
Particle Swarm Optimization

James Kennedy' and Russell Eberhart2

Washington, DC 20212
kennedyjim @bls .gov

2Purdue School of Engineering and Technology
Indianapolis, IN 46202-5160

eberhart @ engr.iupui .edu

1

ABSTRACT
A concept for the optimization of nonlinear functions using particle swarm methodology is introduced.
The evolution of several paradigms is outlined, and an implementation of one of the paradigms is
discussed. Benchmark testing of the paradigm is described, and applications, including nonlinear
function optimization and neural network training, are proposed. The relationships between particle
swarm optimization and both artificial life and genetic algorithms are described,

1 INTRODUCTION
This paper introduces a method for optimization of continuous nonlinear functions. The method was
discovered through simulation of a simplified social model; thus the social metaphor is discussed,
though the algorithm stands without metaphorical support. This paper describes the particle swarm
optimization concept in terms of its precursors, briefly reviewing the stages of its development from
social simulation to optimizer. Discussed next are a few paradigms that implement the concept.
Finally, the implementation of one paradigm is discussed in more detail, followed by results obtained
from applications and tests upon which the paradigm has been shown to perform successfully.

Particle swarm optimization has roots in two main component methodologies. Perhaps more obvious
are its ties to artificial life (A-life) in general, and to bird flocking, fish schooling, and swarming theory
in particular. It is also related, however, to evolutionary computation, and has ties to both genetic
algorithms and evolutionary programming. These relationships are briefly reviewed in the paper.

Particle swarm optimization as developed by the authors comprises a very simple concept, and
paradigms can be implemented in a few lines of computer code. It requires only primitive
mathematical operators, and is computationally inexpensive in terms of both memory requirements and
speed. Early testing has found the implementation to be effective with several kinds of problems. This
paper discusses application of the algorithm to the training of artificial neural network weights,
Particle swarm optimization has also been demonstrated to perform well on genetic algorithm test
functions. This paper discusses the performance on Schaffer's f6 function, as described in Davis [l].

2 SIMULATING SOCIAL BEHAVIOR
A number of scientists have created computer simulations of various interpretations of the movement of
organisms in a bird flock or fish school. Notably, Reynolds [8] and Heppner and Grenander [4]
presented simulations of bird flocking. Reynolds was intrigued by the aesthetics of bird flocking
choreography, and Heppner, a zoologist, was interested in discovering the underlying rules that enabled
large numbers of birds to flock synchronously, often changing direction suddenly, scattering and
regrouping, etc. Both of these scientists had the insight that local processes, such as those modeled by

0-7803-2768-3/95/$4.00 0 1995 IEEE 1942

cellular automata, might underlie the unpredic:table group dynamics of bird social behavior. Both
models relied heavily on manipulation of inter-individual distances; that is, the synchrony of flocking
behavior was thought to be a function of birds’ efforts to maintain an optimum distance between
themselves and their neighbors.

It does not seem a too-large leap of logic to suppose that some same rules underlie animal social
behavior, including herds, schools, and flocks, and that of humans. As sociobiologist E. 0. Wilson [9]
has written, in reference to fish schooling, “In theory at least, individual members of the school can
profit from the discoveries and previous experience of all other members of the school during the
search for food. This advantage can become decisive, outweighing the disadvantages of competition
for food items, whenever the resource is unpedictably distributed in patches” (p.209). This statement
suggests that social sharing of information among conspeciates offers an evolutionary advantage: this
hypothesis was fundamental to the developnmt of particle swarm optimization.

One motive for developing the simdation was to model human social behavior, which is of course not
identical to fish schooling or bird flocking. Che important difference is its abstractness. Birds and fish
adjust their physical movement to avoid prechtors, seek food and mates, optimize environmental
parameters such as temperature, etc. Humans; adjust not only physical movement but cognitive or
experiential variables as well. We do not usually walk in step and tum in unison (though some
fascinating research in human conformity shows that we are capable of it); rather, we tend to adjust our
beliefs and attitudes to conform with those cd our social peers.

This is a major distinction in terms of contriving a computer simulation, for at least one obvious
reason: collision. Two individuals can hold identical attitudes and beliefs without banging together, but
two birds cannot occupy the same position in space without colliding. It seems reasonable, in
discussing human social behavior, to map thie concept of change into the birdfish analog of movement.
This is consistent with the classic Aristotelim view of qualitative and quantitative change as types of
movement. Thus, besides moving through tlhree-dimensional physical space, and avoiding collisions,
humans change in abstract multidimensional space, colision-free. Physical space of course affects
informational inputs, but it is arguably a trivial component of psychological experience. Humans learn
to avoid physical collision by an early age, hit navigation of n-dimensional psychosocial space requires
decades of practice - and many of us never seem to acquire quite all the skills we need!

3 PRECURSORS: THE ETIOLOGY OF PARTICLE SWARM OPTIMIZATION
The particle swarm optimizer is probably kcst presented by explaining its conceptual development. As
mentioned above, the algorithm began as a simulation of a simplified social milieu. Agents were
thought of as collision-proof birds, and the original intent was to graphically simulate the graceful but
unpredictable choreography of a bird flock.

3.1 Nearest Neighbor Velocity Matching and Craziness
A satisfying simulation was rather quickly written, which relied on two props: nearest-neighbor
velocity matching and “craziness.” A populartion of birds was randomly initialized with a position for
each on a torus pixel grid and with X and Y velocities. At each iteration a loop in the program
determined, for each agent (a more appropriate term than bird), which other agent was its nearest
neighbor, then assigned that agent’s X and Y velocities to the agent in focus. Essentially this simple
d e created a synchrony of movement.

Unfortunately, the flock quickly settled on ii lunanimous, unchanging direction. Therefore, a stochastic
variable called craziness was introduced. At each iteration some change was added to randomly

1943

chosen X and Y velocities. This i n t r d u d enough variation into the system to give the simulation an
interesting and “lifelike” appearance, though of course the variation was wholly artiticial.

3.2 The Cornfield Vector
Heppner’s bird simulations had a feature which introduced a dynamic force into the simulation. His
birds flocked around a “roost,” a position on the pixel screen that attracted them until they finally
landed there. This eliminated the need for a variable like craziness, as the simulation took on a l i e of
its own. While the idea of a roost was intriguing, it led to another question which seemed even more
stimulating. Heppner’s birds knew where their roost was, but in real life birds land on any tree or
telephone wire that meets their immediate needs. Even more importantly, bird flocks land where there
is food. How do they find food? Anyone who has ever put out a bird feeder knows that within hours a
great number of birds will likely find it, even though they had no previous knowledge of its location,
appearance, etc. It seems possible that something about the flock dynamic enables members of the
flock to capitalize on one another’s knowledge, as in Wilson’s quote above.

The second variation of the simulation defined a “comfield vector,” a two-dimensional vector of XY
coordinates on the pixel plane. Each agent was programmed to evaluate its present position in terms of
the equation:

Eval= Jw + 4-
so that at the (100,100) position the value was zero.

Each agent “remembered” the best value and the XY position which had resulted in that value. The
value was called pbest[] and the positions pbestx[] and pbestyl] (brackets indicate that these are
arrays, with number of elements = number of agents). As each agent moved through the pixel space
evaluating positions, its X and Y velocities were adjusted in a simple manner. If it was to the right of
its pbestx, then its X velocity (call it vx) was adjusted negatively by a random amount weighted by a
parameter of the system: vx[]=vx[] - rand()*p-increment. If it was to the left of pbestx,
rand()*p-increment was added to vx[]. Similarly, Y velocities vy[] were adjusted up and down,
depending on whether the agent was above or below pbesty.

Secondly, each agent “knew” the globally best position that one member of the flock had found, and its
value. This was accomplished by simply assigning the array index of the agent with the best value to a
variable called gbest, so that pbestx[gbest] was the group’s best X position, and pbesty[gbest] its best
Y position, and this information was available to all flock members. Again, each member’s vx[] and
vy[] were adjusted as follows, where g-increment is a system parameter.

ifpresentx[l> pbestx[gbest] then vx[] = vx[] - rand() *g-increment
ifpresentx[] < pbestx[gbest] then vx[] = vx[] + rand() *g-increment
ifpresenty[] > pbesty[gbestl then vy[] = vy[] - rand() *g-increment
ifpresenty[l< pbesty[gbestl then vy[] = vy[] + rand() *g-increment

In the simulation, a circle marked the (100,100) position on the pixel field, and agents were represented
as colored points. Thus an observer could watch the flocking agents circle around until they found the
simulated cornfield. The results were surprising. With p-increment and g-increment set relatively
high, the flock seemed to be sucked violently into the cornfield. In a very few iterations the entire flock,
usually 15 to 30 individuals, was seen to be clustered within the tiny circle surrounding the goal. With
p-increment and g-increment set low, the flock swirled around the goal, realistically approaching it,
swinging out rhythmically with subgroups synchronized, and finally “landing” on the target.

1944

3 3 Eliminating Ancillary Variables
Once it was clear that the paradigm could og~imize simple, two-dimensional, linear functions, it was
important to identify the parts of the paradip that are necessary for the task. For instance, the
authors quickly found that the algorithm worlts just as well, and looks just as realistic, without
craziness, so it was removed. Next it was shown that optimization actually occurs slightly faster when
nearest neighbor velocity matching is removed, though the visual effect is changed. Theflock is now a
swam, but it is well able to find the codielidl.

The variables pbest and gbest and their increments are both necessary. Conceptually pbest resembles
autobiographical memory, as each individual remembers its own experience (though only one fact
about it), and the velocity adjustment associarted with pbest has been called “simple nostalgia” in that
the individual tends to return to the place thiat most satisfied it in the past. On the other hand, gbest is
conceptually similar to publicized knowledge, or a group norm or standard, which individuals seek to
attain. In the simulations, a high value of princrement relative to g-increment results in excessive
wandering of isolated individuals through the problem space, while the reverse (relatively high
g-increment) results in the flock rushing prematurely toward local minima. Approximately equal
values of the two increments Seem to result in the most effective search of the problem domain.

3.4 Multidimensional Search
W e the algorithm seems to impressively ”del a flock searching for a cornfield, most interesting
optimization problems are neither linear nor two-dimensional. Since one of the authors’ objectives is
to model social behavior, which is multidimensional and collision-free, it seemed a simple step to
change presentx and presenty (and of course vx[] and vy[n from onedimensional arrays to D x N
matrices, where D is any number of dimensions and N is the number of agents.

Multidimensional experiments were performed, using a nonlinear, multidimensional problem: adjusting
weights to train a feedforward multilayer pe:nceptron neural network (NN). One of the authors’ first
experiments involved training weights for a tluee-layer NN solving the exclusive-or (XOR) problem.
This problem requires two input and one output processing elements (PES), plus some number of
hidden PES. Besides connections from the piwious layer, the hidden and output PE layers each has a
bias PE associated with it. Thus a 2,3,1 NN requires optimization of 13 parameters. This problem
was approached by flying the agents through 13-dimensional space until an average sum-squared error
per PE criterion was met. The algorithm performed very well on this problem. The thirteen-
dimensional XOR network was trained, to am e < 0.05 criterion, in an average of 30.7 iterations with
20 agents. More complex NN architectures, look longer of course, but results, discussed in Section 5:
Results and Early Applications, were still very good.

3.5 Acceleration by Distance
Though the algorithm worked well, there WiU; something aesthetically displeasing and hard to
understand about it. Velocity adjustments were based on a crude inequality test: ifpresentx > bestx,
make it smaller; ifpresentx c bestx, make it bigger. Some experimentation revealed that further
revising the algorithm made it easier to und~eirstand and improved its performance. Rather than simply
testing the sign of the inequality, velocities were adjusted according to their difference, per dimension,
from best locations:

vx[][] = vx[][] + rand() *p_increment*(pbt?stx[][] - presentx[l[l)

1945

(note the parameters vx and presentx have two sets of brackets because they are now matrices of agents
by dimensions; increment and bestx could also have a g instead of p at their beginnings.)

3.6 Current Simplified Version
It was soon realized that there is no good way to guess whether p - or g-increment should be larger.
Thus, these terms were also stripped out of the algorithm. The stochastic factor was multiplied by 2 to
give it a mean of 1, so that agents would “overfly” the target about half the time. This version
outperforms the previous versions. Further research will show whether there is an optimum value for
the constant currently set at 2, whether the value should be evolved for each problem, or whether the
value can be determined from some knowledge of a particular problem. The current simplified particle
swarm optimizer now adjusts velocities by the following formula:

vxLlLl= V X L I L l +
2 * rand() * (pbestx[][] - presentx[]f l) +
2 * rand() * (pbestxf l lgbesf l - presentxf l f])

3.7 Other Experiments
Other variations on the algorithm were tried, but none seemed to improve on the current simplified
version. For instance, it is apparent that the agent is propelled toward a weighted average of the two
“best” points in the problem space. One version of the algorithm reduced the two terms to one, which
was the point on each dimension midway between pbest and gbest positions. This version had an
unfortunate tendency, however, to converge on that p in t whether it was an optimum or not.
Apparently the two stochastic “kicks” are a necessary part of the process.

Another version considered using two types of agents, conceived as “explorers” and “settlers.”
Explorers used the inequality test, which tended to cause them to overrun the target by a large distance,
while settlers used the difference term. The hypothesis was that explorers would extrapolate outside
the “known” region of the problem domain, and the settlers would hill-climb or micro-explore regions
that had been found to be good. Again, this method showed no improvement over the current
simplified version. Occam’s razor slashed again.

Another version that was tested removed the momentum of vx[][] . The new adjustment was:

V X i l L l = 2 * rand() * (pbes txf l f] - presentx[lfl) +
2 * rand() * (pbestx[][gbestJ - presentx[l[])

This version, though simplified, tumed out to be quite ineffective at finding global optima.

4 SWARMS AND PARTICLES
As was described in Section 3.3, it became obvious during the simplification of the paradigm that the
behavior of the population of agents is now more like a swarm than a flock. The term swarm has a
basis in the literature. In particular, the authors use the term in accordance with a paper by Millonas
[6], who developed his models for applications in artificial life, and articulated five basic principles of
swarm intelligence. First is the proximity principle: the population should be able to carry out simple
space and time computations. Second is the quality principle: the population should be able to respond
to quality factors in the environment. Third is the principle of diverse response: the population should
not commit its activities along excessively narrow channels. Fourth is the principle of stability: the
population should not change its mode of behavior every time the environment changes. Fifth is the

1946

principle of adaptability: the population must be able to change behavior mode when it’s worth the
computational price. Note that principles four and five are the opposite sides of the same coin.

The particle swarm optimization concept and paradigm presented in this paper seem to adhere to all
five principles. Basic to the paradigm are n-dimensional space calculations carried out over a series of
time steps. The population is responding to the quality factors pbest and gbest. The allocation of
responses between pbest and gbest ensures ia diversity of response. The population changes its state
(mode of behavior) only when gbest changes, thus adhering to the principle of stability. The
population is adaptive because it does change when gbest changes.

The term particle was selected as a compromise. While it could be argued that the population
members are mass-less and volume-less, anid thus could be called “points,” it is felt that velocities and
accelerations are more appropriately applied to particles, even if each is defined to have arbitrarily
small mass and volume. Further, Reeves [7] discusses particle systems consisting of clouds of
primitive particles as models of diffuse obje:cts such as clouds, frre and smoke. Thus the label the
authors have chosen to represent the optimization concept is particle swarm.

5 TESTS AND EARLY APPLICATIONS OF THE OPTIMIZER
The paradigm has been tested using systemiatic benchmark tests as well as observing its performance
on applications that are known to be difificult. The neural-net application described in Section 3.4, for
instance, showed that the particle swarm optimizer could train NN weights as effectively as the usual
error backpropagation method. The particle swarm optimizer has also been used to train a neural
network to classify the Fisher Iris Data Set 1[3]. Again, the optimizer trained the weights as effectively
as the backpropagation method. Over a series of ten training sessions, the particle swarm optimizer
paradigm required an average of 284 epochs,,

Intriguing informal indications are that the Irihed weights found by particle swarms sometimes
generalize from a training set to a test set better than solutions found by gradient descent. For
example, on a data set representing electroencephalogram spike waveforms and false positives, a
backpropagation NN achieved 89 percent correct on the test data [2]. The particle swarm optimizer
was able to train the network so as to achieve 92 percent correct.

The particle swarm optimizer was compareid to a benchmark for genetic algorithms in Davis [11: the
extremely nonlinear Schaffer f6 function. This function is very difficult to optimize, as the highly
discontinuous data surface features many 1oc:al optima. The particle swarm paradigm found the global
optimum each run, and appears to approximite the results reported for elementary genetic algorithms
in Chapter 2 of [11 in terms of the number of evaluations required to reach certain performance levels.

6 CONCLUSIONS
Particle swarm optimization is an extremely wimple algorithm that seems to be effective for optimizing
a wide range of functions. We view it as a]mid-level form of A-life or biologically derived algorithm,
occupying the space in nature between evollutionary search, which requires eons, and neural processing,
which occurs on the order of milliseconds. Social optimization occurs in the time frame of ordinary
experience - in fact, it is ordinary experieince. In addition to its ties with A-life, particle swarm
optimization has obvious ties with evolutioiniuy computation. Conceptually, it seems to lie somewhere
between genetic algorithms and evolutionary programming. It is highly dependent on stochastic
processes, like evolutionary programming. The adjustment toward pbest and gbest by the particle
swarm optimizer is conceptually similar to the crossover operation utilized by genetic algorithms. It
uses the concept ofjimess, as do aU evolutionary computation paradigms.

1947

Unique to the concept of particle swarm optimization is flying potential solutions through hyperspace,
accelerating toward “better” solutions. Other evolutionary computation schemes operate directly on
potential solutions which are represented as locations in hyperspace. Much of the success of particle
swarms seems to lie in the agents’ tendency to hurtle past their target. Holland’s chapter on the
“optimum allocation of trials” [5] reveals the delicate balance between conservative testing of known
regions versus r isky exploration of the unknown. It appears that the current version of the paradigm
allocates trials nearly optimally. The stochastic factors allow thorough search of spaces between
regions that have been found to be relatively good, and the momentum effect caused by nmhfying the
extant velocities rather than replacing them results in overshooting, or exploration of unknown regions
of the problem domain.

The authors of this paper are a social psychologist and an electrical engineer. The particle swarm
optimizer serves both of these fields equally well. Why is social behavior so ubiquitous in the animal
kingdom? Because it optimizes. What is a good way to solve engineering optimization problems?
Modeling social behavior.

Much further research remains to be conducted on this simple new concept and paradigm. The goals in
developing it have been to keep it simple and robust, and we seem to have succeeded at that. The
algorithm is written in a very few lines of code, and requires only specification of the problem and a
few parameters in order to solve it. This algorithm belongs ideologically to that philosophical school
that allows wisdom to emerge rather than trying to impose it, that emulates nature rather than trying to
control it, and that seeks to make things simpler rather than more complex. Once again nature has
provided us with a technique for processing information that is at once elegant and versatile.

ACKNOWLEDGMENTS
Portions of this paper are adapted from a chapter on particle swarm optimization in a book entitled
Computational Intelligence PC Tools, to be published in early 1996 by Academic Press Professional
(APP). The permission of APP to include this material is gratefully acknowledged. The input and
comments of Roy Dobbins and Pat Simpson are appreciated.

REFERENCES
[l] Davis, L., Ed. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,

NY.
[2] Eberhart, R. C. and R. W Dobbins (1990). Neural Network PC Tools: A Practical Guide.

Academic Press, San Diego, CA.
[3] Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7: 179-188.
[4] Heppner, F. and U. Grenander (1990). A stochastic nonlinear model for coordinated bird flocks.

In S . Krasner, Ed., The Ubiquity of Chaos. AAAS Publications, Washington, DC.
[5] Holland, J. H. (1992). Adaptation in Natural and Artijlcial Systems. MIT Press, Cambridge,

MA.
[6] Millonas, M. M. (1994). Swarms, phase transitions, and collective intelligence. In C. G. Langton,

Ed., Artijicial Life III. Addison Wesley, Reading, MA.
[7] Reeves, W. T. (1983). Particle systems - a technique for modeling a class of fuzzy objects. ACM

Transactions on Graphics, 2(2):91-108.
[SI Reynolds, C. W. (1987). Flocks, herds and schools: a distributed behavioral model. Computer

Graphics, 2 1 (4):25-34.
[9] Wilson, E.O. (1975). Sociobiology: The new synthesis. Belknap Press, Cambridge, hlA.

1948

