt. The

STATUS parameter contains the desired information and the individual bits have
the significance shown in Table 5.9.

Table 5.9 STATUS parameter of system function QRY_TINT

Bit Meaning with signal state “0” Meaning with signal state “1”

0 The CPU is in RUN. The CPU is in STARTUP.

1 The interrupt is enabled. The interrupt has been disabled by DIS_IRT.
2 The interrupt is not active or has expired. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. | An OB with the number OB_NR is loaded.
5 Always “0”

6 The start time is based on the system time. | The start time is based on the local time.
Other Always “0”

199

5 Program execution

Behavior during startup

During a warm restart, the operating system deletes all settings you have made
using a system function. The settings parameterized in the block properties are
retained.

You can obtain information in the startup program on the status of a time-of-day
interrupt using QRY_TINT and cancel or reset and activate the time-of-day interrupt
as required. Processing of a time-of-day interrupt organization block only takes
place in the RUN operating state.

Error response

If the start time lies in the past for a one-time execution, the time-of-day interrupt
will not be started.

If the start time for periodic processing lies in the past, the time-of-day interrupt
will be started the next time it is due after the current time.

If the date for the monthly interval does not exist (e.g. February 30), the time-of-day
interrupt will not be started.

If the clock is set forward by less than 20 s, any skipped time-of-day interrupt will
be caught up. The CaughtUp tag is setin the start information during the caught up
processing.

If the clock is set forward by 20 s or more and one or more time-of-day interrupts
have been skipped, the time error organization block OB 80 is called for each prior-
ity class. The Fault_ID tag in the start information then has the value B#16#05
“Time-of-day interrupt expired due to time skip”. If the time-of-day interrupt is not
deleted in the time error OB, the first skipped time-of-day interrupt will be caught
up and the CaughtUp tag will be set in the start information.

If the clock is set back by less than 20 s, a previously executed or still active time-of-
day interrupt will not be repeated.

If the clock is set back by 20 s or more, all of the skipped time-of-day interrupts will
be repeated. The start time of the first time-of-day interrupt to be repeated is recal-
culated if the time correction is longer than the period of this time-of-day interrupt.
The SecondTime tag is set in the start information for a repeated time-of-day inter-
rupt.

5.7.3 Time-delay interrupts

A time-delay interrupt implements a delay time independent of the timer functions
and asynchronous to cyclic program execution. A CPU 1500 provides 20 organiza-
tion blocks with the numbers OB 20 to OB 23 and after OB 123 for processing a time-
delay interrupt.

A time-delay interrupt organization block is assigned to the event class Time delay
interrupt. It is of hardware data type OB_Delay. The constant names and the values
are listed in the System constants tab of the default tag table. The name of the con-
stant can be changed in the block properties under General.

200

5.7 Interrupt processing

Start information

A time-delay interrupt organization block with the attribute Optimized block access
activated provides the start information shown in Table 5.10 in the Input declara-
tion section. A time-delay interrupt organization block with the attribute Optimized
block access deactivated (OB with standard access) provides 20-byte long start infor-
mation in the Temp declaration section, the standard structure of which is
described in 4.11.4 “Start information” on page 142. This contains the tags speci-
fied in Table 5.10.

Table 5.10 Start information for a time-delay interrupt organization block

Declaration | Tag name Data type | Description

The Optimized block access attribute is activated:

WORD Job ID (parameter SIGN from SRT_DINT)

Input ‘ Sign

The Optimized block access attribute is deactivated (standard access):

Temp SIGN WORD Job ID (parameter SIGN from SRT_DINT)

Temp DTIME TIME Parameterized delay time (ms)

Using a time-delay interrupt

You start a time-delay interrupt by calling the system function SRT_DINT; this sys-
tem function also passes on the delay interval and the delay organization block.
When the time delay has expired, the organization block is called.

The time between the call of the SRT_DINT function and the start of the organiza-
tion block is a maximum of one millisecond less than the parameterized delay time
if no interrupt events delay the call.

You can also use the CAN_DINT function to cancel execution of a time-delay inter-
rupt that has not yet started. The associated organization block is then no longer
called. You can query the status of a time-delay interrupt with QRY_DINT.

Execution of the time-delay interrupt is disabled with DIS_IRT and EN_IRT and
delayed with DIS_AIRT and EN_AIRT.

Configuring a time-delay interrupt
Configuration of the time-delay interrupts is carried out in two steps:

> You create an organization block for a time-delay interrupt.

> Then program the SRT_DINT function and possibly the CAN_DINT and QRY_DINT
functions and assign the number of the time-delay interrupt OB to the OB_NR pa-
rameter.

To configure a time-delay interrupt, add an organization block with the event class
Time delay interrupt and enter the name, programming language, and number. Set

201

5 Program execution

the priority in the properties of the organization block under Attributes. You can
change the default priority 3 from 3 to 24.

Enter the function SRT_DINT into your program. Then click on the selection symbol
in the input box of the OB_NR parameter and then select the time-delay interrupt
OB from the list. You program the CAN_DINT and QRY_DINT functions in the same
manner.

System functions for processing a time-delay interrupt

You can use system functions to activate and cancel a time-delay interrupt and also
to query the status. You can find the functions for the time-delay interrupts in the
program elements catalog under Extended instructions > Interrupts. Fig. 5.26 shows
the graphic representation of the system functions.

Controlling a time-delay interrupt

Time-delay interrupt SRT DINT SRT_DINT activates the time-delay
activation = interrupt, the organization block of which

— OB NR RET VAL — You specify at the parameter OB_NR.

— DTIME

— SIGN
Time-delay interrupt CAN_DINT cancels the time-delay
cancellation CAN_DINT interrupt, the organization block of which

— 0B NR RET VAL — You specify at the parameter OB_NR.
Time-delay interrupt RY DINT QRY_DINT reads the status of the time-
scan QRYZ| delay interrupt, the organization block

_ ___ of which you specify at the parameter

OB_NR RET_VAL OB_NR.
STATUS —

Fig. 5.26 Start, cancel, and query a time-delay interrupt

SRT_DINT activates a time-delay interrupt. The call is simultaneously the start time
for the parameterized period. Once the delay time has expired, the CPU calls the
parameterized OB and transfers the job ID (configured in the SIGN parameter) in
the start information for this OB. You can set the delay time in intervals of 1 ms.
The accuracy of the delay time is also 1 ms.

Note that processing of the time-delay interrupt OB may be delayed if organization
blocks of higher priority are being processed when the OB is called. You can over-
write a current delay time by a new value by calling SRT_DINT again. The new delay
time then commences when called.

CAN_DINT cancels an activated time-delay interrupt. The parameterized organiza-
tion block is not called in this case.

202

5.7 Interrupt processing

QRY_DINT provides information on the status of the time-delay interrupt. You
select the time-delay interrupt using the OB number. The STATUS parameter con-
tains the desired information and the individual bits have the significance shown
in Table 5.11.

Table 5.11 STATUS parameter of system function QRY_DINT

Bit Meaning with signal state “0” Meaning with signal state “1”

0 The CPU is in RUN. The CPU is in STARTUP.

1 The interrupt is enabled. The interrupt has been disabled by DIS_IRT.
2 The interrupt is not active or has expired. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. An OB with the number OB_NR is loaded.
Other Always “0”

Behavior during startup

During a warm restart, the operating system deletes all settings you have pro-
grammed for time-delay interrupts.

You can start a time-delay interrupt in the startup program by calling SRT DINT.
Following expiry of the delay time, the CPU must be in the RUN operating state in
order to process the corresponding organization block. If this is not the case, the
CPU waits with the OB call until the startup has been completed and then calls the
time-delay interrupt OB before the first statement in the main program.

Error response

If the time-delay interrupt OB is missing in the user program when called, the oper-
ating system ignores the event.

If the delay time has expired and the associated OB is still being processed, the oper-
ating system calls the organization block OB 80 Time error or ignores the event if
OB 80 is not present.

5.7.4 Cyclic interrupts

A cyclic interrupt is an interrupt triggered at periodic intervals which initiates exe-
cution of a cyclic interrupt organization block. A cyclic interrupt allows you to peri-
odically execute a particular routine independent of the processing time of the
cyclic program. A CPU 1500 provides 20 organization blocks with the numbers
OB 30 to OB 38 and after OB 123 for processing a cyclic interrupt.

A cyclic interrupt organization block is assigned to the Cyclic interrupt event class.
It is of hardware data type OB_Cyclic. The constant names and the values are listed
in the System constants tab of the default tag table. The name of the constant can be
changed in the block properties under General.

203

5 Program execution

Start information

A cyclic interrupt organization block with the attribute Optimized block access acti-
vated provides the start information shown in Table 5.10 in the Input declaration
section. A cyclic interrupt organization block with the attribute Optimized block
access deactivated (OB with standard access) provides 20-byte long start informa-
tion in the Temp declaration section, the standard structure of which is described
in4.11.4 “Start information” on page 142. This contains the tags specified in Table
5.10.

Table 5.12 Start information for a cyclic interrupt organization block

Declaration Tag name Data type | Description

The Optimized block access attribute is activated:

Input Initial_Call BOOL ="1"for the first call of the organization block in the RUN
operating state and after reloading

Input Event_Count INT Number of discarded start events since the last start of this
organization block

The Optimized block access attribute is deactivated (standard access):

Temp PHS_OFFSET INT Phase offset

Temp EXC_FREQ INT Parameterized time interval ”

“fora cyclic interrupt cycle < 1 ms in microseconds (ps), otherwise milliseconds (ms)

Using a cyclic interrupt

For a cyclic interrupt that is configured with the hardware configuration, the start
time for the call interval is the transition into the RUN operating state.

With the system function SET_CINT, the call interval (the cycle clock) and the phase
offset can be changed per user program. You query the status of the cyclic interrupt
with QRY_CINT.

Execution of the cyclic interrupt is disabled with DIS_IRT and EN_IRT and delayed
with DIS_AIRT and EN_AIRT. You can set the behavior for cyclic interrupts that fol-
low each other too closely (overload behavior).

Configuring a cyclic interrupt

To configure a cyclic interrupt, add an organization block with the event class Cyclic
interrupt and enter the name, the programming language, the number, and the
cycle clock (the call interval) in microseconds. In addition to the general informa-
tion and the attributes, you can set the phase offset in the properties of the organi-
zation block, under Cyclic interrupt. You can also change the cycle clock here.

You set the execution priority in the block attributes under Priority. The default pri-
ority is 8 to 17, depending on the time interval, and can be changed in the range of
2 to 24.

204

5.7 Interrupt processing

Cycle clock

The cycle clock can be set in the range from 500 ps to 60,000,000 ps in intervals
of 1 ps. When a cyclic interrupt organization block is added, the processing priority
is preset depending on the cycle clock (Table 5.13). You can change the default pri-
ority in the block properties.

Table 5.13 Default setting of the priority depending on the cycle clock

Cycle <2 >2 .. >5.. >10... | >100... | >200... [>500... | >1000 > 2000
clock (ms) <5 <10 <100 <200 <500 | <1000

<2000
Priority 17 16 14 13 12 1 10 9 8

Phase offset

You can use the phase offset to process cyclic interrupt programs in a precise time
frame even if they have the same time interval or a common multiple thereof. This

Effect of phase offset with cyclic interrupts

Without phase offset

The start time of the organization block with lower priority is offset by the processing time of the
organization block with higher priority.

=
—
=
—

Processing of the cyclic
interrupt organization block
with higher priority

—

A
Y

LA N
a
a
]

1
1

A
\
A

Processing of the cyclic
interrupt organization block
with lower priority

]
a

With phase offset

If the phase offset is sufficiently large, the organization block with lower priority starts exactly in
the time interval.

Processing of the cyclic <t_>|<t_>|<t_>|<t_>|

interrupt organization block

with higher priority
Processing of the cyclic <t—>|<—t>|<t—>|<—t>|
interrupt organization block

H H H L

with lower priority

[*—| Phase offset

Fig. 5.27 Processing of cyclic interrupts with and without phase offset

205

5 Program execution

results in higher accuracy of the processing intervals. The phase offset can be setin
the range from 0 ps to 15,000 ps in intervals of 1 ps.

The start time of the cycle clocks and the phase offset is the transition from the
STARTUP operating state to RUN. The call instant for a cyclic interrupt OB is thus the
cycle clock plus the phase offset. An example is shown in Fig. 5.27. No phase offset
is set in the upper section, and consequently start of processing of the lower prior-
ity organization block is delayed by the current processing time of the higher pri-
ority organization block in each case.

If, on the other hand, a phase shift is configured and it is greater than the maximum
processing time of the higher-priority organization block, the lower-priority orga-
nization block is processed in the precise time frame.

System functions for processing a cyclic interrupt

You can set and query the parameters for processing a cyclic interrupt with system
functions. You can find the functions for the cyclic interrupt in the program ele-
ments catalog under Extended instructions > Interrupts. Fig. 5.28 shows the graphic
representation of the functions.

Setting and scanning cyclic interrupt parameters

Set cyclic interrupt SET CINT SET_CINT sets the parameters for the
parameters - cyclic interrupt, the organization block
] RET VAL — of which you specify at the parameter
R - OB_NR.
— CYCLE
— PHASE
Scan cyclic interrupt R QRY_CINT reads the status of the cyclic
parameters QRY_ interrupt, the organization block of
_ | which you specify at the parameter
0B_NR RET_VAL OB.NE.
CYCLE —
PHASE —
STATUS —

Fig. 5.28 System blocks for setting and querying the cyclic interrupt parameters

SET_CINT sets the parameters for a cyclic interrupt. This is the cycle clock with
which the cyclic interrupt is triggered, and the phase offset. Enter the cycle clock in
microseconds at the CYCLE parameter. If the time interval is zero, the cyclic inter-
rupt organization block specified in parameter OB_NR is not called. The phase off-
set at parameter PHASE is also specified in microseconds.

QRY_CINT reads the parameters of the cyclic interrupt organization block specified
at parameter OB_NR and outputs them to the parameters CYCLE (time interval) and
PHASE (phase offset). The operating state of the selected cyclic interrupt organiza-
tion block is output at parameter STATUS (Table 5.14).

206

5.7 Interrupt processing

Table 5.14 STATUS parameter of system function QRY_CINT

Bit Meaning with signal state “0" Meaning with signal state “1"

0 The CPU must be in the RUN mode. The CPU must be in the STARTUP mode.

1 The interrupt is enabled. The interrupt has been delayed by DIS_AIRT.
2 The interrupt expired or is not active. The interrupt is active.

3 Always “0”

4 An OB with the number OB_NR does not exist. An OB with the number OB_NR is loaded.
Other Always “0”

Behavior during startup

Processing of cyclic interrupts is not possible in the startup program. The cycle
clocks only commence upon transition to the RUN state.

Error response

If the cyclic interrupt OB is missing in the user program when called, the operating
system ignores the event.

The processing time of a cyclic interrupt organization block must be significantly
shorter than its time frame. If the associated cyclic interrupt is repeated during an
ongoing cyclic interrupt OB, the operating system calls OB 80 Time error. The error
is ignored if OB 80 is not present.

5.7.5 Hardware interrupts

With a hardware interrupt, there can be an immediate response with a correspond-
ing program to events in the controlled process or on a module. A CPU 1500 pro-
vides 50 organization blocks with the numbers OB 40 to OB 47 and after OB 123 for
processing a hardware interrupt.

A hardware interrupt organization block is assigned to the Hardware interrupt
event class. It is of hardware data type OB_HWINT. The constant names and the val-
ues are listed in the System constants tab of the default tag table. The name of the
constant can be changed in the block properties under General.

Start information

A hardware interrupt organization block with the attribute Optimized block access
activated provides the start information shown in Table 5.15 in the Input declara-
tion section. A hardware interrupt organization block with the attribute Optimized
block access deactivated (OB with standard access) provides 20-byte long start infor-
mation in the Temp declaration section, the standard structure of which is
described in 4.11.4 “Start information” on page 142. This contains the tags speci-
fied in Table 5.15.

207

5 Program execution

Table 5.15 Start information for a time-of-day interrupt organization block

Description

Declaration Tag name ‘ Data type

The Optimized block access attribute is activated:

Input LADDR HW_IO Hardware identifier of the module triggering the interrupt
Input usl WORD (ID for future expansions)

Input ICHANNEL USINT Number of the channel triggering the interrupt

Input EventType BYTE Event type (see module description)

The Optimized block access attribute is deactivated (standard access):

Temp 110_FLAG BYTE 1/0 identification (16#54 = input, 16#55 = output)
Temp MDL_ADDR WORD Module start address
Temp POINT_ADDR DWORD Interrupt information

Using a hardware interrupt

A hardware interrupt is triggered on a module designed for this. This can be, for
example, a digital or analog input module or a technology module. Triggering of a
hardware interrupt is initially disabled by default. When you parameterize the
module that triggers the interrupt using the hardware configuration, you enable
the hardware interrupt event.

Only one hardware interrupt organization block can be assigned to a hardware
interrupt event, but several events can be assigned to one hardware interrupt orga-
nization block.

At runtime, the assignment between a hardware interrupt event and an organiza-
tion block can be made or removed in the user program using ATTACH and DETACH.

Execution of the hardware interrupt is disabled with DIS IRT and EN_IRT and
delayed with DIS_AIRT and EN_AIRT.

Configuring a hardware interrupt

To configure a hardware interrupt, enable the hardware interrupt event on the
module that triggers the interrupt. Assign a hardware interrupt organization block
to this event - either one that you have already created or one that you are creating
now.

When parameterizing the module that triggers the interrupt with the hardware
configuration, activate the hardware interrupt event, for example at the input of a
correspondingly configured digital input module. Specify when a hardware inter-
ruptis to be triggered, during a rising edge for example. The event is given a name,
which you can change and which is entered in the System constants tab of the
default tag table. You can use this name to address the hardware interrupt event in
the user program, for example when using ATTACH to make an assignment to an

208

5.7 Interrupt processing

organization block. In addition, you can change the default processing priority
16 from 2 to 24 in the module properties.

When assigning the organization block, choose an existing block or create a new
one using the Add object button. When adding, give the organization block a name
and set the programming language and number. In the properties of the organiza-
tion block, under Triggers, you will find a table with the hardware interrupt events
that were assigned during the hardware configuration.

Behavior during startup

During a warm restart, the operating system deletes all of the assignments made
between an interrupt event and an organization block using a system function.
The assignments configured with the hardware configuration are retained.

Interrupt handling commences with the transition to the RUN operating state.
Hardware interrupts present during the transition are lost. Hardware interrupt
organization blocks are only called in the RUN operating state.

Error response

If, during processing of a hardware interrupt OB, an event occurs on the same chan-
nel of the same module which would again trigger the freshly processed hardware
interrupt, this hardware interrupt is lost. A new hardware interrupt is only acquired
when processing of the old hardware interrupt has finished. If the event to which
the same hardware interrupt OB is assigned occurs on a different channel of the
same module or on a different module, the operating system starts the organiza-
tion block once again after processing the hardware interrupt OB.

If the hardware interrupt OB is missing in the user program when called, the oper-
ating system ignores the event.

5.7.6 Assigning interrupts during runtime

With the following system functions you can assign an organization block to an
interrupt event during runtime and cancel the assignment again:

> ATTACH Assign organization block to the interrupt event

> DETACH Remove organization block from the interrupt event

You find the system functions in the program elements catalog under Extended
instructions > Interrupts. Calling of these functions is shown in Fig. 5.29.

At the parameter OB_NR you specify the number of the organization block, the
hardware identifier (data type OB_HWINT) from the System constants tab in the
default tag table, or an INT tag. At the parameter EVENT you specify the number or
the name of the interrupt event (Data type Event_HwInt) from the System constants
tab in the default tag table or a DWORD tag.

209

5 Program execution

Creating and removing an assignment between an organization block and interrupt event
Assign organization ATTACH assigns an organization
block to interrupt event ATTACH block (parameter OB_NR) to an

interrupt event (parameter EVENT).

— OB_NR RET_VAL —

— EVENT

— ADD
Remove assignment between DETACH DETACH removes the assignment
organization block and between an organization block
interrupt event — OB AR RET VAL — (parameter OB_NR) and an interrupt

_ event (parameter EVENT).

Fig.5.29 System blocks for the assigning hardware interrupts and canceling hardware
interrupt assignments

ATTACH Assign organization block to the interrupt event

ATTACH assigns an interrupt organization block to an interrupt event. The event
must be activated and defined using the device configuration editor. The interrupt
organization block with the event class suitable to the event must be present in the
user program.

After the assignment has been made, the organization block is called and executed
when the event occurs. The parameter ADD defines whether the previous assign-
ments to other events will be retained (with “1” or TRUE) or whether they will be
deleted (with “0” or FALSE).

The enable output ENO has signal state “0” for the following errors: OB does not
exist (RET_VAL = 8090), OB is of the wrong type (RET_VAL = 8091), and event does
not exist (RET_VAL = 8093).

DETACH Remove organization block from the interrupt event

DETACH removes the assignment of an interrupt event to an interrupt organization
block.

If an event is specified at the parameter EVENT, the assignment of this event is
removed. If zero is assigned to the parameter EVENT, all of the assignments to the
OB located at parameter OB_NR are deleted.

If the requested assignment does not exist, the enable output ENO has signal state
“0” and the value 1 is output at the parameter RET_VAL. Further errors: OB does not
exist (RET_VAL = 8090), OB is of the wrong type (RET_VAL = 8091), and event does
not exist (RET_VAL = 8093).

5.7.7 Reading additional interrupt information

The system block RALRM reads additional interrupt information from the inter-
rupt-triggering components (modules or submodules). It is called in an interrupt

210

5.7 Interrupt processing

organization block or in a block called within this. Processing of RALRM is synchro-
nous, i.e. the requested data is available at the output parameters immediately fol-
lowing the call. You find RALRM in the program elements catalog under Extended
instructions > Distributed I/O. Fig. 5.30 shows the graphic representation of RALRM.

Reading additional interrupt information

Read additional Instance data RALRM reads additional information on an
interrupt interrupt event.
information RALRM

— MODE NEW —

—F.ID STATUS —

— MLEN ID —

— TINFO LEN —

— AINFO

RALRM: Assignment of MODE parameter

0 Indicates the interrupt-triggering component in the ID
parameter and sets NEW to signal state "1".

1 Writes all output parameters of RALRM.

2 Checks whether the component specified in the F_ID
parameter has triggered the interrupt; if not, NEW is set to
signal state "0", otherwise to signal state "1" and all output
parameters are written.

Fig. 5.30 System blocks for reading additional interrupt information

RALRM can always be called in all organization blocks or execution levels for all
events. If you call it in an organization block whose start event is not an interrupt
from the 1/O, correspondingly less information is available. Different information
is entered in the destination areas specified by the TINFO and AINFO parameters
depending on the respective organization block and the interrupt-triggering com-
ponent.

In bytes 0 to 19, the destination area TINFO contains the complete (default) start
information of the organization block in which RALRM was called, independent of
the nesting depth in which it was called. The system block RALRM thus partially
replaces the system function RD_SINFO. Address and management information is
present in bytes 20 to 31, e.g. which component has triggered the interrupt.

In bytes 0 to 3 (bytes 0 to 25 with PROFINET), the destination area AINFO contains
the header information, e.g. the number of received bytes of the additional inter-
rupt information or interrupt type. Bytes 4 to 199 (bytes 26 to 1431 with PROFINET)
contain the component-specific additional interrupt information itself.

The assignment of the MODE parameter determines the mode of the system block
RALRM. With Mode = 0, the system block shows you the interrupt-triggering com-
ponentin the ID parameter; NEW is assigned TRUE. With Mode = 1 all output param-

211

5 Program execution

eters are written. With Mode = 2, check whether the component specified by the
F_ID parameter was the interrupt-triggering one. If this applies, the NEW parame-
ter has the value TRUE, and all other output parameters are written.

In order to work correctly, RALRM requires separate instance data for each call in
the various organization blocks, e.g. a separate instance data block in each case.

5.8 Error handling

5.8.1 Causes of errors and error responses

The CPU can detect and signal errors in the program execution and from the mod-
ules. The response of the operating system depends on the type of error and on the
configurable settings: The error is ignored, an error organization block is called, or
it is left up to the user program to respond to the error. In the event of serious
errors, e.g. the cycle monitoring time has elapsed twice in one program cycle, the
CPU immediately goes into the STOP operating state.

Errors during runtime which are module-based are signaled by the diagnostics
function. This can be carried out via the ERROR LED on the front of the CPU, a diag-
nostics alarm on the CPU display, an entry in the diagnostics buffer, or by starting
the diagnostics interrupt (see Chapter 15.4 “Hardware diagnostics” on page 672).
Using system blocks, you can respond to status and error messages of modules in
the user program (see Chapter 5.9.3 “Diagnostic functions in the user program” on
page 228).

System blocks that are prone to errors when executed report this error via the
return value (function value), which is generally called the RET VAL or STATUS.
This feedback message can be evaluated in the user program and the error can be
responded to. System blocks with an ENO output report a faulty execution in the
block with signal state “0” or FALSE at this output. The ENO output can also be used
for error reporting for self-written function blocks (FBs) and functions (FCs). Fur-
ther details can be found in Chapters 7.6.4 “EN/ENO mechanism in the ladder logic”
on page 320, 8.6.4 “EN/ENO mechanism in the function block diagram” on page 356,
9.6.2 “EN/ENO mechanism with SCL” on page 381, and 10.7.2 “EN/JENO mechanism
in the statement list” on page 447.

Program execution errors can be programming errors, e.g. calling a non-existent
block, and access errors, e.g. querying a non-existent peripheral input. The
response to one of these so-called synchronous errors can be the system-internal
error response (see Chapter 5.8.3 “Global error handling (synchronous error)” on
page 215) or a user-specific error response (see Chapter 5.8.2 “Local error han-
dling”). The operating system responds to errors are not related to the program
execution (“asynchronous errors”) by calling an organization block (see
Chapter 5.8.5 “Asynchronous errors” on page 220).

212

5.8 Error handling

5.8.2 Local error handling

You can program local error handling in organization blocks (OB), function
blocks (FB), and functions (FC). It only applies to the corresponding block. Local
error handling is not taken from the calling block nor is it passed on to the called
block. If the local error handling is not programmed, the system settings will apply
if an error occurs (ignore error or STOP).

If local error handling is activated, the default responses are:

> For a write error: The error is ignored and program execution is continued.

> For aread error: The substitute value “0” or zero is read and program execution
is continued.

> For an execution error: The execution of the faulty statement (function) is abort-
ed and program execution is continued with the next statement.

Local error handling is automatically activated by inserting the statement GET_ER-
ROR or GET_ERROR_ID in the block and displayed in the block properties with the
attribute Handle errors within block (cannot be edited).

Evaluating program errors

Two functions are available in the block for the error evaluation for local error han-
dling (Fig. 5.31):

> GET_ERR_ID (read program error number) provides the error number (ID) in the
event of a program execution error.

> GET_ERROR (read program error information) provides the corresponding in-
formation in a predefined data structure in the event of a program execution er-
ror.

In the event of a program execution error, the CPU enters the error into the diag-
nostics buffer by default and switches to STOP. If the function GET_ERROR or
GET_ERR_ID is programmed in the block, there is no entry into the diagnostics
buffer and no switch to STOP. Instead, the error is reported via GET_ERROR or
GET ERR_ID.

Local error handling

Read program error If a programming error occurred in the
number GetErrorlD block program before calling GetErrorID,
D — GetErrorID reads its number.
Read program error If a programming error occurred in the
information GetError block program before calling GetError,
ERROR — GetError reads its information.

Fig. 5.31 System blocks for local error handling

213

5 Program execution

The error may have occurred at any position between starting of the block and
calling of GET_ERROR or GET ERR_ID. Therefore, in the case of a single call of
GET_ERROR or GET_ERR_ID, the call is preferably positioned in the last network or
at the end of the program in the monitored block.

GET_ERROR and GET_ERR_ID can also be called multiple times. A call of GET_ERROR
or GET_ERR _ID re-initiates the error detection. The next call of GET_ERROR
or GET_ERR_ID outputs the first error after the previous call of GET _ERROR or
GET_ERR_ID. The progress of the error is not saved.

GET_ERR_ID Read program error number

In the event of a program execution error, the GER_ERR_ID function provides the
error identification in the ID parameter (Table 5.16). The function is executed if EN
has the signal state “1”. No error has been detected if ENO has the signal state “0”
(FALSE), an error ID is present if the signal state at ENO is “1” (TRUE).

Table 5.16 Error numbers with program execution errors

ERROR_ID Error ERROR_ID Error

hex dec hex dec

16#2503 | 9475 | Invalid pointer 16#253C | 9532 | Incorrect version, or function (FC)

does not exist

16#2522 | 9506 | Range violation when 16#253D | 9533 | System function (SFC) does not
reading exist

16#2523 | 9507 | Range violation when 16#253E | 9534 Incorrect version, or function
writing block (FB) does not exist

16#2524 9508 | Invalid operand when 16#253F 9535 System function block (SFB) does
reading not exist

16#2525 9509 | Invalid operand when 16#2575 9589 Program nesting depth exceeded
writing

16#2528 | 9512 | Incorrect bit orientation 16#2576 | 9590 | Errorin assignment of
when reading temporary local data

16#2529 | 9513 | Incorrect bit orientation 16#2942 10562 | Read error during direct access
when writing (input channel does not exist)

16#2530 | 9520 | Data block write error 16#2943 10563 | Write error during direct access
(DB write-protected) (output channel does not exist)

16#253A | 9530 | Global DB does not exist

GET_ERROR Read program error information

In the event of a program execution error, the GER_ERROR function provides the
error information in the ERROR parameter in data type ErrorStruct. The data type
ErrorStruct has the structure shown in Section 4.11.3 “Data type ERROR_STRUCT” on
page 141. The function is executed if EN has the signal state “1”. No error has been

214

5.8 Error handling

detected if ENO has the signal state “0” (FALSE), error information is present if the
signal state at ENO is “1” (TRUE).

Error priority

The first detected error is output when calling GET_ERROR or GET_ERR_ID. If sev-
eral errors occur simultaneously when processing a statement (function) they are
output according to their priority (Table 5.17). Priority 1 is the highest priority,
12 is the lowest.

Table 5.17 Priorities during error output

Priority | Type of error Priority | Type of error

1 Error in program code 7 Time or counter function does not exist
2 Reference missing 8 No write access to a DB

3 Invalid range 9 110 error

4 DB does not exist 10 Statement does not exist

5 Operand is not compatible 11 Block does not exist

6 Width of specified range is insufficient 12 Invalid nesting depth

Evaluating program error information

The data type ErrorStruct can be inserted into data blocks or into a block interface
from a drop-down list. You can also insert the data type more than once if you
assign a different name to the data structure each time. The data structure and the
name of individual structure components cannot be changed.

If the error information is saved in a data block, it can also be read by other blocks.
For example, another block can be called in the event of an error which then takes
over evaluation of the error information.

5.8.3 Global error handling (synchronous error)

The CPU's operating system generates a synchronous error event if an error occurs
in direct relationship with the program execution. Two types of error are distin-
guished: programming error and I/O access error. If local error handling is not acti-
vated, the CPU operating system responds to a programming error with the call of
the organization block OB 121 and to an I/O access error with the call of the organi-
zation block OB 122.

Programming error organization block OB 121

The organization block OB 121 is called if a programming error occurs (also in the
STARTUP operating state). This includes, for example, BCD conversion errors,
errors with indirect addressing, and addressing of missing SIMATIC timer/counter

215

5 Program execution

functions or blocks. If the organization block OB 121 is not present when a pro-
gramming error occurs, the CPU switches to STOP.

The programming error organization block is assigned to the Programming error
event class. It is of hardware data type OB_ANY. The constant names and the values
are listed in the System constants tab of the default tag table. The name of the con-
stant can be changed in the block properties under General.

Start information OB 121

The programming error organization block with the attribute Optimized block
access activated provides the start information shown in Table 5.18 in the Input dec-
laration section. With the attribute Optimized block access deactivated (OB with
standard access), it provides 20-byte long start information in the Temp declaration
section, the standard structure of which is described in 4.11.4 “Start information”
on page 142. This contains the tags specified in Table 5.18, which give information
on the cause and location of the error. Example: If the SW-FLT tag is occupied by
B#16#32 (= access to anon-existent global data block), the FLT _REG tag contains the
number of the missing data block.

I/0 access error organization block OB 122

The organization block OB 122 is called if an I/O access error occurs (also in the
STARTUP operating state). This is the case, for example, if a faulty module, a non-
existent module, or an I/0O address unknown on the CPU is accessed. If the organi-
zation block OB 122 is not present when an I/O access error occurs, the operating
system ignores the error event.

The /O access error organization block is assigned to the IO access error event class.
It is of hardware data type OB_ANY. The constant names and the values are listed
in the System constants tab of the default tag table. The name of the constant can be
changed in the block properties under General.

Start information OB 122

The programming error organization block with the attribute Optimized block
access activated provides the start information shown in the Table 5.18 on page 217
in the Input declaration section. With the attribute Optimized block access deacti-
vated (OB with standard access), it provides 20-byte long start information in the
Temp declaration section, the standard structure of which is described in 4.11.4
“Start information” on page 142. This contains the tags specified in Table 5.18,
which give information on the cause and location of the error. In the SW_FLT tag,
the value B#16#42 stands for a read operation and B#16#43 for a write operation.
The type of access in the MEM_AREA tag can be bit access (with value 0), byte
access (1), word access (2), and doubleword access (3). The memory area can be the
I/O area I:P or Q:P (with value 0), the process image input, (1) or the process image
output (2). The error-causing memory address is then in the MEM_ADDR tag.

216

5.8 Error handling

Table 5.18 Start information for OB 121 and OB 122

Decl. Tag name Data type

Description | 121 ‘ 122

The Optimized block access attribute is activated:

Input BlockNo UINT Number of block in which the programming or X X
110 access error occurred
Reaction USINT Reaction to error
0: Ignore error X X
1: Replace faulty value X X
2: Skip statement X X
3: Programmed error handling X -
Fault_ID BYTE Error code X X
BlockType USINT Block type (OB: 16#88, FB: 16#8C, FC: 16#8E) X X
Area USINT Operand area in which the erroneous access was
located
Process image input: 16#01 X -
Process image output: ~ 16#02 X -
Technology DB: 16#03 X -
Inputs: 16#81 X X
Outputs: 16#82 X X
Bit memory: 16#83 X -
Data (block): 16#84, 85, 8A, 8B X -
Local data: 16#40 to 4E, 86, 87, X -
16#8E, 8F, CO to CE
DBNo DB_ANY | DB number if AREA = 16#84, 85, 8A, 8B x -
Csg_OBNo OB_ANY OB number (121 or 122) X X
Csg_Prio USINT OB priority X X
Width USINT Width of the access X X
Bit: 16#00
Byte: 16#01
Word: 16#02
Doubleword: 16#03
Long word: 16#04
The Optimized block access attribute is deactivated (standard access):
Temp SW_FLT BYTE Start request for the organization block X X
(error code)
BLK_TYPE BYTE Type of block in which the error occurred x X
FLT_REG WORD Error source depending on the error code X -
MEM_AREA BYTE Memory area (bits O to 3) and - X
type of access (bits 4 to 7)
MEM_ADDR WORD Memory address at which the error occurred - X
BLK_NUM WORD Number of block in which the error occurred X X
PRG_ADDR WORD Relative address of the machine code causing the error | x X

217

5 Program execution

5.8.4 Enabling and disabling synchronous error processing

The processing of a synchronous error event can be disabled (“masked”), so that the
error organization block is not called when the event occurs. An error mask defines
which synchronous error events will be disabled. If an event occurs during the dis-
abled state, it is recorded in the event status register. The processing of disabled
synchronous error events can also be enabled again (“unmasked”). Fig. 5.32 shows
the graphic representation of the system functions provided for this purpose.

Handling of synchronous error events

Mask MSK FLT MSK_FLT suppresses the processing of
synchronous error = individual error events.
events — PRGFLT_ RET_VAL —
SET_MASK
— ACCFLT_ PRGFLT —
SET_MASK MASKED
ACCFLT —
MASKED
Unmask DMSK_FLT re-enables the processing of
synchronous error DMSKZFLT individual error events. : I
events — PRGFLT_ RET VAL —
RESET_MASK
— ACCFLT_ PRGFLT_ —
RESET_MASK MASKED
ACCFLT —
MASKED
Read READ_ERR reads the event status register.
event status READZERR B
register — PRGFLT_ RET VAL —
QUERY
— ACCFLT_ PRGFLT —
QUERY CLR
ACCFLT —
CLR

Fig. 5.32 System blocks for handling of synchronous error events

Error masks

The synchronous error processing is influenced via two error masks. A bit is pres-
ent in the programming error mask for each detected programming error, and in
the access error mask for each detected access error. When specifying the error
mask, you set the bit which corresponds to the synchronous error you wish to
mask, unmask, or query. The error masks returned by the system functions indi-
cate the synchronous errors which are still masked or present by signal state “1”.
Table 5.19 shows the assignment of the synchronous error masks.

218

5.8 Error handling

Table 5.19 Assignment of the synchronous error masks

Programming error mask

Bit | Meaning Bit | Meaning

0 - 16 | Write error global data block

1 BCD conversion error 17 | Write error instance data block

2 Area length error when reading 18 | Faulty number in DB register

3 Area length error when writing 19 | Faulty number in DI register

4 Area error when reading 20 | Faulty number of an FC block

5 Area error when writing 21 Faulty number of a function block
6 Faulty number of a timer function 22 | -

7 Faulty number of a counter function 23 | -

8 Address error when reading indirectly 24 | -

9 Address error when writing indirectly 25 | -

10 | - 26 | Data block does not exist

11 - 27 -

12 | - 28 | Called FC block does not exist

13 - 39 -

14 | - 30 | Called function block does not exist
15 - 31 -

Access error mask

Bit | Meaning Bit | Meaning

1 110 access error when reading 2 110 access error when writing

MSK FLT Mask synchronous error events

By means of the error masks, the MSK_FLT disables calling of the synchronous
error organization blocks. By means of signal state “1” you identify in the error
masks for which synchronous errors the organization blocks are not to be called
(the synchronous error events are “masked”). The specified masking is used in
addition to the masking saved in the operating system. MSK_FLT signals in the
function value whether a (saved) masking was already present (16#0001) for at
least one bit for the masking specified in the input parameters.

MSK_FLT returns all currently masked events with signal state “1” in the output
parameters.

If a masked synchronous error event occurs, the corresponding organization block
is not called and the event is not entered in the event status register. Masking
applies to the current priority class. If you mask the call of a synchronous error
organization block in the main program, for example, the synchronous error orga-
nization block is nevertheless called if the error occurs in an interrupt routine.

DMSK FLT Unmask synchronous error events

By means of the error masks, the DMSK_FLT enables calling of the synchronous
error organization blocks. By means of signal state “1” you identify in the error
masks the synchronous errors for which the organization blocks are to be called

219

5 Program execution

again (the synchronous error events are “unmasked”). The entries in the event sta-
tus register corresponding to the specified unmasking are deleted. DMSK_FLT sig-
nals with W#16#0001 in the function value if no (saved) masking was present for at
least one bit for the unmasking specified in the input parameters.

DMSK FLT returns all currently masked events with signal state “1” in the output
parameters.

If an unmasked synchronous error event occurs, the corresponding organization
block is called and the eventis entered in the event status register. Enabling applies
to the current priority class.

READ_ERR Read event status register

READ_ERR reads the event status register. With signal state “1” you identify in the
error masks the synchronous errors for which you wish to read the entries.
READ_ERR signals with W#16#0001 in the function value if no (saved) masking was
present for at least one bit for the selection specified in the input parameters.

READ_ERR returns the selected events with signal state “1” in the output parame-
ters when they have occurred and deletes these events in the event status register
when scanned. Synchronous errors which have occurred in the current priority
class are signaled.

5.8.5 Asynchronous errors

Asynchronous errors are errors which can occur asynchronously to program exe-
cution. If an asynchronous error occurs, the operating system calls one of the
following organization blocks:

OB 80 Time error
OB 82 Diagnostics interrupt
OB 83 Insert/remove module interrupt

OB 86 Rack error

The organization block OB 82 (diagnostics interrupt) is described in Chapter 5.9.1
“Diagnostics interrupt” on page 226.

Calling these asynchronous error organization blocks can be disabled and enabled
using the system functions DIS_IRT and EN_IRT and delayed and enabled using
DIS_AIRT and EN_AIRT.

Time error OB 80

The operating system calls the organization block OB 80 if one of the following
errors occurs:

> The first instance of exceeding the cycle monitoring time in a program cycle

> OB request error (the called organization block is still being processed, or an
organization block is called too frequently within a priority class)

220

5.8 Error handling

> Time-of-day error interrupt (expired time-of-day interrupt through setting the
time forward by more than 20 s or after transitioning to the RUN operating state)

If OB 80 is not present, the CPU switches to STOP in the event that the cycle moni-
toring time is exceeded. A different error event is ignored if the time error organi-
zation block is not present. The CPU switches to STOP even if the time error organi-
zation block is present if the cycle time is exceeded a second time in the same pro-
gram cycle.

To program the error program, add the organization block with the event class Time
error interrupt and enter the name, programming language, and number. The
default priority 22 cannot be changed. The time error organization block is of the
hardware data type OB_TIMEERROR. The constant name and the value are listed in
the System constants tab of the default tag table. The name of the constant can be
changed in the block properties under General.

The Start information of the time error organization block with the attribute
Optimized block access activated contains the tags shown in Table 5.20 in the Input
declaration section. The time error organization block with the attribute Optimized
block access deactivated (OB with standard access) provides 20-byte long start infor-
mation in the Temp declaration section, the standard structure of which is
described in Chapter 4.11.4 “Start information” on page 142. This contains the tags
specified in Table 5.20.

Table 5.20 Start information for the time error organization block

Declaration Tag name Data type | Description

The Optimized block access attribute is activated:

Input Fault_ID BYTE Error code
Csg_OBNo OB_ANY Number of the organization block causing the error
Csg_Prio UINT Priority of the organization block causing the error

The Optimized block access attribute is deactivated (standard access):

Temp FLT_ID BYTE Error code
ERR_EV_CLASS BYTE Error-triggering event class
ERR_EV_NUM BYTE Error-triggering event number
OB_PRIORITY BYTE Error information depending on the error code
OB_NUM BYTE Error information depending on the error code

Insertiremove module interrupt OB 83

If a configured and activated module of the distribute I/O is inserted or removed,
the operating system triggers an insert/remove module event and calls organiza-
tion block OB 83 (also in the STARTUP operating state). The insert/remove module
event is ignored if OB 83 is not present.

221

5 Program execution

Inserting or removing a centrally arranged module always leads to a STOP of the
CPU.

To program the error program, add the organization block with the event class Pull
or plug of modules and enter the name, programming language, and number. Set
the priority in the properties of the organization block under Attributes. You can
change the default priority 6 in the range from 2 to 26. The insert/remove module
organization block is of the hardware data type OB_ANY. The constant name and
the value are listed in the System constants tab of the default tag table. The name of
the constant can be changed in the block properties under General.

The Start information of the insertiremove module organization block with the
attribute Optimized block access activated contains the tags shown in Table 5.21 in
the Input declaration section. The insertiremove module organization block with
the attribute Optimized block access deactivated (OB with standard access) provides
20-byte long start information in the Temp declaration section, the standard struc-
ture of which is described in Chapter 4.11.4 “Start information” on page 142.
This contains the tags specified in Table 5.21.

Table 5.21 Start information for an insert/remove module organization block

Declaration Tag name Data type | Description

The Optimized block access attribute is activated:

Input LADDR HW_IO Hardware identifier of the module

Event_Class BYTE Event:
B#16#38 : Module was inserted
B#16#39 : Module was removed

Fault_ID BYTE Error ID

The Optimized block access attribute is deactivated (standard access):

Temp FLT_ID BYTE Error code

MDL_ID BYTE Interrupt-triggering 1/O area
B#164#54 : Peripheral inputs
B#16#55 : Peripheral outputs

MDL_ADDR WORD Start address of interrupt-triggering module
RACK_NUM INT Number of the distributed station
MDL_TYPE WORD Type of the interrupt-triggering module

Rack error OB 86

The operating system calls the organization block OB 86 if

> a DP master system or a PROFINET IO system fails or becomes available again,
> a distributed station (DP slave or 10 device) fails or returns, and

> adistributed station (DP slave or IO device) is activated with the system function
D_ACT_DP with MODE = 3 or deactivated with MODE = 4.

222

5.8 Error handling

OB 86 is also called if one of the above-mentioned events occurs in the STARTUP
operating state. The CPU ignores these events if OB 86 is not present.

To program the error program, add the organization block with the event class Rack
or station failure and enter the name, programming language, and number. Set the
priority in the properties of the organization block under Attributes. You can
change the default priority 6 in the range from 2 to 26. The OB 86 is of the hardware
data type OB_ANY. The constant name and the value are listed in the System
constants tab of the default tag table. The name of the constant can be changed in
the block properties under General.

The Start information of OB 86 with the attribute Optimized block access activated
contains the tags shown in Table 5.22 in the Input declaration section. OB 86 with the
attribute Optimized block access deactivated (OB with standard access) provides
20-byte long start information in the Temp declaration section, the standard struc-
ture of which is described in Chapter 4.11.4 “Start information” on page 142.
This contains the tags specified in Table 5.22.

Table 5.22 Start information for the rack error organization block

Declaration Tag name Data type Description

The Optimized block access attribute is activated:

Input LADDR HW_IO Hardware identifier

Event_Class BYTE Event:
B#16#38 : Module was inserted
B#16#39 : Module was removed

Fault_ID BYTE Error ID

The Optimized block access attribute is deactivated (standard access):

Temp FLT_ID BYTE Error code
MDL_ADDR WORD Depending on the error code
RACKS_FLTD ARRAY[0..31] of BOOL | Depending on the error code

5.8.6 Disable, delay, and enable interrupts and asynchronous errors

The processing of an interrupt or an asynchronous error organization block can be
disabled so that no response occurs to the interrupt or asynchronous error. After
enabling they are processed again. The processing can also be delayed so that it is
processed after the enable. Fig. 5.33 shows the graphic representation of the sys-
tem functions.

DIS_IRT Disable interrupt events

DIS_IRT disables the processing of new interrupt events and asynchronous error
events. All new interrupts and asynchronous errors are rejected. If an interrupt or

223

5 Program execution

Disable, delay, and enable interrupt events

Disable DIS IRT DIS_IRT disables the processing of
interrupt events - interrupt events.

— MODE RET VAL —

— OB_NR
Enable EN IRT EN_IRT re-enables the processing of
disabled interrupt — disabled interrupt events.
events

— MODE RET_VAL —

— OB_NR
Delay DIS_AIRT delays the processing of
interrupt events DIEL ALY interrupt events.

RET_ VAL —

Enable EN AIRT EN_AIRT re-enables the processing of
delayed interrupt - delayed interrupt events.
events RET_VAL —

Fig. 5.33 System blocks for handling interrupt events

asynchronous error occurs following disabling, the associated organization block
is no longer processed; if the organization block does not exist, the CPU ignores the
event.

Disabling of processing applies to all priority classes until canceled again by
EN_IRT. The processing of all interrupts and asynchronous errors is enabled again
following a warm restart.

You can use the MODE and OB_NR parameters to specify which interrupts and asyn-
chronous errors are to be disabled (Table 5.23). Depending on the assignment of
the MODE parameter, the disabled interrupt events are also entered into the diag-
nostics buffer (MODE = B#16#0x) or not (MODE = B#16#8x) when they occur.

EN_IRT Enable disabled interrupt events

EN_IRT enables processing of the interrupt events and asynchronous error events
which had been disabled by DIS_IRT. Following enabling, the associated organiza-
tion block is processed if an interrupt or asynchronous error occurs; if the OB does
not exist, the preset system response takes place.

You can use the MODE and OB_NR parameters to specify which interrupts and asyn-
chronous errors are to be enabled (Table 5.23).

DIS_AIRT Delay interrupt events

Following calling of DIS_AIRT, the program in the current organization block (in
the current priority class) is not interrupted by an interrupt event of higher prior-
ity. The interrupts are processed with a delay, i.e. the operating system saves the

224

5.9 Diagnostics in the user program

Table 5.23 Assignment of MODE parameter with DIS_IRT and EN_IRT

MODE Meaning with DIS_IRT Meaning with EN_IRT

B#16#00 | All newly occurring interrupt events are All newly occurring interrupt events are
disabled. enabled.

B#16#01 | The newly occurring interrupt events of an inter- | The newly occurring interrupt events of an inter-
rupt class are disabled. rupt class are enabled.

B#16#02 | The newly occurring interrupt events of an inter- | The newly occurring interrupt events of an inter-
rupt are disabled. rupt are enabled.

B#16#80 | Allnewly occurringinterrupteventsare disabled | —
without entry into the diagnostics buffer.

B#16#81 | The newly occurring interrupt events of an inter- | —
rupt class are disabled without entry into the
diagnostics buffer.

B#16#82 | The newly occurring interrupt events of an inter- | —
rupt are disabled without entry into the diag-
nostics buffer.

interrupt events occurring during the delay and only processes them when the
delay has been canceled. No interrupts are lost.

The delay in processing is retained until the end of processing of the current orga-
nization block or until the EN_AIRT function is called.

You can call several DIS_AIRT functions in succession. The RET_VAL parameter indi-
cates the (new) number of calls. You must then call EN_AIRT exactly as often as
DIS_AIRT so that the processing of all interrupts is enabled again.

EN_AIRT Enable delayed interrupt events

EN_AIRT enables processing of the interrupts again which have been delayed with
DIS_AIRT. You must call EN_AIRT exactly as often as you previously called DIS_AIRT
in the current organization block or in the blocks called within this organization
block.

The RET_VAL parameter indicates the (still remaining) number of effective delays.
If RET_VAL is equal to 0, processing of all interrupts has been enabled again.

5.9 Diagnostics in the user program

System diagnostics is the detection, evaluation, and reporting of errors that occur
within the programmable controller. Some examples of such errors are errors on
modules or a wire break for input signals.

This chapter describes how a program can respond to a diagnostic event. Further
possibilities offered by the programming device in online mode are described in
Chapter 15.4 “Hardware diagnostics” on page 672.

225

5 Program execution

5.9.1 Diagnostics interrupt

A diagnostics interrupt is triggered if the diagnostics status of a correspondingly
configured module changes, such as a missing power supply for signal modules or
overflow and underflow for analog input modules. A CPU 1500 provides the orga-
nization block OB 82 for processing a diagnostics interrupt.

OB 82 is also called if the diagnosis event occurs in the STARTUP operating state.
If OB 82 is not present when a diagnosis event occurs, the CPU ignores the diagnosis
event. The occurrence of a diagnosis event is entered in the diagnostics buffer.

Start information

The diagnostics interrupt organization block with the attribute Optimized block
access activated provides the start information shown in Table 5.24 in the Input dec-
laration section. With the attribute Optimized block access deactivated (standard
access), the diagnostics interrupt OB provides 20-byte long start information in the
Temp declaration section, the standard structure of which is described in 4.11.4
“Start information” on page 142. This contains the tags specified in Table 5.24.

Table 5.24 Start information for the diagnostics interrupt organization block

Declaration | Tag name Data type | Description

The Optimized block access attribute is activated:

Input 10_State WORD Diagnostics status of the hardware object
Bit | Meaning for “1” Bit | Meaning for “1”
0 Good 4 Error
1 Deactivated 5 Not accessible
2 Need for maintenance | 6 Qualified
3 Maintenance request | 7 Not available
LADDR HW_ANY | Hardware identifier of the object triggering the interrupt
Channel UINT Channel number
MultiError BOOL With signal state “1”, more than one diagnosis event is
present

The Optimized block access attribute is deactivated (standard access):

Temp 10_FLAG BYTE 110 identifier
(B#16#54 = input, B#16#55 = output)
MDL_ADDR WORD Start address of interrupt-triggering module
<Byte 8... 11> BOOL Error messages

226

5.9 Diagnostics in the user program

Configuring a diagnostics interrupt

Diagnostics interrupts are deactivated by default. You activate the diagnostics inter-
rupt during the parameterization of a diagnostics-capable module with the hard-
ware configuration.

To program the diagnostics program, add the organization block with the event
class Diagnostic error interrupt and enter the name and the programming language.
Set the priority in the properties of the organization block under Attributes. You can
change the default priority 5 in the range from 2 to 26.

The diagnostics interrupt organization block is of the hardware data type OB_DIAG.
The constant name and the value are listed in the System constants tab of the default
tag table. The name of the constant can be changed in the block properties under
General.

5.9.2 Read start information

RD_SINFO Read start information

RD_SINFO provides the start information of the current organization block - this is
the organization block at the top of the call tree — and also that of the last executed
startup organization block on a lower call level (Fig. 5.34).

Read start information

Read start RD_SINFO reads the start information of an
information RD_SINFO organization block. The parameter TOP_SI
RET VAIL— contains the start information of the

current organization block and parameter
TOP_SI — START_UP_SI contains the start
START UP S| — information of the startup organization

Fig. 5.34 Read start information RD_SINFO

Calling of RD_SINFO is not only permissible at any position within the main pro-
gram but also in each priority class, including the program of an error organization
block or in the startup. For example, if RD_SINFO is called in an interrupt organiza-
tion block, TOP_SI contains the start information of the interrupt OB. TOP_SI and
START UP_SI have identical contents when calling in the startup.

For the information transfer to the parameters TOP_SI and START UP_SI, there are
the data structures listed in Table 5.24. Table 5.7 on page 194 shows the organiza-
tion blocks that belong to the event class. The components of the individual struc-
tures are described in the online help for RD_SINFO. SI_classic corresponds to the
start information as it is provided by an organization block with the attribute
Optimized block access deactivated (byte 0 to 11).

227

5 Program execution

Table 5.25 System data types for RD_SINFO (parameter TOP_SI)

The system data type providesinformationfor || The system data type providesinformation for

the event class the event class
SI_classic *) All SI_SynchCycle Synchronous cycle
SI_none *) - SI_TimeError Time error interrupt
SI_ProgramCycle Program cycle SI_Diagnosticinterrupt Diagnostic error interrupt
SI_TimeOfDay Time of day SI_PlugPullModule Pull or plug of modules
SI_Delay Time delay interrupt SI_StationFailure Rack or station failure
SI_Cyclic Cyclic interrupt SI_Servo MC-Servo
SI_HWInterrupt Hardware interrupt SI_Ipo MC-Interpolator
SI_Submodule Status SI_Startup *) Startup

Update

Profile SI_ProglOAccessError Programming error

10 access error

*) Also permitted for the START_UP_SI parameter

For the application, create a tag in the local data of the code block or in a global data
block and specify the name of the data structure as data type. Create this tag at the
parameter TOP_SI or START _UP_SI as an actual parameter.

5.9.3 Diagnostic functions in the user program

The following functions are available to evaluate diagnostic data in the user pro-
gram:

> LED Read status of an LED

> GET DIAG Read diagnostic information

> GEN_DIAG Generate diagnostic information

> GET_NAME Read name of an IO device

> GetStationInfo Read outinformation of an IO device
> DeviceStates Read status of distributed /O stations
> ModuleStates Read status of distributed I/O modules
> Get_IM Data Read I&M data

Common LADDR parameter

The parameter LADDR specifies the hardware object to be addressed via the hard-
ware identifier (hardware identifier, see Chapter 4.4 “Addressing of hardware
objects” on page 107). You obtain the name and the value of the hardware identifier
either from the System constants tab in the default tag table or, for a selected object,
the object properties in the inspector window under General > Project information >
Name or under [Object type] > Hardware identifier. You specify this name or value at
the LADDR parameter.

228

5.9 Diagnostics in the user program

Common DONE, BUSY, ERROR and STATUS parameters

Asynchronously working system blocks cannot immediately end the task at the first
call. The parameters DONE, BUSY, ERROR and STATUS provide information about
the progress of the job processing: The job is being processed if BUSY = “1”. With
DONE = “1” and ERROR = “0”, the job has been completed without errors; with
DONE = “1” and ERROR = “1”, the job has been completed with one error. The error
is then specified at the STATUS parameter.

LED Read status of an LED

LED reads the status of a module LED. The parameter LADDR specifies the CPU or
the interface and the parameter LED specifies the light-emitting diode. RET_VAL
indicates the current status of the specified LED. Fig. 5.35 shows the function call.

Read status of an LED

Read status of a LED LED reads the status of a light-emitting
light-emitting diode diode.
— LADDR RET_VAL —
— LED
Parameter LED Parameter RET_VAL
Value | Light-emitting Value | Status of light-emitting diode
diode 0 LED does not exist
1 STOP/RUN 1 Permanently switched off
2 ERROR 2 Color 1 permanently switched on (e.g. green for STOP/RUN LED)
3 MAINT 3 Color 2 permanently switched on (e.g. orange for STOP/RUN LED)
4 Redundant 4 Color 1 flashes at 2 Hz
5 Link (green) 5 Color 2 flashes at 2 Hz
6 Rx/Tx (yellow) 6 Colors 1 and 2 flash alternately at 2 Hz
7 LED is active, color 1
8 LED is active, color 2
9 LED exists, but no status information is available
If the RET_VAL parameter displays the value 16#80xx, there is a
parameterization error.

Fig. 5.35 Read status of an LED

GET_DIAG Read diagnostic information

GET_DIAG reads the diagnostic information of a hardware object. You specify the
hardware identifier at the LADDR parameter. With the MODE parameter, you select
the type of diagnostic information that is output at the DIAG parameter. Fig.
5.36 shows the function call.

Via the MODE parameter you select the type of information to be output at the
DIAG parameter. With MODE = 0 you query what diagnostic information the hard-
ware object supports. Each bit set to signal state “1” at the DIAG parameter corre-
sponds to an assignment of the MODE parameter: If the bit 1 is set, MODE =1 is sup-

229

5 Program execution

Read diagnostic information

Read ET DIA GET_DIAG reads the diagnostic
diagnostic information GET_DIAG information of the hardware object (e.g.
of a module), the identifier of which is
— MODE RET.VAL = gpecified at the LADDR parameter.
— LADDR CNT_DIAG —

— DIAG

Parameter MODE
Value | Meaning

0 Output of the diagnostic information supported by the hardware object to DIAG

1 Output of own diagnostics status to DIAG

2 Output of the diagnostics status of all subordinate modules to DIAG and output of the
module status information to DETAIL

3 Output of the I/O status to DIAG, output of the number of additionally output details to
CNT_DIAG, and output of the channel statuses to DETAIL

The diagnostic information output at the DIAG and DETAIL parameters depends on the selected
hardware object (see operating instructions).

Fig. 5.36 Read diagnostic information

ported. If the bit 2 is set, MODE = 2 is supported, etc. CNT_DIAG is set to value 0;
DETAIL is not changed.

If MODE = 1, the diagnostic information of the selected hardware object is output at
parameter DIAG. CNT_DIAG is set to value 0, DETAIL is not changed.

If MODE = 2, the diagnostic status of all the modules in the hardware object is out-
put at parameter DIAG. CNT_DIAG is set to value 1, DETAIL contains module state
information.

If MODE = 3, the state of the inputs and outputs of the selected hardware object is
output at parameter DIAG. CNT _DIAG is set to the number of module channels
whose status data is output at the parameter DETAIL.

GEN_DIAG Generate diagnostic information

GEN_DIAG generates a diagnostic event for a hardware object from a different man-
ufacturer, which has been integrated beforehand with a GSD/IGSDL/GSDXL file in the
hardware catalog. The object, e.g. a module, is specified with the hardware identi-
fier at the parameter LADDR. Fig. 5.37 shows the function call.

With the MODE parameter, you specify whether the diagnostic event is to be gener-
ated as an incoming or outgoing event. The diagnostic event is specified at the
parameter DiagEvent, the structure of which can be found in the online help for
GEN_DIAG. The type of information that can be generated depends on the hardware
object that is addressed (see operating instructions).

230

5.9 Diagnostics in the user program

Generating diagnostic information

Generate GEN_DIAG generates the diagnosis event
diagnostic GEN_DIAG that is specified at the DiagEvent
information parameter for the hardware object (e.g.
— LADDR RET_VAL = of a module), the identifier of which is
— MODE specified at the LADDR parameter.
— DiagEvent
Parameter MODE
Value | Meaning
1 Incoming diagnosis event specified at the DiagEvent parameter
2 Outgoing diagnosis event specified at the DiagEvent parameter
3 All diagnosis events of the hardware object are gone

For MODE = 3, the assignment of the DiagEvent parameter is irrelevant.

Fig. 5.37 Generating diagnostic information

GET_NAME Read out name of an 10 device

GET_NAME reads out the name of the interface module of a station in PROFINET IO.
The PROFINET IO system is specified with the hardware identifier at the parameter
LADDR and the interface module is specified with the device number at the param-
eter STATION_NR.

The name of the IO device is output at the DATA parameter. The length of the name
(number of characters) is output at the LEN parameter. If the name is longer than
the space provided at the DATA parameter, the name is limited to the maximum pos-
sible length (Fig. 5.38).

Read name of an 10 device

Read device GET Name GET_Name reads the name of an interface
name - module on PROFINET I0. The PROFINET
] . 10 system is specified at the LADDR
LADIDI Do parameter and the device number of the
— STATION_NR BUSY — station at the STATION_NR parameter.
— DATA ERROR — The name is output at the DATA
parameter, the length of the name at the
LEN = LEN parameter.
STATUS —

Fig. 5.38 Read name of an 10 device

GetStationInfo Read out information of an 10 device

GetStationInfo reads information from an IO device (currently the IPv4 address of
the interface). Specify the hardware identifier of the station at the LADDR parame-
ter (not the ID of the interface module). MODE is assigned the value 1, DETAIL is
assigned the value 0. The address information is output at the DATA parameter with
the structure shown in Fig. 5.39.

231

5 Program execution

Read information of an IO device

Read 10 device

information Instance data

GetStationInfo reads the address
information of an interface module in a
PROFINET IO station, the hardware

GetStationinfo

—REQ DU identifier of which is specified at the

— LADDR BUSY — LADDR parameter. 1 is assigned to MODE.

— ERROR — The information is output at the DATA
parameter.

— MODE LEN —

— DATA STATUS —

Structure IF_CONF_v4 of the parameter DATA (MODE = 1)

Byte Name Data type Description

0..1 ID UINT ID of the structure IF_CONF_v4 (ID = 30)

2.3 Length UINT Length of the structure in bytes (length = 18)
4.5 Mode UNIT Mode =0

6..9 InterfaceAddress | ARRAY [1..4] OF BYTE | IP address of the 10 device

10..13 | SubnetMask ARRAY [1..4] OF BYTE | Subnet mask

14..17 | DefaultRouter ARRAY [1..4] OF BYTE | IP address of the router

Fig. 5.39 Read information of an IO device

DeviceStates Read status of distributed I/O stations

DeviceStates reads the status of the I/O stations in a PROFINET IO system or
PROFIBUS DP master system. At the LADDR parameter you specify the hardware
identifier of the PROFINET/PROFIBUS system. With the MODE parameter you select
the type of status information that is displayed at the STATE parameter for all
I/O stations. Fig. 5.40 shows the function call.

Via the MODE parameter you select the type of status information to be output at
the STATE parameter. With a bit set to signal state “1”, the bit array at the STATE
parameter shows that the selected status information applies to the affected sta-
tion. Example: If you want to determine

which stations are disrupted, assign the value 2 to the MODE parameter. Bit 0 at the
STATE parameter has signal state “1” if at least one of the stations is disrupted.
If bit 4 is set to signal state “1”, the station with device number 4 is disrupted.

The parameter STATE outputs the station status in a bit array, which is specified via
the MODE parameter. For PROFINET, the length of the bit array is 1024 bits.
For PROFIBUS, it is 128 bits. The STATE parameter can be assigned to any tag or an
operand area, for example, with P#DB10.DBX0.0 BYTE 128, i.e. 1024 bits in data
block %DB10 from data byte %DBBO. If the tag or the area is too small, the status
information is entered in the available length and error number 16#8452 is output
at parameter RET VAL.

232

5.9 Diagnostics in the user program

Read status of distributed stations

Read status of

DeviceStates DeviceStates reads the status of
distributed stations distributed stations in a PROFINET 10
—— LADDR RET VAL — System or PROFIBUS DP master system.
— MODE
— STATE
Parameter MODE Parameter STATE
Value |Meaning The STATE parameter represents every station with a

bit (1024 for PROFINET, 128 for PROFIBUS). The
number of the bit corresponds to the station or device
number. If the respective bit has signal state "1", the
status indicated at the MODE parameter applies to the

Configuration not completed
Station faulty
Station deactivated

G W N =

Station present stations. The status is valid across all stations in bit 0:
Station has a problem If bit 0 has signal state "1", the scanned status applies

to at least one station.

Fig. 5.40 Read status of distributed stations

ModuleStates Read status of the modules in a station

ModuleStates reads the status of the modules in an IO device or in a DP slave.
At the LADDR parameter you specify the hardware identifier of the station. With
the MODE parameter you select the type of status information that is displayed at
the STATE parameter for all modules. Fig. 5.41 shows the function call.

Via the MODE parameter you select the type of status information to be output at

the STATE parameter. With a bit set to signal state “1”, the bit array at the STATE
parameter shows that the selected status information applies to a module. Exam-

Read status of the modules of a distributed station

Read status of dul ModuleStates reads the status of the
the modules of a ModuleStates modules in an IO device or in a DP slave.
distributed station
— LADDR RET VAL —
— MODE
— STATE
Parameter MODE Parameter STATE
Value | Meaning The STATE parameter represents every module of a
- - distributed station with a bit (maximum 128). The
1 Configuration not completed number of the bit corresponds to the slot of the
2 Module faulty module. If the respective bit has signal state "1", the
3 Module deactivated status specified at the MODE parameter applies to the
4 Module present module. The status is valid across all modules in bit 0:
5 Module has a problem If bit 0 has signal state "1", the scanned status applies
to at least one module.

Fig. 5.41 Read status of a central module

233

5 Program execution

ple: If you want to determine which modules are disrupted, assign the value 2 to the
MODE parameter. Bit O of the STATE parameter has signal state “1” if at least one
module is disrupted. If bit 2 is set to signal state “1”, the module at slot 2 is dis-
rupted.

The parameter STATE outputs the module status in a bit array, which is specified via
the MODE parameter. The bit array has a maximum length of 128 bits. The STATE
parameter can be assigned to any tag or an operand area, for example, with
P#M512.0 BYTE 16, i.e. 128 bits from memory byte %MB512. If the tag or the area is
too small, the status information is entered in the available length and error num-
ber 16#8452 is output at parameter RET_VAL.

Get_IM_Data Read I&M data

Get_IM_Data reads the I&M data (Identification & Maintenance) of the hardware
object (e.g. a module), the hardware identifier of which is specified at the LADDR
parameter. At the parameter IM_TYPE, specify which information is to be read.

Fig. 5.42 shows the graphic representation of GET _IM_Data.

Read I&M data

Read I&M data Instance data Get_IM_Data reads the I&M data of the
hardware object specified at the LADDR
Get_IM_Data parameter and saves it in the data area
that is specified by the DATA parameter.
— LADDR DONE — Currently, with IM_TYPE = 0 the I&MO
— IM_TYPE BUSY — data (catalog information) is read out.
— DATA ERROR —
STATUS —

Fig. 5.42 Read I&M data

Currently the I&MO data is read with IM_TYPE = 0. This information is also dis-
played in online mode in the Online & diagnostics window.

The read information is stored in the data area, which is specified by the DATA
parameter. You can create tags wit the data types STRING, STRUCT, ARRAY OF CHAR,
or ARRAY OF BYTE at the DATA parameter. If the actual parameter is too small for
the read data, the read data is entered up to the length of the actual parameter and
an error message is output at the STATUS parameter. If the actual parameter is lon-
ger than the read data, the remainder is filled with zeroes. For a STRING tag, the
actual length is adapted.

234

5.10 Configuring alarms

5.10 Configuring alarms

5.10.1 Introduction

Alarms, to put it plainly, indicate events. An event can be the signal state change of
an input or of a bit memory, for example, or a specific status during the processing
of the user program. An alarm is normally displayed on a display device (on an
HMI station). An event-dependent alarm can be configured with a specific alarm
text and alarm attributes and thus point to warnings or faults in the controlled pro-
cess and their origin.

SIMATIC S7 distinguishes between the following types of alarm:

> System diagnostics alarms
System alarms report events on modules. They are activated or deactivated in
the hardware configuration. They can be viewed, but not edited, in the alarm ed-
itor.

> Program alarms
Program alarms report events which occur synchronously with the processing of
the user program. They are assigned to a respective block. They are created using
the program editor and edited in the alarm editor.

> User diagnostics alarms
A user diagnostics alarm writes an entry in the diagnostics buffer and sends a
corresponding alarm to a display unit. User diagnostics alarms cannot be pro-
grammed in STEP 7 V12 SP1 for a CPU 1500.

Alarm procedure

The alarm procedure defines the way in which alarms are configured, initiated, and
displayed. The alarm procedure used must be available both in the PLC station and
in the HMI station.

Bit messaging uses a bit in the PLC as alarm signal. If the signal state of the alarm
signal changes, an alarm which has been configured in the HMI station is displayed
on the HMI station.

Analog messaging monitors a digital value which, for example, is derived from an
analog input module to detect exceeding or undershooting a limit value and gener-
ates the alarm signal from the limit violation. The alarms are configured in the
HMI station.

During the Message numbering an alarm is initiated in the PLC station by calling an
alarm block. The alarm number and associated alarm texts are configured in the
PLC station, compiled, and then transferred to the HMI station. During runtime, the
PLC station sends an alarm number and the time stamp to the HMI station. The dis-
play of the alarms is configured in the HMI station.

The configuration for the message numbering with block-related alarms in a
PLC station is described in the following.

235

5 Program execution

Components of an alarm

The displaying of an alarm depends on the alarm procedure, the alarm block, and
display device. The possible components of an alarm are:

> The time stamp shows when the event occurred in the programmable controller.

> The alarm number is unique CPU-wide. It is assigned by the alarm editor and
identifies an alarm.

> The alarm status shown the status of an alarm: incoming, outgoing, outgoing
without acknowledgment, outgoing with acknowledgment.

> For PLC alarms, the alarm text is configured by the user.

> Associated values, which contain values from the controlled process, can be sent
along with an alarm.

Alarm block

An alarm is generated by the Program_Alarm alarm block. For a positive and nega-
tive edge of the alarm signal, it sends an alarm with a time stamp for each. Up to ten
associated values can be sent along with the alarm. Mandatory acknowledgement
can be configured for the alarm.

The principle of programming for the alarm number procedure

An alarm block, e.g. Program_Alarm, generates an alarm if the binary alarm signal
changes its status at the SIG parameter. The time stamp (TIMESTAMP parameter)
and the associated values (SD_x parameter) are then added to the alarm.

The alarm block is called in a function block (any) as a local instance (Fig. 5.43). This
“Alarm function block” contains the instance data of the alarm block in its local
data. This is the alarm type. It serves as a template for the “actual” alarm, the alarm
instance.

When the alarm function block is called, the instance data of the alarm types, the
alarm instances, are located in its instance data — either in the instance data block
or in the local data of the calling function block. An alarm instance is the “actual”
alarm and contains the alarm number that applies CPU-wide. The name of the
alarm instance is the alarm name.

The properties of the alarm type, such as the alarm group or the display class, are
passed on to the alarm instance. If the properties in the alarm type are locked, they
can no longer be changed in the alarm instance. To change locked properties, you
must unlock them beforehand in the alarm type.

If, for example, there are only a few alarms and you call an alarm block in the alarm
function block for each alarm and call the alarm function block only once, you can
create the alarm signal directly on parameter SIG of the respective alarm block.
Each alarm type then only has one alarm instance.

If you call the alarm function block multiple times, however, it makes sense to cre-
ate an input parameter of the alarm function block at parameter SIG of the alarm

236

5.10 Configuring alarms

Principle of alarm programming

Programming an alarm

The alarms are programmed in a function block (the “alarm function block”). For an alarm you insert
the alarm block as local instance (multi-instance) in the program of the alarm function block. You
can insert several alarm blocks in the alarm function block and you can program several alarm
function blocks.

Alarm types and alarm instances

The instance data of the alarm block in the alarm function block are the alarm type. The name of the
local instance is the name of the alarm type. If you insert further alarm blocks, the alarm types are
distinguished based on their names.

The alarm function block can be called either as single instance with own instance data block or as
local instance with a different function block. The instance data of the alarm type is saved as alarm
instance in the instance data of this call. This is then the "actual" alarm which contains the alarm
number that applies CPU-wide. The name of the alarm instance is the alarm name.

You can call an alarm function block several times with different instance data in each case. Different
alarm instances with different alarm numbers in each case are then generated from the alarm types.

Block with alarms Instance data of the
alarm function block
Alarm instance
Alarm function block Instance data of the
alarm block
Call of the alarm Alarm type <
function block
Call of the Alarm block
alarm block _
Alarm signal — SIG
Time stamp — TIMESTAMP
Associated value — SD_x

Locking of alarm properties

All properties of an alarm type are passed on to the alarm instances. If the properties are “locked”,
they can no longer be changed in the alarm instance (in the “actual” alarm).

“Alarm function block”

"Locking" is used to define which
Alarm / properties of the alarm type are adopted
type No. @ as unchangeable properties from the
(7]

alarm instance.

Instance data Instance data Instance data
1* call 2" call n-th call
Alarm
instances No. x No. y .oe No. z

iz, o zzz

\
\
\

Fig. 5.43 Principle of alarm programming

237

5 Program execution

block. With each call of the alarm function block you then supply the input param-
eters with the alarm signals. Thus each alarm instance is given its “own” alarm sig-
nal. Each alarm type then has the same number of alarm instances as the number
of times the alarm function block is called.

Properties of alarms

An alarm can be provided with several properties which (also) depend on the dis-
play device used. Not all of the display devices support the properties listed in the
following.

The alarm text should describe the reason for the alarm or its trigger event.
Associated values, which contain the process values that were current at the time
the alarm was initiated, can be inserted into the alarm text at any position. Certain
display devices also accept an info text for an alarm, which can contain handling
instructions for the machine operator, for example, and one or more additional
texts.

If acknowledgement is mandatory, the alarm is displayed until it is acknowledged.
This ensures that the alarm regarding a critical or hazardous process status has
actually been registered by the operator. The Priority can be used to set the urgency
with which the alarm must be acknowledged. Alarms that are acknowledged with
an operator action can be grouped together into an alarm group. For example, this
can be alarms which are all caused by the same fault or which all come from one
machine unit or from one subprocess.

In an alarm class, alarms with the same level of importance can be grouped
together, such as “warnings” or “errors”. An alarm class defines the representation
on the display device and the mandatory acknowledgement.

A display class controls the assignment to the display unit. If, for example, several
HMI stations are assigned to a PLC station, the display class can be activated in an
HMI station, along with its alarms which are to be displayed at the station.

5.10.2 Configuring alarms according to the alarm number procedure

Programming alarm blocks

Open any function block and drag it from the program elements catalog under
Extended instructions > Alarms into the program of the function block. The instance
data of the alarm block is found in the instance data of the calling “alarm function
block”. The parameters SIG and SD_x of the alarm block should be connected to the
inputioutput parameters of the “alarm function block” in order to be able to indi-
vidually supply them for multiple calls.

Repeat the inserting of the alarm block for each alarm. Several alarms can be pro-
grammed in the “alarm function block”. Supplement the program with your sys-
tem-specific statements. You can also create more than one “alarm function block”.

238

5.10 Configuring alarms

Defining alarm properties in the alarm type

In the “alarm function block”, select the instance data of an alarm block call and set
the alarm properties in the inspection window in the Properties > Alarm tab:
Under Basic settings, you can enter the Alarm class, the Priority and the Alarm text,
and you can activate the mandatory acknowledgement (depending on the acknowl-
edging property of the alarm class). For alarms that are used for information, check
the checkbox labeled Information only. Under Additional alarm texts, enter the info
text and any additional texts as needed. Under Advanced settings, enter the display
class and the group ID for the alarm group (Fig. 5.44).

Properties L]

|§.Properties ”"_i.‘.lnfo ||ﬂDiagnostics |

General Texts

Basic settings

Basic settings

Advanced settings

Additional alarm texts

Alarm attributes | Alarm class | No Acknowledgement [~]
i [Acknowledgment
0 D Information only

il Friority |2 |V|

Alarm text | The temperature in the boiler is ~

1%t Temperatures&.

Fig. 5.44 Example of alarm properties in the inspector window

Clicking on the chain symbol for an alarm property allows you to lock (closed chain
link) or unlock the property (open chain link). All of the alarm properties of the
alarm type are passed on to the alarm instance. The locked properties can no longer
be changed in the alarm instance. Unlocked ones can be changed.

In the “alarm function block” (at the alarm type), preferably set the alarm proper-
ties which are relevant to all of the alarm instances.

Setting alarm properties in the alarm instance

If you call up the “alarm function block” in the program of another block, specify
the storage location of the instance data belonging to the call, either in its own
instance data block or in the instance data block of the calling function block. You
can also call up the “alarm function block” several times with different instance
data in each case. The program editor generates an alarm instance for each call
from the alarm type in the function block with its own CPU-wide unique alarm
number. This is the “actual” alarm.

To set or change the properties of this “actual” alarm, open the instance data of the
alarm type. If you have called the “alarm function block” as a single instance, it is
the instance data block. If you have called the “alarm function block” as a local
instance in a multi-instance, open the instance data block of the multi-instance and

239

5 Program execution

“open” the instance data of the local instance. You will find the programmed alarms
in the instance data of the alarm type under Static. If you select an alarm, you can
change the alarm properties which were unlocked in the alarm type in the Proper-
ties > Alarm tab in the inspector window.

After an alarm property is changed, a symbol (“type symbol”) shows that the alarm
property has changed compared to the alarm type. If you click on the type symbol,
the original value is adopted again from the alarm type.

Setting alarm properties in the alarm editor

After you have programmed the alarm types (in the “alarm function block”) and the
alarm instances (when the “alarm function block” is called), you can also set the
alarm properties using the alarm editor.

To start the alarm editor, double-click on PLC alarms in the project tree under the
PLC station. In the Program alarms tab in the upper section of the working window
in the Alarm types table, the alarm editor shows the programmed alarm types and
it shows the alarm instances of the selected alarm type in the bottom section in the
Alarm instances table. The alarm properties are displayed in both tables.

The example in Fig. 5.45 shows two alarm types in the upper Alarm types table.
These are called Alarm_type 1 and Alarm_type_2. The associated alarm blocks are
programmed in the alarm function block, which is called Alarm_types in the exam-
ple. Two alarm instances of the type Alarm_type 1 exist. These are displayed in the
lower Alarm instances table. For the first alarm instance (alarm number 55), the
alarm function block is called as a single instance with the instance data block
Alarm types_DB. For the second alarm instance (alarm number 51), the alarm func-
tion block has been called in the function block Alarms_1 as alocal instance with the
name Temperature_alarms.

You can change the alarm properties directly in the tables of the alarm editor or in
the properties tab of the inspector window. Individual columns can be hidden and
shown: Right-click in a column title and then select the Show/Hide > ... command
from the shortcut menu.

Project1500 » Central Control [CPU 1516-3 PN/DP] » PLC alarms

g Program alarms "_g,._ System diagnostics alarms

Alarm types
Name Type ID Location Alarm text Info text
1 = Alarm_type_1 PLC alarm Alarm_types &Y The temperature in the boileris @1%t#Temperatures@. &9 -
L]

2 = Alarm_type_2 PLC alarm Alarm_types &¥) X,
[<] il
= =1

Alarm instances
Name Type ID Location Alarm text
1 [Alarm_type_1 PLC alarm 55 Alarm_types_DE The ternperature in the boileris @1%@ Tempera.
2] Temperature_alarmslAlarm_type_1 PLCalarm 51 Alarms_1_DB The temperature in the boileris @1%t#Tempera.
[<] [»

Fig. 5.45 Example of program alarms in the alarm editor

240

5.10 Configuring alarms

Inserting associated values

In an alarm text, you can insert one or more associated values at any point.
You define an associated value at the SD_n parameter of the alarm block. You then
insert the following expression into the alarm text for each associated value:
@<Associated value number><Format>@. A format entry is preceded by the per-
cent character (%). Table 5.26 shows the permissible formats.

Table 5.26 Formats for associated values

Format Display of the associated value as

%nX Hexadecimal number with n places

%nu Decimal number without sign with n places

%nd Decimal number with sign and n places

%nb Binary number with n places

%n.mf Fixed-point number with sign and n total places, including m places after the
decimal point; “.m" can also be omitted

%ns Character string with n places (display up to the character value B#16#00)

%t#<Text list> Access to a text list

Example: The expression @2%6.2f@ means that the associated value at parameter
SD_2 (“2”) with a total of 6 places including 2 decimal places (“%6.2") is to be dis-
played as a fixed-point number (“f”).

If too few places are specified in the format specification, the associated value is
nevertheless displayed in its full length. If the number of places is too great, leading
spaces are inserted.

You can also insert text from a text list into an alarm as an associated value. The for-
mat for this is: @<Associated value number>%t#name@; name is the name of the
text list.

Example: In the Temperatures text list, the text is selected based on decimal value
ranges (Fig. 5.46). The configured alarm text

The temperature in the boiler is @1 %t#Temperatures@.
is output as alarm text
The temperature in the boiler is increased.

is output if the first associated value has the value 63.

Configuring text lists for alarm texts

Texts which are assigned to an individual value or a value range are managed in a
text list. A text from a text list can thus be searched for (referenced) based on a
value. Each text list has a unique name. A text list can be assigned to a station or to
a project.

To create a new text list, double-click on Text lists in the project tree under the
PLC station (station-assigned) or under the project and Common data (cross-sta-

241

5 Program execution

Project1500 » Central Control [CPU 1516-3 PN/DP] » Central Control » Text lists

H
Text lists
Name Selection Comment
1_:'| Temperatures Decimal B Temperature alarms in high-pressure boiler
<Add news>
[<] i >
T
Text list entries of Temperatures
Range from Range to Entry
l_:ﬁ 0 I;I 25 EI too low
if 26 &0 oK
l_j 61 70 increased
= A 100 too high
<Add news>
[<] i >

Fig. 5.46 Example of a text list

tion). In the Text lists table in the upper section of the working window, add a new
text list and give it a unique name (Fig. 5.46). In the Selection column, define the
value range with which the texts of the text list will be referenced:

> “Decimal” if a decimal number or a range of decimal numbers
valu 1) is the reference
(values 0 to 2'1) is the ref

> “Binary” if a bit or a bit range in a doubleword (bits 0 to 31) is the reference

> “Bit” if a bit (“0” or “1”) is the reference

Select the text list. You define reference ranges in the Text list entries of <list name>
table in the bottom section of the working window and the associated texts in the
Entry column.

Configuring alarm classes

To configure an alarm class, double-click on Alarm classes in the project tree under
the project and Common data. Two alarm classes have already been created in the
Alarm classes table: Acknowledgement (for alarms with acknowledgement) and
No Acknowledgement (for alarms without acknowledgement). To add a new alarm
class, enter the name of the alarm class and the display name and activate or deac-
tivate the mandatory acknowledgement for the alarm class. Now you can assign an
alarm to the new alarm class when configuring the alarm properties.

5.10.3 Blocks for programming alarms

The following system blocks are available for programming alarms:

> Program_Alarm Create a program alarm with associated values

> Get_AlarmState Outputan alarm state

You find these system blocks in the program elements catalog under Extended
instructions > Alarming.

242

5.10 Configuring alarms

Program_Alarm

The alarm block Program_Alarm is called in a function block as a local instance. Pro-
gram_Alarm generates an alarm with or without mandatory acknowledgement with
up to ten associated values from a signal change. Fig. 5.47 shows the graphic rep-
resentation of the alarm block.

Program_Alarm alarm block

Generate alarm Instance data Program_Alarm generates an alarm with
associated values.
Program_Alarm Arising edge at parameter SIG generates

an incoming alarm. A falling edge

—sIG ERROR == generates an outgoing alarm. The alarm

— TIMESTAMP STATUS — is supplemented with the time stamp at

| the parameter TIMESTAMP. If the default
D1 value LDT#1970-01-01-00:00:000 is

—_— present, the current module time (base

time) is used as time stamp.

The associated values of the alarm can be

— specified at SD_x.

1 If ERROR has signal state "1", an error has

occurred which is specified in the STATUS

parameter.

Fig. 5.47 Program_Alarm alarm block

Arising signal edge at parameter SIG generates an incoming alarm. A falling signal
edge generates an outgoing alarm. The time stamp is created at the parameter
TIMESTAMP. This is used to output the alarm. If the parameter is provided with the
default value LDT#1970-01-01-00:00:00, the module time at which the signal state
change was detected is used as the time stamp. Otherwise, the alarm is given the
time stamp at the parameter TIMESTAMP.

Up to 10 associated values, which are detected for an edge at parameter SIG and
assigned to the alarm, can be sent along with the alarm.
Get_AlarmState Output an alarm state

Get_AlarmState outputs the state of a program alarm. The instance data of the
alarm block Program_Alarm (the alarm type) is created at the Alarm parameter.
The status of the program alarm is output in one byte at the parameter AlarmState
(Fig. 5.48).

If the Error parameter has signal state “1”, an error has occurred during execution
of Get_AlarmState. This error is specified in more detail in the STATUS parameter.

243

5 Program execution

Output an alarm state

Output Get_AlarmState outputs the state of
alarm state Get_AlarmState a program alarm.

The name of the instance data (the

T AETTEED alarm type) is created at the Alarm
Error — parameter. The alarm state is then
STATUS — output at the AlarmState parameter.

Error and STATUS indicate the
processing status.

AlarmState alarm state

Bit No. | Alarm state

0 "0" = Incoming, "1" = Outgoing

1 "1"=Incoming with acknowledgement
2 "1"= Outgoing with acknowledgment
3 "1"= Overflow for incoming alarms

4 "1" = Overflow for outgoing alarms

5 Reserved

6 Reserved

7

Alarm information ("0" = invalid, "1" = valid)

Fig. 5.48 Outputting an alarm state with Get_AlarmState

5.10.4 CPU alarm display

The CPU alarm display outputs the alarms saved in the CPU in online mode on a
programming device. The alarm archive comprises system diagnostics alarms and
program alarms. The alarm is displayed in the inspector window in the
Diagnostics > Alarm display tab.

Setting the alarm archive

To set the alarm archive, select the command Options > Settings in the main menu.
In the Online & diagnostics group, you can

> activate or deactivate the multi-line display in the inspector window
> activate or deactivate the automatic display of the current alarms

> select the size of the alarm archive from a drop-down list in increments in the
range from 200 to 3000 alarms

If the alarm archive is full, the oldest alarm will be overwritten by the newly incom-
ing alarm.

Receiving alarms

To display the alarms, activate the function Receive alarms. To do this, switch the
programming device to online mode and,

244

5.10 Configuring alarms

> with the PLC station selected, select the command Online > Receive alarms from
the main menu or Receive alarms from the shortcut menu, or

> double-click in the project tree under the PLC station on Online & diagnostics and
activate the checkbox Receive alarms in the working window under Online access
and Alarms.

Displaying alarms

The alarms are listed in the inspector window in the Diagnostics and Alarm display
tabs (Fig. 5.49).

Diagnostics =
‘Q Properties ||‘_1.'. Info ” %l Diagnostics ‘
| Device information " Connection information " Alarm display |
EEEEEY:
Source Date Time Status | Event text
57-1500 station_1->Central Control 121312013 6:00:13:651 PM Alarms (diagnostics events): activated
Alarms (process and system errors): activated
57-1500 station_1-=Central Control 12/13/2013 6:00:13:651 PM Alarm update start: ...
57-1500 station_1-=Central Control 12/13/2013 6:00:13651PM alarm update end.
57-1500 station_1-=Central Control 12/13/2013 6:00:17:269 PM | The temperature in the boiler is too low
57-1500 station_1-=Central Control 12/13/2013 6:00:23756PM O The temperature in the boiler is too low
[«] [3

Fig. 5.49 Example of the alarm display of the CPU alarms

The table shows the alarms in the chronological order of their occurrence. To select
the columns to be displayed, right-click in a column title and then select the
Show/hide columns command from the shortcut menu. The order and width of the
columns can be changed using the mouse.

You control the display with the symbols in the Alarm display tab. From left to right,
the symbols are:

> Archive view: displays the alarms in the alarm archive in chronological order of
occurrence.

> Active alarms: displays the currently pending alarms; alarms requiring acknowl-
edgement are displayed in blue.

> Ignore: the displaying and archiving of the subsequent alarms are deactivated or
activated; the activation or deactivation is displayed as an alarm.

> Acknowledge: acknowledges the selected alarm(s). Alarms requiring acknowl-
edgement are displayed in blue.

> Empty archive: deletes all of the alarms in the alarm archive.

> Export archive: exports the alarm archive to a file in .xml format.

245

5 Program execution

Acknowledge alarms

You can acknowledge the alarms requiring acknowledgement that were generated
by the alarm blocks by selecting the relevant alarm(s) and clicking on the
Acknowledge symbol or by pressing [Ctrl] + Q.

Status of the alarms

An alarm can have the following status in the archive view: Alarm came (I), Alarm
came and was acknowledged (A), Alarm has gone (0O), and Alarm was deleted (D).
Alarms that are generated by the programming device such as a mode transition
are displayed without a status.

In the “Active alarms” view, the alarm status is displayed as follows: I (Alarm came),
IA (Alarm came and was acknowledged), and 10 (Alarm has gone).

An “O” (Overflow) in red is displayed in the status column if more alarm events come
in than the number of alarms that can be sent and displayed.

246

6.1 Introduction

6 Program editor

6.1 Introduction

This chapter describes how you work with the program editor, with which the user
program is written in the programming languages LAD, FBD, STL, SCL, and GRAPH.
The special features of programming in the respective programming languages are
described in Chapters 7 “Ladder logic LAD” on page 287, 8 “Function block diagram
FBD” on page 323, 10 “Statement list STL” on page 395, 9 “Structured Control
Language SCL” on page 359, and 11 “S7-GRAPH sequential control” on page 472.

The user program consists of blocks which are saved in the project tree under a
PLC station in the Program blocks folder. Code blocks contain the program code and
data blocks contain the control data. When programming, a block is initially cre-
ated and subsequently filled with data or a program. Ladder logic (LAD), function
block diagram (FBD), structured control language (SCL), statement list (STL), and
sequential control (GRAPH) are available as languages for programming the con-
trol function. You can define the programming language individually for each
block. Blocks with the text-based programming languages SCL and STL can also be
created as external source files as described in Chapter 18.1 “Working with source
files” on page 780.

The user program works with operands and tags. Block-local tags are declared
during programming of the blocks, global operands and tags are present in the
PLC tags folder. The PLC data types folder contains user-defined data structures for
tags and data blocks.

Programming is appropriately commenced by definition of PLC tags and PLC data
types. This is followed by the global data blocks with the already known data. In the
case of the code blocks, you start with those which are at the lowest position in the
call hierarchy. The blocks in the next higher level in the hierarchy then call the
blocks positioned below them. The organization blocks in the highest hierarchy
level are created last.

When you create the user program, you are supported by the cross-reference list,
the assignment list, and the display of the call and dependency structure.

Following completion, the user program is compiled, i.e. the program editor con-
verts the data entered into a program which can be executed on the CPU.

247

6 Program editor

6.2 PLC tag table

The user program works with operands, e.g. inputs or outputs. These operands can
be addressed in absolute mode (e.g. %I1.0) or symbolic mode (e.g. “Start signal”).
Symbolic addressing uses names (identifiers) instead of the absolute address.
As well as the name, you define the data type of the operand. The combination of
operand (absolute address, memory location), name, and data type is referred to as
a “tag”.

When writing the user program, a distinction is made between local and global tags.
Alocal tag is only known in the block in which it has been defined. You can use local
tags with the same name in different blocks for different purposes. A global tag is
known throughout the entire user program and has the same meaning in all blocks.
You define global tags in the PLC tag table.

Refer to Chapter 6.6.1 “Cross-reference list” on page 279 for how to create a cross-
reference list of the PL.C tags. Monitoring of tags using the PLC tag table is described
in Chapter 15.5.3 “Monitoring of PL.C tags” on page 682.

6.2.1 Creating and editing a PL.C tag table

When creating a PL.C station, a PLC tags folder with the PLC tag table is also created.
You can open the PLC tag table by double-clicking on Default tag table in the PLC
tags folder. The default tag table consists of the Tags, User constants, and System
constants tabs.

You can create additional tag tables containing PLC tags and user constants with the
Add new tag table function. These self-created tables can be renamed and organized
in groups. A tag or a constant can only be defined in a table. To obtain an overview
of all tags and constants, double-click on Show all tags in the PLC tags folder. Fig.
6.1 shows an example of a PL.C tag table.

You can save an incomplete or faulty PLC tag table at any time and process it again
later. However, the tag table must be error-free to enable compilation of the user
program.

You can compare a PLC tag table with one from another project if you mark the tag
table and select the command Tools > Compare > Offline/offline.

6.2.2 Defining and processing PLC tags

In the Tags tab, enter the name, data type, and address (operand, memory location)
of the tags used. The name can contain letters, digits, and special characters
(no quotation marks). It must not already have been assigned to another PLC tag, a
block, a symbolically addressed constant, or a PLC data type. No distinction is made
between upper and lower case when checking the name. You can add an explana-
tory comment to each defined tag.

Table 6.1 contains the operands permissible as PLC tags. For a word or doubleword
operand, specify the lowest respective byte number. For along word operand, spec-

248

6.2 PLCtag table

Project1500 » Central Control [CPU 1516-3 PN/DP] » PLCtags » Conveyor belt [55]

|€ﬂ Tags |3@ User constants
@@ B i B
Conveyor belt
Name Data type Address Retain Comment
12 <@ Manual switch-on Bool %I0.1 Switch on in manual mode lz‘
13 <@ Manual switch-off Bool %I0.2 Switch offin manual mode
14 <@ istop Bool Wl0.3 Stop signal from pushbutton
15 40 s Bool %l0.4 start pushbutton on the control panel
16 <41 Continue Bool %10.5 Continue button on the control panel
17 <l Acknowledge Bool %I0.6 Acknowledge from control panel E
18 40 Set Bool %I0.7 Setsignal from control panel
12 <@ Displayerror Bool %Q8.0 Fault indication on control panel
20 <@ Displayready Bool %Q8.1 “Finished” display on control panel
21 < Belt motor 1 Bool %082 Switch on conveyor belt 1
22 <l Beltmotor 3 Bool %0Q8.4 Switch on conveyor belt 3
23 <@ Beltmotor 4 Bool %Q8.5 switch on conveyor belt 4
24 <@ Readyfor load Bool %hid2.0 Conveyor beltis ready for goods
25 <@ Ready for remove Bool Yol 2.1 Piece goods can be picked up
26 <@ Quantity parts Int Hahid4 Number of piece goods
27 < Monitoring Timer %112 Monitoring time
28 <@ Manual mode Bool %h40.0 Manual mode (operating mode)
29 <@ Automatic mode Bool %h40.1 Automatic mode
S0 <0 Quantity counter Counter %C11 Counter for piece goods
31 <@ Automatic switch-on Bool %I1.0 Switch on in automatic mode
[«] i

Fig. 6.1 Example of a PLC tag table

ify the lowest byte number and - separated by a period - the bit number zero after
the operand ID.

The peripheral operand area is addressed in the program by the extension “:P” on
the tag name or on the operand. Therefore, it is sufficient to specify the correspond-
ing input or output tags in the PLC tag table. A SIMATIC timer function and a
SIMATIC counter function are addressed with a number.

The definition of a tag also includes the data type. This defines certain properties of
the data identified by the name, basically the representation of the data content. An
overview of the data types used with a CPU 1500 and the detailed description can be
found in Chapter 4 “Tags, addressing, and data types” on page 86.

You can also assign a PLC data type to inputs and outputs. This PLC data type can
contain all other types of data, except for STRING. Specify the operand ID, the lowest
byte number, and the bit number zero as the operand.

One part of the operand areas bit memory and SIMATIC timer/counter functions can
be set to retentive, i.e. this part retains the signal states and values when the power
supply is restored. To set the retentive area, click on the icon for retentivity in the
toolbar of the PLC tag table. In the dialog window that appears, enter the number
of the retentive memory bytes and the number of SIMATIC timer/counter functions.
A checkmark in the Retain column then identifies which bit memories and SIMATIC
timer/counter functions are set to retentive.

249

6 Program editor

Table 6.1 Approved data types and operands for PLC tags

Data types Operand Address
BOOL Input bit %ly.x
Output bit %Qy.x
Memory bit %My.x
BYTE, SINT, USINT, CHAR Input byte %IBy
Output byte %QBy
Memory byte %MBy
WORD, INT, UINT, DATE, S5TIME Input word %IWy
Output word %QWy
Memory word %MWy
DWORD, DINT, UDINT, REAL, TIME, TOD Input doubleword %IDy
Output doubleword %QDy
Memory doubleword %MDy
LWORD, LINT, ULINT, LREAL, LTIME, LTOD, LDT Input long word %ly.0
Output long word %Qy.0
Memory long word %My.0
TIMER SIMATIC timer function %Tn
COUNTER SIMATIC counter function %Zn
PLC data type Inputs %ly.0
Outputs %Qy.0

y = byte address, x = bit address, n = number

The properties of a PL.C tag include the Accessible from HMI attributes (when acti-
vated, an HMI station can access this tag during runtime) and the Visible in HMI
attribute (when activated, this tag is visible by default in the selection list of an HMI
station).

Editing PLC tags

You can use Insert row from the shortcut menu to insert an empty line above the
selected line. The Delete command deletes the selected line. You can copy selected
lines and add them to the end of the list. You can sort the lines according to the col-
umn contents by clicking the header of the appropriate column. Sorting is in
ascending order following the first click, in descending order following the second
click, and the original state is reestablished following the third click.

To fill out the table automatically, select the name of the tag to be transferred, posi-
tion the cursor at the bottom right corner of the cell, and drag downward over the
lines with the left mouse button pressed.

If you enter the same name a second time, for example by copying lines, a consec-
utive number in parentheses is appended to the name. When filling out automati-
cally, this is an underscore character with a consecutive number. Double assign-
ment of an address is indicated by a colored background.

You can also set or change the properties of a tag in the inspector window: Select
the tag and choose the Properties tab in the inspector window.

250

6.2 PLCtag table

You can also supplement, change, or delete the PLC tags when entering the user
program (Chapter 6.3.7 “Editing tags” on page 267).

6.2.3 Comparing PLC tag tables

The PLC tags of a PLC station can be compared to the PLC tags of another station
from the same project, from a reference project, or from a library. To perform the
comparison, select the PLC station in the project tree and choose the command
Compare > Offline/offline from the shortcut menu or alternatively the command
Tools > Compare > Offline/offline from the main menu.

Compare editor

This starts the compare editor, which shows the PLC station with the contained
objects on the left side. Using the mouse, drag the PLC station that is to be com-
pared from a reference project, for example, into the title bar on the right side
(labeled “Insert here to add a new object or replace an existing one...”). The “Status
and action area” is located between the two tables. Above this is the switchover but-
ton with the scale.

In the automatic comparison (the switchover button with the scale is white), the tag
tables are assigned on the left and right side based on their names and the compar-
ison symbols are displayed in the center.

Activate the manual comparison by clicking on the switchover button. The switcho-
ver button is now gray. Manually assign the tag tables to be compared by selecting
them using the mouse. The result of the comparison is displayed in the bottom area
of the comparison window in the “Property comparison”. The lower area can be
opened and closed using the arrow buttons.

Detailed comparison

Select a tag table and click on the Start detailed comparison icon. The PLC tags of
both tag tables are individually listed and compared. The columns Status and Action
are located between the lists. You can select the desired action from a drop-down
list.

Comparison symbols and actions

A filled green circle means that the objects are identical. A blue-gray semicircle
means that the objects differ. If one half of the circle is not filled, the corresponding
object is missing. An exclamation mark in a gray circle indicates an object with dif-
ferences in the identified folder.

In the Action column, you can select an action from a drop-down list for different
objects, for example copying with an arrow in the direction in which you are copy-
ing. Clicking on the Execute actions icon starts the set actions. Note that you can nei-
ther add, delete, nor overwrite objects in reference projects.

251

6 Program editor

6.2.4 Exporting and importing a PLC tag table

A PLC tag table can also be created or edited using an external editor. The external
file is present in .xlsx format.

To export, open the PLC tag table and select the Export icon in the toolbar. Set the
file name and path in the dialog, and select the data to be exported (tags or con-
stants). The contents of the opened PLC tag table are exported. To export all
PLC tags, open the complete table by double-clicking on Show all tags and then
select the Export icon.

The external file contains the PLC Tags worksheet for the PLC tags and the Constants
worksheet for the symbolically addressed user constants (Table 6.2).

Table 6.2 Columns in the external file for the PLC tag table

PLC Tags worksheet
Name Path Data Type Logical Address | Comment | Hmi Visible | Hmi Accessible
Name of Group and Data type of | Absolute Comment | TRUE or TRUE or FALSE
PLC tag name of PLCtag | tag address FALSE

table (e.g. %l10.0)

Constants worksheet

Name Path Data Type Value Comment
Name of Group and Data type of | Default value Comment
constant name of PLCtag | constant

table

To import, double-click on Show all tags under the PLC station in the PLC tags folder
in the project tree. Select the Import icon in the toolbar. Set the file name and path
in the dialog and select the data to be imported (tags or constants). The contents of
the external file are imported into the tag table specified in the Path column. Exist-
ing entries are identified by a consecutive number in parentheses appended to the
name and/or by an address highlighted in color.

6.2.5 Constants tables

A tag table in the User constants tab contains symbolically addressed constant val-
ues which are valid throughout the CPU. You define a constant in the table in that
you assign a name, data type, and fixed value to it and you can then use this con-
stant in the user program with the symbolic name.

The constant name must not already have been assigned to a PLC tag, a PLC data
type, or a block. The name can contain letters, digits, and special characters (but not
quotation marks). No distinction is made between upper and lower case when check-
ing the name.

252

6.3 Programming a code block

System constants

In the System constants tab, the default tag table contains the object IDs created by
the device configuration and the program editor. The data type of a constant indi-
cates the application and the value of a constant specifies the object. The data type
and the value are fixed, but you can change the name of the constant in the respec-
tive object properties.

Example: The hardware identifier for a PROFINET IO system has the data type
Hw_IoSystem and a value of, for example, 268. The name of the constant is defined
in the properties of the PROFINET IO system using the hardware configuration.

The constants are used in the user program if a hardware or software object is to be
addressed, for example if the status of I/O stations in a PROFINET IO system is to be
read with DeviceStates. At the LADDR parameter, DeviceStates expects the hardware
identifier for the PROFINET IO system, either as a constant or as a tag with the value
of the constant or as a name.

The data types of the system constants are combined under the term “Hardware
data types”. Chapter 4.12 “Hardware data types” on page 143 includes an example
of a constants table.

6.3 Programming a code block

6.3.1 Creating a new code block

It is only possible to create a new block if a project with a PLC station has been
opened. You can create a new block in either the Portal view or the Project view.

In the Portal view, click PLC programming. An overview window appears in which
you can see the existing blocks. For a newly created project, this is the organization
block OB 1 with the name Main (main program). Click on Add new block to open the
window for creating a new block.

In the Project view, the Program blocks folder is present in the project tree under the
PLC station. This folder is created together with the PLC station. The Program blocks
folder contains the Add new block editor. Double-click to open the window for creat-
ing a new block.

Then select the block type by clicking on the button with the corresponding
symbol (Fig. 6.2). Assign a meaningful name to the new block. The name must not
already have been assigned to a different block, a PL.C tag, a symbolically addressed
constant, or a PL.C data type. The name can contain letters, digits, and special char-
acters (but not quotation marks). No distinction is made between upper and lower
case when checking the name.

Then select the programming language for the block. With automatic assignment
of the block numbers, the lowest free number for the type of block is displayed in
each case. If you select the manual option, you can enter a different number.

253

6 Program editor

“Add new biock

Hame:

| Hardware ilearupt

| Frogram oycle Language: | LAD .
B Startup r -
= Humbér 1 -
% 4 Time delay intermpe -n
Grrganimrian & Cyche miernept () manual
black s
& Hnrdware intemapt (=) autemate
— 4 Time cmor intenupt
| e Do e erngr mierropt
*ﬁ & rull or plug af madules Description:
i]
7 M Ak o lon i A"Hardware interups® GF will intermupt
Functian Black e Frogramming eeror cychc program execution in regchion to &
B/ 10 Accast #mar srgnal borm @ hardware event. The evenis
muct be defined in the proparmies of the

|— 4 Time of day canfigured hardware.

e MCAnterpolator
C B NS
& synchronaus Cycle
Functan

e Statui
B Update
[4 Prafile
&
Dats block

mare

» | Additional infermation

[l Add new and gpen ! oK Pl caneal

Fig. 6.2 Add new block window with organization block selected

You must assign an event class to an organization block, i.e. you define the type of
organization block. Select the event class from the displayed list. Depending on the
event class, the block number is either fixed or freely selectable. You can create mul-
tiple organization blocks with different numbers for some event classes (see
Chapter 5.7.1 “Introduction to interrupt processing” on page 192).

You set the default settings when creating a new block in the main menu in the
Project view using the Options > Settings command in the PLC programming section.
Under General and Default settings for new blocks, you can set the preselection for
IEC check.

If the Add new and open checkbox is activated, the program editor is started by click-
ing on the OK button and programming of the newly created block can begin.

6.3.2 Working area of the program editor for code blocks

The program editor is automatically started when a block is opened. Open a block by
double-clicking on its icon: in the Portal view in the overview window of the PL.C pro-
gramming, or in the Project view in the Program blocks folder under the PLC station
in the project tree.

254

6.3 Programming a code block

You can adapt the properties of the program editor according to your requirements
using the Options > Settings command in the main menu in the PLC programming
section.

The program editor displays the opened block with interface and program in the
working window (Fig. 6.3). Prior to programming, the block properties are present
in the inspector window; during programming, the properties of the selected or
edited object are present here. The task window contains the program elements
catalog in the Instructions task card.

...ntral Control [CPU 1516-3 PN/DP] » Program blocks » Conveyor_belt » Conveyor_control [FB713] — "l X

Wikl S g B3 i@ = &R H
Interface
Name Data type Offset Default value | Setpoint Comment
1 <@ = Input
2 - Start Bool 0.0 Start signal for the conveyor E
3 A= Continue Bool 0.1 Transition to next section
4 <= Initial state Bool 02 Return conveyor to home pasition
S @= Manual switch-on Bool 03 f Switch onin manual mode
6 | = Istop Bool 04 true Stop in manual mode
[<] i 13

HF ik == 7 =

w Block title: The block title is present here. This is quasi the *heading” of the block.
The block comment is present here. This describes the function of the block.
- Network 1: The heading of the first network, the network title, is present here_

w The network comment should describe the function of the network, quasi the intenticon of the
program in the network.

%Gy.2 #load
"Enable” #5tart SR
] 1] |
11 11 5 Q
M40
“Light barrier 1*
{ | R1
#"Initial state”
] 1
1T
#"Drive fault”
]
A
w #7Initial state” Return conveyor to home position
#Load Command for next conveyor section
"Enable” %I1.2 Enable switching on
“Light barrier 1* %10 Light barrier at beginning of conveyor
#"Drive fault” Failure of the belt motor
#5tart Startsignal for the conveyor

100% i TR T

Fig. 6.3 Example of the program editor's working window in ladder logic

255

6 Program editor

The program editor's working window shows the following details:

> The toolbar
contains the icons for the menu commands for programming, e.g. Add network,
Delete network, Go to next error, etc. The significance of the icons is displayed if
you hold the mouse pointer over the icon. Currently non-selectable icons are
grayed out.

> The interface
shows the block interface with the block parameters and the block-local tags.

> The favorites bar

provides the favorite program elements (instructions), which can also be found
in the Favorites section of the program elements catalog. You can activate and de-
activate the display in the editor: Click with the right mouse button in the favor-
ites catalog or favorites bar and select or deselect Display favorites in the editor.
To add an instruction to the favorites, select the instruction in the program ele-
ments catalog and drag it with the mouse into the favorites catalog or favorites
bar. To remove an instruction from the favorites, click with the right mouse but-
ton and then select Remove instruction.

> The block window
contains the block program. Enter the control function of the block here.

The working area is maximized by clicking on the Maximize icon in the title bar.
Click on the Embed icon to embed it again. Display as a separate window is also pos-
sible: Click in the title bar on the icon for Float. Using the Window > Split editor space
vertically and Window > Split editor space horizontally commands in the main menu,
various opened objects can be displayed and edited in parallel, e.g. the PLC tag
table and a block.

6.3.3 Specifying code block properties

To set the block properties, select the block in the Program blocks folder, followed
by the Edit > Properties command in the main menu or the Properties command in
the shortcut menu.

Block properties which affect the block program when activated such as the test
mode for data types (defined with the block attribute IEC check) should be set
before the program is created. Some block properties can only be set when the
block is created, for example the definition of the programming language SCL. To
change these properties, you must create a new block.

Fig. 6.4 shows as example for the block properties the sections General and
Information of a function block.

Block properties in the General section

The General section contains the Name of the block. The block name must be unique
within the program and must not already have been assigned to another block,
a PLC tag, a constant, or a PLC data type. The name can contain letters, digits, and
special characters (but not quotation marks). No distinction is made between upper

256

6.3 Programming a code block

General
MName: |I\-10tur_cuntru| |
Type: |FB |
Number: |?14 |
Language: |L,-‘-.D ‘V|
Information

Title: | Conveyor belt contral

Comment: | This block controls a conveyor belt with a single
drive in one direction only, without overrun.

Version: |1.D

Family: |Eook1500

Author: | Berger

Userdefined ID: |BC_MOTI

Fig. 6.4 Block properties: General and Information tabs

and lower case when checking the name. The Type of the block is defined when the
block is created. The Number specifies the block number within the block type. For
blocks with a program, the Language is: LAD, FBD, STL, SCL, or GRAPH. In the case
of a function block with sequence control (GRAPH), you set the programming lan-
guage in the networks (LAD or FBD) in the block properties.

When creating an organization block, you also define the Event class to which the
organization block belongs. The program editor creates a hardware identifier for
the organization block in the System constants tab of the default tag table. You use
the hardware identifier to address the organization block in the program, e.g. for
assignment to an event. The name of the hardware identifier can be changed in the
Constant name field in the block properties under General. The value of the
hardware identifier corresponds to the number of the organization block.

Block properties in the Information section

The Information section contains the Title and the Comment; these are identical to the
block title and the block comment which you can enter when programming the block
upstream of the first network. The Version is entered using two two-digit numbers
from 0 to 15: from 0.0 to 0.15, 1.0 to 15.15. Under Author you can enter the creator of
the block. Under Family you can assign a common feature to a group of blocks, as is
also the case with User-defined ID. The author, family, and block ID can each comprise
up to 8 characters (without spaces).

Block properties in the sections Time stamps, Compilation, and Protection

The time data in the Time stamps section contain the date of creation of the block
and the date of the last modification to the block, interface, and program.

257

6 Program editor

The Compilation section provides information on the processing status of the block,
and - following compilation — on the memory requirements of the block in the load
and work memories.

In the section Protection you can set up know-how protection and copy protection
for the block. Further details are described in Chapter 6.3.4 “Protecting blocks” on
page 259.

Block properties in the Download without reinitialization section

Function blocks with the attribute Optimized block access activated can be down-
loaded into the CPU after a change of the interface in the RUN operating state with-
out resetting the actual values to the start values (see Chapter 15.3.3 “Download
without reinitialization” on page 665). The changes are entered in a special mem-
ory area in the block, the “memory reserve”. In this section of the block attributes,
you set the size of the memory reserve and the size of the memory area reserved for
this for retentive tag values.

Block attributes for code blocks

Table 5.1 on page 158 shows an overview of the block attributes for all blocks. Addi-
tional attributes for compilation of SCL blocks are described in Chapter 6.5.2 “Com-
piling SCL blocks” on page 277. The attributes for compilation as well as the
sequence properties for the GRAPH function block are described in Chapter 11.3.6
“Attributes of the GRAPH function block” on page 494. The special block attributes
for interrupt and error organization blocks are described for the blocks concerned.

The IEC check attribute defines how strict the data type test should be in the code
block for the implicit data type conversion (see Chapter 4.5.2 “Implicit data type
conversion” on page 108). With the attribute not activated, it is usually sufficient if
the tags used have the data width required for execution of the function or state-
ment; with the attribute activated, the data types of the tags must correspond to the
required data types. It is recommendable to set the IEC check attribute prior to
block programming.

The attribute Handle errors within block is activated once one of the functions Get-
Error or GetErrorID is inserted when the program is created in the block. Then the
system response to a programming error or access error is omitted in favor of a self-
programmed error routine.

The attribute Block can be used as a know-how protected library element shows that
the block can be used in a library with know-how protection.

The Optimized block access attribute defines the data storage in the block and access
to block tags. If the attribute is activated, the tags are not saved in the order of the
declaration but in a way that is memory-optimized. This has effects on the address-
ing and the retentivity of the tags. If the attribute is activated, only symbolic
addressing of the interface tags or the data tags in the block is possible. With
instance data blocks, the Optimized block access attribute is “inherited” from the
associated function block; in this case the data tags are addressed by the associated

258

6.3 Programming a code block

function block. Furthermore, with the attribute activated, individual tags can be set
as retentive (in the associated function block for instance data blocks); only the
complete block can be set if the attribute is not activated.

The attribute Set ENO automatically only concerns code blocks with SCL program.
If the attribute is activated, the block-local tag ENO is set to the value FALSE in the
event of an error and the value is passed on to the enable output ENO.

The attribute Parameter passing via registers only concerns code blocks with STL
program. If the attribute is activated, block parameters can be transferred via tabs
to a block that is called with UC or CC.

6.3.4 Protecting blocks
A block can be protected

> from unauthorized access with a password (know-how protection) and

> from unintended execution by binding to a specific memory card or CPU (copy
protection).

Configuring know-how protection

With the know-how protection for a block you can prevent a program or its data
from being read out or modified. A protected block is identified in the project tree
by a padlock icon. It is still possible to read the following from a block provided with
know-how protection:

> Block properties
> Parameters of the block interface
> Program structure

> Global tags (listed in the cross-reference list without specification of the point
of use)

The following actions are also possible:

> Modify name and number in the block properties (necessary for copying and
pasting the block)

> Copy and paste block (the know-how protection is also copied)
> Delete, compile, and download block
> Call block (FB or FC) in the program of another block

> Compare online and offline versions of the block (comparison only of
non-protected data)

To edit the know-how protection, select the block in the project tree under Program
blocks, and then select Edit > Know-how protection in the main menu. To configure
the know-how protection, click the Define button, enter a password, confirm the
password, and close the dialog with OK. To change the password, click the Change
button, enter the old and new passwords, confirm the new password, and close the

259

6 Program editor

dialog with OK. To cancel the know-how protection, deactivate the Hide code (know-
how protection) checkbox, enter the password, and close the dialog with OK.

You can also apply the know-how protection to several blocks simultaneously if
these have the same password. If a function block is protected, the protection is
“inherited” by the instance data block when calling as a single instance.

Note: If the password is lost, no further access to the block is possible. You can only
cancel the know-how protection of a block in its offline version. If you download a
compiled block to the CPU, the recovery information is lost. A protected block which
you have uploaded from the CPU cannot be opened, not even with the correct pass-
word.

Know-how protection with source files

In the case of STL and SCL blocks for a CPU 300/400, in a source file it is possible to
protect a block against undesired access by using the keyword KNOW_HOW_PRO-
TECT. This protection no longer exists for blocks for a CPU 1500. The keyword
KNOW_HOW_PROTECT has no effect here (see Chapter 18.1 “Working with source
files” on page 780).

Configuring copy protection

If a block has copy protection, processing of the block is dependent on a specific
CPU or memory card. The block must then be provided with the know-how protec-
tion so that the copy protection cannot be removed.

When configuring the copy protection, the know-how protection for the block must
be switched off. To set up the copy protection, select the block in the project tree,
select Properties from the shortcut menu and then Protection. In the Copy protect
area, you can choose:

> No binding
No copy protection is set or a set copy protection is canceled.

> Bind to serial number of the memory card
The block can only be executed if the memory card has the specified serial
number.

> Bind to serial number of the CPU
The block can only be executed if the CPU has the specified serial number.

6.3.5 Programming a block interface

The block interfaces of the code blocks contain the declaration of the block-local
tags. The interface structure depends on the type of block. Table 6.3 shows the indi-
vidual declaration sections of the blocks. The meaning of the declaration sections
is described in detail in Chapter 5.3.3 “Block interface” on page 157.

You can increase or decrease the size of the block interface window by dragging on
the bottom edge with the mouse. Two arrows at the bottom can be used to open or
close the window. Fig. 6.5 shows an example of a function block interface.

260

6.3 Programming a code block

Table 6.3 Declaration sections for code blocks

Declaration section Meaning Permissible with block type

Input Input parameters OB (see text) FC FB
Output Output parameters - FC FB
InOut Infout parameters - FC FB
Static Static local data - - FB
Temp Temporary local data OB FC FB
Return Function value - FC -

....entral Control [CPU 1516-3 PN/DP] » Program blocks » Conveyor_belt » Counter_control [FB716]

g g @8 @l Ccaad == & B =

Interface

Name Data type Defaultvalue Retain Comment

1 <l w Input [~
2 |q1 = Set Bool MNon-retain Setworkpiece counter to new value
3 |4a= Acknowledge Bool Mon-retain Acknowledge counter fault
4 |qi® Light_barrier Bool MNon-retain Rear light barrier
5 <= Quantity Int Mon-retain New value of workpiece counter
6 |an v Output
7 4= Ready Bool MNon-retain Counted value reached
8 <= Fault Bool Mon-retain Counter fault
9 4l - InOut
10 L} <Add new>
11 <@ = Stetc
12 |qg = Active Bool Mon-retain Counter control active
15 |41 = EMpos_Light_barrier Bool Mon-retain Rising edge “Light barrier®
14 |41 = EMneg_Light_barrier Bool MNon-retain Falling edge “Light barrier
15 g = IMneg_Light_barrier Bool Non-retain Pulse flag with falling edge
16 |41 = EMpos_Active Bool Mon-retain Rising edge “Counter active”
17 4 = EMpos_Set Bool alse Non-retain Rising edge "Set"
18 |41 = Duration1 Time T#500ms Mon-retain Duration for "Light barrier covered®
15 |41 = Duration2 Time T#200ms MNon-retain Duration for “Gap”
20 |qg = Duration3 Time T#5s Non-retain Duration for *Monitoring active state”
21 <@ = » Pars_counter CTD_INT Non-retain Workpiece counter as down counter
22 40 = » Monitoring TON_TIME MNon-retain Monitoring time as switch-on delay

<] | EB

L

Fig. 6.5 Example of function block interface

You can click on the triangle to the left of the declaration mode to open the declara-
tion section or to close it. If you select a line with the right mouse button, in the
shortcut menu you can delete the line, insert an empty line above it, or add an
empty line after it.

The name can contain letters, digits, and special characters (but not quotation
marks). No distinction is made between upper and lower case when checking the
name. A drop-down list shows the currently permissible data types. You can use the
comment to describe the purpose of the respective tag.

261

6 Program editor

The Default value column is displayed for a function block (FB). You can enter a
default value here which is saved in the instance data block. In the Static declaration
section, tags can be identified as Setpoints. For a tag identified in this way, the value
in the work memory can be overwritten in the operating state RUN and the current
value from the work memory can be imported as a start value into the offline data
management. Further details are described in Chapter 15.3.5 “Working with set-
points” on page 668.

In the case of a function (FC), the function value with the name of the block and data
type VOID is displayed in the declaration section Return. The data type VOID pre-
vents the display in the call box or call statement. If you specify a different data type
here, the function value for LAD, FBD, and STL is displayed as the first output
parameter. In the SCL programming language you can integrate a function in an
expression instead of a tag with the data type of the function value (see section
“Using a function value of a function (FC)” on page 167).

An organization block (OB) can provide start information, which contains informa-
tion about the call event, for example. If the Optimized block access attribute is acti-
vate, depending on the event class some organization blocks save start information
in the declaration section Input. If Optimized block access is deactivated, each orga-
nization block provides start information (20 bytes long) in the Temp declaration
section.

For code blocks with deactivated Optimized block access attribute, tags in the block
interface can be superimposed with other data types as described in Chapter 4.5.3
“Overlaying tags (data type views)” on page 111.

6.3.6 Programming a control function

Working with networks

A network is part of a code block which, in the case of the LAD and FBD program-
ming languages, contains a complete current path or a complete logic operation.
The use of networks is optional for STL; it is recommendable to use networks for
improved clarity. SCL and GRAPH do not use networks.

For a CPU 1500, it is possible to insert networks with STL program in a block with
LAD or FBD program. Chapter 10.1.5 “STL networks in LAD and FBD blocks” on page
400 shows which special features must be observed here.

The program editor automatically numbers the networks starting from 1. You can
assign a title and a comment to each network. When editing, you can directly select
any network from the main menu using the Edit > Go to > Network/line command.

The networks can be opened or closed. To do this, select Network with the right
mouse button and then select the Collapse or Expand command from the shortcut
menu, or click in the toolbar of the working window on the Close all networks or
Open all networks icon.

When programming the last network in each case, an empty network is automati-
cally appended. To program a new network, select the Insert > Network command

262

6.3 Programming a code block

from the shortcut menu. The editor then adds an empty network after the currently
selected network.

You can show or hide the network comments using the Network comments on/off
icon in the toolbar or the View > Display with > Network comments command in the
main menu.

Program elements catalog

All program elements permissible for the respective programming language
(contacts, coils, boxes, statements, etc.) can be found for an open block in the pro-
gram elements catalog in the task window. The program elements catalog is divided
into the following groups

> Favorites (frequently required program elements)
> Basic instructions (basic functions)
> Extended instructions (functions implemented by system blocks)

> Technology (technological functions, e.g. for PID controllers or for technology
modules)

> Communication (communication functions for data transmission and functions
for communication modules)

You can combine a selection of frequently used program elements in the Favorites
catalog and display them in the favorites bar of the program editor to allow rapid
selection.

General procedure when programming

To enter the program code, position the program elements in the desired arrange-
ment and subsequently supply them with tags or enter the statement lines. The
program editor immediately checks your inputs and indicates faulty entries.

You can interrupt block programming at any time - even if the program is still
incomplete or faulty — and continue later. You can store a block by saving the com-
plete project using the Project > Save command from the main menu.

You can save the structure of the windows and tables using the Save window settings
icon in the top right corner of the working window. This structure is reestablished
the next time the working window is opened.

Programming a control function with ladder logic (LAD)

To program the control function in LAD, select a program element in the catalog
and drag it with the mouse into the open network under the network comment.
The first program element is positioned automatically. With the next program ele-
ment, small gray boxes indicate where the new program element may be positioned
and - in green — where it is positioned when you “let go”.

In the ladder logic, the binary logic operations are implemented by series and par-
allel connections (Fig. 6.6). For the representation of the boxes, the Q or ENO output

263

6 Program editor

- Network 36: LAD representation

#Fanl.works #FanZworks P_TRIG MOVE
| | /1 cLK Q EN END —
#DisplayEN_ 120 — N #Adjustment_
#Fani1.works #FanZ.works onefan ¥ OUm value
1 11
/1 11
#Display.Fault_
onefan
SR “Clock_0.5HT #Display.onefan
s Q 1 | { }

#Acknowledge
1}
1T R1

Fig. 6.6 Example of ladder logic representation with contacts, coils, and boxes

is positioned in the ladder logic representation at the top edge of the box in order
to be able to “hang” the box into the current path. For many boxes, you have the
choice to use the ENO output or to omit it. The structure of an LAD current path is
described in Chapter 7 “Ladder logic LAD” on page 287.

Programming a control function with function block diagram (FBD)

To program the control function in FBD, select a program element in the catalog
and drag it with the mouse into the open network under the network comment. The
first program element is positioned automatically. With the next program element,
small gray boxes indicate where the new program element may be positioned and -
in green - where it is positioned when you “let go”. You can also position program
elements freely in the network and subsequently connect the corresponding inputs
and outputs.

Binary logic operations are represented in the function block diagram by AND, OR,
and exclusive OR boxes (Fig. 6.7). The Q and ENO outputs are positioned at the bot-
tom edge where they can be connected to the input of the following program ele-

- Network 38: FBD representation

&
#Fanl.works — ==1
#Fan2.works —0 3¢ —

#Display.Fault_

& onefan
#Fanl.works —o SR
#Fan2.warks = s N S
&
#Acknowledge — &
#Enabling — 3¢ — R Q— #Display.onefan

"Clock_0.5HZ" = st —_ —_

Fig. 6.7 Example of function block diagram with boxes

264

6.3 Programming a code block

ment. For many boxes, you have the choice to use the ENO output or to omit it.
The structure of an FBD logic operation is described in Chapter 8 “Function block
diagram FBD” on page 323.

Selection of function and data types using drop-down lists (LAD, FBD)

Many program elements have a variable design with regard to both function and
data types. For example, if you select the ADD box from the math functions, three
question marks are shown underneath the function designation ADD instead of the
data type. If you click on the ADD box, a small yellow triangle is displayed on the top
right-hand corner as an indication that a drop-down list is present behind it (Fig.
6.8). In this case, the drop-down list shows the data types permissible at this point,
from which you can select the desired data type.

If a small yellow triangle is displayed in the top right
corner of the program element (contact, coil, box),
you can select a different function here for the pro-
gram element from a drop-down list.

The empty box — which can be found in the favorites
or in the program elements catalog under General -
is particularly flexible here. Here you can select
almost all program elements from the (function)

drop-down list. Fig. 6.8 Selection of data type
using drop-down list

Programming a control function with structured control language (SCL)

The control function is entered in SCL as “structured text”. You can drag all state-
ments from the program elements catalog into the working area. With simple state-
ments, for example a binary or digital operation, it is simpler to enter the state-
ments as text via the keyboard.

Binary and digital logic operations are implemented in the SCL representation by
expressions (Fig. 6.9). An expression is terminated by a semicolon. In the case of
block calls and complex functions implemented as blocks, the block parameters are
listed in parentheses following the function name. The structure of an SCL expres-
sion is described in Chapter 9 “Structured Control Language SCL” on page 359.

//Representation as structured control language (JCL) ***¥****ddaaddsadediiddaaddadddoans
IF (#Fanl.works XOR #FanZ.works) AND NOT #Display.Fault_onefan THEN
#Display.EM onefan := TRUE;

#hdjustment_wvalue := 1207
END_IF;
#Display.Fault_onefan := #Fanl.works XOR #Fani.works:
9 HIF #Licknowledge THEN
::T #Display.EM onefan := FRLSE;
END IF:

#Display.cnefan := $Display.EM cnefan & "Clock 0.5Hz":

[CREEE
[SEE SN
Wk

Fig. 6.9 Example of representation as structured control language (SCL)

265

6 Program editor

Programming a control function with statement list (STL)

The control function is entered in STL line by line. Each line contains one statement.
You can drag all statements from the program elements catalog into the working
area. With simple statements, for example an AND logic operation, it is simpler to
enter the statements line by line as text via the keyboard.

Binary logic operations are implemented in the representation as statement list by
AND, OR, and exclusive OR logic operations (Fig. 6.10). The statements (operations
and possibly operands) are written line by line. In the case of block calls and com-
plex functions implemented as blocks, the block parameters are positioned under-
neath the call statement. The structure of an STL statement as well as processing of
the statements are described in Chapter 10 “Statement list STL” on page 395.

- Network 30: Representation as statement list (STL)

1 X #Fanl.works

F X #Fani.works //only one fan works
3 FP #Display.EM cnefan f/rising edge

4 1 #Display.Fault cnefan

L JCH labell f/jump if no edge

6 L 120

7 T #Adjustment_value //load adjustment value
2 1labell : 2 #Acknowledge

9 E #Display.Fault_cnefan
10 ey #Display.Fault_cnefan

1 e "Clock_0.5Hz"

3 = #Display.cnefan f/display with clock

Fig. 6.10 Example of representation as statement list STL

Programming of a control function with sequential control (GRAPH)

You program a sequence control with the GRAPH programming language as a
sequence of steps, transitions, and possibly branches and jumps. You create the

» Imtirlache ek
= —
. * Actions:
v
e, Interlock Event GQuallfier Action
0 i ssermnd | TR
—— 5 cseral
et
+ o e mene

- T Swiched on

 TEVE “rkgiece 587
*Speed mached” enied®
1 i

r

Fig. 6.11 Example of representation as sequence control GRAPH

266

6.3 Programming a code block

structure of the sequencer by “dragging” the corresponding element (step, transi-
tion, jump, etc.) from the programming elements catalog into the working area.
To program the actions in a step or the links in a transition, select the desired item
in the sequence tree on the left and program its contents in the working area (Fig.
6.11).

You can set or reset tags, program timer functions, create simple arithmetic logic
operations, or call blocks in one step. The programming languages LAD and FBD
are available for programming the logic operations, e.g. for transitions. The struc-
ture of a GRAPH sequence control is described in Chapter 11 “S7-GRAPH sequential
control” on page 472.

6.3.7 Editing tags

Almost all program elements require tags in order to execute their function. Follow-
ing insertion in the working area, a program element must be supplied with tags.
Fig. 6.12 shows the insertion of an up/down counter as local instance
(#IEC_Counter_0_Instance) in a function block. The example shows the representa-
tion in LAD, FBD, SCL, and STL.

LAD and FBD indicate with three red question marks that you must enter a tag here.
If three dots are displayed, supplying a tag is optional.

With SCL, the missing tags are occupied by dummy values which have to be
replaced by “real” tags.

If you set the cursor to a block parameter or function parameter in STL, the decla-
ration mode and the data type of the parameter are shown.

The program editor displays the global tags enclosed by quotation marks. Local
tags are preceded by a number character (#); if they possess special characters,
these are additionally enclosed by quotation marks. Operands (absolute addresses)
are preceded by a percentage sign (%).

You can display the tags with absolute address, symbolic address, or both. The set-
ting is carried out using the View > Display with > Address information command
from the main menu, or with the Absolute/symbolic operands icon in the toolbar of
the program editor.

The data type of the tag must be compatible with the data type of the supply posi-
tion. Use the block attribute IEC check to set how strict the program editor is when
performing the check. Further details can be found in Chapter 4.5.2 “Implicit data
type conversion” on page 108.

If you enter an operand with the appropriate data width which is not present in the
PLC tag table, the editor creates a new “Tag_x” in the PLC tag table, with x as a con-
secutive number. By clicking with the right mouse button on a tag and selecting
Rename tag from the shortcut menu you can assign a different name to the tag.
With Rewire tag you can assign a different absolute address to the tag.

When programming the control function you can also enter the name of a tag which
does not yet exist. The name of the tag is then underlined in red. By clicking with

267

6 Program editor

Supply of an IEC counter function with tags

Call in LAD
#IEC_Counter_0_
Inztance
CTUD
7 Int
——w Qu
FALSE — CD QD —...

FALSZE = R (a7

= LD

P

Call in FBD
#|EC_Counter_0_
Inztance
CTuD
Int

<77 T = CU

FALSE = CD

FALSE == R QD =—

— LD (o)
PV QU —

Call in SCL
231
232 #IEC_CD\mter_O_Instance {CcuU: =_bool_in_,

233 CD:= bool in ,
234 R: gool In ,_
235 LD:= booI i; .
236 PV:= in ,_ B
237 QU:‘)*_bo;l out
238 QD=>:bool:ou:_,
2359 CV=>_out_);
240
Call in STL

1

2 CALL #IEC Counter 0 Instance

3 Int

4 CU ==

3 SR

) R :=

7 LD :=

8 BV :=_

S ou =

10 QD :

11 Cw ==

12

Fig. 6.12 Supply with tags

Define tag
Name Section Address Datatype | PLC tag table

Warkpiece identified | Global Input :l%l2.3 B Conveyor belt

LocalIn

Bool

[=]

Comment

Local Qut

Define | |

Cancel

Local InQut
Local Static
Local Temp
Global Memao
Global Input
Global Output
Global Timer

Global Counter

Fig. 6.13 Defining tags during program input

268

6.3 Programming a code block

the right mouse button on the undefined tag and selecting Define tag from the
shortcut menu you are provided with a new window in which you can define the tag
(Fig. 6.13).

You can, for example, select the memory area in which the tag is to be positioned:
Input, output or in/out parameter, static or temporary local data, bit memories,
inputs, outputs, as well as peripheral inputs and peripheral outputs. You can also
set the (existing) PLC tag table in which the tag is to be saved.

Showing and hiding tag information

In LAD and FBD, you can display the name, address, and comments of the tags used
in the network under the current path or the link. The general settings for all blocks
are made in the main menu with the command Options > Settings in the group
PLC programming > General. Here you can enable or disable the view with tag infor-
mation. For the open block - and with the cursor in the program section - select
View > Display with > Tag information or click in the toolbar of the working window
on the Tag information on/off icon.

6.3.8 Working with program comments

With LAD and FBD as the programming languages, you can enter a “free-form com-
ment” for each coil or box (LAD) and for each non-binary box (FBD). Right-click on
the program element and select Insert comment from the shortcut menu. The pro-
gram editor displays a comment box with an arrow pointing to the selected pro-
gram element. You can then enter a comment in the box. You can shift the box
within the network or increase its size using the triangle at the bottom right
corner (Fig. 6.14).

The programming language SCL provides line and block comments. Line com-
ments are commenced by two slashes and extend up to the end of the line. A block
comment starts with left parenthesis and asterisk and ends with an asterisk and
right parenthesis; example: (* This is a block comment *). It can extend over several
lines. You can “comment out” code lines by positioning the cursor in the code line
or by selecting several lines and clicking the Disable code icon in the toolbar of the
working window. A line comment is then generated with the code line as content.
You can undo the procedure using the Enable code icon.

With STL as the programming language you enter the comment following a dou-
ble slash up to the end of the line. You can write the comment on its own in a line
or position it after the STL statement. You can “comment out” code lines by posi-
tioning the cursor in the code line or by selecting several lines and clicking the
Disable code icon in the toolbar of the working window. A line comment is then
generated with the code line as content. You can undo the procedure using the
Enable code icon.

269

6 Program editor

Comments

Free-form comment in LAD

Free-form comment in FBD

ADD ADD
Auto (Int) Auto (Int)
EM —— ENO ~—EN
#Value_1 N1 ouT #Result #Value_1 — 1 —L ouT — #Result
#Walue_2 INZ 3 #Value_2 — N2 3+- ENO —

Free-form commen e-form comment ;
for coils and boxes | Jfor boxes

Block comments and line comments in SCL

24 //Line comment as a heading

25 #Result := #Value 1 + #Value 27 SfLine comment to end of line
2
27 T{* Comment secticn
-
2
.
2

can span several lines #*)

[S S VR R)

Line comments in STL

J//Line comment a3 a heading

W M

L #WValue_ 1
L #WValue_ 2
4 +I
T #Result f/Line comment to end of line

[=]

Fig. 6.14 Comments in the various programming languages

6.4 Programming a data block

6.4.1 Creating a new data block

It is only possible to create a new data block if a project with a PLC station has been
opened. You can create a new data block in either the Portal view or the Project view.

In the Portal view, click PLC programming and subsequently Add new block. In the
Project view, double-click on Add new block in the Program blocks folder. In the win-
dow for creating a new block, select the icon for Data block.

Data blocks must be assigned a type:

> A global data block contains the tags which you specify when programming the
data block. You can design the contents and structure of the data block as
desired.

> An instance data block contains the block parameters and static local data of a
function block (FB) or system block. The data structure is defined during pro-

270

6.4 Programming a data block

gramming of the block interface (for a function block) or is predefined (for a sys-
tem block).

> An ARRAY data block has the structure of the ARRAY data type: It is a data field
with components that all have the same data type. You define the data type and
the upper array limit when you add the ARRAY data block.

> Adata block with assigned data type (“type data block”) contains the tags with the
structure of a PLC data type or a system data type. The data structure is defined
during programming of the PL.C data type or is specified by the system data type.

The Type drop-down list shows the blocks and data types which have already been
programmed and are thus currently available for use. Select the entry from the list
with which you wish to structure the data block to be created. Select the Global DB
entry for a data block whose content you wish to structure as desired.

Assign a meaningful name to the new block. The name must not already have been
assigned to a different block, a PLC tag, a symbolically addressed constant, or a
PLC data type. The name can contain letters, digits, and special characters (but not
quotation marks). No distinction is made between upper and lower case when check-
ing the name.

The language for data blocks is always DB. With the automatic assignment of the
block numbers, the lowest free number for the type of block is displayed in each
case; if you select Manual, you can enter a different number.

If the Add new and open checkbox is activated, the program editor is started by click-
ing on the OK button, and programming of the newly created block can begin.

6.4.2 Working area of program editor for data blocks

The program editor is automatically started when a data block is opened. Open a
block by double-clicking on its icon: in the Portal view in the overview window of
the PLC programming, or in the Project view in the Program blocks folder under the
PLC station in the project tree. The program editor's working window shows the fol-
lowing details for a data block (Fig. 6.15):

> The toolbar

contains the icons (from left to right) for Insert row, Add row, Reset start values,
Update interface, Snapshot of the monitoring values, Copy all values from the
“Snapshot” column to the “Start value” column, Copy all setpoints from the “Snap-
shot” column to the “Start value” column, Initialize setpoints, Expanded mode,
Download without reinitialization and Monitor all. The meaning of the icons is dis-
played if you hold the mouse pointer over the icon. Currently non-selectable
icons are grayed out.

> The tag declaration
shows the contents of the data block.

The working area can be maximized by clicking on the Maximize icon in the title bar,
and embedded again using the icon for Embed. Display as a separate window is also
possible: Click in the title bar on the icon for Float.

271

6 Program editor

..» Central Control [CPU 1516-3 PR/DP] » Program blocks ¢+ Examples.LAD » Data.LAD [DB10O] - 12X
Fe Ll ReecaB B> =
Data.LAD
Heme Date type Oliset Start velue Retesn Setpomt Comment
<L = Stic -
i Em Messages Dveord ali] _I _I -:
| 4. Wessanges_EM i an = -1
4 .= Kessages_pes Dward B0 (-1 =
5 Om Messages_neq DWard 124 -]]
£ 40 = - CQuanmry amay[1.4] ofing 160 '—I '_|
i M) = Guantin1] it .0 B
8 4 = Guantind2] int 20 '_"
g @@ = Quantinds] nt 4.0 B
10 -0 L Quantidd] it 6.0 |
11 <@ & » [Keasurement erray[1..4] ofin1 40 3 =
12 -3 u BMessurament(1] int 0.0 |
LERL =] mMessurementf2] int 2.0 M
44 = Messurement[3] im 40 B
mAE . Messurement(d] e 60 Bl
16 4@ = Adder_result Int 320 Bl]
154 = Tomlizer_resule int 340 M = -
K- | 1 >

Fig. 6.15 Example of the program editor's working window for data blocks

You can save the structure of the windows and tables using the Save window settings
icon in the top right corner of the working window. This structure is reestablished
the next time the working window is opened.

6.4.3 Defining properties for data blocks

To set the block properties, select the block in the Program blocks folder, followed
by the Edit > Properties command in the main menu or the Properties command in
the shortcut menu.

Block properties in the General section

The General section contains the Name of the block. The block name must be unique
within the program and must not already have been assigned to another block, a
PLC tag, a constant, or a PLC data type. The name can contain letters, digits, and spe-
cial characters (but not quotation marks). No distinction is made between upper and
lower case when checking the name.

With data blocks, the designation DB together with the type of data block is present
in the Type field: Global DB for a global data block, Instance DB of <FB_name> for an
instance data block of the function block <FB_name>, Array DB for an ARRAY data
block, and Data block derived from <Type_name> if the structure of the data block is
based on the data type <Type_name>.

The block number of the data block is present in the Number field. The language for
data blocks is always “DB”. For an ARRAY data block, the data type of the array com-

272

6.4 Programming a data block

ponent and the upper array limit (can be changed) are also displayed. The lower
array limit is always zero.

Block properties in the Information section

The Information section contains the Title and the Comment. The Version is entered
using two two-digit numbers from 0 to 15: from 0.0 to 0.15, 1.0 to 15.15. Under
Authoryou can enter the creator of the block. Under Family you can assign a common
feature to a group of blocks, as is also the case with User-defined ID. The author, fam-
ily, and block ID can each comprise up to 8 characters (without spaces).

Block properties in the sections Time stamps, Compilation, and Protection

The time data in the Time stamps section contain the date of creation of the block
and the date of the last modification to the block, interface, and program.

The Compilation section provides information on the processing status of the block,
and - following compilation — on the memory requirements of the block in the load
and work memories.

In the Protection section you can set up know-how protection for the data block.
Further details are described in Chapter 6.3.4 “Protecting blocks” on page 259.

Block attributes for data blocks
Table 5.1 on page 158 shows an overview of the block attributes for all blocks.

The Optimized block access attribute defines the data storage in the block. If the
attribute is activated, the tags are not saved in the order of the declaration butin a
way that is memory-optimized. This has effects on the addressing and the retentiv-
ity of the tags. If the attribute is activated, only symbolic addressing of the data tags
is possible in the block. With instance data blocks, the Optimized block access attri-
bute is “inherited” from the associated function block; in this case the data tags are
addressed by the associated function block. Furthermore, with the attribute acti-
vated, individual tags can be set as retentive (in the associated function block for
instance data blocks); only the complete block can be set if the attribute is not acti-
vated.

Global and type data blocks can be assigned the Only store in load memory attribute.
Such types of data block are only present in the load memory on the memory card,
they are “not relevant to execution”. Since their data is not in the work memory,
direct access is not possible. Data in the load memory can be read and also written
using system functions. Data blocks with the Only store in load memory attribute
activated are suitable for data which is only accessed rarely, e.g. recipes or data
archives.

Data block write-protected in the device is an attribute for global and type data
blocks. It means that you can only read from this data block by means of a program.
Overwriting of the data is prevented and an error message is generated. The write
protection applies to the data relevant to execution (actual values) in the work
memory; the data in the load memory (start values) can be overwritten even if the

273

6 Program editor

data block is provided with write protection. Write protection must not be confused
with block protection: A data block with block protection can be read and written by
the program; however, its data can no longer be viewed using a programming or
monitoring device.

The attribute Set data in the standard area to retentive concerns instance data
blocks. When the attribute is activated, the retentivity of all of the tags with the
default setting Set in IDB is switched on.

Block properties in the Download without reinitialization section

Global and instance data blocks with the attribute Optimized block access activated
can be downloaded into the CPU after a change of the interface in the RUN operating
state without resetting the actual values to the start values (see Chapter 15.3.3
“Download without reinitialization” on page 665). The changes are entered in a spe-
cial memory area in the block, the “memory reserve”. In this section of the block
attributes, you set the size of the memory reserve and the size of the memory area
reserved for this for retentive tag values.

6.4.4 Declaring data tags

The declaration table shows the following columns depending on the block proper-
ties and the editing environment:

> Name: The name can contain letters, digits, and special characters (but not quo-
tation marks). No distinction is made between upper and lower case when check-
ing the name. The name is block-local, and therefore the name can also be used
in other blocks for different tags. In association with the data block whose name
applies throughout the CPU (globally), a data tag becomes a “global” tag appli-
cable throughout the CPU.

> Data type: Select the data type of the tag from a drop-down list or enter it directly.

> Offset: The offsetindicates the relative address of the tag with respect to the start
of the data block or the start of a data structure. The column is only shown if the
Optimized block access attribute is not activated in the data block. The offset is
shown after the data block has been compiled.

> Default value: The default value is the value which is automatically assigned to a
new tag depending on the data type. Example: With the data type DATE, the de-
fault value is DATE#1990-01-01. If the data block is based on a data type (type
data block) or a function block (instance data block), the tag value defined in the
data type or in the function block is present in the Default value column.

> Start value: The Start value column lists the individual default values of the tags
for this data block. The default value is used if a start value is not entered.
The start value is the value with which the data block is loaded into the CPU's
work memory. With an instance data block it is then possible, for example, to
commence each call of the underlying function block (each instance) with differ-
ent start values.

274

6.4 Programming a data block

> Snapshot: The Snapshot column shows the “frozen” monitoring values from the
work memory at the time of the snapshot.

> Monitor value: The monitor value indicates the actual value of the tags in online
mode. This is the value that is present in the work memory during scanning.
This column is only displayed in Monitoring mode.

> Retain: A checkmark in this column indicates that the tag is retentive. If the
Optimized block access attribute is activated for the global data block, individual
tags can be set as retentive, otherwise only the complete data block. For an in-
stance data block, configure the retentivity of the individual tags in the assigned
function block. For a type data block, only the complete data block can be set to
retentive or non-retentive.

> Visible in HMI: A checkmark in this column means that the tag is visible in the
drop-down list of HMI stations by default.

> Accessible from HMI: A checkmark here indicates that an HMI device can access
this tag.

> Setpoint: A checkmark in this column indicates that this value will be probably
be set during commissioning. With tags marked in this way, the actual values can
be imported into the offline data management system as start values. Further
details are described in Chapter 15.3.5 “Working with setpoints” on page 668.

> Comment: The comment allows input of an explanation of the purpose of the
tag.

You can determine the columns to be displayed yourself: Right-click in the line with
the column headers and then select the Show/Hide columns > ... command from the
shortcut menu. You can then select or deselect the columns to be displayed.

Expanded mode

The expanded mode is activated using the Expanded mode icon in the toolbar of the
working window. In expanded mode, the tags with structured data types (except for
STRING) are “opened” so that the individual components can be displayed and - if
permissible — assigned default values.

6.4.5 Entering data tags in global data blocks

With a global data block, you enter the data tags directly in the block. In the Name
column you specify the name of the tag. Following input of the name, select the
data type from a drop-down list, enter a start value if applicable, and use a com-
ment to explain the purpose of the tag.

With the STRING data type, enter the maximum length of the string in square
brackets. If this data is missing, the standard length of 254 characters is used.

With the ARRAY data type, you must enter the range limits and the data type of a
component. For example, the information in the drop-down list Array [lo .. hi]
of type could then result in Array [1 .. 12] of Real. If you click on the triangle to the

275

6 Program editor

left of the tag name, the components are displayed and you can assign individual
start values to them as default values.

Select the STRUCT data type from the drop-down list and, in the line under the tag
name, enter the name of the first component, its data type, possibly a default set-
ting, and a comment. The next line contains the second component, etc.

The drop-down list also shows the previously programmed PLC data types which
you can also assign to a data tag. System data types are displayed if the correspond-
ing statements (functions) have been programmed. When programming a tag with
the system data type, for example ErrorStruct or IEC_TIMER, you cannot change the
structure and you can only set defaults for individual components if it is permitted.

6.5 Compiling blocks

Compilation generates a program code which can execute in the CPU. A compila-
tion process is always triggered prior to downloading the user program to the PLC
station. Only blocks which have been compiled without errors can be downloaded.

It is recommendable to also trigger compilations while generating the user pro-
gram to enable a quick response to any programming errors.

6.5.1 Starting the compilation
You start the compilation using a command from the shortcut menu.

> To compile a block opened in the program editor, click with the right mouse but-
ton on the white background of the working area and select the Compile com-
mand from the shortcut menu.

> To compile a block listed in the call structure or in the dependency structure,
click with the right mouse button on the block and select the Compile command
from the shortcut menu.

> To start the compilation process for the selected block, right-click a block in the
Program blocks folder in the project tree followed by the Compile > Software
(only changes) command from the shortcut menu.

> You can also select several blocks in a group in the Program blocks folder in the
project tree and compile them together using the Compile > Software (only
changes) command from the shortcut menu.

> By right-clicking on a group in the Program blocks folder, you can choose
between Compile > Software (only changes) or Compile > Software (reset memory
reserve) in the shortcut menu.

> You can compile the entire user program by selecting the Program blocks folder
followed by Compile > ... from the shortcut menu. You then have the choice
between ... Software (only changes), ... Software (rebuild all blocks), and
... Software (reset memory reserve).

276

6.5 Compiling blocks

> Ifyou select the PLC station folder and then Compile > ... from the shortcut menu,
you can select between

- ... Hardware and Software (only changes)
Complete compilation of all project information relevant to execution

- ... Hardware (only changes)
Compilation of the device and network configuration

- ... Software (only changes)
Compilation of program changes since last compilation only

— ... Software (rebuild all blocks)
Compilation of entire user program

- ... Software (reset memory reserve)
Compile with resolution of the memory reserve (see Chapter 15.3.3 “Down-
load without reinitialization” on page 665).

The result of the compilation is displayed in the inspector window in the Info tab
under Compile (Fig. 6.16). Any warnings which have been detected do not prevent
continuation of the compilation. Any errors which have been detected are displayed
in the result of the compilation and end the compilation.

Info
|§. Properties [7i} Info agnostics

| General || Cross-references || Compile || Syntax |

Compiling completed (errors: 6; warnings: 0}

I | Path Description Goto |(? Errors Warnings
€ ~ central Contral o 6 0
0 « FProgram blocks A [0
Q w Hydraulic_control (FC741) P 1 V]
o Network 1 The negation is misplaced. ? 1 0
0 + Valve_control (FC743) A 2 V]
0 Network 4 The operand required at the input or output is missing. ? 1 o
o Network 4 Acoillassignmentis required. ? 1 0
[x] ~ Main (OB1) A 2 0
[] Network 5 Number of updated calls in network : 1. 0 0
0 Network 5 The operand required at the input or output is missing. ? 1 0
[x] Network 5 Block *Power_maonitoring” thatis accessed has not be. 1 0
0 Power_monitoring (FC722) Block was successfully compiled. A o o
0 ~« Drive_monitoring (FC721) A 1 0
0 Network 1 Number of updated calls in network : 1. 0 0
0 Network 1 The operand required at the input or output is missing. ? 1 0
Q Compiling completed (errors: 6; warnings: 0} 1]

<[T B
Fig. 6.16 Example of compilation information in the inspector window

6.5.2 Compiling SCL blocks

If you activate the attribute Automatically set ENO in the properties of an SCL block,
an additional program code is generated during the compilation which sets the
enable output ENO to signal state “0” in the event of a program error during
runtime.

277

6 Program editor

You can also make additional settings in the main menu under Options > Settings
and PLC programming > SCL > Compile:

> Create extended status information
Permits monitoring of all tags in a block.

> Check ARRAY limits
Checks the limits of ARRAY tags during runtime.

Activation of one of the attributes increases the memory requirements and pro-
cessing time of the block.

6.5.3 Eliminating errors following compilation

An error is indicated by a white cross on a red circle in the line of the faulty block.
Click on the triangle to the left of the block name to open the list with the compila-
tion messages.

Click on the blue question mark in an error message to display more information
about the error. Double-clicking on an error message or clicking on the green arrow
displays the program environment of the selected error in the working window so
that you can correct the error directly.

Correcting a faulty block call

During the compilation, the program editor checks whether the supply of block
parameters presentin the calling block agrees with the interface of the called block.

If you double-click on the error message, the program editor opens the network
with the faulty call. You can then correct the call, for example by entering miss-
ing actual parameters or by using actual parameters with the correct data type.
If the block call is displayed with a red border, select the Update command from
the shortcut menu. The program editor suggests a modified block call in the
Interface update window which you can import unchanged or following modifi-
cation (Fig. 6.17).

Old interface: New interface:
“Power_monitoring” “Power_monitoring”
EM ENO = EM ENO
“Enable” —Enable "Belt_data”.
"Belt_data”. Fower VeltageBand! —{ygjtage Power
Voltage Band1 Voltage "Belt_data”.
"Belt_data". Elapsed_time Current.Band1 Current Elapsed_time
Current.Band1 current
al i o i]
: 0K ! ‘ Cancel |

Fig. 6.17 Interface update in the case of faulty block calls

278

6.6 Program information

Under Options > Settings and PLC programming > General > Compilation you can
select the Delete actual parameters on interface update option. The resultis that an
actual parameter is deleted when compiling or updating the interface if the asso-
ciated block parameter has been deleted.

6.6 Program information

The following tools support you during programming and program testing:

> Cross-references

> Assignment list for inputs, outputs, bit memories, SIMATIC timer and SIMATIC
counter functions

> Call and dependency structures

> Resources

You can start the individual tools at any time during programming, either in the
main menu using the Tools > ... command or in the project tree by double-clicking
Program info under a PLC station.

6.6.1 Cross-reference list

The cross-reference list indicates the use of tags and blocks in the user program.
It provides an overview of

> Which objects have been used
> At which position in the program they have been used

> Inwhat association they have been used, e.g. with which function a tag has been
used

You can create cross-references from any data object of a station: Select the station,
a folder under the station, or one or more objects in a folder, e.g. one or more
blocks or PLC tags, and then select the Cross-references command from the shortcut
menu or the Tools > Cross-references command from the main menu. The cross-ref-
erence list is available in two views: Used by and Uses.

Cross-reference list Used by

The Used by view is based on the referenced object. It shows the positions at which
the object present in the first column is used (Fig. 6.18). For example, all the posi-
tions of where a block is calle