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Preface

In 1988 we published the book Automatic Tuning of PID Controllers,
which summarized experiences gained in the development of an au-
tomatic tuner for a PID controller. The present book may be regarded
as a continuation of that book, although it has been significantly ex-
panded. Since 1988 we have learned much more about PID control as
a result of our involvement in research and industrial development of
PID controllers. Because of this we strongly believe that the practice
of PID can be improved considerably, and that this will contribute
significantly to improved quality of manufacturing. This belief has
been strongly reinforced by recent publications of the industrial state
of the art, which are referenced in Chapter 1.

The main reason for writing this book is to contribute to a bet-
ter understanding of PID control. Another reason is that information
about PID control is scattered in the control literature. The PID con-
troller has not attracted much attention from the research community
during the past decades, and it is often covered inadequately in stan-
dard textbooks in control. We believe that this book will be useful to
users and manufacturers of PID controllers as well as educators. It
is important to teach PID control in introductory courses on feedback
control at universities, and we hope that this book can give useful
background for such courses.

It is assumed that the reader has a control background. A reader
should be familiar with concepts such as transfer functions, poles,
and zeros. Even so, the explanations are elementary. Occasionally,
we have stated facts without supporting detailed arguments, when
they have seemed unnecessary, in an effort to focus on the practical
aspects rather than the theory. A reader who finds that he needs som
specific background in process control is strongly advised to consult
a text in process control such as Seborg et al. (1989).

Compared to the earlier book we have expanded the material
substantially. The chapters on modeling, PID control, and design
of PID controllers have been more than doubled. The chapter on
automatic tuning has been completely rewritten to account for the
dynamic product development that has taken place in the last years.
There are two new chapters. One describes new tuning methods. This
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vi Preface

material has not been published before. There is also a new chapter
on control paradigms that describes how complex systems can be
obtained by combining PID controllers with other components.

We would like to express our gratitude to several persons who
have provided support and inspiration. Our original interest in PID
control was stimulated by Axel Westrenius and Mike Sommerville
of Eurotherm who shared their experience of design and of PID
controllers with us. We have also benefited from discussions with
Manfred Morari of Caltech, Edgar Bristol of Foxboro, Ken Goff for-
merly of Leeds and Northrup, Terry Blevins of Fisher-Rosemount
Control, Gregory McMillan of Monsanto. Particular thanks are due to
Sune Larsson who initiated our first autotuner experiments and Lars
Baath with whom we shared the pleasures and perils of developing
our first industrial auto-tuner. We are also grateful to many instru-
men¥ engineers who participated in experiments and who generously
shared their experiences with us. Among our research colleagues we
have learned much from Professor C. C. Hang of Singapore National
University with whom we have done joint research in the field over
a long period of time. We are also grateful to Per Persson, who devel-
oped the dominant pole design method.

Several persons have read the manuscript of the book. Willy
Wojsznis of Fisher-Rosemount gave many valuable suggestions for im-
provements. Many present and former colleagues at our department
have provided much help. Special thanks are due to Eva Dagnegard
and Leif Andersson who made the layout for the final version and
Britt-Marie Martensson who drew many of the figures. Ulf Holm-
berg, Karl-Erik Arzén and Mikael Johansson gave very useful input
on several versions of the manuscript.

Finally we would like to express our deep gratitude to the Swedish
National Board of Industrial and Technical Development (NUTEK)
who have supported our research.

KARL JOHAN ASTROM
TorE HAGGLUND

Department of Automatic Control
Lund Institute of Technology
Box 118, S-221 00 Lund, Sweden
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CHAPTER 1

Introduction

The PID controller has several important functions: it provides feed-
back; it has the ability to eliminate steady state offsets through in-
tegral action; it can anticipate the future through derivative action.
PID controllers are sufficient for many control problems, particularly
when process dynamics are benign and the performance requirements
are modest. PID controllers are found in large numbers in all indus-
tries. The controllers come in many different forms. There are stand-
alone systems in boxes for one or a few loops, which are manufac-
tured by the hundred thousands yearly. PID control is an important
ingredient of a distributed control system. The controllers are also
embedded in many special-purpose control systems. In process con-
trol, more than 95% of the control loops are of PID type, most loops
are actually PI control. Many useful features of PID control have not
been widely disseminated because they have been considered trade
secrets. Typical examples are techniques for mode switches and anti-
windup.

PID control is often combined with logie, sequential machines, se-
lectors, and simple function blocks to build the complicated automa-
tion systems used for energy production, transportation, and manu-
facturing. Many sophisticated control strategies, such as model pre-
dictive control, are also organized hierarchically. PID control is used
at the lowest level; the multivariable controller gives the setpoints to
the controllers at the lower level. The PID controller can thus be said
to be the “bread and butter” of control engineering. It is an important
component in every control engineer’s toolbox.

PID controllers have survived many changes in technology rang-
ing from pneumatics to microprocessors via electronic tubes, tran-
sistors, integrated circuits. The microprocessor has had a dramatic

1



2 Chapter 1 Introduction

influence on the PID controller. Practically all PID controllers made
today are based on microprocessors. This has given opportunities to
provide additional features like automatic tuning, gain scheduling,
and continuous adaptation. The terminology in these areas is not
well-established. For purposes of this book, auto-tuning means that
the controller parameters are tuned automatically on demand from
an operator or an external signal, and adaptation means that the
parameters of a controller are continuously updated. Practically all
new PID controllers that are announced today have some capability
for automatic tuning. Tuning and adaptation can be done in many
different ways. The simple controller has in fact become a test bench
for many new ideas in control.

The emergence of the fieldbus is another important development.
This will drastically influence the architecture of future distributed
control systems. The PID controller is an important ingredient of
the fieldbus concept. It may also be standardized as a result of the
fieldbus development.

A large cadre of instrument and process engineers are familiar
with PID control. There is a well-established practice of installing,
tuning, and using the controllers. In spite of this there are substantial
potentials for improving PID control. Evidence for this can be found
in the control rooms of any industry. Many controllers are put in man-
ual mode, and among those controllers that are in automatic mode,
derivative action is frequently switched off for the simple reason that
it is difficult to tune properly. The key reasons for poor performance is
equipment problems in valves and sensors, and bad tuning practice.
The valve problems include wrong sizing, hysteresis, and stiction.
The measurement problems include: poor or no anti-aliasing filters;
excessive filtering in “smart” sensors, excessive noise and improper
calibration. Substantial improvements can be made. The incentive for
improvement is emphasized by demands for improved quality, which
is manifested by standards such as ISO 9000. Knowledge and un-
derstanding are the key elements for improving performance of the
control loop. Specific process knowledge is required as well as knowl-
edge about PID control,

Based on our experience, we believe that a new era of PID control
is emerging. This book will take stock of the development, assess its
potential, and try to speed up the development by sharing our expe-
riences in this exciting and useful field of automatic control. The goal
of the book is to provide the technical background for understanding
PID control. Such knowledge can directly contribute to better product
quality.

Process dynamics is a key for understanding any control problem.
Chapter 2 presents different ways to model process dynamics that
are useful for PID control. Methods based on step tests are discussed
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together with techniques based on frequency response. It is attempted
to provide a good understanding of the relations between the different
approaches. Different ways to obtain parameters in simple transfer
function models based on the tests are also given. Two dimension-
free parameters are introduced: the normalized dead time and the
gain ratio are useful to characterize dynamic properties of systems
commonly found in process control. Methods for parameter estimation
are also discussed. A brief description of disturbance modeling is also
given.

An in depth presentation of the PID controller is given in Chap-
ter 3. This includes principles as well as many implementation de-
tails, such as limitation of derivative gain, anti-windup, improvement
of set point response, etc. The PID controller can be structured in dif-
ferent ways. Commonly used forms are the series and the parallel
forms. The differences between these and the controller parameters
used in the different structures are treated in detail. Implementation
of PID controllers using digital computers is also discussed. The un-
derlying concepts of sampling, choice of sampling intervals, and anti-
aliasing filters are treated thoroughly. The limitations of PID control
are also described. Typical cases where more complex controllers are
worthwhile are systems with long dead time and oscillatory systems.
Extensions of PID control to deal with such systems are discussed
briefly.

Chapter 4 describes methods for the design of PID controllers.
Specifications are discussed in detail. Particular attention is given to
the information required to use the methods. Many different meth-
ods for tuning PID controllers that have been developed over the
years are then presented. Their properties are discussed thoroughly.
A reasonable design method should consider load disturbances, model
uncertainty, measurement noise, and set-point response. A drawback
of many of the traditional tuning rules for PID control is that such
rules do not consider all these aspects in a balanced way. New tuning
techniques that do consider all these criteria are also presented.

The authors believe strongly that nothing can replace under-
standing and insight. In view of the large number of controllers used
in industry there is a need for simple tuning methods. Such rules will
at least be much better than “factory tuning,” but they can always be
improved by process modeling and control design. In Chapter 5 we
present a collection of new tuning rules that give significant improve-
ment over previously used rules.

In Chapter 6 we discuss some techniques for adaptation and au-
tomatic tuning of PID controllers. This includes methods based on
parametric models and nonparametric techniques. A number of com-
mercial controllers are also described to illustrate the different tech-
niques. The possibilities of incorporating diagnosis and fault detection
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in the primary control loop is also discussed.

In Chapter 7 it is shown how complex control problems can be
solved by combining simple controllers in different ways. The control
paradigms of cascade control, feedforward control, model following,
ratio control, split range control, and control with selectors are dis-
cussed. Use of currently popular techniques such as neural networks
and fuzzy control are also covered briefly.

References

A treatment of PID control with many practical hints is given in
Shinskey (1988). There is a Japanese text entirely devoted to PID
control by Suda ef al (1992). Among the books on tuning of PID
controllers, we can mention McMillan (1983) and Corripio (1990),
which are published by [SA.

There are several studies that indicate the state of the art of in-
dustrial practice of control. The Japan Electric Measuring Instrument
Manufacturers’ Association conducted a survey of the state of process
control systems in 1989, see Yamamoto and Hashimoto (1991). Ac-
cording to the survey more than than 90% of the control loops were
of the PID type.

The paper, Bialkowski (1993), which describes audits of paper
mills in Canada, shows that a typical mill has more than 2000 control
loops and that 97% use PI control. Only 20% of the control loops were
found to work well and decrease process variability. Reasons for poor
performance were poor tuning (30%) and valve problems (30%). The
remaining 20% of the controllers functioned poorly for a variety of
reasons such as: sensor problems, bad choice of sampling rates, and
anti-aliasing filters. Similar observations are given in Ender (1993),
where it is claimed that 30% of installed process controllers operate
in manual, that 20% of the loops use “factory tuning,” i.e., default
parameters set by the controller manufacturer, and that 30% of the
loops function poorly because of equipment problems in valves and
sensors.



CHAPTER 2

Process Models

2.1 Introduction

A block diagram of a simple control loop is shown in Figure 2.1. The
system has two major components, the process and the controller, rep-
resented as boxes with arrows denoting the causal relation between
inputs and outputs. The process has one input, the manipulated vari-
able, also called the control variable. It is denoted by u. The process
output is called process variable (PV) and is denoted by y. This vari-
able is measured by a sensor. The desired value of the process variable
is called the setpoint (SP) or the reference value. It is denoted by y,p.
The control error e is the difference between the setpoint and the
process variable, i.e,, e = yg — y. The controller in Figure 2.1 has
one input, the error, and one output, the control variable. The figure
shows that the process and the controller are connected in a closed
feedback loop.

The purpose of the system is to keep the process variable close
to the desired value in spite of disturbances. This is achieved by the
feedback loop, which works as follows. Assume that the system is in
equilibrium and that a disturbance occurs so that the process variable
becomes larger than the setpoint. The error is then negative and the
controller output decreases which in turn causes the process output
to decrease. This type of feedback is called negative feedback, because
the manipulated variable moves in direction opposite to the process
variable.

The controller has several parameters that can be adjusted. The
control loop performs well if the parameters are chosen properly. It
performs poorly otherwise, e.g., the system may become unstable.
The procedure of finding the controller parameters is called tuning.

5
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Figure 2.1 Block diagram of a simple feedback system.

This can be done in two different ways. One approach is to choose
some controller parameters, to observe the behavior of the feedback
system, and to modify the parameters until the desired behavior is
obtained. Another approach is to first develop a mathematical model
that describes the behavior of the process. The parameters of the
controller are then determined using some method for control design.
An understanding of techniques for determining process dynamics is
a necessary background for both methods for controller tuning. This
chapter will present such techniques.

Static models are discussed in the next section. Dynamic models
are discussed in Section 2.3. Transient response methods, which are
useful for determining simple dynamic models of the process, are pre-
sented in Section 2.4. Section 2.5 treats methods based on moments.
These methods are less sensitive to measurement noise and, further-
more, are not restricted to any specific input signal. The frequency
response methods, described in Section 2.6, can be used to obtain
both simple models and more detailed descriptions. Methods based
on estimation of parametric models are more complex methods that
require more computations but less restrictions on the experiments.
These methods are presented in Section 2.7. The models discussed so
far describe the relation between the process input and output. It is
also important to model the disturbances acting on the system. This
is discussed in Section 2.8. Section 2.9 treats methods to simplify a
complex model and the problem of unmodeled dynamics and mod-
eling errors. Conclusions and references are given in Sections 2.10
and 2.11.

2.2 Static Models

The static process characteristic is a curve that gives the steady state
relation between process input signal u and process output y. See
Figure 2.2. Notice that the curve has a physical interpretation only
for a stable process.
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Figure 2.2 Static process characteristic. Shows process output y
as a function of process input z under static conditions.

All process investigations should start by a determination of the
static process model. It can be used to determine the range of control
signals required to change the process output over the desired range,
to size actuators, and to select sensor resolution. It can also be used
to assess whether static gain variations are so large that they have
to be accounted for in the control design.

The static model can be obtained in several ways. It can be de-
termined by an open-loop experiment where the input signal is set
to a constant value and the process output is measured when it has
reached steady state. This gives one point on the process characteris-
tics. The experiment is then repeated to cover the full range of inputs.

An alternative procedure is to make a closed-loop experiment.
The setpoint is then given a constant value and the corresponding
control variable is measured in steady state. The experiment is then
repeated to cover the full range of setpoints.

The experiments required to determine the static process model
often give a good intuitive feel for how easy it is to control the process,
if it is stable, and if there are many disturbances.

Sometimes process operations do not permit the experiments to be
done as described above. Small perturbations are normally permitted,
but it may not be possible to move the process over the full operating
range. In such a case the experiment must be done over a long period
of time.

Process Noise

Process disturbances are easily determined by logging the process
output when the control signal is constant. Such a measurement



8 Chapter 2 Process Models

-will give a combination of measurement and load disturbances. There

are many sophisticated techniques such as time-series analysis and
spectral analysis that can be used to determine the characteristics
of the process noise. Crude estimates of the noise characteristics
are obtained simply by measuring the peak-to-peak value and by
determining the average time between zero crossings of the error
signal. This is discussed further in Section 2.8."

2.3 Dynamic Models

A static process model like the one discussed in the previous section
tells the steady state relation between the input and the output sig-
nal. A dynamic model should give the relation between the input and
the output signal during transients. It is naturally much more diffi-
cult to capture dynamic behavior. This is, however, very significant
when discussing control problems.

Fortunately there is a restricted class of models that can often be
used. This applies to linear time-invariant systéms. Such models can
often be used to describe the behavior of control systems when there
are small deviations from an equilibrium. The fact that a system is
linear implies that the superposition principle holds. This means that
if the input u; gives the output y; and the input ug gives the output
y2 it then follows that the input au; + bug gives the output ay; + bys.
A system is time-invariant if its behavior does not change with time.

A very nice property of linear time-invariant systems is that their
response to an arbitrary input can be completely characterized in
terms of the response to a simple signal. Many different signals can be
used to characterize a system. Broadly speaking we can differentiate
between transient and frequency responses.

In a control system we typically have to deal with two signals
only, the control signal and the measured variable. Process dynamics
as we have discussed here only deals with the relation between those
signals. The measured variable should ideally be closely related to the
physical process variable that we are interested in. Since it is difficult
to construct sensors it happens that there is considerable dynamics
in the relation between the true process variable and the sensor. For
example, it is very common that there are substantial time constants
in temperature sensors. There may also be measurement noise and
other imperfections. There may also be significant dynamics in the
actuators. To do a good job of control, it is necessary to be aware of
the physical origin the process dynamics to judge if a good response
in the measured variable actually corresponds to a good response in
the physical process variable.
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Transient Responses

In transient response analysis the system dynamics are character-
ized in terms of the response to a simple signal. The particular signal
is often chosen so that it is easy to generate experimentally. Typical
examples are steps, pulses, and impulses. Because of the superpo-
sition principle the amplitude of the signals can be normalized. For
example, it is sufficient to consider the response to a step with unit
amplitude. If s(¢) is the response to a unit step, the output y(¢) to an
arbitrary input signal u(¢) is given by

¢ t

() = / w(@r) B g o / wWoh(t—t)de  (@1)
o dt oo

where the impulse response h(¢) is introduced as the time derivative

of the step response.

In early process control literature the step response was also
called the reaction curve.

Pulse response analysis is common in medical and biological ap-
plications, but rather uncommon in process control. Ramp response
analysis is less common. One application is the determination of the
derivative part of a PID controller. In process control, the step re-
sponse is the most common transient used for process identification.
This is primarily because this is the type of disturbance that is easi-
est to generate manually. Step response methods are treated in detail
in Section 2.4.

Frequency Response

Another way to characterize the dynamics of 4 linear time-invariant
system is to use sine waves as a test signal. This idea goes back
to Fourier. The idea is that the dynamics can be characterized by
investigating how sine waves propagate through a system.

Consider a stable linear system, If the input signal to the system
is a sinusoid, then the output signal will also be a sinusoid after a
transient (see Figure 2.3). The output will have the same frequency as
the input signal. Only the phase and the amplitude are different. This
means that under stationary conditions, the relationship between the
input and the output can be described by two numbers: the quotient
(a) between the input and the output amplitude, and the phase shift
(@) between the input and the output signals. The functions a{w)
and ¢(w) describe a and ¢ for all frequencies (). It is convenient
to view a and ¢ as the magnitude and the argument of a complex
number

G(iv) = a(w)e @ (2.2)
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y

-1

) L) T T

0 5 10 15
Figure 2.3 Input signal u is a sinusoid and output signal y be-
comes sinusoidal after a transient.

The function G(iw) is called the frequency response function of the
system. The function a(w) = |G (iw)] is called the amplitude function,
and the function ¢ (@) = arg(G(iw)) is called the phase function.

The complex number G{i®@) can be represented by a vector with
length a(iw) that forms angle ¢(iw) with the real axis (see Figure
2.4). When the frequency goes from 0 to 0o, the endpoint of the vector
describes a curve in the plane, which is called the frequency curve
or the Nyquist curve. The Nyquist curve gives a complete description
of the system. It can be determined experimentally by sending sinu-
soids of different frequencies through the system. This may be time
consuming. Normally, it suffices to know only parts of the Nyquist
curve. For controller tuning there are some parts that are of particu-
lar interest. The lowest frequency where the phase is —180° is called
the ultimate frequency (@, ). The corresponding point on the Nyquist
curve is called the ultimate point. The value of G(iw,) is all that is
needed for the tuning methods developed by Ziegler and Nichols.

The frequency response is intimately related to the Laplace trans-
form. Let f(¢) be a signal. The Laplace transform of the signal, F(s),
is then defined by

F(s) = /0 " et p ()t (2.3)

Let U(s) and Y(s) be the Laplace transforms of the input and the
output of a linear time-invariant dynamical system. Assume that the
system is at rest at time ¢ = 0. The following relation then holds

Y(s) = G(s)U(s) (2.4)

where G(s) is the transfer function of the system.
It follows from Equation (2.3) that the Laplace transform of an
impulse is 1. From Equation (2.4) we can conclude that G(s) is the
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Figure 2.4 The Nyquist curve of a system.

Laplace transform of the impulse response. The frequency response
is simply G(iw).

In the following sections we will show how linear system dynam-
ics can be obtained experimentally. We will illustrate both transient
and frequency response methods.

2.4 Step Response Methods

The dynamics of a process can be determined from the response of
the process to pulses, steps, ramps, or other deterministic signals.
The dynamics of a linear system is, in principle, uniquely given from
such a transient response experiment. This requires, however, that
the system is at rest before the input is applied, and that there are no
measurement errors. In practice, however, it is difficult to ensure that
the system is at rest. There will also be measurement errors, so the
transient response method, in practice, is limited to the determination
of simple models. Models obtained from a transient experiment are,
however, often sufficient for PID controller tuning. The methods are
also very simple to use. This section focuses on the step response
method.

The Step Response

Assuming a control loop with a controller, the step response experi-
ment can be determined as follows. Wait until the process is at rest.
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Figure 2.5 Open-loop step responses.

Set the controller to manual. Change the control variable rapidly, e.g.,
through the use of increase/decrease buttons. Record the process vari-
able and scale it by dividing by the change in the control variable.
The change in control variable should be as large as possible in order
to get a maximum signal to noise ratio. The limit is set by permissible
process operation. It is also useful to record the fluctuations in the
measurement signal when the control signal is constant. This gives
data about the process noise.

It is good practice to repeat the experiment for different ampli-
tudes of the input signal and at different operating conditions. This
gives an indication of the signal ranges when the model is linear. It
also indicates if the process changes with the operating conditions.

Examples of open-loop step responses are shown in Figure 2.5.
Many properties of the system can be read directly from the step re-
sponse. In Figure 2.5A, the process output is monotonically changed
to a new stationary value. This is the most common type of step re-
sponse encountered in process control. In Figure 2.5B, the process
output oscillates around its final stationary value. This type of pro-
cess is uncommon in process control. One case where it occurs is in
concentration control of recirculation fluids. In mechanical designs,
however, oscillating processes are common where elastic materials
are used, e.g., weak axles in servos, spring constructions, etc. The sys-
tems in Figures 2.5A and B are stable, whereas the systems shown
in Figures 2.5C and 2.5D are unstable. The system in Figure 2.5C
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shows the output of an integrating process. Examples of integrating
processes are level control, pressure control in a closed vessel, concen-
tration control in batches, and temperature control in well isolated
chambers. The common factor in all these processes is that some kind
of storage occurs in them. In level, pressure and concentration control
storage of mass occurs, while in the case of temperature control there
. is a storage of energy. The system in Figure 2.5E has a long dead
time. The dead time occurs when there are transportation delays in
the process. The system in Figure 2.5F is a non-minimum phase sys-
tem, where the measurement signal initially moves in the “wrong”
direction. The water level in boilers often reacts like this after a step
change in feed water flow.

If the system is linear, all step responses are proportional to
the size of the step in the input signal. It is then convenient to
normalize the responses by dividing the measurement signal by the
step size of the control signal. Throughout this book we assume that
this normalization is done.

The step response is a convenient way to characterize process
dynamics because of its simple physical interpretation. Many tuning
methods are based on it. A formal mathematical model can also be
obtained from the step response. General methods for the design of
control systems can then be used.

For small perturbations the static process model can be described
by one parameter called the process gain. This is simply the ratio of
the steady state changes of process output and process input. The gain
can be obtained as the slope of the curve in Figure 2.2. It can also
be obtained directly from a step response. For nonlinear systems the
process gain will depend on the operating conditions. It is, however,
constant for linear systems. For such systems the static properties are
thus described by one parameter. Additional parameters are needed
to also capture dynamics. Some simple parametric models will be
described below. Stable processes with a monotone step response, as
shown in Figure 2.5A, are quite common. Many methods to obtain
parametric models from such a step response have been presented in
the literature over the years. We will present here models with two,
three, and, four parameters respectively.

Two-Parameter Models

The simplest parametric models of process dynamics have two param-
eters. One parameter can be process gain. The other has to capture
the time behavior. The average residence time 7T, is a useful param-

eter. This is obtained as
A
Tw =%
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where K is the static process gain and Aq is defined as
Ao = [(s(00) = s(e)at
0

where s(t) is the step response. Notice that K = s(00) and that Ay is
the shaded area in Figure 2.6.

The time T,, is a rough measure of the time it takes for the step
response to settle. Using the static gain and the average residence
time, the process can be approximated by the model

K
1+ sT,,
We call this model the residence time approximation.

Another approximation to the step response that also has two
parameters is given by the transfer function

Goa(s) = (2.5)

a
Gas(s) = et (2.6)

This model corresponds to an integrator with dead time. This model

- is characterized by the two parameters, ¢ and L, that.are easily de-

termined graphically from the step response (see Figure 2.6). The
tangent to the step response s(¢) that has the largest slope is drawn,
and the intersections of this tangent with the vertical and horizontal
axes give a and L, respectively. The model given by Equation (2.6) is
the basis for the Ziegler-Nichols tuning procedure discussed in Chap-
ter 4. Notice that the model can also be fitted to unstable processes.

Figure 2.6 Graphical determination of a two-parameter model
from a step response for a stable system with a monotone step
response.
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The properties of the approximations (2.5) and (2.6) are illus-
trated by an example.

EXAMPLE 2.1
The two-parameter models (2.5) and (2.6) have been fitted to the

process model
1

G(s)= —
(s) (s+1)8
The following models were obtained

1 064 _q
1+80s Ga(s) = 735 @

Figure 2.7 shows the step responses and the Nyquist curves of the
transfer functions.

Notice that the model Gg, gives a good description of the step
response for long times. The static gain is correct and the step re-
sponse is very close to the correct one for large ¢. There are, however,
large discrepances for small ¢, The system given by G, has, for ex-
ample, a significant response at time ¢ = 2, but the system (2.7)
has barely responded at that time. The model Gy, has the opposite
properties. It approximates the true step response very well in the
interval 5 < ¢ < 9, but the approximation is very poor for large ¢.

These properties are also reflected in the Nyquist curves. They
show that the average residence time approximation is quite good at
low frequencies but very poor at high frequencies. The model Gy, on
the other hand, is poor at low frequencies but reasonable at middle

(2.7)

Gga (S) =

range frequencies. O
1
1t
ImO
0 -1
0 10 20 -1 0 1

Figure 2.7 Step responses and Nyquist curves of the process
G(s) = 1/(s + 1)® (solid line) and the two-parameter models Gy, (s)
(dotted line) and Gg,(s) (dashed line).
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Three-Parameter Models

Better approximations are obtained by increasing the number of pa-
rameters. The model

K
G (2.8)
is characterized by three parameters: the static gain K, the time
constant 7', and the dead time L. This is the most common process
model used in papers on PID controller tuning. The parameters L

and T are often called the apparent dead time and the apparent time
constant, respectively. The step response of the model (2.8) is

s(t)=K (1 - e—(t—L)/T)

From this equation, it follows that the average residence time is

Of(s(oo) — s(t))dt

Tor = I =L+T
The ratio
T = L ~L 2.9
T L+T T, (29)

which has the property 0 < 7 < 1, is called the normalized dead time.
This quantity can be used to characterize the difficulty of controlling a
process. It is sometimes also called the controllability ratio. Roughly
speaking, it has been found that processes with small 7 are easy
to control and that the difficulty in controlling the system increases
as 7 increases. Systems with 7 = 1 correspond to pure dead-time
processes, which are indeed difficult to control well.

The parameters in the model (2.8) can be determined graphically.
The static gain (K) is obtained from the final steady-state level of the
process output. Remember that the process cutput must be scaled
with the change in the control variable. The intercept of the tangent
to the step response that has the largest slope with the horizontal
axes gives L (see Figure 2.8). The dead time L can also be obtained
as the time between the onset of the step and the time s(¢) has
reached a few percent of its final value. There are different ways
to determine 7. One method determines T from the distance AC in
Figure 2.8, where the point C is the time when the tangent intersects
the line s(¢) = K. Another method determines T from the distance
AB in Figure 2.8, where B is the time when the step response has
reached the value 0.63K. Both methods give identical results if the
process dynamics are given by Equation (2.8), but they may differ
significantly in other cases. The method based on the point B gives
normally better approximations. The other method tends to give a too
large value of T'.
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Figure 2.8 Graphical determination of three-parameter models
for systems with a monotone step response.

EXAMPLE 2.2
The three-parameter models of the process model (2.7) are
_ 1 -43s _ 1 -43s
Gsals) = 13675 ¢ Ga(s) = 75235 ¢

where the time constant T is determined from the point C in model
G3,, and from the point B in the model Gs,. Figure 2.9 shows the
step responses of the true process and the models, as well as the
Nyquist curves of the transfer functions. The figure shows that the
time constant T is overestimated in the model Gs,. This overesti-
mation is unfortunately common in this method, since most process
control plants have an S-shaped step response similar to the model
(2.7). Notice that the true step response and the step response of the
model G3; coincide at the 63% point. O

Another Model Structure

The model (2.8) is by far the most commonly used model in the papers
of PID controller tuning. In spite of this, it is not a representative
model. In fact, the conclusions drawn based on this model may often
be misleading when applied to real processes. This will be illustrated
by several examples in Chapter 4. One reason for this is that the step
response of the model (2.8) is not S-shaped, or equivalently, that the
frequency response of the model does not decay fast enough for high
frequencies.
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Figure 2.9 Step responses and Nyquist curves of the process
G(s) = 1/(s+1)8 (solid line) and the three-parameter models Gj,{s)
(dashed line) and G3,(s) (dotted line).

Another three-parameter model is

K -sL

G(S) = me

(2.10)

The step response of this model is

s(t)= K (1 - (1 + %) e-“-L)/T) (2.11)

This model has an S-shaped step response and often gives a better
approximation than the first-order plus dead-time model (2.8). Static
gain K and dead time L can be determined in the same way as
for the model (2.8). Time constant T' can then be determined from
Equation 2.11 if the value of the step response at one time is known.
The equation obtained must be solved numerically.

EXAMPLE 2.3
Fitting the model (2.10) to the process model (2.7) gives
1
G . — -43s
%(9) = T 00 °

The gain K = 1 is obtained from the steady-state value of the signal,
and the dead time L = 4.3 is obtained from the intersection of the
tangent with the largest slope and the horizontal axis as in the
previous examples. The two time constants 7' = 2.0 are obtained
by numerical solution of Equation (2.11). The point s(8.6) = 0.63 is
used to obtain the additional condition. Figure 2.10 shows the step
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Figure 2.10 Step responses and Nyquist curves of the process
G(s) = 1/(s + 1) (solid line) and the three-parameter model Gy, (s)
(dashed line).

responses of the true process model and Gs.(s), as well as the Nyquist
curves of the two transfer functions. The two step responses coincide
at the 63% point. The model now has the S-shaped form because of
the second-order model, and the fit is much better than the previous
first-order models. O

Four-Parameter Models

An even better approximation may be obtained by the transfer func-

tion
K —sL

(A+sT)(1+sTy)°

This model has four parameters: the gain K, the time constants T}
and Ty, and the dead time L. The gain K can be determined from the
steady-state value of the step response. The dead time L can also be
obtained in the same way as for the three-parameter models either
by drawing the tangent of maximum slope of s(¢) or by determining
the time between the onset of the step and the time s(¢) has reached
a few percent of its final value. The step response of the model (2.12)
is

G(s) = (2.12)

T —(t=L}/Tz _ P, p—(t=L)/T}
s)= K [1+ -2 1 Ti#T (213
Ty - T

The time constants (T1) and (T3) can be calculated from this expres-
sion by determining two points of the step response. The calculation
does involve solution of transcendental equations. This must be done
numerically.
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Figure 2.11 Step responses and Nyquist curves of the process
G(s) = 1/(s+ 1)® (solid line) and the four-parameter model Gy, (s)
(dashed line).

EXAMPLE 2.4

A four-parameter model (2.12) of the process model (2.7) has been
obtained in the following way. The gain K = 1 is determined from
the steady-state values, and the dead time L = 4.3 is obtained from
the largest slope, as in the previous examples. The time constants Tj
and T are then obtained by numerically fitting the equation for the
step response (2.13) to the values of the true step response at the 33%
point and the 67% point. With s(6.5) = 0.33 and s(8.9) = 0.67, the
time constants become T; = 0.93 and Ty = 3.2. The transfer function
is thus

— 1 —-43s
Caa(s) = T 0935) 17 829)

Figure 2.11 shows the step responses of the true process model and
Gyo(s), as well as the Nyquist curves of the two transfer functions.
Notice that the two step responses coincide at the 33% point and at
the 67% point. O

In the previous example, gain K and dead time L were deter-
mined graphically from the step response, whereas time constants T}
and T were determined by numerical solution of the equation for the
step response. There are several methods presented for a graphical
determination of all four parameters of the model (2.12). These meth-
ods are useful when no computers are available for numerical solu-
tions. Using computer optimization programs, however, often gives a
better approximation than the graphical methods. This is illustrated
in the following example.
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Figure 2.12 Step responses and Nyquist curves of the process
G(s) = 1/(s + 1)® (solid line) and the four-parameter model Gy
(dashed line).
EXAMPLE 2.5

The four-parameter model (2.12) has been fitted to the process model
(2.7) using least squares optimization, where the aim was to obtain
an accurate model in the third quadrant, i.e., where the phase shift
is between —90° and —180°. The following model was obtained.

1.05 -3.75s

Gu(8) = T3 2395)2°

Figure 2.12 shows the step responses of the true process model and
Gy (s), as well as the Nyquist curves of the transfer functions. O

Models for Integrating Systems

There are some process control systems where the dynamics contain
integration or very long time constants. Such systems will not reach
a steady state under open-loop conditions. They are sometimes called
systems without self regulation. For PID tuning it is useful to treat
such systems separately.

Impulse Responses

For a system with integral action a steady state will not be achieved
when the input signal is a step, since the output will asymptotically
change at a constant rate. There will be, however, a steady state when
the input is an impulse. To determine the dynamics we can, therefore,
apply a short pulse to the process. After normalizing the response by
dividing with the pulse area, we then get a step response that can
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be modeled using the methods we have just discussed. The transfer
function of a system with integral action is then obtained simply by
multiplying the transfer function by 1/s. We illustrate the procedure
with an example.

EXAMPLE 2.6

Assume that a square pulse with unit height and duration 7 has been
applied to a process and that the model

K -s.
Gis) = 1+sT° -

has been fitted to the response as described in Example 2.2. The
transfer function of the process is then

K -sL

1
Gls) = ;Gl(s) = sr(1+sT)e

Step Responses

Models based on step responses can also be applied to processes with
integral action. One possibility is to calculate the derivative of the
step response and apply the impulse response method that was just
discussed.

The two-parameter model

a L
G(s) = <L ¢

that was used to model stable processes previously in this section
can also be applied to integrating processes. This model gives a bad
description of stable processes at high frequencies, but for integrating
processes the low frequency behavior is well captured by the model.

A more sophisticated model that gives a better approximation at
higher frequencies is given by the transfer function

K -sL

G(S) = me

(2.14)

The model is characterized by three parameters: the velocity gain K,
the time constant 7', and the dead time L. The step response of the
model (2.14) is

s@)=K(t-L-T (1 - e~<‘~L>/T)) (2.15)

The gain K and the average residence time T,, = L + T can be
determined graphically as shown in Figure 2.13.
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Figure 2.13 Graphical determination of a three-parameter model
for an integrating process.

The dead time L and the time constant T' can be determined by
fitting Equation (2.15) to one point of the step response. A suitable .
point is

s(L+T)=KTe!

which gives
s(L+ T) ol

T = 7

Models for Oscillatory Systems

Oscillatory systems with step responses, as shown in Figures 2.5B
and D, can be crudely approximated by the two-parameter model
(2.6), but this model will not capture the oscillations. None of the
three- or four-parameter models presented above is suitable either. A
three-parameter model that describes the oscillations is given by the
transfer function

Kaw?

—_———— 2.16
s? + 28 ws + @? (2.16)

G(s) =
This model has three parameters: the static gain K, the natural
frequency w, and the relative damping {. These parameters can be
determined approximately from the step response as indicated in
Figure 2.14. The period of the oscillation T, and the decay ratio d
are first determined. Parameters @ and ¢ are related to T}, and d as

follows.
d = e ¥n/V1-¢ Ty = 2z

/1~ {?
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Figure 2.14 Graphical determination of mathematical models for
systems with an oscillatory step response.
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A time delay can also be added to the model (2.16) and determined in
the same way as for the previous models, e.g., by drawing the tangent
of maximum slope or determining the time between the onset of the
step and the time the step response has reached a few percent of its
final value.

(2.17)

2.5 Methods of Moments

All average residence time was determined based on calculation of
an area. All other methods discussed in Section 2.4 were based on
evaluation of the step response at single points only. Such methods
are quite sensitive to measurement noise. In this section we will
discuss methods that are based on integrals of the step response.

Area Methods

We will first discuss a method that is based on area calculations.
Static gain K and average residence time T, are first determined as
in Figure 2.6. The area A; under the step response up to time Ty, is
then determined. For a system having the transfer function

K
G(s) = ——=e*F
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we have
T, T
A = /s(t)dt = /K(l — e“/T)dt = KTe™ !
0 0

The time constant is thus given by
eA1

| T="% (2.18)
The dead time is then given by
Ao eA1
L_Ta,—T_?——E— (2.19)

With this method parameters L and T are both determined from
computations of areas. The method is illustrated by the following
example.

FEXAMPLE 2.7

The method based on area determination has been applied to the
process model (2.7). Static gain K is first determined from the sta-
tionary values to K = 1. Area 4A; is then determined to 8.0 providing
the average residence time 7, = 8. Area A; can be determined by
integrating the step response up to time 7,, to A; = 1.1. From Equa-
tion (2.18), time T can be calculated to 7' = 3.0, and finally Equation
(2.19) gives L = 5.0. To summarize, the method based on area deter-
mination gives the following three-parameter model

1 —-5.0s
Gsa(s) = 1+ 3.0s e

Figure 2.15 shows the step responses of the true process model and
G34(s), as well as the Nyquist curves of the two transfer functions.

0
The same idea can easily be applied to a system with the transfer
function X
G(s) = ——=se L 2.2
(s) (1+sT)2e (2.20)

Parameters K and residence time T,, are determined as before. In

this case we have
Ta,- = L+2T

The area A; under the step response up to time T, is then
determined. For a system having transfer function (2.20) we have

Teor 2T
A = / s(t)dt = / K (1 — 7T - -;;e-f/T> dt = 4KTe™®
0 0
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Figure 2.15 Step responses and Nyquist curves of the process
G(s) = 1/(s+1)® (solid line) and the three-parameter model Gy4(s)
(dashed line).

The time constant is thus given by

A122
=K (2.21)
and the dead time is
_ _ Ao A162
L=T, -2T = X~ oK (2.22)

The following example illustrates the properties of the method.

EXAMPLE 2.8

The three-parameter model (2.20) has been fitted to the process model
(2.7) using the method of area determination. Static gain K is deter-
mined from the stationary values to K = 1. The area Ay is 8.0, which
gives the average residence time 7,, = 8.0. Furthermore the area A,
is 1.1 and Equation (2.21) then gives T' = 2.0. Equation (2.22) finally
gives L = 4.0 and the model becomes

1
G — -4.0s
3(8) = T 3002
Figure 2.16 shows the step responses of the true process model and
Gs.(s), as well as the Nyquist curves of the two transfer functions.

O

The methods based on area determination are less sensitive to
high-frequency disturbances than the previous methods, where the
model is determined from only a few values of the step response. On
the other hand, they are more sensitive to low-frequency disturbances
such as a change in static load.
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Figure 2.16 Step responses and Nyquist curves of the process
G(s) = 1/(s + 1)® (solid line) and the three-parameter model
Gs.(dashed line).

The Method of Moments

A drawback with the area methods is that they require a storage
- of the step response. Area 4; cannot be computed until area Ay is
determined. Therefore, some alternative methods that are also based
on integration will be considered.

Let h(t) be an impulse response and G(s) the corresponding
transfer function. The functions are related through

G(s) = / e~th(2)ds
0

Taking derivatives with respect to s gives

d———ﬁfs) = G"(s) = (-1 / e t"h(t)dt
0
Hence,
G (0) = (-1)" / t"h(t)dt (2.23)
(¢}

The values of the transfer function and its derivatives at s = 0 can
thus be determined from integrals of the impulse response.

The Average Residence Time

The impulse response is positive for systems with monotone step re-
sponses. It can be interpreted as the density function of a probability
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distribution if it is normalized as follows:

Fo) = 20
S h(t)de
1]

The quantity f(¢)dt can then be interpreted as the probability that
an impulse entering the system at time 0 will leave at time ¢. The

average residence time is then

0 Tth(t)dt
Tyr = / tf(t)dt = L—nn (2.24)
0 [ h(t)dt
0

Introduce
&(2) = s(o0) = 5(2)
where s(t) is the unit step response. Then

dg(t) _
dt —h(®)
It follows that

o0
/ th(t)dt = [—tg(t)]o + / g(t)dt
o 0
The first term of the right-hand side is zero if g(t) goes to zero at
least as fast as #1*¢ for large ¢. The average residence time can thus
also be written as

07"(3(00) — s(t))dt

)

which is the definition used previously.

Equation (2.23) gives a convenient way to determine parameters
of different models by computing the moments. This will be illustrated
by some examples.

A Three-Parameter Model
Consider the transfer function

K -8
G(s) = 77 e L (2.25)

It follows that o
K = G(0) = / h(t)dt (2.26)
0
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Taking logarithms of Equation (2.25) gives
log G(s) = log K — sL —log(1+ sT)
Differentiating this expression gives

G'(s) _ T

G(s) ~ 1+sT

G"(s) G'(s)\> 17
G(s) ~(G(s)) T (L+sT)?

Hence -
, Jth(t)dt
Ta,=—%%)—)=L+T= i
©) S h(t)de
0
. (2.27)
" JEn(t)de
2 G (0) TZ 0 _ TZ

GO " Thar
4]

Gain K is thus given by Equation (2.26) and average residence time
T.r and time constant T' by Equation (2.27). The dead time L can
then be computed to

L=T,-T

It has thus been shown that the parameters of the model can be
obtained from the first two moments of the impulse response. We
illustrate the procedure with an example.

EXAMPLE 2.9
Consider the process model

1
G = Grop
The first two derivatives with respect to s become
8 72
o GII - _ =
(s+1)° ©) = G

Hence G(0) = 1, G’(0) = -8, and G"(0) = 72. Equations (2.26) and
(2.27) now give

G'(s) =

K=1
Tar=8
T2=72—-64=8
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We thus find T' = 2v/2 ~ 2.8 and L = 8 — 2v/2 ~ 5.2. This result can
be compared with the previous methods in Examples 2.2 and 2.7. O

Another Three-Parameter Model

The method of moments will now be applied to determine the param-
eters of the transfer function

— ___I{___ —sL
Gl = Trerp®
We have
logG(s) = log K — sL — 2log (1 + sT)

Hence

G'(s) ., 2T

G(s) ~ 1+sT

G"(s) (G'(s)\* _ _ 2r?

G(s) G(s)) ~ (1+sT)?
Hence

K = G(0) = f R(t)dt
0

, T th(t)dt
Ta,=—§—(g—) =L+2T=%——
G(0) Thit)d (2.28)
0
2. GN0) 1, _ M_ 1
26000 27 oTh@ar 27
0

We illustrate the method with an example.

EXAMPLE 2.10

Consider the process model (2.7). It follows from the previous example
that G(0) = 1, G'(0) = -8, and G"(0) = 72. We thus find K = 1,
T.- = 8,T = 2and L = 4. This is the same model as the one obtained
in Example 2.8. O

Other Input Signals

From a practical point of view it is a drawback to have methods that
require special input signals. The method of moments can be applied
to any signal provided that the system is initially at rest.
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Let U (s). and Y (s) be the Laplace transforms of an arbitrary input
and the corresponding output, respectively. Taking derivatives we get
Y(s) = G(s)U(s) _
Y'(s) = G'(s)U(s) + G(s)U'(s)
Y'(s) = G"(s)U(s) + 2G' (s)U'(s) + G(s)U"(s)
etc.
Hence,
Y(0) = G(OYU(0)
Y'(0) = G'(0)U(0) + G(0)U'(0)
Y"(0) = G"(0)U(0} + 2G'(0)U'(0) + G(0)U"(0)

etc.

(2.29)

The transfer function G(0) and its derivatives can thus be calculated
from experiments with arbitrary inputs by calculating the following
moments of the input and output

U™(0) = (=1)" [ "u(t)dt

Y®() = (-1)" [ "y(t)dt

/
[

and using Equation (2.29).
By using these formulas it is possible to calculate G()(0) for any
signals for which the moments

ool
Uy = /t”u(t)dt
0

and

Yo = / t"y(t)dt
0

exist. This means that the signals must decay sufficiently fast.

A typical case where the method can be used is when an exper-
iment is performed in a closed loop with a pulse-like perturbation
signal on the process input.
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Weighted Moments

The method just discussed cannot be used if the signals do not go
to zero or, equivalently, to a priori known mean values that can be
subtracted in the calculations of moments, because the moments will
then be infinite. There is, however, a simple modification that can
be used in this case. It follows from the definition of the Laplace
transform that

(s = & Y(s) = (-1)" / ~stny(r)de

0 .

The weighted moments
Yo = / tre=ty(Hdt = (~1)"Y ) (a)
0

will exist provided that y(#) does not grow faster than e* for large
t. By computing y, and the analogously defined moment u,, we can
compute Y™ () and U™ (), and thus also G™ ().

A Three-Parameter Model
Consider a system with the transfer function

G(s) = T f{sT e L (2.30)
We have
log G(s) = log K — sL —log (1 + sT)
Hence
G'(s) _ T
G(s) = 1+sT
G"(s) (G'(s)\*  T?
G(s) (G(s)) T (1+sT)?
Thus we get
T Ga) (G2 _
A+ aT? -~ Cla) (G(a)) =a’ (2.31)
Hence,
_ a
T 1-aa (2.32)
L=-¢@_, '

G(a)
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The average residence time thus becomes

G(a) aa?

,=L+T=— _oa
Ta * G(a)+1—aa

Furthermore the static gain is given by
K = (1+ aT)G(a)e** (2.33)

The formulas are illustrated by an example.

EXAMPLE 2.11
Consider a system with the transfer function

- 1
)= P
We have
1 , -8 ” 72
“=trap T @G

Computing the derivatives at the origin from the first terms in the
Taylor series expansion gives '

1 8a 1+ 9

GO) ~ (1+a)8 " 1+e)P?  (1+a)p
o 8  72a _ 8(1+10q)
G(O)N*(1+a)9 (1+a)l0 " (1+a)lo

The estimate of the average residence time becomes

oo _G'(0)  8(1+10a) _  8(1+10c)
T UG0) T 1+ o) (1+9x) 1+ 10+ 9a?

From these expressions it follows that & must be small in order to
give reasonably good approximations. To discuss the values of ¢, it is
reasonable to normalize and consider aT,,. In this case, T,, = 8. With
aT,, = 1 we get G(0) = 0.74, G'(0) = —5.54, and T,,, = 7.53. With
aT,, = 0.5 we get G(0) = 0.91, G'(0) = —7.1, and T, = 7.83, giving
errors in the range of 10%. With a7, = 0.2 we get G(0) = 0.98,
G'(0) = —7.81, and Ty, = 7.96.
It follows from Equation (2.31) that

_ 72 64 2V2
"Va+eae)? (1+a)2 1+a

a
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It follows from Equations (2.32) and (2.33) that

2v2
T=— %V
1+ (1-2vV2)a
- 8-2/2
l+a

K = 1 e8-2v2)a/(1+a)
(1+a)(1+(1-2V2)a)

The average residence time becomes

- _ 1+ (2-2V2)a
T =T+L=8 14 (2-2v2)a + (1-2v2)a?

With aT,, = 1, 0.5, and 0.2, we get the estimates T,, = 8.26,
T., = 8.06, and T, = 8.01, respectively. This method of estimat-
ing the average residence time gives slightly better results than the
extrapolation method. O

" The example shows that we can obtain reasonable estimates
of the model parameters and the average residence time by using
weighted moments. It also seems reasonable to choose parameter «
so that a7}, is in the range of 0.2 to 1. The best results are obtained
for a small value of &. There is, however, an advantage in using larger
values of & because there is then a less risk for disturbances to enter
the system.

2.6 Frequency Responses

Two methods for determining interesting points on the Nyquist curve
are presented below. Both are based on the idea of using feedback to
generate sinusoids having the appropriate frequency.

The Ziegler-Nichols Frequency Response Method

Ziegler and Nichols have provided a method for determining the
ultimate point on the Nyquist curve experimentally. The method is
based on the observation that many systems can be made unstable
under proportional feedback by choosing sufficiently high gain in the
proportional feedback (see Figure 2.17). Assume that the gain is
adjusted so that the process is at the stability boundary. The control
signal and the process output are then sinusoids with a phase shift



2.6 Frequency Responses 35

D
D

Figure 2.17 Setpoint y,, and process output y for a closed-loop .
system with proportional feedback. The figure shows responses for
three values of controller gain K.

of —180° (see Figure 2.18). Because of the proportional feedback they
are related by

u=—-Ky

For simplicity it has been assumed that the setpoint is y;, = 0. Since
the gain around the loop must be unity to maintain an oscillation, we
have

K,G(liw,) = -1
where the gain, which brings the system to the stability limit, is called

Controller Process

G(s)

K

|

Figure 2.18 Block diagram of a closed-loop system under propor-
tional feedback.

Y




" 36 Chapter 2 Process Models

Table 2.1 Relations between gain ratio x and normalized dead
time 7 for processes with the transfer functions G(s) = 1/(s + 1)™.

n 2 3 4 8

T 0.15 0.25 0.35 0.55
K 0 0.125 0.25 0.53

the ultimate gain (K,). It follows from the above equation that

1
i0,) = —— 3
G(iw,) 8 (2.34)
Several design methods based only on the knowledge of G(iw,) are
given in Chapter 4. It is convenient to introduce the gain ratio,

Gliw,)
G(0)

i.e., the gain at the ultimate frequency divided by the static gain. This
parameter is an indicator of how difficult it is to control the process.
Processes with a small x are easy to control. The difficulty increases
with increasing x.

Parameter k is also related to the normalized dead time 7, which
was defined in Equation (2.9). For processes described by the transfer
function (2.8) parameters 7 and kx are related in the following way:

7 —arctan /1/k2 -1
7 —arctan/1/k2— 1+ /1/k%2 -1

This relation is close to linear, it gives 7 = Ofor k = 0Oand 7 = 1
for ¥ = 1. For small values of x it can be approximated by ¢ = 1.6x.
This is illustrated in the following example.

(2.35)

T =

EXAMPLE 2.12

To illustrate the relation between the parameters x and 7, we give
their values for systems with the transfer functions

1
G(s) = ———
(s) (s+ 1)~
The results are presented in Table 2.1. For small values of n, both x
and 7 are small. These processes are easy to control. For large values

of n, both x and 7= approach 1. These processes are difficult to control.
O

The Ziegler-Nichols frequency response method has some advan-
tages. It is based on a simple experiment, and the process itself is
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Relay Process

ysp e u y
> G(s)

A

-1

Figure 2.19 Block diagram of a process under relay feedback.

used to find the ultimate frequency. It is, however, difficult to auto-
mate this experiment or perform it in such a way that the amplitude
of the oscillation is kept under control. Operating the process near in-
stability is also dangerous and may need management authorization
in an industrial plant. It is difficult to use this method for automatic
tuning. An alternative method for automatic determination of specific
points on the Nyquist curve is suggested below.

Relay Feedback

An alternative method to determine interesting points on the Nyquist
curve is based on the observation that the appropriate oscillation
can be generated by relay feedback. The system is thus connected
as shown in Figure 2.19. For many systems there will then be an
oscillation (as shown in Figure 2.20) where the control signal is a
square wave and the process output is close to a sinusoid. Notice
that the process input and output have opposite phase.

To explain how the system works, assume that the relay output is
expanded in a Fourier series and that the process attenuates higher

0 Yy
]
-2 T T -
0 10 20 30 40
1 .
u "
-1
T T T T
0 10 20 30 40

Figure 2.20 Relay output z and process output y for a system
under relay feedback.
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harmonics effectively. It is then sufficient to consider the first har-
monic component of the input only. The input and the output then
have opposite phase, which means that the frequency of the oscilla-
tion is the ultimate frequency. If d is the relay amplitude, the first
harmonic of the square wave has amplitude 4d/z. Let a be the am-
plitude of the oscillation in the process output. Then,

Gliw,) = - == (2.36)

Notice that the relay experiment is easily automated. Since the am-
plitude of the oscillation is proportional to the relay output, it is easy
to control it by adjusting the relay output. Also notice in Figure 2.20
that a stable oscillation is established very quickly. The amplitude
and the period can be determined after about 20 s only, in spite of
the fact that the system is started so far from the equilibrium that it
takes about 8 s to reach the correct level. The average residence time
of the system is 12 s, which means that it would take about 40 s for
a step response to reach steady state.

Describing Function Analysis

The intuitive discussion about relay oscillations can be dealt with
more quantitatively using a technique called the describing function
method. This is an approximate method that can be used to deter-
mine if there will be an oscillation in a nonlinear feedback system
that is composed of a linear element and a static nonlinearity. To
determine conditions for oscillation, the nonlinear block is described
by a gain, N(a), which depends on signal amplitude o at the in-
put of the nonlinearity. This gain, which describes how a sinusoid of
amplitude a propagates through the system, is called the describing
function. If the process has the transfer function G(iw), the condition

AIm Gliw)

Re Gliow
(O]

yquist curve G(iw)

.- ) 1
D bing function ~ ——
escribing func N

Figure 2.21 Determination of possible oscillations using the de-
scribing function method.
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for oscillation is simply given by
N(@)G(iw) = -1 : (2.37)

This equation is obtained by requiring that a sine wave with fre-
quency @ should propagate around the feedback loop with the same
amplitude and phase. The equation gives two equations for determin-
ing a¢ and @, since N and G may be complex numbers. The equation
can be solved graphically by plotting —1/N(a) in the Nyquist dia-
gram (as in Figure 2.21) together with the Nyquist curve G(iw) of
the linear system. An oscillation may occur if there is an intersec-
tion between the two curves. The amplitude and the frequency of the
oscillation are the same as the parameters of the two curves at the
intersection point. Therefore, measuring the amplitude and the pe-
riod of the oscillation, the position of one point of the Nyquist curve
can be determined.
The describing function, N(a), for a relay is given by

N(a) = % (2.38)

Since this function is real, an oscillation may occur if the Nyquist
curve intersects the negative real axis. This explains why the exper-
iment with relay feedback gives the point where the Nyquist curve
intersects the negative real axis.

A Relay with Hysteresis

There are advantages in having a relay with hysteresis instead of a
pure relay. With an ordinary relay, a small amount of noise can make
the relay switch randomly. By introducing hysteresis, the noise must
be larger than the hysteresis width to make the relay switch. See Fig-
ure 2.22. The describing function approach will be used to investigate

Ay

Y
L

)
A

Figure 2.22 Output y from a relay with hysteresis with input «.
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D —— B
- L
" N

Figure 2.28 The negative reciprocal of the describing function
N(a) for a relay with hysteresis.

the oscillations obtained. The negative inverse of the describing func-
tion of such a relay is

o
N(a) = 4d

2 _g2_; "¢
a?-e—iy . (2.39)
where d is the relay amplitude and ¢ is the hysteresis width. This
function can be represented as a straight line parallel to the real axis,
in the complex plane (see Figure 2.23).

By choosing the relation between £ and d, it is therefore possible
to determine a point on the Nyquist curve with a specified imaginary
part. Several points on the Nyquist curve can be obtained by repeat-
ing the experiment with different relations between £ and d. It is
easy to control the amplitude of the limit cycle to a desired level by
a proper choice of the relay amplitude.

Other Uses of Relay Feedback

A slight modification of the experiment shown in Figure 2.19 gives
other frequencies of interest. Figure 2.24 shows an experiment that
gives the frequency wyo, i.e. the frequency where the process has a
phase lag of 90°. Notice that there are two different versions of the
experiment depending on the order in which the integrator and the
relay are connected.

Closed Loop Experiments

Relay feedback can also be applied to closed-loop systems. Figure 2.25
shows an experiment that can be used to determine the amplitude
margin on-line. Let G, be the loop transfer function, i.e., the combined
transfer function of the controller and the process. The closed-loop
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1
l > — » Process
S
_1 et}
1
T : - I | Process

-1 -t

Figure 2.24 Using relay feedback to determine the frequency wq.

transfer function is then

Gq(s)

Gy(s) = T+ G

(2.40)

The experiment with relay feedback then gives an oscillation with the
frequency such that the phase lag of G.;(iw) is 180°. It then follows
from Equation (2.40) that this is also the frequency where G¢(iw) has
a phase lag of 180°, i.e., the ultimate frequency. If m is the magnitude
of G, at that frequency, we find that an estimate of the amplitude
margin of the closed-loop system is given by

N m
m

- 1-m

If the relay has hysteresis, a conformal mapping argument shows that
the experiment gives the frequency, where the loop transfer function

I Controller—| Process

-1

A

Figure 2.25 Using relay feedback to determine the amplitude
margin of the closed-loop system.
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b Im G,Gw)

L _

Re G, (io)

Al

G ((iw)

Figure 2.26 Experiments with relay feedback give the points
where the curve G,(iw) intersects the circles.

intersects part of the circle,

1 1
G(iw)—1+i—|=—
e(iw) ' 2a 2a
which is shown as curve A in in Figure 2.26. By introducing an
integrator in series with the relay, the frequency where G, (iw) has
a phase lag of 90° is obtained. This occurs for loop transfer functions
G, with the property

G,
1+Gy

This corresponds to the circle,

NN

arg = arg Gy — arg (1 + Gy) =

1
3 (2.41)
which is shown as curve B in Figure 2.26. The experiment will thus
give the point where the loop transfer function Gy of the closed-loop
system intersects the circle given by Equation (2.41). Combining this
result with the result from the experiment in Figure 2.24, it is also
possible to approximately determine the maximum sensitivity M.

Many controllers use a two-degree-of-freedom configuration in-
stead of pure error feedback. This is discussed in Chapter 3. This
means that the control law is given by

U(s) = Grr(s)Ysp(s) — ()Y (s)

The experiment shown in Figure 2.25 must then be modified by
introducing a block with the transfer function Gy, /Gyr in series with
the relay.

It has thus been demonstrated that several of the quantities
needed to make an assessment of control performance can be obtained
from experiments with relay feedback.

. 1
Ge(iw) + 5

|
;
|
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2.7 Parameter Estimation

A mathematical model of the process can also be obtained by fitting
the-parameters of a model to experimental data. For example, a model
of the type given by Equation 2.8 can be obtained by adjusting the
parameters so that they match observed input/output data. The ad-
vantage of such an approach is that any type of input/output data can
be used. However, parameter estimation requires more computations
than the methods discussed previously.

Parametric Models

Since the calculations will typically be made using a digital computer,
the input/output data will typically be sampled. It is then convenient
to operate with a discrete time model based on signals that are sam-
pled periodically. Moreover, if the experimental data is also computer-
generated, it is reasonable to assume that the input to the process is
constant between the sampling instants. Let the sampling period be
h. Assume that time delay L is less than k. The model (2.8) can then
be described as

y(kh) = ay(kh — k) + byu(kh — h) + bou(kh — 2h) (2.42)

where
e—hT

by = K (1- e h-0/T)

by = KeM/T (M7 - 1)
For arbitrary time delays L, the model becomes instead
y(kh) = ay(kh — h) + byu(kh — nh) + bau(kh — nh — h) (2.43)

where parameters a, b1, and by are given as above with n = Ldivh
and 7 = Lmod & replacing L. The model can be given a convenient
representation by introducing a shift operator ¢, defined by

qy(kh) = y(Rh + h)
The model (2.43) can then be written as
q"(q — a)y(kh) = (b1g + bo)u(kh)

If the complex variable z (similar to the Laplace transform variable s)
is introduced, the process can also be described by the pulse transfer
function:

a =

blz + bz

H(z) = 2"z —- a)

(2.44)
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Notice that the transfer function is a ratio of two polynomials even if
the corresponding physical process has time delays.

The discussion can be extended to systems of higher order, and
the result is then an input/output relation of the form:

y(kh) + a1y(kh — h) + -+ + a,y(kh — nh)
= byu(kh — h) + --- + byu(kh — nh)

This equation can be written compactly as
Alq)y(kh) = B(g)u(kh) (2.45)
where A(g) and B(gq) are polynomials:
Alg)=q"+a1g" 7+t an
B(q) = b1g" 1 + byg" 2+ -+ b,
The corresponding transfer function is then

B(z) biz"l+byz" %440,
A(z) T zr+a2v i+ ta,

H(z) =

Parameter Estimation

There are many ways to estimate the parameters of the discrete time
model (Equation 2.45). A simple method is as follows. Assume that a
sequence of input/output pairs ({u(kh),y(kh),k = 1,2,...,N}) have
been observed. The parameters can then be determined in such a
way that Equation (2.45) fits the data as well as possible in the least
squares sense. The sum of the squares of the errors is

N
V(6) = > ekh) (2.46)

k=n+1

where
e(kh + nh) = A(q)y(kh) — B(q)u(kh), E=1,---,N—-n

Notice that the error is linear in parameters a; and b; of the model
and that the sum of squares of the errors is a quadratic function.
This means that the minimum of the loss function can be computed
analytically. Rather than showing the solution to the optimization
problem, a convenient way of computing the parameters recursively
is presented below.
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Recursive Computations

In a tuning experiment, a new input/output pair is normally obtained
in each sampling. It is then convenient to compute the parameter
estimates recursively. All parameters are grouped together in the
vector:

g = (alag...anblbg...bn)T

Introduce the regression vector defined by
¢r-1= (—y(kh—h)...— y(kh — nh)u(kh — k) ...u(kh — nh))*
The estimate can then be calculated recursively by
er = y(kh) = 9i_164-1 (2.474)

Pk—lfl’k-l(oz_lpk-l
1+ ¢l Prygpy
Or = Op_1 + Prog_1e (2.47C)

Py=Pyi— (2.47B)

These equations have good physical interpretations. The new esti-
mate 6 is obtained by adding a correction term Pge to the old es-
timate 6;_;. The correction term is a product of three quantities: P,
@, and e. The error e is the difference between the last measurement
y(kh) and the prediction 978 of this measurement based on old esti-
mates. Regression vector ¢ can be interpreted as the gradient of the
error with respect to the parameters. This vector tells how the scalar
error is distributed to give corrections in all parameters.

Equation (2.47B) may be interpreted as follows. Matrix P, is
proportional to the covariance matrix of the estimates; the last term
in Equation (2.47B) is the reduction in uncertainty due to the last
measurement.

The equations have to be initialized. The initial value of param-
eter vector 6 can be chosen as the best initial guesses of the parame-
ters. The initial value of matrix P is typically chosen as the identity
matrix multiplied by a large number.

Computer Code

Recursive least squares estimation is an essgential part of many
schemes for automatic tuning. The following is a computer code that
implements the algorithm.

{The recursive least squares algorithm}
e=y
for i=1 to 2%n do e=e-¢@[i]*8[i]
{Compute estimator gain}
for i=1 to 2*n do



46 Chapter 2 Process Models

begin
s=0
d=1
for j=1 to 2*n do
begin
s=s+P[i, j1*¢ [j]
d=d+s*@ [§]
end
rlil=s
end
{Update estimates}
for i=1 to 2#n do 0[il=0[il+r[il*e/d
{Update P matrix}
for i=1 to 2*n do
begin
for j=i to 2n do P[i,jl=P[i,jl-r[il*r[jl/4
for j=i+l1 to 2#n do P[j,il=P[i,j]
end
{Update ¢@-vector}
for i=1 to 2*n-1 do ¢@[2*n-i+1]=¢ [2*n-i]
pl1]=-y
o [n+1]=u

The code description is given in “pidgin” Pascal, and it is assumed
that the variables have been properly declared. There are many re-
finements to the algorithm; for instance, its numerical properties can
be improved by using a so-called square root algorithm. It is also com-
mon practice to bandpass filter the signals before introducing them
into the algorithm to get rid of static levels and high frequency distur-
bances. There are also many variations of the algorithm to discount
past data. The code gives an indication of the type of algorithms that
are used in recursive parameter estimation.

2.8 Disturbance Models

So far, we have only discussed modeling of process dynamics. Dis-
turbances is another important side of the control problem. In fact,
without disturbances and process uncertainty there would be no need
for feedback. There is a special branch of control, stochastic control
theory, that deals explicitly with disturbances. This has had little
impact on tuning and design of PID controllers. For PID control, dis-
turbances have mostly been considered indirectly, e.g., by introducing
integral action. As our ambitions increase and we strive for control
systems with improved performances it will be useful to consider dis-
turbances explicitly. In this section, therefore, we will present some
models that can be used for this purpose.
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Figure 2.27 Prototype disturbances, A impulse, B step, C ramp,
and D sinusoid.

There are some fundamental problems in dealing with distur-
bances. An inherent property of disturbances is that they cannot be

~ predicted exactly. Most mathematical models, however, do have the

property that they give signals that can be predicted exactly. Some
care must be exercised when interpreting models and results.

Simple Models

Simple mathematical models were found to be very useful when deal-
ing with process dynamics in the previous sections. We will now try
to make models that also can be used to characterize disturbances.

Examples of some simple disturbances—impulse, step, ramp, and
sinusoid—are given in Figure 2.27. The impulse is a mathematical
idealization of a pulse whose duration is short in comparison with
the time scale. The signals are essentially deterministic. The only
uncertain elements in the impulse, step, and ramp are the times
when they start and the signal amplitude. The uncertain elements of
the sinusoid are frequency, amplitude, and phase.

More complex disturbances can be obtained by combining the
simple disturbances, as shown in Figure 2.28. These disturbances are
obtained by repeating a number of impulses, by combining steps and
ramps, and by changing the amplitude and phase of the sinusoid.

Noise

There are also other types of disturbances that are much more ir-
regular than the signals shown in Figure 2.28. Some examples are
given in Figure 2.29. To characterize signals like the ones shown
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Figure 2.28 Disturbances that are obtained by combining the
simple prototype disturbances.

in Figure 2.29, it is necessary to describe both the amplitude and
the time characteristics. A distinction between stationary and non-
stationary behavior must first be made. A signal is stationary if its
behavior is essentially the same for all times. The amplitude prop-
erties of a stationary signal can be described by giving a histogram
that tells the fraction of time when the signal has a given ampli-
tude.

The mean value, the standard deviation or the variance, and the
peak-to-peak values are simple ways to characterize the amplitude
distribution. If the amplitude distribution is normal, the distribution
is uniquely given by the mean value m and the standard deviation
o. The probability for the signal to be outside the 30 limits is about
0.0026.

The time behavior of a stationary signal can be described by
the spectral density function ¢(w). This function characterizes the
frequency content of a signal. The value

1
ﬂ ¢(G))A0)

is the average energy of a signal in a narrow band of width Aw
centered around w. The average energy is then

1 00
o?= 5 / ¢(w)dw

A signal where ¢(w) is constant is called white noise. Such a signal
has its energy equally distributed among all frequencies.
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Figure 2.29 Examples of noise signals.

Measuring Noise Characteristics

The noise characteristics can be determined in several different ways.
There are simple methods that can be used for crude estimates and

~ more sophisticated methods that give more precise descriptions.

A simple way to estimate the amplitude characteristics is to mea-

sure the average
T
_ 1
= T/y(t)dt
0

and the mean square error

'~3]H

T
/ (5(t) - )2 dt
0

To evaluate the integrals it is necessary to know a reasonable value
of T, which requires knowledge about the time scale. An alternative
is to compute the peak-to-peak value y,,. The standard deviation can

then be estimated as )
o= gypp

Notice that it is also necessary to know the time scales in order to
determine the time interval over which the peak-to-peak value is
computed.

The energy in a given frequency band can be determined by
computing the mean square average or the peak-to-peak value of a
filtered signal.

Useful information about the frequency content in a signal can
also be determined from the zero crossings. For a stationary signal
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the average number of zero crossings per second can be determined

from
1/2

. T @?¢(w)do
N= o] B
"\ [ o

where ¢(w) is the spectral density. Notice that this formula has
similarities with the formula for determining the average residence
time, Equation (2.24).
For a spectral density that is uniform over the interval (@1, @2},
we get :
Nl ( w3 - o3 )1/2 _ l(aﬁ + 01007 + wg)I/Z
7 \ 3w — @) n 3

For an ideal low-pass filter we have w; = 0 and w; = @y, where w,
is the band width. In this case we get

N—m/é._m/g,wl.wfb
The average rate of zero crossings per second is thus approximately
equal to the bandwidth measured in Hz. Measurement of zero cross-
ings can easily be combined with computation of the peak-to-peak
value. More accurate determination of the spectral characteristics
can be done by using a spectral analyzer or by recording a data set
and computing the spectrum numerically.

Representation of Disturbances

It is often very convenient to consider signals as generated from a
dynamic system with simple inputs as shown in Figure 2.30. For
example, the signals shown in Figure 2.27 can be represented by
sending an impulse through a dynamic system. The transfer function
of the systems for the different signals are

Impulse G(s) =1
Step G(s) = %

1
Ramp G(s) = 2

a)2

Sinusoid G(S) = m
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simple signal o) signal
T el e

Figure 2.30 Signals represented as outputs of dynamic systems.

Similarly the signals in Figure 2.28 can be generated by sending a
sequence of pulses through the same systems. :

The same idea can be extended to describe noise. In this case the
generating signal is white noise. We illustrate the idea.

EXAMPLE 2.13
The so called RC noise has the spectral density
2
a
§0)= e

It can be represented by sending white noise through a system with

the transfer fu_nction o

s+a

O

G(s) =

The possibility of representing signals in this way also gives a pos-
sibility of dealing with nonstationary signals. The process obtained by
sending white noise through an integrator, for example, is a drifting
process that is called a random walk or a Wiener process.

The representation of signals in this way also makes it possible
to see similarities between signals of different type. It turns out
that signals that are generated from the same system have many
similarities. For example, a step signal (Figure 2.27B), a piece-wise
constant signal (Figure 2.28B), and a random walk are all generated
by sending primitive signals through an integrator. The primitive
signals are an impulse, a sequence of impulses for the piece-wise
constant signals, or white noise for a random walk. A consequence of
this is that a controller that is designed to work well for one of these
signals will work well for all of them. A step disturbance is thus not
as special as it may first appear.

2.9 Approximate Models and Unmodeled
Dynamics
In this chapter, we have discussed various ways to model the process

to be controlled. We end the chapter with a discussion about what is
not captured by the models. Typical examples are nonlinearities and
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process variations. Furthermore, the parametric low-order ‘models
give a satisfactory description of the behavior of the true system for
signals with a limited frequency range only.

The process models describe the relation between the process in-
put signal and the process output signal only, but the control system
consists of other signals that influence the control performance. The
characteristics of the setpoint changes, load disturbances, and mea-
surement noise must also be taken into account in the design of the
control system.

Many design methods for PID controllers require that the process
model be of low order. Some methods to approximate higher-order pro-
cess models with low-order models are also presented in this section.

Nonlinearities

All dynamic models presented in this chapter are linear, whereas
most processes in practice are nonlinear. Nonlinear valves, actuators
or sensors result in the process having different dynamics at different
operating points. A linear model, obtained by transient or frequency
response analysis of a nonlinear process, is only valid at the actual
operating point. This means that a controller that is tuned based on
this model may work well only at this operating point.

There are several ways to overcome the problem. A simple way
is to tune the controller for the worst case and accept degraded
performance at other operating conditions. If the characteristics of
the nonlinearity are known, it can be compensated by feeding signals
through a function module that forms the inverse of the nonlinearity.
An example is a flow meter based on measurement of difference
pressure. The flow is proportional to the square of the difference
pressure. A linear relation between the flow and the output signal
from the flow meter can be obtained by feeding the measured signal
through a square root function.

Another way to compensate for nonlinearities is to divide the op-
erating range into several smaller ranges where the process can be
well approximated by linear models. A controller with satisfactory
behavior for the full operating range can be obtained by determining
one model for each operating range and changing the controller pa-
rameters with the operating condition. This approach is called gain
scheduling.

Parametric Models

If the process is linear, a step response reveals all information about
the process dynamics. In the same way, a Nyquist curve or frequency
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response gives a complete description of the process dynamics. In-
formation is lost when going from these graphical descriptions to
parametric models. The parametric models derived for PID controller
tuning are normally of low order. This means that quite a lot of in-
formation is lost. It is, therefore, particularly important that these
simple models are derived. properly and that their limitations are
kept in mind when using them for controller tuning.

The parametric models based on step response analysis are often
accurate at low frequencies, whereas they become more uncertain at
higher frequencies. The simple models based on frequency response
analysis, described in Section 2.6, are accurate at the frequencies of
the input signals, but not at other frequencies. The basic relay method
thus is accurate around the ultimate frequency @,, but not for higher
and lower frequencies.

Process Variations

The model is valid at the time the experiment is performed. If the
process dynamics change with time, it may not be valid at a later time.
This problem can be handled in the same way as the nonlinearities
described above.

A simple solution is to base the controller tuning on the model
that describes the worst case. Gain scheduling can be used if the time
variations can be related to some measurable variable. Adaptive con-
trol can be used if the process variations are random in the sense that
they cannot be related to any measurable variable. Such a controller
will adapt itself automatically to the actual process dynamics.

Disturbances

There are always disturbances acting on a control system. We distin-
guish between three types of disturbances, namely, setpoint changes
(y¥sp), load disturbances (I), and measurement noise (n) (see Figure
2.31).

Setpoint Changes

In process control, most control loops have a constant setpoint. (An
exception is the controller sitting in the inner loop in cascade con-
trol.) The setpoint may change at certain time instances because of
desires to change operating conditions such as production rates. The
setpoint is, as a result, typically piece-wise constant with changes
occurring rarely. It is, therefore, suitable to model the setpoint as a
step function.
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Since the setpoint is a disturbance that we have access to, it
is possible to feed it through a low-pass filter or a ramping module
before it enters the PID controller. In this way, the step function can
be made smoother. This property is useful, since many control design
methods giving a good rejection of load disturbances give too large
overshoots after a sudden change in the setpoint.

Load Disturbances

Load disturbances are disturbances that enters the control loop some-
where in the process and drive the system away from its desired oper-
ating point. They may be caused by quality variations in a feed flow
or variations in the demand flow, for example. These disturbances
are the most common and the most important disturbances in pro-
cess control. When discussing controller design in Chapter 4, we will,
therefore, focus on the behavior with respect to these disturbances.

The load disturbance is typically a low-frequency disturbance,
and it will, furthermore, be more or less low-pass filtered by the
process depending on where in the process it enters. Consequently, it
usually results in a low-frequency disturbance in the process output.
To obtain this characteristic in the process output, we model the
load disturbance as a step function added to the control signal at
the process input (see Figure 2.31).

Measurement Noise

Measurement noise represents disturbances that distort the informa-
tion about the process variables obtained from the sensors. Measure-
ment noise may be of different character. It may be high-frequency
fluctuations and it may be low-frequency calibration errors. With sev-
eral sensors it is possible to reduce calibration errors. With only one
sensor nothing can be done about calibration errors; we, therefore,

Controller Process —
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Figure 2.31 Block diagram of a simple feedback loop with three
types of disturbances: Setpoint changes (y,,), load disturbances ()
and measurement noise (n).
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will model measurement noise as a high-frequency signal added to
the process output. , ' :

Since measurement noise does not contain any information about
the status of the process, it should be filtered out. Furthermore, high-
frequency components in the measurement signal might be amplified
by the controller and cause wear on the actuator. Filtering does intro-
duce additional dynamics. It is therefore important to take the filter
dynamics into account in the controlling design. We will model the
measurement noise as an impulse function.

Approximating Complex Models

In modeling it is often convenient to split a system into intercon-
nected subsystems. An example could be to divide a system into ac-
tuator, process, and sensor. Another example occurs when general
control loops are cascaded. We may be interested then in obtaining a
simplified description of the closed loop. Even if the model for each
part is simple, the complete model may then be quite complex. Since
many of the design methods for PID controllers are based on simple
models, we need a procedure to simplify a complex model. Some ways
to make such approximations are discussed below.

To perform the approximations it is necessary to determine the
frequency range where the approximation should be valid. We do this
simply by saying that the models should describe the system well
around the frequency wp. This frequency should be approximately
the same as the frequency of the dominant closed-loop poles of the
desired system or the desired bandwidth of the closed-loop system.
(The notion of dominant poles is discussed in Chapter 4.) Having
restricted the modeling to a rather narrow frequency range, low-order
models can now be determined by fitting them to experimental data,
as described previously in this section.

Another possibility is to start with a complex model of the form

1+bls+6282+"' +bnS"' e__sL
1+ais+ags2+--- 4+ a,s"

G,(s) = K

and approximate it. The approximation is done in the following way.
Poles and zeros that are much slower than wq are approximated by
integrators, poles, and zeros of the same order as wg are retained,
and poles and zeros that are much faster than w, are neglected or
approximated by a small time lag. A dead time such that woL < 1
is neglected or approximated by a time constant. The approximation
of fast poles and zeros by a first order system is illustrated by an
example.
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EXAMPLE 2.14 Approximation of fast modes
Consider the transfer function

K(1+sT)(A+sT)
(1+ sT)(L+ sTs)(1+ sT5)(1+ 5To) ©

where ' +
T=T3+Ty+T5+T¢—-T1~Te—L >0

and it is assumed that L « T. The transfer function G can be
approximated by

G(s) =

(8]

Gs) = 1+sT

EXAMPLE 2.15 Approximation of fast and slow modes
Consider the same system as in Example 2.14. Assume that

T3 > T4 > T5 > Te
and that
T5 > max (T, Ty, L)

Furthermore, let it be desired to obtain a model that describes the
process well in the frequency range

L ocm<t
Ty 'C T

The time constant T3 is slower than Ty and T, and it will therefore
be approximated by an integrator, i.e.,

1 1
1+sTy  sTs
The time constants T, 79, Ts, and the time delay L are all smaller
than T5. They will be approximated by a single time constant
T=T¢-T1-T, - L
If T is positive the system is then approximated by

K

G6) = ST+ sta) (L + STH)(L + 5T)

If T is negative the transfer function is instead approximated by

K(1+sT)
ST3(1 + ST4)(1 + ST5)

G(s) =
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Summary

To summarize: When deriving a simple model to be used for PID
controller tuning, it is important to ensure that the model describes
the process well for the typical input signals.obtained during the
process operations. The amplitude and frequency distribution of the
signal is of importance. Model accuracy may be poor if the process is
nonlinear or time varying. Control quality can be improved by gain
scheduling or adaptive control. It is also important to know what kind
of disturbances are acting on the system and which limitation they

impose.

-2.10 Conclusions

Modeling is an important aspect of controller tuning. The models we
need should describe how the process reacts to control signals. They
should also describe the properties of the disturbances that enter the
system. Most work on tuning of PID controllers have focused on the
process dynamics, which is also reflected in the presentation in this
chapter.

A number of methods for determining the dynamics of a process
have been presented in this chapter. Some are very simple: they
are based on a direct measurement of the step response and simple
graphical constructions. Others are based on the frequency response.
It has been shown that very useful information can be generated from
relay feedback experiments. Such experiments are particularly useful
because the process is brought into self-oscillation at the ultimate
frequency, which is of considerable interest for design of controllers.

The simple methods are useful in field work when a controller
has to be tuned and few tools are available. The methods are also
useful to provide understanding as well as being references when
more complicated methods are assessed. We have also presented more
complicated methods that require significant computations.

Models of different complexity have been presented. Many models
were characterized by a few parameters. Such models are useful for
many purposes and are discussed in Chapter 4. When using such
models it should be kept in mind that they are approximations.

When deriving the models we also introduced two dimension-
free quantities, the normalized dead time 7 and the gain ratio x.
These parameters make it possible to make a crude assessment of
the difficulty of controlling the process. Processes with small values
are easy to control. The difficulty increases as the values approach 1.
Tuning rules based on 7 and x are provided in Chapter 5.
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2.11 Referénces

Process modeling is a key element in understanding and solving a con-
trol problem. Good presentations of modeling are found in standard
textbooks on control, such as Buckley (1964), Smith (1972), Seborg .
et al. (1989), and Luyben (1990). These books have much material on
many different modeling techniques. Similar presentations are given
in Gille et al. (1959), Harriott (1964), Oppelt (1964), Takahashi et al.
(1972), Deshpande and Ash (1981), Shinskey (1988), Stephanopoulos
(1984), and Hagglund (1991). There are also books that specialize in
modeling for control system design, see Wellstead (1979), Nicholson
(1980), Nicholson (1981), and Close and Frederick (1993).

In the early work much effort was devoted to characterize dynam-
ics by the step response, which at that time was called the response
curve. See Ziegler et al. {1943) and the books Tucker and Wills (1960)
and Lloyd and Anderson (1971), which were written by practitioners
in control companies. A nice overview of step and frequency response
methods is given in the paper Rake (1980). Additional details are
given in Strejc (1959) and Anderssen and White (1971). Frequency
response methods are presented in Anderssen and White (1970).

The relay method is treated in Astrom and Higglund (1984),
Higglund and Astrém (1991), and Schei (1992). The describing func-
tion method is well documented in Atherton (1975) and Gelb and
Velde (1968). There are many books on parameter estimation, the
book Johansson (1993) is quite accessible. More mathematical de-
tails are found in Ljung (1987), Ljung and Soderstrom (1983), and
Soderstrom and Stoica (1988). Many useful practical aspects on sys-
tem identification are given in Isermann (1980).



CHAPTER 3

PID Control

3.1 Introduction

The PID controller is by far the most common control algorithm. Most
feedback loops are controlled by this algorithm or minor variations
of it. It is implemented in many different forms, as a stand-alone
controller or as a part of a DDC (Direct Digital Control) package or
a hierarchical distributed process control system. Many thousands
of instrument and control engineers worldwide are using such con-
trollers in their daily work. The PID algorithm can be approached
from many different directions. It can be viewed as a device that can
be operated with a few rules of thumb, but it can also be approached
analytically.

This chapter gives an introduction to PID control. The basic al-
gorithm and various representations are presented in detail. A de-
scription of the properties of the controller in a closed loop based on
intuitive arguments is given. The phenomenon of reset windup, which
occurs when a controller with integral action is connected to a process
with a saturating actuator, is discussed, including several methods to
avoid it.

Some important aspects of digital computer implementation of
PID controllers are given: issues such as prefiltering, different digi-
tal approximations, noise filtering, and computer code for good imple-
mentation. Operational aspects, such as bumpless transfer between
manual and automatic mode and between different parameter sets,
are also presented. The chapter ends with some aspects on the use
and misuse of PID control with examples of systems where PID con-
trol works well and where it does not.

59
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3.2 The Feedback Principle

The idea of feedback is deceptively simple and, yet, extremely pow-
erful. It has had a profound influence on technology. Application of
the feedback principle has resulted in major breakthroughs in con-
trol, communication, and instrumentation. Many patents have been
granted on the idea. Assume for simplicity that the process is such
that the process variable increases when the manipulated variable is
increased. The principle of feedback can then be expressed as follows:

Increase the manipulated variable when the process variable
is smaller than the setpoint and decrease the manipulated
variable when the process variable is larger than the setpoint.

This type of feedback is called negative feedback because the ma-
nipulated variable moves in opposite direction to the process variable.
The feedback principle can be illustrated by the block diagram shown
in Figure 3.1. In this diagram the process and the controller are rep-
resented as boxes with arrows denoting inputs and outputs. Notice
also that there is a special symbol to denote the summation of signals.
The block diagram shows that the process and the controller are con-
nected in a closed feedback loop. The presence of the sign-reversing
block indicates that the feedback is negative.

The reason why feedback systems are of interest is that feedback
makes the process variable close to the setpoint in spite of distur-
bances and variation of the process characteristics.

On-Off Control

The feedback can be arranged in many different ways. A simple
feedback mechanism can be described mathematically as follows:

Unmax ife > 0
w= e (3.1)
Umin Ife < 0

where e = y,, — y is the control error. This control law implies that
maximum corrective action is always used. The manipulated variable,

Yy e u Y
i Controller »! Process

A

-1

Figure 3.1 Block diagram of a process with a feedback controller.
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Figure 3.2 Controller characteristics for ideal on-off control (A),
and modifications with dead zone (B) and hysteresis (C).

thus, has its largest value when the error is positive, and its smallest
value when the error is negative. This type of feedback is called
on-off control. It is simple and there are no parameters to choose.
On-off control often succeeds in keeping the process variable close
to the setpoint, but it will typically result in a system where the
variables oscillate. Notice that in Equation (3.1) the control variable
is not defined when the error is zero. It is common to have some
modifications either by introducing hysteresis or a dead zone (see
Figure 3.2).

Proportional Control

The reason why on-off control often gives rise to oscillations is that the
system overreacts because a small change in the error will make the
manipulated variable change over the full range. This effect is avoided
in proportional control where the characteristic of the controller is
proportional to the control error for small errors. Figure 3.3 shows
the characteristic of a proportional controller. The controller is thus
characterized by the nonlinear function u = f(e) shown in the figure.

To describe the characteristic of a proportional controller we must
of course give the limits unax and up;, of the control variable. The lin-
ear range can be specified either by giving the slope of the character-
istic (controller gain K) or by giving the range where the characteris-
tic is linear (proportional band P,). This range is normally centered
around the setpoint. The proportional band and the controller gain
are related through

Umax — Umin = K Pb (3.2)
It is normally assumed that upay — min = 100 %, which implies that
100
= — 3.3
5 (3.3

Notice that a proportional controller acts like an on-off controller for
large errors.
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Figure 8.3 Characteristic of a proportional controller. The input
is control error e and the output is control signal u.

Static Analysis of Feedback Systems

Some properties of a control system can be understood by a simple
static analysis. To do this we introduce the static process character-
istic, which is a curve that shows the stationary value of process
output ¥ as a function of process input u. See Figure 3.4. Notice that
the curve has a physical interpretation only for a stable process. The
static process characteristic is very important. It can be used to de-
termine the range of control signals required to change the process
output over the desired range, to size actuators, and to select sensor
resolution. It can also be used to assess whether static gain variations
are so large that they must be accounted for in the control design.

Proportional Control

Consider a process under proportienal control. Let the controller char-
acteristic be

u = fc(ysp_‘y) (34)

Introducing the inverse controller characteristic £, this can be writ-
ten as

Ysp— Y = fc—l(u)
Further introducing the static process characteristic,
y = fpw) (3.5)

we find that the equilibrium value of u satisfies the equation

Yoo = £ (W) = fo(u) (3.6)
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Figure 3.4 Static process characteristic. Shows process output y
as a function of process input u under static conditions.

This equation can be solved graphically by finding the intersection
between the graphs of the functions f,(x) and yg, — £, }(u) as shown
in Figure 3.5. The intersection is unique if the static characteristics
are monotone. The equilibrium value of process output y is obtained
simply as the y-coordinate of the intersection. In the graphical con-
struction, it is easy to see how the equilibrium is influenced by the
setpoint and the controller gain. The equilibrium agrees with the set-
point only if

def
Ysp = Yo = fp(us) (3.7
y A Ysp _fc_l(u)
lope -
slope K fp(u)
Ysp
Yy
Yo
U min U py ey ! Umax ;
a

Figure 3.5 Determination of equilibrium from static process and
controller characteristics.
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For all other values of the setpoint there will be a deviation. If the -
process characteristic is approximated by a straight line with slope
K, and the controller gain is K, the deviation can easily be computed.
Introducing the parameter a shown in Figure 3.5, we find that

1
Ysp— Yo = (Kp'*'i)a

and
1
Yp— Y = F7 a
This implies that the steady-state error is given by

1
e=yy,—y = TTEK (ysp — ¥0) (3.8)

The smaller the deviation, the larger is the loop gain K, K.

3.3 PID Control

In the previous section we saw that proportional control had the draw-
back that it mostly results in a static or steady state error. The control
algorithms used in practice are, therefore, usually more complex than
the proportional controller. It has been found empirically that a so-
called PID controller is a useful structure. Inside the proportional
band the behaviour of the “textbook” version of the PID algorithm
can be described as:

u(t) = K(e(t) + % / e(t)dt + Ty dfi(tt)> (3.9)
0

where u is the control variable and e is the control error (e = y,, —¥).
The control variable is thus a sum of three terms: the P-term (which
is proportional to the error), the Iterm {which is proportional to the
integral of the error), and the D-term (which is proportional to the
derivative of the error). The controller parameters are proportional
gain K, integral time T;, and derivative time T}.

Proportional Action

In the case of pure proportional control, the control law of Equation
(8.9) reduces to

u(t) = Ke(t) + up (3.10)
The control action is simply proportional to the control error. The
variable u, 1s a bias or a reset. When the control error e is zero, the
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control variable takes the value u(¢) = u,. Bias uy is often fixed to
{Umax + Umin)/2, but can sometimes be adjusted manually so that the
stationary control error is zero at a given setpoint.

Static Analysis ‘

Several properties of proportional control can be understood by the
following argument, which is based on pure static considerations.
Consider the simple feedback loop, shown in Figure 3.6, and composed
of a process and a controller. Assume that the controller has propor-
tional action and that the process is modeled by the static model

x=Ky(u+l) (3.11)

where x is the process variable, u is the control variable, [ is a load
disturbance, and K, is the static process gain. The following equations
are obtained from the block diagram.

y=x+n
x = Ky(u+1) (3.12)
u=K(ysp—y)+up

Elimination of intermediate variables gives the following relation be-
tween process variable x, setpoint y,, load disturbance /, and mea-
surement noise n:

KK

— P
x= 1+KKp(ys"

K,

n)+ 1+ KK, (I + uyp) (3.13)
Compare with Equation (3.8) of the previous section. Product KK,
is a dimensionless number called the loop gain. Several interesting
properties of the closed-loop system can be read from Equation (3.13).
First assume that n and u; are zero. Then the loop gain should be
high in order to ensure that process output x is close to setpoint ys,.
A high value of the loop gain will also make the system insensitive to

Controller Process —
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Figure 3.6 Block diagram of a simple feedback loop.
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load disturbance I. However, if n is nonzero, it follows from Equation
(3.13) that measurement noise n influences the process output in
the same way as setpoint y,,. To avoid making the system sensitive
to measurement noise, the loop gain should not be made too large.
Further, the controller bias u; influences the system in the same way
as a load disturbance. It is, therefore, obvious that the design of the
loop gain is a trade-off between different control objectives, and that
there is no simple answer to what loop gain is the best. This will
depend on which control objective is the most important.

It also follows from Equation (3.13) that there will normally be
a steady-state error with proportional control. This can be deduced
intuitively from the observation following from Equation (3.12) that
the control error is zero only when u = u; in stationarity. The error,
therefore, can be made zero at a given operating condition by a proper
choice of the controller bias u,.

The static analysis given above is based on the assumption that
the process can be described by a static model. This leaves out some
important properties of the closed-loop system dynamics. The most
important one is that the closed-loop system will normally be un-
stable for high-loop gains if the process dynamics are considered. In
practice, the maximum loop gain is thus determined by the process
dynamics. One way to describe process dynamics leads to descriptions
like Equation (3.11) where the process gain is frequency-dependent.
(This was discussed in Chapter 2.)

A typical example of proportional control is illustrated in Figure
3.7. The figure shows the behaviour of the process output and the

\‘/\/\f
T T —
10 15 20
I it ——
—T T T
10 i5 20

Figure 3.7 Simulation of a closed-loop system with proportional
control. The process transfer function is G(s) = (s+1)73. The upper
diagram shows setpoint y,, = 1 and process output y for different
values of controller gain K. The lower diagram shows control signal
u for different controller gains.
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control signal after a step change in the setpoint. The steady state
error can be computed from Equation (3.13). The bias term u;, the
load [, and the noise n are all zero in the simulation. With a controller
gain K = 1 and a static process gain K, = 1, the error is therefore
50%. The figure shows that the steady state error decreases with
increasing controller gain as predicted by Equation (3.13). Notice also
that the response becomes more oscillatory with increasing controller
gain. This is due to the process dynamics.

Integral Action

The main function of the integral action is to make sure that the
process output agrees with the setpoint in steady state. With propor-
tional control, there is normally a control error in steady state. With
integral action, a small positive error will always lead to an increas-
ing control signal, and a negative error will give a decreasing control
signal no matter how small the error is.

The following simple argument shows that the steady-state error
will always be zero with integral action. Assume that the system is in
steady state with a constant control signal (1) and a constant error
(eo). It follows from Equation (3.9) that the control signal is then

given by
€q
u = K (eo + T )

As long as e¢p # 0, this clearly contradicts the assumption that the
control signal ug is constant. A controller with integral action will
always give zero steady-state error.

Integral action can also be visualized as a device that automati-
cally resets the bias term u, of a proportional controller. This is illus-
trated in the block diagram in Figure 3.8, which shows a proportional
controller with a reset that is adjusted automatically. The adjustment
is made by feeding back a signal, which is a filtered value of the out-
put, to the summing point of the controller. This was actually one of
the early inventions of integral action, or “automatic reset,” as it was
also called.

1
1+ sT;

Figure 3.8 Implementation of integral action as positive feedback
around a lag.
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The implementation shown in Figure 3.8 is still used by many
manufacturers. A simple calculation shows that the controller gives
the desired results. The following equations follow from the block
diagram:

u=~Ke+]I
dI

T, 41 =
‘dt+ u

Elimination of u between these equations gives

Tiﬂ+1=Ke+I
dt

Hence,

T; % = Ke
which shows that the controller in Figure 3.8 is, in fact, a PI con-
troller.

The properties of integral action are illustrated in Figure 3.9,
which shows a simulation of a system with PI control. The propor-
tional gain is constant, £ = 1 in all curves, and the integral time
is changed. The case T; = oo corresponds to pure proportional con-
trol. This case is identical to the case K = 1 in Figure 3.7, where
the steady state error is 50%. The steady state error is removed
when T; has finite values. For large values of the integration time,
the response creeps slowly towards the setpoint. The approach is

—
15 20
— —
15 20

Figure 3.9 Simulation of a closed-loop system with proportional
and integral control. The process transfer function is G(s) = (s +
1)-3, and the controller gain is K = 1. The upper diagram shows
setpoint yg, = 1 and process output y for different values of integral
time 7;. The lower diagram shows control signal u for different
integral times.
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approximately exponential with time constant T;/K K,,. The approach
is faster for smaller values of T;; and it is also more oscillatory.

Derivative Action

The purpose of the derivative action is to improve the closed-loop
stability. The instability mechanism can be described intuitively as
follows. Because of the process dynamics, it will take some time before
a change in the control variable is noticeable in the process output.
‘Thus, the control system will be late in correcting for an error. The
action of a controller with proportional and derivative action may be
interpreted as if the control is made proportional to the predicted
process output, where the prediction is made by extrapolating the
error by the tangent to the error curve (see Figure 3.10 ). The basic
structure of a PD controller is

u(t) = K (e(t) + Ty dfi(tt)>

-A Taonr series expansion of e(z + Ty) gives

e(t+Ty)=e(t)+ Ty de(?)
dt
The control signal is thus proportional to an estimate of the control
error at time Ty ahead, where the estimate is obtained by linear
extrapolation.

The properties of derivative action are illustrated in Figure 3.11,
which shows a simulation of a system with PID control. Controller
gain and integration time are kept constant, K = 3 and T; = 2,
and derivative time Ty is changed. For Ty = 0 we have pure PI con-
trol. The closed-loop system is oscillatory with the chosen parameters.
Initially damping increases with increasing derivative time, but de-
creases again when derivative time becomes too large.

)
1.5
e(?)
1
e(t+Ty) o
0.5 e(t) + Ty%
0 T T T
0 1 2 3

Figure 3.10 Interpretation of derivative action as predictive con-
trol, where the prediction is obtained by linear extrapolation.
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Figure 3.11 Simulation of a closed-loop system with proportional,
integral and derivative control. The process transfer function is-
G(s) = (s + 1)73, the controller gain is K = 3, and the integral
time is T; = 2. The upper diagram shows setpoint y, = 1 and
process output y for different values of derivative time Tj. The
lower diagram shows control signal u for different derivative times.

Summadry

The PID controller has three terms. The proportional term P corre-
sponds to proportional control. The integral term I gives a control
action that is proportional to the time integral of the error. This en-
sures that the steady state error becomes zero. The derivative term
D is proportional to the time derivative of the control error. This term
allows prediction of the future error. There are many variations of the
basic PID algorithm that will substantially improve its performance
and operability. They are discussed in the next section.

3.4 Modifications of the PID Algorithm

The PID algorithm was given by Equation (3.9) in the previous sec-
tion. This “textbook” algorithm is seldom used in practice because
much better performance is obtained by the modified algorithm dis-
cussed in this section.

Alternative Representations

The PID algorithm given by (Equation 3.9) can be represented by the
transfer function

G(s) = K (1 + % + sTd) (3.14)
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Figure 3.12 Interacting and non-interacting form of the PID al-
gorithm.
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A slightly different version is most common in commercial controllers.
This controller is described by

G@:KO+1>QHQ) (38.15)
sT!
The two controller structures are presented in block diagram form in
Figure 3.12. The controller given by Equation (3.14) is called non-
interacting, and the one given by Equation (3.15) interacting. The
reason for this nomenclature is that in the controller (3.14) the inte-
gral time T; does not influence the derivative part, and the derivative
time T, does not influence the integral part (see Equation (3.14)).
The parts are thus non-interacting. In the interacting controller, the
derivative time T} does influence the integral part. Therefore, the
parts are interacting.

The interacting controller (3.15) can always be represented as a
non-interacting controller (3.14), whose coefficients are given by

71;', + TI

K =K'=

T.=T +T, (3.16)
a2l

T, - TiTy

T+ T,
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An interacting controller of the form (8.15) that corresponds to a non-
interacting controller (3.14) can be found only if

T; 2 4T,

il
i

(1+v1- 4Ty[T,)
/= 5 (1+ VI-4TJ/T)) (3.17)
S (1~ Vi4TJT)

The non-interacting controller given by Equation (3.14) is more gen-
eral, and we will use that in the future. It is, however, claimed that
the interacting controller is easier to tune manually.

There is also an historical reason for preferring the interacting
controller. Early pneumatic controllers were easier to build using
the interacting form. When the controller manufacturers changed
technology from pneumatic to analog electric and, finally, to digital
technique, they kept the interactive form. Therefore, the interacting
form is most common among single-loop controllers.

It is important to keep in mind that different controllers may
have different structures. It means that if a controller in a certain
control loop is replaced by another type of controller, the controller
parameters may have to be changed. Note, however, that the inter-
acting and the non-interacting forms are different only when both
the I and the D parts of the controller are used. If we only use the
controller as a P, PI, or PD controlier, the two forms are equivalent.
Yet another representation of the PID algorithm is given by

3
|
2[5 | X

o3
I

G'(s)=k+ % + sky (3.18)

The parameters are related to the parameters of standard form
through

k=K

K
b=
kg = KTy

The representation (3.18) is equivalent to the standard form, but the
parameter values are quite different. This may cause great difficulties
for anyone who is not aware of the differences, particularly if parame-
ter 1/k; is called integral time and %4 derivative time. The form given
by Equation (8.18) is often useful in analytical calculations because
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the parameters appear linearly. The representation also has the ad-
vantage that it is possible to obtain pure proportional, integral, or
derivative action by finite values of the parameters.

Summarizing we have thus found that there are three different
forms of the PID controller. :

¢ The standard or non-interacting form given by Equation (3.14).
o The series or interacting form given by Equation (3.15).
¢ The parallel form given by Equation (3.18).

The standard form is sometimes called the ISA algorithm, or the
ideal algorithm. The proportional, integral, and derivative actions are
noninteracting in the time domain. This algorithm admits complex
zeros, which is useful when controlling systems with oscillatory poles.

The series form is also called the classical form. This represen-
tation is obtained naturally when a controller is implemented as an
analog device based on a pneumatic force balance system. The name
classical reflects this. The series form has an attractive interpretation
in the frequency domain because the zeros correspond to the inverse
values of the derivative and integral times. All zeros of the controller
are real. Pure integral or proportional action can not be obtained with
finite values of the controller parameters. Most controllers use this
form.

The parallel form is the most general form, because pure pro-
portional or integral action can be obtained with finite parameters.
The controller can also have complex zeros. In this way it is the most
flexible form. However, it is also the form where the parameters have
little physical interpretation.

Setpoint Weighting

A common form of a control system is shown in Figure 3.6. The system
is characterized by forming an error that is the difference between
the setpoint and the process output. The controller generates a control
signal by operating on the error. This control signal is then applied
to the process. Such a system is called a “system with error feedback”
because the controller operates on the error signal. A more flexible
structure is obtained by treating the setpoint and the process output
separately. A PID-controller of this form is given by

u(t) = K(ep + % /e(s)ds + Ty %) (3.19)
0

where the error in the proportional part is

ep =bysy—y (3.20)
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and the error in the derivative part is
ed =CYysp— Y (3.21)

The error in the integral part must be the true control error

e=Ysp—Y

to avoid steady-state control errors. The controllers obtained for dif-
ferent values of b and ¢ will respond to load disturbances and mea-
surement noise in the same way. The response to setpoint changes
will depend, however, on the values of b and c. This is illustrated
in Figure 3.13, which shows the response of a PID controller to set-
point changes, load disturbances, and measurement errors for differ-
ent values of 4. The figure shows clearly the effect of changing b.
The overshoot for setpoint changes is smallest for & = 0, which is
the case where the reference is only introduced in the integral term,
and increases with increasing b. Notice that a simulation like the
one in Figure 3.13 is useful in order to give a quick assessment of
the responses of a closed-loop system to setpoint changes, load dis-
turbances, and measurement errors.

The parameter ¢ is normally chosen equal to zero to avoid large
transients in the control signal due to sudden changes in the setpoint.
An exception is when the controller is the secondary controller in a
cascade coupling (see Section 7.2). In this case, the setpoint changes
smoothly, because it is given by the primary controller output. Notice
that if the integral action is implemented with positive feedback
around a lag as in Figure 3.8, the parameter b is equal to one.

The controller with b = 0 and ¢ = 0 is sometimes called an I-
PD controller, and the controller with 4 = 1 and ¢ = 0 is sometimes
called a PI-D controller. We prefer to stick to the generic use of PID
and give the parameters b and ¢, thereby making a small contribution
towards reduction of three-letter abbreviations.

In general, a control system has many different requirements.
It should have good transient response to setpoint changes, and it
should reject load disturbances and measurement noise. For a system
with error feedback only, an attempt is made to satisfy all demands
with the same mechanism. Such systems are called one-degree of
freedom systems. By having different signal paths for the setpoint
and the process output (two-degree of freedom systems), there is
more flexibility to satisfy the design compromise. This is carried much
further in more sophisticated control systems.

In the block diagram in Figure 3.6, the controller output is gener-
ated from the error e = y,, — y. Notice that this diagram is no longer
valid when the control law given by Equation (3.19) and the error
definitions (3.20) and (3.21) are used. A block diagram for a system
with PID control is now given by Figure 3.14.
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Figure 3.13 The response to setpoint changes, load disturbances,
and measurement errors for different values of setpoint weighting
b. The lower diagrams show the proportional, integral, and deriva-

tive parts of the control signal.
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Figure 3.14 Block diagram of a simple feedback loop whith a PID
controller having a two-degree-of-freedom structure.

Notice that the transfer function from the setpoint y;, to the
control signal u is given by

fo =K (b + + CSTd)

and the transfer function from the process variable y to the control
variable u is given by
1
T,
ST,; + 8 d>

and that the transfer functions are different.

si;

GC=K(1+

Limitation of the Derivative Gain

The derivative action may result in difficulties, if there is high-
frequency measurement noise. A sinusoidal measurement noise

n = a sin wt

gives the following contribution to the derivative term of the control
signal:
dn
dt
The amplitude of the control signal can thus be arbitrarily large if
the noise has a sufficiently high frequency (). The high-frequency
gain of the derivative term is therefore limited to avoid this difficulty.
This can be done by implementing the derivative term as
Ty dD dy

D———ﬁﬁ—KTd—cE (3.22)
It follows from this equation that the modified derivative term can
be represented as follows:

u, = KT, = aKTyw cos wt

___SKTy
T TT+sTyN?

L
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The modification can be interpreted as the ideal derivative filtered by
a first-order system with the time constant T;/N. The approximation
acts as a derivative for low-frequency signal components. The gain,
however, is limited to K N. This means that high-frequency measure-
ment noise is amplified at most by a factor K N. Typical values of N
are 8 to 20. ‘

Error-Squared Controllers

In the standard form of PID control, the control error enters linearly
in the control algorithm, see Equation (3.9). It is sometimes desirable
to have higher controller gains when the control error is large, and
smaller gains when the control error is small. One common way of
obtaining this property is to use the square of the control error, i.e.,
the control error is substituted by

€squared = € ] e‘

The square of the error is mostly used only in the proportional term,
sometimes in the integral term, but seldom in the derivative term.
One reason for using error-squared controllers is to reduce the ef-
fects of low-frequency disturbances in the measurement signal. These
disturbances cannot be filtered out, but the use of error-squared con-
trol gives a small amplification of the noise when the control error is
small, and an effective control when the control error is large.
Another application of error-squared controllers is surge tank
control. Here, the main control objective is to keep the control signal
smooth. On the other hand, the level must not deviate too much from
the setpoint. This is obtained efficiently by error-squared control.

Special Controller Outputs

The inputs and outputs of a controller are normally analog signals,
typically 0—20 mA or 4-20 mA. The main reason for using 4 mA
instead of 0 mA as the lower limit is that many transmitters are
designed for two-wire connection. This means that the same wire is
used for both driving the sensor and transmitting the information
from the sensor. It would not be possible to drive the sensor with
a current of 0 mA. The main reason for using current instead of
voltage is to avoid the influence of voltage drops along the wire due
to resistance in the (perhaps long) wire.

Thyristors and Triacs

In temperature controllers it is common practice to integrate the
power amplifier with the controller. The power amplifier could be a
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thyristor or a triac. With a thyristor, an AC voltage is switched to the
load at a given angle of the AC voltage. Since the relation between
angle and power is nonlinear, it is crucial to use a transformation to
maintain a linear relationship. A triac is also a device that imple-
ments switching of an' AC signal, but only at the zero crossing. Such
a device is similar to a pulse output.

Pulse Width Modulation

In somecases, such as with the triac, there is an extreme quantization
in the sense that the actuator only accepts two values, on or off. In
such a case, a cycle time Tyyq, is specified, and the controller gives a
pulse with width

u(t) — Umpi
a_(_)____“_‘iTcyde

Tpulse(t) = (323)

max — Umin

A similar, but slightly different, situation occurs when the actuator
has three levels: max, min, and zero. A typical example is a motor-

T

cycle
u A
—— | e
100%
0%
Time
e A
100%
0% -
Time

Figure 3.15 Illustration of controller output based on pulse width
modulation.
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driven valve where the motor can stand still, go forward, or. go back-
ward.

Figure 3.15 illustrates the pulse width modulation. The figure
shows the output from a P controller with pulse width modulation
for different values of the control error.

Velocity Algorithms

The algorithms described so far are called positional algorithms be-
cause the output of the algorithms is the control variable. In certain
cases the control system is arranged in such a way that the control
signal is driven directly by an integrator, e.g., a motor. It is then nat-
ural to arrange the algorithm in such a way that it gives the velocity
of the control variable. The control variable is then obtained by in-
tegrating its velocity. An algorithm of this type is called a velocity
algorithm. A block diagram of a velocity algorithm for a PID con-
troller is shown in Figure 3.16. Velocity algorithms were commonly
used in many early controllers that were built around motors. In
several cases, the structure was retained by the manufacturers when
technology was changed in order to maintain functional compatibility
with older equipment. Another reason is that many practical issues,
like wind-up protection and bumpless parameter changes, are easy to
implement using the velocity algorithm. This is discussed further in
Sections 3.5 and 3.6. In digital implementations velocity algorithms
are also called incremental algorithms.

A Difficulty with Velocity Algorithms

A velocity algorithm cannot be used directly for a controller without
integral action, because such a controller cannot keep the stationary

[ 2
KT
eg O—i— 5Kl _
¢ 1+sT;/N

External
integrator

i
1
|
ep ( )—ﬁ———' sK
i
|
O——
i
|

Figure 3.16 Block diagram of a PID algorithm in velocity form.
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Figure 3.17 Illustrates the difficulty with a proportional con-
troller in velocity form (A) and a way to avoid it (B).

value. This can be understood from the block diagram in Figure 3.17A,
which shows a proportional controller in velocity form. Stationarity
can be obtained for any value of the control error e, since the output
from the derivation block is zero for any constant input. The problem
can be avoided with the modification shown in Figure 3.17B. Here,
stationarity is only obtained when u = Ke + u.

If a sampled PID controller is used, a simple version of the method
illustrated in figure 3.17B is obtained by implementing the P con-
troller as

Au(t)y = u(t)—u(t—h) = Ke(t) + up —uf{t — h)

where A is the sampling period.

3.5 Integrator Windup

Although many aspects of a control system can be understood based
on linear theory, some nonlinear effects must be accounted for. All
actuators have limitations: a motor has limited speed, a valve cannot
be more than fully opened or fully closed, etc. For a control system
with a wide range of operating conditions, it may happen that the
control variable reaches the actuator limits. When this happens the
feedback loop is broken and the system runs as an open loop because
the actuator will remain at its limit independently of the process
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output. If a controller with integrating action is used, the error will
continue to be integrated. This means that the integral term may
become very large or, colloquially, it “winds up”. It is then required
that the error has opposite sign for a long period before things return
to normal. The consequence is that any controller with integral action
may give large transients when the actuator saturates.

EXAMPLE 3.1 Illustration of integrator windup‘

The wind-up phenomenon is illustrated in Figure 3.18, which shows
control of an integrating process with a PI controller. The initial set-
point change is so large that the actuator saturates at the high limit.
The integral term increases initially because the error is positive; it
reaches its largest value at time ¢ = 10 when the error goes through
zero. The output remains saturated at this point because of the large
value of the integral term. It does not leave the saturation limit until .
the error has been negative for a sufficiently long time to let the in-
tegral part come down to a small level. Notice that the control signal
bounces between its limits several times. The net effect is a large over-
shoot and a damped oscillation where the control signal flips from one
extreme to the other as in relay oscillation. The output finally comes
s0 close to the setpoint that the actuator does not saturate. The sys-
tem then behaves linearly and settles. |

2 } /\<
1 \/ "
ysp
0 T T L T
0 20 40 60 80
u
-0.1
¥ 1 T T
0 20 40 60 80
l 1
2
, /\/\___
T 1 T T
0 20 40 60 80

Figure 3.18 Illustration of integrator windup. The diagrams show
process output y, setpoint y,,, control signal «, and integral part I.
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Integrator windup may occur in connection with large setpoint
changes or it may be caused by large disturbances or equipment mal-
functions. Windup can also occur when selectors are used so that sev-
eral controllers are driving one actuator. In cascade control, windup
may occur in the primary controller when the secondary controller
is switched to manual mode, uses its local setpoint, or if its control
signal saturates. See Section 7.2.

The phenomenon of windup was well known to manufacturers
of analog controllers who invented several tricks to avoid it. They
were described under labels like preloading, batch unit, etc. Although
the problem was well understood, there were often limits imposed
because of the analog implementations. The ideas were often kept
as trade secrets and not much spoken about. The problem of windup
was rediscovered when controllers were implemented digitally and
several methods to avoid windup were presented in the literature. In
the following section we describe several of the ideas.

Setpoint Limitation

One way to try to avoid integrator windup is to introduce limiters
on the setpoint variations so that the controller output will never
reach the actuator bounds. This often leads to conservative bounds
and limitations on controller performance. Further, it does not avoid
windup caused by disturbances.

Incremental Algorithms

In the early phases of feedback control, integral action was integrated
with the actuator by having a motor drive the valve directly. In
this case windup is handled automatically because integration stops
when the valve stops. When controllers were implemented by analog
techniques, and later with computers, many manufacturers used a
configuration that was an analog of the old mechanical design. This
led to the so-called velocity algorithms discussed in Section 3.4. In this
algorithm the rate of change of the control signal is first computed
and then fed to an integrator. In some cases this integrator is a
motor directly connected to the actuator. In other cases the integrator
is implemented internally in the controller. With this approach it
is easy to handle mode changes and windup. Windup is avoided
by inhibiting the integration whenever the output saturates. This
method is equivalent to back-calculation, which is described below.
If the actuator output is not measured, a model that computes the
saturated output can be used. It is also easy to limit the rate of change
of the control signal.
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Back-Calculation and Tracking

Back-calculation works as follows: When the output saturates, the
integral is recomputed so that its new value gives an output at the
saturation limit. It is advantageous not to reset the integrator instan-
taneously but dynamically with a time constant T%.

Figure 3.19 shows a block diagram of a PID controller with anti-
windup based on back-calculation. The system has an extra feedback
path that is generated by measuring the actual actuator output and
forming an error signal (e;) as the difference between the output of
the controller (v) and the actuator output (). Signal e; is fed to the
input of the integrator through gain 1/T. The signal is zero when

A
e AN KTys
Actuator
e=r-y o & 5 v u
K 1
T; s
1
T
B
s
4 Actuator
model Actuator
e=r—y
K ——
K 1
T; s
1
T;

Figure 3.19 Controller with anti-windup. A system where the
actuator output is measured is shown in A and a system where the
actuator output is estimated from a mathematical model is shown
in B.
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there is no saturation. Thus, it will not have any effect on the normal
operation when the actuator does not saturate. When the actuator
saturates, the signal e, is different from zero. The normal feedback
path around the process is broken because the process input remains
constant. There is, however, a feedback path around the integrator.’
Because of this, the integrator output is driven towards a value such
that the integrator input becomes zero. The integrator input is

1 e;+ —e

T, T
where e is the control error. Hence,
KT,
T e
in steady state. Since e; = u — v, it follows that

b = g + BLt
= Ulim Ti
where u;;,, is the saturating value of the control variable. Since the
signals e and uy;, have the same sign, it follows that v is always larger

than u);,, in magnitude. This prevents the integrator from winding up.

e = —
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Figure 3.20 Controller with anti-windup applied to the system
of Figure 3.18. The diagrams show process output y, setpoint y,,,
control signal u, and integral part .
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The rate at which the controller output is reset is governed by the
feedback gain, 1/T;, where T} can be interpreted as the time constant,
which determines how quickly the integral is reset. We call this the
tracking time constant.

It frequently happens that the actuator output cannot be mea-
sured. The anti-windup scheme just described can be applied by in-
corporating a mathematical model of the saturating actuator, as is
illustrated in Figure 3.19B. ‘

Figure 3.20 shows what happens when a controller with anti-
windup is applied to the system simulated in Figure 3.18. Notice
that the output of the integrator is quickly reset to a value such that
the controller output is at the saturation limit, and the integral has
a negative value during the initial phase when the actuator is satu-
rated. This behavior is drastically different from that in Figure 3.18,
where the integral has a positive value during the initial transient.
Also notice the drastic improvement in performance compared to the
ordinary PI controller used in Figure 3.18.

The effect of changing the values of the tracking time constant
is illustrated in Figure 3.21. From this figure, it may thus seem
advantageous to always choose a very small value of the time constant
because the integrator is then reset quickly. However, some care
must be exercised when introducing anti-windup in systems with
derivative action. If the time constant is chosen too small, spurious
errors can cause saturation of the output, which accidentally resets
the integrator. The tracking time constant 7} should be larger than
T; and smaller than T;. A rule of thumb that has been suggested is
to choose T = /T;Ty.

Yop T, =3
1 A&Tt =2
T, =01,T = 1
0 b} T T
0 10 20 30
0.1
0
0.1 . .
0 20 30

Figure 3.21 The step response of the system in Figure 3.18 for
different values of the tracking time constant 7,. The upper curve
shows process ouput y and setpoint y,,, and the lower curve shows
control signal u.
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Figure 3.22 Block diagram and simplified representation of PID
module with tracking signal.

Controllers with a Tracking Mode

A controller with back-calculation can be interpreted as having two
modes: the normal control mode, when it operates like an ordinary
controller, and a tracking mode, when the integrator is tracking so
that it matches given inputs and outputs. Since a controller with
tracking can operate in two modes, we may expect that it is nec-
essary to have a logical signal for mode switching. However, this is
not necessary, because tracking is automatically inhibited when the
tracking signal w is equal to the controller output. This can be used
with great advantage when building up complex systems with selec-
tors and cascade control.

Figure 3.22 shows a PID module with a tracking signal. The
module has three inputs: the setpoint, the measured output, and a
tracking signal. The new input TR is called a tracking signal because
the controller output will follow this signal. Notice that tracking is
inhibited when w = v. Using the module the system shown in Figure
3.19 can be presented as shown in Figure 3.23.
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Figure 3.23 Representation of the controllers with anti-windup
in Figure 3.19 using the basic control module with tracking shown
in Figure 3.22.

The Proportional Band

The notion of proportional band is useful in order to understand the
wind-up effect and to explain schemes for anti-windup. The propor-
tional band is an interval such that the actuator does not saturate if
the instantaneous value of the process output or its predicted value
is in the interval. For PID control without derivative gain limitation,
the control signal is given by

d
u = K(bysp— ) +I—KTda—3t/ (3.24)

Solving for the predicted process output
dy
yp=y+ T4 ar

gives the proportional band (y;, y3) as

I- Umax
Yy = bysp + e
I-u, (3.25)

Yo = bysp+ “'—K—

and umin, Umax are the values of the control signal for which the
actuator saturates. The controller operates in the linear mode, if
the predicted output is in the proportional band. The control signal
saturates when the predicted output is outside the proportional band.
Notice that the proportional band can be shifted by changing the
integral term.
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Figure 3.24 The proportional band for the system in Example 3.1.
The upper diagram shows process output y and the proportional
band. The lower diagram shows control signal «.

To illustrate that the proportional band is useful in understanding
windup, we show the proportional band in Figure 3.24 for the system
discussed in Example 3.1. (Compare with Figure 3.18.) The figure
shows that the proportional band starts to move upwards because
the integral term increases. This implies that the output does not
reach the proportional band until it is much larger than the setpoint.
When the proportional band is reached the control signal decreases
rapidly. The proportional band changes so rapidly, however, that the
output very quickly moves through the band, and this process repeats
several times.

The notion of proportional band helps to understand several
schemes for anti-windup. Figure 3.25 shows the proportional band
for the system with tracking for different values of the tracking time
constant T;. The figure shows that the tracking time constant has a
significant influence on the proportional band. Because of the track-
ing, the proportional band is moved closer to the process output. How
rapidly it does this is governed by the tracking time constant T;. No-
tice that there may be a disadvantage in moving it too rapidly, since
the predicted output may then move into the proportional band be-
cause of noise, and cause the control signal to decrease unnecessarily.

Conditional integration

Conditional integration is an alternative to back-calculation or track-
ing. In this method integration is switched off when the control is
far from steady state. Integral action is thus only used when certain
conditions are fulfilled, otherwise the integral term is kept constant.
The method is also called integrator clamping.
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Figure 3.25 The proportional band and the process output y for
a system with conditional integration and tracking with different
tracking time constants 7).

The conditions when integration is inhibited can be expressed in
many different ways. Figure 3.26 shows a simulation of the system
in Example 3.1 with conditional integration such that the integral
term is kept constant during saturation. A comparison with Figure
3.25 shows that, in this particular case, there is very little difference
in performance between conditional integration and tracking. The
different wind-up schemes do, however, move the proportional bands
differently.

A few different switching conditions are now considered. One
simple approach is to switch off integration when the control error is
large. Another approach is to switch off integration during saturation.
Both these methods have the disadvantage that the controller may
get stuck at a non-zero control error if the integral term has a large
value at the time of switch off.

A method without this disadvantage is the following. Integration
is switched off when the controller is saturated and the integrator
update is such that it causes the control signal to become more satu-
rated. Suppose, for example, that the controller becomes saturated at
the upper saturation. Integration is then switched off if the control
error is positive, but not if it is negative.

Some conditional integration methods are intended mainly for
startup of batch processes, when there may be large changes in the
setpoint. One particular version, used in temperature control, sets the
proportional band outside the setpoint when there are large control
deviations. The offset can be used to adjust the transient response ob-
tained during start up of the process. The parameters used are called
cut-back or preload (see Figure 3.27). In this system the proportional
band is positioned with one end at the setpoint and the other end
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Figure 3.26 Simulation of the system in Example 3.1 with condi-
tional integration. The diagrams show the proportional band, pro-
cess output y, control signal «, and integral part I.
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Figure 8.27 Adjustment of the proportional band using cut-back
parameters. The diagrams show the proportional band, setpoint y,;,

process output y, control signal u, and integral part I.
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towards the measured value when there are large variations. These
methods may give wind-up during disturbances.

Series Implementation

In Figure 3.8, we showed a special implementation of a controller
in interacting form. To avoid windup in this controller we can incor-
porate a model of the saturation in the system as shown in Figure
3.28A. Notice that in this implementation the tracking time constant
T; is the same as the integration time T;. This value of the tracking
time constant is often too large. o

In Figure 3.28A, the model of the saturation will limit the control
signal directly. It is important, therefore, to have a good model of the
physical saturation. Too hard a limitation will cause an unnecessary
limitation of the control action. Too weak a limitation will cause
windup.

More flexibility is provided if the saturation is positioned accord-
ing to Figure 3.28B. In this case, the saturation will not influence
the proportional part of the controller. With this structure it is also
possible to force the integral part to assume other preload values dur- -
ing saturation. This is achieved by replacing the saturation function
by the nonlinearity shown in Figure 3.29. This anti-windup proce-
dure is sometimes called a “batch unit” and may be regarded as a
type of conditional integration. It is mainly used for adjusting the

A
e u
—» K __/—
I
1 -
1+ST,‘
B
e—w K |—» Z u

A

1 -
1+ sT; f -

Figure 3.28 Two ways to provide anti-windup in the controller in
Figure 3.8 where integral action is generated as automatic reset.
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\
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Figure 3.29 A “batch unit” used to provide anti-windup in the
controller in Figure 3.8.

overshoot during startup when there is a large setpoint change. In
early single-loop controllers the batch unit was supplied as a special
add-on hardware.

Combined Schemes

Tracking and conditional integration can also be combined. In Howes
(1986) it is suggested to manipulate the proportional band explic-
itly for batch control. This is done by introducing so-called cutback
points. The high cutback is above the setpoint and the low cutback
is below. The integrator is clamped when the predicted process out-
put is outside the cutback interval. Integration is performed with a
specified tracking time constant when the process output is between
the cutback points. The cutback points are considered as controller
parameters that are adjusted to influence the response to large set-
point changes. A similar method is proposed in Dreinhofer (1988),
where conditional integration is combined with back-calculation. In
Shinskey (1988), the integrator is given a prescribed value i = iy dur-
ing saturation. The value of iy is tuned to give satisfactory overshoot
at startup. This approach is also called preloading.
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3.6 Digital Implementation

PID controllers were originally implemented using analog techniques.
Early systems used pneumatic relays, bellows, and needle-valve con-
strictions. Electric motors with relays and feedback circuits and op-
erational amplifiers were used later. Many of the features like anti-
windup and derivation of process output instead of control error were
incorporated as “tricks” in the implementation. It is now common
practice to implement PID controllers using microprocessors, and
some of the old tricks have been rediscovered. Several issues must
be considered in connection with digital implementations. The most
important ones have to do with sampling, discretization, and quanti-
zation.

Sampling

When a digital computer is used to implement a control law, all
" signal processing is done at discrete instances of time. The sequence
of operations is as follows:

(1) Wait for clock interrupt

(2) Read analog input

(3) Compute control signal

(4) Set analog output

(5) Update controller variables

(6) Goto1l
The control actions are based on the values of the process output at
discrete times only. This procedure is called sampling. The normal
case is that the signals are sampled periodically with period A. The
sampling mechanism introduces some unexpected phenomena, which
must be taken into account in a good digital implementation of a PID
controller. To explain these, consider the signals

s(¢) = cos(nwt £ i)

and
sq(t) = cos(wt)

where w; = 2a/h [rad/s] is the sampling frequency. Well-known
formulas for the cosine function imply that the values of the signals
at the sampling instants [kh, 2 = 0,1,2,...] have the property

s(kh) = cos(nkhawst wkh) = cos(wkh) = s,(wkh)

The signals s and s, thus have the same values at the sampling
instants. This means that there is no way to separate the signals if
only their values at the sampling instants are known. Signal s, is,
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Figure 3.30 Illustration of the aliasing effect. The diagram shows
signal s and its alias s,.

therefore, called an alias of signal s. This is illustrated in Figure
3.30. A consequence of the aliasing effect is that a high-frequency
disturbance after sampling may appear as a low-frequency signal. In
Figure 3.30 the sampling period is 1 s and the sinusoidal disturbance
has a period of 6/5 s. After sampling, the disturbance appear as a
sinusoid with the frequency

fazl—‘Z-:l/GHZ

This low-frequency signal with time period 6 s is seen in the figure.

Prefiltering

The aliasing effect can create significant difficulties if proper pre-
cautions are not taken. High frequencies, which in analog controllers
normally are effectively eliminated by low-pass filtering, may, because
of aliasing, appear as low-frequency signals in the bandwidth of the
sampled control system. To avoid these difficulties, an analog prefilter
(which effectively eliminates all signal components with frequencies
above half the sampling frequency) should be introduced. Such a fil-
ter is called an antialiasing filter. A second-order Butterworth filter
is a common antialiasing filter. Higher-order filters are also used in
critical applications. An implementation of such a filter using opera-
tional amplifiers is shown in Figure 3.31. The selection of the filter
bandwidth is illustrated by the following example.

EXAMPLE 3.2 Selection of prefilter bandwidth

Assume it is desired that the prefilter attenuate signals by a factor of
16 at half the sampling frequency. If the filter bandwidth is @, and
the sampling frequency is w;, we get

(0s/205)° = 16
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Figure 3.31 Circuit diagram of a second-order Butterworth filter.

Hence,

1
a)b=§ws a

Notice that the dynamics of the prefilter will be combined with
the process dynamics.

Discretization

To implement a continuous-time control law, such as a PID controller
in a digital computer, it is necessary to approximate the derivatives
and the integral that appear in the control law. A few different ways
to do this are presented below.

Proportional Action
The proportional term is

P = K(bys, - y)

This term is implemented simply by replacing the continuous vari-
ables with their sampled versions. Hence,

P(ty) = K (bysp(te) — y(tk)) (3.26)

where {#;} denotes the sampling instants, i.e., the times when the
computer reads the analog input.

Integral Action
The integral term is given by

¢

I(?) = %/e(s)ds
0



96 Chapter 3 PID Control

It follows that

dl K '

There are several ways of approximating this equation.

Forward differences: Approximating the derivative by a forward

difference gives
I(tre) —I(8) _ K
7 =7 e(t)

This leads to the following recursive equation for the integral term

Htn) = 1) + 2 et (3.28)

Backward differences: If the derivative in Equation (3.27) is ap-
proximated instead by a backward difference, the following is ob-
tained:
I(ty) — Ity — 1)
h

This leads to the following recursive equation for the integral term

K
=7 e(t)

I(ths) = I(t) + Klee(tkH) (3.29)

Tustin’s approximation and ramp equivalence: Another simple
approximation method is due to Tustin. This approximation is

ﬁ e(tre1) + e(t)
T; 2

Yet another method is called ramp equivalence. This method gives ex-
act outputs at the sampling instants, if the input signal is continuous
and piece-wise linear between the sampling instants. The ramp equiv-
alence method gives the same approximation of the integral term as
the Tustin approximation, i.e., Equation (3.30).

I(teer) = 1(te) + (3.30)

Notice that all approximations have the same form, i.e.,

I(tk+1) = I(tk) + bile(tk+1) + bige(tk) (3.31)

but with different values of parameters b;; and b;,.

Derivative Action
The derivative term is given by Equation (3.22), i.e.,

TydD dy
N g TP =Ky,

This equation can be approximated in the same way as the integral
term.

(3.32)
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Forward differences: Approximating the derivative by a forward

difference gives

Ty D(tp1) = D(&) D(t) = —KT, Y(Tr+1) — ¥(te)

N h h
This can be rewritten as
. Nh
D(tp1) = (1- E—— D(ty) — KN (y(tr+1).— y(8)) (3.33)

Backward differences: 1If the derivative in Equation (3.32) is ap-
proximated by a backward difference, the following equation is ob-
tained:

Ta D(te) — D(tk-1) _ () = y(te-1)
- - +D(ty) = ~KTy .
This can be rewritten as
Ty KT N
D(t) = 7.+ Nh D(t_1) T+ Nk (y(t) — y(tr-1) (3.39)

Tustin’s approximation: Using the Tustin approximation to ap-
proximate the derivative term gives

Ts— Nh 2KTyN

D(ts) = gz Dltson) = g O06) = 5(5)  (335)

2T, + Nh

Ramp equivalence: Finally, the ramp equivalence approximation
is

— e~ NR/Ty
ELA= ) (3(0) - y(ts-) (330

D(tk) = e—Nh/TdD(tk_l) -

All approximations have the same form,

D(t) = agD(te-1) — ba (¥(ts) — y(tr-1)) (3.37)

but with different values of parameters ay and b,.

The approximations of the derivative term are stable only when
lag] < 1. The forward difference approximation requires that Ty >
Nh/2. The approximation becomes unstable for small values of 7.
The other approximations are stable for all values of Ty. Notice, how-
ever, that Tustin’s approximation and the forward difference approx-
imation give negative values of a4 if Ty is small. This is undesirable
because the approximation will then exhibit ringing. The backward
difference approximation will give good results for all values of Ty. It
is also easier to compute than the ramp equivalence approximation
and is, therefore, the most common method.
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Figure 3.32 Phase curves for PD controllers obtained by differ-
ent discretizations of the derivative term s7j/(1 + sTy/N) with
T, = 1,N = 10 and a sampling period 0.02. The discretizations are
forward differences (FD), backward differences (BD), Tustin’s ap-
proximation (T), and ramp equivalence (RE). The lower diagram
shows the differences between the approximations and the true
phase curve.

Figure 3.32 shows the phase curves for the different discrete time
approximations. Tustin’s approximation and the ramp equivalence ap-
proximation give the best agreement with the continuous time case,
the backward approximation gives less phase advance, and the for-
ward approximation gives more phase advance. The forward approx-
imation is seldom used because of the problems with instability for
small values of derivative time T,. Tustin’s algorithm is used quite
frequently because of its simplicity and its close agreement with the
continuous time transfer function. The backward difference is used
when an algorithm that is well behaved for small Ty is needed.

All approximations of the PID controller can be represented as

R(q)u(kh) = T(q)ysp(kh) - S(q)y(kh) (3.38)

where ¢ is the forward shift operator, and the polynomials R, S, and
T are of second order. The polynomials R, S, and T have the forms

R(q) = (¢ - 1)(g - aq)
S(q) = 50q® + 51q + s9 (3.39)
T(q) = tog” + t1g + t2
which means that Equation (3.38) can be written as
u(kh) = toysp(kh) + t1ysp(kh — h) + toysp(kh — 2h)
— soy(kh) — s1y(kh — h) — sey(kj — 2h)
+ (1 + ag)u(kh — h) — aqu(kh — h)
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Table 3.1 Coefficients in different approximations of the contin-
uous time PID controller.

Forward Backward  Tustin Ramp equivalence

b o Kb Kh K

. T; 2T; © 2T

Kh Khn Khn
ba 0 2T, T,
ay 1-— Nh Ta - 274 - Nh e~ Nh/Ty
Ty Ty + Nh 2Ty + Nh

b KN KTyN 2KTyN KT, (1 - e_Nh/Td)

d T, + Nh 2T, + Nh 3

The coefficients in the S and T' polynomials are

So K + bil + bd
s1 = —K(1+ayg)—binag +bip—2by

89 = Kad - bizad + bd

(3.40)
to= Kb+ by
i1 = -—Kb(l + ad) — bj1ag + bio
to = Kbay — bpsay

The coefficients in the polynomials for different approximation meth-
ods are given in Table 3.1.

Incremental Form

The algorithms described so far are called positional algorithms be-
cause they give the output of the controller directly. In digital imple-
mentations it is common to also use velocity algorithms. The discrete
time version of such an algorithm is also called an incremental algo-
rithm. This form is obtained by computing the time differences of the
controller output and adding the increments.

Au(ty) = ulty) — ultr-y) = AP(te) + AI(t:) + AD(ts)

In some cases integration is performed externally. This is natural
when a stepper motor is used. The output of the controller should
then represent the increments of the control signal, and the mo-
tor implements the integrator. The increments of the proportional
part, the integral part, and the derivative part are easily calculated
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from Equations (3.26), (3.31) and (3.37):

AP(ty) = P(tg) = P(tp-1) = K (bysp(te) — y(tr) — bysp(te-1) + y(te-1))
Al(tk) = I(tk) —I(tk_l) =b;1 e(tk) + b2 e(tk_l') )
AD(tr) = D(t3) — D(tg-1) = agAD (tp—1) = ba (¥(2r) — 2y (te-1) + ¥{tr-2))

One advantage with the incremental algorithm is that most of the
computations are done using increments only. Short word-length cal-
culations can often be used. It is only in the final stage where the
increments are added that precision is needed. Another advantage
is that the controller output is driven directly from an integrator.
This makes it very easy to deal with windup and mode switches. A
problem with the incremental algorithm is that it cannot be used for
controllers with P or PD action only. Therefore, AP has to be cal-
culated in the following way when integral action is not used (see
Section 3.4).

AP(t) = K (bys(ts) - y(t)) + s — u(ti-)

Quantization and Word Length

A digital computer allows only finite precision in the calculations. It
is sometimes difficult to implement the integral term on computers
with a short word length. The difficulty is understood from Equation
(3.31) for the integral term. The correction terms be(fr+1) + bize(t;)
are normally small in comparison to I(¢;), and they may be rounded
off unless the word length is sufficiently large. This rounding-off effect
gives an offset, called integration offset. To get a feel for the orders of
magnitudeinvolved, assume that we use the backward approximation
and that all signals are normalized to have a largest magnitude of
one. The correction term Kh4/T; - e in Equation (3.29) then has the
largest magnitude Kk /T;. Let the sampling period 2 be 0.02 s, the
integral time T; = 20 min = 1200 s and the gain K = 0.1. Then,

Kh -6 -19.2

T = 1.710°° =2
To avoid rounding off the correction term, it is thus necessary to
have a precision of at least 20 bits. More bits are required to obtain
meaningful numerical values. The situation is particularly important
when a stepping motor that outputs increments is used. It is then
necessary to resort to special tricks to avoid rounding off the integral.
One simple way is to use a longer sampling period for the integral
term. For instance, if a sampling period of 1 s is used instead of 0.02
s in the previous example, a precision of 14 bits is sufficient.

I[.k
|
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Three-Position Pulse Output

In Section 3.4, it was mentioned that the PID controller may have
different types of outputs. We now return to the three-position pulse
output and give a more detailed description of its implementation.

If a valve is driven by a constant-speed electrical motor, the valve
can be in three states: “increase,” “stop,” and “decrease.” Control of
valves with electrical actuators is performed with a controller output
that can be in three states. Three-position pulse output is performed
using two digital outputs from the controller. When the first output is
conducting, the valve position will increase. When the second output
is conducting, the valve position will decrease. If none of the outputs
are conducting, the valve position is constant. The two outputs must
never be conducting at the same time.

There is normally both a dead zone and a dead time in the
controller to énsure that the change of direction of the motor is not
too frequent and not too fast. It means that the controller output is
constant as long as the magnitude of the control error is within the
dead zone, and that the output is stopped for a few seconds before it
is allowed to change direction.

A servomotor is characterized by its running time Ty, which is
the time it takes for the motor to go from one end position to the other.
Since the servomotor has a constant speed, it introduces an integrator
in the control loop, where the integration time is determined by Tyyy.
A block diagram describing a PID controller with three-position pulse
output combined with an electrical actuator is shown in Figure 3.33.
Suppose that we have a steady-state situation, where the output from
the PID controller u is equal to the position v of the servo-motor.
Suppose further that we suddenly want to increase the controller
output by an amount Au. As long as the increase-output is conducting,
the output v from the servo-motor will increase according to

t
1 / t
Av = — [ 1dt =
Trun J Trun

To have Av equal to Au, the integration must be stopped after time

t = AuTpm
Au ir— 1 v
PID l ‘—l—l o STrun
%{_J . ~- J
Controller Actuator

Figure 3.33 A PID controller with three-position pulse output
combined with an electrical actuator.
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In a digital controller, this means that the digital output correspond-
ing to an increasing valve position is to be conducting for n sampling
periods, where n is given by

AuTn
: h
and where % is the sampling period of the controller.

To be able to perform a correct three-position pulse cutput, two
buffers (Buff_increase and Buff_decrease) must be used to hold
the number of pulses that should be sent out. The following is a
computer code for three-position pulse output. For the sake of sim-
plicity, details such as dead zone and dead time are omitted in the
code.

if delta_u > O then
if valve.is_increasing then
Buff_increase = Buff_increase + n;
else
Buff_decrease = Buff_decrease - n;
if Buff_decrease < 0 then
Buff_increase = - Buff_decrease;
Buff_decrease = 0;
valve_is.decreasing = false;
valve_is_increasing = true;
end;
end;
else if delta.u < O then
if valve_is_decreasing then
Buff_decrease = Buff_decrease + n;
else
Buff_increase = Buff_increase - n;
if Buff_increase < 0 then
Buff_decrease = - Buff_increase;
Buff_increase = 0;
valve_is_increasing = false;
valve._is_decreasing = true;
end;
end;
end;
if Buff_increase > O then
Increaseoutput = 1;
Decreaseoutput = 0;
Buff_increase = Buff_increase - 1;
else if Buff_decrease > 0O then
Increaseoutput = 0;
Decreaseoutput 1;
Buff_decrease = Buff_decrease - 1;
end;
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According to Figure 3.33, the controller output is Au instead of v in
the case of three-position pulse output. The integral part of the control
algorithm is outside the controller, in the actuator. This solution
causes no problems if the control algorithm really contains an integral
part. P and PD control can not be obtained without information of the
valve position (see Figure 3.17.)

3.7 Operational Aspects

Practically all controllers can be run in two modes: manual or auto-
matic. In manual mode the controller output is manipulated directly
by the operator, typically by pushing buttons that increase or decrease
the controller output. A controller may also operate in combination
with other controllers, such as in a cascade or ratio connection, or with
nonlinear elements, such as multipliers and selectors. This gives rise
to more operational modes. The controllers also have parameters that
can be adjusted in operation. When there are changes of modes and
parameters, it is essential to avoid switching transients. The way the

‘mode switchings and the parameter changes are made depends on

the structure chosen for the controller.

Bumpless Transfer Between Manual and Automatic

Since the controller is a dynamic system, it is necessary to make sure
that the state of the system is correct when switching the controller
between manual and automatic mode. When the system is in manual
mode, the control algorithm produces a control signal that may be
different from the manually generated control signal. It is necessary
to make sure that the two outputs coincide at the time of switching.
This is called bumpless transfer.

Bumpless transfer is easy to obtain for a controller in incremental
form. This is shown in Figure 3.34. The integrator is provided with
a switch so that the signals are either chosen from the manual or
the automatic increments. Since the switching only influences the
increments there will not be any large transients.

A similar mechanism can be used in the series, or interacting,
implementation of a PID controller shown in Figure 3.8 (see Figure
3.35). In this case there will be a switching transient if the output of
the PD part is not zero at the switching instant.

For controllers with parallel implementation, the integrator of the
PID controller can be used to add up the changes in manual mode. The
controller shown in Figure 3.36 is such a system. This system gives
a smooth transition between manual and automatic mode provided
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Figure 3.34 Bumpless transfer in a controller with incremental
output. MCU stands for manual control unit.
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Figure 3.35 Bumpless transfer in a PID controller with a special
series implementation.
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Figure 3.36 A PID controller where one integrator is used both
to obtain integral action in automatic mode and to sum the incre-
mental commands in manual mode.
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{
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Y

Figure 3.37 PID controller with parallel implementation that
switches smoothly between manual and automatic control.

that the switch is made when the output of the PD block is zero. If
this is not the case, there will be a switching transient.

It is also possible to use a separate integrator to add the incre-
mental changes from the manual control device. To avoid switching
transients in such a system, it is necessary to make sure that the
integrator in the PID controller is reset to a proper value when the
controller is in manual mode. Similarly, the integrator associated with
manual control must be reset to a proper value when the controller
is in automatic mode. This can be realized with the circuit shown in
Figure 3.37. With this system the switch between manual and auto-
matic is smooth even if the control error or its derivative is different
from zero at the switching instant. When the controller operates in
manual mode, as is shown in Figure 3.37, the feedback from the out-
put v of the PID controller tracks the output u. With efficient tracking
the signal v will thus be close to u at all times. There is a similar
tracking mechanism that ensures that the integrator in the manual
control circuit tracks the controller output.

Bumpless Parameter Changes

A controller is a dynamical system. A change of the parameters of
a dynamical system will naturally result in changes of its output.
Changes in the output can be avoided, in some cases, by a simulta-
neous change of the state of the system. The changes in the output
will also depend on the chosen realization. With a PID controller it
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is natural to require that there be no drastic changes in the output
if the parameters are changed when the error is zero. This will hold
for all incremental algorithms because the output of an incremental
algorithm is zero when the input is zero, irrespective of the param-
‘eter values. It also holds for a position algorithm with the structure

shown in Figure 3.8. For a position algorithm it depends, however,.

on the implementation. Assume that the state is chosen as

x1 = /te(r)d;

when implementing the algorithm. The integral term is then

K
I==
7.
Any change of K or T; will then result in a change of 1. To avoid
bumps when the parameters are changed, it is essential that the
state be chosen as ,
_ [ K(®)
Ti(7)
when implementing the integral term.

With sensible precautions, it is easy to ensure bumpless parame-
ter changes if parameters are changed when the error is zero. There
is, however, one case where special precautions have to be taken,
namely, if setpoint weighting (Equation 3.20) is used. To have bump-
less parameter changes in such a case it is necessary that the quan-
tity P + I be invariant to parameter changes. This means that when

e(r)dr

X1
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Track ! (T |
f |
| &f |
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Figure 3.38 Manual control module.
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Figure 3.39 A reasonably complete PID controller with anti-
windup, automatic-manual mode, and manual and external set-
point.

parameters are changed, the state I should be changed as follows

Inew = lold + Kold(boldysp - y) - Knew(bnewysp - y) (341)

To build automation systems it is useful to have suitable modules.
Figure 3.38 shows the block diagram for a manual control module. It
has two inputs, a tracking input and an input for the manual con-
trol commands. The system has two parameters, the time constant
T,, for the manual control input and the reset time constant 7;. In
digital implementations it is convenient to add a feature so that the
command signal accelerates as long as one of the increase-decrease
buttons are pushed. Using the module for PID control and the man-
ual control module in Figure 3.38, it is straightforward to construct
a complete controller. Figure 3.39 shows a PID controller with inter-
nal or external setpoints via increase/decrease buttons and manual
automatic mode. Notice that the system only has two switches..

Computer Code

As an illustration, the following is a computer code for a PID algo-
rithm. The controller handles both anti-windup and bumpless trans-
fer.

"Compute controller coefficients
bi=K*h/Ti “integral gain
ad=(2*Td-N*h) / (2¥Td+Nxh)

bd=2*K*N*Td/ (2*Td+N*h) "derivative gain
a0=h/Tt
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"Bumpless pai“ameter changes
I=I+Kold*(bold*ysp-y)-Knew* (bnew*ysp-y)

“Control algorithm

r=adin(chl) “"read setpoint from chl

y=adin(ch2) "read process variable from ch2

P=K* (bxysp-y) “compute proportional part
=ad*D-bd* (y~yold) "update derivative part

v=P+I+D “compute temporary output

u=sat (v,ulow,uhigh) "simulate actuator saturation

daout (chl) "set analog output chi
I=I+bix(ysp~y)+ao*(u~v) ‘“update integral

yold=y *  '"update old process output

The computation of the coefficients should be done only when the
controller parameters are changed. Precomputation of the coefficients
ad, ao, bd, and bi saves computer time in the main loop. The main
program must be called once every sampling period. The program
has three states: yold, I, and D. One state variable can be eliminated

at the cost of a less readable code. Notice that the code includes.

derivation of the process output only, proportional action on part of
the error only (b # 1), and anti-windup.

3.8 Commercial Controllers

Commercial PID controllers differ in the structure of the control
law (standard-series-parallel, absolute-velocity), the parameteriza-
tion, the limitation of high-frequency gain (filtering}, and in how the
setpoint is introduced. To be able to tune a controller, it is necessary
to know the structure and the parameterization of the control algo-
rithm. This information is, unfortunately, not usually available in the
controller manuals. In this section, we have tried to summarize the
properties of controllers from some different manufacturers.

Different structures of the PID algorithm were presented in Sec-
tion 3.4. To summarize the results we introduce U (s), Y (s), and Y, (s)
as the Laplace transforms of process input u, process output y, and
setpoint yg,. Furthermore let E(s) = Y;,(s) — Y(s) denote the Laplace
transform of the control error. Three different structures are used in
the commercial controllers. The standard form, or ISA form, is given
by

1 sT,

I U=K(bYsp—Y+ s—nE-{-i——_rq:i/-N*(CYsp—Y))

the series form is given by
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1\ 1+scTy 1\ 1+sTy
. =K' _—xY . — — Y. T "d
L u=x ((b * sT;) T3 sT)/N * (2 sT,.') 1+sT¢;/NY>

and the parallel form by

L U = K" (bY,y— V) + SeB s — K5y
: » s U P TSR (NETy e

The relations between the different parameters are discussed in Sec-
tion 3.4. Recall that the parameters b and ¢ are the weightings that
influence the setpoint response. The values of b and ¢ used are typi-
cally 0 or 1 in commercial controllers. This does not use the power of
setpoint weighting fully as was discussed in Section 3.4. The setpoint
weight factors b and ¢ are chosen differently in different commercial
controllers.

The high-frequency gain of the derivative term is limited to avoid
noise amplification. This gain limitation can be parameterized in
terms of the parameter N.

The sampling period is an important parameter of a digital PID
controller, which limits how fast processes can be controlled. The
values used in commercial controllers vary significantly.

Table 3.2 summarizes the properties of some common commercial
PID controllers.

-Y) -

3.9 When Can PID Control Be Used?

The requirements on a control system may include many factors, such
as response to command signals, insensitivity to measurement noise
and process variations, and rejection of load disturbances. The design
of a control system also involves aspects of process dynamics, actuator
saturation, and disturbance characteristics. It may seem surprising
that a controller as simple as the PID controller can work so well.
The general empirical observation is that most industrial processes
can be controlled reasonably well with PID control provided that
the demands on the performance of the control are not too high. In
the following paragraphs we delve further into this issue by first
considering cases where PID control is sufficient and then discussing
some generic problems where more sophisticated control is advisable.

When Is Pl Control Sufficient?

Derivative action is frequently not used. It is an interesting observa-
tion that many industrial controllers only have PI action and that in
others the derivative action can be (and frequently is) switched off.
It can be shown that PI control is adequate for all processes where
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Table 3.2 Properties of the PID algorithms in some commercial controllers. The E
structures of the controllers are labeled ISA (1), series (II), and ideal (II1).
Q .
Controller Structure Setpoint Derivative gain Sampling S
weighting limitation period §
b c N (s) «
o
Allen Bradley PLC § I, 111 1.0 1.0 none load dependent :
Bailey Net 90 10, 111 000r1.0 0.0o0r10 10 0.25 s
Fisher Controls Provox I 1.0 0.0 8 0.1, 0.25, or 1.0 g
Fisher Controls DPR 900, 910 II 0.0 0.0 8 0.2
Fisher Porter Micro DCI 11 1.0 0.0 or 1.0 none 0.1
Foxboro Model 761 I 1.0 0.0 10 0.25
Honeywell TDC II 1.0 1.0 8 0.33, 0.5, or 1.0
Moore Products Type 352 II 1.0 0.0 1-30 01
Alfa Laval Automation ECA40, ECA400 1I 0.0 0.0 8 0.2
Taylor Mod 30 II 0.0 or 1.0 0.0 17 or 20 0.25
Toshiba TOSDIC 200 II 1.0 1.0 33-10 0.2
Turnbull TCS 6000 I 1.0 1.0 none 0.0386 — 1.56
Yokogawa SLPC I 000r1.0 0.0o0r10 10 01
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the dynamics are essentially of the first order (level controls in sin-
gle tanks, stirred tank reactors with perfect mixing, etc). It is fairly
easy to find out if this is the case by measuring the step response or
the frequency response of the process. If the step response looks like
that of a first-order system or, more precisely, if the Nyquist curve
lies in the first and the fourth quadrants only, then PI control is suf-
ficient. Another reason is that the process has been designed so that
its operation does not require tight control. Then, even if the process
has higher-order dynamics, what it needs is an integral action to pro-
vide zero steady-state offset and an adequate transient response by
proportional action.

When Is PID Control Sufficient?

Similarly, PID control is sufficient for processes where the dominant
dynamics are of the second order. For such processes there are no
benefits gained by using a more complex controller.

A typical case of derivative action improving the response is when
the dynamics are characterized by time constants that differ in mag-
nitude. Derivative action can then profitably be used to speed up the
response. Temperature control is a typical case. Derivative control is
also beneficial when tight control of a higher-order system is required.
The higher-order dynamics would limit the amount of proportional
gain for good control. With a derivative action, improved damping is
provided, hence, a higher proportional gain can be used to speed up
the transient response.

When Is More Sophisticated Control Needed?

The benefits of using a more sophisticated controller than the PID is
demonstrated by some examples below.

Higher-Order Processes

When the system is of a higher order than two, the control can be
improved by using a more complex controller than the PID controller.
This is illustrated by the following example.

EXAMPLE 3.3 Control of a higher-order process

Consider a third-order process described by the following transfer

function.
1

@)= vy
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Figure 3.40 Control of the third-order system in Example 3.3
using a PID controller (PID)} and a more complex controller (CC).
The figure shows responses to a setpoint change, a load disturbance,
and finally a measurement disturbance. The upper diagram shows
setpoint y, and measurement signal y, and the lower diagram
shows control signal «.

Figure 3.40 shows the control obtained using a PID controller and a
more complex controller of higher order. The PID controller has the
parameters K = 3.4,T; = 2.0 and Ty = 0.6. The PID controller is
compared with a controller of the form

R(s)u(z) = —=S(s)y(t) + T(s)ys(t)
with the following controller polynomials

R(s) = s(s®* + 11.5s + 57.5)

S(s) = 1445 + 575s% + 870s + 512

T(s) = 8% + 77s® + 309s + 512

The benefits of using a more complex controller in the case of higher-
order dynamics is clearly demonstrated in the figure. (]

Systems with Long Dead Time

Control of systems with a dominant time delay are notoriously dif-
ficult. It is also a topic on which there are many different opinions
concerning the merit of PID control. There seems to be general agree-
ment that derivative action does not help much for processes with
dominant time delays. For open-loop stable processes, the response
to command signals can be improved substantially by introducing
dead-time compensation. The load disturbance rejection can also be
improved to some degree because a dead-time compensator allows a
higher loop gain than a PID controller. Systems with dominant time
delays are thus candidates for more sophisticated control.
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Figure 3.41 Control of the system in Example 3.4 with PI control
(PI) and with a Smith predictor (SP). The upper diagram shows
setpoint y,, and measurement signal y, and the lower diagram
shows control signal u.

EXAMPLE 3.4 Dead-time compensation
Consider a process described by the equation

G%(;_) = —0.5y(t) + 0.5u(t — 4)

The process has a time constant of 2 and a time delay of 4 time units.
This process was first controlled by a PI controller with a gain of 0.2
and an integral time of 2.5 (see Figure 3.41). The figure also shows
the properties of the control obtained with a Smith predictor. The
response to setpoint changes is much improved, while the difference
is less for the load disturbance. When dead-time compensation was
used, the gain in the PI controller was increased to K = 1, and the
integral time was T; = 1. |

Systems with Oscillatory Modes

Systems with oscillatory modes that occur when there are inertias
and compliances is another case where PID control is not sufficient.
There are several approaches to systems of that type. In the so-
called notch filter approach, no attempt is made to damp the oscilla-
tory modes, but an effort is made to reduce the signal transmission
through the controller by a filter that drastically reduces signal trans-
mission at the resonant frequency. A PID controller may be used when
there is only one dominant oscillatory mode. Notch filter action can
be achieved by judicious choice of the controller parameters. In this
case, parameters T; and T; should be chosen so that the numerator
has complex roots. The interacting form in Equation (3.15) does not
work well in this case.
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Figure 3.42 Response of the closed-loop system to setpoint and
load disturbances. The graphs show setpoint y,,, process output y,
and control signal u. The controller parameters are K = -0.25,
T.=-1,and b = 0.

EXAMPLE 3.5 PI conitrol of a system with oscillatory modes
Consider for example a process with the transfer function

ab?
(s + a)(s? + b?)

where @ = 1 and b = 5. The process has two undamped oscillatory
poles. If these poles are neglected, the process is simply a first-order
system that can conveniently be controlled by a PI controller. At-
tempting to control the process with a PI controller, we find that con-
troller parameters K and T; have to be negative. Reasonable values
of the parameters are K = —0.25 and T; = ~1. Figure 3.42 shows the
response of the closed-loop system to setpoint and load disturbances.
Notice that the setpoint command does not excite the oscillatory poles
so much. These modes are clearly visible, however, in the load dis-
turbance response. With a nonzero b the setpoint changes will also
excite the oscillatory modes, as is seen in Figure 3.43. O

G(s) =

The system in Example 3.5 gives only moderate damping of the
oscillatory modes. For systems where the oscillatory modes are inside
the servo bandwidth, it is necessary to have a controller with com-
plex zeros. Such a controller can provide damping of the oscillatory
modes because the poles will be attracted to the controller zeros. The
controller zeros are the zeros of the function

T,

Assume that the zeros correspond to the polynomial

1 T,
1+ 5 +5Ty = —f(s2+—s+i> (3.42)

s? + 2l ws + w?
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Figure 3.43 Response of the closed-loop system to setpoint and
load disturbances. The graphs show setpoint y,,, process output y,
and control signal u. The controller parameters are K = —0.25,
T.=-1,and b = 1.

we find
oT; = 2
1 (3.43)
T, = —
Wiy 24,
Hence T
2Ly
P 47 (3.44)

The value of { used typically has to be quite small, say { = 0.2,
which gives T;/Ty = 0.16. This ratio is significantly different from the
commonly used value 4. Also, notice that a controller with T; < 4Ty
can not be realized using the series form. To deal with oscillatory
systems it is thus essential that the parallel form is used.

The above calculation is based on a simplified PID controller. For
a controller where the derivative term has a limited high-frequency
gain, Equations (3.42) and (3.43) are replaced by

+ 1 + STd
sT; 1+8Td/N

1
= + 2
ofi = £+ ¢~ 53

wTd=¢<§~ CLNil)

It is desirable to have N as small as possible, this value is

1
N=g-1

1

and

(3.45)
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which gi\}es
wT; ={
3.46
wTy = Ng ( )
Hence
] 2
L_1__¢ (3.47)

T, N 1-¢°
For systems with oscillatory modes, the normal situation is that T; is

much smaller than 7. Notice also that the choice of parameter N is
critical for these applications. '

Summary

When the dynamics of the process to be controlled are simple, a PID
controller is sufficient. When the dynamics become more complicated,
the control performance can be improved by using a more sophisti-
cated controller structure than the PID. Examples of such processes
have been given above. We end this section with some additional ex-
amples.

For some systems with large parameter variations it is possible to
design linear controllers that allow operation over a wide parameter
range. Such controllers are, however, often of high order.

The control of process variables that are closely related to impor-
tant quality variables may be of a significant economic value. In such
control loops it is frequently necessary to select the controller with
respect to the disturbance characteristics. This often leads to strate-
gies that are not of the PID type. These problems are often associated
with time delays.

A general controller attempts to model the disturbances acting on
the system. Since a PID controller has limited complexity, it cannot
model complex disturbance behavior in general nor periodic distur-
bances in particular.

3.10 Conclusions

A detailed presentation of the PID algorithm has been given. Sev-
eral modifications of the “textbook” version must be made to obtain
a practical, useful controller. Problems that must be handled are, for
example, integral wind-up and introduction of setpoint values. In a
computer implementation, a discrete version of the PID algorithm is
needed. Several methods to derive discrete PID algorithms have been
described. Additional problems due to the sampling procedure must
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be handled, such as the design of a prefilter to avoid aliasing. A dis-
cussion of the limitations of the PID algorithm and a characterization
of processes where the PID controller manages to perform the control
have also been given.

3.11 References

Proportional feedback in the form of a centrifugal governor was used
to regulate the speed of windmills around 1750. In 1788 James Watt
used a similar system for speed control of steam engines. The benefits
of integral action was discovered a little later. Feedback control with
proportional and integral action was rediscovered many times after
that. In the early stages, the development of controllers was closely
related to development of sensors and actuators. Sensing, actuation,
and control were often combined in the same device.

The PID controller, in the form we know it today, emerged in
the period from 1915 to 1940. It coincided with the development of
legendary control companies such as Bristol, Fisher, Foxboro, Honey-
well, Leeds & Northrup, and Taylor Instrument. Proportional and
integral action had been used for a long time. Integral action was
often called automatic reset, because it replaced a manual reset that
was used in proportional controllers to obtain the correct steady state
value. The potential of a controller that could anticipate future control
errors was discussed in the 1920s. However, it took some time before
the idea could be implemented. A controller with derivative action
was introduced by Ralph Clarridge of the Taylor Instrument Company
in 1935. At that time the function was called “pre-act.” An interesting
overview of the early history of PID controllers is given in Stock
(1987-88). There is also much interesting material in publications
from the instrument companies. The interview with Nichols, who is
one of the pioneers in our field, in Blickley (1990) gives a perspective
on the early development.

It is interesting to observe that feedback was crucial for the
construction of the controller itself. The early pneumatic systems
used the idea that an essentially linear controller can be obtained
by a feedback loop composed of linear passive components and a
nonlinear amplifier, the flapper valve. Similar ideas were used in
electronic controllers with electric motors and relays.

Many of the practically useful modifications of the controller first
appeared as special hardware functions. They were not expressed in
mathematical form. An early mathematical analysis of a steam engine
with a governor was made in Maxwell (1868). This analysis clearly
showed the difference between proportional and integral control. The
papers Minorsky (1922), Kipfmiller (1928), Nyquist (1932), and
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Hazen (1934) were available at the time when the PID controller
was developed. However, there is little evidence that the engineers in
the process control field knew about them. Process control, therefore,
developed independently. Two of the early papers were Grebe et al.
(1933), written by engineers at the Dow Chemical Company, Ivanoff
(1934), Callender et al. (1936), and Hartree et al. (1937). '

The PID controller has gone through an interesting development
because of the drastic technology changes that have happened since
1940. The pneumatic controller improved drastically by making sys-
tematic use of the force balance principle. Pneumatics was replaced
by electronics when the operational amplifier appeared in the 1950s.
A very significant development took place with the emergence of com-
puter control in the 1960s. In the early computer control systems the
computer commanded the setpoints of analog controllers. The next
stage of the development was direct digital control (DDC}), where the
computer was controlling the actuator directly, see Webb (1967). A
digital computer was then used to implement many PID controllers.
This development led to a reconsideration of much of the fundamen-
tals of PID control, see e.g. Goff (1966b), L&N (1968), Moore et al.
(1970), and Palmor and Shinnar (1979). The appearance of micro-
processors in the 1970s made it possible to use digital control for
single loop controllers, see Stoji¢ and Petrovi¢ (1986). It also led to
the development of distributed control systems for process control,
where the PID controller was a key element, see Lukas (1986). As
the computing power of the microprocessors increased it was possible
to introduce tuning and adaptation in the single loop controllers. This
development started in the 1980s and has accelerated in the 1990s,
see Astrom et al. (1993).

It is interesting to observe that many facts about PID control
were rediscovered in connection with the shifts in technology. One
reason being that many practical aspects of PID control were con-
sidered as proprietory information that was not easily accessible in
public literature. Much useful information was also scattered in the
literature.

In spite of their wide spread use PID controllers are only treated
superficially in many textbooks and at university courses. The book
Shinskey (1988) gives a good coverage. Implementation issues are dis-
cussed in Goff (1966b), Takahashi et al. (1972), Clarke (1984), Astrom
and Wittenmark (1990). The paper Astrom and Steingrimsson (1991)
describes an implementation on a digital signal processor, which ad-
mits a very high sampling rate. The usefulness of a two-degree-of-
freedom structure is discussed in Horowitz (1963). The application to
PID control is treated in Shigemasa et al (1987).

The phenomena of integral windup was well known in the early
analog implementations. The controller structures used were often
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such that windup was avoided. The anti-windup schemes were re-
discovered in connection with the development of direct digital con-
trol. This is discussed in Fertik and Ross (1967). Much work on
avoiding windup have been done since then, and windup has now
made its way into some text books of control, see Astrém and Wit-
tenmark (1984). There are many papers written on the windup phe-
nomena, see Kramer and Jenkins (1971), Glattfelder and Schaufel-
berger (1983), Krikelis (1984), Gallun ef al (1985), Kapasouris
and Athans (1985), Glattfelder and Schaufelberger (1986), Howes
(1986), Astrom (1987b), Hanus et al. (1987), Chen and Wang (1988),
Glattfelder et al. (1988), Hanus (1988), Zhang and Evans (1988),
Astrom and Rundqwist (1989), Rundqwist (1990), and Walgama
and Sternby (1990). Mode switching is treated in the paper Astrém
(1987b).

The Smith predictor for control of systems with long time delays
was presented in Smith (1957). The papers Ross (1977) and Meyer
et al. (1976) compare the Smith predictor with the PID controller.



CHAPTER 4

Controller Design

4.1 Introduction

This chapter describes some methods for determining the parame-
ters of a PID controller. To obtain rational methods for designing
controllers it is necessary to define the main purpose of the control
system. This is done in Section 4.2.

The design methods differ with respect to the knowledge of the
process dynamics they require. A PI controller is described by two
parameters (K and T;) and a PID controller by three or four pa-
rameters (K, T;, Ty, and N). The classical Ziegler-Nichols methods
are discussed in Section 4.3. In these methods process dynamics are
characterized by two parameters. One parameter is related to the
process gain and the other describes how fast the process is. In the
step response method, the parameters are simple characteristics ob-
tained from the step response. In the frequency response method, the
parameters are the ultimate gain and the ultimate frequency.

An obvious extension of the frequency response method is to
develop methods that are based on more knowledge of the open-loop
transfer function, e.g., the slope of the transfer function or its values
at two or more frequencies. In Section 4.4 we discuss various methods
that are based on attempts to shape the loop transfer function. Section
4.5 treats analytical design methods, where the controller transfer
function is obtained from the specifications and the process transfer
function by a direct calculation.

One possibility for compromise between several different criteria
is to use optimization methods. This is discussed in Section 4.6. An-
other way to characterize process dynamics with few parameters is
to use low-order dynamic models with few parameters. Such methods

120
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are discussed in Section 4.7 where the designh goal is to position all
the poles of the closed-loop system. It is shown that methods based
on dynamic models of first and second order lead to PI and PID con-
trollers.

Instead of attempting to position all closed-loop poles, it can be
attempted to assign only a few dominating poles. Such methods are
discussed in Section 4.8. The approach leads to systematic design
methods and a unification of many other techniques. New simple
design methods based on the dominant pole design method are pre-
sented in Chapter 5.

In Section 4.9, design methods based on disturbance rejection are
presented. Finally, conclusions and references are given in Sections
4.10 and 4.11.

4.2 Specificatibns

When solving a control problem it is necessary to understand what
the primary goal of control is. Two common types of problems are to
follow the setpoint and to reject disturbances. It is also important to
have an assessment of the major restrictions, which can be

¢ System dynamics
¢ Nonlinearities
¢ Disturbances
e Process uncertainty
Typical specifications on a control system may include
¢ Attenuation of load disturbances
¢ Sensitivity to measurement noise
¢ Robustness to model uncertainty
¢ Setpoint following

Specifications can be expressed in many different ways. Features of
time responses for typical inputs is one possibility. Features of fre-
quency responses or transfer functions are other possibilities. Some
of the specifications such as attenuation and sensitivity to measure-
ment errors, are conflicting, and others such as setpoint following and
load disturbance rejection are nonconflicting.

For process control applications setpoint following is often less
important than load disturbance attenuation. Setpoint changes are
often only made when the production rate is altered. Furthermore, the
response to setpoint changes can be improved by feeding the setpoint
through ramping functions or by adjusting the setpoint weightings
described in Section 3.4.



122 Chaptér 4 Controller Design

L.oad Disturbances

Load disturbances are disturbances that drive the process variables
away from their desired values. Attenuation of load disturbances is
of primary concern for process control. This is particularly the case
- for regulation problems where the processes are running in steady
state with constant setpoint for a long time. Load disturbances are
often of low frequencies. Step signals are often used as prototype dis-
turbances. The disturbances may enter the system in many different
ways. If nothing else is known, it is often assumed that the distur-
bances enter at the process input. Typical responses due to a unit
step disturbance at the process input are shown in Figure 4.1. The
characteristics of the graphs in Figure 4.1 are often used to specify
the response to load disturbances. Let e be the error caused by a unit
step disturbance at the process input. Typical quantities used to char-
acterize the error are: maximum error epay, time to reach maximum
tmax, Settling time ¢, decay ratio d, and the integrated absolute error,
which is defined by

ITAE = /Ooo le(2)|dt (4.1)

The criterion IAE is in many cases a natural choice, at least for
control of quality variables. A severe drawback is that its evaluation
requires significant computations or a simulation of the process. The
simulation must also be made with sufficient accuracy. Since the cri-
terion is based on an infinite integral it is also necessary to simulate
for a long time.

For processes that are nonoscillatory, IAE is the same as the
integrated error

1E = / " e(t)dt (4.2)
0

The quantity IE is a good approximation of IAE for systems that are
oscillatory but well damped. The reason for using IE is that its value
is directly related to the controller parameters. To see this assume
that the control law is

w(®) = ke(t) 1 [ e()dt= ka5

and that this controller gives a stable closed-loop system. Further-
more assume that the error is initially zero and that a unit step
disturbance is applied at the process input. Since the closed-loop sys-
tem is stable and has integral action the control error will go to zero.
We thus find

u(oo) — u(0) = &; /Dme(t)dt
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Figure 4.1 The error due to a unit step load disturbance at the
process input and some features used to characterize attenuation
of load disturbances. The curves show the open-loop error and the
error obtained using a controller without integral action (upper)
and with integral action (lower).

Since the disturbance is applied at the process input, the change in
control signal is equal to the change of the disturbance. Hence,

oo 1T
IE = /O e(t)dt= 3 = 7 (4.3)

Integral gain k; is thus inversely proportional to IE.
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The criterion IE is a natural choice for control of quality variables
for a process where the product is sent to a mixing tank. The criterion
may be strongly misleading, however, in other situations. It will be
zero for an oscillatory system with no damping. It will also be zero
for a controller with a double integrator.

The quadratic criterion

ISE = / ooe?‘(t)dt | (4.4)
0

is also easy to compute. It has, however, the disadvantage that it
gives a very high weight to large errors, which often leads to a poorly
damped closed loop.

Sensitivity to Measurement Noise

Measurement noise is typically of high frequency. Care should always
be taken to reduce noise by appropriate filtering. For sampled systems
it is also important to choose the sampling rate properly. Measure-
ment noise will be fed into the system through the feedback. It will
generate control actions and control errors. The transmission of mea-
surement noise to control actions can be described by the transfer
function

G.
G = 1+ Gy

where G, is the process transfer function, G, is the controller transfer
function, and Gy = G, G, is the loop transfer function. The transfer
function from measurement noise to process output is

1
Gy = 1+G,

(4.5)

(4.6)

where S is called the sensitivity function. Since the magnitude of
G, normally is small for high frequencies, we have approximately
G, = G, for high frequencies.

The high-frequency gain of a PID controller is

Ky = K(1+N) (4.7)

Notice that N = 0 corresponds to PI control. Multiplication of the
measurement noise by Ky gives the fluctuations in the control signal
that are caused by the measurement noise. Also notice that there
may be a significant difference in K¢ for PI and PID control. It is
typically an order of magnitude larger for a PID controller, since the
gain normally is higher for a PID controller than for a PI controller,
and N is typically around 10.
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Sensitivity to Process Characteristics

The controller parameters are typically matched to the process char-
acteristics. Since the process may change it is important that the con-
troller parameters are chosen in such a way that the closed-loop sys-
tem is not too sensitive to variations in process dynamics. There are
many ways to specify the sensitivity. Many different criteria are con-
veniently expressed in terms of the Nyquist curve of the loop transfer
function Gy(s) = G.(s)Gy(s) (see Figure 4.2). We choose to character-
ize sensitivity by
1

Ms = X | 7576, ) Culiw) | ~ 022X, ISE)] - (48)

Notice that the transfer function S, which is called the sensitivity
function, also appeared in the expression for the sensitivity to mea-
surement noise (compare with Equation (4.6)). The quantity M, is
simply the inverse of the shortest distance from the Nyquist curve to
the critical point —1. Reasonable values of M are in the range from
1.3 to 2.

Sensitivity function S has many useful physical interpretations.
One is the following. Assume that there is a sinusoidal disturbance

4 Im G, (iw)

Om Re G, (i)

Figure 4.2 Definitions of sensitivity M,, amplitude margin A,,,
and phase margin ¢,,. A sensitivity M, guarantees that the distance
from the critical point to the Nyquist curve is always greater than
1/M.,.
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with frequency @ that enters the system in an arbitrary way. Let the
amplitude of the open-loop system be ao. If the system is controlled
with a controller that gives the sensitivity function S, the amplitude
of the controlled system is then ay|S(iw)|. Feedback thus reduces the
effect of the disturbance if |S(iw)| < 1, and it amplifies a disturbance
if |S(iw)| > 1. :

Under very general assumptions it can be shown that the sensitiv-
ity can not be smaller than one for all frequencies. With a controller
having integral action we have {S(0){ = 0. Low frequency distur-
bances thus can be reduced effectively with such a controller. When
designing a controller it is important to be aware of the frequencies
where disturbances are amplified. It is also important that the largest
value of the sensitivity is limited. It is common to require that the
maximum value of the sensitivity function, M, be in the range of 1.3
to 2.

Amplitude margin (A,,) and phase margin (¢,) are other com-
mon sensitivity measures. They are defined as

1
™ [Giliwa)] (4.9)
Om =7 +arg Ge(iog)

A

where the ultimate frequency @, is the frequency where arg G¢(iw) =
—n and the gain cross-over frequency w, is the frequency where
|G¢(iw)| = 1. See Figure 4.2. The amplitude margin is also called
gain margin. We have the following relations

M

A'">Ms—1

(4.10)

9 .1
¢m > 2aresing i
Typical values of ¢,, range from 30° to 60°. Amplitude margins could
typically vary from 2 to 5. A geometrical interpretation of the criterion
given by Equation (4.8) is that the Nyquist curve of the loop transfer
function is always outside a circle around the critical point —1 with
the radius 1/M;. An engineering interpretation is that the system
remains stable even if the gain is increased by the factor M,/(M;—1)
or decreased by the vector M,/(M; + 1). The closed loop will remain
stable even if a nonlinearity characterized by

XM/ (M, + 1) < f(x) < Ms/(M, — 1)

is inserted in the loop. A small value of M, thus ensures that the sys-
tem will remain stable in spite of nonlinear actuator characteristics.
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|
Y

Figure 4.8 Specifications on setpoint following based on the time
response to a unit step in the setpoint.

Setpoint Following

Specifications on setpoint following may include requirements on rise
time, settling time, decay ratio, overshoot, and steady-state offset for
step changes in setpoint. See Figure 4.3. These quantities are defined
in different ways and there are also different standards.

o The rise time t, is either defined as the inverse of the largest
slope of the step response or the time it takes the step to pass
from 10% to 90% of its steady state value.

o The settling time t; is the time it takes before the step response
remains within p% of its steady state value. The value p = 2% is
commonly used.

o The decay ratio d is the ratio between two consecutive maxima
of the error for a step change in setpoint or load. The value
d = 1/4, which is called quarter amplitude damping, has been
used traditionally. This value is, however, too high as will be
shown later.

o The overshoot ¢ is the ratio between the difference between the
first peak and the steady state value and the steady state value of
the step response. In industrial control applications it is common
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to specify an overshoot of 8%—10%. In many situations it is desir-
able, however, to have an overdamped response with no overshoot.
o The steady-state error e, is the value of control error e in steady
state. With integral action in the controller, the steady-state error
is always zero.
Criteria like IAE, IE, and ISE can also be used to characterize
Setpoint responses if the error in Equations (4.1), (4.2), and (4.4) are
interpreted as the error due to a unit step change of the setpoint. For
step changes in the setpoint there will always be a large initial error.
It is then useful to have criteria that put little weight on the initial
error. It has been found that criteria of the type

ITAE = / tle(®)|dt
0

ITE = / te(t)dt
0

ITSE = / te’(t)dt
0

ISTE:/ 2% (t)dt
0

are more suitable to judge performance for setpoint following. These
integrals are finite only if the steady-state error is zero. In some cases
setpoint following may also contain requirements based on ramp
signals.
For a system with pure error feedback the relation between pro-
cess output and setpoint is given by
Gp(s)Gels) Gu(s)

Y6 = 136,606.6) 1% ~ T+ Guls) * (4.11)

The setpoint response is thus uniquely given by Gy. For systems with
two degrees of freedom the corresponding relation is

Go(5)Gy(s) o, _ Gu(s)Gyls)
ﬁp—GmYs” = TG T (4.12)

where Gy (s) is the transfer function between the setpoint and the
controller output. (Compare with Section 3.4.) Setpoint following and
load disturbance rejection can be decoupled by using a two-degree-
of-freedom structure. For PID controllers it is mostly the setpoint
weighting that is used to modify the setpoint response.

To judge the properties of a control system we must consider both
the process output and the control signal. The response of the control
signal to a step change in the setpoint typically has an overshoot as
is shown in Figure 4.3. The initial change of the control signal is

Y(s) =
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Au(0) = KbAy;,, where K is the controller gain, b is the setpoint
weighting, and Ay,, is the setpoint change. The steady-state change
of the control signal is Auss = Ays,/Kp, where K, is the static process
gain. The quantity
Au(0)
Augg ‘
is thus a normalized initial overshoot of the control signal. This
expression is a correct value of the overshoot if the control signal
has its largest value immediately after the change in the setpoint.
For systems with time delays the maximum will occur later. The
overshoot can then be approximated by the expression

u

= KK,b

L
M, = KK,(b+ ﬁ)
where L is the apparent dead time and 7; is the integration time of
the controller.

The dimensionless quantity M,,, which we call the control signal
overshoot, is a quantity that is useful for evaluating the performance
of a control system. For systems where an essential part of the dy-
namics is due to the sensors it is important that M, is not too large.

Relations Between Specifications

Specifications express different properties of a system such as load
disturbance attenuation and setpoint following. They are also ex-
pressed in different ways using frequency domain or time domain
properties. To get some insight into the relations we will investigate
a second-order system in detail.

Second-Order System
Consider a first-order system with the transfer function
K,
1+sT
that is controlled by an I controller. For such a system the transfer
function from setpoint to process output is

G,G g
G(s) = —25 = . 4.1
) =13 GpG: 5%+ 20 wos + 0 (4.13)

Gy(s) =

The response to a unit step in the setpoint is

y)=1- \/1_*; e~$™t gin <w0t\/1 o ¢) (4.14)

where ¢ = arctan+/1—{2/(.
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The transfer function from a load disturbance at the process input
to process output is given by '

G, _ _ISI_? s
1+G,G. ~ T s2+20wps + w?
A unit step load disturbance at the process input gives the error

K
e(t) = ———E2—— e ¢ sinwot/1 - {2 (4.16)
() P e .

If0 < { < 1, the two closed-loop poles of the system are

pi = ~§Cl)0i‘ia)o\/1——§2

where ¢ is called the relative damping, and @, is the undamped
natural frequency. The time responses of the system are characterized
by a damped oscillation with period

Gy(s) = (4.15)

27
Ty = ———— 4.17
P /it (4.17)
and decay ratio
d = e 2m/V1-¢ T (4.18)

From the step response (Equation 4.14) we can calculate the rise
time, the settling time, and the overshoot. Defining the rise time as
the inverse of the maximum slope of the step response we get

1
ty = w—oeW tang (4.19)

The settling time, i.e., the time required for the output to be within
the fraction p of the steady state value, is a discontinuous function
of the parameters due to the oscillatory nature of the step response.
An approximative formula is obtained by considering the envelope of
the step response. This gives

tog (pv/1- ¢2)
Sl

This formula is conservative because it overestimates the settling
time. The slope has its maximum at

4

@y Cos ¢
With { = 0.707 and p = 0.02 we get ¢, = 2.2/wy and ¢, = 6.0/wy.
The overshoot is given by

0 = e "IVI-C = /4

~
5§ ~

(4.20)
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where d is the decay ratio. It occurs at the time
/4

t = ———
max @0 /—1 — 4,2
The overshoot is 4% for { = 0.707, 8% for { = 0.63, 16% for { = 0.5.
It is 50% for quarter amplitude decay ratio.
Equation (4.16) gives the error signal after a step dlsturbance at
the process input. This signal has the maximum
: K,

= ~¢tang o
emax = —————F————¢€ sin ¢
max on 1_ 4,2

for
b = — 0
" /1= (2
The integrated error is
K,
IE = =2
wiT

This quantity is close to the IAE, if the overshoot is sufficiently small.
The high-frequency gain of the controller is

20wl -1 20w T
K, T K,
where the approximation holds when w7 is large. The sensitivity is

M. = 1+85%+(1+4¢2)/1+8¢2
° 1+802+(~1+4(2)\/1+8(2
The sensitivity function is infinite for { = 0 and decreases with
increasing . Its values for { = 0.3, 0.5, and 0.7 are 2.0, 1.5, and
1.3. To have a reasonable value of the sensitivity it must, therefore,
be required that the relative damping is greater than 0.3. This implies
that the decay ratio d must be smaller than 0.14.

The equations given can be used to understand how the proper-
ties of the closed-loop system are influenced by wo and {. The in-
tegrated error is inversely proportional to w;2. The maximum error,
the rise time, and the settling time are proportional to wg®. The high-
frequency gain of the controller is proportional to wy. Both the load
disturbance response and the setpoint response are improved by in-
creasing @y. The control actions generated by noise do increase, how-
ever, with @g. The overshoot, the decay ratio, and the sensitivity will
increase with decreasing {.

This general pattern also holds for more complex systems. Both
load disturbance attenuation and response time to setpoint changes
will generally increase with increasing bandwidth of the system. For
more complex controllers, the load disturbance response and the set-
point response can be specified separately.

K =
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Averaging Control

There are several situations where the purpose of control is not to
keep the process variables at constant values. Level control in buffer
tanks is a typical example. The reason for using a buffer tank is to
smooth flow variations. In such a case the tank level should fluctuate
within some limits. It is often undesirable that the tank becomes
empty or that it overflows. The specifications are thus that the tank
level should be allowed to fluctuate between given limits. This is
called averaging control. It is often solved with a controller with a
small gain. Sometimes gain scheduling is introduced to have a larger
gain when the level gets close to the limits. Another approach is to
use error-squared control. This was discussed in Section 3.4.

Dominant Poles

The formulas derived above for a second-order system can often be
used as approximations for more complex systems. The reason for this
is that the dynamics of complex systems can often be characterized by
a few poles. Many properties of the closed-loop system can be deduced
from the poles and the zeros of

Gu(s)
1+ G[ (S)
The closed-loop zeros are the same as the zeros of loop transfer func-
tion G.li(s), and the closed-loop poles are the roots of the equation

1+ Gy(s) = 0 (4.22)

The pole-zero configurations of closed-loop systems may vary consid-
erably. Many simple feedback loops, however, will have a configura-
tion of the type shown in Figure 4.4, where the principal character-
istics of the response are given by a complex pair of poles, p; and

G(s) = (4.21)

AIms
b1 X
XP4
X——0 -
Ps3 2, Res
XP5
sz

Figure 4.4 Pole-zero configuration of a simple feedback system.
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pa, called the dominant poles. The response is also influenced by real
poles and zeros pg and z; close to the origin. The position of ps and 21
may be reversed. There may also be more poles and zeros far from the
origin, which typically are of less influence. Poles and zeros with real
parts much smaller than the real part of the dominant poles have
little influence on the transient response.

Complex poles are often characterized in terms of their frequency
wy, which is the distance from the origin, and their relative damping
{. If a pair of complex poles is dominating, the formulas derived above
. for a second-order system can be used as approximation. Classical
control was very much concerned with closed-loop systems having
the pole-zero configuration shown in Figure 4.4. '

Even if many closed-loop systems have a pole-zero configuration
similar to the one shown in Figure 4.4, there are, however, exceptions.
For instance, systems with mechanical resonances, which may have
poles and zeros close to the imaginary axis, are generic examples of
systems that do not fit the pole-zero pattern of the figure. Another
example is processes with a long dead time.

Determination of the Dominant Poles from the
Frequency Response

A simple method for approximate determination of the dominant
poles from knowledge of the Nyquist curve of the loop transfer func-
tion will now be given. Consider the loop transfer function Gy(s) as a
mapping from the s-plane to the G,-plane. The map of the imaginary
axis in the s-plane is the Nyquist curve G¢(iw), which is indicated in
Figure 4.5.

4 4 Ims AIm G,
Al=ia)2
C’ T- - = C
| Lo
| B'= iwl RBG/
l 0]
|
|
|
Res

[

Figure 4.5 Representation of the loop transfer function as a map
of complex planes.
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The closed-loop poles are the roots of the characteristic equation

1+ Ge(s) = 0

The map of a straight vertical line through the dominant closed-loop
poles in the s-plane is thus a curve through the critical point G, = —1
in the Gy-plane. This curve is shown by a dashed line in Figure
4.5. Since the map.is conform, the straight line A’C’ is mapped on
the curve AC, which intersects the Nyquist curve orthogonally. The
triangle. ABC is also mapped conformally to A’B’C’. If ABC can be
approximated by a triangle, we have

Ge(iwz) — Ge(ion) N 1+ Geliews)
iwy — i o

When w; is close to @ this becomes

i(l)z - iwl ~ 1+ G[(ia)z)
Giliws) — Ge(iw1) ~  G)(iwg)

o = (1 + Ge(iwa))

where

To determine the dominant poles we first determine the point A on the
Nyquist curve that is closest to the ultimate point. Then we determine
the derivative of the loop transfer function at that point or evaluate
the transfer function at a neighboring point @;.

Design Parameters and Design Methods

In control designs it is often convenient to have a few parameters
that can be changed to influence the performance of the system. The
parameters should be chosen in such a way that their influence on the
performance of the system is transparent. In the case of the second-
order example discussed above, the parameters can be chosen as wg
and . The relative damping can be replaced by the sensitivity M.
A good design method should take a number of different specifi-
cations into account in a balanced way. Most design methods, unfor-
tunately, concentrate on one or a few of the specifications only.

4.3 Ziegler-Nichols’ and Related Methods

Two classical methods for determining the parameters of PID con-
trollers were presented by Ziegler and Nichols in 1942. These meth-
ods are still widely used, either in their original form or in some
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y A

L

Figure 4.6 Characterization of a step response in the Ziegler-
Nichols step response method.

modification. They often form the basis for tuning procedures used
by controller manufacturers and process industry. The methods are
based on determination of some features of process dynamics. The
controller parameters are then expressed in terms of the features by
simple formulas.

The Step Response Method

The first design method presented by Ziegler and Nichols is based
on a registration of the open-loop step response of the system, which
is characterized by two parameters. The parameters are determined
from a unit step response of the process, as shown in Figure 4.6.

The point where the slope of the step response has its maximum
is first determined, and the tangent at this point is drawn. The
intersections between the tangent and the coordinate axes give the
parameters ¢ and L. In Chapter 2, a model of the process to be
controlled was derived from these parameters. This corresponds to
modeling a process by an integrator and a time delay. Ziegler and
Nichols have given PID parameters directly as functions of a and L.
These are given in Table 4.1. An estimate of the period T}, of the
closed-loop system is also given in the table.

EXAMPLE 4.1 Ziegler-Nichols step response method

Ziegler-Nichols method will be applied to a process with the transfer

function )
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Table 4.1 PID controller parameters obtained from the Ziegler-
Nichols step response method.

Controller K 7; T, 7,
P 1/a E 4L
PI 09/a 3L 5.7L
PID 1.2/a 2L L/2 34L

Measurements on the step response give the parameters ¢ = 0.218
and L = 0.806. The controller parameters can now be determined
from Table 4.1. The parameters of a PID controller are K = 5.50,
T. = 161, and T; = 0.403. Figure 4.7 shows the response of the
closed-loop systems to a step change in setpoint followed by a step
change in the load. The behaviour of the controller is as can be
expected. The decay ratio for the step response is close to one quarter.
It is smaller for the load disturbance. The overshoot in the setpoint
response is too large. This can be improved by reducing parameter b.
Compare with Section 3.4. ’ O

The Frequency Response Method

This method is also based on a simple characterization of the pro-
cess dynamics. The design is based on knowledge of the point on
the Nyquist curve of the process transfer function G(s) where the

)
y
SIVA'E
S
Ysp
0 T T T T
0 10 20 30 40
u
2
-2 T T T T
0 10 20 30 40

Figure 4.7 Setpoint and load disturbance response of a process
with transfer function 1/(s+1)? controlled by a PID controller tuned
with the Ziegler-Nichols step response method. The diagrams show
setpoint y,,, process output y, and control signal u.



4.3 Ziegler-Nichols’ and Related Methods 137

Table 4.2 PID controller parameters obtained from the Ziegler-
Nichols frequency response method.

Controller K T; Ty T,
13 05K, A T,
PI 04K, 0.8T, 147,

PID 06K, 0.5T, 0.125T, 0.85T,

Nyquist curve intersects the negative real axis. For historical rea-
sons this point is characterized by the parameters K, and T, which
are called the ultimate gain and the ultimate period. These param-
eters can be determined in the following way. Connect a controller
to the process, set the parameters so that control action is propor-
tional, i.e., T; = oo and T; = 0. Increase the gain slowly until the
process starts to oscillate. The gain when this occurs is K, and the
period of the oscillation is T,,. The parameters can also be determined
approximately by relay feedback as is discussed in Section 2.6.
Ziegler-Nichols have given simple formulas for the parameters of
the controller in terms of the ultimate gain and the ultimate period

(see Table 4.2). An estimate of the period 7}, of the dominant dynamics
of the closed-logp system is also given in the table.
e i[lustrate the design procedure with an example.

EXAMPLE 4.2 The Ziegler-Nichols frequency response method

Consider the same process as in Example 4.1. The process given
by Equation (4.23) has the ultimate gain K, = 8 and the ultimate
period T, = 27/v3 =~ 3.63. Table 4.2 gives the parameters K = 4.8,
T, = 181, and Ty = 0.44 for a PID controller. Figure 4.8 shows
the closed-loop setpoint and load disturbance responses when the
controller is applied to the process given by Equation (4.23). The
parameters and the performance of the controllers obtained with the
frequency response method are close to those obtained by the step
response method. The responses are slightly better damped. (]

The Ziegler-Nichols tuning rules were originally designed to give
systems with good responses to load disturbances. They were obtained
by extensive simulations of many different systems. The design cri-
terion was quarter amplitude decay ratio. Equation (4.18) gives a
relation between decay ratio d and relative damping {. Using this
relation we find that d = 1/4, gives { = 0.22, which is often too
small, as is seen in the examples. For this reason the Ziegler-Nichols
method often requires modification or retuning. Since the primary de-
sign objective was to reduce load disturbances, it is often necessary to
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Figure 4.8 Setpoint and load disturbance response of a process
with the transfer function 1/(s + 1)3 controlled by a PID controller
that is tuned with the Ziegler-Nichols frequency response method.
The diagrams show setpoint y,,, process output y, and control
signal u.

choose setpoint weighting carefully in order to obtain a satisfactory
setpoint response.

Relations Between the Ziegler-Nichols Tuning Methods

Insight into the relations between the Ziegler-Nichols methods can
be obtained by calculating the controller parameters for different
systems. Consider a process with the transfer function

G(s) = ;b—e"SL

which is the model originally used by Ziegler and Nichols to derive
their tuning rules for the step response method. For this process we
have @ = bL. The ultimate frequency is @, = /2L, which gives the
ultimate period T}, = 4L, and the ultimate gain is K, = 7/2bL.

The step response method gives the following parameters for a
PI controller

09
K = A T; = 3L
This can be compared with the parameters
0.63
K = 3L T, =3.2L

obtained for the frequency response method. Notice that the integral
times are within 10% but that the step response method gives a gain
that is about 40% higher.
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The PID parameters obtained from the step response method are

1.2 L
K—b—L-, T,——ZL and Td_E
and those given by the frequency response methods are,
0.94 L
K'—‘E, Ti=2L and Td—‘2~

In this particular case both methods give the same values of integral
and derivative times but the step response method gives a gain that is
about 25% higher than the frequency response method. The results of
this example are quite typical. The step response method often gives
higher values of the gain.

An Interpretation of the Frequency Domain Method

The frequency domain method can be interpreted as a method where
one point of the Nyquist curve is positioned. With PI or PID control,
it is possible to move a given point on the Nyquist curve to an ar-
bitrary position in the complex plane, as indicated in Figure 4.9. By
changing the gain, a point on the Nyquist curve is moved radially
from the origin. The point can be moved in the orthogonal direction
by changing integral or derivative gain. Notice that with positive con-
troller parameters the point can be moved to a quarter plane with PI
or PD control and to a half plane with PID control. The frequency
response method starts with determination of the point (—1/K,,0)
where the Nyquist curve of the open-loop transfer function intersects
the negative real axis. Let us now investigate how the ultimate point
is changed by the controller. For a PI controller with Ziegler-Nichols
tuning we have K = 04K, and 0,T; = (27/7,)0.8T, = 5.02. Ther-
erfore, the transfer function of the PI controller at the ultimate fre-
quency is

G.(iw,) = K <1 + ) = 0.4K,(1-i/5.02) = K,(0.4 — 0.08i)

1
i, T;
The ultimate point is thus moved to —0.4 + 0.08:. This means that a
lag of 11.2° is introduced at the ultimate frequency.

For a PID controller we have K = 06K, w,T; = n and @, Ty =
/4. The frequency response of the controller at frequency @, is

1T')) = 06K, (1 +i(%- ;t—))

uti

G.(iw,) = K (1 + i(w,,Td -

~ 0.6K,(1 + 0.467i)
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Figure 4.9 A given point on the Nyquist curve may be moved to
another position in the G-plane by PI, PD, or PID control. Point
A may be moved in the directions G(iw), —iG(iw), and iG(iw) by
changing the proportional, integral, and derivative gain, respec-
tively. :

This controller gives a phase advance of 25° at the ultimate frequency.
The loop transfer function is

Gi(iw,) = Gp(iw,)Ge(iw,) = —0.6(1 + 0.467i) = ~0.6 — 0.28i

The Ziegler-Nichols frequency response method thus moves the ulti-
mate point (-1/K,,0) to the point —0.6 — 0.28i. The distance from
this point to the critical point is 0.5. This means that the method
gives a sensitivity that is always greater than 2.

Modified Ziegler-Nichols Method

With the given interpretation of the frequency domain method, it is
straightforward to generalize it in the following way. Choose an arbi-
trary point on the Nyquist curve of the open-loop system. Determine a
controller that moves this point to a suitable location. Let the chosen
point be _

A = Gp(iwg) = reei+92)
Determine a controller that moves this point to

B = Gy(iwg) = rye ™+

Writing the frequency response of the controller as G.(iwp) = r.e™

we get
rpet P9 = ror elrtdatoe)

i
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The controller should thus be chosen so that

Tp
re = —

Ta
¢c=¢b_¢a

For a PI controller this implies

I'p COS (¢b - ¢a)
Iy

1
Ti - [0 tan (¢a - ¢b)

This means that we must require ¢, > ¢; in order to have positive
T:. For a PID controller we get similarly :

'y COS (¢b - ¢a)

T

1
woTs ~ —— = tan (¢~ 9a)

i

K =
(4.24)

K =
(4.25)

The gain K is uniquely given. There is, however, only one equation to
“determine parameters T; and T,. An additional condition must thus

be introduced to determine these parameters uniquely. A common

method is to specify that the ratio of these parameters is constant,

ie.,

Td = C(Ti
as in the Ziegler-Nichols rules, where a = 0.25. Straightforward
calculations then give

1
Ti= g (tan (95 = 9e) + \/4a + tan’ (9, — 9o) )
Td = (ZTi

Assuming that a Ziegler-Nichols experiment is used to determine a
suitable point, we have r, = 1/K, and ¢, = 0. The PI controller
parameters then become

(4.26)

K = K, rycos ¢,

T, (4.27)
T 2ntan dp
Notice that ¢, must be negative in order to have positive controller
parameters. Choosing a = 0.25, the PID controller parameters are
given by

i =

K, rycos ¢y

_ T, 1+sing,

Ti = 7r( cos ¢y ) (4.28)
_ E(l + sin¢b)

T 4n\ cosg
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Notice that the tuning rules are of the same form as for the frequency
response method but with different values of the numerical parame-
ters. Systems with better damping than the Ziegler-Nichols rules can
be obtained by proper choices of ry and ¢;. A reasonable choice is
rp = 0.5 and ¢, = 20°.

It has been suggested by Pessen to move the ultimate point to
—0.2 — 0.36; or —0.2 — 0.21;. This corresponds to r; = 0.41 and
¢y = 61°, and rp, = 0.29 and ¢, = 46° respectively.

There are limitations with a design method where only one point
on the Nyquist curve is positioned. The properties of the closed-loop
system can then change significantly depending on the slope .of the
curve. This is illustrated in Figure 4.10, which shows the Nyquist
curves of three systems having the same amplitude margin, A,, = 2,
which means that the Nyquist curves of all systems pass through the
point (—0.5,0). The figure also shows the closed-loop responses to a
step change in setpoint.

Assessment. of Ziegler-Nichols Tuning

The Ziegler-Nichols tuning procedures are simple and intuitive. They
require little process knowledge and they can be applied with modest
effort. These are some of the reasons why they are so widely used.
The methods have, however, some limitations as we have already
seen. A fundamental drawback is that the basic design criterion is
to obtain a closed-loop system with quarter amplitude decay ratio
(d = 0.25). This gives good rejection of load disturbances, but also
creates a closed-loop system that is very poorly damped and that has
poor stability margins. The closed-loop gain is typically 2 to 3 times
too high. The frequency response method is more reliable than the
step response method. One reason for this is that the ultimate gain is
uniquely defined, but that there are many ways to define the apparent
dead time. The step response method typically also gives somewhat
higher gains. '

The methods generally will work better for PID control than for
PI control. The reason for this will be discussed in Chapter 5. Let it
suffice here to give an example.

EXAMPLE 4.8 PI control

Consider the same process as in Examples 4.1 and 4.2, where the
transfer function has three equal lags. See Equation (4.23). Mea-
surements on the step response give the parameters ¢ = 0.218 and
L = 0.806. The step response method gives a PI controller with pa-
rameters K = 4.13 and 7; = 2.42. The ultimate gain is K, = 8 and
the ultimate period is T, = 27/v3 =~ 3.63. The frequency domain
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Figure 4.10 Nyquist curves of three systems with amplitude
margin A,, = 2, and their corresponding closed-loop step responses.

method gives a PI controller with parameters K = 3.2 and T; = 2.90.
Notice that the gains obtained with the frequency response method
are lower than those obtained with the step response method. Figure
4.11 shows the response of the closed-loop system to step changes in
setpoint and load when the PI controller is tuned with the frequency
response method. The figure shows clearly that the decay ratio is
much larger than the design value d = 1/4. The performance is even
worse if the step response method is used. Compare with Figure 4.8
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Figure 4.11 Setpoint and load disturbance response of a process
with transfer function G(s) = (s+1)~2 controlled by a PI controller
tuned with the Ziegler-Nichols frequency response method. The
diagrams show setpoint y,,, process output y, and control signal u.

which shows the results obtained with a PID controller tuned by the
Ziegler-Nichols frequency response method. |

Although the Ziegler-Nichols methods have many attractive prop-
erties they are far from perfect. Hence, there is a need to characterize
those situations where reasonable tuning is obtained with the Ziegler-
Nichols method and also to estimate the achievable performance. For
this purpose the process will be characterized by the quantities nor-
malized dead time 7 and gain ratio x introduced in Chapter 2. Recall
that 7 is the ratio of apparent dead time and average residence time
and that x is the ratio of the process gains at frequencies @, and 0.
Also remember that both quantities normally vary from 0 to 1 and
that they are approximately linearly related. Furthermore processes
with small x or 7 are easy to control. The difficulty increases as the
parameters approach 1.

The follewing empirical rules have been developed based on sim-
ulation of a large number of systems. There is no precise definition of
the region of validity. Roughly speaking they apply to processes with
essentially monotone step responses.

Case 1: Small k¥ and t. Processes with small x or 7 are easy
to control. A small value of 7 means that the dynamics is lag domi-
nated. In this case there are factors other than process dynamics that
limits performance, e.g., measurement noise. If specifications on re-
sponse time are not severe, satisfactory performance can often be ob-
tained with a PI controller. The tuning obtained by the Ziegler-Nichols
methods can often be improved significantly by using other methods.
Derivative action or even more complicated control laws are often use-
ful for obtaining systems with high performance in those cases where
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the disturbances are small. Notice that the Ziegler-Nichols rules do
not give guidance for finding parameters in PD controllers.

Case 2: Intermediate x and 7. This is the primary range for
using the Ziegler-Nichols method for PID control. Derivative action
often gives significant improvement of performance. The overshoot for
setpoint changes can often be too large. It can be reduced by proper
choice of setpoint weighting. :

Case 3: k¥ and t close to 1. This case corresponds to processes
that are dead time dominated. The Ziegler-Nichols tuning rules do not
perform well in those cases. PI or PID control can still be used, but the
tuning rules must be improved. It is also possible to get drastically
improved setpoint responses by using other control algorithms like
the Smith predictor. (Compare with Example 3.4 in Section 3.9.)
The boundaries between the different cases are approximately
0.07 and 0.4 for «, or 0.15 and 0.4 for 7. The following example
illustrates that the Ziegler-Nichols rules give poor tuning in Case 3.

EXAMPLE 4.4 Ziegler-Nichols tuning for x and t close to 1
Consider a process with the transfer function

e-—5s

@)= iy

Applying the frequency response method we find that K, = 1.25
and T, = 15.7. The controller parameters then become K = 0.75,
T; = 79 and T; = 2.0. The normalized dead time varies between
0.6 and to 0.7 depending on the method used to compute it. Compare
with Section 2.4. The gain ratio is, however, uniquely defined and
becomes k¥ = 0.8. This case thus belongs to Case 3 above. Figure
4.12 shows a simulation of the setpoint and load responses of the
closed-loop system. The responses are oscillatory as can be expected.
Notice also that the recovery from load disturbances is slow because
the integral action is too small. (]

Achievable Performance

It is also of interest to characterize the performance that can be
achieved with Ziegler-Nichols tuned PID controllers. A first indication
is already given in Table 4.1 and Table 4.2, which give the period of
the closed-loop systems. Several empirical observations have been
made from experimental investigations of tuned loops.

The rise time obtained is approximately equal to the apparent
dead time for processes without integration and L/2 for processes
with integration.



146 Chapter 4 Controller Design

.ys" /\/\
1 "\/ ~ -
y .
0 T T * T
0 50 100 150
k u
oo
-1 : T ' i
0 50 100 150

Figure 4.12 Step responses of a process with the transfer func-
tion G(s) = e™*/(s + 1)? controlled by PID controllers tuned with
the Ziegler-Nichols frequency response method. The diagrams show
setpoint y,,, process output y, and control signal .

The error due to a step disturbance at the process input has
a maximum at a time that is approximately equal to 0.25T, or L.
The size of the peak is approximately 1.4K,x, where K, is the static
process gain. Notice that the error is proportional to x.

With Ziegler-Nichols tuning the sensitivity is always larger than
2. In Section 4.2 it was shown that a quarter amplitude decay ratio
corresponds to a sensitivity M, = 2.6.

Tuning Maps

Since the Ziegler-Nichols methods only give “ball-park” values, it is
necessary to make manual tuning to obtain the desired performance.
A device called tuning maps have been developed to guide man-
ual tuning. The purpose of these maps is to provide intuition about
how changes in controller parameters influence the behaviour of the
closed-loop system. The tuning maps are simply two-dimensional ar-
rays of transient responses or frequency responses organized in a
systematic way:.

An example of a tuning map is given in Figure 4.13. The figure
illustrates how the load disturbance response is influenced by changes
in gain and integral time. The process model

1
)= Grr

has been used in the example. The Ziegler-Nichols frequency response
method gives the controller parameters X = 1.13, 7; = 7.58, and
Ty = 1.9. The figure shows clearly the benefits of having a smaller
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Figure 4.13 Tuning map for PID control of a process with the
transfer function G(s) = (s + 1)~ The figure shows the responses
to a unit step disturbance at the process input. Parameter T, has
the value 1.9.

value of T;. Judging from the figure, the values K = 1 and T; = 5.0
appear reasonable. The figure also shows that the choice of T is
fairly critical. Also notice that controllers with 7; < 7.6 cannot be
implemented on series form (compare with Section 3.4).

Another example of a tuning map is given in Figure 4.14, which
shows the Nyquist curves of the loop transfer functions that corre-
spond to Figure 4.13. The figure shows that with Ziegler-Nichols tun-
ing there is too much phase lead. This is reduced by reducing param-
eter T;. A comparative study of curves like Figure 4.13 and Figure
4.14 is a good way to develop intuition for the relations between the
time domain and the frequency domain.

It is useful to have a simple way to judge if the integral action
of a controller is too weak, as in the three left and the lower middle
examples in Figures 4.13 and 4.14. Such a criterion can be based on a
calculation of the asymptotic behaviour of the loop transfer function
for low frequencies. For a process with transfer function G, and a PI
controller with transfer function G, we have

Gu(s) = Gp(s)Ge(s)
z(q4m+sagm)K(1+§%)

_ KG,(0) KG,(0)
S + KG,(0)+ T,

Thus, for low frequencies the asymptote of the Nyquist curve is



148 Chapter 4 Controller Design
K=15 T =10 K=15 T =5 K=15 T, =3

0 0 3 ’ 0
-1t . -1 -1
_
-1 0 -1 0 -1 0
K=10 T, =10 K=10 T, =5 K=10 T, =3
0 0 0
-1 -1 -1
-1 0 -1 0 -1 0
K=05 T;=10 K=05 T, =5 K=05 T;=3
0 0 0
-1 -1 -1
-1 0 -1 0 -1 0

Figure 4.14 Tuning map for PID control of a process with
the transfer function G(s) = (s + 1)™% The figure shows the
Nyquist curves of the loop transfer function. Parameter T, has the
value 1.9.

parallel to the imaginary axis with the real part equal to

KGy(0) T.,

KG,(0) + —,;,'7— = KK, (1— Ti)

where K, = G(0) is the static process gain, and T,, is the average

residence time. It is reasonable to require that the real part of the
asymptote is less than —0.5. This gives

T <T 2KK,

y———t 4.29
“1+2KK, (4.29)

For the system in Figures 4.13 and 4.14, we get the requirement
T; < 6.0 for the systems in the upper row, T; < 5.3 for the systems in
the middle row, and T; < 4.0 for the systems in the lower row. This
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‘means that condition (4.29) excludes the three left and the lower
middle examples in Figures 4.13 and 4.14.
Assuming that the process dynamics is governed by

-sL

e
Gols) =Ko 5t

-we find that T,, = L + T. With Zieg]er-Nicholé tuning of a PI con-
troller, we then find that condition (4.29) is satisfied if

18T
L +18T

This means that we must require that the normalized dead time
satisfies

3L < (L+T)

L
T= T < 0.28
A similar calculation for a process described by
Gols) = Ky~
»(s) = Kp O+ sT)
which has
_L+(38-¢)T
© L+2T

shows that condition (4.29) holds for a PI controller tuned according
to the Ziegler-Nichols method if

7 < 0.38

We can thus conclude that the Ziegler-Nichols tuning rules for PI
controllers can be applied only for small values of 7. The upper
bound is approximately ¢ = 0.3. For larger normalized dead times
the integral action is too weak.

The Chien, Hrones and Reswick Method

There has been many suggestions of modifications of the Ziegler-
Nichols methods. Chien, Hrones and Reswick (CHR) changed the step
response method to give better damped closed-loop systems. They
proposed to use “quickest response without overshoot” or “quickest
response with 20% overshoot” as design criteria. They also made
the important observation that tuning for setpoint response or load
disturbance response are different.

To tune the controller according to the CHR method, the param-
eters a and L of the process model are first determined in the same
way as for the Ziegler-Nichols step response method. The controller
parameters for the load disturbance response method are then given
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Table 4.3 Controller parameters obtained from the Chien, Hrones
and Reswick load disturbance response method. ’

_Ove_rshoot B . ‘ 20%
Controller K T; T . K T, T,
P 0.3/a 0.7/a
PI 06/a 4L 0.7/a 2.3L
PID 095/a 24L 042L 1.2/a 2L 042L

as functions of these two parameters. They are summarized in Ta-.
ble 4.3.

The tuning rules based on the 20% overshoot design criteria in Ta-
ble 4.3 are quite similar to the Ziegler-Nichols step response method
presented in Table 4.1. However, when the 0% overshoot design cri-
teria is used, the gain and the derivative time are smaller and the
integral time is larger. This means that the proportional action, the
integral action, as well as the derivative action, are smaller.

In the setpoint response method, the controller parameters are
not only based on @ and L, but also on the time constant 7. Methods
to obtain these parameters were presented in Section 2.4. The tuning
rules for setpoint response are summarized in Table 4.4.

Discussion

The Ziegler-Nichols tuning rules were developed empirically based on
simulation of a large number of cases. The cases considered were typ-
ically such that process dynamics is the main factor that limits per-
formance. When developing the rules it was also attempted to choose
numerical values that give simple rules. The methods are simple and
easy to use. The process is characterized by two parameters that
can be determined by simple experiments. The frequency response
method has the advantage that parameters K, and T, are easier to
determine accurately than the parameters ¢ and L, which are used
by the step response method.

The main design criterion was to obtain good rejection of load dis-
turbances specified as quarter amplitude decay ratio. Little empha-
sis was given to measurement noise, sensitivity to process variations,
and setpoint response. The quarter amplitude decay ratio gives sys-
tems with very poor damping. The step response method often gives
higher loop gains than the frequency domain method. Both methods
give better parameters for PID control than for PI control, but in spite
of their widely spread use they give poor tuning.
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Table 4.4 Controller parameters obtained from the Chien, Hrones
and Reswick setpoint response method.

Overshoot 0% - 20%
Controller K T T K T; T,
P 0.3/a 0.7/a
PI 0.35/a 12T 06/a T
PID 06/a T 05L 095/a 14T 047L

4.4 Loop Shaping

The Ziegler Nichols frequency response method tries to position one
point on the loop transfer function appropriately. Even though the
point is chosen cleverly it is surprising that such a method works so
well. Some consequences of positioning one point only were discussed
in Section 4.3. There are many other design methods that try to obtain
a loop transfer function with a good shape. Some of these methods
are discussed in this section.

Slope Adjustments

Only two parameters are needed to change the value of the loop
transfer function at one frequency. This is the reason why the Ziegler-
Nichols method gives unique parameters for a PI controller. For a
PID controller, which has three parameters, the condition T; = 47,
was introduced in order to obtain unique parameter values. Thus,
for PID controllers we have one degree of freedom that can be used
to shape the loop transfer function. One possibility is to position one
point and to adjust the slope of the Nyquist curve at the chosen point.
A natural requirement is that the slope at the chosen frequency wq
should be orthogonal to the line 1 + G;(iwg) (see Figure 4.15). This
ensures that the sensitivity is minimized locally. To see how this can
be accomplished, consider a system with Ziegler-Nichols tuning, i.e.,

. i
G,,(La)u) = -—F

where the controller

G.(iw) = K (1 +i(oTy - wfr))




152  Chapter 4 Controller Design

A ImG,(iw)

' Re G,(iw)

1+ G,
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Figure 4.15 Adjustment of the slope of the Nyquist curve.

is chosen so that the loop transfer function has the value rye*+%) at
w, as was discussed in Section 4.3. This means that

K = K,ry cos ¢y

11 (4.30)
Td - Z)—ﬁ (()_u tan¢b =a

Notice that we still have freedom to choose the ratio T;/T,;. To make
this choice so that the Nyquist curve has a given slope at @, consider
the loop transfer function G;(iw) = G,(iw)G,(iw). Differentiating the
loop transfer function with respect to w gives.

dG(iw) dG. (iw) + dGp(iw)

do Gpliw) dw dw Ge (i)
Furthermore, we have
dG.(iw) . .
do - iK (Td + szi) =iK(2Ty - a)

where the last equality follows from Equation (4.30). If transfer func-
tion G, is parameterized as

Gylin) = r(w)e'?@)-x)
straightforward but tedious calculations give
K ! !
Giiw,) = % (-r; —a¢’'w, + i(q)’ + aa),,fr— + 2T, - a))
u
where ' denotes derivative with respect to w. Hence

ar dGe(iw) arctan ¢ +aw,r' fr+2Ts—a
& dt r/r-aw,¢’
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This gives the following equation for T}.

1/ , . r r ,
Ty = -2-( —-¢ —awy -+ (7—awu¢)tany/) (4.31)
where y is the desired slope of the Nyquist curve at w,. Parameter

T; is then given by

) .
T = ———— .
{E S (Ti—a) (4.32)
We illustrate the procedure with an example
EXAMPLE 4.5
Consider the same process model as in Examples 4.1 and 4.2, i.e.

1
G(s) = ———
©) = 571y
This process has ultimate gain K, = 8 and ultimate frequency @, =

V3. The amplitude » and its derivative, and the phase ¢ and its
.derivative are :

o1 : ,_ 3w
T (1+ @232 T Ty o)
¢ = —3arctanw ¢ = _ZT?’CU’T)
Their values at w, become
1 , 3V3 _ , 3
Suppose that we want to move the ultimate point to the new position
1
ry = — = 45°
b= 75 Ps

The slope of Nyquist curve is orthogonal to the line 1 + G,{iw,) if
it is chosen to ¥ = 45°. This choice gives an M, value equal to
M, = V2=~ 14.

The controller parameters can now be obtained from Equations
(4.30),(4.31) and (4.32). They become K = 4,T; = 1.9,and Ty = 0.75.
Figure 4.16 shows the response of the closed-loop systems to a step
change in setpoint followed by a step change in the load. O

Frequency Domain Design of a PID Controller

The Ziegler-Nichols method was based on knowledge of the process
transfer function at the ultimate point. The design method we have
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Figure 4.16 Setpoint and load disturbance response of a process
with transfer function 1/(s+1)? controlled by a PID controller tuned
with the loop-shaping method. The diagrams show setpoint y,,,
process output y, and control signal u.

just discussed requires, in addition, knowledge of the slope of the
plant transfer function at the ultimate point. More effective methods
can be used if the whole plant transfer function is known. Such a
method will now be discussed.

The design criterion is to obtain a specified sensitivity M, with
good rejection of load disturbances. Let r(w) and ¢(w) denote magni-
tude and phase of the frequency response of the process i.e.

G, (iw) = r(w)e'@-)

and let the controller transfer function be
ki
Gc(s) =k+ ? + kds

To have a given sensitivity M;, the Nyquist curve of the loop transfer
function must avoid a circle around the critical point with radius
ro = 1/M; (see Figure 4.17). Assume that the curve meets the circle
tangentially at the point A. The condition that the loop transfer
function goes through A is

r(a))ei("’(“’)‘”) (k + i(kdw — —(j)) = ~14rgcos@ —irgsin8

where rg and @ are defined in Figure 4.17. Separating real and imag-
inary parts we get

r(o)
w

r(@)

kr(w) sing(w) — k; —, cos ¢(w) + kgwr(w) cos ¢ (w) = —rosin@

kr(w) cos ¢(w) + k;

sin ¢{@) — kgwr(w) sing(w) = -1 + rocos 6
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Figure 4.17 Geometrical illustration of the loop-shaping design
method.

Calculating the derivative of the loop transfer function we find, after
simplifications,

dG[(iw) _ i(¢—7[) Zi k; ’
o =T kr - ((okd— 5)(2)

d
. , ki r’ ki
+L(k¢ + (wkd— 5)7 + kg + 55))

The condition for tangency can be written as

dG[(l(()) _ E

dw 2 0
This can be simplified to
ak +bki+cky =0
where ‘@)
, r'(o
= - ——Ztané
¢'(w) ) tan
! r(w) ¢'(w)tans
b= PN ) ® (4.33)
wr' (w)

c=1+ + w¢'(w)tand

r(w)
and the angle § is defined in Figure 4.17. We thus obtain three
equations to determine the controller parameters %, k;, and k4. Notice,
however, that both @w and 6 can be considered as unknowns. To
determine these parameters, we can introduce the condition that k&;
should be as large as possible, i.e., to minimize IE. Another possibility
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is to make w as large as possible. The design of the controller then is
reduced to an optimization problem. Notice that parameter 0 varies
in the range (0,7/2). The value @, can be used as an initial value

for the optimization. Instead of minimizing IE we could also consider

minimization of IAE. However, this will increase the computational
effort considerably. Notice that when performing the optimization we
also obtain the argument w, for which the optimum is achieved. This
indicates the frequency range where model precision is needed.

4.5 Analytical Tuning Methods

There are several analytical tuning methods where the controller
transfer function is obtained from the specifications by a direct cal-
culation. Let G, and G; be the transfer functions of the process and
the controller. The closed-loop transfer function obtained with error
feedback is then

G,G,
Go = 1+ G,G.
Solving this equation for G, we get
1 Go
G. = —(Z- G (4.34)

If the closed-loop transfer function Gy is specified and G, is known,
it is thus easy to compute G,.. The key problem is to find reason-
able ways to determine Gy based on engineering specifications of the
system.

It follows from Equation (4.34) that all process poles and zeros
are canceled by the controller. This means that the method cannot
be applied when the process has poorly damped poles and zeros. The
method will also give a poor load disturbance response when slow
process poles are canceled.

A-Tuning

The method called A-tuning was developed for processes with long
dead time L. Consider a process with the transfer function

— KP e-—sL
1+sT

Assume that the desired closed-loop transfer function is specified as

Gp

e—sL

Go = 1+ sAT
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where 1 is a tuning parameter. The time constants of the open- and
closed-loop systems are the same when 4 = 1. The closed-loop system
responds faster than the open-loop system if 4 < 1. It is slower when
A>1
' It follows from Equation (4.34) that the controller transfer func-
tion becomes v .
_ 1+sT :
" Kp(1+ AsT —e—sL)
The controller has integral action, because G.(0) = oo. The input-
output relation of the controller is

G, . (4.35)

(1+sAT - e'gl‘) U(s) = —I%— (1+sT)E(s) (4.36)
P
This can be written as

U(s) = T;{—I; (1 + siT> (E(s) R (1) U(s)> (4.37)

When L = 0, this becomes a PI controller with gain K = 1/(1K})
and integral time T; = T'. The term
K,
1+sT
can be interpreted as a prediction of the process output at time ¢
based on the values of the control signal in the time interval (1T, ¢).
The controller given by Equation (4.37) can thus be interpreted as a
predictive PI controller where the prediction is formed by correcting
for the effects of the control actions that have been taken, but have not
yet appeared in the output because of the delay in the process. The
controller is, therefore, called a predictive PI controller (PPI). For
processes with long dead times, the prediction given in Equations
(4.36) and (4.37) is much better than the prediction obtained by
derivative action.
The PPI controller can be written as
1

U(s) = K, (1 + ZIT) E(s) - S%T (1—eF) U(s) (4.38)

(1-e=L) U(s)

In Section 4.2, it was shown that the integral error for a PID
controller is T
i

I1Epp = i

The integrated errors obtained with a PID controller and a controller
with A-tuning are compared. With a PID controller based on the
Ziegler-Nichols step response method, we obtain

K,L?

06T

IEpp =
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To compute the integral error for the PPI controller it will be assumed
that the system is initially at rest and that a load disturbance in the
form of a unit step is applied to the process input. Since the controller
has integral action, we have u(oo) = 1. To integrate Equatlon (4.38),
ﬁrst note that

71%:1‘ /ooo(u(t) ~u(t-L))dt = 1%

Integration of Equation (4.38) from 0 to co now gives

u(o0) = u(0) = 1 = I'Kl,,_T/Ow e(t)dt - ZLT

The integral error thus becomes
IEPPI = KP(L + /1T)

The integrated error is smaller with PPI control than with PID
control when L is large. For 4 = 1 the criteria are equal when L/T =
1.1. The improvements with PPI control increases with decreasing
values of A.

The sensitivity function obtained with A-tuning is given by

esL B 1+ sAT —esL
T 14+8AT 1+ 8AT

S(s)=1

It can be shown that
M, = max|S(iw)]

is always less than 2. An approximate expression for M; is given by
T
Ms =2 /17;

Thus, to have a value of M, smaller than 2 it is important that 4 is
sufficiently large.

We note that in order to make the integrated error small it is
advantageous to have a small value of 4. A small value of 2, however,
will increase the sensitivity.

In practice it is common to choose 4 between 0.5 and 5. The PPI
controller is particularly simple if A = 1, i.e., if the desired closed-
loop time constant is equal to the open-loop time constant. Equation
(4.38) then becomes

U(s)= K (1 + s_;‘,) E(s) - ;I’IT, (1-e=L) U(s)

where K = 1/K, and T; = T. This equation can also be written as

—sL

U(s) = KE(s) + 17— U(s) (4.39)
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Figure 4.18 Block diagram of the PPI controller with A = 1.

A block diagram describing this equation is given in Figure 4.18. No-
tice the strong similarity with the PI controller shown in Figure 3.8.

The Haalman Method

Another approach is to determine an ideal loop transfer function
Gy that gives the desired performance and to choose the controller

transfer function as
— Gl

G, =
c Gp
where G, is the process transfer function. Such an approach can
give PI and PID controllers provided that G; and G, are sufficiently
simple. There are many ways to obtain a suitable G,.
For systems with a time delay L, Haalman has suggested choos-
ing

(4.40)

2
Gi(s) = 3Ts e~k (4.41)

The value 2/3 was found by minimizing the mean square error for a
step change in the setpoint. This choice gives a sensitivity M; = 1.9,
which is a reasonable value. Notice that it is only the dead time of the
process that influences the loop transfer function. All other process
poles and zeros are canceled, which may lead to difficulties.

Applying Haalman’s method to a processes with the transfer func-
tion

1 .
Go(s) = 7357

gives the controller

Gc(s)=2(1+sT)_g(1 1)

3Ls 3L\ T 5T
which is a PI controller with K = 2T/3L and T; = T. These param-

eters can be compared with the values K = 0.97'/L and T; = 3L ob-
tained by the Ziegler-Nichols step response method. A PID controller
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-1 T T T T T

0 10 20 30 - 40 50

Figure 4.19 Simulation of a closed-loop system obtained by Haal-
man’s method. The plant transfer function is G(s) = e~*/(s+1). The
diagrams show setpoint y,,, process output y, and control signal .

is obtained if the method is applied to a process with the transfer
function

_ 1 -sL
GP(S) - (1 + ST])(]. + STz) €
The parameters of the controller are K = 2(T1+T%)/3L, T; = T1+ Ts,
and Td = T1T2/(T1 + Tz)

For more complex processes it is necessary to approximate the
processes to obtain a transfer function of the desired form as was
discussed in Section 2.9. Figure 4.19 shows a simulation of Haalman’s
method for a system whose dynamics is dominated by dead time. The
normalized dead time is 0.5 for this system. The figure shows that
the responses are excellent.

Drawbacks of Pole-Zero Cancellations

A key feature of Haalman’s method is that process poles and zeros are
canceled by poles and zeros in the controller. When poles and zeros
are canceled, there will be uncontrollable modes in the closed-loop
system. This may lead to poor performance if the modes are excited.
The problem is particular severe if the canceled modes are slow or
unstable. We use an example to illustrate what may happen.

EXAMPLE 4.6 Loss of controllability due to cancellation
Consider a closed-loop system where a process with the transfer func-
tion

1
Go(s) = 75"
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is controlled with a PI controller whose parameters are chosen so that
the process pole is canceled. The transfer function of the controller is
then ’

1 1+sT
G.(s) = K(1+ S—T) =K —
The process can be represented by the equation
dy(t 1
DO L (e~ L) - y(0) (4.42)
and the controller can be described by
du(t) _ dy(t)  y(t)
ar K ( a T (4.43)

Consider the behaviour of the closed-loop system when the initial
conditions are chosen as ¥(0) = 1 and u(¢) = 0 for -L < t < 0.
Without feedback the output is given by

Yol (t) = e_t/T

To compute the output for the closed-loop system we first eliminate
y(t) between Equations (4.42) and (4.43). This gives

W) . K-

It thus follows that u(t) = 0, and Equation (4.42) then implies that

ycl(t) = e_t/T = yol(t)

The trajectories of the closed-loop system and the open-loop system
thus are the same. The control signal is zero, which means that the
controller does not attempt to reduce the control error. O

The example clearly indicates that there are drawbacks with can-
cellation of process poles. Another illustration of the phenomenon is
given in Figure 4.20, which is a simulation of a closed-loop system
where the controller is designed by Haalman’s method. This simula-
tion is identical to the simulation in Figure 4.19 but the process time
constant is now 10 instead of 1 for the simulation in Figure 4.19. In
this case we find that the setpoint response is excellent but that the
response to load disturbances is very poor. The reason for this is that
the controller cancels the pole s = —0.1, by having a controller zero
at s = —0.1. Notice that the process output after a load disturbance
decays with the time constant T' = 10, but that the control signal is
practically constant due to the cancellation. The attenuation of load
disturbances is improved considerably by reducing the integral time
of the controller as shown in Figure 4.20.
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Figure 4.20 Simulation of a closed-loop system obtained by Haal-
man’s method. The process transfer function is G(s) = e*/(10s+1),
and the controller parameters are K = 6.67 and T; = 10. The up-
per diagram shows setpoint y, = 1 and process output y, and the
lower diagram shows control signal u. The figure also shows the re-
sponses to a retuned controller with K = 6.67, T, = 3and b = 0.5.

We have thus shown that cancellation of process poles may give
systems with poor rejection of load disturbances. Notice that this does
not show up in simulations unless the process is excited. For example,
it will not be noticed in a simulation of a step change in the setpoint.
We may also ask why there is such a big difference in the simulation
in Figure 4.18 and Figure 4.20. The reason is that the canceled pole
in Figure 4.20 is slow in comparison with the closed-loop poles, but
it is of the same magnitude as the closed-loop poles in Figure 4.18.

We can thus conclude that pole cancellation can be done for sys-
tems that are dead time dominated but not for systems that are lag
dominated.

The Internal Model Controller (IMC)

The internal model principle is a general method for design of control
systems that can be applied to PID control. A block diagram of such
a system is shown in Figure 4.21. In the diagram it is assumed that
all disturbances acting on the process are reduced to an equivalent
disturbance d at the process output. In the figure G,, denotes a model
of the process, G}, is an approximate inverse of G,,, and Gy is a low-
pass filter. The name internal model controller derives from the fact
that the controller contains a model of the process internally. This
model is connected in parallel with the process.

If the model matches the process, i.e., G, = G,, the signal e
is equal to the disturbance d for all control signals u. If Gf = 1
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Figure 4.21 Block diagram of a closed-loop system with a con-
troller based on the internal model principle.

and G} is an exact inverse of the process, then the disturbance d
will be canceled perfectly. The filter Gy is introduced to obtain a
system that is less sensitive to modeling errors. A common choice
is Gy(s) = 1/(1 + sTy), where Ty is a design parameter.

The controller obtained by the internal model principle can be
represented as an ordinary series controller with the transfer function

GG,

= Im (4.44)
1- GiGLG,

c

From this expression it follows that controllers of this type cancel
process poles and zeros.

The internal model principle will typically give controllers of high
order. By making special assumptionsit is, however, possible to obtain
PI or PID controllers from the principle. To see this consider a process
with the transfer function

G,(s) = sk (4.45)

P
1+sTe

An approximate inverse is given by

1+sT
K

P

Gh.(s) =

Notice that it is not attempted to find an inverse of the time delay.
Choose the filter

1
Gr(s) = 1+s7;

Approximating the time delay by

et ~1-sL
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Equation (4.44) now gives
1T
Kps(L + 1Tf)

which is a PI controller. If the time delay is approximated instead by
a first-order Padé approximation .

G(s) =

omsL p 1-sL/2
1+sL/2

Equation (4.44) gives instead the PID controller

(1+sL/2)(1+sT) (1+sL/2)(1+sT)
Kys(L+T; +sTrL/2) ~  Kps(L+T)

For processes described by Equation (4.45), we thus find that the
internal model principle will give PI or PID controllers. Approxima-
tions like the ones discussed in Section 2.9 can be used in the usual
manner to obtain PI and PID controllers for more complex processes.

An interesting feature of the internal model controller is that
robustness is considered explicitly in the design. Robustness can be
adjusted by selecting the filter Gy properly. A trade-off between per-
formance and robustness can be made by using the filter constant as a
design parameter. The IMC can be designed to give excellent response
to setpoint changes. Since the design method inherently implies that
poles and zeros of the plant are canceled, the response to load dis-
turbances may be poor if the canceled poles are slow in comparison
with the dominant poles. Compare with the responses in Figure 4.20.
The IMC controller can also be viewed as an extension of the Smith
predictor.

G.(s) =

4.6 Optimization Methods

Optimization is a powerful tool for design of controllers. The method
is conceptually simple. A controller structure with a few parameters
is specified. Specifications are expressed as inequalities of functions
of the parameters. The specification that is most important is cho-
sen as the function to optimize. The method is well suited for PID
controllers where the controller structure and the parameterization
are given. There are several pitfalls when using optimization. Care
must be exercised when formulating criteria and constraints; other-
wise, a criterion will indeed be optimal, but the controller may still
be unsuitable because of a neglected constraint. Another difficulty is
that the loss function may have many local minima. A third is that
the computations required may easily be excessive. Numerical prob-
lems may also arise. Nevertheless, optimization is a good tool that
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Table 4.5 Contr_oller pafameters obtained from minimization of
integrated absolute error, TAE.

L IAE M, Ky K T;

0.0 0. 00 e 0
0.2 0.14 3.3 4.7 4.7 0.62
0.5 0.60 3.0 2.0 2.0 1.1
1.0 15 24 10 1.0 14
2.0 3.2 21 0.60 0.60 1.8
5.0 7.7 2.0 0.42 0.42 3.1
10.0 15 1.9 0.37 0.37 53

has successfully been used to design PID controllers. In this section
we discuss some of these methods.

EXAMPLE 4.7 A PI controller optimized for IAE
Consider a process with the transfer function

1

Gp(s) = 5 e~k (4.46)
Table 4.5 gives controller parameters obtained when minimizing IAE
for load disturbances. Some of the other criteria are also given in the
table. Notice that the integrated absolute error increases with L, as
can be expected. Notice also that, although the criterion IAE is min-
imized, several other design criteria such as the M, value and the
high-frequency controller gain Kjs have undesirable values. Notice
in particular that the values of M; are quite high. The example illus-
trates the necessity of considering many performance criteria when
using optimization methods. Unfortunately, this was not observed in
much of the early work on controller tuning. a

Tuning Formulas Based on Optimization

Many studies have been devoted to development of tuning rules based
on optimization. Very often a process described by
— KP e—sL
P27 14T
has been considered. The loss functions obtained for unit step changes
in setpoint and process input have been computed and formulas of
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roe(3)

the type

_ where p is a controller parameter and a and b are constants, have
. been fitted to the numerical values obtained. In many cases the crite-

rion is IAE for load disturbances, which often gives systems with low
damping and poor sensitivity. The formulas given often only hold for
a small range of normalized dead times, e.g., 0.2 < 7 < 0.6. It should
also be observed that criteria based on setpoint changes can often be
misleading because it is often not observed that the setpoint changes
are drastically influenced by different setpoint weightings.

Modulus and Symmetrical Optimum

Modulus Optimum (BO) and Symmetrical Optimum (SO} are two
methods for selecting and tuning controllers that are similar in spirit
to Haalman’s method. The acronyms BO and SO are derived from the
German words Betrags Optimum and Symmetrische Optimum. These
methods are based on the idea of finding a controller that makes the
frequency response from setpoint to plant output as close to one as
possible for low frequencies. If G(s) is the transfer function from the
setpoint to the output, the controller is determined in such a way
that G(0) = 1 and that d*|G(iw)|/d@™ = 0 at ® = O for as many n
as possible. We illustrate the idea with a few examples.

EXAMPLE 4.8 Second-order system
Consider the transfer function
Q2
G{s) = —————

(s) s2+a15+ as
which has been chosen so that G(0) = 1. Let us first consider how
the parameters should be chosen in order to get a maximally flat
frequency response. We have

a3 _ a3

a?o? + (a2 - w?)2 ol + @?(a? - 2a9) + 0!

By choosing a1 = v/2ay we find

1G(iw)?

_9

a? + ot

The first three derivatives of |G (iw)| will vanish at the origin. The
transfer function then has the form

1G(iw)|* =

3

G(s) = —————
) s2 + V2wos + w}
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The step response of a system with this transfer function has an
overshoot 0. = 4%. The settling time to 2% of the steady state value
ist; = 6/ Wo. O

If the transfer function G in the example is obtained by error

feedback of a system with the loop transfer function Gpg, the loop
transfer function is :

G(s) w2
1-G(s) ~ s(s+v2mp).

which is the desired loop transfer function for the method called
modulus optimum.

The calculation in Example 4.8 can be performed for higher-order
systems with more effort. We illustrate by another example.

Gpo(s) = (4.47)

EXAMPLE 4.9 Third-order system
Consider the transfer function
as
s3 +a15% + ags +as

G(s) =

After some calculations we get

asg

|Giw)| =
\/a§ + (a2 - 2a1a3)®* + (a? — 2a2)0* + @O

Five derivatives of |G(iw)| will vanish at @ = 0, if the parameters
are such that a? = 2a; and a2 = 2a;a3. The transfer function then
becomes

3 3
] _ Yy
$3 + 20052 + 2035 + @3 (s + Wo)(s? + Wos + W})

G(s) = (4.48)
The step response of a system with this transfer function has an
overshoot 0 = 8.1%. The settling time to 2% of the steady state value
is 9.4/wy. A system with this closed-loop transfer function can be
obtained with a system having error feedback and the loop transfer
function
w5
s(s? + 2wos + 200%)

G[ (S) =

The closed-loop transfer function (4.48) can also be obtained from
other loop transfer functions if a two-degree of freedom controller is
used. For example, if a process with the transfer function
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is controlled by a PI controller having parameters K = 2, T; = 2/wq
and b = 0, the loop transfer function becomes

_ w§(2s + o)

Gso = s2(s + 2wp) (4.49)

The symmetric optimum aims at obtaining the loop transfer function
given by Equation (4.49). Notice that the Bode diagram of this trans-
fer function is symmetrical around the frequency @ = wy. This is the
motivation for the name symmetrical optimum.

If a PI controller with & = 1 is used, the transfer function from
setpoint to process output becomes

_ Gso(s) (2s + wo) w3
Gls) = 1+ Gso(s) (s+ wo)(s? + a)oso+ w?)

This transfer function is not maximally flat because of the zero in the
numerator. This zero will also give a setpoint response with a large
overshoot, about 43%. (]

The methods BO and SO can be called loop-shaping methods
since both methods try to obtain a specific loop transfer function.
The design methods can be described as follows. It is first established
which of the transfer functions, Gpo or Gso, is most appropriate.
The transfer function of the controller G.(s) is then chosen so that
Ge(s) = Gc(s)Gp(s), where Gy is the chosen loop transfer function.
We illustrate the methods with the following examples.

EXAMPLE 4.10 BO control
Consider a process with the transfer function

K,
= 4.50
G = a7 s (450
With a proportional controller the loop transfer function becomes
KK,
Gls) = v sT)

To make this transfer function equal to Gpo given by Equation (4.47)
it must be required that

The controller gain should be chosen as

(00\/2. _ 1

K=3k 3T
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EXAMPLE 4.11 SO control

Consider a process with the same transfer function as in the previous
example (Equation (4.50)). With a PI controller having the transfer

function

K(1 + sT;
Gc(s) = ( sT: )

we obtain the loop transfer function

K, K(1+ sT))

Cels) =~ 145

This is identical to Ggo if we choose

1
2K, T
T, = 4T

K =

To obtain the transfer function given by Equation (4.48) between
setpoint and process output, the controller should have the input-
output relation ‘

u(t) = K(—y(t) ‘ -717 / (o) - y(s))ds)

The coefficient b in the standard controller thus should be set to zero.
O

A Design Procedure

A systematic design procedure can be based on the methods BO and
SO. The design method consists of two steps. In the first step the
process transfer function is simplified to one of the following forms

Ky

Gi(s) = 127 (4.51)
Ga(s) = (1+ST§("1+ST2), Ty > Ty (4.52)
Gs(s) = Tma f{:T2)(1+ Ty 1> Te>Ty (459
Gas) = 31%57“—) (4.54)
Gs(s) = S sT§IZ1+ oy T (4.55)

Process poles may be canceled by controller zeros to obtain the desired
loop transfer function. A slow pole may be approximated by an inte-
grator; fast poles may be lumped together as discussed in Section 2.9.
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The rule of thumb given in the original papers on the method is that
time constants such that weT < 0.25 can be regarded as integrators.

The controller is derived in the same way as in Examples 4.10
and 4.11 by choosing parameters so that the loop transfer function
matches either Gpo or Ggsp. By doing this we obtain the results
summarized in Table 4.6. Notice, for example, that Example 4.10 and
4.11 correspond to the entries Process G4 in the table. It is natural
to view the smallest time constant as an approximation of neglected
dynamics in the process. It is interesting to observe that it is this time
constant that determines the bandwidth of the closed-loop system.

The setpoint response for the BO method is excellent. Notice
that it is necessary to use a controller with a two-degree-of-freedom
structure or a prefilter to avoid a high overshoot for the SO method.
Notice that process poles are canceled in the cases marked C1 or C2
in Table 4.6. The response to load disturbances will be poor if the
canceled pole is slow compared to the closed-loop dynamics, which is
characterized by wg in Table 4.6.

These design principles can be extended to processes other than
those listed in the table.

EXAMPLE 4.12 Application of BO and SO
Consider a process with the transfer function

1
(1 + s){1+ 0.2s)(1+ 0.05s)(1+ 0.01s)

Since this transfer function is of fourth order, the design procedure
cannot be applied directly. We show how different controllers are ob-
tained depending on the approximations made. The performance of
the closed-loop system depends on the approximation. We use param-
eter wqg as a crude measure of performance.

If a controller with low performance is acceptable, the process
(4.56) can be approximated with

G(s) =

(4.56)

1
1+1.26s
The approximation has a phase error less than 10° for @ < 1.12. It
follows from Table 4.6 that the system (4.57) can be controlled with
an integrating controller with

K 05
kg = ﬁ = _]:Eé =04
This gives a closed-loop system with @y = 0.55.

A closed-loop system with better performance is obtained if the

transfer function (4.56) is approximated with
1

(1+s)(1+0.26s)

G(s) = (4.57)

G(s) =

(4.58)
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Table 4.6  Controller parameters obtained with the BO and SO
methods. Entry P gives the process transfer function, entry C gives
the controller structure, and entry M tells whether the BO or SO
method is used. In the entry Remark, A1 means that 1 + sT) is
approximated by sT; and Ci means that the time constant 7T} is

canceled. :

P C M Remark KK, T; Iy @ b e
G, 1 BO 05 T o_;

G, P BO Al 5% 97”122 !

G, PI BO Cl 5% T, %T: 1

G PI 50 Al 5% 4T 9'['? 0

G; PD BO Al,C2 E% T, (-)T'% 1o
G; PID BO C1,C2 T—‘;Ta—Tz Ty + T T?LTzTZ 97',—37 1 1
G, P BO o ¥ o

G, P SO 517: AT % 0

Gs PD BO Cl 5;—,; T, %«Z o1
Gs PD SO Al 8—%— 4T, 0725‘ 10
Gs PID SO C1 T18+T§T2 T, + 4T, T???Tg 9‘TL25" T fl4T2 0

The slowest time constant is thus kept and the remaining time con-
stants are approximated by lumping their time constants. The ap-
proximation has a phase error less than 10° for @ < 5.15. A PI
controller can be designed using the BO method. The parameters
K = 192 and T; = 1 are obtained from Table 4.6. The closed-loop
system has @ = 2.7.

If the transfer function is approximated as

1

G6) = AT+ 029)(1+ 0.063)

(4.59)

the approximation has a phase error less than 10° for w < 26.6. The



172  Chapter 4 Céntroller Design
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Figure 4.22 Simulation of the closed-loop system obtained with
different controllers designed by the BO and SO methods given in
Table 4.7. The upper diagram shows setpoint y, and process output
y, and the lower diagram shows control signal «.

BO method can be used also in this case. Table 4.6 gives the controller
parameters K = 10, T; = 1.2, and Ty = 0.17. The controller structure
is defined by the parameters b = 1 and ¢ = 1. This controller gives a
closed-loop system with @y = 11.7.

The method SO can also be applied to the system (4.59). Table
4.6 gives the controller parameters K = 153, T; = 0.44, T; = 0.11,
and b = 0.45. For these parameters we get @y = 8.3.

Thus, we note that controllers with different properties can be
obtained by approximating the transfer function in different ways. A
summary of the properties of the closed-loop systems obtained is given
in Table 4.7, where IAE refers to the load disturbance response. Notice
that Controller 2 cancels a process pole with time constant 1 s, and
that Controller 3 cancels process poles with time constants 1 s and
0.25 s. This explains why the IAE drops drastically for Controller 4,
which does not cancel any process poles. Controller 4 actually has a
lower bandwidth @wo than Controller 3.

A simulation of the different controllers is shown in Figure 4.22.

Summary

In this section we discussed using optimization methods to arrive
at desirable loop transfer functions. The method by Haalman is de-
signed for systems having dead time. The methods BO and SO apply
to systems without dead time. Small dead times can be dealt with
by approximation. An interesting feature of both BO and SO is that
approximations are used to obtain simple low order transfer func-
tions. There are possibilities to combine the approaches. A drawback
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Table 4.7 Results obtained with different controllers designed by
the BO and SO methods in Example 4.12. The frequency ®,, defines
the upper limit when the phase error is less than 10%.

Controller K T; T, & b ¢ 0 w, IAE

) 04 055 112 27
192 1 052 1 27 515 052
10 12 017 83 1 1 117 266 0.12
153 044 011 35 045 0 83 266 0.029

W N e

with all design methods of this type is that process poles are canceled.
This may lead to poor attenuation of load disturbances if the canceled
poles are excited by disturbances and if they are slow compared to
the dominant closed-loop poles.

4.7 Pole Placement

This section presents design methods that are based on knowledge
of the process transfer function. The pole placement design method
simply attempts to find a controller that gives desired closed-loop
poles. We illustrate the method by two simple examples.

EXAMPLE 4.13 PI control of a first-order system

Suppose that the process can be described by the following first-order
model:

(4.60)

which has only two parameters, the process gain (K,) and the time
constant (7). By controlling this process with the PI controller,

G.(s) = K(l + -317)

a second-order closed-loop system is obtained:

_ GG
¢6) =17 6.q,

The two closed-loop poles can be chosen arbitrarily by a suitable
choice of the gain (K) and the integral time (7}) of the controller. This
is seen as follows. The poles are given by the characteristic equation,

1+G.G, =0
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The characteristic equation becomes

s +s T + TT, =0

Now suppose that the desired closed-loop poles are characterized by
their relative damping ({') and their frequency (o). The desired
characteristic equation then becomes

s*+ 20 wos + wf = 0

Making the coefficients of these two characteristic equations equal
gives two equations for determining K and T;:

, KK
wO:TT

1+ K,K
T

Solving these for the controller parameters, we get

2;600T -1
KP
24600T ~1
w3T

2;(1)0

K

T, =

Notice that the transfer function from setpoint to process output has
a zero at s = —1/(bT;). To avoid excessive overshoot in the setpoint
response, parameter b should be chosen so that the zero is to the left
of the dominant closed-loop poles. A reasonable valueis b = 1/(w,T),
which places the zero at s = —wy. Notice also that in order to have
positive controller gains it is necessary that the chosen frequency (wg)
is larger than 1/(2{T). It also follows that if @y is large, the integral
time T is given by
X

3
Wo
and is, thus, independent of the process dynamics for large wy. There
is no formal upper bound to the bandwidth. However, a simplified
model like Equation (4.60) will not hold for large frequencies. The
upper bound on the bandwidth is determined, therefore, by the va-
lidity of the model. O

EXAMPLE 4.14 System with two real poles
Suppose that the process is characterized by the second-order model
KP

Gp = (1 + STl)(l + STg) (461)
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This model has three parameters. By using a PID controller, which
also has three parameters, it is possible to arbitrarily place the three
poles of the closed-loop system. The transfer function of the PID
controller can be written as

K(1+sT; + sZTde)
STL'

G.(s) =

The characteristic equation of the closed-loop system becomes
: 1 1 K\KT, 1 ‘K, K K,K

3 of + .+ 14 d y p
s+ (T Tt ) +S(T1T2 * T1T2) T\ TyT,

A suitable closed-loop characteristic equation of a third-order system
is

=0 (4.62)

(s + awo) (s + 2L wos + w2) = 0 (4.63)

which contains two dominant poles with relative damping ({') and
frequency (wo), and a real pole located in —awy. Identifying the
coefficients of equal powers of s in the Equations (4.62) and (4.63)
gives

1 1 KKT,
i = 2
T,~+T2+ T wo(a + 2)
1 KK
= 2
T + T w§(1 + 2¢ wy)
KPK 3
T, 7

Solving these equations gives the following controller parameters

T1Towd(1+ 2al) -1

K = %,
T - T1Tew2(1+ 2af) -1
' Ty T}
T1T2a)o(a + 2() — T1 - T2
Ty =

T1T20¢(1+2af) - 1

Provided that ¢ = 0, the transfer function from setpoint to process
output has one zero at s = —1/(bT}). To avoid excessive overshoot in
the setpoint response, parameter b can be chosen so that this zero
cancels the pole at s = —awy. This gives

1 _ CU(Z)TlT2
awoT;  @2TiTe(1+20¢) ~1

Also, notice that pure PI control is obtained for

T1 + TZ

@o = Be = (G ¥ 20V 1T
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The choice of @y may be critical. The derivative time is negative
for @y < .. Thus, the frequency (@.) gives a lower bound to the
bandwidth. The gain increases rapidly with @g. The upper bound
to the bandwidth is given by the validity of the s1mphﬁed model
(Equation 4.61). _ O

The methods BO and SO, discussed in the previous section, can
clearly be interpreted as pole placement methods. The desired closed-
loop characteristic polynomial is

Apo (s) = 82 + \/éa)os + (l)g

for the modulus optimum and -
Aso(s) = (s + 0o)(s% + wos + w})

for the symmetrical optimum.

The calculations in Example 4.14 can be done for any hnear sys-
tem. The algebraic formulas obtained, however, may be quite compli-
cated. Another useful example follows.

EXAMPLE 4.15 Second-order systems with a zero
Suppose that the process is characterized by the second-order model

b]S + b2
= =" — 4.64
Gy s2 +ais + ag (4.64)

This model has four parameters. It has two poles that may be real
or complex, and it has one zero. The model given by Equation (4.64)
captures many processes, oscillatory systems, and systems with right
half-plane zeros. The right half-plane zero can also be used as an ap-
proximation of a time delay. We assume that the process is controlled
by a PID controller parameterized as

E:

G.(s)=k+ ;‘ + kgs (4.65)

The closed-loop system is of third order and has the characteristic
equation

s(s® + a1s + ag) + (b1s + ba)(kas® + ks + k) = 0 {4.66)

A suitable closed-loop characteristic equation of a third-order system
is
(s + awo) (s + 2{ wos + w}) = O (4.67)

Equating coefficients of equal power in s in Equations (4.66) and
(4.67) gives the following equations:

ay + bakg + bik = (awo + 28 wo)(1 + biky)
ag + bok + bik; = (1 + 208)wi(1 + biky)
bzki = O.’Cl)g(l + blkd)
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This is a set of linear equé’cions in the controller parameters. The
solution is straightforward but tedious and is given by

azbf — asbiba(a + 28)wo — (b2 — a1b1) (ba(1 + 2a0) 0§ + ab1wy)

k=
b3 — b1bi(a + 28)wo + b2by(1 + 200 ) 0E — abiwd
B = (—a1b1b2'+ agb% + b%)awg
LB - bibi(a +28)wo + b2ba(1 + 20 )Wk — abiw}
by = —a1b2 +agb1bg + bi(a + 20)wo ~ b1bawi(1 + 2a() + blaw

b3 — b1bi(a + 20)wo + blba(1+ 20 )i — ab3wd

These formulas are quite useful because many processes can be ap-
proximately described by the transfer function given by Equation
(4.64). ]
The formulas given in Example 4.15 are particularly useful in
cases when we are “stretching” the PID controller to extreme situa-
tions. The standard tuning rules will typically not work in these cases.
Typical examples are systems with zeros in the right half-plane and
systems with poorly damped oscillatory modes. To illustrate this we
will consider an example. ' V

EXAMPLE 4.16 A difficult process
Consider a system with the transfer function

1-s
G(s) = 5
(s) s2+1
This system has one right half-plane zero and two undamped complex
poles. None of the standard methods for tuning PID controllers work
well for this system. To apply the pole-placement method we require
that the closed-loop system has the characteristic equation

S +22425+1=0

The formulas in Example 4.15 give a controller with the parameters
E =0k = 1/3, and kg = 2/3. This can also be verified with a
simple calculation. Notice that the proportional gain is zero and that
the controller has two complex zeros at +i+/2. Such a controller can
only be implemented with a PID controller having the parallel form.
Compare with section 3.4. O

The General Case

The calculations in the examples can be extended to general lin-
ear systems. They are, however, more complicated. It is necessary
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to specify more closed-loop poles. Some pole patterns that are used
are Butterworth configurations, where the roots of the characteristic
polynomials are placed symmetrically in a circle, and the Bessel con-
figurations, which correspond to filters that attempt to preserve the
shape of the wave form. The order of the controllers also increases
with the complexity of the model. To obtain PID controllers it is nec-
essary to restrict the models to first- or second-order systems. For
more complex processes, it is, therefore, necessary to make approx-
imations so that a process model in the form of a rational function
of first or second order is obtained. Several ways to perform these
approximations aree given in Chapter 2. We illustrate the procedure
with an example.

EXAMPLE 4.17 Pole placement with an approximate model
Consider a process described by the transfer function

1

Gol®) = (T3 5)(1+ 025)(1 + 0.05%)(1 + 0.01s)

(4.68)

This process has four lags with time constants 1, 0.2, 0.05, and 0.01.
The approximations can be done in several different ways. If the con-
trol requirements are not too severe, we can attempt to approximate
the transfer function by

1
1+ 1.26s

where the time constant is the average residence time of the system.
As discussed in Section 2.9, this approximation is good at low fre-
quencies. The phase error is less than 10° for frequencies below 1.1
rad/s. Designing a PI controller with the pole placement method with
{ = 0.5, the following controller parameters are obtained

Gp(s) =

K =126wy-1
Ti - 1.26(1)0 -1
1.263
b= 1.26600
T 126w -1
where b is chosen so that the zero becomes s = —~@g. If the process

model would be correct, the phase margin with { = 0.5 would be 50°,

Because of the approximations made, the phase margin will be less.

It will decrease with wy. For @y = 1 the phase margin is ¢,, = 42°.
0

Another way of applying pole placement design is given in the
next example.
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EXAMPLE 4.18 Application to an approximate model

Consider the same process model as in the previous example (Equa-
tion 4.68). Approximate the transfer function by

’ 1

(1 +s)(1+0.26s)

Gp(s) =

It is obtained by keeping the longest time constant and approximat-
ing the three shorter time constants with their sum. The phase error
is less than 10° for frequencies below 5.1 rad/s. By making an ap-
proximation of the process model that is valid for higher frequencies
than in the previous example, we can thus design a faster controller.
If { = 0.5 and o = 1 are chosen in Equation (4.67), the design cal-
culations in Example 4.14 gives the following PID parameters:

K = 05203 — 1
7 - 05203 — 1
! 0.2603
. - 05200~ 1.26
47 T0520% -1
b= 0.267
0.5202 ~ 1

In this case, pure PI control is obtained for @y = 2.4. The derivative
gain becomes negative for lower bandwidths. The approximation ne-
glects the time constant 0.05. If the neglected dynamics are required
to give a phase error of, at most, 0.3 rad (17 deg) at the bandwidth,
wy < 6 rad/s can be obtained. In Figure 4.23, the behavior of the
control is demonstrated for wy = 4,5, and 6.

The specification of the desired closed-loop bandwidth is crucial,
since the controller gain increases rapidly with the specified band-
width. It is also crucial to know the frequency range where the model
is valid. Alternatively, an upper bound to the controller gain can be
used to limit the bandwidth. Notice the effect of changing the design
frequency (o). The system with wy = 6 responds faster and has a
smaller error when subjected to load disturbances. The design will
not work well when wy is increased above 8. a

4.8 Dominant Pole Design

In pole placement design it israttempted to assign all closed-loop
poles. One difficulty with the method is that complex models lead to
complex controllers. In this section we will introduce a related method
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wy =6 6
@y =
1 &\ ol
o5 = s
a)o=4 _w0=4
0 — T T T
0 2 4 6 8
S f
-5 — T T T T
0 2 4 6 8

Figure 4.23 Setpoint and load disturbance responses of the pro-
cess (Equation 4.68) controlled by a PID controller tuned according
to Example 4.18. The responses for w, = 4,5, and 6 are shown. The
upper diagram shows setpoint y, = 1 and process output y, and
the lower diagram shows control signal u.

where it is attempted to assign only a few poles. With this method
it is possible to design simple controllers for complex processes. The
method is based on the assumption that the transfer function of the
process is known. The idea of positioning a few closed-loop poles was
used in several of the early papers on PID control. A complete design
methodology based on this idea is developed in this section. The
method makes it possible to consider many different specifications.
It is also possible to design controllers of many different types and to
compare their performances.

The Cohen-Coon Method

The Cohen-Coon method is based on the process model

— KP e-sL
P77 1+sT

The main design criterion is rejection of load disturbances. It attempts
to position dominant poles that give a quarter amplitude decay ratio.
For P and PD controllers the poles are adjusted to give maximum
gain, subject to the constraint on the decay ratio. This minimizes
the steady state error due to load disturbances. For PI and PID
control the integral gain k; = K/T; is maximized. This corresponds
to minimization of IE, the integral error due to a unit step load
disturbance. For PID controllers three closed-loop poles are assigned;
two poles are complex, and the third real pole is positioned at the
same distance from the origin as the other poles. The pole pattern is
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Table 4.8 Controller parameters from the Cohen-Coon method.

Controller K T, T,
p 1 ( 1+ 0.351)
a 1-71
0.9 0.92¢ 3.3 -3.07
F 7(“1—1) Tv 12 -

0.137 0.27 - 0.367

D —<1+1—r) 1-087c ~

0.181) 2.5 -207 0.37 - 0.377

L

PI
D 1-0.397 1-081r

1-7

adjusted to give quarter amplitude decay ratio, and the distance of
the poles to the origin are adjusted to minimize IE.

Since the process is characterized by three parameters (K,, L,
and T'), it is possible to give tuning formulas where controller pa-
rameters are expressed in terms of these parameters. Such formulas
were derived by Cohen and Coon based on analytical and numerical
computations. The formulas are given in Table 4.8. The parameters
a = K,L/T and © = L/(L + T) are used in the table. A compari-
son with Table 4.1 shows that the controller parameters are close to
those obtained by the Ziegler-Nichols step response method for small
7. Also notice that the integral time decreases for increasing 7 which
is desirable as was found in Section 4.3. The method does suffer,
however, from the decay ratio being too small, which means that the
closed-loop systems obtained have low damping and high sensitivity.

Integrating Control

Consider a process with transfer function G,(s) controlled by an
integrating controller. Such a controller has the transfer function

k;
G.(s) = "

The closed-loop poles are given by
1+k; %(_s_) =0

Since the controller has one adjdstable parameter, it is possible to
assign one pole. To obtain a pole at s = —a the controller parameter

should be chosen as a

ki = Gp(—a)

(4.69)
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So far parameter a is a design parameter. To find suitable ways of
choosing a it is observed that gain k; is small when a is small. This
means that the closed-loop poles are the design pole at s = —a and a
number of poles that are close to the open-loop poles. If the open-loop
system is stable, the design pole is thus the slowest pole. Increasing a
gives a faster closed-loop system. Notice that &; becomes zero when a
is equal to a real process pole. Since IE = 1/k;, the integrated error
will also decrease with increasing a. One possible way to choose a is
to use a value that maximizes k;.

Pl Control

A PI controller has two parameters. Consequently, it is necessary to
assign two poles. Consider a process with transfer function G,(s) and
let the controller be parameterized as

k;

s

G.(s)=k+
The closed-loop characteristic equation is
k; .

1+ (k + —;)Gp(s) =0 (4.70)

Require that this equation have roots at

P12 = Wy (—g“oii,/l - g“g) = wee'™7) = (- cosyisiny) (4.71)

where ¥ = arccos {p. This gives

%)GP(PI) =0

Introduce a(wg) and ¢(wo) defined as

G, (woei(”‘V)) = a(wg)e™@

1+(k+

Notice that G, (wee’*~7)) represents the values of the transfer func-
tion on the ray e("="). When y = 7/2, then G, (w0e’™7) = G,(iwy),
which is the normal frequency response.

Equation (4.70) can be written as

k; ipwe) _
1+ (k + W)a(wo)e =0

This equation, which is linear in % and k;, has the solution
k= __Sln(¢(w0). + y) (4‘72)

a(wo) siny

_ _@gsing(wo)

a(wog) siny (4.73)
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Notice that ¢(wo) is zero for wy = 0 and typically negative as wp
increases. This implies that the proportional gain is negative and the
integral gain positive but small for small wy. When @, increases both
k and k; will increase initially. For larger values of w both param-
eters will decrease. Requiring that both parameters are positive, we
find that wy must be selected so that

¥y < —¢(wo) <7
The integral time of the controller is

ok _sin@wo) +y)
= k; ~  wosing(wo) (4.74)

Notice that T; is independent of a(wo).

PD Control

A PD controller has two parameters. To obtain these it is necessary
to specify two closed-loop poles. The controller is assumed to be pa-

rameterized as '
G.(s) =k + kgs

Specifying the desired poles as

PLo = wo(—go +i/1- gg)

and proceeding as in the derivation of the PI controller we find

_ sin(¢(wo) — 7)
k= a(wo) siny (4.75)
_ _sing(wo) (4.76)

" woa(wo) siny

Note that the expressions of k and %24 for PD controllers are similar
to those of PI controllers.

PID Control
Now we consider PID control. For simplicity, it is assumed that the
controller is parameterized as

G.(s) =k+ % + kys (4.77)

Modifications in the setpoint weighting and limitation of the deriva-
tive gain are taken care of later. Since the controller has three param-
eters, it is necessary to specify three poles of the closed-loop system.
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We choose thexﬁ és .
P12 = Wo ('—§0ii\/1‘"?§> (4.78)
P3 = —Qop. (4.79)
Introduce the quantities a(wy), b(wo), and ¢{wo) defined by
G, (woei(””7)) = a(wo)e™ @)
Gy (~at@o) = ~b(@0)
The céndition thét P1,P2, and p3 are roots of
1+ Gy(s)Ge(s) =0 (4.80)
gives the conditions

ﬂagb(wo) sin(y + @) + b(wo) sin (¥ — ¢) + apa{we) sin2y

k= a(@o)b(wo)(a2 ~ 209 cos y + 1) siny
= oo a(wo) siny + b{wp)(sin(y — ¢) + g sing)
E T G (o) b(wo) (af — 2agcos ¥ + 1) siny
b opa(wg) siny + b(wp)(axesin (y + ¢) — sing)
d=-

woa(wo)b(wo)(ak — 2acos y + 1) siny

PID Controller Based on PI Controller

Another way to obtain a PID controller is to start with a PI controller
and to add derivative action. This can be done as follows. Assume that
the controller

G.(s)=k+ % + kgs (4.81)

is used and that it is desired to have two closed-loop poles in

P12 = @o ("Coii\/l—‘?g>

The value of the controller transfer function at these poles can be
written as

G, (p1) =k+ f)i emiT-m kdwoe"(”‘”
0
ki . ki .
=k~ (kda)o + 5;) cosy + z(kdwo - w_(,) siny

This implies that
k= 4 + 2kd§0(00
k,’ = k; + kdw?,
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where k' and k] are the controller parameters for a pure PI controller
given by Equations (4.72) and (4.73). Using this parameterization
the PID controller can be written

G.(s) = G.(s) + Es‘i— (s* + 2Lowos + Wf) (4.82)

where G.(s) is a pure PI controller, i.e., G.(s) with 2; = 0. The task
is now to choose {o, @y, and &k, such that the system behaves well.
The characteristic equation of the closed-loop system becomes

1+ Gp(5)Ge(s) = 1+ G,(s) (G;(s) + %(32 +280wos + wg)> (4.83)

For a system controlled by a PI controller we have
1+ Go(s)Gi(s) = (s + 2{owos + w§) R(s)

The zeros of R(s) are the free poles of the system controlled by the
PI controller G.(s). Thus,

1+ Gy(s)Ge(s) = (5% + 200wos + &) (R(s) + Gp(s) %‘-i—) (4.84)

The root locus of 1 + G,(s)Gc(s) with respect to kg will start in the
zeros of R(s) and end in the zeros of G,(s) or in infinity.

This parameterization offers a natural way to tune a PID con-
troller: start with a well tuned PI controller and add derivative ac-
tion. As kg4 is increased the parameter wy may have to be modified,
e.g., in such a way that IE is maximized.

PID Controller Based on PD controller

Another way to obtain a PID controller is to start with a PD controller
and to add integral action. Proceeding in the same way as previously
but starting with a PD controller we get

@y

k.
kd = kg-f' ——;—
Wy

E=k"+

where k" and k] are the controller parameters for a pure PD controller
given by Equations (4.75) and (4.76).

A Design Procedure

We have shown that it is possible to find controllers that assign as
many closed-loop poles as there are free parameters in the controller.
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The calculations required are simply a solution of a set of linear
equations. For a PI controller it is possible to assign a pair of complex
poles with given frequency w, and relative damping {p. The assigned
poles will be dominating if the frequency is sufficiently small. We
can use this idea to develop systematic design procedures. To do
so we start with a set of specifications and design parameters. The

" specifications considered are to express load disturbance rejection, .

sensitivity to measurement noise and process variations and setpoint
following as discussed in Section 4.2. -

Method DPD1: Frequency and Damping as Design Parameters

One possibility is to use frequency wp and relative damping o as
design parameters. Other specifications then have to be translated
to conditions on frequency and damping using the relations in Sec-
tion 4.2.

Method DPD2: Relative Damping as Design Parameter

It is comparatively easy to give reasonable values of relative damping
{o. Good values are in the range of 0.4 to 1.0. It is much more
difficult to find reasonable values of frequency wy. This parameter
may change by many orders of magnitude depending on the process. It
would be useful, therefore, to determine parameter @y automatically.
This can be done by selecting a value that gives good rejection of
load disturbances. Notice that the integrated error I/E is related to

parameter k; through
1

I1E = I

Hence, k; should be maximized in order to minimize IE. The design
procedure then becomes a bit more complicated because the controller
parameters have to be computed for different values of @y, and an
optimization has to be performed. Example 4.7. illustrates this. No-
tice that if relative damping is specified in a reasonable way, the
criterion IE is a good measure of the rejection of load disturbances.
An alternative is to consider the criterion JAE instead. The compu-
tational burden then increases significantly and the improvement in
performance is marginal. When doing the optimization it must also be
checked that measurement noise does not generate too much control
action. This can be expressed by the constraint

K = K(1+ N) < Kpax (4.85)

It is straightforward to consider this constraint in the optimization.
The optimization then also tells if performance is limited by process
dynamics or measurement noise. This information is useful in order
to direct redesign of the system. Also notice that the design gives the
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frequency wg as a result This indicates the frequency range where
the process model has to be reasonably accurate.

Method DPD3: Sensitivity as Design Parameter

One drawback of the design methods given is that sensitivity is only
considered indirectly in the design through the specification of rel-
ative damping {o. Another drawback is that for some systems it is
possible to obtain significantly better attenuation of load disturbances
by decreasing damping. One design method that takes this into ac-
count uses sensitivity M; as a design parameter. The design is then
carried out in the following way. We first fix {, and perform the de-
sign as in Method DPD2, but we also compute the sensitivity M.
The parameter ¢y is then changed in order to maximize k; subject to
the constraints on sensitivity and measurement noise, see Equation
(4.85). This method requires more computations than the previous
methods, but has been shown to give very good results. One par-
ticular feature of this method is that the behaviors of the closed-loop
system are very similar for many different processes. Another feature
is that it gives values of both frequency and damping as intermedi-
ate results. The frequency gives an indication of the frequency ranges
where model accuracy is needed. By comparing the values of &;, Ky,
and wy, it is also possible to make an assessment of the performances
of controllers having different structures, e.g., to compare PI and PID
controllers.

Also notice that, if 2; can be maximized without violating the
constraint on measurement noise, the method is equivalent to the loop
shaping procedure discussed in Section 4.4, where I E was minimized
subject to constraints on sensitivity M.

Examples
We illustrate the design method with a few examples.

EXAMPLE 4.19 A pure dead-time process
Consider a process with the transfer function
Gy(s) = ek
Using pure integral control, it follows from Equation (4.69) that

k; = ae™oF
The gain has its largest value k; = e~!/L for a« = 1/L. The loop
transfer function for the system is then

1
G[(S') = Ee—(sL+l)
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Table 4.9 Controller parameters obtained in Example 4.19.

Zo k kL TJL @l M, IAEJL
0.1 0.388 150 0258 197  6.34 4.03
0.2 0.343  1.27 0270 193 360 242
0.3 0.305  1.09 0279 189 270 1.89
0.4 0273 0956 0.285 187 225 1.67
0.5 0244 0847 0288 186 199 1.56
0.6 0218 0759 0288 186 181 - 152
0707 0195 0688 0284 188 169 1.54
0.8 0174 0629 0276 190 161 1.61
0.9 0154 0581 0265 194 154 1.72
1.0 0135 0541 0250 200 149 1.85

The sensitivity of the system is M, = 1.39, which is a good value.
Let us now consider PI control of the process. To do this we first
must evaluate the transfer function on the ray woe” 7. We have

Go(wge™ ") = Gp(—wocosy + iwg siny) = e?olbeoste-iwolsiny

Hence,
woLcosy

a(wo) = e
6(wo) = —woLsiny

It follows from Equations (4.72) and (4.73) that

b= sin(wpL siny — y) -l cosy
siny
B = sin(woL sin ) e~@Lcosy
‘ siny

To minimize I E, we determine the value of wy that maximizes k;.
Setting the derivative of &; with respect to @y equal to zero we get

sin (woL siny) = @oL (sin (woL sin y){o — cos (woL sin y) siny)

Solving this equation with respect to woL for different values of y,
we find the controller parameters given in Table 4.9. Table 4.9 also
gives the M, values and the JAE. The M, value is reasonable for
{o = 0.5. The IEA has its minimum for {, = 0.6. In particular we
notice that for {o = 1 we get £ = e~ and k; = 4e~2/L. This can
be compared with k; = e~!L for pure I control. With PI control the
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Figure 4.24 Simulation of different controllers for a pure delay
process. The relative dampings are {,=0.2, 0.4, 0.6, 0.8, and 1.0,
respectively. The upper diagram shows setpoint y;, = 1, process
output y, and the lower diagram shows control signal u.

integral gain can thus be increased by a factor of 1.5 compared with
an I controller. Notice that for a well-damped system ({o = 0.707)
the gain is about 0.2 and the integral time is T; = 0.28L. This
can be compared with the values 0.9 and 3.3L given by the Ziegler-
Nichols step response method, 0.45 and 2L by the Ziegler-Nichols
frequency response method, and 0.083 and 0.14L for the Cohen-Coon
method. Figure 4.24 shows a simulation of controllers with different
parameters. In summary, we find that a process with a pure delay
dynamics can be controlled quite well with a PI controller. Notice,

however, that the tuning cannot be done by the Ziegler-Nichols rules.
O

In the next example, the dominant pole design method is applied
to the same process as the Ziegler-Nichols methods in Section 4.3.

EXAMPLE 4.20 Three equal lags
Consider a process with the transfer function

1
)= a1y

Table 4.10 gives the controller parameters obtained with the domi-
nant pole design method that uses M as a tuning parameter for a PI
controller. Figure 4.25 shows simulations with controllers obtained
with different values of M,. The behavior is good for values of M, in
the interval 1.4 < M, < 2.0. For higher values of M, the responses

become oscillatory. For M, = 1.2, the value of {, is greater than
one. This means that the two dominant poles are real. The weighting
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Table 4.10 PI controller parameters obtained in Example 4.20.

M, o & K k T IAE
12 039 116 018 014 124 681
14 059 067 048 031 153 329
16 067 049 071 045 158 254
18 073 039 092 057 160 220
20 078 033 109 068 160 206
22 082 028 124 077 160 197
24 085 025 137 086 160 190
26 088 022 149 093 160 186
28 090 020 159 100 159 185
30 092 018 167 106 159 187

factor b = 1 is used in the simulation. A smaller value of b would
give responses to setpoint changes with a smaller overshoot.

In Example 4.3, Ziegler-Nichols methods were used to tune the
same process. The step response method gave the controller parame-
ters K = 4.13 and T; = 2.42, whereas the frequency response method
gave K = 3.2 and T; = 2.90. Comparing these values with the ones in
Table 4.10 shows that the Ziegler-Nichols method gives a PI controller
with a far too high gain and a too long integral time.

M, =12
@
M, =28
20 30 40

-1 T T T T

0 10 20 30 40

Figure 4.25 Simulation of different PI controllers for a process
with transfer function 1/(s + 1)3. The M, values are M,=1.2, 1.6,
2.0, 2.4, and 2.8. The upper diagram shows setpoint y,, = 1 and
process output y, and the lower diagram shows control signal u.
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Table 4.11 PID controller parameters obtained in Example 4.20.

M, @ & KK, kK, T T, IAE/K,

12 083 085 099 043 227 0.57 2.93
14 107 055 205 093 221 0.54 1.08
16 122 042 289 137 211 050 0.74
1.8 133 034 361 177 204 047 0.60
20 142 029 424 214 1.98 0.44 0.52
22 149 026 480 247 194 042 0.48
24 154 023 529 277 191 041 0.44
26 159 021 574 3.04 189 040 0.42
28 164 019 614 329 187 039 041
30 167 017 651 352 185 0.38 0.40

Table 4.11 gives the controller parameters obtained with the dom-
inant pole design method that uses M, as a tuning parameter for a
PID controller, and Figure 4.26 shows the results of the simulation.
The load disturbance rejection is good for M, values greater than
1.2. The IAE is significantly smaller than for corresponding PI con-
trollers. The setpoint responses give too large overshoots, since the

setpoint weighting is chosen to b = 1. 0
M, =28
F M, =12
0 -— A~
M, =28
0 M, =1.
0 10 20 30 40
P |
]
2
-2 T T T T
0 10 20 30 40

Figure 4.26 Simulation of different PID controllers for a process
with transfer function 1/(s + 1)°. The M, values are M,=1.2, 1.6,
2.0, 2.4, and 2.8. The upper diagram shows setpoint y,;, = 1 and
process output y, and the lower diagram shows control signal u.
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EXAMPLE 4.21 Multiple lag process
Consider a process with the transfer function

1
)= 5v e

To design an integrating controller, it follows from Equation (4.69)
that :
ki =a(l1-a)"

Taking derivatives with resbect to a gives

% = (1-a)"-na(l—-a)"!
The derivative is zero for
1

n+1

a =

The gain has its largest value

ki = nil(n:l-l)n

The closed-loop characteristic equation is

n 1 no\"
s(s+1) +n+1(n+ 1) =0
This equation has double roots at s = ~1/(n + 1).
For n = 1 Equations (4.72) and (4.73) give the PI controller
parameters
k= 24’ o — 1
ki = Cl)(z)
Since the closed-loop system is of second order the parameters are
the same as those obtained by the pole placement method. Compare
with Section 4.7. O

Choosing the Setpoint Weighting

It was shown in Chapter 3 that setpoint weighting is very useful in
order to shape the response to setpoint changes. To do this properly,
we also need a procedure to determine parameter b. For the dominant
pole design method, it is easy to find such a method. With this method,
the closed-loop system will have two complex poles and one pole —py
on the real axis. This pole may be slower than the dominant poles.
With setpoint weighting, the closed-loop system has a zero at

1L
BT,

§=—20= —
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v e
Process :

Gp x (:)J’

Controller

u

» G,

Filter

']

'—Gf

Figure 4.27 Block diagram of a closed-loop system.

By choosing b so that zp = pg, we make sure that the setpoint does not

excite the mode corresponding to the pole in —pg. This works well and

gives good transient responses for systems where the dominant poles

are well damped, ({o > 0.7). For systems where the poles are not so

well damped, the choice zp = 2pp gives systems with less overshoot.
A suitable choice of parameter b is thus

05
—_ if < 0.5
poT; ¢
po] 0BF2BE=05) oo o oq
poT;
1 if {>0.7
poT; ’

4.9 Design for Disturbance Rejection

The design methods discussed so far have been based on a character-
ization of process dynamics. The properties of the disturbances have
only influenced the design indirectly. A load disturbance in the form
of a step was used and in some cases a loss function based on the
error due to a load disturbance was minimized. Measurement noise
was also incorporated by limiting the high-frequency gain of the con-
troller.

In this section, we briefly discuss design methods that directly
attempt to make a trade-off between attenuation of load disturbances
and amplification of measurement noise due to feedback.

Consider the system shown in Figure 4.27. Notice that the mea-
surement signal is filtered before it is fed to the controller. Let V
and E be the Laplace transforms of the load disturbance and the



194 ' Chapter 4 Controller Design

measurement error, respectively. The process output and the control

- signal are then given by

X=1fpé V‘lftGE '
o ¢ GG‘ (4.86)
[4 cf '
= - V- E
v 1+G¢ 1+G[

where G, is the loop transfer function given by
Gy = GpG.Gy

Different assumptions about the disturbances and different design
criteria can now be given. We illustrate by an example.

EXAMPLE 4.22
Assume that the transfer functions in Figure 4.27 are given by

1 k;

Gp—s Gr=1 Gc—k+s
Furthermore, assume that e is stationary noise with spectral density
¢. and that v is obtained by sending stationary noise with the spec-
trum ¢, 