
 

 
ΦAbstract – Presentation of the design of a Permanent 

Magnet Switch Reluctance (PMSR) Machine for Renewable 
Energy Application.  This is a hybrid machine, which may act 
both as a motor and generator. The PMSR machine efficiently 
drives a rotor containing embedded Permanent Magnets (PMs) 
through customized Electro-Magnets (EMs) attached to the 
machine stator. The EMs are excited via a controlled current 
source generating a magnetic field which interacts with the 
PMs on the rotor. Repulsion and attraction forces are applied 
via the EMs using appropriate current control. Unlike a 
standard reluctance motor, this device is able to store some of 
the Back-Electromotive-Force (Back EMF) within its driving 
power supply, allowing for reduced heat.  We are developing an 
electro-magnetic simulation model within the ANSYS [1] 

Maxwell 2D and 3D software, which characterizes the 
preliminary PMSR machine design. Furthermore, the initial 
focus is on optimization of the PM material and structure, as 
well as optimization of the EM structure. The primary goal of 
the current research effort is lowering the cost of the machine 
and boosting the overall efficiency.  
 

Index Terms— Permanent Magnet, Switch Reluctance, 
Renewable Energy 

I.   INTRODUCTION 
 
ENEWABLE energy solutions are becoming   
increasingly important for future technologies and 
development. Electric machinery is at the forefront of 

this development. Small, cost effective, power efficient 
devices are some of the most critical priorities to be 
considered for the design of electric machinery. Among the 
various types of electric machines are reluctance motors, 
which typically consist of a stator with several salient poles 
interacting with a ferromagnetic rotor to generate torque. 

 
We have designed a machine whose magnetic operation is 

comparable to that of a reluctance motor [2], [3]. It is a 
hybrid machine, which may act both as a motor and a 
generator. This PMSR machine efficiently drives a rotor 
with embedded Permanent Magnets (PMs) through a 
customized set of Electro-Magnets (EMs) attached to the 
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machine stator. EM excitation is achieved via a controlled 
current source generating a magnetic field which interacts 
with the PMs on the rotor. By using appropriate current 
control, repulsion and attraction forces are applied to groups 
of EMs. Unlike a reluctance motor, the device is able to store 
some of the Back EMF within its driving power supply, 
allowing for reduced heat. Additionally, the rotor is non-
ferrous, with embedded PMs which focus the interaction of 
their magnetic fields upon the state EMs. Essentially, the 
device is a new closed-loop energy generation machine 
based on the Halbach array of PMs and the Halbach array 
Direct Current (DC) motor generator. The EMs are 
controlled and driven using current from a power source or 
generated as a by-product of the moving components. The 
EMs are specifically designed to rapidly reverse magnetic 
polarity without degradation of their magnetic properties or 
significant residual magnetization [4]. 
 

The PMSR machine has significant potential application 
in electric generators and motors including, but not limited 
to: primary/emergency household power, commercial, 
industrial, remote, military and space applications [5]. It 
efficiently converts electrical and magnetic energy into 
rotational motion using variable reluctance and magnetic 
field lines produced by the careful control of electro-
magnetic excitation. It is a renewable energy solution which 
is self-sustaining for a realistic period of time, independent 
of fossil fuels or other non-renewable energy sources. 

II.   PRELIMINARY DESIGN  

A.   Design Principle 
The electromagnets are, as designed, energized by DC 

current, creating a magnetic field that interacts with the PMs 
to deliver alternating repel and attract forces at the 
appropriate times.  The delivery is controlled by a Digital 
Signal Processor (DSP) with its algorithms. These attract-
repel forces can be translated into useful rotational energy to 
further drive the rotor [6]. Modeling software is used to 
determine the precise geometry of interacting magnetic 
fields and maximize rotational energy, from which we can 
derive 1) exact angle data to maximize attract-repel forces 2) 
maximum “snap” from the “Halbach Bubble” and 3) 
optimum “coast” period to use the kinetic energy of the 
flywheel.  
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We use high performance rare-earth PM material which 
requires no external power to produce a magnetic field, 
minimizing the power used by the EMs [7]. As this also 
maximizes the “free” attract-repel force of the PM while 
minimizing energy consumption, it is effectively a free 
contribution to the creation of electromotive force. The 
controller is adapted with circuitry and sensors which are 
capable of monitoring the exact position of the PMs with 
respect to the EMs at any given time.  

Energy utilized by the EMs is discharged in the form of a 
short-duration, high-voltage “spike” at the moment the 
electromagnet is switched off. As a result, subsequent 
excitation of the electromagnet typically requires 100% 
power. However, to reduce the power required, a technique 
called “back EMF harvesting” is utilized which captures 
back EMF energy and reuses it. As a result, the machine can 
maintain a constant RPM rate with 60% less power usage. 
This recycling process is achieved via the power electronics 
driving circuitry.  

B.   Key Design Methodology 
The maximum rotor diameter needs to be calculated by 
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where rv  represents the maximum peripheral speed of 
the rotor based on the material nowadays. The max 
peripheral speed is 35,000 ft/min in this design. The value of 

mn  is the mechanical speed or the rotor.  After finalizing the 
design, we can use this equation to double check our rotor 
dimensions.  

The next thing we need to is to fix the dimension of the 
stator by the equation below:  
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where D is defined as the stator bore diameter and l is the 
length of machine. The torque is represented byτ , which is 
determined by the output power divided by the rotor 
mechanical speed.  The importance of this equation is to 
figure out how big the motor size can be in order to create a 
required torque.  oV  is a constant value, depending on the 
cooling method.  The cooling method is determined by the 
output power of the motor. Based on experience, air cooling 
is used if the motor is 10 hp or less. The cooling for this 
motor is therefore air and the coefficient is 9.5 in3/ (ft.lbs).   

We made the assumption which is the stator outer 
diameter is estimated to be 1.6 times the stator bore 
diameter. Due to the space limitation, we decided to make 
the diameter much larger than the machine length which 
would make the motor having a high inertia.  

Slot pitch can be defined as  

sN
p⋅= πγ
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where p is the number of poles. Ns is the number of stator 
slots. Similarly, the coil pitch can be calculated by 
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where 
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N  represents the stator pitch. 

 
The number of effective turns per coil can be calculated 

by the following equation: 
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where ratedVφ  represents the phase voltage.  ef  is the 

electrical frequency. n  describes the number of groups 
windings per pole.  The back EMF due to stator pitch is 
indicated by wk .  The net magnetic field, mB  , is a sum of 
the residual flux density rB  of the embedded permanent 
magnet by the rotor plates.  The estimated diameter of the 
motor is defined by D , and the length of the motor. l  

Besides, the effective turns per phase is calculated by 
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Rated phase voltage can be described as: 

mefferated NfV φπφ 2=     (7) 

where mφ  represents the flux per magnet 
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After this, we estimated the air gap, from which we can 
get the dimension of the rotor. With all those initial design 
dimensions ready, we used Finite Element Analysis (FEA) 
tool to further optimize the design. 
 

C.    Design Results 
The general structure of the machine design is shown in 

Fig. 1 below. 
 
 
 

 
Fig. 1.  Full structure of the machine 

 
The basic dimensions of the machine we designed are 457 

mm of stator diameter and 78 mm of machine length. We 
made the air gap to be around 0.3 mm.  

EM coils
(24 in each rotor) 

PM (8 in each rotor)
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The electro-magnet (EM) is basically made up of a core, a 
primary coil winding and a secondary coil winding. As 
shown in Fig 1, the primary coil is powered by external DC 
current supplied by batteries. With the interaction of the 
magnetic field, AC current is produced by the secondary coil 
as shown in Fig. 2. Simulations performed to predict 
performance have also provided input to decisions on the 
shape and material of the core, number of turns needed to 
make the coil, etc [8].  

 

 
Fig. 2.  Structure of EM 

 
The current design calls for 945 turns on the primary 

winding, 2300 turns on the secondary winding with wire 
gauge types number 23 and 38, respectively, to generate 
enough rotational energy.  

The PMs in this design are also very important. Current 
design calls for 8 PMs in each rotor plate (as shown in 
Fig.1), using Neodymium40 (N40) as the material.  

The attract-repel reversing process as discussed before is 
shown in Fig. 3. The decision to switch the current polarity 
to match the exact attract-repel point is controlled by DSP 
and its algorithms. 
 

 
(a) Attract process 

 
(b) Repel process 

Fig. 3.  Computer-controlled Attract-Repel Simulation. (a and b) 

 
The figure below shows the advantage of using “back 

EMF harvesting”, i.e. when this technology is applied, 
power spikes are eliminated and thus energy may be saved 
and reused.  

  

 
Fig. 4.  Back EMF harvesting technology 

D.    Prototype 

As shown in Fig. 5, the current prototype has dual rotor 
plates, which can accommodate 24 hybrid EMs each, for a 
total of 48 EMs. This configuration, with the DSP controller, 
will direct a portion of the device output to recharge the 
batteries, whenever this “closed loop” circuit is activated. 
 

 

 
Fig. 5.  Prototype of the PMSR machine 

E.   Advantages of the Design 
With the current design, we have successfully eliminated 

the need for using fossil fuel to supply the power for the 
machine. Therefore, by using DC batteries, we produce clean 
energy with less noise. The batteries may be re-charged as 
well so that required maintenance is reduced. In addition, the 
system is in a sealed unit; the PMs embedded in the rotor 
have a useful life of over 90 years; the EMs do not wear out; 
and specifications for the solid state proprietary relays 
indicate an expected duty life of 10 years or more.  

III.   OPTIMIZATION OF THE DESIGN 

A.   Optimize the Air Gap 
In the preliminary design, only the two corner points of 

the PM could achieve the smallest air gap.  To more 
efficiently use the smaller air gap, the shape of the PM has 
been modified to describe the arc of a circle whose diameter 
matches that of the rotor, as shown in Fig. 6. Therefore, the 
air gap is always the same in relation to the PM position, as 
shown in Fig. 7. For low rotational speed machines the air 
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gap may be smaller compared to high speed machines, 
because there is less centrifuge effect during the rotating 
process.  

 
 

 
 

Fig. 6.  Structure of the optimized PM 
 
 

 

  
 

Fig. 7.  New air gap 
 

B.   Optimize the Length of PM 
In order to further optimize the preliminary design, an 

increase in the moving torque is achieved by changing the 
geometry of the PM. Based on simulation results, the PM 
length is shorter than in preliminary designs because of the 
shorter return path for the magnetic flux to travel. In other 
words, although the magnetic source is smaller, it 
simultaneously causes smaller air reluctance which leads to 
generation of a higher moving torque. The 2D model (shown 
in Fig. 8) allows for a quick PM length sweep in order to 
find the best torque value (as confirmed in 3D simulation).  
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Fig. 8.  Torque comparison by varing length in 3D simulation 

 
The new PM is easier to fabricate because the edge of the 

PM sweeps over the EM coil exactly on the edge of the 
round rotor. Therefore, no special shape cutting is required. 
The new design calls for use of Neodymium42 (N42) as the 
PM. Better utilization of the air gap results in a stronger 
magnetic field interacting between the EM and PM. Use of 
two drill holes with smaller sizes make the machine more 
mechanically reliable. As it is possible that this design may 
be used in extreme temperature conditions such as a desert, 
aluminum rotor plates may be used to avoid expansion due 
to temperature, which would eventually result in shrinking 
of the air gap. Comparison of the optimized and existing PM 
design is shown in Table I.  
 

 
 

TABLE I 
 COMPARISON OF OPTIMIZED AND PRELIMINARY PM DESIGNS 

 
Air gap

(mm)
Hole 
(mm) 

Length 
(mm) 

Torque 
(Nm) 

New 0.3 9.5 
 (one) 

78 2.76

Old 0.43 6 
(two) 

87 1.5

 
PM optimization resulted in a decrease in the volume of 

PM material required, which is important given the cost of 
rare earth material.  

 

C.   Optimize the EM 
Torque has been significantly increased as a result of the 

new PM design, however, another important factor to be 
considered is the amount of material used in construction. 
The number of copper wire turns required by the EM may be 
reduced by as much as 60%, while still maintaining the 
desired level of torque in a low rotational speed machine 
application. 

Optimization of the core shape to match the PM shape, as 
shown in Fig. 9 below, further minimizes the air gap so that 
the torque can be maximized accordingly. The use of a 
rectangular core as opposed to a circular one also contributes 
to torque maximization, as shown in Fig. 10(a) and 10(b).   

 
 
 
 
 

 

 Air gap  
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(a)  New Core 
Fig. 9.  Structure of optimized core  
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(b) 
 

Fig. 10. Torque generated by (a) new designed core (b) preliminary 
designed core 

 
 
 
 
 

 
Fig. 11.  Structure of the machine with optimized PM and EM 

IV.   CONCLUSION 
We have successfully developed the PMSR machine for 

renewable energy application purpose. We provided the 
methodology of the design and the simulation results. 
Furthermore, we optimized the preliminary design by 
modifying the structure of PM and EM, and we also 
modified the number of turns of the copper wire wrapped 
around the EM. 
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